WorldWideScience

Sample records for macroscopic shape change

  1. Lozenge Tilings, Glauber Dynamics and Macroscopic Shape

    Science.gov (United States)

    Laslier, Benoît; Toninelli, Fabio Lucio

    2015-09-01

    We study the Glauber dynamics on the set of tilings of a finite domain of the plane with lozenges of side 1/ L. Under the invariant measure of the process (the uniform measure over all tilings), it is well known (Cohn et al. J Am Math Soc 14:297-346, 2001) that the random height function associated to the tiling converges in probability, in the scaling limit , to a non-trivial macroscopic shape minimizing a certain surface tension functional. According to the boundary conditions, the macroscopic shape can be either analytic or contain "frozen regions" (Arctic Circle phenomenon Cohn et al. N Y J Math 4:137-165, 1998; Jockusch et al. Random domino tilings and the arctic circle theorem, arXiv:math/9801068, 1998). It is widely conjectured, on the basis of theoretical considerations (Henley J Statist Phys 89:483-507, 1997; Spohn J Stat Phys 71:1081-1132, 1993), partial mathematical results (Caputo et al. Commun Math Phys 311:157-189, 2012; Wilson Ann Appl Probab 14:274-325, 2004) and numerical simulations for similar models (Destainville Phys Rev Lett 88:030601, 2002; cf. also the bibliography in Henley (J Statist Phys 89:483-507, 1997) and Wilson (Ann Appl Probab 14:274-325, 2004), that the Glauber dynamics approaches the equilibrium macroscopic shape in a time of order L 2+ o(1). In this work we prove this conjecture, under the assumption that the macroscopic equilibrium shape contains no "frozen region".

  2. Cholesterics of colloidal helices: Predicting the macroscopic pitch from the particle shape and thermodynamic state

    Energy Technology Data Exchange (ETDEWEB)

    Dussi, Simone, E-mail: s.dussi@uu.nl; Dijkstra, Marjolein, E-mail: m.dijkstra1@uu.nl [Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht (Netherlands); Belli, Simone; Roij, René van [Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht (Netherlands)

    2015-02-21

    Building a general theoretical framework to describe the microscopic origin of macroscopic chirality in (colloidal) liquid crystals is a long-standing challenge. Here, we combine classical density functional theory with Monte Carlo calculations of virial-type coefficients to obtain the equilibrium cholesteric pitch as a function of thermodynamic state and microscopic details. Applying the theory to hard helices, we observe both right- and left-handed cholesteric phases that depend on a subtle combination of particle geometry and system density. In particular, we find that entropy alone can even lead to a (double) inversion in the cholesteric sense of twist upon changing the packing fraction. We show how the competition between single-particle properties (shape) and thermodynamics (local alignment) dictates the macroscopic chiral behavior. Moreover, by expanding our free-energy functional, we are able to assess, quantitatively, Straley’s theory of weak chirality, which is used in several earlier studies. Furthermore, by extending our theory to different lyotropic and thermotropic liquid-crystal models, we analyze the effect of an additional soft interaction on the chiral behavior of the helices. Finally, we provide some guidelines for the description of more complex chiral phases, like twist-bend nematics. Our results provide new insights into the role of entropy in the microscopic origin of this state of matter.

  3. Modeling Macroscopic Shape Distortions during Sintering of Multi-layers

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye

    Ceramic multi-layered composites are being used as components in various technologies ranging from electronics to energy conversion devices. Thus, different architectures of multi-layers involving ceramic materials are often required to be produced by powder processing, followed by sintering...... evolutions during co-firing of bi-layers. Optimizations of the co-firing process by controlling the initial geometry of the sample and structural characteristics are also suggested. Furthermore, the multi-scale model has also shown the expected behavior of shape distortions for different bi-layers systems...... involving layers with the same and different sinterabilities. Based on the experimental and simulation results, the following conclusions are reached: during sintering of planar multi-layers, understanding of the effect of gravity on the camber evolution can be used in optimizing the co-sintering process so...

  4. Shape-changing interfaces:

    DEFF Research Database (Denmark)

    Rasmussen, Majken Kirkegård; Pedersen, Esben Warming; Petersen, Marianne Graves;

    2015-01-01

    these shortcomings. We identify eight types of shape that are transformed in various ways to serve both functional and hedonic design purposes. Interaction with shape-changing interfaces is simple and rarely merges input and output. Three questions are discussed based on the review: (a) which design purposes may......Shape change is increasingly used in physical user interfaces, both as input and output. Yet, the progress made and the key research questions for shape-changing interfaces are rarely analyzed systematically. We review a sample of existing work on shape-changing interfaces to address...

  5. Shape-changing interfaces:

    DEFF Research Database (Denmark)

    Rasmussen, Majken Kirkegård; Pedersen, Esben Warming; Petersen, Marianne Graves

    2015-01-01

    Shape change is increasingly used in physical user interfaces, both as input and output. Yet, the progress made and the key research questions for shape-changing interfaces are rarely analyzed systematically. We review a sample of existing work on shape-changing interfaces to address these shortc...... shape-changing interfaces be used for, (b) which parts of the design space are not well understood, and (c) why studying user experience with shape-changing interfaces is important.......Shape change is increasingly used in physical user interfaces, both as input and output. Yet, the progress made and the key research questions for shape-changing interfaces are rarely analyzed systematically. We review a sample of existing work on shape-changing interfaces to address...... these shortcomings. We identify eight types of shape that are transformed in various ways to serve both functional and hedonic design purposes. Interaction with shape-changing interfaces is simple and rarely merges input and output. Three questions are discussed based on the review: (a) which design purposes may...

  6. 3D shape measurement of macroscopic objects in digital off-axis holography using structured illumination.

    Science.gov (United States)

    Grosse, Marcus; Buehl, Johannes; Babovsky, Holger; Kiessling, Armin; Kowarschik, Richard

    2010-04-15

    We propose what we believe to be a novel approach to measure the 3D shape of arbitrary diffuse-reflecting macroscopic objects in holographic setups. Using a standard holographic setup, a second CCD and a liquid-crystal-on-silicon spatial light modulator to modulate the object wave, the method yields a dense 3D point cloud of an object or a scene. The calibration process is presented, and first quantitative results of a shape measurement are shown and discussed. Furthermore, a shape measurement of a complex object is displayed to demonstrate its universal use.

  7. Aging changes in body shape

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003998.htm Aging changes in body shape To use the sharing ... and both sexes. Height loss is related to aging changes in the bones, muscles, and joints. People ...

  8. Kinetic Modelling of Macroscopic Properties Changes during Crosslinked Polybutadiene Oxidation

    Science.gov (United States)

    Audouin, Ludmila; Coquillat, Marie; Colin, Xavier; Verdu, Jacques; Nevière, Robert

    2008-08-01

    The thermal oxidation of additive free hydroxyl-terminated polybutadiene (HTPB) isocyanate crosslinked rubber bulk samples has been studied at 80, 100 and 120 °C in air. The oxidation kinetics has been monitored by gravimetry and thickness distribution of oxidation products was determined by FTIR mapping. Changes of elastic shear modulus G' during oxidation were followed during oxidation at the same temperatures. The kinetic model established previously for HTPB has been adapted for bulk sample oxidation using previously determined set of kinetic parameters. Oxygen diffusion control of oxidation has been introduced into the model. The mass changes kinetic curves and oxidation products profiles were simulated and adequate fit was obtained. Using the rubber elasticity theory the elastic modulus changes were simulated taking into account the elastically active chains concentration changes due to chain scission and crosslinking reactions. The reasonable fit of G' as a function of oxidation time experimental curves was obtained.

  9. Microscopic and Macroscopic Dynamic Interface Shapes and the Interpretation of Dynamic Contact Angles.

    Science.gov (United States)

    Ramé; Garoff

    1996-01-15

    We have studied shapes of dynamic fluid interfaces at distances contact line at capillary numbers (Ca) ranging from 10(-3) to 10(-1). Near the moving contact line where viscous deformation is important, an analysis valid to O(1) in Ca describes the shape of the fluid interface. Static capillarity should describe the interface shape far from the contact line. We have quantitatively determined the extent of the regions described by the analysis with viscous deformation and by a static shape as a function of Ca. We observe a third portion of the interface between the two regions cited above, which is not described by either the analysis with viscous deformation or a static shape. In this third region the interface shape is controlled by viscous and gravitational forces of comparable magnitude. We detect significant viscous deformation even far from the contact line at Ca approximately > 0.01. Our measured dynamic contact angle parameter extracted by fitting the analysis with viscous deformation to the shape near the moving contact line coincides with the contact angle of the static-like shape far from the contact line. We measure and explain the discrepancy between this dynamic contact angle parameter and the apparent contact angles based on meniscus or apex heights. Our observations of viscous effects at large distances from the contact line have implications for dynamic contact angle measurements in capillary tubes.

  10. Basic Characteristics of a Macroscopic Measure for Detecting Abnormal Changes in a Multiagent System

    Directory of Open Access Journals (Sweden)

    Tetsuo Kinoshita

    2015-04-01

    Full Text Available Multiagent application systems must deal with various changes in both the system and the system environment at runtime. Generally, such changes have undesirable negative effects on the system. To manage and control the system, it is important to observe and detect negative effects using an appropriate observation function of the system’s behavior. This paper focuses on the design of this function and proposes a new macroscopic measure with which to observe behavioral characteristics of a runtime multiagent system. The proposed measure is designed as the variance of fluctuation of a macroscopic activity factor of the whole system, based on theoretical analysis of the macroscopic behavioral model of a multiagent system. Experiments are conducted to investigate basic characteristics of the proposed measure, using a test bed system. The results of experiments show that the proposed measure reacts quickly and increases drastically in response to abnormal changes in the system. Hence, the proposed measure is considered a measure that can be used to detect undesirable changes in a multiagent system.

  11. Basic Characteristics of a Macroscopic Measure for Detecting Abnormal Changes in a Multiagent System

    Science.gov (United States)

    Kinoshita, Tetsuo

    2015-01-01

    Multiagent application systems must deal with various changes in both the system and the system environment at runtime. Generally, such changes have undesirable negative effects on the system. To manage and control the system, it is important to observe and detect negative effects using an appropriate observation function of the system’s behavior. This paper focuses on the design of this function and proposes a new macroscopic measure with which to observe behavioral characteristics of a runtime multiagent system. The proposed measure is designed as the variance of fluctuation of a macroscopic activity factor of the whole system, based on theoretical analysis of the macroscopic behavioral model of a multiagent system. Experiments are conducted to investigate basic characteristics of the proposed measure, using a test bed system. The results of experiments show that the proposed measure reacts quickly and increases drastically in response to abnormal changes in the system. Hence, the proposed measure is considered a measure that can be used to detect undesirable changes in a multiagent system. PMID:25897499

  12. A macroscopic multi-mechanism based constitutive model for the thermo-mechanical cyclic degeneration of shape memory effect of NiTi shape memory alloy

    Science.gov (United States)

    Yu, Chao; Kang, Guozheng; Kan, Qianhua

    2017-06-01

    A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic deformation of NiTi shape memory alloys (SMAs). Three phases, austenite A, twinned martensite Mt and detwinned martensite Md, as well as the phase transitions occurring between each pair of phases (A→ M t, Mt→ A, A→ M d, Md→ A, and Mt→ M d) are considered in the proposed model. Meanwhile, two kinds of inelastic deformation mechanisms, martensite transformation-induced plasticity and reorientation-induced plasticity, are used to explain the degeneration of shape memory effects of NiTi SMAs. The evolution equations of internal variables are proposed by attributing the degeneration of shape memory effect to the interaction between the three phases ( A, Mt, and Md) and plastic deformation. Finally, the capability of the proposed model is verified by comparing the predictions with the experimental results of NiTi SMAs. It is shown that the degeneration of shape memory effect and its dependence on the loading level can be reasonably described by the proposed model.

  13. Macroscopic and Microstructural Aspects of the Transformation Behavior in a Polycrystalline NiTi Shape Memory Alloy

    Science.gov (United States)

    Benafan, Othmane; Noebe, Ronald D.; Padula, Santo A., II; Lerch, Bradley A.; Bigelow, Glen S.; Gaydosh, Darrell J.; Garg, Anita; An, Ke; Vaidyanathan, Raj

    2013-01-01

    The mechanical and microstructural behavior of a polycrystalline Ni(49.9)Ti(50.1) (at.%) shape memory alloy was investigated as a function of temperature around the transformation regime. The bulk macroscopic responses, measured using ex situ tensile deformation and impulse excitation tests, were compared to the microstructural evolution captured using in situ neutron diffraction. The onset stress for inelastic deformation and dynamic Young's modulus were found to decrease with temperature, in the martensite regime, reaching a significant minimum at approximately 80 C followed by an increase in both properties, attributed to the martensite to austenite transformation. The initial decrease in material compliance during heating affected the ease with which martensite reorientation and detwinning could occur, ultimately impacting the stress for inelastic deformation prior to the start of the reverse transformation.

  14. Photo-Responsive Shape-Memory and Shape-Changing Liquid-Crystal Polymer Networks

    Directory of Open Access Journals (Sweden)

    Danish Iqbal

    2013-01-01

    Full Text Available “Surrounding matters” is a phrase that has become more significant in recent times when discussing polymeric materials. Although regular polymers do respond to external stimuli like softening of material at higher temperatures, that response is gradual and linear in nature. Smart polymers (SPs or stimuli-responsive polymers (SRPs behave differently to those external stimuli, as their behavior is more rapid and nonlinear in nature and even a small magnitude of external stimulus can cause noticeable changes in their shape, size, color or conductivity. Of these SRPs, two types of SPs with the ability to actively change can be differentiated: shape-memory polymers and shape-changing polymers. The uniqueness of these materials lies not only in the fast macroscopic changes occurring in their structure but also in that some of these shape changes are reversible. This paper presents a brief review of current progress in the area of light activated shape-memory polymers and shape-changing polymers and their possible field of applications.

  15. Particle Shape Effect on Macroscopic Behaviour of Underground Structures: Numerical and Experimental Study

    Directory of Open Access Journals (Sweden)

    Szarf Krzysztof

    2015-02-01

    Full Text Available The mechanical performance of underground flexible structures such as buried pipes or culverts made of plastics depend not only on the properties of the structure, but also on the material surrounding it. Flexible drains can deflect by 30% with the joints staying tight, or even invert. Large deformations of the structure are difficult to model in the framework of Finite Element Method, but straightforward in Discrete Element Methods. Moreover, Discrete Element approach is able to provide information about the grain-grain and grain-structure interactions at the microscale. This paper presents numerical and experimental investigations of flexible buried pipe behaviour with focus placed on load transfer above the buried structure. Numerical modeling was able to reproduce the experimental results. Load repartition was observed, being affected by a number of factors such as particle shape, pipe friction and pipe stiffness.

  16. Correlation of macroscopic osteoarthrotic changes and radiographic findings in the acromioclavicular joint

    Energy Technology Data Exchange (ETDEWEB)

    Stenlund, B.; Marions, O.; Engstroem, K.F.; Goldie, I.

    In a total of 108 acromioclavicular articulations from cadavers the osteoarthrotic changes were studied. The articulations were macroscopically and radiographically ranked according to their grade of osteoarthrosis. The two ranking lines were correlated statistically and showed a rank correlation of 0.741. In 38 articulations tomography was also carried out. These articulations were classified into five grades of osteoarthrosis and the macroscopic, conventional radiographic and tomographic gradings were compared. The correlation coefficient for tomography versus macroscopy was 0.714. Tomography versus standard radiography showed a correlation of 0.767 and standard radiography versus macroscopy a correlation of 0.841. The standard radiographic investigation reveals moderate and severe osteoarthrotic changes in the acromioclavicular joint but cannot depict smaller changes. Tomography does not seem to improve the specificity. There is a need for a better radiologic technique in the examination of the acromioclavicular joint. Radiography during some kind of loading might be a practical way of improving the specificity and make it possible to show early osteoarthrosis in the acromioclavicular articulation.

  17. Light induced electrical and macroscopic changes in hydrogenated polymorphous silicon solar cells

    Science.gov (United States)

    Kim, K. H.; Johnson, E. V.; Abramov, A.; Cabarrocas, P. Roca i.

    2012-07-01

    We report on light-induced electrical and macroscopic changes in hydrogenated polymorphous silicon (pm-Si:H) PIN solar cells. To explain the particular light-soaking behavior of such cells - namely an increase of the open circuit voltage (Voc) and a rapid drop of the short circuit current density (Jsc) - we correlate these effects to changes in hydrogen incorporation and structural properties in the layers of the cells. Numerous techniques such as current-voltage characteristics, infrared spectroscopy, hydrogen exodiffusion, Raman spectroscopy, atomic force microscopy, scanning electron microscopy and spectroscopic ellipsometry are used to study the light-induced changes from microscopic to macroscopic scales (up to tens of microns). Such comprehensive use of complementary techniques lead us to suggest that light-soaking produces the diffusion of molecular hydrogen, hydrogen accumulation at p-layer/substrate interface and localized delamination of the interface. Based on these results we propose that light-induced degradation of PIN solar cells has to be addressed from not only as a material issue, but also a device point of view. In particular we bring experimental evidence that localized delamination at the interface between the p-layer and SnO2 substrate by light-induced hydrogen motion causes the rapid drop of Jsc.

  18. Light induced electrical and macroscopic changes in hydrogenated polymorphous silicon solar cells

    Directory of Open Access Journals (Sweden)

    Roca i Cabarrocas P.

    2012-07-01

    Full Text Available We report on light-induced electrical and macroscopic changes in hydrogenated polymorphous silicon (pm-Si:H PIN solar cells. To explain the particular light-soaking behavior of such cells – namely an increase of the open circuit voltage (Voc and a rapid drop of the short circuit current density (Jsc – we correlate these effects to changes in hydrogen incorporation and structural properties in the layers of the cells. Numerous techniques such as current-voltage characteristics, infrared spectroscopy, hydrogen exodiffusion, Raman spectroscopy, atomic force microscopy, scanning electron microscopy and spectroscopic ellipsometry are used to study the light-induced changes from microscopic to macroscopic scales (up to tens of microns. Such comprehensive use of complementary techniques lead us to suggest that light-soaking produces the diffusion of molecular hydrogen, hydrogen accumulation at p-layer/substrate interface and localized delamination of the interface. Based on these results we propose that light-induced degradation of PIN solar cells has to be addressed from not only as a material issue, but also a device point of view. In particular we bring experimental evidence that localized delamination at the interface between the p-layer and SnO2 substrate by light-induced hydrogen motion causes the rapid drop of Jsc.

  19. [Empathic leadership: shaping positive change].

    Science.gov (United States)

    Wetterauer, U; Ruhl, S

    2011-12-01

    This paper explains the concept of empathic leadership in the setting of fundamental organisational changes. It deals with the question of how you can establish a culture of leadership, which motivates employees positively and enthuses them for the upcoming changes. It discusses the basics of empathic leadership and considers the question of how handling of emotions influences change processes and how different management styles can be used supportively during changes. With the help of a practical example the different phases of change are presented from a management point of view. Thereby the theory of different levels of employee motivation is explained inter alia. The article shows that empathic leadership also has a lasting economic effect. This can be seen particularly in the power of motivation for change, in addition to recruitment and long-term employee retention.

  20. Body Shape Changes with HIV

    Science.gov (United States)

    ... HIV/AIDS Home Alternative Therapies Diet and Nutrition Discrimination Drugs and Alcohol Exercise Mental Health Sex and ... injections of dermal fillers that can lessen the appearance of these changes. Abdominal fat gain can be ...

  1. Encounters on a Shape-changing Bench

    DEFF Research Database (Denmark)

    Kinch, Sofie; Grönvall, Erik; Petersen, Marianne Graves;

    2014-01-01

    ; a concert hall, an airport and a shopping mall. We gathered insights from more than 120 people, as they unexpectedly encountered the shape changing capabilities of the bench. By taking the user tests out of the lab and into the wild, we explored the influence of context on the users experience of a shape...

  2. MACROSCOPIC RIVERS

    NARCIS (Netherlands)

    VANDENBERG, IP

    1991-01-01

    We present a mathematical model for the ''river-phenomenon'': striking concentrations of trajectories of ordinary differential equations. This model of ''macroscopic rivers'' is formulated within nonstandard analysis, and stated in terms of macroscopes and singular perturbations. For a subclass, the

  3. The changing shape of mitochondrial apoptosis.

    Science.gov (United States)

    Wasilewski, Michał; Scorrano, Luca

    2009-08-01

    Mitochondria are key organelles in conversion of energy, regulation of cellular signaling and amplification of programmed cell death. The anatomy of the organelle matches this functional versatility in complexity and is modulated by the concerted action of proteins that impinge on its fusion-fission equilibrium. A growing body of evidence implicates changes in mitochondrial shape in the progression of apoptosis and, therefore, proteins governing such changes are likely candidates for involvement in pathogenetic mechanisms in neurodegeneration and cancer. Here, we discuss the recent advancements in our knowledge about the machinery that regulates mitochondrial shape and on the role of molecular mechanisms controlling mitochondrial morphology during cell death.

  4. Shape-changing shell-like structures.

    Science.gov (United States)

    Pagitz, M; Bold, J

    2013-03-01

    Plants such as Dionaea muscipula (Venus Flytrap) can change the shape of their shell-like leaves by actively altering the cell pressures. These leaves are hydraulic actuators that do not require any complex controls and that possess an energy efficiency that is unmatched by natural or artificial muscles (Huber et al 1997 Proc. R. Soc. A 453 2185-205). We extend our previous work (Pagitz et al 2012 Bioinspir. Biomim. 7 016007) on pressure-actuated cellular structures by introducing a concept for shape-changing shell-like structures that can significantly alter their Gaussian curvature. The potential of this concept is demonstrated by a hemispherical shell that can reversibly change the sign of its Gaussian curvature. Furthermore, it is shown that a snap-through behaviour, similar to the one known from Dionaea muscipula, can be achieved by lowering the pressure in a single layer of cells.

  5. Single-domain shape anisotropy in near-macroscopic Ni80Fe20 thin-film rectangles

    Science.gov (United States)

    Li, Yi; Lu, Yiran; Bailey, W. E.

    2013-05-01

    Shape anisotropy provides a simple mechanism to adjust the local bias field in patterned structures. It is well known that for ellipsoidal particles elements, domain formation is thought to limit the effectiveness of shape anisotropy. In our work, we show that very soft lithographically patterned Ni80Fe20 films with control of induced magnetic anisotropy can exhibit shape anisotropy fields in agreement with single-domain models, for both hysteresis loop measurements at low field and ferromagnetic resonance measurements at high field. We show the superiority of the fluxmetric form over the magnetometric form of anisotropy estimate for thin films with control dimensions from 10 μm to 150 μm and in-plane aspect ratios above 10.

  6. Anatomic Changes in the Macroscopic Morphology and Microarchitecture of Denervated Long Bone Tissue after Spinal Cord Injury in Rats

    Directory of Open Access Journals (Sweden)

    Ariane Zamarioli

    2014-01-01

    Full Text Available To study the effects of mechanical loading on bones after SCI, we assessed macro- and microscopic anatomy in rats submitted to passive standing (PS and electrical stimulation (ES. The study design was based on two main groups of juvenile male Wistar rats with SCI: one was followed for 33 days with therapies starting at day 3 and the other was followed for 63 days with therapies starting at day 33. Both groups were composed of four subgroups (n=10/group: (1 Sham, (2 SCI, (3 SCI + PS, and (4 SCI + ES. Rehabilitation protocol consisted of a 20-minute session, 3x/wk for 30 days. The animals were sequentially weighed and euthanized. The femur and tibia were assessed macroscopically and microscopically by scanning electronic microscopy (SEM. The SCI rats gained less weight than Sham-operated animals. Significant reduction of bone mass and periosteal radii was observed in the SCI rats, whereas PS and ES efficiently improved the macroscopic parameters. The SEM images showed less and thin trabecular bone in SCI rats. PS and ES efficiently ameliorated the bone microarchitecture deterioration by thickening and increasing the trabeculae. Based on the detrimental changes in bone tissue following SCI, the mechanical loading through weight bearing and muscle contraction may decrease the bone loss and restore the macro- and microanatomy.

  7. Exploring the design space of shape-changing objects

    DEFF Research Database (Denmark)

    Nørgaard, Mie; Merritt, Timothy Robert; Rasmussen, Majken;

    2013-01-01

    for the further expansion of the design space of shape changing interfaces relating to the perception and understanding of behaviour, causality and the mechanics involved in shape change events, which we call "Imagined Physics." This concept is described along with additional insights into the qualities of shape......In this paper we describe the outcomes from a design exercise in which eight groups of designers designed and built hardware sketches in the form of playful shape-changing prototypes, generatively working with Rasmussen et al's [31] eight unique types of shape change. Seeing that shape......-changing interfaces is a growing area in HCI design research and that authors often shy away from articulating the special qualities brought to a design by using changing shape to communicate information, we set out to explore shape changing interfaces through a series of sketching experiments through the support...

  8. Exploring the Design Space of Shape-Changing Objects

    DEFF Research Database (Denmark)

    Merritt, Timothy; Petersen, Marianne Graves; Nørgaard, Mie;

    2015-01-01

    -changing interfaces is a growing area in HCI design research and that authors often shy away from articulating the special qualities brought to a design by using changing shape to communicate information, we set out to explore shape changing interfaces through a series of sketching experiments through the support...... for the further expansion of the design space of shape changing interfaces relating to the perception and understanding of behaviour, causality and the mechanics involved in shape change events, which we call “Imagined Physics.” This concept is described along with additional insights into the qualities of shape......In this paper we describe the outcomes from a design exercise in which eight groups of designers designed and built hardware sketches in the form of playful shape- changing prototypes, generatively working with Rasmussen et al’s [31] eight unique types of shape change. Seeing that shape...

  9. Macroscopic modeling of heat and water vapor transfer with phase change in dry snow based on an upscaling method: Influence of air convection

    Science.gov (United States)

    Calonne, N.; Geindreau, C.; Flin, F.

    2015-12-01

    At the microscopic scale, i.e., pore scale, dry snow metamorphism is mainly driven by the heat and water vapor transfer and the sublimation-deposition process at the ice-air interface. Up to now, the description of these phenomena at the macroscopic scale, i.e., snow layer scale, in the snowpack models has been proposed in a phenomenological way. Here we used an upscaling method, namely, the homogenization of multiple-scale expansions, to derive theoretically the macroscopic equivalent modeling of heat and vapor transfer through a snow layer from the physics at the pore scale. The physical phenomena under consideration are steady state air flow, heat transfer by conduction and convection, water vapor transfer by diffusion and convection, and phase change (sublimation and deposition). We derived three different macroscopic models depending on the intensity of the air flow considered at the pore scale, i.e., on the order of magnitude of the pore Reynolds number and the Péclet numbers: (A) pure diffusion, (B) diffusion and moderate convection (Darcy's law), and (C) strong convection (nonlinear flow). The formulation of the models includes the exact expression of the macroscopic properties (effective thermal conductivity, effective vapor diffusion coefficient, and intrinsic permeability) and of the macroscopic source terms of heat and vapor arising from the phase change at the pore scale. Such definitions can be used to compute macroscopic snow properties from 3-D descriptions of snow microstructures. Finally, we illustrated the precision and the robustness of the proposed macroscopic models through 2-D numerical simulations.

  10. Shaping the Public Dialogue on Climate Change

    Science.gov (United States)

    Spitzer, W.; Anderson, J. C.

    2012-12-01

    In order to broaden the public dialogue about climate change, climate scientists need to leverage the potential of informal science education and recent advances in social and cognitive science. In the US, more than 1,500 informal science venues (science centers, museums, aquariums, zoos, nature centers, national parks, etc.) are visited annually by 61% of the population. Extensive research shows that these visitors are receptive to learning about climate change and trust these institutions as reliable sources. Given that we spend less than 5% of our lifetime in a classroom, and only a fraction of that is focused on science, informal science venues will continue to play a critical role in shaping public understanding of environmental issues in the years ahead. Public understanding of climate change continues to lag far behind the scientific consensus not merely because the public lacks information, but because there is in fact too much complex and contradictory information available. Fortunately, we can now (1) build on careful empirical cognitive and social science research to understand what people already value, believe, and understand; and then (2) design and test strategies for translating complex science so that people can examine evidence, make well-informed inferences, and embrace science-based solutions. The New England Aquarium is leading a national effort to enable informal science education institutions to effectively communicate the impacts of climate change and ocean acidification on marine ecosystems. This NSF-funded partnership, the National Network for Ocean and Climate Change Interpretation (NNOCCI), involves the Association of Zoos and Aquariums, FrameWorks Institute, Woods Hole Oceanographic Institution, Monterey Bay Aquarium, and National Aquarium, with evaluation conducted by the New Knowledge Organization, Pennsylvania State University, and Ohio State University. We believe that skilled interpreters can serve as "communication strategists" by

  11. Biology and physics of cell shape changes in development.

    Science.gov (United States)

    Paluch, Ewa; Heisenberg, Carl-Philipp

    2009-09-15

    Together with cell growth, division and death, changes in cell shape are of central importance for tissue morphogenesis during development. Cell shape is the product of a cell's material and active properties balanced by external forces. Control of cell shape, therefore, relies on both tight regulation of intracellular mechanics and the cell's physical interaction with its environment. In this review, we first discuss the biological and physical mechanisms of cell shape control. We next examine a number of developmental processes in which cell shape change - either individually or in a coordinated manner - drives embryonic morphogenesis and discuss how cell shape is controlled in these processes. Finally, we emphasize that cell shape control during tissue morphogenesis can only be fully understood by using a combination of cellular, molecular, developmental and biophysical approaches.

  12. Proxemic Transitions: Designing Shape-Changing Furniture for Informal Meetings

    DEFF Research Database (Denmark)

    Grønbæk, Jens Emil; Korsgaard, Henrik; Petersen, Marianne Graves;

    2017-01-01

    Shape-changing interfaces is an emerging field in HCI that explores the qualities of physically dynamic artifacts. At furniture-scale such dynamic artifacts have the potential of changing the ways we collaborate and engage with spaces. In- formed by theories of proxemics, empirical studies...... of informal meetings and design work with shape-changing furniture, we develop the notion of proxemic transitions. We present three design aspects of proxemic transitions: transition speed, step- wise reconfiguration, and situational flexibility. The design aspects focus on how to balance between physical...... between a table and a board surface. These contributions outline important aspects to consider when designing shape-changing furniture....

  13. Ontogenetic Shape Change in the Chicken Brain: Implications for Paleontology.

    Science.gov (United States)

    Kawabe, Soichiro; Matsuda, Seiji; Tsunekawa, Naoki; Endo, Hideki

    2015-01-01

    Paleontologists have investigated brain morphology of extinct birds with little information on post-hatching changes in avian brain morphology. Without the knowledge of ontogenesis, assessing brain morphology in fossil taxa could lead to misinterpretation of the phylogeny or neurosensory development of extinct species. Hence, it is imperative to determine how avian brain morphology changes during post-hatching growth. In this study, chicken brain shape was compared at various developmental stages using three-dimensional (3D) geometric morphometric analysis and the growth rate of brain regions was evaluated to explore post-hatching morphological changes. Microscopic MRI (μMRI) was used to acquire in vivo data from living and post-mortem chicken brains. The telencephalon rotates caudoventrally during growth. This change in shape leads to a relative caudodorsal rotation of the cerebellum and myelencephalon. In addition, all brain regions elongate rostrocaudally and this leads to a more slender brain shape. The growth rates of each brain region were constant and the slopes from the growth formula were parallel. The dominant pattern of ontogenetic shape change corresponded with interspecific shape changes due to increasing brain size. That is, the interspecific and ontogenetic changes in brain shape due to increased size have similar patterns. Although the shape of the brain and each brain region changed considerably, the volume ratio of each brain region did not change. This suggests that the brain can change its shape after completing functional differentiation of the brain regions. Moreover, these results show that consideration of ontogenetic changes in brain shape is necessary for an accurate assessment of brain morphology in paleontological studies.

  14. Ontogenetic Shape Change in the Chicken Brain: Implications for Paleontology.

    Directory of Open Access Journals (Sweden)

    Soichiro Kawabe

    Full Text Available Paleontologists have investigated brain morphology of extinct birds with little information on post-hatching changes in avian brain morphology. Without the knowledge of ontogenesis, assessing brain morphology in fossil taxa could lead to misinterpretation of the phylogeny or neurosensory development of extinct species. Hence, it is imperative to determine how avian brain morphology changes during post-hatching growth. In this study, chicken brain shape was compared at various developmental stages using three-dimensional (3D geometric morphometric analysis and the growth rate of brain regions was evaluated to explore post-hatching morphological changes. Microscopic MRI (μMRI was used to acquire in vivo data from living and post-mortem chicken brains. The telencephalon rotates caudoventrally during growth. This change in shape leads to a relative caudodorsal rotation of the cerebellum and myelencephalon. In addition, all brain regions elongate rostrocaudally and this leads to a more slender brain shape. The growth rates of each brain region were constant and the slopes from the growth formula were parallel. The dominant pattern of ontogenetic shape change corresponded with interspecific shape changes due to increasing brain size. That is, the interspecific and ontogenetic changes in brain shape due to increased size have similar patterns. Although the shape of the brain and each brain region changed considerably, the volume ratio of each brain region did not change. This suggests that the brain can change its shape after completing functional differentiation of the brain regions. Moreover, these results show that consideration of ontogenetic changes in brain shape is necessary for an accurate assessment of brain morphology in paleontological studies.

  15. Late Quaternary climate change shapes island biodiversity

    DEFF Research Database (Denmark)

    Weigelt, Patrick; Steinbauer, Manuel; Cabral, Juliano

    2016-01-01

    Island biogeographical models consider islands either as geologically static with biodiversity resulting from ecologically neutral immigration–extinction dynamics1, or as geologically dynamic with biodiversity resulting from immigration–speciation–extinction dynamics influenced by changes in island...... sea levels3, 4 and caused massive changes in island area, isolation and connectivity5, orders of magnitude faster than the geological processes of island formation, subsidence and erosion considered in island theory2, 6. Consequences of these oscillations for present biodiversity remain unassessed5, 7...

  16. Late Quaternary climate change shapes island biodiversity.

    Science.gov (United States)

    Weigelt, Patrick; Steinbauer, Manuel Jonas; Cabral, Juliano Sarmento; Kreft, Holger

    2016-04-07

    Island biogeographical models consider islands either as geologically static with biodiversity resulting from ecologically neutral immigration-extinction dynamics, or as geologically dynamic with biodiversity resulting from immigration-speciation-extinction dynamics influenced by changes in island characteristics over millions of years. Present climate and spatial arrangement of islands, however, are rather exceptional compared to most of the Late Quaternary, which is characterized by recurrent cooler and drier glacial periods. These climatic oscillations over short geological timescales strongly affected sea levels and caused massive changes in island area, isolation and connectivity, orders of magnitude faster than the geological processes of island formation, subsidence and erosion considered in island theory. Consequences of these oscillations for present biodiversity remain unassessed. Here we analyse the effects of present and Last Glacial Maximum (LGM) island area, isolation, elevation and climate on key components of angiosperm diversity on islands worldwide. We find that post-LGM changes in island characteristics, especially in area, have left a strong imprint on present diversity of endemic species. Specifically, the number and proportion of endemic species today is significantly higher on islands that were larger during the LGM. Native species richness, in turn, is mostly determined by present island characteristics. We conclude that an appreciation of Late Quaternary environmental change is essential to understand patterns of island endemism and its underlying evolutionary dynamics.

  17. Diatoms and dinoflagellates macroscopic regularities shaped by intrinsic physical forcing variability in Patagonian and Fuegian fjords and channels (48°-56°S)

    Science.gov (United States)

    Paredes, María Alejandra; Montecino, Vivian; Anic, Vinka; Egaña, Miguel; Guzmán, Leonardo

    2014-12-01

    scale, clearly differentiated groups during the different seasons were found. Of these groups, the northern sector of the Magellan region (48-52°S) forms a distinct group in all four seasons in agreement with a priori well known areas of higher probability of toxic shellfish detection, which have been defined as geographical Paralytic Shellfish Poison (PSP) toxicity cores, produced by a single toxic dinoflagellate species. These larger scale patterns respond to environmental forcing, probably temperature, winds, solar irradiance and circulation pattern. Results at a sub-regional scale showed no distinct microphytoplankton groups (Global R = 0.26), while significant differences between stations (p < 0.05) indicated a high heterogeneity within the same area. Temperature and nitrate were the most important variables correlated with the microphytoplankton genera groups. In conclusion, spatial regularities in microphytoplankton structure are found at the macroscopic scale (regional scale) and the PSP toxicity cores may be associated with changes in the composition and abundance of the entire microphytoplankton assemblage. Jointly, despite at small geographic scales, there is increased variability, several microphytoplankton local zones were detected and can be explained by exogenous influences, where nutrient input and temperature play the most important role.

  18. Virtual work and shape change in solid mechanics

    CERN Document Server

    Frémond, Michel

    2017-01-01

    This book provides novel insights into two basic subjects in solid mechanics: virtual work and shape change. When we move a solid, the work we expend in moving it is used to modify both its shape and its velocity. This observation leads to the Principle of Virtual Work. Virtual work depends linearly on virtual velocities, which are velocities we may think of. The virtual work of the internal forces accounts for the changes in shape. Engineering provides innumerable examples of shape changes, i.e., deformations, and of velocities of deformation. This book presents examples of usual and unusual shape changes, providing with the Principle of Virtual Work various and sometimes new equations of motion for smooth and non-smooth (i.e., with collisions) motions: systems of disks, systems of balls, classical and non-classical small deformation theories, systems involving volume and surface damage, systems with interactions at a distance (e.g., solids reinforced by fibers), systems involving porosity, beams with third ...

  19. A New Kind of Shape-stabilized Phase Change Materials

    Institute of Scientific and Technical Information of China (English)

    XIAO Liguang; DING Rui; SUN Hao; WANG Fujun

    2011-01-01

    Based on the lowest melting point and Schroeder's theoretical calculation formula, nanomodified organic composite phase change materials (PCMs) were prepared. The phase transition temperature and the latent heat of the materials were 24 ℃ and 172 J/g, respectively. A new shape-stabilized phase change materials were prepared, using high density polyethylene as supporting material. The PCM kept the shape when temperature was higher than melting point. Thus, it can directly contact with heat transfer media. The structure,morphology and thermal behavior of PCM were analyzed by FTIR, SEM and DSC.

  20. Designing for scale: How relationships shape curriculum change

    NARCIS (Netherlands)

    Pareja Roblin, Natalie; Corbalan, Gemma; McKenney, Susan; Nieveen, Nienke; Van den Akker, Jan

    2012-01-01

    Pareja Roblin, N., Corbalan Perez, G., McKenney, S., Nieveen, N., & Van den Akker, J. (2012, 13-17 April). Designing for scale: How relationships shape curriculum change. Paper presentation at the AERA annual meeting, Vancouver, Canada. Please see also: http://hdl.handle.net/1820/4678

  1. Designing for scale: How relationships shape curriculum change

    NARCIS (Netherlands)

    Pareja Roblin, Natalie; Corbalan, Gemma; McKenney, Susan; Nieveen, Nienke; Van den Akker, Jan

    2012-01-01

    Pareja Roblin, N., Corbalan Perez, G., McKenney, S., Nieveen, N., & Van den Akker, J. (2012, 13-17 April). Designing for scale: How relationships shape curriculum change. Presentation at the AERA annual meeting, Vancouver, Canada. Please see also http://hdl.handle.net/1820/4679

  2. Designing for scale: How relationships shape curriculum change

    NARCIS (Netherlands)

    Pareja Roblin, Natalie; Corbalan, Gemma; McKenney, Susan; Nieveen, Nienke; Van den Akker, Jan

    2012-01-01

    Pareja Roblin, N., Corbalan Perez, G., McKenney, S., Nieveen, N., & Van den Akker, J. (2012, 13-17 April). Designing for scale: How relationships shape curriculum change. Paper presentation at the AERA annual meeting, Vancouver, Canada. Please see also: http://hdl.handle.net/1820/4678

  3. Designing for scale: How relationships shape curriculum change

    NARCIS (Netherlands)

    Pareja Roblin, Natalie; Corbalan, Gemma; McKenney, Susan; Nieveen, Nienke; Van den Akker, Jan

    2012-01-01

    Pareja Roblin, N., Corbalan Perez, G., McKenney, S., Nieveen, N., & Van den Akker, J. (2012, 13-17 April). Designing for scale: How relationships shape curriculum change. Presentation at the AERA annual meeting, Vancouver, Canada. Please see also http://hdl.handle.net/1820/4679

  4. Changes in the Shape of Histograms Constructed from the Results of 239-Pu Alpha-Activity Measurements Correlate with the Deviations of the Moon from the Keplerian Orbit

    Directory of Open Access Journals (Sweden)

    Shapovalov S. N.

    2009-10-01

    Full Text Available We have found that the shape of the histograms, constructed on the basis of the results of radioactivity measurements, changes in correlation with the distortions of the lunar Keplerian orbit (due to the gravitational influence of the Sun. Taking into account that the phenomenon of "macroscopic fluctuations" (regular changes in the fine structure of histograms constructed from the results of measurements of natural processes does not depend on the nature of the process under study, one can consider the correlation of the histogram shape with the Moon's deviations from the Keplerian orbit to be independent from the nature of the process the histograms were obtained on.

  5. Changes in the Shape of Histograms Constructed from the Results of 239-Pu Alpha-Activity Measurements Correlate with the Deviations of the Moon from the Keplerian Orbit

    Directory of Open Access Journals (Sweden)

    Shapovalov S. N.

    2009-10-01

    Full Text Available We have found that the shape of the histograms, constructed on the basis of the results of radioactivity measurements, changes in correlation with the distortions of the lunar Keplerian orbit (due to the gravitational influence of the Sun. Taking into account that the phenomenon of “macroscopic fluctuations” (regular changes in the fine structure of histograms constructed from the results of measurements of natural processes does not depend on the nature of the process under study, one can consider the correlation of the histogram shape with the Moon’s deviations from the Keplerian orbit to be independent from the nature of the process the histograms were obtained on.

  6. Temporal Shape Changes and Future Trends in European Automotive Design

    Directory of Open Access Journals (Sweden)

    Corrado Costa

    2015-09-01

    Full Text Available Evolution produces genuine novelty in morphology through the selection of competing designs as phenotypes. When applied to human creativity, the evolutionary paradigm can provide insight into the ways that our technology and its design are modified through time. The shape of European utilitarian cars in the past 60 years was analyzed in order to determine whether changes occur in a gradual fashion or through saltation, clarifying which are the more conserved and more variable parts of the designs. We also attempted to predict the future appearances of the cars within the next decade, discussing all results within the framework of relevant evolutionary-like equivalences. Here, we analyzed the modification in the shape of European utilitarian cars in the past 60 years by three-dimensional geometric morphometrics to test whether these changes occurred in a gradual or more saltatory fashion. The geometric morphometric shape analysis showed that even though car brands have always been preserving distinct shapes, all followed a gradual pattern of evolution which is now converging toward a more similar fusiform and compact asset. This process was described using Darwinian evolution as a metaphor to quantify and interpret changes over time and the societal pressures promoting them.

  7. Conformon-driven biopolymer shape changes in cell modeling.

    Science.gov (United States)

    Ji, Sungchul; Ciobanu, Gabriel

    2003-07-01

    Conceptual models of the atom preceded the mathematical model of the hydrogen atom in physics in the second decade of the 20th century. The computer modeling of the living cell in the 21st century may follow a similar course of development. A conceptual model of the cell called the Bhopalator was formulated in the mid-1980s, along with its twin theories known as the conformon theory of molecular machines and the cell language theory of biopolymer interactions [Ann. N.Y. Acad. Sci. 227 (1974) 211; BioSystems 44 (1997) 17; Ann. N.Y. Acad. Sci. 870 (1999a) 411; BioSystems 54 (2000) 107; Semiotica 138 (1-4) (2002a) 15; Fundamenta Informaticae 49 (2002b) 147]. The conformon theory accounts for the reversible actions of individual biopolymers coupled to irreversible chemical reactions, while the cell language theory provides a theoretical framework for understanding the complex networks of dynamic interactions among biopolymers in the cell. These two theories are reviewed and further elaborated for the benefit of both computational biologists and computer scientists who are interested in modeling the living cell and its functions. One of the critical components of the mechanisms of cell communication and cell computing has been postulated to be space- and time-organized teleonomic (i.e. goal-directed) shape changes of biopolymers that are driven by exergonic (free energy-releasing) chemical reactions. The generalized Franck-Condon principle is suggested to be essential in resolving the apparent paradox arising when one attempts to couple endergonic (free energy-requiring) biopolymer shape changes to the exergonic chemical reactions that are catalyzed by biopolymer shape changes themselves. Conformons, defined as sequence-specific mechanical strains of biopolymers first invoked three decades ago to account for energy coupling in mitochondria, have been identified as shape changers, the agents that cause shape changes in biopolymers. Given a set of space- and time

  8. Interference of macroscopic superpositions

    CERN Document Server

    Vecchi, I

    2000-01-01

    We propose a simple experimental procedure based on the Elitzur-Vaidman scheme to implement a quantum nondemolition measurement testing the persistence of macroscopic superpositions. We conjecture that its implementation will reveal the persistence of superpositions of macroscopic objects in the absence of a direct act of observation.

  9. Inflatable shape changing colonies assembling versatile smart space structures

    Science.gov (United States)

    Sinn, Thomas; Hilbich, Daniel; Vasile, Massimiliano

    2014-11-01

    Various plants have the ability to follow the sun with their flowers or leaves during the course of a day via a mechanism known as heliotropism. This mechanism is characterised by the introduction of pressure gradients between neighbouring motor cells in the plant's stem, enabling the stem to bend. By adapting this bio-inspired mechanism to mechanical systems, a new class of smart structures can be created. The developed overall structure is made up of a number of cellular colonies, each consisting of a central pressure source surrounded by multiple cells. After launch, the cellular arrays are deployed in space and are either preassembled or alternatively are attached together during their release or afterwards. A central pressure source is provided by a high-pressure storage unit with an integrated valve, which provides ingress gas flow to the system; the gas is then routed through the system via a sequence of valve operations and cellular actuations, allowing for any desired shape to be achieved within the constraints of the deployed array geometry. This smart structure consists of a three dimensional adaptable cellular array with fluid controlling Micro Electromechanical Systems (MEMS) components enabling the structure to change its global shape. The proposed MEMS components include microvalves, pressure sensors, mechanical interconnect structures, and electrical routing. This paper will also give an overview of the system architecture and shows the feasibility and shape changing capabilities of the proposed design with multibody dynamic simulations. Example applications of this lightweight shape changing structure include concentrators, mirrors, and communications antennas that are able to dynamically change their focal point, as well as substructures for solar sails that are capable of steering through solar winds by altering the sails' subjected area.

  10. Hair receptor sensitivity to changes in laminar boundary layer shape

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, B T, E-mail: btdickinson@lifetime.oregonstate.ed [Air Force Research Laboratory, Munitions Directorate, Eglin Air Force Base, FL 32542 (United States)

    2010-03-15

    Biologists have shown that bat wings contain distributed arrays of flow-sensitive hair receptors. The hair receptors are hypothesized to feedback information on airflows over the bat wing for enhanced stability or maneuverability during flight. Here, we study the geometric specialization of hair-like structures for the detection of changes in boundary layer velocity profiles (shapes). A quasi-steady model that relates the flow velocity profile incident on the longitudinal axis of a hair to the resultant moment and shear force at the hair base is developed. The hair length relative to the boundary layer momentum thickness that maximizes the resultant moment and shear-force sensitivity to changes in boundary layer shape is determined. The sensitivity of the resultant moment and shear force is shown to be highly dependent on hair length. Hairs that linearly taper to a point are shown to provide greater output sensitivity than hairs of uniform cross-section. On an order of magnitude basis, the computed optimal hair lengths are in agreement with the range of hair receptor lengths measured on individual bat species. These results support the hypothesis that bats use hair receptors for detecting changes in boundary layer shape and provide geometric guidelines for artificial hair sensor design and application.

  11. Hair receptor sensitivity to changes in laminar boundary layer shape.

    Science.gov (United States)

    Dickinson, B T

    2010-03-01

    Biologists have shown that bat wings contain distributed arrays of flow-sensitive hair receptors. The hair receptors are hypothesized to feedback information on airflows over the bat wing for enhanced stability or maneuverability during flight. Here, we study the geometric specialization of hair-like structures for the detection of changes in boundary layer velocity profiles (shapes). A quasi-steady model that relates the flow velocity profile incident on the longitudinal axis of a hair to the resultant moment and shear force at the hair base is developed. The hair length relative to the boundary layer momentum thickness that maximizes the resultant moment and shear-force sensitivity to changes in boundary layer shape is determined. The sensitivity of the resultant moment and shear force is shown to be highly dependent on hair length. Hairs that linearly taper to a point are shown to provide greater output sensitivity than hairs of uniform cross-section. On an order of magnitude basis, the computed optimal hair lengths are in agreement with the range of hair receptor lengths measured on individual bat species. These results support the hypothesis that bats use hair receptors for detecting changes in boundary layer shape and provide geometric guidelines for artificial hair sensor design and application.

  12. Transformers: Shape-Changing Space Systems Built with Robotic Textiles

    Science.gov (United States)

    Stoica, Adrian

    2013-01-01

    Prior approaches to transformer-like robots had only very limited success. They suffer from lack of reliability, ability to integrate large surfaces, and very modest change in overall shape. Robots can now be built from two-dimensional (2D) layers of robotic fabric. These transformers, a new kind of robotic space system, are dramatically different from current systems in at least two ways. First, the entire transformer is built from a single, thin sheet; a flexible layer of a robotic fabric (ro-fabric); or robotic textile (ro-textile). Second, the ro-textile layer is foldable to small volume and self-unfolding to adapt shape and function to mission phases.

  13. Simulations of Self-Expanding Braided Stent Using Macroscopic Model of NiTi Shape Memory Alloys Covering R-Phase

    Science.gov (United States)

    Frost, M.; Sedlák, P.; Kruisová, A.; Landa, M.

    2014-07-01

    Self-expanding stents or stentgrafts made from Nitinol superelastic alloy are widely used for a less invasive treatment of disease-induced localized flow constriction in the cardiovascular system. The therapy is based on insertion of a stent into a blood vessel to maintain the inner diameter of the vessel; it provides highly effective results at minimal cost and with reduced hospital stays. However, since stent is an external mechanical healing tool implemented into human body for quite a long time, information on the mechanical performance of it is of fundamental importance with respect to patient's safety and comfort. Advantageously, computational structural analysis can provide valuable information on the response of the product in an environment where in vivo experimentation is extremely expensive or impossible. With this motivation, a numerical model of a particular braided self-expanding stent was developed. As a reasonable approximation substantially reducing computational demands, the stent was considered to be composed of a set of helical springs with specific constrains reflecting geometry of the structure. An advanced constitutive model for NiTi-based shape memory alloys including R-phase transition was employed in analysis. Comparison to measurements shows a very good match between the numerical solution and experimental results. Relation between diameter of the stent and uniform radial pressure on its surface is estimated. Information about internal phase and stress state of the material during compression loading provided by the model is used to estimate fatigue properties of the stent during cyclic loading.

  14. Constitutive Laws for Visco-plastic Porous Medium Shaped by Regularly Distributed Circular Particles

    Institute of Scientific and Technical Information of China (English)

    Yunzhu Cai; Huaicui Li

    2016-01-01

    A numerical study is presented, using a homogenization technique to consider the plain strain problem of visco⁃plastic porous medium shaped by regularly distributed circular particles. Based on a rigid plastic material, the paper derives the macroscopic constitutive laws for homogenous equivalent medium. By changing the shape parameter of circular particles, the effect of pore shape on macroscopic constitutive laws is explored. Yield surfaces with different pore shapes are obtained. About voids, a two⁃scale conception is introduced, which regards main void as macroscopic scale and secondary cavities as microscopic scale. The macroscopic potential involving main and secondary voids is achieved. The proposed macroscopic constitutive law taking microscopic features as influence factors is helpful for exploring the macroscopic mechanical properties of porous medium when numerical simulation is required.

  15. Computation of Hypersonic Flow about Maneuvering Vehicles with Changing Shapes

    Energy Technology Data Exchange (ETDEWEB)

    Ferencz, R M; Felker, F F; Castillo, V M

    2004-02-23

    Vehicles moving at hypersonic speeds have great importance to the National Security. Ballistic missile re-entry vehicles (RV's) travel at hypersonic speeds, as do missile defense intercept vehicles. Despite the importance of the problem, no computational analysis method is available to predict the aerodynamic environment of maneuvering hypersonic vehicles, and no analysis is available to predict the transient effects of their shape changes. The present state-of-the-art for hypersonic flow calculations typically still considers steady flow about fixed shapes. Additionally, with present computational methods, it is not possible to compute the entire transient structural and thermal loads for a re-entry vehicle. The objective of this research is to provide the required theoretical development and a computational analysis tool for calculating the hypersonic flow about maneuvering, deforming RV's. This key enabling technology will allow the development of a complete multi-mechanics simulation of the entire RV flight sequence, including important transient effects such as complex flight dynamics. This will allow the computation of the as-delivered state of the payload in both normal and unusual operational environments. This new analysis capability could also provide the ability to predict the nonlinear, transient behavior of endo-atmospheric missile interceptor vehicles to the input of advanced control systems. Due to the computational intensity of fluid dynamics for hypersonics, the usual approach for calculating the flow about a vehicle that is changing shape is to complete a series of steady calculations, each with a fixed shape. However, this quasi-steady approach is not adequate to resolve the frequencies characteristic of a vehicle's structural dynamics. Our approach is to include the effects of the unsteady body shape changes in the finite-volume method by allowing for arbitrary translation and deformation of the control volumes. Furthermore

  16. Rechargeable battery which combats shape change of the zinc anode

    Science.gov (United States)

    Cohn, E. M. (Inventor)

    1976-01-01

    A rechargeable cell or battery is provided in which shape change of the zinc anode is combatted by profiling the ionic conductivity of the paths between the electrodes. The ion flow is greatest at the edges of the electrodes and least at the centers, thereby reducing migration of the zinc ions from edges to the center of the anode. A number of embodiments are disclosed in which the strength and/or amount of electrolyte, and/or the number and/or size of the paths provided by the separator between the electrodes, are varied to provide the desired ionic conductivity profile.

  17. Anomalous Shape Changes of Silicon Nanopillars by Electrochemical Lithiation

    KAUST Repository

    Lee, Seok Woo

    2011-07-13

    Silicon is one of the most attractive anode materials for use in Li-ion batteries due to its ∼10 times higher specific capacity than existing graphite anodes. However, up to 400% volume expansion during reaction with Li causes particle pulverization and fracture, which results in rapid capacity fading. Although Si nanomaterials have shown improvements in electrochemical performance, there is limited understanding of how volume expansion takes place. Here, we study the shape and volume changes of crystalline Si nanopillars with different orientations upon first lithiation and discover anomalous behavior. Upon lithiation, the initially circular cross sections of nanopillars with 〈100〉, 〈110〉, and 〈111〉 axial orientations expand into cross, ellipse, and hexagonal shapes, respectively. We explain this by identifying a high-speed lithium ion diffusion channel along the 〈110〉 direction, which causes preferential volume expansion along this direction. Surprisingly, the 〈111〉 and 〈100〉 nanopillars shrink in height after partial lithiation, while 〈110〉 nanopillars increase in height. The length contraction is suggested to be due to a collapse of the {111} planes early in the lithiation process. These results give new insight into the Si volume change process and could help in designing better battery anodes. © 2011 American Chemical Society.

  18. Evaluating developmental shape changes in Homo antecessor subadult facial morphology.

    Science.gov (United States)

    Freidline, Sarah E; Gunz, Philipp; Harvati, Katerina; Hublin, Jean-Jacques

    2013-10-01

    The fossil ATD6-69 from Atapuerca, Spain, dated to ca. 900 ka (thousands of years ago) has been suggested to mark the earliest appearance of modern human facial features. However, this specimen is a subadult and the interpretation of its morphology remains controversial, because it is unclear how developmental shape changes would affect the features that link ATD6-69 to modern humans. Here we analyze ATD6-69 in an evolutionary and developmental context. Our modern human sample comprises cross-sectional growth series from four populations. The fossil sample covers human specimens from the Pleistocene to the Upper Paleolithic, and includes several subadult Early Pleistocene humans and Neanderthals. We digitized landmarks and semilandmarks on surface and CT scans and analyzed the Procrustes shape coordinates using multivariate statistics. Ontogenetic allometric trajectories and developmental simulations were employed in order to identify growth patterns and to visualize potential adult shapes of ATD6-69. We show that facial differences between modern and archaic humans are not exclusively allometric. We find that while postnatal growth further accentuates the differences in facial features between Neanderthals and modern humans, those features that have been suggested to link ATD6-69's morphology to modern humans would not have been significantly altered in the course of subsequent development. In particular, the infraorbital depression on this specimen would have persisted into adulthood. However, many of the facial features that ATD6-69 shares with modern humans can be considered to be part of a generalized pattern of facial architecture. Our results present a complex picture regarding the polarity of facial features and demonstrate that some modern human-like facial morphology is intermittently present in Middle Pleistocene humans. We suggest that some of the facial features that characterize recent modern humans may have developed multiple times in human

  19. Macroscopic quantum resonators (MAQRO)

    CERN Document Server

    Kaltenbaek, Rainer; Kiesel, Nikolai; Romero-Isart, Oriol; Johann, Ulrich; Aspelmeyer, Markus

    2012-01-01

    Quantum physics challenges our understanding of the nature of physical reality and of space-time and suggests the necessity of radical revisions of their underlying concepts. Experimental tests of quantum phenomena involving massive macroscopic objects would provide novel insights into these fundamental questions. Making use of the unique environment provided by space, MAQRO aims at investigating this largely unexplored realm of macroscopic quantum physics. MAQRO has originally been proposed as a medium-sized fundamental-science space mission for the 2010 call of Cosmic Vision. MAQRO unites two experiments: DECIDE (DECoherence In Double-Slit Experiments) and CASE (Comparative Acceleration Sensing Experiment). The main scientific objective of MAQRO, which is addressed by the experiment DECIDE, is to test the predictions of quantum theory for quantum superpositions of macroscopic objects containing more than 10e8 atoms. Under these conditions, deviations due to various suggested alternative models to quantum th...

  20. Shape changing thin films powered by DNA hybridization

    Science.gov (United States)

    Shim, Tae Soup; Estephan, Zaki G.; Qian, Zhaoxia; Prosser, Jacob H.; Lee, Su Yeon; Chenoweth, David M.; Lee, Daeyeon; Park, So-Jung; Crocker, John C.

    2017-01-01

    Active materials that respond to physical and chemical stimuli can be used to build dynamic micromachines that lie at the interface between biological systems and engineered devices. In principle, the specific hybridization of DNA can be used to form a library of independent, chemically driven actuators for use in such microrobotic applications and could lead to device capabilities that are not possible with polymer- or metal-layer-based approaches. Here, we report shape changing films that are powered by DNA strand exchange reactions with two different domains that can respond to distinct chemical signals. The films are formed from DNA-grafted gold nanoparticles using a layer-by-layer deposition process. Films consisting of an active and a passive layer show rapid, reversible curling in response to stimulus DNA strands added to solution. Films consisting of two independently addressable active layers display a complex suite of repeatable transformations, involving eight mechanochemical states and incorporating self-righting behaviour.

  1. Electrokinetic shape changes of cochlear outer hair cells

    Science.gov (United States)

    Kachar, Bechara; Brownell, William E.; Altschuler, Richard; Fex, Jörgen

    1986-07-01

    Rapid mechanical changes have been associated with electrical activity in a variety of non-muscle excitable cells1-5. Recently, mechanical changes have been reported in cochlear hair cells6-8. Here we describe electrically evoked mechanical changes in isolated cochlear outer hair cells (OHCs) with characteristics which suggest that direct electrokinetic phenomena are implicated in the response. OHCs make up one of two mechanosensitive hair cell populations in the mammalian cochlea; their role may be to modulate the micromechanical properties of the hearing organ through mechanical feedback mechanisms6-10. In the experiments described here, we applied sinusoidally modulated electrical potentials across isolated OHCs; this produced oscillatory elongation and shortening of the cells and oscillatory displacements of intracellular organdies. The movements were a function of the direction and strength of the electrical field, were inversely related to the ionic concentration of the medium, and occurred in the presence of metabolic uncouplers. The cylindrical shape of the OHCs and the presence of a system of membranes within the cytoplasm-laminated cisternae11-may provide the anatomical substrate for electrokinetic phenomena such as electro-osmosis12,13.

  2. Innovative changes in the cylinder liners surface shaping methods

    Directory of Open Access Journals (Sweden)

    Gruszka Jozef

    2017-01-01

    Full Text Available The main directions of changes in new internal combustion engine designs are determined not only by legislation on the toxic components emission in the exhaust gases, but also by the changes resulting from technological development, which are the results of research and development activities. One of the basic systems that has undergone intensive development recently is the piston-rings-cylinder (PRC node. This article contains an original analysis of the direction of changes in cylinder surface shaping in terms of the cylinder’s main functional features in the PRC system (the casting material and the opening surface topography after the finishing process. The results of the research on cast iron materials for cylinder liner castings with strength of Rm > 300 MPa were analyzed based on the centrifugal casting method and their finishing stage in the finishing process meeting the criteria for reduction of oil consumption and particle emissions for new HDD type engine designs. The author also points to innovations in surface structure metrology based on new 3D optical measurement methods and the quality rating method by Mercedes company.

  3. An S-shaped relationship between changes in appraisals and changes in emotions.

    Science.gov (United States)

    Tong, Eddie M W; Ellsworth, Phoebe C; Bishop, George D

    2009-12-01

    Previous research on appraisal theories of emotion has shown that emotions and appraisals are related but has not specified the nature of the relationships. This research examined the functional forms of appraisal-emotion relationships and demonstrated that for all seven appraisals studied, appraisals relate to emotions in an S-shaped (ogival) fashion: Changes in appraisals at extreme levels are associated with only small changes in emotions, but changes at moderate levels are associated with substantial changes in emotions. With a few exceptions, ogival relationships were found for the relationships between seven appraisals (Goal Achievement Expectancy, Agency, Control, Certainty, Fairness, Pleasantness, and Motive Congruence) and numerous relevant emotions across different sample-types, cultures, and methods.

  4. Detecting hippocampal shape changes in Alzheimer's disease using statistical shape models

    Science.gov (United States)

    Shen, Kaikai; Bourgeat, Pierrick; Fripp, Jurgen; Meriaudeau, Fabrice; Salvado, Olivier

    2011-03-01

    The hippocampus is affected at an early stage in the development of Alzheimer's disease (AD). Using brain Magnetic Resonance (MR) images, we can investigate the effect of AD on the morphology of the hippocampus. Statistical shape models (SSM) are usually used to describe and model the hippocampal shape variations among the population. We use the shape variation from SSM as features to classify AD from normal control cases (NC). Conventional SSM uses principal component analysis (PCA) to compute the modes of variations among the population. Although these modes are representative of variations within the training data, they are not necessarily discriminant on labelled data. In this study, a Hotelling's T 2 test is used to qualify the landmarks which can be used for PCA. The resulting variation modes are used as predictors of AD from NC. The discrimination ability of these predictors is evaluated in terms of their classification performances using support vector machines (SVM). Using only landmarks statistically discriminant between AD and NC in SSM showed a better separation between AD and NC. These predictors also showed better correlation to the cognitive scores such as mini-mental state examination (MMSE) and Alzheimer's disease assessment scale (ADAS).

  5. Exercise, oxidants, and antioxidants change the shape of the bell-shaped hormesis curve.

    Science.gov (United States)

    Radak, Zsolt; Ishihara, Kazunari; Tekus, Eva; Varga, Csaba; Posa, Aniko; Balogh, Laszlo; Boldogh, Istvan; Koltai, Erika

    2017-03-03

    It is debated whether exercise-induced ROS production is obligatory to cause adaptive response. It is also claimed that antioxidant treatment could eliminate the adaptive response, which appears to be systemic and reportedly reduces the incidence of a wide range of diseases. Here we suggest that if the antioxidant treatment occurs before the physiological function-ROS dose-response curve reaches peak level, the antioxidants can attenuate function. On the other hand, if the antioxidant treatment takes place after the summit of the bell-shaped dose response curve, antioxidant treatment would have beneficial effects on function. We suggest that the effects of antioxidant treatment are dependent on the intensity of exercise, since the adaptive response, which is multi pathway dependent, is strongly influenced by exercise intensity. It is further suggested that levels of ROS concentration are associated with peak physiological function and can be extended by physical fitness level and this could be the basis for exercise pre-conditioning. Physical inactivity, aging or pathological disorders increase the sensitivity to oxidative stress by altering the bell-shaped dose response curve.

  6. Covariant Macroscopic Quantum Geometry

    CERN Document Server

    Hogan, Craig J

    2012-01-01

    A covariant noncommutative algebra of position operators is presented, and interpreted as the macroscopic limit of a geometry that describes a collective quantum behavior of the positions of massive bodies in a flat emergent space-time. The commutator defines a quantum-geometrical relationship between world lines that depends on their separation and relative velocity, but on no other property of the bodies, and leads to a transverse uncertainty of the geometrical wave function that increases with separation. The number of geometrical degrees of freedom in a space-time volume scales holographically, as the surface area in Planck units. Ongoing branching of the wave function causes fluctuations in transverse position, shared coherently among bodies with similar trajectories. The theory can be tested using appropriately configured Michelson interferometers.

  7. The macroscopic pancake bounce

    Science.gov (United States)

    Andersen Bro, Jonas; Sternberg Brogaard Jensen, Kasper; Nygaard Larsen, Alex; Yeomans, Julia M.; Hecksher, Tina

    2017-01-01

    We demonstrate that the so-called pancake bounce of millimetric water droplets on surfaces patterned with hydrophobic posts (Liu et al 2014 Nat. Phys. 10 515) can be reproduced on larger scales. In our experiment, a bed of nails plays the role of the structured surface and a water balloon models the water droplet. The macroscopic version largely reproduces the features of the microscopic experiment, including the Weber number dependence and the reduced contact time for pancake bouncing. The scalability of the experiment confirms the mechanisms of pancake bouncing, and allows us to measure the force exerted on the surface during the bounce. The experiment is simple and inexpensive and is an example where front-line research is accessible to student projects.

  8. Canonical quantization of macroscopic electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Philbin, T G, E-mail: tgp3@st-andrews.ac.u [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2010-12-15

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetodielectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.

  9. Canonical quantization of macroscopic electromagnetism

    CERN Document Server

    Philbin, T G

    2010-01-01

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetoelectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.

  10. Effects of varying interfacial surface tension on macroscopic polymer lenses

    Science.gov (United States)

    Zimmerman, Charlotte; White, Mason; Baylor, Martha-Elizabeth

    2015-09-01

    We investigate macroscopic polymer lenses (0.5- to 2.5-cm diameter) fabricated by dropping hydrophobic photocurable resin onto the surface of various hydrophilic liquid surfaces. Due to the intermolecular forces along the interface between the two liquids, a lens shape is formed. We find that we can vary the lens geometry by changing the region over which the resin is allowed to spread and the surface tension of the substrate to produce lenses with theoretically determined focal lengths ranging from 5 to 25 mm. These effects are varied by changing the container width, substrate composition, and substrate temperature. We present data for five different variants, demonstrating that we can control the lens dimensions for polymer lens applications that require high surface quality.

  11. Combining Shape-Changing Interfaces and Spatial Augmented Reality Enables Extended Object Appearance

    DEFF Research Database (Denmark)

    Lindlbauer, David; Grønbæk, Jens Emil; Birk, Morten

    2016-01-01

    We propose combining shape-changing interfaces and spatial augmented reality for extending the space of appearances and interactions of actuated interfaces. While shape-changing interfaces can dynamically alter the physical appearance of objects, the integration of spatial augmented reality...... for increasing the realism of 3D objects such as bump mapping. This extensible framework helps us identify challenges of the two techniques and benefits of their combination. We utilize our prototype shape-changing device enriched with spatial augmented reality through projection mapping to demonstrate...... the concept. We present a novel mechanical distance-fields algorithm for real-time fitting of mechanically constrained shape-changing devices to arbitrary 3D graphics. Furthermore, we present a technique for increasing effective screen real estate for spatial augmented reality through view-dependent shape...

  12. Phase Change-based Fixturing for Arbitrarily Shaped Components

    Institute of Scientific and Technical Information of China (English)

    LI Bei-zhi; YANG Jian-guo; ZHOU Li-bing; XIANG Qian

    2002-01-01

    Issues in industrialization of RFPE (Reference Free Part Encapsulation) are discussed in this paper. The issues technique. A new method - adaptable location system (ATLS) is presented in this paper. ATLS consists of an array of pins which are controlled manually or automatically by an actuator. The actuation force comes from a shape memory alloy (SMA). Material properties of filler are very important for RFPE. The experiment has shown that machining error can be reduced by using conservative cutting parameters. Based on finite element analysis, the relationship between the deformation of the workpiece, the filler and the machining parameters has been achieved. A new approach, partial cage with active side wall (PCASW), allows machine tools to easily access any feature of the workpiece from different directions. It is convenient for every new setup.

  13. Shape changes induced by biologically active peptides and nerve growth factor in blood platelets of rabbits.

    Science.gov (United States)

    Gudat, F; Laubscher, A; Otten, U; Pletscher, A

    1981-11-01

    1 Nerve growth factor (NGF), substance P (SP) and thymopoietin all caused shape change reactions of rapid onset in rabbit platelets. NGF had the highest maximal effect, and SP the lowest EC50 (concentration causing half maximal shape change). The action of SP was reversible within 5 min, whereas that of NGF lasted for at least 1 h. A series of other peptides were inactive. 2 After preincubation of platelets with SP, a second application of SP no longer caused a shape change reaction, whereas the effect of NGF was not influenced. 3 An oxidized NGF-derivative without biological activity did not cause a shape change reaction, neither did epidermal growth factor. 4 Prostaglandin E1 (PGE1) and pretreatment of the platelets with 3% butanol, which counteract the shape changes caused by 5-hydroxytryptamine (5-HT) and adenosine 3',5'-diphosphate, also antagonized those induced by NGF and SP. Neither heparin nor methysergide, an antagonist of 5-HT-receptors, influenced the shape change induced by NGF or SP. The action of NGF was also antagonized by a specific antibody to NGF. 5 Thymopoietin, like the basic polypeptide polyornithine (mol. wt. 40,000) was not antagonized by PGE1 and butanol. Heparin, which counteracted the effect of polyornithine, did not influence that of thymopoietin. 6 In conclusion, different modes of action are involved in the shape change of blood platelets induced by polypeptides and proteins. SP and NGF may act by stimulating specific membrane receptors.

  14. 3D Printed Reversible Shape Changing Components with Stimuli Responsive Materials

    Science.gov (United States)

    Mao, Yiqi; Ding, Zhen; Yuan, Chao; Ai, Shigang; Isakov, Michael; Wu, Jiangtao; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-04-01

    The creation of reversibly-actuating components that alter their shapes in a controllable manner in response to environmental stimuli is a grand challenge in active materials, structures, and robotics. Here we demonstrate a new reversible shape-changing component design concept enabled by 3D printing two stimuli responsive polymers—shape memory polymers and hydrogels—in prescribed 3D architectures. This approach uses the swelling of a hydrogel as the driving force for the shape change, and the temperature-dependent modulus of a shape memory polymer to regulate the time of such shape change. Controlling the temperature and aqueous environment allows switching between two stable configurations – the structures are relatively stiff and can carry load in each – without any mechanical loading and unloading. Specific shape changing scenarios, e.g., based on bending, or twisting in prescribed directions, are enabled via the controlled interplay between the active materials and the 3D printed architectures. The physical phenomena are complex and nonintuitive, and so to help understand the interplay of geometric, material, and environmental stimuli parameters we develop 3D nonlinear finite element models. Finally, we create several 2D and 3D shape changing components that demonstrate the role of key parameters and illustrate the broad application potential of the proposed approach.

  15. Shape changes induced by biologically active peptides and nerve growth factor in blood platelets of rabbits.

    OpenAIRE

    Gudat, F; Laubscher, A.; Otten, U; Pletscher, A

    1981-01-01

    1 Nerve growth factor (NGF), substance P (SP) and thymopoietin all caused shape change reactions of rapid onset in rabbit platelets. NGF had the highest maximal effect, and SP the lowest EC50 (concentration causing half maximal shape change). The action of SP was reversible within 5 min, whereas that of NGF lasted for at least 1 h. A series of other peptides were inactive. 2 After preincubation of platelets with SP, a second application of SP no longer caused a shape change reaction, whereas ...

  16. Novel competitors shape species' responses to climate change.

    Science.gov (United States)

    Alexander, Jake M; Diez, Jeffrey M; Levine, Jonathan M

    2015-09-24

    Understanding how species respond to climate change is critical for forecasting the future dynamics and distribution of pests, diseases and biological diversity. Although ecologists have long acknowledged species' direct physiological and demographic responses to climate, more recent work suggests that these direct responses can be overwhelmed by indirect effects mediated via other interacting community members. Theory suggests that some of the most dramatic impacts of community change will probably arise through the assembly of novel species combinations after asynchronous migrations with climate. Empirical tests of this prediction are rare, as existing work focuses on the effects of changing interactions between competitors that co-occur today. To explore how species' responses to climate warming depend on how their competitors migrate to track climate, we transplanted alpine plant species and intact plant communities along a climate gradient in the Swiss Alps. Here we show that when alpine plants were transplanted to warmer climates to simulate a migration failure, their performance was strongly reduced by novel competitors that could migrate upwards from lower elevation; these effects generally exceeded the impact of warming on competition with current competitors. In contrast, when we grew the focal plants under their current climate to simulate climate tracking, a shift in the competitive environment to novel high-elevation competitors had little to no effect. This asymmetry in the importance of changing competitor identity at the leading versus trailing range edges is best explained by the degree of functional similarity between current and novel competitors. We conclude that accounting for novel competitive interactions may be essential to predict species' responses to climate change accurately.

  17. Graphene-based macroscopic assemblies and architectures: an emerging material system.

    Science.gov (United States)

    Cong, Huai-Ping; Chen, Jia-Fu; Yu, Shu-Hong

    2014-11-07

    Due to the outstanding physicochemical properties arising from its truly two-dimensional (2D) planar structure with a single-atom thickness, graphene exhibits great potential for use in sensors, catalysts, electrodes, and in biological applications, etc. With further developments in the theoretical understanding and assembly techniques, graphene should enable great changes both in scientific research and practical industrial applications. By the look of development, it is of fundamental and practical significance to translate the novel physical and chemical properties of individual graphene nanosheets into the macroscale by the assembly of graphene building blocks into macroscopic architectures with structural specialities and functional novelties. The combined features of a 2D planar structure and abundant functional groups of graphene oxide (GO) should provide great possibilities for the assembly of GO nanosheets into macroscopic architectures with different macroscaled shapes through various assembly techniques under different bonding interactions. Moreover, macroscopic graphene frameworks can be used as ideal scaffolds for the incorporation of functional materials to offset the shortage of pure graphene in the specific desired functionality. The advantages of light weight, supra-flexibility, large surface area, tough mechanical strength, and high electrical conductivity guarantee graphene-based architectures wide application fields. This critical review mainly addresses recent advances in the design and fabrication of graphene-based macroscopic assemblies and architectures and their potential applications. Herein, we first provide overviews of the functional macroscopic graphene materials from three aspects, i.e., 1D graphene fibers/ribbons, 2D graphene films/papers, 3D network-structured graphene monoliths, and their composite counterparts with either polymers or nano-objects. Then, we present the promising potential applications of graphene-based macroscopic

  18. How Changing Human Lifestyles are Shaping Europe's Regional Seas

    Science.gov (United States)

    Mee, L. D.; Lowe, C. D.; Langmead, O.; McQuatters-Gollop, A.; Attrill, M.; Cooper, P.; Gilbert, A.; Knudsen, S.; Garnacho, E.

    2007-05-01

    European society is experiencing unprecedented changes triggered by expansion of the European Union, the fall of Communism, economic growth and the onset of globalisation. Europe's regional seas, the Baltic, Black Sea, Mediterranean and North-East Atlantic (including the North Sea), provide key goods and services to the human population but have suffered from severe degradation in past decades. Their integrity as coupled social and ecological systems depends on how humanity will anticipate potential problems and deal with its ecological footprint in the future. We report the outcome of an EU-funded 15-country, 28 institution project entitled European Lifestyles and Marine Ecosystems (ELME). Our studies were designed to inform new EU policy and legislation that incorporates Ecosystem-Based Management. ELME has modelled the key relationships between economic and social drivers (D), environmental pressures (P) and changes in the state of the environment (S) in Europe's regional seas. We examined four key issues in each sea: habitat change, eutrophication, chemical pollution and fisheries. We developed conceptual models for each regional sea and employed a novel stochastic modelling technique to examine the interrelationship between key components of the conceptual models. We used the models to examine 2-3 decade projections of current trends in D, P and S and how a number of alternative development scenarios might modify these trends. These simulations demonstrate the vulnerability of Europe's seas to human pressure. As affluence increases in countries acceding to the EU, so does the demand for marine goods and services. There are `winners' and `losers' amongst marine species; the winners are often species that are opportunistic invaders or those with low economic value. In the case of eutrophication, semi-enclosed seas such as the Baltic or Black Sea are already affected by the `legacy of the past'; nutrients that have accumulated in soils, ground waters and

  19. Quantum equilibria for macroscopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Grib, A [Department of Theoretical Physics and Astronomy, Russian State Pedagogical University, St. Petersburg (Russian Federation); Khrennikov, A [Centre for Mathematical Modelling in Physics and Cognitive Sciences Vaexjoe University (Sweden); Parfionov, G [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation); Starkov, K [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation)

    2006-06-30

    Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered.

  20. Level density and shape changes in excited sd shell nuclei

    Indian Academy of Sciences (India)

    S Santosh Kumar

    2008-07-01

    In the present calculation we have used the Monte Carlo method of generating collective spin and total energy of the nucleus for various configurations of the system with 0 single particle states available for n number of particles. The different configurations (arrangements of occupied single particle states) leading to a particular energy and spin are then collected to get the density of states for the given energy and spin . We find that if we use the cranked Nilsson model single particle states for the rotational frequency = 0.0ħω, 0.05ħω and 0.1ħω there is a shift in the maximum density of states max with a tendency for the system to become more oblate or prolate depending on the shift in the maximum density of states as the angular momentum decreases or increases. The change in nuclear level density with collectivity, i.e. with the use of cranked Nilsson model single particle levels has been noticed.

  1. Effects of probe shape change on flow phenomena during Jovian entry

    Science.gov (United States)

    Tiwari, S. N.; Subramanian, S. V.

    1979-01-01

    The effects of probe shape change on the flow phenomena around a Jovian entry body is investigated. The initial body shapes considered are: 45-degree sphere cone, 35-degree hyperboloid, and 45-degree ellipsoid. The radiating shock-layer flow is assumed to be axisymmetric, inviscid, and in chemical and local thermodynamic equilibrium. The radiative transfer is calculated with an existing nongray radiation model that accounts for molecular band, atomic line, and continuum transitions. The results indicate that the shock-standoff distance, shock temperature and density, wall pressure distribution and radiative heating to the body are influenced significantly because of the probe shape change. The effect of shape change on radiative heating of the afterbody was considerably larger for the sphere cone and ellipsoid than for the hyperboloid. For the peak heating conditions, the net radiative heating to the body was found to be highest for the ellipsoid

  2. A dynamic spar numerical model for passive shape change

    Science.gov (United States)

    Calogero, J. P.; Frecker, M. I.; Hasnain, Z.; Hubbard, J. E., Jr.

    2016-10-01

    A three-dimensional constraint-driven dynamic rigid-link numerical model of a flapping wing structure with compliant joints (CJs) called the dynamic spar numerical model is introduced and implemented. CJs are modeled as spherical joints with distributed mass and spring-dampers with coupled nonlinear spring and damping coefficients, which models compliant mechanisms spatially distributed in the structure while greatly reducing computation time compared to a finite element model. The constraints are established, followed by the formulation of a state model used in conjunction with a forward time integrator, an experiment to verify a rigid-link assumption and determine a flapping angle function, and finally several example runs. Modeling the CJs as coupled bi-linear springs shows the wing is able to flex more during upstroke than downstroke. Coupling the spring stiffnesses allows an angular deformation about one axis to induce an angular deformation about another axis, where the magnitude is proportional to the coupling term. Modeling both the leading edge and diagonal spars shows that the diagonal spar changes the kinematics of the leading edge spar verses only considering the leading edge spar, causing much larger axial rotations in the leading edge spar. The kinematics are very sensitive to CJ location, where moving the CJ toward the wing root causes a stronger response, and adding multiple CJs on the leading edge spar with a CJ on the diagonal spar allows the wing to deform with larger magnitude in all directions. This model lays a framework for a tool which can be used to understand flapping wing flight.

  3. Depletion Interactions in a Cylindric Pipeline with a Small Shape Change

    Institute of Scientific and Technical Information of China (English)

    LI Chun-Shu; GAO Hai-Xia; XIAO Chang-Ming

    2007-01-01

    Stressed by external forces, it is possible for a cylindric pipeline to change into an elliptic pipeline. To expose the effect of small shape change of the pipeline on the depletion interactions, both the depletion potentials and depletion forces in the hard sphere systems confined by a cylindric pipeline or by an elliptic pipeline are studied by Monte Carlo simulations. The numerical results show that the depletion interactions are strongly affected by the small change of the shape of the pipeline in a way. Furthermore, it is also found that the depletion interactions will be strengthened if the short axis of the elliptic pipeline is decreased.

  4. Variability of macroscopic dimensions of Moso bamboo.

    Science.gov (United States)

    Cui, Le; Peng, Wanxi; Sun, Zhengjun; Sun, Zhengjun; Sun, Zhengjun; Lu, Huangfei; Chen, Guoning

    2015-03-01

    In order to the macroscopic geometry distributions of vascular bundles in Moso bamboo tubes. The circumference of bamboo tubes was measured, used a simple quadratic diameter formula to analyze the differences between the tubes in bamboo culm, and the arrangement of vascular bundles was investigated by cross sectional images of bamboo tubes. The results shown that the vascular bundles were differently distributed in a bamboo tube. In the outer layer, the vascular bundles had a variety of shapes, and were aligned parallel to each other. In the inner layers, the vascular bundles weren't aligned but uniform in shape. It was concluded that the vascular bundle sections arranged in parallel should be separated from the non-parallel sections for the maximum bamboo utilization.

  5. Changes in visual object recognition precede the shape bias in early noun learning

    Directory of Open Access Journals (Sweden)

    Meagan N Yee

    2012-12-01

    Full Text Available Two of the most formidable skills that characterize human beings are language and our prowess in visual object recognition. They may also be developmentally intertwined. Two experiments, a large sample cross-sectional study and a smaller sample 6-month longitudinal study of 18- 24 month olds tested a hypothesized developmental link between changes in the visual object representation and noun learning. Previous findings in visual object recognition indicate that children’s ability to recognize common basic level categories from sparse structural shape representations of object shape emerges between the ages of 18 and 24 months, is related to noun vocabulary size, and is lacking in children with language delay. Other research shows that in artificial noun learning tasks, during this same developmental period, young children systematically generalize object names by shape, that this shape bias predicts future noun learning, and is lacking in children with language delay. The two experiments examine the developmental relation between visual object recognition and the shape bias for the first time. The results show that developmental changes in visual object recognition systematically preceded the emergence of the shape bias. The results suggest a developmental pathway in which early changes in visual object recognition that are themselves linked to category learning enable the discovery of higher-order regularities in category structure and thus the shape bias in novel noun learning tasks. The proposed developmental pathway has implications for understanding the role of specific experience in the development of both visual object recognition and the shape bias in early noun learning.

  6. Changes in cell shape are correlated with metastatic potential in murine and human osteosarcomas

    Directory of Open Access Journals (Sweden)

    Samanthe M. Lyons

    2016-03-01

    Full Text Available Metastatic cancer cells for many cancers are known to have altered cytoskeletal properties, in particular to be more deformable and contractile. Consequently, shape characteristics of more metastatic cancer cells may be expected to have diverged from those of their parental cells. To examine this hypothesis we study shape characteristics of paired osteosarcoma cell lines, each consisting of a less metastatic parental line and a more metastatic line, derived from the former by in vivo selection. Two-dimensional images of four pairs of lines were processed. Statistical analysis of morphometric characteristics shows that shape characteristics of the metastatic cell line are partly overlapping and partly diverged from the parental line. Significantly, the shape changes fall into two categories, with three paired cell lines displaying a more mesenchymal-like morphology, while the fourth displaying a change towards a more rounded morphology. A neural network algorithm could distinguish between samples of the less metastatic cells from the more metastatic cells with near perfect accuracy. Thus, subtle changes in shape carry information about the genetic changes that lead to invasiveness and metastasis of osteosarcoma cancer cells.

  7. Macroscopic-microscopic mass models

    CERN Document Server

    Nix, J R; Nix, J Rayford; Moller, Peter

    1995-01-01

    We discuss recent developments in macroscopic-microscopic mass models, including the 1992 finite-range droplet model, the 1992 extended-Thomas-Fermi Strutinsky-integral model, and the 1994 Thomas-Fermi model, with particular emphasis on how well they extrapolate to new regions of nuclei. We also address what recent developments in macroscopic-microscopic mass models are teaching us about such physically relevant issues as the nuclear curvature energy, a new congruence energy arising from a greater-than-average overlap of neutron and proton wave functions, the nuclear incompressibility coefficient, and the Coulomb redistribution energy arising from a central density depression. We conclude with a brief discussion of the recently discovered rock of metastable superheavy nuclei near 272:110 that had been correctly predicted by macroscopic-microscopic models, along with a possible new tack for reaching an island near 290:110 beyond our present horizon.

  8. Integrated Aerodynamic/Structural/Dynamic Analyses of Aircraft with Large Shape Changes

    Science.gov (United States)

    Samareh, Jamshid A.; Chwalowski, Pawel; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.

    2007-01-01

    The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium-to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing, a

  9. Glutaraldehyde induces cell shape changes in isolated outer hair cells from the inner ear.

    Science.gov (United States)

    Slepecky, N; Ulfendahl, M

    1988-01-01

    Individual isolated outer hair cells (OHCs) from the cochlea were maintained in a collagen gel and viewed in the light microscope. They were observed during fixation and processing for transmission electron microscopy and individual cells were selected for observation in the electron microscope. Application of glutaraldehyde at several concentrations caused OHCs to become shorter. Shrinkage occurred during dehydration but there was no further change during infiltration with the epoxy resin. Ultrastructural analysis of isolated cells fixed with glutaraldehyde and postfixed with osmium tetroxide showed that these cells were similar to cells fixed in the intact cochlea. The glutaraldehyde-induced cell shape change is similar to the shortening seen in intact OHCs in response to the application of solutions containing high potassium or caffeine. Application of glutaraldehyde to cells pretreated with potassium or caffeine caused further shortening. Glutaraldehyde-induced cell shape change was not blocked by the application of tetracaine, which did prevent potassium-induced and caffeine-induced shortening. Glutaraldehyde-induced cell shape change was not stopped by short treatment with N-ethylmaleimide, which did inhibit potassium-induced shortening. Results from these experiments suggest that the glutaraldehyde-induced OHC shape change is not caused by an effect on the membrane or by calcium activation of a contractile response. Shortening may be caused by shrinkage due to cross-linking of proteins.

  10. The Making of a Monster: Postnatal Ontogenetic Changes in Craniomandibular Shape in the Great Sabercat Smilodon

    Science.gov (United States)

    Christiansen, Per

    2012-01-01

    Derived sabercats had craniomandibular morphologies that in many respects were highly different from those of extant felids, and this has often been interpreted functionally as adaptations for predation at extreme gape angles with hypertrophied upper canines. It is unknown how much of this was a result of intraspecific postnatal ontogeny, since juveniles of sabercats are rare and no quantitative study has been made of craniomandibular ontogeny. Postnatal ontogenetic craniomandibular shape changes in two morphologically derived sabercats, Smilodon fatalis and S. populator, were analysed using geometric morphometrics and compared to three species of extant pantherines, the jaguar, tiger, and Sunda clouded leopard. Ontogenetic shape changes in Smilodon usually involved the same areas of the cranium and mandible as in extant pantherines, and large-scale modularization was similar, suggesting that such may have been the case for all felids, since it followed the same trends previously observed in other mammals. However, in other respects Smilodon differed from extant pantherines. Their crania underwent much greater and more localised ontogenetic shape changes than did the mandibles, whereas crania and mandibles of extant pantherines underwent smaller, fewer and less localised shape changes. Ontogenetic shape changes in the two species of Smilodon are largely similar, but differences are also present, notably those which may be tied to the presence of larger upper canines in S. populator. Several of the specialized cranial characters differentiating adult Smilodon from extant felids in a functional context, which are usually regarded as evolutionary adaptations for achieving high gape angles, are ontogenetic, and in several instances ontogeny appears to recapitulate phylogeny to some extent. No such ontogenetic evolutionary adaptive changes were found in the extant pantherines. Evolution in morphologically derived sabercats involved greater cranial ontogenetic changes

  11. The making of a monster: postnatal ontogenetic changes in craniomandibular shape in the great sabercat Smilodon.

    Directory of Open Access Journals (Sweden)

    Per Christiansen

    Full Text Available Derived sabercats had craniomandibular morphologies that in many respects were highly different from those of extant felids, and this has often been interpreted functionally as adaptations for predation at extreme gape angles with hypertrophied upper canines. It is unknown how much of this was a result of intraspecific postnatal ontogeny, since juveniles of sabercats are rare and no quantitative study has been made of craniomandibular ontogeny. Postnatal ontogenetic craniomandibular shape changes in two morphologically derived sabercats, Smilodon fatalis and S. populator, were analysed using geometric morphometrics and compared to three species of extant pantherines, the jaguar, tiger, and Sunda clouded leopard. Ontogenetic shape changes in Smilodon usually involved the same areas of the cranium and mandible as in extant pantherines, and large-scale modularization was similar, suggesting that such may have been the case for all felids, since it followed the same trends previously observed in other mammals. However, in other respects Smilodon differed from extant pantherines. Their crania underwent much greater and more localised ontogenetic shape changes than did the mandibles, whereas crania and mandibles of extant pantherines underwent smaller, fewer and less localised shape changes. Ontogenetic shape changes in the two species of Smilodon are largely similar, but differences are also present, notably those which may be tied to the presence of larger upper canines in S. populator. Several of the specialized cranial characters differentiating adult Smilodon from extant felids in a functional context, which are usually regarded as evolutionary adaptations for achieving high gape angles, are ontogenetic, and in several instances ontogeny appears to recapitulate phylogeny to some extent. No such ontogenetic evolutionary adaptive changes were found in the extant pantherines. Evolution in morphologically derived sabercats involved greater cranial

  12. Oxygen-induced shape changes of Pt nanoparticles on MgO(100)

    Energy Technology Data Exchange (ETDEWEB)

    Hejral, Uta; Stierle, Andreas; Vlad, Alina; Delheusy, Melissa; Dosch, Helmut [Max-Planck-Institut fuer Metallforschung, Heisenbergstr. 3, 70569 Stuttgart (Germany)

    2010-07-01

    Platinum nanoparticles on oxide carrier materials are used in heterogenous catalysis and are applied successfully in reactions like the oxidation of hydrocarbons or carbon monoxide. In order to achieve better catalyst efficiency, lifetime and selectivity it is important to comprehend catalytic processes on an atomic basis. Thus, the interplay between particle shape, adsorbed oxygen, bulk oxides and catalytic activity needs to be understood. Therefore Pt nanoparticles have been grown epitaxially on MgO(100) substrates under controlled conditions. It has previously been reported that Rh nanoparticles undergo reversible shape changes induced by surface oxides. We have studied oxygen-induced shape changes of Pt nanoparticles on MgO(100) by means of in situ X-ray diffraction. The experiment was performed at 300 C and oxygen pressures ranging from UHV to 500 mbar. The experimental results are compared to theoretically predicted ones.

  13. Direct-write fabrication of 4D active shape-changing behavior based on a shape memory polymer and its nanocomposite (Conference Presentation)

    Science.gov (United States)

    Wei, Hongqiu; Zhang, Qiwei; Yao, Yongtao; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Shape memory polymers (SMPs), a typical class of smart materials, have been witnessed significant advances in the past decades. Based on the unique performance to recover the initial shape after going through a shape deformation, the applications of SMPs have aroused growing interests. However, most of the researches are hindered by traditional processing technologies which limit the design space of SMPs-based structures. Three-dimension (3D) printing as an emerging technology endows design freedom to manufacture materials with complex structures. In present article, we show that by employing direct-write printing method; one can realize the printing of SMPs to achieve 4D active shape-changing structures. We first fabricated a kind of 3D printable polylactide (PLA)-based SMPs and characterized the overall properties of such materials. Results demonstrated the prepared PLA-based SMPs presenting excellent shape memory effect. In what follows, the rheological properties of such PLA-based SMP ink during printing process were discussed in detail. Finally, we designed and printed several 3D configurations for investigation. By combining 3D printing with shape memory behavior, these printed structures achieve 4D active shape-changing performance under heat stimuli. This research presents a high flexible method to realize the fabrication of SMP-based 4D active shape-changing structures, which opens the way for further developments and improvements of high-tech fields like 4D printing, soft robotics, micro-systems and biomedical devices.

  14. Characteristics of Land Use/Cover and Macroscopic Ecological Changes in the Headwaters of the Yangtze River and of the Yellow River over the Past 30 Years

    Directory of Open Access Journals (Sweden)

    Lulu Liu

    2016-03-01

    Full Text Available Based on land use and land cover (LULC datasets in the late 1970s, the early 1990s, 2004 and 2012, we analyzed characteristics of LULC change in the headwaters of the Yangtze River and Yellow River over the past 30 years contrastively, using the transition matrix and LULC change index. The results showed that, in 2012, the LULC in the headwaters of the Yellow River were different compared to those of the headwaters of the Yangtze River, with more grassland and wet- and marshland. In the past 30 years, the grassland and wet- and marshland increasing at the expense of sand, gobi, and bare land and desert were the main LULC change types in the headwaters of the Yangtze River, with the macro-ecological situation experiencing a process of degeneration, slight melioration, and continuous melioration, in that order. In the headwaters of the Yellow River, severe reduction of grassland coverage, shrinkage of wet- and marshland and the consequential expansion of sand, gobi and bare land were noticed. The macro-ecological situation experienced a process of degeneration, obvious degeneration, and slight melioration, in that order, and the overall change in magnitude was more dramatic than that in the headwaters of the Yangtze River. These different LULC change courses were jointly driven by climate change, grassland-grazing pressure, and the implementation of ecological construction projects.

  15. Enactments in emotionally focused couple therapy: shaping moments of contact and change.

    Science.gov (United States)

    Tilley, Douglas; Palmer, Gail

    2013-07-01

    Emotionally focused couple therapy (EFT) uses enactments to shape responsive attachment-significant contact and to change couple interaction. In this article, we show how EFT enactments differ from enactments in other therapy approaches, present a theory of EFT enactments, a model for creating EFT enactments, and an extended case example of an EFT enactment.

  16. Triggering cell adhesion, migration or shape change with a dynamic surface coating.

    Science.gov (United States)

    van Dongen, Stijn F M; Maiuri, Paolo; Marie, Emmanuelle; Tribet, Christophe; Piel, Matthieu

    2013-03-25

    There's an APP for that: cell-repellent APP (azido-[polylysine-g-PEG]) is used to create substrates for spatially controlled dynamic cell adhesion. The simple addition of a functional peptide to the culture medium rapidly triggers cell adhesion. This highly accessible yet powerful technique allows diverse applications, demonstrated through tissue motility assays, patterned coculturing and triggered cell shape change.

  17. Application of shape changing smart materials in household appliances: A fragmented and inconsistent uptake

    NARCIS (Netherlands)

    Bin Kassim, A.; Horvath, I.; Gerritsen, B.H.M.

    2014-01-01

    Shape changing smart materials (SCSM) have a wide range of applications, supporting product functions through material features. Surprisingly, their application in consumer durables such as household appliances is not as expected. This phenomenon could be related to a possible SCSM knowledge gap amo

  18. Computational Analysis of Arc-Jet Wedge Tests Including Ablation and Shape Change

    Science.gov (United States)

    Goekcen, Tahir; Chen, Yih-Kanq; Skokova, Kristina A.; Milos, Frank S.

    2010-01-01

    Coupled fluid-material response analyses of arc-jet wedge ablation tests conducted in a NASA Ames arc-jet facility are considered. These tests were conducted using blunt wedge models placed in a free jet downstream of the 6-inch diameter conical nozzle in the Ames 60-MW Interaction Heating Facility. The fluid analysis includes computational Navier-Stokes simulations of the nonequilibrium flowfield in the facility nozzle and test box as well as the flowfield over the models. The material response analysis includes simulation of two-dimensional surface ablation and internal heat conduction, thermal decomposition, and pyrolysis gas flow. For ablating test articles undergoing shape change, the material response and fluid analyses are coupled in order to calculate the time dependent surface heating and pressure distributions that result from shape change. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator. Effects of the test article shape change on fluid and material response simulations are demonstrated, and computational predictions of surface recession, shape change, and in-depth temperatures are compared with the experimental measurements.

  19. Variation in skull size and shape of the Common wall lizard (Podarcis muralis): allometric and non-allometric shape changes

    NARCIS (Netherlands)

    Urošević, A.; Ljubisavljević, K.; Ivanović, A.

    2014-01-01

    We analysed patterns of skull size and shape variation among populations of the Common wall lizard (Podarcis muralis) in the Central Balkans, particularly the effecs of insularity and the presence of the ecologically similar lacertid lizard species P. melisellensis. Two components of shape variation

  20. Variation in skull size and shape of the Common wall lizard (Podarcis muralis): allometric and non-allometric shape changes

    NARCIS (Netherlands)

    Urošević, A.; Ljubisavljević, K.; Ivanović, A.

    2014-01-01

    We analysed patterns of skull size and shape variation among populations of the Common wall lizard (Podarcis muralis) in the Central Balkans, particularly the effecs of insularity and the presence of the ecologically similar lacertid lizard species P. melisellensis. Two components of shape variation

  1. Tulip flames: changes in shape of premixed flames propagating in closed tubes

    Science.gov (United States)

    Dunn-Rankin, D.; Sawyer, R. F.

    The experimental results that are the subject of this communication provide high-speed schlieren images of the closed-tube flame shape that has come to be known as the tulip flame. The schlieren images, along with in-chamber pressure records, help demonstrate the effects of chamber length, equivalence ratio, and igniter geometry on formation of the tulip flame. The pressure/time records show distinct features which correlate with flame shape changes during the transition to tulip. The measurements indicate that the basic tulip flame formation is a robust phenomenon that depends on little except the overall geometry of the combustion vessel.

  2. Tulip flames: changes in shape of premixed propagating in closed tubes

    Energy Technology Data Exchange (ETDEWEB)

    Dunn-Rankin, D. [California Univ., Irvine, CA (United States). Dept. of Mechanical and Aerospace Engineering; Sawyer, R.F. [California Univ., Berkeley, CA (United States). Dept. of Mechanical Engineering

    1998-02-01

    The experimental results that are the subject of this communication provide high-speed schlieren images of the closed-tube flame shape that has come to be known as the tulip flame. The schlieren images, along with in-chamber pressure records, help demonstrate the effects of chamber length, equivalence ratio, and igniter geometry on formation of the tulip flame. The pressure/time records show distinct features which correlate with flame shape changes during the transition to tulip. The measurements indicate that the basic tulip flame formation is a robust phenomenon that depends on little except the overall geometry of the combustion vessel. (orig.) 32 refs.

  3. Automated characterization of cell shape changes during amoeboid motility by skeletonization

    Directory of Open Access Journals (Sweden)

    Robinson Douglas N

    2010-03-01

    Full Text Available Abstract Background The ability of a cell to change shape is crucial for the proper function of many cellular processes, including cell migration. One type of cell migration, referred to as amoeboid motility, involves alternating cycles of morphological expansion and retraction. Traditionally, this process has been characterized by a number of parameters providing global information about shape changes, which are insufficient to distinguish phenotypes based on local pseudopodial activities that typify amoeboid motility. Results We developed a method that automatically detects and characterizes pseudopodial behavior of cells. The method uses skeletonization, a technique from morphological image processing to reduce a shape into a series of connected lines. It involves a series of automatic algorithms including image segmentation, boundary smoothing, skeletonization and branch pruning, and takes into account the cell shape changes between successive frames to detect protrusion and retraction activities. In addition, the activities are clustered into different groups, each representing the protruding and retracting history of an individual pseudopod. Conclusions We illustrate the algorithms on movies of chemotaxing Dictyostelium cells and show that our method makes it possible to capture the spatial and temporal dynamics as well as the stochastic features of the pseudopodial behavior. Thus, the method provides a powerful tool for investigating amoeboid motility.

  4. Robust mechanisms of ventral furrow invagination require the combination of cellular shape changes

    Science.gov (United States)

    Conte, Vito; Muñoz, José J.; Baum, Buzz; Miodownik, Mark

    2009-03-01

    Ventral furrow formation in Drosophila is the first large-scale morphogenetic movement during the life of the embryo, and is driven by co-ordinated changes in the shape of individual epithelial cells within the cellular blastoderm. Although many of the genes involved have been identified, the details of the mechanical processes that convert local changes in gene expression into whole-scale changes in embryonic form remain to be fully understood. Biologists have identified two main cell deformation modes responsible for ventral furrow invagination: constriction of the apical ends of the cells (apical wedging) and deformation along their apical-basal axes (radial lengthening/shortening). In this work, we used a computer 2D finite element model of ventral furrow formation to investigate the ability of different combinations of three plausible elementary active cell shape changes to bring about epithelial invagination: ectodermal apical-basal shortening, mesodermal apical-basal lengthening/shortening and mesodermal apical constriction. We undertook a systems analysis of the biomechanical system, which revealed many different combinations of active forces (invagination mechanisms) were able to generate a ventral furrow. Two important general features were revealed. First that combinations of shape changes are the most robust to environmental and mutational perturbation, in particular those combining ectodermal pushing and mesodermal wedging. Second, that ectodermal pushing plays a big part in all of the robust mechanisms (mesodermal forces alone do not close the furrow), and this provides evidence that it may be an important element in the mechanics of invagination in Drosophila.

  5. Light Like a Feather: A Fibrous Natural Composite with a Shape Changing from Round to Square.

    Science.gov (United States)

    Wang, Bin; Meyers, Marc André

    2017-03-01

    Only seldom are square/rectangular shapes found in nature. One notable exception is the bird feather rachis, which raises the question: why is the proximal base round but the distal end square? Herein, it is uncovered that, given the same area, square cross sections show higher bending rigidity and are superior in maintaining the original shape, whereas circular sections ovalize upon flexing. This circular-to-square shape change increases the ability of the flight feathers to resist flexure while minimizes the weight along the shaft length. The walls are themselves a heterogeneous composite with the fiber arrangements adjusted to the local stress requirements: the dorsal and ventral regions are composed of longitudinal and circumferential fibers, while lateral walls consist of crossed fibers. This natural avian design is ready to be reproduced, and it is anticipated that the knowledge gained from this work will inspire new materials and structures for, e.g., manned/unmanned aerial vehicles.

  6. Changes in pelvic shape among Japanese pregnant women over the last 5 decades.

    Science.gov (United States)

    Narumoto, Keiichiro; Sugimura, Motoi; Saga, Kozue; Matsunaga, Youichi

    2015-11-01

    Pelvic shape affects the progression of labor. The gynecoid-type pelvis has been the most common in women, but a previous study reported that the anthropoid type has increased in Japan. The purpose of this study was to examine: (i) the current prevalence of different pelvic shapes in Japanese pregnant women; and (ii) the changes in the prevalence of the pelvic shapes over the past 50 years. We conducted a cross-sectional study using descriptive analysis for the prevalence of the pelvic shape and a historical comparison to assess the changes in the proportions of pelvic shapes with Japanese data from the 1960s to the 1980s. We reviewed a total of 517 delivery records from May 2010 to August 2012 at a rural Japanese hospital where prenatal X-ray pelvimetry had been routinely performed as local practice. We analyzed the readings of the digital imaging data in pregnant women who underwent X-ray pelvimetry. We identified the X-ray data in 326 Japanese pregnant women. The prevalence of the anthropoid, gynecoid and flat types was 151 (46.3%), 142 (43.6%), and 33 (10.1%), respectively. There were no differences in the maternal characteristics according to the pelvic shapes. The prevalence of the anthropoid-type pelvis has increased by approximately 40% and that of the gynecoid type has decreased by 20% since the 1960s. The prevalence of the anthropoid-type pelvis have significantly increased in Japan. Identifying a determinant of this phenomenon requires further research. © 2015 Japan Society of Obstetrics and Gynecology.

  7. Optimal wavy surface to suppress vortex shedding using second-order sensitivity to shape changes

    CERN Document Server

    Tammisola, Outi

    2016-01-01

    A method to find optimal 2nd-order perturbations is presented, and applied to find the optimal spanwise-wavy surface for suppression of cylinder wake instability. Second-order perturbations are required to capture the stabilizing effect of spanwise waviness, which is ignored by standard adjoint-based sensitivity analyses. Here, previous methods are extended so that (i) 2nd-order sensitivity is formulated for base flow changes satisfying linearised Navier-Stokes, and (ii) the resulting method is applicable to a 2D global instability problem. This makes it possible to formulate 2nd-order sensitivity to shape modifications. Using this formulation, we find the optimal shape to suppress the a cylinder wake instability. The optimal shape is then perturbed by random distributions in full 3D stability analysis to confirm that it is a local optimal at the given amplitude and wavelength. Furthermore, it is shown that none of the 10 random wavy shapes alone stabilize the wake flow at Re=50, while the optimal shape does....

  8. Efficient Multidisciplinary Analysis Approach for Conceptual Design of Aircraft with Large Shape Change

    Science.gov (United States)

    Chwalowski, Pawel; Samareh, Jamshid A.; Horta, Lucas G.; Piatak, David J.; McGowan, Anna-Maria R.

    2009-01-01

    The conceptual and preliminary design processes for aircraft with large shape changes are generally difficult and time-consuming, and the processes are often customized for a specific shape change concept to streamline the vehicle design effort. Accordingly, several existing reports show excellent results of assessing a particular shape change concept or perturbations of a concept. The goal of the current effort was to develop a multidisciplinary analysis tool and process that would enable an aircraft designer to assess several very different morphing concepts early in the design phase and yet obtain second-order performance results so that design decisions can be made with better confidence. The approach uses an efficient parametric model formulation that allows automatic model generation for systems undergoing radical shape changes as a function of aerodynamic parameters, geometry parameters, and shape change parameters. In contrast to other more self-contained approaches, the approach utilizes off-the-shelf analysis modules to reduce development time and to make it accessible to many users. Because the analysis is loosely coupled, discipline modules like a multibody code can be easily swapped for other modules with similar capabilities. One of the advantages of this loosely coupled system is the ability to use the medium- to high-fidelity tools early in the design stages when the information can significantly influence and improve overall vehicle design. Data transfer among the analysis modules are based on an accurate and automated general purpose data transfer tool. In general, setup time for the integrated system presented in this paper is 2-4 days for simple shape change concepts and 1-2 weeks for more mechanically complicated concepts. Some of the key elements briefly described in the paper include parametric model development, aerodynamic database generation, multibody analysis, and the required software modules as well as examples for a telescoping wing

  9. Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities.

    Science.gov (United States)

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-10-01

    Climate change is altering life at multiple scales, from genes to ecosystems. Predicting the vulnerability of populations to climate change is crucial to mitigate negative impacts. We suggest that regional patterns of spatial and temporal climatic variation scaled to the traits of an organism can predict where and why populations are most vulnerable to climate change. Specifically, historical climatic variation affects the sensitivity and response capacity of populations to climate change by shaping traits and the genetic variation in those traits. Present and future climatic variation can affect both climate change exposure and population responses. We provide seven predictions for how climatic variation might affect the vulnerability of populations to climate change and suggest key directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A changing climate of skepticism: The factors shaping climate change coverage in the US press.

    Science.gov (United States)

    Schmid-Petri, Hannah; Adam, Silke; Schmucki, Ivo; Häussler, Thomas

    2017-05-01

    Skepticism toward climate change has a long tradition in the United States. We focus on mass media as the conveyors of the image of climate change and ask: Is climate change skepticism still a characteristic of US print media coverage? If so, to what degree and in what form? And which factors might pave the way for skeptics entering mass media debates? We conducted a quantitative content analysis of US print media during one year (1 June 2012 to 31 May 2013). Our results show that the debate has changed: fundamental forms of climate change skepticism (such as denial of anthropogenic causes) have been abandoned in the coverage, being replaced by more subtle forms (such as the goal to avoid binding regulations). We find no evidence for the norm of journalistic balance, nor do our data support the idea that it is the conservative press that boosts skepticism.

  11. Action potential shape change in an electrically coupled network during propagation: a computer simulation.

    Science.gov (United States)

    Buckingham, Steven D; Spencer, Andrew N

    2008-06-01

    We applied compartmental computer modeling to test a model of spike shape change in the jellyfish, Polyorchis penicillatus, to determine whether adaptive spike shortening can be attributed to the inactivation properties of a potassium channel. We modeled the jellyfish outer nerve-ring as a continuous linear segment, using ion channel and membrane properties derived in earlier studies. The model supported action potentials that shortened as they propagated away from the site of initiation and this was found to be largely independent of potassium channel inactivation. Spike broadening near the site of initiation was found to be due to a depolarization plateau that collapsed as two spikes spread from the point of initiation. The lifetime of this plateau was found to depend critically on the inward current flux and the space constant of the membrane. These data suggest that the spike shape changes may be due not only to potassium channel inactivation, but also to the passive properties of the membrane.

  12. Modelling changes in leaf shape prior to phyllode acquisition in Acacia mangium Willd. seedlings.

    Science.gov (United States)

    Leroy, Céline; Heuret, Patrick

    2008-02-01

    The aim of this study was to characterise changes in leaf shape prior to phyllode acquisition along the axes of Acacia mangium seedlings. The study area was located in North Lampung (South Sumatra, Indonesia), where these trees belong to a naturally regenerated stand. A total of 173 seedlings, less than three months old, were described node by node. Leaf shape and leaf length were recorded and the way in which one leaf type succeeded another was modelled using a hidden semi-Markov chain composed of seven states. The phyllotactical pattern was studied using another sample of forty 6-month-old seedlings. The results indicate (i) the existence of successive zones characterised by one or a combination of leaf types, and (ii) that phyllode acquisition seems to be accompanied by a change in the phyllotactical pattern. The concepts of juvenility and heteroblasty, as well as potential applications for taxonomy are discussed.

  13. Changes in Mitral Valve Annular Geometry After Repair: Saddle-Shaped Versus Flat Annuloplasty Rings

    Science.gov (United States)

    Mahmood, Feroze; Gorman, Joseph H.; Subramaniam, Balachundhar; Gorman, Robert C.; Panzica, Peter J.; Hagberg, Robert C.; Lerner, Adam B.; Hess, Philip E.; Maslow, Andrew; Khabbaz, Kamal R.

    2011-01-01

    Background Saddle-shaped annuloplasty rings are being increasingly used during mitral valve (MV) repair to conform the mitral annulus to a more nonplanar shape and possibly reduce leaflet stress. In this study utilizing three-dimensional transesophageal echocardiography we compared the effects of rigid flat rings with those of the saddle rings on the mitral annular geometry. Specifically we measured the changes in nonplanarity angle (NPA) before and after MV repair. Methods Geometric analysis on 38 patients undergoing MV repair for myxomatous and ischemic mitral regurgitation with full flat rings (n = 18) and saddle rings (n = 18) were performed. The acquired three-dimensional volumetric data were analyzed utilizing the “Image Arena” software (TomTec GmBH, Munich, Germany). Specifically, the degree of change in the NPA was calculated and compared before and after repair for both types of rings. Results Both types of annuloplasty rings resulted in significant changes in the geometric structure of the MV after repair. However, saddle rings lead to a decrease in the NPA (7% for ischemic and 8% for myxomatous MV repairs) (ie, made the annulus more nonplanar), whereas flat rings increased the NPA (7.9% for ischemic and 11.8% for myxomatous MV repairs) (ie, made the annulus less nonplanar); p value 0.001 or less. Conclusions Implantation of saddle-shaped rings during MV repair surgery is associated with augmentation of the nonplanar shape of the mitral annulus (ie, decreases NPA). This favorable change in the mitral annular geometry could possibly confer a structural advantage to MV repairs with the saddle rings. PMID:20868816

  14. Shape changes in isolated outer hair cells: measurements with attached microspheres.

    Science.gov (United States)

    Zajic, G; Schacht, J

    1991-04-01

    Shape changes can be induced in isolated outer hair cells by various stimuli and quantified from digitized video-images. While overall changes in length between base and apex are easily measured, changes in defined segments of the cell require fixed landmarks on the cell body. The problem of locating such landmarks makes it difficult to assess if a change in length is uniform or largely confined to a particular segment of the cell. This information is important in identifying the location of a contractile apparatus and the elucidation of mechanisms of motility. We demonstrate here that microspheres can serve as reference points for such measurements. By attaching microspheres to cells we determined that, when outer hair cells increased their volume upon K(+)-depolarization, their middle segment shortened more significantly (14 +/- 6%) than either the basal (10 +/- 5%) or apical section (7 +/- 6%; P less than 0.01). In contrast, when cortical contractions were induced by elevating intracellular Ca2+, the elongation of the cells was more pronounced in their basal (8 +/- 2%) than their apical (6 +/- 2%; P = 0.06) or middle region (6 +/- 3%). This study provides further insight into the mechanisms of shape changes in isolated outer hair cells and illustrates a method to analyze localized changes in the absence of internal landmarks.

  15. Coordinated cell-shape changes control epithelial movement in zebrafish and Drosophila.

    Science.gov (United States)

    Köppen, Mathias; Fernández, Beatriz García; Carvalho, Lara; Jacinto, Antonio; Heisenberg, Carl-Philipp

    2006-07-01

    Epithelial morphogenesis depends on coordinated changes in cell shape, a process that is still poorly understood. During zebrafish epiboly and Drosophila dorsal closure, cell-shape changes at the epithelial margin are of critical importance. Here evidence is provided for a conserved mechanism of local actin and myosin 2 recruitment during theses events. It was found that during epiboly of the zebrafish embryo, the movement of the outer epithelium (enveloping layer) over the yolk cell surface involves the constriction of marginal cells. This process depends on the recruitment of actin and myosin 2 within the yolk cytoplasm along the margin of the enveloping layer. Actin and myosin 2 recruitment within the yolk cytoplasm requires the Ste20-like kinase Msn1, an orthologue of Drosophila Misshapen. Similarly, in Drosophila, actin and myosin 2 localization and cell constriction at the margin of the epidermis mediate dorsal closure and are controlled by Misshapen. Thus, this study has characterized a conserved mechanism underlying coordinated cell-shape changes during epithelial morphogenesis.

  16. Cell-sized liposomes reveal how actomyosin cortical tension drives shape change.

    Science.gov (United States)

    Carvalho, Kevin; Tsai, Feng-Ching; Tsai, Feng C; Lees, Edouard; Voituriez, Raphaël; Koenderink, Gijsje H; Sykes, Cecile

    2013-10-08

    Animal cells actively generate contractile stress in the actin cortex, a thin actin network beneath the cell membrane, to facilitate shape changes during processes like cytokinesis and motility. On the microscopic scale, this stress is generated by myosin molecular motors, which bind to actin cytoskeletal filaments and use chemical energy to exert pulling forces. To decipher the physical basis for the regulation of cell shape changes, here, we use a cell-like system with a cortex anchored to the outside or inside of a liposome membrane. This system enables us to dissect the interplay between motor pulling forces, cortex-membrane anchoring, and network connectivity. We show that cortices on the outside of liposomes either spontaneously rupture and relax built-up mechanical stress by peeling away around the liposome or actively compress and crush the liposome. The decision between peeling and crushing depends on the cortical tension determined by the amount of motors and also on the connectivity of the cortex and its attachment to the membrane. Membrane anchoring strongly affects the morphology of cortex contraction inside liposomes: cortices contract inward when weakly attached, whereas they contract toward the membrane when strongly attached. We propose a physical model based on a balance of active tension and mechanical resistance to rupture. Our findings show how membrane attachment and network connectivity are able to regulate actin cortex remodeling and membrane-shape changes for cell polarization.

  17. Gleevec, an Abl family inhibitor, produces a profound change in cell shape and migration.

    Directory of Open Access Journals (Sweden)

    Zaozao Chen

    Full Text Available The issue of how contractility and adhesion are related to cell shape and migration pattern remains largely unresolved. In this paper we report that Gleevec (Imatinib, an Abl family kinase inhibitor, produces a profound change in the shape and migration of rat bladder tumor cells (NBTII plated on collagen-coated substrates. Cells treated with Gleevec adopt a highly spread D-shape and migrate more rapidly with greater persistence. Accompanying this more spread state is an increase in integrin-mediated adhesion coupled with increases in the size and number of discrete adhesions. In addition, both total internal reflection fluorescence microscopy (TIRFM and interference reflection microscopy (IRM revealed a band of small punctate adhesions with rapid turnover near the cell leading margin. These changes led to an increase in global cell-substrate adhesion strength, as assessed by laminar flow experiments. Gleevec-treated cells have greater RhoA activity which, via myosin activation, led to an increase in the magnitude of total traction force applied to the substrate. These chemical and physical alterations upon Gleevec treatment produce the dramatic change in morphology and migration that is observed.

  18. Influence of nonequilibrium radiation and shape change on aerothermal environment of Jovian entry body

    Science.gov (United States)

    Tiwari, S. N.; Subramanian, S. V.

    1980-01-01

    Radiative transfer equations are derived under nonequilibrium conditions which include multilevel energy transitions. The nonequalibrium results, obtained with and without ablation injection in the shock layer, are found to be greatly influenced by the temperature distribution in the shock layer. In the absence of ablative products, the convective and radiative heating to the entry body are reduced significantly under nonequilibrium conditions. The influence of nonequilibrium is found to be greater at higher entry altitudes. With coupled ablation and carbon phenolic injection, 16 chemical species are used in the ablation layer for radiation absorption. Equilibrium and nonequilibrium results are compared under peak heating conditions. A 45 degree sphere cone, a 35 degree hyperboloid, and a 45 degree ellipsoid were used to study probe shape change. Results indicate that the shock layer flow field and heat transfer to the body are influenced significantly by the probe shape change. The effect of shape change on radiative heating of the afterbodies is found to be considerably larger for the sphere cone and ellipsoid than for the hyperboloid.

  19. A toolbox to visually explore cerebellar shape changes in cerebellar disease and dysfunction

    Science.gov (United States)

    Abulnaga, S. Mazdak; Yang, Zhen; Carass, Aaron; Kansal, Kalyani; Jedynak, Bruno M.; Onyike, Chiadi U.; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    The cerebellum plays an important role in motor control and is also involved in cognitive processes. Cerebellar function is specialized by location, although the exact topographic functional relationship is not fully understood. The spinocerebellar ataxias are a group of neurodegenerative diseases that cause regional atrophy in the cerebellum, yielding distinct motor and cognitive problems. The ability to study the region-specific atrophy patterns can provide insight into the problem of relating cerebellar function to location. In an effort to study these structural change patterns, we developed a toolbox in MATLAB to provide researchers a unique way to visually explore the correlation between cerebellar lobule shape changes and function loss, with a rich set of visualization and analysis modules. In this paper, we outline the functions and highlight the utility of the toolbox. The toolbox takes as input landmark shape representations of subjects' cerebellar substructures. A principal component analysis is used for dimension reduction. Following this, a linear discriminant analysis and a regression analysis can be performed to find the discriminant direction associated with a specific disease type, or the regression line of a specific functional measure can be generated. The characteristic structural change pattern of a disease type or of a functional score is visualized by sampling points on the discriminant or regression line. The sampled points are used to reconstruct synthetic cerebellar lobule shapes. We showed a few case studies highlighting the utility of the toolbox and we compare the analysis results with the literature.

  20. On exact and approximated formulations for scaling-mode shapes in operational modal analysis by mass and stiffness change

    DEFF Research Database (Denmark)

    López-Aenlle, Manuel; Brincker, Rune; Pelayo, F.

    2012-01-01

    When operational modal analysis (OMA) is used to estimate modal parameters, mode shapes cannot be mass normalized. In the past few years, some equations have been proposed to scale mode shapes using the mass-change method, which consists of repeating modal testing after changing the mass at diffe...

  1. The Vindija Neanderthal scapular glenoid fossa: comparative shape analysis suggests evo-devo changes among Neanderthals.

    Science.gov (United States)

    Di Vincenzo, Fabio; Churchill, Steven E; Manzi, Giorgio

    2012-02-01

    Although the shape of the scapular glenoid fossa (SGF) may be influenced by epigenetic and developmental factors, there appears to be strong genetic control over its overall form, such that variation within and between hominin taxa in SGF shape may contain information about their evolutionary histories. Here we present the results of a geometric morphometric study of the SGF of the Neanderthal Vi-209 from Vindjia Cave (Croatia), relative to samples of Plio-Pleistocene, later Pleistocene, and recent hominins. Variation in overall SGF shape follows a chronological trend from the plesiomorphic condition seen in Australopithecus to modern humans, with pre-modern species of the genus Homo exhibiting intermediate morphologies. Change in body size across this temporal series is not linearly directional, which argues against static allometry as an explanation. However, life history and developmental rates change directionally across the series, suggesting an ontogenetic effect on the observed changes in shape (ontogenetic allometry). Within this framework, the morphospace occupied by the Neanderthals exhibits a discontinuous distribution. The Vindija SGF and those of the later Near Eastern Neanderthals (Kebara and Shanidar) approach the modern condition and are somewhat segregated from both northwestern European (Neandertal and La Ferrassie) and early Mediterranean Neanderthals (Krapina and Tabun). Although more than one scenario may account for the pattern seen in the Neanderthals, the data is consistent with palaeogenetic evidence suggesting low levels of gene flow between Neanderthals and modern humans in the Near East after ca. 120-100 ka (thousands of years ago) (with subsequent introgression of modern human alleles into eastern and central Europe). Thus, in keeping with previous analyses that document some modern human features in the Vindija Neanderthals, the Vindija G(3) sample should not be seen as representative of 'classic'--that is, unadmixed, pre

  2. Scaling the Mode Shapes of a Building Model by Mass Changes

    DEFF Research Database (Denmark)

    Brincker, Rune; Rodrigues, J.; Andersen, P.

    2004-01-01

    It is well known, that when using natural input modal analysis, the loads are not known, and thus, the mode scaling factor that relates the magnitude of the loading to the magnitude of the response cannot be estimated. However It has been pointed out by several theoretical papers that mode shapes...... change technique can be used on a ¼ scale model of a 4-storey building. The uncertainties on the estimated scaling factors are illustrated by repeating the estimation using different mass changes....... can be scaled by performing  several natural input modal analysis tests with different mass changes, observe the frequency shift introduced by the mass changes and then follow an estimation scheme that allows the user to estimate the scaling factor modeby- mode, i.e. only information of the particular...

  3. Size, shape and age-related changes of the mandibular condyle during childhood

    Energy Technology Data Exchange (ETDEWEB)

    Karlo, Christoph A. [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Stolzmann, Paul [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland); Habernig, Sandra; Kellenberger, Christian J. [University Children' s Hospital Zurich, Department of Diagnostic Imaging, Zurich (Switzerland); Mueller, Lukas [University of Zurich, Clinics for Orthodontics and Paediatric Dentistry, Zurich (Switzerland); Saurenmann, Traudel [University Children' s Hospital Zurich, Department of Rheumatology, Zurich (Switzerland)

    2010-10-15

    To determine age-related differences in the size and shape of the mandibular condyle in children to establish anatomical reference values. A total of 420 mandibular condyles in 210 children (mean age, 7 years) were retrospectively analysed by using computed tomography (CT) imaging. The greatest left-right (LRD) and anterior-posterior (APD) diameters and the anteversion angles (AA) were measured by two readers. An APD/LRD ratio was calculated. The shape of the condyles was graded into three types on sagittal images. Correlations of parameters with the children's age were assessed by using Pearson's correlation analyses. The LRD (mean, 14.1 {+-} 2.4 mm), APD (mean, 7.3 {+-} 1.0 mm) and LRD/APD ratio (mean, 1.9 {+-} 0.3) increased (r{sub LRD} = 0.70, p < 0.01; r{sub APD} = 0.56, p < 0.01; r{sub rat} = 0.28, p < 0.01) while the AA (mean, 27 {+-} 7 ) decreased significantly (r{sub antang} = -0.26, p < 0.001) with age. The condylar shape as determined on sagittal images correlated significantly with age (r = 0.69, p < 0.05). Boys had significantly higher anteversion angles (p < 0.01), greater LRDs (p < 0.05) and greater mean ratios (p < 0.05). The mandibular condyle is subject to significant age-related changes in size and shape during childhood. As the size of the condyles increases with age, the anteversion angles decrease and the shape of the condyle turns from round to oval. (orig.)

  4. Subcortical Shape Changes, Hippocampal Atrophy and Cortical Thinning in Future Alzheimer's Disease Patients

    Science.gov (United States)

    Kälin, Andrea M.; Park, Min T. M.; Chakravarty, M. Mallar; Lerch, Jason P.; Michels, Lars; Schroeder, Clemens; Broicher, Sarah D.; Kollias, Spyros; Nitsch, Roger M.; Gietl, Anton F.; Unschuld, Paul G.; Hock, Christoph; Leh, Sandra E.

    2017-01-01

    Efficacy of future treatments depends on biomarkers identifying patients with mild cognitive impairment at highest risk for transitioning to Alzheimer's disease. Here, we applied recently developed analysis techniques to investigate cross-sectional differences in subcortical shape and volume alterations in patients with stable mild cognitive impairment (MCI) (n = 23, age range 59–82, 47.8% female), future converters at baseline (n = 10, age range 66–84, 90% female) and at time of conversion (age range 68–87) compared to group-wise age and gender matched healthy control subjects (n = 23, age range 61–81, 47.8% female; n = 10, age range 66–82, 80% female; n = 10, age range 68–82, 70% female). Additionally, we studied cortical thinning and global and local measures of hippocampal atrophy as known key imaging markers for Alzheimer's disease. Apart from bilateral striatal volume reductions, no morphometric alterations were found in cognitively stable patients. In contrast, we identified shape alterations in striatal and thalamic regions in future converters at baseline and at time of conversion. These shape alterations were paralleled by Alzheimer's disease like patterns of left hemispheric morphometric changes (cortical thinning in medial temporal regions, hippocampal total and subfield atrophy) in future converters at baseline with progression to similar right hemispheric alterations at time of conversion. Additionally, receiver operating characteristic curve analysis indicated that subcortical shape alterations may outperform hippocampal volume in identifying future converters at baseline. These results further confirm the key role of early cortical thinning and hippocampal atrophy in the early detection of Alzheimer's disease. But first and foremost, and by distinguishing future converters but not patients with stable cognitive abilities from cognitively normal subjects, our results support the value of early subcortical shape alterations and reduced

  5. Predator-induced morphological changes in an amphibian: predation by dragonflies affects tadpole shape and color.

    Science.gov (United States)

    McCollum, S A; Leimberger, J D

    1997-02-01

    Predator-induced defenses are well studied in plants and invertebrate animals, but have only recently been recognized in vertebrates. Gray treefrog (Hylachrysoscelis) tadpoles reared with predatory dragonfly (Aeshnaumbrosa) larvae differ in shape and color from tadpoles reared in the absence of dragonflies. By exposing tadpoles to tail damage and the non-lethal presence of starved and fed dragonflies, we determined that these phenotypic differences are induced by non-contact cues present when dragonflies prey on Hyla. The induced changes in shape are in the direction that tends to increase swimming speed; thus, the induced morphology may help tadpoles evade predators. Altering morphology in response to predators is likely to influence interactions with other species in the community as well.

  6. Macroscopic Theory of Dark Sector

    Directory of Open Access Journals (Sweden)

    Boris E. Meierovich

    2014-01-01

    Full Text Available A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out to be an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields describe two different forms of dark matter. The space-like massive vector field is attractive. It is responsible for the observed plateau in galaxy rotation curves. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four-parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating nonsingular scenarios of evolution of the Universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerated expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the lower boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows displaying the main properties of the dark sector analytically. Although the physical nature of dark sector is still unknown, the macroscopic theory can help analyze the role of dark matter in astrophysical phenomena without resorting to artificial model assumptions.

  7. From endurance to power athletes: The changing shape of successful male professional tennis players.

    Science.gov (United States)

    Gale-Watts, Adam S; Nevill, Alan M

    2016-11-01

    The aim of the present study was to identify whether the relative shape and size characteristics of elite male tennis players have changed over time, and in addition whether any anthropometric parameters characterise the more successful players in Grand Slam tournaments. The height and body mass of the players qualifying for the first round in all four Grand Slam tennis tournaments during the period 1982-2011 was obtained, and successful players defined arbitrarily as those reaching round 3 or beyond. Body mass index (BMI) and the reciprocal ponderal index (RPI) were used as our measures of body shape. Multilevel modelling was used to explore the trend over time using non-linear polynomials. The results suggest that the body shape of elite tennis players has changed over time, with a non-linear (cubic polynomial regression model) increase in BMI and a similar non-linear decline in the RPI. BMI, reflecting greater muscle mass rather than greater adiposity, has emerged as an important factor associated with success, identified by a significantly positive (steeper) "successful player"-by-"year" interaction term. The evidence that the RPI of elite tennis players has also decreased over time, together with a significantly negative "successful player"-by-"year" interaction term, suggests that a more linear (ectomorphic) body shape is a less important factor in terms of success. These results suggest that elite male tennis players are becoming more power trained athletes as opposed to endurance athletes, with greater muscle mass being an important factor associated with success in all Grand Slam tournaments.

  8. Resistance to alveolar shape change limits range of force propagation in lung parenchyma.

    Science.gov (United States)

    Ma, Baoshun; Smith, Bradford J; Bates, Jason H T

    2015-06-01

    We have recently shown that if the lung parenchyma is modeled in 2 dimensions as a network of springs arranged in a pattern of repeating hexagonal cells, the distortional forces around a contracting airway propagate much further from the airway wall than classic continuum theory predicts. In the present study we tested the hypothesis that this occurs because of the negligible shear modulus of a hexagonal spring network. We simulated the narrowing of an airway embedded in a hexagonal network of elastic alveolar walls when the hexagonal cells of the network offered some resistance to a change in shape. We found that as the forces resisting shape change approach about 10% of the forces resisting length change of an individual spring the range of distortional force propagation in the spring network fell of rapidly as in an elastic continuum. We repeated these investigations in a 3-dimensional spring network composed of space-filling polyhedral cells and found similar results. This suggests that force propagation away from a point of local parenchymal distortion also falls off rapidly in real lung tissue. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Acute mechanical overstimulation of isolated outer hair cells causes changes in intracellular calcium levels without shape changes.

    Science.gov (United States)

    Fridberger, A; Ulfendahl, M

    1996-01-01

    Impaired auditory function following acoustic overstimulation, or noise, is mainly reported to be accompanied by cellular changes such as damage to the sensory hair bundles, but changes in the cell bodies of the outer hair cells have also been described. To investigate more closely the immediate cellular responses to overstimulation, isolated guinea pig outer hair cells were subjected to a 200 Hz oscillating water jet producing intense mechanical stimulation. The water jet was aimed at the cell body of the isolated outer hair cell. Cell shape changes were studied using video microscopy, and intracellular calcium concentration changes were monitored by means of the fluorescent calcium indicator Fluo-3. Cells exposed to a high-intensity stimulus showed surprisingly small light-microscopical alterations. The cytoplasmic calcium concentration increased in most cells, although some cells appeared very resistant to the mechanical stress. No correlation could be found be tween the calcium concentration changes and the cell length. The changes in calcium concentration reported here are suggested to be involved in the long-term pathogenesis of noise-induced hair cell damage.

  10. Changes in diet and physical activity resulting from the Shape Up Somerville community intervention

    OpenAIRE

    Folta, Sara C.; Kuder, Julia F; Goldberg, Jeanne P.; Hyatt, Raymond R.; Must, Aviva; Naumova, Elena N.; Nelson, Miriam E; Economos, Christina D.

    2013-01-01

    Background The purpose of this study is to describe the behavioral changes in children resulting from Shape Up Somerville (SUS), a community-based, participatory obesity prevention intervention that used a multi-level, systems-based approach. It was set in Somerville, an urban, culturally diverse community in Massachusetts, USA. Methods This was a non-randomized, controlled 2-year community-based intervention trial with children enrolled in grades 1 to 3 (ages 6-8 years). Overall, the SUS int...

  11. The propagation of shape changing soliton in a nonuniform nonlocal media

    Institute of Scientific and Technical Information of China (English)

    L.Kavitha; C.Lavanya; S.Dhamayanthi; N.Akila; D.Gopi

    2013-01-01

    Magnetization dynamics in uniformly magnetized ferromagnetic media is studied by using Landau-Lifshitz-Gilbert equation.The nonlinear evolution equation is integrable with site-dependent and biquadratic exchange interaction by means of Landau-Lifshitz (LL) equation which is well understood.In the present work,we construct the exact solitary solutions of the nonlinear evolution equation,particularly,we employ the modified extended tangent hyperbolic function method.We show the shape changing property of solitons for the given integrable system in the presence of damping as well as inhomogeneities.

  12. Change in Shape and Crystal Structure of HAP Nanoparticles during Absorption into Cell

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The change of hydroxyapatite (HAP) nanoparticles in shape and crystal structure after endocytosis into cancer cells was studied. BEL7402 cells were incubated with HAP nanoparticles for 2 hour,8 hours, 20 hours, respectively. Then, the cells were collected and viewed under a transmission electronic microscope (TEM). Electronic diffraction (ED) attached to TEM was used to detect the properties of the particles. The results show that HAP particles in the cytoplasm can be degraded in cytoplasm. The degradation process is prolonged by more than 20 hours. Thus, it is concluded that HAP nanoparticles would be degraded after kill cells or delivery gene.

  13. Rechargeable battery which combats shape change of the zinc anode. [By proper fabrication of separator

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, E.M.

    1976-08-03

    A rechargeable cell or battery is provided in which shape change of the zinc anode is combatted by profiling the ionic conductivity of the paths between the electrodes so that ion flow is greatest at the edges of the electrodes and least at the centers thereof, thereby reducing migration of the zinc ions from edges to the center of the anode. A number of embodiments are disclosed, wherein the strength and/or amount of electrolyte, and/or the number and/or size of the paths provided by the separator between the electrodes, are varied to provide the desired ionic conductivity profile. 5 figures.

  14. Macroscopically-Discrete Quantum Cosmology

    CERN Document Server

    Chew, Geoffrey F

    2008-01-01

    To Milne's Lorentz-group-based spacetime and Gelfand-Naimark unitary representations of this group we associate a Fock space of 'cosmological preons'-quantum-theoretic universe constituents. Milne's 'cosmological principle' relies on Lorentz invariance of 'age'--global time. We divide Milne's spacetime into 'slices' of fixed macroscopic width in age, with 'cosmological rays' defined on (hyperbolic) slice boundaries-Fock space attaching only to these exceptional universe ages. Each (fixed-age) preon locates within a 6-dimensional manifold, one of whose 3 'extra' dimensions associates in Dirac sense to a self-adjoint operator that represents preon (continuous) local time, the operator canonically-conjugate thereto representing preon (total) energy. Self-adjoint-operator expectations at any spacetime-slice boundary prescribe throughout the following slice a non-fluctuating 'mundane reality'- electromagnetic and gravitational potentials 'tethered' to current densities of locally-conserved electric charge and ener...

  15. Seismic scanning tunneling macroscope - Theory

    KAUST Repository

    Schuster, Gerard T.

    2012-09-01

    We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.

  16. Macroscopic and Microscopic Gradient Structures of Bamboo Culms

    Directory of Open Access Journals (Sweden)

    Suwat SUTNAUN

    2005-01-01

    Full Text Available This work studied the structure of bamboo culms which is naturally designed to retard the bending stress caused by a wind load. A macroscopic gradient structure (diameter, thickness and internodal length and a microscopic one (distribution of fiber of three sympodial bamboo species i.e. Tong bamboo (Dendrocalamus asper Backer., Pah bamboo (Gigantochloa bambos and Pak bamboo (Gigantochloa hasskarliana were examined. From the macroscopic point of view, the wind-load generated bending stress for the tapered hollow tube of bamboo was found to vary uniformly with height, especially at the middle of the culms. Furthermore, the macroscopic shape of bamboo culm is about 2-6 times stiffer in bending mode than one with a solid circular section for the same amount of wood material. Microscopically, the distribution of fiber in the radial direction linearly decreases from the outer surface to the inner surface in the same manner as that of the distribution of the bending stress in the radial direction. Distribution of fiber along the vertical length of bamboos at each height is proportional to the level of bending stress generated by the wind load. Both macroscopic and microscopic gradient structures of sympodial type bamboos were found to be less effective to retard the bending stress than those of monopodial type bamboo.

  17. Mesomechanical modeling of shape memory effect

    Science.gov (United States)

    Vokoun, David; Kafka, Vratislav

    1999-06-01

    Shape memory alloys (SMA) are well known materials. There is a lot of technical applications making use of their unique properties. Most of the significant applications are based on use of the thermomechancial properties. Growing number of those applications causes a need for an universal mathematical model with ability to describe all thermomechancial properties of SMA by relatively simple final set of constitutive equations that could be helpful for development of further sophisticated shape memory applications. Unfortunately, a lot of attention has been paid to metallurgical research of shape memory alloys in a few last decades and less attention was dedicated to shape memory modeling. Our model does not claim to be a universal model, but only one contribution to modeling of shape memory effect for binary SMA. The model is adapted for the most applied SMA -- nitinol and is based on the hypothesis that in the course of shape memory effect the distances of first atomic neighbors (Ni-Ti) remain nearly unchanged, whereas the distances of second neighbors (Ti-Ti and Ni-Ni) change substantially. Consequently, we consider some mechanical properties of Ni-substructure and Ti- substructure separately. The mechanical behavior of Ti- substructure is modeled as elastic whereas that of Ni- substructure as elasto-plastic. The resulting relatively simple differential constitutive equations express relationship among internal stress tensors, macroscopic stress tensors, macroscopic strain tensors and temperature.

  18. Color appearance of familiar objects: effects of object shape, texture, and illumination changes.

    Science.gov (United States)

    Olkkonen, Maria; Hansen, Thorsten; Gegenfurtner, Karl R

    2008-05-26

    People perceive roughly constant surface colors despite large changes in illumination. The familiarity of colors of some natural objects might help achieve this feat through direct modulation of the objects' color appearance. Research on memory colors and color appearance has yielded controversial results and due to the employed methods has often confounded perceptual with semantic effects. We studied the effect of memory colors on color appearance by presenting photographs of fruit on a monitor under various simulated illuminations and by asking observers to make either achromatic or typical color settings without placing demands on short-term memory or semantic processing. In a control condition, we presented photographs of 3D fruit shapes without texture and 2D outline shapes. We found that (1) achromatic settings for fruit were systematically biased away from the gray point toward the opposite direction of a fruit's memory color; (2) the strength of the effect depended on the degree of naturalness of the stimuli; and (3) the effect was evident under all tested illuminations, being strongest for illuminations whose chromaticity was closest to the stimulus chromaticity. We conclude that the visual identity of an object has a measurable effect on color perception, and that this effect is robust under illuminant changes, indicating its potential significance as an additional mechanism for color constancy.

  19. Equilibrium nano-shape changes induced by epitaxial stress (generalised Wulf Kaishew theorem)

    Science.gov (United States)

    Müller, P.; Kern, R.

    2000-06-01

    A generalised Wulf-Kaishew theorem is given describing the equilibrium shape (ES) of an isolated 3D crystal A deposited coherently onto a lattice mismatched planar substrate. For this purpose a free polyhedral crystal is formed then homogeneously strained to be accommodated onto the lattice mismatched substrate. During its elastic inhomogeneous relaxation the epitaxial contact remains coherent so that the 3D crystal drags the atoms of the contact area and produces a strain field in the substrate. The ES of the deposit is obtained by minimising at constant volume the total energy (bulk and surface energies) taking into account the bulk elastic relaxation. Our main results are as follows. (1) Epitaxial strain acts against wetting (adhesion) so that globally it leads to a thickening of the ES. (2) Owing to strain the ES changes with size. More precisely the various facets extension changes, some facets decreasing, some others increasing. (3) Each dislocation entrance, necessary for relaxing plastically too large crystals abruptly modifies the ES and thus the different facets extension in a jerky way. (4) In all cases the usual self-similarity with size is lost when misfit is considered. We illustrate these points for box-shaped and truncated pyramidal crystals. Some experimental evidence is discussed.

  20. Wind Tunnel Test of an RPV with Shape-Change Control Effector and Sensor Arrays

    Science.gov (United States)

    Raney, David L.; Cabell, Randolph H.; Sloan, Adam R.; Barnwell, William G.; Lion, S. Todd; Hautamaki, Bret A.

    2004-01-01

    A variety of novel control effector concepts have recently emerged that may enable new approaches to flight control. In particular, the potential exists to shift the composition of the typical aircraft control effector suite from a small number of high authority, specialized devices (rudder, aileron, elevator, flaps), toward larger numbers of smaller, less specialized, distributed device arrays. The concept envisions effector and sensor networks composed of relatively small high-bandwidth devices able to simultaneously perform a variety of control functions using feedback from disparate data sources. To investigate this concept, a remotely piloted flight vehicle has been equipped with an array of 24 trailing edge shape-change effectors and associated pressure measurements. The vehicle, called the Multifunctional Effector and Sensor Array (MESA) testbed, was recently tested in NASA Langley's 12-ft Low Speed wind tunnel to characterize its stability properties, control authorities, and distributed pressure sensitivities for use in a dynamic simulation prior to flight testing. Another objective was to implement and evaluate a scheme for actively controlling the spanwise pressure distribution using the shape-change array. This report describes the MESA testbed, design of the pressure distribution controller, and results of the wind tunnel test.

  1. Nature of the motor element in electrokinetic shape changes of cochlear outer hair cells.

    Science.gov (United States)

    Dallos, P; Evans, B N; Hallworth, R

    1991-03-14

    It is the prevailing notion that cochlear outer hair cells function as mechanical effectors as well as sensory receptors. Electrically induced changes in the shape of mammalian outer hair cells, studied in vitro, are commonly assumed to represent an aspect of their effector process that may occur in vivo. The nature of the motile process is obscure, even though none of the established cellular motors can be involved. Although it is known that the motile response is under voltage control, it is uncertain whether the stimulus is a drop in the voltage along the long axis of the cell or variation in the transmembrane potential. We have now performed experiments with cells partitioned in differing degrees between two chambers. Applied voltage stimulates the cell membrane segments in opposite polarity to an amount dependent on the partitioning. The findings show, in accordance with previous suggestions, that the driving stimulus is a local transmembrane voltage drop and that the cellular motor consists of many independent elements, distributed along the cell membrane and its associated cortical structures. We further show that the primary action of the motor elements is along the longitudinal dimension of the cell without necessarily involving changes in intracellular hydrostatic pressure. This establishes the outer hair cell motor as unique among mechanisms that control cell shape.

  2. Changes in shape of posterior parts of upper jaws after extraction of teeth and prosthetic treatment.

    Science.gov (United States)

    Berg, H; Carlsson, G E; Helkimo, M

    1975-09-01

    Changes in the sagittal and transverse profiles of the anterior and posterior parts of the alveolar process after extraction of all teeth and insertion of immediate dentures were studied during a five-year period using casts of 14 patients. The casts were oriented in a uniform way with the help of reference points in the hard palate. The desired profiles could then be reproduced with a special tracing apparatus. Four profiles made during the five-year period were compared for each patient. Changes in shape of the upper jaws in the median sagittal plane agreed well with the results obtained in earlier investigations and showed a reduction of the anterior part of the alveolar process for each patient. In the posterior part of the upper jaw, on the other hand, an increase in size was seen in the transverse section of the alveolar process in most patients examined.

  3. Evaluation of dental arch changes in patients following the use of Y shape appliance expansion

    Directory of Open Access Journals (Sweden)

    Ahmad Akhondi MS

    2001-09-01

    Full Text Available The purpose of this study was to evaluate Y shape appliance for expansion on maxillary arch of patients in their mixed dentition age. Eight patients, 6 girls and 2 boys, with maxillary constriction, retrusion of maxillary anteriors, and space deficiency of upper canine were treated by Y-plate expansion. For each patient 8 parameters on upper cast and 7 parameters on lower cast were measured. Statistical analysis was conducted by calculating the mean, standard deviation and p-value, of parameters. Since these parameters change during natural growth, the results were compared to normal growth changes of similar patients group form another study as control. Results showed significant increase in maxillary and mandibular cervical and coronal intercanine and intermolar width (P<0.005. The results also showed significant increase in maxillary arch length and perimeter.

  4. Simulation of imperfections in plastic lenses - transferring local refractive index changes into surface shape modifications

    Science.gov (United States)

    Arasa, Josep; Pizarro, Carles; Blanco, Patricia

    2016-06-01

    Injection molded plastic lenses have continuously improved their performance regarding optical quality and nowadays are as usual as glass lenses in image forming devices. However, during the manufacturing process unavoidable fluctuations in material density occur, resulting in local changes in the distribution of refractive index, which degrade the imaging properties of the polymer lens. Such material density fluctuations correlate to phase delays, which opens a path for their mapping. However, it is difficult to transfer the measured variations in refractive index into conventional optical simulation tool. Thus, we propose a method to convert the local variations in refractive index into local changes of one surface of the lens, which can then be described as a free-form surface, easy to introduce in conventional simulation tools. The proposed method was tested on a commercial gradient index (GRIN) lens for a set of six different object positions, using the MTF sagittal and tangential cuts to compare the differences between the real lens and a lens with homogenous refractive index, and the last surface converted into a free-form shape containing the internal refractive index changes. The same procedure was used to reproduce the local refractive index changes of an injected plastic lens with local index changes measured using an in-house built polariscopic arrangement, showing the capability of the method to provide successful results.

  5. Searching for the nanoscopic–macroscopic boundary

    Energy Technology Data Exchange (ETDEWEB)

    Velásquez, E.A. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Grupo de Investigación en Modelamiento y Simulación Computacional, Universidad de San Buenaventura Sec. Medellín, A.A. 5222, Medellín (Colombia); Altbir, D. [Departamento de Física, Universidad de Santiago de Chile (USACH), CEDENNA, Santiago (Chile); Mazo-Zuluaga, J. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Duque, L.F. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Grupo de Física Teórica, Aplicada y Didáctica, Facultad de Ciencias Exactas y Aplicadas Instituto Tecnológico Metropolitano, Medellín (Colombia); Mejía-López, J., E-mail: jmejia@puc.cl [Facultad de Física, Pontificia Universidad Católica de Chile, CEDENNA, Santiago (Chile)

    2013-12-15

    Several studies have focused on the size-dependent properties of elements, looking for a unique definition of the nanoscopic–macroscopic boundary. By using a novel approach consisting of an energy variational method combined with a quantum Heisenberg model, here we address the size at which the ordering temperature of a magnetic nanoparticle reaches its bulk value. We consider samples with sizes in the range 1–500 nm, as well as several geometries and crystalline lattices and observe that, contrarily to what is commonly argued, the nanoscopic-microscopic boundary depends on both factors: shape and crystalline structure. This suggests that the surface-to-volume ratio is not the unique parameter that defines the behavior of a nanometric sample whenever its size increases reaching the bulk dimension. Comparisons reveal very good agreement with experimental evidence with differences less than 2%. Our results have broad implications for practical issues in measurements on systems at the nanometric scale. - Highlights: • A novel quantum-Heisenberg variational energy method is implemented. • The asymptotic behavior toward the thermodynamic limit is explored. • An important dependence of the nano-bulk boundary on the geometry is found. • And also an important dependence on the crystalline lattice. • We obtain a very good agreement with experimental evidence with differences <2%.

  6. Cloud Macroscopic Organization: Order Emerging from Randomness

    Science.gov (United States)

    Yuan, Tianle

    2011-01-01

    Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds, and that it follows a power-law distribution with exponent gamma close to 2. gamma is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also demonstrate symmetry between clear and cloudy skies in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random local interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. We also propose a concept of cloud statistic mechanics approach. This approach is fully complementary to deterministic models, and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.

  7. Cloud macroscopic organization: order emerging from randomness

    Directory of Open Access Journals (Sweden)

    T. Yuan

    2011-01-01

    Full Text Available Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds and it follows a power-law distribution with exponent γ close to 2. γ is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also show clear-cloudy sky symmetry in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random simple interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. This approach is fully complementary to deterministic models and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.

  8. A self-organized biomechanical network drives shape changes during tissue morphogenesis.

    Science.gov (United States)

    Munjal, Akankshi; Philippe, Jean-Marc; Munro, Edwin; Lecuit, Thomas

    2015-08-20

    Tissue morphogenesis is orchestrated by cell shape changes. Forces required to power these changes are generated by non-muscle myosin II (MyoII) motor proteins pulling filamentous actin (F-actin). Actomyosin networks undergo cycles of assembly and disassembly (pulses) to cause cell deformations alternating with steps of stabilization to result in irreversible shape changes. Although this ratchet-like behaviour operates in a variety of contexts, the underlying mechanisms remain unclear. Here we investigate the role of MyoII regulation through the conserved Rho1-Rok pathway during Drosophila melanogaster germband extension. This morphogenetic process is powered by cell intercalation, which involves the shrinkage of junctions in the dorsal-ventral axis (vertical junctions) followed by junction extension in the anterior-posterior axis. While polarized flows of medial-apical MyoII pulses deform vertical junctions, MyoII enrichment on these junctions (planar polarity) stabilizes them. We identify two critical properties of MyoII dynamics that underlie stability and pulsatility: exchange kinetics governed by phosphorylation-dephosphorylation cycles of the MyoII regulatory light chain; and advection due to contraction of the motors on F-actin networks. Spatial control over MyoII exchange kinetics establishes two stable regimes of high and low dissociation rates, resulting in MyoII planar polarity. Pulsatility emerges at intermediate dissociation rates, enabling convergent advection of MyoII and its upstream regulators Rho1 GTP, Rok and MyoII phosphatase. Notably, pulsatility is not an outcome of an upstream Rho1 pacemaker. Rather, it is a self-organized system that involves positive and negative biomechanical feedback between MyoII advection and dissociation rates.

  9. Properties of Fuzzy Entropy Based on the Shape Change of Membership Function

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Modification of a fuzzy partition often leads to the change of fuzziness of a fuzzy system. Researches on the change of fuzzy entropy of a fuzzy set, responding to shape alteration of membership function, therefore, play a significant role in analysis of the change of fuzziness of a fuzzy system because a fuzzy partition consists of a set of fuzzy sets which satisfy some special constraints. This paper has shown several results about entropy changes of a fuzzy set. First, the entropies of two same type of fuzzy sets have a constant proportional relationship which depends on the ratio of the sizes of their support intervals. Second, as for Triangular Fuzzy Numbers (TFNs), the entropies of any two TFNs which can not be always the same type, also,have a constant proportional relationship which depends on the ratio of the sizes of their support intervals. Hence, any two TFNs with the same sizes of support intervals have the same entropies. Third, concerning two Triangular Fuzzy Sets (TFSs) with same sizes of support intervals and different heights, the relationship of their entropies lies on their height.Finally, we point it out a mistake that Chen's assertion that the entropy of resultant fuzzy set of elevation operation is directly proportional to that of the original one while elevation factor just acts as a proportional factor. These results should contribute to the analysis and design of a fuzzy system.

  10. Theory of electrically driven shape changes of cochlear outer hair cells.

    Science.gov (United States)

    Dallos, P; Hallworth, R; Evans, B N

    1993-07-01

    1. A theory of cochlear outer hair cell electromotility is developed and specifically applied to somatic shape changes elicited in a microchamber. The microchamber permits the arbitrary electrical and mechanical partitioning of the outer hair cell along its length. This means that the two partitioned segments are stimulated with different input voltages and undergo different shape changes. Consequently, by imposing more constraints than other methods, experiments in the microchamber are particularly suitable for testing different theories of outer hair cell motility. 2. The present model is based on simple hypotheses. They include a distributed motor associated with the cell membrane or cortex and the assumption that the displacement generated by the motor is related to the transmembrane voltage across the associated membrane element. It is expected that the force generated by the motor is counterbalanced by an elastic restoring force indigenous to the cell membrane and cortex, and a tensile force due to intracellular pressure. It is assumed that all changes take place while total cell volume is conserved. The above elements of the theory taken together permit the development of qualitative and quantitative predictions about the expected motile responses of both partitioned segments of the cell. Only a DC treatment is offered here. 3. Both a linear motor and an expanded treatment that incorporates a stochastic molecular motor model are considered. The latter is represented by a two-state Boltzmann process. We show that the linear motor treatment is an appropriate extrapolation of the stochastic motor theory for the case of small voltage driving signals. Comparison of experimental results with model responses permits the estimation of model parameters. Good match of data is obtained if it is assumed that the molecular motors undergo conformational length changes of 0.7-1.0 nm, that they have an effective displacement vector at approximately -20 degrees with the long

  11. Automatic online adaptive radiation therapy techniques for targets with significant shape change: a feasibility study.

    Science.gov (United States)

    Court, Laurence E; Tishler, Roy B; Petit, Joshua; Cormack, Robert; Chin, Lee

    2006-05-21

    This work looks at the feasibility of an online adaptive radiation therapy concept that would detect the daily position and shape of the patient, and would then correct the daily treatment to account for any changes compared with planning position. In particular, it looks at the possibility of developing algorithms to correct for large complicated shape change. For co-planar beams, the dose in an axial plane is approximately associated with the positions of a single multi-leaf collimator (MLC) pair. We start with a primary plan, and automatically generate several secondary plans with gantry angles offset by regular increments. MLC sequences for each plan are calculated keeping monitor units (MUs) and number of segments constant for a given beam (fluences are different). Bulk registration (3D) of planning and daily CT images gives global shifts. Slice-by-slice (2D) registration gives local shifts and rotations about the longitudinal axis for each axial slice. The daily MLC sequence is then created for each axial slice/MLC leaf pair combination, by taking the MLC positions from the pre-calculated plan with the nearest rotation, and shifting using a beam's-eye-view calculation to account for local linear shifts. A planning study was carried out using two head and neck region MR images of a healthy volunteer which were contoured to simulate a base-of-tongue treatment: one with the head straight (used to simulate the planning image) and the other with the head tilted to the left (the daily image). Head and neck treatment was chosen to evaluate this technique because of its challenging nature, with varying internal and external contours, and multiple degrees of freedom. Shape change was significant: on a slice-by-slice basis, local rotations in the daily image varied from 2 to 31 degrees, and local shifts ranged from -0.2 to 0.5 cm and -0.4 to 0.0 cm in right-left and posterior-anterior directions, respectively. The adapted treatment gave reasonable target coverage (100

  12. Macroscopic theory of dark sector

    CERN Document Server

    Meierovich, Boris E

    2013-01-01

    A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields {\\phi}_{I} with {\\phi}^{K}{\\phi}_{K}0 describe two different forms of dark matter. The space-like ({\\phi}^{K}{\\phi}_{K}0) massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating soluti...

  13. The changing shape of vaccination: improving immune responses through geometrical variations of a microdevice for immunization

    Science.gov (United States)

    Crichton, Michael Lawrence; Muller, David Alexander; Depelsenaire, Alexandra Christina Isobel; Pearson, Frances Elizabeth; Wei, Jonathan; Coffey, Jacob; Zhang, Jin; Fernando, Germain J. P.; Kendall, Mark Anthony Fernance

    2016-06-01

    Micro-device use for vaccination has grown in the past decade, with the promise of ease-of-use, painless application, stable solid formulations and greater immune response generation. However, the designs of the highly immunogenic devices (e.g. the gene gun, Nanopatch or laser adjuvantation) require significant energy to enter the skin (30–90 mJ). Within this study, we explore a way to more effectively use energy for skin penetration and vaccination. These modifications change the Nanopatch projections from cylindrical/conical shapes with a density of 20,000 per cm2 to flat-shaped protrusions at 8,000 per cm2, whilst maintaining the surface area and volume that is placed within the skin. We show that this design results in more efficient surface crack initiations, allowing the energy to be more efficiently be deployed through the projections into the skin, with a significant overall increase in penetration depth (50%). Furthermore, we measured a significant increase in localized skin cell death (>2 fold), and resultant infiltrate of cells (monocytes and neutrophils). Using a commercial seasonal trivalent human influenza vaccine (Fluvax 2014), our new patch design resulted in an immune response equivalent to intramuscular injection with approximately 1000 fold less dose, while also being a practical device conceptually suited to widespread vaccination.

  14. Change rules of a stratospheric airship’s envelope shape during ascent process

    Directory of Open Access Journals (Sweden)

    Shuai Zhao

    2017-04-01

    Full Text Available Stratospheric airship is a special near-space air vehicle, and has more advantages than other air vehicles, such as long endurance, strong survival ability, excellent resolution, low cost, and so on, which make it an ideal stratospheric platform. It is of great significance to choose a reasonable and effective way to launch a stratospheric airship to the space for both academic research and engineering applications. In this paper, the non-forming launch way is studied and the method of differential pressure gradient is used to study the change rules of the airship’s envelope shape during the ascent process. Numerical simulation results show that the head of the envelope will maintain the inflatable shape and the envelope under the zero-pressure level will be compressed into a wide range of wrinkles during the ascent process. The airship’s envelope will expand with the ascent of the airship and the position of the zero-pressure level will move downward constantly. At the same time, the envelope will gradually form a certain degree of stiffness under the action of the inner and external differential pressure. The experimental results agree well with the analytical results, which shows that the non-forming launch way is effective and reliable, and the analytical method has exactness and feasibility.

  15. The changing shape of vaccination: improving immune responses through geometrical variations of a microdevice for immunization

    Science.gov (United States)

    Crichton, Michael Lawrence; Muller, David Alexander; Depelsenaire, Alexandra Christina Isobel; Pearson, Frances Elizabeth; Wei, Jonathan; Coffey, Jacob; Zhang, Jin; Fernando, Germain J. P.; Kendall, Mark Anthony Fernance

    2016-01-01

    Micro-device use for vaccination has grown in the past decade, with the promise of ease-of-use, painless application, stable solid formulations and greater immune response generation. However, the designs of the highly immunogenic devices (e.g. the gene gun, Nanopatch or laser adjuvantation) require significant energy to enter the skin (30–90 mJ). Within this study, we explore a way to more effectively use energy for skin penetration and vaccination. These modifications change the Nanopatch projections from cylindrical/conical shapes with a density of 20,000 per cm2 to flat-shaped protrusions at 8,000 per cm2, whilst maintaining the surface area and volume that is placed within the skin. We show that this design results in more efficient surface crack initiations, allowing the energy to be more efficiently be deployed through the projections into the skin, with a significant overall increase in penetration depth (50%). Furthermore, we measured a significant increase in localized skin cell death (>2 fold), and resultant infiltrate of cells (monocytes and neutrophils). Using a commercial seasonal trivalent human influenza vaccine (Fluvax 2014), our new patch design resulted in an immune response equivalent to intramuscular injection with approximately 1000 fold less dose, while also being a practical device conceptually suited to widespread vaccination. PMID:27251567

  16. Modeling and optimization of shape change in shell spatial cross-sections under superplastic moulding

    Science.gov (United States)

    Chumachenko, E. N.

    2008-08-01

    The necessity to develop and optimize new technological processes of gas moulding of shells under the superplasticity conditions, which ensure large elongation and complexity of the shape of end items, makes the specialists in the field of mathematical simulation to pose and solve problems of constant improvement of the imitation models. Because of a large number of "embedded" nonlinearities (the physical properties of the material, friction, and unknown boundaries), the solution of such problems requires large computer resources, high qualification of designers, and large amount of labor. In the present paper, we consider the problems of express analysis of pattern change of spatial shells on the basis of estimation of the behavior of their critical cross-sections. We solve problems of moulding of titan shells (made of VT6 alloy) in a matrix of complicated shape. We theoretically and experimentally justify the methods for predicting and constructing the optimal technological processes of shell deformation under conditions close to superplasticity by using the 2.5D designing procedures.

  17. Affine operations plus symmetry yield perception of metric shape with large perspective changes (≥45°): data and model.

    Science.gov (United States)

    Lind, Mats; Lee, Young Lim; Mazanowski, Janusz; Kountouriotis, Georgios K; Bingham, Geoffrey P

    2014-02-01

    G. P. Bingham and M. Lind (2008, Large continuous perspective transformations are necessary and sufficient for accurate perception of metric shape, Perception & Psychophysics, Vol. 70, pp. 524-540) showed that observers could perceive metric shape, given perspective changes ≥ 45° relative to a principal axis of elliptical cylinders. In this article, we tested (a) arbitrary perspective changes of 45°, (b) whether perception gradually improves with more perspective change, (c) speed of rotation, (d) whether this works with other shapes (asymmetric polyhedrons), (e) different slants, and (f) perspective changes >45°. Experiment 1 compared 45° perspective change away from, versus centered on, a principal axis. Observers adjusted an ellipse to match the cross-section of an elliptical cylinder viewed in a stereo-motion display. Experiment 2 tested whether performance would improve gradually with increases in perspective change, or suddenly with a 45° change. We also tested speed of rotation. Experiment 3 tested (a) asymmetric polyhedrons, (b) perspective change beyond 45°, and (c) the effect of slant. The results showed (a) a particular perspective was not required, (b) judgments only improved with ≥ 45° change, (c) speed was not relevant, (d) it worked with asymmetric polyhedrons, (e) slant was not relevant, and (f) judgments remained accurate beyond 45° of change. A model shows how affine operations, together with a symmetry yielded by 45° perspective change, bootstrap perception of metric shape.

  18. MACROSCOPIC DIVERSITY FOR CDMA MOBILE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Pei Xiaoyan; Hu Jiandong

    2002-01-01

    A novel system of macroscopic diversity with voting rule in CDMA cellular system is suggested in order to raise the coverage and quality of service of CDMA mobile communication system. The estimation of the impact of macroscopic diversity on performance of CDMA cellular system is analyzed and investigated.

  19. MACROSCOPIC DIVERSITY FOR CDMA MOBILE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    PeiXiaoyan; HuJiandong

    2002-01-01

    A novel system of macroscopic diversity with voting rule in CDMA cellular system is suggested in order to raise the coverage and quality of service of CDMA mobile communication system.The estimation of the impact of macroscopic diversity on performance of CDMA cellular system is analyzed and investigated.

  20. Analysis of gamma prime shape changes in a single crystal Ni-base superalloy

    Science.gov (United States)

    Gayda, J.; Mackay, R. A.

    1989-01-01

    The microstructural evolution of a commercial single crystal superalloy, NASAIR 100, is analyzed using the existing high-temperature lattice mismatch data and high-temperature moduli obtained from tests on single crystals of gamma and gamma prime. A multiparticle analysis of the microstructural evolution is performed using a novel microstructural lattice simulation technique, MCFET. Under a uniaxial stress, a regular array of gamma prime particles in the simulated microstructure is predicted to coalesce and form a plate morphology, with the broad faces of the plates and stress axis perpendicular in tension but parallel in compression. These results are consistent with changes in gamma prime shape observed in NASAIR 100 following creep testing at 1000 C.

  1. Altering the cellular mechanical force balance results in integrated changes in cell, cytoskeletal and nuclear shape

    Science.gov (United States)

    Sims, J. R.; Karp, S.; Ingber, D. E.

    1992-01-01

    Studies were carried out with capillary endothelial cells cultured on fibronectin (FN)-coated dishes in order to analyze the mechanism of cell and nuclear shape control by extracellular matrix (ECM). To examine the role of the cytoskeleton in shape determination independent of changes in transmembrane osmotic pressure, membranes of adherent cells were permeabilized with saponin (25 micrograms/ml) using a buffer that maintains the functional integrity of contractile microfilaments. Real-time videomicroscopic studies revealed that addition of 250 microM ATP resulted in time-dependent retraction and rounding of permeabilized cells and nuclei in a manner similar to that observed in intact living cells following detachment using trypsin-EDTA. Computerized image analysis confirmed that permeabilized cells remained essentially rigid in the absence of ATP and that retraction was stimulated in a dose-dependent manner as the concentration of ATP was raised from 10 to 250 microM. Maximal rounding occurred by 30 min with projected cell and nuclear areas being reduced by 69 and 41%, respectively. ATP-induced rounding was also accompanied by a redistribution of microfilaments resulting in formation of a dense net of F-actin surrounding retracted nuclei. Importantly, ATP-stimulated changes in cell, cytoskeletal, and nuclear form were prevented in permeabilized cells using a synthetic myosin peptide (IRICRKG) that has been previously shown to inhibit actomyosin filament sliding in muscle. In contrast, both the rate and extent of cell and nuclear rounding were increased in permeabilized cells exposed to ATP when the soluble FN peptide, GRGDSP, was used to dislodge immobilized FN from cell surface integrin receptors.(ABSTRACT TRUNCATED AT 250 WORDS).

  2. Shape changes and growth trajectories in the early stages of three species of the genus Diplodus (Perciformes, Sparidae).

    Science.gov (United States)

    Loy, A; Bertelletti, M; Costa, C; Ferlin, L; Cataudella, S

    2001-10-01

    The larvae of three species of the genus Diplodus (Diplodus vulgaris, D. sargus, and D. puntazzo) colonize shallow waters along the Mediterranean coasts and, after a short period spent in the water column, they settle. For all three species this habitat transition is characterized by important shape changes mostly related to swimming capacity and feeding behavior. In this study, geometric morphometrics are used to characterize shape changes during the early juvenile life of specimens collected in a single locality in order to compare growth curves and allometric relationships. Size-related shape changes proved to be similar for all three species and are consistent with the ecological transition. A nonparametric smoothing technique (Loess) was used to fit the scatter of shape on size. The graphical representation (of most size-related shape variability) of this fitting technique shows how major shape changes are rapid for small sizes and slow down successively. The approach allows for the visualization of allometry and the fitting technique might help in defining the allometric growth pattern, thus contributing to the study of the autoecology of the species and in establishing terms for comparison with other ecologically or phylogenetically related species.

  3. 定形相变材料的研究进展%Recent progress in shape-stabilized phase change materials

    Institute of Scientific and Technical Information of China (English)

    汪意; 杨睿; 张寅平; 王馨

    2013-01-01

      定形相变材料是以聚合物为基体,相变物质分布在聚合物三维网状结构中的一种新型相变材料。定形相变材料在相变过程中表现为宏观固相、微观液相,支撑和力学性能优秀,不易泄漏,因其优良的加工性能和安全性能而受到广泛关注,并表现出了广阔的应用前景。本文综述了定形相变材料的制备、导热和阻燃性能等方面的研究进展,并从实验和模拟两方面综合评价了定形相变材料在建筑节能方面的使用性能,展望了定形相变材料的发展前景。%  Shape-stabilized phase change materials (SSPCM) uses polymer as a matrix with the phase change materials dispersed in the matrix. SSPCM shows a solid state macroscopically and hence possesses some salient features including excellent mechanical properties, good processability and high safety. This paper provides a review on the SSPCM, including preparation, thermal conductivity enhancement and flame retardation. An assessment is then made on the use of the materials with a specific focus on energy saving in buildings.

  4. Changes in diet and physical activity resulting from the Shape Up Somerville community intervention.

    Science.gov (United States)

    Folta, Sara C; Kuder, Julia F; Goldberg, Jeanne P; Hyatt, Raymond R; Must, Aviva; Naumova, Elena N; Nelson, Miriam E; Economos, Christina D

    2013-10-04

    The purpose of this study is to describe the behavioral changes in children resulting from Shape Up Somerville (SUS), a community-based, participatory obesity prevention intervention that used a multi-level, systems-based approach. It was set in Somerville, an urban, culturally diverse community in Massachusetts, USA. This was a non-randomized, controlled 2-year community-based intervention trial with children enrolled in grades 1 to 3 (ages 6-8 years). Overall, the SUS intervention was designed to create environmental and policy change to impact all aspects of a child's day. Pre-post outcomes were compared between Somerville and two control communities that were chosen based on socio-demographic similarities. Behavioral outcomes were fruit and vegetable and sugar-sweetened beverage consumption; number of organized sports and physical activities per year; walking to and from school; screen and television time; television in bedroom; and dinner in room with television on. These measures were assessed by parent/caregiver report using a 68-item Family Survey Form. Data were analyzed using multiple linear regression, accounting for covariates and clustering by community. Intervention group children, compared to the control group, significantly reduced sugar-sweetened beverage consumption (-2.0 ounces per day; 95% CI -3.8 to -0.2), increased participation in organized sports and physical activities (0.20 sports or activities per year; 95% CI 0.06 to 0.33), and reduced their screen time (-0.24 hours per day; 95% CI -0.42 to -0.06). Results of this study, particularly intake of sugar-sweetened beverages and screen time, are similar to others that used a multi-level approach to realize change in behavior. These results support the efficacy of a multi-level and systems-based approach for promoting the behavioral changes necessary for childhood obesity prevention. This study is registered at ClinicalTrials.gov as NCT00153322.

  5. Rank distributions: A panoramic macroscopic outlook

    Science.gov (United States)

    Eliazar, Iddo I.; Cohen, Morrel H.

    2014-01-01

    This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions—top-down, bottom-up, and global—and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.

  6. Slow motility in hair cells of the frog amphibian papilla: Ca2+-dependent shape changes.

    Science.gov (United States)

    Farahbakhsh, Nasser A; Narins, Peter M

    2006-02-01

    We investigated the process of slow motility in non-mammalian auditory hair cells by recording the time course of shape change in hair cells of the frog amphibian papilla. The tall hair cells in the rostral segment of this organ, reported to be the sole recipients of efferent innervation, were found to shorten in response to an increase in the concentration of the intracellular free calcium. These shortenings are composed of two partially-overlapping phases: an initial rapid iso-volumetric contraction, followed by a slower length decrease accompanied with swelling. It is possible to unmask the iso-volumetric contraction by delaying the cell swelling with the help of K+ or Cl- channel inhibitors, quinine or furosemide. Furthermore, it appears that the longitudinal contraction in these cells is Ca2+-calmodulin-dependent: in the presence of W-7, a calmodulin inhibitor, only a slow, swelling phase could be observed. These findings suggest that amphibian rostral AP hair cells resemble their mammalian counterparts in expressing both a Ca2+-calmodulin-dependent contractile structure and an "osmotic" mechanism capable of mediating length change in response to extracellular stimuli. Such a mechanism might be utilized by the efferent neurotransmitters for adaptive modulation of mechano-electrical transduction, sensitivity enhancement, frequency selectivity, and protection against over-stimulation.

  7. Characterization and application of shape-changing panels with embedded rubber muscle actuators

    Science.gov (United States)

    Peel, Larry D.; Molina, Enrique, Jr.; Baur, Jeffery W.; Justice, Ryan S.

    2013-09-01

    Cylindrical soft actuators efficiently convert fluid pressure into mechanical energy and thus offer excellent force-to-weight ratios while behaving similar to biological muscle. McKibben-like rubber muscle actuators (RMAs) were embedded into neat elastomer and act as shape-changing panels. The effect of actuator spacing and modeling methods on the performance of these panels was investigated. Simulations from nonlinear finite element models were compared with results from test panels containing four RMAs that were spaced 0, 1/2, 1, and 1.3 RMA diameters apart. Nonlinear ‘laminated plate’ and ‘rod & plate’ finite element (FE) models of individual (non-embedded) RMAs and panels with embedded RMAs were developed. Due to model complexity and resource limitations, several simplified 2D and 3D FE model types, including a 3D ‘Unit Cell’ were created. After subtracting the ‘activation pressure’ needed to initiate contraction, all the models for the individual actuators produced forces consistent with experimental values, but only the more resource-intensive rod & plate models replicated fiber/braid re-orientation and produced more realistic values for actuator contraction. For panel models, the Full 3D rod & plate model appeared to be the most accurate for panel contraction and force, but was not completed for all configurations due to resource limitations. Most embedded panel FE models produced maximum panel actuator force and maximum contraction when the embedded actuators are spaced between 1/2 and 1 diameter apart. Seven panels with embedded RMAs were experimentally fabricated and tested. Panel tests confirmed that maximum or optimal performance occurs when the RMAs are spaced between 1/2 and 1 diameter apart. The tested actuator force was fairly constant in this range, suggesting that minor design or manufacturing differences may not significantly affect panel performance. However, the amount of axial force and contraction decreases significantly at

  8. Climate associated size and shape changes in Aedes aegypti (Diptera: Culicidae) populations from Thailand.

    Science.gov (United States)

    Morales Vargas, Ronald Enrique; Ya-Umphan, Phubeth; Phumala-Morales, Noppawan; Komalamisra, Narumon; Dujardin, Jean-Pierre

    2010-05-01

    In spite of the adult body size variability of Aedes aegypti (Linnaeus) and its likely association with life history and vectorial capacity, the causes of size variation itself have been only partially identified. In particular, possible important factors such as climatic variation have not received much attention. The objective of this 2-year study was to describe from field collections the relationship of Ae. aegypti metric properties with available climatic data. The study took place in a dengue hyperendemic area of Thailand. Fourth instar larvae (L(4)) and pupae were collected from the same breeding places allowing the comparisons between seven successive collections, four in 2007 and three in 2008. Climatic data were relative humidity (RH) and temperature (T). They were considered for the periods covering either the pre-imaginal development or, assuming heritability of size, the previous generation. The pre-imaginal period was further subdivided into embryonic and larval phases of development. Size was estimated by traditional and geometric techniques, the latter based on 18 landmarks collected at the intersections of veins also allowing estimation of shape. The shape variation of the wing followed similar patterns as for size and was shown to be a passive allometric change. No significant correlation of size or shape could be disclosed with T. In contrast, significant correlation with RH was found during two periods of examination: (i) the period affecting the generation previous to the time of collection, suggesting possible selective mechanisms on genitors, and (ii) the one occurring during pre-imaginal development. The subdivision of the latter into embryonic and larval phases allowed to evidence a possible selecting effect on embryonic development. The selection would act through the resistance to water loss which is known to depend on the relative surface of the cuticle. In conclusion, our data highlight the importance of the emerged period of Ae

  9. Pleated turtle escapes the box--shape changes in Dermochelys coriacea.

    Science.gov (United States)

    Davenport, John; Plot, Virginie; Georges, Jean-Yves; Doyle, Thomas K; James, Michael C

    2011-10-15

    Typical chelonians have a rigid carapace and plastron that form a box-like structure that constrains several aspects of their physiology and ecology. The leatherback sea turtle, Dermochelys coriacea, has a flexible bony carapace strengthened by seven longitudinal ridges, whereas the plastron is reduced to an elliptical outer bony structure, so that the ventrum has no bony support. Measurements of the shell were made on adult female leatherbacks studied on the feeding grounds of waters off Nova Scotia (NS) and on breeding beaches of French Guiana (FG) to examine whether foraging and/or breeding turtles alter carapace size and/or shape. NS turtles exhibited greater mass and girth for a given curved carapace length (CCL) than FG turtles. Girth:CCL ratios rose during the feeding season, indicating increased girth. Measurements were made of the direct (straight) and surface (curved) distances between the medial longitudinal ridge and first right-hand longitudinal ridge (at 50% CCL). In NS turtles, the ratio of straight to curved inter-ridge distances was significantly higher than in FG turtles, indicating distension of the upper surfaces of the NS turtles between the ridges. FG females laid 11 clutches in the breeding season; although CCL and curved carapace width remained stable, girth declined between each nesting episode, indicating loss of mass. Straight to curved inter-ridge distance ratios did not change significantly during the breeding season, indicating loss of dorsal blubber before the onset of breeding. The results demonstrate substantial alterations in size and shape of female D. coriacea over periods of weeks to months in response to alterations in nutritional and reproductive status.

  10. Kinematic Analysis of VibroBot: a Soft, Hopping Robot with Stiffness- and Shape-Changing Abilities

    Directory of Open Access Journals (Sweden)

    Djen Timo Kühnel

    2016-10-01

    Full Text Available Bouncing locomotion is used frequently in the animal kingdom for high speed movement over land. Animals also change their stiffness and shape to improve their locomotion ability. Both bouncing movement and stiffness- and shape-changing capabilities have been recently explored in robotics. In this paper a novel soft locomotion robot, VibroBot, is presented, capable of moving using a bouncing gait by inducing whole-body oscillations through rotation of an internal out-of-balance mass. VibroBot is capable of changing both its stiffness and shape to tackle challenging terrain and to overcome obstacles. When the robot is stiff, it is capable of high-frequency oscillatory locomotion suited to movement on hard surfaces, while in a compliant state it uses a lower-frequency higher-amplitude hopping gait suitable for travelling over soft or loose ground. Forward speeds of 8.5 cm/s (0.34 body lengths per second on hard floor in VibroBot’s stiff state and 5 cm/s (0.2 body lengths per second on sand in its compliant state were recorded. VibroBot can also selectively change its shape to climb obstacles with heights up to 3 cm (20% of the robot’s height in its stiff state, far greater than its hopping apex height (1 cm. Both simple bouncing gaits and stiffness- and shape-changing abilities show great promise for improving the locomotion abilities of soft robots.

  11. Adjoint-based shape optimization of fin geometry for enhanced solid/liquid phase-change process

    Science.gov (United States)

    Morimoto, Kenichi; Suzuki, Yuji

    2015-11-01

    In recent years, the control of heat transfer processes, which play a critical role in various engineering devices/systems, has gained renewed attention. The present study aims to establish an adjoint-based shape optimization method for high-performance heat transfer processes involving phase-change phenomena. A possible example includes the application to the thermal management technique using phase-change material. Adjoint-based shape optimization scheme is useful to optimal shape design and optimal control of systems, for which the base function of the solution is unknown and the solution includes an infinite number of degrees of freedom. Here we formulate the shape-optimization scheme based on adjoint heat conduction analyses, focusing on the shape optimization of fin geometry. In the computation of the developed scheme, a meshless local Petrov-Galerkin (MLPG) method that is suited for dealing with complex boundary geometry is employed, and the enthalpy method is adopted for analyzing the motion of the phase-change interface. We examine in detail the effect of the initial geometry and the node distribution in the MLPG analysis upon the final solution of the shape optimization. Also, we present a new strategy for the computation using bubble mesh.

  12. [Macroscopic observations on corneal epithelial wound healing in the rabbit].

    Science.gov (United States)

    Hayashi, K

    1991-02-01

    A newly-developed macroscope was applied to observe the healing process of corneal epithelial wound in vivo. After removing epithelium of the central cornea, the changes of the corneal surface were observed with the macroscope and the findings were compared with histological examinations. At 12 hours after abrasion, areas unstained with Richardson's staining (R staining) appeared. In the histological section, a single layer of regenerating epithelial cells covered the same area. At 24 and 36 hours after abrasion, the epithelial defects became smaller but surrounding epithelium was rough and showed dot-like staining with R solution. By 2 days, the epithelial defects disappeared. On macroscopic observation, the central corneal surface showed a pavement-like appearance. Histology revealed that the regenerating epithelium still consisted of one or two layers. At 3 days, dot-like stainings were present only in the center and the corneal surface appeared considerably smooth. Histology also showed that regenerating epithelium became columnar and multilayered, thereby suggesting stratification. By 7 days, the abraded corneal surface had recovered its smooth appearance. Histologic sections also demonstrated that the epithelium had regained its normal structure. Thus, using this macroscope, findings suggesting the process of epithelial migration and proliferation could be observed.

  13. Macroscopic transport by synthetic molecular machines

    NARCIS (Netherlands)

    Berna, J; Leigh, DA; Lubomska, M; Mendoza, SM; Perez, EM; Rudolf, P; Teobaldi, G; Zerbetto, F

    2005-01-01

    Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with - and perform physical tasks in - the macroscopic world represents a significant hurdle

  14. Assessments of macroscopicity for quantum optical states

    DEFF Research Database (Denmark)

    Laghaout, Amine; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund

    2015-01-01

    With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should...... enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished. © 2014....

  15. Quantum Bell Inequalities from Macroscopic Locality

    CERN Document Server

    Yang, Tzyh Haur; Sheridan, Lana; Scarani, Valerio

    2010-01-01

    We propose a method to generate analytical quantum Bell inequalities based on the principle of Macroscopic Locality. By imposing locality over binary processings of virtual macroscopic intensities, we establish a correspondence between Bell inequalities and quantum Bell inequalities in bipartite scenarios with dichotomic observables. We discuss how to improve the latter approximation and how to extend our ideas to scenarios with more than two outcomes per setting.

  16. Shape changes and test of the critical-point symmetry X(5) in N=90 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dewald, A.; Moeller, O.; Tonev, D.; Fitzler, A.; Saha, B.; Jessen, K.; Heinze, S.; Linnemann, A.; Jolie, J.; Zell, K.O.; Brentano, P. von; Casten, R.F. [Institut fuer Kernphysik der Universitaet zu Koeln, Koeln (Germany); Petkov, P. [Institute for Nuclear Research and Nuclear Energy Sofia, Sofia (Bulgaria); Caprio, M.; Cooper, J.R.; Zamfir, V. [W.N.S.L., Yale University, CT 06520, New Haven (United States); Kruecken, R. [W.N.S.L., Yale University, CT 06520, New Haven (United States); Physik-Department E12, TU Muenchen, Garching (Germany); Bazzacco, D.; Lunardi, S.; Rossi-Alvarez, C. [Dipartimento di Fisica dell' Universita and INFN Sezione Padova, Padova (Italy); Brandolini, F.; Ur, C.; De Angelis, G.; Napoli, D.R.; Farnea, E.; Marginean, N.; Martinez, T.; Axiotis, M.

    2004-04-01

    Reliable and precise lifetimes of excited states in {sup 154}Gd and {sup 156}Dy were measured using the recoil distance Doppler shift (RDDS) technique. Excited states of {sup 154}Gd were populated via Coulomb excitation with a {sup 32}S beam at 110 MeV delivered by the FN tandem accelerator at the University of Cologne. For {sup 156}Dy a coincidence plunger experiment was performed at the Laboratori Nazionali di Legnaro with the GASP spectrometer and the Cologne coincidence plunger apparatus using the reaction {sup 124}Sn({sup 36}S,4n){sup 156}Dy at a beam energy of 155 MeV. Shape changes previously suggested to appear in the ground-state band (gsb) of {sup 156}Dy and in the s-band above the first band crossing were not supported by the transition probabilities determined in this work. The measured transition probabilities of {sup 156}Dy and {sup 154}Gd as well as the corresponding energy spectra are compared with the predictions of the recently proposed X(5) model and in the case of {sup 156}Dy also with an IBA fit. (orig.)

  17. A reagent-based dynamic trigger for cell adhesion, shape change, or cocultures.

    Science.gov (United States)

    van Dongen, Stijn F M; Maiuri, Paolo; Piel, Matthieu

    2014-01-01

    The described protocol is a simple and easily implemented method for making dynamic micropatterns for cell culture. It is based on the use of a surface coating material (azido-PLL-g-PEG (APP)) that initially repels cells, but which can be made strongly adherent by addition of a small functional peptide (BCN-RGD) to the cell culture medium. The method can be applied to trigger the adhesion, migration, or shape change of single cells or of populations of cells, and it can be used to create patterned cocultures. The entire process can be subdivided into three main parts. The first part describes the creation of patterned APP substrates. The second part describes cell seeding and "click" triggering of cell adhesion; the final part describes variations that allow the overlay of multiple patterns or the creation of patterned cocultures. The APP coating of substrates and the triggering of adhesion only involves treating the surface with aqueous stock solutions, allowing any biology lab to adopt this technique.

  18. Area and shape changes of the carpal tunnel in response to tunnel pressure.

    Science.gov (United States)

    Li, Zong-Ming; Masters, Tamara L; Mondello, Tracy A

    2011-12-01

    Carpal tunnel mechanics is relevant to our understanding of median nerve compression in the tunnel. The compliant characteristics of the tunnel strongly influence its mechanical environment. We investigated the distensibility of the carpal tunnel in response to tunnel pressure. A custom balloon device was designed to apply controlled pressure. Tunnel cross sections were obtained using magnetic resonance imaging to derive the relationship between carpal tunnel pressure and morphological parameters at the hook of hamate. The results showed that the cross-sectional area (CSA) at the level of the hook of hamate increased, on average, by 9.2% and 14.8% at 100 and 200 mmHg, respectively. The increased CSA was attained by a shape change of the cross section, displaying increased circularity. The increase in CSA was mainly attributable to the increase of area in the carpal arch region formed by the transverse carpal ligament. The narrowing of the carpal arch width was associated with an increase in the carpal arch. We concluded that the carpal tunnel is compliant to accommodate physiological variations of the carpal tunnel pressure, and that the increase in tunnel CSA is achieved by increasing the circularity of the cross section.

  19. The geometric effect and programming current reduction in cylindrical-shaped phase change memory

    Science.gov (United States)

    Li, Yiming; Hwang, Chih-Hong; Li, Tien-Yeh; Cheng, Hui-Wen

    2009-07-01

    This study conducts a three-dimensional electro-thermal time-domain simulation for numerical analysis of cylindrical-shaped phase change memories (PCMs). The influence of chalcogenide material, germanium antimony telluride (GeSbTe or GST), structure on PCM operation is explored. GST with vertical structure exhibits promising characteristics. The bottom electrode contact (BEC) is advanced to improve the operation of PCMs, where a 25% reduction of the required programming current is achieved at a cost of 26% reduced resistance ratio. The position of the BEC is then shifted to further improve the performance of PCMs. The required programming current is reduced by a factor of 11, where the resistance ratio is only decreased by 6.9%. However, the PCMs with a larger shift of BEC are sensitive to process variation. To design PCMs with less than 10% programming current variation, PCMs with shifted BEC, where the shifted distance is equal to 1.5 times the BEC's radius, is worth considering. This study quantitatively estimates the structure effect on the phase transition of PCMs and physically provides an insight into the design and technology of PCMs.

  20. Preparation of shape-stabilized phase change materials as temperature-adjusting powder

    Institute of Scientific and Technical Information of China (English)

    MIAO Chunyan; L(U) Gang; YAO Youwei; TANG Guoyi; WENG Duan

    2007-01-01

    The shape-stabilized phase change materials (PCMs)composed of paraffin wax and silica were prepared in O/W emulsion with cetyl trimethylamine bromide as emulsifier and n-pentanol as assist emulsifier.The paraffin wax(with melting temperature of 29℃,crystallizing temperature of 26℃ and latent heat of 142 J/g)served as latent heat storage material and the silica as supporting material,which prevented the leakage of the melted paraffin wax.Silica supporting material was formed in situ via hydrolysis and condensation from low-cost sodium silicate solution with chlorhydric acid and ammonium bicarbonate as neutralizing agent.The thermogravimetry(TG)curves show that the composite has a thermal stability superior to that of paraffin wax and that the content of paraffin wax in the composite is 65wt%.The maximum latent heat and its relevant melting point of composite are 95 J/g and 30℃,respectively.

  1. Immunological identification of candidate proteins involved in regulating active shape changes of outer hair cells.

    Science.gov (United States)

    Knipper, M; Zimmermann, U; Köpschall, I; Rohbock, K; Jüngling, S; Zenner, H P

    1995-06-01

    By employing immunological methods, it has been demonstrated that myosin, myosin light chain (MLC) and myosin light chain kinase (MLCK) proteins in outer hair cells (OHC) are immunologically different from isoforms in platelets, smooth muscle and heart muscle, and are probably more related to isoforms found in red blood cells (RBC). Moreover, proteins related to band 3 protein (b3p) and protein 4.1 (p 4.1), ankyrin as well as fodrin and spectrin, but not glycophorin, have been identified in isolated OHCs. Both OHCs and RBC differ from other motile non-muscle cells in their lack of smooth muscle isoforms of actin, their common high levels of spectrin-, ankyrin- and band 3-like proteins, as well as the expression of the 80 kDa protein 4.1 isoform. The data support the notion that motility of OHC may be based upon regulation of the b3p/p 4.1/ankyrin complex, and thus may be reminiscent to the active shape changes in RBC.

  2. Spinning, Breathing, and Flapping: The Changing Size and Shape of Saturn's Middle Magnetosphere

    Science.gov (United States)

    Ramer, K. M.; Kivelson, M.; Sergis, N.; Khurana, K. K.; Jia, X.; Strangeway, R. J.

    2014-12-01

    In Saturn's magnetosphere, periodic fluctuations are observed in Saturn Kilometric Radiation (SKR), auroral emissions, magnetic field, electron density, and energetic particle fluxes. We have extended previous Cassini investigations at Saturn by characterizing periodicities in additional plasma and magnetic field properties in Saturn's middle magnetosphere near the equatorial plane. It is customary to model perturbations in the middle magnetosphere as if they rotate rigidly, but we find that this assumption does not work well for all properties of interest and that the phase dependence of the perturbations may vary with radius and local time. We use a magnetohydrodynamic (MHD) simulation [Jia et al., 2012], which generates a rotating pattern of field aligned currents centered at 70° invariant latitude in Saturn's southern ionosphere that impose periodic variations on the entire magnetosphere, to understand how the changing size and shape affects the observed properties. In particular, we find that the dayside magnetopause roughly follows the 80 invariant latitude field lines as they move in and out. We identify three different modes of magnetospheric periodicity linked to rotation (spinning), compression (breathing), and north-south motion (flapping). All have the same ~10.7 hour period, but impose significant changes at phases that depend on the plasma property considered and the location of the measurement. Multiple modes acting concurrently can produce distinctly non-sinusoidal waveforms of the variations of plasma parameters through a rotation cycle. Within limitations of data coverage, we find good agreement between the simulation and the data in the rotation phase modulation of magnetic pressure, plasma pressure, and density perturbations.

  3. Development of Differential Sensitivity for Shape Changes Resulting from Linear and Nonlinear Planar Transformations

    Directory of Open Access Journals (Sweden)

    Bart Ons

    2011-02-01

    Full Text Available A shape bias for extending names to objects that look visually similar has been commonly accepted but it is hard to define which kind of shape dissimilarities are diagnostic for the identity of an object. Here, we present a transformational approach to describe shape differences that can incorporate many significant shape features. We introduce two kinds of transformations: one kind concerns linear transformations of the image plane (affine transformations, generally limiting shape variations within the borders of basic-level categories; the other kind concerns nonlinear continuous transformations of the image plane (topological transformations, allowing all kinds of shape variation crossing and not crossing the borders of basic-level categories. We administered stimulus pairs differing in these shape transformations to children of 3 years to 7 years old in a delayed match-to-sample task. With increasing age, especially between 5 years and 6 years, children became more sensitive to the topological deformations that are relevant for between-category distinctions, indicating that acquired categorical knowledge in early years induces perceptual learning of the relevant generic shape differences between categories.

  4. CONTRIBUTION OF MACROSCOPIC DIMENSION EFFECT TO PIEZOELFCTRICITY IN POLYVINYLIDENE FLUORIDE

    Institute of Scientific and Technical Information of China (English)

    WEN Jianxun; TAKEO FURUKAWA

    1987-01-01

    In this paper, we have studied the piezoelectricity in the poled uniaxially drawn polyvinylidene fluoride. The piezoelectric constants d31, d32, da33 and Young's moduli 1/s11 and 1/s22 have been determined as a function of the remanent polarization Pr. The piezoelectric constants of the samples show a strong in-plane anisotropy. Such an anisotropy is mostly attributable to different Poisson's ratio. It is found that the piezoelectric activity mainly arises from macroscopic dimensional change.

  5. Shape change as entropic phase transition: A study using Jarzynski relation

    Indian Academy of Sciences (India)

    Moupriya Das; Debasish Mondal; Deb Shankar Ray

    2012-01-01

    A Brownian particle in a confined space with varying cross-section, experiences an effective entropic potential in reduced dimension. We modulate the shape of the confinement and examine the nature of dynamical transition between two distinct thermalized entropic states corresponding to different shapes of the enclosure, using Jarzynski relation on the basis of work-distribution over non-equilibrium paths. Our analysis reveals that modulating the shape of the boundaries of the enclosure makes the resident Brownian particles feel an entropic phase transition.

  6. Investigation of the shape change of bio-flocs and its influence on mass transport using particle image velocimetry.

    Science.gov (United States)

    Ren, T T; Xiao, F; Sun, W J; Sun, F Y; Lam, K M; Li, X Y

    2014-01-01

    In this laboratory study, an advanced flow visualization technique - particle image velocimetry (PIV) - was employed to investigate the change of shape of activated sludge flocs in water and its influence on the material transport characteristics of the flocs. The continuous shape change of the bio-flocs that occurred within a very short period of time could be captured by the PIV system. The results demonstrate that the fluid turbulence caused the shift of parts of a floc from one side to the other in less than 200 ms. During the continuous shape change, the liquid within the floc was forced out of the floc, which was then refilled with the liquid from the surrounding flow. For the bio-flocs saturated with a tracer dye, it was shown that the dye could be released from the flocs at a faster rate when the flocs were swayed around in water. The experimental results indicate that frequent shape change of bio-flocs facilitates the exchange of fluid and materials between the floc interior and the surrounding water. This mass transfer mechanism can be more important than molecular diffusion and internal permeation to the function and behavior of particle aggregates, including bio-flocs, in natural waters and treatment systems.

  7. 2007 Effect of Changes in Layout Shape on Unit Construction Cost ...

    African Journals Online (AJOL)

    ezra

    and sizes of vertical components such as external walls and associated finishes, ... construction cost) obtained by dividing total project ... since non-right angled internal arrangements are .... corner columns (such as the square shape and.

  8. Suitability of measurement of swirling as a marker of platelet shape change in concentrates stored for transfusion.

    Science.gov (United States)

    Mathai, Jaisy; Resmi, K R; Sulochana, P V; Sathyabhama, S; Baby Saritha, G; Krishnan, Lissy K

    2006-09-01

    Platelet discoid shape is known to correlate with in vivo viability after transfusion. Measurement of shape change requires invasive sampling and laborious assays, which is difficult to perform in a blood transfusion center as a routine test for quality control of stored platelets. The objective of this study was to establish suitability of swirling assessment in stored platelet suspension as a routine test for quality check, by comparing platelet shape change measurement carried out in parallel. The study was done in two types of bags obtained from different manufactures (Groups 1 and 2). Platelet concentrates (PC) were stored for 120 h and samples drawn at 24-h intervals, optical analysis at 540 nm was carried out to quantify shape change in response to an agonist adenosine diphosphate (ADP). The same bags were subjected to swirling assessment, by two blood bank personnel independently and graded as positive (+, ++, +++) or as negative, based on the silky appearance of the suspension. Swirling negative platelets were prepared by storing platelets at 4 degrees C for 24 h and were compared with swirling positive platelets. Other parameters studied in the samples drawn at 24-h intervals were platelet count, mean platelet volume, and blood gases. Swirling assessment results correlated well with shape change measurement at each study period with a P value significant at 0.02 and 0.04 for group 1 and 2 bags, respectively. In the negative swirling controls, extent of shape change was lower than the extent in test bags, showing reduced capacity to respond to ADP at 4 degrees C. The results of the study indicate that by simple swirling measurements, stored PC can be monitored for loss of discoid shape before they are transfused. Gas tension and pH were with in permissible limits. Therefore, inspection of swirling can be a reliable method of quality control as it correlates with platelet function. The platelets that retain the discoid shape in vitro at the time of

  9. Macroscopic modeling for traffic flow on three-lane highways

    Science.gov (United States)

    Chen, Jianzhong; Fang, Yuan

    2015-04-01

    In this paper, a macroscopic traffic flow model for three-lane highways is proposed. The model is an extension of the speed gradient model by taking into account the lane changing. The new source and sink terms of lane change rate are added into the continuity equations and the speed dynamic equations to describe the lane-changing behavior. The result of the steady state analysis shows that our model can describe the lane usage inversion phenomenon. The numerical results demonstrate that the present model effectively reproduces several traffic phenomena observed in real traffic such as shock and rarefaction waves, stop-and-go waves and local clusters.

  10. On exact and approximated formulations for scaling-mode shapes in operational modal analysis by mass and stiffness change

    Science.gov (United States)

    López-Aenlle, M.; Brincker, R.; Pelayo, F.; Canteli, A. F.

    2012-01-01

    When operational modal analysis (OMA) is used to estimate modal parameters, mode shapes cannot be mass normalized. In the past few years, some equations have been proposed to scale mode shapes using the mass-change method, which consists of repeating modal testing after changing the mass at different points of the structure where the mode shapes are known. In this paper, the structural-dynamic-modification theory is used to derive a set of equations, from which all the existing formulations can be derived. It is shown that the known equations can be divided into two types, the exact and the approximated equations, where the former type does in fact fulfill the equations derived from the theory of structural modification, whereas the remaining equations do not, mainly because the change of the mode shapes of the modified structure is not properly taken into account. By simulations, the paper illustrates the large difference in accuracy between the approximate and the exact formulations. The paper provides two new exact formulations for the scaling factors, one for the non-modified structure and - for the first time in the literature - one for the modified structure. The simulations indicate the influence of errors from the measured natural frequencies and mode shapes on the estimation of the scaling factors using the two exact formulations from the literature and the new exact formulation proposed in this paper. In addition, the paper illustrates statistics of the errors on mode-shape scaling. All simulations were carried out using a plate with closely spaced modes.

  11. Macroscopic optical response and photonic bands

    CERN Document Server

    Perez-Huerta, J S; Mendoza, Bernardo S; Mochan, W Luis

    2012-01-01

    We develop a formalism for the calculation of the macroscopic dielectric response of composite systems made of particles of one material embedded periodically within a matrix of another material, each of which is characterized by a well defined dielectric function. The nature of these dielectric functions is arbitrary, and could correspond to dielectric or conducting, transparent or opaque, absorptive and dispersive materials. The geometry of the particles and the Bravais lattice of the composite are also arbitrary. Our formalism goes beyond the longwavelenght approximation as it fully incorporates retardation effects. We test our formalism through the study the propagation of electromagnetic waves in 2D photonic crystals made of periodic arrays of cylindrical holes in a dispersionless dielectric host. Our macroscopic theory yields a spatially dispersive macroscopic response which allows the calculation of the full photonic band structure of the system, as well as the characterization of its normal modes, upo...

  12. A macroscopic challenge for quantum spacetime

    CERN Document Server

    Amelino-Camelia, Giovanni

    2013-01-01

    Over the last decade a growing number of quantum-gravity researchers has been looking for opportunities for the first ever experimental evidence of a Planck-length quantum property of spacetime. These studies are usually based on the analysis of some candidate indirect implications of spacetime quantization, such as a possible curvature of momentum space. Some recent proposals have raised hope that we might also gain direct experimental access to quantum properties of spacetime, by finding evidence of limitations to the measurability of the center-of-mass coordinates of some macroscopic bodies. However I here observe that the arguments that originally lead to speculating about spacetime quantization do not apply to the localization of the center of mass of a macroscopic body. And I also analyze some popular formalizations of the notion of quantum spacetime, finding that when the quantization of spacetime is Planckian for the constituent particles then for the composite macroscopic body the quantization of spa...

  13. On Macroscopic Complexity and Perceptual Coding

    CERN Document Server

    Scoville, John

    2010-01-01

    While Shannon information establishes limits to the universal data compression of binary data, no existing theory provides an equivalent characterization of the lossy data compression algorithms prevalent in audiovisual media. The current paper proposes a mathematical framework for perceptual coding and inference which quantifies the complexity of objects indistinguishable to a particular observer. A definition of the complexity is presented and related to a generalization of Boltzmann entropy for these equivalence classes. When the classes are partitions of phase space, corresponding to classical observations, this is the proper Boltzmann entropy and the macroscopic complexity agrees with the Algorithmic Entropy. For general classes, the macroscopic complexity measure determines the optimal lossy compression of the data. Conversely, perceptual coding algorithms may be used to construct upper bounds on certain macroscopic complexities. Knowledge of these complexities, in turn, allows perceptual inference whic...

  14. Nanoplasmon-enabled macroscopic thermal management

    CERN Document Server

    Jonsson, Gustav Edman; Dmitriev, Alexandre

    2013-01-01

    In numerous applications of energy harvesting via transformation of light into heat the focus recently shifted towards highly absorptive materials featuring nanoplasmons. It is currently established that noble metals-based absorptive plasmonic platforms deliver significant light-capturing capability and can be viewed as super-absorbers of optical radiation. However, direct experimental evidence of plasmon-enabled macroscopic temperature increase that would result from these efficient absorptive properties is scarce. Here we derive a general quantitative method of characterizing light-capturing properties of a given heat-generating absorptive layer by macroscopic thermal imaging. We further monitor macroscopic areas that are homogeneously heated by several degrees with plasmon nanostructures that occupy a mere 8% of the surface, leaving it essentially transparent and evidencing significant heat generation capability of nanoplasmon-enabled light capture. This has a direct bearing to thermophotovoltaics and othe...

  15. Go reconfigure: how fish change shape as they swim and evolve.

    Science.gov (United States)

    Long, John H; Porter, Marianne E; Root, Robert G; Liew, Chun Wai

    2010-12-01

    The bodies of fish change shape over propulsive, behavioral, developmental, and evolutionary time scales, a general phenomenon that we call "reconfiguration". Undulatory, postural, and form-reconfiguration can be distinguished, studied independently, and examined in terms of mechanical interactions and evolutionary importance. Using a combination of live, swimming fishes and digital robotic fish that are autonomous and self-propelled, we examined the functional relation between undulatory and postural reconfiguration in forward swimming, backward swimming, and yaw turning. To probe how postural and form reconfiguration interact, the yaw turning of leopard sharks was examined using morphometric and kinematic analyses. To test how undulatory reconfiguration might evolve, the digital robotic fish were subjected to selection for enhanced performance in a simulated ecology in which each individual had to detect and move towards a food source. In addition to the general issue of reconfiguration, these investigations are united by the fact that the dynamics of undulatory and postural reconfigurations are predicted to be determined, in part, by the structural stiffness of the fish's body. Our method defines undulatory reconfiguration as the combined, point-by-point periodic motion of the body, leaving postural reconfiguration as the combined deviations from undulatory reconfiguration. While undulatory reconfiguration appears to be the sole or primary propulsive driver, postural reconfiguration may contribute to propulsion in hagfish and it is correlated with differences in forward, and backward, swimming in lamprey. Form reconfigures over developmental time in leopard sharks in a manner that is consistent with an allometric scaling theory in which structural stiffness of the body is held constant. However, correlation of a form proxy for structural stiffness of the body suggests that body stiffness may scale in order to limit maximum postural reconfiguration during routine

  16. A Large-Scale Pattern of Ontogenetic Shape Change in Ray-Finned Fishes.

    Directory of Open Access Journals (Sweden)

    Hilary R Katz

    Full Text Available Fishes exhibit a remarkable diversity of body shape as adults; however, it is unknown whether this diversity is reflected in larval stage morphology. Here we investigate the relationship between larval and adult body shape as expressed by body elongation. We surveyed a broad range of ray-finned fish species and compared body shape at larval and adult stages. Analysis shows that the vast majority of fish are more elongate at the larval stage than at the adult stage, and that adults display greater interspecies variation than larvae. We found that the superorder Elompomorpha is unique because many species within the group do not follow the observed elongation trends. These results indicate that much of the diversity observed in adults is achieved in post-larval stages. We suggest that larval morphology is subject to common constraints across the phylogeny.

  17. Shape-shifting, identity, and change in Harry Potter and the Prisoner of Azkaban

    OpenAIRE

    Ward, Renee

    2005-01-01

    Complex representations of identity abound in children or youth’s fantasy literature, particularly in texts that employ the shape-shifting motif. In two of the most studied youth’s fantasy literature texts, A Wizard of Earthsea and The Sword in the Stone, Ursula K. Le Guin and T. H. White link shape-shifting to the identity and development of their protagonists. J. K. Rowling’s Harry Potter series also serves as an excellent case study, and her use of the motif, and its connected themes of id...

  18. An Experimental Study on the Shape Changes of TiO2 Nanocrystals Synthesized by Microemulsion-Solvothermal Method

    Directory of Open Access Journals (Sweden)

    Wei Kong

    2011-01-01

    Full Text Available Titanium dioxide (TiO2 nanocrystals of different shape were successfully synthesized in a new microemulsion system through a solvothermal process. The TiO2 nanocrystals were prepared from the reaction of tetrabutyl titanate (TBT, H2O, and oleic acid (OA, which were used as solvent and surfactant at 300∘C and 240∘C in a stainless steel autoclave. The sphere, polygon, and rhombus-shaped nanocrystals have been prepared at 300∘C and the dot- and- rod shaped nanocrystals have been synthesized at 240∘C. The effect of the reaction time on the shape and size of TiO2 nanocrystals in this method was studied in the present paper. The size distribution of TiO2 nanocrystals prepared at 300∘C for different hours is also studied. In addition, an attempt to describe the mechanism of shape change of TiO2 nanocrystals was presented in this paper.

  19. Rapid changes in shape and cell architecture of isolated fragments of amphibian embryonic tissues as an experimental model of morphogenesis.

    Science.gov (United States)

    Belousov, L V; Dorfman, Y G; Cherdantsev, V G

    1975-07-01

    Changes in the shape and cell architecture of pieces of epithelial and neural ectoderm, mesoderm, neural tube, and combined ectomesodermal fragments from embryos of Rana temporaria 0-60 min after isolation were studied. The fragments were capable of changing their shape quickly (actually during separation) or after a latent period of several minutes. Rapid deformations were not prevented by cooling or by moderate doses of cyanide; as a rule they were connected with contraction of the surface area of the cells of the fragment and they can be regarded as relaxation to forms with lower mechanical energy. The direction of the deformation usually coincides with the subsequent normal morphogenesis of the particular anlage. Deformations with a latent period are suppressed by cooling and by the addition of cyanide, which lead to an increase in the surface area of individual cells, but they reduce the total surface area of the fragment. The shape of the fragments becomes more complex: they become irregularly twisted, they form folds, and they separate into spherical regions with stretched surfaces ("drops"). These processes are connected with the performance of positive mechanical work by the intracellular contractile systems. The reasons why the fragments become more complex in shape are discussed.

  20. Macroscopic Quantum Phenomena from the Correlation, Coupling and Criticality Perspectives

    Science.gov (United States)

    Chou, C. H.; Hu, B. L.; Subaşi, Y.

    2011-12-01

    In this sequel paper we explore how macroscopic quantum phenomena can be measured or understood from the behavior of quantum correlations which exist in a quantum system of many particles or components and how the interaction strengths change with energy or scale, under ordinary situations and when the system is near its critical point. We use the nPI (master) effective action related to the Boltzmann-BBGKY / Schwinger-Dyson hierarchy of equations as a tool for systemizing the contributions of higher order correlation functions to the dynamics of lower order correlation functions. Together with the large N expansion discussed in our first paper [1] we explore 1) the conditions whereby an H-theorem is obtained, which can be viewed as a signifier of the emergence of macroscopic behavior in the system. We give two more examples from past work: 2) the nonequilibrium dynamics of N atoms in an optical lattice under the large Script N (field components), 2PI and second order perturbative expansions, illustrating how N and Script N enter in these three aspects of quantum correlations, coherence and coupling strength. 3) the behavior of an interacting quantum system near its critical point, the effects of quantum and thermal fluctuations and the conditions under which the system manifests infrared dimensional reduction. We also discuss how the effective field theory concept bears on macroscopic quantum phenomena: the running of the coupling parameters with energy or scale imparts a dynamical-dependent and an interaction-sensitive definition of 'macroscopia'.

  1. Comparison of shoulder positions at MR arthrography: change of labroligamentous complex shape and diagnosis of labral tears

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Jin Young; Ha, Doo Hoe; Kim, Jeung Sook; Lee, Young Soo [College of Medicine, Pochon CHA Univ., Sungnam (Korea, Republic of)

    2001-11-01

    To compare the neutral, internal, and external rotation positions of the glenohumeral joint during magnetic resonance (MR) arthrography performed to assess changes in the shape of the labroligamentous complex (LLC) and in the labral tear. MR arthrography of the shoulder was retrospectively evaluated in 36 patients aged 14-66 (mean, 40) years. Fourteen cases were confirmed by arthroscopic surgery (7 SLAP lesions, 2 Bankart lesions, 1 both SLAP and Bankart lesions). Axial fat-suppressed T1-weighted spin-echo images were acquired with each shoulder in the neutral position, and with internal and external rotations. In each position, we measured the angle of rotation between the perpendicular line on the glenoid fossa and the long axis of the humeral head, analyzing the relationship between the rotational angle and changes in the shape of the LLC at each internal and external rotation, relative to the neutral position. In addition, labral tears in 14 arthroscopically confirmed joints were evaluated in each position. Mean angles of rotation relative to the neutral position were 44.1 and 45.3 degrees in internal and external rotation, respectively. Changes in the anterior LLC occurred in 25 and 24 cases of internal and external rotation, respectively. There was a significantly meaningful relationship between rotational angle and changes in the shape of the anterior LLC during external rotation, and when this changes was noticed, the rotational angle was wider (p<0.05). The posterior LLC changed in shape in 13 and 16 cases of internal and external rotation, respectively, but changes according to the angle of rotation were not statistically significant. In arthroscopically confirmed joints, diagnosis of the eight SLAP lesions at external rotation tended to become more accurate, but no statistically significant differences were noted (p=0.07). Two Bankart lesions were interpreted as a tear in all three positions, and one other such lesion was interpreted as a tear in the

  2. Shaping the future of industrial relations in the EU: Ideas, paradoxes and drivers of change

    NARCIS (Netherlands)

    Keune, M.

    2015-01-01

    The author argues that Europe's future industrial relations will be shaped by the resolution of three paradoxes embedded in today's labour markets, unionization dynamics, and EU policy. The first is the increasing individualization of employment relationships versus fictional "individual autonomy" a

  3. Shape of the self-concept clarity change during group psychotherapy predicts the outcome: an empirical validation of the theoretical model of the self-concept change.

    Science.gov (United States)

    Styła, Rafał

    2015-01-01

    Self-Concept Clarity (SCC) describes the extent to which the schemas of the self are internally integrated, well defined, and temporally stable. This article presents a theoretical model that describes how different shapes of SCC change (especially stable increase and "V" shape) observed in the course of psychotherapy are related to the therapy outcome. Linking the concept of Jean Piaget and the dynamic systems theory, the study postulates that a stable SCC increase is needed for the participants with a rather healthy personality structure, while SCC change characterized by a "V" shape or fluctuations is optimal for more disturbed patients. Correlational study in a naturalistic setting with repeated measurements (M = 5.8) was conducted on the sample of 85 patients diagnosed with neurosis and personality disorders receiving intensive eclectic group psychotherapy under routine inpatient conditions. Participants filled in the Self-Concept Clarity Scale (SCCS), Symptoms' Questionnaire KS-II, and Neurotic Personality Questionnaire KON-2006 at the beginning and at the end of the course of psychotherapy. The SCCS was also administered every 2 weeks during psychotherapy. As hypothesized, among the relatively healthiest group of patients the stable SCC increase was related to positive treatment outcome, while more disturbed patients benefited from the fluctuations and "V" shape of SCC change. The findings support the idea that for different personality dispositions either a monotonic increase or transient destabilization of SCC is a sign of a good treatment prognosis.

  4. The relevance of transformational leadership in shaping employee attitudes towards organizational change

    National Research Council Canada - National Science Library

    Penava, Suada; Sehic, Dzevad

    2014-01-01

    .... The focus of research is on the micro-aspect of change, specifically on the impact of changes in employees and their attitudes and behaviors that have a direct and significant impact on change success...

  5. Separation of the Microscopic and Macroscopic Domains

    Science.gov (United States)

    Van Zandt, L. L.

    1977-01-01

    Examines the possibility of observing interference in quantum magnification experiments such as the celebrated "Schroedinger cat". Uses the possibility of observing interference for separating the realm of microscopic from macroscopic dynamics; estimates the dividing line to fall at system sizes of about 100 Daltons. (MLH)

  6. Entropy, Macroscopic Information, and Phase Transitions

    OpenAIRE

    Parrondo, Juan M. R.

    1999-01-01

    The relationship between entropy and information is reviewed, taking into account that information is stored in macroscopic degrees of freedom, such as the order parameter in a system exhibiting spontaneous symmetry breaking. It is shown that most problems of the relationship between entropy and information, embodied in a variety of Maxwell demons, are also present in any symmetry breaking transition.

  7. Macroscopic Modeling of Polymer-Electrolyte Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Weber, A.Z.; Newman, J.

    2007-04-01

    In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.

  8. Macroscopic invisibility cloaking of visible light

    DEFF Research Database (Denmark)

    Chen, Xianzhong; Luo, Y.; Zhang, Jingjing

    2011-01-01

    to a few wavelengths. Here, we report the first realization of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding, for a specific light polarization, three-dimensional objects of the scale...

  9. Microtubules as key cytoskeletal elements in cellular transport and shape changes: their expected responses to space environments

    Science.gov (United States)

    Conrad, G. W.; Conrad, A. H.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    Application of reference standard reagents to alternatively depolymerize or stabilize microtubules in a cell that undergoes very regular cytoskeleton-dependent shape changes provides a model system in which some expected components of the environments of spacecraft and space can be tested on Earth for their effects on the cytoskeleton. The fertilized eggs of Ilyanassa obsoleta undergo polar lobe formation by repeated, dramatic, constriction and relaxation of a microfilamentous band localized in the cortical cytoplasm and activated by microtubules.

  10. Spontaneous Fission and alpha -Decay Half-Lives of Superheavy Nuclei in Different Macroscopic Energy Models

    CERN Document Server

    Lojewski, Z; Pomorski, K

    2003-01-01

    Spontaneous fission half-lives (T sub s sub f) of the heaviest nuclei are calculated in the macroscopic-microscopic approach based on the deformed Woods-Saxon potential. Four different models of the macroscopic energy are examined and their influence on the results is discussed. The calculations of (T sub s sub f) are performed within WKB approximation. Multi-dimensional dynamical-programming method (MDP) is applied to minimize the action integral in a 3-dimensional space of deformation parameters describing the nuclear shape (beta sub 2 ,beta sub 4 ,beta sub 6).

  11. Metastable states and macroscopic quantum tunneling in a cold atom josephson ring

    Energy Technology Data Exchange (ETDEWEB)

    Solenov, Dmitry [Los Alamos National Laboratory; Mozyrsky, Dmitry [Los Alamos National Laboratory

    2009-01-01

    We study macroscopic properties of a system of weakly interacting neutral bosons confined in a ring-shaped potential with a Josephson junction. We derive an effective low energy action for this system and evaluate its properties. In particular we find that the system possesses a set of metastable current-carrying states and evaluate the rates of transitions between these states due to macroscopic quantum tunneling. Finally we discuss signatures of different metastable states in the time-of-flight images and argue that the effect is observable within currently available experimental technique.

  12. Effect of Changing the Vocal Tract Shape on the Sound Production of the Recorder: An Experimental and Theoretical Study

    CERN Document Server

    Auvray, R; Terrien, S; Fabre, B; Vergez, C

    2016-01-01

    Changing the vocal tract shape is one of the techniques which can be used by the players of wind instruments to modify the quality of the sound. It has been intensely studied in the case of reed instruments but has received only little attention in the case of air-jet instruments. This paper presents a first study focused on changes in the vocal tract shape in recorder playing techniques. Measurements carried out with recorder players allow to identify techniques involving changes of the mouth shape as well as consequences on the sound. A second experiment performed in laboratory mimics the coupling with the vocal tract on an artificial mouth. The phase of the transfer function between the instrument and the mouth of the player is identified to be the relevant parameter of the coupling. It is shown to have consequences on the spectral content in terms of energy distribution among the even and odd harmonics, as well as on the stability of the first two oscillating regimes. The results gathered from the two exp...

  13. Using the axis of elongation to align shapes: Developmental changes between 18 and 24 months

    OpenAIRE

    Smith, Linda B.; Street, Sandra; Jones, Susan S.; James, Karin H.

    2014-01-01

    An object’s axis of elongation serves as an important frame of reference for forming 3-dimensional representations of object shape. By several recent accounts, the formation of these representations is also related to experiences of acting on objects. Four experiments examined 18- to 24-month-old (N = 103) infants’ sensitivity to the elongated axis in action tasks that required extracting, comparing and physically rotating an object so that its major axis was aligned with that of a visual sta...

  14. Energetics of macroscopic helical domain in different tube geometries and loading

    Directory of Open Access Journals (Sweden)

    Sun Q.P.

    2010-06-01

    Full Text Available Superelastic NiTi polycrystalline shape memory alloy tubes, when subject to slow quasistatic stretching, transform to a high strain phase by the formation and growth of a macroscopic helix-shaped domain as deformation progresses. This paper performed an experimental study on the effects of the external applied nominal strain and the tube geometry (tube radius R, wall-thickness h and length L on the helical domains in isothermal stretching of the tubes. The evolution of the macroscopic domains with the applied strain in different tube geometries are quantified by in-situ optical measurement. We demonstrate that the equilibrium shape of the macroscopic helical domain and its evolution are governed by the competition between the domain front energy and the elastic-misfit bending strain energy of the tube system. The former favors a short helical domain, while the latter favors a long slim helical domain. The experimental results provided basic physical and experimental foundations for further modelling and quantification of the macroscopic domain morphology evolution in tube geometries.

  15. Macroscopic Behavior of Nematics with D2d Symmetry

    Science.gov (United States)

    Pleiner, Harald; Brand, Helmut R.

    2010-03-01

    We discuss the symmetry properties and the macroscopic behavior of a nematic liquid crystal phase with D2d symmetry. Such a phase is a prime candidate for nematic phases made from banana-shaped molecules where the usual quadrupolar order coexists with octupolar (tetrahedratic) order. The resulting nematic phase is non-polar. While this phase could resemble the classic D∞h nematic in the polarizing microscope, it has many static as well as reversible and irreversible properties unknown to non-polar nematics without octupolar order. In particular, there is a linear gradient term in the free energy that selects parity leading to ambidextrously helical ground states when the molecules are achiral. In addition, there are static and irreversible coupling terms of a type only met otherwise in macroscopically chiral liquid crystals, e.g. the ambidextrous analogues of Lehmann-type effects known from cholesteric liquid crystals. Finally, we discuss certain nonlinear aspects of the dynamics related to the non-commutativity of three-dimensional finite rotations as well as other structural nonlinear hydrodynamic effects.

  16. Quantitative paleobathymetry using oxygen isotopes and shape changes in benthic foraminifera

    Energy Technology Data Exchange (ETDEWEB)

    Gary, A.C.; Williams, D.F.; Healy-Williams, N.

    1987-05-01

    Accurate estimates of paleodepth are of critical importance to oil exploration in determining environment of deposition and geologic history. Models based on the test shape and the /sup 18/O//sup 16/O ratio in benthic foraminifera from the northwestern Gulf of Mexico indicate that a resolution of +/- 75 ft can be achieved in paleobathymetric reconstructions. The proportion of /sup 18/O and /sup 16/O incorporated into the tests of benthic foraminifera varies with bottom water temperature in a predictable manner. This depth/temperature relationship is the result of the temperature dependence of oxygen isotopic fractionation between sea water and calcium carbonate, and it allows the tests of benthic foraminifera to be used as indicators of paleotemperature. Since subbottom water temperatures on the outer shelf and slope decrease systematically with increasing water depth, these paleotemperatures can be used to reconstruct paleobathymetric trends. Paleobathymetric interpretations can also be independently inferred from Fourier shape analysis of benthic foraminiferal species. Combining the oxygen isotope and shape relationships relative to water depth increases the resolution of paleobathymetric reconstructions and provides an independent check on interpretations based on faunal assemblages and sedimentological data. These paleodepth models should allow extinct taxa to be used for paleobathymetric reconstructions as well.

  17. The relevance of transformational leadership in shaping employee attitudes towards organizational change

    Directory of Open Access Journals (Sweden)

    Penava Suada

    2014-01-01

    Full Text Available The subject of the research presented in this paper is the role of the leadership of change agents in the implementation of organizational change. The focus of research is on the micro-aspect of change, specifically on the impact of changes in employees and their attitudes and behaviors that have a direct and significant impact on change success. The results of empirical research conducted in one Bosnian company show that the transformational behavior of the change agent is not equally relevant and effective in the case of the three organizational changes implemented in the company. The explanation for this can be found in the characteristics of the changes themselves, both those related to their cause and those related to the depth of the intervention and the expected consequences of change in the organizational culture.

  18. The volumetric and shape changes of the putamen and thalamus in first episode, untreated major depressive disorder

    Directory of Open Access Journals (Sweden)

    Yi Lu

    2016-01-01

    Full Text Available Previous MRI studies confirmed abnormalities in the limbic-cortical-striatal-pallidal-thalamic (LCSPT network or limbic-cortico-striatal-thalamic-cortical (LCSTC circuits in patients with major depressive disorder (MDD, but few studies have investigated the subcortical structural abnormalities. Therefore, we sought to determine whether focal subcortical grey matter (GM changes might be present in MDD at an early stage. We recruited 30 first episode, untreated patients with major depressive disorder (MDD and 26 healthy control subjects. Voxel-based morphometry was used to evaluate cortical grey matter changes, and automated volumetric and shape analyses were used to assess volume and shape changes of the subcortical GM structures, respectively. In addition, probabilistic tractography methods were used to demonstrate the relationship between the subcortical and the cortical GM. Compared to healthy controls, MDD patients had significant volume reductions in the bilateral putamen and left thalamus (FWE-corrected, p < 0.05. Meanwhile, the vertex-based shape analysis showed regionally contracted areas on the dorsolateral and ventromedial aspects of the bilateral putamen, and on the dorsal and ventral aspects of left thalamus in MDD patients (FWE-corrected, p < 0.05. Additionally, a negative correlation was found between local atrophy in the dorsal aspects of the left thalamus and clinical variables representing severity. Furthermore, probabilistic tractography demonstrated that the area of shape deformation of the bilateral putamen and left thalamus have connections with the frontal and temporal lobes, which were found to be related to major depression. Our results suggested that structural abnormalities in the putamen and thalamus might be present in the early stages of MDD, which support the role of subcortical structure in the pathophysiology of MDD. Meanwhile, the present study showed that these subcortical structural abnormalities might be

  19. Macroscopic acousto-mechanical analogy of a microbubble

    CERN Document Server

    Chaline, Jennifer; Mehrem, Ahmed; Bouakaz, Ayache; Santos, Serge Dos; Sánchez-Morcillo, Víctor J

    2015-01-01

    Microbubbles, either in the form of free gas bubbles surrounded by a fluid or encapsulated bubbles used currently as contrast agents for medical echography, exhibit complex dynamics under specific acoustic excitations. Nonetheless, considering their micron size and the complexity of their interaction phenomenon with ultrasound waves, expensive and complex experiments and/or simulations are required for their analysis. The behavior of a microbubble along its equator can be linked to a system of coupled oscillators. In this study, the oscillatory behavior of a microbubble has been investigated through an acousto-mechanical analogy based on a ring-shaped chain of coupled pendula. Observation of parametric vibration modes of the pendula ring excited at frequencies between $1$ and $5$ Hz is presented. Simulations have been carried out and show mode mixing phenomena. The relevance of the analogy between a microbubble and the macroscopic acousto-mechanical setup is discussed and suggested as an alternative way to in...

  20. Preparation and characterization of Kraft lignin-based moisture-responsive films with reversible shape-change capability.

    Science.gov (United States)

    Dallmeyer, Ian; Chowdhury, Sudip; Kadla, John F

    2013-07-08

    Preparation of moisture-responsive Kraft lignin-based materials by electrospinning blends of Kraft lignin fractions with different physical properties is presented. The differences in thermal mobility between lignin fractions are shown to influence the degree of interfiber fusion occurring during oxidative thermostabilization of electrospun nonwoven fabrics, resulting in different material morphologies including submicrometer fibers, bonded nonwovens, porous films, and smooth films. The relative amount of different lignin fractions and degree of fiber flow and fiber fusion is shown to influence the tendency for the electrospun materials to be transformed into moisture-responsive materials capable of reversible changes in shape. Material characterization by scanning electron microscopy and atomic force microscopy as well characterization of the chemical and physical properties of Kraft lignin fractions by dynamic rheology, 1H and 13C NMR, and gel permeation chromatography combined with multiangle laser light scattering are presented. A proposed mechanism underlying moisture-responsiveness, shape change, and shape recovery is discussed based on the differences in chemical structure and physical properties of Kraft lignin fractions.

  1. Optical approaches to macroscopic and microscopic engineering

    CERN Document Server

    Bartolo, P J D S

    2001-01-01

    This research investigates the theoretical basis of a new photo-fabrication system. By this system, optical and thermal effects are used, together or separately, to locally induce a phase change in a liquid resin. This phase change phenomena is used to 'write' three-dimensional shapes. In addition, a thermal-kinetic model has been developed to correctly simulate the physical and chemical changes that occur in the bulk (and surroundings) of the material directly exposed to radiation and/or heat, and the rates at which these changes occur. Through this model, the law of conservation of energy describing the heat transfer phenomena is coupled with a kinetic model describing in detail the cure kinetics in both chemical and diffusion-controlled regimes. The thermal-kinetic model has been implemented using the finite element method. Linear rectangular elements have been considered and the concept of isoparametric formulation used. The Cranck-Nicolson algorithm has been used to integrate the system of equations, res...

  2. Macroscopic quantum mechanics in a classical spacetime.

    Science.gov (United States)

    Yang, Huan; Miao, Haixing; Lee, Da-Shin; Helou, Bassam; Chen, Yanbei

    2013-04-26

    We apply the many-particle Schrödinger-Newton equation, which describes the coevolution of a many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schrödinger-Newton equation for their centers of mass, which can be monitored and manipulated at quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, its quantum uncertainty is found to evolve at a frequency different from its classical eigenfrequency-with a difference that depends on the internal structure of the object-and can be observable using current technology. For several objects, the Schrödinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet quantum uncertainty cannot be transferred from one object to another.

  3. Macroscopic Invisibility Cloaking of Visible Light

    CERN Document Server

    Chen, Xianzhong; Zhang, Jingjing; Jiang, Kyle; Pendry, John B; Zhang, Shuang

    2010-01-01

    Invisibility cloaks of light, which used to be confined to the imagination, have now been turned into a scientific reality, thanks to the enabling theoretical tools of transformation optics and conformal mapping. Inspired by those theoretical works, the experimental realisation of electromagnetic invisibility cloaks has been reported at various electromagnetic frequencies. All the invisibility cloaks demonstrated thus far, however, have relied on nano- or micro-fabricated artificial composite materials with spatially varying electromagnetic properties, which limit the size of the cloaked region to a few wavelengths. Here we report realisation of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding three-dimensional objects of the scale of centimetres and millimetres. Our work opens avenues for future applications with macroscopic cloaking devices.

  4. Macroscopic spin and charge transport theory

    Institute of Scientific and Technical Information of China (English)

    Li Da-Fang; Shi Jun-Ren

    2009-01-01

    According to the general principle of non-equilibrium thermodynamics, we propose a set of macroscopic transport equations for the spin transport and the charge transport. In particular, the spin torque is introduced as a generalized 'current density' to describe the phenomena associated with the spin non-conservation in a unified framework. The Einstein relations and the Onsager relations between different transport phenomena are established. Specifically, the spin transport properties of the isotropic non-magnetic and the isotropic magnetic two-dimensional electron gases are fully described by using this theory, in which only the macroscopic-spin-related transport phenomena allowed by the symmetry of the system are taken into account.

  5. Macroscopic entrainment of periodically forced oscillatory ensembles.

    Science.gov (United States)

    Popovych, Oleksandr V; Tass, Peter A

    2011-03-01

    Large-amplitude oscillations of macroscopic neuronal signals, such as local field potentials and electroencephalography or magnetoencephalography signals, are commonly considered as being generated by a population of mutually synchronized neurons. In a computational study in generic networks of phase oscillators and bursting neurons, however, we show that this common belief may be wrong if the neuronal population receives an external rhythmic input. The latter may stem from another neuronal population or an external, e.g., sensory or electrical, source. In that case the population field potential may be entrained by the rhythmic input, whereas the individual neurons are phase desynchronized both mutually and with their field potential. Intriguingly, the corresponding large-amplitude oscillations of the population mean field are generated by pairwise desynchronized neurons oscillating at frequencies shifted far away from the frequency of the macroscopic field potential.

  6. Adsorption modeling for macroscopic contaminant dispersal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Axley, J.W.

    1990-05-01

    Two families of macroscopic adsorption models are formulated, based on fundamental principles of adsorption science and technology, that may be used for macroscopic (such as whole-building) contaminant dispersal analysis. The first family of adsorption models - the Equilibrium Adsorption (EA) Models - are based upon the simple requirement of equilibrium between adsorbent and room air. The second family - the Boundary Layer Diffusion Controlled Adsorption (BLDC) Models - add to the equilibrium requirement a boundary layer model for diffusion of the adsorbate from the room air to the adsorbent surface. Two members of each of these families are explicitly discussed, one based on the linear adsorption isotherm model and the other on the Langmuir model. The linear variants of each family are applied to model the adsorption dynamics of formaldehyde in gypsum wall board and compared to measured data.

  7. Macroscopic Invisible Cloak for Visible Light

    CERN Document Server

    Zhang, Baile; Liu, Xiaogang; Barbastathis, George

    2011-01-01

    Invisibility cloaks, a subject that usually occurs in science fiction and myths, have attracted wide interest recently because of their possible realization. The biggest challenge to true invisibility is known to be the cloaking of a macroscopic object in the broad range of wavelengths visible to the human eye. Here we experimentally solve this problem by incorporating the principle of transformation optics into a conventional optical lens fabrication with low-cost materials and simple manufacturing techniques. A transparent cloak made of two pieces of calcite is created. This cloak is able to conceal a macroscopic object with a maximum height of 2 mm, larger than 3500 free-space-wavelength, inside a transparent liquid environment. Its working bandwidth encompassing red, green and blue light is also demonstrated.

  8. Macroscopic Quantum Resonators (MAQRO): 2015 update

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenbaek, Rainer [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Aspelmeyer, Markus; Kiesel, Nikolai [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Barker, Peter F.; Bose, Sougato [University College London, Department of Physics and Astronomy, London (United Kingdom); Bassi, Angelo [University of Trieste, Department of Physics, Trieste (Italy); INFN - Trieste Section, Trieste (Italy); Bateman, James [University of Swansea, Department of Physics, College of Science, Swansea (United Kingdom); Bongs, Kai; Cruise, Adrian Michael [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Braxmaier, Claus [University of Bremen, Center of Applied Space Technology and Micro Gravity (ZARM), Bremen (Germany); Institute of Space Systems, German Aerospace Center (DLR), Bremen (Germany); Brukner, Caslav [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Austrian Academy of Sciences, Institute of Quantum Optics and Quantum Information (IQOQI), Vienna (Austria); Christophe, Bruno; Rodrigues, Manuel [The French Aerospace Lab, ONERA, Chatillon (France); Chwalla, Michael; Johann, Ulrich [Airbus Defence and Space GmbH, Immenstaad (Germany); Cohadon, Pierre-Francois; Heidmann, Antoine; Lambrecht, Astrid; Reynaud, Serge [ENS-PSL Research University, Laboratoire Kastler Brossel, UPMC-Sorbonne Universites, CNRS, College de France, Paris (France); Curceanu, Catalina [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dholakia, Kishan; Mazilu, Michael [University of St. Andrews, School of Physics and Astronomy, St. Andrews (United Kingdom); Diosi, Lajos [Wigner Research Center for Physics, P.O. Box 49, Budapest (Hungary); Doeringshoff, Klaus; Peters, Achim [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Ertmer, Wolfgang; Rasel, Ernst M. [Leibniz Universitaet Hannover, Institut fuer Quantenoptik, Hannover (Germany); Gieseler, Jan; Novotny, Lukas; Rondin, Loic [ETH Zuerich, Photonics Laboratory, Zuerich (Switzerland); Guerlebeck, Norman; Herrmann, Sven; Laemmerzahl, Claus [University of Bremen, Center of Applied Space Technology and Micro Gravity (ZARM), Bremen (Germany); Hechenblaikner, Gerald [Airbus Defence and Space GmbH, Immenstaad (Germany); European Southern Observatory (ESO), Garching bei Muenchen (Germany); Hossenfelder, Sabine [KTH Royal Institute of Technology and Stockholm University, Nordita, Stockholm (Sweden); Kim, Myungshik [Imperial College London, QOLS, Blackett Laboratory, London (United Kingdom); Milburn, Gerard J. [University of Queensland, ARC Centre for Engineered Quantum Systems, Brisbane (Australia); Mueller, Holger [University of California, Department of Physics, Berkeley, CA (United States); Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Pikovski, Igor [Harvard-Smithsonian Center for Astrophysics, ITAMP, Cambridge, MA (United States); Pilan Zanoni, Andre [Airbus Defence and Space GmbH, Immenstaad (Germany); CERN - European Organization for Nuclear Research, EN-STI-TCD, Geneva (Switzerland); Riedel, Charles Jess [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Roura, Albert [Universitaet Ulm, Institut fuer Quantenphysik, Ulm (Germany); Schleich, Wolfgang P. [Universitaet Ulm, Institut fuer Quantenphysik, Ulm (Germany); Texas A and M University Institute for Advanced Study (TIAS), Institute for Quantum Science and Engineering (IQSE), and Department of Physics and Astronomy, College Station, TX (United States); Schmiedmayer, Joerg [Vienna University of Technology, Vienna Center for Quantum Science and Technology, Institute of Atomic and Subatomic Physics, Vienna (Austria); Schuldt, Thilo [Institute of Space Systems, German Aerospace Center (DLR), Bremen (Germany); Schwab, Keith C. [California Institute of Technology, Applied Physics, Pasadena, CA (United States)

    2016-12-15

    Do the laws of quantum physics still hold for macroscopic objects - this is at the heart of Schroedinger's cat paradox - or do gravitation or yet unknown effects set a limit for massive particles? What is the fundamental relation between quantum physics and gravity? Ground-based experiments addressing these questions may soon face limitations due to limited free-fall times and the quality of vacuum and microgravity. The proposed mission Macroscopic Quantum Resonators (MAQRO) may overcome these limitations and allow addressing such fundamental questions. MAQRO harnesses recent developments in quantum optomechanics, high-mass matter-wave interferometry as well as state-of-the-art space technology to push macroscopic quantum experiments towards their ultimate performance limits and to open new horizons for applying quantum technology in space. The main scientific goal is to probe the vastly unexplored 'quantum-classical' transition for increasingly massive objects, testing the predictions of quantum theory for objects in a size and mass regime unachievable in ground-based experiments. The hardware will largely be based on available space technology. Here, we present the MAQRO proposal submitted in response to the 4th Cosmic Vision call for a medium-sized mission (M4) in 2014 of the European Space Agency (ESA) with a possible launch in 2025, and we review the progress with respect to the original MAQRO proposal for the 3rd Cosmic Vision call for a medium-sized mission (M3) in 2010. In particular, the updated proposal overcomes several critical issues of the original proposal by relying on established experimental techniques from high-mass matter-wave interferometry and by introducing novel ideas for particle loading and manipulation. Moreover, the mission design was improved to better fulfill the stringent environmental requirements for macroscopic quantum experiments. (orig.)

  9. A macroscopic approach to creating exotic matter

    OpenAIRE

    Ridgely, C. T.

    2000-01-01

    Herein the Casimir effect is used to present a simple macroscopic view on creating exotic matter. The energy arising between two nearly perfectly conducting parallel plates is shown to become increasingly negative as the plate separation is reduced. It is proposed that the Casimir energy appears increasingly negative simply because the vacuum electromagnetic zero-point field performs positive work in pushing the plates together, transforming field energy into kinetic energy of the plates. Nex...

  10. Shot noise in linear macroscopic resistors

    OpenAIRE

    Gomila Lluch, Gabriel; Pennetta, C.; Reggiani, L.; Ferrari, G; Sampietro, M.; G. Bertuccio(Politecnico di Milano, Italy)

    2004-01-01

    We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devi...

  11. Shot Noise in Linear Macroscopic Resistors

    Science.gov (United States)

    Gomila, G.; Pennetta, C.; Reggiani, L.; Sampietro, M.; Ferrari, G.; Bertuccio, G.

    2004-06-01

    We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devices.

  12. Macroscopic Objects, Intrinsic Spin, and Lorentz Violation

    CERN Document Server

    Atkinson, David W; Tasson, Jay D

    2013-01-01

    The framework of the Standard-Model Extension (SME) provides a relativistic quantum field theory for the study of Lorentz violation. The classical, nonrelativistic equations of motion can be extracted as a limit that is useful in various scenarios. In this work, we consider the effects of certain SME coefficients for Lorentz violation on the motion of macroscopic objects having net intrinsic spin in the classical, nonrelativistic limit.

  13. Active Polar Two-Fluid Macroscopic Dynamics

    Science.gov (United States)

    Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.

    2014-03-01

    We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.

  14. Diminished spectrin extraction from ATP-depleted human erythrocytes. Evidence relating spectrin to changes in erythrocyte shape and deformability.

    Science.gov (United States)

    Lux, S E; John, K M; Ukena, T E

    1978-03-01

    We measured spectrin "extractability" in erythrocytes which were metabolically depleted by incubation at 37 degrees C in plasma or glucose-free buffers. Membranes were extracted with 1 mM EDTA (pH 8, 40 h, 4 degrees C) and analyzed by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. This procedure solubilized 85--90% of the spectrin, actin, and residual hemoglobin from ghosts of fresh erythrocytes. In incubated erythrocytes, inextractable spectrin rapidly accumulated when ATP concentrations fell below 0--15% of normal. In severely depleted cells, 60--90% of the total ghost spectrin became inextractable. Inextractability was not abolished by physically disrupting the ghost before extraction, but was reversed when erythrocyte ATP was replenished with adenosine. The accumulation of inextractable spectrin correlated temporally with the increase in apparent membrane deformability and the increases in erythrocyte vicosity, calcium content, sodium gain, and potassium loss characteristic of ATP-depleted erythrocytes. No change in integral membrane protein topography (assessed by the distribution of intramembranous particles and concanavalin A surface-binding sites) was detected in depleted cells. Analogous changes were observed in erythrocytes exposed to extremes of pH and temperature. When the pH in the erythrocyte interior fell below 5.5, a pH where spectrin was aggregated and isoelectrically precipitated, erythrocyte and ghost viscosity increased coincident with a marked decrease in spectrin extractability. Similarly above 49 degrees C, a temperature where spectrin was denatured and precipitated, erythrocyte viscosity rose as inextractable spectrin accumulated. These observations provide direct evidence of a change in the physical state of spectrin associated with a change in erythrocyte shape and deformability. They support the concept that erythrocyte shape and deformability are largely determined by the shape and deformability of the spectrin

  15. Bidirectional Flower Color and Shape Changes Allow a Second Opportunity for Pollination

    NARCIS (Netherlands)

    Willmer, P.; Stanley, D.A.; Steijven, K.; Matthews, I.M.; Nuttman, C.V.

    2009-01-01

    Flowers act as "sensory billboards" with multiple signals (color, morphology, odor) attracting and manipulating potential pollinators [1]. Many use changing signals as indicators that visitation and/or pollination have occurred (2, 3]). Floral color change is commonly used to transmit this informati

  16. Bidirectional Flower Color and Shape Changes Allow a Second Opportunity for Pollination

    NARCIS (Netherlands)

    Willmer, P.; Stanley, D.A.; Steijven, K.; Matthews, I.M.; Nuttman, C.V.

    2009-01-01

    Flowers act as "sensory billboards" with multiple signals (color, morphology, odor) attracting and manipulating potential pollinators [1]. Many use changing signals as indicators that visitation and/or pollination have occurred (2, 3]). Floral color change is commonly used to transmit this

  17. Shape of the self-concept clarity change during group psychotherapy predicts the outcome: An empirical validation of the theoretical model of the self-concept change

    Directory of Open Access Journals (Sweden)

    Rafał eStyła

    2015-10-01

    Full Text Available Background: Self-concept clarity describes the extent to which the schemas of the self are internally integrated, well defined, and temporally stable. This article presents a theoretical model that describes how different shapes of self-concept clarity change (especially stable increase and V shape observed in the course of psychotherapy are related to the therapy outcome. Linking the concept of Jean Piaget and the dynamic systems theory, the study postulates that a stable self-concept clarity increase is needed for the participants with a rather healthy personality structure, while self-concept clarity change characterized by a V shape or fluctuations is optimal for more disturbed patients. Method: Correlational study in a naturalistic setting with repeated measurements (M=5.8 was conducted on the sample of 85 patients diagnosed with neurosis and personality disorders receiving intensive eclectic group psychotherapy under routine inpatient conditions. Participants filled in the Self-Concept Clarity Scale, Symptoms’ Questionnaire KS-II, and Neurotic Personality Questionnaire KON-2006 at the beginning and at the end of the course of psychotherapy. The Self-Concept Clarity Scale was also administered every two weeks during psychotherapy. Results: As hypothesized, among the relatively healthiest group of patients the stable self-concept clarity increase was related to positive treatment outcome, while more disturbed patients benefited from the fluctuations and V shape of self-concept clarity change. Conclusions: The findings support the idea that for different personality dispositions either a monotonic increase or transient destabilization of self-concept clarity is a sign of a good treatment prognosis.

  18. Determination of strain fields in porous shape memory alloys using micro-computed tomography

    Science.gov (United States)

    Bormann, Therese; Friess, Sebastian; de Wild, Michael; Schumacher, Ralf; Schulz, Georg; Müller, Bert

    2010-09-01

    Shape memory alloys (SMAs) belong to 'intelligent' materials since the metal alloy can change its macroscopic shape as the result of the temperature-induced, reversible martensite-austenite phase transition. SMAs are often applied for medical applications such as stents, hinge-less instruments, artificial muscles, and dental braces. Rapid prototyping techniques, including selective laser melting (SLM), allow fabricating complex porous SMA microstructures. In the present study, the macroscopic shape changes of the SMA test structures fabricated by SLM have been investigated by means of micro computed tomography (μCT). For this purpose, the SMA structures are placed into the heating stage of the μCT system SkyScan 1172™ (SkyScan, Kontich, Belgium) to acquire three-dimensional datasets above and below the transition temperature, i.e. at room temperature and at about 80°C, respectively. The two datasets were registered on the basis of an affine registration algorithm with nine independent parameters - three for the translation, three for the rotation and three for the scaling in orthogonal directions. Essentially, the scaling parameters characterize the macroscopic deformation of the SMA structure of interest. Furthermore, applying the non-rigid registration algorithm, the three-dimensional strain field of the SMA structure on the micrometer scale comes to light. The strain fields obtained will serve for the optimization of the SLM-process and, more important, of the design of the complex shaped SMA structures for tissue engineering and medical implants.

  19. Characteristics of wind velocity and temperature change near an escarpment-shaped road embankment.

    Science.gov (United States)

    Kim, Young-Moon; You, Ki-Pyo; You, Jang-Youl

    2014-01-01

    Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature) due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

  20. Characteristics of Wind Velocity and Temperature Change Near an Escarpment-Shaped Road Embankment

    Directory of Open Access Journals (Sweden)

    Young-Moon Kim

    2014-01-01

    Full Text Available Artificial structures such as embankments built during the construction of highways influence the surrounding airflow. Various types of damage can occur due to changes in the wind velocity and temperature around highway embankments. However, no study has accurately measured micrometeorological changes (wind velocity and temperature due to embankments. This study conducted a wind tunnel test and field measurement to identify changes in wind velocity and temperature before and after the construction of embankments around roads. Changes in wind velocity around an embankment after its construction were found to be influenced by the surrounding wind velocity, wind angle, and the level difference and distance from the embankment. When the level difference from the embankment was large and the distance was up to 3H, the degree of wind velocity declines was found to be large. In changes in reference wind velocities around the embankment, wind velocity increases were not proportional to the rate at which wind velocities declined. The construction of the embankment influenced surrounding temperatures. The degree of temperature change was large in locations with large level differences from the embankment at daybreak and during evening hours when wind velocity changes were small.

  1. Changes in size and shape of auditory hair cells in vivo during noise-induced temporary threshold shift.

    Science.gov (United States)

    Dew, L A; Owen, R G; Mulroy, M J

    1993-03-01

    In this study we describe changes in the size and shape of auditory hair cells of the alligator lizard in vivo during noise-induced temporary threshold shift. These changes consist of a decrease in cell volume, a decrease in cell length and an increase in cell width. We speculate that these changes are due to relaxation of cytoskeletal contractile elements and osmotic loss of intracellular water. We also describe a decrease in the surface area of the hair cell plasmalemma, and speculate that it is related to the endocytosis and intracellular accumulation of cell membrane during synaptic vesicle recycling. Finally we describe an increase in the endolymphatic surface area of the hair cell, and speculate that this could alter the micromechanics of the stereociliary tuft to attenuate the effective stimulus.

  2. The volumetric and shape changes of the putamen and thalamus in first episode, untreated major depressive disorder.

    Science.gov (United States)

    Lu, Yi; Liang, Hongmin; Han, Dan; Mo, Yin; Li, Zongfang; Cheng, Yuqi; Xu, Xiufeng; Shen, Zonglin; Tan, Chunyan; Zhao, Wei; Zhu, Yun; Sun, Xuejin

    2016-01-01

    Previous MRI studies confirmed abnormalities in the limbic-cortical-striatal-pallidal-thalamic (LCSPT) network or limbic-cortico-striatal-thalamic-cortical (LCSTC) circuits in patients with major depressive disorder (MDD), but few studies have investigated the subcortical structural abnormalities. Therefore, we sought to determine whether focal subcortical grey matter (GM) changes might be present in MDD at an early stage. We recruited 30 first episode, untreated patients with major depressive disorder (MDD) and 26 healthy control subjects. Voxel-based morphometry was used to evaluate cortical grey matter changes, and automated volumetric and shape analyses were used to assess volume and shape changes of the subcortical GM structures, respectively. In addition, probabilistic tractography methods were used to demonstrate the relationship between the subcortical and the cortical GM. Compared to healthy controls, MDD patients had significant volume reductions in the bilateral putamen and left thalamus (FWE-corrected, p putamen, and on the dorsal and ventral aspects of left thalamus in MDD patients (FWE-corrected, p putamen and left thalamus have connections with the frontal and temporal lobes, which were found to be related to major depression. Our results suggested that structural abnormalities in the putamen and thalamus might be present in the early stages of MDD, which support the role of subcortical structure in the pathophysiology of MDD. Meanwhile, the present study showed that these subcortical structural abnormalities might be the potential trait markers of MDD.

  3. Study on preparation and thermal properties of sodium nitrate/silica composite as shape-stabilized phase change material

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Qiang [State Key Lab of Chemical Engineering, Department of Chemical Engineering Tsinghua University, Beijing 100084 (China); Postdoctoral Work Station, Shenhua Group Corporation Limited, Beijing 100011 (China); Wang, Tao, E-mail: taowang@tsinghua.edu.cn [State Key Lab of Chemical Engineering, Department of Chemical Engineering Tsinghua University, Beijing 100084 (China)

    2015-08-10

    Highlights: • The NaNO{sub 3}/SiO{sub 2} composite was prepared as shape-stabilized PCM by sol–gel process. • The composite had good thermal energy storage and release ability. • The latent heat was increased with the increase of the roasting temperature. - Abstract: A sodium nitrate (NaNO{sub 3})/silica (SiO{sub 2}) composite was prepared as a shape-stabilized phase change material by a sol–gel procedure. In this composite, NaNO{sub 3} acted as the phase change material and SiO{sub 2} was used as the supporting material. The maximal weight percentage of NaNO{sub 3} in the composite was determined to be 60 wt.%. The chemical composition, morphology, structure and thermal properties were investigated by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), thermal gravimetric analysis (TGA), differential scanning calorimeter (DSC) and Laser thermal conductivity meter. The DSC results indicated that the enthalpies of melting and freezing of the NaNO{sub 3}/SiO{sub 2} (60 wt.% NaNO{sub 3}) composite were 108 kJ/kg and 110 kJ/kg, and the corresponding temperatures of the phase transition were 302 °C and 300 °C, respectively. In the temperature range of lower than 500 °C the phase change enthalpy of the composite was increased with the increase of the roasting temperature.

  4. Diet and body shape changes of pāroko Kelloggella disalvoi (Gobiidae) from intertidal pools of Easter Island.

    Science.gov (United States)

    Vera-Duarte, J; Bustos, C A; Landaeta, M F

    2017-09-15

    This study assesses seasonal variation in the morphology and diet of juveniles and adults of the Easter Island endemic goby Kelloggella disalvoi from intertidal pools during September-October 2015 (spring) and June-July 2016 (winter), utilizing geometric morphometric and gut-content analyses. A set of 16 landmarks was digitized in 128 individuals. Shape changes related to size changes (i.e. allometry) were low (18·6%) and were seasonally similar. Body shape changes were mainly dorsoventral (44·2% of variance) and comprised posteroventral displacement of the premaxilla and bending of the body. The latter included vertical displacement of the anterior portion of the first and second dorsal fins and the entire base of the caudal fin. Diets mainly comprised developmental stages of harpacticoid copepods (from eggs to adults), ostracods, isopods, gastropods and bivalves. Also, trophic niche breadth remained constant throughout development and did not vary between seasons. Nonetheless, significant dietary differences were detected in specimens collected during spring (main prey items: harpacticoid copepods and copepod eggs) and winter (harpacticoid copepods and copepod nauplii). Finally, there was weak but significant covariation between diet and morphology: molluscivores were characterized by having an inferior mouth gape, whereas planktivores had an anteriorly directed premaxilla. © 2017 The Fisheries Society of the British Isles.

  5. Water Management in Spain: the Role of Policy Entrepreneurs in Shaping Change

    Directory of Open Access Journals (Sweden)

    Joan Subirats

    2010-06-01

    Full Text Available The role played by policy entrepreneurs in preparing, initiating, and implementing water policy change in Spain over the last two decades is examined in an effort to understand how transitions in water management occur. The main questions considered are whether policy entrepreneurs can influence water policy change, and which strategies they actually adopt to promote change. John Kingdon's multiple streams framework was used to assess the ways in which policy entrepreneurs succeed in challenging the dominant agenda, mobilizing alternative policy ideas, and making use of multiple venues for initiating policy change. The data set comprises secondary documentation and interviews with state and non-state actors involved in Spanish water management. The main findings are that policy entrepreneurs from certain social, scientific, and political organizations have indeed played a central role in fracturing the traditional and long-standing approach and decision making process to water management as well as in opening new avenues for policy change. The main implication is that accounts of water management transitions should place greater emphasis on the role of agency in bringing about policy change.

  6. Relation between the change of density of states and the shape of the potential in two-body interactions

    Science.gov (United States)

    Gao, Bo

    2017-04-01

    We derive a general relation in two-body scattering theory that more directly relates the change of density of states (DDOS) due to interaction to the shape of the potential. The relation allows us to infer certain global properties of the DDOS from the global properties of the potential. In particular, we show that DDOS is negative at all energies and for all partial waves, for potentials that are more repulsive than +1 /r2 everywhere. This behavior represents a different class of global properties of DDOS from that described by the Levinson's theorem.

  7. The Ginger-shaped Asteroid 4179 Toutatis: New Observations from a Successful Flyby of Chang'e-2

    CERN Document Server

    Huang, Jiangchuan; Ye, Peijian; Wang, Xiaolei; Yan, Jun; Meng, Linzhi; Wang, Su; Li, Chunlai; Li, Yuan; Qiao, Dong; Zhao, Wei; Zhao, Yuhui; Zhang, Tingxin; Liu, Peng; Jiang, Yun; Rao, Wei; Li, Sheng; Huang, Changning; Ip, Wing-Huen; Hu, Shoucun; Zhu, Menghua; Yu, Liangliang; Zou, Yongliao; Tang, Xianglong; Li, Jianyang; Zhao, Haibin; Huang, Hao; Jiang, Xiaojun; Bai, Jinming

    2013-01-01

    On 13 December 2012, Chang'e-2 conducted a successful flyby of the near-Earth asteroid 4179 Toutatis at a closest distance of 770 $\\pm$ 120 meters from the asteroid's surface. The highest-resolution image, with a resolution of better than 3 meters, reveals new discoveries on the asteroid, e.g., a giant basin at the big end, a sharply perpendicular silhouette near the neck region, and direct evidence of boulders and regolith, which suggests that Toutatis may bear a rubble-pile structure. Toutatis' maximum physical length and width are (4.75 $\\times$ 1.95 km) $\\pm$10$\\%$, respectively, and the direction of the +$z$ axis is estimated to be (250$\\pm$5$^\\circ$, 63$\\pm$5$^\\circ$) with respect to the J2000 ecliptic coordinate system. The bifurcated configuration is indicative of a contact binary origin for Toutatis, which is composed of two lobes (head and body). Chang'e-2 observations have significantly improved our understanding of the characteristics, formation, and evolution of asteroids in general.

  8. The ginger-shaped asteroid 4179 Toutatis: new observations from a successful flyby of Chang'e-2.

    Science.gov (United States)

    Huang, Jiangchuan; Ji, Jianghui; Ye, Peijian; Wang, Xiaolei; Yan, Jun; Meng, Linzhi; Wang, Su; Li, Chunlai; Li, Yuan; Qiao, Dong; Zhao, Wei; Zhao, Yuhui; Zhang, Tingxin; Liu, Peng; Jiang, Yun; Rao, Wei; Li, Sheng; Huang, Changning; Ip, Wing-Huen; Hu, Shoucun; Zhu, Menghua; Yu, Liangliang; Zou, Yongliao; Tang, Xianglong; Li, Jianyang; Zhao, Haibin; Huang, Hao; Jiang, Xiaojun; Bai, Jinming

    2013-12-12

    On 13 December 2012, Chang'e-2 conducted a successful flyby of the near-Earth asteroid 4179 Toutatis at a closest distance of 770 ± 120 meters from the asteroid's surface. The highest-resolution image, with a resolution of better than 3 meters, reveals new discoveries on the asteroid, e.g., a giant basin at the big end, a sharply perpendicular silhouette near the neck region, and direct evidence of boulders and regolith, which suggests that Toutatis may bear a rubble-pile structure. Toutatis' maximum physical length and width are (4.75 × 1.95 km) ±10%, respectively, and the direction of the +z axis is estimated to be (250 ± 5°, 63 ± 5°) with respect to the J2000 ecliptic coordinate system. The bifurcated configuration is indicative of a contact binary origin for Toutatis, which is composed of two lobes (head and body). Chang'e-2 observations have significantly improved our understanding of the characteristics, formation, and evolution of asteroids in general.

  9. The Ginger-shaped Asteroid 4179 Toutatis: New Observations from a Successful Flyby of Chang'e-2

    Science.gov (United States)

    Huang, Jiangchuan; Ji, Jianghui; Ye, Peijian; Wang, Xiaolei; Yan, Jun; Meng, Linzhi; Wang, Su; Li, Chunlai; Li, Yuan; Qiao, Dong; Zhao, Wei; Zhao, Yuhui; Zhang, Tingxin; Liu, Peng; Jiang, Yun; Rao, Wei; Li, Sheng; Huang, Changning; Ip, Wing-Huen; Hu, Shoucun; Zhu, Menghua; Yu, Liangliang; Zou, Yongliao; Tang, Xianglong; Li, Jianyang; Zhao, Haibin; Huang, Hao; Jiang, Xiaojun; Bai, Jinming

    2013-12-01

    On 13 December 2012, Chang'e-2 conducted a successful flyby of the near-Earth asteroid 4179 Toutatis at a closest distance of 770 +/- 120 meters from the asteroid's surface. The highest-resolution image, with a resolution of better than 3 meters, reveals new discoveries on the asteroid, e.g., a giant basin at the big end, a sharply perpendicular silhouette near the neck region, and direct evidence of boulders and regolith, which suggests that Toutatis may bear a rubble-pile structure. Toutatis' maximum physical length and width are (4.75 × 1.95 km) +/-10%, respectively, and the direction of the +z axis is estimated to be (250 +/- 5°, 63 +/- 5°) with respect to the J2000 ecliptic coordinate system. The bifurcated configuration is indicative of a contact binary origin for Toutatis, which is composed of two lobes (head and body). Chang'e-2 observations have significantly improved our understanding of the characteristics, formation, and evolution of asteroids in general.

  10. Shapes of randomly placed droplets

    Science.gov (United States)

    Panchagnula, Mahesh; Janardan, Nachiketa; Deevi, Sri Vallabha

    2016-11-01

    Surface characterization is essential for many industrial applications. Surface defects result in a range of contact angles, which lead to Contact Angle Hysteresis (CAH). We use shapes of randomly shaped drops on surfaces to study the family of shapes that may result from CAH. We image the triple line from these drops and extract additional information related to local contact angles as well as curvatures from these images. We perform a generalized extreme value analysis (GEV) on this microscopic contact angle data. From this analysis, we predict a range for extreme contact angles that are possible for a sessile drop. We have also measured the macroscopic advancing and receding contact angles using a Goniometer. From the extreme values of the contact line curvature, we estimate the pinning stress distribution responsible for the random shapes. It is seen that this range follows the same trend as the macroscopic CAH measured using a Goniometer, and can be used as a method of characterizing the surface.

  11. Generalized Models for Rock Joint Surface Shapes

    Directory of Open Access Journals (Sweden)

    Shigui Du

    2014-01-01

    Full Text Available Generalized models of joint surface shapes are the foundation for mechanism studies on the mechanical effects of rock joint surface shapes. Based on extensive field investigations of rock joint surface shapes, generalized models for three level shapes named macroscopic outline, surface undulating shape, and microcosmic roughness were established through statistical analyses of 20,078 rock joint surface profiles. The relative amplitude of profile curves was used as a borderline for the division of different level shapes. The study results show that the macroscopic outline has three basic features such as planar, arc-shaped, and stepped; the surface undulating shape has three basic features such as planar, undulating, and stepped; and the microcosmic roughness has two basic features such as smooth and rough.

  12. The development and geometry of shape change in Arabidopsis thaliana cotyledon pavement cells

    Directory of Open Access Journals (Sweden)

    Halsey Leah E

    2011-02-01

    Full Text Available Abstract Background The leaf epidermis is an important architectural control element that influences the growth properties of underlying tissues and the overall form of the organ. In dicots, interdigitated pavement cells are the building blocks of the tissue, and their morphogenesis includes the assembly of specialized cell walls that surround the apical, basal, and lateral (anticlinal cell surfaces. The microtubule and actin cytoskeletons are highly polarized along the cortex of the anticlinal wall; however, the relationships between these arrays and cell morphogenesis are unclear. Results We developed new quantitative tools to compare population-level growth statistics with time-lapse imaging of cotyledon pavement cells in an intact tissue. The analysis revealed alternating waves of lobe initiation and a phase of lateral isotropic expansion that persisted for days. During lateral isotropic diffuse growth, microtubule organization varied greatly between cell surfaces. Parallel microtubule bundles were distributed unevenly along the anticlinal surface, with subsets marking stable cortical domains at cell indentations and others clearly populating the cortex within convex cell protrusions. Conclusions Pavement cell morphogenesis is discontinuous, and includes punctuated phases of lobe initiation and lateral isotropic expansion. In the epidermis, lateral isotropic growth is independent of pavement cell size and shape. Cortical microtubules along the upper cell surface and stable cortical patches of anticlinal microtubules may coordinate the growth behaviors of orthogonal cell walls. This work illustrates the importance of directly linking protein localization data to the growth behavior of leaf epidermal cells.

  13. Cell shape change and invagination of the cephalic furrow involves reorganization of F-actin.

    Science.gov (United States)

    Spencer, Allison K; Siddiqui, Bilal A; Thomas, Jeffrey H

    2015-06-15

    Invagination of epithelial sheets to form furrows is a fundamental morphogenetic movement and is found in a variety of developmental events including gastrulation and vertebrate neural tube formation. The cephalic furrow is a deep epithelial invagination that forms during Drosophila gastrulation. In the first phase of cephalic furrow formation, the initiator cells that will lead invagination undergo apicobasal shortening and apical constriction in the absence of epithelial invagination. In the second phase of cephalic furrow formation, the epithelium starts to invaginate, accompanied by both basal expansion and continued apicobasal shortening of the initiator cells. The cells adjacent to the initiator cells also adopt wedge shapes, but only after invagination is well underway. Myosin II does not appear to drive apical constriction in cephalic furrow formation. However, cortical F-actin is increased in the apices of the initiator cells and in invaginating cells during both phases of cephalic furrow formation. These findings suggest that a novel mechanism for epithelial invagination is involved in cephalic furrow formation.

  14. Engaging students, shaping services: the changing face of student engagement at The Hive

    Directory of Open Access Journals (Sweden)

    Sarah Pittaway

    2016-11-01

    Full Text Available Library roles with a unique focus on student or customer engagement are relatively new in the sector and Worcester is one of the first universities to recruit to this area. Rather than focusing on the relationship between engagement and learning, this role seeks to engage with students as partners and agents for change who are actively involved in evaluating, developing and delivering our library service. This article outlines some of our initial successes and impacts, which are already changing the way we interact with our student population. It will also cover some of the challenges faced along the way, particularly in delivering service change in the context of the radical new service model of The Hive. 'Based on a breakout session presented at the 39th UKSG Annual Conference, Bournemouth, April 2016 '

  15. From rice husk to high performance shape stabilized phase change materials for thermal energy storage

    DEFF Research Database (Denmark)

    Mehrali, Mohammad; Latibari, Sara Tahan; Rosen, Marc A.

    2016-01-01

    exceptional phase change behavior, having a desirable latent heat storage capacity of 175 kJ kg(-1). When exposed to high solar radiation intensities, the composites can absorb and store the thermal energy. An FTIR analysis of the SSPCMs indicated that there was no chemical interaction between the palmitic...... and excellent reversibility. The prepared SSPCMs with enhanced heat transfer and phase change properties provide a beneficial option for building energy conservation and solar energy applications owing to the low cost of raw materials and the simple synthetic technique....

  16. More black box to explore: how quality improvement collaboratives shape practice change.

    Science.gov (United States)

    Shaw, Eric K; Chase, Sabrina M; Howard, Jenna; Nutting, Paul A; Crabtree, Benjamin F

    2012-01-01

    Quality improvement collaboratives (QICs) are used extensively to promote quality improvement in health care. Evidence of their effectiveness is limited, prompting calls to "open up the black box" to better understand how and why such collaboratives work. We selected a cohort of 5 primary care practices that participated in a 6-month intervention study aimed at improving colorectal cancer screening rates. Using an immersion/crystallization technique, we analyzed qualitative data that included audio recordings and field notes of QICs and practice-based team meetings. Three themes emerged from our analysis: (1) practice staff became empowered through and drew on the QICs to advance change efforts in the face of leader/physician resistance; (2) a mix of content and media in the QIC program was important for reaching all participants; (3) resources offered at the QIC did little to spur practice change efforts. QICs offer a potentially powerful way of disseminating health care innovations through enhanced strategies for learning and change. Creating collaborative environments in which diverse participants learn, listen, reflect, and share together can enable them to take back to their own organizations key messages and change strategies that benefit them the most.

  17. Anisotropic Shape Changes of Silica Nanoparticles Induced in Liquid with Scanning Transmission Electron Microscopy

    NARCIS (Netherlands)

    Zecevic, J.; Hermannsdorfer, Justus; Schuh, Tobias; de Jong, Krijn P.; de Jonge, Niels

    2017-01-01

    Liquid-phase transmission electron microscopy (TEM) is used for in-situ imaging of nanoscale processes taking place in liquid, such as the evolution of nanoparticles during synthesis or structural changes of nanomaterials in liquid environment. Here, it is shown that the focused electron beam of

  18. Attending to Changing Landscapes: Shaping the Interwoven Identities of Teachers and Teacher Educators

    Science.gov (United States)

    Clandinin, D. Jean; Downey, C. Aiden; Huber, Janice

    2009-01-01

    Teachers, in Canada and elsewhere, live and work on school landscapes being shifted by globalization, immigration, demographics, economic disparities and environmental changes. Within those landscapes teachers find themselves struggling to compose lives that allow them to live with respect and dignity in relation with children, youth and families.…

  19. The Jagged Edge and the Changing Shape of Health and Physical Education in Aotearoa New Zealand

    Science.gov (United States)

    Pope, Clive C.

    2014-01-01

    Primary Objective: This paper critically examines the influence neoliberalism has had on education in general and health and physical education (HPE) in particular in Aotearoa New Zealand. Main Outcomes and Results: Two of the most significant changes fall under the rubric of provision. First, recent government strategy has seen the amalgamation…

  20. Changes of Left Ventricular Geometry Shape and Left Ventricular Regional Function in Patients With Dilated Cardiomyopathy

    Institute of Scientific and Technical Information of China (English)

    Liang-yu WANG; Ming-xing XIE; Qing-bo LI; Ping CHEN; Zhi-xiong CAI; Zhi-dan ZHU

    2009-01-01

    Objectives To assess the left ventricle regional systolic and diastolic function, left ventricle geometry and left venti-tie sphericity indexes in patients with dilated cardiomyopathy (DCM) by quantitative tissue velocity imaging (QTVI). Methods Thirty normal subjects and 52 DCM patients underwent QTVI and colour Doppler flow imaging study in or-der to measure the left ventricular regional function along left ventricle apical long-axis view and the left ventricle geom-etry. Peak tissue velocities of left venticle regional muscular tissue during systole (Vs), systolic acceleration (a), ear-ly diastole(Ve) and left atrium contraction(Va) along left venticle apical long axis view were measured. The indexes of left ventdcular regional systolic and diastolic function were mearsured at the same time. The left ventricle geometry shape was reflected from the systolic and diastolic sphericity index (Sis and Sid), the left ventricular ejection fraction (LVEF) and D wave/A wave (PVd/Pva) of pulmonary veins flowing spectrum reflected the global left ventricular systolic and diastolic function. The Vs, Ve, Va, a, PVd/Pva ratio, LVEF, Sis, Sid and their correlations between normal subjects and patients with DCM were compared and analyzed. Results Vs, Ve, Va, a, PVd/Pva, Sis and Sid in patients with DCM were lower than those in normal persons. There were significant relations between Sis and a (r=0.6142, P<0.05), Ve/Va and Sid (r=0.6271, P<0.05). Conclusions QTVI offer a newer method which has a higher sensitivity and accuracy in evaluating the left venticle regional systolic and diastolic function in DCM patients. There was significant relation between regional cardiac function and left venticle sphericity.

  1. Rainbow correlation imaging with macroscopic twin beam

    Science.gov (United States)

    Allevi, Alessia; Bondani, Maria

    2017-06-01

    We present the implementation of a correlation-imaging protocol that exploits both the spatial and spectral correlations of macroscopic twin-beam states generated by parametric downconversion. In particular, the spectral resolution of an imaging spectrometer coupled to an EMCCD camera is used in a proof-of-principle experiment to encrypt and decrypt a simple code to be transmitted between two parties. In order to optimize the trade-off between visibility and resolution, we provide the characterization of the correlation images as a function of the spatio-spectral properties of twin beams generated at different pump power values.

  2. Fingerprint Feature Extraction Based on Macroscopic Curvature

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiong; He Gui-ming; Zhang Yun

    2003-01-01

    In the Automatic Fingerprint Identification System (AFIS), extracting the feature of fingerprint is very important. The local curvature of ridges of fingerprint is irregular, so people have the barrier to effectively extract the fingerprint curve features to describe fingerprint. This article proposes a novel algorithm; it embraces information of few nearby fingerprint ridges to extract a new characteristic which can describe the curvature feature of fingerprint. Experimental results show the algorithm is feasible, and the characteristics extracted by it can clearly show the inner macroscopic curve properties of fingerprint. The result also shows that this kind of characteristic is robust to noise and pollution.

  3. Fingerprint Feature Extraction Based on Macroscopic Curvature

    Institute of Scientific and Technical Information of China (English)

    Zhang; Xiong; He; Gui-Ming; 等

    2003-01-01

    In the Automatic Fingerprint Identification System(AFIS), extracting the feature of fingerprint is very important. The local curvature of ridges of fingerprint is irregular, so people have the barrier to effectively extract the fingerprint curve features to describe fingerprint. This article proposes a novel algorithm; it embraces information of few nearby fingerprint ridges to extract a new characterstic which can describe the curvature feature of fingerprint. Experimental results show the algorithm is feasible, and the characteristics extracted by it can clearly show the inner macroscopic curve properties of fingerprint. The result also shows that this kind of characteristic is robust to noise and pollution.

  4. Macroscopic Quantum Criticality in a Circuit QED

    CERN Document Server

    Wang, Y D; Nori, F; Quan, H T; Sun, C P; Liu, Yu-xi; Nori, Franco

    2006-01-01

    Cavity quantum electrodynamic (QED) is studied for two strongly-coupled charge qubits interacting with a single-mode quantized field, which is provided by a on-chip transmission line resonator. We analyze the dressed state structure of this superconducting circuit QED system and the selection rules of electromagnetic-induced transitions between any two of these dressed states. Its macroscopic quantum criticality, in the form of ground state level crossing, is also analyzed, resulting from competition between the Ising-type inter-qubit coupling and the controllable on-site potentials.

  5. Macroscopic fluctuations theory of aerogel dynamics

    CERN Document Server

    Lefevere, Raphael; Zambotti, Lorenzo

    2010-01-01

    We consider extensive deterministic dynamics made of $N$ particles modeling aerogels under a macroscopic fluctuation theory description. By using a stochastic model describing those dynamics after a diffusive rescaling, we show that the functional giving the exponential decay in $N$ of the probability of observing a given energy and current profile is not strictly convex as a function of the current. This behaviour is caused by the fact that the energy current is carried by particles which may have arbitrary low speed with sufficiently large probability.

  6. Slow motility in hair cells of the frog amphibian papilla: myosin light chain-mediated shape change.

    Science.gov (United States)

    Farahbakhsh, Nasser A; Narins, Peter M

    2008-07-01

    Using video, fluorescence and confocal microscopy, quantitative analysis and modeling, we investigated intracellular processes mediating the calcium/calmodulin (Ca(2+)/CaM)-dependent slow motility in hair cells dissociated from the rostral region of amphibian papilla, one of the two auditory organs in frogs. The time course of shape changes in these hair cells during the period of pretreatment with several specific inhibitors, as well as their response to the calcium ionophore, ionomycin, were recorded and compared. These cells respond to ionomycin with a tri-phasic shape change: an initial phase of iso-volumetric length decrease; a period of concurrent shortening and swelling; and the final phase of increase in both length and volume. We found that both the myosin light chain kinase inhibitor, ML-7, and antagonists of the multifunctional Ca(2+)/CaM-dependent kinases, KN-62 and KN-93, inhibit the iso-volumetric shortening phase of the response to ionomycin. The type 1 protein phosphatase inhibitors, calyculin A and okadaic acid induce minor shortening on their own, but do not significantly alter phase 1 response. However, they appear to counter effects of the inhibitors of Ca(2+)/CaM-dependent kinases. We hypothesize that an active actomyosin-based process mediates the iso-volumetric shortening in the frog rostral amphibian papillar hair cells.

  7. A Municipal 'Climate Revolution'? The Shaping of Municipal Climate Change Policies

    DEFF Research Database (Denmark)

    Hoff, Jens Villiam; Strobel, Bjarne W.

    2013-01-01

    This article investigates the climate policies formulated by Danish municipalities, and the huge variation in scope and ambition of these policies. Based on a survey covering all Danish municipalities, it is found that 72% of all municipalities have climate change action plans with annual CO2......-reduction goals between 0.9 and 5.9%. Size of municipality, degree of incorporation of climate change policies in the municipal administration, presence of ‘green organizations’, as well as membership of national and international climate networks, are found to be of importance for the level of ambition...... of the climate plans. Denne artikel undersøger danske kommuners klimapolitik, og den store variation i denne. Med udgangspunkt i en spørgeskemaundersøgelse omfattende alle danske kommuner konstateres det, at 72% af kommunerne har en klimahandlingsplan, som fastsætter årlige CO2-reduktioner for kommunen som...

  8. Shape deformation of the organ of Corti associated with length changes of outer hair cell

    Science.gov (United States)

    Zimmermann, U.; Fermin, C.

    1996-01-01

    Cochlear outer hair cells (OHC) are commonly assumed to function as mechanical effectors as well as sensory receptors in the organ of Corti (OC) of the inner ear. OHC in vitro and in organ explants exhibit mechanical responses to electrical, chemical or mechanical stimulation which may represent an aspect of their effector process that is expected in vivo. A detailed description, however, of an OHC effector operation in situ is still missing. Specifically, little is known as to how OHC movements influence the geometry of the OC in situ. Previous work has demonstrated that the motility of isolated OHCs in response to electrical stimulation and to K(+)-gluconate is probably under voltage control and causes depolarisation (shortening) and hyperpolarization (elongation). This work was undertaken to investigate if the movements that were observed in isolated OHC, and which are induced by ionic stimulation, could change the geometry of the OC. A synchronized depolarization of OHC was induced in guinea pig cochleae by exposing the entire OC to artificial endolymph (K+). Subsequent morphometry of mid-modiolar sections from these cochleae revealed that the distance between the basilar membrane (BM) and the reticular lamina (RL) had decreased considerably. Furthermore, in the three upper turns OHC had significantly shortened in all rows. The results suggest that OHC can change their length in the organ of Corti (OC) thus deforming the geometry of the OC. The experiments reveal a tonic force generation within the OC that may change the position of RL and/or BM, contribute to damping, modulate the BM-RL-distance and control the operating points of RL and sensory hair bundles. Thus, the results suggest active self-adjustments of cochlear mechanics by slow OHC length changes. Such mechanical adjustments have recently been postulated to correspond to timing elements of animal communication, speech or music.

  9. Anaesthetics may change the shape of isolated type I hair cells.

    Science.gov (United States)

    Scarfone, E; Ulfendahl, M; Figueroa, L; Flock, A

    1991-08-01

    Type I hair cells isolated from animals anaesthetised with barbiturates or ether were found to be shorter and to lack a prominent 'neck' region when compared to cells isolated from non-anaesthetised animals. Ketamine did not have this effect. The changes observed could have important implications for the physiology of inner ear receptors. These findings infer that care should be taken in the choice of anaesthetics used in studies on cells from the inner ear.

  10. Shape deformation of the organ of Corti associated with length changes of outer hair cell

    Science.gov (United States)

    Zimmermann, U.; Fermin, C.

    1996-01-01

    Cochlear outer hair cells (OHC) are commonly assumed to function as mechanical effectors as well as sensory receptors in the organ of Corti (OC) of the inner ear. OHC in vitro and in organ explants exhibit mechanical responses to electrical, chemical or mechanical stimulation which may represent an aspect of their effector process that is expected in vivo. A detailed description, however, of an OHC effector operation in situ is still missing. Specifically, little is known as to how OHC movements influence the geometry of the OC in situ. Previous work has demonstrated that the motility of isolated OHCs in response to electrical stimulation and to K(+)-gluconate is probably under voltage control and causes depolarisation (shortening) and hyperpolarization (elongation). This work was undertaken to investigate if the movements that were observed in isolated OHC, and which are induced by ionic stimulation, could change the geometry of the OC. A synchronized depolarization of OHC was induced in guinea pig cochleae by exposing the entire OC to artificial endolymph (K+). Subsequent morphometry of mid-modiolar sections from these cochleae revealed that the distance between the basilar membrane (BM) and the reticular lamina (RL) had decreased considerably. Furthermore, in the three upper turns OHC had significantly shortened in all rows. The results suggest that OHC can change their length in the organ of Corti (OC) thus deforming the geometry of the OC. The experiments reveal a tonic force generation within the OC that may change the position of RL and/or BM, contribute to damping, modulate the BM-RL-distance and control the operating points of RL and sensory hair bundles. Thus, the results suggest active self-adjustments of cochlear mechanics by slow OHC length changes. Such mechanical adjustments have recently been postulated to correspond to timing elements of animal communication, speech or music.

  11. Spin models as microfoundation of macroscopic market models

    Science.gov (United States)

    Krause, Sebastian M.; Bornholdt, Stefan

    2013-09-01

    Macroscopic price evolution models are commonly used for investment strategies. There are first promising achievements in defining microscopic agent based models for the same purpose. Microscopic models allow a deeper understanding of mechanisms in the market than the purely phenomenological macroscopic models, and thus bear the chance for better models for market regulation. However microscopic models and macroscopic models are commonly studied separately. Here, we exemplify a unified view of a microscopic and a macroscopic market model in a case study, deducing a macroscopic Langevin equation from a microscopic spin market model closely related to the Ising model. The interplay of the microscopic and the macroscopic view allows for a better understanding and adjustment of the microscopic model, as well, and may guide the construction of agent based market models as basis of macroscopic models.

  12. MACROSCOPIC STRAIN POTENTIALS IN NONLINEAR POROUS MATERIALS

    Institute of Scientific and Technical Information of China (English)

    刘熠; 黄筑平

    2003-01-01

    By taking a hollow sphere as a representative volume element (RVE), the macroscopic strain potentials of porous materials with power-law incompressible matrix are studied in this paper.According to the principles of the minimum potential energy in nonlinear elasticity and the variational procedure, static admissible stress fields and kinematic admissible displacement fields are constructed,and hence the upper and the lower bounds of the macroscopic strain potential are obtained. The bounds given in the present paper differ so slightly that they both provide perfect approximations of the exact strain potential of the studied porous materials. It is also found that the upper bound proposed by previous authors is much higher than the present one, and the lower bounds given by Cocks is much lower. Moreover, the present calculation is also compared with the variational lower bound of Ponte Castafneda for statistically isotropic porous materials. Finally, the validity of the hollow spherical RVE for the studied nonlinear porous material is discussed by the difference between the present numerical results and the Cocks bound.

  13. Macroscopic theory for capillary-pressure hysteresis.

    Science.gov (United States)

    Athukorallage, Bhagya; Aulisa, Eugenio; Iyer, Ram; Zhang, Larry

    2015-03-03

    In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials.

  14. Shape changes of N=66 isotones Mo-Ce in DPPQ model

    CERN Document Server

    Gupta, J B

    2002-01-01

    The dynamic pairing plus quadrupole model is used to study the changes in nuclear structure of N=66 isotones of Mo-Sn-Ce. Two different single-particle configurations have been used for Z=50 regions and their suitability for respective regions is illustrated. The variations with Z of the quadrupole deformation beta, deformation energy E sub d , and the 2 sub 1 sup + state energy, B(E2;0 sup +->2 sup +) and quadrupole moment Q(2 sup +) are reproduced. The role of the spin-orbit partner (SOP) orbitals in n-p interaction for inducing the deformation in each region is studied.

  15. Macroscopic Quantum Phenomena from the Correlation, Coupling and Criticality Perspectives

    CERN Document Server

    Chou, C H; Subasi, Y

    2011-01-01

    In this sequel paper we explore how macroscopic quantum phenomena can be measured or understood from the behavior of quantum correlations which exist in a quantum system of many particles or components and how the interaction strengths change with energy or scale, under ordinary situations and when the system is near its critical point. We use the nPI (master) effective action related to the Boltzmann-BBGKY / Schwinger-Dyson hierarchy of equations as a tool for systemizing the contributions of higher order correlation functions to the dynamics of lower order correlation functions. Together with the large N expansion discussed in our first paper(MQP1) we explore 1) the conditions whereby an H-theorem is obtained, which can be viewed as a signifier of the emergence of macroscopic behavior in the system. We give two more examples from past work: 2) the nonequilibrium dynamics of N atoms in an optical lattice under the large $\\cal N$ (field components), 2PI and second order perturbative expansions, illustrating h...

  16. Tribological behaviour of graphite powders at nano- and macroscopic scales

    Science.gov (United States)

    Schmitt, M.; Bistac, S.; Jradi, K.

    2007-04-01

    With its high resistance, good hardness and electrical conductibility in the basal plans, graphite is used for many years in various tribological fields such as seals, bearings or electrical motor brushes, and also for applications needing excellent lubrication and wearreducing properties. But thanks to its low density, graphite is at the moment destined for technologies which need a reducing of the weight combined with an enhancement of the efficiency, as it is the case in aeronautical industry. In this contexte, the friction and wear of natural (named graphite A) and synthetic (called graphites B and C) powders were evaluated, first at the macroscopic scale when sliding against steel counterfaces, under various applied normal loads. Scanning Electron Microscopy and AFM in tapping mode were used to observe the morphological modifications of the graphites. It is noticed that an enlargement of the applied normal load leads to an increase of the friction coefficient for graphites A and C; but for the graphite B, it seems that a ''limit'' load can induce a complete change of the tribological behaviour. At the same time, the nano-friction properties of these powders were evaluated by AFM measurements in contact mode, at different contact loads. As it was the case at the macroscopic scale, an increase of the nano-contact load induces higher friction coefficients. The determining of the friction and wear mechanisms of the graphite powders, as a function of both their intrinsic characteristics and the applied normal load, is then possible.

  17. How does Planck’s constant influence the macroscopic world?

    Science.gov (United States)

    Yang, Pao-Keng

    2016-09-01

    In physics, Planck’s constant is a fundamental physical constant accounting for the energy-quantization phenomenon in the microscopic world. The value of Planck’s constant also determines in which length scale the quantum phenomenon will become conspicuous. Some students think that if Planck’s constant were to have a larger value than it has now, the quantum effect would only become observable in a world with a larger size, whereas the macroscopic world might remain almost unchanged. After reasoning from some basic physical principles and theories, we found that doubling Planck’s constant might result in a radical change on the geometric sizes and apparent colors of macroscopic objects, the solar spectrum and luminosity, the climate and gravity on Earth, as well as energy conversion between light and materials such as the efficiency of solar cells and light-emitting diodes. From the discussions in this paper, students can appreciate how Planck’s constant affects various aspects of the world in which we are living now.

  18. An exploration for the macroscopic physical meaning of entropy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The macroscopic physical meaning of entropy is analyzed based on the exergy (availability) of a combined system (a closed system and its environment), which is the maximum amount of useful work obtainable from the system and the environment as the system is brought into equilibrium with the environment. The process the system experiences can be divided in two sequent sub-processes, the process at constant volume, which represents the heat interaction of the system with the environment, and the adiabatic process, which represents the work interaction of the system with the environment. It is shown that the macroscopic physical meaning of entropy is a measure of the unavailable energy of a closed system for doing useful work through heat interaction. This statement is more precise than those reported in prior literature. The unavailability function of a closed system can be defined as T0S and p0V in volume constant process and adiabatic process, respectively. Their changes, that is, AiTgS) and A (p0V) represent the unusable parts of the internal energy of a closed system for doing useful work in corresponding processes. Finally, the relation between Clausius entropy and Boltzmann entropy is discussed based on the comparison of their expressions for absolute entropy.

  19. Quantum correlations of lights in macroscopic environments

    Science.gov (United States)

    Sua, Yong Meng

    This dissertation presents a detailed study in exploring quantum correlations of lights in macroscopic environments. We have explored quantum correlations of single photons, weak coherent states, and polarization-correlated/polarization-entangled photons in macroscopic environments. These included macroscopic mirrors, macroscopic photon number, spatially separated observers, noisy photons source and propagation medium with loss or disturbances. We proposed a measurement scheme for observing quantum correlations and entanglement in the spatial properties of two macroscopic mirrors using single photons spatial compass state. We explored the phase space distribution features of spatial compass states, such as chessboard pattern by using the Wigner function. The displacement and tilt correlations of the two mirrors were manifested through the propensities of the compass states. This technique can be used to extract Einstein-Podolsky-Rosen correlations (EPR) of the two mirrors. We then formulated the discrete-like property of the propensity P b(m,n), which can be used to explore environmental perturbed quantum jumps of the EPR correlations in phase space. With single photons spatial compass state, the variances in position and momentum are much smaller than standard quantum limit when using a Gaussian TEM 00 beam. We observed intrinsic quantum correlations of weak coherent states between two parties through balanced homodyne detection. Our scheme can be used as a supplement to decoy-state BB84 protocol and differential phase-shift QKD protocol. We prepared four types of bipartite correlations +/- cos2(theta1 +/- theta 2) that shared between two parties. We also demonstrated bits correlations between two parties separated by 10 km optical fiber. The bits information will be protected by the large quantum phase fluctuation of weak coherent states, adding another physical layer of security to these protocols for quantum key distribution. Using 10 m of highly nonlinear

  20. Host immunity shapes the impact of climate changes on the dynamics of parasite infections.

    Science.gov (United States)

    Mignatti, Andrea; Boag, Brian; Cattadori, Isabella M

    2016-03-15

    Global climate change is predicted to alter the distribution and dynamics of soil-transmitted helminth infections, and yet host immunity can also influence the impact of warming on host-parasite interactions and mitigate the long-term effects. We used time-series data from two helminth species of a natural herbivore and investigated the contribution of climate change and immunity on the long-term and seasonal dynamics of infection. We provide evidence that climate warming increases the availability of infective stages of both helminth species and the proportional increase in the intensity of infection for the helminth not regulated by immunity. In contrast, there is no significant long-term positive trend in the intensity for the immune-controlled helminth, as immunity reduces the net outcome of climate on parasite dynamics. Even so, hosts experienced higher infections of this helminth at an earlier age during critical months in the warmer years. Immunity can alleviate the expected long-term effect of climate on parasite infections but can also shift the seasonal peak of infection toward the younger individuals.

  1. Changes in Comet 67P/Churyumov-Gerasimenko during the ROSETTA Era - Shape, Topography and Rotation

    Science.gov (United States)

    Gaskell, Robert W.; Jorda, Laurent; Sierks, Holger; Gutiérrez, Pedro; Faurschou Hviid, Stubbe; Keller, Horst Uwe; Mottola, Stefano; Capanna, Claire; OSIRIS Team

    2016-10-01

    The ROSETTA orbiter began mapping comet 67P/Churyumov-Gerasimenko on 1 Aug 2014. It was high summer on the comet, with a subsolar latitude of 45 degrees, meaning that little of the South was illuminated. At that time, the comet was rotating at a rate of 696 deg/day and was 3.6 AU from the Sun. From September through January 2015, ROSETTA was mostly within 30 km of the comet, at times venturing within 10 km. This allowed for detailed mapping of 67P's northern hemisphere. By the end of January, with the Sun still at 27 degrees North, the comet was at 2.4 AU and was becoming too active for close operations. At the same time, torques due to this activity began slowing the rotation rate until it reached a minimum of 694 deg/day around the end of April, shortly before the autumnal equinox. Except for a daring close approach (8 km) on Valentine's day 2015, ROSETTA would not get within 30 km for another year, just before the vernal equinox, precluding very high resolution mapping of the South. Meanwhile, increasing torques as the comet passed through perihelion in mid August 2015 (1.24 AU) were increasing the rotation rate - it is currently at 716 deg/day - while the direction of the pole has remained unchanged. Some areas of the comet, most notably in the Imhotep region, have shown significant changes in topography during the comet's passage by the Sun. These are being mapped and it is hoped that we shall be able to map additional changes by comparing early and late imaging. By the end of the mission in late September, 67P will have receded to about 3.8 AU and the rotation rate will probably have stabilized to its new value. By early August, the Sun will be about 16 degrees North, but the increased distance from the Sun will reduce the power available and an increasing distance from Earth will reduce data rates. 1 Aug 2016 will be our data cutoff for this work. Removing pre-perihelion images with subsolar latitude > 15 deg still provided enough data to map the North, so

  2. Nuclear shape changes are induced by knockdown of the SWI/SNF ATPase BRG1 and are independent of cytoskeletal connections.

    Directory of Open Access Journals (Sweden)

    Karen M Imbalzano

    Full Text Available Changes in nuclear morphology occur during normal development and have been observed during the progression of several diseases. The shape of a nucleus is governed by the balance of forces exerted by nuclear-cytoskeletal contacts and internal forces created by the structure of the chromatin and nuclear envelope. However, factors that regulate the balance of these forces and determine nuclear shape are poorly understood. The SWI/SNF chromatin remodeling enzyme ATPase, BRG1, has been shown to contribute to the regulation of overall cell size and shape. Here we document that immortalized mammary epithelial cells show BRG1-dependent nuclear shape changes. Specifically, knockdown of BRG1 induced grooves in the nuclear periphery that could be documented by cytological and ultrastructural methods. To test the hypothesis that the observed changes in nuclear morphology resulted from altered tension exerted by the cytoskeleton, we disrupted the major cytoskeletal networks and quantified the frequency of BRG1-dependent changes in nuclear morphology. The results demonstrated that disruption of cytoskeletal networks did not change the frequency of BRG1-induced nuclear shape changes. These findings suggest that BRG1 mediates control of nuclear shape by internal nuclear mechanisms that likely control chromatin dynamics.

  3. Tough and Thermosensitive Poly(N-isopropylacrylamide)/Graphene Oxide Hydrogels with Macroscopically Oriented Liquid Crystalline Structures.

    Science.gov (United States)

    Zhu, Zhongcheng; Li, Yang; Xu, Hui; Peng, Xin; Chen, Ya-Nan; Shang, Cong; Zhang, Qin; Liu, Jiaqi; Wang, Huiliang

    2016-06-22

    Bulk graphene oxide (GO) nanocomposite materials with macroscopically oriented GO liquid crystalline (LC) structures exhibit interesting anisotropic properties, but their facile preparations remain challenging. This work reports for the first time the facile preparation of poly(N-isopropylacrylamide) (PNIPAM)/GO nanocomposite hydrogels with macroscopically oriented LC structures with the assistance of a flow field induced by vacuum degassing and the in situ polymerization accelerated by GO. The hydrogel prepared with a GO concentration of 5.0 mg mL(-1) exhibits macroscopically aligned LC structures, which endow the gels with anisotropic optical, mechanical properties, and dimensional changes during the phase transition. The hydrogels show dramatically enhanced tensile mechanical properties and phase transition rates. The oriented LC structures are not damaged during the phase transition of the PNIPAM/GO hydrogels, and hence their LC behavior undergoes reversible change. Moreover, highly oriented LC structures can also be formed when the gels are elongated, even for the gels which do not have macroscopically oriented LC structures. Very impressively, the oriented LC structures in the hydrogels can be permanently maintained by drying the gel samples elongated to and then kept at a constant tensile strain. The thermosensitive nature of PNIPAM and the angle-dependent nature of the macroscopically aligned GO LC structures allow the practical applications of the PNIPAM/GO hydrogels as optical switches, soft sensors, and actuators and so on.

  4. Temperature-Driven Shape Changes of the Near Earth Asteroid Scout Solar Sail

    Science.gov (United States)

    Stohlman, Olive R.; Loper, Erik R.; Lockett, Tiffany E.

    2017-01-01

    Near Earth Asteroid Scout (NEA Scout) is a NASA deep space Cubesat, scheduled to launch on the Exploration Mission 1 flight of the Space Launch System. NEA Scout will use a deployable solar sail as its primary propulsion system. The sail is a square membrane supported by rigid metallic tapespring booms, and analysis predicts that these booms will experience substantial thermal warping if they are exposed to direct sunlight in the space environment. NASA has conducted sunspot chamber experiments to confirm the thermal distortion of this class of booms, demonstrating tip displacement of between 20 and 50 centimeters in a 4-meter boom. The distortion behavior of the boom is complex and demonstrates an application for advanced thermal-structural analysis. The needs of the NEA Scout project were supported by changing the solar sail design to keep the booms shaded during use of the solar sail, and an additional experiment in the sunspot chamber is presented in support of this solution.

  5. Hybrid Methods and Atomistic Models to Explore Free Energies, Rates and Pathways of Protein Shape Changes

    DEFF Research Database (Denmark)

    Wang, Yong

    biologist, I was proud and excited for the breaking news as this prize is not only to them, but also to the whole community of computational biology. There has been progress in the modeling of protein dynamics in recent years and it has also started to be clear that computer simulations play...... folding, conformational exchange and binding with ligands at long time scales. In Chapter 2, we benchmarked how well the current force elds and molecular dynamics (MD) simulations could model changes in structure, dynamics, free energy and kinetics for an extensively studied protein called T4 lysozyme (T4...... allows us to utilize the limited computational resources in a more reasonable way. In Chapter 5, we further illustrated the possibility to combine the free energy ooding potential obtained from the variational method with infrequent metadynamics to calculate the long timescale rate. This hybrid method...

  6. Short-term changes in tinnitus pitch related to audiometric shape in sudden sensorineural hearing loss.

    Science.gov (United States)

    Kim, Tae Su; Yoo, Myung Hoon; Lee, Hwan Seo; Yang, Chan Joo; Ahn, Joong Ho; Chung, Jong Woo; Park, Hong Ju

    2016-06-01

    Sudden sensorineural hearing loss (SSNHL) is frequently accompanied by tinnitus. This study investigated the relationships between new-onset tinnitus and audiometric parameters in SSNHL patients. Sixty-one patients with SSNHL with new-onset tinnitus were enrolled. Changes of tinnitus pitch, and their correlations with the maximum hearing loss frequency (Fmax) and the edge frequency (Fedge) at initial and 1-month follow-up (FU) were analyzed. At 1-month FU, tinnitus disappeared in 16 (26%) patients and they also showed hearing normalization. In 36 patients who still showed tonal tinnitus, the mean tinnitus pitch (2.9 kHz) at initial examination, which was close to Fedge (2.7 kHz), increased to a significantly higher frequency (4.6 kHz) at 1-month examination, which was close to Fmax (5.6 kHz). The tinnitus pitch had a more significant correlation with Fedge (r=0.46) than with Fmax (r=0.33) at initial examination and the tinnitus pitch showed a significant correlation only with Fmax (r=0.52) at 1-month examination. Hearing normalization was crucial for the disappearance of tinnitus at 1-month FU. Patients who still had tonal tinnitus at 1-month FU showed the tinnitus pitch closer to the edge frequency (Fedge) at initial examination, and this tinnitus pitch increased to the maximum hearing loss frequency (Fmax) at 1-month FU. This change in tinnitus pitch may give insight about tinnitus generation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Evolutionary change within a bipotential switch shaped the sperm/oocyte decision in hermaphroditic nematodes.

    Directory of Open Access Journals (Sweden)

    Yiqing Guo

    Full Text Available A subset of transcription factors like Gli2 and Oct1 are bipotential--they can activate or repress the same target, in response to changing signals from upstream genes. Some previous studies implied that the sex-determination protein TRA-1 might also be bipotential; here we confirm this hypothesis by identifying a co-factor, and use it to explore how the structure of a bipotential switch changes during evolution. First, null mutants reveal that C. briggsae TRR-1 is required for spermatogenesis, RNA interference implies that it works as part of the Tip60 Histone Acetyl Transferase complex, and RT-PCR data show that it promotes the expression of Cbr-fog-3, a gene needed for spermatogenesis. Second, epistasis tests reveal that TRR-1 works through TRA-1, both to activate Cbr-fog-3 and to control the sperm/oocyte decision. Since previous studies showed that TRA-1 can repress fog-3 as well, these observations demonstrate that it is bipotential. Third, TRR-1 also regulates the development of the male tail. Since Cbr-tra-2 Cbr-trr-1 double mutants resemble Cbr-tra-1 null mutants, these two regulatory branches control all tra-1 activity. Fourth, striking differences in the relationship between these two branches of the switch have arisen during recent evolution. C. briggsae trr-1 null mutants prevent hermaphrodite spermatogenesis, but not Cbr-fem null mutants, which disrupt the other half of the switch. On the other hand, C. elegans fem null mutants prevent spermatogenesis, but not Cel-trr-1 mutants. However, synthetic interactions confirm that both halves of the switch exist in each species. Thus, the relationship between the two halves of a bipotential switch can shift rapidly during evolution, so that the same phenotype is produce by alternative, complementary mechanisms.

  8. Hierarchical macroscopic fibrillar adhesives: in situ study of buckling and adhesion mechanisms on wavy substrates.

    Science.gov (United States)

    Bauer, Christina T; Kroner, Elmar; Fleck, Norman A; Arzt, Eduard

    2015-12-01

    Nature uses hierarchical fibrillar structures to mediate temporary adhesion to arbitrary substrates. Such structures provide high compliance such that the flat fibril tips can be better positioned with respect to asperities of a wavy rough substrate. We investigated the buckling and adhesion of hierarchically structured adhesives in contact with flat smooth, flat rough and wavy rough substrates. A macroscopic model for the structural adhesive was fabricated by molding polydimethylsiloxane into pillars of diameter in the range of 0.3-4.8 mm, with up to three different hierarchy levels. Both flat-ended and mushroom-shaped hierarchical samples buckled at preloads one quarter that of the single level structures. We explain this behavior by a change in the buckling mode; buckling leads to a loss of contact and diminishes adhesion. Our results indicate that hierarchical structures can have a strong influence on the degree of adhesion on both flat and wavy substrates. Strategies are discussed that achieve highly compliant substrates which adhere to rough substrates.

  9. Cultural and climatic changes shape the evolutionary history of the Uralic languages.

    Science.gov (United States)

    Honkola, T; Vesakoski, O; Korhonen, K; Lehtinen, J; Syrjänen, K; Wahlberg, N

    2013-06-01

    Quantitative phylogenetic methods have been used to study the evolutionary relationships and divergence times of biological species, and recently, these have also been applied to linguistic data to elucidate the evolutionary history of language families. In biology, the factors driving macroevolutionary processes are assumed to be either mainly biotic (the Red Queen model) or mainly abiotic (the Court Jester model) or a combination of both. The applicability of these models is assumed to depend on the temporal and spatial scale observed as biotic factors act on species divergence faster and in smaller spatial scale than the abiotic factors. Here, we used the Uralic language family to investigate whether both 'biotic' interactions (i.e. cultural interactions) and abiotic changes (i.e. climatic fluctuations) are also connected to language diversification. We estimated the times of divergence using Bayesian phylogenetics with a relaxed-clock method and related our results to climatic, historical and archaeological information. Our timing results paralleled the previous linguistic studies but suggested a later divergence of Finno-Ugric, Finnic and Saami languages. Some of the divergences co-occurred with climatic fluctuation and some with cultural interaction and migrations of populations. Thus, we suggest that both 'biotic' and abiotic factors contribute either directly or indirectly to the diversification of languages and that both models can be applied when studying language evolution.

  10. Age and experience shape developmental changes in the neural basis of language-related learning.

    Science.gov (United States)

    McNealy, Kristin; Mazziotta, John C; Dapretto, Mirella

    2011-11-01

    Very little is known about the neural underpinnings of language learning across the lifespan and how these might be modified by maturational and experiential factors. Building on behavioral research highlighting the importance of early word segmentation (i.e. the detection of word boundaries in continuous speech) for subsequent language learning, here we characterize developmental changes in brain activity as this process occurs online, using data collected in a mixed cross-sectional and longitudinal design. One hundred and fifty-six participants, ranging from age 5 to adulthood, underwent functional magnetic resonance imaging (fMRI) while listening to three novel streams of continuous speech, which contained either strong statistical regularities, strong statistical regularities and speech cues, or weak statistical regularities providing minimal cues to word boundaries. All age groups displayed significant signal increases over time in temporal cortices for the streams with high statistical regularities; however, we observed a significant right-to-left shift in the laterality of these learning-related increases with age. Interestingly, only the 5- to 10-year-old children displayed significant signal increases for the stream with low statistical regularities, suggesting an age-related decrease in sensitivity to more subtle statistical cues. Further, in a sample of 78 10-year-olds, we examined the impact of proficiency in a second language and level of pubertal development on learning-related signal increases, showing that the brain regions involved in language learning are influenced by both experiential and maturational factors. 2011 Blackwell Publishing Ltd.

  11. Dietary resources shape the adaptive changes of cyanide detoxification function in giant panda (Ailuropoda melanoleuca).

    Science.gov (United States)

    Huang, He; Yie, Shangmian; Liu, Yuliang; Wang, Chengdong; Cai, Zhigang; Zhang, Wenping; Lan, Jingchao; Huang, Xiangming; Luo, Li; Cai, Kailai; Hou, Rong; Zhang, Zhihe

    2016-10-05

    The functional adaptive changes in cyanide detoxification in giant panda appear to be response to dietary transition from typical carnivore to herbivorous bear. We tested the absorption of cyanide contained in bamboo/bamboo shoots with a feeding trial in 20 adult giant pandas. We determined total cyanide content in bamboo shoots and giant panda's feces, levels of urinary thiocyanate and tissue rhodanese activity using color reactions with a spectrophotometer. Rhodanese expression in liver and kidney at transcription and translation levels were measured using real-time RT-PCR and immunohistochemistry, respectively. We compared differences of rhodanese activity and gene expressions among giant panda, rabbit (herbivore) and cat (carnivore), and between newborn and adult giant pandas. Bamboo shoots contained 3.2 mg/kg of cyanide and giant pandas absorbed more than 65% of cyanide. However, approximately 80% of absorbed cyanide was metabolized to less toxic thiocyanate that was discharged in urine. Rhodanese expression and activity in liver and kidney of giant panda were significantly higher than in cat, but lower than in rabbit (all P < 0.05). Levels in adult pandas were higher than that in newborn cub. Phylogenetic analysis of both nucleotide and amino acid sequences of the rhodanese gene supported a closer relationship of giant panda with carnivores than with herbivores.

  12. Influence of nonequilibrium radiation and shape change on aerothermal environment of a Jovian entry body

    Science.gov (United States)

    Tiwari, S. N.; Subramanian, S. V.

    1981-01-01

    The influence of nonequilibrium radiative energy transfer and the effect of probe configuration changes on the flow phenomena around a Jovian entry body are investigated. The radiating shock layer flow is assumed to be axisymmetric, viscous, laminar and in chemical equilibrium. The radiative transfer equations are derived under nonequilibrium conditions which include multilevel energy transitions. The equilibrium radiative transfer analysis is performed with an existing nongray radiation model which accounts for molecular band, atomic line, and continuum transitions. The nonequilibrium results are obtained with and without ablation injection in the shock layer. The nonequilibrium results are found to be greatly influenced by the temperature distribution in the shock layer. In the absence of ablative products, the convective and radiative heating to the entry body are reduced under nonequilibrium conditions. The influence of nonequilibrium is found to be greater at higher entry altitudes. With coupled ablation and carbon phenolic injection, 16 chemical species are used in the ablation layer for radiation absorption. Equilibrium and nonequilibrium results are compared under peak heating conditions.

  13. Distinct molecular features of different macroscopic subtypes of colorectal neoplasms.

    Directory of Open Access Journals (Sweden)

    Kenichi Konda

    Full Text Available BACKGROUND: Colorectal adenoma develops into cancer with the accumulation of genetic and epigenetic changes. We studied the underlying molecular and clinicopathological features to better understand the heterogeneity of colorectal neoplasms (CRNs. METHODS: We evaluated both genetic (mutations of KRAS, BRAF, TP53, and PIK3CA, and microsatellite instability [MSI] and epigenetic (methylation status of nine genes or sequences, including the CpG island methylator phenotype [CIMP] markers alterations in 158 CRNs including 56 polypoid neoplasms (PNs, 25 granular type laterally spreading tumors (LST-Gs, 48 non-granular type LSTs (LST-NGs, 19 depressed neoplasms (DNs and 10 small flat-elevated neoplasms (S-FNs on the basis of macroscopic appearance. RESULTS: S-FNs showed few molecular changes except SFRP1 methylation. Significant differences in the frequency of KRAS mutations were observed among subtypes (68% for LST-Gs, 36% for PNs, 16% for DNs and 6% for LST-NGs (P<0.001. By contrast, the frequency of TP53 mutation was higher in DNs than PNs or LST-Gs (32% vs. 5% or 0%, respectively (P<0.007. We also observed significant differences in the frequency of CIMP between LST-Gs and LST-NGs or PNs (32% vs. 6% or 5%, respectively (P<0.005. Moreover, the methylation level of LINE-1 was significantly lower in DNs or LST-Gs than in PNs (58.3% or 60.5% vs. 63.2%, P<0.05. PIK3CA mutations were detected only in LSTs. Finally, multivariate analyses showed that macroscopic morphologies were significantly associated with an increased risk of molecular changes (PN or LST-G for KRAS mutation, odds ratio [OR] 9.11; LST-NG or DN for TP53 mutation, OR 5.30; LST-G for PIK3CA mutation, OR 26.53; LST-G or DN for LINE-1 hypomethylation, OR 3.41. CONCLUSION: We demonstrated that CRNs could be classified into five macroscopic subtypes according to clinicopathological and molecular differences, suggesting that different mechanisms are involved in the pathogenesis of colorectal

  14. Large perspective changes yield perception of metric shape that allows accurate feedforward reaches-to-grasp and it persists after the optic flow has stopped!

    Science.gov (United States)

    Lee, Young-Lim; Bingham, Geoffrey P

    2010-08-01

    Lee et al. (Percept Psychophys 70:1032-1046, 2008a) investigated whether visual perception of metric shape could be calibrated when used to guide feedforward reaches-to-grasp. It could not. Seated participants viewed target objects (elliptical cylinders) in normal lighting using stereo vision and free head movements that allowed small (approximately 10 degrees) perspective changes. The authors concluded that poor perception of metric shape was the reason reaches-to-grasp should be visually guided online. However, Bingham and Lind (Percept Psychophys 70:524-540, 2008) showed that large perspective changes (> or =45 degrees) yield good perception of metric shape. So, now we repeated the Lee et al.'s study with the addition of information from large perspective changes. The results were accurate feedforward reaches-to-grasp reflecting accurate perception of both metric shape and metric size. Large perspective changes occur when one locomotes into a workspace in which reaches-to-grasp are subsequently performed. Does the resulting perception of metric shape persist after the large perspective changes have ceased? Experiments 2 and 3 tested reaches-to-grasp with delays (Exp. 2, 5-s delay; Exp. 3, approximately 16-s delay) and multiple objects to be grasped after a single viewing. Perception of metric shape and metric size persisted yielding accurate reaches-to-grasp. We advocate the study of nested actions using a dynamic approach to perception/action.

  15. Understanding the overall shape of the output characteristics from the change in the channel potential profile for nanowire FET

    Science.gov (United States)

    Sarkar, Niladri

    2017-01-01

    We have shown the influence of the changing channel potential profile from its equilibrium profile on the overall shape of the output characteristics of a Nanowire FET which is operating under ballistic regime. The device has a nano-wire channel with an array of lattice points which is the surrounded by a coaxial metallic gate. There is a dielectric which isolates the channel from the metallic gate. The source and the drain electrodes are maintained at different chemical potentials μ1 and μ2 which gives rise to the channel current in the device. The physics and the modeling of this device have been understood in detail by studying the electrostatics of the channel.

  16. Repetitive ultrasonographic assessment of adrenal size and shape changes: a clue for an asymptomatic sex hormone-secreting adenoma

    Science.gov (United States)

    Yoon, Seunghyeon; Oui, Heejin; Lee, Ju-hwan; Son, Kyu-Yeol; Cho, Kyoung-Oh

    2017-01-01

    Diagnosis of an adrenal tumor without typical clinical signs related to hyperadrenocorticism and elevated alkaline phosphatase is challenging. This report describes a sex hormone-secreting adrenal tumor in a 10-year-old castrated male Shih Tzu evaluated through repetitive ultrasonographic examination. An adrenocorticotropic hormone stimulation test revealed elevated concentrations of androstenedione and 17-hydroxyprogesterone but a normal cortisol concentration. A mass was surgically excised and adenoma was diagnosed histopathologically. In the present case, adrenal tumor was strongly suspected based on a gradual increase in adrenal size and a change from peanut shape to an irregular mass on repetitive ultrasonography. Repetitive ultrasonographic examination of the adrenal gland is recommended when an abnormal ultrasonographic appearance of adrenal gland is identified, even in an asymptomatic dog. PMID:27297418

  17. Sign reversal of transformation entropy change in Co{sub 2}Cr(Ga,Si) shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xiao, E-mail: xu@material.tohoku.ac.jp; Omori, Toshihiro; Kainuma, Ryosuke [Department of Materials Science, Tohoku University, Sendai 980-8579 (Japan); Nagasako, Makoto [Department of Materials Science, Tohoku University, Sendai 980-8579 (Japan); Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Kanomata, Takeshi [Department of Materials Science, Tohoku University, Sendai 980-8579 (Japan); Research Institute for Engineering and Technology, Tohoku Gakuin University, Tagajo 985-8537 (Japan)

    2015-11-02

    In situ X-ray diffraction (XRD) measurements and compression tests were performed on Co{sub 2}Cr(Ga,Si) shape memory alloys. The reentrant martensitic transformation behavior was directly observed during the in situ XRD measurements. The high-temperature parent phase and low-temperature reentrant parent phase were found to have a continuous temperature dependence of lattice parameter, therefore suggesting that they are the same phase in nature. Moreover, compression tests were performed on a parent-phase single crystal sample; an evolution from normal to inverse temperature dependence of critical stress for martensitic transformation was directly observed. Based on the Clausius-Clapeyron analysis, a sign reversal of entropy change can be expected on the same alloy.

  18. Macroscopic Quantum Coherence in Antiferromagnetic Molecular Magnets

    Institute of Scientific and Technical Information of China (English)

    HU Hui; LO Rong; ZHU Jia-Lin; XIONG Jia-Jiong

    2001-01-01

    The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model. On the basis of instanton technique in the spin-coherent-state path-integral representation, both the rigorous Wentzel-Kramers-Brillouin exponent and pre-exponential factor for the ground-state tunnel splitting are obtained. We find that the quantum fluctuations around the classical paths can not only induce a new quantum phase previously reported by Chiolero and Loss (Phys. Rev. Lett. 80 (1998) 169), but also have great influence on the intensity of the ground-state tunnel splitting. Those features clearly have no analogue in the ferromagnetic molecular magnets. We suggest that they may be the universal behaviors in all antiferromagnetic molecular magnets. The analytical results are complemented by exact diagonalization calculation.

  19. Micro- and macroscopic simulation of periodic metamaterials

    Directory of Open Access Journals (Sweden)

    R. Schuhmann

    2008-05-01

    Full Text Available In order to characterize three-dimensional, left-handed metamaterials (LHM we use electromagnetic field simulations of unit cells. For waves traveling in one of the main directions of the periodic LHM-arrays, the analysis is concentrated on the calculation of global quantities of the unit cells, such as scattering parameters or dispersion diagrams, and a careful interpretation of the results. We show that the concept of equivalent material values – which may be negative in a narrow frequency range – can be validated by large "global" simulations of a wedge structure. We also discuss the limitations of this concept, since in some cases the macroscopic behavior of an LHM cannot be accurately described by equivalent material values.

  20. Microscopic versus macroscopic calculation of dielectric nanospheres

    Science.gov (United States)

    Kühn, M.; Kliem, H.

    2008-12-01

    The issue of nanodielectrics has recently become an important field of interest. The term describes nanometric dielectrics, i. e. dielectric materials with structural dimensions typically smaller than 100 run. In contrast to the behaviour of a bulk material the nanodielectrics can behave completely different. With shrinking dimensions the surface or rather boundary effects outweigh the volume effects. This leads to a different observable physics at the nanoscale. A crucial point is the question whether a continuum model for the calculation of dielectric properties is still applicable for these nanomaterials. In order to answer this question we simulated dielectric nanospheres with a microscopic local field method and compared the results to the macroscopic mean field theory.

  1. Partitioning a macroscopic system into independent subsystems

    Science.gov (United States)

    Delle Site, Luigi; Ciccotti, Giovanni; Hartmann, Carsten

    2017-08-01

    We discuss the problem of partitioning a macroscopic system into a collection of independent subsystems. The partitioning of a system into replica-like subsystems is nowadays a subject of major interest in several fields of theoretical and applied physics. The thermodynamic approach currently favoured by practitioners is based on a phenomenological definition of an interface energy associated with the partition, due to a lack of easily computable expressions for a microscopic (i.e. particle-based) interface energy. In this article, we outline a general approach to derive sharp and computable bounds for the interface free energy in terms of microscopic statistical quantities. We discuss potential applications in nanothermodynamics and outline possible future directions.

  2. Casimir effect from macroscopic quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Philbin, T G, E-mail: tgp3@st-andrews.ac.uk [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2011-06-15

    The canonical quantization of macroscopic electromagnetism was recently presented in (Philbin 2010 New J. Phys. 12 123008). This theory is used here to derive the Casimir effect, by considering the special case of thermal and zero-point fields. The stress-energy-momentum tensor of the canonical theory follows from Noether's theorem, and its electromagnetic part in thermal equilibrium gives the Casimir energy density and stress tensor. The results hold for arbitrary inhomogeneous magnetodielectrics and are obtained from a rigorous quantization of electromagnetism in dispersive, dissipative media. Continuing doubts about the status of the standard Lifshitz theory as a proper quantum treatment of Casimir forces do not apply to the derivation given here. Moreover, the correct expressions for the Casimir energy density and stress tensor inside media follow automatically from the simple restriction to thermal equilibrium, without the need for complicated thermodynamical or mechanical arguments.

  3. Taming macroscopic jamming in transportation networks

    CERN Document Server

    Ezaki, Takahiro; Nishinari, Katsuhiro

    2015-01-01

    In transportation networks, a spontaneous jamming transition is often observed, e.g in urban road networks and airport networks. Because of this instability, flow distribution is significantly imbalanced on a macroscopic level. To mitigate the congestion, we consider a simple control method, in which congested nodes are closed temporarily, and investigate how it influences the overall system. Depending on the timing of the node closure and opening, and congestion level of a network, the system displays three different phases: free-flow phase, controlled phase, and deadlock phase. We show that when the system is in the controlled phase, the average flow is significantly improved, whereas when in the deadlock phase, the flow drops to zero. We study how the control method increases the network flow and obtain their transition boundary analytically.

  4. Black Holes and Quantumness on Macroscopic Scales

    CERN Document Server

    Flassig, D; Wintergerst, N

    2012-01-01

    It has recently been suggested that black holes may be described as condensates of weakly interacting gravitons at a critical point, exhibiting strong quantum effects. In this paper, we study a model system of attractive bosons in one spatial dimension which is known to undergo a quantum phase transition. We demonstrate explicitly that indeed quantum effects are important at the critical point, even if the number of particles is macroscopic. Most prominently, we evaluate the entropy of entanglement between different momentum modes and observe it to become maximal at the critical point. Furthermore, we explicitly see that the leading entanglement is between long wavelength modes and is hence a feature independent of ultraviolet physics. If applicable to black holes, our findings substantiate the conjectured breakdown of semiclassical physics even for large black holes. This can resolve long standing mysteries, such as the information paradox and the no-hair theorem.

  5. Robust macroscopic entanglement without complex encodings

    CERN Document Server

    Chaves, Rafael; Acín, Antonio

    2011-01-01

    One of the main challenges for the experimental manipulation and storage of macroscopic entanglement is its fragility under noise. We present a simple recipe for the systematic enhancement of the resistance of multipartite entanglement against any local noise with a privileged direction in the Bloch sphere. For the case of exact local dephasing along any given basis, and for all noise strengths, our prescription grants full robustness: even states whose entanglement decays exponentially with the number of parts are mapped to states whose entanglement is constant. In contrast to previous techniques resorting to complex logical-qubit encodings, such enhancement is attained simply by performing local unitary rotations before the noise acts. The scheme is therefore highly experimentally-friendly, as it brings no overhead of extra physical qubits to encode logical ones. In addition, we show that, apart from entanglement, the resilience of the states as resources for useful practical tasks such as metrology and non...

  6. Macroscopic Quantum Coherence in Antiferromagnetic Molecular Magnets

    Institute of Scientific and Technical Information of China (English)

    HUHui; LURong; 等

    2001-01-01

    The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model.On the basis of instanton technique in the spin-coherent-state path-integral representation,both the rigorous Wentzel-Kramers-Brillouin exponent and pre-exponential factor for the ground-state tunnel splitting are obtained.We find that the quantum fluctuations around the classical paths can not only induce a new quantum phase previously reported by Chiolero and Loss (Phys.Rev.Lett.80(1998)169),but also have great influence on the intensity of the ground-state tunnel splitting.Those features clearly have no analogue in the ferromagnetic molecular magnets.We suggest that they may be the universal behaviors in all antiferromagnetic molecular magnets.The analytical results are complemented by exact diagonalization calculation.

  7. A third measure-metastable state in the dynamics of spontaneous shape change in healthy human's white cells.

    Directory of Open Access Journals (Sweden)

    Karen A Selz

    2011-04-01

    Full Text Available Human polymorphonuclear leucocytes, PMN, are highly motile cells with average 12-15 µm diameters and prominent, loboid nuclei. They are produced in the bone marrow, are essential for host defense, and are the most populous of white blood cell types. PMN also participate in acute and chronic inflammatory processes, in the regulation of the immune response, in angiogenesis, and interact with tumors. To accommodate these varied functions, their behavior is adaptive, but still definable in terms of a set of behavioral states. PMN morphodynamics have generally involved a non-equilibrium stationary, spheroid Idling state that transitions to an activated, ellipsoid translocating state in response to chemical signals. These two behavioral shape-states, spheroid and ellipsoid, are generally recognized as making up the vocabulary of a healthy PMN. A third, "random" state has occasionally been reported as associated with disease states. I have observed this third, Treadmilling state, in PMN from healthy subjects, the cells demonstrating metastable dynamical behaviors known to anticipate phase transitions in mathematical, physical, and biological systems. For this study, human PMN were microscopically imaged and analyzed as single living cells. I used a microscope with a novel high aperture, cardioid annular condenser with better than 100 nanometer resolution of simultaneous, mixed dark field and intrinsic fluorescent images to record shape changes in 189 living PMNs. Relative radial roundness, R(t, served as a computable order parameter. Comparison of R(t series of 10 cells in the Idling and 10 in the Treadmilling state reveals the robustness of the "random" appearing Treadmilling state, and the emergence of behaviors observed in the neighborhood of global state transitions, including increased correlation length and variance (divergence, sudden jumps, mixed phases, bimodality, power spectral scaling and temporal slowing. Wavelet transformation of an R

  8. Determining the Macroscopic Properties of Relativistic Jets

    Science.gov (United States)

    Hardee, P. E.

    2004-08-01

    The resolved relativistic jets contain structures whose observed proper motions are typically assumed to indicate the jet flow speed. In addition to structures moving with the flow, various normal mode structures such as pinching or helical and elliptical twisting can be produced by ejection events or twisting perturbations to the jet flow. The normal mode structures associated with relativistic jets, as revealed by numerical simulation, theoretical calculation, and suggested by observation, move more slowly than the jet speed. The pattern speed is related to the jet speed by the sound speed in the jet and in the surrounding medium. In the event that normal mode structures are observed, and where proper motions of pattern and flow speed are available or can be estimated, it is possible to determine the sound speed in the jet and surrounding medium. Where spatial development of normal mode structures is observed, it is possible to make inferences as to the heating rate/macroscopic viscosity of the jet fluid. Ultimately it may prove possible to separate the microscopic energization of the synchrotron radiating particles from the macroscopic heating of the jet fluid. Here I present the relevant properties of useful normal mode structures and illustrate the use of this technique. Various aspects of the work presented here have involved collaboration with I. Agudo (Max-Planck, Bonn), M.A. Aloy (Max-Planck, Garching), J. Eilek (NM Tech), J.L. Gómez (U. Valencia), P. Hughes (U. Michigan), A. Lobanov (Max-Planck, Bonn), J.M. Martí (U. Valencia), & C. Walker (NRAO).

  9. Macroscopic quantum electrodynamics of high-Q cavities

    Energy Technology Data Exchange (ETDEWEB)

    Khanbekyan, Mikayel

    2009-10-27

    In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the

  10. Macroscopic quantum electrodynamics of high-Q cavities

    Energy Technology Data Exchange (ETDEWEB)

    Khanbekyan, Mikayel

    2009-10-27

    In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the

  11. Crack Coalescence in Molded Gypsum and Carrara Marble: Part 1. Macroscopic Observations and Interpretation

    Science.gov (United States)

    Wong, L. N. Y.; Einstein, H. H.

    2009-06-01

    Cracking and coalescence behavior has been studied experimentally with prismatic laboratory-molded gypsum and Carrara marble specimens containing two parallel pre-existing open flaws. This was done at both the macroscopic and the microscopic scales, and the results are presented in two separate papers. This paper (the first of two) summarizes the macroscopic experimental results and investigates the influence of the different flaw geometries and material, on the cracking processes. In the companion paper (also in this issue), most of the macroscopic deformation and cracking processes shown in this present paper will be related to the underlying microscopic changes. In the present study, a high speed video system was used, which allowed us to precisely observe the cracking mechanisms. Nine crack coalescence categories with different crack types and trajectories were identified. The flaw inclination angle ( β), the ligament length ( L), that is, intact rock length between the flaws, and the bridging angle ( α), that is, the inclination of a line linking up the inner flaw tips, between two flaws, had different effects on the coalescence patterns. One of the pronounced differences observed between marble and gypsum during the compression loading test was the development of macroscopic white patches prior to the initiation of macroscopic cracks in marble, but not in gypsum. Comparing the cracking and coalescence behaviors in the two tested materials, tensile cracking generally occurred more often in marble than in gypsum for the same flaw pair geometries.

  12. Changes in Astrocyte Shape Induced by Sublytic Concentrations of the Cholesterol-Dependent Cytolysin Pneumolysin Still Require Pore-Forming Capacity

    Directory of Open Access Journals (Sweden)

    Christina Förtsch

    2011-01-01

    Full Text Available Streptococcus pneumoniae is a common pathogen that causes various infections, such as sepsis and meningitis. A major pathogenic factor of S. pneumoniae is the cholesterol-dependent cytolysin, pneumolysin. It produces cell lysis at high concentrations and apoptosis at lower concentrations. We have shown that sublytic amounts of pneumolysin induce small GTPase-dependent actin cytoskeleton reorganization and microtubule stabilization in human neuroblastoma cells that are manifested by cell retraction and changes in cell shape. In this study, we utilized a live imaging approach to analyze the role of pneumolysin’s pore-forming capacity in the actin-dependent cell shape changes in primary astrocytes. After the initial challenge with the wild-type toxin, a permeabilized cell population was rapidly established within 20–40 minutes. After the initial rapid permeabilization, the size of the permeabilized population remained unchanged and reached a plateau. Thus, we analyzed the non-permeabilized (non-lytic population, which demonstrated retraction and shape changes that were inhibited by actin depolymerization. Despite the non-lytic nature of pneumolysin treatment, the toxin’s lytic capacity remained critical for the initiation of cell shape changes. The non-lytic pneumolysin mutants W433F-pneumolysin and delta6-pneumolysin, which bind the cell membrane with affinities similar to that of the wild-type toxin, were not able to induce shape changes. The initiation of cell shape changes and cell retraction by the wild-type toxin were independent of calcium and sodium influx and membrane depolarization, which are known to occur following cellular challenge and suggested to result from the ion channel-like properties of the pneumolysin pores. Excluding the major pore-related phenomena as the initiation mechanism of cell shape changes, the existence of a more complex relationship between the pore-forming capacity of pneumolysin and the actin cytoskeleton

  13. Macroscopic Modeling of Transport Phenomena in Direct Methanol Fuel Cells

    DEFF Research Database (Denmark)

    Olesen, Anders Christian

    An increasing need for energy efficiency and high energy density has sparked a growing interest in direct methanol fuel cells for portable power applications. This type of fuel cell directly generates electricity from a fuel mixture consisting of methanol and water. Although this technology...... for studying their transport. In this PhD dissertation the macroscopic transport phenomena governing direct methanol fuel cell operation are analyzed, discussed and modeled using the two-fluid approach in the computational fluid dynamics framework of CFX 14. The overall objective of this work is to extend...... the present fundamental understanding of direct methanol fuel cell operation by developing a three-dimensional, two-phase, multi-component, non-isotherm mathematical model including detailed non-ideal thermodynamics, non-equilibrium phase change and non-equilibrium sorption-desorption of methanol and water...

  14. Room Temperature Experiments with a Macroscopic Sapphire Mechanical Oscillator

    Science.gov (United States)

    Bourhill, Jeremy; Ivanov, Eugene; Tobar, Micahel

    2015-03-01

    We present initial results from a number of experiments conducted on a 0.53 kg sapphire ``dumbbell'' crystal. Mechanical motion of the crystal structure alters the dimensions of the crystal, and the induced strain changes the permittivity. These two effects frequency modulate resonant microwave whispering gallery modes, simultaneously excited within the crystal. A novel microwave readout system is described allowing extremely low noise measurements of this frequency modulation with a phase noise floor of -160 dBc/Hz at 100 kHz, near our modes of interest. Fine-tuning of the crystal's suspension have allowed for the optimisation of mechanical Q-factors in preparation for cryogenic experiments, with a value of 8 x 107 achieved so far. Finally, results are presented that demonstrate the excitation of mechanical modes via radiation pressure force. These are all important steps towards the overall goal of the experiment; to cool a macroscopic device to the quantum ground state.

  15. Macroscopic self-reorientation of interacting two-dimensional crystals.

    Science.gov (United States)

    Woods, C R; Withers, F; Zhu, M J; Cao, Y; Yu, G; Kozikov, A; Ben Shalom, M; Morozov, S V; van Wijk, M M; Fasolino, A; Katsnelson, M I; Watanabe, K; Taniguchi, T; Geim, A K; Mishchenko, A; Novoselov, K S

    2016-03-10

    Microelectromechanical systems, which can be moved or rotated with nanometre precision, already find applications in such fields as radio-frequency electronics, micro-attenuators, sensors and many others. Especially interesting are those which allow fine control over the motion on the atomic scale because of self-alignment mechanisms and forces acting on the atomic level. Such machines can produce well-controlled movements as a reaction to small changes of the external parameters. Here we demonstrate that, for the system of graphene on hexagonal boron nitride, the interplay between the van der Waals and elastic energies results in graphene mechanically self-rotating towards the hexagonal boron nitride crystallographic directions. Such rotation is macroscopic (for graphene flakes of tens of micrometres the tangential movement can be on hundreds of nanometres) and can be used for reproducible manufacturing of aligned van der Waals heterostructures.

  16. Ground testing of bioconvective variables such as morphological characterizations and mechanisms which regulate macroscopic patterns

    Science.gov (United States)

    Johnson, Adriel D.

    1992-01-01

    Conditions simulating low- and high-gravity, reveal changes in macroscopic pattern formation in selected microorganisms, but whether these structures are gravity dependent is not clear. Two theories have been identified in the fluid dynamics community which support macroscopic pattern formation. The first one is gravity dependent (fluid density models) where small concentrated regions of organisms sink unstably, and the second is gravity independent (wave reinforcement theory) where organisms align their movements in concert, such that either their swimming strokes beat in phase or their vortices entrain neighbors to follow parallel paths. Studies have shown that macroscopic pattern formation is consistent with the fluid density models for protozoa and algae and wave reinforcement hypothesis for caprine spermatozoa.

  17. Observability of relative phases of macroscopic quantum states

    CERN Document Server

    Pati, A K

    1998-01-01

    After a measurement, to observe the relative phases of macroscopically distinguishable states we have to ``undo'' a quantum measurement. We generalise an earlier model of Peres from two state to N-state quantum system undergoing measurement process and discuss the issue of observing relative phases of different branches. We derive an inequality which is satisfied by the relative phases of macroscopically distinguishable states and consequently any desired relative phases can not be observed in interference setups. The principle of macroscopic complementarity is invoked that might be at ease with the macroscopic world. We illustrate the idea of limit on phase observability in Stern-Gerlach measurements and the implications are discussed.

  18. Adaptive spatiotemporal changes in morphology, anatomy, and mechanics during the ontogeny of subshrubs with square-shaped stems.

    Science.gov (United States)

    Kaminski, Ruwen; Speck, Thomas; Speck, Olga

    2017-08-16

    Plant stems can be regarded as fiber-reinforced structures characterized by anatomical heterogeneity, mechanical anisotropy, and adaptability to changing internal and external constraints. Our study focused on adaptive spatiotemporal changes in morphology, anatomy, and mechanical properties during the ontogeny of Leonurus cardiaca L. (Lamiaceae) internodes, proving considerable functional adaptability. Four-point bending tests and torsional tests were carried out on the same internodes to measure flexural and torsional stiffness. Axial and polar second moments of area for entire cross sections and for individual tissues were determined from transverse stem sections immediately after testing. Based on these data, additional relevant mechanical parameters such as bending elastic modulus, torsional modulus and twist to bend ratio were calculated. Leonurus cardiaca is characterized by a square-shaped hollow stem in transverse section with an outer frame of various strengthening tissues and an inner ring of parenchyma. Statistical analyses of axial and polar second moment of area, flexural stiffness, torsional stiffness, bending elastic modulus, and torsional modulus revealed significant differences for all comparisons with respect to spatial resolution (two adjacent internodes) and temporal resolution (in June before flowering and in September after fruit formation). The twist to bend ratios of the internodes, however, always remain in the same range. With respect to spatiotemporal development, stems of the subshrub L. cardiaca show a marked increase in flexural and torsional stiffness during ontogeny. Strikingly, changes in stem mechanics are more influenced by variations in mechanical tissue properties than by changes in relative proportion of different tissue types. © 2017 Botanical Society of America.

  19. Numerical investigation of the effect of shape change in graphite crucible during top-seeded solution growth of SiC

    Science.gov (United States)

    Mukaiyama, Yuji; Iizuka, Masaya; Vorob'ev, Andrey; Kalaev, Vladimir

    2017-10-01

    In the present work, a combined 2D-3D numerical simulation was performed to study the effect of shape change in the graphite crucible on the heat transfer, flow pattern, mass transport, and electromagnetic field during top seeded solution growth of SiC considering the dissolution of carbon during crystal growth. The graphite crucible shapes at each growth process time were predicted using 2D axisymmetric steady global heat and mass transfer simulations. The crucible geometries obtained for each time step, including the predicted crucible shapes, were used for 3D unsteady simulations. The investigation revealed a significant effect of the shape change of the crucible on the temperature, Lorentz force distribution induced by the radiofrequency heating system, flow pattern, carbon concentration in the solution, and growth rate of SiC.

  20. Quantifying shape changes of silicone breast implants in a murine model using in vivo micro-CT.

    Science.gov (United States)

    Anderson, Emily E; Perilli, Egon; Carati, Colin J; Reynolds, Karen J

    2017-08-01

    A major complication of silicone breast implants is the formation of a capsule around the implant known as capsular contracture which results in the distortion of the implant. Recently, a mouse model for studying capsular contracture was examined using micro-computed tomography (micro-CT), however, only qualitative changes were reported. The aim of this study was to develop a quantitative method for comparing the shape changes of silicone implants using in vivo micro-CT. Mice were bilaterally implanted with silicone implants and underwent ionizing radiation to induce capsular contracture. On day 28 post-surgery mice were examined in vivo using micro-CT. The reconstructed cross-section images were visually inspected to identify distortion. Measurements were taken in 2D and 3D to quantify the shape of the implants in the normal (n = 11) and distorted (n = 5) groups. The degree of anisotropy was significantly higher in the distorted implants in the transaxial view (0.99 vs. 1.19, p = 0.002) and the y-axis lengths were significantly shorter in the sagittal (9.27 mm vs. 8.55 mm, p = 0.015) and coronal (9.24 mm vs. 8.76 mm, p = 0.031) views, indicating a deviation from the circular cross-section and shortening of the long axis. The 3D analysis revealed a significantly lower average thickness (sphere-fitting method) in distorted implants (6.86 mm vs. 5.49 mm, p = 0.002), whereas the volume and surface area did not show significant changes. Statistically significant differences between normal and distorted implants were found in 2D and 3D using distance measurements performed via micro-CT. This objective analysis method can be useful for a range of studies involving deformable implants using in vivo micro-CT. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1447-1452, 2017. © 2016 Wiley Periodicals, Inc.

  1. Allometric shape change of the lower pharyngeal jaw correlates with a dietary shift to piscivory in a cichlid fish

    Science.gov (United States)

    Hellig, Christoph J.; Kerschbaumer, Michaela; Sefc, Kristina M.; Koblmüller, Stephan

    2010-07-01

    The morphological versatility of the pharyngeal jaw of cichlid fishes is assumed to represent a key factor facilitating their unparalleled trophic diversification and explosive radiation. It is generally believed that the functional design of an organism relates to its ecology, and thus, specializations to different diets are typically associated with distinct morphological designs, especially manifested in the cichlids’ pharyngeal jaw apparatus. Thereby, the lower pharyngeal jaw (LPJ) incorporates some of the most predictive features for distinct diet-related morphotypes. Thus, considering that piscivorous cichlids experience an ontogenetic dietary shift from typically various kinds of invertebrates to fish, concomitant morphological changes in the LPJ are expected. Using Lepidiolamprologus elongatus, a top predator in the shallow rocky habitat of Lake Tanganyika, as model, and applying geometric and traditional morphometric techniques, we demonstrate an allometric change in ontogenetic LPJ shape development coinciding with the completion of the dietary shift toward piscivory. The piscivorous LPJ morphotype is initiated in juvenile fish by increasing elongation and narrowing of the LPJ and—when the fish reach a size of 80-90 mm standard length—further refined by the elongation of the posterior muscular processes, which serve as insertion for the fourth musculus levator externus. The enlarged muscular processes of the fully mature piscivorous morphotype provide for the construction of a powerful lever system, which allows the large individuals to process large prey fish and rely on exclusive piscivory.

  2. Jamming transition of angular shaped particles under compression

    Science.gov (United States)

    Stevens Bester, Cacey; Zhao, Yiqiu; Xu, Yuanyuan; Cox, Meredith; Behringer, Robert

    2016-11-01

    A fundamental challenge of understanding the global behavior of granular assemblies is to determine the effect of local particle properties, such as particle shape. Here we investigate how particle shape influences the jamming transition of granular packings by comparing the response of systems of angular shaped particles to that of disks under isotropic compression. These experiments are performed using two-dimensional arrangements of photoelastic particles, allowing us to visualize the change in force propagation during the jamming transition. We find qualitative and quantitative differences in the macroscopic responses of the systems with changing particle shape. We compare the packing fraction and the contact number evolution of compression experiments as we vary particle shape. The pair correlation function also shows a different geometric feature with particle shape. Using cyclic compression, we additionally explore the stress relaxation and dynamical heterogeneity of the particles. Duke University Provost's Postdoctoral Program, NASA Grant NNX15AD38G, NSF-DMR1206351, DMS1248071, and the W.M. Keck Foundation.

  3. Shape memory polymers for active cell culture.

    Science.gov (United States)

    Davis, Kevin A; Luo, Xiaofan; Mather, Patrick T; Henderson, James H

    2011-07-04

    Shape memory polymers (SMPs) are a class of "smart" materials that have the ability to change from a fixed, temporary shape to a pre-determined permanent shape upon the application of a stimulus such as heat(1-5). In a typical shape memory cycle, the SMP is first deformed at an elevated temperature that is higher than its transition temperature, T(trans;) [either the melting temperature (T(m;)) or the glass transition temperature (T(g;))]. The deformation is elastic in nature and mainly leads to a reduction in conformational entropy of the constituent network chains (following the rubber elasticity theory). The deformed SMP is then cooled to a temperature below its T(trans;) while maintaining the external strain or stress constant. During cooling, the material transitions to a more rigid state (semi-crystalline or glassy), which kinetically traps or "freezes" the material in this low-entropy state leading to macroscopic shape fixing. Shape recovery is triggered by continuously heating the material through T(trans;) under a stress-free (unconstrained) condition. By allowing the network chains (with regained mobility) to relax to their thermodynamically favored, maximal-entropy state, the material changes from the temporary shape to the permanent shape. Cells are capable of surveying the mechanical properties of their surrounding environment(6). The mechanisms through which mechanical interactions between cells and their physical environment control cell behavior are areas of active research. Substrates of defined topography have emerged as powerful tools in the investigation of these mechanisms. Mesoscale, microscale, and nanoscale patterns of substrate topography have been shown to direct cell alignment, cell adhesion, and cell traction forces(7-14). These findings have underscored the potential for substrate topography to control and assay the mechanical interactions between cells and their physical environment during cell culture, but the substrates used to date

  4. Shape-memory polymers

    Directory of Open Access Journals (Sweden)

    Marc Behl

    2007-04-01

    Full Text Available Shape-memory polymers are an emerging class of active polymers that have dual-shape capability. They can change their shape in a predefined way from shape A to shape B when exposed to an appropriate stimulus. While shape B is given by the initial processing step, shape A is determined by applying a process called programming. We review fundamental aspects of the molecular design of suitable polymer architectures, tailored programming and recovery processes, and the quantification of the shape-memory effect. Shape-memory research was initially founded on the thermally induced dual-shape effect. This concept has been extended to other stimuli by either indirect thermal actuation or direct actuation by addressing stimuli-sensitive groups on the molecular level. Finally, polymers are introduced that can be multifunctional. Besides their dual-shape capability, these active materials are biofunctional or biodegradable. Potential applications for such materials as active medical devices are highlighted.

  5. The Unique Macroscopic Appearance of Gouty Arthritis of the Knee.

    Science.gov (United States)

    Mittl, Gregory S; Zuckerman, Joseph D

    2015-07-01

    Patients with significant gouty arthritis can develop disabling joint pain secondary to monosodium urate (MSU) articular deposition. We report a case of white, chalky MSU crystal deposition covering the articular surfaces of the knee as discovered by total knee arthroplasty. A 65-year-old male with a history of gout presented with bilateral knee pain. His radiographic imaging was negative for gouty tophi, and he elected to undergo left total knee arthroplasty. Intraoperatively a distinct chalky, white paste consistent with MSU deposition was observed covering the articular surfaces of the knee consistent with the diagnosis of gouty arthritis. Gout is the most common inflammatory arthritis affecting more than 3 million people in the USA. The inflammation results from the phagocytosis of monosodium urate crystals (MSU) and the release of inflammatory cytokines within the joint. Gout progresses from acute to chronic over many years and frequently causes chronic arthropathy. When significant knee pain and disability is associated with gouty arthropathy, total knee arthroplasty is certainly an option. The pathological appearance of gouty joints is characteristic. Macroscopic examination of joints affected by gout reveals a nodular, white, chalky appearance. Polarized microscopy of gout demonstrates negative birefringent needle-shaped MSU crystals. In this case report, we describe the characteristic chalky, white MSU deposit that covers the articular surfaces of a knee joint in a patient with a history of gout undergoing total knee arthroplasty. The investigators have obtained the patient's informed written consent for print and electronic publication of the case report.

  6. Shape-induced anisotropy in antiferromagnetic nanoparticles

    OpenAIRE

    H. Gomonay; Kondovych, S.; Loktev, V.

    2013-01-01

    High fraction of the surface atoms considerably enhances the influence of size and shape on the magnetic and electronic properties of nanoparticles. Shape effects in ferromagnetic nanoparticles are well understood and allow to set and control the parameters of a sample that affect its magnetic anisotropy during production. In the present paper we study the shape effects in the other widely used magnetic materials -- antiferromagnets, -- which possess vanishingly small or zero macroscopic magn...

  7. Downstairs drivers--root herbivores shape communities of above-ground herbivores and natural enemies via changes in plant nutrients.

    Science.gov (United States)

    Johnson, Scott N; Mitchell, Carolyn; McNicol, James W; Thompson, Jacqueline; Karley, Alison J

    2013-09-01

    1. Terrestrial food webs are woven from complex interactions, often underpinned by plant-mediated interactions between herbivores and higher trophic groups. Below- and above-ground herbivores can influence one another via induced changes to a shared host plant, potentially shaping the wider community. However, empirical evidence linking laboratory observations to natural field populations has so far been elusive. 2. This study investigated how root-feeding weevils (Otiorhynchus sulcatus) influence different feeding guilds of herbivore (phloem-feeding aphids, Cryptomyzus galeopsidis, and leaf-chewing sawflies, Nematus olfaciens) in both controlled and field conditions. 3. We hypothesized that root herbivore-induced changes in plant nutrients (C, N, P and amino acids) and defensive compounds (phenolics) would underpin the interactions between root and foliar herbivores, and ultimately populations of natural enemies of the foliar herbivores in the field. 4. Weevils increased field populations of aphids by ca. 700%, which was followed by an increase in the abundance of aphid natural enemies. Weevils increased the proportion of foliar essential amino acids, and this change was positively correlated with aphid abundance, which increased by 90% on plants with weevils in controlled experiments. 5. In contrast, sawfly populations were 77% smaller during mid-June and adult emergence delayed by >14 days on plants with weevils. In controlled experiments, weevils impaired sawfly growth by 18%, which correlated with 35% reductions in leaf phosphorus caused by root herbivory, a previously unreported mechanism for above-ground-below-ground herbivore interactions. 6. This represents a clear demonstration of root herbivores affecting foliar herbivore community composition and natural enemy abundance in the field via two distinct plant-mediated nutritional mechanisms. Aphid populations, in particular, were initially driven by bottom-up effects (i.e. plant-mediated effects of root

  8. Investigation of dissipative forces near macroscopic media

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R.S.

    1982-12-01

    The interaction of classical charged particles with the fields they induce in macroscopic dielectric media is investigated. For 10- to 1000-eV electrons, the angular perturbation of the trajectory by the image potential for surface impact parameters of 50 to 100 A is shown to be of the order of 0.001 rads over a distance of 100 A. The energy loss incurred by low-energy particles due to collective excitations such as surface plasmons is shown to be observable with a transition probability of 0.01 to 0.001 (Becker, et al., 1981b). The dispersion of real surface plasmon modes in planar and cylindrical geometries is discussed and is derived for pinhole geometry described in terms of a single-sheeted hyperboloid of revolution. An experimental apparatus for the measurement of collective losses for medium-energy electrons translating close to a dielectric surface is described and discussed. Data showing such losses at electron energies of 500 to 900 eV in silver foils containing many small apertures are presented and shown to be in good agreement with classical stopping power calculations and quantum mechanical calculations carried out in the low-velocity limit. The data and calculations are compared and contrasted with earlier transmission and reflection measurements, and the course of further investigation is discussed.

  9. The Proell Effect: A Macroscopic Maxwell's Demon

    Science.gov (United States)

    Rauen, Kenneth M.

    2011-12-01

    Maxwell's Demon is a legitimate challenge to the Second Law of Thermodynamics when the "demon" is executed via the Proell effect. Thermal energy transfer according to the Kinetic Theory of Heat and Statistical Mechanics that takes place over distances greater than the mean free path of a gas circumvents the microscopic randomness that leads to macroscopic irreversibility. No information is required to sort the particles as no sorting occurs; the entire volume of gas undergoes the same transition. The Proell effect achieves quasi-spontaneous thermal separation without sorting by the perturbation of a heterogeneous constant volume system with displacement and regeneration. The classical analysis of the constant volume process, such as found in the Stirling Cycle, is incomplete and therefore incorrect. There are extra energy flows that classical thermo does not recognize. When a working fluid is displaced across a regenerator with a temperature gradient in a constant volume system, complimentary compression and expansion work takes place that transfers energy between the regenerator and the bulk gas volumes of the hot and cold sides of the constant volume system. Heat capacity at constant pressure applies instead of heat capacity at constant volume. The resultant increase in calculated, recyclable energy allows the Carnot Limit to be exceeded in certain cycles. Super-Carnot heat engines and heat pumps have been designed and a US patent has been awarded.

  10. Macroscopic superpositions and gravimetry with quantum magnetomechanics

    Science.gov (United States)

    Johnsson, Mattias T.; Brennen, Gavin K.; Twamley, Jason

    2016-11-01

    Precision measurements of gravity can provide tests of fundamental physics and are of broad practical interest for metrology. We propose a scheme for absolute gravimetry using a quantum magnetomechanical system consisting of a magnetically trapped superconducting resonator whose motion is controlled and measured by a nearby RF-SQUID or flux qubit. By driving the mechanical massive resonator to be in a macroscopic superposition of two different heights our we predict that our interferometry protocol could, subject to systematic errors, achieve a gravimetric sensitivity of Δg/g ~ 2.2 × 10-10 Hz-1/2, with a spatial resolution of a few nanometres. This sensitivity and spatial resolution exceeds the precision of current state of the art atom-interferometric and corner-cube gravimeters by more than an order of magnitude, and unlike classical superconducting interferometers produces an absolute rather than relative measurement of gravity. In addition, our scheme takes measurements at ~10 kHz, a region where the ambient vibrational noise spectrum is heavily suppressed compared the ~10 Hz region relevant for current cold atom gravimeters.

  11. Distributivity breaking and macroscopic quantum games

    CERN Document Server

    Grib, A A; Parfionov, G N; Starkov, K A

    2005-01-01

    Examples of games between two partners with mixed strategies, calculated by the use of the probability amplitude as some vector in Hilbert space are given. The games are macroscopic, no microscopic quantum agent is supposed. The reason for the use of the quantum formalism is in breaking of the distributivity property for the lattice of yes-no questions arising due to the special rules of games. The rules of the games suppose two parts: the preparation and measurement. In the first part due to use of the quantum logical orthocomplemented non-distributive lattice the partners freely choose the wave functions as descriptions of their strategies. The second part consists of classical games described by Boolean sublattices of the initial non-Boolean lattice with same strategies which were chosen in the first part. Examples of games for spin one half are given. New Nash equilibria are found for some cases. Heisenberg uncertainty relations without the Planck constant are written for the "spin one half game".

  12. Macroscopic model of self-propelled bacteria swarming with regular reversals

    CERN Document Server

    Gejji, Richard; Alber, Mark

    2011-01-01

    Periodic reversals of the direction of motion in systems of self-propelled rod shaped bacteria enable them to effectively resolve traffic jams formed during swarming and maximize their swarming rate. In this paper, a connection is found between a microscopic one dimensional cell-based stochastic model of reversing non-overlapping bacteria and a macroscopic non-linear diffusion equation describing dynamics of the cellular density. Boltzmann-Matano analysis is used to determine the nonlinear diffusion equation corresponding to the specific reversal frequency. Macroscopically (ensemble-vise) averaged stochastic dynamics is shown to be in a very good agreement with the numerical solutions of the nonlinear diffusion equation. Critical density $p_0$ is obtained such that nonlinear diffusion is dominated by the collisions between cells for the densities $p>p_0$. An analytical approximation of the pairwise collision time and semi-analytical fit for the total jam time per reversal period are also obtained. It is shown...

  13. An Experimental Proposal for Demonstration of Macroscopic Quantum Effects

    Directory of Open Access Journals (Sweden)

    Jensen R.

    2010-10-01

    Full Text Available An experiment is proposed, whose purpose is to determine whether quantum indeterminism can be observed on a truly macroscopic scale. The experiment involves using a double-slit plate or interferometer and a macroscopic mechanical switch. The objective is to determine whether or not the switch can take on an indeterminate state.

  14. An Experimental Proposal for Demonstration of Macroscopic Quantum Effects

    Directory of Open Access Journals (Sweden)

    Jensen R.

    2010-10-01

    Full Text Available An experiment is proposed, whose purpose is to determine whether quantum indeter- minism can be observed on a truly macroscopic scale. The experiment involves using a double-slit plate or interferometer and a macroscopic mechanical switch. The objective is to determine whether or not the switch can take on an indeterminate state.

  15. Macroscopic and microscopic observations of needle insertion into gels

    NARCIS (Netherlands)

    Veen, van Youri R.J.; Jahya, Alex; Misra, Sarthak

    2012-01-01

    Needle insertion into soft tissue is one of the most common medical interventions. This study provides macroscopic and microscopic observations of needle–gel interactions. A gelatin mixture is used as a soft-tissue simulant. For the macroscopic studies, system parameters, such as insertion velocity,

  16. Shaping climate change in the North Atlantic sector: The role of the atmospheric response to local SST changes vs. large-scale changes

    Science.gov (United States)

    Hand, Ralf; Keenlyside, Noel; Omrani, Nour-Eddine; Greatbatch, Richard; Bader, Jürgen

    2017-04-01

    Climate change simulations robustly show a warming hole in the sub-polar North Atlantic that results from slowing of the AMOC countering the global warming signal. Here we investigate how the distinct SST spatial structures, which include a sharpening of the Gulf Stream SST gradients, influence climate change in the NA sector in winter. For this we analyse the RCP8.5 scenario simulation of the MPI Earth System Model. Additional sensitivity experiments with the atmospheric model component, ECHAM5, are performed to deconstruct the effect of the local spatial structure of the SST change from those arising from large-scale warming of the ocean, remote SST pattern changes and changed radiative forcings. The MPI model simulation shows a signifcant decrease in precipitation to the south of the GS extension region in the future, despite a strong increase in underlying SST. While directly to the north there is a significant increase in precipitation. These distinct features in the precipitation response over the North Atlantic result from the local SST. Over the Gulf Stream, the differential structure of the precipitation changes reflects the changes of the local SST gradients there. Over the subpolar gyre the increase in precipitation is partly suppressed. In this region the Subpolar Gyre the weakened AMOC causes a SST warming, that is much weaker than the warming other regions of the ocean show at the same latitude. The large-scale response, which includes the overall increase in precipitation over the NA is due to the overall warming, remote SSTs and/or directly connected to the radiative forcing.

  17. Preparation and characterizations of HDPE-EVA alloy/OMT nanocomposites/paraffin compounds as a shape stabilized phase change thermal energy storage material

    Energy Technology Data Exchange (ETDEWEB)

    Cai Yibing [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230027 Anhui (China); Hu Yuan [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230027 Anhui (China)]. E-mail: yuanhu@ustc.edu.cn; Song Lei [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230027 Anhui (China); Lu Hongdian [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230027 Anhui (China); Chen Zuyao [Department of Chemistry, University of Science and Technology of China, Hefei, 230026 Anhui (China); Fan Weicheng [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230027 Anhui (China)

    2006-12-01

    A kind of shape stabilized phase change nanocomposites materials (PCNM) based on high density polyethylene (HDPE)/ethylene-vinyl acetate (EVA) alloy, organophilic montmorillonite (OMT), paraffin and intumescent flame retardant (IFR) are prepared using twin-screw extruder technique. The structures of the HDPE-EVA alloy/OMT nanocomposites are evidenced by the X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that an ordered intercalated nanomorphology of the HDPE-EVA alloy/OMT nanocomposites is formed. Then the structures of the shape stabilized PCNM are characterized by scanning electron microscopy (SEM). The HDPE-EVA alloy/OMT nanocomposites act as the supporting material and form the three-dimensional network structure. The paraffin acts as a phase change material and disperses in the three-dimensional network structure. Its latent heat is given by differential scanning calorimeter (DSC) method. The SEM and DSC results show that the additives of IFR have little effect on the network structure and the latent heat of shape stabilized PCNM, respectively. The thermal stability properties are characterized by thermogravimetric analysis (TGA). The TGA analysis results indicate that the flame retardant shape stabilized PCNM produce a larger amount of char residue at 800 deg. C than that of shape stabilized PCNM, although the onset of weight loss of the flame retardant shape stabilized PCNM occur at a lower temperature. The formed multicellular char residue contributes to the improvement of thermal stability performance. The probable combustion mechanisms are also discussed in this paper.

  18. Shape memory alloy thaw sensors

    Science.gov (United States)

    Shahinpoor, Mohsen; Martinez, David R.

    1998-01-01

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

  19. Roles of Municipal Councils in Poland and in the Czech Republic: Factors Shaping the Roles and the Dynamic of Change

    Directory of Open Access Journals (Sweden)

    Katarzyna Radzik-Maruszak

    2016-03-01

    Full Text Available Abstract: Research Question (RQ: After many years of not being in vogue, the issue of representative democracy at the local level has yet again caught the scholars’ attention. The interest is related both to falling turnout in local elections, disappointment in party politics as well as to the impact of the new trends such as the strengthening of the executive power or citizens’ more direct involvement in the decision-making process. Quite often the afore-mentioned trends force local councils to redefine their roles. Purpose: The main objective of the article is to investigate the factors that shape the roles of municipal councils in two CEE countries, Poland and the Czech Republic, and to track the possible dynamic of their change. Method: The analysis conducted in the paper is grounded mainly in institutional theory. The study is based on available statistic data, examination of legal regulations, documents and information included in the corpus of selected articles and books. Results: The outcome of the analysis conducted indicates that in both countries the basic roles of councils – representative, decision - making and administrative one – are being diminished. Nevertheless, the existing institutional framework as well as reforms implemented in recent years provide potential for the development of new roles, such as the facilitator of the governing process or a network coordinator. Organization: The paper may contribute to better organisation of local administration at the municipal level. Society: The study has an impact on the understanding of representative democracy in local self-governments. Originality: The paper elaborates on representative democracy at the municipal level in Poland and the Czech Republic, countries where the discussion over this issue is still much less visible than in Western Europe. Limitations / further research: The paper should be mainly perceived as a kind of theoretical introduction to further

  20. Evolution and distribution of macroscopic gas channels in an overburden strata

    Institute of Scientific and Technical Information of China (English)

    Liu; Hongtao; Ma; Nianjie; Ma; Wang; Ren; Guoqiang

    2012-01-01

    The evolution of gas bearing channels in the roof,and their spatial distribution,was studied.A complete consideration of gas flow changes through the stress-strain changes in the roof near a working face is made.The theoretical abutment pressure distribution using displacement monitors and borehole visual recording instruments allow a theoretical analysis.Field test research determined the conditions for formation of macroscopic gas channels.These appear along the working face roof,normally distributed to it.These results show that the coal rock stratification becomes a macroscopic gas channel boundary if its deformation is less than the lower layer,or greater than the layer above it.At the same time the stability is greater than the distance from the roof for hanging dew conditions.The working face advances and the roof gas channels experience a cycle of development.Microscopic channels dominate the initial stage then macroscopic gas channels form,develop,and close.The evolution of the macroscopic channels depends on the ratio between the distances from the new compaction area in the goaf to the initial stress area in front of the working face.The amount of daily advance of the face also affects channel development.The experimental observations in one mining area showed that the main gas channels are located about 2 and 6.2 m above the lower surface of the roof and that they have an evolution period 7 to 11 days long.

  1. Using skin carotenoids to assess dietary changes in students after one academic year of participating in the shaping healthy choices program

    Science.gov (United States)

    Objective: To determine whether 4th-grade students participating in the Shaping Healthy Choices Program (SHCP), a school-based nutrition intervention, change vegetable intake Design: quasi-experimental single group pre-test, post-test with a self-selected, convenience sample of students recruited at...

  2. The Effectiveness of Conflict Maps and the V-Shape Teaching Method in Science Conceptual Change among Eighth-Grade Students in Jordan

    Science.gov (United States)

    Bawaneh, Ali Khalid Ali; Zain, Ahmad Nurulazam Md; Ghazali, Munirah

    2010-01-01

    The purpose of the present study is to investigate the effectiveness of Conflict Maps and the V-Shape method as teaching methods in bringing about conceptual change in science among primary eighth-grade students in Jordan. A randomly selected sample (N = 63) from the Bani Kenana region North of Jordan was randomly assigned to the two teaching…

  3. Experimental demonstration of macroscopic quantum coherence in Gaussian states

    DEFF Research Database (Denmark)

    Marquardt, C.; Andersen, Ulrik Lund; Leuchs, G.

    2007-01-01

    We witness experimentally the presence of macroscopic coherence in Gaussian quantum states using a recently proposed criterion [E. G. Cavalcanti and M. D. Reid, Phys. Rev. Lett. 97 170405 (2006)]. The macroscopic coherence stems from interference between macroscopically distinct states in phase...... space, and we prove experimentally that a coherent state contains these features with a distance in phase space of 0.51 +/- 0.02 shot noise units. This is surprising because coherent states are generally considered being at the border between classical and quantum states, not yet displaying any...

  4. Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.

    Science.gov (United States)

    Calonne, Neige; Geindreau, Christian; Flin, Frédéric

    2014-11-26

    Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.

  5. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yen, E-mail: yen.liu@nasa.gov; Vinokur, Marcel [NASA Ames Research Center, Moffett Field, California 94035 (United States); Panesi, Marco; Sahai, Amal [University of Illinois, Urbana-Champaign, Illinois 61801 (United States)

    2015-04-07

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model’s accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  6. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    Science.gov (United States)

    Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel

    2015-04-01

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  7. Macroscopic motion of sheath-connected blobs in magnetic fields with arbitrary topology

    Science.gov (United States)

    Stepanenko, A. A.; Lee, W.; Krasheninnikov, S. I.

    2017-01-01

    In this study, macroscopic motion of sheath-connected blobs in magnetic fields, having arbitrary topology of the field lines and unfrozen in plasma, is analyzed within the electrostatic limit. Two distinct cases of magnetic configurations, with small and large curvature of the field lines, are considered and the criterion to discern them is deduced. For magnetic configurations with small curvature of the field lines, it is demonstrated that asymmetry of plasma distribution at the blob ends can drive macroscopic motion of a filament due to formation of unequal sheath potentials and establishing the effective Boltzmann potential. For a specific case of magnetic fields with small curvature of the field lines and identical metrics at the sheaths, we show that macroscopic motion of a plasma filament is determined by an effective electrostatic potential, which remains constant in time. For magnetic configurations with large curvature of the field lines, it is shown that motion of sufficiently large blobs is governed by integral distribution of plasma and magnetic field parameters along the field lines leading to blob adjusting its shape and position to the lead of the magnetic field lines in the course of its motion, whereas propagation of small and medium sized blobs can be represented as mutually independent motion of filament transverse cross-sections across the magnetic field lines. The qualitative conclusions on regularities of filament motion are supplied with numerical simulations of blob dynamics in two cases of tokamak-like magnetic fields with sheared and non-sheared field lines.

  8. Terahertz Science and Technology of Macroscopically Aligned Carbon Nanotube Films

    Science.gov (United States)

    Kono, Junichiro

    One of the outstanding challenges in nanotechnology is how to assemble individual nano-objects into macroscopic architectures while preserving their extraordinary properties. For example, the one-dimensional character of electrons in individual carbon nanotubes leads to extremely anisotropic transport, optical, and magnetic phenomena, but their macroscopic manifestations have been limited. Here, we describe methods for preparing macroscopic films, sheets, and fibers of highly aligned carbon nanotubes and their applications to basic and applied terahertz studies. Sufficiently thick films act as ideal terahertz polarizers, and appropriately doped films operate as polarization-sensitive, flexible, powerless, and ultra-broadband detectors. Together with recently developed chirality enrichment methods, these developments will ultimately allow us to study dynamic conductivities of interacting one-dimensional electrons in macroscopic single crystals of single-chirality single-wall carbon nanotubes.

  9. Accumulation of small protein molecules in a macroscopic complex coacervate

    NARCIS (Netherlands)

    Lindhoud, S.; Claessens, M.M.A.E.

    2016-01-01

    To obtain insight into the accumulation of proteins into macroscopic complex coacervate phases, the lysozyme concentration in complex coacervates containing the cationic polyelectrolyte poly-(N,N dimethylaminoethyl methacrylate) and the anionic polyelectrolyte polyacrylic acid was investigated as a

  10. Macroscopic cumulative fatigue damage of material under nonsymmetrical cycle

    Institute of Scientific and Technical Information of China (English)

    盖秉政

    2002-01-01

    Hashin's macroscopic theory of fatigue damage is further discussed and a new method has been proposed for prediction of cumulative fatigue damage of material and its lifetime under nonsymmetrical cyclic loading.

  11. Large Deviations for the Macroscopic Motion of an Interface

    Science.gov (United States)

    Birmpa, P.; Dirr, N.; Tsagkarogiannis, D.

    2017-03-01

    We study the most probable way an interface moves on a macroscopic scale from an initial to a final position within a fixed time in the context of large deviations for a stochastic microscopic lattice system of Ising spins with Kac interaction evolving in time according to Glauber (non-conservative) dynamics. Such interfaces separate two stable phases of a ferromagnetic system and in the macroscopic scale are represented by sharp transitions. We derive quantitative estimates for the upper and the lower bound of the cost functional that penalizes all possible deviations and obtain explicit error terms which are valid also in the macroscopic scale. Furthermore, using the result of a companion paper about the minimizers of this cost functional for the macroscopic motion of the interface in a fixed time, we prove that the probability of such events can concentrate on nucleations should the transition happen fast enough.

  12. Quantum fluctuations, gauge freedom and mesoscopic/macroscopic stability

    Energy Technology Data Exchange (ETDEWEB)

    Del Giudice, E [Istituto Nazionale di Fisica Nucleare, Via Celoria 16, I-20133 Milan (Italy); Vitiello, G [Dipartimento di Matematica e Informatica, Universita di Salerno and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Salerno, 84100 Salerno (Italy)

    2007-11-15

    We study how the mesoscopic/macroscopic stability of coherent extended domains is generated out of the phase locking between gauge field and matter field. The role of the radiative gauge field in sustaining the coherent regime is discussed.

  13. New Tests of Macroscopic Local Realism using Continuous Variable Measurements

    CERN Document Server

    Reid, M D

    2001-01-01

    We show that quantum mechanics predicts an Einstein-Podolsky-Rosen paradox (EPR), and also a contradiction with local hidden variable theories, for photon number measurements which have limited resolving power, to the point of imposing an uncertainty in the photon number result which is macroscopic in absolute terms. We show how this can be interpreted as a failure of a new, very strong premise, called macroscopic local realism. We link this premise to the Schrodinger-cat paradox. Our proposed experiments ensure all fields incident on each measurement apparatus are macroscopic. We show that an alternative measurement scheme corresponds to balanced homodyne detection of quadrature phase amplitudes. The implication is that where either EPR correlations or failure of local realism is predicted for continuous variable (quadrature phase amplitude) measurements, one can perform a modified experiment which would lead to conclusions about the much stronger premise of macroscopic local realism.

  14. A Novel Shape Memory Plate Osteosynthesis for Noninvasive Modulation of Fixation Stiffness in a Rabbit Tibia Osteotomy Model

    Directory of Open Access Journals (Sweden)

    Christian W. Müller

    2015-01-01

    Full Text Available Nickel-titanium shape memory alloy (NiTi-SMA implants might allow modulating fracture healing, changing their stiffness through alteration of both elastic modulus and cross-sectional shape by employing the shape memory effect (SME. Hypotheses: a novel NiTi-SMA plate stabilizes tibia osteotomies in rabbits. After noninvasive electromagnetic induction heating the alloy exhibits the SME and the plate changes towards higher stiffness (inverse dynamization resulting in increased fixation stiffness and equal or better bony healing. In 14 rabbits, 1.0 mm tibia osteotomies were fixed with our experimental plate. Animals were randomised for control or induction heating at three weeks postoperatively. Repetitive X-ray imaging and in vivo measurements of bending stiffness were performed. After sacrifice at 8 weeks, macroscopic evaluation, µCT, and post mortem bending tests of the tibiae were carried out. One death and one early implant dislocation occurred. Following electromagnetic induction heating, radiographic and macroscopic changes of the implant proved successful SME activation. All osteotomies healed. In the treatment group, bending stiffness increased over time. Differences between groups were not significant. In conclusion, we demonstrated successful healing of rabbit tibia osteotomies using our novel NiTi-SMA plate. We demonstrated shape-changing SME in-vivo through transcutaneous electromagnetic induction heating. Thus, future orthopaedic implants could be modified without additional surgery.

  15. The robustness of a many-body decoherence formula of Kay under changes in graininess and shape of the bodies

    CERN Document Server

    Abyaneh, V; Abyaneh, Varqa; Kay, Bernard S.

    2005-01-01

    In ``Decoherence of macroscopic closed systems within Newtonian quantum gravity'' (Kay B S 1998 Class. Quantum Grav. 15 L89-L98) it was argued that, given a many-body Schroedinger wave function \\psi(x_1,...,x_N) for the centre-of-mass degrees of freedom of a closed system of N identical uniform-mass balls of mass M and radius R, taking account of quantum gravitational effects and then tracing over the gravitational field amounts to multiplying the position-space density matrix \\rho(x_1,...,x_N; x_1',...,x_N')= \\psi(x_1,...,x_N)\\psi*(x_1',...,x_N') by a multiplicative factor, which, if the positions {x_1,...,x_N; x_1',...,x_N'} are all much further away from one another than R, is well-approximated by the product from 1 to N over I, J, K (I 0) of radius r with centres at the vertices of a cubic lattice of spacing a (assumed to be very much bigger than 2r) and side 2La we establish the bound 0.7(r/a)^{1/n}La < R_eff < 3.1(r/a)^{1/n} La.

  16. Preparation and characterizations of HDPE-EVA alloy/OMT nanocomposites/paraffin compounds as a shape stabilized phase change thermal energy storage material

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yibing; Hu, Yuan; Song, Lei; Lu, Hongdian; Fan, Weicheng [State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230027 Anhui (China); Chen, Zuyao [Department of Chemistry, University of Science and Technology of China, Hefei, 230026 Anhui (China)

    2006-12-01

    A kind of shape stabilized phase change nanocomposites materials (PCNM) based on high density polyethylene (HDPE)/ethylene-vinyl acetate (EVA) alloy, organophilic montmorillonite (OMT), paraffin and intumescent flame retardant (IFR) are prepared using twin-screw extruder technique. The structures of the HDPE-EVA alloy/OMT nanocomposites are evidenced by the X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that an ordered intercalated nanomorphology of the HDPE-EVA alloy/OMT nanocomposites is formed. Then the structures of the shape stabilized PCNM are characterized by scanning electron microscopy (SEM). The HDPE-EVA alloy/OMT nanocomposites act as the supporting material and form the three-dimensional network structure. The paraffin acts as a phase change material and disperses in the three-dimensional network structure. Its latent heat is given by differential scanning calorimeter (DSC) method. The SEM and DSC results show that the additives of IFR have little effect on the network structure and the latent heat of shape stabilized PCNM, respectively. The thermal stability properties are characterized by thermogravimetric analysis (TGA). The TGA analysis results indicate that the flame retardant shape stabilized PCNM produce a larger amount of char residue at 800{sup o}C than that of shape stabilized PCNM, although the onset of weight loss of the flame retardant shape stabilized PCNM occur at a lower temperature. The formed multicellular char residue contributes to the improvement of thermal stability performance. The probable combustion mechanisms are also discussed in this paper. (author)

  17. Strain-induced macroscopic magnetic anisotropy from smectic liquid-crystalline elastomer-maghemite nanoparticle hybrid nanocomposites.

    Science.gov (United States)

    Haberl, Johannes M; Sánchez-Ferrer, Antoni; Mihut, Adriana M; Dietsch, Hervé; Hirt, Ann M; Mezzenga, Raffaele

    2013-06-21

    We combine tensile strength analysis and X-ray scattering experiments to establish a detailed understanding of the microstructural coupling between liquid-crystalline elastomer (LCE) networks and embedded magnetic core-shell ellipsoidal nanoparticles (NPs). We study the structural and magnetic re-organization at different deformations and NP loadings, and the associated shape and magnetic memory features. In the quantitative analysis of a stretching process, the effect of the incorporated NPs on the smectic LCE is found to be prominent during the reorientation of the smectic domains and the softening of the nanocomposite. Under deformation, the soft response of the nanocomposite material allows the organization of the nanoparticles to yield a permanent macroscopically anisotropic magnetic material. Independent of the particle loading, the shape-memory properties and the smectic phase of the LCEs are preserved. Detailed studies on the magnetic properties demonstrate that the collective ensemble of individual particles is responsible for the macroscopic magnetic features of the nanocomposite.

  18. Proton irradiation effects on beryllium - A macroscopic assessment

    Science.gov (United States)

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando

    2016-10-01

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

  19. ON THE MICROSCOPIC AND MACROSCOPIC ASPECTS OF NUCLEAR STRUCTURE WITH APPLICATIONS TO SUPERHEAVY NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Chin-Fu.

    1969-05-22

    The thesis is concerned with the relation between a microscopic approach and a macroscopic approach to the study of the nuclear binding energy as a function of neutron number, proton number and nuclear deformations. First of all we give a general discussion of the potential energy of a system which can be divided into a bulk region and a thin skin layer. We find that this energy can be written down in the usual liquid drop type of expression, i.e., in terms of the volume, the surface area and other macroscopic properties of the system. The discussion is illustrated by a study of noninteracting particles in an orthorhombic potential well with zero potential inside and infinite potential outside. The total energy is calculated both exactly (a microscopic approach) and also from a liquid drop type of expression (a macroscopic approach). It turns out that the latter approach reproduces the smooth average of the exact results very well. We next make a digression to study the saddle point shapes of a charged conducting drop on a pure liquid drop model. We compare the properties of a conducting drop with those of a drop whose charges are distributed uniformly throughout its volume. The latter is the usual model employed in the study of nuclear fission. We also determined some of the more important symmetric saddle point shapes. In the last part of the thesis we generalize a method due to Strutinski to synthesize a microscopic approach (the Nilsson model) and a macroscopic approach (the liquid drop model). The results are applied to realistic nuclei. The possible occurrence of shape isomers comes as a natural consequence of the present calculation. Their trends as a function of neutron and proton members are discussed and the results are tabulated. We also work out the stabilities of the predicted superheavy nuclei with proton number around 114 and neutron number around 184 and 196. Some of these nuclei appear to have extremely long life times. The possible experimental

  20. Lineage-specific responses of tooth shape in murine rodents (murinae, rodentia to late Miocene dietary change in the Siwaliks of Pakistan.

    Directory of Open Access Journals (Sweden)

    Yuri Kimura

    Full Text Available Past ecological responses of mammals to climate change are recognized in the fossil record by adaptive significance of morphological variations. To understand the role of dietary behavior on functional adaptations of dental morphology in rodent evolution, we examine evolutionary change of tooth shape in late Miocene Siwalik murine rodents, which experienced a dietary shift toward C4 diets during late Miocene ecological change indicated by carbon isotopic evidence. Geometric morphometric analysis in the outline of upper first molars captures dichotomous lineages of Siwalik murines, in agreement with phylogenetic hypotheses of previous studies (two distinct clades: the Karnimata and Progonomys clades, and indicates lineage-specific functional responses to mechanical properties of their diets. Tooth shapes of the two clades are similar at their sympatric origin but deviate from each other with decreasing overlap through time. Shape change in the Karnimata clade is associated with greater efficiency of propalinal chewing for tough diets than in the Progonomys clade. Larger body mass in Karnimata may be related to exploitation of lower-quality food items, such as grasses, than in smaller-bodied Progonomys. The functional and ecophysiological aspects of Karnimata exploiting C4 grasses are concordant with their isotopic dietary preference relative to Progonomys. Lineage-specific selection was differentially greater in Karnimata, and a faster rate of shape change toward derived Karnimata facilitated inclusion of C4 grasses in the diet. Sympatric speciation in these clades is most plausibly explained by interspecific competition on resource utilization between the two, based on comparisons of our results with the carbon isotope data. Interspecific competition with Karnimata may have suppressed morphological innovation of the Progonomys clade. Pairwise analyses of morphological and carbon isotope data can uncover ecological causes of sympatric speciation

  1. Lineage-specific responses of tooth shape in murine rodents (murinae, rodentia) to late Miocene dietary change in the Siwaliks of Pakistan.

    Science.gov (United States)

    Kimura, Yuri; Jacobs, Louis L; Flynn, Lawrence J

    2013-01-01

    Past ecological responses of mammals to climate change are recognized in the fossil record by adaptive significance of morphological variations. To understand the role of dietary behavior on functional adaptations of dental morphology in rodent evolution, we examine evolutionary change of tooth shape in late Miocene Siwalik murine rodents, which experienced a dietary shift toward C4 diets during late Miocene ecological change indicated by carbon isotopic evidence. Geometric morphometric analysis in the outline of upper first molars captures dichotomous lineages of Siwalik murines, in agreement with phylogenetic hypotheses of previous studies (two distinct clades: the Karnimata and Progonomys clades), and indicates lineage-specific functional responses to mechanical properties of their diets. Tooth shapes of the two clades are similar at their sympatric origin but deviate from each other with decreasing overlap through time. Shape change in the Karnimata clade is associated with greater efficiency of propalinal chewing for tough diets than in the Progonomys clade. Larger body mass in Karnimata may be related to exploitation of lower-quality food items, such as grasses, than in smaller-bodied Progonomys. The functional and ecophysiological aspects of Karnimata exploiting C4 grasses are concordant with their isotopic dietary preference relative to Progonomys. Lineage-specific selection was differentially greater in Karnimata, and a faster rate of shape change toward derived Karnimata facilitated inclusion of C4 grasses in the diet. Sympatric speciation in these clades is most plausibly explained by interspecific competition on resource utilization between the two, based on comparisons of our results with the carbon isotope data. Interspecific competition with Karnimata may have suppressed morphological innovation of the Progonomys clade. Pairwise analyses of morphological and carbon isotope data can uncover ecological causes of sympatric speciation and define

  2. The Concept of the Earth's Shape: A Study of Conceptual Change in Childhood. Technical Report No. 467.

    Science.gov (United States)

    Vosniadou, Stella; Brewer, William F.

    This paper presents the results of an experiment which investigated elementary school children's concept of the earth's shape and the related concept of gravity. First, third, and fifth grade children were asked a series of factual, explanatory, and generative questions in an attempt to understand as clearly as possible the way they conceptualized…

  3. A phenomenological model for chemico-mechanically induced cell shape changes during migration and cell–cell contacts

    NARCIS (Netherlands)

    Vermolen, F.J.; Gefen, A.

    2012-01-01

    A phenomenological model for the evolution of shape transition of cells is considered. These transitions are determined by the emission of growth-factors, as well as mechanical interaction if cells are subjected to hard impingement. The originality of this model necessitates a formal treatment of th

  4. Three-Dimensional Laser Imaging as a Valuable Tool for Specifying Changes in Breast Shape After Augmentation Mammaplasty

    NARCIS (Netherlands)

    Esme, D.L.; Bucksch, A.; Beekman, W.H.

    2008-01-01

    Background Three-dimensional (3D) terrestrial laser scanning (TLS) is a valuable method for measuring shapes of objects and for obtaining quantitative measurements. These qualities of the 3D laser scanner have proved to be useful in reconstructive breast surgery. This study investigated various 3D

  5. Shape changing collisions of optical solitons, universal logic gates and partially coherent solitons in coupled nonlinear Schrödinger equations

    Indian Academy of Sciences (India)

    M Lakshmanan; T Kanna

    2001-11-01

    Coupled nonlinear Schrödinger equations (CNLS) very often represent wave propagation in optical media such as multicore fibers, photorefractive materials and so on. We consider specifically the pulse propagation in integrable CNLS equations (generalized Manakov systems). We point out that these systems possess novel exact soliton type pulses which are shape changing under collision leading to an intensity redistribution. The shape changes correspond to linear fractional transformations allowing for the possibility of construction of logic gates and Turing equivalent all optical computers in homogeneous bulk media as shown by Steiglitz recently. Special cases of such solitons correspond to the recently much discussed partially coherent stationary solitons (PCS). In this paper, we review critically the recent developments regarding the above properties with particular reference to 2-CNLS.

  6. Vibrational and magnetic contributions to the entropy change associated with the martensitic transformation of Ni-Fe-Ga ferromagnetic shape memory alloys.

    Science.gov (United States)

    Recarte, V; Pérez-Landazábal, J I; Gómez-Polo, C; Sánchez-Alarcos, V; Cesari, E; Pons, J

    2010-10-20

    Ferromagnetic shape memory alloys undergo a martensitic transformation accompanied by a change in the magnetic and vibrational properties. However, these property changes are not independent. In this paper, the interplay between magnetic and vibrational properties in the martensitic transformation entropy change has been analyzed for Ni-Fe-Ga ferromagnetic shape memory alloys. The martensitic transformation entropy change has a magnetic and a vibrational contribution, ΔS(p−>m)=ΔS(vib)(p−>m) + ΔS(mag)(p−>m). Using a mean field approximation for the magnetic entropy, the full entropy ΔS(p−>m) has been decomposed and the magnetic contribution ΔS(mag)(p−>m) calculated. Upon removing the magnetic term, the vibrational entropy ΔS(vib)(p−>m) does not change substantially in the composition range where T(M) is below T(C). This latter contribution to the martensitic transformation entropy change has been analyzed using a Debye distribution for the density of states and a proportion of Einstein modes that account for the anomalous phonon mode of the austenite. © 2010 IOP Publishing Ltd

  7. Metric Distances between Hippocampal Shapes Indicate Different Rates of Change over Time in Nondemented and Demented Subjects

    OpenAIRE

    Ceyhan, Elvan; Beg, MF; Ceritoglu, C; Wang, L; Morris, JC; Csernansky, JG; Miller, MI; Ratnanather, JT

    2013-01-01

    In this article, we use longitudinal morphometry (shape and size) measures of hippocampus in subjects with mild dementia of Alzheimer type (DAT) and nondemented controls in logistic discrimination. The morphometric measures we use are volume and metric distance measures at baseline and follow-up (two years apart from baseline). Morphometric differences with respect to a template hippocampus were measured by the metric distance obtained from the large deformation diffeomorphic metric mapping (...

  8. Macroscopic study of the digestive tract of Gracilinanus microtarsus (Wagner, 1842 (Mammalia: Didelphidae

    Directory of Open Access Journals (Sweden)

    Luis Miguel Lobo

    2014-03-01

    Full Text Available Gracilinanus microtarsus is a small marsupial species belonging to the Didelphidae family. It has an omnivorous/frugivorous feeding habit and, therefore, it has a great ecological importance, because it is a seed-dispersing species. This article aims to describe the macroscopic morphology of the digestive tract in G. microtarsus. We used 4 animals fixed in 10% formaldehyde. The organs were dissected, measured, and photographed. The animals under study had the dental formula 2x I 5/4 C 1/1 P 3/3 M 4/4. This is the dental formula of the whole Didelphidae family. The dorsum of the tongue had vallate, fungiform, and filiform papillae. Tubular esophagus evidenced the cervical, thoracic, and abdominal portions. The unicavitary stomach consisted of glandular and aglandular region and gastric folds. Small intestine had 3 portions: duodenum, jejunum, and ileum. Large intestine consisted of: cecum, colon, and rectum. Parotid salivary gland was the largest and it had a flattened shape. The sublingual salivary gland, whi h was the smallest, had a flattened and elongated shape. Mandibular salivary gland had an oval shape. Pancreas had a dispersed shape and lobulated aspect. Liver had a dome shape and it consisted of the lobes right medial, square, right side, left medial, left side, and caudate. The digestive tract of the animals under study is similar to the marsupial species described in the literature.

  9. Unaffected microscopic dynamics of macroscopically arrested water in dilute clay gels

    Science.gov (United States)

    Seydel, Tilo; Wiegart, Lutz; Juranyi, Fanni; Struth, Bernd; Schober, Helmut

    2008-12-01

    Adequate clay minerals considerably affect the macroscopic mechanical behavior of water even at concentrations of a few percent. Thus when 2wt.% laponite clay mineral nanoparticles are added to water, the resulting colloidal suspension after some time takes on the semisolid characteristics of a jellylike material at room temperature. Cold neutron time-of-flight spectroscopy data are in agreement with the assumption that notwithstanding this macroscopic change, the mobility of the water molecules on intermolecular and intramolecular length scales remains largely unaffected. This observation is discussed in the context of the properties and the role of water in different more or less dilute ionic environments. The result contributes to the ongoing debate of the properties and role of water in living cells.

  10. Micro-macroscopic coupling in the cellular automaton model of solidification

    Directory of Open Access Journals (Sweden)

    Vinicius Bertolazzi Biscuola

    2010-12-01

    Full Text Available A cellular automaton (CA model to predict the formation of grain macrostructure during solidification has been implemented and the coupling between the microscopic and the macroscopic submodels has been investigated. The microscopic submodel simulates the nucleation and growth of grains, whereas the macroscopic solves the heat conduction equation. The directional solidification of an Al-7 wt. (% Si alloy was simulated, enabling the calculation of the temperature and solid fraction profiles. The calculated temperature was used to obtain the solid fraction profile by an application of Scheil equation. This solid fraction disagrees with that calculated in the micro-macro coupling of the model, although this coupling is completely based on Scheil equation. Careful examination of the discrepancies shows that it is a result of the undercoolings for nucleation and growth of grains and also of the interpolations of enthalpy change and temperature from the finite volume mesh to the CA cell mesh.

  11. Information and self-organization a macroscopic approach to complex systems

    CERN Document Server

    Haken, Hermann

    1988-01-01

    Complex systems are ubiquitous, and practically all branches of science ranging from physics through chemistry and biology to economics and sociology have to deal with them. In this book we wish to present concepts and methods for dealing with complex systems from a unifying point of view. Therefore it may be of inter­ est to graduate students, professors and research workers who are concerned with theoretical work in the above-mentioned fields. The basic idea for our unified ap­ proach sterns from that of synergetics. In order to find unifying principles we shall focus our attention on those situations where a complex system changes its macroscopic behavior qualitatively, or in other words, where it changes its macroscopic spatial, temporal or functional structure. Until now, the theory of synergetics has usually begun with a microscopic or mesoscopic description of a complex system. In this book we present an approach which starts out from macroscopic data. In particular we shall treat systems that acquir...

  12. Application of geometric morphometrics to the study of postnatal size and shape changes in the skull of Calomys expulsus

    Directory of Open Access Journals (Sweden)

    Erika Hingst-Zaher

    2000-06-01

    Full Text Available Abstract We analyzed ontogenetic patterns of landmarks for 169 laboratory-raised specimens of Calomys expulsus, at 0, 5, 10, 20, 30, 50, 100, 200, and 300 days of age, using two-dimensional geometric morphometrics. There is sexual dimorphism in size, with males smaller than females at earlier ages, but larger after 50 days. Differences in shape between sexes are strong only until 10 days of age, suggesting that shape is more constrained than size. Combining sexes, there is strong variation in size with age, reduced after 200 days, while most of the variation in shape occurs before 20 days. This dissociation is common for sigmodontine rodents, and might be the basis of heterochronic processes responsible for the morphological variation of this South American group. Centroid size does not show any reduction in the coefficient of variation over ages, while Procrustes distances within sucessive ages are reduced after 20 days. Uniform component and the more global partial warps explain most of the shape changes with age. Cranial and Facial parts of the skull increase in size at different rates with a relative lengthening of the snout and decrease in height of the braincase. We were unable to detect a clear pattern of integration for the rostrum and braincase, besides that shown by landmark displacements.

  13. Extended Macroscopic Study of Dilute Gas Flow within a Microcavity

    Directory of Open Access Journals (Sweden)

    Mohamed Hssikou

    2016-01-01

    Full Text Available The behaviour of monatomic and dilute gas is studied in the slip and early transition regimes using the extended macroscopic theory. The gas is confined within a two-dimensional microcavity where the longitudinal sides are in the opposite motion with constant velocity ±Uw. The microcavity walls are kept at the uniform and reference temperature T0. Thus, the gas flow is transported only by the shear stress induced by the motion of upper and lower walls. From the macroscopic point of view, the regularized 13-moment equations of Grad, R13, are solved numerically. The macroscopic gas proprieties are studied for different values of the so-called Knudsen number (Kn, which gives the gas-rarefaction degree. The results are compared with those obtained using the classical continuum theory of Navier-Stokes and Fourier (NSF.

  14. The quantum interaction of macroscopic objects and gravitons

    Science.gov (United States)

    Piran, Tsvi

    2016-09-01

    Copious production of gravitational radiation requires a compact source that moves relativistically. Such sources are rare and are found only in extreme cases such as the formation of a black hole in either via a gravitational collapse or via a merger. Noncompact, nonrelativistic objects emit gravitational radiation, however, this emission is extremely weak due to very large value of the Planck energy. The quantum nature of gravitons, namely the fact that a single graviton carries energy of order ℏω implies that macroscopic objects whose kinetic energy is less than the Planck energy emit gravitons quantum mechanically, emitting a single graviton at a time. This is a unique situation in which a macroscopic object behaves quantum mechanically. While it is impossible to check experimentally this quantum gravitational effect, it might be possible to carry out analogous electromagnetic experiments that will shed light on this macroscopic quantum mechanical behavior.

  15. Geometric aspects of Schnakenberg's network theory of macroscopic nonequilibrium observables

    Science.gov (United States)

    Polettini, M.

    2011-03-01

    Schnakenberg's network theory deals with macroscopic thermodynamical observables (forces, currents and entropy production) associated to the steady states of diffusions on generic graphs. Using results from graph theory and from the theory of discrete differential forms we recast Schnakenberg's treatment in the form of a simple discrete gauge theory, which allows to interpret macroscopic forces as the Wilson loops of a real connection. We discuss the geometric properties of transient states, showing that heat fluxes allow for a notion of duality of macroscopic observables which interchanges the role of the environment and that of the system. We discuss possible generalizations to less trivial gauge groups and the relevance for nonequilibrium fluctuation theorems. Based on work in collaboration with professor A. Maritan, University of Padua, to be published.

  16. Broadband Macroscopic Cortical Oscillations Emerge from Intrinsic Neuronal Response Failures

    Directory of Open Access Journals (Sweden)

    Amir eGoldental

    2015-10-01

    Full Text Available Broadband spontaneous macroscopic neural oscillations are rhythmic cortical firing which was extensively examined during the last century, however, their possible origination is still controversial. In this work we show how macroscopic oscillations emerge in solely excitatory random networks and without topological constraints. We experimentally and theoretically show that these oscillations stem from the counterintuitive underlying mechanism - the intrinsic stochastic neuronal response failures. These neuronal response failures, which are characterized by short-term memory, lead to cooperation among neurons, resulting in sub- or several- Hertz macroscopic oscillations which coexist with high frequency gamma oscillations. A quantitative interplay between the statistical network properties and the emerging oscillations is supported by simulations of large networks based on single-neuron in-vitro experiments and a Langevin equation describing the network dynamics. Results call for the examination of these oscillations in the presence of inhibition and external drives.

  17. Reconciling power laws in microscopic and macroscopic neural recordings

    CERN Document Server

    Pettersen, Klas H; Tetzlaff, Tom; Einevoll, Gaute T

    2013-01-01

    Power laws, characterized by quantities following 1/x^\\alpha{} distributions, are commonly reported when observing nature or society, and the question of their origin has for a long time intrigued physicists. Power laws have also been observed in neural recordings, both at the macroscopic and microscopic levels: at the macroscopic level, the power spectral density (PSD) of the electroencephalogram (EEG) has been seen to follow 1/f^\\alpha{} distributions; at the microscopic level similar power laws have been observed in single-neuron recordings of the neuronal soma potential and soma current, yet with different values of the power-law exponent \\alpha. In this theoretical study we find that these observed macroscopic and microscopic power laws may, despite the widely different spatial scales and different exponents, have the same source. By a combination of simulation on a biophysical detailed, pyramidal neuron model and analytical investigations of a simplified ball and stick neuron, we find that the transfer ...

  18. Microscopic and macroscopic infarct complicating pediatric epilepsy surgery.

    Science.gov (United States)

    Rubinger, Luc; Hazrati, Lili-Naz; Ahmed, Raheel; Rutka, James; Snead, Carter; Widjaja, Elysa

    2017-03-01

    There is some suggestion that microscopic infarct could be associated with invasive monitoring, but it is unclear if the microscopic infarct is also visible on imaging and associated with neurologic deficits. The aims of this study were to assess the rates of microscopic and macroscopic infarct and other major complications of pediatric epilepsy surgery, and to determine if these complications were higher following invasive monitoring. We reviewed the epilepsy surgery data from a tertiary pediatric center, and collected data on microscopic infarct on histology and macroscopic infarct on postoperative computed tomography (CT) or magnetic resonance imaging (MRI) done one day after surgery and major complications. Three hundred fifty-two patients underwent surgical resection and there was one death. Forty-two percent had invasive monitoring. Thirty patients (9%) had microscopic infarct. Univariable analyses showed that microscopic infarct was higher among patients with invasive monitoring relative to no invasive monitoring (20% vs. 0.5%, respectively, p microscopic infarct had transient right hemiparesis, and two with both macroscopic and microscopic infarct had unexpected persistent neurologic deficits. Thirty-two major complications (9.1%) were reported, with no difference in major complications between invasive monitoring and no invasive monitoring (10% vs. 7%, p = 0.446). In the multivariable analysis, invasive monitoring increased the odds of microscopic infarct (odds ratio [OR] 15.87, p = 0.009), but not macroscopic infarct (OR 2.6, p = 0.173) or major complications (OR 1.4, p = 0.500), after adjusting for age at surgery, sex, age at seizure onset, operative type, and operative location. Microscopic infarct was associated with invasive monitoring, and none of the patients had permanent neurologic deficits. Macroscopic infarct was not associated with invasive monitoring, and two patients with macroscopic infarct had persistent neurologic deficits. Wiley

  19. Approximating macroscopic observables in quantum spin systems with commuting matrices

    CERN Document Server

    Ogata, Yoshiko

    2011-01-01

    Macroscopic observables in a quantum spin system are given by sequences of spatial means of local elements $\\frac{1}{2n+1}\\sum_{j=-n}^n\\gamma_j(A_{i}), \\; n\\in{\\mathbb N},\\; i=1,...,m$ in a UHF algebra. One of their properties is that they commute asymptotically, as $n$ goes to infinity. It is not true that any given set of asymptotically commuting matrices can be approximated by commuting ones in the norm topology. In this paper, we show that for macroscopic observables, this is true.

  20. On the notion of a macroscopic quantum system

    CERN Document Server

    Khrenikov, A Yu

    2004-01-01

    We analyse the notion of macroscopic quantum system from the point of view of the statistical structure of quantum theory. We come to conclusion that the presence of interference of probabilities should be used the main characteristic of quantumness (in the opposition to N. Bohr who permanently emphasized the crucial role of quantum action). In the light of recent experiments with statistical ensembles of people who produced interference of probabilities for special pairs of questions (which can be considered as measurements on people) human being should be considered as a macroscopic quantum system. There is also discussed relation with experiments of A. Zeilinger on interference of probabilities for macromoleculas.

  1. Stimuli-deformable graphene materials: from nanosheet to macroscopic assembly

    Directory of Open Access Journals (Sweden)

    Fei Zhao

    2016-04-01

    Full Text Available Stimulus-induced deformation (SID of graphene-based materials has triggered rapidly increasing research interest due to the spontaneous response to external stimulations, which enables precise configurational regulation of single graphene nanosheets (GNSs through control over the environmental conditions. While the micro-strain of GNS is barely visible, the deformation of graphene-based macroscopic assemblies (GMAs is remarkable, thereby presenting significant potential for future application in smart devices. This review presents the current progress of SID of graphene in the manner of nanosheets and macroscopic assemblies in both the experimental and theoretical fronts, and summarizes recent advancements of SID of graphene for applications in smart systems.

  2. Statistical thermodynamics understanding the properties of macroscopic systems

    CERN Document Server

    Fai, Lukong Cornelius

    2012-01-01

    Basic Principles of Statistical PhysicsMicroscopic and Macroscopic Description of StatesBasic PostulatesGibbs Ergodic AssumptionGibbsian EnsemblesExperimental Basis of Statistical MechanicsDefinition of Expectation ValuesErgodic Principle and Expectation ValuesProperties of Distribution FunctionRelative Fluctuation of an Additive Macroscopic ParameterLiouville TheoremGibbs Microcanonical EnsembleMicrocanonical Distribution in Quantum MechanicsDensity MatrixDensity Matrix in Energy RepresentationEntropyThermodynamic FunctionsTemperatureAdiabatic ProcessesPressureThermodynamic IdentityLaws of Th

  3. Change in Cell Shape Is Required for Matrix Metalloproteinase-Induced Epithelial-Mesenchymal Transition of Mammary Epithelial Cells

    Science.gov (United States)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2010-01-01

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a “cuboidal” epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-β-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents. PMID:18506791

  4. Change in cell shape is required for matrix metalloproteinase-induced epithelial-mesenchymal transition of mammary epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Celeste M.; Khauv, Davitte; Bissell, Mina J.; Radisky, Derek C.

    2008-06-26

    Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a 'cuboidal' epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-{beta}-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.

  5. Comparison of Pressure Changes by Head and Neck Position between High-Volume Low-Pressure and Taper-Shaped Cuffs: A Randomized Controlled Trial.

    Science.gov (United States)

    Komasawa, Nobuyasu; Mihara, Ryosuke; Imagawa, Kentaro; Hattori, Kazuo; Minami, Toshiaki

    2015-01-01

    The present study compared changes in cuff pressure by head and neck position between high-volume low-pressure (HVLP) and taper-shaped (taper) cuffs in a prospective randomized clinical trial. Methods. Forty patients were intubated using tracheal tubes with either HVLP (n = 20; HVLP group) or taper-shaped (n = 20; Taper group) cuffs. Initial cuff pressure was adjusted to 15, 20, or 25 cmH2O in the neutral position. Cuff pressure was evaluated after changing the head and neck positions to flexion, extension, and rotation. Results. Cuff pressure significantly increased with flexion in both HVLP and Taper groups at all initial cuff pressures. It significantly increased with extension in the HVLP group, but not in the Taper group. Cuff pressure did not significantly differ with rotation in either group and was significantly smaller in the Taper group during flexion and extension than in the HVLP group, regardless of initial cuff pressure. Conclusion. Cuff pressure changes with head and neck flexion and extension were smaller in the Taper group than in the HVLP group. Our results highlight the potential for taper cuffs to prevent excessive cuff pressure increases with positional changes in the head and neck. This trial is registered with UMIN000016119.

  6. Comparison of Pressure Changes by Head and Neck Position between High-Volume Low-Pressure and Taper-Shaped Cuffs: A Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Nobuyasu Komasawa

    2015-01-01

    Full Text Available The present study compared changes in cuff pressure by head and neck position between high-volume low-pressure (HVLP and taper-shaped (taper cuffs in a prospective randomized clinical trial. Methods. Forty patients were intubated using tracheal tubes with either HVLP (n=20; HVLP group or taper-shaped (n=20; Taper group cuffs. Initial cuff pressure was adjusted to 15, 20, or 25 cmH2O in the neutral position. Cuff pressure was evaluated after changing the head and neck positions to flexion, extension, and rotation. Results. Cuff pressure significantly increased with flexion in both HVLP and Taper groups at all initial cuff pressures. It significantly increased with extension in the HVLP group, but not in the Taper group. Cuff pressure did not significantly differ with rotation in either group and was significantly smaller in the Taper group during flexion and extension than in the HVLP group, regardless of initial cuff pressure. Conclusion. Cuff pressure changes with head and neck flexion and extension were smaller in the Taper group than in the HVLP group. Our results highlight the potential for taper cuffs to prevent excessive cuff pressure increases with positional changes in the head and neck. This trial is registered with UMIN000016119.

  7. Collision Induced Velocity Changes from Molecular Dynamic Simulations. Application to the Spectral Shape of the Q(1) Raman Lines of H{_2}/H{_2}

    Science.gov (United States)

    Tran, H.; Hartmann, J. M.

    2011-06-01

    Collision induced velocity changes for pure H{_2} have been computed from classical dynamic simulations. The results have been compared with the Keilson-Storer model from four different points of view. The first involves various autocorrelation functions associated with the velocity. The second and third give more detailed information, and are time evolutions of some conditional probabilities for changes of the velocity modulus and orientation and the collision kernels themselves. The fourth considers the evolutions, with density, of the half widths of the Q(1) lines of the isotropic Raman (1-0) fundamental band and of the (2-0) overtone quadrupole band. These spectroscopic data enable an indirect test of the models since velocity changes translate into line-shape modifications through the speed dependence of collisional parameters and the Dicke narrowing of the Doppler contribution to the profile. The results indicate that, while the KS approach gives a poor description of detailed velocity-to-velocty changes, it leads to accurate results for the correlation functions and spectral shapes, quantities related to large averages over the velocity. It is also shown that the use of collision kernels directly derived from MDS lead to an almost perfect prediction of all considered quantities (correlation functions, conditional probabilities, and spectral shapes). Finally, the results stress the need for very accurate calculations of line-broadening and -shifting coefficients from the intermolecular potential to obviate the need for experimental data and permit fully meaningful tests of the models. H. Tran, J.M. Hartmann J. Chem. Phys. 130, 094301, 2009.

  8. Time-dependent mechanical behavior of human amnion: macroscopic and microscopic characterization.

    Science.gov (United States)

    Mauri, Arabella; Perrini, Michela; Ehret, Alexander E; De Focatiis, Davide S A; Mazza, Edoardo

    2015-01-01

    Characterizing the mechanical response of the human amnion is essential to understand and to eventually prevent premature rupture of fetal membranes. In this study, a large set of macroscopic and microscopic mechanical tests have been carried out on fresh unfixed amnion to gain insight into the time-dependent material response and the underlying mechanisms. Creep and relaxation responses of amnion were characterized in macroscopic uniaxial tension, biaxial tension and inflation configurations. For the first time, these experiments were complemented by microstructural information from nonlinear laser scanning microscopy performed during in situ uniaxial relaxation tests. The amnion showed large tension reduction during relaxation and small inelastic strain accumulation in creep. The short-term relaxation response was related to a concomitant in-plane and out-of-plane contraction, and was dependent on the testing configuration. The microscopic investigation revealed a large volume reduction at the beginning, but no change of volume was measured long-term during relaxation. Tension-strain curves normalized with respect to the maximum strain were highly repeatable in all configurations and allowed the quantification of corresponding characteristic parameters. The present data indicate that dissipative behavior of human amnion is related to two mechanisms: (i) volume reduction due to water outflow (up to ∼20 s) and (ii) long-term dissipative behavior without macroscopic deformation and no systematic global reorientation of collagen fibers.

  9. Trajectory Perception and Object Continuity: Effects of Shape and Color Change on 4-Month-Olds' Perception of Object Identity

    Science.gov (United States)

    Bremner, J. Gavin; Slater, Alan M.; Mason, Uschi C.; Spring, Jo; Johnson, Scott P.

    2013-01-01

    Previous work has demonstrated that infants use object trajectory continuity as a cue to the constant identity of an object, but results are equivocal regarding the role of object features, with some work suggesting that a change in the appearance of an object does not cue a change in identity. In an experiment involving 72 participants, we…

  10. Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography.

    Science.gov (United States)

    Liebi, Marianne; Georgiadis, Marios; Menzel, Andreas; Schneider, Philipp; Kohlbrecher, Joachim; Bunk, Oliver; Guizar-Sicairos, Manuel

    2015-11-19

    The mechanical properties of many materials are based on the macroscopic arrangement and orientation of their nanostructure. This nanostructure can be ordered over a range of length scales. In biology, the principle of hierarchical ordering is often used to maximize functionality, such as strength and robustness of the material, while minimizing weight and energy cost. Methods for nanoscale imaging provide direct visual access to the ultrastructure (nanoscale structure that is too small to be imaged using light microscopy), but the field of view is limited and does not easily allow a full correlative study of changes in the ultrastructure over a macroscopic sample. Other methods of probing ultrastructure ordering, such as small-angle scattering of X-rays or neutrons, can be applied to macroscopic samples; however, these scattering methods remain constrained to two-dimensional specimens or to isotropically oriented ultrastructures. These constraints limit the use of these methods for studying nanostructures with more complex orientation patterns, which are abundant in nature and materials science. Here, we introduce an imaging method that combines small-angle scattering with tensor tomography to probe nanoscale structures in three-dimensional macroscopic samples in a non-destructive way. We demonstrate the method by measuring the main orientation and the degree of orientation of nanoscale mineralized collagen fibrils in a human trabecula bone sample with a spatial resolution of 25 micrometres. Symmetries within the sample, such as the cylindrical symmetry commonly observed for mineralized collagen fibrils in bone, allow for tractable sampling requirements and numerical efficiency. Small-angle scattering tensor tomography is applicable to both biological and materials science specimens, and may be useful for understanding and characterizing smart or bio-inspired materials. Moreover, because the method is non-destructive, it is appropriate for in situ measurements and

  11. Success and failure assessing gonad maturity in sequentially hermaphroditic fishes: comparisons between macroscopic and microscopic methods.

    Science.gov (United States)

    Klibansky, N; Scharf, F S

    2015-10-01

    For two protogynous hermaphrodite fish species, the performance of visual gonad analysis techniques was evaluated to determine when the use of macroscopic methods was sufficient and when microscopic techniques were necessary. Simple macroscopic gonad analysis was found to be a powerful tool for distinguishing sex and whether or not females were spawning capable or ripe for black sea bass Centropristis striata (n = 1443) and red porgy Pagrus pagrus (n = 980), often producing results that were in close agreement with more complex and expensive microscopic techniques. Estimates of key reproductive variables, such as size-dependent sex-change ogives, spawning season duration, spawning fraction and batch number, were also very similar or equal between methods. Apparent seasonal spawning activity was also predicted similarly by each method and the patterns were highly correlated with seasonal patterns in gonado-somatic indices. In contrast, distinguishing between immature females and those that were mature, but inactive, proved difficult when using macroscopic methods and, in these cases, predictions often differed from those produced microscopically. In turn, maturity ogives differed significantly between methods for C. striata (maturity ogives could not be generated for P. pagrus as nearly all fish encountered were mature). Agreement rates among male phases were also very low. Macroscopic methods were able to identify signs of sex transition in very advanced specimens, but early signs were only evident microscopically. While much more detail is visible microscopically, here several population-scale parameters important for fisheries management were estimated equally well with the unaided eye for C. striata and P. pagrus. For comprehensive, fishery-independent surveys and long-term research programmes in particular, determining when microscopic techniques are and are not necessary can greatly improve efficiency and reduce costs without compromising data quality.

  12. Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography

    Science.gov (United States)

    Liebi, Marianne; Georgiadis, Marios; Menzel, Andreas; Schneider, Philipp; Kohlbrecher, Joachim; Bunk, Oliver; Guizar-Sicairos, Manuel

    2015-11-01

    The mechanical properties of many materials are based on the macroscopic arrangement and orientation of their nanostructure. This nanostructure can be ordered over a range of length scales. In biology, the principle of hierarchical ordering is often used to maximize functionality, such as strength and robustness of the material, while minimizing weight and energy cost. Methods for nanoscale imaging provide direct visual access to the ultrastructure (nanoscale structure that is too small to be imaged using light microscopy), but the field of view is limited and does not easily allow a full correlative study of changes in the ultrastructure over a macroscopic sample. Other methods of probing ultrastructure ordering, such as small-angle scattering of X-rays or neutrons, can be applied to macroscopic samples; however, these scattering methods remain constrained to two-dimensional specimens or to isotropically oriented ultrastructures. These constraints limit the use of these methods for studying nanostructures with more complex orientation patterns, which are abundant in nature and materials science. Here, we introduce an imaging method that combines small-angle scattering with tensor tomography to probe nanoscale structures in three-dimensional macroscopic samples in a non-destructive way. We demonstrate the method by measuring the main orientation and the degree of orientation of nanoscale mineralized collagen fibrils in a human trabecula bone sample with a spatial resolution of 25 micrometres. Symmetries within the sample, such as the cylindrical symmetry commonly observed for mineralized collagen fibrils in bone, allow for tractable sampling requirements and numerical efficiency. Small-angle scattering tensor tomography is applicable to both biological and materials science specimens, and may be useful for understanding and characterizing smart or bio-inspired materials. Moreover, because the method is non-destructive, it is appropriate for in situ measurements and

  13. How issue frames shape beliefs about the importance of climate change policy across ideological and partisan groups.

    Science.gov (United States)

    Singh, Shane P; Swanson, Meili

    2017-01-01

    We use an experiment to examine whether the way in which climate change is framed affects individuals' beliefs about its importance as a policy issue. We employ frames that emphasize national security, human rights, and environmental importance about the consequences of climate change. We find no evidence that issue frames have an overall effect on opinions about the importance of climate change policy. We do find some evidence that the effect of issue frames varies across ideological and partisan groups. Most notably, issue frames can lead Republicans and those on the political right to view climate change policy as less important. We conclude by discussing our findings relative to extant literature and considering the implications of our findings for those who seek to address the issue of climate change.

  14. Shock wave induced martensitic transformations and morphology changes in Fe-Pd ferromagnetic shape memory alloy thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, A. J., E-mail: alina.bischoff@iom-leipzig.de; Arabi-Hashemi, A.; Ehrhardt, M.; Lorenz, P.; Zimmer, K. [Leibniz Institute for Surface Modification, Permoserstr. 15, 04318 Leipzig (Germany); Mayr, S. G., E-mail: stefan.mayr@iom-leipzig.de [Leibniz Institute for Surface Modification, Permoserstr. 15, 04318 Leipzig (Germany); Department of Physics and Earth Sciences, Leipzig University, Linnéstr. 5, 04103 Leipzig (Germany)

    2016-04-11

    Combining experimental methods and classical molecular dynamics (MD) computer simulations, we explore the martensitic transformation in Fe{sub 70}Pd{sub 30} ferromagnetic shape memory alloy thin films induced by laser shock peening. X-ray diffraction and scanning electron microscope measurements at shock wave pressures of up to 2.5 GPa reveal formation of martensitic variants with preferred orientation of the shorter c-axis of the tetragonal unit cell perpendicular to the surface plane. Moreover, consequential merging of growth islands on the film surface is observed. MD simulations unveil the underlying physics that are characterized by an austenite-martensite transformation with a preferential alignment of the c-axis along the propagation direction of the shock wave, resulting in flattening and in-plane expansion of surface features.

  15. Quantum statistical derivation of the macroscopic Maxwell equations

    NARCIS (Netherlands)

    Schram, K.

    1960-01-01

    The macroscopic Maxwell equations in matter are derived on a quantum statistical basis from the microscopic equations for the field operators. Both the density operator formalism and the Wigner distribution function method are discussed. By both methods it can be proved that the quantum statistical

  16. Microstructure and macroscopic properties of polydisperse systems of hard spheres

    NARCIS (Netherlands)

    Ogarko, Vitaliy Anatolyevich

    2014-01-01

    This dissertation describes an investigation of systems of polydisperse smooth hard spheres. This includes the development of a fast contact detection algorithm for computer modelling, the development of macroscopic constitutive laws that are based on microscopic features such as the moments of the

  17. Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters

    DEFF Research Database (Denmark)

    Nedelchev, L.; Nikolova, L.; Matharu, A.

    2002-01-01

    A study of the propagation of elliptically polarized light and the resulting formation of macroscopic chiral structures in a series of azobenzene side-chain copolyesters, in which the morphology is varied from liquid crystalline to amorphous, is reported. Real-time measurements are presented...

  18. The black hole information paradox and macroscopic superpositions

    CERN Document Server

    Hsu, Stephen D H

    2010-01-01

    We investigate the experimental capabilities required to test whether black holes destroy information. We show that an experiment capable of illuminating the information puzzle must necessarily be able to detect or manipulate macroscopic superpositions (i.e., Everett branches). Hence, it could also address the fundamental question of decoherence versus wavefunction collapse.

  19. Macroscopic domain formation in the platelet plasma membrane

    DEFF Research Database (Denmark)

    Bali, Rachna; Savino, Laura; Ramirez, Diego A.;

    2009-01-01

    There has been ample debate on whether cell membranes can present macroscopic lipid domains as predicted by three-component phase diagrams obtained by fluorescence microscopy. Several groups have argued that membrane proteins and interactions with the cytoskeleton inhibit the formation of large d...

  20. A Macroscopic Analogue of the Nuclear Pairing Potential

    Science.gov (United States)

    Dunlap, Richard A.

    2013-01-01

    A macroscopic system involving permanent magnets is used as an analogue to nucleons in a nucleus to illustrate the significance of the pairing interaction. This illustrates that the view of the total nuclear energy based only on the nucleon occupancy of the energy levels can yield erroneous results and it is only when the pairing interaction is…

  1. Data requirements for traffic control on a macroscopic level

    NARCIS (Netherlands)

    Knoop, V.L.; Van Lint, J.W.C.; Hoogendoorn, S.P.

    2011-01-01

    With current techniques, traffic monitoring and control is a data intensive process. Network control on a higher level, using high level variables, can make this process less data demanding. The macroscopic fundamental diagram relates accumulation, i.e. the number of vehicles in an area, to the netw

  2. Stereodynamics: From elementary processes to macroscopic chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Toshio [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Che, Dock-Chil [Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Tsai, Po-Yu [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Lin, King-Chuen [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Palazzetti, Federico [Scuola Normale Superiore, Pisa (Italy); Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, Vincenzo [Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Roma (Italy); Instituto de Fisica, Universidade Federal da Bahia, Salvador (Brazil)

    2015-12-31

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  3. Mesoscopic kinetic basis of macroscopic chemical thermodynamics: A mathematical theory.

    Science.gov (United States)

    Ge, Hao; Qian, Hong

    2016-11-01

    Gibbs' macroscopic chemical thermodynamics is one of the most important theories in chemistry. Generalizing it to mesoscaled nonequilibrium systems is essential to biophysics. The nonequilibrium stochastic thermodynamics of chemical reaction kinetics suggested a free energy balance equation dF^{(meso)}/dt=E_{in}-e_{p} in which the free energy input rate E_{in} and dissipation rate e_{p} are both non-negative, and E_{in}≤e_{p}. We prove that in the macroscopic limit by merely allowing the molecular numbers to be infinite, the generalized mesoscopic free energy F^{(meso)} converges to φ^{ss}, the large deviation rate function for the stationary distributions. This generalized macroscopic free energy φ^{ss} now satisfies a balance equation dφ^{ss}(x)/dt=cmf(x)-σ(x), in which x represents chemical concentration. The chemical motive force cmf(x) and entropy production rate σ(x) are both non-negative, and cmf(x)≤σ(x). The balance equation is valid generally in isothermal driven systems and is different from mechanical energy conservation and the first law; it is actually an unknown form of the second law. Consequences of the emergent thermodynamic quantities and equalities are further discussed. The emergent "law" is independent of underlying kinetic details. Our theory provides an example showing how a macroscopic law emerges from a level below.

  4. Diagnosis of bladder tumours in patients with macroscopic haematuria

    DEFF Research Database (Denmark)

    Gandrup, Karen L; Løgager, Vibeke B; Bretlau, Thomas

    2015-01-01

    OBJECTIVE: The aim of this study was to compare split-bolus computed tomography urography (CTU), magnetic resonance urography (MRU) and flexible cystoscopy in patients with macroscopic haematuria regarding the diagnosis of bladder tumours. MATERIALS AND METHODS: In this prospective study, 150...

  5. Microstructure and macroscopic properties of polydisperse systems of hard spheres

    NARCIS (Netherlands)

    Ogarko, V.

    2014-01-01

    This dissertation describes an investigation of systems of polydisperse smooth hard spheres. This includes the development of a fast contact detection algorithm for computer modelling, the development of macroscopic constitutive laws that are based on microscopic features such as the moments of the

  6. Integrating a macro emission model with a macroscopic traffic model

    NARCIS (Netherlands)

    Klunder, G.A.; Stelwagen, U.; Taale, H.

    2013-01-01

    This paper presents a macro emission module for macroscopic traffic models to be used for assessment of ITS and traffic management. It especially focuses on emission estimates for different intersection types. It provides emission values for CO, CO2, HC, NOx, and PM10. It is applied and validated fo

  7. From 1D to 3D - macroscopic nanowire aerogel monoliths.

    Science.gov (United States)

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-08-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.

  8. Numerical solutions of a generalized theory for macroscopic capillarity

    NARCIS (Netherlands)

    Doster, F.; Zegeling, P.A.; Hilfer, R.

    2010-01-01

    A recent macroscopic theory of biphasic flow in porous media [R. Hilfer, Phys. Rev. E 73, 016307 (2006)] has proposed to treat microscopically percolating fluid regions differently from microscopically nonpercolating regions. Even in one dimension the theory reduces to an analytically intractable se

  9. The fundamental diagram : a macroscopic traffic flow model.

    NARCIS (Netherlands)

    Botma, H.

    1976-01-01

    In models of traffic flow, the interactions between vehicles are of prime interest, and are based on characteristics of the drivers, road and vehicles. The fundamental diagram is a representation of a relationship on a macroscopic level in the steady state between the quantity of traffic and a chara

  10. Charge accumulation in DC cables: a macroscopic approach

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C; Pedersen, Aage

    1994-01-01

    The accumulation of space charge in solid dielectrics is examined from the macroscopic point of view using electromagnetic field theory. For practical dielectrics, it is shown that the occurrence of such charges is an inherent consequence of a non-uniform conductivity. The influence of both tempe...

  11. Mesoscopic kinetic basis of macroscopic chemical thermodynamics: A mathematical theory

    Science.gov (United States)

    Ge, Hao; Qian, Hong

    2016-11-01

    Gibbs' macroscopic chemical thermodynamics is one of the most important theories in chemistry. Generalizing it to mesoscaled nonequilibrium systems is essential to biophysics. The nonequilibrium stochastic thermodynamics of chemical reaction kinetics suggested a free energy balance equation d F(meso)/d t =Ein-ep in which the free energy input rate Ein and dissipation rate ep are both non-negative, and Ein≤ep . We prove that in the macroscopic limit by merely allowing the molecular numbers to be infinite, the generalized mesoscopic free energy F(meso) converges to φss, the large deviation rate function for the stationary distributions. This generalized macroscopic free energy φss now satisfies a balance equation d φss(x ) /d t =cmf(x ) -σ (x ) , in which x represents chemical concentration. The chemical motive force cmf(x ) and entropy production rate σ (x ) are both non-negative, and cmf(x )≤σ (x ) . The balance equation is valid generally in isothermal driven systems and is different from mechanical energy conservation and the first law; it is actually an unknown form of the second law. Consequences of the emergent thermodynamic quantities and equalities are further discussed. The emergent "law" is independent of underlying kinetic details. Our theory provides an example showing how a macroscopic law emerges from a level below.

  12. Maximum Entropy Methods as the Bridge Between Microscopic and Macroscopic Theory

    Science.gov (United States)

    Taylor, Jamie M.

    2016-09-01

    This paper is concerned with an investigation into a function of macroscopic variables known as the singular potential, building on previous work by Ball and Majumdar. The singular potential is a function of the admissible statistical averages of probability distributions on a state space, defined so that it corresponds to the maximum possible entropy given known observed statistical averages, although non-classical entropy-like objective functions will also be considered. First the set of admissible moments must be established, and under the conditions presented in this work the set is open, bounded and convex allowing a description in terms of supporting hyperplanes, which provides estimates on the development of singularities for related probability distributions. Under appropriate conditions it is shown that the singular potential is strictly convex, as differentiable as the microscopic entropy, and blows up uniformly as the macroscopic variable tends to the boundary of the set of admissible moments. Applications of the singular potential are then discussed, and particular consideration will be given to certain free-energy functionals typical in mean-field theory, demonstrating an equivalence between certain microscopic and macroscopic free-energy functionals. This allows statements about L^1-local minimisers of Onsager's free energy to be obtained which cannot be given by two-sided variations, and overcomes the need to ensure local minimisers are bounded away from zero and +∞ before taking L^∞ variations. The analysis also permits the definition of a dual order parameter for which Onsager's free energy allows an explicit representation. Also, the difficulties in approximating the singular potential by everywhere defined functions, in particular by polynomial functions, are addressed, with examples demonstrating the failure of the Taylor approximation to preserve relevant shape properties of the singular potential.

  13. Ellipse-based shape description and retrieval method

    Institute of Scientific and Technical Information of China (English)

    李向阳; 潘云鹤

    2002-01-01

    Using a group of ellipses to approach the shape contour, a new shape retrieval method is presented in this paper. In order to keep shape-based retrieval invariant to its position, orientation and size, the shape normalization method is presented. From our research, any closed shape contour can be uniquely decomposed into a group of ellipses, and the original shape contour can be re-constructed using the decomposed ellipses. The ellipse-based shape description and similar retrieval method is introduced in this paper. Based on ellipse's contribution to shape contour, the decomposed ellipses are parted into low-order ellipses and high-order ellipses. The low-order ellipses measure the macroscopic feature of a shape contour, and the high-order ellipses measure the microscopic feature. The two-phase shape matching method is given. Through the experiment test, our method has better shape retrieval effect.

  14. Long-Range Atomic Order and Entropy Change at the Martensitic Transformation in a Ni-Mn-In-Co Metamagnetic Shape Memory Alloy

    Directory of Open Access Journals (Sweden)

    Vicente Sánchez-Alarcos

    2014-05-01

    Full Text Available The influence of the atomic order on the martensitic transformation entropy change has been studied in a Ni-Mn-In-Co metamagnetic shape memory alloy through the evolution of the transformation temperatures under high-temperature quenching and post-quench annealing thermal treatments. It is confirmed that the entropy change evolves as a consequence of the variations on the degree of L21 atomic order brought by thermal treatments, though, contrary to what occurs in ternary Ni-Mn-In, post-quench aging appears to be the most effective way to modify the transformation entropy in Ni-Mn-In-Co. It is also shown that any entropy change value between around 40 and 5 J/kgK can be achieved in a controllable way for a single alloy under the appropriate aging treatment, thus bringing out the possibility of properly tune the magnetocaloric effect.

  15. Macroscopic quantum phenomena from the large N perspective

    Science.gov (United States)

    Chou, C. H.; Hu, B. L.; Subaşi, Y.

    2011-07-01

    Macroscopic quantum phenomena (MQP) is a relatively new research venue, with exciting ongoing experiments and bright prospects, yet with surprisingly little theoretical activity. What makes MQP intellectually stimulating is because it is counterpoised against the traditional view that macroscopic means classical. This simplistic and hitherto rarely challenged view need be scrutinized anew, perhaps with much of the conventional wisdoms repealed. In this series of papers we report on a systematic investigation into some key foundational issues of MQP, with the hope of constructing a viable theoretical framework for this new endeavour. The three major themes discussed in these three essays are the large N expansion, the correlation hierarchy and quantum entanglement for systems of 'large' sizes, with many components or degrees of freedom. In this paper we use different theories in a variety of contexts to examine the conditions or criteria whereby a macroscopic quantum system may take on classical attributes, and, more interestingly, that it keeps some of its quantum features. The theories we consider here are, the O(N) quantum mechanical model, semiclassical stochastic gravity and gauge / string theories; the contexts include that of a 'quantum roll' in inflationary cosmology, entropy generation in quantum Vlasov equation for plasmas, the leading order and next-to-leading order large N behaviour, and hydrodynamic / thermodynamic limits. The criteria for classicality in our consideration include the use of uncertainty relations, the correlation between classical canonical variables, randomization of quantum phase, environment-induced decoherence, decoherent history of hydrodynamic variables, etc. All this exercise is to ask only one simple question: Is it really so surprising that quantum features can appear in macroscopic objects? By examining different representative systems where detailed theoretical analysis has been carried out, we find that there is no a priori

  16. The origins of macroscopic quantum coherence in high temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Philip, E-mail: ph.turner@napier.ac.uk [Edinburgh Napier University, 10 Colinton Road, Edinburgh EH10 5DT (United Kingdom); Nottale, Laurent, E-mail: laurent.nottale@obspm.fr [CNRS, LUTH, Observatoire de Paris-Meudon, 5 Place Janssen, 92190 Meudon (France)

    2015-08-15

    Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new

  17. Macroscopic quantum phenomena from the large N perspective

    Energy Technology Data Exchange (ETDEWEB)

    Chou, C H [department of Physics, National Cheng Kung University, Tainan, Taiwan 701 (China) and National Center for Theoretical Sciences (South), Tainan, Taiwan 701 (China); Hu, B L; Subasi, Y, E-mail: hubeilok@gmail.com [Joint Quantum Institute and Maryland Center for Fundamental Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2011-07-08

    Macroscopic quantum phenomena (MQP) is a relatively new research venue, with exciting ongoing experiments and bright prospects, yet with surprisingly little theoretical activity. What makes MQP intellectually stimulating is because it is counterpoised against the traditional view that macroscopic means classical. This simplistic and hitherto rarely challenged view need be scrutinized anew, perhaps with much of the conventional wisdoms repealed. In this series of papers we report on a systematic investigation into some key foundational issues of MQP, with the hope of constructing a viable theoretical framework for this new endeavour. The three major themes discussed in these three essays are the large N expansion, the correlation hierarchy and quantum entanglement for systems of 'large' sizes, with many components or degrees of freedom. In this paper we use different theories in a variety of contexts to examine the conditions or criteria whereby a macroscopic quantum system may take on classical attributes, and, more interestingly, that it keeps some of its quantum features. The theories we consider here are, the O(N) quantum mechanical model, semiclassical stochastic gravity and gauge / string theories; the contexts include that of a 'quantum roll' in inflationary cosmology, entropy generation in quantum Vlasov equation for plasmas, the leading order and next-to-leading order large N behaviour, and hydrodynamic / thermodynamic limits. The criteria for classicality in our consideration include the use of uncertainty relations, the correlation between classical canonical variables, randomization of quantum phase, environment-induced decoherence, decoherent history of hydrodynamic variables, etc. All this exercise is to ask only one simple question: Is it really so surprising that quantum features can appear in macroscopic objects? By examining different representative systems where detailed theoretical analysis has been carried out, we find that

  18. In Vivo 3D Analysis of Thoracic Kinematics: Changes in Size and Shape During Breathing and Their Implications for Respiratory Function in Recent Humans and Fossil Hominins.

    Science.gov (United States)

    Bastir, Markus; García-Martínez, Daniel; Torres-Tamayo, Nicole; Sanchis-Gimeno, Juan Alberto; O'Higgins, Paul; Utrilla, Cristina; Torres Sánchez, Isabel; García Río, Francisco

    2017-02-01

    The human ribcage expands and contracts during respiration as a result of the interaction between the morphology of the ribs, the costo-vertebral articulations and respiratory muscles. Variations in these factors are said to produce differences in the kinematics of the upper thorax and the lower thorax, but the extent and nature of any such differences and their functional implications have not yet been quantified. Applying geometric morphometrics we measured 402 three-dimensional (3D) landmarks and semilandmarks of 3D models built from computed tomographic scans of thoraces of 20 healthy adult subjects in maximal forced inspiration (FI) and expiration (FE). We addressed the hypothesis that upper and lower parts of the ribcage differ in kinematics and compared different models of functional compartmentalization. During inspiration the thorax superior to the level of the sixth ribs undergoes antero-posterior expansion that differs significantly from the medio-lateral expansion characteristic of the thorax below this level. This supports previous suggestions for dividing the thorax into a pulmonary and diaphragmatic part. While both compartments differed significantly in mean size and shape during FE and FI the size changes in the lower compartment were significantly larger. Additionally, for the same degree of kinematic shape change, the pulmonary thorax changes less in size than the diaphragmatic thorax. Therefore, variations in the form and function of the diaphragmatic thorax will have a strong impact on respiratory function. This has important implications for interpreting differences in thorax shape in terms of respiratory functional differences within and among recent humans and fossil hominins. Anat Rec, 300:255-264, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. On consistent micromechanical estimation of macroscopic elastic energy, coherence energy and phase transformation strains for SMA materials

    Science.gov (United States)

    Ziółkowski, Andrzej

    2016-09-01

    An apparatus of micromechanics is used to isolate the key ingredients entering macroscopic Gibbs free energy function of a shape memory alloy (SMA) material. A new self-equilibrated eigenstrains influence moduli (SEIM) method is developed for consistent estimation of effective (macroscopic) thermostatic properties of solid materials, which in microscale can be regarded as amalgams of n-phase linear thermoelastic component materials with eigenstrains. The SEIM satisfy the self-consistency conditions, following from elastic reciprocity (Betti) theorem. The method allowed expressing macroscopic coherency energy and elastic complementary energy terms present in the general form of macroscopic Gibbs free energy of SMA materials in the form of semilinear and semiquadratic functions of the phase composition. Consistent SEIM estimates of elastic complementary energy, coherency energy and phase transformation strains corresponding to classical Reuss and Voigt conjectures are explicitly specified. The Voigt explicit relations served as inspiration for working out an original engineering practice-oriented semiexperimental SEIM estimates. They are especially conveniently applicable for an isotropic aggregate (composite) composed of a mixture of n isotropic phases. Using experimental data for NiTi alloy and adopting conjecture that it can be treated as an isotropic aggregate of two isotropic phases, it is shown that the NiTi coherency energy and macroscopic phase strain are practically not influenced by the difference in values of austenite and martensite elastic constants. It is shown that existence of nonzero fluctuating part of phase microeigenstrains field is responsible for building up of so-called stored energy of coherency, which is accumulated in pure martensitic phase after full completion of phase transition. Experimental data for NiTi alloy show that the stored coherency energy cannot be neglected as it considerably influences the characteristic phase transition

  20. On consistent micromechanical estimation of macroscopic elastic energy, coherence energy and phase transformation strains for SMA materials

    Science.gov (United States)

    Ziółkowski, Andrzej

    2017-01-01

    An apparatus of micromechanics is used to isolate the key ingredients entering macroscopic Gibbs free energy function of a shape memory alloy (SMA) material. A new self-equilibrated eigenstrains influence moduli (SEIM) method is developed for consistent estimation of effective (macroscopic) thermostatic properties of solid materials, which in microscale can be regarded as amalgams of n-phase linear thermoelastic component materials with eigenstrains. The SEIM satisfy the self-consistency conditions, following from elastic reciprocity (Betti) theorem. The method allowed expressing macroscopic coherency energy and elastic complementary energy terms present in the general form of macroscopic Gibbs free energy of SMA materials in the form of semilinear and semiquadratic functions of the phase composition. Consistent SEIM estimates of elastic complementary energy, coherency energy and phase transformation strains corresponding to classical Reuss and Voigt conjectures are explicitly specified. The Voigt explicit relations served as inspiration for working out an original engineering practice-oriented semiexperimental SEIM estimates. They are especially conveniently applicable for an isotropic aggregate (composite) composed of a mixture of n isotropic phases. Using experimental data for NiTi alloy and adopting conjecture that it can be treated as an isotropic aggregate of two isotropic phases, it is shown that the NiTi coherency energy and macroscopic phase strain are practically not influenced by the difference in values of austenite and martensite elastic constants. It is shown that existence of nonzero fluctuating part of phase microeigenstrains field is responsible for building up of so-called stored energy of coherency, which is accumulated in pure martensitic phase after full completion of phase transition. Experimental data for NiTi alloy show that the stored coherency energy cannot be neglected as it considerably influences the characteristic phase transition

  1. Large magnetic entropy change and magnetoresistance in a Ni{sub 41}Co{sub 9}Mn{sub 40}Sn{sub 10} magnetic shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, L. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, No. 30 Xueyuan Rd, Haidian District, Beijing 100083 (China); School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Cong, D.Y., E-mail: dycong@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, No. 30 Xueyuan Rd, Haidian District, Beijing 100083 (China); Ma, L. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Nie, Z.H. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Wang, M.G. [College of Sciences, Northeastern University, Shenyang 110819 (China); Wang, Z.L. [School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081 (China); Suo, H.L. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Ren, Y. [X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Wang, Y.D., E-mail: ydwang@ustb.edu.cn [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, No. 30 Xueyuan Rd, Haidian District, Beijing 100083 (China)

    2015-10-25

    A polycrystalline Ni{sub 41}Co{sub 9}Mn{sub 40}Sn{sub 10} (at. %) magnetic shape memory alloy was prepared by arc melting and characterized mainly by magnetic measurements, in-situ high-energy X-ray diffraction (HEXRD), and mechanical testing. A large magnetoresistance of 53.8% (under 5 T) and a large magnetic entropy change of 31.9 J/(kg K) (under 5 T) were simultaneously achieved. Both of these values are among the highest values reported so far in Ni–Mn–Sn-based Heusler alloys. The large magnetic entropy change, closely related to the structural entropy change, is attributed to the large unit cell volume change across martensitic transformation as revealed by our in-situ HEXRD experiment. Furthermore, good compressive properties were also obtained. The combination of large magnetoresistance, large magnetic entropy change, and good compressive properties, as well as low cost makes this alloy a promising candidate for multifunctional applications. - Highlights: • A large magnetoresistance of 53.8% under 5 T was obtained. • A large magnetic entropy change (ΔS{sub m}) of 31.9 J/(kg K) under 5 T was achieved. • A large unit cell volume change (ΔV) across phase transformation was revealed. • The large ΔS{sub m} obtained is closely related to the large ΔV across transformation. • Good compressive properties were obtained.

  2. Changes in neuronal excitability by activated microglia: Differential Na+ current up-regulation in pyramid-shaped and bipolar neurons by TNF-α and IL-18

    Directory of Open Access Journals (Sweden)

    Lars eKlapal

    2016-03-01

    Full Text Available Microglia are activated during pathological events in the brain and are capable of releasing various types of inflammatory cytokines. Here we demonstrate that the addition of 5% microglia activated by 1 µg/ml lipopolysaccharides (LPS to hippocampal cultures up-regulates Na+ current densities (INavD of bipolar as well as pyramid-shaped neurons, thereby increasing their excitability. Deactivation of microglia by the addition of 10 ng/ml transforming growth factor-β (TGF-β decreases INavD below control levels suggesting that the residual activated microglial cells influence neuronal excitability in control cultures. Preincubation of hippocampal cultures with 10 ng/ml tumor necrosis factor-α (TNF-α, a major cytokine released by activated microglia, up-regulated INavD significantly by ~30% in bipolar cells, whereas in pyramid-shaped cells the up-regulation only reached an increase of ~14%. Incubation of the cultures with antibodies against either TNF-receptor 1 or 2 blocked the up-regulation of INavD in bipolar cells, whereas in pyramid-shaped cells increases in INavD were exclusively blocked by antibodies against TNF-receptor 2, suggesting that both cell types respond differently to TNF-α exposure. Since additional cytokines, such as interleukin-18 (IL-18, are released from activated microglia we tested potential effects of IL-18 on INavD in both cell types. Exposure to 5-10 ng/ml IL-18 for 4 days increased INavD in both pyramid-shaped as well as bipolar neurons, albeit the dose-response curves were shifted to lower concentrations in bipolar cells. Our results suggest that by secretion of cytokines microglial cells up-regulate Na+ current densities in bipolar and pyramid-shaped neurons to some extent differentially. Depending on the exact cytokine composition and concentration released this could change the balance between the activity of inhibitory bipolar and excitatory pyramid-shaped cells. Since bipolar cells show a larger up-regulation of

  3. Changes in Neuronal Excitability by Activated Microglia: Differential Na(+) Current Upregulation in Pyramid-Shaped and Bipolar Neurons by TNF-α and IL-18.

    Science.gov (United States)

    Klapal, Lars; Igelhorst, Birte A; Dietzel-Meyer, Irmgard D

    2016-01-01

    Microglia are activated during pathological events in the brain and are capable of releasing various types of inflammatory cytokines. Here, we demonstrate that the addition of 5% microglia activated by 1 μg/ml lipopolysaccharides (LPS) to hippocampal cultures upregulates Na(+) current densities (INavD) of bipolar as well as pyramid-shaped neurons, thereby increasing their excitability. Deactivation of microglia by the addition of 10 ng/ml transforming growth factor-β (TGF-β) decreases INavD below control levels suggesting that the residual activated microglial cells influence neuronal excitability in control cultures. Preincubation of hippocampal cultures with 10 ng/ml tumor necrosis factor-α (TNF-α), a major cytokine released by activated microglia, upregulated INavD significantly by ~30% in bipolar cells, whereas in pyramid-shaped cells, the upregulation only reached an increase of ~14%. Incubation of the cultures with antibodies against either TNF-receptor 1 or 2 blocked the upregulation of INavD in bipolar cells, whereas in pyramid-shaped cells, increases in INavD were exclusively blocked by antibodies against TNF-receptor 2, suggesting that both cell types respond differently to TNF-α exposure. Since additional cytokines, such as interleukin-18 (IL-18), are released from activated microglia, we tested potential effects of IL-18 on INavD in both cell types. Exposure to 5-10 ng/ml IL-18 for 4 days increased INavD in both pyramid-shaped as well as bipolar neurons, albeit the dose-response curves were shifted to lower concentrations in bipolar cells. Our results suggest that by secretion of cytokines, microglial cells upregulate Na(+) current densities in bipolar and pyramid-shaped neurons to some extent differentially. Depending on the exact cytokine composition and concentration released, this could change the balance between the activity of inhibitory bipolar and excitatory pyramid-shaped cells. Since bipolar cells show a larger upregulation of

  4. Macroscopic-microscopic calculations of ground state properties of superheavy nuclei

    Institute of Scientific and Technical Information of China (English)

    ZHI Qi-jun; Mao Ying-chen; REN Zhong-zhou

    2006-01-01

    We systematically calculate the ground state properties of superheavy even-even nuclei with proton number Z=94-118.The calculations are based on the liquid drop macroscopic model and the microscopic model with the modified single-particle oscillator potential. The calculated binding energies and α-decay energies agree well with the experimental data.The reliability of the macroscopic-microscopic(MM)model for superheavy nuclei is confirmed by the good agreement between calculated results and experimental ones. Detailed comparisons between our calculations and M(o)ller's are made.It is found that the calculated results also agree with M(o)ller's results and that the MM model is insensitive to the microscopic single-particle potential. Calculated results are also compared with results from relativistic mean-field (RMF)model and from Skyrme-Hatree-Fock(SHF) model.In addition,half-lives,deformations and shape coexistence are also investigated.The properties of some unknown nuclei are predicted and they will be useful for future experimental researches of superheavy nuclei.

  5. Changes in shape and cross-sectional geometry in the tibia of mice selectively bred for increases in relative bone length.

    Science.gov (United States)

    Cosman, Miranda N; Sparrow, Leah M; Rolian, Campbell

    2016-06-01

    Limb bone size and shape in terrestrial mammals scales predictably with body mass. Weight-bearing limb bones in these species have geometries that enable them to withstand deformations due to loading, both within and between species. Departures from the expected scaling of bone size and shape to body mass occur in mammals that have become specialized for different types of locomotion. For example, mammals adapted for frequent running and jumping behaviors have hind limb bones that are long in relation to body mass, but with narrower cross-sections than predicted for their length. The Longshanks mouse was recently established, a selectively bred line of mice with ~12-13% longer tibiae relative to body mass. This increased limb length resembles superficially the derived limb proportions of rodents adapted for hopping and jumping. Here, 3D geometric morphometrics and analyses of bone cross-sectional geometry were combined to determine whether selection for increased relative tibia length in Longshanks mice has altered the scaling relationship of size and shape, and/or bone robusticity, relative to the tibiae of random-bred control mice from the same genetic background. The results suggest that the Longshanks tibia is not a geometrically scaled version of the control tibiae. Instead, the Longshanks tibia has become narrower in cross-section in relation to its increased length, leading to a decrease in overall bending strength when compared with control tibiae. These changes in bone shape and robusticity resemble the derived morphology of mammals adapted for running and jumping, with important implications for the material properties and strength of bone in these mammals.

  6. Evolutionary response to global change: Climate and land use interact to shape color polymorphism in a woodland salamander.

    Science.gov (United States)

    Cosentino, Bradley J; Moore, Jean-David; Karraker, Nancy E; Ouellet, Martin; Gibbs, James P

    2017-07-01

    Evolutionary change has been demonstrated to occur rapidly in human-modified systems, yet understanding how multiple components of global change interact to affect adaptive evolution remains a critical knowledge gap. Climate change is predicted to impose directional selection on traits to reduce thermal stress, but the strength of directional selection may be mediated by changes in the thermal environment driven by land use. We examined how regional climatic conditions and land use interact to affect genetically based color polymorphism in the eastern red-backed salamander (Plethodon cinereus). P. cinereus is a woodland salamander with two primary discrete color morphs (striped, unstriped) that have been associated with macroclimatic conditions. Striped individuals are most common in colder regions, but morph frequencies can be variable within climate zones. We used path analysis to analyze morph frequencies among 238,591 individual salamanders across 1,170 sites in North America. Frequency of striped individuals was positively related to forest cover in populations occurring in warmer regions (>7°C annually), a relationship that was weak to nonexistent in populations located in colder regions (≤7°C annually). Our results suggest that directional selection imposed by climate warming at a regional scale may be amplified by forest loss and suppressed by forest persistence, with a mediating effect of land use that varies geographically. Our work highlights how the complex interaction of selection pressures imposed by different components of global change may lead to divergent evolutionary trajectories among populations.

  7. Application of a single root-scale model to improve macroscopic modeling of root water uptake: focus on osmotic stress

    Science.gov (United States)

    Jorda, Helena; Perelman, Adi; Lazarovitch, Naftali; Vanderborght, Jan

    2017-04-01

    Root water uptake is a fundamental process in the hydrological cycle and it largely regulates the water balance in the soil vadose zone. Macroscopic stress functions are currently used to estimate the effect of salinity on root water uptake. These functions commonly assume stress to be a function of bulk salinity and of the plant sensitivity to osmotic stress expressed as the salinity at which transpiration is reduced by half or so called tolerance value. However, they fail to integrate additional relevant factors such as atmospheric conditions or root architectural traits. We conducted a comprehensive simulation study on a single root using a 3-D physically-based model that resolves flow and transport to individual root segments and that couples flow in the soil and root system. The effect of salt concentrations on root water uptake was accounted for by including osmotic water potential gradients between the solution at the soil root interface and the root xylem sap in the hydraulic gradient between the soil and root. A large set of factors were studied, namely, potential transpiration rate and dynamics, root length density (RLD), irrigation water quality and irrigation frequency, and leaching fraction. Results were fitted to the macroscopic function developed by van Genuchten and Hoffman (1984) and the dependency of osmotic stress and the fitted macroscopic parameters on the studied factors was evaluated. Osmotic stress was found to be highly dependent on RLD. Low RLDs result in a larger stress to the plant due to high evaporative demand per root length unit. In addition, osmotic stress was positively correlated to potential transpiration rate, and sinusoidal potential transpiration lead to larger stress than when imposed as a constant boundary condition. Macroscopic parameters are usually computed as single values for each crop and used for the entire growing season. However, our study shows that both tolerance value and shape parameter p from the van Genuchten

  8. Shape-Memory Hydrogels: Evolution of Structural Principles To Enable Shape Switching of Hydrophilic Polymer Networks.

    Science.gov (United States)

    Löwenberg, Candy; Balk, Maria; Wischke, Christian; Behl, Marc; Lendlein, Andreas

    2017-02-15

    permeability of hydrogels and the fully hydrated state with easy permeation by small molecules, other types of stimuli like light, pH, or ions can be employed that may not be easily used in hydrophobic SMPs. In some cases, those molecular switches can respond to more than one stimulus, thus increasing the number of opportunities to induce actuation of these synthetic hydrogels. Beyond this, biopolymer-based hydrogels can be equipped with a shape switching function when facilitating, for example, triple helix formation in proteins or ionic interactions in polysaccharides. Eventually, microstructured SMHs such as hybrid or porous structures can combine the shape-switching function with an improved performance by helping to overcome frequent shortcomings of hydrogels such as low mechanical strength or volume change upon temporary cross-link cleavage. Specifically, shape switching without major volume alteration is possible in porous SMHs by decoupling small volume changes of pore walls on the microscale and the macroscopic sample size. Furthermore, oligomeric rather than short aliphatic side chains as molecular switches allow stabilization of the sample volumes. Based on those structural principles and switching functionalities, SMHs have already entered into applications as soft actuators and are considered, for example, for cell manipulation in biomedicine. In the context of those applications, switching kinetics, switching forces, and reversibility of switching are aspects to be further explored.

  9. Consistent role of Quaternary climate change in shaping current plant functional diversity patterns across European plant orders

    Science.gov (United States)

    Ordonez, Alejandro; Svenning, Jens-Christian

    2017-02-01

    Current and historical environmental conditions are known to determine jointly contemporary species distributions and richness patterns. However, whether historical dynamics in species distributions and richness translate to functional diversity patterns remains, for the most part, unknown. The geographic patterns of plant functional space size (richness) and packing (dispersion) for six widely distributed orders of European angiosperms were estimated using atlas distribution data and trait information. Then the relative importance of late-Quaternary glacial-interglacial climate change and contemporary environmental factors (climate, productivity, and topography) as determinants of functional diversity of evaluated orders was assesed. Functional diversity patterns of all evaluated orders exhibited prominent glacial-interglacial climate change imprints, complementing the influence of contemporary environmental conditions. The importance of Quaternary glacial-interglacial climate change factors was comparable to that of contemporary environmental factors across evaluated orders. Therefore, high long-term paleoclimate variability has imposed consistent supplementary constraints on functional diversity of multiple plant groups, a legacy that may permeate to ecosystem functioning and resilience. These findings suggest that strong near-future anthropogenic climate change may elicit long-term functional disequilibria in plant functional diversity.

  10. Consistent role of Quaternary climate change in shaping current plant functional diversity patterns across European plant orders.

    Science.gov (United States)

    Ordonez, Alejandro; Svenning, Jens-Christian

    2017-02-23

    Current and historical environmental conditions are known to determine jointly contemporary species distributions and richness patterns. However, whether historical dynamics in species distributions and richness translate to functional diversity patterns remains, for the most part, unknown. The geographic patterns of plant functional space size (richness) and packing (dispersion) for six widely distributed orders of European angiosperms were estimated using atlas distribution data and trait information. Then the relative importance of late-Quaternary glacial-interglacial climate change and contemporary environmental factors (climate, productivity, and topography) as determinants of functional diversity of evaluated orders was assesed. Functional diversity patterns of all evaluated orders exhibited prominent glacial-interglacial climate change imprints, complementing the influence of contemporary environmental conditions. The importance of Quaternary glacial-interglacial climate change factors was comparable to that of contemporary environmental factors across evaluated orders. Therefore, high long-term paleoclimate variability has imposed consistent supplementary constraints on functional diversity of multiple plant groups, a legacy that may permeate to ecosystem functioning and resilience. These findings suggest that strong near-future anthropogenic climate change may elicit long-term functional disequilibria in plant functional diversity.

  11. Consistent role of Quaternary climate change in shaping current plant functional diversity patterns across European plant orders

    Science.gov (United States)

    Ordonez, Alejandro; Svenning, Jens-Christian

    2017-01-01

    Current and historical environmental conditions are known to determine jointly contemporary species distributions and richness patterns. However, whether historical dynamics in species distributions and richness translate to functional diversity patterns remains, for the most part, unknown. The geographic patterns of plant functional space size (richness) and packing (dispersion) for six widely distributed orders of European angiosperms were estimated using atlas distribution data and trait information. Then the relative importance of late-Quaternary glacial-interglacial climate change and contemporary environmental factors (climate, productivity, and topography) as determinants of functional diversity of evaluated orders was assesed. Functional diversity patterns of all evaluated orders exhibited prominent glacial-interglacial climate change imprints, complementing the influence of contemporary environmental conditions. The importance of Quaternary glacial-interglacial climate change factors was comparable to that of contemporary environmental factors across evaluated orders. Therefore, high long-term paleoclimate variability has imposed consistent supplementary constraints on functional diversity of multiple plant groups, a legacy that may permeate to ecosystem functioning and resilience. These findings suggest that strong near-future anthropogenic climate change may elicit long-term functional disequilibria in plant functional diversity. PMID:28230069

  12. Studies into the averaging problem: Macroscopic gravity and precision cosmology

    Science.gov (United States)

    Wijenayake, Tharake S.

    2016-08-01

    With the tremendous improvement in the precision of available astrophysical data in the recent past, it becomes increasingly important to examine some of the underlying assumptions behind the standard model of cosmology and take into consideration nonlinear and relativistic corrections which may affect it at percent precision level. Due to its mathematical rigor and fully covariant and exact nature, Zalaletdinov's macroscopic gravity (MG) is arguably one of the most promising frameworks to explore nonlinearities due to inhomogeneities in the real Universe. We study the application of MG to precision cosmology, focusing on developing a self-consistent cosmology model built on the averaging framework that adequately describes the large-scale Universe and can be used to study real data sets. We first implement an algorithmic procedure using computer algebra systems to explore new exact solutions to the MG field equations. After validating the process with an existing isotropic solution, we derive a new homogeneous, anisotropic and exact solution. Next, we use the simplest (and currently only) solvable homogeneous and isotropic model of MG and obtain an observable function for cosmological expansion using some reasonable assumptions on light propagation. We find that the principal modification to the angular diameter distance is through the change in the expansion history. We then linearize the MG field equations and derive a framework that contains large-scale structure, but the small scale inhomogeneities have been smoothed out and encapsulated into an additional cosmological parameter representing the averaging effect. We derive an expression for the evolution of the density contrast and peculiar velocities and integrate them to study the growth rate of large-scale structure. We find that increasing the magnitude of the averaging term leads to enhanced growth at late times. Thus, for the same matter content, the growth rate of large scale structure in the MG model

  13. Macroscopic and microscopic analysis of mass transfer in reversed phase liquid chromatography.

    Science.gov (United States)

    Bacskay, Ivett; Felinger, Attila

    2009-02-20

    For the correct description of a chromatographic process, the determination of mass-transfer kinetics in the column is required because the influence of the mass-transfer kinetics on the shape of chromatographic band profiles is crucial. Several sources of mass transfer in a chromatographic bed have been identified and studied: the axial dispersion in the stream of mobile phase, the external mass-transfer resistance, intraparticle diffusion, and the kinetics of adsorption-desorption In this study we compare mass-transfer coefficients obtained in a reversed phase chromatographic column using macroscopic and microscopic approaches. The general rate model, the plate height equation, moment analysis, and stochastic analysis were used to assess chromatographic process during the separation of alkylbenzenes.

  14. Penetration of fast projectiles into resistant media: From macroscopic to subatomic projectiles

    Science.gov (United States)

    Gaite, José

    2017-09-01

    The penetration of a fast projectile into a resistant medium is a complex process that is suitable for simple modeling, in which basic physical principles can be profitably employed. This study connects two different domains: the fast motion of macroscopic bodies in resistant media and the interaction of charged subatomic particles with matter at high energies, which furnish the two limit cases of the problem of penetrating projectiles of different sizes. These limit cases actually have overlapping applications; for example, in space physics and technology. The intermediate or mesoscopic domain finds application in atom cluster implantation technology. Here it is shown that the penetration of fast nano-projectiles is ruled by a slightly modified Newton's inertial quadratic force, namely, F ∼v 2 - β, where β vanishes as the inverse of projectile diameter. Factors essential to penetration depth are ratio of projectile to medium density and projectile shape.

  15. A phase-field model to study the effects of temperature change on shape evolution of γ-hydrides in zirconium

    Science.gov (United States)

    Bair, Jacob; Asle Zaeem, Mohsen; Tonks, Michael

    2016-10-01

    A temperature-dependent phase-field model is developed to study the effects of temperature change on shape evolution of γ-hydrides in an α-zirconium matrix. To construct the temperature-dependent free energy functional of the phase-field model, Gibbs free energies of formation from previous experiments are employed, and one conserved and three non-conserved phase-field variables are used for hydrogen concentration and hydride orientations, respectively. The mixed order evolution equations of phase-field variables coupled with mechanical equilibrium equations are solved in a finite element framework. Results from isothermal simulations of seeded and random nucleation in single crystal α-zirconium matrix show that the thickness of non-equilibrium hydrides varies with temperature during evolution, and the hydrides are more rod-like (thinner) at higher temperatures and thicker at lower temperatures. Quench simulations with random nucleation indicate that the majority of precipitation occurs at early stages of quenching, but the size and shape of hydrides change as the temperature decreases. Simulations from random nucleation of hydrides in a polycrystalline α-zirconium matrix show a higher concentration of precipitates along high angle grain boundaries.

  16. Maintaining a politicised climate of opinion? Examining how political framing and journalistic logic combine to shape speaking opportunities in UK elite newspaper reporting of climate change.

    Science.gov (United States)

    Matthews, Julian

    2017-05-01

    This article explores the importance of issue politicisation and mediation for the reporting of climate change in UK elite newspapers. Specifically, this investigates how journalistic logic mediates political framing to produce commentaries on and discussion about climate change in the news. In analysing elite newspaper coverage over time in this case, the article shows that (1) various frames introduce the issue as a legitimate problem within coverage and that (2) the news stories these inform are opened to specific commentaries according to 'elite journalistic logic'. This configuration of coverage orders the speaking opportunities of established voices of science, politics and industry as well as those less established voices that enter to explain and qualify these elite accounts. The article concludes that the ingrained combination of issue politicisation and journalistic logic observed here will likely shape future elite reporting and those voices that it will include.

  17. Preparation and thermal characterization of oxalic acid dihydrate/bentonite composite as shape-stabilized phase change materials for thermal energy storage

    Science.gov (United States)

    Han, Lipeng; Xie, Shaolei; Sun, Jinhe; Jia, Yongzhong

    2017-03-01

    Oxalic acid dihydrate (OAD) which has very high initial phase transition enthalpy is a promising phase change material (PCM). In this paper, shape-stabilized composite PCMs composed of OAD and bentonite were prepared by a facile blending method to overcome the problem of leakage. FT-IR results indicated the interactions between OAD and bentonite, such as the capillary force and the hydrogen bonding, resulting in the confined crystallization process. As a result, the OAD was confined to be amorphous. The thermogravimetric analysis and scanning electron microscope results showed that sample had the best coating effect when the amount of bentonite was 17.7%. The differential scanning calorimetry analyses demonstrated that a decrease in the OAD content was accompanied by a continuous decrease in the melting point and phase change enthalpy of the composites.

  18. Schapiro Shapes

    Science.gov (United States)

    O'Connell, Emily

    2009-01-01

    This article describes a lesson on Schapiro Shapes. Schapiro Shapes is based on the art of Miriam Schapiro, who created a number of works of figures in action. Using the basic concepts of this project, students learn to create their own figures and styles. (Contains 1 online resource.)

  19. Complex coastlines responding to climate change: do shoreline shapes reflect present forcing or "remember" the distant past?

    Science.gov (United States)

    Thomas, Christopher W.; Murray, A. Brad; Ashton, Andrew D.; Hurst, Martin D.; Barkwith, Andrew K. A. P.; Ellis, Michael A.

    2016-12-01

    A range of planform morphologies emerge along sandy coastlines as a function of offshore wave climate. It has been implicitly assumed that the morphological response time is rapid compared to the timescales of wave climate change, meaning that coastal morphologies simply reflect the extant wave climate. This assumption has been explored by focussing on the response of two distinctive morphological coastlines - flying spits and cuspate capes - to changing wave climates, using a coastline evolution model. Results indicate that antecedent conditions are important in determining the evolution of morphologies, and that sandy coastlines can demonstrate hysteresis behaviour. In particular, antecedent morphology is particularly important in the evolution of flying spits, with characteristic timescales of morphological adjustment on the order of centuries for large spits. Characteristic timescales vary with the square of aspect ratios of capes and spits; for spits, these timescales are an order of magnitude longer than for capes (centuries vs. decades). When wave climates change more slowly than the relevant characteristic timescales, coastlines are able to adjust in a quasi-equilibrium manner. Our results have important implications for the management of sandy coastlines where decisions may be implicitly and incorrectly based on the assumption that present-day coastlines are in equilibrium with current conditions.

  20. Fine-Scale Microclimatic Variation Can Shape the Responses of Organisms to Global Change in Both Natural and Urban Environments.

    Science.gov (United States)

    Pincebourde, Sylvain; Murdock, Courtney C; Vickers, Mathew; Sears, Michael W

    2016-07-01

    When predicting the response of organisms to global change, models use measures of climate at a coarse resolution from general circulation models or from downscaled regional models. Organisms, however, do not experience climate at such large scales. The climate heterogeneity over a landscape and how much of that landscape an organism can sample will determine ultimately the microclimates experienced by organisms. This past few decades has seen an important increase in the number of studies reporting microclimatic patterns at small scales. This synthesis intends to unify studies reporting microclimatic heterogeneity (mostly temperature) at various spatial scales, to infer any emerging trends, and to discuss the causes and consequences of such heterogeneity for organismal performance and with respect to changing land use patterns and climate. First, we identify the environmental drivers of heterogeneity across the various spatial scales that are pertinent to ectotherms. The thermal heterogeneity at the local and micro-scales is mostly generated by the architecture or the geometrical features of the microhabitat. Then, the thermal heterogeneity experienced by individuals is modulated by behavior. Second, we survey the literature to quantify thermal heterogeneity from the micro-scale up to the scale of a landscape in natural habitats. Despite difficulties in compiling studies that differ much in their design and aims, we found that there is as much thermal heterogeneity across micro-, local and landscape scales, and that the temperature range is large in general (>9 °C on average, and up to 26 °C). Third, we examine the extent to which urban habitats can be used to infer the microclimatic patterns of the future. Urban areas generate globally drier and warmer microclimatic patterns and recent evidence suggest that thermal traits of ectotherms are adapted to them. Fourth, we explore the interplay between microclimate heterogeneity and the behavioral thermoregulatory

  1. Multidimensional ultrasound imaging of the wrist: Changes of shape and displacement of the median nerve and tendons in carpal tunnel syndrome.

    Science.gov (United States)

    Filius, Anika; Scheltens, Marjan; Bosch, Hans G; van Doorn, Pieter A; Stam, Henk J; Hovius, Steven E R; Amadio, Peter C; Selles, Ruud W

    2015-09-01

    Dynamics of structures within the carpal tunnel may alter in carpal tunnel syndrome (CTS) due to fibrotic changes and increased carpal tunnel pressure. Ultrasound can visualize these potential changes, making ultrasound potentially an accurate diagnostic tool. To study this, we imaged the carpal tunnel of 113 patients and 42 controls. CTS severity was classified according to validated clinical and nerve conduction study (NCS) classifications. Transversal and longitudinal displacement and shape (changes) were calculated for the median nerve, tendons and surrounding tissue. To predict diagnostic value binary logistic regression modeling was applied. Reduced longitudinal nerve displacement (p≤ 0.019), increased nerve cross-sectional area (p≤ 0.006) and perimeter (p≤ 0.007), and a trend of relatively changed tendon displacements were seen in patients. Changes were more convincing when CTS was classified as more severe. Binary logistic modeling to diagnose CTS using ultrasound showed a sensitivity of 70-71% and specificity of 80-84%. In conclusion, CTS patients have altered dynamics of structures within the carpal tunnel.

  2. Wave speeds in the macroscopic extended model for ultrarelativistic gases

    Energy Technology Data Exchange (ETDEWEB)

    Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)

    2013-11-15

    Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.

  3. From 1D to 3D - macroscopic nanowire aerogel monoliths

    Science.gov (United States)

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-07-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying. Electronic supplementary information (ESI) available: Experimental details, SEM and TEM images, and digital photographs. See DOI: 10.1039/c6nr04429h

  4. Microscopic versus macroscopic approaches to non-equilibrium systems

    Science.gov (United States)

    Derrida, Bernard

    2011-01-01

    The one-dimensional symmetric simple exclusion process (SSEP) is one of the very few exactly soluble models of non-equilibrium statistical physics. It describes a system of particles which diffuse with hard core repulsion on a one-dimensional lattice in contact with two reservoirs of particles at unequal densities. The goal of this paper is to review the two main approaches which lead to the exact expression of the large deviation functional of the density of the SSEP in its steady state: a microscopic approach (based on the matrix product ansatz and an additivity property) and a macroscopic approach (based on the macroscopic fluctuation theory of Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim).

  5. Wave speeds in the macroscopic extended model for ultrarelativistic gases

    Energy Technology Data Exchange (ETDEWEB)

    Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)

    2013-11-15

    Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.

  6. Applying quantum mechanics to macroscopic and mesoscopic systems

    CERN Document Server

    T., N Poveda

    2012-01-01

    There exists a paradigm in which Quantum Mechanics is an exclusively developed theory to explain phenomena on a microscopic scale. As the Planck's constant is extremely small, $h\\sim10^{-34}{J.s}$, and as in the relation of de Broglie the wavelength is inversely proportional to the momentum; for a mesoscopic or macroscopic object the Broglie wavelength is very small, and consequently the undulatory behavior of this object is undetectable. In this paper we show that with a particle oscillating around its classical trajectory, the action is an integer multiple of a quantum of action, $S = nh_{o}$. The quantum of action, $h_{o}$, which plays a role equivalent to Planck's constant, is a free parameter that must be determined and depends on the physical system considered. For a mesoscopic and macroscopic system: $h_{o}\\gg h$, this allows us to describe these systems with the formalism of quantum mechanics.

  7. Analysis and Enhancements of a Prolific Macroscopic Model of Epilepsy

    Directory of Open Access Journals (Sweden)

    Christopher Fietkiewicz

    2016-01-01

    Full Text Available Macroscopic models of epilepsy can deliver surprisingly realistic EEG simulations. In the present study, a prolific series of models is evaluated with regard to theoretical and computational concerns, and enhancements are developed. Specifically, we analyze three aspects of the models: (1 Using dynamical systems analysis, we demonstrate and explain the presence of direct current potentials in the simulated EEG that were previously undocumented. (2 We explain how the system was not ideally formulated for numerical integration of stochastic differential equations. A reformulated system is developed to support proper methodology. (3 We explain an unreported contradiction in the published model specification regarding the use of a mathematical reduction method. We then use the method to reduce the number of equations and further improve the computational efficiency. The intent of our critique is to enhance the evolution of macroscopic modeling of epilepsy and assist others who wish to explore this exciting class of models further.

  8. Indirect measurement of interfacial melting from macroscopic ice observations.

    Science.gov (United States)

    Saruya, Tomotaka; Kurita, Kei; Rempel, Alan W

    2014-06-01

    Premelted water that is adsorbed to particle surfaces and confined to capillary regions remains in the liquid state well below the bulk melting temperature and can supply the segregated growth of ice lenses. Using macroscopic measurements of ice-lens initiation position in step-freezing experiments, we infer how the nanometer-scale thicknesses of premelted films depend on temperature depression below bulk melting. The interfacial interactions between ice, liquid, and soda-lime glass particles exhibit a power-law behavior that suggests premelting in our system is dominated by short-range electrostatic forces. Using our inferred film thicknesses as inputs to a simple force-balance model with no adjustable parameters, we obtain good quantitative agreement between numerical predictions and observed ice-lens thickness. Macroscopic observations of lensing behavior have the potential as probes of premelting behavior in other systems.

  9. Optomechanical entanglement of a macroscopic oscillator by quantum feedback

    Science.gov (United States)

    Wu, E.; Li, Fengzhi; Zhang, Xuefeng; Ma, Yonghong

    2016-07-01

    We propose a scheme to generate the case of macroscopic entanglement in the optomechanical system, which consist of Fabry-Perot cavity and a mechanical oscillator by applying a homodyne-mediated quantum feedback. We explore the effect of feedback on the entanglement in vacuum and coherent state, respectively. The results show that the introduction of quantum feedback can increase the entanglement effectively between the cavity mode and the oscillator mode.

  10. Identification of Bodies Exposed to High Temperatures Based on Macroscopic...

    OpenAIRE

    Barraza Salcedo, María del Socorro; Universidad Metropolitana de Barranquilla. Barranquilla; Rebolledo Cobos, Martha Leonor; Universidad Metropolitana de Barranquilla

    2016-01-01

    ABSTRACT. Background: Forensic dentistry in cases of incineration provides scientific elements that allow the identification of bodies, by analyzing dental organs, through the isolation of DNA obtained from the pulp as an alternative to confirm the identity of the victim. When the degree of temperature is highly elevated, dental tissues are vulnerable and therefore the DNA pulp is not salvageable, wasting resources and time by lack of standards to identify macroscopic characteristics that ind...

  11. Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.

    Science.gov (United States)

    Tsai, Jaw-Shen

    2010-01-01

    Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.

  12. Measurement-Induced Macroscopic Superposition States in Cavity Optomechanics

    Science.gov (United States)

    Hoff, Ulrich B.; Kollath-Bönig, Johann; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L.

    2016-09-01

    A novel protocol for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator is proposed, compatible with existing optomechanical devices operating in the bad-cavity limit. By combining a pulsed optomechanical quantum nondemolition (QND) interaction with nonclassical optical resources and measurement-induced feedback, the need for strong single-photon coupling is avoided. We outline a three-pulse sequence of QND interactions encompassing squeezing-enhanced cooling by measurement, state preparation, and tomography.

  13. Change in shape of the crystallite size with wood flour and their native cellulose using WAXS studies

    Science.gov (United States)

    Ranjitha, K.; Gayathri, G.; Tomar, Ritu; Poletto, Matheus; Annadurai, V.; Somashekar, R.

    2017-07-01

    The changes in microstructural parameters in varieties of wood flour and their native cellulose have been studied using wide angle X-ray scattering (WAXS) method. The crystal imperfection parameters like crystal size , lattice strain (g) and enthalpy (α*) have been determined by profile analysis using Fourier method of Warren. These results were cross checked with the one obtained by matching the stimulated intensity profile obtained from one dimensional Hosemann's Paracrystalline model. In all this computation we have used (110) and (200) reflection observed in these varieties of wood flour and their native cellulose. We have also computed volume weighted and surface weighted crystal size and compared in these parameters.

  14. Stochastic and Macroscopic Thermodynamics of Strongly Coupled Systems

    Science.gov (United States)

    Jarzynski, Christopher

    2017-01-01

    We develop a thermodynamic framework that describes a classical system of interest S that is strongly coupled to its thermal environment E . Within this framework, seven key thermodynamic quantities—internal energy, entropy, volume, enthalpy, Gibbs free energy, heat, and work—are defined microscopically. These quantities obey thermodynamic relations including both the first and second law, and they satisfy nonequilibrium fluctuation theorems. We additionally impose a macroscopic consistency condition: When S is large, the quantities defined within our framework scale up to their macroscopic counterparts. By satisfying this condition, we demonstrate that a unifying framework can be developed, which encompasses both stochastic thermodynamics at one end, and macroscopic thermodynamics at the other. A central element in our approach is a thermodynamic definition of the volume of the system of interest, which converges to the usual geometric definition when S is large. We also sketch an alternative framework that satisfies the same consistency conditions. The dynamics of the system and environment are modeled using Hamilton's equations in the full phase space.

  15. Macroscopic quantum oscillator based on a flux qubit

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mandip, E-mail: mandip@iisermohali.ac.in

    2015-09-25

    In this paper a macroscopic quantum oscillator is proposed, which consists of a flux-qubit in the form of a cantilever. The net magnetic flux threading through the flux-qubit and the mechanical degrees of freedom of the cantilever are naturally coupled. The coupling between the cantilever and the magnetic flux is controlled through an external magnetic field. The ground state of the flux-qubit-cantilever turns out to be an entangled quantum state, where the cantilever deflection and the magnetic flux are the entangled degrees of freedom. A variant, which is a special case of the flux-qubit-cantilever without a Josephson junction, is also discussed. - Highlights: • In this paper a flux-qubit-cantilever is proposed. • Coupling can be varied by an external magnetic field. • Ground state is a macroscopic entangled quantum state. • Ground state of the superconducting-loop-oscillator is a macroscopic quantum superposition. • Proposed scheme is based on a generalized quantum approach.

  16. Macroscopic description of the limb muscles of Tupinambis merianae

    Directory of Open Access Journals (Sweden)

    Juliana Barbosa Casals

    2012-03-01

    Full Text Available Tegu lizard (Tupinambis merianae belongs to the Teiidae family. It is distributed throughout the Americas, with many species, including Brazilian ones. They are from the Tupinambis genus, the largest representatives of the Teiidae family. For this study three animals (run over coming from donation were used. The dissected lizards were fixed in 10%, formaldehyde, and the macroscopic analysis was carried out in a detailed and photo documented way, keeping the selected structures “in situ”. This paper had as its main aim contributing to the macroscopic description of the chest myology, as well as the thoracic and pelvic limbs of the lizard T. merianae. The results obtained from this research were compared to authors who have studied animals from the same Reptilia class. Thus, we conclude that our macroscopic results are similar to those already described by the researchers Hildebrand (1995, Moro and Abdala (2004 and Abdala and Diogo (2010. We should highlight that the knowledge on anatomy has importance and applications to various areas within Biology, contributing in a substantial way to the areas of human health and technology.

  17. Mesoscopic Kinetic Basis of Macroscopic Chemical Thermodynamics: A Mathematical Theory

    CERN Document Server

    Ge, Hao

    2016-01-01

    From a mathematical model that describes a complex chemical kinetic system of $N$ species and $M$ elementrary reactions in a rapidly stirred vessel of size $V$ as a Markov process, we show that a macroscopic chemical thermodynamics emerges as $V\\rightarrow\\infty$. The theory is applicable to linear and nonlinear reactions, closed systems reaching chemical equilibrium, or open, driven systems approaching to nonequilibrium steady states. A generalized mesoscopic free energy gives rise to a macroscopic chemical energy function $\\varphi^{ss}(\\vx)$ where $\\vx=(x_1,\\cdots,x_N)$ are the concentrations of the $N$ chemical species. The macroscopic chemical dynamics $\\vx(t)$ satisfies two emergent laws: (1) $(\\rd/\\rd t)\\varphi^{ss}[\\vx(t)]\\le 0$, and (2)$(\\rd/\\rd t)\\varphi^{ss}[\\vx(t)]=\\text{cmf}(\\vx)-\\sigma(\\vx)$ where entropy production rate $\\sigma\\ge 0$ represents the sink for the chemical energy, and chemical motive force $\\text{cmf}\\ge 0$ is non-zero if the system is driven under a sustained nonequilibrium chemos...

  18. Noise-driven interfaces and their macroscopic representation

    Science.gov (United States)

    Dentz, Marco; Neuweiler, Insa; Méheust, Yves; Tartakovsky, Daniel M.

    2016-11-01

    We study the macroscopic representation of noise-driven interfaces in stochastic interface growth models in (1 +1 ) dimensions. The interface is characterized macroscopically by saturation, which represents the fluctuating sharp interface by a smoothly varying phase field with values between 0 and 1. We determine the one-point interface height statistics for the Edwards-Wilkinson (EW) and Kadar-Paris-Zhang (KPZ) models in order to determine explicit deterministic equations for the phase saturation for each of them. While we obtain exact results for the EW model, we develop a Gaussian closure approximation for the KPZ model. We identify an interface compression term, which is related to mass transfer perpendicular to the growth direction, and a diffusion term that tends to increase the interface width. The interface compression rate depends on the mesoscopic mass transfer process along the interface and in this sense provides a relation between meso- and macroscopic interface dynamics. These results shed light on the relation between mesoscale and macroscale interface models, and provide a systematic framework for the upscaling of stochastic interface dynamics.

  19. A "coca-cola" shape: cultural change, body image, and eating disorders in San Andrés, Belize.

    Science.gov (United States)

    Anderson-Fye, Eileen P

    2004-12-01

    Eating disorders have been associated with developing nations undergoing rapid social transition, including participation in a global market economy and heavy media exposure. San Andrés, Belize, a community with many risk factors associated with the cross-cultural development of eating disorders, has shown remarkable resistance to previously documented patterns, despite a local focus on female beauty. Drawing on longitudinal person-centered ethnography with adolescent girls, this article examines why this community appears exceptional in light of the literature. First, community beauty and body image ideals and practices are explicated. Then, a protective ethnopsychology is proposed as a key mediating factor of the rapid socio-cultural change among young women. Finally, possible nascent cases of eating disordered behavior are discussed in light of their unique phenomenology: that is, having to do more with economic opportunity in the tourism industry and less with personal distress or desire for thinness. Close, meaning-centered examination of eating and body image practices may aid understanding and prevention of eating disorders among adolescents undergoing rapid social change in situations of globalization and immigration.

  20. Shape-memory effect in amorphous potato starch: The influence of local orders and paracrystallinity.

    Science.gov (United States)

    Chevigny, Chloé; Foucat, Loïc; Rolland-Sabaté, Agnès; Buléon, Alain; Lourdin, Denis

    2016-08-01

    In this paper, a detailed characterization of the mechanisms at the origin of the shape-memory effect in amorphous potato starch is presented. Using different treatments (annealing) and preparation methods (hot casting and extrusion), the local structures responsible for the shape-memory were disrupted, as evidenced in the first part of the article detailing the macroscopic properties: mechanical, calorimetric and shape-memory. In the second part the macromolecular scale is investigated using X-rays diffraction and CP-MAS NMR, and thus allows making the link between the structural differences and the macroscopic properties. Finally we discuss the origin of shape-memory in amorphous starch.

  1. Shape Up Somerville two-year results: a community-based environmental change intervention sustains weight reduction in children.

    Science.gov (United States)

    Economos, Christina D; Hyatt, Raymond R; Must, Aviva; Goldberg, Jeanne P; Kuder, Julia; Naumova, Elena N; Collins, Jessica J; Nelson, Miriam E

    2013-10-01

    The objective of this study was to test the hypothesis that community-based environmental change intervention prevents undesirable weight gain in children. The method used in this study was a two-year, non-randomized, controlled trial (2003-2005) using community-based participatory methodology in three diverse cities in Massachusetts: one intervention and two socio-demographically-matched control communities (pooled for analysis). Children (n=1028), with a mean age=7.61+1.04years participated. Interventions were made to improve energy balance by increasing physical activity options and availability of healthful foods (Year 1). To firmly secure sustainability, the study team supported policies and shifted intervention work to community members (Year 2). Change in body mass index z-score (BMIz) was assessed by multiple regression, accounting for clustering within communities and adjusting for baseline covariates. Sex-specific overweight/obesity prevalence, incidence and remission were assessed. Over the two-year period, BMIz of children in the intervention community decreased by -0.06 [p=0.005, 95% confidence interval: -0.08 to -0.04] compared to controls. Prevalence of overweight/obesity decreased in males (OR=0.61, p=0.01) and females (OR=0.78, p=0.01) and remission increased in males (OR 3.18, p=0.03) and females (OR 1.93, p=0.03) in intervention compared to controls. Results demonstrate promise for preventing childhood obesity using a sustainable multi-level community-based model and reinforce the need for wide-reaching environmental and policy interventions. Copyright © 2013. Published by Elsevier Inc.

  2. Micromechanical study of macroscopic friction and dissipation in idealised granular materials: the effect of interparticle friction

    NARCIS (Netherlands)

    Kruyt, N.P.; Rothenburg, L.; Gutkowski, Witold; Kowalewski, Tomasz A.

    2004-01-01

    Using Discrete Element Method (DEM) simulations with varying interparticle friction coefficient, the relation between interparticle friction coefficient and macroscopic continuum friction and dissipation is investigated. As expected, macroscopic friction and dilatancy increase with interparticle fri

  3. Solvable Quantum Macroscopic Motions and Decoherence Mechanisms in Quantum Mechanics on Nonstandard Space

    Science.gov (United States)

    Kobayashi, Tsunehiro

    1996-01-01

    Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.

  4. "But we're not hypochondriacs": the changing shape of gluten-free dieting and the contested illness experience.

    Science.gov (United States)

    Moore, Lauren Renée

    2014-03-01

    "Gluten free" exploded onto the American foodscape in recent years: as of January 2013, 30 percent of U.S. adults reported reducing or eliminating gluten in their diets. How do individuals participate in the expansion of gluten-free dieting, and what are the implications of that expansion? This article is based on 31 in-depth, semi-structured interviews conducted between May and October 2012 with gluten-free and -restricted persons. I identify three interrelated factors contributing to the expansion of gluten-free dieting among non-celiacs. Participants broaden the lay understanding of gluten-related disorders, undermine biomedical authority, and diagnose others. Such participant-driven change, termed self-ascriptive looping, is one factor in the diet's rapid popularization. I show how participants question the doctor-patient relationship and increase social contestability for other dieters. My findings challenge previous work on contested illness and suggest food intolerances may require a reconceptualization of contested illness experience.

  5. Reduced fractional anisotropy does not change the shape of the hemodynamic response in survivors of severe traumatic brain injury.

    Science.gov (United States)

    Palmer, Helen S; Garzon, Benjamin; Xu, Jian; Berntsen, Erik M; Skandsen, Toril; Håberg, Asta K

    2010-05-01

    The hemodynamic response (HDR) function is the basis for standard functional magnetic resonance imaging (fMRI) analysis. HDR is influenced by white matter inflammation. Traumatic brain injury (TBI) is frequently accompanied by diffuse white matter injury, but the effect of this on the HDR has not been investigated. The aims of the present study were to describe the HDR in visual cortex and examine its relationship with the microstructure of the optic radiation in severe TBI survivors and controls. Ten severe TBI survivors without visual impairments, but with known diffuse axonal injury, and 9 matched controls underwent diffusion tensor imaging (DTI) and fMRI. From the fMRI time series obtained during brief randomized visual stimuli, blood oxygenation level-dependent (BOLD) signal changes for each subject were estimated in V1, and group HDR curves were produced. Standard between-group analysis of BOLD activation in V1 + V2 was performed. For each individual the optic radiations were identified and fractional anisotropy (FA) plus mean apparent diffusion coefficient (ADC(mean)) values for these tracts were calculated. Group HDR curves from the visual cortex were fully transposable between TBI survivors and controls, despite a significant reduction in FA in the optic radiation in TBI survivors. A significant correlation between BOLD signal in the visual cortex and FA values in the optical tract was present in controls, but not in TBI survivors. Between-group comparisons showed that TBI survivors had increased areas of activation in V1 and V2. The HDR appears to be intact in traumatic white matter damage, supporting the validity of using standard fMRI methodology to study neuroplasticity in TBI.

  6. Shape memory polymer foams

    Science.gov (United States)

    Santo, Loredana

    2016-02-01

    Recent advances in shape memory polymer (SMP) foam research are reviewed. The SMPs belong to a new class of smart polymers which can have interesting applications in microelectromechanical systems, actuators and biomedical devices. They can respond to specific external stimulus changing their configuration and then remember the original shape. In the form of foams, the shape memory behaviour can be enhanced because they generally have higher compressibility. Considering also the low weight, and recovery force, the SMP foams are expected to have great potential applications primarily in aerospace. This review highlights the recent progress in characterization, evaluation, and proposed applications of SMP foams mainly for aerospace applications.

  7. Three-dimensional visualisation and analysis of post-operative changes in the size and shape of the dental arch and palate.

    Science.gov (United States)

    Trefný, P; Tauferová, E; Bálková, S

    2005-01-01

    In craniofacial surgery and orthodontics, three-dimensional computer models of the dental arch and palate have recently entered usage in diagnosis assessment, treatment planning, case presentations and evaluation of treatment progress and outcome. In this contribution, we show how effective visualisation and evaluation of changes in the size and shape of the dental arch and palate in a given patient can be performed using superimposition of two or more 3D computer models that record the condition before and after treatment. We also present a method of three-dimensional measurement of the dental arch and palate suitable for evaluation of treatment results within retrospective and prospective studies in larger samples of subjects.

  8. Pore scale mixing and macroscopic solute dispersion regimes in polymer flows inside 2D model networks

    CERN Document Server

    D'Angelo, M V; Allain, C; Hulin, J P; Angelo, Maria Veronica D'; Auradou, Harold; Allain, Catherine; Hulin, Jean-Pierre

    2006-01-01

    A change of solute dispersion regime with the flow velocity has been studied both at the macroscopic and pore scales in a transparent array of capillary channels using an optical technique allowing for simultaneous local and global concentration mappings. Two solutions of different polymer concentrations (500 and 1000 ppm) have been used at different P\\'eclet numbers. At the macroscopic scale, the displacement front displays a diffusive spreading: for $Pe \\leq 10$, the dispersivity $l\\_d$ is constant with $Pe$ and increases with the polymer concentration; for $Pe > 10$, $l\\_d$ increases as $Pe^{1.35}$ and is similar for the two concentrations. At the local scale, a time lag between the saturations of channels parallel and perpendicular to the mean flow has been observed and studied as a function of the flow rate. These local measurements suggest that the change of dispersion regime is related to variations of the degree of mixing at the junctions. For $Pe \\leq 10$, complete mixing leads to pure geometrical di...

  9. Geometric-Phase approach to macroscopic polarization in lattice fermion models

    Science.gov (United States)

    Ortiz, Gerardo; Martin, Richard M.; Ordejón, Pablo

    1996-03-01

    The Geometric-Phase approach is a convenient way to calculate changes in the macroscopic polarization of an insulating system, based on the concept that the integrated current is connected to the phase of the wavefunction of interacting electrons. The method has provided a powerful mathematical scheme to study dielectric phenomena in correlated systems. We have applied these ideas to a variety of strongly correlated lattice fermion models in one and two dimensions; in particular, the 3-band Hubbard model in Cu-O planes in the parent compounds of High-Temperature superconductors. We analyze the information contained in the phase when a quantum transition takes place as one parameter of the hamiltonian is adiabatically changed. Previous results assume a correlated insulator in zero macroscopic electric field. In presence of such a singular perturbation there is no stable ground state. We present a way to overcome this problem, the main idea of which consists in constraining the manifold where the electrons move, i.e., the configuration space of the N identical particles.

  10. Macroscopic Study of the Isthmus of the Thyroid Gland in Bangladeshi People: A Postmortem Study

    Directory of Open Access Journals (Sweden)

    Fakhrul Amin Mohammad Hasanul Banna

    2017-01-01

    Full Text Available Background: The position and size of isthmus of thyroid gland varies considerably in human with age, sex, physiologic state, race and geographical location and sometimes the isthmus may be absent. So this study was designed to find out the macroscopic differences in isthmus of thyroid gland of different age and sex groups in Bangladeshi people. Objective: To record the macroscopic characteristics of isthmus of thyroid gland with advancing age in both sexes with a view to help establishing normal standard of Bangladeshi people. Materials and Methods: This descriptive cross-sectional study was carried out on 54 autopsied human thyroid glands aged 5 to 65 years. Thyroid glands were collected from unclaimed dead bodies autopsied in the morgue of Sylhet M. A. G. Osmani Medical College, Sylhet. The collected specimens were divided into groups –– A (20 years and below, B (21 to 50 years and C (50 years and above. All specimens were examined morphologically by careful gross dissection method. Results: The isthmus was absent in 5.56% cases. In most of the cases (35.29% it was against the 1st–4th tracheal rings. There was significant difference in length between Group A and Group C (p<0.05 and in breadth between Group A and Group C and between Group B and Group C (p<0.05. No significant difference was found in length, breadth and thickness of isthmus of the thyroid gland between males and females. Conclusion: The presence or absence, positional change and variation in gross dimension of isthmus of thyroid gland were evident in human. The macroscopic difference was found with increasing age but not with sex.

  11. Understanding the Pulsar High Energy Emission: Macroscopic and Kinetic Models

    Science.gov (United States)

    Kalapotharakos, Constantinos; Brambilla, Gabriele; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demos

    2017-08-01

    Pulsars are extraordinary objects powered by the rotation of magnetic fields of order 10^8, 10^12G anchored onto neutron stars and rotating with periods 10^(-3)-10s. These fields mediate the conversion of their rotational energy into MHD winds and at the same time accelerate particles to energies sufficiently high to produce GeV photons. Fermi, since its launch in 2008, has established several trends among the observed gamma-ray pulsar properties playing a catalytic role in the current modeling of the high energy emission in pulsar magnetospheres. We judiciously use the guidance provided by the Fermi data to yield meaningful constraints on the macroscopic parameters of our global dissipative pulsar magnetosphere models. Our FIDO (Force-Free Inside, Dissipative Outside) models indicate that the dissipative regions lie outside the light cylinder near the equatorial current sheet. Our models reproduce the light-curve phenomenology while a detailed comparison of the model spectral properties with those observed by Fermi reveals the dependence of the macroscopic conductivity parameter on the spin-down rate providing a unique insight into the understanding of the physical mechanisms behind the high-energy emission in pulsar magnetospheres. Finally, we further exploit these important results by building self-consistent 3D global kinetic particle-in-cell (PIC) models which, eventually, provide the dependence of the macroscopic parameter behavior (e.g. conductivity) on the microphysical properties (e.g. particle multiplicities, particle injection rates). Our PIC models provide field structures and particle distributions that are not only consistent with each other but also able to reproduce a broad range of the observed gamma-ray phenomenology (light curves and spectral properties) of both young and millisecond pulsars.

  12. Hyperbolically Shaped Centrifugal Compressor

    Institute of Scientific and Technical Information of China (English)

    Romuald Puzyrewski; Pawel Flaszy(n)ski

    2003-01-01

    Starting from the classical centrifugal compressor, cone shaped in meridional cross section, two modifications are considered on the basis of results from 2D and 3D flow models. The first modification is the change of the meridional cross section to hyperbolically shaped channel. The second modification, proposed on the basis of 2D axisymmetric solution, concerns the shape of blading. On the strength of this solution the blades are formed as 3D shaped blades, coinciding with the recent tendency in 3D designs. Two aims were considered for the change of meridional compressor shape. The first was to remove the separation zone which appears as the flow tums from axial to radial direction. The second aim is to uniformize the flow at exit of impeller. These two goals were considered within the frame of 2D axisymmetric model. Replacing the cone shaped compressor by a hyperbolically shaped one, the separation at the corner was removed. The disc and shroud shape of the compressor was chosen in the way which satisfies the condition of most uniform flow at the compressor exit. The uniformity of exit flow from the rotor can be considered as the factor which influences the performance of the diffuser following the rotor. In the 2D model a family of stream surfaces of S1 type is given in order to find S2 surfaces which may be identified with the midblade surfaces of compressor blading. A computation of 3D type has been performed in order to establish the relations between 2D and 3D models in the calculation of flow parameters. In the presented example the 2D model appears as the inverse model which leads to 3D shape of blading whereas the 3D model has been used for the direct solution. In the presented example the confrontation of two models, 2D and 3D, leads to a better understanding of the application of these models to the design procedure.

  13. Self-Feeding Turbulent Magnetic Reconnection on Macroscopic Scales

    CERN Document Server

    Lapenta, Giovanni

    2008-01-01

    Within a MHD approach we find magnetic reconnection to progress in two entirely different ways. The first is well-known: the laminar Sweet-Parker process. But a second, completely different and chaotic reconnection process is possible. This regime has properties of immediate practical relevance: i) it is much faster, developing on scales of the order of the Alfv\\'en time, and ii) the areas of reconnection become distributed chaotically over a macroscopic region. The onset of the faster process is the formation of closed circulation patterns where the jets going out of the reconnection regions turn around and forces their way back in, carrying along copious amounts of magnetic flux.

  14. Single-atom quantum control of macroscopic mechanical oscillators

    Science.gov (United States)

    Bariani, F.; Otterbach, J.; Tan, Huatang; Meystre, P.

    2014-01-01

    We investigate a hybrid electromechanical system consisting of a pair of charged macroscopic mechanical oscillators coupled to a small ensemble of Rydberg atoms. The resonant dipole-dipole coupling between an internal atomic Rydberg transition and the mechanics allows cooling to its motional ground state with a single atom despite the considerable mass imbalance between the two subsystems. We show that the rich electronic spectrum of Rydberg atoms, combined with their high degree of optical control, paves the way towards implementing various quantum-control protocols for the mechanical oscillators.

  15. The Two-Time Interpretation and Macroscopic Time-Reversibility

    Directory of Open Access Journals (Sweden)

    Yakir Aharonov

    2017-03-01

    Full Text Available The two-state vector formalism motivates a time-symmetric interpretation of quantum mechanics that entails a resolution of the measurement problem. We revisit a post-selection-assisted collapse model previously suggested by us, claiming that unlike the thermodynamic arrow of time, it can lead to reversible dynamics at the macroscopic level. In addition, the proposed scheme enables us to characterize the classical-quantum boundary. We discuss the limitations of this approach and its broad implications for other areas of physics.

  16. Emergence of an urban traffic macroscopic fundamental diagram

    DEFF Research Database (Denmark)

    Ranjan, Abhishek; Fosgerau, Mogens; Jenelius, Erik

    2016-01-01

    This paper examines mild conditions under which a macroscopic fundamental diagram (MFD) emerges, relating space-averaged speed to occupancy in some area. These conditions are validated against empirical data. We allow local speedoccupancy relationships and, in particular, require no equilibrating...... process to be in operation. This means that merely observing the stable relationship between the space-averages of speed, flow and occupancy are not sufficient to infer a robust relationship and the emerging MFD cannot be guaranteed to be stable if traffic interventions are implemented....

  17. Violation of smooth observable macroscopic realism in a harmonic oscillator.

    Science.gov (United States)

    Leshem, Amir; Gat, Omri

    2009-08-14

    We study the emergence of macrorealism in a harmonic oscillator subject to consecutive measurements of a squeezed action. We demonstrate a breakdown of dynamical realism in a wide parameter range that is maximized in a scaling limit of extreme squeezing, where it is based on measurements of smooth observables, implying that macroscopic realism is not valid in the harmonic oscillator. We propose an indirect experimental test of these predictions with entangled photons by demonstrating that local realism in a composite system implies dynamical realism in a subsystem.

  18. Seismic scanning tunneling macroscope - Elastic simulations and Arizona mine test

    KAUST Repository

    Hanafy, Sherif M.

    2012-01-01

    Elastic seismic simulations and field data tests are used to validate the theory of a seismic scanning tunneling macroscope (SSTM). For nearfield elastic simulation, the SSTM results show superresolution to be better than λ/8 if the only scattered data are used as input data. If the direct P and S waves are muted then the resolution of the scatterer locations are within about λ/5. Seismic data collected in an Arizona tunnel showed a superresolution limit of at least λ/19. These test results are consistent with the theory of the SSTM and suggest that the SSTM can be a tool used by geophysicists as a probe for near-field scatterers.

  19. Macroscopic description of teeth of Azara's agouti (Dasyprocta azarae

    Directory of Open Access Journals (Sweden)

    Fabrício S. Oliveira

    2012-01-01

    Full Text Available The teeth of Azara's agouti (Dasyprocta azarae were described macroscopically in order to provide biological data on one of the largest wild rodents of the Americas. Radiography was taken on six heads and the teeth were described. Enamel surrounds the coronal dentin, projects to the roots and is present as parallel inner laminae in buccolingual direction. The dentin is located among the enamel laminae and surrounds the pulp horns. The cementum is located internally to the enamel laminae. On the lingual surface, the cementum and dentin are the outer elements.

  20. Macroscopic and microscopic self-organization by nonlocal anisotropic interactions

    CERN Document Server

    Cristiani, Emiliano; Tosin, Andrea

    2009-01-01

    This paper is concerned with mathematical modeling of intelligent systems, such as human crowds and animal groups. In particular, the focus is on the emergence of different self-organized patterns from non-locality and anisotropy of the interactions among individuals. A mathematical technique by time-evolving measures is introduced to deal with both macroscopic and microscopic scales within a unified modeling framework. Then self-organization issues are investigated and numerically reproduced at the proper scale, according to the kind of agents under consideration.

  1. An investigation into why macroscopic systems behave classically

    OpenAIRE

    Hallwood, David W.; Burnett, Keith; Dunningham, Jacob

    2006-01-01

    We study why it is quite so hard to make a superposition of superfluid flows in a Bose-Einstein condensate. To do this we initially investigate the quantum states of $N$ atoms trapped in a 1D ring with a barrier at one position and a phase applied around it. We show how macroscopic superpositions can in principle be produced and investigate factors which affect the superposition. We then use the Bose-Hubbard model to study an array of Bose-Einstein condensates trapped in optical potentials an...

  2. Measurement-induced macroscopic superposition states in cavity optomechanics

    CERN Document Server

    Hoff, Ulrich B; Neergaard-Nielsen, Jonas S; Andersen, Ulrik L

    2016-01-01

    We present a novel proposal for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator, compatible with existing optomechanical devices operating in the readily achievable bad-cavity limit. The scheme is based on a pulsed cavity optomechanical quantum non-demolition (QND) interaction, driven by displaced non-Gaussian states, and measurement-induced feedback, avoiding the need for strong single-photon optomechanical coupling. Furthermore, we show that single-quadrature cooling of the mechanical oscillator is sufficient for efficient state preparation, and we outline a three-pulse protocol comprising a sequence of QND interactions for squeezing-enhanced cooling, state preparation, and tomography.

  3. Flagella bending affects macroscopic properties of bacterial suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Potomkin, M.; Tournus, M.; Berlyand, L. V.; Aranson, I. S.

    2017-05-01

    To survive in harsh conditions, motile bacteria swim in complex environments and respond to the surrounding flow. Here, we develop a mathematical model describing how flagella bending affects macroscopic properties of bacterial suspensions. First, we show how the flagella bending contributes to the decrease in the effective viscosity observed in dilute suspension. Our results do not impose tumbling (random reorientation) as was previously done to explain the viscosity reduction. Second, we demonstrate how a bacterium escapes from wall entrapment due to the self-induced buckling of flagella. Our results shed light on the role of flexible bacterial flagella in interactions of bacteria with shear flow and walls or obstacles.

  4. Modelling and simulations of macroscopic multi-group pedestrian flow

    CERN Document Server

    Mahato, Naveen K; Tiwari, Sudarshan

    2016-01-01

    We consider a multi-group microscopic model for pedestrian flow describing the behaviour of large groups. It is based on an interacting particle system coupled to an eikonal equation. Hydrodynamic multi-group models are derived from the underlying particle system as well as scalar multi-group models. The eikonal equation is used to compute optimal paths for the pedestrians. Particle methods are used to solve the macroscopic equations. Numerical test cases are investigated and the models and, in particular, the resulting evacuation times are compared for a wide range of different parameters.

  5. Fluorinated Azobenzenes for Shape-Persistent Liquid Crystal Polymer Networks.

    Science.gov (United States)

    Iamsaard, Supitchaya; Anger, Emmanuel; Aßhoff, Sarah Jane; Depauw, Alexis; Fletcher, Stephen P; Katsonis, Nathalie

    2016-08-16

    Liquid crystal polymer networks respond with an anisotropic deformation to a range of external stimuli. When doped with molecular photoswitches, these materials undergo complex shape modifications under illumination. As the deformations are reversed when irradiation stops, applications where the activated shape is required to have thermal stability have been precluded. Previous attempts to incorporate molecular switches into thermally stable photoisomers were unsuccessful at photogenerating macroscopic shapes that are retained over time. Herein, we show that to preserve photoactivated molecular deformation on the macroscopic scale, it is important not only to engineer the thermal stability of the photoswitch but also to adjust the cross-linking density in the polymer network and to optimize the molecular orientations in the material. Our strategy resulted in materials containing fluorinated azobenzenes that retain their photochemical shape for more than eight days, which constitutes the first demonstration of long-lived photomechanical deformation in liquid-crystal polymer networks.

  6. Simulation of crystal shape evoluation in two dimensions

    NARCIS (Netherlands)

    van Veenendaal, E.; Nijdam, A.J.; van Suchtelen, J.

    2002-01-01

    We present a simulation tool for the prediction of the evolution of macroscopic crystal growth and etching shapes that can be represented in a two-dimensional setting. It is assumed that the advance rate of the crystal surface depends solely on the surface orientation, which implies that the

  7. Pre- and post- scission particle emission in 3D Langevin calculations with various macroscopic potentials

    Directory of Open Access Journals (Sweden)

    Mazurek K.

    2013-12-01

    Full Text Available The fission dynamics described by solving differential equations of the Langevin type in three dimensional space of the deformation parameters is very sensitive on the choice of the macroscopic components such as potential energy models. The mass or charge distribution or total kinetic energy has been already shown to be different when one uses the Finite Range Liquid Drop Model or Lublin - Strasbourg Drop model. Also the shape-dependent congruence or shape-dependent Wigner energy and A0 terms are important especially for the fission of medium mass nuclei. We would like to make step forward and answer the question about the varying of the post-scission multiplicity by including different PES. Up to now there are only few experimental data for the medium mass nuclei where the pre- and post- scission emission has been estimated and isotopic distributions have been shown. The isotopic distributions of the fission products for light compound nucleus such as 111 In with two beam energies (Ebeam = 10.6 AMeV and 5.9 AMeV and two heavy systems: 229Np with Ebeam = 7.4 AMeV and 260 No (Ebeam = 6 AMeV and 7.5 AMeV have been studied theoretically. The agreement with the experimental data is discussed.

  8. Accelerating multi-scale sheet forming simulations by exploiting local macroscopic quasi-homogeneities

    Science.gov (United States)

    Gawad, J.; Khairullah, Md; Roose, D.; Van Bael, A.

    2016-08-01

    Multi-scale simulations are computationally expensive if a two-way coupling is employed. In the context of sheet metal forming simulations, a fine-scale representative volume element (RVE) crystal plasticity (CP) model would supply the Finite Element analysis with plastic properties, taking into account the evolution of crystallographic texture and other microstructural features. The main bottleneck is that the fine-scale model must be evaluated at virtually every integration point in the macroscopic FE mesh. We propose to address this issue by exploiting a verifiable assumption that fine-scale state variables of similar RVEs, as well as the derived properties, subjected to similar macroscopic boundary conditions evolve along nearly identical trajectories. Furthermore, the macroscopic field variables primarily responsible for the evolution of fine-scale state variables often feature local quasi-homogeneities. Adjacent integration points in the FE mesh can be then clustered together in the regions where the field responsible for the evolution shows low variance. This way the fine-scale evolution is tracked only at a limited number of material points and the derived plastic properties are propagated to the surrounding integration points subjected to similar deformation. Optimal configurations of the clusters vary in time as the local deformation conditions may change during the forming process, so the clusters must be periodically adapted. We consider two operations on the clusters of integration points: splitting (refinement) and merging (unrefinement). The concept is tested in the Hierarchical Multi-Scale (HMS) framework [1] that computes macroscopic deformations by means of the FEM, whereas the micro-structural evolution at the individual FE integration points is predicted by a CP model. The HMS locally and adaptively approximates homogenized stress responses of the CP model by means of analytical plastic potential or yield criterion function. Our earlier work

  9. Intake of ruminant trans-fatty acids, assessed by diet history interview, and changes in measured body size, shape and composition.

    Science.gov (United States)

    Hansen, Camilla P; Heitmann, Berit L; Sørensen, Thorkild Ia; Overvad, Kim; Jakobsen, Marianne U

    2016-02-01

    Studies have suggested that total intake of trans-fatty acids (TFA) is positively associated with changes in body weight and waist circumference, whereas intake of TFA from ruminant dairy and meat products (R-TFA) has not been associated with weight gain. However, these previous studies are limited by self-reported measures of body weight and waist circumference or by a cross-sectional design. The objective of the present study was to investigate if R-TFA intake was associated with subsequent changes in anthropometry (body weight, waist and hip circumference) measured by technicians and body composition (body fat percentage). A 6-year follow-up study. Information on dietary intake was collected through diet history interviews, and anthropometric and bioelectrical impedance measurements were obtained by trained technicians at baseline (1987-1988) and at follow-up (1993-1994). Multiple regression with cubic spline modelling was used to analyse the data. Copenhagen County, Denmark. Two hundred and sixty-seven men and women aged 35-65 years from the Danish MONICA (MONItoring of trends and determinants in CArdiovascular diseases) cohort. The median R-TFA intake was 1.3 g/d (5th, 95th percentile: 0.4, 2.7 g/d) or 0.6% of the total energy intake (5th, 95th percentile: 0.2, 1.1%). No significant associations were observed between R-TFA intake and changes in body weight, waist and hip circumference or body fat percentage. R-TFA intake within the range present in the Danish population was not significantly associated with subsequent changes in body size, shape or composition and the 95% confidence intervals indicate that any relevant associations are unlikely to have produced these observations.

  10. Analysis of trabecular bone architectural changes induced by osteoarthritis in rabbit femur using 3D active shape model and digital topology

    Science.gov (United States)

    Saha, P. K.; Rajapakse, C. S.; Williams, D. S.; Duong, L.; Coimbra, A.

    2007-03-01

    Osteoarthritis (OA) is the most common chronic joint disease, which causes the cartilage between the bone joints to wear away, leading to pain and stiffness. Currently, progression of OA is monitored by measuring joint space width using x-ray or cartilage volume using MRI. However, OA affects all periarticular tissues, including cartilage and bone. It has been shown previously that in animal models of OA, trabecular bone (TB) architecture is particularly affected. Furthermore, relative changes in architecture are dependent on the depth of the TB region with respect to the bone surface and main direction of load on the bone. The purpose of this study was to develop a new method for accurately evaluating 3D architectural changes induced by OA in TB. Determining the TB test domain that represents the same anatomic region across different animals is crucial for studying disease etiology, progression and response to therapy. It also represents a major technical challenge in analyzing architectural changes. Here, we solve this problem using a new active shape model (ASM)-based approach. A new and effective semi-automatic landmark selection approach has been developed for rabbit distal femur surface that can easily be adopted for many other anatomical regions. It has been observed that, on average, a trained operator can complete the user interaction part of landmark specification process in less than 15 minutes for each bone data set. Digital topological analysis and fuzzy distance transform derived parameters are used for quantifying TB architecture. The method has been applied on micro-CT data of excised rabbit femur joints from anterior cruciate ligament transected (ACLT) (n = 6) and sham (n = 9) operated groups collected at two and two-to-eight week post-surgery, respectively. An ASM of the rabbit right distal femur has been generated from the sham group micro-CT data. The results suggest that, in conjunction with ASM, digital topological parameters are suitable for

  11. Macroscopic third-body wear caused by porous metal surface fragments in total hip arthroplasty.

    Science.gov (United States)

    Kleinhans, Jennifer A; Jakubowitz, Eike; Seeger, Joern B; Heisel, Christian; Kretzer, J Philippe

    2009-05-01

    Implants with surfaces of various porosities and pore sizes are in clinical use. This article demonstrates how macroscopic porous metal fragments can detach from the implant surface in total hip arthroplasty (THA) and cause significant third-body damage such as deep scratches and indentations in implants' bearing surfaces. Radiographs prior to revision surgery due to aseptic loosening of the acetabular component revealed the presence of numerous small metal fragments approximately 1 to 2 mm in size in the periarticular area. The size, shape, and material of the metal fragments (cobalt-chromium-molybdenum [CoCrMo]) indicated that they originated from the porous metal surface. In this case, the acetabular liner composite material consisted of two-thirds polyurethane and one-third aluminium oxide ceramic. The femoral head was made of aluminium oxide ceramic. The aluminium oxide femoral head, which had been in situ for 21 years, showed no signs of macroscopic indentations or scratches, suggesting that an aluminium oxide bearing surface, which is significantly harder than the CoCrMo debris, is not significantly affected by metal debris embedment in the counterface material. The polyurethane-aluminium oxide composite material used for the acetabular liner is not comparable to a traditional ceramic bearing surface material. Debris damaged the surface of and became embedded in the liner, causing accelerated wear of the femoral head. In porous metal surface THA, ceramic-on-ceramic bearing couples should, due to their superior hardness, be considered to prevent excessive wear, including debris embedment and scratching of the bearing surfaces, especially in revision cases.

  12. The exchangeability of shape

    Directory of Open Access Journals (Sweden)

    Kaba Dramane

    2010-10-01

    Full Text Available Abstract Background Landmark based geometric morphometrics (GM allows the quantitative comparison of organismal shapes. When applied to systematics, it is able to score shape changes which often are undetectable by traditional morphological studies and even by classical morphometric approaches. It has thus become a fast and low cost candidate to identify cryptic species. Due to inherent mathematical properties, shape variables derived from one set of coordinates cannot be compared with shape variables derived from another set. Raw coordinates which produce these shape variables could be used for data exchange, however they contain measurement error. The latter may represent a significant obstacle when the objective is to distinguish very similar species. Results We show here that a single user derived dataset produces much less classification error than a multiple one. The question then becomes how to circumvent the lack of exchangeability of shape variables while preserving a single user dataset. A solution to this question could lead to the creation of a relatively fast and inexpensive systematic tool adapted for the recognition of cryptic species. Conclusions To preserve both exchangeability of shape and a single user derived dataset, our suggestion is to create a free access bank of reference images from which one can produce raw coordinates and use them for comparison with external specimens. Thus, we propose an alternative geometric descriptive system that separates 2-D data gathering and analyzes.

  13. Quantitative proteomics reveals significant changes in cell shape and an energy shift after IPTG induction via an optimized SILAC approach for Escherichia coli.

    Science.gov (United States)

    Ping, Lingyan; Zhang, Heng; Zhai, Linhui; Dammer, Eric B; Duong, Duc M; Li, Ning; Yan, Zili; Wu, Junzhu; Xu, Ping

    2013-12-01

    Stable isotope labeling by amino acids in cell culture (SILAC) has been widely used in yeast, mammalian cells, and even some multicellular organisms. However, the lack of optimized SILAC media limits its application in Escherichia coli, the most commonly used model organism. We optimized SILACE medium (SILAC medium created in this study for E. coli) for nonauxotrophic E. coli with high growth speed and complete labeling efficiency of the whole proteome in 12 generations. We applied a swapped SILAC workflow and pure null experiment with the SILACE medium using E. coli BL21 (DE3) cells hosting a recombinant plasmid coding for glutathione-S-transferase (GST) and ubiquitin binding domain before and after isopropyl thiogalactoside (IPTG) induction. Finally, we identified 1251 proteins with a significant change in abundance. Pathway analysis suggested that cell growth and fissiparism were inhibited accompanied by the down-regulation of proteins related to energy and metabolism, cell division, and the cell cycle, resulting in the size and shape change of the induced cells. Taken together, the results confirm the development of SILACE medium suitable for efficient and complete labeling of E. coli cells and a data filtering strategy for SILAC-based quantitative proteomics studies of E. coli.

  14. Sprawl Dynamics in Rural–Urban Territories Highly Suited for Wine Production. Mapping Urban Growth and Changing Territorial Shapes in North-East Italy

    Directory of Open Access Journals (Sweden)

    Luca Simone Rizzo

    2017-01-01

    Full Text Available In Italy, large-scale changes in the structure of land use can be observed. These are caused primarily by socio-economic pressures, generally determining the conversion of agricultural land into artificial surfaces. Our aim was to investigate if and how sprawl dynamics influence viticultural landscapes (that is, if they result in scattered, intermediate, or compact urban developments. We focused on selected territories in North-East Italy, where vine-growing provides almost uninterrupted land cover, as case study areas. Using GIS-based techniques, we documented the processes of land use, analyzing the resulting changes of urban-rural forms and in territorial shapes. Results at the Provincial level showed decreasing dispersed artificial surfaces and increasing clustered urban developments. This trend is also detected in areas under vine, but in general is more modest. Our research indicates that typical agricultural productions can determine resistance to the alienation of land, maintaining a sufficient consistency for areas to develop in a more varied and articulated (for example touristic manner.

  15. Effects of Ar or O2 Gas Bubbling for Shape, Size, and Composition Changes in Silver-Gold Alloy Nanoparticles Prepared from Galvanic Replacement Reaction

    Directory of Open Access Journals (Sweden)

    Md. Jahangir Alam

    2013-01-01

    Full Text Available The galvanic replacement reaction between silver nanostructures and AuCl4- solution has recently been demonstrated as a versatile method for generating metal nanostructures with hollow interiors. Here we describe the results of a systematic study detailing the morphological, structural, compositional, and spectral changes involved in such a heterogeneous reaction on the nanoscale. Effects of Ar or O2 gas bubbling for the formation of Ag-Au alloy nanoparticles by the galvanic replacement between spherical Ag nanoparticles and AuCl4- especially were studied in ethylene glycol (EG at 150°C. The shape, size, and composition changes occur rapidly under O2 bubbling in comparison with those under Ar bubbling. The major product after 60 min heating under Ar gas bubbling was perforated Ag-Au alloy particles formed by the replacement reaction and the minor product was ribbon-type particles produced from splitting off some perforated particles. On the other hand, the major product after 60 min heating under O2 gas bubbling was ribbon-type particles. In addition, small spherical Ag particles are produced. They are formed through rereduction of Ag+ ions released from the replacement reaction and oxidative etching of Ag nanoparticles by O2/Cl− in EG.

  16. Teenagers’ Shape

    Institute of Scientific and Technical Information of China (English)

    亚玲

    2007-01-01

    <正>Teenagers have been of a new shape these days. They are about 20 pounds heavier than teenagers were 60 years ago. They are about four inches taller, too. These facts come from J. M. Tanner, a professor in England.

  17. Body Shape Changes with HIV

    Science.gov (United States)

    ... Policies and Reports Provider Education Provider Education Home HIV Meds Updates Online Courses (CME) Case Studies Journal Articles Glossary Quick References Quick References Home Guidelines Integrated ...

  18. Different processes lead to similar patterns: a test of codivergence and the role of sea level and climate changes in shaping a southern temperate freshwater assemblage

    Directory of Open Access Journals (Sweden)

    Barber Brian R

    2011-11-01

    Full Text Available Abstract Background Understanding how freshwater assemblages have been formed and maintained is a fundamental goal in evolutionary and ecological disciplines. Here we use a historical approach to test the hypothesis of codivergence in three clades of the Chilean freshwater species assemblage. Molecular studies of freshwater crabs (Aegla: Aeglidae: Anomura and catfish (Trichomycterus arealatus: Trichomycteridae: Teleostei exhibited similar levels of genetic divergences of mitochondrial lineages between species of crabs and phylogroups of the catfish, suggesting a shared evolutionary history among the three clades in this species assemblage. Results A phylogeny was constructed for Trichomycterus areolatus under the following best-fit molecular models of evolution GTR + I + R, HKY + I, and HKY for cytochrome b, growth hormone, and rag 1 respectively. A GTR + I + R model provided the best fit for both 28S and mitochondrial loci and was used to construct both Aegla phylogenies. Three different diversification models were observed and the three groups arose during different time periods, from 2.25 to 5.05 million years ago (Ma. Cladogenesis within Trichomycterus areolatus was initiated roughly 2.25 Ma (Late Pliocene - Early Pleistocene some 1.7 - 2.8 million years after the basal divergences observed in both Aegla clades. These results reject the hypothesis of codivergence. Conclusions The similar genetic distances between terminal sister-lineages observed in these select taxa from the freshwater Chilean species assemblage were formed by different processes occurring over the last ~5.0 Ma. Dramatic changes in historic sea levels documented in the region appear to have independently shaped the evolutionary history of each group. Our study illustrates the important role that history plays in shaping a species assemblage and argues against assuming similar patterns equal a shared evolutionary history.

  19. Macroscopic superposition states and decoherence by quantum telegraph noise

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Benjamin Simon

    2008-12-19

    In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)

  20. Macroscopic Biological Characteristics of Individualized Therapy in Chinese Mongolian Osteopathy

    Science.gov (United States)

    Namula, Zhao; Mei, Wang; Li, Xue-en

    Objective: Chinese Mongolian osteopathy has been passed down from ancient times and includes unique practices and favorable efficacy. In this study, we investigate the macroscopic biological characteristics of individualized Chinese Mongolian osteopathy, in order to provide new principle and methods for the treatment of bone fracture. Method: With a view to provide a vital link between nature and humans, the four stages of Chinese Mongolian osteopathy focus on the unity of the mind and body, the limbs and body organs, the body and its functions, and humans and nature. Results: We discuss the merits of individualized osteopathy in terms of the underlying concepts, and evaluate the approaches and principles of traditional medicine, as well as biomechanics. Conclusions: Individualized Mongolian osteopathy targets macroscopic biological components including dynamic reduction, natural fixation, and functional healing. Chinese Mongolian osteopathy is a natural, ecological and non-invasive osteopathy that values the link between nature and humans, including the unity of mind and body. The biological components not only serve as a foundation for Chinese Mongolian osteopathy but are also important for the future development of modern osteopathy, focusing on individualization, actualization and integration.