WorldWideScience

Sample records for macroscopic solute transport

  1. Modeling of Macroscopic/Microscopic Transport and Growth Phenomena in Zeolite Crystal Solutions Under Microgravity Conditions

    Science.gov (United States)

    Gatsonis, Nikos A.; Alexandrou, Andreas; Shi, Hui; Ongewe, Bernard; Sacco, Albert, Jr.

    1999-01-01

    Crystals grown from liquid solutions have important industrial applications. Zeolites, for instance, a class of crystalline aluminosilicate materials, form the backbone of the chemical process industry worldwide, as they are used as adsorbents and catalysts. Many of the phenomena associated with crystal growth processes are not well understood due to complex microscopic and macroscopic interactions. Microgravity could help elucidate these phenomena and allow the control of defect locations, concentration, as well as size of crystals. Microgravity in an orbiting spacecraft could help isolate the possible effects of natural convection (which affects defect formation) and minimize sedimentation. In addition, crystals will stay essentially suspended in the nutrient pool under a diffusion-limited growth condition. This is expected to promote larger crystals by allowing a longer residence time in a high-concentration nutrient field. Among other factors, the crystal size distribution depends on the nucleation rate and crystallization. These two are also related to the "gel" polymerization/depolymerization rate. Macroscopic bulk mass and flow transport and especially gravity, force the crystals down to the bottom of the reactor, thus forming a sedimentation layer. In this layer, the growth rate of the crystals slows down as crystals compete for a limited amount of nutrients. The macroscopic transport phenomena under certain conditions can, however, enhance the nutrient supply and therefore, accelerate crystal growth. Several zeolite experiments have been performed in space with mixed results. The results from our laboratory have indicated an enhancement in size of 30 to 70 percent compared to the best ground based controls, and a reduction of lattice defects in many of the space grown crystals. Such experiments are difficult to interpret, and cannot be easily used to derive empirical or other laws since many physical parameters are simultaneously involved in the process

  2. Macroscopic spin and charge transport theory

    Institute of Scientific and Technical Information of China (English)

    Li Da-Fang; Shi Jun-Ren

    2009-01-01

    According to the general principle of non-equilibrium thermodynamics, we propose a set of macroscopic transport equations for the spin transport and the charge transport. In particular, the spin torque is introduced as a generalized 'current density' to describe the phenomena associated with the spin non-conservation in a unified framework. The Einstein relations and the Onsager relations between different transport phenomena are established. Specifically, the spin transport properties of the isotropic non-magnetic and the isotropic magnetic two-dimensional electron gases are fully described by using this theory, in which only the macroscopic-spin-related transport phenomena allowed by the symmetry of the system are taken into account.

  3. Taming macroscopic jamming in transportation networks

    CERN Document Server

    Ezaki, Takahiro; Nishinari, Katsuhiro

    2015-01-01

    In transportation networks, a spontaneous jamming transition is often observed, e.g in urban road networks and airport networks. Because of this instability, flow distribution is significantly imbalanced on a macroscopic level. To mitigate the congestion, we consider a simple control method, in which congested nodes are closed temporarily, and investigate how it influences the overall system. Depending on the timing of the node closure and opening, and congestion level of a network, the system displays three different phases: free-flow phase, controlled phase, and deadlock phase. We show that when the system is in the controlled phase, the average flow is significantly improved, whereas when in the deadlock phase, the flow drops to zero. We study how the control method increases the network flow and obtain their transition boundary analytically.

  4. Macroscopic heat transport equations and heat waves in nonequilibrium states

    Science.gov (United States)

    Guo, Yangyu; Jou, David; Wang, Moran

    2017-03-01

    Heat transport may behave as wave propagation when the time scale of processes decreases to be comparable to or smaller than the relaxation time of heat carriers. In this work, a generalized heat transport equation including nonlinear, nonlocal and relaxation terms is proposed, which sums up the Cattaneo-Vernotte, dual-phase-lag and phonon hydrodynamic models as special cases. In the frame of this equation, the heat wave propagations are investigated systematically in nonequilibrium steady states, which were usually studied around equilibrium states. The phase (or front) speed of heat waves is obtained through a perturbation solution to the heat differential equation, and found to be intimately related to the nonlinear and nonlocal terms. Thus, potential heat wave experiments in nonequilibrium states are devised to measure the coefficients in the generalized equation, which may throw light on understanding the physical mechanisms and macroscopic modeling of nanoscale heat transport.

  5. Macroscopic transport by synthetic molecular machines

    NARCIS (Netherlands)

    Berna, J; Leigh, DA; Lubomska, M; Mendoza, SM; Perez, EM; Rudolf, P; Teobaldi, G; Zerbetto, F

    2005-01-01

    Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with - and perform physical tasks in - the macroscopic world represents a significant hurdle

  6. Symmetry properties of macroscopic transport coefficients in porous media

    Science.gov (United States)

    Lasseux, D.; Valdés-Parada, F. J.

    2017-04-01

    We report on symmetry properties of tensorial effective transport coefficients characteristic of many transport phenomena in porous systems at the macroscopic scale. The effective coefficients in the macroscopic models (derived by upscaling (volume averaging) the governing equations at the underlying scale) are obtained from the solution of closure problems that allow passing the information from the lower to the upper scale. The symmetry properties of the macroscopic coefficients are identified from a formal analysis of the closure problems and this is illustrated for several different physical mechanisms, namely, one-phase flow in homogeneous porous media involving inertial effects, slip flow in the creeping regime, momentum transport in a fracture relying on the Reynolds model including slip effects, single-phase flow in heterogeneous porous media embedding a porous matrix and a clear fluid region, two-phase momentum transport in homogeneous porous media, as well as dispersive heat and mass transport. The results from the analysis of these study cases are summarized as follows. For inertial single-phase flow, the apparent permeability tensor is irreducibly decomposed into its symmetric (viscous) and skew-symmetric (inertial) parts; for creeping slip-flow, the apparent permeability tensor is not symmetric; for one-phase slightly compressible gas flow in the slip regime within a fracture, the effective transmissivity tensor is symmetric, a result that remains valid in the absence of slip; for creeping one-phase flow in heterogeneous media, the permeability tensor is symmetric; for two-phase flow, we found the dominant permeability tensors to be symmetric, whereas the coupling tensors do not exhibit any special symmetry property; finally for dispersive heat transfer, the thermal conductivity tensors include a symmetric and a skew-symmetric part, the latter being a consequence of convective transport only. A similar result is achieved for mass dispersion. Beyond the

  7. Macroscopic Modeling of Transport Phenomena in Direct Methanol Fuel Cells

    DEFF Research Database (Denmark)

    Olesen, Anders Christian

    An increasing need for energy efficiency and high energy density has sparked a growing interest in direct methanol fuel cells for portable power applications. This type of fuel cell directly generates electricity from a fuel mixture consisting of methanol and water. Although this technology...... for studying their transport. In this PhD dissertation the macroscopic transport phenomena governing direct methanol fuel cell operation are analyzed, discussed and modeled using the two-fluid approach in the computational fluid dynamics framework of CFX 14. The overall objective of this work is to extend...... the present fundamental understanding of direct methanol fuel cell operation by developing a three-dimensional, two-phase, multi-component, non-isotherm mathematical model including detailed non-ideal thermodynamics, non-equilibrium phase change and non-equilibrium sorption-desorption of methanol and water...

  8. Numerical solutions of a generalized theory for macroscopic capillarity

    NARCIS (Netherlands)

    Doster, F.; Zegeling, P.A.; Hilfer, R.

    2010-01-01

    A recent macroscopic theory of biphasic flow in porous media [R. Hilfer, Phys. Rev. E 73, 016307 (2006)] has proposed to treat microscopically percolating fluid regions differently from microscopically nonpercolating regions. Even in one dimension the theory reduces to an analytically intractable se

  9. Macroscopic diffusive transport in a microscopically integrable Hamiltonian system.

    Science.gov (United States)

    Prosen, Tomaž; Zunkovič, Bojan

    2013-07-26

    We demonstrate that a completely integrable classical mechanical model, namely the lattice Landau-Lifshitz classical spin chain, supports diffusive spin transport with a finite diffusion constant in the easy-axis regime, while in the easy-plane regime, it displays ballistic transport in the absence of any known relevant local or quasilocal constant of motion in the symmetry sector of the spin current. This surprising finding should open the way towards analytical computation of diffusion constants for integrable interacting systems and hints on the existence of new quasilocal classical conservation laws beyond the standard soliton theory.

  10. Molecular motor traffic: From biological nanomachines to macroscopic transport

    Science.gov (United States)

    Lipowsky, Reinhard; Chai, Yan; Klumpp, Stefan; Liepelt, Steffen; Müller, Melanie J. I.

    2006-12-01

    All cells of animals and plants contain complex transport systems based on molecular motors which walk along cytoskeletal filaments. These motors are rather small and have a size of 20-100 nm but are able to pull vesicles, organelles and other types of cargo over large distances, from micrometers up to meters. There are several families of motors: kinesins, dyneins, and myosins. Most of these motors have two heads which are used as legs and perform discrete steps along the filaments. Several aspects of the motor behavior will be discussed: motor cycles of two-headed motors; walks of single motors or cargo particles which consist of directed movements interrupted by random, diffusive motion; cargo transport through tube-like compartments; active diffusion of cargo particles in slab-like compartments; cooperative transport of cargo by several motors which may be uni- or bi-directional; and systems with many interacting motors that exhibit traffic jams, self-organized density and flux patterns, and traffic phase transitions far from equilibrium. It is necessary to understand these traffic phenomena in a quantitative manner in order to construct and optimize biomimetic transport systems based on motors and filaments with many possible applications in bioengineering, pharmacology, and medicine.

  11. COMBINATION OF MACROSCOPIC AND MICROSCOPIC TRANSPORT SIMULATION MODELS: USE CASE IN CYPRUS

    Directory of Open Access Journals (Sweden)

    Evangelos Mitsakis

    2014-06-01

    Full Text Available The present paper presents the transportation planning methodology applied in the city of Nicosia, Cyprus, within the framework of Nicosia’s “Integrated Mobility Master Plan”. Unique characteristics of the capital of Cyprus, such as the sparse coverage, low service quality and even lower market penetration of the public transport network, the inadequate parking policy applied and the car-centred mobility culture of the local citizens have provided the motivation for a “redesign” of the classic four-step transport modelling process by combining static and dynamic, macroscopic and microscopic transportation analysis models, in order to support the city’s decision makers.

  12. Chaotic advection at the pore scale: Mechanisms, upscaling and implications for macroscopic transport

    Science.gov (United States)

    Lester, D. R.; Trefry, M. G.; Metcalfe, G.

    2016-11-01

    The macroscopic spreading and mixing of solute plumes in saturated porous media is ultimately controlled by processes operating at the pore scale. Whilst the conventional picture of pore-scale mechanical dispersion and molecular diffusion leading to persistent hydrodynamic dispersion is well accepted, this paradigm is inherently two-dimensional (2D) in nature and neglects important three-dimensional (3D) phenomena. We discuss how the kinematics of steady 3D flow at the pore scale generate chaotic advection-involving exponential stretching and folding of fluid elements-the mechanisms by which it arises and implications of microscopic chaos for macroscopic dispersion and mixing. Prohibited in steady 2D flow due to topological constraints, these phenomena are ubiquitous due to the topological complexity inherent to all 3D porous media. Consequently 3D porous media flows generate profoundly different fluid deformation and mixing processes to those of 2D flow. The interplay of chaotic advection and broad transit time distributions can be incorporated into a continuous-time random walk (CTRW) framework to predict macroscopic solute mixing and spreading. We show how these results may be generalised to real porous architectures via a CTRW model of fluid deformation, leading to stochastic models of macroscopic dispersion and mixing which both honour the pore-scale kinematics and are directly conditioned on the pore-scale architecture.

  13. Peritoneal transport with icodextrin solution.

    Science.gov (United States)

    Heimbürger, Olof

    2006-01-01

    Icodextrin is the only large molecular weight osmotic agent available in peritoneal dialysis solutions. Icodextrin (compared to glucose) has a prolonged positive ultrafiltration because of the slow absortion of icodextrin due to its large molecular weight. As icodextrin induces transcapillary ultrafiltration by a mechanism resembling 'colloid' osmosis (with the ultrafiltration occurring mainly through the small pores) almost no sieving of solutes is observed with icodextrin-based solution resulting in increased convective transport and clearance of small solutes. In general, the transport characteristics of the peritoneal membrane are similar with glucose- and icodextrin-based solution, but results from the EAPOS study suggests that use of icodextrin-based solution may be associated with less changes in peritoneal transport with time.

  14. Transport processes in macroscopically disordered media from mean field theory to percolation

    CERN Document Server

    Snarskii, Andrei A; Sevryukov, Vladimir A; Morozovskiy, Alexander; Malinsky, Joseph

    2016-01-01

    This book reflects on recent advances in the understanding of percolation systems to present a wide range of transport phenomena in inhomogeneous disordered systems. Further developments in the theory of macroscopically inhomogeneous media are also addressed. These developments include galvano-electric, thermoelectric, elastic properties, 1/f noise and higher current momenta, Anderson localization, and harmonic generation in composites in the vicinity of the percolation threshold. The book describes how one can find effective characteristics, such as conductivity, dielectric permittivity, magnetic permeability, with knowledge of the distribution of different components constituting an inhomogeneous medium. Considered are a wide range of recent studies dedicated to the elucidation of physical properties of macroscopically disordered systems. Aimed at researchers and advanced students, it contains a straightforward set of useful tools which will allow the reader to derive the basic physical properties of compli...

  15. Chaotic Advection at the Pore Scale: Mechanisms, Upscaling and Implications for Macroscopic Transport

    CERN Document Server

    Lester, D R; Metcalfe, Guy

    2016-01-01

    The macroscopic spreading and mixing of solute plumes in saturated porous media is ultimately controlled by processes operating at the pore scale. Whilst the conventional picture of pore-scale mechanical dispersion and molecular diffusion leading to persistent hydrodynamic dispersion is well accepted, this paradigm is inherently two-dimensional (2D) in nature and neglects important three-dimensional (3D) phenomena. We discuss how the kinematics of steady 3D flow at the porescale generate chaotic advection, involving exponential stretching and folding of fluid elements,the mechanisms by which it arises and implications of microscopic chaos for macroscopic dispersion and mixing. Prohibited in steady 2D flow due to topological constraints, these phenomena are ubiquitous due to the topological complexity inherent to all 3D porous media. Consequently 3D porous media flows generate profoundly different fluid deformation and mixing processes to those of 2D flow. The interplay of chaotic advection and broad transit t...

  16. Pore scale mixing and macroscopic solute dispersion regimes in polymer flows inside 2D model networks

    CERN Document Server

    D'Angelo, M V; Allain, C; Hulin, J P; Angelo, Maria Veronica D'; Auradou, Harold; Allain, Catherine; Hulin, Jean-Pierre

    2006-01-01

    A change of solute dispersion regime with the flow velocity has been studied both at the macroscopic and pore scales in a transparent array of capillary channels using an optical technique allowing for simultaneous local and global concentration mappings. Two solutions of different polymer concentrations (500 and 1000 ppm) have been used at different P\\'eclet numbers. At the macroscopic scale, the displacement front displays a diffusive spreading: for $Pe \\leq 10$, the dispersivity $l\\_d$ is constant with $Pe$ and increases with the polymer concentration; for $Pe > 10$, $l\\_d$ increases as $Pe^{1.35}$ and is similar for the two concentrations. At the local scale, a time lag between the saturations of channels parallel and perpendicular to the mean flow has been observed and studied as a function of the flow rate. These local measurements suggest that the change of dispersion regime is related to variations of the degree of mixing at the junctions. For $Pe \\leq 10$, complete mixing leads to pure geometrical di...

  17. Theory of transport processes in wood below the fiber saturation point. Physical background on the microscale and its macroscopic description

    DEFF Research Database (Denmark)

    Eitelberger, Johannes; Svensson, Staffan; Hofstetter, Karin

    2011-01-01

    The macroscopic formulation of moisture transport in wood below the fiber saturation point has motivated many research efforts in the past two decades. Many experiments demonstrated the difference in steady state and transient moisture transport and the inadequacy of models derived for steady state...

  18. Control of a five motors web transport system based on the Energetic Macroscopic Representation

    Directory of Open Access Journals (Sweden)

    Hachemi Glaoui,

    2011-02-01

    Full Text Available The objective is to control a web transport system with winder and unwinder for elastic material. A physical mod-eling of this plant is made based on the general laws of physics. For this type of controlproblem, it is extremely important to prevent the occurrence of web break or fold by decoupling the web tension and the web velocity. Due to the wide-range variation of the radius and inertia of the rollers the system dynamics change considerably during the winding/unwinding process The system is composed of five paper rollers and a tensioning roller. A control structure is suggested for this system. This control is deduced from an Energetic Macroscopic Representation of the system. Neither robust control strategy nor mechanical emulation is required, but this control needs a large number of controllers.

  19. Fabrication of silicon nanowire arrays by macroscopic galvanic cell-driven metal catalyzed electroless etching in aerated HF solution.

    Science.gov (United States)

    Liu, Lin; Peng, Kui-Qing; Hu, Ya; Wu, Xiao-Ling; Lee, Shuit-Tong

    2014-03-05

    Macroscopic galvanic cell-driven metal catalyzed electroless etching (MCEE) of silicon in aqueous hydrofluoric acid (HF) solution is devised to fabricate silicon nanowire (SiNW) arrays with dissolved oxygen acting as the one and only oxidizing agent. The key aspect of this strategy is the use of a graphite or other noble metal electrode that is electrically coupled with silicon substrate.

  20. The flow around a macroscopical body by a colloid solution and the drag crisis

    CERN Document Server

    Iordanski, S V

    2013-01-01

    The motion of colloids in the flow field of a viscous liquid is investigated. The small colloid size compare to the macroscopical scale of the flow allow to calculate their velocity relative to that of the liquid. If the inner colloid density is larger then the density of the liquid the flow field has the domains where the colloid velocity is close to the liquid velocity. But in the domains with a strong braking of the liquid velocity the colloids are accelerated relative to the liquid. This effect is used for the qualitative explanation of the drag reduction in the flow around macroscopical bodies and in the pipes.

  1. Predictive model of transport properties of fuel cell membrane : from microscopic to macroscopic level

    Energy Technology Data Exchange (ETDEWEB)

    Colinart, T.; Lottin, O.; Maranzana, G.; Didierjean, S.; Moyne, C. [Nancy-Univ., Vandoeuvre-les-Nancy (France). Laboratoire d' Energetique et de Mecanique Theorique et Appliquee

    2007-07-01

    Because of their attractiveness as efficient and clean energy producers, proton exchange membrane fuel cells (PEMFC) can be used in automotive and small stationary applications. The electrochemical reaction takes place on two electrodes separated by a ionomer membrane. An important component of fuel cell water management and a problem for fuel cell performances involves the transport of protons from the anode to the cathode as its' transport properties are highly water dependent. Nafion membranes are widely used as an electrolyte for PEMFC. This paper presented a model to predict transport properties of polymer membranes such as Nafion used as electrolytes in a low temperature fuel cell. The paper discussed the electrical double layer that was used to determine surface charge density. The paper then discussed the analytical solution to the physical problem in the diffuse part of a cylindrical pore which involved solving the Poisson-Boltzmann, the Navier-Stokes and the Nernst-Planck equations. The properties of the electrolytic solution were equal to those of water and they were considered to be constant within the pore. A literature comparison with other models was also presented. It was concluded that in order to supplement the model, it is necessary to investigate the mechanics of the membrane, particularly the swelling behaviour, and the adsorption phenomena of the ions in the stern layer. 15 refs., 1 tab., 3 figs.

  2. Column Holdup Formula of Soil Solute Transport

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The shortcomings of the present two formulae for describing column holdup are analyzed and deductions are made to find a new formula. The column holdup, Hw, described by the new formula is dimensional,and related to soil solute transport kinesis and column physical properties. Compared with the other two column holdups, Hw is feasible to describe dimensional column holdup during solute transport process. The relationships between Hw and retardation factor, R, in different solute transport boundary conditions are established.

  3. Solution of Macroscopic State Equations of Blume-Capel Model Using Nonlinear Dynamics Concepts

    Directory of Open Access Journals (Sweden)

    Asaf Tolga Ülgen

    2013-01-01

    Full Text Available The macroscopic state equations of Blume-Capel Model were solved by using the concepts of nonlinear dynamics. Negative and positive exchange constant values yield bifurcations of pitchfork and subcritical flip types, respectively. Hence, we obtained bifurcations corresponding to second order phase transitions. The critical values of parameters were calculated from the neutral stability condition and the 3-dimensional phase diagram was plotted.

  4. Flow of colloid particle solution past macroscopic bodies and drag crisis

    Energy Technology Data Exchange (ETDEWEB)

    Iordanskii, S. V., E-mail: iordansk@itp.ac.ru [Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation)

    2013-11-15

    The motion of colloid particles in a viscous fluid flow is considered. Small sizes of colloid particles as compared to the characteristic scale of the flow make it possible to calculate their velocity relative to the liquid. If the density of a colloid particle is higher than the density of the liquid, the flow splits into regions in which the velocity of colloid particles coincides with the velocity of the liquid and regions of flow stagnation in which the colloid velocity is higher than the velocity of the fluid. This effect is used to explain qualitatively the decrease in the drag to the flows past macroscopic bodies and flows in pipes.

  5. External and internal gelation of pectin solutions: microscopic dynamics versus macroscopic rheology

    Science.gov (United States)

    Secchi, E.; Munarin, F.; Alaimo, M. D.; Bosisio, S.; Buzzaccaro, S.; Ciccarella, G.; Vergaro, V.; Petrini, P.; Piazza, R.

    2014-11-01

    Pectin is a natural biopolymer that forms, in the presence of divalent cations, ionic-bound gels typifying a large class of biological gels stabilized by non-covalent cross-links. We investigate and compare the kinetics of formation and aging of pectin gels obtained either through external gelation via perfusion of free Ca2+ ions, or by internal gelation due to the supply of the same ions from the dissolution of CaCO3 nanoparticles. The microscopic dynamics obtained with photon correlation imaging, a novel optical technique that allows obtaining the microscopic dynamics of the sample while retaining the spatial resolution of imaging techniques, is contrasted with macroscopic rheological measurements at constant strain. Pectin gelation is found to display peculiar two-stage kinetics, highlighted by non-monotonic growth in time of both microscopic correlations and gel mechanical strength. These results are compared to those found for alginate, another biopolymer extensively used in food formulation.

  6. Exact Solution to Integrable Open Multi-species SSEP and Macroscopic Fluctuation Theory

    Science.gov (United States)

    Vanicat, M.

    2017-03-01

    We introduce a multi-species generalization of the symmetric simple exclusion process with open boundaries. This model possesses the property of being integrable and appears as physically relevant because the boundary conditions can be interpreted as the interaction with particles reservoirs with fixed densities of each species. The system is driven out-of-equilibrium by these reservoirs. The steady state is analytically computed in a matrix product form. This algebraic structure allows us to obtain exact expressions for the mean particle currents and for the one and two-point correlation functions. An additivity principle is also derived from the matrix ansatz and permits the computation of the large deviation functional of the density profile. We also propose a description of the model in the context of the macroscopic fluctuation theory and we check the consistency with the exact computations from the finite size lattice.

  7. External and internal gelation of pectin solutions: microscopic dynamics versus macroscopic rheology.

    Science.gov (United States)

    Secchi, E; Munarin, F; Alaimo, M D; Bosisio, S; Buzzaccaro, S; Ciccarella, G; Vergaro, V; Petrini, P; Piazza, R

    2014-11-19

    Pectin is a natural biopolymer that forms, in the presence of divalent cations, ionic-bound gels typifying a large class of biological gels stabilized by non-covalent cross-links. We investigate and compare the kinetics of formation and aging of pectin gels obtained either through external gelation via perfusion of free Ca(2+) ions, or by internal gelation due to the supply of the same ions from the dissolution of CaCO3 nanoparticles. The microscopic dynamics obtained with photon correlation imaging, a novel optical technique that allows obtaining the microscopic dynamics of the sample while retaining the spatial resolution of imaging techniques, is contrasted with macroscopic rheological measurements at constant strain. Pectin gelation is found to display peculiar two-stage kinetics, highlighted by non-monotonic growth in time of both microscopic correlations and gel mechanical strength. These results are compared to those found for alginate, another biopolymer extensively used in food formulation.

  8. Exact Solution to Integrable Open Multi-species SSEP and Macroscopic Fluctuation Theory

    Science.gov (United States)

    Vanicat, M.

    2017-01-01

    We introduce a multi-species generalization of the symmetric simple exclusion process with open boundaries. This model possesses the property of being integrable and appears as physically relevant because the boundary conditions can be interpreted as the interaction with particles reservoirs with fixed densities of each species. The system is driven out-of-equilibrium by these reservoirs. The steady state is analytically computed in a matrix product form. This algebraic structure allows us to obtain exact expressions for the mean particle currents and for the one and two-point correlation functions. An additivity principle is also derived from the matrix ansatz and permits the computation of the large deviation functional of the density profile. We also propose a description of the model in the context of the macroscopic fluctuation theory and we check the consistency with the exact computations from the finite size lattice.

  9. Types of solutions improving passenger transport interconnectivity

    Directory of Open Access Journals (Sweden)

    Monika BĄK

    2012-01-01

    Full Text Available The objective of the paper is to present different types of solutions which could improve interconnectivity of passenger transport especially within interconnections between long and short transport distance. The topic has particular relevance at the European level because the European transport networks’ role as integrated international networks is compromised by poor interconnectivity and because the next generation of European transport policies will have to be sensitive to the differences between short, medium and long-term transport markets and the market advantages of each transport mode. In this context, a realistic assessment of intermodal opportunities is a key ingredient to future policy development.Effective interconnection requires the provision of integrated networks and services which are attractive to potential users and this is likely to require co-operation between a range of authorities and providers in the public and private sectors and may necessitate a wider vision than might otherwise prevail.The paper is based on the results of the project realised by the team of the University of Gdansk in the EU funded 7 Framework Programme - INTERCONNECT (Interconnection between short- and long-distance transport networks with partners in the UK, Germany, Denmark, Poland, Spain and Italy. Different types of solutions will be summarized in the paper including e.g. local link infrastructure solutions, improved local public transport services, improvements at the interchange, solutions involving improved procedures for check-in or luggage transfer & documentation, pricing and ticketing solutions, solutions involving marketing, information and sales.

  10. Macroscopic transport equations in many-body systems from microscopic exclusion processes in disordered media: a review

    Science.gov (United States)

    Galanti, Marta; Fanelli, Duccio; Piazza, Francesco

    2016-08-01

    Describing particle transport at the macroscopic or mesoscopic level in non-ideal environments poses fundamental theoretical challenges in domains ranging from inter and intra-cellular transport in biology to diffusion in porous media. Yet, often the nature of the constraints coming from many-body interactions or reflecting a complex and confining environment are better understood and modeled at the microscopic level. In this paper we review the subtle link between microscopic exclusion processes and the mean-field equations that ensue from them in the continuum limit. We show that in an inhomogeneous medium, i.e. when jumps are controlled by site-dependent hopping rates, one can obtain three different nonlinear advection-diffusion equations in the continuum limit, suitable for describing transport in the presence of quenched disorder and external fields, depending on the particular rule embodying site inequivalence at the microscopic level. In a situation that might be termed point-like scenario, when particles are treated as point-like objects, the effect of crowding as imposed at the microscopic level manifests in the mean-field equations only if some degree of inhomogeneity is enforced into the model. Conversely, when interacting agents are assigned a finite size, under the more realistic extended crowding framework, exclusion constraints persist in the unbiased macroscopic representation.

  11. Macroscopic transport equations in many-body systems from microscopic exclusion processes in disordered media: a review

    Directory of Open Access Journals (Sweden)

    Marta Galanti

    2016-08-01

    Full Text Available Describing particle transport at the macroscopic or mesoscopic level in non-ideal environments poses fundamental theoretical challenges in domains ranging from inter and intra-cellular transport in biology to diffusion in porous media. Yet, often the nature of the constraints coming from many-body interactions or reflecting a complex and confining environment are better understood and modeled at the microscopic level.In this paper we review the subtle link between microscopic exclusion processes and the mean-field equations that ensue from them in the continuum limit. We show that in an inhomogeneous medium, i.e. when jumps are controlled by site-dependent hopping rates, one can obtain three different nonlinear advection-diffusion equations in the continuum limit, suitable for describing transport in the presence of quenched disorder and external fields, depending on the particular rule embodying site inequivalence at the microscopic level. In a situation that might be termed point-like scenario, when particles are treated as point-like objects, the effect of crowding as imposed at the microscopic level manifests in the mean-field equations only if some degree of inhomogeneity is enforced into the model. Conversely, when interacting agents are assigned a finite size, under the more realistic extended crowding framework, exclusion constraints persist in the unbiased macroscopic representation.

  12. Urban Transportation: Issue and Solution

    Directory of Open Access Journals (Sweden)

    Haryati Shafii

    2011-10-01

    Full Text Available Generally, quality of life of urban population is heavily dependent on social facilities provided within the environment. One of the most important facilities is transportations. Study on transportation mode in an urban area is especially very important because for almost every individual living in a large and densely populated area, mobility is one of the most crucial issues in everyday life. Enhance mobility, faster journey to work and less pollution from petrol-propelled vehicles can increase the quality of life, which in turn lead to a sustainable urban living. The study present transportation mode usage issues faced by community related to quality of life in an urban area. This study identifies several issues of transportation mode in urban areas and its impact on the quality of life. The study areas are Putrajaya, Kuala Lumpur and Bandar Kajang, Selangor. The methodology used in this research is secondary and primary data. The questionnaires for the survey were distributed from May 2008 to Jun 2008. These researches were conducted on 144 respondents for to evaluate their perception of transportation mode correlated to the quality of life. The collected data were then analyzed using “Statistical Packages for the Social Science” (SPSS. The respondents comprise of 61 males and 84 females from the age group of 18 to 57 years. This study identifies the percentage of public transportation mode usage in urban area, such as buses (16.7%, train (ERL, monorail and commuter-6.4%; which is very low compared to owning personal car (45.8% and motorcycle (25.4%.The result shows owning personal car is the highest (45.8% in three study areas and monorail and taxi are the lowest (1.4%. The Chi Square Test shows that among the mode transportation with traffic jam is quite difference in Kuala Lumpur, Putrajaya and Kajang. Analysis of the Chi Square Test shows the result is 0.000 (two sides to respondent answering “yes” and analysis of Spearman

  13. Nonminimal Macroscopic Models of a Scalar Field Based on Microscopic Dynamics. II. Transport Equations

    CERN Document Server

    Ignat'ev, Yu G

    2015-01-01

    The article proposes generalizations of the macroscopic model of plasma of scalar charged particles to the cases of inter-particle interaction with multiple scalar fields and negative effective masses of these particles. The model is based on the microscopic dynamics of a particle at presence of scalar fields. The theory is managed to be generalized naturally having strictly reviewed a series of its key positions depending on a sign of particle masses. Thereby, it is possible to remove the artificial restriction contradicting the more fundamental principle of action functional additivity. Additionally, as a condition of internal consistency of the theory, particle effective mass function is found.

  14. Macroscopic states induced in superconducting media by a transport current under flux creep

    Science.gov (United States)

    Romanovskii, V. R.

    2016-08-01

    The physical features of the formation of macroscopic states of superconducting composites consisting of a superconductor and a coating under flux creep are discussed. It is demonstrated that there exist characteristic electric field strengths depending on the properties of the superconductor, cooling conditions, and characteristics of the stabilizing coating, which affect the intensity of the E-I characteristics of the superconducting composites. Analysis shows that the measurements of the critical properties of superconductors can be accompanied by a nonuniform electric field distribution over the composite cross section and high stable superheating of the superconductor, which do not lead to superconductivity breaking.

  15. Performance Analysis of Solution Transportation Absorption Chiller

    Science.gov (United States)

    Kiani, Behdad; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    Thermally activated advanced absorption cycles are considered promising candidates to replace CFCs, HCFCs and HFCs for residential and commercial applications. In such absorption systems, it is desirable to utilize the waste heat from industries for heating and cooling applications in commercial and residential sectors. For this purpose, it is necessary to transport energy over some distance because the waste heat source and demand are generally located apart from each other. Transportation of steam, hot water or chilled water requires high construction costs for insulation. There is an efficient method of energy transportation using absorption system called “ Solution Transportation Absorption System (STA)”. The solution is transported at an ambient temperature so that tube-insulations not required. This paper shows the simulation of the abovementioned system and the optimal result, using mathematical optimization. The optimum system with industry‧s waste heat utilization is obtained. At the end, the effect on the pollution emission and energy conservation is obtained.

  16. The solute carrier 6 family of transporters

    DEFF Research Database (Denmark)

    Bröer, Stefan; Gether, Ulrik

    2012-01-01

    The solute carrier 6 (SLC6) family of the human genome comprises transporters for neurotransmitters, amino acids, osmolytes and energy metabolites. Members of this family play critical roles in neurotransmission, cellular and whole body homeostasis. Malfunction or altered expression...... of these transporters is associated with a variety of diseases. Pharmacological inhibition of the neurotransmitter transporters in this family is an important strategy in the management of neurological and psychiatric disorders. This review provides an overview of the biochemical and pharmacological properties...... of the SLC6 family transporters....

  17. Numerical solutions of the macroscopic Maxwell equations for scattering by non-spherical particles: A tutorial review

    Science.gov (United States)

    Kahnert, Michael

    2016-07-01

    Numerical solution methods for electromagnetic scattering by non-spherical particles comprise a variety of different techniques, which can be traced back to different assumptions and solution strategies applied to the macroscopic Maxwell equations. One can distinguish between time- and frequency-domain methods; further, one can divide numerical techniques into finite-difference methods (which are based on approximating the differential operators), separation-of-variables methods (which are based on expanding the solution in a complete set of functions, thus approximating the fields), and volume integral-equation methods (which are usually solved by discretisation of the target volume and invoking the long-wave approximation in each volume cell). While existing reviews of the topic often tend to have a target audience of program developers and expert users, this tutorial review is intended to accommodate the needs of practitioners as well as novices to the field. The required conciseness is achieved by limiting the presentation to a selection of illustrative methods, and by omitting many technical details that are not essential at a first exposure to the subject. On the other hand, the theoretical basis of numerical methods is explained with little compromises in mathematical rigour; the rationale is that a good grasp of numerical light scattering methods is best achieved by understanding their foundation in Maxwell's theory.

  18. Sine-Gordon modulation solutions: Application to macroscopic non-lubricant friction

    Science.gov (United States)

    Gershenzon, Naum I.; Bambakidis, Gust; Skinner, Thomas E.

    2016-10-01

    The Frenkel-Kontorova (FK) model and its continuum approximation, the sine-Gordon (SG) equation, are widely used to model a variety of important nonlinear physical systems. Many practical applications require the wave-train solution, which includes many solitons. In such cases, an important and relevant extension of these models applies Whitham's averaging procedure to the SG equation. The resulting SG modulation equations describe the behavior of important measurable system parameters that are the average of the small-scale solutions given by the SG equation. A fundamental problem of modern physics that is the topic of this paper is the description of the transitional process from a static to a dynamic frictional regime. We have shown that the SG modulation equations are a suitable apparatus for describing this transition. The model provides relations between kinematic (rupture and slip velocities) and dynamic (shear and normal stresses) parameters of the transition process. A particular advantage of the model is its ability to describe frictional processes over a wide range of rupture and slip velocities covering seismic events ranging from regular earthquakes, with rupture velocities on the order of a few km/s, to slow slip events, with rupture velocities on the order of a few km/day.

  19. Exploring the potential energy landscape of glass-forming systems: from inherent structures via metabasins to macroscopic transport

    Energy Technology Data Exchange (ETDEWEB)

    Heuer, Andreas [Institut fuer Physikalische Chemie, Westfaelische Wilhelms-Universitaet Muenster, D-48149 Muenster, Corrensstrasse 30 (Germany)

    2008-09-17

    In this review a systematic analysis of the potential energy landscape (PEL) of glass-forming systems is presented. Starting from the thermodynamics, the route towards the dynamics is elucidated. A key step in this endeavor is the concept of metabasins. The relevant energy scales of the PEL can be characterized. Based on the simulation results for some glass-forming systems one can formulate a relevant model system (ideal Gaussian glass-former) which can be treated analytically. The macroscopic transport can be related to the microscopic hopping processes, using either the strong relation between energy (thermodynamics) and waiting times (dynamics) or, alternatively, the concepts of the continuous-time random walk. The relation to the geometric properties of the PEL is stressed. The emergence of length scales within the PEL approach as well as the nature of finite-size effects is discussed. Furthermore, the PEL view is compared to other approaches describing the glass transition. (topical review)

  20. A new methodology for determination of macroscopic transport parameters in drying porous media

    Science.gov (United States)

    Attari Moghaddam, A.; Kharaghani, A.; Tsotsas, E.; Prat, M.

    2015-12-01

    Two main approaches have been used to model the drying process: The first approach considers the partially saturated porous medium as a continuum and partial differential equations are used to describe the mass, momentum and energy balances of the fluid phases. The continuum-scale models (CM) obtained by this approach involve constitutive laws which require effective material properties, such as the diffusivity, permeability, and thermal conductivity which are often determined by experiments. The second approach considers the material at the pore scale, where the void space is represented by a network of pores (PN). Micro- or nanofluidics models used in each pore give rise to a large system of ordinary differential equations with degrees of freedom at each node of the pore network. In this work, the moisture transport coefficient (D), the pseudo desorption isotherm inside the network and at the evaporative surface are estimated from the post-processing of the three-dimensional pore network drying simulations for fifteen realizations of the pore space geometry from a given probability distribution. A slice sampling method is used in order to extract these parameters from PN simulations. The moisture transport coefficient obtained in this way is shown in Fig. 1a. The minimum of average D values demonstrates the transition between liquid dominated moisture transport region and vapor dominated moisture transport region; a similar behavior has been observed in previous experimental findings. A function is fitted to the average D values and then is fed into the non-linear moisture diffusion equation. The saturation profiles obtained from PN and CM simulations are shown in Fig. 1b. Figure 1: (a) extracted moisture transport coefficient during drying for fifteen realizations of the pore network, (b) average moisture profiles during drying obtained from PN and CM simulations.

  1. Multilevel transport solution of LWR reactor cores

    Energy Technology Data Exchange (ETDEWEB)

    Jose Ignacio Marquez Damian; Cassiano R.E. de Oliveira; HyeonKae Park

    2008-09-01

    This work presents a multilevel approach for the solution of the transport equation in typical LWR assemblies and core configurations. It is based on the second-order, even-parity formulation of the transport equation, which is solved within the framework provided by the finite element-spherical harmonics code EVENT. The performance of the new solver has been compared with that of the standard conjugate gradient solver for diffusion and transport problems on structured and unstruc-tured grids. Numerical results demonstrate the potential of the multilevel scheme for realistic reactor calculations.

  2. MACROSCOPIC RIVERS

    NARCIS (Netherlands)

    VANDENBERG, IP

    1991-01-01

    We present a mathematical model for the ''river-phenomenon'': striking concentrations of trajectories of ordinary differential equations. This model of ''macroscopic rivers'' is formulated within nonstandard analysis, and stated in terms of macroscopes and singular perturbations. For a subclass, the

  3. Macroscopic Transport of Mega-ampere Electron Currents in Aligned Carbon-Nanotube Arrays

    Science.gov (United States)

    Chatterjee, Gourab; Singh, Prashant Kumar; Ahmed, Saima; Robinson, A. P. L.; Lad, Amit D.; Mondal, Sudipta; Narayanan, V.; Srivastava, Iti; Koratkar, Nikhil; Pasley, John; Sood, A. K.; Kumar, G. Ravindra

    2012-06-01

    We demonstrate that aligned carbon-nanotube arrays are efficient transporters of laser-generated mega-ampere electron currents over distances as large as a millimeter. A direct polarimetric measurement of the temporal and the spatial evolution of the megagauss magnetic fields (as high as 120 MG) at the target rear at an intensity of (1018-1019)W/cm2 was corroborated by the rear-side hot electron spectra. Simulations show that such high magnetic flux densities can only be generated by a very well collimated fast electron bunch.

  4. Transport in lymphatic capillaries. I. Macroscopic measurements using residence time distribution theory.

    Science.gov (United States)

    Swartz, M A; Berk, D A; Jain, R K

    1996-01-01

    We present a novel integrative method for characterizing transport in the lymphatic capillaries in the tail of the anesthetized mouse, which is both sensitive and reproducible for quantifying uptake and flow. Interstitially injected, fluorescently labeled macromolecules were used to visualize and quantify these processes. Residence time distribution (RTD) theory was employed to measure net flow velocity in the lymphatic network as well as to provide a relative measure of lymphatic uptake of macromolecules from the interstitium. The effects of particle size and injection pressure were determined. The uptake rate was found to be independent of particle size in the range of a 6- to 18-nm radius; beyond this size, the interstitial matrix seemed to pose a greater barrier. A comparison of 10 vs. 40 cmH2O injection pressure showed a significant influence on the relative uptake rate but not on the net velocity within the network (3.3 +/- 0.8 vs. 3.8 +/- 1.0 micron/s). This suggested the presence of a systemic driving force for baseline lymph propulsion that is independent of the local pressure gradients driving the uptake. This model can be used to examine various aspects of transport physiology of the initial lymphatics.

  5. Quantum Domains for Macroscopic Transport Effects in Nanostructures with Control Topology: Optics and e-Conductivity

    Directory of Open Access Journals (Sweden)

    Antipov A.

    2015-01-01

    Full Text Available The nanostructures with different morphology have been obtained by us by methods of both direct laser modification (from cw to fs laser radiation of the target surface/thin films and laser evaporation of the target substance in liquid to produce the colloid systems, and then – to deposite substance on substrate from colloid, and also – by a single drop deposition technique. The analysis of induced nanostructures has been carried out by absorption spectroscopy, scanning electron microscopy and transmission electron microscopy. The island conductivity is dominant for the nanocluster semiconductor systems induced by laser ablation technique, and electroresistance can dramatically decrease due to spontaneous selected multichannel/parallel electron transportation trajectories. A tunneling quantum coherent effect takes place for electron conductivity for the case.

  6. Exact solution of the neutron transport equation in spherical geometry

    Energy Technology Data Exchange (ETDEWEB)

    Anli, Fikret; Akkurt, Abdullah; Yildirim, Hueseyin; Ates, Kemal [Kahramanmaras Suetcue Imam Univ. (Turkey). Faculty of Sciences and Letters

    2017-03-15

    Solution of the neutron transport equation in one dimensional slab geometry construct a basis for the solution of neutron transport equation in a curvilinear geometry. Therefore, in this work, we attempt to derive an exact analytical benchmark solution for both neutron transport equations in slab and spherical medium by using P{sub N} approximation which is widely used in neutron transport theory.

  7. Role of non-ideality for the ion transport in porous media: derivation of the macroscopic equations using upscaling

    CERN Document Server

    Allaire, Gregoire; Dufreche, Jean-Francois; Mikelic, Andro; Piatnitski, Andrey

    2013-01-01

    This paper is devoted to the homogenization (or upscaling) of a system of partial differential equations describing the non-ideal transport of a N-component electrolyte in a dilute Newtonian solvent through a rigid porous medium. Realistic non-ideal effects are taken into account by an approach based on the mean spherical approximation (MSA) model which takes into account finite size ions and screening effects. We first consider equilibrium solutions in the absence of external forces. In such a case, the velocity and diffusive fluxes vanish and the equilibrium electrostatic potential is the solution of a variant of Poisson-Boltzmann equation coupled with algebraic equations. Contrary to the ideal case, this nonlinear equation has no monotone structure. However, based on invariant region estimates for Poisson-Boltzmann equation and for small characteristic value of the solute packing fraction, we prove existence of at least one solution. To our knowledge this existence result is new at this level of generality...

  8. Pathogen transport in groundwater systems: contrasts with traditional solute transport

    Science.gov (United States)

    Hunt, Randall J.; Johnson, William P.

    2017-06-01

    Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in "Colloid Filtration Theory", a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.

  9. Pathogen transport in groundwater systems: contrasts with traditional solute transport

    Science.gov (United States)

    Hunt, Randall J.; Johnson, William P.

    2016-12-01

    Water quality affects many aspects of water availability, from precluding use to societal perceptions of fit-for-purpose. Pathogen source and transport processes are drivers of water quality because they have been responsible for numerous outbreaks resulting in large economic losses due to illness and, in some cases, loss of life. Outbreaks result from very small exposure (e.g., less than 20 viruses) from very strong sources (e.g., trillions of viruses shed by a single infected individual). Thus, unlike solute contaminants, an acute exposure to a very small amount of contaminated water can cause immediate adverse health effects. Similarly, pathogens are larger than solutes. Thus, interactions with surfaces and settling become important even as processes important for solutes such as diffusion become less important. These differences are articulated in "Colloid Filtration Theory", a separate branch of pore-scale transport. Consequently, understanding pathogen processes requires changes in how groundwater systems are typically characterized, where the focus is on the leading edges of plumes and preferential flow paths, even if such features move only a very small fraction of the aquifer flow. Moreover, the relatively short survival times of pathogens in the subsurface require greater attention to very fast (<10 year) flow paths. By better understanding the differences between pathogen and solute transport mechanisms discussed here, a more encompassing view of water quality and source water protection is attained. With this more holistic view and theoretical understanding, better evaluations can be made regarding drinking water vulnerability and the relation between groundwater and human health.

  10. A Model Study of Inclusions Deposition, Macroscopic Transport, and Dynamic Removal at Steel-Slag Interface for Different Tundish Designs

    Science.gov (United States)

    Chen, Chao; Ni, Peiyuan; Jonsson, Lage Tord Ingemar; Tilliander, Anders; Cheng, Guoguang; Jönsson, Pär Göran

    2016-06-01

    This paper presents computational fluid dynamics (CFD) simulation results of inclusions macroscopic transport as well as dynamic removal in tundishes. A novel treatment was implemented using the deposition velocity calculated by a revised unified Eulerian deposition model to replace the widely used Stokes rising velocity in the boundary conditions for inclusions removal at the steel-slag interface in tundishes. In this study, the dynamic removal for different size groups of inclusions at different steel-slag interfaces (smooth or rough) with different absorption conditions at the interface (partially or fully absorbed) in two tundish designs was studied. The results showed that the dynamic removal ratios were higher for larger inclusions than for smaller inclusions. Besides, the dynamic removal ratio was higher for rough interfaces than for smooth interfaces. On the other hand, regarding the cases when inclusions are partially or fully absorbed at a smooth steel-slag interface, the removal ratio values are proportional to the absorption proportion of inclusions at the steel-slag interface. Furthermore, the removal of inclusions in two tundish designs, i.e., with and without a weir and a dam were compared. Specifically, the tundish with a weir and a dam exhibited a better performance with respect to the removal of bigger inclusions (radii of 5, 7, and 9 μm) than that of the case without weir and dam. That was found to be due to the strong paralleling flow near the middle part of the top surface. However, the tundish without weir and dam showed a higher removal ratio of smaller inclusions (radius of 1 μm). The reason could be the presence of a paralleling flow near the inlet zone, where the inclusions deposition velocities were much higher than in other parts.

  11. Pore-scale analysis on the effects of compound-specific dilution on transient transport and solute breakthrough

    DEFF Research Database (Denmark)

    Rolle, Massimo; Kitanidis, Peter

    Compound-specific diffusivities significantly impact solute transport and mixing at different scales. Although diffusive processes occur at the small pore scale, their effects propagate and remain important at larger macroscopic scales [1]. In this pore-scale modeling study in saturated porous...... media we show that compound-specific effects are important not only at steady-state and for the lateral displacement of solutes with different diffusivities but also for transient transport and solute breakthrough [2]. We performed flow and transport simulations in two-dimensional pore-scale domains...... significant effects of aqueous diffusion on solute breakthrough curves. However, the magnitude of such effects can be masked by the flux-averaging approach used to measure solute breakthrough and can hinder the correct interpretation of the true dilution of different solutes. We propose, as a metric of mixing...

  12. Classification of the Group Invariant Solutions for Contaminant Transport in Saturated Soils under Radial Uniform Water Flows

    Directory of Open Access Journals (Sweden)

    M. M. Potsane

    2014-01-01

    Full Text Available The transport of chemicals through soils to the groundwater or precipitation at the soils surfaces leads to degradation of these resources. Serious consequences may be suffered in the long run. In this paper, we consider macroscopic deterministic models describing contaminant transport in saturated soils under uniform radial water flow backgrounds. The arising convection-dispersion equation given in terms of the stream functions is analyzed using classical Lie point symmetries. A number of exotic Lie point symmetries are admitted. Group invariant solutions are classified according to the elements of the one-dimensional optimal systems. We analyzed the group invariant solutions which satisfy the physical boundary conditions.

  13. Combinatorial model of solute transport in porous media

    Institute of Scientific and Technical Information of China (English)

    张妙仙; 张丽萍

    2004-01-01

    Modeling of solute transport is a key issue in the area of soil physics and hydrogeology. The most common approach (the convection-dispersion equation) considers an average convection flow rate and Fickian-like dispersion. Here,we propose a solute transport model in porous media of continuously expanding scale, according to the combinatorics principle. The model supposed actual porous media as a combinative body of many basic segments. First, we studied the solute transport process in each basic segment body, and then deduced the distribution of pore velocity in each basic segment body by difference approximation, finally assembled the solute transport process of each basic segment body into one of the combinative body. The simulation result coincided with the solute transport process observed in test. The model provides useful insight into the solute transport process of the non-Fickian dispersion in continuously expanding scale.

  14. Swelling/deswelling of polyacrylamide gels in aqueous NaCl solution: Light scattering and macroscopic swelling study

    Indian Academy of Sciences (India)

    M Sivanantham; B V R Tata

    2012-09-01

    Swelling kinetics of water-swollen polyacrylamide (PAAm) hydrogels (WSG) was investigated in various concentrations of aqueous NaCl by macroscopic swelling measurements. For lower concentration of NaCl, WSG showed exponential swelling whereas at higher concentration of NaCl it underwent deswelling at short times and exponential swelling at long times. From these studies, collective diffusion coefficient, , of the polymer network and polymer–solvent interaction parameter, , were calculated and found to decrease with increase in [NaCl]. Collective diffusion coefficients measured from dynamic light scattering (DLS) and that obtained from macroscopic swelling measurements are found to agree well. Measured ensemble-averaged dynamic structure factor (, ) for WSG and salt-swollen gels (SSG) showed an initial decay followed by a plateau at long times and it can be described by harmonically bound Brownian particle (HBBP) model. Enhanced scattering intensity at low scattering angles using static light scattering (SLS) measurements revealed the presence of inhomogeneities in PAAm gels. The reasons for increased scattering intensity of SSG over WSG gel and the linear decrease of with increase in NaCl concentration are explained.

  15. One-dimensional spatially dependent solute transport in semi ...

    African Journals Online (AJOL)

    One-dimensional spatially dependent solute transport in semi-infinite porous media: an analytical solution. ... Journal Home > Vol 9, No 4 (2017) > ... In this mathematical model the dispersion coefficient is considered spatially dependent while ...

  16. One-dimensional spatially dependent solute transport in semi ...

    African Journals Online (AJOL)

    Development of an analytical solutions for groundwater pollution problems are major ... parameters for description of solute transport in porous media. ..... in Department of Mathematics & Astronomy, Lucknow University, Lucknow, India.

  17. Macroscopic and microscopic observations of particle-facilitated mercury transport from New Idria and Sulphur Bank mercury mine tailings

    Science.gov (United States)

    Lowry, G.V.; Shaw, S.; Kim, C.S.; Rytuba, J.J.; Brown, Gordon E.

    2004-01-01

    Mercury (Hg) release from inoperative Hg mines in the California Coast Range has been documented, but little is known about the release and transport mechanisms. In this study, tailings from Hg mines located in different geologic settings-New Idria (NI), a Si-carbonate Hg deposit, and Sulphur Bank (SB), a hot-spring Hg deposit-were characterized, and particle release from these wastes was studied in column experiments to (1) investigate the mechanisms of Hg release from NI and SB mine wastes, (2) determine the speciation of particle-bound Hg released from the mine wastes, and (3) determine the effect of calcinations on Hg release processes. The physical and chemical properties of tailings and the colloids released from them were determined using chemical analyses, selective chemical extractions, XRD, SEM, TEM, and X-ray absorption spectroscopy techniques. The total Hg concentration in tailings increased with decreasing particle size in NI and SB calcines (roasted ore), but reached a maximum at an intermediate particle size in the SB waste rock (unroasted ore). Hg in the tailings exists predominantly as low-solubility HgS (cinnabar and metacinnabar), with NI calcines having >50% HgS, SB calcines having >89% HgS, and SB waste rock having ???100% HgS. Leaching experiments with a high-ionic-strength solution (0.1 M NaCl) resulted in a rapid but brief release of soluble and particulate Hg. Lowering the ionic strength of the leach solution (0.005 M NaCl) resulted in the release of colloidal Hg from two of the three mine wastes studied (NI calcines and SB waste rock). Colloid-associated Hg accounts for as much as 95% of the Hg released during episodic particle release. Colloids generated from the NI calcines are produced by a breakup and release mechanism and consist of hematite, jarosite/alunite, and Al-Si gel with particle sizes of 10-200 nm. ATEM and XAFS analyses indicate that the majority (???78%) of the mercury is present in the form of HgS. SB calcines also

  18. A quasilinear model for solute transport under unsaturated flow

    Energy Technology Data Exchange (ETDEWEB)

    Houseworth, J.E.; Leem, J.

    2009-05-15

    We developed an analytical solution for solute transport under steady-state, two-dimensional, unsaturated flow and transport conditions for the investigation of high-level radioactive waste disposal. The two-dimensional, unsaturated flow problem is treated using the quasilinear flow method for a system with homogeneous material properties. Dispersion is modeled as isotropic and is proportional to the effective hydraulic conductivity. This leads to a quasilinear form for the transport problem in terms of a scalar potential that is analogous to the Kirchhoff potential for quasilinear flow. The solutions for both flow and transport scalar potentials take the form of Fourier series. The particular solution given here is for two sources of flow, with one source containing a dissolved solute. The solution method may easily be extended, however, for any combination of flow and solute sources under steady-state conditions. The analytical results for multidimensional solute transport problems, which previously could only be solved numerically, also offer an additional way to benchmark numerical solutions. An analytical solution for two-dimensional, steady-state solute transport under unsaturated flow conditions is presented. A specific case with two sources is solved but may be generalized to any combination of sources. The analytical results complement numerical solutions, which were previously required to solve this class of problems.

  19. An adaptive approach to implementing innovative urban transport solutions

    NARCIS (Netherlands)

    Marchau, V.; Walker, W.; Van Duin, R.

    2009-01-01

    Urban transport is facing an increasing number of problems. Innovative technological solutions have been proposed for many of these problems. The implementation of these solutions, however, is surrounded by many uncertainties—for example, future relevant developments for urban transport demand and s

  20. Transport phenomena during nanofiltration of concentrated solutions

    NARCIS (Netherlands)

    Bargeman, Gerrald

    2016-01-01

    In most scientific studies on nanofiltration either the development of new membrane materials or the characterization of membranes is reported. In the latter case most studies use single solute salt or sugar solutions and/or investigate nanofiltration of solutions with mixtures of ions at low concen

  1. Stochastic dynamics modeling solute transport in porous media modeling solute transport in porous media

    CERN Document Server

    Kulasiri, Don

    2002-01-01

    Most of the natural and biological phenomena such as solute transport in porous media exhibit variability which can not be modeled by using deterministic approaches. There is evidence in natural phenomena to suggest that some of the observations can not be explained by using the models which give deterministic solutions. Stochastic processes have a rich repository of objects which can be used to express the randomness inherent in the system and the evolution of the system over time. The attractiveness of the stochastic differential equations (SDE) and stochastic partial differential equations (SPDE) come from the fact that we can integrate the variability of the system along with the scientific knowledge pertaining to the system. One of the aims of this book is to explaim some useufl concepts in stochastic dynamics so that the scientists and engineers with a background in undergraduate differential calculus could appreciate the applicability and appropriateness of these developments in mathematics. The ideas ...

  2. Modelling multicomponent solute transport in structured soils

    NARCIS (Netherlands)

    Beinum, van G.W.

    2007-01-01

    The mobility of contaminants in soil is an important factor in determining their ability to spread into the wider environment. For non-volatile substances, transport within the soil is generally dominated by transport of dissolved fractions in the soil water phase, via either diffusion or convection

  3. Solute transport scales in an unsaturated stony soil

    Science.gov (United States)

    Coppola, Antonio; Comegna, Alessandro; Dragonetti, Giovanna; Dyck, Miles; Basile, Angelo; Lamaddalena, Nicola; Kassab, Mohamed; Comegna, Vincenzo

    2011-06-01

    Solute transport parameters are known to be scale-dependent due mainly to the increasing scale of heterogeneities with transport distance and with the lateral extent of the transport field examined. Based on a transect solute transport experiment, in this paper we studied this scale dependence by distinguishing three different scales with different homogeneity degrees of the porous medium: the observation scale, transport scale and transect scale. The main objective was to extend the approach proposed by van Wesenbeeck and Kachanoski to evaluating the role of textural heterogeneities on the transition from the observation scale to the transport scale. The approach is based on the scale dependence of transport moments estimated from solute concentrations distributions. In our study, these moments were calculated starting from time normalized resident concentrations measured by time domain reflectometry (TDR) probes at three depths in 37 soil sites 1 m apart along a transect during a steady state transport experiment. The Generalized Transfer Function (GTF) was used to describe the evolution of apparent solute spreading along the soil profile at each observation site by analyzing the propagation of the moments of the concentration distributions. Spectral analysis was used to quantify the relationship between the solid phase heterogeneities (namely, texture and stones) and the scale dependence of the solute transport parameters. Coupling the two approaches allowed us to identify two different transport scales (around 4-5 m and 20 m, respectively) mainly induced by the spatial pattern of soil textural properties. The analysis showed that the larger transport scale is mainly determined by the skeleton pattern of variability. Our analysis showed that the organization in hierarchical levels of soil variability may have major effects on the differences between solute transport behavior at transport scale and transect scale, as the transect scale parameters will include

  4. Intercomparison of 3D pore-scale flow and solute transport simulation methods

    Science.gov (United States)

    Yang, Xiaofan; Mehmani, Yashar; Perkins, William A.; Pasquali, Andrea; Schönherr, Martin; Kim, Kyungjoo; Perego, Mauro; Parks, Michael L.; Trask, Nathaniel; Balhoff, Matthew T.; Richmond, Marshall C.; Geier, Martin; Krafczyk, Manfred; Luo, Li-Shi; Tartakovsky, Alexandre M.; Scheibe, Timothy D.

    2016-09-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing a standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that validation to include additional models of the first type based on the lattice Boltzmann method (LBM) and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). The PNM approach used in the current study was recently improved and demonstrated to accurately simulate solute transport in a two-dimensional experiment. While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries on solute transport in the manner of PNMs has not been fully determined. We apply all four approaches (FVM-based CFD, LBM, SPH and PNM) to simulate pore-scale velocity distributions and (for capable codes) nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The intercomparison work was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence

  5. Lattice Boltzmann solution of the transient Boltzmann transport equation in radiative and neutron transport.

    Science.gov (United States)

    Wang, Yahui; Yan, Liming; Ma, Yu

    2017-06-01

    Applications of the transient Boltzmann transport equation (BTE) have undergone much investigation, such as radiative heat transfer and neutron transport. This paper provides a lattice Boltzmann model to efficiently resolve the multidimensional transient BTE. For a higher angular resolution, enough transport directions are considered while the transient BTE in each direction is treated as a conservation law equation and solved independently. Both macroscopic equations recovered from a Chapman-Enskog expansion and simulated results of typical benchmark problems show not only the second-order accuracy but also the flexibility and applicability of the proposed lattice Boltzmann model. This approach may contribute a powerful technique for the parallel simulation of large-scale engineering and some alternative perspectives for solving the nonlinear transport problem further.

  6. A combined microscopic and macroscopic approach to modeling the transport of pathogenic microorganisms from nonpoint sources of pollution

    DEFF Research Database (Denmark)

    Yeghiazarian, L.L.; Walker, M.J.; Binning, Philip John

    2006-01-01

    is important for accurate risk assessment and prediction of water contamination events. This paper presents a stochastic Markov model of microorganism transport, with distinct states of microorganism behavior capturing the microbial partitioning between solid and aqueous phases in runoff and soil surface......, including the partitioning among soil particles of various sizes. A connection between the soil sediment and microbial transport is established through the incorporation of an erosion model (WEPP) into the microorganism transport model. Probability distribution functions of microorganism occurrence in time...... results show that areas with clay soils are more likely than sandy soils to contribute to contamination events and that the most influential transport parameters are the saturated hydraulic conductivity, rainfall intensity, and topographic slope....

  7. A macroscopic model of proton transport through the membrane-ionomer interface of a polymer electrolyte membrane fuel cell

    Science.gov (United States)

    Kumar, Milan; Edwards, Brian J.; Paddison, Stephen J.

    2013-02-01

    The membrane-ionomer interface is the critical interlink of the electrodes and catalyst to the polymer electrolyte membrane (PEM); together forming the membrane electrode assembly in current state-of-the-art PEM fuel cells. In this paper, proton conduction through the interface is investigated to understand its effect on the performance of a PEM fuel cell. The water containing domains at this interface were modeled as cylindrical pores/channels with the anionic groups (i.e., -SO3-) assumed to be fixed on the pore wall. The interactions of each species with all other species and an applied external field were examined. Molecular-based interaction potential energies were computed in a small test element of the pore and were scaled up in terms of macroscopic variables. Evolution equations of the density and momentum of the species (water molecules and hydronium ions) were derived within a framework of nonequilibrium thermodynamics. The resulting evolution equations for the species were solved analytically using an order-of-magnitude analysis to obtain an expression for the proton conductivity. Results show that the conductivity increases with increasing water content and pore radius, and strongly depends on the separation distance between the sulfonate groups and their distribution on the pore wall. It was also determined that the conductivity of two similar pores of different radii in series is limited by the pore with the smaller radius.

  8. THE GENERATION OF METABOLIC ENERGY BY SOLUTE TRANSPORT

    NARCIS (Netherlands)

    Konings, W.N; Lolkema, J.S.; Poolman, B.

    1995-01-01

    Secondary metabolic-energy-generating systems generate a proton motive force (pmf) or a sodium ion motive force (smf) by a process that involves the action of secondary transporters. The (electro)chemical gradient of the solute(s) is converted into the electrochemical gradient of protons or sodium i

  9. Sustainable freight transport in South Africa:Domestic intermodal solutions

    Directory of Open Access Journals (Sweden)

    Jan H. Havenga

    2011-11-01

    Full Text Available Due to the rapid deregulation of freight transport in South Africa two decades ago, and low historical investment in rail (with resultant poor service delivery, an integrated alternative to road and rail competition was never developed. High national freight logistics costs, significant road infrastructure challenges and environmental impact concerns of a road-dominated freight transport market have, however, fuelled renewed interest in intermodal transport solutions. In this article, a high-level business case for domestic intermodal solutions in South Africa is presented. The results demonstrate that building three intermodal terminals to connect the three major industrial hubs (i.e. Gauteng, Durban and Cape Town through an intermodal solution could reduce transport costs (including externalities for the identified 11.5 million tons of intermodalfriendly freight flows on the Cape and Natal corridors by 42% (including externalities.

  10. A stochastic method of solution of the Parker transport equation

    CERN Document Server

    Wawrzynczak, A; Gil, A

    2015-01-01

    We present the stochastic model of the galactic cosmic ray (GCR) particles transport in the heliosphere. Based on the solution of the Parker transport equation we developed models of the short-time variation of the GCR intensity, i.e. the Forbush decrease (Fd) and the 27-day variation of the GCR intensity. Parker transport equation being the Fokker-Planck type equation delineates non-stationary transport of charged particles in the turbulent medium. The presented approach of the numerical solution is grounded on solving of the set of equivalent stochastic differential equations (SDEs). We demonstrate the method of deriving from Parker transport equation the corresponding SDEs in the heliocentric spherical coordinate system for the backward approach. Features indicative the preeminence of the backward approach over the forward is stressed. We compare the outcomes of the stochastic model of the Fd and 27-day variation of the GCR intensity with our former models established by the finite difference method. Both ...

  11. End-Member Formulation of Solid Solutions and Reactive Transport

    Energy Technology Data Exchange (ETDEWEB)

    Lichtner, Peter C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    A model for incorporating solid solutions into reactive transport equations is presented based on an end-member representation. Reactive transport equations are solved directly for the composition and bulk concentration of the solid solution. Reactions of a solid solution with an aqueous solution are formulated in terms of an overall stoichiometric reaction corresponding to a time-varying composition and exchange reactions, equivalent to reaction end-members. Reaction rates are treated kinetically using a transition state rate law for the overall reaction and a pseudo-kinetic rate law for exchange reactions. The composition of the solid solution at the onset of precipitation is assumed to correspond to the least soluble composition, equivalent to the composition at equilibrium. The stoichiometric saturation determines if the solid solution is super-saturated with respect to the aqueous solution. The method is implemented for a simple prototype batch reactor using Mathematica for a binary solid solution. Finally, the sensitivity of the results on the kinetic rate constant for a binary solid solution is investigated for reaction of an initially stoichiometric solid phase with an undersaturated aqueous solution.

  12. Semianalytical Solutions of Radioactive or Reactive Transport in Variably-Fractured Layered Media: 1. Solutes

    Energy Technology Data Exchange (ETDEWEB)

    George J. Moridis

    2001-10-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive solute tracers through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the non-flowing matrix account for (a) diffusion, (b) surface diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first-order chemical reactions. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of {sup 3}H, {sup 237}Np and {sup 239}Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity.

  13. Semianalytical solutions of radioactive or reactive transport invariably-fractured layered media: 1. Solutes

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J.

    2001-10-10

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive solute tracers through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the non-flowing matrix account for (a) diffusion, (b) surface diffusion, (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first-order chemical reactions. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of {sup 3}H, {sup 237}Np and {sup 239}Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity.

  14. Molecular level water and solute transport in reverse osmosis membranes

    Science.gov (United States)

    Lueptow, Richard M.; Shen, Meng; Keten, Sinan

    2015-11-01

    The water permeability and rejection characteristics of six solutes, methanol, ethanol, 2-propanol, urea, Na+, and Cl-, were studied for a polymeric reverse osmosis (RO) membrane using non-equilibrium molecular dynamics simulations. Results indicate that water flux increases with an increasing fraction of percolated free volume in the membrane polymer structure. Solute molecules display Brownian motion and hop from pore to pore as they pass through the membrane. The solute rejection depends on both the size of the solute molecule and the chemical interaction of the solute with water and the membrane. When the open spaces in the polymeric structure are such that solutes have to shed at least one water molecule from their solvation shell to pass through the membrane molecular structure, the water-solute pair interaction energy governs solute rejection. Organic solutes more easily shed water molecules than ions to more readily pass through the membrane. Hydrogen-bonding sites for molecules like urea also lead to a higher rejection. These findings underline the importance of the solute's solvation shell and solute-water-membrane chemistry in solute transport and rejection in RO membranes. Funded by the Institute for Sustainability and Energy at Northwestern with computing resources from XSEDE (NSF grant ACI-1053575).

  15. A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær

    2000-01-01

    A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing...... concentration of fluid emerging from lis is then significantly larger than the concentration in lis. Thus, in absence of external driving forces the model generates isotonic transport provided a component of the solute flux emerging downstream lis is taken up by cells through the serosal membrane and pumped...... back into lis, i.e., the solute would have to be recirculated. With input variables from toad intestine (Nedergaard, S., E.H. Larsen, and H.H. Ussing, J. Membr. Biol. 168:241-251), computations predict that 60-80% of the pumped flux stems from serosal bath in agreement with the experimental estimate...

  16. Nonrelativistic grey Sn-transport radiative-shock solutions

    Science.gov (United States)

    Ferguson, J. M.; Morel, J. E.; Lowrie, R. B.

    2017-06-01

    We present semi-analytic radiative-shock solutions in which grey Sn-transport is used to model the radiation, and we include both constant cross sections and cross sections that depend on temperature and density. These new solutions solve for a variable Eddington factor (VEF) across the shock domain, which allows for interesting physics not seen before in radiative-shock solutions. Comparisons are made with the grey nonequilibrium-diffusion radiative-shock solutions of Lowrie and Edwards [1], which assumed that the Eddington factor is constant across the shock domain. It is our experience that the local Mach number is monotonic when producing nonequilibrium-diffusion solutions, but that this monotonicity may disappear while integrating the precursor region to produce Sn-transport solutions. For temperature- and density-dependent cross sections we show evidence of a spike in the VEF in the far upstream portion of the radiative-shock precursor. We show evidence of an adaptation zone in the precursor region, adjacent to the embedded hydrodynamic shock, as conjectured by Drake [2,3], and also confirm his expectation that the precursor temperatures adjacent to the Zel'dovich spike take values that are greater than the downstream post-shock equilibrium temperature. We also show evidence that the radiation energy density can be nonmonotonic under the Zel'dovich spike, which is indicative of anti-diffusive radiation flow as predicted by McClarren and Drake [4]. We compare the angle dependence of the radiation flow for the Sn-transport and nonequilibrium-diffusion radiation solutions, and show that there are considerable differences in the radiation flow between these models across the shock structure. Finally, we analyze the radiation flow to understand the cause of the adaptation zone, as well as the structure of the Sn-transport radiation-intensity solutions across the shock structure.

  17. Transport properties in dilute UN (X ) solid solutions (X =Xe ,Kr )

    Science.gov (United States)

    Claisse, Antoine; Schuler, Thomas; Lopes, Denise Adorno; Olsson, Pär

    2016-11-01

    Uranium nitride (UN) is a candidate fuel for current GEN III fission reactors, for which it is investigated as an accident-tolerant fuel, as well as for future GEN IV reactors. In this study, we investigate the kinetic properties of gas fission products (Xe and Kr) in UN. Binding and migration energies are obtained using density functional theory, with an added Hubbard correlation to model f electrons, and the occupation matrix control scheme to avoid metastable states. These energies are then used as input for the self-consistent mean field method which enables to determine transport coefficients for vacancy-mediated diffusion of Xe and Kr on the U sublattice. The magnetic ordering of the UN structure is explicitly taken into account, for both energetic and transport properties. Solute diffusivities are compared with experimental measurements and the effect of various parameters on the theoretical model is carefully investigated. We find that kinetic correlations are very strong in this system, and that despite atomic migration anisotropy, macroscopic solute diffusivities show limited anisotropy. Our model indicates that the discrepancy between experimental measurements probably results from different irradiation conditions, and hence different defect concentrations.

  18. The prediction of solute transport in surcharged manholes using CFD.

    Science.gov (United States)

    Lau, S D; Stovin, V R; Guymer, I

    2007-01-01

    Solute transport processes occur within a wide range of water engineering structures, and urban drainage engineers increasingly rely on modelling tools to represent the transport of dissolved materials. The models take as input representative travel time and dispersion characteristics for key system components, and these generally have to be identified via field or laboratory measurements. Computational Fluid Dynamics (CFD) has the potential to reveal the underlying hydraulic processes that control solute transport, and to provide a generic means of identifying relevant parameter values. This paper reports on a study that has been undertaken to evaluate the feasibility of utilising a CFD-based approach to modelling solute transport. Discrete phase modelling has been adopted, as this is computationally efficient and robust when compared with the time-dependent solution of the advection-dispersion equation. Simulation results are compared with published laboratory data characterising the dispersion effects of surcharged manholes, focusing specifically on an 800 mm diameter laboratory manhole for a flowrate of 0.002 m(3)/s and a range of surcharge depths. Preliminary indications are that the CFD results adequately replicate the measured downstream temporal concentration profiles, and that a threshold surcharge depth, corresponding to a change in hydraulic regime within the manhole, can also be identified.

  19. Solute transport through porous media using asymptotic dispersivity

    Indian Academy of Sciences (India)

    P K Sharma; Teodrose Atnafu Abgaze

    2015-08-01

    In this paper, multiprocess non-equilibrium transport equation has been used, which accounts for both physical and chemical non-equilibrium for reactive transport through porous media. An asymptotic distance dependent dispersivity is used to embrace the concept of scale-dependent dispersion for solute transport in heterogeneous porous media. Semi-analytical solution has been derived of the governing equations with an asymptotic distance dependent dispersivity by using Laplace transform technique and the power series method. For application of analytical model, we simulated observed experimental breakthrough curves from 1500 cm long soil column experiments conducted in the laboratory. The simulation results of break-through curves were found to deviate from the observed breakthrough curves for both mobile–immobile and multiprocess non-equilibrium transport with constant dispersion models. However, multiprocess non-equilibrium with an asymptotic dispersion model gives better fit of experimental breakthrough curves through long soil column and hence it is more useful for describing anomalous solute transport through hetero-geneous porous media. The present model is simpler than the stochastic numerical method.

  20. Benchmark Study of 3D Pore-scale Flow and Solute Transport Simulation Methods

    Science.gov (United States)

    Scheibe, T. D.; Yang, X.; Mehmani, Y.; Perkins, W. A.; Pasquali, A.; Schoenherr, M.; Kim, K.; Perego, M.; Parks, M. L.; Trask, N.; Balhoff, M.; Richmond, M. C.; Geier, M.; Krafczyk, M.; Luo, L. S.; Tartakovsky, A. M.

    2015-12-01

    Multiple numerical approaches have been developed to simulate porous media fluid flow and solute transport at the pore scale. These include 1) methods that explicitly model the three-dimensional geometry of pore spaces and 2) methods that conceptualize the pore space as a topologically consistent set of stylized pore bodies and pore throats. In previous work we validated a model of the first type, using computational fluid dynamics (CFD) codes employing standard finite volume method (FVM), against magnetic resonance velocimetry (MRV) measurements of pore-scale velocities. Here we expand that benchmark study to include additional models of the first type based on the immersed-boundary method (IMB), lattice Boltzmann method (LBM), and smoothed particle hydrodynamics (SPH), as well as a model of the second type, a pore-network model (PNM). While the PNM approach is computationally much less demanding than direct numerical simulation methods, the effect of conceptualizing complex three-dimensional pore geometries in the manner of PNMs has not been fully determined. We apply all five approaches (FVM-based CFD, IMB, LBM, SPH and PNM) to simulate pore-scale velocity distributions and nonreactive solute transport, and intercompare the model results. Comparisons are drawn both in terms of macroscopic variables (e.g., permeability, solute breakthrough curves) and microscopic variables (e.g., local velocities and concentrations). Generally good agreement was achieved among the various approaches, but some differences were observed depending on the model context. The benchmark study was challenging because of variable capabilities of the codes, and inspired some code enhancements to allow consistent comparison of flow and transport simulations across the full suite of methods. This study provides support for confidence in a variety of pore-scale modeling methods, and motivates further development and application of pore-scale simulation methods.

  1. Win-Win transportation solutions price reforms with multiple benefits

    Energy Technology Data Exchange (ETDEWEB)

    Litman, T. [Victoria Transport Policy Institute, BC (Canada)

    2001-07-01

    Reform strategies in the transportation market, such as the Win-Win Transportation Solutions, can provide several economic, social and environmental benefits. The strategies are cost effective, technically feasible reforms based on market principles which help create a more equitable and efficient transportation system that supports sustainable economic development. The benefits they provide include reduced traffic congestion, road and parking facility savings, consumer savings, equity, safety and environmental protection. They also increase economic productivity. If fully implemented, they could reduce motor vehicle impacts by 15 to 30 per cent and could help achieve the Kyoto emission reduction targets. Examples of Win-Win strategies at the federal level include: (1) removal of subsidies to oil production and internalized costs, and (2) tax exempt employer provided transfer benefits. Examples of Win-Win strategies at the state/provincial level include: (1) distance-based vehicle insurance and registration fees, (2) least-coast transportation planning and funding, (3) revenue-neutral tax shifting, (4) road pricing, (5) reform motor carrier regulations for competition and efficiency, (6) local and regional transportation demand management programs, (7) more efficient land use, (8) more flexible zoning requirements, (9) parking cash out, (10) transportation management associations, (11) location-efficient housing and mortgages, (12) school and campus trip management, (13) car sharing, (14) non-motorized transport improvements, and (15) traffic calming. It was noted that any market reform that leads to more efficient use of existing transportation systems can provide better economic development benefits. 9 refs., 1 tab., 1 fig.

  2. The dominant role of structure for solute transport in soil: experimental evidence and modelling of structure and transport in a field experiment

    Directory of Open Access Journals (Sweden)

    H.-J. Vogel

    2006-01-01

    Full Text Available A classical transport experiment was performed in a field plot of 2.5 m2 using the dye tracer brilliant blue. The measured tracer distribution demonstrates the dominant role of the heterogeneous soil structure for solute transport. As with many other published experiments, this evidences the need of considering the macroscopic structure of soil to predict flow and transport. We combine three different approaches to represent the relevant structure of the specific situation of our experiment: i direct measurement, ii statistical description of heterogeneities and iii a conceptual model of structure formation. The structure of soil layers was directly obtained from serial sections in the field. The sub-scale heterogeneity within the soil horizons was modelled through correlated random fields with estimated correlation lengths and anisotropy. Earthworm burrows played a dominant role at the transition between the upper soil horizon and the subsoil. A model based on percolation theory is introduced that mimics the geometry of earthworm burrow systems. The hydraulic material properties of the different structural units were obtained by direct measurements where available and by a best estimate otherwise. From the hydraulic structure, the 3-dimensional velocity field of water was calculated by solving Richards' Equation and solute transport was simulated. The simulated tracer distribution compares reasonably well with the experimental data. We conclude that a rough representation of the structure and a rough representation of the hydraulic properties might be sufficient to predict flow and transport, but both elements are definitely required.

  3. Conservative and reactive solute transport in constructed wetlands

    Science.gov (United States)

    Keefe, S.H.; Barber, L.B.; Runkel, R.L.; Ryan, J.N.; McKnight, Diane M.; Wass, R.D.

    2004-01-01

    The transport of bromide, a conservative tracer, and rhodamine WT (RWT), a photodegrading tracer, was evaluated in three wastewater-dependent wetlands near Phoenix, Arizona, using a solute transport model with transient storage. Coupled sodium bromide and RWT tracer tests were performed to establish conservative transport and reactive parameters in constructed wetlands with water losses ranging from (1) relatively impermeable (15%), (2) moderately leaky (45%), and (3) significantly leaky (76%). RWT first-order photolysis rates and sorption coefficients were determined from independent field and laboratory experiments. Individual wetland hydraulic profiles influenced the extent of transient storage interaction in stagnant water areas and consequently RWT removal. Solute mixing and transient storage interaction occurred in the impermeable wetland, resulting in 21% RWT mass loss from main channel and storage zone photolysis (10%) and sorption (11%) reactions. Advection and dispersion governed solute transport in the leaky wetland, limiting RWT photolysis removal (1.2%) and favoring main channel sorption (3.6%). The moderately leaky wetland contained islands parallel to flow, producing channel flow and minimizing RWT losses (1.6%).

  4. The secret to successful solute-transport modeling

    Science.gov (United States)

    Konikow, L.F.

    2011-01-01

    Modeling subsurface solute transport is difficult—more so than modeling heads and flows. The classical governing equation does not always adequately represent what we see at the field scale. In such cases, commonly used numerical models are solving the wrong equation. Also, the transport equation is hyperbolic where advection is dominant, and parabolic where hydrodynamic dispersion is dominant. No single numerical method works well for all conditions, and for any given complex field problem, where seepage velocity is highly variable, no one method will be optimal everywhere. Although we normally expect a numerically accurate solution to the governing groundwater-flow equation, errors in concentrations from numerical dispersion and/or oscillations may be large in some cases. The accuracy and efficiency of the numerical solution to the solute-transport equation are more sensitive to the numerical method chosen than for typical groundwater-flow problems. However, numerical errors can be kept within acceptable limits if sufficient computational effort is expended. But impractically long

  5. Combined physical and chemical nonequilibrium transport model for solution conduits.

    Science.gov (United States)

    Field, Malcolm S; Leij, Feike J

    2014-02-01

    Solute transport in karst aquifers is primarily constrained to relatively complex and inaccessible solution conduits where transport is often rapid, turbulent, and at times constrictive. Breakthrough curves generated from tracer tests in solution conduits are typically positively-skewed with long tails evident. Physical nonequilibrium models to fit breakthrough curves for tracer tests in solution conduits are now routinely employed. Chemical nonequilibrium processes are likely important interactions, however. In addition to partitioning between different flow domains, there may also be equilibrium and nonequilibrium partitioning between the aqueous and solid phases. A combined physical and chemical nonequilibrium (PCNE) model was developed for an instantaneous release similar to that developed by Leij and Bradford (2009) for a pulse release. The PCNE model allows for partitioning open space in solution conduits into mobile and immobile flow regions with first-order mass transfer between the two regions to represent physical nonequilibrium in the conduit. Partitioning between the aqueous and solid phases proceeds either as an equilibrium process or as a first-order process and represents chemical nonequilibrium for both the mobile and immobile regions. Application of the model to three example breakthrough curves demonstrates the applicability of the combined physical and chemical nonequilibrium model to tracer tests conducted in karst aquifers, with exceptionally good model fits to the data. The three models, each from a different state in the United States, exhibit very different velocities, dispersions, and other transport properties with most of the transport occurring via the fraction of mobile water. Fitting the model suggests the potentially important interaction of physical and chemical nonequilibrium processes.

  6. Transport processes in space physics and astrophysics problems and solutions

    CERN Document Server

    Dosch, Alexander

    2016-01-01

     This is the problems and solution manual for the graduate text with the same title and published as Lecture Notes in Physics Vol 877 which provides the necessary mathematical and physics background to understand the transport of gases, charged particle gases, energetic charged particles, turbulence, and radiation in an astrophysical and space physics context. The very detailed and self-contained problems and solutions will be an essential part of the training of any graduate student wishing to enter and pursuing research in this field. .

  7. Experimental Study of Preferential Solute Transportation During Dump Leaching

    Institute of Scientific and Technical Information of China (English)

    YIN Sheng-hua; WU Ai-xiang

    2006-01-01

    The production of dump leaching of the Dexing Copper Mine was affected by a preferential solution flow. Formative mechanism of the preferential solution flow was investigated by analyzing the relationship between both dump permeability and surface tension and ore diameter. The preferential solution flow occurred in the fine ore area when the application rate was low. The preferential solution flow entered into the coarse ore area because the negative pore water pressure disappeared with an increase of the application rate. The preferential solute transportation experiment was conducted by selecting NaCl as mineral. Results of the experiment showed that the concentration of the outflow solution reduced over time. The concentration of the coarse ore area outflow solution was greater than that of the fine ore area. The process of NaCl leaching can be divided into two stages. NaCl was carried out directly by diffusion-convection during the first stage, so the leaching rate increased sharply. But in the second stage, only a small amount of NaCl dissolved in the immobile water. The leaching rate increased slowly because NaCl, dissolved in the immobile water, can only be leached by diffusion.

  8. Comparison of approaches for predicting solute transport: sandbox experiments.

    Science.gov (United States)

    Illman, Walter A; Berg, Steven J; Yeh, Tian-Chyi Jim

    2012-01-01

    The main purpose of this paper was to compare three approaches for predicting solute transport. The approaches include: (1) an effective parameter/macrodispersion approach (Gelhar and Axness 1983); (2) a heterogeneous approach using ordinary kriging based on core samples; and (3) a heterogeneous approach based on hydraulic tomography. We conducted our comparison in a heterogeneous sandbox aquifer. The aquifer was first characterized by taking 48 core samples to obtain local-scale hydraulic conductivity (K). The spatial statistics of these K values were then used to calculate the effective parameters. These K values and their statistics were also used for kriging to obtain a heterogeneous K field. In parallel, we performed a hydraulic tomography survey using hydraulic tests conducted in a dipole fashion with the drawdown data analyzed using the sequential successive linear estimator code (Yeh and Liu 2000) to obtain a K distribution (or K tomogram). The effective parameters and the heterogeneous K fields from kriging and hydraulic tomography were used in forward simulations of a dipole conservative tracer test. The simulated and observed breakthrough curves and their temporal moments were compared. Results show an improvement in predictions of drawdown behavior and tracer transport when the K tomogram from hydraulic tomography was used. This suggests that the high-resolution prediction of solute transport is possible without collecting a large number of small-scale samples to estimate flow and transport properties that are costly to obtain at the field scale.

  9. Solutes transport in unsaturated double-porosity medium. Modelling by homogenization and applications; Transport de solutes dans un milieu a double-porosite non sature. Modelisation par homogeneisation et applications

    Energy Technology Data Exchange (ETDEWEB)

    Tran Ngoc, T.D

    2008-07-15

    This Ph.D thesis presents the development of the solute transport models in unsaturated double-porosity medium, by using the asymptotic homogenization method. The obtained macroscopic models concern diffusion, diffusion-convection and dispersion-convection, according to the transport regime which is characterized by the non-dimensional numbers. The models consist of two coupled equations that show the local non-equilibrium of concentrations. The double-porosity transport models were numerically implemented using the code COMSOL Multiphysics (finite elements method), and compared with the solution of the same problem at the fine scale. The implementation allows solving the coupled equations in the macro- and micro-porosity domains (two-scale computations). The calculations of the dispersion tensor as a solution of the local boundary value problems, were also conducted. It was shown that the dispersivity depends on the saturation, the physical properties of the macro-porosity domain and the internal structure of the double-porosity medium. Finally, two series of experiments were performed on a physical model of double-porosity that is composed of a periodic assemblage of sintered clay spheres in Hostun sand HN38. The first experiment was a drainage experiment, which was conducted in order to validate the unsaturated flow model. The second series was a dispersion experiment in permanent unsaturated water flow condition (water content measured by gamma ray attenuation technique). A good agreement between the numerical simulations and the experimental observations allows the validation of the developed models. (author)

  10. Association between arterial stiffness and peritoneal small solute transport rate.

    Science.gov (United States)

    Zhe, Xing-wei; Tian, Xin-kui; Chen, Wei; Guo, Li-juan; Gu, Yue; Chen, Hui-min; Tang, Li-jun; Wang, Tao

    2008-05-01

    While cardiovascular disease accounts for 40-50% of the mortality in dialysis patients, and while a high peritoneal transport in continuous ambulatory peritoneal dialysis (CAPD) is an independent predictor of outcome, it is unclear if there are any links. Aortic stiffness has become established as a cardiovascular risk factor. We thus studied pulse wave velocity (PWV) in CAPD patients to explore the possible link between peritoneal small solute transport and aortic stiffness. CAPD patients (n = 76, 27 M/49 F) in our center were included in the present study. Aortic stiffness was assessed by brachial pulse pressure (PP) and carotid-femoral PWV. Patients' peritoneal small solute transport rate was assessed by D/P(cr) at 4 h. Extracellular water over total body water (E/T ratio) was assessed by means of bioimpedance analysis. C-reactive protein was also measured. Carotid-femoral PWV was positively associated with patients' age (r = 0.555; P < 0.01), time on peritoneal dialysis (r = 0.332; P < 0.01), diabetic status (r = 0.319; P < 0.01), D/P(cr) (r = 0.241; P < 0.05), PP (r = 0.475; P < 0.01), and E/T (r = 0.606; P < 0.01). In a multivariate regression analysis, carotid-femoral PWV was independently determined by E/T (P < 0.01), PP (P < 0.01), age (P < 0.01), and D/P(cr) (P < 0.05). D/P(cr), in addition to E/T, age, and PP, was an independent predictor of elevated carotid-femoral PWV in CAPD patients, suggesting that there might be a link between high aortic stiffness and increased peritoneal small solute transport rate.

  11. An evaluation of mathematical models of the transport of biologically reacting solutes in saturated soils and aquifers

    Science.gov (United States)

    Baveye, Philippe; Valocchi, Albert

    1989-06-01

    Three different conceptual frameworks have been adopted in the past for the development of mathematical models of bacterial growth and biologically reacting solute transport in saturated porous media. Two schools of thought are based upon assuming that the pore scale geometrical configuration of the attached bacteria consists of biofilms or microcolonies; the third school of thought represents the traditional approach where pore scale processes are neglected and the bacteria are assumed to respond to the macroscopic bulk fluid substrate concentration. On the basis of a schematic block diagram representation of a saturated porous medium hosting a microbial population, it is shown that these frameworks share a common theoretical foundation, and that they differ only by the choice of particular constitutive equations for several transfer parameters. Using one possible option in this respect, we derive a mathematical model that involves no unwarranted assumption about the distribution of the microorganisms in the pore space. The governing equations of this latter model are shown to be formally identical to those obtained by F.J. Molz et al. (1986), using the concept of microcolony, and to those that would result from adopting a simple form of biofilm model to describe bacterial growth in the pore space. Some of the consequences of this formal similarity between macroscopic transport equations obtained in different conceptual frameworks are discussed from an operational standpoint and in terms of model validation.

  12. Quantifying solute transport processes: are chemically "conservative" tracers electrically conservative?

    Science.gov (United States)

    Singha, Kamini; Li, Li; Day-Lewis, Frederick D.; Regberg, Aaron B.

    2012-01-01

    The concept of a nonreactive or conservative tracer, commonly invoked in investigations of solute transport, requires additional study in the context of electrical geophysical monitoring. Tracers that are commonly considered conservative may undergo reactive processes, such as ion exchange, thus changing the aqueous composition of the system. As a result, the measured electrical conductivity may reflect not only solute transport but also reactive processes. We have evaluated the impacts of ion exchange reactions, rate-limited mass transfer, and surface conduction on quantifying tracer mass, mean arrival time, and temporal variance in laboratory-scale column experiments. Numerical examples showed that (1) ion exchange can lead to resistivity-estimated tracer mass, velocity, and dispersivity that may be inaccurate; (2) mass transfer leads to an overestimate in the mobile tracer mass and an underestimate in velocity when using electrical methods; and (3) surface conductance does not notably affect estimated moments when high-concentration tracers are used, although this phenomenon may be important at low concentrations or in sediments with high and/or spatially variable cation-exchange capacity. In all cases, colocated groundwater concentration measurements are of high importance for interpreting geophysical data with respect to the controlling transport processes of interest.

  13. JOVIAN STRATOSPHERE AS A CHEMICAL TRANSPORT SYSTEM: BENCHMARK ANALYTICAL SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xi; Shia Runlie; Yung, Yuk L., E-mail: xiz@gps.caltech.edu [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States)

    2013-04-20

    We systematically investigated the solvable analytical benchmark cases in both one- and two-dimensional (1D and 2D) chemical-advective-diffusive systems. We use the stratosphere of Jupiter as an example but the results can be applied to other planetary atmospheres and exoplanetary atmospheres. In the 1D system, we show that CH{sub 4} and C{sub 2}H{sub 6} are mainly in diffusive equilibrium, and the C{sub 2}H{sub 2} profile can be approximated by modified Bessel functions. In the 2D system in the meridional plane, analytical solutions for two typical circulation patterns are derived. Simple tracer transport modeling demonstrates that the distribution of a short-lived species (such as C{sub 2}H{sub 2}) is dominated by the local chemical sources and sinks, while that of a long-lived species (such as C{sub 2}H{sub 6}) is significantly influenced by the circulation pattern. We find that an equator-to-pole circulation could qualitatively explain the Cassini observations, but a pure diffusive transport process could not. For slowly rotating planets like the close-in extrasolar planets, the interaction between the advection by the zonal wind and chemistry might cause a phase lag between the final tracer distribution and the original source distribution. The numerical simulation results from the 2D Caltech/JPL chemistry-transport model agree well with the analytical solutions for various cases.

  14. Interference of macroscopic superpositions

    CERN Document Server

    Vecchi, I

    2000-01-01

    We propose a simple experimental procedure based on the Elitzur-Vaidman scheme to implement a quantum nondemolition measurement testing the persistence of macroscopic superpositions. We conjecture that its implementation will reveal the persistence of superpositions of macroscopic objects in the absence of a direct act of observation.

  15. Transport Process of Isopropanol Aqueous Solution by Pervaporation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    To study the transport process of isopropanol aqueous solution by pervaporation, the transport model of isopropanol and that of water at 323 K in polyvinyl alcohol(PVA) membrane were obtained in this paper. Theoretical predictions agreed well with the experimental results. The interactional parameter between water and PVA membrane is less than that between isopropanol and PVA membrane, which shows that water is preferentially dissolved in PVA membrane. The plasticizing coefficient and diffusion coefficient at infinite dilution of water are larger than those of isopropanol,which shows that the dissolution and permeation in PVA membrane of water are greater than those of isopropanol. Both the interactional parameter between water and isopropanol in the membrane and that in feed rise with the increase of isopropanol content in feed, which shows that the larger isopropanol content is, the higher selectivity of the membrane is and the more remarkable separation effect of pervaporation is.

  16. A Solution Proposal To Indefinite Quadratic Interval Transportation Problem

    Directory of Open Access Journals (Sweden)

    Hasan Dalman

    2013-12-01

    Full Text Available The data of real world applications generally cannot be expressed strictly. An efficient way of handling this situation is expressing the data as intervals. Thus, this paper focus on the Indefinite Quadratic Interval Transportation Problem (IQITP in which all the parameters i.e. cost and risk coefficients of the objective function, supply and demand quantities are expressed as intervals. A Taylor series approach is presented for the solution of IQITP by means of the expression of intervals with its left and right limits. Also a numerical example is executed to illustrate the procedure.

  17. The numerical solution of the vorticity transport equation

    CERN Document Server

    Dennis, S C R

    1973-01-01

    A method of approximating the two-dimensional vorticity transport equation in which the matrix associated with the difference equations is diagonally dominant and the truncation error is the same as that of the fully central-difference approximation, is discussed. An example from boundary layer theory is given by calculating the viscous stagnation point flow at the nose of a cylinder. Some new solutions of the Navier-Stokes equations are obtained for symmetrical flow past a flat plate of finite length. (16 refs).

  18. Coarse grained modeling of transport properties in monoclonal antibody solution

    Science.gov (United States)

    Swan, James; Wang, Gang

    Monoclonal antibodies and their derivatives represent the fastest growing segment of the bio pharmaceutical industry. For many applications such as novel cancer therapies, high concentration, sub-cutaneous injections of these protein solutions are desired. However, depending on the peptide sequence within the antibody, such high concentration formulations can be too viscous to inject via human derived force alone. Understanding how heterogenous charge distribution and hydrophobicity within the antibodies leads to high viscosities is crucial to their future application. In this talk, we explore a coarse grained computational model of therapeutically relevant monoclonal antibodies that accounts for electrostatic, dispersion and hydrodynamic interactions between suspended antibodies to predict assembly and transport properties in concentrated antibody solutions. We explain the high viscosities observed in many experimental studies of the same biologics.

  19. A Finite-Difference Solution of Solute Transport through a Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    B. Godongwana

    2015-01-01

    Full Text Available The current paper presents a theoretical analysis of the transport of solutes through a fixed-film membrane bioreactor (MBR, immobilised with an active biocatalyst. The dimensionless convection-diffusion equation with variable coefficients was solved analytically and numerically for concentration profiles of the solutes through the MBR. The analytical solution makes use of regular perturbation and accounts for radial convective flow as well as axial diffusion of the substrate species. The Michaelis-Menten (or Monod rate equation was assumed for the sink term, and the perturbation was extended up to second-order. In the analytical solution only the first-order limit of the Michaelis-Menten equation was considered; hence the linearized equation was solved. In the numerical solution, however, this restriction was lifted. The solution of the nonlinear, elliptic, partial differential equation was based on an implicit finite-difference method (FDM. An upwind scheme was employed for numerical stability. The resulting algebraic equations were solved simultaneously using the multivariate Newton-Raphson iteration method. The solution allows for the evaluation of the effect on the concentration profiles of (i the radial and axial convective velocity, (ii the convective mass transfer rates, (iii the reaction rates, (iv the fraction retentate, and (v the aspect ratio.

  20. [Solute transport modeling application in groundwater organic contaminant source identification].

    Science.gov (United States)

    Wang, Shu-Fang; Wang, Li-Ya; Wang, Xiao-Hong; Lin, Pei; Liu, Jiu-Rong; Xin, Bao-Dong; He, Guo-Ping

    2012-03-01

    Investigation and numerical simulation, based on RT3D (reactive transport in 3-dimensions)were used to identify the source of tetrachloroethylene (PCE) and trichloroethylene (TCE) in the groundwater of a city in the north of China and reverse the input intensity. Multiple regressions were applied to analyze the influenced factors of input intensity of PCE and TCE using Stepwise function in Matlab. The results indicate that the factories and industries are the source of the PCE and TCE in groundwater. Natural attenuation was identified and the natural attenuation rates are 93.15%, 61.70% and 61.00% for PCE, and 70.05%, 73.66% and 63.66% for TCE in 173 days. The 4 source points identified by the simulation have released 0.910 6 kg PCE and 95.693 8 kg TCE during the simulation period. The regression analysis results indicate that local precipitation and the thickness of vadose zone are the main factors influencing organic solution transporting from surface to groundwater. The PCE and TCE concentration are found to be 0 and 5 mg x kg(-1) from surface to 35 cm in vadose zone. All above results suggest that PCE and TCE in groundwater are from the source in the surface. Natural attenuation occurred when PCE and TCE transporting from the surface to groundwater, and the rest was transported to groundwater through vadose zone. Local precipitation was one of the critical factors influencing the transportation of PCE and TCE to aquifer through sand, pebble and gravel of the Quaternary.

  1. TURBULENCE TRANSPORT OF SURFACTANT SOLUTION FLOW DURING DRAG REDUCTION DEGENERATION

    Institute of Scientific and Technical Information of China (English)

    GU Wei-guo; WANG De-zhong

    2012-01-01

    Turbulence transport of surfactant solution flow during drag reduction degeneration is investigated experimentally in a two-dimensional channel.Particle Image Velocimetry (P1V) system is used to take two-dimensional velocity frames in the streamwise and wall-normal plane.The additive of surfactant is cetyltrimethyl ammonium chloride (CTAC) with the mass concentration of 25 ppm.Drag reduction degeneration happens in the CTAC solution flow,exhibiting the maximal drag reduction at Re =25000and losing drag reduction completely at Re =40 000.The velocity frames are statistically analyzed in four quadrants which are divided by the u -axis and v-axis.It is found that the phenomenon of“Zero Reynolds shear stress” is caused by the decrease of wallnormal fluctuations and its symmetrical distribution in quadrants.The increase of Reynolds number leads to the enhancement of turbulence burst phenomenon.During thc drag reduction degeneration,the CTAC solution flow contains both high turbulence intensity and drag reduction states.

  2. SOLUTE TRANSPORT IN NATURAL FRACTURES BASED ON DIGITAL IMAGE TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    TAN Ye-fei; ZHOU Zhi-fang; HUANG Yong

    2009-01-01

    A method of fracture boundary extraction was developed using the Gaussian template and Canny boundary detection on the basis of the collected digital images of natural fractures. The roughness and apertures of the fractures were briefly discussed from the point of view of digital image analysis. The extracted fractured image was translated into a lattice image which can be directly used in numerical simulation. The lattice Boltzmann and modified moment propagation mixed method was then applied to the simulation of solute transport in a natural single fracture, and this mixed method could take the advantages of the lattice Boltzmann method in dealing with complex physical boundaries. The obtained concentrations was fitted with the CXTFIT2.1 code and compared with the results obtained with the commercial software Feflow. The comparison indicates that the simulation using the mixed method is sound.

  3. Soil properties and preferential solute transport at the field scale

    DEFF Research Database (Denmark)

    Koestel, J K; Minh, Luong Nhat; Nørgaard, Trine

    An important fraction of water flow and solute transport through soil takes place through preferential flow paths. Although this had been already observed in the nineteenth century, it had been forgotten by the scientific community until it was rediscovered during the 1970s. The awareness...... of the relevance of preferential flow was broadly re-established in the community by the early 1990s. However, since then, the notion remains widespread among soil scientists that the occurrence and strength of preferential flow cannot be predicted from measurable proxy variables such as soil properties or land...... management practices (e.g. Beven, K., 1991, modeling preferential flow - an uncertain future, Preferential Flow, 1-11). In our study, we present evidence that disproves this notion. We evaluated breakthrough curve experiments under a constant irrigation rate of 1 cm/h conducted on 65 soil columns (20 cm...

  4. Engineering charge transport by heterostructuring solution-processed semiconductors

    Science.gov (United States)

    Voznyy, Oleksandr; Sutherland, Brandon R.; Ip, Alexander H.; Zhitomirsky, David; Sargent, Edward H.

    2017-06-01

    Solution-processed semiconductor devices are increasingly exploiting heterostructuring — an approach in which two or more materials with different energy landscapes are integrated into a composite system. Heterostructured materials offer an additional degree of freedom to control charge transport and recombination for more efficient optoelectronic devices. By exploiting energetic asymmetry, rationally engineered heterostructured materials can overcome weaknesses, augment strengths and introduce emergent physical phenomena that are otherwise inaccessible to single-material systems. These systems see benefit and application in two distinct branches of charge-carrier manipulation. First, they influence the balance between excitons and free charges to enhance electron extraction in solar cells and photodetectors. Second, they promote radiative recombination by spatially confining electrons and holes, which increases the quantum efficiency of light-emitting diodes. In this Review, we discuss advances in the design and composition of heterostructured materials, consider their implementation in semiconductor devices and examine unexplored paths for future advancement in the field.

  5. Longitudinal dispersion coefficients for numerical modeling of groundwater solute transport in heterogeneous formations.

    Science.gov (United States)

    Lee, Jonghyun; Rolle, Massimo; Kitanidis, Peter K

    2017-09-15

    Most recent research on hydrodynamic dispersion in porous media has focused on whole-domain dispersion while other research is largely on laboratory-scale dispersion. This work focuses on the contribution of a single block in a numerical model to dispersion. Variability of fluid velocity and concentration within a block is not resolved and the combined spreading effect is approximated using resolved quantities and macroscopic parameters. This applies whether the formation is modeled as homogeneous or discretized into homogeneous blocks but the emphasis here being on the latter. The process of dispersion is typically described through the Fickian model, i.e., the dispersive flux is proportional to the gradient of the resolved concentration, commonly with the Scheidegger parameterization, which is a particular way to compute the dispersion coefficients utilizing dispersivity coefficients. Although such parameterization is by far the most commonly used in solute transport applications, its validity has been questioned. Here, our goal is to investigate the effects of heterogeneity and mass transfer limitations on block-scale longitudinal dispersion and to evaluate under which conditions the Scheidegger parameterization is valid. We compute the relaxation time or memory of the system; changes in time with periods larger than the relaxation time are gradually leading to a condition of local equilibrium under which dispersion is Fickian. The method we use requires the solution of a steady-state advection-dispersion equation, and thus is computationally efficient, and applicable to any heterogeneous hydraulic conductivity K field without requiring statistical or structural assumptions. The method was validated by comparing with other approaches such as the moment analysis and the first order perturbation method. We investigate the impact of heterogeneity, both in degree and structure, on the longitudinal dispersion coefficient and then discuss the role of local dispersion

  6. Improved parallel solution techniques for the integral transport matrix method

    Energy Technology Data Exchange (ETDEWEB)

    Zerr, R. Joseph, E-mail: rjz116@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA (United States); Azmy, Yousry Y., E-mail: yyazmy@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Burlington Engineering Laboratories, Raleigh, NC (United States)

    2011-07-01

    Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the global problem with the integral transport matrix method operators have been designed and tested. The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of iterations and reduce work per iteration by applying an alternating red-black color-set to the subdomains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was implemented as an alternative to stationary iterations. Computational results show that the PGS method can improve on the PBJ method execution time by up to 10´ when eight sub-domains per processor are used. However, compared to traditional source iterations with diffusion synthetic acceleration, it is still approximately an order of magnitude slower. The best-performing cases are optically thick because sub-domains decouple, yielding faster convergence. Further tests revealed that 64 sub-domains per processor was the best performing level of sub-domain division. An acceleration technique that improves the convergence rate would greatly improve the ITMM. The GMRES(m) method with a diagonal block pre conditioner consumes approximately the same time as the PBJ solver but could be improved by an as yet undeveloped, more efficient pre conditioner. (author)

  7. Improved parallel solution techniques for the integral transport matrix method

    Energy Technology Data Exchange (ETDEWEB)

    Zerr, Robert J [Los Alamos National Laboratory; Azmy, Yousry Y [NORTH CAROLINA STATE UNIV.

    2010-11-23

    Alternative solution strategies to the parallel block Jacobi (PBJ) method for the solution of the global problem with the integral transport matrix method operators have been designed and tested. The most straightforward improvement to the Jacobi iterative method is the Gauss-Seidel alternative. The parallel red-black Gauss-Seidel (PGS) algorithm can improve on the number of iterations and reduce work per iteration by applying an alternating red-black color-set to the subdomains and assigning multiple sub-domains per processor. A parallel GMRES(m) method was implemented as an alternative to stationary iterations. Computational results show that the PGS method can improve on the PBJ method execution by up to {approx}50% when eight sub-domains per processor are used. However, compared to traditional source iterations with diffusion synthetic acceleration, it is still approximately an order of magnitude slower. The best-performing case are opticaUy thick because sub-domains decouple, yielding faster convergence. Further tests revealed that 64 sub-domains per processor was the best performing level of sub-domain division. An acceleration technique that improves the convergence rate would greatly improve the ITMM. The GMRES(m) method with a diagonal block preconditioner consumes approximately the same time as the PBJ solver but could be improved by an as yet undeveloped, more efficient preconditioner.

  8. Macroscopic Theory of Dark Sector

    Directory of Open Access Journals (Sweden)

    Boris E. Meierovich

    2014-01-01

    Full Text Available A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out to be an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields describe two different forms of dark matter. The space-like massive vector field is attractive. It is responsible for the observed plateau in galaxy rotation curves. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four-parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating nonsingular scenarios of evolution of the Universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerated expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the lower boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows displaying the main properties of the dark sector analytically. Although the physical nature of dark sector is still unknown, the macroscopic theory can help analyze the role of dark matter in astrophysical phenomena without resorting to artificial model assumptions.

  9. Assessing uncertainties in solute transport models: Upper Narew case study

    Science.gov (United States)

    Osuch, M.; Romanowicz, R.; Napiórkowski, J. J.

    2009-04-01

    This paper evaluates uncertainties in two solute transport models based on tracer experiment data from the Upper River Narew. Data Based Mechanistic and transient storage models were applied to Rhodamine WT tracer observations. We focus on the analysis of uncertainty and the sensitivity of model predictions to varying physical parameters, such as dispersion and channel geometry. An advection-dispersion model with dead zones (Transient Storage model) adequately describes the transport of pollutants in a single channel river with multiple storage. The applied transient storage model is deterministic; it assumes that observations are free of errors and the model structure perfectly describes the process of transport of conservative pollutants. In order to take into account the model and observation errors, an uncertainty analysis is required. In this study we used a combination of the Generalized Likelihood Uncertainty Estimation technique (GLUE) and the variance based Global Sensitivity Analysis (GSA). The combination is straightforward as the same samples (Sobol samples) were generated for GLUE analysis and for sensitivity assessment. Additionally, the results of the sensitivity analysis were used to specify the best parameter ranges and their prior distributions for the evaluation of predictive model uncertainty using the GLUE methodology. Apart from predictions of pollutant transport trajectories, two ecological indicators were also studied (time over the threshold concentration and maximum concentration). In particular, a sensitivity analysis of the length of "over the threshold" period shows an interesting multi-modal dependence on model parameters. This behavior is a result of the direct influence of parameters on different parts of the dynamic response of the system. As an alternative to the transient storage model, a Data Based Mechanistic approach was tested. Here, the model is identified and the parameters are estimated from available time series data using

  10. Macroscopic quantum resonators (MAQRO)

    CERN Document Server

    Kaltenbaek, Rainer; Kiesel, Nikolai; Romero-Isart, Oriol; Johann, Ulrich; Aspelmeyer, Markus

    2012-01-01

    Quantum physics challenges our understanding of the nature of physical reality and of space-time and suggests the necessity of radical revisions of their underlying concepts. Experimental tests of quantum phenomena involving massive macroscopic objects would provide novel insights into these fundamental questions. Making use of the unique environment provided by space, MAQRO aims at investigating this largely unexplored realm of macroscopic quantum physics. MAQRO has originally been proposed as a medium-sized fundamental-science space mission for the 2010 call of Cosmic Vision. MAQRO unites two experiments: DECIDE (DECoherence In Double-Slit Experiments) and CASE (Comparative Acceleration Sensing Experiment). The main scientific objective of MAQRO, which is addressed by the experiment DECIDE, is to test the predictions of quantum theory for quantum superpositions of macroscopic objects containing more than 10e8 atoms. Under these conditions, deviations due to various suggested alternative models to quantum th...

  11. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  12. Molybdate transport in a chemically complex aquifer: Field measurements compared with solute-transport model predictions

    Science.gov (United States)

    Stollenwerk, K.G.

    1998-01-01

    A natural-gradient tracer test was conducted in an unconfined sand and gravel aquifer on Cape Cod, Massachusetts. Molybdate was included in the injectate to study the effects of variable groundwater chemistry on its aqueous distribution and to evaluate the reliability of laboratory experiments for identifying and quantifying reactions that control the transport of reactive solutes in groundwater. Transport of molybdate in this aquifer was controlled by adsorption. The amount adsorbed varied with aqueous chemistry that changed with depth as freshwater recharge mixed with a plume of sewage-contaminated groundwater. Molybdate adsorption was strongest near the water table where pH (5.7) and the concentration of the competing solutes phosphate (2.3 micromolar) and sulfate (86 micromolar) were low. Adsorption of molybdate decreased with depth as pH increased to 6.5, phosphate increased to 40 micromolar, and sulfate increased to 340 micromolar. A one-site diffuse-layer surface-complexation model and a two-site diffuse-layer surface-complexation model were used to simulate adsorption. Reactions and equilibrium constants for both models were determined in laboratory experiments and used in the reactive-transport model PHAST to simulate the two-dimensional transport of molybdate during the tracer test. No geochemical parameters were adjusted in the simulation to improve the fit between model and field data. Both models simulated the travel distance of the molybdate cloud to within 10% during the 2-year tracer test; however, the two-site diffuse-layer model more accurately simulated the molybdate concentration distribution within the cloud.

  13. Product Lifecycle Management and the Quest for Sustainable Space Transportation Solutions

    Science.gov (United States)

    Caruso, Pamela W.

    2009-01-01

    This viewgraph presentation reviews NASA Marshall's effort to sustain space transportation solutions through product lines that include: 1) Propulsion and Transportation Systems; 2) Life Support Systems; and 3) and Earth and Space Science Spacecraft Systems, and Operations.

  14. New constructive solutions for building of transport construction facilities

    Directory of Open Access Journals (Sweden)

    Babayev Vladimir

    2017-01-01

    Full Text Available New structural systems for civil and transport engineering were examined. The basis for the formation of the proposed reinforced concrete structures is the ideology of reducing its dead weight, with a given bearing capacity, the realization of which is accomplished by burial during concreting large-sized liners of a given shape and manufactured from lightweight, inexpensive composite materials. The process of erecting these systems is presented in two forms: for flat structures - using self-tightening concrete, and for curvilinear ones - by using shotcrete technologies. The second direction is presented by steel-reinforced concrete structures. These structural systems were created on the basis of innovative component and methods of rationalization of parameters. The basis of the above methods is a compiler which includes the finite element method, adaptive evolution method and special iterative procedures. Experimental verification of structural solutions and formation procedures for suggested systems was performed. Comparison between theoretical and experimental data is given. Suggested systems were implemented in a number of building companies.

  15. An optimized transport-of-intensity solution for phase imaging

    Science.gov (United States)

    Banerjee, Partha; Basunia, Mahmudunnabi; Poon, Ting-Chung; Zhang, Hongbo

    2016-05-01

    The transport-of-intensity equation (TIE) is often used to determine the phase and amplitude profile of a complex object by monitoring the intensities at different distances of propagation or around the image plane. TIE results from the imaginary part of the paraxial wave equation and is equivalent to the conservation of energy. The real part of the paraxial wave equation gives the eikonal equation in the presence of diffraction. Since propagation of the optical field between different planes is governed by the (paraxial) wave equation, both real and imaginary parts need to be satisfied at every propagation plane. In this work, the solution of the TIE is optimized by using the real part of the paraxial wave equation as a constraint. This technique is applied to the more exact determination of imaging the induced phase of a liquid heated by a focused laser beam, which has been previously computed using TIE only. Retrieval of imaged phase using the TIE is performed by using the constraint that naturally arises from the real part of the paraxial wave equation.

  16. Multiscale modelling of dual-porosity porous media; a computational pore-scale study for flow and solute transport

    Science.gov (United States)

    de Vries, Enno T.; Raoof, Amir; van Genuchten, Martinus Th.

    2017-07-01

    Many environmental and agricultural applications involve the transport of water and dissolved constituents through aggregated soil profiles, or porous media that are structured, fractured or macroporous in other ways. During the past several decades, various process-based macroscopic models have been used to simulate contaminant transport in such media. Many of these models consider advective-dispersive transport through relatively large inter-aggregate pore domains, while exchange with the smaller intra-aggregate pores is assumed to be controlled by diffusion. Exchange of solute between the two domains is often represented using a first-order mass transfer coefficient, which is commonly obtained by fitting to observed data. This study aims to understand and quantify the solute exchange term by applying a dual-porosity pore-scale network model to relatively large domains, and analysing the pore-scale results in terms of the classical dual-porosity (mobile-immobile) transport formulation. We examined the effects of key parameters (notably aggregate porosity and aggregate permeability) on the main dual-porosity model parameters, i.e., the mobile water fraction (ϕm) and the mass transfer coefficient (α). Results were obtained for a wide range of aggregate porosities (between 0.082 and 0.700). The effect of aggregate permeability was explored by varying pore throat sizes within the aggregates. Solute breakthrough curves (BTCs) obtained with the pore-scale network model at several locations along the domain were analysed using analytical solutions of the dual-porosity model to obtain estimates of ϕm and α. An increase in aggregate porosity was found to decrease ϕm and increase α, leading to considerable tailing in the BTCs. Changes in the aggregate pore throat size affected the relative flow velocity between the intra- and inter-aggregate domains. Higher flow velocities within the aggregates caused a change in the transport regime from diffusion dominated to more

  17. Semianalytical Solutions of Radioactive or Reactive Tracer Transport in Layered Fractured Media

    Energy Technology Data Exchange (ETDEWEB)

    G.J. Moridis; G. S. Bodvarsson

    2001-10-01

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive tracers (solutes or colloids) through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the matrix account for (a) diffusion, (b) surface diffusion (for solutes only), (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Additionally, the colloid transport equations account for straining and velocity adjustments related to the colloidal size. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of {sup 3}H, {sup 237}Np and {sup 239}Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity. {sup 239}Pu colloid transport problems in multilayered systems indicate significant colloid accumulations at straining interfaces but much faster transport of the colloid than the corresponding strongly sorbing solute species.

  18. Semianalytical solutions of radioactive or reactive tracer transport in layered fractured media

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, G.J.; Bodvarsson, G.S.

    2001-10-10

    In this paper, semianalytical solutions are developed for the problem of transport of radioactive or reactive tracers (solutes or colloids) through a layered system of heterogeneous fractured media with misaligned fractures. The tracer transport equations in the matrix account for (a) diffusion, (b) surface diffusion (for solutes only), (c) mass transfer between the mobile and immobile water fractions, (d) linear kinetic or equilibrium physical, chemical, or combined solute sorption or colloid filtration, and (e) radioactive decay or first order chemical reactions. Any number of radioactive decay daughter products (or products of a linear, first-order reaction chain) can be tracked. The tracer-transport equations in the fractures account for the same processes, in addition to advection and hydrodynamic dispersion. Additionally, the colloid transport equations account for straining and velocity adjustments related to the colloidal size. The solutions, which are analytical in the Laplace space, are numerically inverted to provide the solution in time and can accommodate any number of fractured and/or porous layers. The solutions are verified using analytical solutions for limiting cases of solute and colloid transport through fractured and porous media. The effect of important parameters on the transport of {sup 3}H, {sup 237}Np and {sup 239}Pu (and its daughters) is investigated in several test problems involving layered geological systems of varying complexity. {sup 239}Pu colloid transport problems in multilayered systems indicate significant colloid accumulations at straining interfaces but much faster transport of the colloid than the corresponding strongly sorbing solute species.

  19. Influence of solution parameters on europium(III), α-Al2O3, and humic acid interactions: Macroscopic and time-resolved laser-induced luminescence data

    Science.gov (United States)

    Janot, Noémie; Benedetti, Marc F.; Reiller, Pascal E.

    2013-12-01

    Speciation of Eu(III) in the presence of purified Aldrich humic acid (PAHA) and/or α-Al2O3 has been studied by time-resolved luminescence spectroscopy as a function of pH, ionic strength and PAHA concentration. The comparisons of macroscopic and spectroscopic data (adsorption, spectra, and decay times analyses) between the ternary system, i.e., Eu(III)/PAHA/α-Al2O3, and the corresponding binary systems are comprehensively presented. As expected, results show almost no influence of ionic strength on Eu(III) adsorption onto α-Al2O3. However, in the binary Eu(III)/PAHA system, it is clearly shown that variations of electrolyte concentration, which modify PAHA conformation, influence the symmetry of the humic-bound Eu(III) at pH ⩾ 7. In the ternary system, adsorption of both Eu(III) and PAHA onto the surface decreases with ionic strength. At I = 0.01 M NaClO4, Eu(III) luminescence decay is much faster than at I = 0.1 M NaClO4. This is most likely due to the lower surface concentration of PAHA at lower ionic strength, leading to a less constrained environment for Eu(III) ions. At high pH, luminescence spectra are different at the two ionic strengths studied. Concerning the influence of PAHA concentration, spectroscopic results show that in the binary Eu(III)/PAHA system complete complexation of 1 μM Eu(III) is reached for 16 mgPAHA l-1 at pH 4, and for lower PAHA concentrations at higher pH. At the same PAHA concentration, asymmetry ratios are comparable between the binary Eu(III)/PAHA system and the ternary system between pH 4 and 7.7. This means that the presence of mineral surface has almost no influence on Eu(III) environment symmetry below pH 8; hence, under these acid to neutral pH conditions, the occurrence of Eu(III)-bridged humic surface complexes is not likely. In the ternary system, at different pH, luminescence decay times of Eu(III) increase with PAHA concentration. They are much higher in the ternary system than in the binary Eu(III)/PAHA system

  20. Macroscopic Modeling of Polymer-Electrolyte Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Weber, A.Z.; Newman, J.

    2007-04-01

    In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.

  1. GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF THE SOLUTION TO 1-D ENERGY TRANSPORT MODEL FOR SEMICONDUCTORS

    Institute of Scientific and Technical Information of China (English)

    黎勇; 陈丽

    2002-01-01

    In this paper, we study the asymptotic behavior of global smooth solution to the initial boundary problem for the 1-D energy transport model in semiconductor science. We prove that the smooth solution of the problem converges to a stationary solution exponentially fast as t - ∞ when the initial data is a small perturbation of the stationary solution.

  2. Self-similar Solutions for a Transport Equation with Non-local Flux

    Institute of Scientific and Technical Information of China (English)

    Angel CASTRO; Diego C(O)RDOBA

    2009-01-01

    The authors construct self-similar solutions for an N-dimensional transport equation,where the velocity is given by the Riezs transform.These solutions imply nonuniqueness of weak solution.In addition,self-similar solution for a one-dimensional conservative equation involving the Hilbert transform is obtained.

  3. Peritoneal Fluid Transport rather than Peritoneal Solute Transport Associates with Dialysis Vintage and Age of Peritoneal Dialysis Patients

    Directory of Open Access Journals (Sweden)

    Jacek Waniewski

    2016-01-01

    Full Text Available During peritoneal dialysis (PD, the peritoneal membrane undergoes ageing processes that affect its function. Here we analyzed associations of patient age and dialysis vintage with parameters of peritoneal transport of fluid and solutes, directly measured and estimated based on the pore model, for individual patients. Thirty-three patients (15 females; age 60 (21–87 years; median time on PD 19 (3–100 months underwent sequential peritoneal equilibration test. Dialysis vintage and patient age did not correlate. Estimation of parameters of the two-pore model of peritoneal transport was performed. The estimated fluid transport parameters, including hydraulic permeability (LpS, fraction of ultrasmall pores (αu, osmotic conductance for glucose (OCG, and peritoneal absorption, were generally independent of solute transport parameters (diffusive mass transport parameters. Fluid transport parameters correlated whereas transport parameters for small solutes and proteins did not correlate with dialysis vintage and patient age. Although LpS and OCG were lower for older patients and those with long dialysis vintage, αu was higher. Thus, fluid transport parameters—rather than solute transport parameters—are linked to dialysis vintage and patient age and should therefore be included when monitoring processes linked to ageing of the peritoneal membrane.

  4. Peritoneal Fluid Transport rather than Peritoneal Solute Transport Associates with Dialysis Vintage and Age of Peritoneal Dialysis Patients.

    Science.gov (United States)

    Waniewski, Jacek; Antosiewicz, Stefan; Baczynski, Daniel; Poleszczuk, Jan; Pietribiasi, Mauro; Lindholm, Bengt; Wankowicz, Zofia

    2016-01-01

    During peritoneal dialysis (PD), the peritoneal membrane undergoes ageing processes that affect its function. Here we analyzed associations of patient age and dialysis vintage with parameters of peritoneal transport of fluid and solutes, directly measured and estimated based on the pore model, for individual patients. Thirty-three patients (15 females; age 60 (21-87) years; median time on PD 19 (3-100) months) underwent sequential peritoneal equilibration test. Dialysis vintage and patient age did not correlate. Estimation of parameters of the two-pore model of peritoneal transport was performed. The estimated fluid transport parameters, including hydraulic permeability (LpS), fraction of ultrasmall pores (α u), osmotic conductance for glucose (OCG), and peritoneal absorption, were generally independent of solute transport parameters (diffusive mass transport parameters). Fluid transport parameters correlated whereas transport parameters for small solutes and proteins did not correlate with dialysis vintage and patient age. Although LpS and OCG were lower for older patients and those with long dialysis vintage, αu was higher. Thus, fluid transport parameters--rather than solute transport parameters--are linked to dialysis vintage and patient age and should therefore be included when monitoring processes linked to ageing of the peritoneal membrane.

  5. Field-scale water flow and solute transport : Swap model concepts, parameter estimation and case studies

    NARCIS (Netherlands)

    Dam, van J.C.

    2000-01-01

    Water flow and solute transport in top soils are important elements in many environmental studies. The agro- and ecohydrological model SWAP (Soil-Water-Plant-Atmosphere) has been developed to simulate simultaneously water flow, solute transport, heat flow and crop growth at field scale level. The ma

  6. Modeling of Flow, Transport and Controlled Sedimentation Phenomena during Mixing of Salt Solutions in Complex Porous Formations

    Science.gov (United States)

    Skouras, Eugene D.; Jaho, Sofia; Pavlakou, Efstathia I.; Sygouni, Varvara; Petsi, Anastasia; Paraskeva, Christakis A.

    2015-04-01

    The deposition of salts in porous media is a major engineering phenomenon encountered in a plethora of industrial and environmental applications where in some cases is desirable and in other not (oil production, geothermal systems, soil stabilization etc). Systematic approach of these problems requires knowledge of the key mechanisms of precipitating salts within the porous structures, in order to develop new methods to control the process. In this work, the development and the solution of spatiotemporally variable mass balances during salt solution mixing along specific pores were performed. Both analytical models and finite differences CFD models were applied for the study of flow and transport with simultaneous homogeneous and heterogeneous nucleation (by crystal growth on the surface of the pores) in simple geometries, while unstructured finite elements and meshless methods were developed and implemented for spatial discretization, reconstruction, and solution of transport equations and homogeneous / heterogeneous reactions in more complex geometries. At initial stages of this work, critical problem parameters were identified, such as the characteristics of the porosity, the number of dissolved components, etc. The parameters were then used for solving problems which correspond to available experimental data. For each combination of ions and materials, specific data and process characteristics were included: (a) crystal kinetics (nucleation, growth rates or reaction surface rates of crystals, critical suspension concentrations), (b) physico-chemical properties (bulk density, dimensions of generated crystals, ion diffusion coefficients in the solution), (c) operating parameters (macroscopic velocity, flow, or pressure gradient of the solution, ion concentration) (d) microfluidic data (geometry, flow area), (e) porosity data in Darcy description (initial porosity, specific surface area, tortuosity). During the modeling of flow and transport in three

  7. Affordable Freight Logistics Transport Information Management Optimisation and Asset Tracking Solution Using Smartphone GPS Capabilities

    Science.gov (United States)

    Muna, Joseph T.; Prescott, Kevin

    2011-08-01

    Traditionally, freight transport and telematics solutions that exploit the GPS capabilities of in- vehicle devices to provide innovative Location Based Services (LBS) including track and trace transport systems have been the preserve of a select cluster of transport operators and organisations with the financial resources to develop the requisite custom software and hardware on which they are deployed. The average cost of outfitting a typical transport vehicle or truck with the latest Intelligent Transport System (ITS) increases the cost of the vehicle by anything from a couple to several thousand Euros, depending on the complexity and completeness of the solution. Though this does not generally deter large fleet transport owners since they typically get Return on Investment (ROI) based on economies of scale, it presents a barrier for the smaller independent entities that constitute the majority of freight transport operators [1].The North Sea Freight Intelligent Transport Solution (NS FRITS), a project co-funded by the European Commission Interreg IVB North Sea Region Programme, aims to make acquisition of such transport solutions easier for those organisations that cannot afford the expensive, bespoke systems used by their larger competitors.The project addresses transport security threats by developing a system capable of informing major actors along the freight logistics supply chain, of changing circumstances within the region's major transport corridors and between transport modes. The project also addresses issues of freight volumes, inter-modality, congestion and eco-mobility [2].

  8. High Order Numerical Solution of Integral Transport Equation in Slab Geometry

    Institute of Scientific and Technical Information of China (English)

    沈智军; 袁光伟; 沈隆钧

    2002-01-01

    @@ There are some common numerical methods for solving neutron transport equation, which including the well-known discrete ordinates method, PN approximation and integral transport methods[1]. There exists certain singularities in the solution of transport equation near the boundary and interface[2]. It gives rise to the difficulty in the construction of high order accurate numerical methods. The numerical solution obtained by now can not attain the second order convergent accuracy[3,4].

  9. Water flow and solute transport in floating fen root mats

    Science.gov (United States)

    Stofberg, Sija F.; EATM van der Zee, Sjoerd

    2015-04-01

    be very similar and likely functionally related. Our experimental field data were used for modelling water flow and solute transport in floating fens, using HYDRUS 2D. Fluctuations of surface water and root mat, as well as geometry and unsaturated zone parameters can have a major influence on groundwater fluctuations and the exchange between rain and surface water and the water in the root mats. In combination with the duration of salt pulses in surface water, and sensitivity of fen plants to salinity (Stofberg et al. 2014, submitted), risks for rare plants can be anticipated.

  10. Solutions of Multi Objective Fuzzy Transportation Problems with Non-Linear Membership Functions

    Directory of Open Access Journals (Sweden)

    Dr. M. S. Annie Christi

    2016-11-01

    Full Text Available Multi-objective transportation problem with fuzzy interval numbers are considered. The solution of linear MOTP is obtained by using non-linear membership functions. The optimal compromise solution obtained is compared with the solution got by using a linear membership function. Some numerical examples are presented to illustrate this.

  11. Multiscale modelling of dual-porosity porous media : a computational pore-scale study for flow and solute transport

    NARCIS (Netherlands)

    de Vries, Enno T.; Raoof, Amir; van Genuchten, Marinus Th.

    2017-01-01

    Many environmental and agricultural applications involve the transport of water and dissolved constituents through aggregated soil profiles, or porous media that are structured, fractured or macroporous in other ways. During the past several decades, various process-based macroscopic models have bee

  12. Solution of Nonlinear Coupled Heat and Moisture Transport Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    T. Krejčí

    2004-01-01

    Full Text Available This paper deals with a numerical solution of coupled of heat and moisture transfer using the finite element method. The mathematical model consists of balance equations of mass, energy and linear momentum and of the appropriate constitutive equations. The chosen macroscopic field variables are temperature, capillary pressures, gas pressure and displacement. In contrast with pure mechanical problems, there are several difficulties which require special attention. Systems of algebraic equations arising from coupled problems are generally nonlinear, and the matrices of such systems are nonsymmetric and indefinite. The first experiences of solving complicated coupled problems are mentioned in this paper. 

  13. Simulating water, solute, and heat transport in the subsurface with the VS2DI software package

    Science.gov (United States)

    Healy, R.W.

    2008-01-01

    The software package VS2DI was developed by the U.S. Geological Survey for simulating water, solute, and heat transport in variably saturated porous media. The package consists of a graphical preprocessor to facilitate construction of a simulation, a postprocessor for visualizing simulation results, and two numerical models that solve for flow and solute transport (VS2DT) and flow and heat transport (VS2DH). The finite-difference method is used to solve the Richards equation for flow and the advection-dispersion equation for solute or heat transport. This study presents a brief description of the VS2DI package, an overview of the various types of problems that have been addressed with the package, and an analysis of the advantages and limitations of the package. A review of other models and modeling approaches for studying water, solute, and heat transport also is provided. ?? Soil Science Society of America. All rights reserved.

  14. Green transportation logistics: the quest for win-win solutions

    DEFF Research Database (Denmark)

    This book examines the state of the art in green transportation logistics from the perspective of balancing environmental performance in the transportation supply chain while also satisfying traditional economic performance criteria. Part of the book is drawn from the recently completed European...... Union project Super Green, a three-year project intended to promote the development of European freight corridors in an environmentally friendly manner. Additional chapters cover both the methodological base and the application context of green transportation logistics. Individual chapters look......-down, pop-up”, where in a change in one aspect of a problem can cause another troubling aspect to arise. For example, speed reduction in maritime transportation can reduce emissions and fuel costs, but could require additional ships and could raise in-transit inventory costs. Or, regulations to reduce...

  15. UrbanTransport Solution An Experience From Prague

    African Journals Online (AJOL)

    unique firstlady

    upsurge in the use of private cars which was not possible during ... associated with road transport like its impact on environment, accidents, congestion, but these are ... struggling with huge increase in car ownership and use. Roadway ...

  16. Analytical solution for one-dimensional advection-dispersion transport equation with distance-dependent coefficients

    Science.gov (United States)

    Pérez Guerrero, J. S.; Skaggs, T. H.

    2010-08-01

    SummaryMathematical models describing contaminant transport in heterogeneous porous media are often formulated as an advection-dispersion transport equation with distance-dependent transport coefficients. In this work, a general analytical solution is presented for the linear, one-dimensional advection-dispersion equation with distance-dependent coefficients. An integrating factor is employed to obtain a transport equation that has a self-adjoint differential operator, and a solution is found using the generalized integral transform technique (GITT). It is demonstrated that an analytical expression for the integrating factor exists for several transport equation formulations of practical importance in groundwater transport modeling. Unlike nearly all solutions available in the literature, the current solution is developed for a finite spatial domain. As an illustration, solutions for the particular case of a linearly increasing dispersivity are developed in detail and results are compared with solutions from the literature. Among other applications, the current analytical solution will be particularly useful for testing or benchmarking numerical transport codes because of the incorporation of a finite spatial domain.

  17. Phosphate transporters: a tale of two solute carrier families.

    Science.gov (United States)

    Virkki, Leila V; Biber, Jürg; Murer, Heini; Forster, Ian C

    2007-09-01

    Phosphate is an essential component of life and must be actively transported into cells against its electrochemical gradient. In vertebrates, two unrelated families of Na+ -dependent P(i) transporters carry out this task. Remarkably, the two families transport different P(i) species: whereas type II Na+/P(i) cotransporters (SCL34) prefer divalent HPO(4)(2-), type III Na(+)/P(i) cotransporters (SLC20) transport monovalent H2PO(4)(-). The SCL34 family comprises both electrogenic and electroneutral members that are expressed in various epithelia and other polarized cells. Through regulated activity in apical membranes of the gut and kidney, they maintain body P(i) homeostasis, and in salivary and mammary glands, liver, and testes they play a role in modulating the P(i) content of luminal fluids. The two SLC20 family members PiT-1 and PiT-2 are electrogenic and ubiquitously expressed and may serve a housekeeping role for cell P(i) homeostasis; however, also more specific roles are emerging for these transporters in, for example, bone mineralization. In this review, we focus on recent advances in the characterization of the transport kinetics, structure-function relationships, and physiological implications of having two distinct Na+/P(i) cotransporter families.

  18. Solute transport predicts scaling of surface reaction rates in porous media: Applications to silicate weathering

    CERN Document Server

    Hunt, Allen G; Ghanbarian, Behzad

    2013-01-01

    We apply our theory of conservative solute transport, based on concepts from percolation theory, directly and without modification to reactive solute transport. This theory has previously been shown to predict the observed range of dispersivity values for conservative solute transport over ten orders of magnitude of length scale. We now show that the temporal dependence derived for the solute velocity accurately predicts the time-dependence for the weathering of silicate minerals over nine orders of magnitude of time scale, while its predicted length dependence agrees with data obtained for reaction rates over five orders of magnitude of length scale. In both cases, it is possible to unify lab and field results. Thus, net reaction rates appear to be limited by solute transport velocities. We suggest the possible relevance of our results to landscape evolution of the earth's terrestrial surface.

  19. Dynamics of water and solute transport in polymeric reverse osmosis membranes via molecular dynamics simulations

    CERN Document Server

    Shen, Meng; Lueptow, Richard M

    2016-01-01

    The Angstrom-scale transport characteristics of water and six different solutes, methanol, ethanol, 2-propanol, urea, Na+, and Cl-, were studied for a polyamide reverse osmosis (RO) membrane, FT-30, using non-equilibrium molecular dynamics (NEMD) simulations. Results indicate that water transport increases with an increasing fraction of connected percolated free volume, or water-accessible open space, in the membrane polymer structure. This free volume is enhanced by the dynamic structure of the membrane at the molecular level as it swells when hydrated and vibrates due to molecular collisions allowing a continuous path connecting the opposite membrane surfaces. The tortuous paths available for transport of solutes result in Brownian motion of solute molecules and hopping from pore to pore as they pass through the polymer network structure of the membrane. The transport of alcohol solutes decreases for solutes with larger Van der Waals volume, which corresponds to less available percolated free volume, or sol...

  20. Solute or Heat Transport in a Flat Duct

    Directory of Open Access Journals (Sweden)

    Elijah Johnson

    2008-01-01

    Full Text Available Steady state solute and heat transfer for laminar flow in a flat duct has been widely studied[1-4]. The same problem in a circular tube is called the Graetz Problem[5,6]. The transfer rate of solute and heat from fluids is of importance in a number of processes, such as diffusion of drugs in the blood stream and the uptake of environmental contaminants by animals in aquatic media[7]. In this study the rate of solute or heat transfer from fluids was determined by solving the associated differential equation. Solution by the series approach in the complex plane was used with a series that had a gaussian factor. The eigenfunctions and eigenvalues involved were examined for two different sets of boundary conditions.

  1. Light-driven solute transport in Halobacterium halobium

    Science.gov (United States)

    Lanyi, J. K.

    1979-01-01

    The cell membrane of Halobacterium halobium exhibits differential regions which contain crystalline arrays of a single kind of protein, termed bacteriorhodopsin. This bacterial retinal-protein complex resembles the visual pigment and, after the absorption of protons, translocates H(+) across the cell membrane, leading to an electrochemical gradient for protons between the inside and the outside of the cell. Thus, light is an alternate source of energy in these bacteria, in addition to terminal oxidation. The paper deals with work on light-driven transport in H. halobium with cell envelope vesicles. The discussion covers light-driven movements of H(+), Na(+), and K(+); light-driven amino acid transport; and apparent allosteric control of amino acid transport. The scheme of energy coupling in H. halobium vesicles appears simple, its quantitative details are quite complex and reveal regulatory phenomena. More knowledge is required of the way the coupling components are regulated by the ion gradients present.

  2. Analytical solutions for solute transport in groundwater and riverine flow using Green's Function Method and pertinent coordinate transformation method

    Science.gov (United States)

    Sanskrityayn, Abhishek; Suk, Heejun; Kumar, Naveen

    2017-04-01

    In this study, analytical solutions of one-dimensional pollutant transport originating from instantaneous and continuous point sources were developed in groundwater and riverine flow using both Green's Function Method (GFM) and pertinent coordinate transformation method. Dispersion coefficient and flow velocity are considered spatially and temporally dependent. The spatial dependence of the velocity is linear, non-homogeneous and that of dispersion coefficient is square of that of velocity, while the temporal dependence is considered linear, exponentially and asymptotically decelerating and accelerating. Our proposed analytical solutions are derived for three different situations depending on variations of dispersion coefficient and velocity, respectively which can represent real physical processes occurring in groundwater and riverine systems. First case refers to steady solute transport situation in steady flow in which dispersion coefficient and velocity are only spatially dependent. The second case represents transient solute transport in steady flow in which dispersion coefficient is spatially and temporally dependent while the velocity is spatially dependent. Finally, the third case indicates transient solute transport in unsteady flow in which both dispersion coefficient and velocity are spatially and temporally dependent. The present paper demonstrates the concentration distribution behavior from a point source in realistically occurring flow domains of hydrological systems including groundwater and riverine water in which the dispersivity of pollutant's mass is affected by heterogeneity of the medium as well as by other factors like velocity fluctuations, while velocity is influenced by water table slope and recharge rate. Such capabilities give the proposed method's superiority about application of various hydrological problems to be solved over other previously existing analytical solutions. Especially, to author's knowledge, any other solution doesn

  3. A dual-porosity model for simulating solute transport in oil shale

    Science.gov (United States)

    Glover, K.C.

    1987-01-01

    A model is described for simulating three-dimensional groundwater flow and solute transport in oil shale and associated geohydrologic units. The model treats oil shale as a dual-porosity medium by simulating flow and transport within fractures using the finite-element method. Diffusion of solute between fractures and the essentially static water of the shale matrix is simulated by including an analytical solution that acts as a source-sink term to the differential equation of solute transport. While knowledge of fracture orientation and spacing is needed to effectively use the model, it is not necessary to map the locations of individual fractures. The computer program listed in the report incorporates many of the features of previous dual-porosity models while retaining a practical approach to solving field problems. As a result the theory of solute transport is not extended in any appreciable way. The emphasis is on bringing together various aspects of solute transport theory in a manner that is particularly suited to the unusual groundwater flow and solute transport characteristics of oil shale systems. (Author 's abstract)

  4. Covariant Macroscopic Quantum Geometry

    CERN Document Server

    Hogan, Craig J

    2012-01-01

    A covariant noncommutative algebra of position operators is presented, and interpreted as the macroscopic limit of a geometry that describes a collective quantum behavior of the positions of massive bodies in a flat emergent space-time. The commutator defines a quantum-geometrical relationship between world lines that depends on their separation and relative velocity, but on no other property of the bodies, and leads to a transverse uncertainty of the geometrical wave function that increases with separation. The number of geometrical degrees of freedom in a space-time volume scales holographically, as the surface area in Planck units. Ongoing branching of the wave function causes fluctuations in transverse position, shared coherently among bodies with similar trajectories. The theory can be tested using appropriately configured Michelson interferometers.

  5. The macroscopic pancake bounce

    Science.gov (United States)

    Andersen Bro, Jonas; Sternberg Brogaard Jensen, Kasper; Nygaard Larsen, Alex; Yeomans, Julia M.; Hecksher, Tina

    2017-01-01

    We demonstrate that the so-called pancake bounce of millimetric water droplets on surfaces patterned with hydrophobic posts (Liu et al 2014 Nat. Phys. 10 515) can be reproduced on larger scales. In our experiment, a bed of nails plays the role of the structured surface and a water balloon models the water droplet. The macroscopic version largely reproduces the features of the microscopic experiment, including the Weber number dependence and the reduced contact time for pancake bouncing. The scalability of the experiment confirms the mechanisms of pancake bouncing, and allows us to measure the force exerted on the surface during the bounce. The experiment is simple and inexpensive and is an example where front-line research is accessible to student projects.

  6. Numerical Solution of the Equation of Electron Transport in Matter

    CERN Document Server

    Golovin, A I

    2002-01-01

    One introduces a numerical approach to solve equation of fast electron transport in a matter in plane and spherical geometry with regard to fluctuations of energy losses and generation of secondary electrons. Calculation results are shown to be in line with the experimental data. One compared the introduced approach with the method of moments

  7. Brine transport in porous media self-similar solutions

    NARCIS (Netherlands)

    C.J. van Duijn (Hans); L.A. Peletier (Bert); R.J. Schotting

    1996-01-01

    textabstractIn this paper we analyze a model for brine transport in porous media, which includes a mass balance for the fluid, a mass balance for salt, Darcy's law and an equation of state, which relates the fluid density to the salt mass fraction. This model incorporates the effect of local volume

  8. Analytical solutions for reactive transport under an infiltration-redistribution cycle.

    Science.gov (United States)

    Severino, Gerardo; Indelman, Peter

    2004-05-01

    Transport of reactive solute in unsaturated soils under an infiltration-redistribution cycle is investigated. The study is based on the model of vertical flow and transport in the unsaturated zone proposed by Indelman et al. [J. Contam. Hydrol. 32 (1998) 77], and generalizes it by accounting for linear nonequilibrium kinetics. An exact analytical solution is derived for an irreversible desorption reaction. The transport of solute obeying linear kinetics is modeled by assuming equilibrium during the redistribution stage. The model which accounts for nonequilibrium during the infiltration and assumes equilibrium at the redistribution stage is termed partial equilibrium infiltration-redistribution model (PEIRM). It allows to derive approximate closed form solutions for transport in one-dimensional homogeneous soils. These solutions are further applied to computing the field-scale concentration by adopting the Dagan and Bresler [Soil Sci. Soc. Am. J. 43 (1979) 461] column model. The effect of soil heterogeneity on the solute spread is investigated by modeling the hydraulic saturated conductivity as a random function of horizontal coordinates. The quality of the PEIRM is illustrated by calculating the critical values of the Damköhler number which provide the achievable accuracy in estimating the solute mass in the mobile phase. The distinguishing feature of transport during the infiltration-redistribution cycle as compared to that of infiltration only is the finite depth of solute penetration. For irreversible desorption, the maximum solute penetration W/theta(r) is determined by the amount of applied water W and the residual water content theta(r). For sorption-desorption kinetics, the maximum depth of penetration z(r)(e, infinity ) also depends on the ratio between the rate of application and the column-saturated conductivity. It is shown that z(r)(e, infinity ) is bounded between the depths W/(theta(r)+K(d)) and W/theta(r) corresponding to the maximum solute

  9. Canonical quantization of macroscopic electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Philbin, T G, E-mail: tgp3@st-andrews.ac.u [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2010-12-15

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetodielectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.

  10. Canonical quantization of macroscopic electromagnetism

    CERN Document Server

    Philbin, T G

    2010-01-01

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetoelectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.

  11. Macroscopic theory of dark sector

    CERN Document Server

    Meierovich, Boris E

    2013-01-01

    A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields {\\phi}_{I} with {\\phi}^{K}{\\phi}_{K}0 describe two different forms of dark matter. The space-like ({\\phi}^{K}{\\phi}_{K}0) massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating soluti...

  12. Modeling solute transport in distribution networks with variable demand and time step sizes.

    Energy Technology Data Exchange (ETDEWEB)

    Peyton, Chad E.; Bilisoly, Roger Lee; Buchberger, Steven G. (University of Cincinnati, Cincinnati, OH); McKenna, Sean Andrew; Yarrington, Lane

    2004-06-01

    The effect of variable demands at short time scales on the transport of a solute through a water distribution network has not previously been studied. We simulate flow and transport in a small water distribution network using EPANET to explore the effect of variable demand on solute transport across a range of hydraulic time step scales from 1 minute to 2 hours. We show that variable demands at short time scales can have the following effects: smoothing of a pulse of tracer injected into a distribution network and increasing the variability of both the transport pathway and transport timing through the network. Variable demands are simulated for these different time step sizes using a previously developed Poisson rectangular pulse (PRP) demand generator that considers demand at a node to be a combination of exponentially distributed arrival times with log-normally distributed intensities and durations. Solute is introduced at a tank and at three different network nodes and concentrations are modeled through the system using the Lagrangian transport scheme within EPANET. The transport equations within EPANET assume perfect mixing of the solute within a parcel of water and therefore physical dispersion cannot occur. However, variation in demands along the solute transport path contribute to both removal and distortion of the injected pulse. The model performance measures examined are the distribution of the Reynolds number, the variation in the center of mass of the solute across time, and the transport path and timing of the solute through the network. Variation in all three performance measures is greatest at the shortest time step sizes. As the scale of the time step increases, the variability in these performance measures decreases. The largest time steps produce results that are inconsistent with the results produced by the smaller time steps.

  13. The effect of low-GDP solution on ultrafiltration and solute transport in continuous ambulatory peritoneal dialysis patients.

    Science.gov (United States)

    Cho, Kyu-Hyang; Do, Jun-Young; Park, Jong-Won; Yoon, Kyung-Woo; Kim, Yong-Lim

    2013-01-01

    Several studies have reported benefits for human peritoneal mesothelial cell function of a neutral-pH dialysate low in glucose degradation products (GDPs). However, the effects of low-GDP solution on ultrafiltration (UF), transport of solutes, and control of body water remain elusive. We therefore investigated the effect of low-GDP solution on UF, solute transport, and control of body water. Among 79 new continuous ambulatory peritoneal dialysis (CAPD) patients, 60 completed a 12-month protocol (28 in a lactate-based high-GDP solution group, 32 in a lactate-based low-GDP solution group). Clinical indices--including 24-hour UF volume (UFV), 24-hour urine volume (UV), residual renal function, and dialysis adequacy--were measured at months 1, 6, and 12. At months 1, 6, and 12, UFV, glucose absorption, 4-hour dialysate-to-plasma (D/P) creatinine, and 1-hour D/P Na(+) were assessed during a modified 4.25% peritoneal equilibration test (PET). Body composition by bioelectric impedance analysis was measured at months 1 and 12 in 26 CAPD patients. Daily UFV was lower in the low-GDP group. Despite similar solute transport and aquaporin function, the low-GDP group also showed lower UFV and higher glucose absorption during the PET. Factors associated with UFV during the PET were lactate-based high-GDP solution and 1-hour D/P Na(+). No differences in volume status and obesity at month 12 were observed, and improvements in hypervolemia were equal in both groups. Compared with the high-GDP group, the low-GDP group had a lower UFV during a PET and a lower daily UFV during the first year after peritoneal dialysis initiation. Although the low-GDP group had a lower daily UFV, no difficulties in controlling edema were encountered.

  14. Exact and Numerical Solutions of a Spatially-Distributed Mathematical Model for Fluid and Solute Transport in Peritoneal Dialysis

    Directory of Open Access Journals (Sweden)

    Roman Cherniha

    2016-06-01

    Full Text Available The nonlinear mathematical model for solute and fluid transport induced by the osmotic pressure of glucose and albumin with the dependence of several parameters on the hydrostatic pressure is described. In particular, the fractional space available for macromolecules (albumin was used as a typical example and fractional fluid void volume were assumed to be different functions of hydrostatic pressure. In order to find non-uniform steady-state solutions analytically, some mathematical restrictions on the model parameters were applied. Exact formulae (involving hypergeometric functions for the density of fluid flux from blood to tissue and the fluid flux across tissues were constructed. In order to justify the applicability of the analytical results obtained, a wide range of numerical simulations were performed. It was found that the analytical formulae can describe with good approximation the fluid and solute transport (especially the rate of ultrafiltration for a wide range of values of the model parameters.

  15. A computational approach to calculate the heat of transport of aqueous solutions

    Science.gov (United States)

    Di Lecce, Silvia; Albrecht, Tim; Bresme, Fernando

    2017-01-01

    Thermal gradients induce concentration gradients in alkali halide solutions, and the salt migrates towards hot or cold regions depending on the average temperature of the solution. This effect has been interpreted using the heat of transport, which provides a route to rationalize thermophoretic phenomena. Early theories provide estimates of the heat of transport at infinite dilution. These values are used to interpret thermodiffusion (Soret) and thermoelectric (Seebeck) effects. However, accessing heats of transport of individual ions at finite concentration remains an outstanding question both theoretically and experimentally. Here we discuss a computational approach to calculate heats of transport of aqueous solutions at finite concentrations, and apply our method to study lithium chloride solutions at concentrations >0.5 M. The heats of transport are significantly different for Li+ and Cl− ions, unlike what is expected at infinite dilution. We find theoretical evidence for the existence of minima in the Soret coefficient of LiCl, where the magnitude of the heat of transport is maximized. The Seebeck coefficient obtained from the ionic heats of transport varies significantly with temperature and concentration. We identify thermodynamic conditions leading to a maximization of the thermoelectric response of aqueous solutions.

  16. Combined physical and chemical nonequilibrium transport model: Analytical solution, moments, and application to colloids

    Science.gov (United States)

    The transport of solutes and colloids in porous media is influenced by a variety of physical and chemical nonequilibrium processes. A combined physical–chemical nonequilibrium (PCNE) model was therefore used to describe general mass transport. The model partitions the pore space into “mobile” and “i...

  17. A note on the solution of fuzzy transportation problem using fuzzy linear system

    Directory of Open Access Journals (Sweden)

    P. Senthilkumar

    2013-08-01

    Full Text Available In this paper, we discuss the solution of a fuzzy transportation problem, with fuzzy quantities. The problem is solved in two stages. In the first stage, the fuzzy transportation problem is reduced to crisp system by using the lower and upper bounds of fuzzy quantities. In the second stage, the crisp transportation problems are solved by usual simplex method. The procedure is illustrated with numerical examples.

  18. Quantum transport in 1d systems via a master equation approach: numerics and an exact solution

    CERN Document Server

    Znidaric, Marko

    2010-01-01

    We discuss recent findings about properties of quantum nonequilibrium steady states. In particular we focus on transport properties. It is shown that the time dependent density matrix renormalization method can be used successfully to find a stationary solution of Lindblad master equation. Furthermore, for a specific model an exact solution is presented.

  19. New approach to the solution of the Boltzmann radiation transport equation

    Science.gov (United States)

    Boffi, Vinicio C.; Dunn, William L.

    1987-03-01

    Transport monodimensional stationary solutions for the angular space-energy neutron flux, of interest in radiation penetration problems, are studied by Green's function method. Explicit analytical results for the spatial moments of the sought solution are obtained for the case of an isotropically scattering slab of infinite thickness and of a continuous slowing down model in energy.

  20. The Fourier transform solution for the Green's function of monoenergetic neutron transport theory

    OpenAIRE

    Ganapol, Barry D.

    2014-01-01

    Nearly 45 years ago, Ken Case published his seminal paper on the singular eigenfunction solution for the Green's function of the monoenergetic neutron transport equation with isotropic scattering. Previously, the solution had been obtained by Fourier transform. While it is apparent the two had to be equivalent, a convincing equivalence proof for general anisotropic scattering remained a challenge until now.

  1. Reactive silica transport in fractured porous media: Analytical solutions for a system of parallel fractures

    Science.gov (United States)

    Yang, Jianwen

    2012-04-01

    A general analytical solution is derived by using the Laplace transformation to describe transient reactive silica transport in a conceptualized 2-D system involving a set of parallel fractures embedded in an impermeable host rock matrix, taking into account of hydrodynamic dispersion and advection of silica transport along the fractures, molecular diffusion from each fracture to the intervening rock matrix, and dissolution of quartz. A special analytical solution is also developed by ignoring the longitudinal hydrodynamic dispersion term but remaining other conditions the same. The general and special solutions are in the form of a double infinite integral and a single infinite integral, respectively, and can be evaluated using Gauss-Legendre quadrature technique. A simple criterion is developed to determine under what conditions the general analytical solution can be approximated by the special analytical solution. It is proved analytically that the general solution always lags behind the special solution, unless a dimensionless parameter is less than a critical value. Several illustrative calculations are undertaken to demonstrate the effect of fracture spacing, fracture aperture and fluid flow rate on silica transport. The analytical solutions developed here can serve as a benchmark to validate numerical models that simulate reactive mass transport in fractured porous media.

  2. Cellular automaton model of precipitation/dissolution coupled with solute transport

    CERN Document Server

    Karapiperis, T

    1995-01-01

    ABSTRACT Precipitation/dissolution reactions coupled with solute transport are modelled as a cellular automaton in which solute molecules perform a random walk on a regular lattice and react according to a local probabilistic rule. Stationary solid particles dissolve with a certain probability and, provided solid is already present or the solution is saturated, solute particles have a probability to precipitate. In our simulation of the dissolution of a solid block inside uniformly flowing water we obtain solid precipitation downstream from the original solid edge, in contrast to the standard reaction-transport equations. The observed effect is the result of fluctuations in solute density and diminishes when we average over a larger ensemble. The additional precipitation of solid is accompanied by a substantial reduction in the relatively small solute concentration. The model is appropriate for the study of the rôle of intrinsic fluctuations in the presence of reaction thresholds and can be employed to inves...

  3. SIMULATION OF SOLUTE TRANSPORT IN A PARALLEL SINGLE FRACTURE WITH LBM/MMP MIXED METHOD

    Institute of Scientific and Technical Information of China (English)

    TAN Ye-fei; ZHOU Zhi-fang

    2008-01-01

    This article deals with the solute transport in a single fracture with the combination of the Lattice Boltzmann Method (LBM) and Modified Moment Propagation (MMP) method, and this mixed method is proved to have several advantages over the LBM and Moment Propagation (MP) mixed method which leads to negative concentrations under some conditions in computation. The disadvantage of LBM/MP has been overcome to a certain extent. Also, this work presents an LBM solution of modeling single fractures with uniformly or randomly distributed grains, which can provide a new path of applying the LBM in solute transport simulation in fractures.

  4. Solute transport modeling using morphological parameters of step-pool reaches

    Science.gov (United States)

    JiméNez, Mario A.; Wohl, Ellen

    2013-03-01

    Step-pool systems have been widely studied during the past few years, resulting in enhanced knowledge of mechanisms for sediment transport, energy dissipation and patterns of self-organization. We use rhodamine tracer data collected in nine step-pool reaches during high, intermediate and low flows to explore scaling of solute transport processes. Using the scaling patterns found, we propose an extension of the Aggregated Dead Zone (ADZ) approach for solute transport modeling based on the morphological features of step-pool units and their corresponding inherent variability within a stream reach. In addition to discharge, the reach-average bankfull width, mean step height, and the ratio of pool length to step-to-step length can be used as explanatory variables for the dispersion process within the studied reaches. These variables appeared to be sufficient for estimating ADZ model parameters and simulating solute transport in predictive mode for applications in reaches lacking tracer data.

  5. Information entropy to measure the spatial and temporal complexity of solute transport in heterogeneous porous media

    Science.gov (United States)

    Li, Weiyao; Huang, Guanhua; Xiong, Yunwu

    2016-04-01

    The complexity of the spatial structure of porous media, randomness of groundwater recharge and discharge (rainfall, runoff, etc.) has led to groundwater movement complexity, physical and chemical interaction between groundwater and porous media cause solute transport in the medium more complicated. An appropriate method to describe the complexity of features is essential when study on solute transport and conversion in porous media. Information entropy could measure uncertainty and disorder, therefore we attempted to investigate complexity, explore the contact between the information entropy and complexity of solute transport in heterogeneous porous media using information entropy theory. Based on Markov theory, two-dimensional stochastic field of hydraulic conductivity (K) was generated by transition probability. Flow and solute transport model were established under four conditions (instantaneous point source, continuous point source, instantaneous line source and continuous line source). The spatial and temporal complexity of solute transport process was characterized and evaluated using spatial moment and information entropy. Results indicated that the entropy increased as the increase of complexity of solute transport process. For the point source, the one-dimensional entropy of solute concentration increased at first and then decreased along X and Y directions. As time increased, entropy peak value basically unchanged, peak position migrated along the flow direction (X direction) and approximately coincided with the centroid position. With the increase of time, spatial variability and complexity of solute concentration increase, which result in the increases of the second-order spatial moment and the two-dimensional entropy. Information entropy of line source was higher than point source. Solute entropy obtained from continuous input was higher than instantaneous input. Due to the increase of average length of lithoface, media continuity increased, flow and

  6. On the multiplicity of solutions of the nonlinear reactive transport model

    Directory of Open Access Journals (Sweden)

    Elyas Shivanian

    2014-06-01

    Full Text Available The generalization of the nonlinear reaction–diffusion model in porous catalysts the so called one dimensional steady state reactive transport model is revisited. This model, which originates also in fluid and solute transport in soft tissues and microvessels, has been recently given analytical solution in terms of Taylor’s series for different families of reaction terms. This article considers the mentioned model without advective transport in the case of including Michaelis–Menten reaction term and shows that it is exactly solvable and furthermore, gives analytical exact solution in the implicit form for further physical interpretation. It is also revealed that the problem may admit unique or dual or even more triple solutions in some domains for the parameters of the model.

  7. Urinary solute transport by ileal segments. I. Effects of nicotinic acid.

    Science.gov (United States)

    Martínez-Piñeiro, L; Mateos, F; Montero, A; Madero, R; Martínez-Piñeiro, J A

    1993-12-01

    This study was conducted to quantify urinary solute transport by the ileum, using an in vivo human model, and to determine the effect of nicotinic acid on this process. Patients were studied under both basal conditions and niacin therapy. The rates of solute transport were established by analysis of excretion indexes for each solute. Potassium and ammonium were absorbed by the ileum, while phosphorus, sodium and bicarbonate were secreted. The percentage excretion index of sodium and bicarbonate increased by approximately 100 and 600% respectively, causing a significant rise in urinary pH. Although not statistically significant, there was a tendency for chloride to be absorbed and for water to pass into the bowel lumen. Nicotinic acid 3 g/day had no significant effect on urinary solute transport.

  8. Water flow and solute transport in the soil-plant-atmosphere continuum: Upscaling from rhizosphere to root zone

    Science.gov (United States)

    Lazarovitch, Naftali; Perelman, Adi; Guerra, Helena; Vanderborght, Jan; Pohlmeier, Andreas

    2016-04-01

    Root water and nutrient uptake are among the most important processes considered in numerical models simulating water content and fluxes in the subsurface, as they control plant growth and production as well as water flow and nutrient transport out of the root zone. Root water uptake may lead to salt accumulation at the root-soil interface, resulting in rhizophere salt concentrations much higher than in the bulk soil. This salt accumulation is caused by soluble salt transport towards the roots by mass flow through the soil, followed by preferential adsorption of specific nutrients by active uptake, thereby excluding most other salts at the root-soil interface or in the root apoplast. The salinity buildup can lead to large osmotic pressure gradients across the roots thereby effectively reducing root water uptake. The initial results from rhizoslides (capillary paper growth system) show that sodium concentration is decreasing with distance from the root, compared with the bulk that remained more stable. When transpiration rate was decreased under high salinity levels, sodium concentration was more homogenous compared with low salinity levels. Additionally, sodium and gadolinium distributions were measured nondestructively around tomato roots using magnetic resonance imaging (MRI). This technique could also observe the root structure and water content around single roots. Results from the MRI confirm the solutes concentration pattern around roots and its relation to their initial concentration. We conclude that local water potentials at the soil-root interface differ from bulk potentials. These relative differences increase with decreasing root density, decreasing initial salt concentration and increasing transpiration rate. Furthermore, since climate may significantly influence plant response to salinity a dynamic climate-coupled salinity reduction functions are critical in while using macroscopic numerical models.

  9. CFEST Coupled Flow, Energy & Solute Transport Version CFEST005 Theory Guide

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Vicky L.; Chen, Yousu; Gupta, Sumant K.

    2005-11-01

    This document presents the mathematical theory implemented in the CFEST (Coupled Flow, Energy, and Solute Transport) simulator. The simulator is a three-dimensional finite element model that can be used for evaluating flow and solute mass transport. Although the theory for thermal transport is presented in this guide, it has not yet been fully implemented in the simulator. The flow module is capable of simulating both confined and unconfined aquifer systems, as well as constant and variable density fluid flows. For unconfined aquifers, the model uses a moving boundary for the water table, deforming the numerical mesh so that the uppermost nodes are always at the water table. For solute transport, changes in concentration of a single dissolved chemical constituent are computed for advective and hydrodynamic transport, linear sorption represented by a retardation factor, and radioactive decay. Once fully implemented, transport of thermal energy in the groundwater and solid matrix of the aquifer can also be used to model aquifer thermal regimes. Mesh construction employs “collapsible”, hexahedral finite elements in a three-dimensional coordinate system. CFEST uses the Galerkin finite element method to convert the partial differential equations to algebraic form. To solve the coupled equations for momentum, solute and heat transport, either Picard or Newton-Raphson iterative schemes are used to treat nonlinearities. An upstream weighted residual finite-element method is used to solve the advective-dispersive transport and energy transfer equations, which circumvents problems of numerical oscillation problems. Matrix solutions of the flow and transport problems are performed using efficient iterative solvers available in ITPACK and PETSc, solvers that are available in the public domain. These solvers are based on the preconditioned conjugate gradient and ORTHOMIN methods for symmetric and a nonsymmetric matrices, respectively.

  10. Use of Emulsions with Surfactant Solutions for Viscous Fluids Transportation

    Directory of Open Access Journals (Sweden)

    Erich Martínez Martín

    2015-01-01

    Full Text Available The needs for improving the fluidity of fluids is present in the industry, because of the expenses that it takes and its relation with the achievement of the consumers’ demand according to volumes required for its different uses. In this way, the Oil Industry shows several methods to achieve this purpose, taking into account the characteristics of this substance. A method that can be used is the oil emulsions. Emulsions provide good results if they gather certain requirements for its use. In thispaper are shown the results of a research about the use of surfactant solutions in emulsions W/O. Oil transmission is used in this work because of its similar properties to oil.

  11. Dynamic estimation of transport demand: solutions - requirements - problems

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, K.J.; Rindsfueser, G. [Technische Hochschule Aachen (Germany). Lehrstuhl und Inst. fuer Stadtbauwesen

    1999-07-01

    The following contribution presents requirements, difficulties and first attempts at modelling a temporal short interval estimation of transport demand. For the simulation of motorway traffic (for an area within the state of North-Rhine-Westfalia, NRW) methods of temporal disaggregation of existing tripmatrices have been worked out within the framework of the Northrhine-Westfalian research cooperation for traffic simulation and environmental impacts 'NRW-FVU' (Nordrhein-Westfaelischer Forschungsverbund Verkehrssimulation und Umweltwirkungen). To simulate urban traffic (example: Wuppertal) methods of estimating temporal short interval trip-matrices were conceived and tested. The matrices were supplied for microsimulation with Cellular Automat (CA) and for the dynamic route choice and traffic assignment (DRUM, Dynamische Routensuche und Umlegung). The comparison of both methods, based on the estimated link loads (ADT and hourly loads), supplies deviations ranging within the mean variation of counted values. It therefore can be inferred that these methods, which are different with regard to computing intensity and data requirements, should be used depending on the tasks and the intended precision of the results. The specific pros and cons are important operational criteria. It also becomes obvious that in future methodical advancements should be examined on the basis of activity(-chain)-based approaches. (orig.)

  12. ORGANIZATIONAL STRESS SOURCES AND SOLUTION PROPOSALS IN PUBLIC TRANSPORT

    Directory of Open Access Journals (Sweden)

    Mehmet Zennur GÜRBÜZ

    2017-09-01

    Full Text Available Organizational stress is a concept which can have negative effects for both the workers and the organizations. The purpose of this study is to determine and classify the organizational stress sources that public transportation are exposed to, and to provide suggestions for managing these stress factors. A comprehensive literature survey is made in organizational stress factors and the following classes are identified: work structure, organizational structure, organizational policy, within-company relations and physical conditions. A questionnaire is developed forAnkara EGO General Directorate; applied to 2.137 drivers in Ankara in 2016 with a meaningful return of 1.554 data sets, representing 72% of the population and results are statistically analysed. Descriptive statistics, factor analysis and related validity and regional variance analyses are performed by SPSS (22.0 software. The study revealed that: drivers are exposed to mid-level stess; and most critical stress causes are “injustice and/or insufficiency of salaries”, “aggresive, violent behavior and verbal abuse of passengers towards drivers”, “fear of losing jobs or renewal of the contract”. A significant level of variation in stres levels are identified with respect to different regions of Ankara where drivers are assigned.  Suggestions are made in relation to different stres causes to lower the stress levels exposed.

  13. Stochastic models of solute transport in highly heterogeneous geologic media

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, V.N.; Korotkin, I.A.; Pruess, K.; Goloviznin, V.M.; Sorokovikova, O.S.

    2009-09-15

    A stochastic model of anomalous diffusion was developed in which transport occurs by random motion of Brownian particles, described by distribution functions of random displacements with heavy (power-law) tails. One variant of an effective algorithm for random function generation with a power-law asymptotic and arbitrary factor of asymmetry is proposed that is based on the Gnedenko-Levy limit theorem and makes it possible to reproduce all known Levy {alpha}-stable fractal processes. A two-dimensional stochastic random walk algorithm has been developed that approximates anomalous diffusion with streamline-dependent and space-dependent parameters. The motivation for introducing such a type of dispersion model is the observed fact that tracers in natural aquifers spread at different super-Fickian rates in different directions. For this and other important cases, stochastic random walk models are the only known way to solve the so-called multiscaling fractional order diffusion equation with space-dependent parameters. Some comparisons of model results and field experiments are presented.

  14. Development of technical solutions for realisation of intelligent transport systems

    Directory of Open Access Journals (Sweden)

    Anatoliy KULIK

    2013-01-01

    Full Text Available This article focuses on the development of architecture and technicalsolutions for implementation intelligent transport systems (ITS. The presented system will perform the following functions: monitoring the movement of an object collecting and displaying information about the state of the road, warning of the approaching object to obstacles, routing, as well as control of movement and speed of the output parameters of the recommendations of the movement, the development of intelligent decisions about the choice of optimal routes, intellectual analysis of data (IAD of the style and movement of the driver (the influence of alcohol, IAD on the technical parameters of the vehicle. Thus, it is advisable for ITS to be divided into several subsystems, which are related but are responsible for one or more functional tasks. Consequently, the need for monitoring the movement subsystem, the database on the state of the object database onthe location of an object, display subsystem, the subsystem of control of the road, the engine safety (prevention of obstacles, the subsystem control parameters of movement, routing subsystem.

  15. Flow dynamics and solute transport in unsaturated rock fractures

    Energy Technology Data Exchange (ETDEWEB)

    Su, Grace Woan-chee [Univ. of California, Berkeley, CA (United States)

    1999-10-01

    Rock fractures play an important role in flow and contaminant transport in fractured aquifers, production of oil from petroleum reservoirs, and steam generation from geothermal reservoirs. In this dissertation, phenomenological aspects of flow in unsaturated fractures were studied in visualization experiments conducted on a transparent replica of a natural, rough-walled rock fracture for inlet conditions of constant pressure and flow rate over a range of angles of inclination. The experiments demonstrated that infiltrating liquid proceeds through unsaturated rock fractures along non-uniform, localized preferential flow paths. Even in the presence of constant boundary conditions, intermittent flow was a persistent flow feature observed, where portions of the flow channel underwent cycles of snapping and reforming. Two modes of intermittent flow were observed, the pulsating blob mode and the rivulet snapping mode. A conceptual model for the rivulet snapping mode was proposed and examined using idealized, variable-aperture fractures. The frequency of intermittent flow events was measured in several experiments and related to the capillary and Bond numbers to characterize this flow behavior.

  16. Reactive Solute Transport in Streams: 1. Development of an Equilibrium-Based Model

    Science.gov (United States)

    Runkel, Robert L.; Bencala, Kenneth E.; Broshears, Robert E.; Chapra, Steven C.

    1996-02-01

    An equilibrium-based solute transport model is developed for the simulation of trace metal fate and transport in streams. The model is formed by coupling a solute transport model with a chemical equilibrium submodel based on MINTEQ. The solute transport model considers the physical processes of advection, dispersion, lateral inflow, and transient storage, while the equilibrium submodel considers the speciation and complexation of aqueous species, precipitation/dissolution and sorption. Within the model, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (water-borne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach.

  17. Reactive solute transport in streams. 1. Development of an equilibrium- based model

    Science.gov (United States)

    Runkel, R.L.; Bencala, K.E.; Broshears, R.E.; Chapra, S.C.

    1996-01-01

    An equilibrium-based solute transport model is developed for the simulation of trace metal fate and transport in streams. The model is formed by coupling a solute transport model with a chemical equilibrium submodel based on MINTEQ. The solute transport model considers the physical processes of advection, dispersion, lateral inflow, and transient storage, while the equilibrium submodel considers the speciation and complexation of aqueous species, precipitation/dissolution and sorption. Within the model, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (water-borne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach.

  18. LABORATORY EXPERIMENTS ON SOLUTE TRANSPORT IN A PARTIAL TRANSFIXION SINGLE FRACTURE

    Institute of Scientific and Technical Information of China (English)

    CAI Jin-long; ZHOU Zhi-fang; HUANG Yong

    2011-01-01

    In the study of solute transport in rough single fracture,the contact area is an important factor.The single fracture is defined as two categories in this article:the full transfixion single freeture and the partial transfixion single fracture.The purpose of this article is to research how the contact area affects the solute transport in partial transfixion single fracture.The contact area is generalized as square blocks with three sizes,and contact rate is variable,a series of experiments for solute transport were conducted in a simulation model which can simulate the two types of fractures in the laboratory.Based on the analysis of the breakthrough curves and the experiment phenomena,it is concluded that the difference of breakthrough curves of various contact rates is evident and increases with the increase of contact rate,the relative error curves reflect the difference of block sizes,and the maximum errors increase from smaller than 0.2 to about 0.8 with the increase of contact rate.These phenomena are also explained qualitatively in this article.It is concluded that the contact area strongly affects solute transport,and the research of channels formed by contact area is useful to further understand the rule of solute transport in partial transfixion single fracture.

  19. FLUID-SOLID COUPLING MATHEMATICAL MODEL OF CONTAMINANT TRANSPORT IN UNSATURATED ZONE AND ITS ASYMPTOTICAL SOLUTION

    Institute of Scientific and Technical Information of China (English)

    薛强; 梁冰; 刘晓丽; 李宏艳

    2003-01-01

    The process of contaminant transport is a problem of multicomponent and multiphase flow in unsaturated zone. Under the presupposition that gas existence affects water transport , a coupled mathematical model of contaminant transport in unsaturated zone has been established based on fluid-solid interaction mechanics theory. The asymptotical solutions to the nonlinear coupling mathematical model were accomplished by the perturbation and integral transformation method. The distribution law of pore pressure,pore water velocity and contaminant concentration in unsaturated zone has been presented under the conditions of with coupling and without coupling gas phase. An example problem was used to provide a quantitative verification and validation of the model. The asymptotical solution was compared with Faust model solution. The comparison results show reasonable agreement between asymptotical solution and Faust solution, and the gas effect and media deformation has a large impact on the contaminant transport. The theoretical basis is provided for forecasting contaminant transport and the determination of the relationship among pressure-saturation-permeability in laboratory.

  20. The Impact of Early Time Behavior of Solute Transport at High Peclet Number on Upscaled Markovian Transport Models

    Science.gov (United States)

    Sund, N. L.; Bolster, D.; Benson, D. A.

    2015-12-01

    In order to predict transport of solutes, upscaling techniques are often applied. After the amount of time it takes the solute to sample all of the velocities in the system, the upscaling process is well understood and fairly simple to implement. But in highly heterogeneous velocity fields, this amount of time may be prohibitively long. When there is a need to predict transport at earlier times, the upscaling process is more difficult because the solute tends to stay on or near its initial streamline, inducing a correlation between its average velocity over fixed distances (or times), which must be accounted for. A Spatial Markov model was developed in 2008 that does just that[1]. It accounts for the velocity correlation by treating the transport process as a Markov Chain. This model has been successfully applied to predict solute transport in a large variety of complicated flow fields and is becoming increasing popular. It almost seems as though it works for every situation, but so far no rigorous study has gone into determining its limitations. So we have decided to take a step back and ask: when is this model valid? We understand the asymptotic behavior in the limit as t→ ∞, but what about in the limit as 1/t→ ∞ (or t→ 0)? Are the assumptions of the Spatial Markov model valid over all length (and time) scales? It turns out that the answer is no. At very early times, the transport process is diffusion dominated, leading to non-monotonic correlation between solute particles' average velocity over consecutive space and time steps. The assumptions of the Spatial Markov model only hold after this early diffusive regime ends and the correlation function peaks. We find the location of the peak in the correlation function for transport in simple stratified flows and show the effect of using the Spatial Markov model over length scales on either side of the peak.REFERENCES[1] T.L. Borgne, M. Dentz, J. Carrera: Spatial Markov processes for modeling Lagrangian

  1. Temporal moment analysis of solute transport in a coupled fracture-skin-matrix system

    Indian Academy of Sciences (India)

    V Renu; G Suresh Kumar

    2014-04-01

    In the present study, method of temporal moments has been used to analyse the transport characteristics of reactive solute along fracture in a coupled fracture-skin-matrix system. In order to obtain the concentration distribution within the fracture, a system of coupled partial differential equations for fracture, fractureskin and rock-matrix has been solved numerically in a pseudo two-dimensional domain using implicit finite difference method. Subsequently, lower order temporal moments of solute have been computed from the concentration distribution to analyse the transport characteristics of solutes in the fracture. This study has been done by considering an inlet boundary condition of constant continuous source in a single fracture. The effect of various fracture-skin parameters like porosity, thickness and diffusion coefficient on the transport of solutes have been studied by doing sensitivity analyses. The effect of nonlinear sorption and radioactive decay of solutes have also been analysed by carrying out simulations for different sorption intensities and decay constants. Numerical results suggested that the presence of fracture-skin significantly influences the transport characteristics of reactive solutes along the fracture.

  2. Kinetically influenced terms for solute transport affected by heterogeneous and homogeneous classical reactions

    Science.gov (United States)

    Bahr, J.M.

    1990-01-01

    This paper extends a four-step derivation procedure, previously presented for cases of transport affected by surface reactions, to transport problems involving homogeneous reactions. Derivations for these classes of reactions are used to illustrate the manner in which mathematical differences between reaction classes are reflected in the mathematical derivation procedures required to identify kinetically influenced terms. Simulation results for a case of transport affected by a single solution phase complexation reaction and for a case of transport affected by a precipitation-dissolution reaction are used to demonstrate the nature of departures from equilibrium-controlled transport as well as the use of kinetically influenced terms in determining criteria for the applicability of the local equilibrium assumption. A final derivation for a multireaction problem demonstrates the application of the generalized procedure to a case of transport affected by reactions of several classes. -from Author

  3. Quantum equilibria for macroscopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Grib, A [Department of Theoretical Physics and Astronomy, Russian State Pedagogical University, St. Petersburg (Russian Federation); Khrennikov, A [Centre for Mathematical Modelling in Physics and Cognitive Sciences Vaexjoe University (Sweden); Parfionov, G [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation); Starkov, K [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation)

    2006-06-30

    Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered.

  4. Numerical study of wave effects on groundwater flow and solute transport in a laboratory beach

    Science.gov (United States)

    Geng, Xiaolong; Boufadel, Michel C.; Xia, Yuqiang; Li, Hailong; Zhao, Lin; Jackson, Nancy L.; Miller, Richard S.

    2014-09-01

    A numerical study was undertaken to investigate the effects of waves on groundwater flow and associated inland-released solute transport based on tracer experiments in a laboratory beach. The MARUN model was used to simulate the density-dependent groundwater flow and subsurface solute transport in the saturated and unsaturated regions of the beach subjected to waves. The Computational Fluid Dynamics (CFD) software, Fluent, was used to simulate waves, which were the seaward boundary condition for MARUN. A no-wave case was also simulated for comparison. Simulation results matched the observed water table and concentration at numerous locations. The results revealed that waves generated seawater-groundwater circulations in the swash and surf zones of the beach, which induced a large seawater-groundwater exchange across the beach face. In comparison to the no-wave case, waves significantly increased the residence time and spreading of inland-applied solutes in the beach. Waves also altered solute pathways and shifted the solute discharge zone further seaward. Residence Time Maps (RTM) revealed that the wave-induced residence time of the inland-applied solutes was largest near the solute exit zone to the sea. Sensitivity analyses suggested that the change in the permeability in the beach altered solute transport properties in a nonlinear way. Due to the slow movement of solutes in the unsaturated zone, the mass of the solute in the unsaturated zone, which reached up to 10% of the total mass in some cases, constituted a continuous slow release of solutes to the saturated zone of the beach. This means of control was not addressed in prior studies.

  5. Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport

    Energy Technology Data Exchange (ETDEWEB)

    Litvinenko, Yuri E.; Effenberger, Frederic, E-mail: yuril@waikato.ac.nz [Department of Mathematics, University of Waikato, P.B. 3105 Hamilton (New Zealand)

    2014-12-01

    Motivated by recent applications of superdiffusive transport models to shock-accelerated particle distributions in the heliosphere, we analytically solve a one-dimensional fractional diffusion-advection equation for the particle density. We derive an exact Fourier transform solution, simplify it in a weak diffusion approximation, and compare the new solution with previously available analytical results and with a semi-numerical solution based on a Fourier series expansion. We apply the results to the problem of describing the transport of energetic particles, accelerated at a traveling heliospheric shock. Our analysis shows that significant errors may result from assuming an infinite initial distance between the shock and the observer. We argue that the shock travel time should be a parameter of a realistic superdiffusive transport model.

  6. Explicit solutions of the radiative transport equation in the P{sub 3} approximation

    Energy Technology Data Exchange (ETDEWEB)

    Liemert, André, E-mail: andre.liemert@ilm.uni-ulm.de; Kienle, Alwin [Institut für Lasertechnologien in der Medizin und Meßtechnik an der Universität Ulm, Helmholtzstr.12, Ulm D-89081 (Germany)

    2014-11-01

    Purpose: Explicit solutions of the monoenergetic radiative transport equation in the P{sub 3} approximation have been derived which can be evaluated with nearly the same computational effort as needed for solving the standard diffusion equation (DE). In detail, the authors considered the important case of a semi-infinite medium which is illuminated by a collimated beam of light. Methods: A combination of the classic spherical harmonics method and the recently developed method of rotated reference frames is used for solving the P{sub 3} equations in closed form. Results: The derived solutions are illustrated and compared to exact solutions of the radiative transport equation obtained via the Monte Carlo (MC) method as well as with other approximated analytical solutions. It is shown that for the considered cases which are relevant for biomedical optics applications, the P{sub 3} approximation is close to the exact solution of the radiative transport equation. Conclusions: The authors derived exact analytical solutions of the P{sub 3} equations under consideration of boundary conditions for defining a semi-infinite medium. The good agreement to Monte Carlo simulations in the investigated domains, for example, in the steady-state and time domains, as well as the short evaluation time needed suggests that the derived equations can replace the often applied solutions of the diffusion equation for the homogeneous semi-infinite medium.

  7. Identification of key target markets for intermodal freight transport solutions in South Africa

    Directory of Open Access Journals (Sweden)

    Joubert van Eeden

    2010-11-01

    Full Text Available The Accelerated and Shared Growth Initiative for South Africa (AsgiSA identified South Africa's freight logistics challenges as among the key binding constraints on the country's growth aspirations. The research presented here points to the structural imbalance between road and rail freight transport as one of the key contributors to this state of affairs. Most long-distance corridor transport has been captured by road. However, long-distance transport is a market segment that is very suitable for intermodal transportation : rail is utilised for the high-density, long-distance component and road for the feeder and distribution services at the corridor end points. A market segmentation approach is developed to identify the corridors and industries that are natural candidates for such solutions, thereby paving the way for role-players and stakeholders to initiate a dialogue on the development of appropriate solutions.

  8. TRACKING AND TRACING SOLUTION FOR DANGEROUS GOODS CARRIED BY INTERMODAL TRANSPORT

    Directory of Open Access Journals (Sweden)

    Marek Kvet

    2014-03-01

    Full Text Available This paper deals with the problem of designing a complex tracking and tracing solution for dangerous goods transportation with the support of modern information technologies. This research activity presents a part of the “ChemLogTT” [2] project solved at the University of Žilina. The main goal of our contribution is to present basic conception of a complex developed software tool for monitoring and analyzing mentioned dangerous goods transportation.

  9. Kinetic theory the Chapman-Enskog solution of the transport equation for moderately dense gases

    CERN Document Server

    Brush, S G

    1972-01-01

    Kinetic Theory, Volume 3: The Chapman-Enskog Solution of the Transport Equation for Moderately Dense Gases describes the Chapman-Enskog solution of the transport equation for moderately dense gases. Topics covered range from the propagation of sound in monatomic gases to the kinetic theory of simple and composite monatomic gases and generalizations of the theory to higher densities. The application of kinetic theory to the determination of intermolecular forces is also discussed. This volume is divided into two sections and begins with an introduction to the work of Hilbert, Chapman, and Ensko

  10. Analytical solutions for transport processes fluid mechanics, heat and mass transfer

    CERN Document Server

    Brenn, Günter

    2017-01-01

    This book provides analytical solutions to a number of classical problems in transport processes, i.e. in fluid mechanics, heat and mass transfer. Expanding computing power and more efficient numerical methods have increased the importance of computational tools. However, the interpretation of these results is often difficult and the computational results need to be tested against the analytical results, making analytical solutions a valuable commodity. Furthermore, analytical solutions for transport processes provide a much deeper understanding of the physical phenomena involved in a given process than do corresponding numerical solutions. Though this book primarily addresses the needs of researchers and practitioners, it may also be beneficial for graduate students just entering the field. .

  11. Strategic network design of Java Island fuel supply with production-transportation solution

    Science.gov (United States)

    Dianawati, Fauzia; Farizal, -; Surjandari, Isti; Marzuli, Rully

    2011-10-01

    This study aims to find more efficient supply network, from refineries / imports to fuel terminal, which still uses the Tanker, Tank Trucks or Rail Tank Wagon with an alternative pipeline that are considered more efficient than other transport modes, as well as gaining pipeline transportation network optimization analysis tailored to the capabilities/ capacity of refinery production and capacity of the pipe mode. With the complexity of the number of 3 point sources of supply, 19 destination of terminal, 4 kinds of products and 4 types of transport modes, transport-production model modified by adding multi-modal transport and investment costs of new pipeline. Then coded in Lingo program which adopts Branch & Bound technique and input the processed data in order to obtain an optimal distribution pattern produced the lowest distribution costs. This B&B solution was also compared with SCO solution which is a metaheuristic method. The results of this study lead to the development of new modes of pipeline connections in amount of 4 alternatives, generated from the optimal solution, but still potentially earned savings of about IDR 1 Trillion per year from cost-efficiency of product procurement and transportation costs.

  12. Collocation method for the solution of the neutron transport equation with both symmetric and asymmetric scattering

    Energy Technology Data Exchange (ETDEWEB)

    Morel, J.E.

    1981-01-01

    A collocation method is developed for the solution of the one-dimensional neutron transport equation in slab geometry with both symmetric and polarly asymmetric scattering. For the symmetric scattering case, it is found that the collocation method offers a combination of some of the best characteristics of the finite-element and discrete-ordinates methods. For the asymmetric scattering case, it is found that the computational cost of cross-section data processing under the collocation approach can be significantly less than that associated with the discrete-ordinates approach. A general diffusion equation treating both symmetric and asymmetric scattering is developed and used in a synthetic acceleration algorithm to accelerate the iterative convergence of collocation solutions. It is shown that a certain type of asymmetric scattering can radically alter the asymptotic behavior of the transport solution and is mathematically equivalent within the diffusion approximation to particle transport under the influence of an electric field. The method is easily extended to other geometries and higher dimensions. Applications exist in the areas of neutron transport with highly anisotropic scattering (such as that associated with hydrogenous media), charged-particle transport, and particle transport in controlled-fusion plasmas. 23 figures, 6 tables.

  13. Used Fuel Logistics: Decades of Experience with transportation and Interim storage solutions

    Energy Technology Data Exchange (ETDEWEB)

    Orban, G.; Shelton, C.

    2015-07-01

    Used fuel inventories are growing worldwide. While some countries have opted for a closed cycle with recycling, numerous countries must expand their interim storage solutions as implementation of permanent repositories is taking more time than foreseen. In both cases transportation capabilities will have to be developed. AREVA TN has an unparalleled expertise with transportation of used fuel. For more than 50 years AREVA TN has safely shipped more than 7,000 used fuel transport casks. The transportation model that was initially developed in the 1970s has been adapted and enhanced over the years to meet more restrictive regulatory requirements and evolving customer needs, and to address public concerns. The numerous “lessons learned” have offered data and guidance that have allowed for also efficient and consistent improvement over the decades. AREVA TN has also an extensive experience with interim dry storage solutions in many countries on-site but also is working with partners to developed consolidated interim storage facility. Both expertise with storage and transportation contribute to safe, secure and smooth continuity of the operations. This paper will describe decades of experience with a very successful transportation program as well as interim storage solutions. (Author)

  14. Analytical solution of electrohydrodynamic flow and transport in rectangular channels: inclusion of double layer effects

    KAUST Repository

    Joekar-Niasar, V.

    2013-01-25

    Upscaling electroosmosis in porous media is a challenge due to the complexity and scale-dependent nonlinearities of this coupled phenomenon. "Pore-network modeling" for upscaling electroosmosis from pore scale to Darcy scale can be considered as a promising approach. However, this method requires analytical solutions for flow and transport at pore scale. This study concentrates on the development of analytical solutions of flow and transport in a single rectangular channel under combined effects of electrohydrodynamic forces. These relations will be used in future works for pore-network modeling. The analytical solutions are valid for all regimes of overlapping electrical double layers and have the potential to be extended to nonlinear Boltzmann distribution. The innovative aspects of this study are (a) contribution of overlapping of electrical double layers to the Stokes flow as well as Nernst-Planck transport has been carefully included in the analytical solutions. (b) All important transport mechanisms including advection, diffusion, and electromigration have been included in the analytical solutions. (c) Fully algebraic relations developed in this study can be easily employed to upscale electroosmosis to Darcy scale using pore-network modeling. © 2013 Springer Science+Business Media Dordrecht.

  15. Three-dimensional Solute Transport Modeling in Coupled Soil and Plant Root Systems

    OpenAIRE

    2014-01-01

    Many environmental and agricultural challenges rely on the proper understanding of water flow and solute transport in soils, for example the carbon cycle, crop growth, irrigation scheduling or fate of pollutants in subsoil. Current modeling approaches typically simulate plant uptake via empirical approaches, which neglect the three-dimensional (3D) root architecture. Yet, nowadays 3D soil-root water and solute models on plant-scale exist, which can be used for assessing the impact of root arc...

  16. Active Polar Two-Fluid Macroscopic Dynamics

    Science.gov (United States)

    Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.

    2014-03-01

    We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.

  17. Transport solutions of the Lamé equations and shock elastic waves

    Science.gov (United States)

    Alexeyeva, L. A.; Kaishybaeva, G. K.

    2016-07-01

    The Lamé system describing the dynamics of an isotropic elastic medium affected by a steady transport load moving at subsonic, transonic, or supersonic speed is considered. Its fundamental and generalized solutions in a moving frame of reference tied to the transport load are analyzed. Shock waves arising in the medium at supersonic speeds are studied. Conditions on the jump in the stress, displacement rate, and energy across the shock front are obtained using distribution theory. Numerical results concerning the dynamics of an elastic medium influenced by concentrated transport loads moving at sub-, tran- and supersonic speeds are presented.

  18. Impact of Soil Water Flux on Vadose Zone Solute Transport Parameters

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The transport processes of solutes in two soil columns filled with undisturbed soil material collected from an unsaturated sandy aquifer formation in Belgium subjected to a variable upper boundary condition were identified from breakthrough curves measured by means of time domain refiectometry (TDR). Solute breakthrough was measured with 3 TDR probes inserted into each soil column at three different depths at a 10 minutes time interval. In addition, soil water content and pressure head were measured at 3 different depths. Analytical solute transport models were used to estimate the solute dispersion coefficient and average pore-water velocity from the observed breakthrough curves. The results showed that the analytical solutions were suitable in fitting the observed solute transport. The dispersion coefficient was found to be a function of the soil depth and average pore-water velocity, imposed by the soil water flux. The mobile moisture content on the other hand was not correlated with the average pore-water velocity and the dispersion coefficient.

  19. A comprehensive one-dimensional numerical model for solute transport in rivers

    Science.gov (United States)

    Barati Moghaddam, Maryam; Mazaheri, Mehdi; MohammadVali Samani, Jamal

    2017-01-01

    One of the mechanisms that greatly affect the pollutant transport in rivers, especially in mountain streams, is the effect of transient storage zones. The main effect of these zones is to retain pollutants temporarily and then release them gradually. Transient storage zones indirectly influence all phenomena related to mass transport in rivers. This paper presents the TOASTS (third-order accuracy simulation of transient storage) model to simulate 1-D pollutant transport in rivers with irregular cross-sections under unsteady flow and transient storage zones. The proposed model was verified versus some analytical solutions and a 2-D hydrodynamic model. In addition, in order to demonstrate the model applicability, two hypothetical examples were designed and four sets of well-established frequently cited tracer study data were used. These cases cover different processes governing transport, cross-section types and flow regimes. The results of the TOASTS model, in comparison with two common contaminant transport models, shows better accuracy and numerical stability.

  20. Quantifying the relative contributions of different solute carriers to aggregate substrate transport

    Science.gov (United States)

    Taslimifar, Mehdi; Oparija, Lalita; Verrey, Francois; Kurtcuoglu, Vartan; Olgac, Ufuk; Makrides, Victoria

    2017-01-01

    Determining the contributions of different transporter species to overall cellular transport is fundamental for understanding the physiological regulation of solutes. We calculated the relative activities of Solute Carrier (SLC) transporters using the Michaelis-Menten equation and global fitting to estimate the normalized maximum transport rate for each transporter (Vmax). Data input were the normalized measured uptake of the essential neutral amino acid (AA) L-leucine (Leu) from concentration-dependence assays performed using Xenopus laevis oocytes. Our methodology was verified by calculating Leu and L-phenylalanine (Phe) data in the presence of competitive substrates and/or inhibitors. Among 9 potentially expressed endogenous X. laevis oocyte Leu transporter species, activities of only the uniporters SLC43A2/LAT4 (and/or SLC43A1/LAT3) and the sodium symporter SLC6A19/B0AT1 were required to account for total uptake. Furthermore, Leu and Phe uptake by heterologously expressed human SLC6A14/ATB0,+ and SLC43A2/LAT4 was accurately calculated. This versatile systems biology approach is useful for analyses where the kinetics of each active protein species can be represented by the Hill equation. Furthermore, its applicable even in the absence of protein expression data. It could potentially be applied, for example, to quantify drug transporter activities in target cells to improve specificity. PMID:28091567

  1. Osmosis and solute-solvent drag: fluid transport and fluid exchange in animals and plants.

    Science.gov (United States)

    Hammel, H T; Schlegel, Whitney M

    2005-01-01

    , (3) the return of interstitial fluid to the vasa recta, (4) return of aqueous humor to the episcleral veins, and (5) flow of phloem from source to sink in higher plants and many more examples of fluid transport and fluid exchange in animal and plant physiology. When a membrane is permeable to water only and when it separates differing aqueous solutions, the flow of water is from the solution with the lower osmotic pressure to the solution with the higher osmotic pressure.

  2. Terahertz Science and Technology of Macroscopically Aligned Carbon Nanotube Films

    Science.gov (United States)

    Kono, Junichiro

    One of the outstanding challenges in nanotechnology is how to assemble individual nano-objects into macroscopic architectures while preserving their extraordinary properties. For example, the one-dimensional character of electrons in individual carbon nanotubes leads to extremely anisotropic transport, optical, and magnetic phenomena, but their macroscopic manifestations have been limited. Here, we describe methods for preparing macroscopic films, sheets, and fibers of highly aligned carbon nanotubes and their applications to basic and applied terahertz studies. Sufficiently thick films act as ideal terahertz polarizers, and appropriately doped films operate as polarization-sensitive, flexible, powerless, and ultra-broadband detectors. Together with recently developed chirality enrichment methods, these developments will ultimately allow us to study dynamic conductivities of interacting one-dimensional electrons in macroscopic single crystals of single-chirality single-wall carbon nanotubes.

  3. An analytical approach to the solution of the transport equation for photons

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, Janice Teresinha, E-mail: janice.reichert@gmail.com [Universidade Tecnologica Federal do Parana (UTFPR), Pato Branco, PR (Brazil); Barichello, Liliane Basso, E-mail: lbaric@mat.ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil)

    2011-07-01

    An analytical solution is developed to the one-dimensional transport equation for photons, for the case which includes spectral dependence. The Klein-Nishina kernel for Compton scattering is considered and an analytical discrete ordinates method, the ADO method, is used to solve the resulting angular dependent problem. Numerical simulations are performed to evaluate the buildup factor. (author)

  4. Pore-network modeling of solute transport and biofilm growth in porous media

    NARCIS (Netherlands)

    Qin, Chao Zhong; Hassanizadeh, S. Majid

    2015-01-01

    In this work, a pore-network (PN) model for solute transport and biofilm growth in porous media was developed. Compared to previous studies of biofilm growth, it has two new features. First, the constructed pore network gives a better representation of a porous medium. Second, instead of using a con

  5. Modelling Water Flow and Solute Transport for Horticultural and Environmental Management

    NARCIS (Netherlands)

    Feddes, R.A.; Dam, van J.C.

    2002-01-01

    During the past 10 years, the simulation model SWAP (Soil, Water, Atmosphere, Plant) was developed by the Sub-Department Water Resources of Wageningen University jointly with the Department Water and Environment of Alterra Green World Research. SWAP simulates vertical transport of water, solutes and

  6. Semianalytical Solutions for Transport in Aquifer and Fractured Clay Matrix System

    Science.gov (United States)

    A three-dimensional mathematical model that describes transport of contaminant in a horizontal aquifer with simultaneous diffusion into a fractured clay formation is proposed. A group of analytical solutions is derived based on specific initial and boundary conditions as well as ...

  7. Solute Transport of Negatively Charged Contrast Agents Across Articular Surface of Injured Cartilage.

    Science.gov (United States)

    Kokkonen, H T; Chin, H C; Töyräs, J; Jurvelin, J S; Quinn, T M

    2017-04-01

    Solute transport through the extracellular matrix (ECM) is crucial to chondrocyte metabolism. Cartilage injury affects solute transport in cartilage due to alterations in ECM structure and solute-matrix interactions. Therefore, cartilage injury may be detected by using contrast agent-based clinical imaging. In the present study, effects of mechanical injury on transport of negatively charged contrast agents in cartilage were characterized. Using cartilage plugs injured by mechanical compression protocol, effective partition coefficients and diffusion fluxes of iodine- and gadolinium-based contrast agents were measured using high resolution microCT imaging. For all contrast agents studied, effective diffusion fluxes increased significantly, particularly at early times during the diffusion process (38 and 33% increase after 4 min, P integrity in cartilage superficial zone. This study suggests that alterations in contrast agent diffusion flux, a non-equilibrium transport parameter, provides a more sensitive indicator for assessment of cartilage matrix integrity than partition coefficient and the equilibrium distribution of solute. These findings may help in developing clinical methods of contrast agent-based imaging to detect cartilage injury.

  8. Pore-network modeling of solute transport and biofilm growth in porous media

    NARCIS (Netherlands)

    Qin, Chao Zhong; Hassanizadeh, S. Majid

    2015-01-01

    In this work, a pore-network (PN) model for solute transport and biofilm growth in porous media was developed. Compared to previous studies of biofilm growth, it has two new features. First, the constructed pore network gives a better representation of a porous medium. Second, instead of using a

  9. Examining the influence of heterogeneous porosity fields on conservative solute transport

    Science.gov (United States)

    Hu, B.X.; Meerschaert, M.M.; Barrash, W.; Hyndman, D.W.; He, C.; Li, X.; Guo, Laodong

    2009-01-01

    It is widely recognized that groundwater flow and solute transport in natural media are largely controlled by heterogeneities. In the last three decades, many studies have examined the effects of heterogeneous hydraulic conductivity fields on flow and transport processes, but there has been much less attention to the influence of heterogeneous porosity fields. In this study, we use porosity and particle size measurements from boreholes at the Boise Hydrogeophysical Research Site (BHRS) to evaluate the importance of characterizing the spatial structure of porosity and grain size data for solute transport modeling. Then we develop synthetic hydraulic conductivity fields based on relatively simple measurements of porosity from borehole logs and grain size distributions from core samples to examine and compare the characteristics of tracer transport through these fields with and without inclusion of porosity heterogeneity. In particular, we develop horizontal 2D realizations based on data from one of the less heterogeneous units at the BHRS to examine effects where spatial variations in hydraulic parameters are not large. The results indicate that the distributions of porosity and the derived hydraulic conductivity in the study unit resemble fractal normal and lognormal fields respectively. We numerically simulate solute transport in stochastic fields and find that spatial variations in porosity have significant effects on the spread of an injected tracer plume including a significant delay in simulated tracer concentration histories.

  10. Reflections on solute transport in rivers: Historical developments, present approaches, and future promise

    Science.gov (United States)

    Packman, A. I.

    2012-12-01

    Thirty years after Bencala and Walters' landmark paper on transient storage seems like a good time to reflect on our understanding of hyporheic exchange and solute transport in rivers. Bencala and Walters' work, and the related fieldwork of many others at the U.S. Geological Survey, changed the paradigm for flow in river corridors. Previously, the prevailing view had been that in-stream transport was regulated primarily by advection and dispersion. This thinking was rooted in well-established theory derived from the work of G.I. Taylor on dispersion processes, and supported by extensive fieldwork in the 1960's and 1970's. River and groundwater flow were strictly separated at the channel boundary. After Bencala and Walters (and a lot of follow-up work!) we now understand that water continuously exchanges across stream channel boundaries. This has profound implications for not only solute transport in rivers, but also a wide variety of biogeochemical, ecological, and even geomorphological processes. In this talk, I will review the historical development of theory for solute transport in rivers, try to convey why Bencala and Walters was so important to both hydrology and biogeochemistry, and discuss how recent developments in measurement methods and stochastic transport theory can be used to further advance our understanding of surface-groundwater connectivity.

  11. Enhancements and limits in drug membrane transport using supersaturated solutions of poorly water soluble drugs.

    Science.gov (United States)

    Raina, Shweta A; Zhang, Geoff G Z; Alonzo, David E; Wu, Jianwei; Zhu, Donghua; Catron, Nathaniel D; Gao, Yi; Taylor, Lynne S

    2014-09-01

    Amorphous solid dispersions (ASDs) give rise to supersaturated solutions (solution concentration greater than equilibrium crystalline solubility). We have recently found that supersaturating dosage forms can exhibit the phenomenon of liquid-liquid phase separation (LLPS). Thus, the high supersaturation generated by dissolving ASDs can lead to a two-phase system wherein one phase is an initially nanodimensioned and drug-rich phase and the other is a drug-lean continuous aqueous phase. Herein, the membrane transport of supersaturated solutions, at concentrations above and below the LLPS concentration has been evaluated using a side-by-side diffusion cell. Measurements of solution concentration with time in the receiver cell yield the flux, which reflects the solute thermodynamic activity in the donor cell. As the nominal concentration of solute in the donor cell increases, a linear increase in flux was observed up to the concentration where LLPS occurred. Thereafter, the flux remained essentially constant. Both nifedipine and felodipine solutions exhibit such behavior as long as crystallization is absent. This suggests that there is an upper limit in passive membrane transport that is dictated by the LLPS concentration. These results have several important implications for drug delivery, especially for poorly soluble compounds requiring enabling formulation technologies.

  12. Low-flow transport models for conservative and sorbed solutes; Uvas Creek, near Morgan Hill, California

    Science.gov (United States)

    Jackman, A.P.; Walters, R.A.; Kennedy, V.C.

    1984-01-01

    Models describing low-flow transport of conservative (nonreactive) and reactive solutes, which adsorb on the streambed, are developed and tested. Temporary storage within the bed plays an important role in solute movement. Three different models of bed-storage processes are developed for conservative solutes. One model assumes the bed is a well-mixed, nondiffusing, nonreacting zone. Solute flux into the bed is then proportional to the difference between stream and bed-solute concentrations. A second model assumes that solute is transported within the bed by a vertical diffusion process. The bed-solute concentration, which matches the stream concentration at the interface, varies with depth in the bed according to Fick 's law. A third model assumes convection in the downstream direction occurs in certain parts of the bed, while the mechanism of the first model functions elsewhere. Storage of absorbing species is assumed to occur by equilibrium adsorption within streambed particles. Uptake rate is described by an intraparticle diffusion process. Model equations were solved using finite element numerical methods. Models were calibrated using data from a 24-hour injection of conservative chloride and adsorptive Sr ions at Uvas Creek near Morgan Hill, California. All models predict well except for some overestimation by the adsorption model during dieaway. (USGS)

  13. Solution-processable graphene oxide as an efficient hole transport layer in polymer solar cells.

    Science.gov (United States)

    Li, Shao-Sian; Tu, Kun-Hua; Lin, Chih-Cheng; Chen, Chun-Wei; Chhowalla, Manish

    2010-06-22

    The utilization of graphene oxide (GO) thin films as the hole transport and electron blocking layer in organic photovoltaics (OPVs) is demonstrated. The incorporation of GO deposited from neutral solutions between the photoactive poly(3-hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) layer and the transparent and conducting indium tin oxide (ITO) leads to a decrease in recombination of electrons and holes and leakage currents. This results in a dramatic increase in the OPV efficiencies to values that are comparable to devices fabricated with PEDOT:PSS as the hole transport layer. Our results indicate that GO could be a simple solution-processable alternative to PEDOT:PSS as the effective hole transport and electron blocking layer in OPV and light-emitting diode devices.

  14. New Travelling Wave Solutions of Burgers Equation with Finite Transport Memory

    Science.gov (United States)

    Sakthivel, Rathinasamy; Chun, Changbum; Lee, Jonu

    2010-09-01

    The nonlinear evolution equations with finite memory have a wide range of applications in science and engineering. The Burgers equation with finite memory transport (time-delayed) describes convection-diffusion processes. In this paper, we establish the new solitary wave solutions for the time-delayed Burgers equation. The extended tanh method and the exp-function method have been employed to reveal these new solutions. Further, we have calculated the numerical solutions of the time-delayed Burgers equation with initial conditions by using the homotopy perturbation method (HPM). Our results show that the extended tanh and exp-function methods are very effective in finding exact solutions of the considered problem and HPM is very powerful in finding numerical solutions with good accuracy for nonlinear partial differential equations without any need of transformation or perturbation

  15. A nonequilibrium model for reactive contaminant transport through fractured porous media: Model development and semianalytical solution

    Science.gov (United States)

    Joshi, Nitin; Ojha, C. S. P.; Sharma, P. K.

    2012-10-01

    In this study a conceptual model that accounts for the effects of nonequilibrium contaminant transport in a fractured porous media is developed. Present model accounts for both physical and sorption nonequilibrium. Analytical solution was developed using the Laplace transform technique, which was then numerically inverted to obtain solute concentration in the fracture matrix system. The semianalytical solution developed here can incorporate both semi-infinite and finite fracture matrix extent. In addition, the model can account for flexible boundary conditions and nonzero initial condition in the fracture matrix system. The present semianalytical solution was validated against the existing analytical solutions for the fracture matrix system. In order to differentiate between various sorption/transport mechanism different cases of sorption and mass transfer were analyzed by comparing the breakthrough curves and temporal moments. It was found that significant differences in the signature of sorption and mass transfer exists. Applicability of the developed model was evaluated by simulating the published experimental data of Calcium and Strontium transport in a single fracture. The present model simulated the experimental data reasonably well in comparison to the model based on equilibrium sorption assumption in fracture matrix system, and multi rate mass transfer model.

  16. Macropore system characteristics controls on non-reactive solute transport at different flow rates

    Science.gov (United States)

    Larsbo, Mats; Koestel, John

    2014-05-01

    Preferential flow and transport in macroporous soils are important pathways for the leaching of agrochemicals through soils. Preferential solute transport in soil is to a large extent determined by the macropore system characteristics and the water flow conditions. The importance of different characteristics of the macropore system is likely to vary with the flow conditions. The objective of this study was to determine which properties of the macropore system that control the shape of non-reactive tracer solute breakthrough curves at different steady-state flow rates. We sampled five undisturbed columns (20 cm high, 20 cm diameter) from the soil surface of four soils with clay contents between 21 and 50 %. Solute transport experiments were carried out under unsaturated conditions at 2, 4, 6, 8 and 12 mm h-1 flow rates. For each flow rate a pulse of potassium bromide solution was applied at the soil surface and the electrical conductivity was measured with high temporal resolution in the column effluent. We used the 5 % arrival time and the holdback factor to estimate the degree of preferential transport from the resulting breakthrough curves. Unsaturated hydraulic conductivities were measured at the soil surface of the columns using a tension disc infiltrometer. The macropore system was imaged by industrial X-ray computed tomography at a resolution of 125 μm in all directions. Measures of the macropore system characteristics including measures of pore continuity were calculated from these images using the ImageJ software. Results show that the degree of preferential transport is generally increasing with flow rate when larger pores become active in the transport. The degree of preferential flow was correlated to measures of macropore topology. This study show that conclusions drawn from experiments carried out at one flow rate should generally not be extrapolated to other flow rates.

  17. Application of the method of temporal moments to interpret solute transport with sorption and degradation

    Science.gov (United States)

    Pang, Liping; Goltz, Mark; Close, Murray

    2003-01-01

    In this note, we applied the temporal moment solutions of [Das and Kluitenberg, 1996. Soil Sci. Am. J. 60, 1724] for one-dimensional advective-dispersive solute transport with linear equilibrium sorption and first-order degradation for time pulse sources to analyse soil column experimental data. Unlike most other moment solutions, these solutions consider the interplay of degradation and sorption. This permits estimation of a first-order degradation rate constant using the zeroth moment of column breakthrough data, as well as estimation of the retardation factor or sorption distribution coefficient of a degrading solute using the first moment. The method of temporal moment (MOM) formulae was applied to analyse breakthrough data from a laboratory column study of atrazine, hexazinone and rhodamine WT transport in volcanic pumice sand, as well as experimental data from the literature. Transport and degradation parameters obtained using the MOM were compared to parameters obtained by fitting breakthrough data from an advective-dispersive transport model with equilibrium sorption and first-order degradation, using the nonlinear least-square curve-fitting program CXTFIT. The results derived from using the literature data were also compared with estimates reported in the literature using different equilibrium models. The good agreement suggests that the MOM could provide an additional useful means of parameter estimation for transport involving equilibrium sorption and first-order degradation. We found that the MOM fitted breakthrough curves with tailing better than curve fitting. However, the MOM analysis requires complete breakthrough curves and relatively frequent data collection to ensure the accuracy of the moments obtained from the breakthrough data.

  18. The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers.

    Science.gov (United States)

    Ranathunge, Kosala; Kim, Yangmin X; Wassmann, Friedrich; Kreszies, Tino; Zeisler, Viktoria; Schreiber, Lukas

    2017-03-01

    Roots have complex anatomical structures, and certain localized cell layers develop suberized apoplastic barriers. The size and tightness of these barriers depend on the growth conditions and on the age of the root. Such complex anatomical structures result in a composite water and solute transport in roots. Development of apoplastic barriers along barley seminal roots was detected using various staining methods, and the suberin amounts in the apical and basal zones were analysed using gas chromatography-mass spectometry (GC-MS). The hydraulic conductivity of roots ( Lp r ) and of cortical cells ( Lp c ) was measured using root and cell pressure probes. When grown in hydroponics, barley roots did not form an exodermis, even at their basal zones. However, they developed an endodermis. Endodermal Casparian bands first appeared as 'dots' as early as at 20 mm from the apex, whereas a patchy suberin lamellae appeared at 60 mm. The endodermal suberin accounted for the total suberin of the roots. The absolute amount in the basal zone was significantly higher than in the apical zone, which was inversely proportional to the Lp r . Comparison of Lp r and Lp c suggested that cell to cell pathways dominate for water transport in roots. However, the calculation of Lp r from Lp c showed that at least 26 % of water transport occurs through the apoplast. Roots had different solute permeabilities ( P sr ) and reflection coefficients ( σ sr ) for the solutes used. The σ sr was below unity for the solutes, which have virtually zero permeability for semi-permeable membranes. Suberized endodermis significantly reduces Lp r of seminal roots. The water and solute transport across barley roots is composite in nature and they do not behave like ideal osmometers. The composite transport model should be extended by adding components arranged in series (cortex, endodermis) in addition to the currently included components arranged in parallel (apoplastic, cell to cell pathways).

  19. Macroscopic-microscopic mass models

    CERN Document Server

    Nix, J R; Nix, J Rayford; Moller, Peter

    1995-01-01

    We discuss recent developments in macroscopic-microscopic mass models, including the 1992 finite-range droplet model, the 1992 extended-Thomas-Fermi Strutinsky-integral model, and the 1994 Thomas-Fermi model, with particular emphasis on how well they extrapolate to new regions of nuclei. We also address what recent developments in macroscopic-microscopic mass models are teaching us about such physically relevant issues as the nuclear curvature energy, a new congruence energy arising from a greater-than-average overlap of neutron and proton wave functions, the nuclear incompressibility coefficient, and the Coulomb redistribution energy arising from a central density depression. We conclude with a brief discussion of the recently discovered rock of metastable superheavy nuclei near 272:110 that had been correctly predicted by macroscopic-microscopic models, along with a possible new tack for reaching an island near 290:110 beyond our present horizon.

  20. Solute transport modelling in a coupled water and heat flow system applied to cold regions hydrogeology

    Science.gov (United States)

    Frampton, Andrew; Destouni, Georgia

    2016-04-01

    In cold regions, flow in the unsaturated zone is highly dynamic with seasonal variability and changes in temperature, moisture, and heat and water fluxes, all of which affect ground freeze-thaw processes and influence transport of inert and reactive waterborne substances. In arctic permafrost environments, near-surface groundwater flow is further restricted to a relatively shallow and seasonally variable active layer, confined by perennially frozen ground below. The active layer is typically partially saturated with ice, liquid water and air, and is strongly dependent on seasonal temperature fluctuations, thermal forcing and infiltration patterns. Here there is a need for improved understanding of the mechanisms controlling subsurface solute transport in the partially saturated active layer zone. Studying solute transport in cold regions is relevant to improve the understanding of how natural and anthropogenic pollution may change as activities in arctic and sub-arctic regions increase. It is also particularly relevant for understanding how dissolved carbon is transported in coupled surface and subsurface hydrological systems under climate change, in order to better understand the permafrost-hydrological-carbon climate feedback. In this contribution subsurface solute transport under surface warming and degrading permafrost conditions is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in subsurface water flows and solute transport travel times are analysed for different modelled geological configurations during a 100-year warming period. Results show that for all simulated cases, the minimum and mean travel times increase non-linearly with warming irrespective of geological configuration and heterogeneity structure. The travel time changes are shown to depend on combined warming effects of increase in pathway length due to deepening of the active layer, reduced transport

  1. Control and optimization of solute transport in a thin porous tube

    KAUST Repository

    Griffiths, I. M.

    2013-03-01

    Predicting the distribution of solutes or particles in flows within porous-walled tubes is essential to inform the design of devices that rely on cross-flow filtration, such as those used in water purification, irrigation devices, field-flow fractionation, and hollow-fibre bioreactors for tissue-engineering applications. Motivated by these applications, a radially averaged model for fluid and solute transport in a tube with thin porous walls is derived by developing the classical ideas of Taylor dispersion. The model includes solute diffusion and advection via both radial and axial flow components, and the advection, diffusion, and uptake coefficients in the averaged equation are explicitly derived. The effect of wall permeability, slip, and pressure differentials upon the dispersive solute behaviour are investigated. The model is used to explore the control of solute transport across the membrane walls via the membrane permeability, and a parametric expression for the permeability required to generate a given solute distribution is derived. The theory is applied to the specific example of a hollow-fibre membrane bioreactor, where a uniform delivery of nutrient across the membrane walls to the extra-capillary space is required to promote spatially uniform cell growth. © 2013 American Institute of Physics.

  2. Laboratory experiments on solute transport in bimodal porous media under cyclic precipitation-evaporation boundary conditions

    Science.gov (United States)

    Cremer, Clemens; Neuweiler, Insa

    2016-04-01

    Flow and solute transport in the shallow subsurface is strongly governed by atmospheric boundary conditions. Erratically varying infiltration and evaporation cycles lead to alternating upward and downward flow, as well as spatially and temporally varying water contents and associated hydraulic conductivity of the prevailing materials. Thus presenting a highly complicated, dynamic system. Knowledge of subsurface solute transport processes is vital to assess e.g. the entry of, potentially hazardous, solutes to the groundwater and nutrient uptake by plant roots and can be gained in many ways. Besides field measurements and numerical simulations, physical laboratory experiments represent a way to establish process understanding and furthermore validate numerical schemes. With the aim to gain a better understanding and to quantify solute transport in the unsaturated shallow subsurface under natural precipitation conditions in heterogeneous media, we conduct physical laboratory experiments in a 22 cm x 8 cm x 1 cm flow cell that is filled with two types of sand and apply cyclic infiltration-evaporation phases at the soil surface. Pressure at the bottom of the domain is kept constant. Following recent studies (Lehmann and Or, 2009; Bechtold et al., 2011a), heterogeneity is introduced by a sharp vertical interface between coarse and fine sand. Fluorescent tracers are used to i) qualitatively visualize transport paths within the domain and ii) quantify solute leaching at the bottom of the domain. Temporal and spatial variations in water content during the experiment are derived from x-ray radiographic images. Monitored water contents between infiltration and evaporation considerably changed in the coarse sand while the fine sand remained saturated throughout the experiments. Lateral solute transport through the interface in both directions at different depths of the investigated soil columns were observed. This depended on the flow rate applied at the soil surface and

  3. The adjoint neutron transport equation and the statistical approach for its solution

    CERN Document Server

    Saracco, Paolo; Ravetto, Piero

    2016-01-01

    The adjoint equation was introduced in the early days of neutron transport and its solution, the neutron importance, has ben used for several applications in neutronics. The work presents at first a critical review of the adjoint neutron transport equation. Afterwards, the adjont model is constructed for a reference physical situation, for which an analytical approach is viable, i.e. an infinite homogeneous scattering medium. This problem leads to an equation that is the adjoint of the slowing-down equation that is well-known in nuclear reactor physics. A general closed-form analytical solution to such adjoint equation is obtained by a procedure that can be used also to derive the classical Placzek functions. This solution constitutes a benchmark for any statistical or numerical approach to the adjoint equation. A sampling technique to evaluate the adjoint flux for the transport equation is then proposed and physically interpreted as a transport model for pseudo-particles. This can be done by introducing appr...

  4. Stochastic approach to the numerical solution of the non-stationary Parker's transport equation

    Science.gov (United States)

    Wawrzynczak, A.; Modzelewska, R.; Gil, A.

    2015-01-01

    We present the newly developed stochastic model of the galactic cosmic ray (GCR) particles transport in the heliosphere. Mathematically Parker transport equation (PTE) describing non-stationary transport of charged particles in the turbulent medium is the Fokker-Planck type. It is the second order parabolic time-dependent 4-dimensional (3 spatial coordinates and particles energy/rigidity) partial differential equation. It is worth to mention that, if we assume the stationary case it remains as the 3-D parabolic type problem with respect to the particles rigidity R. If we fix the energy/rigidity it still remains as the 3-D parabolic type problem with respect to time. The proposed method of numerical solution is based on the solution of the system of stochastic differential equations (SDEs) being equivalent to the Parker's transport equation. We present the method of deriving from PTE the equivalent SDEs in the heliocentric spherical coordinate system for the backward approach. The advantages and disadvantages of the forward and the backward solution of the PTE are discussed. The obtained stochastic model of the Forbush decrease of the GCR intensity is in an agreement with the experimental data.

  5. Differential Evolution Algorithm Based Solution Approaches for Solving Transportation Network Design Problems

    Directory of Open Access Journals (Sweden)

    Özgür Başkan

    2014-09-01

    Full Text Available Differential Evolution algorithm has effectively been used to solve engineering optimization problems recently. The Differential Evolution algorithm, which uses similar principles with Genetic Algorithms, is more robust on obtaining optimal solution than many other heuristic algorithms with its simpler structure. In this study, Differential Evolution algorithm is applied to the transportation network design problems and its effectiveness on the solution is investigated. In this context, Differential Evolution based models are developed using bi-level programming approach for the solution of the transportation network design problem and determination of the on-street parking places in urban road networks. In these models, optimal investment and parking strategies are investigated on the upper level. On the lower level, deterministic traffic assignment problem, which represents drivers' responses, is solved using Frank-Wolfe algorithm and VISUM traffic modeling software. In order to determine the effectiveness of the proposed models, numerical applications are carried out on Sioux-Falls test network. Results showed that the Differential Evolution algorithm may effectively been used for the solution of transportation network design problems.

  6. Solute transport model for trace organic neutral and charged compounds through nanofiltration and reverse osmosis membranes.

    Science.gov (United States)

    Kim, Tae-Uk; Drewes, Jörg E; Scott Summers, R; Amy, Gary L

    2007-09-01

    Rejection of trace organic compounds, including disinfection by-products (DBPs) and pharmaceutical active compounds (PhACs), by high-pressure membranes has become a focus of public interest internationally in both drinking water treatment and wastewater reclamation/reuse. The ability to simulate, or even predict, the rejection of these compounds by high-pressure membranes, encompassing nanofiltration (NF) and reverse osmosis (RO), will improve process economics and expand membrane applications. The objective of this research is to develop a membrane transport model to account for diffusive and convective contributions to solute transport and rejection. After completion of cross-flow tests and diffusion cell tests with target compounds, modeling efforts were performed in accordance with a non-equilibrium thermodynamic transport equation. Comparing the percentages of convection and diffusion contributions to transport, convection is dominant for most compounds, but diffusion is important for more hydrophobic non-polar compounds. Convection is also more dominant for looser membranes (i.e., NF). In addition, higher initial compound concentrations and greater J(0)/k ratios contribute to solute fluxes more dominated by convection. Given the treatment objective of compound rejection, compound transport and rejection trends are inversely related.

  7. CFEST Coupled Flow, Energy & Solute Transport Version CFEST005 User’s Guide

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, Vicky L.; Chen, Yousu; Gilca, Alex; Cole, Charles R.; Gupta, Sumant K.

    2006-07-20

    The CFEST (Coupled Flow, Energy, and Solute Transport) simulator described in this User’s Guide is a three-dimensional finite-element model used to evaluate groundwater flow and solute mass transport. Confined and unconfined aquifer systems, as well as constant and variable density fluid flows can be represented with CFEST. For unconfined aquifers, the model uses a moving boundary for the water table, deforming the numerical mesh so that the uppermost nodes are always at the water table. For solute transport, changes in concentra¬tion of a single dissolved chemical constituent are computed for advective and hydrodynamic transport, linear sorption represented by a retardation factor, and radioactive decay. Although several thermal parameters described in this User’s Guide are required inputs, thermal transport has not yet been fully implemented in the simulator. Once fully implemented, transport of thermal energy in the groundwater and solid matrix of the aquifer can also be used to model aquifer thermal regimes. The CFEST simulator is written in the FORTRAN 77 language, following American National Standards Institute (ANSI) standards. Execution of the CFEST simulator is controlled through three required text input files. These input file use a structured format of associated groups of input data. Example input data lines are presented for each file type, as well as a description of the structured FORTRAN data format. Detailed descriptions of all input requirements, output options, and program structure and execution are provided in this User’s Guide. Required inputs for auxillary CFEST utilities that aide in post-processing data are also described. Global variables are defined for those with access to the source code. Although CFEST is a proprietary code (CFEST, Inc., Irvine, CA), the Pacific Northwest National Laboratory retains permission to maintain its own source, and to distribute executables to Hanford subcontractors.

  8. One-dimensional unsteady solute transport along unsteady flow through inhomogeneous medium

    Indian Academy of Sciences (India)

    Sanjay K Yadav; Atul Kumar; Dilip K Jaiswal; Naveen Kumar

    2011-04-01

    The one-dimensional linear advection–diffusion equation is solved analytically by using the Laplace integral transform. The solute transport as well as the flow field is considered to be unsteady, both of independent patterns. The solute dispersion occurs through an inhomogeneous semi-infinite medium. Hence, velocity is considered to be an increasing function of the space variable, linearly interpolated in a finite domain in which solute dispersion behaviour is studied. Dispersion is considered to be proportional to the square of the spatial linear function. Thus, the coefficients of the advection–diffusion equation are functions of both the independent variables, but the expression for each coefficient is considered in degenerate form. These coefficients are reduced into constant coefficients with the help of a new space variable, introduced in our earlier works, and new time variables. The source of the solute is considered to be a stationary uniform point source of pulse type.

  9. THE IMPORTANCE OF LIMIT SOLUTIONS & TEMPORAL AND SPATIAL SCALES IN THE TEACHING OF TRANSPORT PHENOMENA

    Directory of Open Access Journals (Sweden)

    SÁVIO LEANDRO BERTOLI

    2016-07-01

    Full Text Available In the engineering courses the field of Transport Phenomena is of significant importance and it is in several disciplines relating to Fluid Mechanics, Heat and Mass Transfer. In these disciplines, problems involving these phenomena are mathematically formulated and analytical solutions are obtained whenever possible. The aim of this paper is to emphasize the possibility of extending aspects of the teaching-learning in this area by a method based on time scales and limit solutions. Thus, aspects relative to the phenomenology naturally arise during the definition of the scales and / or by determining the limit solutions. Aspects concerning the phenomenology of the limit problems are easily incorporated into the proposed development, which contributes significantly to the understanding of physics inherent in the mathematical modeling of each limiting case studied. Finally the study aims to disseminate the use of the limit solutions and of the time scales in the general fields of engineering.

  10. Intragranular diffusion: An important mechanism influencing solute transport in clastic aquifers?

    Science.gov (United States)

    Wood, W.W.; Kraemer, T.F.; Hearn, P.P.

    1990-01-01

    Quantification of intragranular porosity in sand-size material from an aquifer on Cape Cod, Massachusetts, by scanning electron microscopy, mercury injection, and epifluorescence techniques shows that there are more reaction sites and that porosity is greater that indicated by standard short-term laboratory tests and measurement techniques. Results from laboratory and field tracer tests show solute nonequilibrium for a reacting ion consistent with a model of diffusion into, and exchange within, grain interiors. These data indicate that a diffusion expression needs to be included in transport codes, particularly for simulation of the transport of radioactive and toxic wastes.

  11. Field scale variability of solute transport parameters and related soil properties

    Directory of Open Access Journals (Sweden)

    B. Lennartz

    1997-01-01

    Full Text Available The spatial variability of transport parameters has to be taken into account for a reliable assessment of solute behaviour in natural field soils. Two field sites were studied by collecting 24 and 36 small undisturbed soil columns at an uniform grid of 15 m spacing. Displacement experiments were conducted in these columns with bromide traced water under unsaturated steady state transport conditions. Measured breakthrough curves (BTCs were evaluated with the simple convective-dispersive equation (CDE. The solute mobility index (MI calculated as the ratio of measured to fitted pore water velocity and the dispersion coefficient (D were used to classify bromide breakthrough behaviour. Experimental BTCs were classified into two groups: type I curves expressed classical solute behaviour while type II curves were characterised by the occurrence of a bromide concentration maximum before 0.35 pore volumes of effluent (MI<0.35 resulting from preferential flow conditions. Six columns from site A and 8 from site B were identified as preferential. Frequency distributions of the transport parameters (MI and D of both sites were either extremely skewed or bimodal. Log-transformation did not lead to a normal distribution in any case. Contour maps of bromide mass flux at certain time steps indicated the clustering of preferential flow regions at both sites. Differences in the extent of preferential flow between sites seemed to be governed by soil structure. Linear cross correlations among transport parameters and independently measured soil properties revealed relations between solute mobility and volumetric soil water content at time of sampling, texture and organic carbon content. The volumetric field soil water content, a simple measure characterising the soil hydraulic behaviour at the sampling location, was found to be a highly sensitive parameter with respect to solute mobility and preferential flow situations. Almost no relation was found between solute

  12. Solute Transport in a Heterogeneous Aquifer: A Nonlinear Deterministic Dynamical Analysis

    Science.gov (United States)

    Sivakumar, B.; Harter, T.; Zhang, H.

    2003-04-01

    Stochastic approaches are widely used for modeling and prediction of uncertainty in groundwater flow and transport processes. An important reason for this is our belief that the dynamics of the seemingly complex and highly irregular subsurface processes are essentially random in nature. However, the discovery of nonlinear deterministic dynamical theory has revealed that random-looking behavior could also be the result of simple deterministic mechanisms influenced by only a few nonlinear interdependent variables. The purpose of the present study is to introduce this theory to subsurface solute transport process, in an attempt to investigate the possibility of understanding the transport dynamics in a much simpler, deterministic, manner. To this effect, salt transport process in a heterogeneous aquifer medium is studied. Specifically, time series of arrival time of salt particles are analyzed. These time series are obtained by integrating a geostatistical (transition probability/Markov chain) model with a groundwater flow model (MODFLOW) and a salt transport (Random Walk Particle) model. The (dynamical) behavior of the transport process (nonlinear deterministic or stochastic) is identified using standard statistical techniques (e.g. autocorrelation function, power spectrum) as well as specific nonlinear deterministic dynamical techniques (e.g. phase-space diagram, correlation dimension method). The sensitivity of the salt transport dynamical behavior to the hydrostratigraphic parameters (i.e. number, volume proportions, mean lengths, and juxtapositional tendencies of facies) used in the transition probability/Markov chain model is also studied. The results indicate that the salt transport process may exhibit very simple (i.e. deterministic) to very complex (i.e. stochastic) dynamical behavior, depending upon the above parameters (i.e. characteristics of the aquifer medium). Efforts towards verification and strengthening of the present results and prediction of salt

  13. An analytical solution to contaminant transport through composite liners with geomembrane defects

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    To investigate the performance of landfill composite liner system,a one-dimensional model was developed for solute transport through composite liners containing geomembrane defects.An analytical solution to the model was obtained by the method of Laplace transformation.The results obtained by the presented solution agree well with those obtained by the numerical method.Results show that leachate head and construction quality of geomembrane(GM) have significant influences on the performance of the composite liners for heavy metal ions.The breakthrough time of lead decreases from 50 a to 19 a when the leachate head increases from 0.3 m to 10 m.It is also indicated that the contaminant mass flux of volatile organic compounds(VOCs) induced by leakage can not be neglected in case of poor construction quality of the landfill barrier system.It is shown that diffusion coefficient and partition coefficient of GM have great influences on solute transport through composite liners for VOCs.The breakthrough time of heavy metal ions will be greatly overestimated if the effects of diffusion and adsorption of clay and geosynthetic clay liner(GCL) are neglected.The composite liner consisting of a geomembrane and a GCL provides a poor barrier for VOCs.The presented analytical solution is relatively simple to apply and can be used for preliminary design of composite liners,evaluating experimental results,and verifying more complex numerical models.

  14. Electroosmotic fluid motion and late-time solute transport at non-negligible zeta potentials

    Energy Technology Data Exchange (ETDEWEB)

    S. K. Griffiths; R. H. Nilson

    1999-12-01

    Analytical and numerical methods are employed to determine the electric potential, fluid velocity and late-time solute distribution for electroosmotic flow in a tube and channel when the zeta potential is not small. The electric potential and fluid velocity are in general obtained by numerical means. In addition, new analytical solutions are presented for the velocity in a tube and channel in the extremes of large and small Debye layer thickness. The electroosmotic fluid velocity is used to analyze late-time transport of a neutral non-reacting solute. Zeroth and first-order solutions describing axial variation of the solute concentration are determined analytically. The resulting expressions contain eigenvalues representing the dispersion and skewness of the axial concentration profiles. These eigenvalues and the functions describing transverse variation of the concentration field are determined numerically using a shooting technique. Results are presented for both tube and channel geometries over a wide range of the normalized Debye layer thickness and zeta potential. Simple analytical approximations to the eigenvalues are also provided for the limiting cases of large and small values of the Debye layer thickness. The methodology developed here for electroosmotic flow is also applied to the Taylor problem of late-time transport and dispersion in pressure-driven flows.

  15. Influence of Billet Size on Flow, Solidification and Solute Transport in Continuous Casting

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-wei; WANG En-gang; HE Ji-cheng

    2003-01-01

    The influence of billet size on continuous casting was studied using the 3-D coupled turbulent flow, solidification and solute transport model. It is shown that the larger the billet size is, the larger the inlet velocity is; The deeper the stream penetration is and more liquid steel is pushed by mainstream, the stronger turbulent flow is observed in the upper part of mold. For Fe-C binary alloy system, the thickness of solidified shell is determined by temperature and solute concentration. The more serious macrosegregation and thinner shell are observed for smaller billet, thus a longer mold should be used.

  16. Volumetric and Transport Properties of Aqueous NaB(OH)4 Solutions

    Institute of Scientific and Technical Information of China (English)

    周永全; 房春晖; 房艳; 朱发岩

    2013-01-01

    Density, pH, viscosity, conductivity and the Raman spectra of aqueous NaB(OH)4 solutions precisely measured as functions of concentration at different temperatures (293.15, 298.15, 303.15, 313.15 and 323.15 K) are presented. Polyborate distributions in aqueous NaB(OH)4 solution were calculated, covering all the concentration range, 4B(OH)− is the most dominant species, other polyborate anions are less than 5.0%. The volumetric and the transport properties were discussed in detail, both of these properties indicate that 4B(OH)− behaves as a struc-ture-disordered anion.

  17. Constructing Soliton and Kink Solutions of PDE Models in Transport and Biology

    Directory of Open Access Journals (Sweden)

    Vsevolod A. Vladimirov

    2006-06-01

    Full Text Available We present a review of our recent works directed towards discovery of a periodic, kink-like and soliton-like travelling wave solutions within the models of transport phenomena and the mathematical biology. Analytical description of these wave patterns is carried out by means of our modification of the direct algebraic balance method. In the case when the analytical description fails, we propose to approximate invariant travelling wave solutions by means of an infinite series of exponential functions. The effectiveness of the method of approximation is demonstrated on a hyperbolic modification of Burgers equation.

  18. Note on the Solution of Transport Equation by Tau Method and Walsh Functions

    Directory of Open Access Journals (Sweden)

    Abdelouahab Kadem

    2010-01-01

    Full Text Available We consider the combined Walsh function for the three-dimensional case. A method for the solution of the neutron transport equation in three-dimensional case by using the Walsh function, Chebyshev polynomials, and the Legendre polynomials are considered. We also present Tau method, and it was proved that it is a good approximate to exact solutions. This method is based on expansion of the angular flux in a truncated series of Walsh function in the angular variable. The main characteristic of this technique is that it reduces the problems to those of solving a system of algebraic equations; thus, it is greatly simplifying the problem.

  19. Low-temperature solution-processed molybdenum oxide nanoparticle hole transport layers for organic photovoltaic devices

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun-Ju; Gao, Galen F.; Wang, Jian; Luo, Kaiyuan; Hsu, Julia W.P. [Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX (United States); Yi, Juan [Department of Physics, University of Texas at Dallas, Richardson, TX (United States); Koerner, Hilmar; Park, Kyoungweon [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH (United States); UES, Inc., Dayton, OH (United States); Vaia, Richard A. [Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH (United States)

    2012-10-15

    High performance hole transport layers are realized using room temperature solution processing of microwave-synthesized MoO{sub x} nanoparticles. Composition of solution-deposited MoO{sub x} nanoparticle films can be increased from 10% to 70% MoO{sub 3} using air exposure (days) and reaction with H{sub 2}O{sub 2} (minutes). The increased MoO{sub 3} content correlates well with improved solar cell performance to the level of evaporated MoO{sub 3} and PEDOT:PSS, with good air stability. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Continuous Time Random Walks for Non-Local Radial Solute Transport

    CERN Document Server

    Dentz, Marco; Borgne, Tanguy le

    2016-01-01

    This paper derives and analyzes continuous time random walk (CTRW) models in radial flow geometries for the quantification of non-local solute transport induced by heterogeneous flow distributions and by mobile-immobile mass transfer processes. To this end we derive a general CTRW framework in radial coordinates starting from the random walk equations for radial particle positions and times. The particle density, or solute concentration is governed by a non-local radial advection-dispersion equation (ADE). Unlike in CTRWs for uniform flow scenarios, particle transition times here depend on the radial particle position, which renders the CTRW non-stationary. As a consequence, the memory kernel characterizing the non-local ADE, is radially dependent. Based on this general formulation, we derive radial CTRW implementations that (i) emulate non-local radial transport due to heterogeneous advection, (ii) model multirate mass transfer (MRMT) between mobile and immobile continua, and (iii) quantify both heterogeneou...

  1. Solute transport in coupled inland-coastal water systems. General conceptualisation and application to Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, Jerker; Destouni, Georgia; Persson, Klas; Prieto, Carmen (Dept. of Physical Geography, Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2007-12-15

    We formulate a general theoretical conceptualisation of solute transport from inland sources to downstream recipients, considering main recipient load contributions from all different nutrient and pollutant sources that may exist within any catchment. Since the conceptualisation is model independent, its main hydrological factors and mass delivery factors can be quantified on the basis of inputs to and outputs from any considered analytical or numerical model. Some of the conceptually considered source contribution and transport pathway combinations are however commonly neglected in catchment-scale solute transport and attenuation modelling, in particular those related to subsurface sources, diffuse sources at the land surface and direct groundwater transport into the recipient. The conceptual framework provides a possible tool for clarification of underlying and often implicit model assumptions, which can be useful for e.g. inter-model comparisons. In order to further clarify and explain research questions that may be of particular importance for transport pathways from deep groundwater surrounding a repository, we concretise and interpret some selected transport scenarios for model conditions in the Forsmark area. Possible uncertainties in coastal discharge predictions, related to uncertain spatial variation of evapotranspiration within the catchment, were shown to be small for the relatively large, focused surface water discharges from land to sea, because local differences were averaged out along the length of the main water flow paths. In contrast, local flux values within the diffuse groundwater flow field from land to sea are more uncertain, although estimates of mean values and total sums of submarine groundwater discharge (SGD) along some considerable coastline length may be robust. The present results show that 80% to 90% of the total coastal discharge of Forsmark occurred through focused flows in visible streams, whereas the remaining 10% to 20% was

  2. Solute transport in coupled inland-coastal water systems. General conceptualisation and application to Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Jarsjoe, Jerker; Destouni, Georgia; Persson, Klas; Prieto, Carmen (Dept. of Physical Geography, Quaternary Geology, Stockholm Univ., Stockholm (Sweden))

    2007-12-15

    We formulate a general theoretical conceptualisation of solute transport from inland sources to downstream recipients, considering main recipient load contributions from all different nutrient and pollutant sources that may exist within any catchment. Since the conceptualisation is model independent, its main hydrological factors and mass delivery factors can be quantified on the basis of inputs to and outputs from any considered analytical or numerical model. Some of the conceptually considered source contribution and transport pathway combinations are however commonly neglected in catchment-scale solute transport and attenuation modelling, in particular those related to subsurface sources, diffuse sources at the land surface and direct groundwater transport into the recipient. The conceptual framework provides a possible tool for clarification of underlying and often implicit model assumptions, which can be useful for e.g. inter-model comparisons. In order to further clarify and explain research questions that may be of particular importance for transport pathways from deep groundwater surrounding a repository, we concretise and interpret some selected transport scenarios for model conditions in the Forsmark area. Possible uncertainties in coastal discharge predictions, related to uncertain spatial variation of evapotranspiration within the catchment, were shown to be small for the relatively large, focused surface water discharges from land to sea, because local differences were averaged out along the length of the main water flow paths. In contrast, local flux values within the diffuse groundwater flow field from land to sea are more uncertain, although estimates of mean values and total sums of submarine groundwater discharge (SGD) along some considerable coastline length may be robust. The present results show that 80% to 90% of the total coastal discharge of Forsmark occurred through focused flows in visible streams, whereas the remaining 10% to 20% was

  3. Effects of Convective Solute and Impurity Transport in Protein Crystal Growth

    Science.gov (United States)

    Vekilov, Peter G.; Thomas, Bill R.; Rosenberger, Franz

    1998-01-01

    High-resolution optical interferometry was used to investigate the effects of forced solution convection on the crystal growth kinetics of the model protein lysozyme. Most experiments were conducted with 99.99% pure protein solutions. To study impurity effects, approx. 1% of lysozyme dimer (covalently bound) was added in some cases. We show that the unsteady kinetics, corresponding to bunching of growth steps, can be characterized by the Fourier components of time traces of the growth rate. Specific Fourier spectra are uniquely determined by the solution conditions (composition, temperature, and flow rate) and the growth layer source activity. We found that the average step velocity and growth rate increase by approx. I0% with increasing flow rate, as a result of the enhanced solute supply to the interface. More importantly, faster convective transport results in lower fluctuation amplitudes. This observation supports our rationale for system-dependent effects of transport on the structural perfection of protein crystals. We also found that solution flow rates greater than 500 microns/s result in stronger fluctuations while the average growth rate is decreased. This can lead to growth cessation at low supersaturations. With the intentionally contaminated solutions, these undesirable phenomena occurred at about half the flow rates required in pure solutions. Thus, we conclude that they are due to enhanced convective supply of impurities that are incorporated into the crystal during growth. Furthermore, we found that the impurity effects are reduced at higher crystal growth rates. Since the exposure time of terraces is inversely proportional to the growth rate, this observation suggests that the increased kinetics instability results from impurity adsorption on the interface. Finally, we provide evidence relating earlier observations of "slow protein crystal growth kinetics" to step bunch formation in response to nonsteady step generation.

  4. An inquiry into the characteristics, applicability and prerequisites of Radio-Frequency Identification (RFID solutions in transport networks and logistics

    Directory of Open Access Journals (Sweden)

    Antoniu Ovidiu Balint

    2013-09-01

    Full Text Available The use of intelligent solution represents the key factor for developing both the logistics sector and the economic environment. This paper analyses the Radio-Frequency Identification (RFID technology and its role in the Supply Chain Management (SCM especially in logistics and transport networks. The main objective is to demonstrate that RFID represents a solution for improving the transport networks and logistics sector by implementing various complex and intelligent solutions that can improve the actual economic environment

  5. Benchmark solutions for transport in $d$-dimensional Markov binary mixtures

    CERN Document Server

    Larmier, Coline; Malvagi, Fausto; Mazzolo, Alain; Zoia, Andrea

    2016-01-01

    Linear particle transport in stochastic media is key to such relevant applications as neutron diffusion in randomly mixed immiscible materials, light propagation through engineered optical materials, and inertial confinement fusion, only to name a few. We extend the pioneering work by Adams, Larsen and Pomraning \\cite{benchmark_adams} (recently revisited by Brantley \\cite{brantley_benchmark}) by considering a series of benchmark configurations for mono-energetic and isotropic transport through Markov binary mixtures in dimension $d$. The stochastic media are generated by resorting to Poisson random tessellations in $1d$ slab, $2d$ extruded, and full $3d$ geometry. For each realization, particle transport is performed by resorting to the Monte Carlo simulation. The distributions of the transmission and reflection coefficients on the free surfaces of the geometry are subsequently estimated, and the average values over the ensemble of realizations are computed. Reference solutions for the benchmark have never be...

  6. On Existence of $L^2$-solutions of Coupled Boltzmann Continuous Slowing Down Transport Equation System

    CERN Document Server

    Tervo, J; Frank, M; Herty, M

    2016-01-01

    The paper considers a coupled system of linear Boltzmann transport equation (BTE), and its Continuous Slowing Down Approximation (CSDA). This system can be used to model the relevant transport of particles used e.g. in dose calculation in radiation therapy. The evolution of charged particles (e.g. electrons and positrons) are in practice often modelled using the CSDA version of BTE because of the so-called forward peakedness of scattering events contributing to the particle fluencies (or particle densities), which causes severe problems for numerical methods. First, we prove the existence and uniqueness of solutions, under sufficient criteria and in appropriate $L^2$-based spaces, of a single (particle) CSDA-equation by using two complementary techniques, the Lions-Lax-Milgram Theorem (variational approach), and the theory evolution operators (semigroup approach). The necessary a priori estimates are shown. In addition, we prove the corresponding results and estimates for the system of coupled transport equat...

  7. Final Technical Report - Investigation into the Relationship between Heterogeneity and Heavy-Tailed Solute Transport

    Energy Technology Data Exchange (ETDEWEB)

    Weissmann, Gary S

    2013-12-06

    The objective of this project was to characterize the influence that naturally complex geologic media has on anomalous dispersion and to determine if the nature of dispersion can be estimated from the underlying heterogeneous media. The UNM portion of this project was to provide detailed representations of aquifer heterogeneity through producing highly-resolved models of outcrop analogs to aquifer materials. This project combined outcrop-scale heterogeneity characterization (conducted at the University of New Mexico), laboratory experiments (conducted at Sandia National Laboratory), and numerical simulations (conducted at Sandia National Laboratory and Colorado School of Mines). The study was designed to test whether established dispersion theory accurately predicts the behavior of solute transport through heterogeneous media and to investigate the relationship between heterogeneity and the parameters that populate these models. The dispersion theory tested by this work was based upon the fractional advection-dispersion equation (fADE) model. Unlike most dispersion studies that develop a solute transport model by fitting the solute transport breakthrough curve, this project explored the nature of the heterogeneous media to better understand the connection between the model parameters and the aquifer heterogeneity. We also evaluated methods for simulating the heterogeneity to see whether these approaches (e.g., geostatistical) could reasonably replicate realistic heterogeneity. The UNM portion of this study focused on capturing realistic geologic heterogeneity of aquifer analogs using advanced outcrop mapping methods.

  8. Stochastic approach to the numerical solution of the non-stationary Parker's transport equation

    CERN Document Server

    Wawrzynczak, A; Gil, A

    2015-01-01

    We present the newly developed stochastic model of the galactic cosmic ray (GCR) particles transport in the heliosphere. Mathematically Parker transport equation (PTE) describing non-stationary transport of charged particles in the turbulent medium is the Fokker-Planck type. It is the second order parabolic time-dependent 4-dimensional (3 spatial coordinates and particles energy/rigidity) partial differential equation. It is worth to mention that, if we assume the stationary case it remains as the 3-D parabolic type problem with respect to the particles rigidity R. If we fix the energy it still remains as the 3-D parabolic type problem with respect to time. The proposed method of numerical solution is based on the solution of the system of stochastic differential equations (SDEs) being equivalent to the Parker's transport equation. We present the method of deriving from PTE the equivalent SDEs in the heliocentric spherical coordinate system for the backward approach. The obtained stochastic model of the Forbu...

  9. Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method

    Science.gov (United States)

    Umeda, Minoru; Katagiri, Mitsuhiko; Shironita, Sayoko; Nagayama, Norio

    2016-12-01

    This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor's technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.

  10. Analytic solutions for colloid transport with time- and depth-dependent retention in porous media

    Science.gov (United States)

    Leij, Feike J.; Bradford, Scott A.; Sciortino, Antonella

    2016-12-01

    Elucidating and quantifying the transport of industrial nanoparticles (e.g. silver, carbon nanotubes, and graphene oxide) and other colloid-size particles such as viruses and bacteria is important to safeguard and manage the quality of the subsurface environment. Analytic solutions were derived for aqueous and solid phase colloid concentrations in a porous medium where colloids were subject to advective transport and reversible time and/or depth-dependent retention. Time-dependent blocking and ripening retention were described using a Langmuir-type equation with a rate coefficient that respectively decreased and increased linearly with the retained concentration. Depth-dependent retention was described using a rate coefficient that is a power-law function of distance. The stream tube modeling concept was employed to extend these analytic solutions to transport scenarios with two different partitioning processes (i.e., two types of retention sites). The sensitivity of concentrations was illustrated for the various time- and/or depth-dependent retention model parameters. The developed analytical models were subsequently used to describe breakthrough curves and, in some cases, retention profiles from several published column studies that employed nanoparticle or pathogenic microorganisms. Simulations results provided valuable insights on causes for many observed complexities associated with colloid transport and retention, including: increasing or decreasing effluent concentrations with continued colloid application, delayed breakthrough, low concentration tailing, and retention profiles that are hyper-exponential, exponential, linear, or non-monotonic with distance.

  11. Characterization of solute transport parameters in leach ore:inverse modeling based on column experiments

    Institute of Scientific and Technical Information of China (English)

    Sheng PENG

    2009-01-01

    Heap leaching is essentially a process in which metals are extracted from mine ores with lixiant. For a better understanding and modeling of this process, solute transport parameters are required to characterize the solute transport system of the leach heap. For porous media like leach ores, which contain substantial gravelly particles and have a broad range of particle size distributions, traditional small-scale laboratory experimental apparatus is not appropriate. In this paper, a 2.44m long, 0.3 m inner diameter column was used for tracer test with boron as the tracer. Tracer tests were conducted for 2 bulk densities (1.92 and 1.62g/cm3) and 2 irrigation rates (2 and 5 L/(mE. h-i)). Inverse modeling with two-region transport model using computer code CXTFIT was conducted based on the measured breakthrough curves to estimate the transport parameters. Fitting was focused on three parameters: dispersion coefficient D, partition coefficient r, and mass transfer coefficient ω. The results turned out to fall within reasonable ranges. Sensitivity analysis was conducted for the three parameters and showed that the order of sensitivity is β > ω > D. In addition, scaling of these parameters was discussed and applied to a real scale heap leach to predict the tracer breakthrough.

  12. Exploring Lithologic Controls on Solute Transport at the Shale Hills Critical Zone Observatory (Invited)

    Science.gov (United States)

    Singha, K.; Kuntz, B. W.; Toran, L.

    2009-12-01

    The Shale Hills Critical Zone Observatory (SHCZO) team has found that soil chemistry does not correlate with variability in pore fluid chemistry, suggesting the presence of macropores. Because of such heterogeneity, it is often difficult to relate short-term event chemistry to what we know about the chemistry of waters in catchments. Additionally, it is not clear what role the shale bedrock has on flow and transport of solutes within the catchment. We have been conducting tracer tests at the laboratory and field-scale to move toward describing short-term flux and solute transport behavior with the goal of integrating behavior over geologic time clarify the relationship between soil chemistry and pore fluid data. In field sites where such high permeability contrasts exist, what roles do flow and transport play in long-term fate of solutes? What is the importance of the interface between the shale bedrock and the regolith above? Is the shale bedrock “impermeable”? To improve characterization of permeability of the consolidated shale, we drilled four 17-m deep bedrock wells at the SHCZO and have collected a suite of borehole logs. From the drilling and data collected within the new wells, we can make the following conclusions: that there is a “slow drilling” zone around 6-7 m below land surface, above which is highly weathered shale that is reddish in color, beneath which is largely unfractured blue-grey shale. The natural gamma data similar indicate a higher percentage of clays with depth than in the top 6 m, which corresponds with data from Jin et al. (submitted, Geochimica et Cosmochimica Acta) that shows variability in shale bedrock density down about 6 m. Pump and slug test indicate an effective hydraulic conductivity of the Rose Hill Shale in the drilled boreholes on the order of 10-6 m/s, although hydraulic conductivity of the shale bedrock matrix estimated in a triaxial compression chamber is approximately10-15 m/s. In field-scale and lab-scale tracer

  13. Representing solute transport through the multi-barrier disposal system by simplified concepts

    Energy Technology Data Exchange (ETDEWEB)

    Poteri, A.; Nordman, H.; Pulkkanen, V-M. [VTT Technical Research Centre of Finland, Espoo (Finland); Kekaelaeinen, P. [Jyvaeskylae Univ. (Finland). Dept. pf Physics; Hautojaervi, A.

    2012-02-15

    The repository system chosen in Finland for spent nuclear fuel is composed of multiple successive transport barriers. If a waste canister is leaking, this multi-barrier system retards and limits the release rates of radionuclides into the biosphere. Analysis of radionuclide migration in the previous performance assessments has largely been based on numerical modelling of the repository system. The simplified analytical approach introduced here provides a tool to analyse the performance of the whole system using simplified representations of the individual transport barriers. This approach is based on the main characteristics of the individual barriers and on the generic nature of the coupling between successive barriers. In the case of underground repository the mass transfer between successive transport barriers is strongly restricted by the interfaces between barriers leading to well-mixed conditions in these barriers. The approach here simplifies the barrier system so that it can be described with a very simple compartment model, where each barrier is represented by a single, or in the case of buffer, by not more than two compartments. This system of compartments could be solved in analogy with a radioactive decay chain. The model of well mixed compartments lends itself to a very descriptive way to represent and analyse the barrier system because the relative efficiency of the different barriers in hindering transport of solutes can be parameterised by the solutes half-times in the corresponding compartments. In a real repository system there will also be a delay between the start of the inflow and the start of the outflow from the barrier. This delay can be important for the release rates of the short lived and sorbing radionuclides, and it was also included in the simplified representation of the barrier system. In a geological multi-barrier system, spreading of the outflowing release pulse is often governed by the typical behaviour of one transport barrier

  14. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport.

    Science.gov (United States)

    Leung, Juliana Y; Srinivasan, Sanjay

    2016-09-01

    Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It

  15. Effects of reservoir heterogeneity on scaling of effective mass transfer coefficient for solute transport

    Science.gov (United States)

    Leung, Juliana Y.; Srinivasan, Sanjay

    2016-09-01

    Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It

  16. SEAWAT Version 4: A Computer Program for Simulation of Multi-Species Solute and Heat Transport

    Science.gov (United States)

    Langevin, Christian D.; Thorne, Daniel T.; Dausman, Alyssa M.; Sukop, Michael C.; Guo, Weixing

    2008-01-01

    The SEAWAT program is a coupled version of MODFLOW and MT3DMS designed to simulate three-dimensional, variable-density, saturated ground-water flow. Flexible equations were added to the program to allow fluid density to be calculated as a function of one or more MT3DMS species. Fluid density may also be calculated as a function of fluid pressure. The effect of fluid viscosity variations on ground-water flow was included as an option. Fluid viscosity can be calculated as a function of one or more MT3DMS species, and the program includes additional functions for representing the dependence on temperature. Although MT3DMS and SEAWAT are not explicitly designed to simulate heat transport, temperature can be simulated as one of the species by entering appropriate transport coefficients. For example, the process of heat conduction is mathematically analogous to Fickian diffusion. Heat conduction can be represented in SEAWAT by assigning a thermal diffusivity for the temperature species (instead of a molecular diffusion coefficient for a solute species). Heat exchange with the solid matrix can be treated in a similar manner by using the mathematically equivalent process of solute sorption. By combining flexible equations for fluid density and viscosity with multi-species transport, SEAWAT Version 4 represents variable-density ground-water flow coupled with multi-species solute and heat transport. SEAWAT Version 4 is based on MODFLOW-2000 and MT3DMS and retains all of the functionality of SEAWAT-2000. SEAWAT Version 4 also supports new simulation options for coupling flow and transport, and for representing constant-head boundaries. In previous versions of SEAWAT, the flow equation was solved for every transport timestep, regardless of whether or not there was a large change in fluid density. A new option was implemented in SEAWAT Version 4 that allows users to control how often the flow field is updated. New options were also implemented for representing constant

  17. Evidence For Diffusion Dominant Solute Transport In The Ordovician Sediments Of The Michigan Basin

    Science.gov (United States)

    Sykes, J. F.; Normani, S. D.; Yin, Y.

    2011-12-01

    A Deep Geologic Repository (DGR) for Low and Intermediate Level Radioactive Waste has been proposed by Ontario Power Generation for the Bruce site near Tiverton, Ontario, 225 km northwest of Toronto. The DGR concept envisions a repository excavated at a depth of 680 m within the low permeability (less than 10e-14 m/s) limestone Cobourg Formation beneath 200 m of Ordovician age shale. The attributes of the hydrogeologic environment for the DGR, and the potential for solute transport from a repository, were assessed using numerical models for hypothesis testing and numerical experiments. Data for the analyses included Westbay pressure measurements from the DGR site investigation boreholes. These data indicate that the Cambrian sandstone and the Niagaran Group in the Silurian are over-pressured relative to density corrected hydrostatic levels while the Ordovician limestone and shale are significantly under-pressured. The abnormal pressures provide evidence that solute transport in the low permeable Ordovician sediments is diffusion dominant. Sedimentary basins, when at hydrological equilibrium, normally show a near-hydrostatic pressure distribution. Under certain conditions, some excess pressure or pressure greater than hydrostatic can develop in low-permeability layers or other hydraulically isolated parts of systems. The processes commonly invoked to explain these over-pressures are compaction, hydrocarbon migration, diagenesis, tectonic stress or more simply topographic effects. Explanations of abnormal under-pressures include osmosis, exhumation, glaciation unloading, crustal flexure and the presence of a non-wetting gas phase in pores. A requirement of both abnormal over-pressures and under-pressures is low hydraulic conductivity in either the formation in which the abnormal pressures are observed, or in the overlying and underlying formations. Hydraulic conductivity estimates from straddle packer tests in the DGR boreholes confirm that the hydraulic

  18. Flow Data for Solute Transport Modeling from Tracer Experiments in a Stream Not Continuously Gaining Water

    Science.gov (United States)

    Bencala, K. E.; Kimball, B. A.; Gooseff, M. N.

    2007-12-01

    In-stream tracer experiments are a well-established method for determining flow data to be incorporated in solute transport modeling. For a gaining stream, this method is implemented to provide spatial flow data at scales of minutes and tens of meters without physical disturbance to the flow of water, the streambed, or biota. Of importance for solute transport modeling, solute inflow loading along the stream can be estimated with this spatial data. The tracer information can also be interpreted to characterize hyporheic exchange time-scales for a stream with hyporheic exchange flowpaths (HEFs) that are short relative to the distance over which the stream gains water. The interpretation of tracer data becomes uncertain for a stream that is not gaining water continuously over intended study reach. We demonstrate, with straight-forward mass-balances, uncertainties for solute loading which arise in the analysis of streams locally losing water while predominantly gaining water (and solutes) over a larger scale. With field data from Mineral Creek (Silverton, Colorado) we illustrate the further uncertainty distinguishing HEFs from (locally) losing segments of the stream. Comparison of bromide tracer with ambient sulfate concentrations suggests that subsurface inflows and outflows, concurrent with likely HEFs, occur in a hydrogeochemical setting of multiple, dispersed and mixed, sources of water along a 64 m sub-reach of the predominately gaining, but locally losing, stream. To compute stream-reach mass-balances (the simplest of water quality models) there is a need to quantitatively define the character and source of contaminants entering streams from ground-water pathways, as well as the potential for changes in water chemistry and contaminant concentrations along flow paths crossing the sediment-water interface. Identification of inflow solute mass requires quantifying water gain, loss, and hyporheic exchange in addition to concentration.

  19. Control of colloid transport via solute gradients in dead-end channels

    Science.gov (United States)

    Shin, Sangwoo; Um, Eujin; Warren, Patrick; Stone, Howard

    2015-11-01

    Transport of colloids in dead-end channels is involved in widespread applications ranging from drug delivery to geophysical flows. In such geometries, Brownian motion may be considered as the sole mechanism that enables transport of colloidal particles into or out of the channels, which is, unfortunately, an extremely inefficient transport mechanism for microscale particles. Here, we explore the possibility of diffusiophoresis as a means to control the colloid transport by introducing a solute gradient along the dead-end channels. We demonstrate that the transport of colloidal particles into the dead-end channels can be either enhanced or completely prevented via diffusiophoresis. We also observe a size-dependent focusing of the particles where, as the particle size increases, the particles tend to concentrate more, and they tend to reside deeper in the channel. Our findings have implications for all manners of controlled release processes, especially for site-specific drug delivery systems where localized targeting of drugs with minimal dispersion to the non-target is essential.

  20. Effects of alongshore morphology on groundwater flow and solute transport in a nearshore aquifer

    Science.gov (United States)

    Zhang, Ying; Li, Ling; Erler, Dirk V.; Santos, Isaac; Lockington, David

    2016-02-01

    Variations of beach morphology in both the cross-shore and alongshore directions, associated with tidal creeks, are common at natural coasts, as observed at a field site on the east coast of Rarotonga, Cook Islands. Field investigations and three-dimensional (3-D) numerical simulations were conducted to study the nearshore groundwater flow and solute transport in such a system. The results show that the beach morphology, combined with tides, induced a significant alongshore flow and modified local pore water circulation and salt transport in the intertidal zone substantially. The bathymetry and hydraulic head of the creek enabled further and more rapid landward intrusion of seawater along the creek than in the aquifer, which created alongshore hydraulic gradient and solute concentration gradient to drive pore water flow and salt transport in the alongshore direction within the aquifer. The effects of the creek led to the formation of a saltwater plume in groundwater at an intermediate depth between fresher water zones on a cross-shore transect. The 3-D pore water flow in the nearshore zone was also complicated by the landward hydraulic head condition, resulting in freshwater drainage across the inland section of the creek while seawater infiltrating the seaward section. These results provided new insights into the complexity, intensity, and time scales of mixing among fresh groundwater, recirculating seawater and creek water in three dimensions. The 3-D characteristics of nearshore pore water flow and solute transport have important implications for studies of submarine groundwater discharge and associated chemical input to the coastal sea, and for evaluation of the beach habitat conditions.

  1. Numerical solution of transport equation for applications in environmental hydraulics and hydrology

    Science.gov (United States)

    Rashidul Islam, M.; Hanif Chaudhry, M.

    1997-04-01

    The advective term in the one-dimensional transport equation, when numerically discretized, produces artificial diffusion. To minimize such artificial diffusion, which vanishes only for Courant number equal to unity, transport owing to advection has been modeled separately. The numerical solution of the advection equation for a Gaussian initial distribution is well established; however, large oscillations are observed when applied to an initial distribution with sleep gradients, such as trapezoidal distribution of a constituent or propagation of mass from a continuous input. In this study, the application of seven finite-difference schemes and one polynomial interpolation scheme is investigated to solve the transport equation for both Gaussian and non-Gaussian (trapezoidal) initial distributions. The results obtained from the numerical schemes are compared with the exact solutions. A constant advective velocity is assumed throughout the transport process. For a Gaussian distribution initial condition, all eight schemes give excellent results, except the Lax scheme which is diffusive. In application to the trapezoidal initial distribution, explicit finite-difference schemes prove to be superior to implicit finite-difference schemes because the latter produce large numerical oscillations near the steep gradients. The Warming-Kutler-Lomax (WKL) explicit scheme is found to be better among this group. The Hermite polynomial interpolation scheme yields the best result for a trapezoidal distribution among all eight schemes investigated. The second-order accurate schemes are sufficiently accurate for most practical problems, but the solution of unusual problems (concentration with steep gradient) requires the application of higher-order (e.g. third- and fourth-order) accurate schemes.

  2. Groundwater and solute transport modeling at Hyporheic zone of upper part Citarum River

    Science.gov (United States)

    Iskandar, Irwan; Farazi, Hendy; Fadhilah, Rahmat; Purnandi, Cipto; Notosiswoyo, Sudarto

    2017-06-01

    Groundwater and surface water interaction is an interesting topic to be studied related to the water resources and environmental studies. The study of interaction between groundwater and river water at the Upper Part Citarum River aims to know the contribution of groundwater to the river or reversely and also solute transport of dissolved ions between them. Analysis of drill logs, vertical electrical sounding at the selected sections, measurement of dissolved ions, and groundwater modeling were applied to determine the flow and solute transport phenomena at the hyporheic zone. It showed the hyporheic zone dominated by silt and clay with hydraulic conductivity range from 10-4∼10-8 m/s. The groundwater flowing into the river with very low gradient and it shows that the Citarum River is a gaining stream. The groundwater modeling shows direct seepage of groundwater into the Citarum River is only 186 l/s, very small compared to the total discharge of the river. Total dissolved ions of the groundwater ranged from 200 to 480 ppm while the river water range from 200 to 2,000 ppm. Based on solute transport modeling it indicates dissolved ions dispersion of the Citarum River into groundwater may occur in some areas such as Bojongsoang-Dayeuh Kolot and Nanjung. This situation would increase the dissolved ions in groundwater in the region due to the contribution of the Citarum River. The results of the research can be a reference for further studies related to the mechanism of transport of the pollutants in the groundwater around the Citarum River.

  3. Capillary-Driven Solute Transport and Precipitation in Porous Media during Dry-Out

    Science.gov (United States)

    Ott, Holger; Andrew, Matthew; Blunt, Martin; Snippe, Jeroen

    2014-05-01

    The injection of dry or under-saturated gases or supercritical (SC) fluids into water bearing formations might lead to a formation dry-out in the vicinity of the injection well. The dry-out is caused by the evaporation/dissolution of formation water into the injected fluid and the subsequent transport of dissolved water in the injected fluid away from the injection well. Dry-out results in precipitation from solutes of the formation brine and consequently leads to a reduction of the rock's pore space (porosity) and eventually to a reduction of permeability near the injection well, or even to the loss of injectivity. Recently evidence has been found that the complexity of the pore space and the respective capillary driven solute transport plays a key role. While no effective-permeability (Keff) reduction was observed in a single-porosity sandstone, multi porosity carbonate rocks responded to precipitation with a strong reduction of Keff. The reason for the different response of Keff to salt precipitation is suspected to be in the exact location of the precipitate (solid salt) in the pore space. In this study, we investigate dry-out and salt precipitation due to supercritical CO2 injection in single and multi-porosity systems under near well-bore conditions. We image fluid saturation changes by means of μCT scanning during desaturation. We are able to observe capillary driven transport of the brine phase and the respective transport of solutes on the rock's pore scale. Finally we have access to the precipitated solid-salt phase and their distribution. The results can proof the thought models behind permeability porosity relationships K(φ) for injectivity modeling. The topic and the mechanisms we show are of general interest for drying processes in porous material such as soils and paper.

  4. Modeling variably saturated multispecies reactive groundwater solute transport with MODFLOW-UZF and RT3D

    Science.gov (United States)

    Bailey, Ryan T.; Morway, Eric D.; Niswonger, Richard G.; Gates, Timothy K.

    2013-01-01

    A numerical model was developed that is capable of simulating multispecies reactive solute transport in variably saturated porous media. This model consists of a modified version of the reactive transport model RT3D (Reactive Transport in 3 Dimensions) that is linked to the Unsaturated-Zone Flow (UZF1) package and MODFLOW. Referred to as UZF-RT3D, the model is tested against published analytical benchmarks as well as other published contaminant transport models, including HYDRUS-1D, VS2DT, and SUTRA, and the coupled flow and transport modeling system of CATHY and TRAN3D. Comparisons in one-dimensional, two-dimensional, and three-dimensional variably saturated systems are explored. While several test cases are included to verify the correct implementation of variably saturated transport in UZF-RT3D, other cases are included to demonstrate the usefulness of the code in terms of model run-time and handling the reaction kinetics of multiple interacting species in variably saturated subsurface systems. As UZF1 relies on a kinematic-wave approximation for unsaturated flow that neglects the diffusive terms in Richards equation, UZF-RT3D can be used for large-scale aquifer systems for which the UZF1 formulation is reasonable, that is, capillary-pressure gradients can be neglected and soil parameters can be treated as homogeneous. Decreased model run-time and the ability to include site-specific chemical species and chemical reactions make UZF-RT3D an attractive model for efficient simulation of multispecies reactive transport in variably saturated large-scale subsurface systems.

  5. Global sensitivity analysis and Bayesian parameter inference for solute transport in porous media colonized by biofilms

    Science.gov (United States)

    Younes, A.; Delay, F.; Fajraoui, N.; Fahs, M.; Mara, T. A.

    2016-08-01

    The concept of dual flowing continuum is a promising approach for modeling solute transport in porous media that includes biofilm phases. The highly dispersed transit time distributions often generated by these media are taken into consideration by simply stipulating that advection-dispersion transport occurs through both the porous and the biofilm phases. Both phases are coupled but assigned with contrasting hydrodynamic properties. However, the dual flowing continuum suffers from intrinsic equifinality in the sense that the outlet solute concentration can be the result of several parameter sets of the two flowing phases. To assess the applicability of the dual flowing continuum, we investigate how the model behaves with respect to its parameters. For the purpose of this study, a Global Sensitivity Analysis (GSA) and a Statistical Calibration (SC) of model parameters are performed for two transport scenarios that differ by the strength of interaction between the flowing phases. The GSA is shown to be a valuable tool to understand how the complex system behaves. The results indicate that the rate of mass transfer between the two phases is a key parameter of the model behavior and influences the identifiability of the other parameters. For weak mass exchanges, the output concentration is mainly controlled by the velocity in the porous medium and by the porosity of both flowing phases. In the case of large mass exchanges, the kinetics of this exchange also controls the output concentration. The SC results show that transport with large mass exchange between the flowing phases is more likely affected by equifinality than transport with weak exchange. The SC also indicates that weakly sensitive parameters, such as the dispersion in each phase, can be accurately identified. Removing them from calibration procedures is not recommended because it might result in biased estimations of the highly sensitive parameters.

  6. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a

  7. PHAST Version 2-A Program for Simulating Groundwater Flow, Solute Transport, and Multicomponent Geochemical Reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Charlton, Scott R.

    2010-01-01

    The computer program PHAST (PHREEQC And HST3D) simulates multicomponent, reactive solute transport in three-dimensional saturated groundwater flow systems. PHAST is a versatile groundwater flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. Major enhancements in PHAST Version 2 allow spatial data to be defined in a combination of map and grid coordinate systems, independent of a specific model grid (without node-by-node input). At run time, aquifer properties are interpolated from the spatial data to the model grid; regridding requires only redefinition of the grid without modification of the spatial data. PHAST is applicable to the study of natural and contaminated groundwater systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock/water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, or density-dependent flow. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux (specified-flux), and leaky (head-dependent) conditions, as well as the special cases of rivers, drains, and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association or Pitzer specific interaction thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, ion exchange sites, surface complexation sites, solid solutions, and gases; and

  8. Thermally cross-linkable hole transport polymers for solution-based organic light-emitting diodes.

    Science.gov (United States)

    Cha, Seung Ji; Cho, Se-Na; Lee, Woo-Hyung; Chung, Ha-Seul; Kang, In-Nam; Suh, Min Chul

    2014-04-01

    Two thermally cross-linkable hole transport polymers that contain phenoxazine and triphenylamine moieties, X-P1 and X-P2, are developed for use in solution-processed multi-stack organic light-emitting diodes (OLEDs). Both X-P1 and X-P2 exhibit satisfactory cross-linking and optoelectronic properties. The highest occupied molecular orbital (HOMO) levels of X-P1 and X-P2 are -5.24 and -5.16 eV, respectively. Solution-processed super yellow polymer devices (ITO/X-P1 or X-P2/PDY-132/LiF/Al) with X-P1 or X-P2 hole transport layers of various thicknesses are fabricated with the aim of optimizing the device characteristics. The fabricated multi-stack yellow devices containing the newly synthesized hole transport polymers exhibit satisfactory currents and power efficiencies. The optimized X-P2 device exhibits a device efficiency that is dramatically improved by more than 66% over that of a reference device without an HTL.

  9. Benchmarking the invariant embedding method against analytical solutions in model transport problems

    Directory of Open Access Journals (Sweden)

    Wahlberg Malin

    2006-01-01

    Full Text Available The purpose of this paper is to demonstrate the use of the invariant embedding method in a few model transport problems for which it is also possible to obtain an analytical solution. The use of the method is demonstrated in three different areas. The first is the calculation of the energy spectrum of sputtered particles from a scattering medium without absorption, where the multiplication (particle cascade is generated by recoil production. Both constant and energy dependent cross-sections with a power law dependence were treated. The second application concerns the calculation of the path length distribution of reflected particles from a medium without multiplication. This is a relatively novel application, since the embedding equations do not resolve the depth variable. The third application concerns the demonstration that solutions in an infinite medium and in a half-space are interrelated through embedding-like integral equations, by the solution of which the flux reflected from a half-space can be reconstructed from solutions in an infinite medium or vice versa. In all cases, the invariant embedding method proved to be robust, fast, and monotonically converging to the exact solutions.

  10. Heterogeneous nucleation promotes carrier transport in solution-processed organic field-effect transistors

    KAUST Repository

    Li, Ruipeng

    2012-09-04

    A new way to investigate and control the growth of solution-cast thin films is presented. The combination of in situ quartz crystal microbalance measurements with dissipation capabilities (QCM-D) and in situ grazing-incidence wide-angle X-ray scattering (GIWAXS) in an environmental chamber provides unique quantitative insights into the time-evolution of the concentration of the solution, the onset of nucleation, and the mode of growth of the organic semiconductor under varied drying conditions. It is demonstrated that careful control over the kinetics of solution drying enhances carrier transport significantly by promoting phase transformation predominantly via heterogeneous nucleation and sustained surface growth of a highly lamellar structure at the solid-liquid interface at the expense of homogeneous nucleation. A new way to investigate and control the growth of drop-cast thin films is presented. The solution-processing of small-molecule thin films of TIPS-pentacene is investigated using time-resolved techniques to reveal the mechanisms of nucleation and growth leading to solid film formation. By tuning the drying speed of the solution, the balance between surface and bulk growth modes is altered, thereby controlling the lamellar formation and tuning the carrier mobility in organic field-effect transistors Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Extended Macroscopic Study of Dilute Gas Flow within a Microcavity

    Directory of Open Access Journals (Sweden)

    Mohamed Hssikou

    2016-01-01

    Full Text Available The behaviour of monatomic and dilute gas is studied in the slip and early transition regimes using the extended macroscopic theory. The gas is confined within a two-dimensional microcavity where the longitudinal sides are in the opposite motion with constant velocity ±Uw. The microcavity walls are kept at the uniform and reference temperature T0. Thus, the gas flow is transported only by the shear stress induced by the motion of upper and lower walls. From the macroscopic point of view, the regularized 13-moment equations of Grad, R13, are solved numerically. The macroscopic gas proprieties are studied for different values of the so-called Knudsen number (Kn, which gives the gas-rarefaction degree. The results are compared with those obtained using the classical continuum theory of Navier-Stokes and Fourier (NSF.

  12. Solution-Processed Metal Oxides as Efficient Carrier Transport Layers for Organic Photovoltaics.

    Science.gov (United States)

    Choy, Wallace C H; Zhang, Di

    2016-01-27

    Carrier (electron and hole) transport layers (CTLs) are essential components for boosting the performance of various organic optoelectronic devices such as organic solar cells and organic light-emitting diodes. Considering the drawbacks of conventional CTLs (easily oxidized/unstable, demanding/costly fabrication, etc.), transition metal oxides with good carrier transport/extraction and superior stability have drawn extensive research interest as CTLs for next-generation devices. In recent years, many research efforts have been made toward the development of solution-based metal oxide CTLs with the focus on low- or even room-temperature processes, which can potentially be compatible with the deposition processes of organic materials and can significantly contribute to the low-cost and scale-up of organic devices. Here, the recent progress of different types of solution-processed metal oxide CTLs are systematically reviewed in the context of organic photovoltaics, from synthesis approaches to device performance. Different approaches for further enhancing the performance of solution-based metal oxide CTLs are also discussed, which may push the future development of this exciting field.

  13. A class of analytical solutions for multidimensional multispecies diffusive transport coupled with precipitation-dissolution reactions and porosity changes

    Science.gov (United States)

    Hayek, Mohamed; Kosakowski, Georg; Jakob, Andreas; Churakov, Sergey V.

    2012-03-01

    One of the challenging problems in mathematical geosciences is the determination of analytical solutions of nonlinear partial differential equations describing transport processes in porous media. We are interested in diffusive transport coupled with precipitation-dissolution reactions. Several numerical computer codes that simulate such systems have been developed. Analytical solutions, if they exist, represent an important tool for verification of numerical solutions. We present a methodology for deriving such analytical solutions that are exact and explicit in space and time variables. They describe transport of several aqueous species coupled to precipitation and dissolution of a single mineral in one, two, and three dimensions. As an application, we consider explicit analytical solutions for systems containing one or two solute species that describe the evolution of solutes and solid concentrations as well as porosity. We use one of the proposed analytical solutions to test numerical solutions obtained from two conceptually different reactive transport codes. Both numerical implementations could be verified with the help of the analytical solutions and show good agreement in terms of spatial and temporal evolution of concentrations and porosities.

  14. Benchmark solutions for transport in d-dimensional Markov binary mixtures

    Science.gov (United States)

    Larmier, Coline; Hugot, François-Xavier; Malvagi, Fausto; Mazzolo, Alain; Zoia, Andrea

    2017-03-01

    Linear particle transport in stochastic media is key to such relevant applications as neutron diffusion in randomly mixed immiscible materials, light propagation through engineered optical materials, and inertial confinement fusion, only to name a few. We extend the pioneering work by Adams, Larsen and Pomraning [1] (recently revisited by Brantley [2]) by considering a series of benchmark configurations for mono-energetic and isotropic transport through Markov binary mixtures in dimension d. The stochastic media are generated by resorting to Poisson random tessellations in 1 d slab, 2 d extruded, and full 3 d geometry. For each realization, particle transport is performed by resorting to the Monte Carlo simulation. The distributions of the transmission and reflection coefficients on the free surfaces of the geometry are subsequently estimated, and the average values over the ensemble of realizations are computed. Reference solutions for the benchmark have never been provided before for two- and three-dimensional Poisson tessellations, and the results presented in this paper might thus be useful in order to validate fast but approximated models for particle transport in Markov stochastic media, such as the celebrated Chord Length Sampling algorithm.

  15. The Influence of Calcium Chloride Salt Solution on the Transport Properties of Cementitious Materials

    Directory of Open Access Journals (Sweden)

    Yaghoob Farnam

    2015-01-01

    Full Text Available The chemical interaction between calcium chloride (CaCl2 and cementitious binder may alter the transport properties of concrete which are important in predicting the service life of infrastructure elements. This paper presents a series of fluid and gas transport measurements made on cementitious mortars before and after exposure to various solutions with concentrations ranging from 0% to 29.8% CaCl2 by mass. Fluid absorption, oxygen diffusivity, and oxygen permeability were measured on mortar samples prepared using Type I and Type V cements. Three primary factors influence the transport properties of mortar exposed to CaCl2: (1 changes in the degree of saturation, (2 calcium hydroxide leaching, and (3 formation of chemical reaction products (i.e., Friedel’s salt, Kuzel’s salt, and calcium oxychloride. It is shown that an increase in the degree of saturation decreases oxygen permeability. At lower concentrations (~12%, the formation of chemical reaction products (mainly calcium oxychloride is a dominant factor decreasing the fluid and gas transport in concrete.

  16. PARTRACK - A particle tracking algorithm for transport and dispersion of solutes in a sparsely fractured rock

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Urban [Computer-aided Fluid Engineering AB, Norrkoeping (Sweden)

    2001-04-01

    A particle tracking algorithm, PARTRACK, that simulates transport and dispersion in a sparsely fractured rock is described. The main novel feature of the algorithm is the introduction of multiple particle states. It is demonstrated that the introduction of this feature allows for the simultaneous simulation of Taylor dispersion, sorption and matrix diffusion. A number of test cases are used to verify and demonstrate the features of PARTRACK. It is shown that PARTRACK can simulate the following processes, believed to be important for the problem addressed: the split up of a tracer cloud at a fracture intersection, channeling in a fracture plane, Taylor dispersion and matrix diffusion and sorption. From the results of the test cases, it is concluded that PARTRACK is an adequate framework for simulation of transport and dispersion of a solute in a sparsely fractured rock.

  17. Transport and dosimetric solutions for the ELIMED laser-driven beam line

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, G.A.P. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Romano, F. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Medical Physics School, University of Catania, Via S. Sofia 64 - 95125 Catania (Italy); Scuderi, V. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, 182 21 Prague (Czech Republic); Amato, A. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Candiano, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Medical Physics School, University of Catania, Via S. Sofia 64 - 95125 Catania (Italy); Cuttone, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Giove, D. [INFN Sezione di Milano, Via Celoria 16, Milano (Italy); Korn, G.; Krasa, J. [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, 182 21 Prague (Czech Republic); Leanza, R. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Universitá degli Studi di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Manna, R. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Maggiore, M. [INFN-LNL, Viale dell' Universitá 2 - 35020 Legnaro (PD) (Italy); Marchese, V. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Margarone, D. [Institute of Physics ASCR, v.v.i. (FZU), ELI-Beamlines Project, Na Slovance 2, 182 21 Prague (Czech Republic); Milluzzo, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Universitá degli Studi di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Petringa, G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Sabini, M.G. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Azienda Ospedaliera Cannizzaro, Via Messina 829 - 95100 Catania (Italy); Schillaci, F. [INFN-LNS, Via S. Sofia 62 - 95125 Catania (Italy); Medical Physics School, University of Catania, Via S. Sofia 64 - 95125 Catania (Italy); and others

    2015-10-01

    Within 2017, the ELIMED (ELI-Beamlines MEDical applications) transport beam-line and dosimetric systems for laser-generated beams will be installed at the ELI-Beamlines facility in Prague (CZ), inside the ELIMAIA (ELI Multidisciplinary Applications of laser–Ion Acceleration) interaction room. The beam-line will be composed of two sections: one in vacuum, devoted to the collecting, focusing and energy selection of the primary beam and the second in air, where the ELIMED beam-line dosimetric devices will be located. This paper briefly describes the transport solutions that will be adopted together with the main dosimetric approaches. In particular, the description of an innovative Faraday Cup detector with its preliminary experimental tests will be reported.

  18. Analysis of the sodium recirculation theory of solute-coupled water transport in small intestine

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkaer

    2002-01-01

    permeabilities and pump constants of fluxes of water and electrolytes, volumes and ion concentrations of cell and lateral intercellular space (lis), and membrane potentials and conductances. Simulating physiological bioelectrical features together with cellular and paracellular fluxes of the sodium ion......, computations predict that the concentration differences between lis and bathing solutions are small for all three ions. Nevertheless, the diffusion fluxes of the ions out of lis significantly exceed their mass transports. It is concluded that isotonic transport requires recirculation of all three ions...... flows of water across the epithelium with recirculation of the diffusible ions maintained by a 1Na+-1K+-2Cl- cotransporter in the plasma membrane facing the serosal compartment. With intracellular non-diffusible anions and compliant plasma membranes, the model describes the dependence on membrane...

  19. Signature of non-Fickian solute transport in complex heterogeneous porous media.

    Science.gov (United States)

    Bijeljic, Branko; Mostaghimi, Peyman; Blunt, Martin J

    2011-11-11

    We simulate transport of a solute through three-dimensional images of different rock samples, with resolutions of a few microns, representing geological media of increasing pore-scale complexity: a sandpack, a Berea sandstone, and a Portland limestone. We predict the propagators (concentration as a function of distance) measured on similar cores in nuclear magnetic resonance experiments and the dispersion coefficient as a function of Péclet number and time. The behavior is explained using continuous time random walks with a truncated power-law distribution of travel times: transport is qualitatively different for the complex limestone compared to the sandstone or sandpack, with long tailing, an almost immobile peak concentration, and a very slow approach to asymptotic dispersion.

  20. Modeling study of solute transport in the unsaturated zone: Workshop proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Springer, E.P.; Fuentes, H.R. (eds.)

    1987-04-01

    Issues addressed were the adequacy of the data for the various models, effectiveness of the models to represent the data, particular information provided by the models, the role of caisson experiments in providing fundamental knowledge of porous-media water flow and solute transport, and the importance of geochemistry to the transport of nonconservative tracers. These proceedings include the presentations made by each of the modelers; the summary document written by the panel; and a transcript of the discussions, both the discussions that followed individual presentations and the general discussion held on the second day. This publication completes the series on the workshop. Volume I in the series (NUREG/CR-4615, Vol. I) contains background information and the data sets provided each modeler.

  1. Solute transport in a well under slow-purge and no-purge conditions

    Science.gov (United States)

    Plummer, M. A.; Britt, S. L.; Martin-Hayden, J. M.

    2010-12-01

    Non-purge sampling techniques, such as diffusion bags and in-situ sealed samplers, offer reliable and cost-effective groundwater monitoring methods that are a step closer to the goal of real-time monitoring without pumping or sample collection. Non-purge methods are, however, not yet completely accepted because questions remain about how solute concentrations in an unpurged well relate to concentrations in the adjacent formation. To answer questions about how undisturbed well water samples compare to formation concentrations, and to provide the information necessary to interpret results from non-purge monitoring systems, we have conducted a variety of physical experiments and numerical simulations of flow and transport in and through monitoring wells under low-flow and ambient flow conditions. Previous studies of flow and transport in wells used a Darcy’s law - based continuity equation for flow, which is often justified under the strong, forced-convection flow caused by pumping or large vertical hydraulic potential gradients. In our study, we focus on systems with weakly forced convection, where density-driven free convection may be of similar strength. We therefore solved Darcy’s law for porous media domains and the Navier Stokes equations for flow in the well, and coupled solution of the flow equations to that of solute transport. To illustrate expected in-well transport behavior under low-flow conditions, we present results of three particular studies: (1) time-dependent effluent concentrations from a well purged at low-flow pumping rates, (2) solute-driven density effects in a well under ambient horizontal flow and (3) temperature-driven mixing in a shallow well subject to seasonal temperature variations. Results of the first study illustrate that assumptions about the nature of in-well flow have a significant impact on effluent concentration curves even during pumping, with Poiseuille-type flow producing more rapid removal of concentration differences

  2. Upscaling of solute transport in disordered porous media by wavelet transformations

    Science.gov (United States)

    Moslehi, Mahsa; de Barros, Felipe P. J.; Ebrahimi, Fatemeh; Sahimi, Muhammad

    2016-10-01

    Modeling flow and solute transport in large-scale (e.g.) on the order of 103 m heterogeneous porous media involves substantial computational burden. A common approach to alleviate the problem is to utilize an upscaling method that generates models that require less intensive computations. The method must also preserve the important properties of the spatial distribution of the hydraulic conductivity (K) field. We use an upscaling method based on the wavelet transformations (WTs) that coarsens the computational grid based on the spatial distribution of K. The technique is applied to a porous formation with broadly distributed and correlated K values, and the governing equation for solute transport in the formation is solved numerically. The WT upscaling preserves the resolution of the initial highly-resolved computational grid in the high K zones, as well as that of the zones with sharp contrasts between the neighboring K, whereas the low-K zones are averaged out. To demonstrate the accuracy of the method, we simulate fluid flow and nonreactive solute transport in both the high-resolution and upscaled grids, and compare the concentration profiles and the breakthrough times. The results indicate that the WT upscaling of a K field generates non-uniform upscaled grids with a number of grid blocks that on average is about two percent of the number of the blocks in the original high-resolution computational grids, while the concentration profiles, the breakthrough times and the second moment of the concentration distribution, computed for both models, are virtually identical. A systematic parametric study is also carried out in order to investigate the sensitivity of the method to the broadness of the K field, the nature of the correlations in the field (positive versus negative), and the size of the computational grid. As the broadness of the K field and the size of the computational domain increase, better agreement between the results for the high-resolution and

  3. A cellular automaton model adapted to sandboxes to simulate the transport of solutes

    Science.gov (United States)

    Lora, Boris; Donado, Leonardo; Castro, Eduardo; Bayuelo, Alfredo

    2016-04-01

    The increasingly use of groundwater sources for human consumption and the growth of the levels of these hydric sources contamination make imperative to reach a deeper understanding how the contaminants are transported by the water, in particular through a heterogeneous porous medium. Accordingly, the present research aims to design a model, which simulates the transport of solutes through a heterogeneous porous medium, using cellular automata. Cellular automata (CA) are a class of spatially (pixels) and temporally discrete mathematical systems characterized by local interaction (neighborhoods). The pixel size and the CA neighborhood were determined in order to reproduce accurately the solute behavior (Ilachinski, 2001). For the design and corresponding validation of the CA model were developed different conservative tracer tests using a sandbox packed heterogeneously with a coarse sand (size # 20 grain diameter 0,85 to 0,6 mm) and clay. We use Uranine and a saline solution with NaCl as a tracer which were measured taking snapshots each 20 seconds. A calibration curve (pixel intensity Vs Concentration) was used to obtain concentration maps. The sandbox was constructed of acrylic (caliber 0,8 cms) with 70 x 45 x 4 cms of dimensions. The "sandbox" had a grid of 35 transversal holes with a diameter of 4 mm each and an uniform separation from one to another of 10 cms. To validate the CA-model it was used a metric consisting in rating the number of correctly predicted pixels over the total per image throughout the entire test run. The CA-model shows that calibrations of pixels and neighborhoods allow reaching results over the 60 % of correctly predictions usually. This makes possible to think that the application of the CA- model could be useful in further researches regarding the transport of contaminants in hydrogeology.

  4. A Model for Macroscopic Quantum Tunneling of Bose-Einstein Condensate with Attractive Interaction

    Institute of Scientific and Technical Information of China (English)

    YAN Ke-Zhu; TAN Wei-Han

    2000-01-01

    Based on the numerical wave function solutions of neutral atoms with attractive interaction in a harmonic trap, we propose an exactly solvable model for macroscopic quantum tunneling of a Bose condensate with attractive interaction. We calculate the rate of macroscopic quantum tunneling from a metastable condensate state to the collapse state and analyze the stability of the attractive Bose-Einstein condensation.

  5. Particle Swarm Optimization for inverse modeling of solute transport in fractured gneiss aquifer

    Science.gov (United States)

    Abdelaziz, Ramadan; Zambrano-Bigiarini, Mauricio

    2014-08-01

    Particle Swarm Optimization (PSO) has received considerable attention as a global optimization technique from scientists of different disciplines around the world. In this article, we illustrate how to use PSO for inverse modeling of a coupled flow and transport groundwater model (MODFLOW2005-MT3DMS) in a fractured gneiss aquifer. In particular, the hydroPSO R package is used as optimization engine, because it has been specifically designed to calibrate environmental, hydrological and hydrogeological models. In addition, hydroPSO implements the latest Standard Particle Swarm Optimization algorithm (SPSO-2011), with an adaptive random topology and rotational invariance constituting the main advancements over previous PSO versions. A tracer test conducted in the experimental field at TU Bergakademie Freiberg (Germany) is used as case study. A double-porosity approach is used to simulate the solute transport in the fractured Gneiss aquifer. Tracer concentrations obtained with hydroPSO were in good agreement with its corresponding observations, as measured by a high value of the coefficient of determination and a low sum of squared residuals. Several graphical outputs automatically generated by hydroPSO provided useful insights to assess the quality of the calibration results. It was found that hydroPSO required a small number of model runs to reach the region of the global optimum, and it proved to be both an effective and efficient optimization technique to calibrate the movement of solute transport over time in a fractured aquifer. In addition, the parallel feature of hydroPSO allowed to reduce the total computation time used in the inverse modeling process up to an eighth of the total time required without using that feature. This work provides a first attempt to demonstrate the capability and versatility of hydroPSO to work as an optimizer of a coupled flow and transport model for contaminant migration.

  6. Solution of transport equations in layered media with refractive index mismatch using the PN-method.

    Science.gov (United States)

    Phillips, Kevin G; Jacques, Steven L

    2009-10-01

    The PN-method is a spectral discretization technique used to obtain numerical solutions to the radiative transport equation. To the best of our knowledge, the PN-method has yet to be generalized to the case of refractive index mismatch in layered slabs used to numerically simulate skin. Our main contribution is the application of a collocation method that takes into account refractive index mismatch at layer interfaces. The stability, convergence, and accuracy of the method are established. Example calculations demonstrating the flexibility of the method are performed.

  7. Core-scale solute transport model selection using Monte Carlo analysis

    CERN Document Server

    Malama, Bwalya; James, Scott C

    2013-01-01

    Model applicability to core-scale solute transport is evaluated using breakthrough data from column experiments conducted with conservative tracers tritium (H-3) and sodium-22, and the retarding solute uranium-232. The three models considered are single-porosity, double-porosity with single-rate mobile-immobile mass-exchange, and the multirate model, which is a deterministic model that admits the statistics of a random mobile-immobile mass-exchange rate coefficient. The experiments were conducted on intact Culebra Dolomite core samples. Previously, data were analyzed using single- and double-porosity models although the Culebra Dolomite is known to possess multiple types and scales of porosity, and to exhibit multirate mobile-immobile-domain mass transfer characteristics at field scale. The data are reanalyzed here and null-space Monte Carlo analysis is used to facilitate objective model selection. Prediction (or residual) bias is adopted as a measure of the model structural error. The analysis clearly shows ...

  8. Modelling Simultaneous transport of Bioreative Solutes and Microorganisms in Porous Media

    Institute of Scientific and Technical Information of China (English)

    Y.TAN; LIZHENGAO

    1998-01-01

    Recent years have the development of a number of mathematical models for the descrption of the simultaneous transport of microorganisms and bioreactive solutes in porous media.Most models are based on the advection-dispersion equation,with terms added to account for interactions with the surfaces of the soild matrix ,transformations and microbial activties.Those models based on the advection-dispersion equation have all been shown to represent laboratory experimental data adequately altough various assumption have been made concerning the pore-scale distribution of bacteria.This paper provides an overview o the recent work on modelling the trasport and fate of microorganisms and bioreactive solutes in prous media and examines the different assumptions regarding the pore scale distrbution of microorganisms.

  9. Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals.

    Science.gov (United States)

    Niazi, Muhammad R; Li, Ruipeng; Qiang Li, Er; Kirmani, Ahmad R; Abdelsamie, Maged; Wang, Qingxiao; Pan, Wenyang; Payne, Marcia M; Anthony, John E; Smilgies, Detlef-M; Thoroddsen, Sigurdur T; Giannelis, Emmanuel P; Amassian, Aram

    2015-11-23

    Solution-printed organic semiconductors have emerged in recent years as promising contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The stringent performance requirements for organic thin-film transistors (OTFTs) in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require performance currently achieved by organic single-crystal devices, but these suffer from scale-up challenges. Here we present a new method based on blade coating of a blend of conjugated small molecules and amorphous insulating polymers to produce OTFTs with consistently excellent performance characteristics (carrier mobility as high as 6.7 cm(2) V(-1) s(-1), low threshold voltages ofcrystallization can yield solution-printed polycrystalline organic semiconductor films with transport properties and other figures of merit on par with their single-crystal counterparts.

  10. Generalized semi-analytical solutions to multispecies transport equation coupled with sequential first-order reaction network with spatially or temporally variable transport and decay coefficients

    Science.gov (United States)

    Suk, Heejun

    2016-08-01

    This paper presents a semi-analytical procedure for solving coupled the multispecies reactive solute transport equations, with a sequential first-order reaction network on spatially or temporally varying flow velocities and dispersion coefficients involving distinct retardation factors. This proposed approach was developed to overcome the limitation reported by Suk (2013) regarding the identical retardation values for all reactive species, while maintaining the extensive capability of the previous Suk method involving spatially variable or temporally variable coefficients of transport, general initial conditions, and arbitrary temporal variable inlet concentration. The proposed approach sequentially calculates the concentration distributions of each species by employing only the generalized integral transform technique (GITT). Because the proposed solutions for each species' concentration distributions have separable forms in space and time, the solution for subsequent species (daughter species) can be obtained using only the GITT without the decomposition by change-of-variables method imposing the limitation of identical retardation values for all the reactive species by directly substituting solutions for the preceding species (parent species) into the transport equation of subsequent species (daughter species). The proposed solutions were compared with previously published analytical solutions or numerical solutions of the numerical code of the Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) in three verification examples. In these examples, the proposed solutions were well matched with previous analytical solutions and the numerical solutions obtained by 2DFATMIC model. A hypothetical single-well push-pull test example and a scale-dependent dispersion example were designed to demonstrate the practical application of the proposed solution to a real field problem.

  11. Use of the generalized integral transform method for solving equations of solute transport in porous media

    Science.gov (United States)

    Liu, Chongxuan; Szecsody, Jim E.; Zachara, John M.; Ball, William P.

    The generalized integral transform technique (GITT) is applied to solve the one-dimensional advection-dispersion equation (ADE) in heterogeneous porous media coupled with either linear or nonlinear sorption and decay. When both sorption and decay are linear, analytical solutions are obtained using the GITT for one-dimensional ADEs with spatially and temporally variable flow and dispersion coefficient and arbitrary initial and boundary conditions. When either sorption or decay is nonlinear the solutions to ADEs with the GITT are hybrid analytical-numerical. In both linear and nonlinear cases, the forward and inverse integral transforms for the problems described in the paper are apparent and straightforward. Some illustrative examples with linear sorption and decay are presented to demonstrate the application and check the accuracy of the derived analytical solutions. The derived hybrid analytical-numerical solutions are checked against a numerical approach and demonstratively applied to a nonlinear transport example, which simulates a simplified system of iron oxide bioreduction with nonlinear sorption and nonlinear reaction kinetics.

  12. Water, solute and heat transport in the soil: the Australian connection

    Science.gov (United States)

    Knight, John

    2016-04-01

    The interest of Peter Raats in water, solute and heat transport in the soil has led to scientific and/or personal interactions with several Australian scientists such as John Philip, David Smiles, Greg Davis and John Knight. Along with John Philip and Robin Wooding, Peter was an early user of the Gardner (1958) linearised model of soil water flow, which brought him into competition with John Philip. I will discuss some of Peter's solutions relevant to infiltration from line and point sources, cavities and basins. A visit to Canberra, Australia in the early 1980s led to joint work on soil water flow, and on combined water and solute movement with David Smiles and others. In 1983 Peter was on the PhD committee for Greg Davis at the University of Wollongong, and some of the methods in his thesis 'Mathematical modelling of rate-limiting mechanisms of pyritic oxidation in overburden dumps' were later used by Peter's student Sjoerd van der Zee. David Smiles and Peter wrote a survey article 'Hydrology of swelling clay soils' in 2005. In the last decade Peter has been investigating the history of groundwater and vadose zone hydrology, and recently he and I have been bringing to light the largely forgotten work of Lewis Fry Richardson on finite difference solution of the heat equation, drainage theory, soil physics, and the soil-plant-atmosphere continuum.

  13. An analytical solution of the generalized equation of energy transport in one-dimensional semi-infinite domains

    Directory of Open Access Journals (Sweden)

    Kulish Vladimir V.

    2004-01-01

    Full Text Available This paper presents an integral solution of the generalized one-dimensional equation of energy transport with the convective term.The solution of the problem has been achieved by the use of a novel technique that involves generalized derivatives (in particular, derivatives of noninteger orders. Confluent hypergeometric functions, known as Whittaker's functions, appear in the course of the solution procedure upon applying the Laplace transform to the original transport equation.The analytical solution of the problem is written in the integral form and provides a relationship between the local values of the transported property (e.g., temperature, mass, momentum, etc. and its flux.The solution is valid everywhere within the domain, including the domain boundary.

  14. Computer model of two-dimensional solute transport and dispersion in ground water

    Science.gov (United States)

    Konikow, Leonard F.; Bredehoeft, J.D.

    1978-01-01

    This report presents a model that simulates solute transport in flowing ground water. The model is both general and flexible in that it can be applied to a wide range of problem types. It is applicable to one- or two-dimensional problems involving steady-state or transient flow. The model computes changes in concentration over time caused by the processes of convective transport, hydrodynamic dispersion, and mixing (or dilution) from fluid sources. The model assumes that the solute is non-reactive and that gradients of fluid density, viscosity, and temperature do not affect the velocity distribution. However, the aquifer may be heterogeneous and (or) anisotropic. The model couples the ground-water flow equation with the solute-transport equation. The digital computer program uses an alternating-direction implicit procedure to solve a finite-difference approximation to the ground-water flow equation, and it uses the method of characteristics to solve the solute-transport equation. The latter uses a particle- tracking procedure to represent convective transport and a two-step explicit procedure to solve a finite-difference equation that describes the effects of hydrodynamic dispersion, fluid sources and sinks, and divergence of velocity. This explicit procedure has several stability criteria, but the consequent time-step limitations are automatically determined by the program. The report includes a listing of the computer program, which is written in FORTRAN IV and contains about 2,000 lines. The model is based on a rectangular, block-centered, finite difference grid. It allows the specification of any number of injection or withdrawal wells and of spatially varying diffuse recharge or discharge, saturated thickness, transmissivity, boundary conditions, and initial heads and concentrations. The program also permits the designation of up to five nodes as observation points, for which a summary table of head and concentration versus time is printed at the end of the

  15. Coupling between solute transport and chemical reactions models. Acoplamiento de modelos de transporte de solutos y de modelos de reacciones quimicas

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Ajora, C. (Instituto de Ciencias de la Tierra, CSIC, Barcerlona (Spain))

    1993-01-01

    During subsurface transport, reactive solutes are subject to a variety of hydrodynamic and chemical processes. The major hydrodynamic processes include advection and convection, dispersion and diffusion. The key chemical processes are complexation including hydrolysis and acid-base reactions, dissolution-precipitation, reduction-oxidation, adsorption and ion exchange. The combined effects of all these processes on solute transport must satisfy the principle of conservation of mass. The statement of conservation of mass for N mobile species leads to N partial differential equations. Traditional solute transport models often incorporate the effects of hydrodynamic processes rigorously but oversimplify chemical interactions among aqueous species. Sophisticated chemical equilibrium models, on the other hand, incorporate a variety of chemical processes but generally assume no-flow systems. In the past decade, coupled models accounting for complex hydrological and chemical processes, with varying degrees of sophistication, have been developed. The existing models of reactive transport employ two basic sets of equations. The transport of solutes is described by a set of partial differential equations, and the chemical processes, under the assumption of equilibrium, are described by a set of nonlinear algebraic equations. An important consideration in any approach is the choice of primary dependent variables. Most existing models cannot account for the complete set of chemical processes, cannot be easily extended to include mixed chemical equilibria and kinetics, and cannot handle practical two and three dimensional problems. The difficulties arise mainly from improper selection of the primary variables in the transport equations. (Author) 38 refs.

  16. Solute and heat transport model of the Henry and hilleke laboratory experiment.

    Science.gov (United States)

    Langevin, Christian D; Dausman, Alyssa M; Sukop, Michael C

    2010-01-01

    SEAWAT is a coupled version of MODFLOW and MT3DMS designed to simulate variable-density ground water flow and solute transport. The most recent version of SEAWAT, called SEAWAT Version 4, includes new capabilities to represent simultaneous multispecies solute and heat transport. To test the new features in SEAWAT, the laboratory experiment of Henry and Hilleke (1972) was simulated. Henry and Hilleke used warm fresh water to recharge a large sand-filled glass tank. A cold salt water boundary was represented on one side. Adjustable heating pads were used to heat the bottom and left sides of the tank. In the laboratory experiment, Henry and Hilleke observed both salt water and fresh water flow systems separated by a narrow transition zone. After minor tuning of several input parameters with a parameter estimation program, results from the SEAWAT simulation show good agreement with the experiment. SEAWAT results suggest that heat loss to the room was more than expected by Henry and Hilleke, and that multiple thermal convection cells are the likely cause of the widened transition zone near the hot end of the tank. Other computer programs with similar capabilities may benefit from benchmark testing with the Henry and Hilleke laboratory experiment.

  17. Submarine groundwater discharge and solute transport under a transgressive barrier island

    Science.gov (United States)

    Evans, Tyler B.; Wilson, Alicia M.

    2017-04-01

    Many recent investigations of groundwater dynamics in beaches employed groundwater models that assumed isotropic, numerically-convenient hydrogeological conditions. Real beaches exhibit local variability with respect to stratigraphy, sediment grain size and associated topographic profile, so that groundwater flow may diverge significantly from idealized models. We used a combination of hydrogeologic field methods and a variable-density, saturated-unsaturated, transient groundwater flow model to investigate SGD and solute transport under Cabretta Beach, a small transgressive barrier island seaward of Sapelo Island, Georgia. We found that the inclusion of real beach heterogeneity drove important deviations from predictions based on theoretical beaches. Cabretta Beach sustained a stronger upper saline plume than predicted due to the presence of a buried silty mud layer beneath the surface. Infiltration of seawater was greater for neap tides than for spring tides due to variations in beach slope. The strength of the upper saline plume was greatest during spring tides, contrary to recent model predictions. The position and width of the upper saline plume was highly dynamic through the lunar cycle. Our results suggest that field measurements of salinity gradients may be useful for estimating rates of tidally and density driven recirculation through the beach. Finally, our results indicate that several important biogeochemical cycles recently studied at Cabretta Beach were heavily influenced by groundwater flow and associated solute transport.

  18. Solute transport modeling of the groundwater for quaternary aquifer quality management in Middle Delta, Egypt

    Directory of Open Access Journals (Sweden)

    S.M. Ghoraba

    2013-06-01

    Full Text Available Groundwater contamination is a major problem related strongly to both; protection of environment and the need of water. In the present study groundwater quality was investigated in the central part of the Nile Delta (El-Gharbiya Governorate. El-Gharbiya Governorate is an agricultural land and its densely populated area inhabited, includes small communities which totally not served by public sewers. Hydrochemical analyses were used to assess the quality of water in samples taken from the canals, drains and groundwater. A laboratory study and mathematical modeling works were presented. Two numerical computer models by the applying of finite difference method were adopted. Both models deal with the flow as a three-dimensional and unsteady. Results obtained include determining the levels of water and the values of solute concentration and distribution of it in the region at different times. The groundwater model MODFLOW was used to deal with the hydrodynamics of the flow through porous media. A solute transport model which can be communicated with MODFLOW through data files MT3DMS, was used to solve the problem of contaminants transport and the change of their concentrations with time. A proposed groundwater remediation scheme by using group of extraction wells was suggested at Birma region where the concentration values of ammonium contaminant are the up most according to hydrochemical analyses results. Proposed scenario for cleaning is to use a set of wells to pump contaminated groundwater extraction for treatment and reused to irrigation.

  19. An Integrated Numerical Hydrodynamic Shallow Flow-Solute Transport Model for Urban Area

    Science.gov (United States)

    Alias, N. A.; Mohd Sidek, L.

    2016-03-01

    The rapidly changing on land profiles in the some urban areas in Malaysia led to the increasing of flood risk. Extensive developments on densely populated area and urbanization worsen the flood scenario. An early warning system is really important and the popular method is by numerically simulating the river and flood flows. There are lots of two-dimensional (2D) flood model predicting the flood level but in some circumstances, still it is difficult to resolve the river reach in a 2D manner. A systematic early warning system requires a precisely prediction of flow depth. Hence a reliable one-dimensional (1D) model that provides accurate description of the flow is essential. Research also aims to resolve some of raised issues such as the fate of pollutant in river reach by developing the integrated hydrodynamic shallow flow-solute transport model. Presented in this paper are results on flow prediction for Sungai Penchala and the convection-diffusion of solute transports simulated by the developed model.

  20. Large-scale modeling of reactive solute transport in fracture zones of granitic bedrocks

    Science.gov (United States)

    Molinero, Jorge; Samper, Javier

    2006-01-01

    Final disposal of high-level radioactive waste in deep repositories located in fractured granite formations is being considered by several countries. The assessment of the safety of such repositories requires using numerical models of groundwater flow, solute transport and chemical processes. These models are being developed from data and knowledge gained from in situ experiments such as the Redox Zone Experiment carried out at the underground laboratory of Äspö in Sweden. This experiment aimed at evaluating the effects of the construction of the access tunnel on the hydrogeological and hydrochemical conditions of a fracture zone intersected by the tunnel. Most chemical species showed dilution trends except for bicarbonate and sulphate which unexpectedly increased with time. Molinero and Samper [Molinero, J. and Samper, J. Groundwater flow and solute transport in fracture zones: an improved model for a large-scale field experiment at Äspö (Sweden). J. Hydraul. Res., 42, Extra Issue, 157-172] presented a two-dimensional water flow and solute transport finite element model which reproduced measured drawdowns and dilution curves of conservative species. Here we extend their model by using a reactive transport which accounts for aqueous complexation, acid-base, redox processes, dissolution-precipitation of calcite, quartz, hematite and pyrite, and cation exchange between Na + and Ca 2+. The model provides field-scale estimates of cation exchange capacity of the fracture zone and redox potential of groundwater recharge. It serves also to identify the mineral phases controlling the solubility of iron. In addition, the model is useful to test the relevance of several geochemical processes. Model results rule out calcite dissolution as the process causing the increase in bicarbonate concentration and reject the following possible sources of sulphate: (1) pyrite dissolution, (2) leaching of alkaline sulphate-rich waters from a nearby rock landfill and (3) dissolution of

  1. Generic Procedure for Coupling the PHREEQC Geochemical Modeling Framework with Flow and Solute Transport Simulators

    Science.gov (United States)

    Wissmeier, L. C.; Barry, D. A.

    2009-12-01

    Computer simulations of water availability and quality play an important role in state-of-the-art water resources management. However, many of the most utilized software programs focus either on physical flow and transport phenomena (e.g., MODFLOW, MT3DMS, FEFLOW, HYDRUS) or on geochemical reactions (e.g., MINTEQ, PHREEQC, CHESS, ORCHESTRA). In recent years, several couplings between both genres of programs evolved in order to consider interactions between flow and biogeochemical reactivity (e.g., HP1, PHWAT). Software coupling procedures can be categorized as ‘close couplings’, where programs pass information via the memory stack at runtime, and ‘remote couplings’, where the information is exchanged at each time step via input/output files. The former generally involves modifications of software codes and therefore expert programming skills are required. We present a generic recipe for remotely coupling the PHREEQC geochemical modeling framework and flow and solute transport (FST) simulators. The iterative scheme relies on operator splitting with continuous re-initialization of PHREEQC and the FST of choice at each time step. Since PHREEQC calculates the geochemistry of aqueous solutions in contact with soil minerals, the procedure is primarily designed for couplings to FST’s for liquid phase flow in natural environments. It requires the accessibility of initial conditions and numerical parameters such as time and space discretization in the input text file for the FST and control of the FST via commands to the operating system (batch on Windows; bash/shell on Unix/Linux). The coupling procedure is based on PHREEQC’s capability to save the state of a simulation with all solid, liquid and gaseous species as a PHREEQC input file by making use of the dump file option in the TRANSPORT keyword. The output from one reaction calculation step is therefore reused as input for the following reaction step where changes in element amounts due to advection

  2. Composite versus single transportable carbohydrate solution enhances race and laboratory cycling performance.

    Science.gov (United States)

    Rowlands, David S; Swift, Marilla; Ros, Marjolein; Green, Jackson G

    2012-06-01

    When ingested at high rates (1.8-2.4 g·min(-1)) in concentrated solutions, carbohydrates absorbed by multiple (e.g., fructose and glucose) vs. single intestinal transporters can increase exogenous carbohydrate oxidation and endurance performance, but their effect when ingested at lower, more realistic, rates during intermittent high-intensity endurance competition and trials is unknown. Trained cyclists participated in two independent randomized crossover investigations comprising mountain-bike races (average 141 min; n = 10) and laboratory trials (94-min high-intensity intervals followed by 10 maximal sprints; n = 16). Solutions ingested during exercise contained electrolytes and fructose + maltodextrin or glucose + maltodextrin in 1:2 ratio ingested, on average, at 1.2 g carbohydrate·kg(-1)·h(-1). Exertion, muscle fatigue, and gastrointestinal discomfort were recorded. Data were analysed using mixed models with gastrointestinal discomfort as a mechanism covariate; inferences were made against substantiveness thresholds (1.2% for performance) and standardized difference. The fructose-maltodextrin solution substantially reduced race time (-1.8%; 90% confidence interval = ±1.8%) and abdominal cramps (-8.1 on a 0-100 scale; ±6.6). After accounting for gastrointestinal discomfort, the effect of the fructose-maltodextrin solution on lap time was reduced (-1.1%; ±2.4%), suggesting that gastrointestinal discomfort explained part of the effect of fructose-maltodextrin on performance. In the laboratory, mean sprint power was enhanced (1.4%; ±0.8%) with fructose-maltodextrin, but the effect on peak power was unclear (0.7%; ±1.5%). Adjusting out gastrointestinal discomfort augmented the fructose-maltodextrin effect on mean (2.6%; ±1.9%) and peak (2.5%; ±3.0%) power. Ingestion of multiple transportable vs. single transportable carbohydrates enhanced mountain-bike race and high-intensity laboratory cycling performance, with inconsistent but not irreconcilable effects

  3. Quantum transport in one-dimensional systems via a master equation approach: Numerics and an exact solution

    Indian Academy of Sciences (India)

    Marko Žnidarič

    2011-11-01

    We discuss recent findings about properties of quantum nonequilibrium steady states. In particular we focus on transport properties. It is shown that the time-dependent density matrix renormalization method can be used successfully to find a stationary solution of Lindblad master equation. Furthermore, for a specific model an exact solution is presented.

  4. Concentration statistics of solute transport for the near field zone of an estuary

    Science.gov (United States)

    Galesic, Morena; Andricevic, Roko; Gotovac, Hrvoje; Srzic, Veljko

    2016-08-01

    Rivers are considered as one of the most influential hydrological pathways for the waterborne transport and therefore estuaries are critical areas for a pollution hazard that might lead to eutrophication and general water quality deterioration. This paper is investigating the near field mixing in the estuary as the result of a combination of small scale turbulent diffusion and a larger scale variation of the advective mean velocities. In this work concentration moments were developed directly from the fundamental advection-diffusion equation for the case of continuous, steady, conservative solute transport with the dominant stream flow mean velocity. The concentration statistics were developed considering depth integrated velocity field with mean velocity attenuation due to the wind induced currents and sea tides. In order to perform further studies of developed concentration moments, a set of velocity measurements in the local river Žrnovnica estuary near Split, Croatia, was conducted and numerical random walk particle tracking model was used to run the transport simulations based on measured velocity fields. The numerical model has confirmed quantitatively first two concentration moments, which are utilized to calculate the point concentration probability density function (pdf) often needed to assess the risk of exceeding the allowed concentration values in the estuary.

  5. Analytical theories of transport in concentrated electrolyte solutions from the MSA.

    Science.gov (United States)

    Dufrêche, J-F; Bernard, O; Durand-Vidal, S; Turq, P

    2005-05-26

    Ion transport coefficients in electrolyte solutions (e.g., diffusion coefficients or electric conductivity) have been a subject of extensive studies for a long time. Whereas in the pioneering works of Debye, Hückel, and Onsager the ions were entirely characterized by their charge, recent theories allow specific effects of the ions (such as the ion size dependence or the pair association) to be obtained, both from simulation and from analytical theories. Such an approach, based on a combination of dynamic theories (Smoluchowski equation and mode-coupling theory) and of the mean spherical approximation (MSA) for the equilibrium pair correlation, is presented here. The various predicted equilibrium (osmotic pressure and activity coefficients) and transport coefficients (mutual diffusion, electric conductivity, self-diffusion, and transport numbers) are in good agreement with the experimental values up to high concentrations (1-2 mol L(-1)). Simple analytical expressions are obtained, and for practical use, the formula are given explicitly. We discuss the validity of such an approach which is nothing but a coarse-graining procedure.

  6. Analysis and numerical solution of a transport equation for pulse reflection in a randomly layered medium

    Energy Technology Data Exchange (ETDEWEB)

    Asch, M.

    1990-01-01

    The author studies analytically and numerically a transport equation arising from acoustic wave propagation due to a point source in a randomly layered half space. Random material properties whose fluctuations are not restricted in magnitude, but are on a specific length scale are included in the acoustic equations. Analysis of the resulting stochastic differential equations by asymptotic methods lead to the derivation of a transport equation which describes the moments of the reflected pressure field. This equation is an infinite system of linear hyperbolic partial differential equations. A probabilistic interpretation of the transport equation by random walks leads to an existence and uniqueness proof. This interpretation is also the basis of numerical simulations by a Monte Carlo method for a plane wave problem. This is not an efficient numerical method, but provides insight into the mechanism of multiple scattering in the limit studied here. Finite difference methods must be used in the point source case. Due to the singular nature of the initial conditions he prefers to desingularize the system by substituting a progressing wave expansion. This desingularization is a prerequisite for solving an inverse problem. The regularized equations are then integrated and discretized using simple numerical methods. The resulting problem is extremely large (four dimensions plus time) and sophisticated vectorization and parallelization techniques must be applied in order to solve it efficiently. The results obtained are in good agreement with known explicit solutions for statistically homogeneous media.

  7. Ovariectomy Enhances Mechanical Load-Induced Solute Transport around Osteocytes in Rat Cancellous Bone

    Science.gov (United States)

    Ciani, Cesare; Sharma, Divya; Doty, Stephen B.; Fritton, Susannah P.

    2014-01-01

    To test if osteoporosis alters mechanical load-induced interstitial fluid flow in bone, this study examined the combined effect of estrogen deficiency and external loading on solute transport around osteocytes. An in vivo tracer, FITC-labeled bovine serum albumin, was injected into anaesthetized ovariectomized and control female Sprague Dawley rats before the right tibia was subjected to a controlled, physiological, non-invasive sinusoidal load to mimic walking. Tracer movement through the lacunar-canalicular system surrounding osteocytes was quantified in cortical and cancellous bone from the proximal tibia using confocal microscopy, with the non-loaded tibia serving as internal control. Overall, the application of mechanical loading increased the percentage of osteocyte lacunae labeled with injected tracer, and ovariectomy further enhanced movement of tracer. An analysis of separate regions demonstrated that ovariectomy enhanced in vivo transport of the injected tracer in the cancellous bone of the tibial epiphysis and metaphysis but not in the cortical bone of the metaphysis. These findings show that bone changes due to reduced estrogen levels alter convectional transport around osteocytes in cancellous bone and demonstrate a functional difference of interstitial fluid flow around osteocytes in estrogen-deficient rats undergoing the same physical activity as controls. The altered interstitial fluid flow around osteocytes is likely related to nanostructural matrix-mineral level differences recently demonstrated at the lacunar-canalicular surface of estrogen-deficient rats, which could affect the transmission of mechanical loads to the osteocyte. PMID:24316418

  8. Averaged Description of Flow (Steady and Transient) and Nonreactive Solute Transport in Random Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Schvidler, M.; Karasaki, K.

    2011-06-15

    In previous papers (Shvidler and Karasaki, 1999, 2001, 2005, and 2008) we presented and analyzed an approach for finding the general forms of exactly averaged equations of flow and transport in porous media. We studied systems of basic equations for steady flow with sources in unbounded domains with stochastically homogeneous conductivity fields. A brief analysis of exactly averaged equations of nonsteady flow and nonreactive solute transport was also presented. At the core of this approach is the existence of appropriate random Green's functions. For example, we showed that in the case of a 3-dimensional unbounded domain the existence of appropriate random Green's functions is sufficient for finding the exact nonlocal averaged equations for flow velocity using the operator with a unique kernel-vector. Examination of random fields with global symmetry (isotropy, transversal isotropy and orthotropy) makes it possible to describe significantly different types of averaged equations with nonlocal unique operators. It is evident that the existence of random Green's functions for physical linear processes is equivalent to assuming the existence of some linear random operators for appropriate stochastic equations. If we restricted ourselves to this assumption only, as we have done in this paper, we can study the processes in any dimensional bounded or unbounded fields and in addition, cases in which the random fields of conductivity and porosity are stochastically nonhomogeneous, nonglobally symmetrical, etc.. It is clear that examining more general cases involves significant difficulty and constricts the analysis of structural types for the processes being studied. Nevertheless, we show that we obtain the essential information regarding averaged equations for steady and transient flow, as well as for solute transport.

  9. Unscented Kalman filter assimilation of time-lapse self-potential data for monitoring solute transport

    Science.gov (United States)

    Cui, Yi-an; Liu, Lanbo; Zhu, Xiaoxiong

    2017-08-01

    Monitoring the extent and evolution of contaminant plumes in local and regional groundwater systems from existing landfills is critical in contamination control and remediation. The self-potential survey is an efficient and economical nondestructive geophysical technique that can be used to investigate underground contaminant plumes. Based on the unscented transform, we have built a Kalman filtering cycle to conduct time-lapse data assimilation for monitoring the transport of solute based on the solute transport experiment using a bench-scale physical model. The data assimilation was formed by modeling the evolution based on the random walk model and observation correcting based on the self-potential forward. Thus, monitoring self-potential data can be inverted by the data assimilation technique. As a result, we can reconstruct the dynamic process of the contaminant plume instead of using traditional frame-to-frame static inversion, which may cause inversion artifacts. The data assimilation inversion algorithm was evaluated through noise-added synthetic time-lapse self-potential data. The result of the numerical experiment shows validity, accuracy and tolerance to the noise of the dynamic inversion. To validate the proposed algorithm, we conducted a scaled-down sandbox self-potential observation experiment to generate time-lapse data that closely mimics the real-world contaminant monitoring setup. The results of physical experiments support the idea that the data assimilation method is a potentially useful approach for characterizing the transport of contamination plumes using the unscented Kalman filter (UKF) data assimilation technique applied to field time-lapse self-potential data.

  10. Large eddy simulation of turbulence and solute transport in a forested headwater stream

    Science.gov (United States)

    Khosronejad, A.; Hansen, A. T.; Kozarek, J. L.; Guentzel, K.; Hondzo, M.; Guala, M.; Wilcock, P.; Finlay, J. C.; Sotiropoulos, F.

    2016-01-01

    The large eddy simulation (LES) module of the Virtual StreamLab (VSL3D) model is applied to simulate the flow and transport of a conservative tracer in a headwater stream in Minnesota, located in the south Twin Cities metropolitan area. The detailed geometry of the stream reach, which is ˜135 m long, ˜2.5 m wide, and ˜0.15 m deep, was surveyed and used as input to the computational model. The detailed geometry and location of large woody debris and bed roughness elements up to ˜0.1 m in size were also surveyed and incorporated in the numerical simulation using the Curvilinear Immersed Boundary approach employed in VSL3D. The resolution of the simulation, which employs up to a total of 25 million grid nodes to discretize the flow domain, is sufficiently fine to directly account for the effect of large woody debris and small cobbles (on the streambed) on the flow patterns and transport processes of conservative solutes. Two tracer injection conditions, a pulse and a plateau release, and two cross sections of measured velocity were used to validate the LES results. The computed results are shown to be in good agreement with the field measurements and tracer concentration time series. To our knowledge, the present study is the first attempt to simulate via high-resolution LES solute transport in a natural stream environment taking into account a range of roughness length scales spanning an order of magnitude: from small cobbles on the streambed (˜0.1 m in diameter) to large woody debris up to ˜3 m long.

  11. Asymptotic Behavior of Heat Transport for a Class of Exact Solutions in Rotating Rayleigh-B\\'enard Convection

    CERN Document Server

    Grooms, Ian

    2014-01-01

    The non-hydrostatic, quasigeostrophic approximation for rapidly rotating Rayleigh-B\\'enard convection admits a class of exact `single mode' solutions. These solutions correspond to steady laminar convection with a separable structure consisting of a horizontal planform characterized by a single wavenumber multiplied by a vertical amplitude profile, with the latter given as the solution of a nonlinear boundary value problem. The heat transport associated with these solutions is studied in the regime of strong thermal forcing (large reduced Rayleigh number $\\widetilde{Ra}$). It is shown that the Nusselt number $Nu$, a nondimensional measure of the efficiency of heat transport by convection, for this class of solutions is bounded below by $Nu\\gtrsim \\widetilde{Ra}^{3/2}$, independent of the Prandtl number, in the limit of large reduced Rayleigh number. Matching upper bounds include only logarithmic corrections, showing the accuracy of the estimate. Numerical solutions of the nonlinear boundary value problem for ...

  12. Geomorphic and substrate controls on spatial variability in river solute transport and biogeochemical cycling

    Science.gov (United States)

    Blaen, Phillip; Kurz, Marie; Knapp, Julia; Mendoza-Lera, Clara; Lee-Cullin, Joe; Klaar, Megan; Drummond, Jen; Jaeger, Anna; Zarnetske, Jay; Lewandowski, Joerg; Marti, Eugenia; Ward, Adam; Fleckenstein, Jan; Datry, Thibault; Larned, Scott; Krause, Stefan

    2016-04-01

    Nutrient concentrations in surface waters and groundwaters are increasing in many agricultural catchments worldwide as a result of anthropogenic activities. Increasing geomorphological heterogeneity in river channels may help to attenuate nutrient pollution by facilitating water exchange fluxes with the hyporheic zone; a site of intense microbial activity where biogeochemical transformation rates (e.g. denitrification) can be high. However, the controls on spatial variability in biogeochemical cycling, particularly at scales relevant for river managers, are not well understood. Here, we aimed to assess: 1) how differences in geomorphological heterogeneity control river solute transport and rates of biogeochemical cycling at sub-reach scales (102 m); and 2) the relative magnitude of these differences versus those relating to reach scale substrate variability (103 m). We used the reactive 'smart' tracer resazurin (Raz), a weakly fluorescent dye that transforms to highly fluorescent resorufin (Rru) under mildly reducing conditions, as a proxy to assess rates of biogeochemical cycling in a lowland river in southern England. Solute tracer tests were conducted in two reaches with contrasting substrates: one sand-dominated and the other gravel-dominated. Each reach was divided into sub-reaches that varied in geomorphic complexity (e.g. by the presence of pool-riffle sequences or the abundance of large woody debris). Slug injections of Raz and the conservative tracer fluorescein were conducted in each reach during baseflow conditions (Q ≈ 80 L/s) and breakthrough curves monitored using in-situ fluorometers. Preliminary results indicate overall Raz:Rru transformation rates in the gravel-dominated reach were more than 50% higher than those in the sand-dominated reach. However, high sub-reach variability in Raz:Rru transformation rates and conservative solute transport parameters suggests small-scale targeted management interventions to alter geomorphic heterogeneity may be

  13. Experimental investigation on rainfall infiltration and solute transport in layered porous and fractured media

    Institute of Scientific and Technical Information of China (English)

    WANG Hui-fang; WANG Ming-yu

    2012-01-01

    Layered structures with upper porous and lower fractured media are widely distributed in the world.An experimental investigation on rainfall infiltration and solute transport in such layered structures can provide the necessary foundation for effectively preventing and forecasting water bursting in mines,controlling contamination of mine water,and accomplishing ecological restoration of mining areas.A typical physical model of the layered structures with porous and fractured media was created in this study.Then rainfall infiltration experiments were conducted after salt solution was sprayed on the surface of the layered structure.The volumetric water content and concentration of chlorine ions at different specified positions along the profile of the experiment system were measured in real-time.The experimental results showed that the lower fractured media,with a considerably higher permeability than that of the upper porous media,had significant effects on preventing water infiltration.Moreover,although the porous media were homogeneous statistically in the whole domain,spatial variations in the features of effluent concentrations with regards to time,or so called breakthrough curves,at various sampling points located at the horizontal plane in the porous media near the porous-fractured interface were observed,indicating the diversity of solute transport at small scales.Furthermore,the breakthrough curves of the outflow at the bottom,located beneath the underlying fractured rock,were able to capture and integrate features of the breakthrough curves of both the upper porous and fractured media,which exhibited multiple peaks,while the peak values were reduced one by one with time.

  14. Assessing the performance of a permeable reactive barrier-aquifer system using a dual-domain solute transport model

    Science.gov (United States)

    Chen, Jui-Sheng; Hsu, Shao-Yiu; Li, Ming-Hsu; Liu, Chen-Wuing

    2016-12-01

    Transport behavior through a permeable reactive barrier (PRB)-aquifer system is complicated because of the different physical and chemical properties of the PRB and the aquifer. Dual-domain solute transport models are efficient tools for better understanding the various processes and mechanisms of reactive solute transport through a PRB-aquifer system. This study develops a dual-domain analytical model to assess the physical and chemical processes of two-dimensional reactive solute transport through a PRB-aquifer system. The dispersion processes of a dual-domain system on the solute transport are investigated. The results show that the dispersion parameters in a dual-domain system synchronously govern the dynamic shape of the contaminant plume. The low longitudinal and transverse dispersion coefficients of a dual-domain system may restrict the spreading of the plume and elevate the plume's concentration level. The derived analytical solution is applied to explore how the different reactive transport processes affect the performance of a PRB-aquifer system. The results show that the first-order decay rate constant of the PRB has a critical effect on the performance of the PRB-aquifer system, whereas the effects of the physical dispersion properties on PRB performance are less significant.

  15. Effect of linear sorption on solute transport in a coupled fracture-matrix system with sinusoidal fracture geometry

    Directory of Open Access Journals (Sweden)

    N.Natarajan

    2010-10-01

    Full Text Available Modeling of solute transport through fractured rock is an important component of in many disciplines especially groundwater contamination and nuclear waste disposal. Several studies have been conducted on single rock fracture using parallel plate model and recently solute and thermal transport has been numerically modeled in the sinusoidal fracture matrix coupled system. The effect of linear sorption has been studied on the same. Results suggest the high matrix porosity and matrix diffusion coefficient enhance the sorption process and reduce the matrix diffusion of solutes. The velocity of the fluid reduces with increment in fracture aperture.

  16. Core-scale solute transport model selection using Monte Carlo analysis

    Science.gov (United States)

    Malama, Bwalya; Kuhlman, Kristopher L.; James, Scott C.

    2013-06-01

    Model applicability to core-scale solute transport is evaluated using breakthrough data from column experiments conducted with conservative tracers tritium (3H) and sodium-22 (22Na ), and the retarding solute uranium-232 (232U). The three models considered are single-porosity, double-porosity with single-rate mobile-immobile mass-exchange, and the multirate model, which is a deterministic model that admits the statistics of a random mobile-immobile mass-exchange rate coefficient. The experiments were conducted on intact Culebra Dolomite core samples. Previously, data were analyzed using single-porosity and double-porosity models although the Culebra Dolomite is known to possess multiple types and scales of porosity, and to exhibit multirate mobile-immobile-domain mass transfer characteristics at field scale. The data are reanalyzed here and null-space Monte Carlo analysis is used to facilitate objective model selection. Prediction (or residual) bias is adopted as a measure of the model structural error. The analysis clearly shows single-porosity and double-porosity models are structurally deficient, yielding late-time residual bias that grows with time. On the other hand, the multirate model yields unbiased predictions consistent with the late-time -5/2 slope diagnostic of multirate mass transfer. The analysis indicates the multirate model is better suited to describing core-scale solute breakthrough in the Culebra Dolomite than the other two models.

  17. A new mobile-immobile model for reactive solute transport with scale-dependent dispersion

    Science.gov (United States)

    Gao, Guangyao; Zhan, Hongbin; Feng, Shaoyuan; Fu, Bojie; Ma, Ying; Huang, Guanhua

    2010-08-01

    This study proposed a new mobile-immobile model (MIM) to describe reactive solute transport with scale-dependent dispersion in heterogeneous porous media. The model was derived from the conventional MIM but assumed the dispersivity to be a linear or exponential function of travel distance. The linear adsorption and the first-order degradation of solute were also considered in the model. The Laplace transform technique and the de Hoog numerical Laplace inversion method were applied to solve the developed model. Solute breakthrough curves (BTCs) obtained from MIM with scale-dependent and constant dispersions were compared, and a constant effective dispersivity was provided to reflect the lumped scale-dependent dispersion effect. The effective dispersivity was calculated by arithmetically averaging the distance-dependent dispersivity. With this effective dispersivity, MIM could produce similar BTC as that from MIM with scale-dependent dispersion in porous media with moderate heterogeneity. The applicability of the proposed new model was tested with concentration data from a 1,250-cm long and highly heterogeneous soil column. The simulation results indicated that MIM with constant and linear distance-dependent dispersivities were unable to adequately describe the measured BTCs in the column, while MIM with exponential distance-dependent dispersivity satisfactorily captured the evolution of BTCs.

  18. A model of fluid, erythrocyte, and solute transport in the lung.

    Science.gov (United States)

    Roselli, R J; Tack, G; Harris, T R

    1997-01-01

    A mathematical model of fluid, solute, and red cell transport in the lung has been developed that includes the effects of simultaneous changes in lung vascular and interstitial volumes. The model provides separate arterial, microvascular, and venous pulmonary regions and a systemic vascular region in addition to a pulmonary interstitial compartment. Pressure, volume, hematocrit, flow, and concentration of up to 12 solutes and tracers can be computed in each compartment. Computer code is written in the C programming language, with Microsoft Excel serving as a user interface. Implementation is currently on PC-486 microcomputer systems, but the core program can easily be moved to other computer systems. The user can select different models for the blood-interstitial barrier (e.g., multiple pore, nonlinear Patlak equation), osmotic pressure-concentration relationships (e.g., Nitta, Navar-Navar), solute reflection coefficients interstitial macromolecule exclusion, or lymph barrier characteristics. Each model parameter or a combination of parameters can be altered with time in a predetermined fashion. The model is particularly useful in interpreting lung experimental data where simultaneous changes occur in vascular and extravascular compartments. Several applications are presented and discussed, including interpretation of optical filtration experiments, venous occlusion experiments, external detection of macromolecular exchange, and blood-lymph studies that use exogenous tracers. A number of limitations of the model are identified and improvements are proposed. A major strength of the model is that it is specifically designed to incorporate newly discovered relationships as the field of lung physiology expands.

  19. Low-temperature solution-processed graphene oxide derivative hole transport layer for organic solar cells

    Science.gov (United States)

    Zheng, Qiao; Fang, Guojia; Cheng, Fei; Lei, Hongwei; Qin, Pingli; Zhan, Caimao

    2013-04-01

    A Mo6+ cation modified graphene oxide (GO) derivative of GO-Mo was synthesized by a low-temperature solution method with different amounts of ammonium heptamolybdate (Mo-precursor) added into the GO solutions. The GO-Mo products were characterized through Raman microspectroscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy measurements and their photoelectric properties were systematically investigated. Organic bulk heterojunction solar cells with GO-Mo as the hole transport layer (HTL) were fabricated and their performance as a function of the number of GO-Mo layers was also studied. The performance of these devices was much better than that of the device with GO as the HTL. The best performance of the device with a power conversion efficiency of 2.61%, an open-circuit voltage of 0.59 V and a short-circuit current density of 9.02 mA cm-2 were obtained. Finally, the effect of the Mo-precursor weight in the GO solution on the device performance was discussed.

  20. The next generation in optical transport semiconductors: IC solutions at the system level

    Science.gov (United States)

    Gomatam, Badri N.

    2005-02-01

    In this tutorial overview, we survey some of the challenging problems facing Optical Transport and their solutions using new semiconductor-based technologies. Advances in 0.13um CMOS, SiGe/HBT and InP/HBT IC process technologies and mixed-signal design strategies are the fundamental breakthroughs that have made these solutions possible. In combination with innovative packaging and transponder/transceiver architectures IC approaches have clearly demonstrated enhanced optical link budgets with simultaneously lower (perhaps the lowest to date) cost and manufacturability tradeoffs. This paper will describe: *Electronic Dispersion Compensation broadly viewed as the overcoming of dispersion based limits to OC-192 links and extending link budgets, *Error Control/Coding also known as Forward Error Correction (FEC), *Adaptive Receivers for signal quality monitoring for real-time estimation of Q/OSNR, eye-pattern, signal BER and related temporal statistics (such as jitter). We will discuss the theoretical underpinnings of these receiver and transmitter architectures, provide examples of system performance and conclude with general market trends. These Physical layer IC solutions represent a fundamental new toolbox of options for equipment designers in addressing systems level problems. With unmatched cost and yield/performance tradeoffs, it is expected that IC approaches will provide significant flexibility in turn, for carriers and service providers who must ultimately manage the network and assure acceptable quality of service under stringent cost constraints.

  1. Solute transport characterization in karst aquifers by tracer injection tests for a sustainable water resource management

    Science.gov (United States)

    Morales, T.; Angulo, B.; Uriarte, J. A.; Olazar, M.; Arandes, J. M.; Antiguedad, I.

    2017-04-01

    Protection of water resources is a major challenge today, given that territory occupation and land use are continuously increasing. In the case of karst aquifers, its dynamic complexity requires the use of specific methodologies that allow establishing local and regional flow and transport patterns. This information is particularly necessary when springs and wells harnessed for water supply are concerned. In view of the present state of the art, this work shows a new approach based on the use of a LiCl based tracer injection test through a borehole for transport characterization from a local to a regional scale. Thus a long term tracer injection test was conducted in a particularly sensitive sector of the Egino karst massif (Basque Country, Spain). The initial displacement of tracer in the vicinity of the injection was monitored in a second borehole at a radial distance of 10.24 m. This first information, assessed by a radial divergent model, allows obtaining transport characteristic parameters in this immediate vicinity during injection. At a larger (regional) scale, the tracer reaches a highly transmissive network with mean traveling velocities to the main springs being from 4.3 to 13.7 m/h. The responses obtained, particularly clear in the main spring used for water supply, and the persistence of part of the tracer in the injection zone, pose reconsidering the need for their protection. Thus, although the test allows establishing the 24-h isochrone, which is the ceiling value in present European vulnerability approaches, the results obtained advise widening the zone to protect in order to guarantee water quality in the springs. Overall, this stimulus-response test allows furthering the knowledge on the dynamics of solute transport in karst aquifers and is a particularly useful tool in studies related to source vulnerability and protection in such a complex medium.

  2. Macroscopically-Discrete Quantum Cosmology

    CERN Document Server

    Chew, Geoffrey F

    2008-01-01

    To Milne's Lorentz-group-based spacetime and Gelfand-Naimark unitary representations of this group we associate a Fock space of 'cosmological preons'-quantum-theoretic universe constituents. Milne's 'cosmological principle' relies on Lorentz invariance of 'age'--global time. We divide Milne's spacetime into 'slices' of fixed macroscopic width in age, with 'cosmological rays' defined on (hyperbolic) slice boundaries-Fock space attaching only to these exceptional universe ages. Each (fixed-age) preon locates within a 6-dimensional manifold, one of whose 3 'extra' dimensions associates in Dirac sense to a self-adjoint operator that represents preon (continuous) local time, the operator canonically-conjugate thereto representing preon (total) energy. Self-adjoint-operator expectations at any spacetime-slice boundary prescribe throughout the following slice a non-fluctuating 'mundane reality'- electromagnetic and gravitational potentials 'tethered' to current densities of locally-conserved electric charge and ener...

  3. Seismic scanning tunneling macroscope - Theory

    KAUST Repository

    Schuster, Gerard T.

    2012-09-01

    We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.

  4. Solute transport processes in flow-event-driven stream-aquifer interaction

    Science.gov (United States)

    Xie, Yueqing; Cook, Peter G.; Simmons, Craig T.

    2016-07-01

    The interaction between streams and groundwater controls key features of the stream hydrograph and chemograph. Since surface runoff is usually less saline than groundwater, flow events are usually accompanied by declines in stream salinity. In this paper, we use numerical modelling to show that, at any particular monitoring location: (i) the increase in stream stage associated with a flow event will precede the decrease in solute concentration (arrival time lag for solutes); and (ii) the decrease in stream stage following the flow peak will usually precede the subsequent return (increase) in solute concentration (return time lag). Both arrival time lag and return time lag increase with increasing wave duration. However, arrival time lag decreases with increasing wave amplitude, whereas return time lag increases. Furthermore, while arrival time lag is most sensitive to parameters that control river velocity (channel roughness and stream slope), return time lag is most sensitive to groundwater parameters (aquifer hydraulic conductivity, recharge rate, and dispersitivity). Additionally, the absolute magnitude of the decrease in river concentration is sensitive to both river and groundwater parameters. Our simulations also show that in-stream mixing is dominated by wave propagation and bank storage processes, and in-stream dispersion has a relatively minor effect on solute concentrations. This has important implications for spreading of contaminants released to streams. Our work also demonstrates that a high contribution of pre-event water (or groundwater) within the flow hydrograph can be caused by the combination of in-stream and bank storage exchange processes, and does not require transport of pre-event water through the catchment.

  5. Corrosion in systems for storage and transportation of petroleum products and biofuels identification, monitoring and solutions

    CERN Document Server

    Groysman, Alec

    2014-01-01

    This book treats corrosion as it occurs and affects processes in real-world situations, and thus points the way to practical solutions. Topics described include the conditions in which petroleum products are corrosive to metals; corrosion mechanisms of petroleum products; which parts of storage tanks containing crude oils and petroleum products undergo corrosion; dependence of corrosion in tanks on type of petroleum products; aggressiveness of petroleum products to polymeric material; how microorganisms take part in corrosion of tanks and pipes containing petroleum products; which corrosion monitoring methods are used in systems for storage and transportation of petroleum products; what corrosion control measures should be chosen; how to choose coatings for inner and outer surfaces of tanks containing petroleum products; and how different additives (oxygenates, aromatic solvents) to petroleum products and biofuels influence metallic and polymeric materials. The book is of interest to corrosion engineers, mat...

  6. A multistate empirical valence bond model for solvation and transport simulations of OH- in aqueous solutions.

    Science.gov (United States)

    Ufimtsev, Ivan S; Kalinichev, Andrey G; Martinez, Todd J; Kirkpatrick, R James

    2009-11-07

    We describe a new multistate empirical valence bond (MS-EVB) model of OH(-) in aqueous solutions. This model is based on the recently proposed "charged ring" parameterization for the intermolecular interaction of hydroxyl ion with water [Ufimtsev, et al., Chem. Phys. Lett., 2007, 442, 128] and is suitable for classical molecular simulations of OH(-) solvation and transport. The model reproduces the hydration structure of OH(-)(aq) in good agreement with experimental data and the results of ab initio molecular dynamics simulations. It also accurately captures the major structural, energetic, and dynamic aspects of the proton transfer processes involving OH(-) (aq). The model predicts an approximately two-fold increase of the OH(-) mobility due to proton exchange reactions.

  7. Impact of biofilm-induced heterogeneities on solute transport in porous media

    Science.gov (United States)

    Kone, T.; Golfier, F.; Orgogozo, L.; Oltéan, C.; Lefèvre, E.; Block, J. C.; Buès, M. A.

    2014-11-01

    In subsurface systems, biofilm may degrade organic or organometallic pollutants contributing to natural attenuation and soil bioremediation techniques. This increase of microbial activity leads to change the hydrodynamic properties of aquifers. The purpose of this work was to investigate the influence of biofilm-induced heterogeneities on solute transport in porous media and more specifically on dispersivity. We pursued this goal by (i) monitoring both spatial concentration fields and solute breakthrough curves from conservative tracer experiments in a biofilm-supporting porous medium, (ii) characterizing in situ the changes in biovolume and visualizing the dynamics of the biological material at the mesoscale. A series of experiments was carried out in a flow cell system (60 cm3) with a silica sand (Φ = 50-70 mesh) as solid carrier and Shewanella oneidensis MR-1 as bacterial strain. Biofilm growth was monitored by image acquisition with a digital camera. The biofilm volume fraction was estimated through tracer experiments with the Blue Dextran macromolecule as in size-exclusion chromatography, leading to a fair picture of the biocolonization within the flow cell. Biofilm growth was achieved in the whole flow cell in 29 days and up to 50% of void space volume was plugged. The influence of biofilm maturation on porous medium transport properties was evaluated from tracer experiments using Brilliant Blue FCF. An experimental correlation was found between effective (i.e., nonbiocolonized) porosity and biofilm-affected dispersivity. Comparison with values given by the theoretical model of Taylor and Jaffé (1990b) yields a fair agreement.

  8. Bacteriology testing of cardiovascular tissues: comparison of transport solution versus tissue testing.

    Science.gov (United States)

    Díaz Rodríguez, R; Van Hoeck, B; Mujaj, B; Ngakam, R; Fan, Y; Bogaerts, K; Jashari, R

    2016-06-01

    Bacteriology testing is mandatory for quality control of recovered cardiovascular allografts (CVA). In this paper, two different bacteriology examinations (A tests) performed before tissue antibiotic decontamination were compared: transport solution filtration analysis (A1) and tissue fragment direct incubation (A2). For this purpose, 521 CVA (326 heart and 195 artery tissues) from 280 donors were collected and analyzed by the European Homograft Bank (EHB). Transport solution (A1) tested positive in 43.25 % of hearts and in 48.21 % of arteries, whereas the tissue samples (A2) tested positive in 38.34 % of hearts and 33.85 % of arteries. The main species identified in both A1 and A2 were Staphylococcus spp. in 55 and 26 % of cases, and Propionibacterium spp. in 8 and 19 %, respectively. Mismatches in bacteriology results between both initial tests A1 and A2 were found. 18.40 % of the heart valves were identified as positive by A1 whilst 13.50 % were considered positive by A2. For arteries, 20.51 % of cases were positive in A1 and negative in A2, and just 6.15 % of artery allografts presented contamination in the A2 test but were considered negative for the A1 test. Comparison between each A test with the B and C tests after antibiotic treatment of the allograft was also performed. A total decontamination rate of 70.8 % of initial positive A tests was obtained. Due to the described mismatches and different bacteria identification percentage, utilization of both A tests should be implemented in tissue banks in order to avoid false negatives.

  9. Peritoneal macrophage infiltration is correlated with baseline peritoneal solute transport rate in peritoneal dialysis patients.

    Science.gov (United States)

    Sawai, Akiho; Ito, Yasuhiko; Mizuno, Masashi; Suzuki, Yasuhiro; Toda, Susumu; Ito, Isao; Hattori, Ryohei; Matsukawa, Yoshihisa; Gotoh, Momokazu; Takei, Yoshifumi; Yuzawa, Yukio; Matsuo, Seiichi

    2011-07-01

    High baseline peritoneal solute transport rate is reportedly associated with reduced patient and technique survival in continuous peritoneal dialysis (PD) patients. However, the determinants of baseline peritoneal solute transport rate remain uncertain. The aim of this study was to investigate the relationship between peritoneal local inflammation, angiogenesis and systemic inflammation and baseline peritoneal permeability. Peritoneal biopsy specimens from 42 pre-dialysis uraemic patients and 11 control individuals were investigated. Immunohistochemistry for CD68-positive macrophages, chymase- and tryptase-positive mast cells, interleukin-6 (IL-6)-positive cells, CD3-positive T cells, CD20-positive B cells, neutrophils and CD31- and pathologische anatomie Leiden-endothelium (PAL-E)-positive blood vessels in the peritoneum was performed. Baseline dialysate-to-plasma ratio for creatinine (D/P Cr) was determined within 6 months of PD induction. Clinical and laboratory parameters were measured at the time of peritoneal biopsy. Factors associated with peritoneal permeability were assessed by multiple linear regression analysis. Pre-dialysis uraemic peritoneum showed infiltration by CD68-positive macrophages, and mast cells, as compared with controls. Baseline D/P Cr was correlated with density of CD68-positive macrophages (P permeability was not correlated with infiltration by mast cells, B cells, T cells, neutrophils, serum C-reactive protein or other clinical factors. On multiple linear regression analysis, the number of CD68-positive macrophages in peritoneum was an independent predictor for baseline peritoneal permeability (P = 0.009). Peritoneal macrophage infiltration is predominant in uraemic patients and is an important factor in predicting baseline peritoneal permeability.

  10. The use of laboratory experiments for the study of conservative solute transport in heterogeneous porous media

    Science.gov (United States)

    Silliman, S. E.; Zheng, L.; Conwell, P.

    Laboratory experiments on heterogeneous porous media (otherwise known as intermediate scale experiments, or ISEs) have been increasingly relied upon by hydrogeologists for the study of saturated and unsaturated groundwater systems. Among the many ongoing applications of ISEs is the study of fluid flow and the transport of conservative solutes in correlated permeability fields. Recent advances in ISE design have provided the capability of creating correlated permeability fields in the laboratory. This capability is important in the application of ISEs for the assessment of recent stochastic theories. In addition, pressure-transducer technology and visualization methods have provided the potential for ISEs to be used in characterizing the spatial distributions of both hydraulic head and local water velocity within correlated permeability fields. Finally, various methods are available for characterizing temporal variations in the spatial distribution (and, thereby, the spatial moments) of solute concentrations within ISEs. It is concluded, therefore, that recent developments in experimental techniques have provided an opportunity to use ISEs as important tools in the continuing study of fluid flow and the transport of conservative solutes in heterogeneous, saturated porous media. Résumé Les hydrogéologues se sont progressivement appuyés sur des expériences de laboratoire sur des milieux poreux hétérogènes (connus aussi par l'expression "Expériences àéchelle intermédiaire", ISE) pour étudier les zones saturées et non saturées des aquifères. Parmi les nombreuses applications en cours des ISE, il faut noter l'étude de l'écoulement de fluide et le transport de solutés conservatifs dans des champs aux perméabilités corrélées. Les récents progrès du protocole des ISE ont donné la possibilité de créer des champs de perméabilités corrélées au laboratoire. Cette possibilité est importante dans l'application des ISE pour l'évaluation des th

  11. Carrier Transport Enhancement in Conjugated Polymers through Interfacial Self-Assembly of Solution-State Aggregates

    KAUST Repository

    Zhao, Kui

    2016-07-13

    We demonstrate that local and long range orders of poly(3-hexylthiophene) (P3HT) semicrystalline films can be synergistically improved by combining chemical functionalization of the dielectric surface with solution-state disentanglement and pre-aggregation of P3HT in a theta solvent, leading to a very significant enhancement of the field effect carrier mobility. The pre-aggregation and surface functionalization effects combine to enhance the carrier mobility nearly 100-fold as compared with standard film preparation by spin-coating, and nearly 10-fold increase over the benefits of pre-aggregation alone. In situ quartz crystal microbalance with dissipation (QCM-D) experiments reveal enhanced deposition of pre-aggregates on surfaces modified with an alkyl-terminated self-assembled monolayer (SAM) in comparison to un-aggregated polymer chains. Additional investigations reveal the combined pre-aggregation and surface functionalization significantly enhances local order of the conjugated polymer through planarization and extension of the conjugated backbone of the polymer which clearly translate to significant improvements of carrier transport at the semiconductor-dielectric interface in organic thin film transistors. This study points to opportunities in combining complementary routes, such as well-known pre-aggregation with substrate chemical functionalization, to enhance the polymer self-assembly and improve its interfacial order with benefits for transport properties.

  12. Finite-bias electronic transport of molecules in a water solution

    KAUST Repository

    Rungger, Ivan

    2010-06-04

    The effects of water wetting conditions on the transport properties of molecular nanojunctions are investigated theoretically by using a combination of empirical-potential molecular-dynamics and first-principles electronic-transport calculations. These are at the level of the nonequilibrium Green’s-function method implemented for self-interaction corrected density-functional theory. We find that water effectively produces electrostatic gating to the molecular junction with a gating potential determined by the time-averaged water dipole field. Such a field is large for the polar benzene-dithiol molecule, resulting in a transmission spectrum shifted by about 0.6 eV with respect to that of the dry junction. The situation is drastically different for carbon nanotubes (CNTs). In fact, because of their hydrophobic nature the gating is almost negligible so that the average transmission spectrum of wet Au/CNT/Au junctions is essentially the same as that in dry conditions. This suggests that CNTs can be used as molecular interconnects also in water-wet situations, for instance, as tips for scanning tunnel microscopy in solution or in biological sensors.

  13. Thermal Transport across Surfactant Layers on Gold Nanorods in Aqueous Solution.

    Science.gov (United States)

    Wu, Xuewang; Ni, Yuxiang; Zhu, Jie; Burrows, Nathan D; Murphy, Catherine J; Dumitrica, Traian; Wang, Xiaojia

    2016-04-27

    Ultrafast transient absorption experiments and molecular dynamics simulations are utilized to investigate the thermal transport between aqueous solutions and cetyltrimethylammonium bromide (CTAB)- or polyethylene glycol (PEG)-functionalized gold nanorods (GNRs). The transient absorption measurement data are interpreted with a multiscale heat diffusion model, which incorporates the interfacial thermal conductances predicted by molecular dynamics. According to our observations, the effective thermal conductance of the GNR/PEG/water system is higher than that of the GNR/CTAB/water system with a surfactant layer of the same length. We attribute the enhancement of thermal transport to the larger thermal conductance at the GNR/PEG interface as compared with that at the GNR/CTAB interface, in addition to the water penetration into the hydrophilic PEG layer. Our results highlight the role of the GNR/polymer thermal interfaces in designing biological and composite-based heat transfer applications of GNRs, and the importance of multiscale analysis in interpreting transient absorption data in systems consisting of low interfacial thermal conductances.

  14. Modeling reactive geochemical transport of concentrated aqueous solutions in variably saturated media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guoxiang; Zheng, Zuoping; Wan, Jiamin

    2004-01-28

    Concentrated aqueous solutions (CAS) have unique thermodynamic and physical properties. Chemical components in CAS are incompletely dissociated, especially those containing divalent or polyvalent ions. The problem is further complicated by the interaction between CAS flow processes and the naturally heterogeneous sediments. As the CAS migrates through the porous media, the composition may be altered subject to fluid-rock interactions. To effectively model reactive transport of CAS, we must take into account ion-interaction. A combination of the Pitzer ion-interaction and the ion-association model would be an appropriate way to deal with multiple-component systems if the Pitzer' parameters and thermodynamic data of dissolved components and the related minerals are available. To quantify the complicated coupling of CAS flow and transport, as well as the involved chemical reactions in natural and engineered systems, we have substantially extended an existing reactive biogeochemical transport code, BIO-CORE{sup 2D}{copyright}, by incorporating a comprehensive Pitzer ion-interaction model. In the present paper, the model, and two test cases against measured data were briefly introduced. Finally we present an application to simulate a laboratory column experiment studying the leakage of the high alkaline waste fluid stored in Hanford (a site of the U.S. Department of Energy, located in Washington State, USA). With the Pitzer ion-interaction ionic activity model, our simulation captures measured pH evolution. The simulation indicates that all the reactions controlling the pH evolution, including cation exchanges, mineral precipitation and dissolution, are coupled.

  15. Simulation of Solute Flow and Transport in a Geostatistically Generated Fractured Porous System

    Science.gov (United States)

    Assteerawatt, A.; Helmig, R.; Haegland, H.; Bárdossy, A.

    2007-12-01

    Fractured aquifer systems have provided important natural resources such as petroleum, gas, water and geothermal energy and have also been recently under investigation for their suitability as storage sites for high-level nuclear waste. The resource exploitation and potential utilization have led to extensive studies aiming of understanding, characterizing and finally predicting the behavior of fractured aquifer systems. By applying a discrete model approach to study flow and transport processes, fractures are determined discretely and the effect of individual fractures can be explicitly investigated. The critical step for the discrete model is the generation of a representative fracture network since the development of flow paths within a fractured system strongly depends on its structure. The geostatistical fracture generation (GFG) developed in this study aims to create a representative fracture network, which combines the spatial structures and connectivity of a fracture network, and the statistical distribution of fracture geometries. The spatial characteristics are characterized from indicator fields, which are evaluated from fracture trace maps. A global optimization, Simulated annealing, is utilized as a generation technique and the spatial characteristics are formulated to its objective function. We apply the GFG to a case study at a Pliezhausen field block, which is a sandstone of a high fracture density. The generated fracture network from the GFG are compared with the statistically generated fracture network in term of structure and hydraulic behavior. As the GFG is based on a stochastic concept, several realizations of the same descriptions can be generated, hence, an overall behavior of the fracture-matrix system have to be investigated from various realizations which leads to a problem of computational demand. In order to overcome this problem, a streamline method for a solute transport in a fracture porous system is presented. The results obtained

  16. Solution Procedure for Transport Modeling in Effluent Recharge Based on Operator-Splitting Techniques

    Directory of Open Access Journals (Sweden)

    Shutang Zhu

    2008-01-01

    Full Text Available The coupling of groundwater movement and reactive transport during groundwater recharge with wastewater leads to a complicated mathematical model, involving terms to describe convection-dispersion, adsorption/desorption and/or biodegradation, and so forth. It has been found very difficult to solve such a coupled model either analytically or numerically. The present study adopts operator-splitting techniques to decompose the coupled model into two submodels with different intrinsic characteristics. By applying an upwind finite difference scheme to the finite volume integral of the convection flux term, an implicit solution procedure is derived to solve the convection-dominant equation. The dispersion term is discretized in a standard central-difference scheme while the dispersion-dominant equation is solved using either the preconditioned Jacobi conjugate gradient (PJCG method or Thomas method based on local-one-dimensional scheme. The solution method proposed in this study is applied to the demonstration project of groundwater recharge with secondary effluent at Gaobeidian sewage treatment plant (STP successfully.

  17. Solution-printed organic semiconductor blends exhibiting transport properties on par with single crystals

    KAUST Repository

    Niazi, Muhammad R.

    2015-11-23

    Solution-printed organic semiconductors have emerged in recent years as promising contenders for roll-to-roll manufacturing of electronic and optoelectronic circuits. The stringent performance requirements for organic thin-film transistors (OTFTs) in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require performance currently achieved by organic single-crystal devices, but these suffer from scale-up challenges. Here we present a new method based on blade coating of a blend of conjugated small molecules and amorphous insulating polymers to produce OTFTs with consistently excellent performance characteristics (carrier mobility as high as 6.7 cm2 V−1 s−1, low threshold voltages of<1 V and low subthreshold swings <0.5 V dec−1). Our findings demonstrate that careful control over phase separation and crystallization can yield solution-printed polycrystalline organic semiconductor films with transport properties and other figures of merit on par with their single-crystal counterparts.

  18. Comparison of some popular Monte Carlo solution for proton transportation within pCT problem

    Energy Technology Data Exchange (ETDEWEB)

    Evseev, Ivan; Assis, Joaquim T. de; Yevseyeva, Olga [Universidade do Estado do Rio de Janeiro (UERJ), Nova Friburgo, RJ (Brazil). Inst. Politecnico], E-mail: evseev@iprj.uerj.br, E-mail: joaquim@iprj.uerj.br, E-mail: yevseyeva@iprj.uerj.br; Lopes, Ricardo T.; Cardoso, Jose J.B.; Silva, Ademir X. da [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear], E-mail: ricardo@lin.ufrj.br, E-mail: jjbrum@oi.com.br, E-mail: ademir@con.ufrj.br; Vinagre Filho, Ubirajara M. [Instituto de Engenharia Nuclear IEN/CNEN-RJ, Rio de Janeiro, RJ (Brazil)], E-mail: bira@ien.gov.br; Hormaza, Joel M. [UNESP, Botucatu, SP (Brazil). Inst. de Biociencias], E-mail: jmesa@ibb.unesp.br; Schelin, Hugo R.; Paschuk, Sergei A.; Setti, Joao A.P.; Milhoretto, Edney [Universidade Tecnologica Federal do Parana, Curitiba, PR (Brazil)], E-mail: schelin@cpgei.cefetpr.br, E-mail: sergei@utfpr.edu.br, E-mail: jsetti@gmail.com, E-mail: edneymilhoretto@yahoo.com

    2007-07-01

    The proton transport in matter is described by the Boltzmann kinetic equation for the proton flux density. This equation, however, does not have a general analytical solution. Some approximate analytical solutions have been developed within a number of significant simplifications. Alternatively, the Monte Carlo simulations are widely used. Current work is devoted to the discussion of the proton energy spectra obtained by simulation with SRIM2006, GEANT4 and MCNPX packages. The simulations have been performed considering some further applications of the obtained results in computed tomography with proton beam (pCT). Thus the initial and outgoing proton energies (3 / 300 MeV) as well as the thickness of irradiated target (water and aluminum phantoms within 90% of the full range for a given proton beam energy) were considered in the interval of values typical for pCT applications. One from the most interesting results of this comparison is that while the MCNPX spectra are in a good agreement with analytical description within Fokker-Plank approximation and the GEANT4 simulated spectra are slightly shifted from them the SRIM2006 simulations predict a notably higher mean energy loss for protons. (author)

  19. Effect of Streambed Roughness and Topography on the Solute Transport and Hyporheic Exchanges: Laboratory Experiments

    Science.gov (United States)

    Chen, Xiaobing; Zhao, Jian; Chen, Li

    2013-04-01

    Hyporheic zones are critical for maintaining river ecosystem as they provide hyporheic and riparian organisms critical solutes, including nutrients and dissolved gases from bedforms to watershed scales. Among the hyporheic driving factors, the streambed topogaraphy is considered as a significant driving factor for hydraulic process in hyporheic zone that has been well documented in the past few decades. Previous research has implied that the rough streambed impact the flow resistance and continuously affect the hydraulic gradient between the river and the streambed. Recent research works focused more on the realistic pressure distribution along the bedform interface (eg. triangular-shaped sand dunes) on a macro level scale, while only few works related to the hyporheic exchanges induced by pore size scaled topography. How and to what extent that pore size scaled bedform would contribute to the total hyporheic discharge is still unclear. Indeed, the mesoscopic uneven topography can disturb the flow regime that near the water-sand interface, for example, it brings turbulent eddies and fluctuating pressure distribution along a rough gravel bed. In our study, a set of flume experiments were setup to examine the pore size roughness impacts on the solute transport and hyporheic exchanges in surface-subsurface system. Six kinds of riverbed sediments with median diameter range from 1.1 mm to 50.2 mm were chosen for comparative analyses. Also, three kinds of triangular shaped bedforms represented by the ratio α (=δ/?, δ is the amplitude and ? is the wavelength) with value of 0.125, 0.17 and 0.25 were considered as the macro-topography driver variation in our experiments. Our tests revealed that under a flat riverbed condition, the vertical diffusion is the main factor for the solute transport in hyporheic zone, however, the hyporheic exchange rate (represented by the decrease rate in concentration of surface water) is significantly enhanced as the growth of gravel grain

  20. [Macroscopic observations on corneal epithelial wound healing in the rabbit].

    Science.gov (United States)

    Hayashi, K

    1991-02-01

    A newly-developed macroscope was applied to observe the healing process of corneal epithelial wound in vivo. After removing epithelium of the central cornea, the changes of the corneal surface were observed with the macroscope and the findings were compared with histological examinations. At 12 hours after abrasion, areas unstained with Richardson's staining (R staining) appeared. In the histological section, a single layer of regenerating epithelial cells covered the same area. At 24 and 36 hours after abrasion, the epithelial defects became smaller but surrounding epithelium was rough and showed dot-like staining with R solution. By 2 days, the epithelial defects disappeared. On macroscopic observation, the central corneal surface showed a pavement-like appearance. Histology revealed that the regenerating epithelium still consisted of one or two layers. At 3 days, dot-like stainings were present only in the center and the corneal surface appeared considerably smooth. Histology also showed that regenerating epithelium became columnar and multilayered, thereby suggesting stratification. By 7 days, the abraded corneal surface had recovered its smooth appearance. Histologic sections also demonstrated that the epithelium had regained its normal structure. Thus, using this macroscope, findings suggesting the process of epithelial migration and proliferation could be observed.

  1. Bayesian estimation of the hydraulic and solute transport properties of a small-scale unsaturated soil column

    Directory of Open Access Journals (Sweden)

    Moreira Paulo H. S.

    2016-03-01

    Full Text Available In this study the hydraulic and solute transport properties of an unsaturated soil were estimated simultaneously from a relatively simple small-scale laboratory column infiltration/outflow experiment. As governing equations we used the Richards equation for variably saturated flow and a physical non-equilibrium dual-porosity type formulation for solute transport. A Bayesian parameter estimation approach was used in which the unknown parameters were estimated with the Markov Chain Monte Carlo (MCMC method through implementation of the Metropolis-Hastings algorithm. Sensitivity coefficients were examined in order to determine the most meaningful measurements for identifying the unknown hydraulic and transport parameters. Results obtained using the measured pressure head and solute concentration data collected during the unsaturated soil column experiment revealed the robustness of the proposed approach.

  2. Colloidal metal oxide nanocrystals as charge transporting layers for solution-processed light-emitting diodes and solar cells.

    Science.gov (United States)

    Liang, Xiaoyong; Bai, Sai; Wang, Xin; Dai, Xingliang; Gao, Feng; Sun, Baoquan; Ning, Zhijun; Ye, Zhizhen; Jin, Yizheng

    2017-02-28

    Colloidal metal oxide nanocrystals offer a unique combination of excellent low-temperature solution processability, rich and tuneable optoelectronic properties and intrinsic stability, which makes them an ideal class of materials as charge transporting layers in solution-processed light-emitting diodes and solar cells. Developing new material chemistry and custom-tailoring processing and properties of charge transporting layers based on oxide nanocrystals hold the key to boosting the efficiency and lifetime of all-solution-processed light-emitting diodes and solar cells, and thereby realizing an unprecedented generation of high-performance, low-cost, large-area and flexible optoelectronic devices. This review aims to bridge two research fields, chemistry of colloidal oxide nanocrystals and interfacial engineering of optoelectronic devices, focusing on the relationship between chemistry of colloidal oxide nanocrystals, processing and properties of charge transporting layers and device performance. Synthetic chemistry of colloidal oxide nanocrystals, ligand chemistry that may be applied to colloidal oxide nanocrystals and chemistry associated with post-deposition treatments are discussed to highlight the ability of optimizing processing and optoelectronic properties of charge transporting layers. Selected examples of solution-processed solar cells and light-emitting diodes with oxide-nanocrystal charge transporting layers are examined. The emphasis is placed on the correlation between the properties of oxide-nanocrystal charge transporting layers and device performance. Finally, three major challenges that need to be addressed in the future are outlined. We anticipate that this review will spur new material design and simulate new chemistry for colloidal oxide nanocrystals, leading to charge transporting layers and solution-processed optoelectronic devices beyond the state-of-the-art.

  3. Tissue-specific mRNA expression profiles of human solute carrier 35 transporters.

    Science.gov (United States)

    Nishimura, Masuhiro; Suzuki, Satoshi; Satoh, Tetsuo; Naito, Shinsaku

    2009-01-01

    Pairs of forward and reverse primers and TaqMan probes specific to each of 23 human solute carrier 35 (SLC35) transporters were prepared. The mRNA expression level of each target transporter was analyzed in total RNA from single and pooled specimens of adult human tissues (adipose tissue, adrenal gland, bladder, bone marrow, brain, cerebellum, colon, heart, kidney, liver, lung, mammary gland, ovary, pancreas, peripheral leukocytes, placenta, prostate, retina, salivary gland, skeletal muscle, small intestine, smooth muscle, spinal cord, spleen, stomach, testis, thymus, thyroid gland, tonsil, trachea, and uterus), from pooled specimens of fetal human tissues (brain, heart, kidney, liver, spleen, and thymus), and from three human cell lines (HeLa cell line ATCC#: CCL-2, human cell line Hep G2, and human breast carcinoma cell line MDA-435) by real-time reverse transcription PCR using an Applied Biosystems 7500 Fast Real-Time PCR System. The mRNA expression of SLC35As, SLC35Bs, SLC35Cs, SLC35D1, SLC35D2, SLC35Es, and SLC35F5 was found to be ubiquitous in both adult and fetal tissues. SLC35D3 mRNA was expressed at the highest levels in the adult retina. SLC35F1 mRNA was expressed at high levels in the adult and fetal brain. SLC35F2 mRNA was expressed at the highest levels in the adult salivary gland. Both SLC35F3 and SLC35F4 mRNAs were expressed at the highest levels in the adult cerebellum. Further, individual differences in the mRNA expression levels of human SLC35 transporters in the liver were also evaluated. Our newly determined expression profiles were used to study the gene expression in 31 adult human tissues, 6 fetal human tissues, and 3 cell lines, and tissues with high transcriptional activity for human SLC35 transporters were identified. These results are expected to be valuable for research concerning the clinical diagnosis of disease.

  4. MACROSCOPIC DIVERSITY FOR CDMA MOBILE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Pei Xiaoyan; Hu Jiandong

    2002-01-01

    A novel system of macroscopic diversity with voting rule in CDMA cellular system is suggested in order to raise the coverage and quality of service of CDMA mobile communication system. The estimation of the impact of macroscopic diversity on performance of CDMA cellular system is analyzed and investigated.

  5. MACROSCOPIC DIVERSITY FOR CDMA MOBILE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    PeiXiaoyan; HuJiandong

    2002-01-01

    A novel system of macroscopic diversity with voting rule in CDMA cellular system is suggested in order to raise the coverage and quality of service of CDMA mobile communication system.The estimation of the impact of macroscopic diversity on performance of CDMA cellular system is analyzed and investigated.

  6. Reactive solute transport in physically and chemically heterogeneous porous media with multimodal reactive mineral facies: The Lagrangian approach

    CERN Document Server

    Soltanian, Mohamad Reza; Dai, Zhenxue; Huang, Chaocheng

    2014-01-01

    Physical and chemical heterogeneities have a large impact on reactive transport in porous media. Examples of heterogeneous attributes affecting reactive mass transport are the hydraulic conductivity (K), and the equilibrium sorption distribution coefficient (Kd). This paper uses the Deng et al. (2013) conceptual model for multimodal reactive mineral facies and a Lagrangian-based stochastic theory in order to analyze the reactive solute dispersion in three-dimensional anisotropic heterogeneous porous media with hierarchical organization of reactive minerals. An example based on real field data is used to illustrate the time evolution trends of reactive solute dispersion. The results show that the correlation between the hydraulic conductivity and the equilibrium sorption distribution coefficient does have a significant effect on reactive solute dispersion. The anisotropy ratio does not have a significant effect on reactive solute dispersion. Furthermore, through a sensitivity analysis we investigate the impact...

  7. Simple solution-processed titanium oxide electron transport layer for efficient inverted polymer solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Liang [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Shen, Wenfei [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Institute of Hybrid Materials, Laboratory of New Fiber Materials and Modern Textile—The Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China); Chen, Weichao [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Bao, Xichang, E-mail: baoxc@qibebt.ac.cn [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China); Wang, Ning; Dou, Xiaowei; Han, Liangliang; Wen, Shuguang [CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101 (China)

    2014-12-31

    Titanium oxide (TiO{sub X}) is an effective electron transport layer (ETL) in polymer solar cells (PSCs). We report efficient inverted PSCs with a simple solution-processed amorphous TiO{sub X} (s-TiO{sub X}) film as an ETL. The s-TiO{sub X} film with high light transmittance was prepared by spin-coating titanium (IV) isopropoxide isopropanol solution on indium tin oxide coated glass in inert and then placed in air under room temperature for 60 min. The introduction of s-TiO{sub X} ETL greatly improved the short circuit current density of the devices. PSCs based on poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester and poly(4,8-bis-alkyloxy-benzo[1,2-b:4,5-b′]dithiophene-alt-alkylcarbonyl -thieno[3,4-b]thiophene):[6,6]-phenyl- C71-butyric acid methyl ester using s-TiO{sub X} film as ETL shows high power conversion efficiency of 4.29% and 6.7% under the illumination of AM 1.5G, 100 mW/cm{sup 2}, which shows enhancements compared to the conventional PSCs with poly(styrenesulfonate)-doped poly(ethylenedioxythiophene) as anode buffer layer. In addition, the device exhibits good stability in a humid ambient atmosphere without capsulation. The results indicate that the annealing-free, simple solution processed s-TiO{sub X} film is an efficient ETL for high-performance PSCs. - Highlights: • High quality s-TiO{sub X} films were prepared by a simple, solution method without thermal treatment. • The s-TiO{sub X} films with high transmittance are very smooth. • The organic photovoltaic performance with s-TiO{sub X} film improved greatly and exhibited good stability. • The annealing-free, simple prepared s-TiO{sub X} film will be much compatible with flexible substrates.

  8. Geochemical and numerical modelling of interactions between solid solutions and an aqueous solution. Extension of a reactive transport computer code called Archimede and application to reservoirs diagenesis; Modelisation geochimique et numerique des interactions entre des solutions solides et une solution aqueuse: extension du logiciel de reaction-transport archimede et application a la diagenese des reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nourtier-Mazauric, E.

    2003-03-15

    This thesis presents a thermodynamic and kinetic model of interactions between a fluid and ideal solid solutions represented by several end-members. The reaction between a solid solution and the aqueous solution results from the competition between the stoichiometric dissolution of the initial solid solution and the co-precipitation of the least soluble solid solution in the fluid at considered time. This model was implemented in ARCHIMEDE, a computer code of reactive transport in porous media, then applied to various examples. In the case of binary solid solutions, a graphical method allowed to determine the compositions of the precipitating solid solutions, with the aid of the end-member chemical potentials. The obtained program could be used to notably model the diagenesis of clayey or carbonated oil reservoirs, or the ground pollutant dispersion. (author)

  9. Water and solute transport in agricultural soils predicted by volumetric clay and silt contents

    Science.gov (United States)

    Karup, Dan; Moldrup, Per; Paradelo, Marcos; Katuwal, Sheela; Norgaard, Trine; Greve, Mogens H.; de Jonge, Lis W.

    2016-09-01

    Solute transport through the soil matrix is non-uniform and greatly affected by soil texture, soil structure, and macropore networks. Attempts have been made in previous studies to use infiltration experiments to identify the degree of preferential flow, but these attempts have often been based on small datasets or data collected from literature with differing initial and boundary conditions. This study examined the relationship between tracer breakthrough characteristics, soil hydraulic properties, and basic soil properties. From six agricultural fields in Denmark, 193 intact surface soil columns 20 cm in height and 20 cm in diameter were collected. The soils exhibited a wide range in texture, with clay and organic carbon (OC) contents ranging from 0.03 to 0.41 and 0.01 to 0.08 kg kg- 1, respectively. All experiments were carried out under the same initial and boundary conditions using tritium as a conservative tracer. The breakthrough characteristics ranged from being near normally distributed to gradually skewed to the right along with an increase in the content of the mineral fines (particles ≤ 50 μm). The results showed that the mineral fines content was strongly correlated to functional soil structure and the derived tracer breakthrough curves (BTCs), whereas the OC content appeared less important for the shape of the BTC. Organic carbon was believed to support the stability of the soil structure rather than the actual formation of macropores causing preferential flow. The arrival times of 5% and up to 50% of the tracer mass were found to be strongly correlated with volumetric fines content. Predicted tracer concentration breakthrough points as a function of time up to 50% of applied tracer mass could be well fitted to an analytical solution to the classical advection-dispersion equation. Both cumulative tracer mass and concentration as a function of time were well predicted from the simple inputs of bulk density, clay and silt contents, and applied tracer

  10. A macroscopic model of traffic jams in axons.

    Science.gov (United States)

    Kuznetsov, A V; Avramenko, A A

    2009-04-01

    The purpose of this paper is to develop a minimal macroscopic model capable of explaining the formation of traffic jams in fast axonal transport. The model accounts for the decrease of the number density of positively (and negatively) oriented microtubules near the location of the traffic jam due to formation of microtubule swirls; the model also accounts for the reduction of the effective velocity of organelle transport in the traffic jam region due to organelles falling off microtubule tracks more often in the swirl region. The model is based on molecular-motor-assisted transport equations and the hydrodynamic model of traffic jams in highway traffic. Parametric analyses of the model's predictions for various values of viscosity of the traffic flow, variance of the velocity distribution, diffusivity of microtubule-bound and free organelles, rate constants for binding to and detachment from microtubules, relaxation time, and average motor velocities of the retrograde and anterograde transport, are carried out.

  11. Numerical modelling of solute transport at Forsmark with MIKE SHE. Site descriptive modelling SDM-Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Lars-Goeran; Sassner, Mona (DHI Sverige AB, Stockholm (Sweden)); Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden))

    2008-12-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is performing site investigations at two different locations in Sweden, referred to as the Forsmark and Laxemar areas, with the objective of siting a final repository for high-level radioactive waste. Data from the site investigations are used in a variety of modelling activities. This report presents model development and results of numerical transport modelling based on the numerical flow modelling of surface water and near-surface groundwater at the Forsmark site. The numerical modelling was performed using the modelling tool MIKE SHE and is based on the site data and conceptual model of the Forsmark areas. This report presents solute transport applications based on both particle tracking simulations and advection-dispersion calculations. The MIKE SHE model is the basis for the transport modelling presented in this report. Simulation cases relevant for the transport from a deep geological repository have been studied, but also the pattern of near surface recharge and discharge areas. When the main part of the modelling work presented in this report was carried out, the flow modelling of the Forsmark site was not finalised. Thus, the focus of this work is to describe the sensitivity to different transport parameters, and not to point out specific areas as discharge areas from a future repository (this is to be done later, within the framework of the safety assessment). In the last chapter, however, results based on simulations with the re-calibrated MIKE SHE flow model are presented. The results from the MIKE SHE water movement calculations were used by cycling the calculated transient flow field for a selected one-year period as many times as needed to achieve the desired simulation period. The solute source was located either in the bedrock or on top of the model. In total, 15 different transport simulation cases were studied. Five of the simulations were particle tracking simulations, whereas the rest

  12. Rank distributions: A panoramic macroscopic outlook

    Science.gov (United States)

    Eliazar, Iddo I.; Cohen, Morrel H.

    2014-01-01

    This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions—top-down, bottom-up, and global—and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.

  13. A comparison of numerical solutions of partial differential equations with probabilistic and possibilistic parameters for the quantification of uncertainty in subsurface solute transport

    Science.gov (United States)

    Zhang, Kejiang; Achari, Gopal; Li, Hua

    2009-11-01

    Traditionally, uncertainty in parameters are represented as probabilistic distributions and incorporated into groundwater flow and contaminant transport models. With the advent of newer uncertainty theories, it is now understood that stochastic methods cannot properly represent non random uncertainties. In the groundwater flow and contaminant transport equations, uncertainty in some parameters may be random, whereas those of others may be non random. The objective of this paper is to develop a fuzzy-stochastic partial differential equation (FSPDE) model to simulate conditions where both random and non random uncertainties are involved in groundwater flow and solute transport. Three potential solution techniques namely, (a) transforming a probability distribution to a possibility distribution (Method I) then a FSPDE becomes a fuzzy partial differential equation (FPDE), (b) transforming a possibility distribution to a probability distribution (Method II) and then a FSPDE becomes a stochastic partial differential equation (SPDE), and (c) the combination of Monte Carlo methods and FPDE solution techniques (Method III) are proposed and compared. The effects of these three methods on the predictive results are investigated by using two case studies. The results show that the predictions obtained from Method II is a specific case of that got from Method I. When an exact probabilistic result is needed, Method II is suggested. As the loss or gain of information during a probability-possibility (or vice versa) transformation cannot be quantified, their influences on the predictive results is not known. Thus, Method III should probably be preferred for risk assessments.

  14. A comparison of numerical solutions of partial differential equations with probabilistic and possibilistic parameters for the quantification of uncertainty in subsurface solute transport.

    Science.gov (United States)

    Zhang, Kejiang; Achari, Gopal; Li, Hua

    2009-11-03

    Traditionally, uncertainty in parameters are represented as probabilistic distributions and incorporated into groundwater flow and contaminant transport models. With the advent of newer uncertainty theories, it is now understood that stochastic methods cannot properly represent non random uncertainties. In the groundwater flow and contaminant transport equations, uncertainty in some parameters may be random, whereas those of others may be non random. The objective of this paper is to develop a fuzzy-stochastic partial differential equation (FSPDE) model to simulate conditions where both random and non random uncertainties are involved in groundwater flow and solute transport. Three potential solution techniques namely, (a) transforming a probability distribution to a possibility distribution (Method I) then a FSPDE becomes a fuzzy partial differential equation (FPDE), (b) transforming a possibility distribution to a probability distribution (Method II) and then a FSPDE becomes a stochastic partial differential equation (SPDE), and (c) the combination of Monte Carlo methods and FPDE solution techniques (Method III) are proposed and compared. The effects of these three methods on the predictive results are investigated by using two case studies. The results show that the predictions obtained from Method II is a specific case of that got from Method I. When an exact probabilistic result is needed, Method II is suggested. As the loss or gain of information during a probability-possibility (or vice versa) transformation cannot be quantified, their influences on the predictive results is not known. Thus, Method III should probably be preferred for risk assessments.

  15. Transport of E. coli D21g with runoff water under different solution chemistry conditions and surface slopes

    Science.gov (United States)

    Tracer and indicator microbe runoff experiments were conducted to investigate the influence of solution chemistry on the transport, retention, and release of Escherichia coli D21g. Experiments were conducted in a chamber (2.25 m long, 0.15 m wide, and 0.16 m high) packed with ultrapure quartz sand (...

  16. Facilitated transport of Cu with hydroxyapatite nanoparticles in saturated sand: Effects of solution ionic strength and composition

    Science.gov (United States)

    Column experiments were conducted to investigate the facilitated transport of Cu in association with hydroxyapatite nanoparticles (nHAP) in water-saturated quartz sand at different solution concentrations of NaCl (0 to 100 mM) or CaCl2 (0.1 to 1.0 mM). The experimental breakthrough curves and retent...

  17. Links between soil properties and steady-state solute transport through cultivated topsoil at the field scale

    DEFF Research Database (Denmark)

    Koestel, J. K.; Nørgaard, Trine; Loung, N. M.

    2013-01-01

    It is known that solute transport through soil is heterogeneous at all spatial scales. However, little data are available to allow quantification of these heterogeneities at the field scale or larger. In this study, we investigated the spatial patterns of soil properties, hydrologic state variabl...

  18. Measurement of resistance to solute transport across surfactant-laden interfaces using a Fluorescence Recovery After Photobleaching (FRAP) technique

    Science.gov (United States)

    Browne, Edward P.; Nivaggioli, Thierry; Hatton, T. Alan

    1994-01-01

    A noninvasive fluorescence recovery after photobleaching (FRAP) technique is under development to measure interfacial transport in two phase systems without disturbing the interface. The concentration profiles of a probe solute are measured in both sides of the interface by argon-ion laser, and the system relaxation is then monitored by a microscope-mounted CCD camera.

  19. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the Vadose Zone

    Science.gov (United States)

    To investigate the coupled effects of solution chemistry and vadose zone processes on the mobility of quantum dot (QD) nanoparticles, laboratory scale transport experiments were performed. The complex coupled effects of ionic strength, size of QD aggregates, surface tension, contact angle, infiltrat...

  20. Pristine fullerenes mixed by vacuum-free solution process: Efficient electron transport layer for planar perovskite solar cells

    Science.gov (United States)

    Dai, Si-Min; Tian, Han-Rui; Zhang, Mei-Lin; Xing, Zhou; Wang, Lu-Yao; Wang, Xin; Wang, Tan; Deng, Lin-Long; Xie, Su-Yuan; Huang, Rong-Bin; Zheng, Lan-Sun

    2017-01-01

    Discovery of organic-inorganic hybrid perovskites ignites the dream of next-generation solar cells fabricated by low-cost solution processing. To date, fullerene derivative [6,6]-phenyl-C61- butyric acid methyl ester (PC61BM), is the most prevalently used electron transport layer for high efficiency p-i-n planar heterojunction perovskite solar cells. Compared with PC61BM, pristine fullerenes, such as C60 and C70, have shown superiority of higher electron mobility and much lower costs. Due to the poor solubility and strong tendency to crystallize for pristine fullerenes in solution process, it is still a challenge to deposit compact and continuous film of pristine fullerenes for p-i-n type perovskite solar cells by solution processing. Herein, solution processed pristine fullerenes (C60 and C70) were used as electron transport layers to replace PC61BM in perovskite solar cells with high performance and enhanced stability. Power conversion efficiency of 14.04% was obtained by using mixture of C60 and C70 as electron transport layer, which is comparable to that of PC61BM based device (13.74%). We demonstrated that the strong tendency of pristine fullerenes to crystallize during solvent removal can be largely mitigated by mixing different kinds of pristine fullerenes. These findings implicate pristine fullerenes as promising electron transport layers for high performance perovskite solar cells.

  1. A three-dimensional finite-volume Eulerian-Lagrangian Localized Adjoint Method (ELLAM) for solute-transport modeling

    Science.gov (United States)

    Heberton, C.I.; Russell, T.F.; Konikow, L.F.; Hornberger, G.Z.

    2000-01-01

    This report documents the U.S. Geological Survey Eulerian-Lagrangian Localized Adjoint Method (ELLAM) algorithm that solves an integral form of the solute-transport equation, incorporating an implicit-in-time difference approximation for the dispersive and sink terms. Like the algorithm in the original version of the U.S. Geological Survey MOC3D transport model, ELLAM uses a method of characteristics approach to solve the transport equation on the basis of the velocity field. The ELLAM algorithm, however, is based on an integral formulation of conservation of mass and uses appropriate numerical techniques to obtain global conservation of mass. The implicit procedure eliminates several stability criteria required for an explicit formulation. Consequently, ELLAM allows large transport time increments to be used. ELLAM can produce qualitatively good results using a small number of transport time steps. A description of the ELLAM numerical method, the data-input requirements and output options, and the results of simulator testing and evaluation are presented. The ELLAM algorithm was evaluated for the same set of problems used to test and evaluate Version 1 and Version 2 of MOC3D. These test results indicate that ELLAM offers a viable alternative to the explicit and implicit solvers in MOC3D. Its use is desirable when mass balance is imperative or a fast, qualitative model result is needed. Although accurate solutions can be generated using ELLAM, its efficiency relative to the two previously documented solution algorithms is problem dependent.

  2. Dynamics and mass transport of solutal convection in a closed porous media system

    Science.gov (United States)

    Wen, Baole; Akhbari, Daria; Hesse, Marc

    2016-11-01

    Most of the recent studies of CO2 sequestration are performed in open systems where the constant partial pressure of CO2 in the vapor phase results in a time-invariant saturated concentration of CO2 in the brine (Cs). However, in some closed natural CO2 reservoirs, e.g., Bravo Dome in New Mexico, the continuous dissolution of CO2 leads to a pressure drop in the gas that is accompanied by a reduction of Cs and thereby affects the dynamics and mass transport of convection in the brine. In this talk, I discuss the characteristics of convective CO2 dissolution in a closed system. The gas is assumed to be ideal and its solubility given by Henry's law. An analytical solution shows that the diffusive base state is no longer self-similar and that diffusive mass transfer declines rapidly. Scaling analysis reveals that the volume ratio of brine and gas η determines the behavior of the system. DNS show that no constant flux regime exists for η > 0 nevertheless, the quantity F /Cs2 remains constant, where F is the dissolution flux. The onset time is only affected by η when the Rayleigh number Ra is small. In this case, the drop in Cs during the initial diffusive regime significantly reduces the effective Ra and therefore delays the onset.

  3. Evaluation of unsaturated-zone solute-transport models for studies of agricultural chemicals

    Science.gov (United States)

    Nolan, Bernard T.; Bayless, E. Randall; Green, Christopher T.; Garg, Sheena; Voss, Frank D.; Lampe, David C.; Barbash, Jack E.; Capel, Paul D.; Bekins, Barbara A.

    2005-01-01

    Seven unsaturated-zone solute-transport models were tested with two data sets to select models for use by the Agricultural Chemical Team of the U.S. Geological Survey's National Water-Quality Assessment Program. The data sets were from a bromide tracer test near Merced, California, and an atrazine study in the White River Basin, Indiana. In this study the models are designated either as complex or simple based on the water flux algorithm. The complex models, HYDRUS2D, LEACHP, RZWQM, and VS2DT, use Richards' equation to simulate water flux and are well suited to process understanding. The simple models, CALF, GLEAMS, and PRZM, use a tipping-bucket algorithm and are more amenable to extrapolation because they require fewer input parameters. The purpose of this report is not to endorse a particular model, but to describe useful features, potential capabilities, and possible limitations that emerged from working with the model input data sets. More rigorous assessment of model applicability involves proper calibration, which was beyond the scope of this study.

  4. Thermal transport in dimerized harmonic lattices: Exact solution, crossover behavior, and extended reservoirs.

    Science.gov (United States)

    Chien, Chih-Chun; Kouachi, Said; Velizhanin, Kirill A; Dubi, Yonatan; Zwolak, Michael

    2017-01-01

    We present a method for calculating analytically the thermal conductance of a classical harmonic lattice with both alternating masses and nearest-neighbor couplings when placed between individual Langevin reservoirs at different temperatures. The method utilizes recent advances in analytic diagonalization techniques for certain classes of tridiagonal matrices. It recovers the results from a previous method that was applicable for alternating on-site parameters only, and extends the applicability to realistic systems in which masses and couplings alternate simultaneously. With this analytic result in hand, we show that the thermal conductance is highly sensitive to the modulation of the couplings. This is due to the existence of topologically induced edge modes at the lattice-reservoir interface and is also a reflection of the symmetries of the lattice. We make a connection to a recent work that demonstrates thermal transport is analogous to chemical reaction rates in solution given by Kramers' theory [Velizhanin et al., Sci. Rep. 5, 17506 (2015)]2045-232210.1038/srep17506. In particular, we show that the turnover behavior in the presence of edge modes prevents calculations based on single-site reservoirs from coming close to the natural-or intrinsic-conductance of the lattice. Obtaining the correct value of the intrinsic conductance through simulation of even a small lattice where ballistic effects are important requires quite large extended reservoir regions. Our results thus offer a route for both the design and proper simulation of thermal conductance of nanoscale devices.

  5. Groundwater Flow and Solute Transport in a Tidally influenced gravel beach in Prince William Sound, Alaska

    Science.gov (United States)

    Bobo, A. M.; Boufadel, M. C.; Abdollahi Nasab, A.

    2009-12-01

    We investigated beach hydraulics in a gravel beach on Eleanor Island, Prince William Sound, Alaska that was previously polluted with the Exxon Valdez oil spill in 1989. The beach contains trace amounts of oil such that they don’t affect beach hydraulics. Measurements of water pressure and salinity were analyzed and simulated using the model SUTRA (Saturated-Unsaturated Groundwater Flow and Solute Transport). The results indicated that the beach consists of two layers with contrasting hydraulic properties: an upper layer with a hydraulic conductivity of 10-2 m/s, and a lower layer with a hydraulic conductivity of 10-5 m/s. The presence of the layer of low hydraulic conductivity constrained the fall of the water table resulting in a water table fluctuation that is almost independent of distance from the shoreline. This is unlike previous studies, which occurred in sandy beaches, and where the fluctuation decreased going landward. The water table remained above the layers’ interface, which suggests that the oil did not penetrate the lower layer. This could explain the presence of only tracer amount of oil in the beach. A sudden seaward increase of the slope of the two layers’ interface resulted in water leaving the lower layer near the mid-intertidal zone, and draining to the sea through the upper layer. This created the effect of a hydraulic rupture separating the hydraulics in the seaward portion of the beach from the rest of beach, especially at low tide.

  6. Thermal transport in dimerized harmonic lattices: Exact solution, crossover behavior, and extended reservoirs

    Science.gov (United States)

    Chien, Chih-Chun; Kouachi, Said; Velizhanin, Kirill A.; Dubi, Yonatan; Zwolak, Michael

    2017-01-01

    We present a method for calculating analytically the thermal conductance of a classical harmonic lattice with both alternating masses and nearest-neighbor couplings when placed between individual Langevin reservoirs at different temperatures. The method utilizes recent advances in analytic diagonalization techniques for certain classes of tridiagonal matrices. It recovers the results from a previous method that was applicable for alternating on-site parameters only, and extends the applicability to realistic systems in which masses and couplings alternate simultaneously. With this analytic result in hand, we show that the thermal conductance is highly sensitive to the modulation of the couplings. This is due to the existence of topologically induced edge modes at the lattice-reservoir interface and is also a reflection of the symmetries of the lattice. We make a connection to a recent work that demonstrates thermal transport is analogous to chemical reaction rates in solution given by Kramers' theory [Velizhanin et al., Sci. Rep. 5, 17506 (2015)], 10.1038/srep17506. In particular, we show that the turnover behavior in the presence of edge modes prevents calculations based on single-site reservoirs from coming close to the natural—or intrinsic—conductance of the lattice. Obtaining the correct value of the intrinsic conductance through simulation of even a small lattice where ballistic effects are important requires quite large extended reservoir regions. Our results thus offer a route for both the design and proper simulation of thermal conductance of nanoscale devices.

  7. Flow and Reactive Transport of Miscible and Immiscible Solutions in Fractured & Porous Media

    Science.gov (United States)

    Ryerson, F. J.; Ezzedine, S. M.; Antoun, T.

    2012-12-01

    Miscible and immiscible flows are important phenomena encountered in many industrial and engineering applications such as hydrothermal systems, oil and gas reservoirs, salt/water intrusion, geological carbon sequestration etc… Under the influence of gravity, the flow of fluids with sufficiently large density ratios may become unstable leading to instabilities, mixing and in some instances reactions at the interfacial contact between fluids. Flow is governed by a combination of momentum and mass conservation equations that describe the flow of the fluid phase and a convection-diffusion equation describing the change of concentration in the fluid phase. When hydrodynamic instabilities develop it may be difficult to use standard grid-based methods to model miscible/immiscible flow because the domains occupied by fluids evolve constantly with time. In the current study, adaptive mesh refinement finite elements method has been used to solve for flow and transport equations. Furthermore, a particle tracking scheme has also been implemented to track the kinematics of swarm of particles injected into the porous fractured media to quantify surface area, sweeping zones, and their impact on porosity changes. Spatial and temporal moments of the fingering instabilities and the development of reaction zones and the impact of kinetic reaction at the fluid/solution interfaces have also been analyzed. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  8. Integrating Water Flow, Solute Transport and Crop Production Models At The Farm-scale

    Science.gov (United States)

    Assinck, F. B. T.; de Vos, J. A.

    Minimising nitrate pollution of ground and surface water and optimising agricultural yields are problems which have to be addressed at the farm-scale. However, simulation models usually operate at the field-scale. We coupled the subsurface hydrology model SWAP with other existing deterministic (sub)models for solute transport, organic mat- ter dynamics, crop growth, and dairy farm management at the farm-scale, resulting in the model WATERPAS. The (sub)models are coupled in a Framework environment obeying the principles of object oriented modelling. Based on daily weather data, groundwater regimes, soil and farm characteristics WATERPAS is able to simulate the water and nutrient balances, grass production, economical benefits, nitrate leaching and greenhouse gas emissions at a farm. Problems of coupling, such as data-transfer, quality checks, over-parameterisation, complexity and sensitivity of the systems are discussed. Application of deducted simpler models and expert judgement can be use- ful for practical use. However, we believe that integrated models are a powerful tool to understand the complex relationships between the different processes. It also gives opportunities to perform scenario analysis for future boundary conditions, i.e. due to changing farm management, (sea) water levels and climate change.

  9. Technical Note: Simple formulations and solutions of the dual-phase diffusive transport for biogeochemical modeling

    Directory of Open Access Journals (Sweden)

    J. Y. Tang

    2014-01-01

    Full Text Available Representation of gaseous diffusion in variably saturated near-surface soils is becoming more common in land biogeochemical models, yet the formulations and numerical solution algorithms applied vary widely. We present three different but equivalent formulations of the dual-phase (gaseous and aqueous tracer diffusion transport problem that is relevant to a wide class of volatile tracers in land biogeochemical models. Of these three formulations (i.e., the gas-primary, aqueous-primary, and bulk tracer based formulations, we contend the gas-primary formulation is the most convenient for modeling tracer dynamics in biogeochemical models. We then provide finite volume approximation to the gas-primary equation and evaluate its accuracy against three analytical models: one for steady-state soil CO2 dynamics, one for steady-state soil CO2 dynamics, and one for transient tracer diffusion from a constant point source into two different sequentially aligned medias. All evaluations demonstrated good accuracy of the numerical approximation. We expect our result will standardize an efficient mechanistic numerical method for solving relatively simple, multi-phase, one-dimensional diffusion problems in land models.

  10. Modeling vertical and horizontal solute transport for the Weldon Spring Site Remedial Action Project

    Energy Technology Data Exchange (ETDEWEB)

    Tomasko, D.

    1992-11-01

    This technical memorandum presents a one-dimensional model to simulate the transport of a contaminant that originates as a liquid release, moves vertically downward through a vadose zone, mixes with initially clean groundwater in an unconfined aquifer, and ends at a downgradient extraction well. Vertical and horizontal segments of the contaminant pathway are coupled by assuming that the breakthrough curve of the contaminant at the water table acts as a contaminant source for the unconfined aquifer. For simplicity, this source is assumed to be a time-shifted unit square wave having an amplitude equal to the peak breakthrough concentration at the water table and a duration equal to the full width of the breakthrough curve at the half-maximum concentration value. The effects of dilution at the water-table interface are evaluated with a simple mass-balance equation. Comparing the model results for the chemical plant area of the Weldon Spring site near St. Louis, Missouri, and the Envirocare facility located near Salt Lake City, Utah, with those obtained from a solution formulated with the real and imaginary parts of a Fourier series in Laplace space indicates that the model provides a conservative estimate of the contaminant breakthrough curve at the receptor.

  11. Low band gap polymeric solar cells using solution-processable copper iodide as hole transporting layer

    Science.gov (United States)

    Chaudhary, Neeraj; Kesari, J. P.; Chaudhary, Rajiv; Patra, Asit

    2016-08-01

    In the present work, we have shown the performance of solution-processable copper iodide (CuI) as an alternative hole transporting layer (HTL) for polymeric solar cells. Optical spectra of the CuI thin film reveal highly transparent and practically no absorption in the range vis-NIR region (450-1110 nm). X-ray diffraction (XRD) patterns of CuI exhibits as a p-type semiconductor as well as crystalline nature. The photovoltaic devices were fabricated using PCDTBT and PTB7 as donor materials blended with PC71BM as an acceptor material. The power conversion efficiencies (PCEs) based on CuI as an HTL have been achieved to up to 3.04% and 4.48% for PCDTBT and PTB7 based donor materials respectively with a configuration based on ITO/CuI(40 nm)/active layer (60 nm)/Al (120 nm). This study clearly indicated that the devices made with CuI as an HTL showed superior performance than the device fabricated from PEDOT:PSS layer as an HTL. Morphological characterization of the HTL using scanning electron microscopy (SEM) and atomic force microscope (AFM) were carried for better understanding.

  12. Application of a single root-scale model to improve macroscopic modeling of root water uptake: focus on osmotic stress

    Science.gov (United States)

    Jorda, Helena; Perelman, Adi; Lazarovitch, Naftali; Vanderborght, Jan

    2017-04-01

    Root water uptake is a fundamental process in the hydrological cycle and it largely regulates the water balance in the soil vadose zone. Macroscopic stress functions are currently used to estimate the effect of salinity on root water uptake. These functions commonly assume stress to be a function of bulk salinity and of the plant sensitivity to osmotic stress expressed as the salinity at which transpiration is reduced by half or so called tolerance value. However, they fail to integrate additional relevant factors such as atmospheric conditions or root architectural traits. We conducted a comprehensive simulation study on a single root using a 3-D physically-based model that resolves flow and transport to individual root segments and that couples flow in the soil and root system. The effect of salt concentrations on root water uptake was accounted for by including osmotic water potential gradients between the solution at the soil root interface and the root xylem sap in the hydraulic gradient between the soil and root. A large set of factors were studied, namely, potential transpiration rate and dynamics, root length density (RLD), irrigation water quality and irrigation frequency, and leaching fraction. Results were fitted to the macroscopic function developed by van Genuchten and Hoffman (1984) and the dependency of osmotic stress and the fitted macroscopic parameters on the studied factors was evaluated. Osmotic stress was found to be highly dependent on RLD. Low RLDs result in a larger stress to the plant due to high evaporative demand per root length unit. In addition, osmotic stress was positively correlated to potential transpiration rate, and sinusoidal potential transpiration lead to larger stress than when imposed as a constant boundary condition. Macroscopic parameters are usually computed as single values for each crop and used for the entire growing season. However, our study shows that both tolerance value and shape parameter p from the van Genuchten

  13. Entanglements in Marginal Solutions: A Means of Tuning Pre-Aggregation of Conjugated Polymers with Positive Implications for Charge Transport

    KAUST Repository

    Hu, Hanlin

    2015-06-17

    The solution-processing of conjugated polymers, just like commodity polymers, is subject to solvent and molecular weight-dependent solubility, interactions and chain entanglements within the polymer, all of which can influence the crystallization and microstructure development in semi-crystalline polymers and consequently affect charge transport and optoelectronic properties. Disentanglement of polymer chains in marginal solvents was reported to work via ultrasonication, facilitating the formation of photophysically ordered polymer aggregates. In this contribution, we explore how a wide range of technologically relevant solvents and formulations commonly used in organic electronics influence chain entanglement and the aggregation behaviour of P3HT using a combination of rheological and spectrophotometric measurements. The specific viscosity of the solution offers an excellent indication of the degree of entanglements in the solution, which is found to be related to the solubility of P3HT in a given solvent. Moreover, deliberately disentangling the solution in the presence of solvophobic driving forces, leads consistently to formation of photophysically visible aggregates which is indicative of local and perhaps long range order in the solute. We show for a broad range of solvents and molecular weights that disentanglement ultimately leads to significant ordering of the polymer in the solid state and a commensurate increase in charge transport properties. In doing so we demonstrate a remarkable ability to tune the microstructure which has important implications for transport properties. We discuss its potential implications in the context of organic photovoltaics.

  14. Application of a Two-Storage Zone Model to Characterize Transport and Reaction of Solutes and Solute Tracers in Streams and Wetlands

    Science.gov (United States)

    Harvey, J. W.; Newlin, J. T.

    2004-05-01

    Natural streams and wetlands exchange water and solutes between the main flow zone and a complex assemblage of "transient storage" zones that include stagnant water in pools, areas of flow recirculation, and subsurface flow paths through bed sediments and deeper alluvial sediments. Exchange between faster moving waters of the main flow zone and the slowly moving waters in storage zones results in delayed downstream transport of solutes, relative to what would be predicted from velocity measurements in the main flow zone. The transient storage concept is useful particularly for understanding the fate and transport of contaminants in streams, such as nutrients and metals, because solutes transported into storage zones come in close contact with reactive substrates such as sediment, periphyton, and macrophyte leaves. Delayed transport and characterization of transient storage zones can be quantified with solute tracer injections and modeling. Many of the widely used stream transport models that consider transient storage, such as the OTIS-P model (Runkel, USGS WRIR 98-4018, 1998), use only a single storage zone (i.e., linear reservoir with exponential residence time distribution) to account for transient storage. Choi et al. (WRR, 36:1511, 2000) showed that a model with two independent storage zones improved the characterization of transient storage in systems having both `slow' and `fast' exchange zones while retaining an appropriate level of model simplicity. We modified the OTIS-P model to include the option of simulating transport by allowing for exchange with two independent storage zones. The new model package, called OTIS-2Stor, also incorporates new options for weighting tracer concentration measurements while estimating the parameters of the model using the same non-linear least squares regression routine that is included in OTIS-P. Our experiences in headwater channels of Indiana and in the Florida Everglades demonstrate that, if used in conjunction with

  15. Meta-analysis of the effects of soil properties, site factors and experimental conditions on solute transport

    Directory of Open Access Journals (Sweden)

    J. K. Koestel

    2012-06-01

    Full Text Available Preferential flow is a widespread phenomenon that is known to strongly affect solute transport in soil, but our understanding and knowledge is still poor of the site factors and soil properties that promote it. To investigate these relationships, we assembled a database from the peer-reviewed literature containing information on 733 breakthrough curve experiments under steady-state flow conditions. Most of the collected experiments (585 of the 733 datasets had been conducted on undisturbed soil columns, although some experiments on repacked soil, clean sands, and glass beads were also included. In addition to the apparent dispersivity, we focused our attention on three indicators of preferential solute transport: namely the 5%-arrival time, the holdback factor, and the ratio of piston-flow and average transport velocities. Our results suggest that, in contrast to the 5%-arrival time and the holdback factor, the piston-flow to transport velocity ratio is not related to preferential macropore transport but rather to the exclusion or retardation of the applied tracer. Confirming that the apparent longitudinal dispersivity is positively correlated with the travel distance of the tracer, our results also illustrate that this relationship is refined if the normalized 5%-tracer arrival time is also taken into account. In particular, we found that the degree of preferential solute transport increases with apparent dispersivity and decreases with travel distance. A similar but weaker relationship was observed between apparent dispersivity, 5%-tracer arrival time, and lateral observation scale, such that the degree of preferential transport increases with lateral observation scale. However, we also found that the travel distance and the lateral observation scale in the investigated dataset are correlated, which makes it difficult to distinguish their influence on these transport characteristics. We also found that the strength of preferential transport

  16. An inexact Newton method for fully-coupled solution of the Navier-Stokes equations with heat and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics

    1997-02-01

    The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.

  17. An inexact Newton method for fully-coupled solution of the Navier-Stokes equations with heat and mass transport

    Energy Technology Data Exchange (ETDEWEB)

    Shadid, J.N.; Tuminaro, R.S. [Sandia National Labs., Albuquerque, NM (United States); Walker, H.F. [Utah State Univ., Logan, UT (United States). Dept. of Mathematics and Statistics

    1997-02-01

    The solution of the governing steady transport equations for momentum, heat and mass transfer in flowing fluids can be very difficult. These difficulties arise from the nonlinear, coupled, nonsymmetric nature of the system of algebraic equations that results from spatial discretization of the PDEs. In this manuscript the authors focus on evaluating a proposed nonlinear solution method based on an inexact Newton method with backtracking. In this context they use a particular spatial discretization based on a pressure stabilized Petrov-Galerkin finite element formulation of the low Mach number Navier-Stokes equations with heat and mass transport. The discussion considers computational efficiency, robustness and some implementation issues related to the proposed nonlinear solution scheme. Computational results are presented for several challenging CFD benchmark problems as well as two large scale 3D flow simulations.

  18. Future car transport, Evaluating optimal solutions for future transport in the Netherlands focussing on the electric and hydrogen car

    NARCIS (Netherlands)

    Pierie, Frank

    2010-01-01

    The modern world we are living in today, consumes fasts amounts of fossil fuels in many sectors. One of these sectors is transport which is almost completely dependent on oil derivatives. This heavy dependency on oil and other types of fossil fuel makes i

  19. Future car transport, Evaluating optimal solutions for future transport in the Netherlands focussing on the electric and hydrogen car

    NARCIS (Netherlands)

    Pierie, Frank

    2010-01-01

    The modern world we are living in today, consumes fasts amounts of fossil fuels in many sectors. One of these sectors is transport which is almost completely dependent on oil derivatives. This heavy dependency on oil and other types of fossil fuel makes i

  20. Core 2D. A code for non-isothermal water flow and reactive solute transport. Users manual version 2

    Energy Technology Data Exchange (ETDEWEB)

    Samper, J.; Juncosa, R.; Delgado, J.; Montenegro, L. [Universidad de A Coruna (Spain)

    2000-07-01

    Understanding natural groundwater quality patterns, quantifying groundwater pollution and assessing the effects of waste disposal, require modeling tools accounting for water flow, and transport of heat and dissolved species as well as their complex interactions with solid and gases phases. This report contains the users manual of CORE ''2D Version V.2.0, a COde for modeling water flow (saturated and unsaturated), heat transport and multicomponent Reactive solute transport under both local chemical equilibrium and kinetic conditions. it is an updated and improved version of CORE-LE-2D V0 (Samper et al., 1988) which in turns is an extended version of TRANQUI, a previous reactive transport code (ENRESA, 1995). All these codes were developed within the context of Research Projects funded by ENRESA and the European Commission. (Author)

  1. Assessments of macroscopicity for quantum optical states

    DEFF Research Database (Denmark)

    Laghaout, Amine; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund

    2015-01-01

    With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should...... enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished. © 2014....

  2. Quantum Bell Inequalities from Macroscopic Locality

    CERN Document Server

    Yang, Tzyh Haur; Sheridan, Lana; Scarani, Valerio

    2010-01-01

    We propose a method to generate analytical quantum Bell inequalities based on the principle of Macroscopic Locality. By imposing locality over binary processings of virtual macroscopic intensities, we establish a correspondence between Bell inequalities and quantum Bell inequalities in bipartite scenarios with dichotomic observables. We discuss how to improve the latter approximation and how to extend our ideas to scenarios with more than two outcomes per setting.

  3. The transport phenomena during the growth of ZnTe crystal by the temperature gradient solution growth technique

    Science.gov (United States)

    Yin, Liying; Jie, Wanqi; Wang, Tao; Zhou, Boru; Yang, Fan

    2017-03-01

    A numerical model is developed to simulate the temperature field, the thermosolutal convection, the solute segregation and the growth interface morphology during the growth of ZnTe crystal from Te rich solution by the temperature gradient solution growth (TGSG) technique. Effects of the temperature gradient on the transport phenomena, the growth interface morphology and the growth rate are examined. The influences of the latent heat and the thermal conductivity of ZnTe crystal on the transport phenomena and the growth interface are also discussed. We find that the mass transfer of ZnTe in the solution is very slow because of the low diffusion coefficient and the lack of mixing in the lower part of the solution. During the growth, dilute solution with high density and low growth temperature accumulates in the central region of the growth interface, making the growth interface change into two distinct parts. The inner part is very concave, while the outer part is relatively flat. Growth conditions in front of the two parts of the growth interface are different. The crystalline quality of the inner part of the ingot is predicted to be worse than that of the outer part. High temperature gradient can significantly increase the growth rate, and avoid the diffusion controlled growth to some extent.

  4. Analytical solutions Of three-dimensional contaminant transport in uniform flow field in porous media: A library

    Institute of Scientific and Technical Information of China (English)

    Hongtao WANG; Huayong WU

    2009-01-01

    The purpose of this study is to present a library of analytical solutions for the three-dimensional contam-inant transport in uniform flow field in porous media with the first-order decay, linear sorption, and zero-order pro-duction. The library is constructed using Green's function method (GFM) in combination with available solutions.The library covers a wide range of solutions for various conditions. The aquifer can be vertically finite, semi-infin-itive or infinitive, and laterally semi-infinitive or infinitive.The geometry of the sources can be of point, line, plane or volumetric body; and the source release can be continuous,instantaneous, or by following a given function over time.Dimensionless forms of the solutions are also proposed. A computer code FlowCAS is developed to calculate the solutions. Calculated results demonstrate the correctness of the presented solutions. The library is widely applicable to solve contaminant transport problems of one- or multiple- dimensions in uniform flow fields.

  5. A Stream Morphology Classification for Eco-hydraulic Purposes Based on Geospatial Data: a Solute Transport Application Case

    Science.gov (United States)

    Jiménez Jaramillo, M. A.; Camacho Botero, L. A.; Vélez Upegui, J. I.

    2010-12-01

    Variation in stream morphology along a basin drainage network leads to different hydraulic patterns and sediment transport processes. Moreover, solute transport processes along streams, and stream habitats for fisheries and microorganisms, rely on stream corridor structure, including elements such as bed forms, channel patterns, riparian vegetation, and the floodplain. In this work solute transport processes simulation and stream habitat identification are carried out at the basin scale. A reach-scale morphological classification system based on channel slope and specific stream power was implemented by using digital elevation models and hydraulic geometry relationships. Although the morphological framework allows identification of cascade, step-pool, plane bed and pool-riffle morphologies along the drainage network, it still does not account for floodplain configuration and bed-forms identification of those channel types. Hence, as a first application case in order to obtain parsimonious three-dimensional characterizations of drainage channels, the morphological framework has been updated by including topographical floodplain delimitation through a Multi-resolution Valley Bottom Flatness Index assessing, and a stochastic bed form representation of the step-pool morphology. Model outcomes were tested in relation to in-stream water storage for different flow conditions and representative travel times according to the Aggregated Dead Zone -ADZ- model conceptualization of solute transport processes.

  6. Body shaping under water stress: osmosensing and osmoregulation of solute transport in bacteria.

    Science.gov (United States)

    Morbach, Susanne; Krämer, Reinhard

    2002-05-03

    Fluctuation of external osmolarity is one of the most common types of environmental stress factors for all kind of cells, both of prokaryotic and of eukaryotic origin. Cells try to keep their volume and/or turgor pressure constant; consequently, both a decrease (hypoosmotic stress) and an increase (hyperosmotic stress) of the solute concentration (correctly: increase or decrease in water activity) in the surrounding area, respectively, are challenges for cellular metabolism and survival. A common example from the prokaryotic world is the fate of a soil bacterium that, after a sunny day has dried out the soil (hyperosmotic stress), is suddenly exposed to a drop of distilled water from a rain cloud (hypoosmotic stress). The immediate and inevitable passive response to the sudden osmotic shift in the surroundings is fast water efflux out of the cell in the former situation and water influx in the latter. In the worst case, these responses may lead to either loss of cell turgor and plasmolysis or to cell burst. In order to overcome such drastic consequences cells have developed effective mechanisms, namely osmoadaptation, to cope with the two different types of osmotic stress. For a graded reaction to osmotic shifts, cells must be able (1) to sense stimuli related to osmotic stress, (2) to transduce corresponding signals to those systems that properly respond (3) by activating transport or enzymatic functions or (4) by changing gene expression profiles. In this review, membrane proteins involved in the cell's active response to osmotic stress are described. Molecular details of structure, function, and regulation of mechanosensitive efflux channels from various organisms, as well as of osmoregulated uptake systems are discussed.

  7. Low-cost copper complexes as p-dopants in solution processable hole transport layers

    Energy Technology Data Exchange (ETDEWEB)

    Kellermann, Renate [Department for Materials Science and Engineering, Chair for Materials for Electronics and Energy Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058 (Germany); Siemens AG – Corporate Technology, Guenther-Scharowsky-Str. 1, Erlangen 91058 (Germany); Taroata, Dan; Maltenberger, Anna; Hartmann, David; Schmid, Guenter [Siemens AG – Corporate Technology, Guenther-Scharowsky-Str. 1, Erlangen 91058 (Germany); Brabec, Christoph J. [Department for Materials Science and Engineering, Chair for Materials for Electronics and Energy Technology, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058 (Germany)

    2015-09-07

    We demonstrate the usage of the Lewis-acidic copper(II)hexafluoroacetylacetonate (Cu(hfac){sub 2}) and copper(II)trifluoroacetylacetonate (Cu(tfac){sub 2}) as low-cost p-dopants for conductivity enhancement of solution processable hole transport layers based on small molecules in organic light emitting diodes (OLEDs). The materials were clearly soluble in mixtures of environmentally friendly anisole and xylene and spin-coated under ambient atmosphere. Enhancements of two and four orders of magnitude, reaching 4.0 × 10{sup −11} S/cm with a dopant concentration of only 2 mol% Cu(hfac){sub 2} and 1.5 × 10{sup −9} S/cm with 5 mol% Cu(tfac){sub 2} in 2,2′,7,7′-tetra(N,N-ditolyl)amino-9,9-spiro-bifluorene (spiro-TTB), respectively, were achieved. Red light emitting diodes were fabricated with reduced driving voltages and enhanced current and power efficiencies (8.6 lm/W with Cu(hfac){sub 2} and 5.6 lm/W with Cu(tfac){sub 2}) compared to the OLED with undoped spiro-TTB (3.9 lm/W). The OLED with Cu(hfac){sub 2} doped spiro-TTB showed an over 8 times improved LT{sub 50} lifetime of 70 h at a starting luminance of 5000 cd/m{sup 2}. The LT{sub 50} lifetime of the reference OLED with PEDOT:PSS was only 8 h. Both non-optimized OLEDs were operated at similar driving voltage and power efficiency.

  8. Pore-scale and Continuum Simulations of Solute Transport Micromodel Benchmark Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Oostrom, Martinus; Mehmani, Yashar; Romero Gomez, Pedro DJ; Tang, Y.; Liu, H.; Yoon, Hongkyu; Kang, Qinjun; Joekar Niasar, Vahid; Balhoff, Matthew; Dewers, T.; Tartakovsky, Guzel D.; Leist, Emily AE; Hess, Nancy J.; Perkins, William A.; Rakowski, Cynthia L.; Richmond, Marshall C.; Serkowski, John A.; Werth, Charles J.; Valocchi, Albert J.; Wietsma, Thomas W.; Zhang, Changyong

    2016-08-01

    Four sets of micromodel nonreactive solute transport experiments were conducted with flow velocity, grain diameter, pore-aspect ratio, and flow focusing heterogeneity as the variables. The data sets were offered to pore-scale modeling groups to test their simulators. Each set consisted of two learning experiments, for which all results was made available, and a challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing, and considerably enhanced mixing due to flow focusing. Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice-Boltzmann (LB) approach, and one employed a computational fluid dynamics (CFD) technique. The learning experiments were used by the PN models to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used these experiments to appropriately discretize the grid representations. The continuum model use published non-linear relations between transverse dispersion coefficients and Peclet numbers to compute the required dispersivity input values. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values and, resulting in less dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models needed up to several days on supercomputers to resolve the more complex problems.

  9. Quantum statistical effects in the mass transport of interstitial solutes in a crystalline solid

    Science.gov (United States)

    Woo, C. H.; Wen, Haohua

    2017-09-01

    The impact of quantum statistics on the many-body dynamics of a crystalline solid at finite temperatures containing an interstitial solute atom (ISA) is investigated. The Mori-Zwanzig theory allows the many-body dynamics of the crystal to be formulated and solved analytically within a pseudo-one-particle approach using the Langevin equation with a quantum fluctuation-dissipation relation (FDR) based on the Debye model. At the same time, the many-body dynamics is also directly solved numerically via the molecular dynamics approach with a Langevin heat bath based on the quantum FDR. Both the analytical and numerical results consistently show that below the Debye temperature of the host lattice, quantum statistics significantly impacts the ISA transport properties, resulting in major departures from both the Arrhenius law of diffusion and the Einstein-Smoluchowski relation between the mobility and diffusivity. Indeed, we found that below one-third of the Debye temperature, effects of vibrations on the quantum mobility and diffusivity are both orders-of-magnitude larger and practically temperature independent. We have shown that both effects have their physical origin in the athermal lattice vibrations derived from the phonon ground state. The foregoing theory is tested in quantum molecular dynamics calculation of mobility and diffusivity of interstitial helium in bcc W. In this case, the Arrhenius law is only valid in a narrow range between ˜300 and ˜700 K. The diffusivity becomes temperature independent on the low-temperature side while increasing linearly with temperature on the high-temperature side.

  10. Structures and properties of sulfonated ionomers probed by transport and mechanical measurements: The role of solute activity

    Science.gov (United States)

    Zhao, Qiao

    This work is focused on advancing the understanding of the structures and properties of sulfonated ionomer membranes in the context of Polymer Electrolyte Membrane Fuel Cell applications by transport and mechanical measurements. Transport and mechanical properties are two critical elements of ionomer membranes that govern the performance and longevity of fuel cells. Additionally, transport and mechanical property measurements can also provide valuable information about the structure of the ionomer membranes. It is essential to develop a comprehensive understanding of them under well controlled environmental conditions. The mechanism of water transport through Nafion membranes was found to be governed by water diffusivity, swelling of the hydrophilic phase and the interfacial transport across membrane/vapor interface. A transport model incorporating these parameters was developed and successfully employed to resolve water activity profiles in the membrane and make quantitative predictions under steady state and dynamic conditions. Experimental results of diffusivity, volume of mixing and tortuosity also provided hints about the hydration shell structure around in the hydrophilic domains of Nafion. The alcohol sorption and transport was found to be qualitatively similar to the behavior of water and the quantitative differences were attributed to the difference in molecular size. The transport of alcohol water mixtures through Nafion displayed significant non-ideality which was connected to the abnormal swelling and incomplete mixing within the hydrophilic domains. The mechanical properties of several perfluoro-sulfonated ionomer (PFSI) membranes were studied as functions of temperature and solute activity. The thermal transition found between 60-100°C was described as an order-disorder transition of the ionic clusters. Water and other polar solutes were found to plasticize PFSI below the transition but stiffen PFSI above the transition. The stiffening effect was

  11. Non-Equilibrium Thermodynamic Analysis of Transport Properties in the Nanofiltration of Ionic Liquid-Water Solutions

    Directory of Open Access Journals (Sweden)

    Hua P. Wang

    2009-05-01

    Full Text Available Thenanofiltration of aqueous solutions of the ionic liquids (ILs 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4, and 1-butyl-3-methylimidazolium bromide ([Bmim]Br with a polyamide nanofiltration membrane was investigated. The practical transport coefficients, including hydrodynamic permeability (Lp, reflection (σ and solute permeability (ω were calculated in terms of a non-equilibrium thermodynamics approach. It was found that Lp and σ diminished as the concentration of the IL solutions increased. These characteristics are similar to those observed in inorganic electrolyte-water systems. In addition, it was shown that the rejection and volume flux for both ionic liquid solutions rose with feed pressure, while it decreased with feed concentration. The maximum rejection efficiencies for [Bmim]Br and [Bmim]BF4 are 67 % and 60 %, respectively, on our experimental scale. All the data suggests that a highly efficient process for IL separation could be developed when the operating conditions are optimized further.

  12. Experimental quantification of solute transport through the vadose zone under dynamic boundary conditions with dye tracers and optical methods.

    Science.gov (United States)

    Cremer, Clemens; Neuweiler, Insa

    2017-04-01

    Knowledge of subsurface solute transport processes is vital to investigate e.g. groundwater contamination, nutrient uptake by plant roots and to implement remediation strategies. Beside field measurements and numerical simulations, physical laboratory experiments represent a way to establish process understanding and furthermore validate numerical schemes. Atmospheric forcings, such as erratically varying infiltration and evaporation cycles, subject the shallow subsurface to local and temporal variations in water content and associated hydraulic conductivity of the prevailing porous media. Those variations in material properties can cause flow paths to differ between upward and downward flow periods. Thereby, the unsaturated subsurface presents a highly complicated, dynamic system. Following an extensive systematical numerical investigation of flow and transport through bimodal, unsaturated porous media under dynamic boundary conditions (Cremer et al., 2016), we conduct physical laboratory experiments in a 22 cm x 8 cm x 1 cm flow cell where we introduce structural heterogeneity in the form sharp material interfaces between different porous media. In all experiments, a constant pressure head is implemented at the lower boundary, while cyclic infiltration-evaporation phases are applied at the soil surface. As a reference case a stationary infiltration with a rate corresponding to the cycle-averaged infiltration rate is applied. By initial application of dye tracers, solute transport within the domain is visualized such that transport paths and redistribution processes can be observed in a qualitative manner. Solute leaching is quantified at the bottom outlet, where breakthrough curves are obtained via spectroscopy. Liquid and vapor flow in and out of the domain is obtained from multiple balances. Thereby, the interplay of material structural heterogeneity and alternating flow (transport) directions and flow (transport) paths is investigated. Results show lateral

  13. Experimental investigation of the impact of compound-specific dispersion and electrostatic interactions on transient transport and solute breakthrough

    DEFF Research Database (Denmark)

    Muniruzzaman, Muhammad; Rolle, Massimo

    2017-01-01

    This study investigates the effects of compound-specific diffusion/dispersion and electrochemical migration on transient solute transport in saturated porous media. We conducted laboratory bench-scale experiments, under advection-dominated regimes (seepage velocity: 0.5, 5, 25 m/d), in a quasi two....... The experimental results show that compound-specific effects and charge-induced Coulombic interactions are important not only at low velocities and/or for steady state plumes but also for transient transport under high flow velocities. Such effects can lead to a remarkably different behavior of measured...

  14. Active Solute Transport across Frog Skin and Epithelial Cell Systems According to the Association-Induction Hypothesis,

    Science.gov (United States)

    1980-01-01

    AD A136 163 ACTIVE SOLUTE TRANSPORT ACROSS FROG SKIN AND EPITHELIAL 1/1 CELL SYSTEMS ACCO..(U) PENNSYLVANIA HOSPITAL PHILADELPHIA DEPT OF MOLECULAR...TEST CHART fi4TIOtM4. @I*AU OF STA’dAftOS. 43- A ACTIVE SOWTE TRANSPORT ACROSS FROG SKIN AND EPITH-IAL CELL SYSTEMS AC:ORC:NG TO THE ASSOCIATION...taken full account of the difference between unifacial solid cells typified by human red blood cells, frog muscle and squid awn, and bifacial hollow

  15. ''Swap trough'' combined transport system. A system solution for rail freight transport; Kombiverkehrssystem Wechseltrog-Transport. Eine Systemloesung fuer den Eisenbahngueterverkehr

    Energy Technology Data Exchange (ETDEWEB)

    Windsinger, J. [Freundekreis Koenigsberg/Kalinigrad, Frankfurt am Main (Germany); Fasterding, G. [Hannover Univ. (Germany). Fachbereich Bauingenieurwesen

    2005-07-01

    Representatives of the German, Polish and Russian railways have held several discussions on the subject of freight transport from Germany via Poland to Kaliningrad and onwards to Russia. On 20 February 2004, the Friends of Koenigsberg - Kaliningrad in turn founded to 'Swap Trough Transport (STT) Consortium' in Celle, Germany. The aim of the consortium is to develop and implement a new, cost-effective combined transport system. The objective is to set up a trans-Eurasian WTT system using a continuous rail link all the way from Vladivostok to Lisbon. (orig.)

  16. Biotin uptake in prokaryotes by solute transporters with an optional ATP-binding cassette-containing module.

    Science.gov (United States)

    Hebbeln, Peter; Rodionov, Dmitry A; Alfandega, Anja; Eitinger, Thomas

    2007-02-20

    BioMNY proteins are considered to constitute tripartite biotin transporters in prokaryotes. Recent comparative genomic and experimental analyses pointed to the similarity of BioMN to homologous modules of prokaryotic transporters mediating uptake of metals, amino acids, and vitamins. These systems resemble ATP-binding cassette-containing transporters and include typical ATPases (e.g., BioM). Absence of extracytoplasmic solute-binding proteins among the members of this group, however, is a distinctive feature. Genome context analyses uncovered that only one-third of the widespread bioY genes are linked to bioMN. Many bioY genes are located at loci encoding biotin biosynthesis, and others are unlinked to biotin metabolic or transport genes. Heterologous expression of the bioMNY operon and of the single bioY of the alpha-proteobacterium Rhodobacter capsulatus conferred biotin-transport activity on recombinant Escherichia coli cells. Kinetic analyses identified BioY as a high-capacity transporter that was converted into a high-affinity system in the presence of BioMN. BioMNY-mediated biotin uptake was severely impaired by replacement of the Walker A lysine residue in BioM, demonstrating dependency of high-affinity transport on a functional ATPase. Biochemical assays revealed that BioM, BioN, and BioY proteins form stable complexes in membranes of the heterologous host. Expression of truncated bio transport operons, each with one gene deleted, resulted in stable BioMN complexes but revealed only low amounts of BioMY and BioNY aggregates in the absence of the respective third partner. The results substantiate our earlier suggestion of a mechanistically novel group of membrane transporters.

  17. The effect of solution nonideality on modeling transmembrane water transport and diffusion-limited intracellular ice formation during cryopreservation.

    Science.gov (United States)

    Zhao, Gang; Takamatsu, Hiroshi; He, Xiaoming

    2014-04-14

    A new model was developed to predict transmembrane water transport and diffusion-limited ice formation in cells during freezing without the ideal-solution assumption that has been used in previous models. The model was applied to predict cell dehydration and intracellular ice formation (IIF) during cryopreservation of mouse oocytes and bovine carotid artery endothelial cells in aqueous sodium chloride (NaCl) solution with glycerol as the cryoprotectant or cryoprotective agent. A comparison of the predictions between the present model and the previously reported models indicated that the ideal-solution assumption results in under-prediction of the amount of intracellular ice at slow cooling rates (<50 K/min). In addition, the lower critical cooling rates for IIF that is lethal to cells predicted by the present model were much lower than those estimated with the ideal-solution assumption. This study represents the first investigation on how accounting for solution nonideality in modeling water transport across the cell membrane could affect the prediction of diffusion-limited ice formation in biological cells during freezing. Future studies are warranted to look at other assumptions alongside nonideality to further develop the model as a useful tool for optimizing the protocol of cell cryopreservation for practical applications.

  18. Transport coefficients of saturated compact clays; Coefficients de transport pour des argiles compactes saturees

    Energy Technology Data Exchange (ETDEWEB)

    Paszkuta, M.; Rosanne, M.; Adler, P.M. [Sisyphe, 75 - Paris (France)

    2006-10-15

    The coefficients that characterize the simultaneous transports of mass, heat, solute and current through compact clays are experimentally and theoretically determined. The role of a characteristic length scale that can be derived from conductivity and permeability is illustrated for the electrokinetic coefficients. The macroscopic Soret coefficient in clays was found five times larger than in the free fluid, presumably because of extra couplings with electrical phenomena. (authors)

  19. Energy and sustainable urban transport development in China : challenges and solutions

    OpenAIRE

    Zhang, Xilang; Hu, Xiaojun

    2002-01-01

    This paper presents an overview of urban road transport development and challenges in energy consumption in China. It relates sustainable urban road transport development with energy consumption and environmental management. It analyzes the main challenges related to urban road transport development: energy security, low efficiency in energy utilization, and unsustainable environmental management. It also discusses necessary technological and policy initiatives to deal with these challenges: ...

  20. High speed transport protocols: An attempt to find the best solution

    Science.gov (United States)

    Lazaris, Konstantinos A.

    1994-03-01

    The development and advances in fiber optic technology are leading to major changes in modern telecommunications systems. In short, the transmission of data through optical fiber has become so fast that the computers which the fibers connect have become a bottleneck. The transport layer protocol, which is the software interface between the network and the computer, is one of the most important sources of this bottleneck. The purpose of this thesis is to investigate several 'high-speed' transport protocols, evaluate them, and attempt to determine which transport protocol or combination of transport protocols is optimal for high speed networks of the future. The approach is to first study the requirements of transport protocols for high speed networks. Then the properties of several specific transport protocols are studied with these requirements in mind. A detailed analysis of the strengths and shortcomings of Transmission Control Protocol/Internet Protocol (TCP/IP), Xpress Transfer Protocol (XTP), and SNR are presented. TCP/IP, which is in wide use today, was designed when transmission rates were much slower and error rates were much higher than today. XTP and SNR are two new experimental transport layer protocols which have been recently designed with high speed networks in mind. The primary contribution of this thesis is an evaluation of the requirements of future transport protocols. In short, TCP/IP in its present form is simply not adequate; it must change and adapt, or be replaced by a new transport protocol like XTP or SNR.

  1. An analytical model for solute transport through a GCL-based two-layered liner considering biodegradation.

    Science.gov (United States)

    Guan, C; Xie, H J; Wang, Y Z; Chen, Y M; Jiang, Y S; Tang, X W

    2014-01-01

    An analytical model for solute advection and dispersion in a two-layered liner consisting of a geosynthetic clay liner (GCL) and a soil liner (SL) considering the effect of biodegradation was proposed. The analytical solution was derived by Laplace transformation and was validated over a range of parameters using the finite-layer method based software Pollute v7.0. Results show that if the half-life of the solute in GCL is larger than 1 year, the degradation in GCL can be neglected for solute transport in GCL/SL. When the half-life of GCL is less than 1 year, neglecting the effect of degradation in GCL on solute migration will result in a large difference of relative base concentration of GCL/SL (e.g., 32% for the case with half-life of 0.01 year). The 100-year solute base concentration can be reduced by a factor of 2.2 when the hydraulic conductivity of the SL was reduced by an order of magnitude. The 100-year base concentration was reduced by a factor of 155 when the half life of the contaminant in the SL was reduced by an order of magnitude. The effect of degradation is more important in approving the groundwater protection level than the hydraulic conductivity. The analytical solution can be used for experimental data fitting, verification of complicated numerical models and preliminary design of landfill liner systems.

  2. A Nonlinear Solute Transport Model and Data Reconstruction with Parameter Determination in an Undisturbed Soil-Column Experiment

    Directory of Open Access Journals (Sweden)

    Gongsheng Li

    2011-01-01

    Full Text Available A real undisturbed soil-column infiltrating experiment in Zibo, Shandong, China, is investigated, and a nonlinear transport model for a solute ion penetrating through the column is put forward by using nonlinear Freundlich's adsorption isotherm. Since Freundlich's exponent and adsorption coefficient and source/sink terms in the model cannot be measured directly, an inverse problem of determining these parameters is encountered based on additional breakthrough data. Furthermore, an optimal perturbation regularization algorithm is introduced to determine the unknown parameters simultaneously. Numerical simulations are carried out and then the inversion algorithm is applied to solve the real inverse problem and reconstruct the measured data successfully. The computational results show that the nonlinear advection-dispersion equation discussed in this paper can be utilized by hydrogeologists to research solute transport behaviors with nonlinear adsorption in porous medium.

  3. Superhydrophobic Cones for Continuous Collection and Directional Transportation of CO2 Microbubbles in CO2 Supersaturated Solutions.

    Science.gov (United States)

    Xue, Xiuzhan; Yu, Cunming; Wang, Jingming; Jiang, Lei

    2016-12-27

    Microbubbles are tiny bubbles with diameters below 50 μm. Because of their minute buoyant force, the microbubbles stagnate in aqueous media for a long time, and they sometimes cause serious damage. Most traditional methods chosen for elimination of gas bubbles utilize buoyancy forces including chemical methods and physical methods, and they only have a minor effect on microbubbles. Several approaches have been developed to collect and transport microbubbles in aqueous media. However, the realization of innovative strategies to directly collect and transport microbubbles in aqueous media remains a big challenge. In nature, both spider silk and cactus spines take advantage of their conical-shaped surface to yield the gradient of Laplace pressure and surface free energy for collecting fog droplets from the environment. Inspired by this, we introduce here the gradient of Laplace pressure and surface free energy to the interface of superhydrophobic copper cones (SCCs), which can continuously collect and directionally transport CO2 microbubbles (from tip side to base side) in CO2-supersaturated solution. A gas layer was formed when the microbubbles encounter the SCCs. This offers a channel for microbubble directional transportation. The efficiency of microbubble transport is significantly affected by the apex angle of SCCs and the carbon dioxide concentration. The former provides different gradients of Laplace pressure as the driving force. The latter represents the capacity, which offers the quantity of CO2 microbubbles for collection and transportation. We believe that this approach provides a simple and valid way to remove microbubbles.

  4. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the vadose zone

    Science.gov (United States)

    Uyusur, Burcu; Darnault, Christophe J. G.; Snee, Preston T.; Kokën, Emre; Jacobson, Astrid R.; Wells, Robert R.

    2010-11-01

    To investigate the coupled effects of solution chemistry and hydrodynamics on the mobility of quantum dot (QD) nanoparticles in the vadose zone, laboratory scale transport experiments involving single and/or sequential infiltrations of QDs in unsaturated and saturated porous media, and computations of total interaction and capillary potential energies were performed. As ionic strength increased, QD retention in the unsaturated porous media increased; however, this retention was significantly suppressed in the presence of a non-ionic surfactant in the infiltration suspensions as indicated by surfactant enhanced transport of QDs. In the vadose zone, the non-ionic surfactant limited the formation of QD aggregates, enhanced QD mobility and transport, and lowered the solution surface tension, which resulted in a decrease in capillary forces that not only led to a reduction in the removal of QDs, but also impacted the vadose zone flow processes. When chemical transport conditions were favorable (ionic strength of 5 × 10 -4 M and 5 × 10 -3 M, or ionic strengths of 5 × 10 -2 M and 0.5 M with surfactant), the dominating phenomena controlling the mobility and transport of QDs in the vadose zone were meso-scale processes, where infiltration by preferential flow results in the rapid transport of QDs. When chemical transport conditions were unfavorable (ionic strength of 5 × 10 -2 M and 0.5 M) the dominating phenomena controlling the mobility and transport of QDs in the vadose zone were pore-scale processes governed by gas-water interfaces (GWI) that impact the mobility of QDs. The addition of surfactant enhanced the transport of QDs both in favorable and unfavorable chemical transport conditions. The mobility and retention of QDs was controlled by interaction and capillary forces, with the latter being the most influential. GWI were found to be the dominant mechanism and site for QD removal compared with solid-water interfaces (SWI) and pore straining. Additionally

  5. Escherichia coli O157:H7 Transport in Saturated Porous Media: Role of Solution Chemistry and Surface Macromolecules

    Science.gov (United States)

    The transport and deposition behavior of Escherichia coli O157:H7 was investigated in saturated packed-bed columns and micromodel systems over a range of ionic strength (IS) (1, 10, and 100 mM) and pH (5.8, 8.4, and 9.2). At a given IS, enhanced solution pH resulted in decreased deposition as a res...

  6. Some properties of strong solutions to nonlinear heat and moisture transport in multi-layer porous structures

    CERN Document Server

    Beneš, Michal

    2010-01-01

    The present paper deals with mathematical models of heat and moisture transport in layered building envelopes. The study of such processes generates a system of two doubly nonlinear evolution partial differential equations with appropriate initial and boundary conditions. The existence of the strong solution in two dimensions on a (short) time interval is proven. The proof rests on regularity results for elliptic transmission problem for composite-like materials.

  7. A study of solute transport of radiolysis products in crud and its effects on crud growth on PWR fuel pin

    Energy Technology Data Exchange (ETDEWEB)

    Joe, Justin H. [BNF Consulting (United States); Kim, Seung Jun, E-mail: skim@lanl.gov [Mechanical and Thermal Engineering Group (AET-1), Los Alamos National Laboratory (United States); Jones, Barclay G. [Department of Nuclear Plasma Radiological Engineering, University of Illinois Urbana-Champaign (United States)

    2016-04-15

    Highlights: • We model a 3-D numerical solute transport within crud deposit on PWR fuel pin. • Source term effect from radiolysis yield and recombination is minimal. • Lower crud porosity leads substantially higher concentration of solutes. • Thicker crud deposit generates substantially higher concentration of solutes. • High concentration of radiolysis species (H{sub 2}, O{sub 2}, and H{sub 2}O{sub 2}) can be directly related to corrosion issues on fuel cladding. - Abstract: This research examines the concentration of radiolysis species (H{sub 2}, O{sub 2}, and H{sub 2}O{sub 2}) over the porous crud layer using a three dimensional time dependent solute transport model. A Monte Carlo random walk technique is adopted to simulate the transport behavior of the different species with various parametric studies of source term, crud thickness, and crud porosity. Particularly, this model employs a system of coupled mass transport and chemical interactions as the source term, which makes the problem non-linear. It is demonstrated that a negligible effect on radiolysis species concentrations change due to the consideration of source term. The crud thickness and porosity effect on the concentration distributions are notably observed. In general, higher concentration starts from the intersection of the heating surface with the chimney wall from the beginning and it reaches the equilibrium state within tens of seconds. The concentration profiles of the radiolysis species H{sub 2}, O{sub 2}, and H{sub 2}O{sub 2} can be directly related to corrosion issues. The direct application of this study to nuclear engineering research is to aid in the design of reactors with higher performance without experiencing an Axial Offset Anomaly (AOA), an unexpected measured shift in axial power distribution from predicted values.

  8. Evaluation of Front Morphological Development of Reactive Solute Transport Using Behavior Diagrams

    Directory of Open Access Journals (Sweden)

    Jui-Sheng Chen

    2009-01-01

    -uniformity strength ratio and reaction rate constant are identified as two important factors that govern the interaction of dissolution and solute transport in groundwater systems.

  9. Buoyancy-driven flow in a peat moss layer as a mechanism for solute transport

    NARCIS (Netherlands)

    Rappoldt, C.; Pieters, G.J.J.M.; Adema, E.B.; Baaijens, G.J.; Grootjans, A.P.; Duijn, van C.J.

    2003-01-01

    Transport of nutrients, CO2, methane, and oxygen plays an important ecological role at the surface of wetland ecosystems. A possibly important transport mechanism in a water-saturated peat moss layer (usually Sphagnum cuspidatum) is nocturnal buoyancy flow, the downward flow of relatively cold surfa

  10. Proton transport in a binary biomimetic solution revealed by molecular dynamics simulation

    NARCIS (Netherlands)

    Liang, C.; Jansen, T.L.Th.A.

    2011-01-01

    We report the simulation results of the proton transport in a binary mixture of amphiphilic tetramethylurea (TMU) molecules and water. We identify different mechanisms that either facilitate or retard the proton transport. The efficiency of these mechanisms depends on the TMU concentration. The

  11. Biogeochemical Filtering of Solute Signals Explored as a Function of Transport and Reaction Time Scales

    Science.gov (United States)

    Zanardo, S.; Basu, N. B.; Rao, P. C.

    2009-12-01

    Catchment biogeochemical responses are the result of superposition of diverse dynamic components, which can be related to climate forcing, water flow, and biogeochemical reactions. The interactions among these components are highly non-linear and contribute to the generation of emergent patterns at multiple spatial and temporal scales. The aim of this work is to explore the following biogeochemical signatures arising from such interactions: (1) the relationship between contaminant loads (L) and discharge (Q) at the annual timescale, leading to an apparent chemostatic relationship (i.e., linear L-Q plots) for different contaminants and at different spatial scales; (2) spatial patterns in the slope and the scatter of the L-Q relationships; and (3) correlation between the intra-annual flow duration curves (FDC) and the load duration curves (LDC). Exploring this relationship necessitates the use of a parsimonious model, with few spatially uniform time constants, that can generate synthetic time series of load and flow at the outlet of river basins. The Mass Response Functions (MRF) approach (Rinaldo et al., 2006), lends itself suitable for the purpose since it relies on the assumption that the evolution of solute concentration in the water pulses depends only on the residence time, and not on its trajectory - thus space is replaced by time. The model simulates the episodic delivery of water and contaminant pulses from the hillslopes to the stream network in response to temporally random but spatially uniform effective rainfall patterns. The domain is described by an immobile source zone in which first order biogeochemical reactions (degradation rate constant ke) alter the solute mass, while multiple mobile rainfall pulses exchange mass with the source zone following linear kinetics (mass transfer rate constant α). The biogeochemical module of MRF, that was originally written to simulate non-reactive tracer and nitrate transport, was modified to include the more

  12. Earliest Results in the Use of Activated Composite Membranes for the Transport of Silver Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Yucundo Mendoza-Tolentino

    2014-01-01

    Full Text Available This paper presents the results concerning the first use of activated composite membranes (ACMs for the facilitated transport of silver ions containing di-(2-ethylhexyl-dithiophosphoric acid (DTPA as the carrier. DTPA was immobilized by interfacial polymerization in a dense layer that was deposited in a porous layer, which was prepared on a nonwoven fabric support by phase inversion. The influence of fundamental parameters affecting the transport of silver ion as the carrier concentration in the membrane phase and stripping agent variation of the stripping solution have been studied. In the optimal conditions, the amount of silver transported across the ACMs was greater than 50%, whereas if the content of the carrier is modified, more than the 90% of the initial silver is removed from the feed phase.

  13. Thermoelectric coefficients of n -doped silicon from first principles via the solution of the Boltzmann transport equation

    Science.gov (United States)

    Fiorentini, Mattia; Bonini, Nicola

    2016-08-01

    We present a first-principles computational approach to calculate thermoelectric transport coefficients via the exact solution of the linearized Boltzmann transport equation, also including the effect of nonequilibrium phonon populations induced by a temperature gradient. We use density functional theory and density functional perturbation theory for an accurate description of the electronic and vibrational properties of a system, including electron-phonon interactions; carriers' scattering rates are computed using standard perturbation theory. We exploit Wannier interpolation (both for electronic bands and electron-phonon matrix elements) for an efficient sampling of the Brillouin zone, and the solution of the Boltzmann equation is achieved via a fast and stable conjugate gradient scheme. We discuss the application of this approach to n -doped silicon. In particular, we discuss a number of thermoelectric properties such as the thermal and electrical conductivities of electrons, the Lorenz number and the Seebeck coefficient, including the phonon drag effect, in a range of temperatures and carrier concentrations. This approach gives results in good agreement with experimental data and provides a detailed characterization of the nature and the relative importance of the individual scattering mechanisms. Moreover, the access to the exact solution of the Boltzmann equation for a realistic system provides a direct way to assess the accuracy of different flavors of relaxation time approximation, as well as of models that are popular in the thermoelectric community to estimate transport coefficients.

  14. Beta-adrenergic activation of solute coupled water uptake by toad skin epithelium results in near-isosmotic transport

    DEFF Research Database (Denmark)

    Nielsen, Robert; Larsen, Erik Hviid

    2007-01-01

    (V) decreased to 0.50+/-0.15 nL cm(-2) x s(-1), which is significantly different from zero. Isoproterenol decreased the osmotic concentration of the transported fluid, C(osm) approximately 2 x I(SC)(Eqv)/J(V), from 351+/-72 to 227+/-28 mOsm (Ringer's solution: 252.8 mOsm). J(V) depicted a saturating function......(V) with a [Na+] of the transported fluid of 130+/-24 mM ([Na+]Ringer's solution = 117.4 mM). Addition of bumetanide to the inside solution reduced J(V). Water was transported uphill and J(V) reversed at an excess outside osmotic concentration, deltaC(S,rev) = 28.9+/-3.9 mOsm, amiloride decreased delta......Transepithelial potential (V(T)), conductance (G(T)), and water flow (J(V)) were measured simultaneously with good time resolution (min) in isolated toad (Bufo bufo) skin epithelium with Ringer on both sides. Inside application of 5 microM isoproterenol resulted in the fast increase in G(T) from 1...

  15. On the relationship of transient storage and aggregated dead zone models of longitudinal solute transport in streams

    Science.gov (United States)

    Lees, Matthew J.; Camacho, Luis A.; Chapra, Steven

    2000-01-01

    The relationship between the distributed transient storage (TS) and lumped aggregate dead zone (ADZ) models of longitudinal solute transport in rivers and streams is examined by a parallel application to tracer data and through an investigation of parameter relationships. Both models accurately describe observed solute transport in a stream where the effects of storage or dead zones significantly affect longitudinal dispersion. A moment matching technique, based on theoretical temporal moments, is used to develop parameter relationships. Tests using the previously calibrated parameters, in addition to simulation experiments, show that the moment matching procedure allows ADZ model parameters to be reliably derived from TS model parameters and vice versa. An investigation of these parameter relationships reveals an important difference between the effective solute transport velocity and the average reach flow velocity in streams subject to transient storage or dead zone processes. A number of practical uses for the derived relationships are suggested, including the ability to utilize powerful methods of system identification in the estimation of TS model parameters.

  16. A spatially adaptive grid-refinement approach for the finite element solution of the even-parity Boltzmann transport equation

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Anwar M. [Department of Computer Science, National University of Computer and Emerging Sciences, NUCES-FAST, A.K. Brohi Road, H-11, Islamabad (Pakistan)], E-mail: anwar.m.mirza@gmail.com; Iqbal, Shaukat [Faculty of Computer Science and Engineering, Ghulam Ishaq Khan (GIK) Institute of Engineering Science and Technology, Topi-23460, Swabi (Pakistan)], E-mail: shaukat@giki.edu.pk; Rahman, Faizur [Department of Physics, Allama Iqbal Open University, H-8 Islamabad (Pakistan)

    2007-07-15

    A spatially adaptive grid-refinement approach has been investigated to solve the even-parity Boltzmann transport equation. A residual based a posteriori error estimation scheme has been utilized for checking the approximate solutions for various finite element grids. The local particle balance has been considered as an error assessment criterion. To implement the adaptive approach, a computer program ADAFENT (adaptive finite elements for neutron transport) has been developed to solve the second order even-parity Boltzmann transport equation using K{sup +} variational principle for slab geometry. The program has a core K{sup +} module which employs Lagrange polynomials as spatial basis functions for the finite element formulation and Legendre polynomials for the directional dependence of the solution. The core module is called in by the adaptive grid generator to determine local gradients and residuals to explore the possibility of grid refinements in appropriate regions of the problem. The a posteriori error estimation scheme has been implemented in the outer grid refining iteration module. Numerical experiments indicate that local errors are large in regions where the flux gradients are large. A comparison of the spatially adaptive grid-refinement approach with that of uniform meshing approach for various benchmark cases confirms its superiority in greatly enhancing the accuracy of the solution without increasing the number of unknown coefficients. A reduction in the local errors of the order of 10{sup 2} has been achieved using the new approach in some cases.

  17. CHALLENGES AND TECHNICAL SOLUTIONS OF USING HIGH-PERFORMANCE TRANSPORT OF AGRICULTURAL MACHINERY

    Directory of Open Access Journals (Sweden)

    Popov A. S.

    2015-12-01

    Full Text Available Material and technical resources form a large part of the costs in agricultural production and determine the level of intensity of agriculture, productivity and competitiveness of the industry. The most important role in agricultural production is played by transport operation, from productivity and quality of which directly depends the volume and the grade of final products. More preferable is tractor transport, particularly for on-farm transport, taking into account the impact of navigation systems on the ground. Continuous growth in the saturation of tractors carried out around the world, improves the performance of tractor transport aggregate by increasing their capacity and speed, either on the road or in the field. However, if you increase the saturation of tractors, it encounters problems related to the deterioration of the controllability of the tractor and transport unit. The reduced controllability leads to an increase of damage to transported agricultural products owing to increased oscillatory processes in the system of "road – trailer – tractor – operator" when driving on-farm trails, deteriorating the smoothness and braking properties. Especially sharp these questions relate to transportation of easy-to-damage agricultural products at farm transportation. The feature of data traffic lies in the sharp drop in grade products (products receive numerous mechanical damages, deteriorating its quality, and lose marketability and accordingly reduced its cost. Influence on fruit and vegetable products of unfavorable factors can lead not only to a dramatic loss of quality at the time of transportation, but also reduce the resistance during further storage. To solve the problems emerging when increasing the saturation of tractors, we have proposed devices, allowing reducing negative impact on the production of elevated oscillatory processes, to increase the permeability and straightness of movement of tractor-transport unit

  18. Antibacterial drug treatment increases intestinal bile acid absorption via elevated levels of ileal apical sodium-dependent bile acid transporter but not organic solute transporter α protein.

    Science.gov (United States)

    Miyata, Masaaki; Hayashi, Kenjiro; Yamakawa, Hiroki; Yamazoe, Yasushi; Yoshinari, Kouichi

    2015-01-01

    Antibacterial drug treatment increases the bile acid pool size and hepatic bile acid concentration through the elevation of hepatic bile acid synthesis. However, the involvement of intestinal bile acid absorption in the increased bile acid pool size remains unclear. To determine whether intestinal bile acid absorption contributes to the increased bile acid pool in mice treated with antibacterial drugs, we evaluated the levels of bile acid transporter proteins and the capacity of intestinal bile acid absorption. Ileal apical sodium-dependent bile acid transporter (ASBT) mRNA and protein levels were significantly increased in ampicillin (ABPC)-treated mice, whereas organic solute transporter α (OSTα) mRNA levels, but not protein levels, significantly decreased in mice. Similar alterations in the expression levels of bile acid transporters were observed in mice treated with bacitracin/neomycin/streptomycin. The capacity for intestinal bile acid absorption was evaluated by an in situ loop method. Increased ileal absorption of taurochenodeoxycholic acid was observed in mice treated with ABPC. These results suggest that intestinal bile acid absorption is elevated in an ASBT-dependent manner in mice treated with antibacterial drugs.

  19. Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal.

    Science.gov (United States)

    Guo, Liangqia; Ye, Peirong; Wang, Jing; Fu, Fengfu; Wu, Zujian

    2015-11-15

    3D graphene macroscopic gel synthesized via self-assembly of GO nanosheets under basic conditions at low temperature is modified with polydopamine and Fe3O4 nanoparticles. The modification of polydopamine can not only strengthen the 3D graphene-based macroscopic architecture but also enhance the loadage and binding ability of Fe3O4 nanoparticles. The synthesized 3D Fe3O4-graphene macroscopic composites are characterized by SEM, XRD, XPS, BET, Raman and magnetic property and used as a versatile adsorbent for sub-ppm concentration of As(III) and As(V) removal from aqueous solutions. The experimental results suggest that the synthesized 3D Fe3O4-graphene macroscopic composites are promising for treating low concentration of arsenic contaminated water. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Final report on LDRD project: A phenomenological model for multicomponent transport with simultaneous electrochemical reactions in concentrated solutions

    Energy Technology Data Exchange (ETDEWEB)

    CHEN,KEN S.; EVANS,GREGORY H.; LARSON,RICHARD S.; NOBLE,DAVID R.; HOUF,WILLIAM G.

    2000-01-01

    A phenomenological model was developed for multicomponent transport of charged species with simultaneous electrochemical reactions in concentrated solutions, and was applied to model processes in a thermal battery cell. A new general framework was formulated and implemented in GOMA (a multidimensional, multiphysics, finite-element computer code developed and being enhanced at Sandia) for modeling multidimensional, multicomponent transport of neutral and charged species in concentrated solutions. The new framework utilizes the Stefan-Maxwell equations that describe multicomponent diffusion of interacting species using composition-insensitive binary diffusion coefficients. The new GOMA capability for modeling multicomponent transport of neutral species was verified and validated using the model problem of ternary gaseous diffusion in a Stefan tube. The new GOMA-based thermal battery computer model was verified using an idealized battery cell in which concentration gradients are absent; the full model was verified by comparing with that of Bernardi and Newman (1987) and validated using limited thermal battery discharge-performance data from the open literature (Dunning 1981) and from Sandia (Guidotti 1996). Moreover, a new Liquid Chemkin Software Package was developed, which allows the user to handle manly aspects of liquid-phase kinetics, thermodynamics, and transport (particularly in terms of computing properties). Lastly, a Lattice-Boltzmann-based capability was developed for modeling pore- or micro-scale phenomena involving convection, diffusion, and simplified chemistry; this capability was demonstrated by modeling phenomena in the cathode region of a thermal battery cell.

  1. Solute transport in streams of varying morphology inferred from a high resolution network of potentiometric wireless chloride sensors

    Science.gov (United States)

    Klaus, Julian; Smettem, Keith; Pfister, Laurent; Harris, Nick

    2017-04-01

    There is ongoing interest in understanding and quantifying the travel times and dispersion of solutes moving through stream environments, including the hyporheic zone and/or in-channel dead zones where retention affects biogeochemical cycling processes that are critical to stream ecosystem functioning. Modelling these transport and retention processes requires acquisition of tracer data from injection experiments where the concentrations are recorded downstream. Such experiments are often time consuming and costly, which may be the reason many modelling studies of chemical transport have tended to rely on relatively few well documented field case studies. This leads to the need of fast and cheap distributed sensor arrays that respond instantly and record chemical transport at points of interest on timescales of seconds at various locations in the stream environment. To tackle this challenge we present data from several tracer experiments carried out in the Attert river catchment in Luxembourg employing low-cost (in the order of a euro per sensor) potentiometric chloride sensors in a distributed array. We injected NaCl under various baseflow conditions in streams of different morphologies and observed solute transport at various distances and locations. This data is used to benchmark the sensors to data obtained from more expensive electrical conductivity meters. Furthermore, the data allowed spatial resolution of hydrodynamic mixing processes and identification of chemical 'dead zones' in the study reaches.

  2. Thermodynamic and transport properties of some biologically active compounds in aqueous solutions at different temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Dhondge, Sudhakar S., E-mail: s_dhondge@hotmail.co [P.G. Department of Chemistry, S.K. Porwal College, Kamptee, Nagpur 441 002 (India); Zodape, Sangesh P.; Parwate, Dilip V. [Department of Chemistry, R.T.M. Nagpur University, Nagpur 440 033 (India)

    2011-01-15

    The experimental data of density and viscosity have been obtained for aqueous solutions of biologically active compounds like salbutamol sulphate (SS), diethylcarbamazine citrate (DEC), and chlorpheniramine maleate (CPM) in the concentration range (0 to 0.15) mol . kg{sup -1} at three different temperatures. The derived parameters, such as apparent molar volume of solute ({phi}{sub V})), limiting apparent molar volume of solute ({phi}{sub V}{sup 0}), limiting apparent molar expansivity ({phi}{sub E}{sup 0}), thermal expansion coefficient ({alpha}*) and Jones-Dole equation viscosity A and B coefficients, were obtained using the density and viscosity results. It has been observed that the electrolyte-salt (SS) as well as adducts exhibit a positive viscosity B coefficient having negative ((dB)/(dT)). These results are interpreted in the light of possible solute-solute and solute-solvent interactions.

  3. Macroscopic optical response and photonic bands

    CERN Document Server

    Perez-Huerta, J S; Mendoza, Bernardo S; Mochan, W Luis

    2012-01-01

    We develop a formalism for the calculation of the macroscopic dielectric response of composite systems made of particles of one material embedded periodically within a matrix of another material, each of which is characterized by a well defined dielectric function. The nature of these dielectric functions is arbitrary, and could correspond to dielectric or conducting, transparent or opaque, absorptive and dispersive materials. The geometry of the particles and the Bravais lattice of the composite are also arbitrary. Our formalism goes beyond the longwavelenght approximation as it fully incorporates retardation effects. We test our formalism through the study the propagation of electromagnetic waves in 2D photonic crystals made of periodic arrays of cylindrical holes in a dispersionless dielectric host. Our macroscopic theory yields a spatially dispersive macroscopic response which allows the calculation of the full photonic band structure of the system, as well as the characterization of its normal modes, upo...

  4. A macroscopic challenge for quantum spacetime

    CERN Document Server

    Amelino-Camelia, Giovanni

    2013-01-01

    Over the last decade a growing number of quantum-gravity researchers has been looking for opportunities for the first ever experimental evidence of a Planck-length quantum property of spacetime. These studies are usually based on the analysis of some candidate indirect implications of spacetime quantization, such as a possible curvature of momentum space. Some recent proposals have raised hope that we might also gain direct experimental access to quantum properties of spacetime, by finding evidence of limitations to the measurability of the center-of-mass coordinates of some macroscopic bodies. However I here observe that the arguments that originally lead to speculating about spacetime quantization do not apply to the localization of the center of mass of a macroscopic body. And I also analyze some popular formalizations of the notion of quantum spacetime, finding that when the quantization of spacetime is Planckian for the constituent particles then for the composite macroscopic body the quantization of spa...

  5. On Macroscopic Complexity and Perceptual Coding

    CERN Document Server

    Scoville, John

    2010-01-01

    While Shannon information establishes limits to the universal data compression of binary data, no existing theory provides an equivalent characterization of the lossy data compression algorithms prevalent in audiovisual media. The current paper proposes a mathematical framework for perceptual coding and inference which quantifies the complexity of objects indistinguishable to a particular observer. A definition of the complexity is presented and related to a generalization of Boltzmann entropy for these equivalence classes. When the classes are partitions of phase space, corresponding to classical observations, this is the proper Boltzmann entropy and the macroscopic complexity agrees with the Algorithmic Entropy. For general classes, the macroscopic complexity measure determines the optimal lossy compression of the data. Conversely, perceptual coding algorithms may be used to construct upper bounds on certain macroscopic complexities. Knowledge of these complexities, in turn, allows perceptual inference whic...

  6. Nanoplasmon-enabled macroscopic thermal management

    CERN Document Server

    Jonsson, Gustav Edman; Dmitriev, Alexandre

    2013-01-01

    In numerous applications of energy harvesting via transformation of light into heat the focus recently shifted towards highly absorptive materials featuring nanoplasmons. It is currently established that noble metals-based absorptive plasmonic platforms deliver significant light-capturing capability and can be viewed as super-absorbers of optical radiation. However, direct experimental evidence of plasmon-enabled macroscopic temperature increase that would result from these efficient absorptive properties is scarce. Here we derive a general quantitative method of characterizing light-capturing properties of a given heat-generating absorptive layer by macroscopic thermal imaging. We further monitor macroscopic areas that are homogeneously heated by several degrees with plasmon nanostructures that occupy a mere 8% of the surface, leaving it essentially transparent and evidencing significant heat generation capability of nanoplasmon-enabled light capture. This has a direct bearing to thermophotovoltaics and othe...

  7. The Shortlist Method for fast computation of the Earth Mover's Distance and finding optimal solutions to transportation problems.

    Directory of Open Access Journals (Sweden)

    Carsten Gottschlich

    Full Text Available Finding solutions to the classical transportation problem is of great importance, since this optimization problem arises in many engineering and computer science applications. Especially the Earth Mover's Distance is used in a plethora of applications ranging from content-based image retrieval, shape matching, fingerprint recognition, object tracking and phishing web page detection to computing color differences in linguistics and biology. Our starting point is the well-known revised simplex algorithm, which iteratively improves a feasible solution to optimality. The Shortlist Method that we propose substantially reduces the number of candidates inspected for improving the solution, while at the same time balancing the number of pivots required. Tests on simulated benchmarks demonstrate a considerable reduction in computation time for the new method as compared to the usual revised simplex algorithm implemented with state-of-the-art initialization and pivot strategies. As a consequence, the Shortlist Method facilitates the computation of large scale transportation problems in viable time. In addition we describe a novel method for finding an initial feasible solution which we coin Modified Russell's Method.

  8. The Shortlist Method for fast computation of the Earth Mover's Distance and finding optimal solutions to transportation problems.

    Science.gov (United States)

    Gottschlich, Carsten; Schuhmacher, Dominic

    2014-01-01

    Finding solutions to the classical transportation problem is of great importance, since this optimization problem arises in many engineering and computer science applications. Especially the Earth Mover's Distance is used in a plethora of applications ranging from content-based image retrieval, shape matching, fingerprint recognition, object tracking and phishing web page detection to computing color differences in linguistics and biology. Our starting point is the well-known revised simplex algorithm, which iteratively improves a feasible solution to optimality. The Shortlist Method that we propose substantially reduces the number of candidates inspected for improving the solution, while at the same time balancing the number of pivots required. Tests on simulated benchmarks demonstrate a considerable reduction in computation time for the new method as compared to the usual revised simplex algorithm implemented with state-of-the-art initialization and pivot strategies. As a consequence, the Shortlist Method facilitates the computation of large scale transportation problems in viable time. In addition we describe a novel method for finding an initial feasible solution which we coin Modified Russell's Method.

  9. Chloride transport and its sensitivities to different boundary conditions in reclaimed soil solutions filled with fly ash

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yang CHEN; Jia-Ping YAN; Shi-Wen ZHANG

    2013-01-01

    Chloride ion transport in reclaimed soil solutions filled with fly ash (FA) was investigated by measuring the hydraulic parameters (i.e.water retention curves and hydraulic conductivity) of three substrates,namely GSL,GFA,and CFA.Similar simulations were carried out under certain weather conditions.The different boundary conditions of chloride transport were also discussed from FA texture,cover soil thickness,groundwater table level,and initial chloride concentration.Furthcrmore,the sensitivities of chloride ions to these effect factors were analyzed.The results show that the different top soil thickness and initial chloride concentration have no effect on salinity of topsoil solution in the monitoring points,but they can clearly change the chloride concentration of FA layers.The sensibilities from top soil thickness and initial chloride content are exceedingly weak to the salinity balance based on two dimensions of the time and concentration.While the different FA texture and groundwater table not only affect the salinity equilibrium process of the whole reclaimed soil profile,but also change its balance state.Generally,coarse FA particles and high groundwater table can defer the salinity balance process of the reclaimed soil solution,and they also increase the chloride concentration of FA layer solutions,and even topsoil ones.

  10. The single-sink fixed-charge transportation problem: Applications and solution methods

    DEFF Research Database (Denmark)

    Goertz, Simon; Klose, Andreas

    2007-01-01

    The single-sink fixed-charge transportation problem (SSFCTP) consists in finding a minimum cost flow from a number of supplier nodes to a single demand node. Shipping costs comprise costs proportional to the amount shipped as well as a fixed-charge. Although the SSFCTP is an important special case...... of the well-known fixed-charge transportation problem, just a few methods for solving this problem have been proposed in the literature. After summarising some applications of this problem arising in manufacturing and transportation, we give an overview on approximation algorithms and worst-case results...

  11. The single-sink fixed-charge transportation problem: Applications and solution methods

    DEFF Research Database (Denmark)

    Goertz, Simon; Klose, Andreas

    2007-01-01

    The single-sink fixed-charge transportation problem (SSFCTP) consists in finding a minimum cost flow from a number of supplier nodes to a single demand node. Shipping costs comprise costs proportional to the amount shipped as well as a fixed-charge. Although the SSFCTP is an important special case...... of the well-known fixed-charge transportation problem, just a few methods for solving this problem have been proposed in the literature. After summarising some applications of this problem arising in manufacturing and transportation, we give an overview on approximation algorithms and worst-case results...

  12. Ionic Diffusion and Kinetic Homogeneous Chemical Reactions in the Pore Solution of Porous Materials with Moisture Transport

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2009-01-01

    Results from a systematic continuum mixture theory will be used to establish the governing equations for ionic diffusion and chemical reactions in the pore solution of a porous material subjected to moisture transport. The theory in use is the hybrid mixture theory (HMT), which in its general form...... general description of chemical reactions among constituents is described. The Petrov – Galerkin approach are used in favour of the standard Galerkin weighting in order to improve the solution when the convective part of the problem is dominant. A modified type of Newton – Raphson scheme is derived...... for the non-linear global matrix formulation. The developed model and its numerical solution procedure are checked by running test examples which results demonstrates robustness of the proposed approach....

  13. Concepts and dimensionality in modeling unsaturated water flow and solute transport

    NARCIS (Netherlands)

    Dam, van J.C.; Rooij, de G.H.; Heinen, M.; Stagnitti, F.

    2004-01-01

    Many environmental studies require accurate simulation of waterand solute fluxes in the unsaturated zone. This paper evaluatesone- and multi-dimensional approaches for soil water flow as wellas different spreading mechanisms to model solute behavior atdifferent scales. For quantification of soil wat

  14. Transport extraction for trace element separation and preconcentration. Pt. 2; Preconcentration of iodine from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Palagyi, S. (Inst. of Inorganic and Analytical Chemistry, L. Eoetvoes Univ., Budapest (Hungary)); Braun, T. (Inst. of Inorganic and Analytical Chemistry, L. Eoetvoes Univ., Budapest (Hungary))

    1993-08-01

    Transport extraction based on solvent sublation has been used for a 400-fold preconcentration of iodide from aqueous samples into an immiscible organic solvent. Separation efficiencies amounting up to 95% were obtained for iodide concentrations of 1-10 mg/l, independent of the volume of the aqueous samples in the range of 1-4l. Iodide was oxidized to iodine, which was subsequently transport-extracted as an ionic associate with the cationic surface-active agent N-cetylpyridinium chloride into 10ml of benzene. The effect of various parameters (concentration of iodide, bubbling time, N[sub 2]-gas flow-rate, volume of the aqueous phase) on transport extraction was investigated. Kinetic investigations showed that the transport-extraction process essentially follows a modified Langmuir adsorption model, which makes it possible to calculate the mass-transfer rate constant of the process for each particular case. (orig.)

  15. Spherical-Harmonic Expansion Solution of Classical Transport Equations of Quark

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiang-Jun; WANG Gang

    2003-01-01

    The spherical-harmonic method of solving classical transport equation of quark is investigated. Thehydrodynamics description of QGP as well as the relation between diffusion approximation and collective flow in nuclearcollisions are discussed.

  16. Spherical-Harmonic Expansion Solution of Classical Transport Equations of Quark

    Institute of Scientific and Technical Information of China (English)

    CHENXiang-Jun; WANGGang

    2003-01-01

    The spherical-harmonic method of solving classical transport equation of quark is investigated. The hydrodynamics description of QGP as well as the relation between diffusion approximation and collective flow in nuclear collisions are discussed.

  17. Effect of the background solution and material composition on the transport of silver nanoparticles in saturated aquifer materials

    Science.gov (United States)

    Adrian, Yorck; Schneidewind, Uwe; Fernandez-Steeger, Tomas; Azzam, Rafig

    2016-04-01

    Engineered silver nanoparticles (AgNP) are used in various consumer products such as cloth or personal care products due to their antimicrobial properties (Benn et al., 2010). Their transport behavior in the environment is still under investigation. Previous studies have been focusing on the transport of AgNP in simple test systems with glass beads or soil materials (Braun et al., 2015), but studies investigating aquifer material are rare. However, the protection of fresh water resources in the subsurface is an important part in the protection of human health and the assurance of future economic activities. Therefore, expert knowledge regarding the transport and fate of engineered nanoparticles as potential contaminants in aquifers is essential. Within the scope of the research project NanoMobil funded by German Federal Ministry of Education and Research, the transport and retention behavior of AgNP in aquifer material was investigated under saturated conditions in laboratory columns for different flow velocities, ionic strengths (IS) and background solutions. The used aquifer material consisted mainly of quartz and albite. The quartz grains were partially coated with iron hydroxides and oxides. Furthermore, 1% hematite was present in the silicate dominated aquifer material. The experiments were conducted using NaNO3 and Ca(NO3)2 background solutions to examine the effects of monovalent and divalent cations on the transport of AgNP. Flow velocities in the columns were chosen to represent typical flow velocities of groundwater in the subsurface. For the experiments two mean grain sizes of 0.3 and 0.7 mm were used to investigate the effect of the grain size on the transport behavior. Particle concentration was measured using ICP-MS and particle size was determined using flow field-flow fractionation (FlFFF). HYDRUS-1D (Šimůnek et al., 2013) was used to elucidate the transport and retention processes of the AgNP in the aquifer material. The obtained results show

  18. A WiMAX Solution For Real-Time Video Surveillance in Public Transport

    Directory of Open Access Journals (Sweden)

    Iftekhar Ahmad

    2011-03-01

    Full Text Available Video surveillance is a highly useful tool to the public transport authorities, which is now widely used asa measure to ensure passenger safety and security. While video surveillance application in staticenvironments like airports, shopping malls, train stations has been a huge success, real-time videosurveillance in moving public transport experiences serious technological challenges mainly due to lowdata rates at vehicular speeds offered by existing communication technologies. Success of live videosurveillance in public transport depends on future communication technologies. WiMAX has emerged asan exciting technology with promises to offer high throughput, a key requirement for video surveillance inpublic transport. WiMAX, however, offers limited throughput at high vehicular speeds mainly because ofmultipath fading that causes high bit error rate at the receiver. In this paper, we propose a forward errorcontrol (FEC scheme for WiMAX that proactively and dynamically adjusts the size of extra parity bits oferror correcting codes for real-time applications like video surveillance based on the estimated bit errorprobability at various vehicular speeds. We further propose a model to improve the utility gain of a livevideo surveillance system in public transport that uses WiMAX technology. Simulation results confirmthat the proposed scheme significantly improves the throughput and utility of the video surveillancesystem in public transport.

  19. Investigation of cross-linking characteristics of novel hole-transporting materials for solution-processed phosphorescent OLEDs

    Science.gov (United States)

    Lee, Jaemin; Ameen, Shahid; Lee, Changjin

    2016-04-01

    After the success of commercialization of the vacuum-evaporated organic light-emitting diodes (OLEDs), solutionprocessing or printing of OLEDs are currently attracting much research interests. However, contrary to various kinds of readily available vacuum-evaporable OLED materials, the solution-processable OLED materials are still relatively rare. Hole-transporting layer (HTL) materials for solution-processed OLEDs are especially limited, because they need additional characteristics such as cross-linking to realize multilayer structures in solution-processed OLEDs, as well as their own electrically hole-transporting characteristics. The presence of such cross-linking characteristics of solutionprocessable HTL materials therefore makes them more challenging in the development stage, and also makes them essence of solution-processable OLED materials. In this work, the structure-property relationships of thermally crosslinkable HTL materials were systematically investigated by changing styrene-based cross-linking functionalities and modifying the carbazole-based hole-transporting core structures. The temperature dependency of the cross-linking characteristics of the HTL materials was systematically investigated by the UV-vis. absorption spectroscopy. The new HTL materials were also applied to green phosphorescent OLEDs, and their device characteristics were also investigated based on the chemical structures of the HTL materials. The device configuration was [ITO / PEDOT:PSS / HTL / EML / ETL / CsF / Al]. We found out that the chemical structures of the cross-linking functionalities greatly affect not only the cross-linking characteristics of the resultant HTL materials, but also the resultant OLED device characteristics. The increase of the maximum luminance and efficiency of OLEDs was evident as the cross-linking temperature decreases from higher than 200°C to at around 150°C.

  20. Closed-flow column experiments—Insights into solute transport provided by a damped oscillating breakthrough behavior

    Science.gov (United States)

    Ritschel, Thomas; Totsche, Kai Uwe

    2016-03-01

    Transport studies that employ column experiments in closed-flow mode complement classical approaches by providing new characteristic features observed in the solute breakthrough and equilibrium between liquid and solid phase. Specific to the closed-flow mode is the recirculation of the effluent to the inflow via a mixing vessel. Depending on the ratio of volumes of mixing vessel and water-filled pore space, a damped oscillating solute concentration emerges in the effluent and mixing vessel. The oscillation characteristics, e.g., frequency, amplitude, and damping, allow for the investigation of solute transport in a similar fashion as known for classical open-flow column experiments. However, the closed loop conserves substances released during transport within the system. In this way, solute and porous medium can equilibrate with respect to physicochemical conditions. With this paper, the features emerging in the breakthrough curves of saturated column experiments run in closed-flow mode and methods of evaluation are illustrated under experimental boundary conditions forcing the appearance of oscillations. We demonstrate that the effective pore water volume and the pumping rate can be determined from a conservative tracer breakthrough curve uniquely. In this way, external preconditioning of the material, e.g., drying, can be avoided. A reactive breakthrough experiment revealed a significant increase in the pore water pH value as a consequence of the closed loop. These results highlight the specific impact of the closed mass balance. Furthermore, the basis for the modeling of closed-flow experiments is given by the derivation of constitutive equations and numerical implementation, validated with the presented experiments.

  1. Thermophoresis of dissolved molecules and polymers: Consideration of the temperature-induced macroscopic pressure gradient.

    Science.gov (United States)

    Semenov, Semen; Schimpf, Martin

    2004-01-01

    The movement of molecules and homopolymer chains dissolved in a nonelectrolyte solvent in response to a temperature gradient is considered a consequence of temperature-induced pressure gradients in the solvent layer surrounding the solute molecules. Local pressure gradients are produced by nonuniform London-van der Waals interactions, established by gradients in the concentration (density) of solvent molecules. The density gradient is produced by variations in solvent thermal expansion within the nonuniform temperature field. The resulting expression for the velocity of the solute contains the Hamaker constants for solute-solvent and solute-solute interactions, the radius of the solute molecule, and the viscosity and cubic coefficient of thermal expansion of the solvent. In this paper we consider an additional force that arises from directional asymmetry in the interaction between solvent molecules. In a closed cell, the resulting macroscopic pressure gradient gives rise to a volume force that affects the motion of dissolved solutes. An expression for this macroscopic pressure gradient is derived and the resulting force is incorporated into the expression for the solute velocity. The expression is used to calculate thermodiffusion coefficients for polystyrene in several organic solvents. When these values are compared to those measured in the laboratory, the consistency is better than that found in previous reports, which did not consider the macroscopic pressure gradient that arises in a closed thermodiffusion cell. The model also allows for the movement of solute in either direction, depending on the relative values of the solvent and solute Hamaker constants.

  2. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil thaw with conduction and advection

    Science.gov (United States)

    Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.

    2014-01-01

    Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.

  3. Separation of the Microscopic and Macroscopic Domains

    Science.gov (United States)

    Van Zandt, L. L.

    1977-01-01

    Examines the possibility of observing interference in quantum magnification experiments such as the celebrated "Schroedinger cat". Uses the possibility of observing interference for separating the realm of microscopic from macroscopic dynamics; estimates the dividing line to fall at system sizes of about 100 Daltons. (MLH)

  4. Entropy, Macroscopic Information, and Phase Transitions

    OpenAIRE

    Parrondo, Juan M. R.

    1999-01-01

    The relationship between entropy and information is reviewed, taking into account that information is stored in macroscopic degrees of freedom, such as the order parameter in a system exhibiting spontaneous symmetry breaking. It is shown that most problems of the relationship between entropy and information, embodied in a variety of Maxwell demons, are also present in any symmetry breaking transition.

  5. Lozenge Tilings, Glauber Dynamics and Macroscopic Shape

    Science.gov (United States)

    Laslier, Benoît; Toninelli, Fabio Lucio

    2015-09-01

    We study the Glauber dynamics on the set of tilings of a finite domain of the plane with lozenges of side 1/ L. Under the invariant measure of the process (the uniform measure over all tilings), it is well known (Cohn et al. J Am Math Soc 14:297-346, 2001) that the random height function associated to the tiling converges in probability, in the scaling limit , to a non-trivial macroscopic shape minimizing a certain surface tension functional. According to the boundary conditions, the macroscopic shape can be either analytic or contain "frozen regions" (Arctic Circle phenomenon Cohn et al. N Y J Math 4:137-165, 1998; Jockusch et al. Random domino tilings and the arctic circle theorem, arXiv:math/9801068, 1998). It is widely conjectured, on the basis of theoretical considerations (Henley J Statist Phys 89:483-507, 1997; Spohn J Stat Phys 71:1081-1132, 1993), partial mathematical results (Caputo et al. Commun Math Phys 311:157-189, 2012; Wilson Ann Appl Probab 14:274-325, 2004) and numerical simulations for similar models (Destainville Phys Rev Lett 88:030601, 2002; cf. also the bibliography in Henley (J Statist Phys 89:483-507, 1997) and Wilson (Ann Appl Probab 14:274-325, 2004), that the Glauber dynamics approaches the equilibrium macroscopic shape in a time of order L 2+ o(1). In this work we prove this conjecture, under the assumption that the macroscopic equilibrium shape contains no "frozen region".

  6. Macroscopic invisibility cloaking of visible light

    DEFF Research Database (Denmark)

    Chen, Xianzhong; Luo, Y.; Zhang, Jingjing

    2011-01-01

    to a few wavelengths. Here, we report the first realization of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding, for a specific light polarization, three-dimensional objects of the scale...

  7. Global existence of weak solution to the heat and moisture transport system in fibrous porous media

    CERN Document Server

    Li, Buyang; Wang, Yi

    2009-01-01

    This paper is concerned with theoretical analysis of a heat and moisture transfer model arising from textile industries, which is described by a degenerate and strongly coupled parabolic system. We prove the global (in time) existence of weak solution by constructing an approximate solution with some standard smoothing. The proof is based on the physcial nature of gas convection, in which the heat (energy) flux in convection is determined by the mass (vapor) flux in convection.

  8. Effect of pore water velocities and solute input methods on chloride transport in the undisturbed soil columns of Loess Plateau

    Science.gov (United States)

    Zhou, BeiBei; Wang, QuanJiu

    2016-04-01

    Studies on solute transport under different pore water velocity and solute input methods in undisturbed soil could play instructive roles for crop production. Based on the experiments in the laboratory, the effect of solute input methods with small pulse input and large pulse input, as well as four pore water velocities, on chloride transport in the undisturbed soil columns obtained from the Loess Plateau under controlled condition was studied. Chloride breakthrough curves (BTCs) were generated using the miscible displacement method under water-saturated, steady flow conditions. Using the 0.15 mol L-1 CaCl2 solution as a tracer, a small pulse (0.1 pore volumes) was first induced, and then, after all the solution was wash off, a large pulse (0.5 pore volumes) was conducted. The convection-dispersion equation (CDE) and the two-region model (T-R) were used to describe the BTCs, and their prediction accuracies and fitted parameters were compared as well. All the BTCs obtained for the different input methods and the four pore water velocities were all smooth. However, the shapes of the BTCs varied greatly; small pulse inputs resulted in more rapid attainment of peak values that appeared earlier with increases in pore water velocity, whereas large pulse inputs resulted in an opposite trend. Both models could fit the experimental data well, but the prediction accuracy of the T-R was better. The values of the dispersivity, λ, calculated from the dispersion coefficient obtained from the CDE were about one order of magnitude larger than those calculated from the dispersion coefficient given by the T-R, but the calculated Peclet number, Pe, was lower. The mobile-immobile partition coefficient, β, decreased, while the mass exchange coefficient increased with increases in pore water velocity.

  9. Detecting and modelling structures on the micro and the macro scales: Assessing their effects on solute transport behaviour

    Science.gov (United States)

    Haslauer, C. P.; Bárdossy, A.; Sudicky, E. A.

    2017-09-01

    This paper demonstrates quantitative reasoning to separate the dataset of spatially distributed variables into different entities and subsequently characterize their geostatistical properties, properly. The main contribution of the paper is a statistical based algorithm that matches the manual distinction results. This algorithm is based on measured data and is generally applicable. In this paper, it is successfully applied at two datasets of saturated hydraulic conductivity (K) measured at the Borden (Canada) and the Lauswiesen (Germany) aquifers. The boundary layer was successfully delineated at Borden despite its only mild heterogeneity and only small statistical differences between the divided units. The methods are verified with the more heterogeneous Lauswiesen aquifer K data-set, where a boundary layer has previously been delineated. The effects of the macro- and the microstructure on solute transport behaviour are evaluated using numerical solute tracer experiments. Within the microscale structure, both Gaussian and non-Gaussian models of spatial dependence of K are evaluated. The effects of heterogeneity both on the macro- and the microscale are analysed using numerical tracer experiments based on four scenarios: including or not including the macroscale structures and optimally fitting a Gaussian or a non-Gaussian model for the spatial dependence in the micro-structure. The paper shows that both micro- and macro-scale structures are important, as in each of the four possible geostatistical scenarios solute transport behaviour differs meaningfully.

  10. Chloride as tracer of solute transport in the aquifer-aquitard system in the Pearl River Delta, China

    Science.gov (United States)

    Kuang, Xingxing; Jiao, Jiu Jimmy; Wang, Ya

    2016-08-01

    A 1D numerical model is constructed to investigate the impact of sedimentation and sea level changes on transport of Cl- in the aquifer-aquitard system in the Pearl River Delta (PRD), China. The model simulates the evolution of the vertical Cl- concentration profiles during the Holocene. Sedimentation is modeled as a moving boundary problem. Chloride concentration profiles are reconstructed for nine boreholes, covering a wide area of the PRD, from northwest to southeast. Satisfactory agreement is obtained between simulated and measured Cl- concentration profiles. Diffusion solely is adequate to reproduce the vertical Cl- concentration profiles, which indicates that diffusion is the regionally dominant vertical transport mechanism across the aquitards in the PRD. The estimated effective diffusion coefficients of the aquitards range from 2.0 × 10-11 to 2.0 × 10-10 m2/s. The effective diffusion coefficients of the aquifers range from 3.0 × 10-11 to 4.0 × 10-10 m2/s. Advective transport tends to underestimate Cl- concentrations in the aquitard and overestimate Cl- concentrations in the basal aquifer. The results of this study will help understand the mechanisms of solute transport in the PRD and other deltas with similar geological and hydrogeological characteristics.

  11. Molecular Engineering of Non-Halogenated Solution-Processable Bithiazole based Electron Transport Polymeric Semiconductors

    KAUST Repository

    Fu, Boyi

    2015-04-01

    The electron deficiency and trans planar conformation of bithiazole is potentially beneficial for the electron transport performance of organic semiconductors. However, the incorporation of bithiazole into polymers through a facile synthetic strategy remains a challenge. Herein, 2,2’-bithiazole was synthesized in one step and copolymerized with dithienyldiketopyrrolopyrrole to afford poly(dithienyldiketopyrrolopyrrole-bithiazole), PDBTz. PDBTz exhibited electron mobility reaching 0.3 cm2V-1s-1 in organic field-effect transistor (OFET) configuration; this contrasts with a recently discussed isoelectronic conjugated polymer comprising an electron rich bithiophene and dithienyldiketopyrrolopyrrole, which displays merely hole transport characteristics. This inversion of charge carrier transport characteristics confirms the significant potential for bithiazole in the development of electron transport semiconducting materials. Branched 5-decylheptacyl side chains were incorporated into PDBTz to enhance polymer solubility, particularly in non-halogenated, more environmentally compatible solvents. PDBTz cast from a range of non-halogenated solvents exhibited film morphologies and field-effect electron mobility similar to those cast from halogenated solvents.

  12. Molecular-dynamics of water transport through membranes - water from solvent to solute

    NARCIS (Netherlands)

    BERENDSEN, HJC; MARRINK, SJ

    1993-01-01

    An application of Molecular Dynamics computer simulation (MD) to the process of transport of water through a lipid bilayer membrane is described. The permeation process is far too slow to be modeled by straightforward MD. In stead the inverse of the permeability coefficient is expressed as an

  13. Real-time Container Transport Planning with Decision Trees based on Offline Obtained Optimal Solutions

    NARCIS (Netherlands)

    B. van Riessen (Bart); R.R. Negenborn (Rudy); R. Dekker (Rommert)

    2016-01-01

    textabstractHinterland networks for container transportation require planning methods in order to increase efficiency and reliability of the inland road, rail and waterway connections. In this paper we aim to derive real-time decision rules for suitable allocations of containers to inland services b

  14. The phosphine oxides Cyanex 921 and Cyanex 923 as carriers for facilitated transport of chromium (VI)-chloride aqueous solutions.

    Science.gov (United States)

    Alguacil, Francisco José; López-Delgado, Aurora; Alonso, Manuel; Sastre, Ana Maria

    2004-11-01

    The behaviour of the phosphine oxides Cyanex 921 and Cyanex 923 in the facilitated transport of chromium (VI) from chloride solutions is described. Transport is studied as a function of several variables such as stirring speeds of the aqueous phases, membrane phase diluent, hydrochloric acid concentration in the source phase and chromium and carrier concentrations. The separation of chromium (VI) from other metals presented in the source phase as well as the behaviour of phosphine oxides with respect to other neutral organophosphorous derivatives (tri-n-butylphosphate (TBP) and dibutyl butylphosphonate (DBBP)) are also investigated. Moreover, by using hydrazine sulphate in the receiving phase, Cr(VI) is immediately reduced to the less toxic Cr(III).

  15. Solar energised transport solution and customer preferences and opinions about alternative fuel Vehicles – the case of slovenia

    Directory of Open Access Journals (Sweden)

    Matjaž KNEZ

    2015-09-01

    Full Text Available Authorities in Slovenia and other EU member states are confronted with problems of city transportation. Fossil-fuel based transport poses two chief problems – local and global pollution, and dwindling supplies and ever increasing costs. An elegant solution is to gradually replace the present automobile fleet with low emission vehicles. This article first explores the economics and practical viability of the provision of solar electricity for the charging of electric vehicles by installation of economical available PV modules and secondly the customer preferences and opinions about alternative low emission vehicles. Present estimates indicate that for the prevailing solar climate of Celje – a medium-sized Slovenian town – the cost would be only 2.11€ cents/kWh of generated solar electricity. Other results have also revealed that the most relevant factor for purchasing low emission vehicle is total vehicle price.

  16. SOLUTIONING

    Directory of Open Access Journals (Sweden)

    Maria de Hoyos Guajardo, Ph.D. Candidate, M.Sc., B.Eng.

    2004-11-01

    Full Text Available The theory that is presented below aims to conceptualise how a group of undergraduate students tackle non-routine mathematical problems during a problem-solving course. The aim of the course is to allow students to experience mathematics as a creative process and to reflect on their own experience. During the course, students are required to produce a written ‘rubric’ of their work, i.e., to document their thoughts as they occur as well as their emotionsduring the process. These ‘rubrics’ were used as the main source of data.Students’ problem-solving processes can be explained as a three-stage process that has been called ‘solutioning’. This process is presented in the six sections below. The first three refer to a common area of concern that can be called‘generating knowledge’. In this way, generating knowledge also includes issues related to ‘key ideas’ and ‘gaining understanding’. The third and the fourth sections refer to ‘generating’ and ‘validating a solution’, respectively. Finally, once solutions are generated and validated, students usually try to improve them further before presenting them as final results. Thus, the last section deals with‘improving a solution’. Although not all students go through all of the stages, it may be said that ‘solutioning’ considers students’ main concerns as they tackle non-routine mathematical problems.

  17. Global weak solutions for coupled transport processes in concrete walls at high temperatures

    CERN Document Server

    Beneš, Michal

    2012-01-01

    We consider an initial-boundary value problem for a fully nonlinear coupled parabolic system with nonlinear boundary conditions modelling hygro-thermal behavior of concrete at high temperatures. We prove a global existence of a weak solution to this system on an arbitrary time interval. The main result is proved by an approximation procedure. This consists in proving the existence of solutions to mollified problems using the Leray-Schauder theorem, for which a priori estimates are obtained. The limit then provides a weak solution for the original problem. A practical example illustrates a performance of the model for a problem of a concrete segment exposed to transient heating according to three different fire scenarios. Here, the focus is on the short-term pore pressure build up, which can lead to explosive spalling of concrete and catastrophic failures of concrete structures.

  18. Mass transfer in fuel cells. [electron microscopy of components, thermal decomposition of Teflon, water transport, and surface tension of KOH solutions

    Science.gov (United States)

    Walker, R. D., Jr.

    1973-01-01

    Results of experiments on electron microscopy of fuel cell components, thermal decomposition of Teflon by thermogravimetry, surface area and pore size distribution measurements, water transport in fuel cells, and surface tension of KOH solutions are described.

  19. SEAWAT: A Computer Program for Simulation of Variable-Density Groundwater Flow and Multi-Species Solute and Heat Transport

    Science.gov (United States)

    Langevin, Christian D.

    2009-01-01

    SEAWAT is a MODFLOW-based computer program designed to simulate variable-density groundwater flow coupled with multi-species solute and heat transport. The program has been used for a wide variety of groundwater studies including saltwater intrusion in coastal aquifers, aquifer storage and recovery in brackish limestone aquifers, and brine migration within continental aquifers. SEAWAT is relatively easy to apply because it uses the familiar MODFLOW structure. Thus, most commonly used pre- and post-processors can be used to create datasets and visualize results. SEAWAT is a public domain computer program distributed free of charge by the U.S. Geological Survey.

  20. Transport equation in the problem of the distribution function of nanoparticles in a colloidal solution exposed to laser pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kirichenko, N A; Shcherbina, M E; Serkov, A A [Moscow Institute of Physics and Technology (State University), Dolgoprudnyi, Moscow Region (Russian Federation); Rakov, I I [Wave Research Center, A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-12-31

    The behaviour of a colloidal solution of gold nanoparticles irradiated by a repetitively pulsed laser with a pulse duration of a few nanoseconds is investigated theoretically and experimentally. A mathematical model is constructed, which allows the behaviour of the nanoparticle distribution function to be described. The model is based on the transport equation in the 'space' of particle sizes. The proposed model allows for a relatively simple study and makes it possible to establish some common patterns in the behaviour of an ensemble of nanoparticles under various conditions. The results obtained are in satisfactory agreement with the available experimental data. (nanophotonics)

  1. The air transportation hub-and-spoke design problem: comparison between a continuous and a discrete solution method

    Directory of Open Access Journals (Sweden)

    Guina Sotomayor Alzamora

    2013-12-01

    Full Text Available The hub-and-spoke network design problem, also known as the hub location problem, aims to find the concentration points in a given network flow so that the sum of the distances of the linkages is minimized. In this work, we compare discrete solutions of this problem, given by the branch-and-cut method applied to the p-hub median model, with continuous solutions, given by the hyperbolic smoothing technique applied to a min-sum-min model. Computational experiments for particular instances of the Brazilian air transportation system, with the number of hubs varying from 2 to 8, are conducted with the support of a discretization heuristic and the Voronoi diagram.

  2. X-ray CT-Derived Soil Characteristics Explain Varying Air, Water, and Solute Transport Properties across a Loamy Field

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Katuwal, Sheela; Møldrup, Per;

    2016-01-01

    The characterization of soil pore space geometry is important for explaining fluxes of air, water, and solutes through soil and understanding soil hydrogeochemical functions. X-ray computed tomography (CT) can be applied for this characterization, and in this study CT-derived parameters were used...... be factors that increased the uncertainty of the relationships. Nevertheless, the results confirmed the potential of X-ray CT visualization techniques for estimating fluxes through soil at the field scale....... to explain water, air, and solute transport through soil. Forty-five soil columns (20 by 20 cm) were collected from an agricultural field in Estrup, Denmark, and subsequently scanned using a medical CT scanner. Nonreactive tracer leaching experiments were performed in the laboratory along with measurements...

  3. Emergence of Macroscopic Transport Barriers from Staircase Structures

    Science.gov (United States)

    Ashourvan, Arash; Diamond, Patrick H.

    2016-10-01

    A theory is presented for the formation and evolution of coupled density staircases (SC) and zonal shear profiles in a simple model of drift-wave turbulence. Density, vorticity and fluctuation potential enstrophy are the fields evolved for this system. Formation of SC structures is due to inhomogeneous mixing of generalized potential vorticity (PV), resulting in the sharpening of density and vorticity gradients in some regions and weakening them in others. The positive feedback which drives SC formation is implemented via a Rhines scale dependent mixing length. When PV gradients steepen, the density SC structure develops into a lattice of mesoscale `jumps', and `steps', which are respectively, regions of local gradient steepening and flattening. The jumps merge and migrate in radius, leading to the development of macroscale profile structures from mesoscale elements. Furthermore, depending on the sources and boundary conditions, either a region of enhanced confinement, or a region with strong turbulence can form at the edge. We present extensive studies of bifurcation physics of the global state, including results on the flux-gradient landscapes. This model is the first to demonstrate how mesoscale condensation of SCs leads to global states of enhanced confinement. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Numbers DE-FG02-04ER54738 and DE-SC0008378.

  4. Biphasic flow: structure and upscaling, consequences on macroscopic transport properties

    CERN Document Server

    Toussaint, Renaud; Méheust, Yves; Løvoll, Grunde; Jankov, Mihailo; Schäfer, Gerhard; Schmittbuhl, Jean

    2012-01-01

    In disordered porous media, two-phase flow of immiscible fluids (biphasic flow) is organized in patterns that sometimes exhibit fractal geometries over a range of length scales, depending on the capillary, gravitational and viscous forces at play. These forces, as well as the boundary conditions, also determine whether the flow leads to the appearance of fingering pathways, i.e., unstable flow, or not. We present here a short review of these aspects, focusing on drainage and summarizing when these flows are expected to be stable or not, what fractal dimensions can be expected, and in which range of scales. We base our review on experimental studies performed in two-dimensional Hele-Shaw cells, or addressing three dimensional porous media by use of several imaging techniques. We first present configurations in which solely capillary forces and gravity play a role. Next, we review configurations in which capillarity and viscosity are the main forces at play. Eventually, we examine how the microscopic geometry o...

  5. Modeling impacts of subscale heterogeneities on dispersive solute transport in subsurface systems.

    Science.gov (United States)

    Vishal, Vikrant; Leung, Juliana Y

    2015-11-01

    Previous works in the literature demonstrated that dispersion increases with heterogeneities and travel distance in heterogeneous reservoirs. However, it remains challenging to quantify the effects of subscale heterogeneities on dispersion. Scale-up of input dispersivity and other reservoir attributes to the transport modeling scale should account for subscale heterogeneity and its variability. A method is proposed to quantify the uncertainties in reservoir attributes and dispersivity introduced by scale-up. A random walk particle tracking (RWPT) method, which is not prone to numerical dispersion, is used for transport modeling. First, to scale-up rock properties including porosity and permeability, volume variance at the transport modeling scale is computed corresponding to a given spatial correlation model; numerous sets of "conditioning data" are sampled from probability distributions whose mean is the block average of the actual measure values and the variance is the variance of block mean. Stochastic simulations are subsequently performed to generate multiple realizations at the transport modeling scale. Next, multiple sub-grid geostatistical realizations depicting detailed fine-scale heterogeneities and of the same physical sizes as the transport modeling grid block are subjected to RWPT simulation. Effective longitudinal and transverse (horizontal) dispersivities in two-dimensional models are determined simultaneously by matching the corresponding breakthrough concentration history for each realization with an equivalent medium consisting of averaged homogeneous rock properties. Aggregating results derived with all realizations, we generate probability distributions of scaled-up dispersivities conditional to particular averaged rock properties, from which values representative of the transport modeling scale are randomly drawn. The method is applied to model a tracer injection process. Results obtained from coarse-scale models, where reservoir properties and

  6. Comparing Nafion and ceramic separators used in electrochemical purification of spent chromium plating solutions: cationic impurity removal and transport.

    Science.gov (United States)

    Huang, Kuo-Lin; Holsen, Thomas M; Chou, Tse-Chuan; Selman, J Robert

    2003-05-01

    This study focuses on the electrolytic regeneration of spent chromium plating solutions. These solutions contain a significant amount of chromium and a lesser amount of other heavy metals, which makes them a significant environmental concern and an obvious target for recycling and reuse. The type of separator used is extremely critical to the performance of the process because they are the major resistance in the transport-related impurity (Cu(II), Ni(II), and Fe(III)) removals from contaminated chromic acid solutions. A Nafion 117 membrane and a ceramic diaphragm separator traditionally used in the industry were tested for comparison. It was found that the mobilities of Cu(II) and Ni(II) were similar and higher than that of Fe(III) using both separators. The mobility of each cation was smaller in the Nafion membrane than in the ceramic diaphragm. The measured conductivity of the ceramic diaphragm was slightly higher than that of Nafion membrane. However, the Nafion membrane was much thinner than the ceramic diaphragm resulting in the system using the Nafion membrane having higher impurity removal rates than the system using the ceramic diaphragm. The removal rates were approximately equal for Cu(II) and Ni(II) and lowest for Fe(III). Both current and initial concentration affected the removal rates of the impurities. Modeling results indicated that a system using a Nafion separator and a small catholyte/anolyte volume ratio was better than a system using a ceramic separator for removing impurities from concentrated plating solutions if the impurities transported into the catholyte are deposited or precipitated.

  7. A comparison of particle-tracking and solute transport methods for simulation of tritium concentrations and groundwater transit times in river water

    OpenAIRE

    Gusyev, M. A.; D. Abrams; Toews, M. W.; U. Morgenstern; M. K. Stewart

    2014-01-01

    The purpose of this study is to simulate tritium concentrations and groundwater transit times in river water with particle-tracking (MODPATH) and compare them to solute transport (MT3DMS) simulations. Tritium measurements in river water are valuable for the calibration of particle-tracking and solute transport models as well as for understanding of watershed storage dynamics. In a previous study, we simulated tritium concentrations in river water of the western Lake Taupo...

  8. Combination of crystalloid (glucose) and colloid (icodextrin) osmotic agents markedly enhances peritoneal fluid and solute transport during the long PD dwell.

    Science.gov (United States)

    Freida, Philippe; Galach, Magda; Divino Filho, Jose C; Werynski, Andrzej; Lindholm, Bengt

    2007-01-01

    Fluid and sodium removal is often inadequate in peritoneal dialysis patients with high peritoneal solute transport rate, especially when residual renal function is declining. We studied the effects of using simultaneous crystalloid (glucose) and colloid (icodextrin) osmotic agents on the peritoneal transport of fluid, sodium, and other solutes during 15-hour single-dwell exchanges using 3.86% glucose, 7.5% icodextrin, and a combination fluid with 2.61% glucose and 6.8% icodextrin in 7 prevalent peritoneal dialysis patients with fast peritoneal solute transport rate. The combination fluid enhanced net ultrafiltration (mean 990 mL) and sodium removal (mean 158 mmol) compared with 7.5% icodextrin (mean net ultrafiltration 462 mL, mean net sodium removal 49 mmol). In contrast, the 3.86% glucose-based solution yielded negligible ultrafiltration (mean -85 mL) and sodium removal (mean 16 mmol). The combination solution resulted in significantly improved urea (+41%) and creatinine (+26%) clearances compared with 7.5% icodextrin. A solution containing both crystalloid (glucose 2.61%) and colloid (icodextrin 6.8%) osmotic agents enhanced fluid removal by twofold and sodium removal by threefold compared with 7.5% icodextrin solution during a dwell of 15 hours, indicating that such a combination solution could represent a new treatment option for anuric peritoneal dialysis patients with high peritoneal solute transport rate.

  9. TRANSOL, a dynamic simulation model for transport and transformation of solutes in soils

    NARCIS (Netherlands)

    Kroes, J.G.; Rijtema, P.E.

    1996-01-01

    The dynamic simulation model TRANSOL has been developed to fulfil the need for a tool to analyse leaching of solutes from the soil surface to groundwater and surface waters. A description is given of the modelled processes: conversion, formation, cropuptake, precipitation, equilibrium and non-equili

  10. Electric two wheelers, zero emission solution for urban door to door transportation

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Jensen, Bogi Bech

    The noise and exhaust pollution coupled with increasing congestion faced by urban centres demands new personal mobility solution for faster door to door connectivity. The advancement in electric power train and lowering cost of Li-ion battery is made it possible to develop light weight fully...

  11. Three-Dimensional Analytical Modeling of Diffusion-Limited Solute Transport.

    Science.gov (United States)

    1986-07-01

    Wilson and Geankopolis (1966) developed the following correlation to determine kf in terms of the Reynolds (Re) and Schmidt (Sc) numbers: D1.09 1R...of diffusion coefficients in dilute solutions, AIChE J., 1(2), 264-270. Wilson, E. J., and C. J. Geankopolis , 1966. Liquid mass transfer at very low

  12. Transient transport of reactive and non-reactive solutes in groundwater

    Science.gov (United States)

    Fares, Y. R.; Giacobbe, D.

    2004-06-01

    A numerical model capable of predicting the transient changes in concentration levels of a solute along a homogeneous aquifer system is presented. The advection-dispersion equation (ADE) is utilised in predicting the concentration levels for cases of continuous and instantaneous release modes. The Crank-Nicholson equation is employed in the presented finite difference model. The numerical calculations are carried out using the implicit Gauss-Seidel method with over- and under-relaxation coefficients depending on the state of convergence. The correction terms resulting from the removal of zero- and first-order truncation errors in the ADE with a reaction term have significantly improved the performance of the numerical scheme. Comparisons between the numerically predicted concentrations with analytical and measured values were carried out for cases of non-reactive (tracer) and reactive (organic) solutes with continuous injection in homogeneous isotropic soils. The overshooting problems experienced in the numerical calculations are minimised by refining the finite grid size. The analysis of results has shown that the model can produce reliable simulations for cases of non-reactive solutes. While for the case of solutes undergoing adsorption, accurate concentrations can be predicted by adjusting the influent pore water velocity through the use of a retardation factor, which is suitable for aquifers with low organic carbon content and undergoing hydrophobic partitioning.

  13. A NEW NUMERICAL METHOD FOR GROUNDWATER FIOW AND SOLUTE TRANSPORT USING VELOCITY FIELD

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qian-fei; LAN Shou-qi; WANG Yan-ming; XU Yong-fu

    2008-01-01

    A new numerical method for groundwater flow analysis was introduced to estimate simultaneously velocity vectors and water pressure head. The method could be employed to handle the vertical flow under variably saturated conditions and for horizontal flow as well. The method allows for better estimation of velocities at the element nodes which can be used as direct input to transport models. The advection-dispersion process was treated by the Eulerian-Lagrangian approach with particle tracking technique using the velocities at FEM nodes. The method was verified with the classical one dimensional model and applied to simulate contaminant transport process through a slurry wall as a barrier to prevent leachate pollution from a sanitary landfill.

  14. Geological characterization and solute transport model investigations of contaminated sites in urban areas (Denmark)

    DEFF Research Database (Denmark)

    Andersen, Theis Raaschou; Poulsen, Søren Erbs; Thomsen, Peter

    2015-01-01

    . Remediation is time consuming and expensive and it is often difficult to identify the original source of the contamination that would otherwise give indications to its extent and composition. Moreover, as cities grew, many contaminations are now located in urban areas where data compilation and remediation...... efforts are often challenged by logistics. The general lack of knowledge about theses contaminations introduces significant uncertainties in the projections on the fate of the contaminant. We carry out a geological characterization of two contaminated sites situated in urban areas. The existing data from...... of the two sites were constructed. The 3D geological models serve as a basis for simulating groundwater flow and contaminant transport at the field sites. The study demonstrates how detailed information about the geological setting in conjunction with contaminant transport modelling, can minimize...

  15. Solute transport and the prediction of breakaway oxidation in gamma + beta Ni-Cr-Al alloys

    Science.gov (United States)

    Nesbitt, J. A.; Heckel, R. W.

    1984-01-01

    The Al transport and the condition leading to breakaway oxidation during the cyclic oxidation of gamma + beta NiCrAl alloys have been studied. The Al concentration/distance profiles were measured after various cyclic oxidation exposures at 1200 C. It was observed that cyclic oxidation results in a decreasing Al concentration at the oxide/metal interface, maintaining a constant flux of Al to the Al2O3 scale. It was also observed that breakaway oxidation occurs when the Al concentration at the oxide/metal interface approaches zero. A numerical model was developed to simulate the diffusional transport of Al and to predict breakaway oxidation in gamma + beta NiCrAl alloys undergoing cyclic oxidation. In a comparison of two alloys with similar oxide spalling characteristics, the numerical model was shown to predict correctly the onset of breakaway oxidation in the higher Al-content alloy.

  16. Numerical solution of the time dependent neutron transport equation by the method of the characteristics

    Science.gov (United States)

    Talamo, Alberto

    2013-05-01

    This study presents three numerical algorithms to solve the time dependent neutron transport equation by the method of the characteristics. The algorithms have been developed taking into account delayed neutrons and they have been implemented into the novel MCART code, which solves the neutron transport equation for two-dimensional geometry and an arbitrary number of energy groups. The MCART code uses regular mesh for the representation of the spatial domain, it models up-scattering, and takes advantage of OPENMP and OPENGL algorithms for parallel computing and plotting, respectively. The code has been benchmarked with the multiplication factor results of a Boiling Water Reactor, with the analytical results for a prompt jump transient in an infinite medium, and with PARTISN and TDTORT results for cross section and source transients. The numerical simulations have shown that only two numerical algorithms are stable for small time steps.

  17. Arsenic Transport in Rice and Biological Solutions to Reduce Arsenic Risk from Rice

    Science.gov (United States)

    Chen, Yanshan; Han, Yong-He; Cao, Yue; Zhu, Yong-Guan; Rathinasabapathi, Bala; Ma, Lena Q.

    2017-01-01

    Rice (Oryza sativa L.) feeds ∼3 billion people. Due to the wide occurrence of arsenic (As) pollution in paddy soils and its efficient plant uptake, As in rice grains presents health risks. Genetic manipulation may offer an effective approach to reduce As accumulation in rice grains. The genetics of As uptake and metabolism have been elucidated and target genes have been identified for genetic engineering to reduce As accumulation in grains. Key processes controlling As in grains include As uptake, arsenite (AsIII) efflux, arsenate (AsV) reduction and AsIII sequestration, and As methylation and volatilization. Recent advances, including characterization of AsV uptake transporter OsPT8, AsV reductase OsHAC1;1 and OsHAC1;2, rice glutaredoxins, and rice ABC transporter OsABCC1, make many possibilities to develop low-arsenic rice. PMID:28298917

  18. A concept set for take-off? Lightweight idea may be heavyweight transportation solution

    Energy Technology Data Exchange (ETDEWEB)

    Bentein, J.

    2004-12-01

    This paper described the use of airships in changing the bulk transport business. Mercatus Ventures Inc. is working with Ontario-based 21st Century Airships Inc. on developing a heavy lift spherical airship that could replace the need for roads to remote oil and gas mining development sites. Airships would be particularly useful in Canada's North where bulk products cannot be transported outside of ice road season. Transportation accounts for 60 per cent of the cost of drilling a natural gas well in areas that lack all-weather road access. In addition to being environmentally sound, a $10 million or $20 million airship could save companies many millions of dollars in transportation costs. The design of the 21st Century models can be readily adapted to carry heavy loads. A prototype is currently under development to carry 20 to 40 tonnes of equipment including coil tubing rigs and parts of drilling platforms to remote work locations. The Century 21st spherical airship is equipped with panoramic windows and a glass bottom floor and can also be used for high altitude communications and surveillance. Test flights have sailed at altitudes of 6,234 meters. An unmanned version is under development to soar up to 20,000 meters, well above problematic weather systems. An airship equipped with fuel cells and solar panels can stay aloft for more than a year at that level. New airship models use non-flammable helium to support the ship's weight. 1 ref., 4 figs.

  19. Effects of solution chemistry on the transport of graphene oxide in saturated porous media.

    Science.gov (United States)

    Lanphere, Jacob D; Luth, Corey J; Walker, Sharon L

    2013-05-07

    A transport study was performed in saturated porous media through a packed bed column to simulate fate of graphene oxide nanoparticles (GONPs) in the subsurface environment. Transport experiments, along with mass balances and column dissections, were conducted as a function of ionic strength (IS, 10(-3)-10(-1) M). Additionally, an extensive evaluation of the electrokinetic properties and hydrodynamic diameters of GONPs were determined as a function of IS and pH. The measured hydrodynamic diameter and the electrophoretic mobility (EPM) of GONPs indicated an insensitivity to pH, although IS did play a role. Results from a stability study indicated that the hydrodynamic diameter of GONPs was stable and unchanging at the lower range of IS (10(-3) and 10(-2) M) then became unstable when IS ≥ 10(-1.5) M KCl was achieved. Specifically, for IS ≥ 10(-1.5) M KCl, the hydrodynamic diameter became greater and showed a larger size range of particles than at the lower IS range (10(-3) and 10(-2) M). In addition, the EPM of GONPs became less negative over the IS range of 10(-3) and 10(-2) M KCl. Furthermore, GONPs were found to be increasingly mobile for IS ≤ 10(-2) M KCl. When GONPs were passed through the packed bed column at 10(-2) and 10(-1) M KCl, 5% and 100% of the GONPs were retained in the column, respectively. Finally, mass balances and column dissections revealed that in the first cm of the column 7% and 95% of the GONPs were deposited at 10(-2) and 10(-1) M KCl, respectively, confirming that the transport of GONPs is a function of IS. The fraction of GONPs eluted during the transport experiments provides insight into the contribution of aggregation and reversibly bound fraction of GONPs in saturated porous media.

  20. Minimum requirements for predictive pore-network modeling of solute transport in micromodels

    Science.gov (United States)

    Mehmani, Yashar; Tchelepi, Hamdi A.

    2017-10-01

    Pore-scale models are now an integral part of analyzing fluid dynamics in porous materials (e.g., rocks, soils, fuel cells). Pore network models (PNM) are particularly attractive due to their computational efficiency. However, quantitative predictions with PNM have not always been successful. We focus on single-phase transport of a passive tracer under advection-dominated regimes and compare PNM with high-fidelity direct numerical simulations (DNS) for a range of micromodel heterogeneities. We identify the minimum requirements for predictive PNM of transport. They are: (a) flow-based network extraction, i.e., discretizing the pore space based on the underlying velocity field, (b) a Lagrangian (particle tracking) simulation framework, and (c) accurate transfer of particles from one pore throat to the next. We develop novel network extraction and particle tracking PNM methods that meet these requirements. Moreover, we show that certain established PNM practices in the literature can result in first-order errors in modeling advection-dominated transport. They include: all Eulerian PNMs, networks extracted based on geometric metrics only, and flux-based nodal transfer probabilities. Preliminary results for a 3D sphere pack are also presented. The simulation inputs for this work are made public to serve as a benchmark for the research community.

  1. Macroscopic quantum mechanics in a classical spacetime.

    Science.gov (United States)

    Yang, Huan; Miao, Haixing; Lee, Da-Shin; Helou, Bassam; Chen, Yanbei

    2013-04-26

    We apply the many-particle Schrödinger-Newton equation, which describes the coevolution of a many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schrödinger-Newton equation for their centers of mass, which can be monitored and manipulated at quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, its quantum uncertainty is found to evolve at a frequency different from its classical eigenfrequency-with a difference that depends on the internal structure of the object-and can be observable using current technology. For several objects, the Schrödinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet quantum uncertainty cannot be transferred from one object to another.

  2. Macroscopic Invisibility Cloaking of Visible Light

    CERN Document Server

    Chen, Xianzhong; Zhang, Jingjing; Jiang, Kyle; Pendry, John B; Zhang, Shuang

    2010-01-01

    Invisibility cloaks of light, which used to be confined to the imagination, have now been turned into a scientific reality, thanks to the enabling theoretical tools of transformation optics and conformal mapping. Inspired by those theoretical works, the experimental realisation of electromagnetic invisibility cloaks has been reported at various electromagnetic frequencies. All the invisibility cloaks demonstrated thus far, however, have relied on nano- or micro-fabricated artificial composite materials with spatially varying electromagnetic properties, which limit the size of the cloaked region to a few wavelengths. Here we report realisation of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding three-dimensional objects of the scale of centimetres and millimetres. Our work opens avenues for future applications with macroscopic cloaking devices.

  3. Macroscopic entrainment of periodically forced oscillatory ensembles.

    Science.gov (United States)

    Popovych, Oleksandr V; Tass, Peter A

    2011-03-01

    Large-amplitude oscillations of macroscopic neuronal signals, such as local field potentials and electroencephalography or magnetoencephalography signals, are commonly considered as being generated by a population of mutually synchronized neurons. In a computational study in generic networks of phase oscillators and bursting neurons, however, we show that this common belief may be wrong if the neuronal population receives an external rhythmic input. The latter may stem from another neuronal population or an external, e.g., sensory or electrical, source. In that case the population field potential may be entrained by the rhythmic input, whereas the individual neurons are phase desynchronized both mutually and with their field potential. Intriguingly, the corresponding large-amplitude oscillations of the population mean field are generated by pairwise desynchronized neurons oscillating at frequencies shifted far away from the frequency of the macroscopic field potential.

  4. Adsorption modeling for macroscopic contaminant dispersal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Axley, J.W.

    1990-05-01

    Two families of macroscopic adsorption models are formulated, based on fundamental principles of adsorption science and technology, that may be used for macroscopic (such as whole-building) contaminant dispersal analysis. The first family of adsorption models - the Equilibrium Adsorption (EA) Models - are based upon the simple requirement of equilibrium between adsorbent and room air. The second family - the Boundary Layer Diffusion Controlled Adsorption (BLDC) Models - add to the equilibrium requirement a boundary layer model for diffusion of the adsorbate from the room air to the adsorbent surface. Two members of each of these families are explicitly discussed, one based on the linear adsorption isotherm model and the other on the Langmuir model. The linear variants of each family are applied to model the adsorption dynamics of formaldehyde in gypsum wall board and compared to measured data.

  5. Macroscopic Invisible Cloak for Visible Light

    CERN Document Server

    Zhang, Baile; Liu, Xiaogang; Barbastathis, George

    2011-01-01

    Invisibility cloaks, a subject that usually occurs in science fiction and myths, have attracted wide interest recently because of their possible realization. The biggest challenge to true invisibility is known to be the cloaking of a macroscopic object in the broad range of wavelengths visible to the human eye. Here we experimentally solve this problem by incorporating the principle of transformation optics into a conventional optical lens fabrication with low-cost materials and simple manufacturing techniques. A transparent cloak made of two pieces of calcite is created. This cloak is able to conceal a macroscopic object with a maximum height of 2 mm, larger than 3500 free-space-wavelength, inside a transparent liquid environment. Its working bandwidth encompassing red, green and blue light is also demonstrated.

  6. Electrodriven selective transport of Cs+ using chlorinated cobalt dicarbollide in polymer inclusion membrane: a novel approach for cesium removal from simulated nuclear waste solution.

    Science.gov (United States)

    Chaudhury, Sanhita; Bhattacharyya, Arunasis; Goswami, Asok

    2014-11-04

    The work describes a novel and cleaner approach of electrodriven selective transport of Cs from simulated nuclear waste solutions through cellulose tri acetate (CTA)/poly vinyl chloride (PVC) based polymer inclusion membrane. The electrodriven cation transport together with the use of highly Cs+ selective hexachlorinated derivative of cobalt bis dicarbollide, allows to achieve selective separation of Cs+ from high concentration of Na+ and other fission products in nuclear waste solutions. The transport selectivity has been studied using radiotracer technique as well as atomic emission spectroscopic technique. Transport studies using CTA based membrane have been carried out from neutral solution as well as 0.4 M HNO3, while that with PVC based membrane has been carried out from 3 M HNO3. High decontamination factor for Cs+ over Na+ has been obtained in all the cases. Experiment with simulated high level waste solution shows selective transport of Cs+ from most of other fission products also. Significantly fast Cs+ transport rate along with high selectivity is an interesting feature observed in this membrane. The current efficiency for Cs+ transport has been found to be ∼100%. The promising results show the possibility of using this kind of electrodriven membrane transport methods for nuclear waste treatment.

  7. Macroscopic Quantum Resonators (MAQRO): 2015 update

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenbaek, Rainer [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Aspelmeyer, Markus; Kiesel, Nikolai [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Barker, Peter F.; Bose, Sougato [University College London, Department of Physics and Astronomy, London (United Kingdom); Bassi, Angelo [University of Trieste, Department of Physics, Trieste (Italy); INFN - Trieste Section, Trieste (Italy); Bateman, James [University of Swansea, Department of Physics, College of Science, Swansea (United Kingdom); Bongs, Kai; Cruise, Adrian Michael [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Braxmaier, Claus [University of Bremen, Center of Applied Space Technology and Micro Gravity (ZARM), Bremen (Germany); Institute of Space Systems, German Aerospace Center (DLR), Bremen (Germany); Brukner, Caslav [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Austrian Academy of Sciences, Institute of Quantum Optics and Quantum Information (IQOQI), Vienna (Austria); Christophe, Bruno; Rodrigues, Manuel [The French Aerospace Lab, ONERA, Chatillon (France); Chwalla, Michael; Johann, Ulrich [Airbus Defence and Space GmbH, Immenstaad (Germany); Cohadon, Pierre-Francois; Heidmann, Antoine; Lambrecht, Astrid; Reynaud, Serge [ENS-PSL Research University, Laboratoire Kastler Brossel, UPMC-Sorbonne Universites, CNRS, College de France, Paris (France); Curceanu, Catalina [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dholakia, Kishan; Mazilu, Michael [University of St. Andrews, School of Physics and Astronomy, St. Andrews (United Kingdom); Diosi, Lajos [Wigner Research Center for Physics, P.O. Box 49, Budapest (Hungary); Doeringshoff, Klaus; Peters, Achim [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Ertmer, Wolfgang; Rasel, Ernst M. [Leibniz Universitaet Hannover, Institut fuer Quantenoptik, Hannover (Germany); Gieseler, Jan; Novotny, Lukas; Rondin, Loic [ETH Zuerich, Photonics Laboratory, Zuerich (Switzerland); Guerlebeck, Norman; Herrmann, Sven; Laemmerzahl, Claus [University of Bremen, Center of Applied Space Technology and Micro Gravity (ZARM), Bremen (Germany); Hechenblaikner, Gerald [Airbus Defence and Space GmbH, Immenstaad (Germany); European Southern Observatory (ESO), Garching bei Muenchen (Germany); Hossenfelder, Sabine [KTH Royal Institute of Technology and Stockholm University, Nordita, Stockholm (Sweden); Kim, Myungshik [Imperial College London, QOLS, Blackett Laboratory, London (United Kingdom); Milburn, Gerard J. [University of Queensland, ARC Centre for Engineered Quantum Systems, Brisbane (Australia); Mueller, Holger [University of California, Department of Physics, Berkeley, CA (United States); Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Pikovski, Igor [Harvard-Smithsonian Center for Astrophysics, ITAMP, Cambridge, MA (United States); Pilan Zanoni, Andre [Airbus Defence and Space GmbH, Immenstaad (Germany); CERN - European Organization for Nuclear Research, EN-STI-TCD, Geneva (Switzerland); Riedel, Charles Jess [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Roura, Albert [Universitaet Ulm, Institut fuer Quantenphysik, Ulm (Germany); Schleich, Wolfgang P. [Universitaet Ulm, Institut fuer Quantenphysik, Ulm (Germany); Texas A and M University Institute for Advanced Study (TIAS), Institute for Quantum Science and Engineering (IQSE), and Department of Physics and Astronomy, College Station, TX (United States); Schmiedmayer, Joerg [Vienna University of Technology, Vienna Center for Quantum Science and Technology, Institute of Atomic and Subatomic Physics, Vienna (Austria); Schuldt, Thilo [Institute of Space Systems, German Aerospace Center (DLR), Bremen (Germany); Schwab, Keith C. [California Institute of Technology, Applied Physics, Pasadena, CA (United States)

    2016-12-15

    Do the laws of quantum physics still hold for macroscopic objects - this is at the heart of Schroedinger's cat paradox - or do gravitation or yet unknown effects set a limit for massive particles? What is the fundamental relation between quantum physics and gravity? Ground-based experiments addressing these questions may soon face limitations due to limited free-fall times and the quality of vacuum and microgravity. The proposed mission Macroscopic Quantum Resonators (MAQRO) may overcome these limitations and allow addressing such fundamental questions. MAQRO harnesses recent developments in quantum optomechanics, high-mass matter-wave interferometry as well as state-of-the-art space technology to push macroscopic quantum experiments towards their ultimate performance limits and to open new horizons for applying quantum technology in space. The main scientific goal is to probe the vastly unexplored 'quantum-classical' transition for increasingly massive objects, testing the predictions of quantum theory for objects in a size and mass regime unachievable in ground-based experiments. The hardware will largely be based on available space technology. Here, we present the MAQRO proposal submitted in response to the 4th Cosmic Vision call for a medium-sized mission (M4) in 2014 of the European Space Agency (ESA) with a possible launch in 2025, and we review the progress with respect to the original MAQRO proposal for the 3rd Cosmic Vision call for a medium-sized mission (M3) in 2010. In particular, the updated proposal overcomes several critical issues of the original proposal by relying on established experimental techniques from high-mass matter-wave interferometry and by introducing novel ideas for particle loading and manipulation. Moreover, the mission design was improved to better fulfill the stringent environmental requirements for macroscopic quantum experiments. (orig.)

  8. A macroscopic approach to creating exotic matter

    OpenAIRE

    Ridgely, C. T.

    2000-01-01

    Herein the Casimir effect is used to present a simple macroscopic view on creating exotic matter. The energy arising between two nearly perfectly conducting parallel plates is shown to become increasingly negative as the plate separation is reduced. It is proposed that the Casimir energy appears increasingly negative simply because the vacuum electromagnetic zero-point field performs positive work in pushing the plates together, transforming field energy into kinetic energy of the plates. Nex...

  9. Shot noise in linear macroscopic resistors

    OpenAIRE

    Gomila Lluch, Gabriel; Pennetta, C.; Reggiani, L.; Ferrari, G; Sampietro, M.; G. Bertuccio(Politecnico di Milano, Italy)

    2004-01-01

    We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devi...

  10. Shot Noise in Linear Macroscopic Resistors

    Science.gov (United States)

    Gomila, G.; Pennetta, C.; Reggiani, L.; Sampietro, M.; Ferrari, G.; Bertuccio, G.

    2004-06-01

    We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devices.

  11. Macroscopic Objects, Intrinsic Spin, and Lorentz Violation

    CERN Document Server

    Atkinson, David W; Tasson, Jay D

    2013-01-01

    The framework of the Standard-Model Extension (SME) provides a relativistic quantum field theory for the study of Lorentz violation. The classical, nonrelativistic equations of motion can be extracted as a limit that is useful in various scenarios. In this work, we consider the effects of certain SME coefficients for Lorentz violation on the motion of macroscopic objects having net intrinsic spin in the classical, nonrelativistic limit.

  12. Benchmarking of numerical codes against analytical solutions for multidimensional multicomponent diffusive transport coupled with precipitation-dissolution reactions and porosity changes

    Science.gov (United States)

    Hayek, M.; Kosakowski, G.; Jakob, A.; Churakov, S.

    2012-04-01

    Numerical computer codes dealing with precipitation-dissolution reactions and porosity changes in multidimensional reactive transport problems are important tools in geoscience. Recent typical applications are related to CO2 sequestration, shallow and deep geothermal energy, remediation of contaminated sites or the safe underground storage of chemotoxic and radioactive waste. Although the agreement between codes using the same models and similar numerical algorithms is satisfactory, it is known that the numerical methods used in solving the transport equation, as well as different coupling schemes between transport and chemistry, may lead to systematic discrepancies. Moreover, due to their inability to describe subgrid pore space changes correctly, the numerical approaches predict discretization-dependent values of porosity changes and clogging times. In this context, analytical solutions become an essential tool to verify numerical simulations. We present a benchmark study where we compare a two-dimensional analytical solution for diffusive transport of two solutes coupled with a precipitation-dissolution reaction causing porosity changes with numerical solutions obtained with the COMSOL Multiphysics code and with the reactive transport code OpenGeoSys-GEMS. The analytical solution describes the spatio-temporal evolution of solutes and solid concentrations and porosity. We show that both numerical codes reproduce the analytical solution very well, although distinct differences in accuracy can be traced back to specific numerical implementations.

  13. Transport properties investigation of aqueous protic ionic liquid solutions through conductivity, viscosity, and NMR self-diffusion measurements.

    Science.gov (United States)

    Anouti, Mérièm; Jacquemin, Johan; Porion, Patrice

    2012-04-12

    We present a study on the transport properties through conductivity (σ), viscosity (η), and self-diffusion coefficient (D) measurements of two pure protic ionic liquids--pyrrolidinium hydrogen sulfate, [Pyrr][HSO(4)], and pyrrolidinium trifluoroacetate, [Pyrr][CF(3)COO]--and their mixtures with water over the whole composition range at 298.15 K and atmospheric pressure. Based on these experimental results, transport mobilities of ions have been then investigated in each case through the Stokes-Einstein equation. From this, the proton conduction in these PILs follows a combination of Grotthuss and vehicle-type mechanisms, which depends also on the water composition in solution. In each case, the displacement of the NMR peak attributed to the labile proton on the pyrrolidinium cation with the PILs concentration in aqueous solution indicates that this proton is located between the cation and the anion for a water weight fraction lower than 8%. In other words, for such compositions, it appears that this labile proton is not solvated by water molecules. However, for higher water content, the labile protons are in solution as H(3)O(+). This water weight fraction appears to be the solvation limit of the H(+) ions by water molecules in these two PILs solutions. However, [Pyrr][HSO(4)] and [Pyrr][CF(3)COO] PILs present opposed comportment in aqueous solution. In the case of [Pyrr][CF(3)COO], η, σ, D, and the attractive potential, E(pot), between ions indicate clearly that the diffusion of each ion is similar. In other words, these ions are tightly bound together as ion pairs, reflecting in fact the importance of the hydrophobicity of the trifluoroacetate anion, whereas, in the case of the [Pyrr][HSO(4)], the strong H-bond between the HSO(4)(-) anion and water promotes a drastic change in the viscosity of the aqueous solution, as well as on the conductivity which is up to 187 mS·cm(-1) for water weight fraction close to 60% at 298 K.

  14. Microscopic and macroscopic polarization within a combined quantum mechanics and molecular mechanics model

    NARCIS (Netherlands)

    Jensen, L; Swart, M; van Duijnen, PT

    2005-01-01

    A polarizable quantum mechanics and molecular mechanics model has been extended to account for the difference between the macroscopic electric field and the actual electric field felt by the solute molecule. This enables the calculation of effective microscopic properties which can be related to mac

  15. Simulation of experimental breakthrough curves using multiprocess non-equilibrium model for reactive solute transport in stratified porous media

    Indian Academy of Sciences (India)

    Deepak Swami; P K Sharma; C S P Ojha

    2014-12-01

    In this paper, we have studied the behaviour of reactive solute transport through stratified porous medium under the influence of multi-process nonequilibrium transport model. Various experiments were carried out in the laboratory and the experimental breakthrough curves were observed at spatially placed sampling points for stratified porous medium. Batch sorption studies were also performed to estimate the sorption parameters of the material used in stratified aquifer system. The effects of distance dependent dispersion and tailing are visible in the experimental breakthrough curves. The presence of physical and chemical non-equilibrium are observed from the pattern of breakthrough curves. Multi-process non-equilibrium model represents the combined effect of physical and chemical non-ideality in the stratified aquifer system. The results show that the incorporation of distance dependent dispersivity in multi-process non-equilibrium model provides best fit of observed data through stratified porous media. Also, the exponential distance dependent dispersivity is more suitable for large distances and at small distances, linear or constant dispersivity function can be considered for simulating reactive solute in stratified porous medium.

  16. Estimating groundwater exchange with lakes: 2. Calibration of a three-dimensional, solute transport model to a stable isotope plume

    Science.gov (United States)

    Krabbenhoft, David P.; Anderson, Mary P.; Bowser, Carl J.

    1990-01-01

    A three-dimensional groundwater flow and solute transport model was calibrated to a plume of water described by measurements of δ18O and used to calculate groundwater inflow and outflow rates at a lake in northern Wisconsin. The flow model was calibrated to observed hydraulic gradients and estimated recharge rates. Calibration of the solute transport submodel to the configuration of a stable isotope (18O) plume in the contiguous aquifer on the downgradient side of the lake provides additional data to constrain the model. A good match between observed and simulated temporal variations in plume configuration indicates that the model closely simulated the dynamics of the real system. The model provides information on natural variations of rates of groundwater inflow, lake water outflow, and recharge to the water table. Inflow and outflow estimates compare favorably with estimates derived by the isotope mass balance method (Krabbenhoft et al., this issue). Model simulations agree with field observations that show groundwater inflow rates are more sensitive to seasonal variations in recharge than outflow.

  17. Comparison of photoluminescence of carbon