WorldWideScience

Sample records for macroscopic distances enormously

  1. Quantum-limited heat conduction over macroscopic distances

    Science.gov (United States)

    Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko

    2016-05-01

    The emerging quantum technological apparatuses, such as the quantum computer, call for extreme performance in thermal engineering. Cold distant heat sinks are needed for the quantized electric degrees of freedom owing to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance. However, the short distance between the heat-exchanging bodies in the previous experiments hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics, which provides a basis for the superconducting quantum computer. Especially, our results facilitate remote cooling of nanoelectronic devices using faraway in situ-tunable heat sinks. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications.

  2. Macroscopic constraints on string unification

    International Nuclear Information System (INIS)

    Taylor, T.R.

    1989-03-01

    The comparison of sting theory with experiment requires a huge extrapolation from the microscopic distances, of order of the Planck length, up to the macroscopic laboratory distances. The quantum effects give rise to large corrections to the macroscopic predictions of sting unification. I discus the model-independent constraints on the gravitational sector of string theory due to the inevitable existence of universal Fradkin-Tseytlin dilatons. 9 refs

  3. On creating macroscopically identical granular systems with different numbers of particles

    Science.gov (United States)

    van der Meer, Devaraj; Rivas, Nicolas

    2015-11-01

    One of the fundamental differences between granular and molecular hydrodynamics is the enormous difference in the total number of constituents. The small number of particles implies that the role of fluctuations in granular dynamics is of paramount importance. To obtain more insight in these fluctuations, we investigate to what extent it is possible to create identical granular hydrodynamic states with different number of particles. A definition is given of macroscopically equivalent systems, and the dependency of the conservation equations on the particle size is studied. We show that, in certain cases, and by appropriately scaling the microscopic variables, we are able to compare systems with significantly different number of particles that present the same macroscopic phenomenology. We apply these scalings in simulations of a vertically vibrated system, namely the density inverted granular Leidenfrost state and its transition to a buoyancy-driven convective state.

  4. Structured pathology reporting improves the macroscopic assessment of rectal tumour resection specimens.

    Science.gov (United States)

    King, Simon; Dimech, Margaret; Johnstone, Susan

    2016-06-01

    We examined whether introduction of a structured macroscopic reporting template for rectal tumour resection specimens improved the completeness and efficiency in collecting key macroscopic data elements. Fifty free text (narrative) macroscopic reports retrieved from 2012 to 2014 were compared with 50 structured macroscopic reports from 2013 to 2015, all of which were generated at John Hunter Hospital, Newcastle, NSW. The six standard macroscopic data elements examined in this study were reported in all 50 anatomical pathology reports using a structured macroscopic reporting dictation template. Free text reports demonstrated significantly impaired data collection when recording intactness of mesorectum (p<0.001), relationship to anterior peritoneal reflection (p=0.028) and distance of tumour to the non-peritonealised circumferential margin (p<0.001). The number of words used was also significantly (p<0.001) reduced using pre-formatted structured reports compared to free text reports. The introduction of a structured reporting dictation template improves data collection and may reduce the subsequent administrative burden when macroscopically evaluating rectal resections. Copyright © 2016 Royal College of Pathologists of Australasia. Published by Elsevier B.V. All rights reserved.

  5. On disentanglement of quantum wave functions: Answer to a comment on ''Unified dynamics for microscopic and macroscopic systems''

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Rimini, A.; Weber, T.

    1987-06-01

    It is shown that the assumption of a stochastic localization process for the quantum wave function is essentially different from the suppression of coherence over macroscopic distances arising from the interaction with the environment and allows for a conceptually complete derivation of the classical behaviour of macroscopic bodies. (author). 4 refs

  6. Macroscopic effects of the quantum trace anomaly

    International Nuclear Information System (INIS)

    Mottola, Emil; Vaulin, Ruslan

    2006-01-01

    The low energy effective action of gravity in any even dimension generally acquires nonlocal terms associated with the trace anomaly, generated by the quantum fluctuations of massless fields. The local auxiliary field description of this effective action in four dimensions requires two additional scalar fields, not contained in classical general relativity, which remain relevant at macroscopic distance scales. The auxiliary scalar fields depend upon boundary conditions for their complete specification, and therefore carry global information about the geometry and macroscopic quantum state of the gravitational field. The scalar potentials also provide coordinate invariant order parameters describing the conformal behavior and divergences of the stress tensor on event horizons. We compute the stress tensor due to the anomaly in terms of its auxiliary scalar potentials in a number of concrete examples, including the Rindler wedge, the Schwarzschild geometry, and de Sitter spacetime. In all of these cases, a small number of classical order parameters completely determine the divergent behaviors allowed on the horizon, and yield qualitatively correct global approximations to the renormalized expectation value of the quantum stress tensor

  7. Extension of Seismic Scanning Tunneling Macroscope to Elastic Waves

    KAUST Repository

    Tarhini, Ahmad; Guo, Bowen; Dutta, Gaurav; Schuster, Gerard T.

    2017-01-01

    The theory for the seismic scanning tunneling macroscope is extended from acoustic body waves to elastic body-wave propagation. We show that, similar to the acoustic case, near-field superresolution imaging from elastic body waves results from the O(1/R) term, where R is the distance between the source and near-field scatterer. The higher-order contributions R−n for n>1 are cancelled in the near-field region for a point source with normal stress.

  8. Extension of Seismic Scanning Tunneling Macroscope to Elastic Waves

    KAUST Repository

    Tarhini, Ahmad

    2017-11-06

    The theory for the seismic scanning tunneling macroscope is extended from acoustic body waves to elastic body-wave propagation. We show that, similar to the acoustic case, near-field superresolution imaging from elastic body waves results from the O(1/R) term, where R is the distance between the source and near-field scatterer. The higher-order contributions R−n for n>1 are cancelled in the near-field region for a point source with normal stress.

  9. Pinning of a curved flux line by macroscopic inclusions in a type II superconductor

    International Nuclear Information System (INIS)

    Shehata, L.N.; Saif, A.G.

    1983-08-01

    The pinning force is calculated as a function of the distance between a curved (or straight) flux line and the centre of a macroscopic superconducting (or normal) ellipsoidal inclusion. When the ellipsoidal tends to a spherical inclusion the results agree with those previously obtained. (author)

  10. Rank distributions: A panoramic macroscopic outlook

    Science.gov (United States)

    Eliazar, Iddo I.; Cohen, Morrel H.

    2014-01-01

    This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions—top-down, bottom-up, and global—and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.

  11. Quantum equilibria for macroscopic systems

    International Nuclear Information System (INIS)

    Grib, A; Khrennikov, A; Parfionov, G; Starkov, K

    2006-01-01

    Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered

  12. Microscopic and macroscopic bell inequalities

    International Nuclear Information System (INIS)

    Santos, E.

    1984-01-01

    The Bell inequalities, being derived for micro-systems, cannot be tested by (macroscopic) experiments without additional assumptions. A macroscopic definition of local realism is proposed which might be the starting point for deriving Bell inequalities testable without auxiliary assumptions. (orig.)

  13. Quantum equilibria for macroscopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Grib, A [Department of Theoretical Physics and Astronomy, Russian State Pedagogical University, St. Petersburg (Russian Federation); Khrennikov, A [Centre for Mathematical Modelling in Physics and Cognitive Sciences Vaexjoe University (Sweden); Parfionov, G [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation); Starkov, K [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation)

    2006-06-30

    Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered.

  14. Validity of macroscopic concepts for fluids on a microscopic scale

    International Nuclear Information System (INIS)

    Alder, B.J.; Alley, W.E.; Pollock, E.L.

    1981-01-01

    By Fourier decomposition of the appropriate fluctuation it is possible within the regime of linear response to extend the concept of both thermodynamic quantities and transport coefficients to their dependence on both wavelength and frequency. Experimentally these generalized macroscopic properties are accessible through neutron diffraction and, as examples, the dependence of the sound speed on wavelength and the diffusion coefficient on time are discussed. Through the molecular dynamics computer method the dependence of the viscosity on wavelength is calculated and applied with spectacular success to predict the dependence of the friction coefficient on the size of a Brownian particle all the way to atomic dimensions. On the other hand, the dielectric constant continuum concept, as applied to a charge or dipole in a cavity, generally fails to predict even the correct field at large distance from the charge. Avoiding the introduction of a cavity cures that problem, but the generalized dielectric constant fails badly in predicting the field at shorter distances from the charge. (orig.)

  15. Models for universal reduction of macroscopic quantum fluctuations

    International Nuclear Information System (INIS)

    Diosi, L.

    1988-10-01

    If quantum mechanics is universal, then macroscopic bodies would, in principle, possess macroscopic quantum fluctuations (MQF) in their positions, orientations, densities etc. Such MQF, however, are not observed in nature. The hypothesis is adopted that the absence of MQF is due to a certain universal mechanism. Gravitational measures were applied for reducing MQF of the mass density. This model leads to classical trajectories in the macroscopic limit of translational motion. For massive objects, unwanted macroscopic superpositions of quantum states will be destroyed within short times. (R.P.) 34 refs

  16. Interpretation of macroscopic quantum phenomena

    International Nuclear Information System (INIS)

    Baumann, K.

    1986-01-01

    It is argued that a quantum theory without observer is required for the interpretation of macroscopic quantum tunnelling. Such a theory is obtained by augmenting QED by the actual electric field in the rest system of the universe. An equation of the motion of this field is formulated form which the correct macroscopic behavior of the universe and the validity of the Born interpretation is derived. Care is taken to use mathematically sound concepts only. (Author)

  17. Superposition and macroscopic observation

    International Nuclear Information System (INIS)

    Cartwright, N.D.

    1976-01-01

    The principle of superposition has long plagued the quantum mechanics of macroscopic bodies. In at least one well-known situation - that of measurement - quantum mechanics predicts a superposition. It is customary to try to reconcile macroscopic reality and quantum mechanics by reducing the superposition to a mixture. To establish consistency with quantum mechanics, values for the apparatus after a measurement are to be distributed in the way predicted by the superposition. The distributions observed, however, are those of the mixture. The statistical predictions of quantum mechanics, it appears, are not borne out by observation in macroscopic situations. It has been shown that, insofar as specific ergodic hypotheses apply to the apparatus after the interaction, the superposition which evolves is experimentally indistinguishable from the corresponding mixture. In this paper an idealized model of the measuring situation is presented in which this consistency can be demonstrated. It includes a simplified version of the measurement solution proposed by Daneri, Loinger, and Prosperi (1962). The model should make clear the kind of statistical evidence required to carry of this approach, and the role of the ergodic hypotheses assumed. (Auth.)

  18. Macroscopic theory of superconductors

    International Nuclear Information System (INIS)

    Carr, W.J. Jr.

    1981-01-01

    A macroscopic theory for bulk superconductors is developed in the framework of the theory for other magnetic materials, where ''magnetization'' current is separated from ''free'' current on the basis of scale. This contrasts with the usual separation into equilibrium and nonequilibrium currents. In the present approach magnetization, on a large macroscopic scale, results from the vortex current, while the Meissner current and other surface currents are surface contributions to the Maxwell j. The results are important for the development of thermodynamics in type-II superconductors. The advantage of the description developed here is that magnetization becomes a local concept and its associated magnetic field can be given physical meaning

  19. Experimental demonstration of macroscopic quantum coherence in Gaussian states

    DEFF Research Database (Denmark)

    Marquardt, C.; Andersen, Ulrik Lund; Leuchs, G.

    2007-01-01

    We witness experimentally the presence of macroscopic coherence in Gaussian quantum states using a recently proposed criterion [E. G. Cavalcanti and M. D. Reid, Phys. Rev. Lett. 97 170405 (2006)]. The macroscopic coherence stems from interference between macroscopically distinct states in phase...

  20. Macroscopic optical response and photonic bands

    International Nuclear Information System (INIS)

    Pérez-Huerta, J S; Luis Mochán, W; Ortiz, Guillermo P; Mendoza, Bernardo S

    2013-01-01

    We develop a formalism for the calculation of the macroscopic dielectric response of composite systems made of particles of one material embedded periodically within a matrix of another material, each of which is characterized by a well-defined dielectric function. The nature of these dielectric functions is arbitrary, and could correspond to dielectric or conducting, transparent or opaque, absorptive and dispersive materials. The geometry of the particles and the Bravais lattice of the composite are also arbitrary. Our formalism goes beyond the long-wavelength approximation as it fully incorporates retardation effects. We test our formalism through the study of the propagation of electromagnetic waves in two-dimensional photonic crystals made of periodic arrays of cylindrical holes in a dispersionless dielectric host. Our macroscopic theory yields a spatially dispersive macroscopic response which allows the calculation of the full photonic band structure of the system, as well as the characterization of its normal modes, upon substitution into the macroscopic field equations. We can also account approximately for the spatial dispersion through a local magnetic permeability and analyze the resulting dispersion relation, obtaining a region of left handedness. (paper)

  1. The Challenges for Marketing Distance Education in Online Environment: An Intergrated Approach

    Science.gov (United States)

    Demiray, Ugur, Ed.; Sever, N. Serdar, Ed.

    2009-01-01

    The education system of our times has transformed greatly due to enormous developments in the IT field, ease in access to online resources by the individuals and the teachers adopting new technologies in their instructional strategies, be it for course design, development or delivery. The field of Distance and Online Education is experiencing…

  2. Macroscopic angular momentum states of Bose-Einstein condensates in toroidal traps

    International Nuclear Information System (INIS)

    Benakli, M.; Raghavan, S.; Fantoni, S.; Shenoy, S.R.; Smerzi, A.

    1997-11-01

    We consider a Bose-Einstein condensate (BEC) of N atoms of repulsive interaction ∼ U 0 , in an elliptical trap, axially pierced by a Gaussian-intensity laser beam, forming an effective (quasi-2D) toroidal trap with minimum at radial distance ρ = ρ p . The macroscopic angular momentum states Ψ l (ρ,θ) ∼ √NΦ l (ρ)e ilθ for integer l spread up to ρ max ∼ (NU 0 ) 1/4 >> ρ p . The spreading lowers rotational energies, so estimated low metastability barriers can support large l max ∼ (NU 0 ) 1/4 , l (ρ) 2 -Φ 0 (ρ) 2 is a signature of BEC rotation. Results are insensitive to off-axis laser displacements ρ 0 , for ρ 0 ρ max << 1. (author)

  3. Macroscopic Optomechanically Induced Transparency

    Science.gov (United States)

    Pate, Jacob; Castelli, Alessandro; Martinez, Luis; Thompson, Johnathon; Chiao, Ray; Sharping, Jay

    Optomechanically induced transparency (OMIT) is an effect wherein the spectrum of a cavity resonance is modified through interference between coupled excitation pathways. In this work we investigate a macroscopic, 3D microwave, superconducting radio frequency (SRF) cavity incorporating a niobium-coated, silicon-nitride membrane as the flexible boundary. The boundary supports acoustic vibrational resonances, which lead to coupling with the microwave resonances of the SRF cavity. The theoretical development and physical understanding of OMIT for our macroscopic SRF cavity is the same as that for other recently-reported OMIT systems despite vastly different optomechanical coupling factors and device sizes. Our mechanical oscillator has a coupling factor of g0 = 2 π . 1 ×10-5 Hz and is roughly 38 mm in diameter. The Q = 5 ×107 for the SRF cavity allows probing of optomechanical effects in the resolved sideband regime.

  4. Macroscopic averages in Qed in material media

    International Nuclear Information System (INIS)

    Dutra, S.M.; Furuya, K.

    1997-01-01

    The starting point of macroscopic theories of quantum electrodynamics in material media is usually the classical macroscopic Maxwell equations that are then quantized. Such approach however, is based on the assumption that a macroscopic description is attainable, i.e., it assumes that we can describe the effect of the atoms of material on the field only in terms of a dielectric constant in the regime where the field has to be treated quantum mechanically. The problem we address is whether this assumption is valid at all and if so, under what conditions. We have chosen a simple model, which allows us to start from first principles and determine the validity of these approximations, without simply taking them for granted as in previous papers

  5. Dynamical fusion thresholds in macroscopic and microscopic theories

    International Nuclear Information System (INIS)

    Davies, K.T.R.; Sierk, A.J.; Nix, J.R.

    1983-01-01

    Macroscopic and microscopic results demonstrating the existence of dynamical fusion thresholds are presented. For macroscopic theories, it is shown that the extra-push dynamics is sensitive to some details of the models used, e.g. the shape parametrization and the type of viscosity. The dependence of the effect upon the charge and angular momentum of the system is also studied. Calculated macroscopic results for mass-symmetric systems are compared to experimental mass-asymmetric results by use of a tentative scaling procedure, which takes into account both the entrance-channel and the saddle-point regions of configuration space. Two types of dynamical fusion thresholds occur in TDHF studies: (1) the microscopic analogue of the macroscopic extra push threshold, and (2) the relatively high energy at which the TDHF angular momentum window opens. Both of these microscopic thresholds are found to be very sensitive to the choice of the effective two-body interaction

  6. A tentative theory of large distance physics

    International Nuclear Information System (INIS)

    Friedan, Daniel

    2003-01-01

    A theoretical mechanism is devised to determine the large distance physics of spacetime. It is a two dimensional nonlinear model, the lambda model, set to govern the string world surface in an attempt to remedy the failure of string theory, as it stands. The lambda model is formulated to cancel the infrared divergent effects of handles at short distance on the world surface. The target manifold is the manifold of background spacetimes. The coupling strength is the spacetime coupling constant. The lambda model operates at 2d distance Δ -1 , very much shorter than the 2d distance μ -1 where the world surface is seen. A large characteristic spacetime distance L is given by L 2 ln(Δ/μ). Spacetime fields of wave number up to 1=L are the local coordinates for the manifold of spacetimes. The distribution of fluctuations at 2d distances shorter than Δ -1 gives the a priori measure on the target manifold, the manifold of spacetimes. If this measure concentrates at a macroscopic spacetime, then, nearby, it is a measure on the spacetime fields. The lambda model thereby constructs a spacetime quantum field theory, cutoff at ultraviolet distance L, describing physics at distances larger than L. The lambda model also constructs an effective string theory with infrared cutoff L, describing physics at distances smaller than L. The lambda model evolves outward from zero 2d distance, Δ -1 = 0, building spacetime physics starting from L ∞ and proceeding downward in L. L can be taken smaller than any distance practical for experiments, so the lambda model, if right, gives all actually observable physics. The harmonic surfaces in the manifold of spacetimes are expected to have novel nonperturbative effects at large distances. (author)

  7. Single-Phase Bundle Flows Including Macroscopic Turbulence Model

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jun; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Yoon, Seok Jong; Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of)

    2016-05-15

    To deal with various thermal hydraulic phenomena due to rapid change of fluid properties when an accident happens, securing mechanistic approaches as much as possible may reduce the uncertainty arising from improper applications of the experimental models. In this study, the turbulence mixing model, which is well defined in the subchannel analysis code such as VIPRE, COBRA, and MATRA by experiments, is replaced by a macroscopic k-e turbulence model, which represents the aspect of mathematical derivation. The performance of CUPID with macroscopic turbulence model is validated against several bundle experiments: CNEN 4x4 and PNL 7x7 rod bundle tests. In this study, the macroscopic k-e model has been validated for the application to subchannel analysis. It has been implemented in the CUPID code and validated against CNEN 4x4 and PNL 7x7 rod bundle tests. The results showed that the macroscopic k-e turbulence model can estimate the experiments properly.

  8. Quasi-steady-state voltammetry of rapid electron transfer reactions at the macroscopic substrate of the scanning electrochemical microscope.

    Science.gov (United States)

    Nioradze, Nikoloz; Kim, Jiyeon; Amemiya, Shigeru

    2011-02-01

    We report on a novel theory and experiment for scanning electrochemical microscopy (SECM) to enable quasi-steady-state voltammetry of rapid electron transfer (ET) reactions at macroscopic substrates. With this powerful approach, the substrate potential is cycled widely across the formal potential of a redox couple while the reactant or product of a substrate reaction is amperometrically detected at the tip in the feedback or substrate generation/tip collection mode, respectively. The plot of tip current versus substrate potential features the retraceable sigmoidal shape of a quasi-steady-state voltammogram although a transient voltammogram is obtained at the macroscopic substrate. Finite element simulations reveal that a short tip-substrate distance and a reversible substrate reaction (except under the tip) are required for quasi-steady-state voltammetry. Advantageously, a pair of quasi-steady-state voltammograms is obtained by employing both operation modes to reliably determine all transport, thermodynamic, and kinetic parameters as confirmed experimentally for rapid ET reactions of ferrocenemethanol and 7,7,8,8-tetracyanoquinodimethane at a Pt substrate with ∼0.5 μm-radius Pt tips positioned at 90 nm-1 μm distances. Standard ET rate constants of ∼7 cm/s were obtained for the latter mediator as the largest determined for a substrate reaction by SECM. Various potential applications of quasi-steady-state voltammetry are also proposed.

  9. Macroscopic magnetic Self assembly

    NARCIS (Netherlands)

    Löthman, Per Arvid

    2018-01-01

    Exploring the macroscopic scale's similarities to the microscale is part and parcel of this thesis as reflected in the research question: what can we learn about the microscopic scale by studying the macroscale? Investigations of the environment in which the self-assembly takes place, and the

  10. Macroscopic effects in attosecond pulse generation

    International Nuclear Information System (INIS)

    Ruchon, T; Varju, K; Mansten, E; Swoboda, M; L'Huillier, A; Hauri, C P; Lopez-Martens, R

    2008-01-01

    We examine how the generation and propagation of high-order harmonics in a partly ionized gas medium affect their strength and synchronization. The temporal properties of the resulting attosecond pulses generated in long gas targets can be significantly influenced by macroscopic effects, in particular by the intensity in the medium and the degree of ionization which control the dispersion. Under some conditions, the use of gas targets longer than the absorption length can lead to the generation of compressed attosecond pulses. We show these macroscopic effects experimentally, using a 6 mm-long argon-filled gas cell as the generating medium

  11. Macroscopic effects in attosecond pulse generation

    Energy Technology Data Exchange (ETDEWEB)

    Ruchon, T; Varju, K; Mansten, E; Swoboda, M; L' Huillier, A [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Hauri, C P; Lopez-Martens, R [Laboratoire d' Optique Appliquee, Ecole Nationale Superieure des Techniques Avancees (ENSTA)-Ecole Polytechnique CNRS UMR 7639, 91761 Palaiseau (France)], E-mail: anne.lhuillier@fysik.lth.se

    2008-02-15

    We examine how the generation and propagation of high-order harmonics in a partly ionized gas medium affect their strength and synchronization. The temporal properties of the resulting attosecond pulses generated in long gas targets can be significantly influenced by macroscopic effects, in particular by the intensity in the medium and the degree of ionization which control the dispersion. Under some conditions, the use of gas targets longer than the absorption length can lead to the generation of compressed attosecond pulses. We show these macroscopic effects experimentally, using a 6 mm-long argon-filled gas cell as the generating medium.

  12. On the connection between the macroscopical and microscopical evolution in an exactly soluble hopping model. II. Charged particles

    International Nuclear Information System (INIS)

    Banyai, L.; Gartner, P.

    1979-07-01

    The hopping rate equation for charged particles with self-consistent Coulomb interaction on an arbitrary periodic lattice can be solved exactly. It is shown that if one scales the time t and the distances x (including the characteristic length l as t → lambda 2 t, x → lambda x), then in the lambda → infinity limit the charge density and the potential tend to their macroscopical electrodynamic counterparts faster than lambda sup(-3) and lambda sup(-1) respectively. (author)

  13. Decoherence bypass of macroscopic superpositions in quantum measurement

    International Nuclear Information System (INIS)

    Spehner, Dominique; Haake, Fritz

    2008-01-01

    We study a class of quantum measurement models. A microscopic object is entangled with a macroscopic pointer such that a distinct pointer position is tied to each eigenvalue of the measured object observable. Those different pointer positions mutually decohere under the influence of an environment. Overcoming limitations of previous approaches we (i) cope with initial correlations between pointer and environment by considering them initially in a metastable local thermal equilibrium, (ii) allow for object-pointer entanglement and environment-induced decoherence of distinct pointer readouts to proceed simultaneously, such that mixtures of macroscopically distinct object-pointer product states arise without intervening macroscopic superpositions, and (iii) go beyond the Markovian treatment of decoherence. (fast track communication)

  14. Nonequilibrium work relation in a macroscopic system

    International Nuclear Information System (INIS)

    Sughiyama, Yuki; Ohzeki, Masayuki

    2013-01-01

    We reconsider a well-known relationship between the fluctuation theorem and the second law of thermodynamics by evaluating stochastic evolution of the density field (probability measure valued process). In order to establish a bridge between microscopic and macroscopic behaviors, we must take the thermodynamic limit of a stochastic dynamical system following the standard procedure in statistical mechanics. The thermodynamic path characterizing a dynamical behavior in the macroscopic scale can be formulated as an infimum of the action functional for the stochastic evolution of the density field. In our formulation, the second law of thermodynamics can be derived only by symmetry of the action functional without recourse to the Jarzynski equality. Our formulation leads to a nontrivial nonequilibrium work relation for metastable (quasi-stationary) states, which are peculiar in the macroscopic system. We propose a prescription for computing the free energy for metastable states based on the resultant work relation. (paper)

  15. Macroscopic self-consistent model for external-reflection near-field microscopy

    International Nuclear Information System (INIS)

    Berntsen, S.; Bozhevolnaya, E.; Bozhevolnyi, S.

    1993-01-01

    The self-consistent macroscopic approach based on the Maxwell equations in two-dimensional geometry is developed to describe tip-surface interaction in external-reflection near-field microscopy. The problem is reduced to a single one-dimensional integral equation in terms of the Fourier components of the field at the plane of the sample surface. This equation is extended to take into account a pointlike scatterer placed on the sample surface. The power of light propagating toward the detector as the fiber mode is expressed by using the self-consistent field at the tip surface. Numerical results for trapezium-shaped tips are presented. The authors show that the sharper tip and the more confined fiber mode result in better resolution of the near-field microscope. Moreover, it is found that the tip-surface distance should not be too small so that better resolution is ensured. 14 refs., 10 figs

  16. How the macroscopic current correlates with the microscopic flux-line distribution in a type-II superconductor: an experimental study

    International Nuclear Information System (INIS)

    Hecher, Johannes; Zehetmayer, Martin; Weber, Harald W

    2014-01-01

    We present a study of the real-space flux-line lattice (FLL) of pristine and neutron irradiated conventional type-II superconductors using scanning tunnelling microscopy. Our work is focused on the magnetic field range, where the critical current density shows a second peak as a result of neutron irradiation. Scanning tunnelling microscopy images, including more than 2000 flux lines, are used to evaluate various microscopic parameters describing the disorder of the FLL, such as the defect density, the nearest neighbour distances and correlation functions. These parameters are compared with the macroscopic critical current density of the samples. The results show a direct correlation of the micro- and macroscopic properties. We observe a clear transition from an ordered to a disordered lattice at the onset of the second peak. Moreover, we discuss the defects of the FLL and their accumulation to large clusters in the second peak region. (papers)

  17. African customer is Sun King. Enormous market for solar energy in the Third World

    International Nuclear Information System (INIS)

    Malsch, I.

    2001-01-01

    A brief overview is given in the enormous market for solar energy in Africa. Special attention is paid to one of the leaders in the market for solar energy: Free Energy Europe in Eindhoven, Netherlands. 3 refs

  18. Pathways toward understanding Macroscopic Quantum Phenomena

    International Nuclear Information System (INIS)

    Hu, B L; Subaşi, Y

    2013-01-01

    Macroscopic quantum phenomena refer to quantum features in objects of 'large' sizes, systems with many components or degrees of freedom, organized in some ways where they can be identified as macroscopic objects. This emerging field is ushered in by several categories of definitive experiments in superconductivity, electromechanical systems, Bose-Einstein condensates and others. Yet this new field which is rich in open issues at the foundation of quantum and statistical physics remains little explored theoretically (with the important exception of the work of A J Leggett [1], while touched upon or implied by several groups of authors represented in this conference. Our attitude differs in that we believe in the full validity of quantum mechanics stretching from the testable micro to meso scales, with no need for the introduction of new laws of physics.) This talk summarizes our thoughts in attempting a systematic investigation into some key foundational issues of quantum macroscopic phenomena, with the goal of ultimately revealing or building a viable theoretical framework. Three major themes discussed in three intended essays are the large N expansion [2], the correlation hierarchy [3] and quantum entanglement [4]. We give a sketch of the first two themes and then discuss several key issues in the consideration of macro and quantum, namely, a) recognition that there exist many levels of structure in a composite body and only by judicious choice of an appropriate set of collective variables can one give the best description of the dynamics of a specific level of structure. Capturing the quantum features of a macroscopic object is greatly facilitated by the existence and functioning of these collective variables; b) quantum entanglement, an exclusively quantum feature [5], is known to persist to high temperatures [6] and large scales [7] under certain conditions, and may actually decrease with increased connectivity in a quantum network [8]. We use entanglement as a

  19. Macroscopic nonclassical-state preparation via postselection

    Science.gov (United States)

    Montenegro, Víctor; Coto, Raúl; Eremeev, Vitalie; Orszag, Miguel

    2017-11-01

    Macroscopic quantum superposition states are fundamental to test the classical-quantum boundary and present suitable candidates for quantum technologies. Although the preparation of such states has already been realized, the existing setups commonly consider external driving and resonant interactions, predominantly by considering Jaynes-Cummings-like and beam-splitter-like interactions, as well as the nonlinear radiation pressure interaction in cavity optomechanics. In contrast to previous works on the matter, we propose a feasible probabilistic scheme to generate a macroscopic mechanical qubit, as well as phononic Schrödinger's cat states with no need of any energy exchange with the macroscopic mechanical oscillator. Essentially, we investigate an open dispersive spin-mechanical system in the absence of any external driving under nonideal conditions, such as the detrimental effects due to the oscillator and spin energy losses in a thermal bath at nonzero temperature. In our work, we show that the procedure to generate the mechanical qubit state is solely based on spin postselection in the weak to moderate coupling regime. Finally, we demonstrate that the mechanical superposition is related to the amplification of the mean values of the mechanical quadratures as they maximize the quantum coherence.

  20. Scanner-based macroscopic color variation estimation

    Science.gov (United States)

    Kuo, Chunghui; Lai, Di; Zeise, Eric

    2006-01-01

    Flatbed scanners have been adopted successfully in the measurement of microscopic image artifacts, such as granularity and mottle, in print samples because of their capability of providing full color, high resolution images. Accurate macroscopic color measurement relies on the use of colorimeters or spectrophotometers to provide a surrogate for human vision. The very different color response characteristics of flatbed scanners from any standard colorimetric response limits the utility of a flatbed scanner as a macroscopic color measuring device. This metamerism constraint can be significantly relaxed if our objective is mainly to quantify the color variations within a printed page or between pages where a small bias in measured colors can be tolerated as long as the color distributions relative to the individual mean values is similar. Two scenarios when converting color from the device RGB color space to a standardized color space such as CIELab are studied in this paper, blind and semi-blind color transformation, depending on the availability of the black channel information. We will show that both approaches offer satisfactory results in quantifying macroscopic color variation across pages while the semi-blind color transformation further provides fairly accurate color prediction capability.

  1. Classical behaviour of macroscopic bodies and quantum measurements

    International Nuclear Information System (INIS)

    Ghirardi, G.; Rimini, A.; Weber, T.

    1986-01-01

    This report describes a recent attempt of giving a consistent and unified description of microscopic and macroscopic phenomena. The model presented in this paper exhibits the nice features of leaving unaltered the quantum description of microsystems and of accounting for the classical behaviour of the macroscopic objects when their dynamical evolution is consistently deduced from the dynamics of their elementary constituents

  2. Assessments of macroscopicity for quantum optical states

    DEFF Research Database (Denmark)

    Laghaout, Amine; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund

    2015-01-01

    With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should...... enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished. © 2014....

  3. Nuclear fission as a macroscopic quantum tunneling

    International Nuclear Information System (INIS)

    Takigawa, N.

    1995-01-01

    We discuss nuclear fission from the point of view of a macroscopic quantum tunneling, one of whose major interests is to study the effects of environments on the tunneling rate of a macroscopic variable. We show that a vibrational excitation of the fissioning nucleus significantly enhances the fission rate. We show this effect by two different methods. The one is to treat the vibrational excitation as an environmental degree of freedom, the other treats the fission as a two dimensional quantum tunneling. (author)

  4. Conversion of light into macroscopic helical motion

    Science.gov (United States)

    Iamsaard, Supitchaya; Aßhoff, Sarah J.; Matt, Benjamin; Kudernac, Tibor; Cornelissen, Jeroen J. L. M.; Fletcher, Stephen P.; Katsonis, Nathalie

    2014-03-01

    A key goal of nanotechnology is the development of artificial machines capable of converting molecular movement into macroscopic work. Although conversion of light into shape changes has been reported and compared to artificial muscles, real applications require work against an external load. Here, we describe the design, synthesis and operation of spring-like materials capable of converting light energy into mechanical work at the macroscopic scale. These versatile materials consist of molecular switches embedded in liquid-crystalline polymer springs. In these springs, molecular movement is converted and amplified into controlled and reversible twisting motions. The springs display complex motion, which includes winding, unwinding and helix inversion, as dictated by their initial shape. Importantly, they can produce work by moving a macroscopic object and mimicking mechanical movements, such as those used by plant tendrils to help the plant access sunlight. These functional materials have potential applications in micromechanical systems, soft robotics and artificial muscles.

  5. Superconductivity and macroscopic quantum phenomena

    International Nuclear Information System (INIS)

    Rogovin, D.; Scully, M.

    1976-01-01

    It is often asserted that superconducting systems are manifestations of quantum mechanics on a macroscopic scale. In this review article it is demonstrated that this quantum assertion is true within the framework of the microscopic theory of superconductivity. (Auth.)

  6. Macroscopic quantum tunnelling in a current biased Josephson junction

    International Nuclear Information System (INIS)

    Martinis, J.M.; Devoret, M.H.; Clarke, J.; Urbina, C.

    1984-11-01

    We discuss in this work an attempt to answer experimentally the question: do macroscopic variables obey quantum mechanics. More precisely, this experiment deals with the question of quantum-mechanical tunnelling of a macroscopic variable, a subject related to the famous Schrodinger's cat problem in the theory of measurement

  7. Physically-based modeling of the cyclic macroscopic behaviour of metals

    International Nuclear Information System (INIS)

    Sauzay, M.; Evrard, P.; Steckmeyer, A.; Ferrie, E.

    2010-01-01

    Grain size seems to have only a minor influence on the cyclic strain strain curves (CSSCs) of metallic polycrystals of medium to high stacking fault energy (SFE). That is why many authors tried to deduce the macroscopic CSSCs curves from the single crystals ones. Either crystals oriented for single slip or crystals oriented for multiple slip could be considered. In addition, a scale transition law should be used (from the grain scale to the macroscopic scale). Authors generally used either the Sachs rule (homogeneous single slip) or the Taylor one (homogeneous plastic strain, multiple slip). But the predicted macroscopic CSSCs do not generally agree with the experimental data for metals and alloys, presenting various SFE values. In order to avoid the choice of a particular scale transition rule, many finite element (FE) computations have been carried out using meshes of polycrystals including more than one hundred grains without texture. This allows the study of the influence of the crystalline constitutive laws on the macroscopic CSSCs. Activation of a secondary slip system in grains oriented for single slip is either allowed or hindered (slip planarity), which affects strongly the macroscopic CSSCs. The more planar the slip, the higher the predicted macroscopic stress amplitudes. If grains oriented for single slip obey slip planarity and two crystalline CSSCs are used (one for single slip grains and one for multiple slip grains), then the predicted macroscopic CSSCs agree well with experimental data provided the SFE is not too low (316L, copper, nickel, aluminium). Finally, the incremental self-consistent Hill-Hutchinson homogenization model is used for predicting CSS curves and partially validated with respect to the curves computed by the FE method. (authors)

  8. Macroscopic Quantum Resonators (MAQRO): 2015 update

    International Nuclear Information System (INIS)

    Kaltenbaek, Rainer; Aspelmeyer, Markus; Kiesel, Nikolai; Barker, Peter F.; Bose, Sougato; Bassi, Angelo; Bateman, James; Bongs, Kai; Cruise, Adrian Michael; Braxmaier, Claus; Brukner, Caslav; Christophe, Bruno; Rodrigues, Manuel; Chwalla, Michael; Johann, Ulrich; Cohadon, Pierre-Francois; Heidmann, Antoine; Lambrecht, Astrid; Reynaud, Serge; Curceanu, Catalina; Dholakia, Kishan; Mazilu, Michael; Diosi, Lajos; Doeringshoff, Klaus; Peters, Achim; Ertmer, Wolfgang; Rasel, Ernst M.; Gieseler, Jan; Novotny, Lukas; Rondin, Loic; Guerlebeck, Norman; Herrmann, Sven; Laemmerzahl, Claus; Hechenblaikner, Gerald; Hossenfelder, Sabine; Kim, Myungshik; Milburn, Gerard J.; Mueller, Holger; Paternostro, Mauro; Pikovski, Igor; Pilan Zanoni, Andre; Riedel, Charles Jess; Roura, Albert; Schleich, Wolfgang P.; Schmiedmayer, Joerg; Schuldt, Thilo; Schwab, Keith C.; Tajmar, Martin; Tino, Guglielmo M.; Ulbricht, Hendrik; Ursin, Rupert; Vedral, Vlatko

    2016-01-01

    Do the laws of quantum physics still hold for macroscopic objects - this is at the heart of Schroedinger's cat paradox - or do gravitation or yet unknown effects set a limit for massive particles? What is the fundamental relation between quantum physics and gravity? Ground-based experiments addressing these questions may soon face limitations due to limited free-fall times and the quality of vacuum and microgravity. The proposed mission Macroscopic Quantum Resonators (MAQRO) may overcome these limitations and allow addressing such fundamental questions. MAQRO harnesses recent developments in quantum optomechanics, high-mass matter-wave interferometry as well as state-of-the-art space technology to push macroscopic quantum experiments towards their ultimate performance limits and to open new horizons for applying quantum technology in space. The main scientific goal is to probe the vastly unexplored 'quantum-classical' transition for increasingly massive objects, testing the predictions of quantum theory for objects in a size and mass regime unachievable in ground-based experiments. The hardware will largely be based on available space technology. Here, we present the MAQRO proposal submitted in response to the 4th Cosmic Vision call for a medium-sized mission (M4) in 2014 of the European Space Agency (ESA) with a possible launch in 2025, and we review the progress with respect to the original MAQRO proposal for the 3rd Cosmic Vision call for a medium-sized mission (M3) in 2010. In particular, the updated proposal overcomes several critical issues of the original proposal by relying on established experimental techniques from high-mass matter-wave interferometry and by introducing novel ideas for particle loading and manipulation. Moreover, the mission design was improved to better fulfill the stringent environmental requirements for macroscopic quantum experiments. (orig.)

  9. Macroscopic Quantum Resonators (MAQRO): 2015 update

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenbaek, Rainer [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Aspelmeyer, Markus; Kiesel, Nikolai [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Barker, Peter F.; Bose, Sougato [University College London, Department of Physics and Astronomy, London (United Kingdom); Bassi, Angelo [University of Trieste, Department of Physics, Trieste (Italy); INFN - Trieste Section, Trieste (Italy); Bateman, James [University of Swansea, Department of Physics, College of Science, Swansea (United Kingdom); Bongs, Kai; Cruise, Adrian Michael [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Braxmaier, Claus [University of Bremen, Center of Applied Space Technology and Micro Gravity (ZARM), Bremen (Germany); Institute of Space Systems, German Aerospace Center (DLR), Bremen (Germany); Brukner, Caslav [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Austrian Academy of Sciences, Institute of Quantum Optics and Quantum Information (IQOQI), Vienna (Austria); Christophe, Bruno; Rodrigues, Manuel [The French Aerospace Lab, ONERA, Chatillon (France); Chwalla, Michael; Johann, Ulrich [Airbus Defence and Space GmbH, Immenstaad (Germany); Cohadon, Pierre-Francois; Heidmann, Antoine; Lambrecht, Astrid; Reynaud, Serge [ENS-PSL Research University, Laboratoire Kastler Brossel, UPMC-Sorbonne Universites, CNRS, College de France, Paris (France); Curceanu, Catalina [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dholakia, Kishan; Mazilu, Michael [University of St. Andrews, School of Physics and Astronomy, St. Andrews (United Kingdom); Diosi, Lajos [Wigner Research Center for Physics, P.O. Box 49, Budapest (Hungary); Doeringshoff, Klaus; Peters, Achim [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Ertmer, Wolfgang; Rasel, Ernst M. [Leibniz Universitaet Hannover, Institut fuer Quantenoptik, Hannover (Germany); Gieseler, Jan; Novotny, Lukas; Rondin, Loic [ETH Zuerich, Photonics Laboratory, Zuerich (Switzerland); Guerlebeck, Norman; Herrmann, Sven; Laemmerzahl, Claus [University of Bremen, Center of Applied Space Technology and Micro Gravity (ZARM), Bremen (Germany); Hechenblaikner, Gerald [Airbus Defence and Space GmbH, Immenstaad (Germany); European Southern Observatory (ESO), Garching bei Muenchen (Germany); Hossenfelder, Sabine [KTH Royal Institute of Technology and Stockholm University, Nordita, Stockholm (Sweden); Kim, Myungshik [Imperial College London, QOLS, Blackett Laboratory, London (United Kingdom); Milburn, Gerard J. [University of Queensland, ARC Centre for Engineered Quantum Systems, Brisbane (Australia); Mueller, Holger [University of California, Department of Physics, Berkeley, CA (United States); Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Pikovski, Igor [Harvard-Smithsonian Center for Astrophysics, ITAMP, Cambridge, MA (United States); Pilan Zanoni, Andre [Airbus Defence and Space GmbH, Immenstaad (Germany); CERN - European Organization for Nuclear Research, EN-STI-TCD, Geneva (Switzerland); Riedel, Charles Jess [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Roura, Albert [Universitaet Ulm, Institut fuer Quantenphysik, Ulm (Germany); Schleich, Wolfgang P. [Universitaet Ulm, Institut fuer Quantenphysik, Ulm (Germany); Texas A and M University Institute for Advanced Study (TIAS), Institute for Quantum Science and Engineering (IQSE), and Department of Physics and Astronomy, College Station, TX (United States); Schmiedmayer, Joerg [Vienna University of Technology, Vienna Center for Quantum Science and Technology, Institute of Atomic and Subatomic Physics, Vienna (Austria); Schuldt, Thilo [Institute of Space Systems, German Aerospace Center (DLR), Bremen (Germany); Schwab, Keith C. [California Institute of Technology, Applied Physics, Pasadena, CA (United States); Tajmar, Martin [Technische Universitaet Dresden, Institut fuer Luft- und Raumfahrttechnik, Dresden (Germany); Tino, Guglielmo M. [Universita di Firenze, Dipartimento di Fisica e Astronomia and LENS, INFN, Sesto Fiorentino, Firenze (Italy); Ulbricht, Hendrik [University of Southampton, Physics and Astronomy, Southampton (United Kingdom); Ursin, Rupert [Austrian Academy of Sciences, Institute of Quantum Optics and Quantum Information (IQOQI), Vienna (Austria); Vedral, Vlatko [University of Oxford, Atomic and Laser Physics, Clarendon Laboratory, Oxford (United Kingdom); National University of Singapore, Center for Quantum Technologies, Singapore (SG)

    2016-12-15

    Do the laws of quantum physics still hold for macroscopic objects - this is at the heart of Schroedinger's cat paradox - or do gravitation or yet unknown effects set a limit for massive particles? What is the fundamental relation between quantum physics and gravity? Ground-based experiments addressing these questions may soon face limitations due to limited free-fall times and the quality of vacuum and microgravity. The proposed mission Macroscopic Quantum Resonators (MAQRO) may overcome these limitations and allow addressing such fundamental questions. MAQRO harnesses recent developments in quantum optomechanics, high-mass matter-wave interferometry as well as state-of-the-art space technology to push macroscopic quantum experiments towards their ultimate performance limits and to open new horizons for applying quantum technology in space. The main scientific goal is to probe the vastly unexplored 'quantum-classical' transition for increasingly massive objects, testing the predictions of quantum theory for objects in a size and mass regime unachievable in ground-based experiments. The hardware will largely be based on available space technology. Here, we present the MAQRO proposal submitted in response to the 4th Cosmic Vision call for a medium-sized mission (M4) in 2014 of the European Space Agency (ESA) with a possible launch in 2025, and we review the progress with respect to the original MAQRO proposal for the 3rd Cosmic Vision call for a medium-sized mission (M3) in 2010. In particular, the updated proposal overcomes several critical issues of the original proposal by relying on established experimental techniques from high-mass matter-wave interferometry and by introducing novel ideas for particle loading and manipulation. Moreover, the mission design was improved to better fulfill the stringent environmental requirements for macroscopic quantum experiments. (orig.)

  10. A Review on Macroscopic Pedestrian Flow Modelling

    Directory of Open Access Journals (Sweden)

    Anna Kormanová

    2013-12-01

    Full Text Available This paper reviews several various approaches to macroscopic pedestrian modelling. It describes hydrodynamic models based on similarity of pedestrian flow with fluids and gases; first-order flow models that use fundamental diagrams and conservation equation; and a model similar to LWR vehicular traffic model, which allows non-classical shocks. At the end of the paper there is stated a comparison of described models, intended to find appropriate macroscopic model to eventually be a part of a hybrid model. The future work of the author is outlined.

  11. Microscopic to macroscopic depletion model development for FORMOSA-P

    International Nuclear Information System (INIS)

    Noh, J.M.; Turinsky, P.J.; Sarsour, H.N.

    1996-01-01

    Microscopic depletion has been gaining popularity with regard to employment in reactor core nodal calculations, mainly attributed to the superiority of microscopic depletion in treating spectral history effects during depletion. Another trend is the employment of loading pattern optimization computer codes in support of reload core design. Use of such optimization codes has significantly reduced design efforts to optimize reload core loading patterns associated with increasingly complicated lattice designs. A microscopic depletion model has been developed for the FORMOSA-P pressurized water reactor (PWR) loading pattern optimization code. This was done for both fidelity improvements and to make FORMOSA-P compatible with microscopic-based nuclear design methods. Needless to say, microscopic depletion requires more computational effort compared with macroscopic depletion. This implies that microscopic depletion may be computationally restrictive if employed during the loading pattern optimization calculation because many loading patterns are examined during the course of an optimization search. Therefore, the microscopic depletion model developed here uses combined models of microscopic and macroscopic depletion. This is done by first performing microscopic depletions for a subset of possible loading patterns from which 'collapsed' macroscopic cross sections are obtained. The collapsed macroscopic cross sections inherently incorporate spectral history effects. Subsequently, the optimization calculations are done using the collapsed macroscopic cross sections. Using this approach allows maintenance of microscopic depletion level accuracy without substantial additional computing resources

  12. Active Polar Two-Fluid Macroscopic Dynamics

    Science.gov (United States)

    Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.

    2014-03-01

    We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.

  13. Statistical thermodynamics understanding the properties of macroscopic systems

    CERN Document Server

    Fai, Lukong Cornelius

    2012-01-01

    Basic Principles of Statistical PhysicsMicroscopic and Macroscopic Description of StatesBasic PostulatesGibbs Ergodic AssumptionGibbsian EnsemblesExperimental Basis of Statistical MechanicsDefinition of Expectation ValuesErgodic Principle and Expectation ValuesProperties of Distribution FunctionRelative Fluctuation of an Additive Macroscopic ParameterLiouville TheoremGibbs Microcanonical EnsembleMicrocanonical Distribution in Quantum MechanicsDensity MatrixDensity Matrix in Energy RepresentationEntropyThermodynamic FunctionsTemperatureAdiabatic ProcessesPressureThermodynamic IdentityLaws of Th

  14. Macroscopic erosion of divertor and first wall armour in future tokamaks

    Science.gov (United States)

    Würz, H.; Bazylev, B.; Landman, I.; Pestchanyi, S.; Safronov, V.

    2002-12-01

    Sputtering, evaporation and macroscopic erosion determine the lifetime of the 'in vessel' armour materials CFC, tungsten and beryllium presently under discussion for future tokamaks. For CFC armour macroscopic erosion means brittle destruction and dust formation whereas for metallic armour melt layer erosion by melt motion and droplet splashing. Available results on macroscopic erosion from hot plasma and e-beam simulation experiments and from tokamaks are critically evaluated and a comprehensive discussion of experimental and numerical macroscopic erosion and its extrapolation to future tokamaks is given. Shielding of divertor armour materials by their own vapor exists during plasma disruptions. The evolving plasma shield protects the armour from high heat loads, absorbs the incoming energy and reradiates it volumetrically thus reducing drastically the deposited energy. As a result, vertical target erosion by vaporization turns out to be of the order of a few microns per disruption event and macroscopic erosion becomes the dominant erosion source.

  15. Macroscopic erosion of divertor and first wall armour in future tokamaks

    International Nuclear Information System (INIS)

    Wuerz, H.; Bazylev, B.; Landman, I.; Pestchanyi, S.; Safronov, V.

    2002-01-01

    Sputtering, evaporation and macroscopic erosion determine the lifetime of the 'in vessel' armour materials CFC, tungsten and beryllium presently under discussion for future tokamaks. For CFC armour macroscopic erosion means brittle destruction and dust formation whereas for metallic armour melt layer erosion by melt motion and droplet splashing. Available results on macroscopic erosion from hot plasma and e-beam simulation experiments and from tokamaks are critically evaluated and a comprehensive discussion of experimental and numerical macroscopic erosion and its extrapolation to future tokamaks is given. Shielding of divertor armour materials by their own vapor exists during plasma disruptions. The evolving plasma shield protects the armour from high heat loads, absorbs the incoming energy and reradiates it volumetrically thus reducing drastically the deposited energy. As a result, vertical target erosion by vaporization turns out to be of the order of a few microns per disruption event and macroscopic erosion becomes the dominant erosion source

  16. Macroscopic and non-linear quantum games

    International Nuclear Information System (INIS)

    Aerts, D.; D'Hooghe, A.; Posiewnik, A.; Pykacz, J.

    2005-01-01

    Full text: We consider two models of quantum games. The first one is Marinatto and Weber's 'restricted' quantum game in which only the identity and the spin-flip operators are used. We show that this quantum game allows macroscopic mechanistic realization with the use of a version of the 'macroscopic quantum machine' described by Aerts already in 1980s. In the second model we use non-linear quantum state transformations which operate on points of spin-1/2 on the Bloch sphere and which can be used to distinguish optimally between two non-orthogonal states. We show that efficiency of these non-linear strategies out-perform any linear ones. Some hints on the possible theory of non-linear quantum games are given. (author)

  17. Macroscopic quantum phenomena from the large N perspective

    International Nuclear Information System (INIS)

    Chou, C H; Hu, B L; Subasi, Y

    2011-01-01

    Macroscopic quantum phenomena (MQP) is a relatively new research venue, with exciting ongoing experiments and bright prospects, yet with surprisingly little theoretical activity. What makes MQP intellectually stimulating is because it is counterpoised against the traditional view that macroscopic means classical. This simplistic and hitherto rarely challenged view need be scrutinized anew, perhaps with much of the conventional wisdoms repealed. In this series of papers we report on a systematic investigation into some key foundational issues of MQP, with the hope of constructing a viable theoretical framework for this new endeavour. The three major themes discussed in these three essays are the large N expansion, the correlation hierarchy and quantum entanglement for systems of 'large' sizes, with many components or degrees of freedom. In this paper we use different theories in a variety of contexts to examine the conditions or criteria whereby a macroscopic quantum system may take on classical attributes, and, more interestingly, that it keeps some of its quantum features. The theories we consider here are, the O(N) quantum mechanical model, semiclassical stochastic gravity and gauge / string theories; the contexts include that of a 'quantum roll' in inflationary cosmology, entropy generation in quantum Vlasov equation for plasmas, the leading order and next-to-leading order large N behaviour, and hydrodynamic / thermodynamic limits. The criteria for classicality in our consideration include the use of uncertainty relations, the correlation between classical canonical variables, randomization of quantum phase, environment-induced decoherence, decoherent history of hydrodynamic variables, etc. All this exercise is to ask only one simple question: Is it really so surprising that quantum features can appear in macroscopic objects? By examining different representative systems where detailed theoretical analysis has been carried out, we find that there is no a priori

  18. OPEN AND DISTANCE LEARNING: An Emerging System for Alternative Higher Education in Nigeria

    Directory of Open Access Journals (Sweden)

    Emmanuel Chisa IBARA

    2008-01-01

    Full Text Available ABSTRACT Nigeria no doubt is at the threshold of transformation in information and communication technology (ICT, a development that should be utilized to meet the demand of time, especially in the education sector. One area in which ICT has made enormous impact is in open and distance learning. Undoubtedly, the demand on the conventional higher education delivery system in the country is high and ever increasing that the system at the moment is unable to accommodate the number of candidates seeking admission. This paper, therefore, attempts some definition of open and distance learning as well as its practices with a view to advancing the prospects of open and distance as alternative system of higher education in Nigeria. Furthermore, it concludes that considering the level of infrastructural decay in the conventional higher education system, open and distance learning as an alternative system of education has become imperative for the realization of the primary objectives of higher education in Nigeria. Recommendations that will enhance the prospects of open and distance learning as viable alternative system of higher education were proffered.

  19. Macroscopic models for traffic safety.

    NARCIS (Netherlands)

    Oppe, S.

    1988-01-01

    Recently there has been an increased interest in the application of macroscopic models for the description of developments in traffic safety. A discussion was started on the causes of the sudden decrease in the number of fatal and injury accidents after 1974. Before that time these numbers had

  20. Chemical Distances for Percolation of Planar Gaussian Free Fields and Critical Random Walk Loop Soups

    Science.gov (United States)

    Ding, Jian; Li, Li

    2018-06-01

    We initiate the study on chemical distances of percolation clusters for level sets of two-dimensional discrete Gaussian free fields as well as loop clusters generated by two-dimensional random walk loop soups. One of our results states that the chemical distance between two macroscopic annuli away from the boundary for the random walk loop soup at the critical intensity is of dimension 1 with positive probability. Our proof method is based on an interesting combination of a theorem of Makarov, isomorphism theory, and an entropic repulsion estimate for Gaussian free fields in the presence of a hard wall.

  1. Thermal activation and macroscopic quantum tunneling in a DC SQUID

    International Nuclear Information System (INIS)

    Sharifi, F.; Gavilano, J.L.; VanHarlingen, D.J.

    1989-01-01

    The authors report measurements of the transition rate from metastable minima in the two-dimensional 1 of a dc SQUID as a function of applied flux temperature. The authors observe a crossover from energy-activated escape to macroscopic quantum tunneling at a critical temperature. The macroscopic quantum tunneling rate is substantially reduced by damping, and also broadens the crossover region. Most interestingly, the authors observe thermal rates that are suppressed from those predicted by the two-dimensional thermal activation model. The authors discuss possible explanations for this based on the interaction of the macroscopic degree of freedom in the device and energy level effects

  2. Averaging problem in general relativity, macroscopic gravity and using Einstein's equations in cosmology.

    Science.gov (United States)

    Zalaletdinov, R. M.

    1998-04-01

    The averaging problem in general relativity is briefly discussed. A new setting of the problem as that of macroscopic description of gravitation is proposed. A covariant space-time averaging procedure is described. The structure of the geometry of macroscopic space-time, which follows from averaging Cartan's structure equations, is described and the correlation tensors present in the theory are discussed. The macroscopic field equations (averaged Einstein's equations) derived in the framework of the approach are presented and their structure is analysed. The correspondence principle for macroscopic gravity is formulated and a definition of the stress-energy tensor for the macroscopic gravitational field is proposed. It is shown that the physical meaning of using Einstein's equations with a hydrodynamic stress-energy tensor in looking for cosmological models means neglecting all gravitational field correlations. The system of macroscopic gravity equations to be solved when the correlations are taken into consideration is given and described.

  3. Investigation of dissipative forces near macroscopic media

    International Nuclear Information System (INIS)

    Becker, R.S.

    1982-12-01

    The interaction of classical charged particles with the fields they induce in macroscopic dielectric media is investigated. For 10- to 1000-eV electrons, the angular perturbation of the trajectory by the image potential for surface impact parameters of 50 to 100 A is shown to be of the order of 0.001 rads over a distance of 100 A. The energy loss incurred by low-energy particles due to collective excitations such as surface plasmons is shown to be observable with a transition probability of 0.01 to 0.001 (Becker, et al., 1981b). The dispersion of real surface plasmon modes in planar and cylindrical geometries is discussed and is derived for pinhole geometry described in terms of a single-sheeted hyperboloid of revolution. An experimental apparatus for the measurement of collective losses for medium-energy electrons translating close to a dielectric surface is described and discussed. Data showing such losses at electron energies of 500 to 900 eV in silver foils containing many small apertures are presented and shown to be in good agreement with classical stopping power calculations and quantum mechanical calculations carried out in the low-velocity limit. The data and calculations are compared and contrasted with earlier transmission and reflection measurements, and the course of further investigation is discussed

  4. The Proell Effect: A Macroscopic Maxwell's Demon

    Science.gov (United States)

    Rauen, Kenneth M.

    2011-12-01

    Maxwell's Demon is a legitimate challenge to the Second Law of Thermodynamics when the "demon" is executed via the Proell effect. Thermal energy transfer according to the Kinetic Theory of Heat and Statistical Mechanics that takes place over distances greater than the mean free path of a gas circumvents the microscopic randomness that leads to macroscopic irreversibility. No information is required to sort the particles as no sorting occurs; the entire volume of gas undergoes the same transition. The Proell effect achieves quasi-spontaneous thermal separation without sorting by the perturbation of a heterogeneous constant volume system with displacement and regeneration. The classical analysis of the constant volume process, such as found in the Stirling Cycle, is incomplete and therefore incorrect. There are extra energy flows that classical thermo does not recognize. When a working fluid is displaced across a regenerator with a temperature gradient in a constant volume system, complimentary compression and expansion work takes place that transfers energy between the regenerator and the bulk gas volumes of the hot and cold sides of the constant volume system. Heat capacity at constant pressure applies instead of heat capacity at constant volume. The resultant increase in calculated, recyclable energy allows the Carnot Limit to be exceeded in certain cycles. Super-Carnot heat engines and heat pumps have been designed and a US patent has been awarded.

  5. Equation-Free Analysis of Macroscopic Behavior in Traffic and Pedestrian Flow

    DEFF Research Database (Denmark)

    Marschler, Christian; Sieber, Jan; Hjorth, Poul G.

    2014-01-01

    Equation-free methods make possible an analysis of the evolution of a few coarse-grained or macroscopic quantities for a detailed and realistic model with a large number of fine-grained or microscopic variables, even though no equations are explicitly given on the macroscopic level. This will fac......Equation-free methods make possible an analysis of the evolution of a few coarse-grained or macroscopic quantities for a detailed and realistic model with a large number of fine-grained or microscopic variables, even though no equations are explicitly given on the macroscopic level....... This will facilitate a study of how the model behavior depends on parameter values including an understanding of transitions between different types of qualitative behavior. These methods are introduced and explained for traffic jam formation and emergence of oscillatory pedestrian counter flow in a corridor...

  6. Bimodality in macroscopic dynamics of nuclear fission

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Salamatin, V.S.; Strteltsova, O.I.; Molodtsova, I.V.; Podgainy, D.V.; )

    2000-01-01

    The elastodynamic collective model of nuclear fission is outlined whose underlying idea is that the stiff structure of nuclear shells imparts to nucleus properties typical of a small piece of an elastic solid. Emphasis is placed on the macroscopic dynamics of nuclear deformations resulting in fission by two energetically different modes. The low-energy S-mode is the fission due to disruption of elongated quadrupole spheroidal shape. The characteristic features of the high-energy T-mode of division by means of torsional shear deformations is the compact scission configuration. Analytic and numerical estimates for the macroscopic fission-barrier heights are presented, followed by discussion of fingerprints of the above dynamical bimodality in the available data [ru

  7. Macroscopic transport by synthetic molecular machines

    NARCIS (Netherlands)

    Berna, J; Leigh, DA; Lubomska, M; Mendoza, SM; Perez, EM; Rudolf, P; Teobaldi, G; Zerbetto, F

    Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with - and perform physical tasks in - the macroscopic world represents a significant hurdle

  8. Stochastic and Macroscopic Thermodynamics of Strongly Coupled Systems

    Directory of Open Access Journals (Sweden)

    Christopher Jarzynski

    2017-01-01

    Full Text Available We develop a thermodynamic framework that describes a classical system of interest S that is strongly coupled to its thermal environment E. Within this framework, seven key thermodynamic quantities—internal energy, entropy, volume, enthalpy, Gibbs free energy, heat, and work—are defined microscopically. These quantities obey thermodynamic relations including both the first and second law, and they satisfy nonequilibrium fluctuation theorems. We additionally impose a macroscopic consistency condition: When S is large, the quantities defined within our framework scale up to their macroscopic counterparts. By satisfying this condition, we demonstrate that a unifying framework can be developed, which encompasses both stochastic thermodynamics at one end, and macroscopic thermodynamics at the other. A central element in our approach is a thermodynamic definition of the volume of the system of interest, which converges to the usual geometric definition when S is large. We also sketch an alternative framework that satisfies the same consistency conditions. The dynamics of the system and environment are modeled using Hamilton’s equations in the full phase space.

  9. Macroscopic realism and quantum measurement: measurers as a natural kind

    International Nuclear Information System (INIS)

    Jaeger, Gregg

    2014-01-01

    The notion of macroscopic realism has been used in attempts to achieve consistency between physics and everyday experience and to locate some boundary between the realms of classical mechanics and quantum meachanics. Its ostensibly underlying conceptual components, realism and macroscopicity, have most often appeared in the foundations of physics in relation to quantum measurement: reality became a prominent topic of discussion in quantum physics after the notion of element of reality was defined and used by Einstein, Podolsky and Rosen in that context, and macroscopicity is often explicitly assumed to be an essential property of any measuring apparatus. However, macroscopicity turns out to be a rather vaguer and less consistently understood notion than typically assumed by physicists who have not explicitly explored the notion themselves. For this reason, it behooves those investigating the foundations of quantum mechanics from a realist perspective to look for alternative notions for grounding quantum measurement. Here, the merits of treating the measuring instrument as a ‘natural kind’ as a means of avoiding anthropocentrism in the foundations of quantum measurement are pointed out as a means of advancing quantum measurement theory. (paper)

  10. Role of stochastic fluctuations in the charge on macroscopic particles in dusty plasmas

    International Nuclear Information System (INIS)

    Vaulina, O.S.; Nefedov, A.P.; Petrov, O.F.; Khrapak, S.A.

    1999-01-01

    The currents which charge a macroscopic particle placed in a plasma consist of discrete charges; hence, the charge can undergo random fluctuations about its equilibrium value. These random fluctuations can be described by a simple model which, if the mechanisms for charging of macroscopic particles are known, makes it possible to determine the dependence of the temporal and amplitude characteristics of the fluctuations on the plasma parameters. This model can be used to study the effect of charge fluctuations on the dynamics of the macroscopic particles. The case of so-called plasma-dust crystals (i.e., highly ordered structures which develop because of strong interactions among macroscopic particles) in laboratory gaseous discharge plasmas is considered as an example. The molecular dynamics method shows that, under certain conditions, random fluctuations in the charge can effectively heat a system of macroscopic particles, thereby impeding the ordering process

  11. Bell-inequality tests with macroscopic entangled states of light

    Energy Technology Data Exchange (ETDEWEB)

    Stobinska, M. [Max Planck Institute for the Science of Light, Erlangen (Germany); Institute for Theoretical Physics II, Erlangen-Nuernberg University, Erlangen (Germany); Sekatski, P.; Gisin, N. [Group of Applied Physics, University of Geneva, Geneva (Switzerland); Buraczewski, A. [Faculty of Electronics and Information Technology, Warsaw University of Technology, Warsaw (Poland); Leuchs, G. [Max Planck Institute for the Science of Light, Erlangen (Germany); Institute for Optics, Information and Photonics, Erlangen-Nuernberg University, Erlangen (Germany)

    2011-09-15

    Quantum correlations may violate the Bell inequalities. Most experimental schemes confirming this prediction have been realized in all-optical Bell tests suffering from the detection loophole. Experiments which simultaneously close this loophole and the locality loophole are highly desirable and remain challenging. An approach to loophole-free Bell tests is based on amplification of the entangled photons (i.e., on macroscopic entanglement), for which an optical signal should be easy to detect. However, the macroscopic states are partially indistinguishable by classical detectors. An interesting idea to overcome these limitations is to replace the postselection by an appropriate preselection immediately after the amplification. This is in the spirit of state preprocessing revealing hidden nonlocality. Here, we examine one of the possible preselections, but the presented tools can be used for analysis of other schemes. Filtering methods making the macroscopic entanglement useful for Bell tests and quantum protocols are the subject of an intensive study in the field nowadays.

  12. Macroscopic quantum electrodynamics of high-Q cavities

    International Nuclear Information System (INIS)

    Khanbekyan, Mikayel

    2009-01-01

    In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the possible

  13. Observation of squeezed light and quantum description of the macroscopical body movement

    International Nuclear Information System (INIS)

    Bykov, V.P.

    1992-01-01

    The possibility of a nondemolition measurement (observation) of macroscopical objects in widely distributed quantum mechanical states arises from the fact of the squezzed light observation. Macroscopical bodies -bodies of classical mechanics - are usually in states with narrow wave packets. It is shown that the absence of macroscopical bodies in widely distributed states is due to the focusing influence of the body's gravity field on its wave packet. An evidence that the gravity is essential in the classic limit of quantum mechanics is given. (author). 14 refs, 7 figs

  14. Thoracic surgery in solving enormous elevation of the left hemidiaphragm

    Directory of Open Access Journals (Sweden)

    Cvijanović Vlado

    2007-01-01

    Full Text Available Background. Acquired elevation of the diaphragm is mostly the result of phrenic nerve paralysis, some of thoracic and abdominal patological states, and also some of neuromuscular diseases. Surgical treatment is rarely performed and is indicated when lung compression produces disabilitating dyspnea, and includes plication of diaphragm. The goal of this case report has been to show completely documented diagnostic procedures and surgical treatment one of rare pathological condition. Case report. A 62-year-old patient was admitted to our clinic because of surgical treatment of the enormous elevation of the left hemidiaphragm. After thoracotomy and plication of the bulging diaphragm, lung compression did not exist any more and mediastinum went back in the normal position. Conclusion. Elevation of the diaphragm rarely demands surgical correction. When it is complicated with lung compression and disabilitating dyspnea, surgical treatment has extremely useful functional effect.

  15. Macroscopic quantum waves in non local theories

    International Nuclear Information System (INIS)

    Ventura, I.

    1979-01-01

    By means of an expansion in the density, it is shown that Macroscopic Quantum Waves also appear in non local theories. This result reinforces the conjecture that these waves should exist in liquid 4 He [pt

  16. In regard to the question of macroscopic differential diagnosis of alcoholic and dilated cardiomyopathy

    Directory of Open Access Journals (Sweden)

    O. V. Sokolova

    2014-01-01

    Full Text Available The differential diagnosis of alcoholic and dilated cardiomyopathy according to the macroscopic data is represented in the article. The identity of macroscopic changes of heart, related to alcoholic and dilated cardiomyopathy, cannot diagnose these diseases based on the macroscopic characteristics; especially if there are no other visceral manifestations typical for chronic alcoholism.

  17. Macroscopic and radiographic examination of proximal root surface caries

    International Nuclear Information System (INIS)

    Nordenram, G.; Bergvist, A.; Johnson, G.; Henriksen, C.O.; Anneroth, G.

    1988-01-01

    The purpose of the study was to compare macroscopic and radiographic examination of proximal root surface caries of extracted teeth from patients aged 65-95 years. Although the study conditions for macroscopic and radiographic diagnosis favored more sensitive evaluations than routine clinical conditions, there was a 24% disagreement in diagnosis. This finding indicates that under routine clinical conditions it is difficult to register with certainty all superficial root carious lesions. Even in the absence of clinically detectable root surface caries, preventive measures should be considered for elderly people with exposed root surfaces

  18. Behavior and mechanism of Ni(II) uptake on MnO2 by a combination of macroscopic and EXAFS investigation

    International Nuclear Information System (INIS)

    Guodong Sheng; Jiang Sheng; Shitong Yang; Ju Hu; Xiangke Wang

    2011-01-01

    The effects of pH, ionic strength, competing ions and initial metal concentrations on the uptake behavior and mechanism of radioactive Ni(II) onto MnO 2 was investigated using a combination of classical macroscopic methods and the extended X-ray absorption fine structure (EXAFS) spectroscopy technique. The results indicated that the uptake of Ni(II) on MnO 2 is obviously dependent on pH but independent of ionic strength, which suggested that the uptake of Ni(II) onto MnO 2 is attributed to an inner-sphere surface complex rather than an outer-sphere surface complex. EXAFS analysis shows that the hydrated Ni(II) is adsorbed through six-fold coordination with an average Ni-O interatomic distance of 2.04 ± 0.01 A. It can be inferred from the EXAFS analysis that the inner-sphere surface complex of Ni(II) onto MnO 2 is involved in both edge-sharing and corner-sharing linkages. Both the macroscopic uptake data and the molecular level evidence of Ni(II) surface speciation at the MnO 2 -water interfaces should be factored into better prediction of the bioavailability and mobility of Ni(II) in soil and water environment. (author)

  19. Macroscopic quantum waves in non local theories

    International Nuclear Information System (INIS)

    Ventura, I.

    1979-01-01

    By means of an expansion in the density, it is shown that Macroscopic Quantum Waves also apear in non local theories. This result reinforces the conjecture that these waves should exist in liquid 4 He. (Author) [pt

  20. Extended Macroscopic Study of Dilute Gas Flow within a Microcavity

    Directory of Open Access Journals (Sweden)

    Mohamed Hssikou

    2016-01-01

    Full Text Available The behaviour of monatomic and dilute gas is studied in the slip and early transition regimes using the extended macroscopic theory. The gas is confined within a two-dimensional microcavity where the longitudinal sides are in the opposite motion with constant velocity ±Uw. The microcavity walls are kept at the uniform and reference temperature T0. Thus, the gas flow is transported only by the shear stress induced by the motion of upper and lower walls. From the macroscopic point of view, the regularized 13-moment equations of Grad, R13, are solved numerically. The macroscopic gas proprieties are studied for different values of the so-called Knudsen number (Kn, which gives the gas-rarefaction degree. The results are compared with those obtained using the classical continuum theory of Navier-Stokes and Fourier (NSF.

  1. Hybrid methods for witnessing entanglement in a microscopic-macroscopic system

    International Nuclear Information System (INIS)

    Spagnolo, Nicolo; Vitelli, Chiara; Paternostro, Mauro; De Martini, Francesco; Sciarrino, Fabio

    2011-01-01

    We propose a hybrid approach to the experimental assessment of the genuine quantum features of a general system consisting of microscopic and macroscopic parts. We infer entanglement by combining dichotomic measurements on a bidimensional system and phase-space inference through the Wigner distribution associated with the macroscopic component of the state. As a benchmark, we investigate the feasibility of our proposal in a bipartite-entangled state composed of a single-photon and a multiphoton field. Our analysis shows that, under ideal conditions, maximal violation of a Clauser-Horne-Shimony-Holt-based inequality is achievable regardless of the number of photons in the macroscopic part of the state. The difficulty in observing entanglement when losses and detection inefficiency are included can be overcome by using a hybrid entanglement witness that allows efficient correction for losses in the few-photon regime.

  2. Hybrid methods for witnessing entanglement in a microscopic-macroscopic system

    Energy Technology Data Exchange (ETDEWEB)

    Spagnolo, Nicolo [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Vitelli, Chiara [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Paternostro, Mauro [School of Mathematics and Physics, Queen' s University, BT 7 1NN Belfast (United Kingdom); De Martini, Francesco [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Accademia Nazionale dei Lincei, via della Lungara 10, I-00165 Roma (Italy); Sciarrino, Fabio [Dipartimento di Fisica, Sapienza Universita di Roma, Piazzale Aldo Moro 5, I-00185 Roma (Italy); Istituto Nazionale di Ottica, Consiglio Nazionale delle Ricerche (INO-CNR), largo E. Fermi 6, I-50125 Firenze (Italy)

    2011-09-15

    We propose a hybrid approach to the experimental assessment of the genuine quantum features of a general system consisting of microscopic and macroscopic parts. We infer entanglement by combining dichotomic measurements on a bidimensional system and phase-space inference through the Wigner distribution associated with the macroscopic component of the state. As a benchmark, we investigate the feasibility of our proposal in a bipartite-entangled state composed of a single-photon and a multiphoton field. Our analysis shows that, under ideal conditions, maximal violation of a Clauser-Horne-Shimony-Holt-based inequality is achievable regardless of the number of photons in the macroscopic part of the state. The difficulty in observing entanglement when losses and detection inefficiency are included can be overcome by using a hybrid entanglement witness that allows efficient correction for losses in the few-photon regime.

  3. Macroscopic balance equations for two-phase flow models

    International Nuclear Information System (INIS)

    Hughes, E.D.

    1979-01-01

    The macroscopic, or overall, balance equations of mass, momentum, and energy are derived for a two-fluid model of two-phase flows in complex geometries. These equations provide a base for investigating methods of incorporating improved analysis methods into computer programs, such as RETRAN, which are used for transient and steady-state thermal-hydraulic analyses of nuclear steam supply systems. The equations are derived in a very general manner so that three-dimensional, compressible flows can be analysed. The equations obtained supplement the various partial differential equation two-fluid models of two-phase flow which have recently appeared in the literature. The primary objective of the investigation is the macroscopic balance equations. (Auth.)

  4. The mirrors model: macroscopic diffusion without noise or chaos

    International Nuclear Information System (INIS)

    Chiffaudel, Yann; Lefevere, Raphaël

    2016-01-01

    Before stating our main result, we first clarify through classical examples the status of the laws of macroscopic physics as laws of large numbers. We next consider the mirrors model in a finite d-dimensional domain and connected to particles reservoirs at fixed chemical potentials. The dynamics is purely deterministic and non-ergodic but takes place in a random environment. We study the macroscopic current of particles in the stationary regime. We show first that when the size of the system goes to infinity, the behaviour of the stationary current of particles is governed by the proportion of orbits crossing the system. This allows us to formulate a necessary and sufficient condition on the distribution of the set of orbits that ensures the validity of Fick’s law. Using this approach, we show that Fick’s law relating the stationary macroscopic current of particles to the concentration difference holds in three dimensions and above. The negative correlations between crossing orbits play a key role in the argument. (letter)

  5. Macroscopic description of the limb muscles of Tupinambis merianae

    Directory of Open Access Journals (Sweden)

    Juliana Barbosa Casals

    2012-03-01

    Full Text Available Tegu lizard (Tupinambis merianae belongs to the Teiidae family. It is distributed throughout the Americas, with many species, including Brazilian ones. They are from the Tupinambis genus, the largest representatives of the Teiidae family. For this study three animals (run over coming from donation were used. The dissected lizards were fixed in 10%, formaldehyde, and the macroscopic analysis was carried out in a detailed and photo documented way, keeping the selected structures “in situ”. This paper had as its main aim contributing to the macroscopic description of the chest myology, as well as the thoracic and pelvic limbs of the lizard T. merianae. The results obtained from this research were compared to authors who have studied animals from the same Reptilia class. Thus, we conclude that our macroscopic results are similar to those already described by the researchers Hildebrand (1995, Moro and Abdala (2004 and Abdala and Diogo (2010. We should highlight that the knowledge on anatomy has importance and applications to various areas within Biology, contributing in a substantial way to the areas of human health and technology.

  6. Macroscopic phase-resetting curves for spiking neural networks

    Science.gov (United States)

    Dumont, Grégory; Ermentrout, G. Bard; Gutkin, Boris

    2017-10-01

    The study of brain rhythms is an open-ended, and challenging, subject of interest in neuroscience. One of the best tools for the understanding of oscillations at the single neuron level is the phase-resetting curve (PRC). Synchronization in networks of neurons, effects of noise on the rhythms, effects of transient stimuli on the ongoing rhythmic activity, and many other features can be understood by the PRC. However, most macroscopic brain rhythms are generated by large populations of neurons, and so far it has been unclear how the PRC formulation can be extended to these more common rhythms. In this paper, we describe a framework to determine a macroscopic PRC (mPRC) for a network of spiking excitatory and inhibitory neurons that generate a macroscopic rhythm. We take advantage of a thermodynamic approach combined with a reduction method to simplify the network description to a small number of ordinary differential equations. From this simplified but exact reduction, we can compute the mPRC via the standard adjoint method. Our theoretical findings are illustrated with and supported by numerical simulations of the full spiking network. Notably our mPRC framework allows us to predict the difference between effects of transient inputs to the excitatory versus the inhibitory neurons in the network.

  7. Macroscopic phase-resetting curves for spiking neural networks.

    Science.gov (United States)

    Dumont, Grégory; Ermentrout, G Bard; Gutkin, Boris

    2017-10-01

    The study of brain rhythms is an open-ended, and challenging, subject of interest in neuroscience. One of the best tools for the understanding of oscillations at the single neuron level is the phase-resetting curve (PRC). Synchronization in networks of neurons, effects of noise on the rhythms, effects of transient stimuli on the ongoing rhythmic activity, and many other features can be understood by the PRC. However, most macroscopic brain rhythms are generated by large populations of neurons, and so far it has been unclear how the PRC formulation can be extended to these more common rhythms. In this paper, we describe a framework to determine a macroscopic PRC (mPRC) for a network of spiking excitatory and inhibitory neurons that generate a macroscopic rhythm. We take advantage of a thermodynamic approach combined with a reduction method to simplify the network description to a small number of ordinary differential equations. From this simplified but exact reduction, we can compute the mPRC via the standard adjoint method. Our theoretical findings are illustrated with and supported by numerical simulations of the full spiking network. Notably our mPRC framework allows us to predict the difference between effects of transient inputs to the excitatory versus the inhibitory neurons in the network.

  8. The origins of macroscopic quantum coherence in high temperature superconductivity

    International Nuclear Information System (INIS)

    Turner, Philip; Nottale, Laurent

    2015-01-01

    Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new

  9. Precision Distances with the Tip of the Red Giant Branch Method

    Science.gov (United States)

    Beaton, Rachael Lynn; Carnegie-Chicago Hubble Program Team

    2018-01-01

    The Carnegie-Chicago Hubble Program aims to construct a distance ladder that utilizes old stellar populations in the outskirts of galaxies to produce a high precision measurement of the Hubble Constant that is independent of Cepheids. The CCHP uses the tip of the red giant branch (TRGB) method, which is a statistical measurement technique that utilizes the termination of the red giant branch. Two innovations combine to make the TRGB a competitive route to the Hubble Constant (i) the large-scale measurement of trigonometric parallax by the Gaia mission and (ii) the development of both precise and accurate means of determining the TRGB in both nearby (~1 Mpc) and distant (~20 Mpc) galaxies. Here I will summarize our progress in developing these standardized techniques, focusing on both our edge-detection algorithm and our field selection strategy. Using these methods, the CCHP has determined equally precise (~2%) distances to galaxies in the Local Group (< 1 Mpc) and across the Local Volume (< 20 Mpc). The TRGB is, thus, an incredibly powerful and straightforward means to determine distances to galaxies of any Hubble Type and, thus, has enormous potential for putting any number of astrophyiscal phenomena on absolute units.

  10. Solvable Quantum Macroscopic Motions and Decoherence Mechanisms in Quantum Mechanics on Nonstandard Space

    Science.gov (United States)

    Kobayashi, Tsunehiro

    1996-01-01

    Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.

  11. Information and self-organization a macroscopic approach to complex systems

    CERN Document Server

    Haken, Hermann

    1988-01-01

    Complex systems are ubiquitous, and practically all branches of science ranging from physics through chemistry and biology to economics and sociology have to deal with them. In this book we wish to present concepts and methods for dealing with complex systems from a unifying point of view. Therefore it may be of inter­ est to graduate students, professors and research workers who are concerned with theoretical work in the above-mentioned fields. The basic idea for our unified ap­ proach sterns from that of synergetics. In order to find unifying principles we shall focus our attention on those situations where a complex system changes its macroscopic behavior qualitatively, or in other words, where it changes its macroscopic spatial, temporal or functional structure. Until now, the theory of synergetics has usually begun with a microscopic or mesoscopic description of a complex system. In this book we present an approach which starts out from macroscopic data. In particular we shall treat systems that acquir...

  12. Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates

    Science.gov (United States)

    Yan, Zhifeng; Liu, Chongxuan; Liu, Yuanyuan; Bailey, Vanessa L.

    2017-11-01

    Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical properties was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.

  13. Not an Oxymoron: Some X-ray Binary Pulsars with Enormous Spinup Rates Reveal Weak Magnetic Fields

    Science.gov (United States)

    Christodoulou, D. M.; Laycock, S. G. T.; Kazanas, D.

    2018-05-01

    Three high-mass X-ray binaries have been discovered recently exhibiting enormous spinup rates. Conventional accretion theory predicts extremely high surface dipolar magnetic fields that we believe are unphysical. Instead, we propose quite the opposite scenario: some of these pulsars exhibit weak magnetic fields, so much so that their magnetospheres are crushed by the weight of inflowing matter. The enormous spinup rate is achieved before inflowing matter reaches the pulsar's surface as the penetrating inner disk transfers its excess angular momentum to the receding magnetosphere which, in turn, applies a powerful spinup torque to the pulsar. This mechanism also works in reverse: it spins a pulsar down when the magnetosphere expands beyond corotation and finds itself rotating faster than the accretion disk which then exerts a powerful retarding torque to the magnetic field and to the pulsar itself. The above scenaria cannot be accommodated within the context of neutron-star accretion processes occurring near spin equilibrium, thus they constitute a step toward a new theory of extreme (far from equilibrium) accretion phenomena.

  14. Effects of energy, distance and orientation on electron transfer rates studied by pulse radiolysis in organic media

    International Nuclear Information System (INIS)

    Miller, J.R.

    1987-01-01

    In the past few years the methods of radiation chemistry in organic media have made an enormous change in how we view electron transfer processes, as these media have proved the most useful for studying long distance electron transfer between molecules. This paper briefly summarizes a few of the aspects of this area and discusses some of the attributes and limitations of radiation tehniques, particularly pulse radiolysis, in organic solvents. 14 refs., 2 figs

  15. On quantum mechanics for macroscopic systems

    International Nuclear Information System (INIS)

    Primas, H.

    1992-01-01

    The parable of Schroedinger's cat may lead to several up-to date questions: how to treat open systems in quantum theory, how to treat thermodynamically irreversible processes in the quantum mechanics framework, how to explain, following the quantum theory, the existence, phenomenologically evident, of classical observables, what implies the predicted existence by the quantum theory of non localized macroscopic material object ?

  16. Macroscopic quantum mechanics: theory and experimental concepts of optomechanics

    International Nuclear Information System (INIS)

    Chen Yanbei

    2013-01-01

    Rapid experimental progress has recently allowed the use of light to prepare macroscopic mechanical objects into nearly pure quantum states. This research field of quantum optomechanics opens new doors towards testing quantum mechanics, and possibly other laws of physics, in new regimes. In the first part of this article, I will review a set of techniques of quantum measurement theory that are often used to analyse quantum optomechanical systems. Some of these techniques were originally designed to analyse how a classical driving force passes through a quantum system, and can eventually be detected with an optimal signal-to-noise ratio—while others focus more on the quantum-state evolution of a mechanical object under continuous monitoring. In the second part of this article, I will review a set of experimental concepts that will demonstrate quantum mechanical behaviour of macroscopic objects—quantum entanglement, quantum teleportation and the quantum Zeno effect. Taking the interplay between gravity and quantum mechanics as an example, I will review a set of speculations on how quantum mechanics can be modified for macroscopic objects, and how these speculations—and their generalizations—might be tested by optomechanics. (invited review)

  17. Plasmonic direct writing lithography with a macroscopical contact probe

    Science.gov (United States)

    Huang, Yuerong; Liu, Ling; Wang, Changtao; Chen, Weidong; Liu, Yunyue; Li, Ling

    2018-05-01

    In this work, we design a plasmonic direct writing lithography system with a macroscopical contact probe to achieve nanometer scale spots. The probe with bowtie-shaped aperture array adopts spring hinge and beam deflection method (BDM) to realize near-field lithography. Lithography results show that a macroscopical plasmonic contact probe can achieve a patterning resolution of around 75 nm at 365 nm wavelength, and demonstrate that the lithography system is promising for practical applications due to beyond the diffraction limit, low cost, and simplification of system configuration. CST calculations provide a guide for the design of recording structure and the arrangement of placing polarizer.

  18. Fluctuations in macroscopically agitated plasma:quasiparticles and effective temperature

    International Nuclear Information System (INIS)

    Sosenko, P.P.; Gresillon, D.

    1994-01-01

    Fluctuations in the plasma, in which macroscopic fluid-like motion is agitated due to large-scale and low-frequency electro-magnetic fields, are studied. Such fields can be produced by external factors or internally, for example due to turbulence. Fluctuation spectral distributions are calculated with regard to the renormalization of the transition probability for a test-particle and of the test-particle shielding. If the correlation length for the random fluid-like motion is large as compared to the fluctuation scale lengths, then the fluctuation spectral distributions can be explained in terms of quasiparticles originating from macroscopic plasma agitation and of an effective temperature

  19. Macroscopic description of isoscalar giant multipole resonances

    International Nuclear Information System (INIS)

    Nix, J.R.; Sierk, A.J.

    1980-01-01

    On the basis of a simple macroscopic model, we calculate the isoscalar giant-resonance energy as a function of mass number and multipole degree. The restoring force is determined from the distortion of the Fermi surface, and the inertia is determined for the incompressible, irrotational flow of nucleons with unit effective mass. With no adjustable parameters, the resulting closed expression reproduces correctly the available experimental data, namely the magnitude and dependence upon mass number of the giant quadrupole energy and the magnitude of the giant octupole energy for 208 Pb. We also calculate the isoscalar giant-resonance width as a function of mass number and multipole degree for various macroscopic damping mechanisms, including two-body viscosity, one-body dissipation, and modified one-body dissipation. None of these damping mechanisms reproduces correctly all features of the available experimental data, namely the magnitude and dependence upon mass number of the giant quadrupole width and the magnitude of the giant octupole width for 208 Pb

  20. Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks

    International Nuclear Information System (INIS)

    Leggett, A.J.; Garg, A.

    1985-01-01

    It is shown that, in the contect of an idealized ''macroscopic quantum coherence'' experiment, the prediction of quantum mechanics are incompattible with the conjunction of two general assimptions which are designated ''macroscopic realism'' and ''noninvasive measurability at the macroscopiclevel.'' The conditions under which quantum mechanics can be tested against these assumptions in a realistic experiment are discussed

  1. Distance Education and Corporate Training in Brazil: Regulations and interrelationships

    Directory of Open Access Journals (Sweden)

    Stella C. S. Porto

    2008-06-01

    Full Text Available Distance education in Brazil has evolved more slowly than distance education offerings in other developing countries. This is because all aspects of Brazil’s publicly-funded educational system are excessively regulated, highly bureaucratic, and tightly centralized. Such highly centralized bureaucracy and strict control has resulted in tremendous hurdles that work to thwart the adoption, provision, and diffusion of distance education. This is not good news: Like many developing countries, Brazil is also characterized by wide gaps in wealth distribution, with 20 percent of its population functionally illiterate and living below the poverty line. Distance education, therefore, could be used to help train Brazil’s citizens. Brazil’s emerging status in the global economy, however, is generating enormous opportunities that are fueling demand for change. For example, in their quest to be competitive in the emerging global economy, Brazil’s corporate sector has addressed this challenge by establishing corporate universities to train and educate their employees; much of this corporate training and education takes place online and at a distance. The established and emerging educational opportunities provided by Brazil’s corporate sector, in turn, is fuelling the demand for the provision of distance education throughout Brazil. Indeed, most Brazilians are ready for distance education. Many Brazilian households own television sets and cellular telephones, and its expanding communication infrastructure has capacity to support distance and continuing education models. Moreover, this capacity is currently being used by Brazil’s rapidly expanding corporate university sector. In spite of Brazil’s emergence in the global marketplace and its private-sector educational success stories, Brazil’s public educational institutions have not kept pace. This is due to Brazil’s long-standing stringent regulation of its public education sector. Recent

  2. Amazon soil charcoal: Pyrogenic carbon stock depends of ignition source distance and forest type in Roraima, Brazil.

    Science.gov (United States)

    da Silva Carvalho, Lidiany C; Fearnside, Philip M; Nascimento, Marcelo T; Barbosa, Reinaldo I

    2018-04-18

    Pyrogenic carbon (PyC) derived from charcoal particles (paleo + modern) deposited in the soil column has been little studied in the Amazon, and our understanding of the factors that control the spatial and vertical distribution of these materials in the region's forest soils is still unclear. The objective of this study was to test the effect of forest type and distance from the ignition source on the PyC stocks contained in macroscopic particles of soil charcoal (≥2 mm; 1 m depth) dispersed in ecotone forests of the northern Brazilian Amazon. Thirty permanent plots were set up near a site that had been occupied by pre-Columbian and by modern populations until the late 1970s. The sampled plots represent seasonal and ombrophilous forests that occur under different hydro-edaphic restrictions. Our results indicate that the largest PyC stock was spatially dependent on distance to the ignition source ( 50 cm) in seasonal forests was limited by hydro-edaphic impediments that restricted the occurrence of charcoal. These results suggest that PyC stocks derived from macroscopic charcoal particles in the soil of this Brazilian Amazon ecotone region are controlled by the distance from the ignition source of the fire, and that forest types with higher hydro-edaphic restrictions can inhibit formation and accumulation of charcoal. Making use of these distinctions reduces uncertainty and improves our ability to understand the variability of PyC stocks in forests with a history of fire in the Amazon. © 2018 John Wiley & Sons Ltd.

  3. Macroscopic charge quantization in single-electron devices

    NARCIS (Netherlands)

    Burmistrov, I.S.; Pruisken, A.M.M.

    2010-01-01

    In a recent paper by the authors [I. S. Burmistrov and A. M. M. Pruisken, Phys. Rev. Lett. 101, 056801 (2008)] it was shown that single-electron devices (single-electron transistor or SET) display "macroscopic charge quantization" which is completely analogous to the quantum Hall effect observed on

  4. Testing quantum mechanics against macroscopic realism using the output of χ(2) nonlinearity

    International Nuclear Information System (INIS)

    Podoshvedov, Sergey A.; Kim, Jaewan

    2006-01-01

    We suggest an all-optical scheme to generate entangled superposition of a single photon with macroscopic entangled states for testing macroscopic realism. The scheme consists of source of single photons, a Mach-Zehnder interferometer in routes of which a system of coupled-down converters with type-I phase matching is inserted, and a beam splitter for the other auxiliary modes of the scheme. We use quantization of the pumping modes, depletion of the coherent states passing through the system, and interference effect in the pumping modes in the process of erasing which-path information of the single-photon on exit from the Mach-Zehnder interferometer. We show the macroscopic fields of the output superposition are distinguishable states. This scheme generates macroscopic entangled state that violates Bell's inequality. Moreover, the detailed analysis concerning change of amplitudes of entangled superposition by means of repeating this process many times is accomplished. We show our scheme works without photon number resolving detection and it is robust to detector inefficiency

  5. Measurement-Induced Macroscopic Superposition States in Cavity Optomechanics

    DEFF Research Database (Denmark)

    Hoff, Ulrich Busk; Kollath-Bönig, Johann; Neergaard-Nielsen, Jonas Schou

    2016-01-01

    A novel protocol for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator is proposed, compatible with existing optomechanical devices operating in the bad-cavity limit. By combining a pulsed optomechanical quantum nondemolition (QND) interaction...

  6. Macroscopic sizes of field of superrelativistic charges

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1995-01-01

    Based on the equation of Lienard-Wiechert equipotentials, it is shown that the field of superrelativistic charges reaches macroscopic sizes (e.g., R || = 2 m at E e = 50 GeV). This phenomenon serves an initial cause of the known considerable growth of formation length at high energies. 3 refs., 1 tab

  7. Representing distance, consuming distance

    DEFF Research Database (Denmark)

    Larsen, Gunvor Riber

    Title: Representing Distance, Consuming Distance Abstract: Distance is a condition for corporeal and virtual mobilities, for desired and actual travel, but yet it has received relatively little attention as a theoretical entity in its own right. Understandings of and assumptions about distance...... are being consumed in the contemporary society, in the same way as places, media, cultures and status are being consumed (Urry 1995, Featherstone 2007). An exploration of distance and its representations through contemporary consumption theory could expose what role distance plays in forming...

  8. Emergence of an urban traffic macroscopic fundamental diagram

    DEFF Research Database (Denmark)

    Ranjan, Abhishek; Fosgerau, Mogens; Jenelius, Erik

    2016-01-01

    This paper examines mild conditions under which a macroscopic fundamental diagram (MFD) emerges, relating space-averaged speed to occupancy in some area. These conditions are validated against empirical data. We allow local speedoccupancy relationships and, in particular, require no equilibrating...

  9. Macroscopic behavior of fast reactor fuel subjected to simulated thermal transients

    International Nuclear Information System (INIS)

    Fenske, G.R.; Emerson, J.E.; Savoie, F.E.

    1983-06-01

    High-speed cinematography has been used to characterize the macroscopic behavior of irradiated and unirradiated fuel subjected to thermal transients prototypical of fast reactor transients. The results demonstrate that as the cladding melts, the fuel can disperse via spallation if the fuel contains in excess of approx. 16 μmoles/gm of fission gas. Once the cladding has melted, the macroscopic behavior (time to failure and dispersive nature) was strongly influenced by the presence of volatile fission products and the heating rate

  10. Mechanical Behaviour of Materials Volume 1 Micro- and Macroscopic Constitutive Behaviour

    CERN Document Server

    François, Dominique; Zaoui, André

    2012-01-01

    Advances in technology are demanding ever-increasing mastery over the materials being used: the challenge is to gain a better understanding of their behaviour, and more particularly of the relations between their microstructure and their macroscopic properties.   This work, of which this is the first volume, aims to provide the means by which this challenge may be met. Starting from the mechanics of deformation, it develops the laws governing macroscopic behaviour – expressed as the constitutive equations – always taking account of the physical phenomena which underlie rheological behaviour. The most recent developments are presented, in particular those concerning heterogeneous materials such as metallic alloys, polymers and composites. Each chapter is devoted to one of the major classes of material behaviour.   As the subtitles indicate, Volume 1 deals with micro- and macroscopic constitutive behaviour and Volume 2 with damage and fracture mechanics. A third volume will be devoted to exercises and the...

  11. Macroscopic domain formation in the platelet plasma membrane

    DEFF Research Database (Denmark)

    Bali, Rachna; Savino, Laura; Ramirez, Diego A.

    2009-01-01

    There has been ample debate on whether cell membranes can present macroscopic lipid domains as predicted by three-component phase diagrams obtained by fluorescence microscopy. Several groups have argued that membrane proteins and interactions with the cytoskeleton inhibit the formation of large d...

  12. Berkeley Experiments on Superfluid Macroscopic Quantum Effects

    International Nuclear Information System (INIS)

    Packard, Richard

    2006-01-01

    This paper provides a brief history of the evolution of the Berkeley experiments on macroscopic quantum effects in superfluid helium. The narrative follows the evolution of the experiments proceeding from the detection of single vortex lines to vortex photography to quantized circulation in 3He to Josephson effects and superfluid gyroscopes in both 4He and 3He

  13. Similar Data Retrieval from Enormous Datasets on ELF/VLF Wave Spectrum Observed by Akebono

    Directory of Open Access Journals (Sweden)

    Y Kasahara

    2010-02-01

    Full Text Available As the total amount of data measured by scientific spacecraft is drastically increasing, it is necessary for researchers to develop new computation methods for efficient analysis of these enormous datasets. In the present study, we propose a new algorithm for similar data retrieval. We first discuss key descriptors that represent characteristics of the VLF/ELF waves observed by the Akebono spacecraft. Second, an algorithm for similar data retrieval is introduced. Finally, we demonstrate that the developed algorithm works well for the retrieval of the VLF spectrum with a small amount of CPU load.

  14. Scaling from single molecule to macroscopic adhesion at polymer/metal interfaces.

    Science.gov (United States)

    Utzig, Thomas; Raman, Sangeetha; Valtiner, Markus

    2015-03-10

    Understanding the evolution of macroscopic adhesion based on fundamental molecular interactions is crucial to designing strong and smart polymer/metal interfaces that play an important role in many industrial and biomedical applications. Here we show how macroscopic adhesion can be predicted on the basis of single molecular interactions. In particular, we carry out dynamic single molecule-force spectroscopy (SM-AFM) in the framework of Bell-Evans' theory to gain information about the energy barrier between the bound and unbound states of an amine/gold junction. Furthermore, we use Jarzynski's equality to obtain the equilibrium ground-state energy difference of the amine/gold bond from these nonequilibrium force measurements. In addition, we perform surface forces apparatus (SFA) experiments to measure macroscopic adhesion forces at contacts where approximately 10(7) amine/gold bonds are formed simultaneously. The SFA approach provides an amine/gold interaction energy (normalized by the number of interacting molecules) of (36 ± 1)k(B)T, which is in excellent agreement with the interaction free energy of (35 ± 3)k(B)T calculated using Jarzynski's equality and single-molecule AFM experiments. Our results validate Jarzynski's equality for the field of polymer/metal interactions by measuring both sides of the equation. Furthermore, the comparison of SFA and AFM shows how macroscopic interaction energies can be predicted on the basis of single molecular interactions, providing a new strategy to potentially predict adhesive properties of novel glues or coatings as well as bio- and wet adhesion.

  15. Departure of microscopic friction from macroscopic drag in molecular fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hanasaki, Itsuo [Institute of Engineering, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588 (Japan); Fujiwara, Daiki; Kawano, Satoyuki, E-mail: kawano@me.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, Machikaneyama-cho 1-3, Toyonaka, Osaka 560-8531 (Japan)

    2016-03-07

    Friction coefficient of the Langevin equation and drag of spherical macroscopic objects in steady flow at low Reynolds numbers are usually regarded as equivalent. We show that the microscopic friction can be different from the macroscopic drag when the mass is taken into account for particles with comparable scale to the surrounding fluid molecules. We illustrate it numerically by molecular dynamics simulation of chloride ion in water. Friction variation by the atomistic mass effect beyond the Langevin regime can be of use in the drag reduction technology as well as the electro or thermophoresis.

  16. Generating macroscopic chaos in a network of globally coupled phase oscillators

    Science.gov (United States)

    So, Paul; Barreto, Ernest

    2011-01-01

    We consider an infinite network of globally coupled phase oscillators in which the natural frequencies of the oscillators are drawn from a symmetric bimodal distribution. We demonstrate that macroscopic chaos can occur in this system when the coupling strength varies periodically in time. We identify period-doubling cascades to chaos, attractor crises, and horseshoe dynamics for the macroscopic mean field. Based on recent work that clarified the bifurcation structure of the static bimodal Kuramoto system, we qualitatively describe the mechanism for the generation of such complicated behavior in the time varying case. PMID:21974662

  17. Macroscopic acoustoelectric charge transport in graphene

    Science.gov (United States)

    Bandhu, L.; Lawton, L. M.; Nash, G. R.

    2013-09-01

    We demonstrate macroscopic acoustoelectric transport in graphene, transferred onto piezoelectric lithium niobate substrates, between electrodes up to 500 μm apart. Using double finger interdigital transducers we have characterised the acoustoelectric current as a function of both surface acoustic wave intensity and frequency. The results are consistent with a relatively simple classical relaxation model, in which the acoustoelectric current is proportional to both the surface acoustic wave intensity and the attenuation of the wave caused by the charge transport.

  18. Nuclear physics: Macroscopic aspects

    International Nuclear Information System (INIS)

    Swiatecki, W.J.

    1993-12-01

    A systematic macroscopic, leptodermous approach to nuclear statics and dynamics is described, based formally on the assumptions ℎ → 0 and b/R << 1, where b is the surface diffuseness and R the nuclear radius. The resulting static model of shell-corrected nuclear binding energies and deformabilities is accurate to better than 1 part in a thousand and yields a firm determination of the principal properties of the nuclear fluid. As regards dynamics, the above approach suggests that nuclear shape evolutions will often be dominated by dissipation, but quantitative comparisons with experimental data are more difficult than in the case of statics. In its simplest liquid drop version the model exhibits interesting formal connections to the classic astronomical problem of rotating gravitating masses

  19. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yen, E-mail: yen.liu@nasa.gov; Vinokur, Marcel [NASA Ames Research Center, Moffett Field, California 94035 (United States); Panesi, Marco; Sahai, Amal [University of Illinois, Urbana-Champaign, Illinois 61801 (United States)

    2015-04-07

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model’s accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  20. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    Science.gov (United States)

    Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel

    2015-04-01

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  1. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures.

    Science.gov (United States)

    Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel

    2015-04-07

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  2. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    International Nuclear Information System (INIS)

    Liu, Yen; Vinokur, Marcel; Panesi, Marco; Sahai, Amal

    2015-01-01

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model’s accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  3. Experimental observation of the quantum behavior of a macroscopic degree of freedom

    International Nuclear Information System (INIS)

    Devoret, M.H.; Martinis, J.M.; Esteve, D.

    1986-08-01

    At Berkeley a series of experiments have been performed, that demonstrates the quantum behavior of one macroscopic degree of freedom, namely the phase difference across a current biased Josephson junction. Here we will focus on the praticalities involved in such a demonstration. The emphasis is put on the particular procedures used to solve the two problems of noise shielding and parameter determination. To begin, a short description of the macroscopic system investigated, the current biased Josephson junction is given

  4. Thermodynamical properties and thermoelastic coupling of complex macroscopic structure

    International Nuclear Information System (INIS)

    Fabbri, M.; Sacripanti, A.

    1996-11-01

    Gross qualitative/quantitative analysis about thermodynamical properties and thermoelastic coupling (or elastocaloric effect) of complex macroscopic structure (running shoes) is performed by infrared camera. The experimental results showed the achievability of a n industrial research project

  5. Macroscopic reality and the dynamical reduction program

    International Nuclear Information System (INIS)

    Ghirardi, G.C.

    1995-10-01

    With reference to recently proposed theoretical models accounting for reduction in terms of a unified dynamics governing all physical processes, we analyze the problem of working out a worldview accommodating our knowledge about natural phenomena. We stress the relevant conceptual differences between the considered models and standard quantum mechanics. In spite of the fact that both theories describe individual physical systems within a genuine Hilbert space framework, the nice features of spontaneous reduction theories drastically limit the class of states which are dynamically stable. This allows one to work out a description of the world in terms of a mass density function in ordinary configuration space. A topology based on this function and differing radically from the one characterizing the Hilbert space is introduced and in terms of it the idea of similarity of macroscopic situations is made precise. Finally it is shown how the formalism and the proposed interpretation yield a natural criterion for establishing the psychophysical parallelism. The conclusion is that, within the considered theoretical models and at the nonrelativistic level, one can satisfy all sensible requirements for a consistent, unified, and objective description of reality at the macroscopic level. (author). 16 refs

  6. Macroscopic reality and the dynamical reduction program

    Energy Technology Data Exchange (ETDEWEB)

    Ghirardi, G C

    1995-10-01

    With reference to recently proposed theoretical models accounting for reduction in terms of a unified dynamics governing all physical processes, we analyze the problem of working out a worldview accommodating our knowledge about natural phenomena. We stress the relevant conceptual differences between the considered models and standard quantum mechanics. In spite of the fact that both theories describe individual physical systems within a genuine Hilbert space framework, the nice features of spontaneous reduction theories drastically limit the class of states which are dynamically stable. This allows one to work out a description of the world in terms of a mass density function in ordinary configuration space. A topology based on this function and differing radically from the one characterizing the Hilbert space is introduced and in terms of it the idea of similarity of macroscopic situations is made precise. Finally it is shown how the formalism and the proposed interpretation yield a natural criterion for establishing the psychophysical parallelism. The conclusion is that, within the considered theoretical models and at the nonrelativistic level, one can satisfy all sensible requirements for a consistent, unified, and objective description of reality at the macroscopic level. (author). 16 refs.

  7. Wave speeds in the macroscopic extended model for ultrarelativistic gases

    Energy Technology Data Exchange (ETDEWEB)

    Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)

    2013-11-15

    Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.

  8. DISTANCES TO DARK CLOUDS: COMPARING EXTINCTION DISTANCES TO MASER PARALLAX DISTANCES

    International Nuclear Information System (INIS)

    Foster, Jonathan B.; Jackson, James M.; Stead, Joseph J.; Hoare, Melvin G.; Benjamin, Robert A.

    2012-01-01

    We test two different methods of using near-infrared extinction to estimate distances to dark clouds in the first quadrant of the Galaxy using large near-infrared (Two Micron All Sky Survey and UKIRT Infrared Deep Sky Survey) surveys. Very long baseline interferometry parallax measurements of masers around massive young stars provide the most direct and bias-free measurement of the distance to these dark clouds. We compare the extinction distance estimates to these maser parallax distances. We also compare these distances to kinematic distances, including recent re-calibrations of the Galactic rotation curve. The extinction distance methods agree with the maser parallax distances (within the errors) between 66% and 100% of the time (depending on method and input survey) and between 85% and 100% of the time outside of the crowded Galactic center. Although the sample size is small, extinction distance methods reproduce maser parallax distances better than kinematic distances; furthermore, extinction distance methods do not suffer from the kinematic distance ambiguity. This validation gives us confidence that these extinction methods may be extended to additional dark clouds where maser parallaxes are not available.

  9. Comparison of Spatiotemporal Mapping Techniques for Enormous Etl and Exploitation Patterns

    Science.gov (United States)

    Deiotte, R.; La Valley, R.

    2017-10-01

    The need to extract, transform, and exploit enormous volumes of spatiotemporal data has exploded with the rise of social media, advanced military sensors, wearables, automotive tracking, etc. However, current methods of spatiotemporal encoding and exploitation simultaneously limit the use of that information and increase computing complexity. Current spatiotemporal encoding methods from Niemeyer and Usher rely on a Z-order space filling curve, a relative of Peano's 1890 space filling curve, for spatial hashing and interleaving temporal hashes to generate a spatiotemporal encoding. However, there exist other space-filling curves, and that provide different manifold coverings that could promote better hashing techniques for spatial data and have the potential to map spatiotemporal data without interleaving. The concatenation of Niemeyer's and Usher's techniques provide a highly efficient space-time index. However, other methods have advantages and disadvantages regarding computational cost, efficiency, and utility. This paper explores the several methods using a range of sizes of data sets from 1K to 10M observations and provides a comparison of the methods.

  10. COMPARISON OF SPATIOTEMPORAL MAPPING TECHNIQUES FOR ENORMOUS ETL AND EXPLOITATION PATTERNS

    Directory of Open Access Journals (Sweden)

    R. Deiotte

    2017-10-01

    Full Text Available The need to extract, transform, and exploit enormous volumes of spatiotemporal data has exploded with the rise of social media, advanced military sensors, wearables, automotive tracking, etc. However, current methods of spatiotemporal encoding and exploitation simultaneously limit the use of that information and increase computing complexity. Current spatiotemporal encoding methods from Niemeyer and Usher rely on a Z-order space filling curve, a relative of Peano’s 1890 space filling curve, for spatial hashing and interleaving temporal hashes to generate a spatiotemporal encoding. However, there exist other space-filling curves, and that provide different manifold coverings that could promote better hashing techniques for spatial data and have the potential to map spatiotemporal data without interleaving. The concatenation of Niemeyer’s and Usher’s techniques provide a highly efficient space-time index. However, other methods have advantages and disadvantages regarding computational cost, efficiency, and utility. This paper explores the several methods using a range of sizes of data sets from 1K to 10M observations and provides a comparison of the methods.

  11. Macroscopic phase separation in high-temperature superconductors

    Science.gov (United States)

    Wen, Hai-Hu

    2000-01-01

    High-temperature superconductivity is recovered by introducing extra holes to the Cu-O planes, which initially are insulating with antiferromagnetism. In this paper I present data to show the macroscopic electronic phase separation that is caused by either mobile doping or electronic instability in the overdoped region. My results clearly demonstrate that the electronic inhomogeneity is probably a general feature of high-temperature superconductors. PMID:11027323

  12. Stereodynamics: From elementary processes to macroscopic chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Toshio [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Che, Dock-Chil [Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Tsai, Po-Yu [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Lin, King-Chuen [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Palazzetti, Federico [Scuola Normale Superiore, Pisa (Italy); Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, Vincenzo [Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Roma (Italy); Instituto de Fisica, Universidade Federal da Bahia, Salvador (Brazil)

    2015-12-31

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  13. Estimation of macroscopic elastic characteristics for hierarchical anisotropic solids based on probabilistic approach

    Science.gov (United States)

    Smolina, Irina Yu.

    2015-10-01

    Mechanical properties of a cable are of great importance in design and strength calculation of flexible cables. The problem of determination of elastic properties and rigidity characteristics of a cable modeled by anisotropic helical elastic rod is considered. These characteristics are calculated indirectly by means of the parameters received from statistical processing of experimental data. These parameters are considered as random quantities. With taking into account probable nature of these parameters the formulas for estimation of the macroscopic elastic moduli of a cable are obtained. The calculating expressions for macroscopic flexural rigidity, shear rigidity and torsion rigidity using the macroscopic elastic characteristics obtained before are presented. Statistical estimations of the rigidity characteristics of some cable grades are adduced. A comparison with those characteristics received on the basis of deterministic approach is given.

  14. A constitutive model and numerical simulation of sintering processes at macroscopic level

    Science.gov (United States)

    Wawrzyk, Krzysztof; Kowalczyk, Piotr; Nosewicz, Szymon; Rojek, Jerzy

    2018-01-01

    This paper presents modelling of both single and double-phase powder sintering processes at the macroscopic level. In particular, its constitutive formulation, numerical implementation and numerical tests are described. The macroscopic constitutive model is based on the assumption that the sintered material is a continuous medium. The parameters of the constitutive model for material under sintering are determined by simulation of sintering at the microscopic level using a micro-scale model. Numerical tests were carried out for a cylindrical specimen under hydrostatic and uniaxial pressure. Results of macroscopic analysis are compared against the microscopic model results. Moreover, numerical simulations are validated by comparison with experimental results. The simulations and preparation of the model are carried out by Abaqus FEA - a software for finite element analysis and computer-aided engineering. A mechanical model is defined by the user procedure "Vumat" which is developed by the first author in Fortran programming language. Modelling presented in the paper can be used to optimize and to better understand the process.

  15. A strict experimental test of macroscopic realism in a superconducting flux qubit.

    Science.gov (United States)

    Knee, George C; Kakuyanagi, Kosuke; Yeh, Mao-Chuang; Matsuzaki, Yuichiro; Toida, Hiraku; Yamaguchi, Hiroshi; Saito, Shiro; Leggett, Anthony J; Munro, William J

    2016-11-04

    Macroscopic realism is the name for a class of modifications to quantum theory that allow macroscopic objects to be described in a measurement-independent manner, while largely preserving a fully quantum mechanical description of the microscopic world. Objective collapse theories are examples which aim to solve the quantum measurement problem through modified dynamical laws. Whether such theories describe nature, however, is not known. Here we describe and implement an experimental protocol capable of constraining theories of this class, that is more noise tolerant and conceptually transparent than the original Leggett-Garg test. We implement the protocol in a superconducting flux qubit, and rule out (by ∼84 s.d.) those theories which would deny coherent superpositions of 170 nA currents over a ∼10 ns timescale. Further, we address the 'clumsiness loophole' by determining classical disturbance with control experiments. Our results constitute strong evidence for the superposition of states of nontrivial macroscopic distinctness.

  16. Dipolar-induced interplay between inter-level physics and macroscopic phase transitions in triple-well potentials

    International Nuclear Information System (INIS)

    Zhang Aixia; Xue Jukui

    2012-01-01

    We propose a scheme to reveal the interplay between dipole–dipole interaction (DDI), inter-level coupling and macroscopic phase transitions in dipolar condensates. By considering a macroscopic sample of dipolar bosons in triple-well potentials, DDI-induced coupling between the inter-level physics and the macroscopic phase transitions is presented. When the DDI exceeds certain thresholds, the degeneracy of the two lowest energy levels and the excitation of new eigenstates occur, respectively. Interestingly, these thresholds give the boundaries of various quantum phase transitions. That is, the quantum phase transitions are the consequence of the levels' degeneracy and the new eigenstates' excitation. Furthermore, DDI-induced long-range macroscopic Josephson oscillations are observed and long-range coherent quantum transportation is achieved. Our results give clear proof of the interplay between the multi-level physics and quantum phase transitions, and also provide a way for designing the long-range coherent quantum transportation. (paper)

  17. Macroscopic sessile tumor architecture is a pathologic feature of biologically aggressive upper tract urothelial carcinoma.

    Science.gov (United States)

    Fritsche, Hans-Martin; Novara, Giacomo; Burger, Maximilian; Gupta, Amit; Matsumoto, Kazumasa; Kassouf, Wassim; Sircar, Kanishka; Zattoni, Filiberto; Walton, Tom; Tritschler, Stefan; Baba, Shiro; Bastian, Patrick J; Martínez-Salamanca, Juan I; Seitz, Christian; Otto, Wolfgang; Wieland, Wolf Ferdinand; Karakiewicz, Pierre I; Ficarra, Vincenzo; Hartmann, Arndt; Shariat, Shahrokh F

    2012-09-01

    Macroscopic sessile tumor architecture was associated with adverse outcomes after radical nephroureterectomy (RNU) for upper tract urothelial carcinoma (UTUC). Before inclusion in daily clinical decision-making, the prognostic value of tumor architecture needs to be validated in an independent, external dataset. We tested whether macroscopic tumor architecture improves outcome prediction in an international cohort of patients. We retrospectively studied 754 patients treated with RNU for UTUC without neoadjuvant chemotherapy at 9 centers located in Asia, Canada, and Europe. Tumor architecture was macroscopically categorized as either papillary or sessile. Univariable and multivariable Cox regression analyses were used to address recurrence-free (RFS) and cancer-specific survival (CSS) estimates. Macroscopic sessile architecture was present in 20% of the patients. Its prevalence increased with advancing pathologic stage and it was significantly associated with established features of biologically aggressive UTUC, such as tumor grade, lymph node metastasis, lymphovascular invasion, and concomitant CIS (all P values architecture were 85% and 90%, compared with 58% and 66% for those with macroscopic sessile architecture, respectively (P values architecture was an independent predictor of both RFS (hazard ratio {HR}: 1.5; P = 0.036) and CSS (HR: 1.5; P = 0.03). We confirmed the independent prognostic value of macroscopic tumor architecture in a large, independent, multicenter UTUC cohort. It should be reported in every pathology report and included in post-RNU predictive models in order to refine current clinical decision making regarding follow-up protocol and adjuvant therapy. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Special relativity - the foundation of macroscopic physics

    International Nuclear Information System (INIS)

    Dixon, W.G.

    1978-01-01

    This book aims to show that an understanding of the basic laws of macroscopic systems can be gained more easily within relativistic physics than within Newtonian physics. The unity of dynamics, thermodynamics and electromagnetism under the umbrella of special relativity is examined under chapter headings entitled: the physics of space and time, affine spaces in mathematics and physics, foundations of dynamics, relativistic simple fluids, and, electrodynamics of polarizable fluids. (U.K.)

  19. Thermomechanical macroscopic model of shape memory alloys

    International Nuclear Information System (INIS)

    Volkov, A.E.; Sakharov, V.Yu.

    2003-01-01

    The phenomenological macroscopic model of the mechanical behaviour of the titanium nickelide-type shape memory alloys is proposed. The model contains as a parameter the average phase shear deformation accompanying the martensite formation. It makes i possible to describe correctly a number of functional properties of the shape memory alloys, in particular, the pseudoelasticity ferroplasticity, plasticity transformation and shape memory effects in the stressed and unstressed samples [ru

  20. Micromechanical study of macroscopic friction and dissipation in idealised granular materials: the effect of interparticle friction

    NARCIS (Netherlands)

    Kruyt, Nicolaas P.; Gutkowski, Witold; Rothenburg, L.; Kowalewski, Tomasz A.

    2004-01-01

    Using Discrete Element Method (DEM) simulations with varying interparticle friction coefficient, the relation between interparticle friction coefficient and macroscopic continuum friction and dissipation is investigated. As expected, macroscopic friction and dilatancy increase with interparticle

  1. Non-perturbative study of impurity effects on the Kubo conductivity in macroscopic periodic and quasiperiodic lattices

    International Nuclear Information System (INIS)

    Sánchez, Vicenta; Ramírez, Carlos; Sánchez, Fernando; Wang, Chumin

    2014-01-01

    In this paper, we analyze the effects of site and bond impurities on the electrical conductance of periodic and quasiperiodic systems with macroscopic length by means of a real-space renormalization plus a convolution method developed for the Kubo–Greenwood formula. All analyzed systems are connected to semi-infinite periodic leads. Analytical and numerical conductivity spectra are obtained for one and two site impurities in a periodic chain, where the separation between impurities determines the number of maximums in the spectra. We also found transparent states at the zero chemical potential in Fibonacci chains of every three generations with bond impurities, whose existence was confirmed by an analytical analysis within the Landauer formalism. For many impurities, the spectral average of the conductivity versus the system length reveals a power-law behavior, when the distance between impurities follows the Fibonacci sequence. Finally, we present an analysis of the conductance spectra of segmented periodic and Fibonacci chains and nanowires

  2. Non-perturbative study of impurity effects on the Kubo conductivity in macroscopic periodic and quasiperiodic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez, Vicenta; Ramírez, Carlos; Sánchez, Fernando [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Apartado Postal 70-542, 04510 México D.F., México (Mexico); Wang, Chumin, E-mail: chumin@unam.mx [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, 04510 México D.F. (Mexico)

    2014-09-15

    In this paper, we analyze the effects of site and bond impurities on the electrical conductance of periodic and quasiperiodic systems with macroscopic length by means of a real-space renormalization plus a convolution method developed for the Kubo–Greenwood formula. All analyzed systems are connected to semi-infinite periodic leads. Analytical and numerical conductivity spectra are obtained for one and two site impurities in a periodic chain, where the separation between impurities determines the number of maximums in the spectra. We also found transparent states at the zero chemical potential in Fibonacci chains of every three generations with bond impurities, whose existence was confirmed by an analytical analysis within the Landauer formalism. For many impurities, the spectral average of the conductivity versus the system length reveals a power-law behavior, when the distance between impurities follows the Fibonacci sequence. Finally, we present an analysis of the conductance spectra of segmented periodic and Fibonacci chains and nanowires.

  3. Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.

    Science.gov (United States)

    Calonne, Neige; Geindreau, Christian; Flin, Frédéric

    2014-11-26

    Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.

  4. Parametric equations for calculation of macroscopic cross sections

    International Nuclear Information System (INIS)

    Botelho, Mario Hugo; Carvalho, Fernando

    2015-01-01

    Neutronic calculations of the core of a nuclear reactor is one thing necessary and important for the design and management of a nuclear reactor in order to prevent accidents and control the reactor efficiently as possible. To perform these calculations a library of nuclear data, including cross sections is required. Currently, to obtain a cross section computer codes are used, which require a large amount of processing time and computer memory. This paper proposes the calculation of macroscopic cross section through the development of parametric equations. The paper illustrates the proposal for the case of macroscopic cross sections of absorption (Σa), which was chosen due to its greater complexity among other cross sections. Parametric equations created enable, quick and dynamic way, the determination of absorption cross sections, enabling the use of them in calculations of reactors. The results show efficient when compared with the absorption cross sections obtained by the ALPHA 8.8.1 code. The differences between the cross sections are less than 2% for group 2 and less than 0.60% for group 1. (author)

  5. Microscopic Simulation and Macroscopic Modeling for Thermal and Chemical Non-Equilibrium

    Science.gov (United States)

    Liu, Yen; Panesi, Marco; Vinokur, Marcel; Clarke, Peter

    2013-01-01

    This paper deals with the accurate microscopic simulation and macroscopic modeling of extreme non-equilibrium phenomena, such as encountered during hypersonic entry into a planetary atmosphere. The state-to-state microscopic equations involving internal excitation, de-excitation, dissociation, and recombination of nitrogen molecules due to collisions with nitrogen atoms are solved time-accurately. Strategies to increase the numerical efficiency are discussed. The problem is then modeled using a few macroscopic variables. The model is based on reconstructions of the state distribution function using the maximum entropy principle. The internal energy space is subdivided into multiple groups in order to better describe the non-equilibrium gases. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients. The modeling is completely physics-based, and its accuracy depends only on the assumed expression of the state distribution function and the number of groups used. The model makes no assumption at the microscopic level, and all possible collisional and radiative processes are allowed. The model is applicable to both atoms and molecules and their ions. Several limiting cases are presented to show that the model recovers the classical twotemperature models if all states are in one group and the model reduces to the microscopic equations if each group contains only one state. Numerical examples and model validations are carried out for both the uniform and linear distributions. Results show that the original over nine thousand microscopic equations can be reduced to 2 macroscopic equations using 1 to 5 groups with excellent agreement. The computer time is decreased from 18 hours to less than 1 second.

  6. Magnetic properties and macroscopic heterogeneity of FeCoNbB Hitperms

    Science.gov (United States)

    Butvin, Pavol; Butvinová, Beata; Sitek, Jozef; Degmová, Jarmila; Vlasák, Gabriel; Švec, Peter; Janičkovič, Dušan

    Nanocrystalline ribbons of Fe 81-xCo xNb 7B 12 (where x ranges from 0 to 40.5 at%) Hitperm alloys have been investigated as to their basic magnetic properties and the influence of the macroscopic heterogeneity. Different crystalline share at surfaces compared with the volume average is observed by conversion electron Mössbauer spectroscopy (CEMS) and Mössbauer spectroscopy (MS), respectively. This marks the presence of macroscopic heterogeneity in these Hitperms. The heterogeneity is generally more significant in Ar-annealed samples than in the vacuum-annealed ones. The characteristic slant hysteresis loops (hard-ribbon-axis) are seen as a rule with few exceptions. An inspection of hysteresis loop response of resin potted samples shows that the surfaces bi-axially squeeze the ribbon interior in heterogeneous Hitperms when the ribbons cool down after annealing. Certain compositions show macroscopic viscous flow prior to crystallization so the heterogeneity gets another chance to induce anisotropy during annealing. The induction attains 1.5 T but saturates poorly due to the heterogeneity and the ensuing anisotropy. Moreover the heterogeneity appears to hamper the crystallization within the ribbon interior. Unlike Finemets, the density of these Hitperms show no pronounced trend with annealing.

  7. Compressor Has No Moving Macroscopic Parts

    Science.gov (United States)

    Gasser, Max

    1995-01-01

    Compressor containing no moving macroscopic parts functions by alternating piston and valve actions of successive beds of magnetic particles. Fabricated easily because no need for precisely fitting parts rotating or sliding on each other. Also no need for lubricant fluid contaminating fluid to be compressed. Compressor operates continuously, eliminating troublesome on/off cycling of other compressors, and decreasing consumption of energy. Phased cells push fluid from bottom to top, adding increments of pressure. Each cell contains magnetic powder particles loose when electromagnet coil deenergized, but tightly packed when coil energized.

  8. Macroscopic polarization in crystalline dielectrics: the geometric phase approach

    International Nuclear Information System (INIS)

    Resta, R.

    1994-01-01

    The macroscopic electric polarization of a crystal is often defined as the dipole of a unit cell. In fact, such a dipole moment is ill defined, and the above definition is incorrect. Looking more closely, the quantity generally measured is differential polarization, defined with respect to a ''reference state'' of the same material. Such differential polarizations include either derivatives of the polarization (dielectric permittivity, Born effective charges, piezoelectricity, pyroelectricity) or finite differences (ferroelectricity). On the theoretical side, the differential concept is basic as well. Owing to continuity, a polarization difference is equivalent to a macroscopic current, which is directly accessible to the theory as a bulk property. Polarization is a quantum phenomenon and cannot be treated with a classical model, particularly whenever delocalized valence electrons are present in the dielectric. In a quantum picture, the current is basically a property of the phase of the wave functions, as opposed to the charge, which is a property of their modulus. An elegant and complete theory has recently been developed by King-Smith and Vanderbilt, in which the polarization difference between any two crystal states--in a null electric field--takes the form of a geometric quantum phase. This gives a comprehensive account of this theory, which is relevant for dealing with transverse-optic phonons, piezoelectricity, and ferroelectricity. Its relation to the established concepts of linear-response theory is also discussed. Within the geometric phase approach, the relevant polarization difference occurs as the circuit integral of a Berry connection (or ''vector potential''), while the corresponding curvature (or ''magnetic field'') provides the macroscopic linear response

  9. Macroscopic Fundamental Diagram for pedestrian networks : Theory and applications

    NARCIS (Netherlands)

    Hoogendoorn, S.P.; Daamen, W.; Knoop, V.L.; Steenbakkers, Jeroen; Sarvi, Majid

    2017-01-01

    The Macroscopic Fundamental diagram (MFD) has proven to be a powerful concept in understanding and managing vehicular network dynamics, both from a theoretical angle and from a more application-oriented perspective. In this contribution, we explore the existence and the characteristics of the

  10. Intratumoral Macroscopic Fat and Hemorrhage Combination Useful in the Differentiation of Benign and Malignant Solid Renal Masses.

    Science.gov (United States)

    Sun, Jun; Xing, Zhaoyu; Xing, Wei; Zheng, Linfeng; Chen, Jie; Fan, Min; Chen, Tongbing; Zhang, Zhuoli

    2016-03-01

    To evaluate the value of combining the detection of intratumoral macroscopic fat and hemorrhage in the differentiation of the benign from malignant solid renal masses.Conventional magnetic resonance imaging (MRI), chemical shift (CS)-MRI, and susceptibility-weighted imaging were performed in 152 patients with 152 solid renal masses, including 48 benign and 104 malignant masses all pathologically confirmed. The presence of macroscopic fat detected by CS-MRI and hemorrhage detected by susceptibility-weighted imaging were evaluated in all masses. The rates of macroscopic fat and hemorrhage observed between benign and malignant masses were compared by a χ test. All masses found to contain macroscopic fat with or without hemorrhage were considered to be benign. The remaining masses (without macroscopic fat) found not to contain hemorrhage were considered to be benign. Only those found to contain hemorrhage alone were considered to be malignant. The evaluation indexes for differentiating and forecasting the benign and malignant masses were calculated.Significant differences in the rate of macroscopic fat (observed in 85.42% of benign masses vs. 0% of malignant masses) and hemorrhage (observed in 4.17% of benign masses vs. 95.19% of malignant masses) were measured in the benign and malignant groups (P benign and malignant masses were 96.05%, 95.19%, and 97.92%, respectively, and the accuracy and error rate of forecasting the benign and malignant masses were 95.39% and 4.61%, respectively.Combining the detection intratumoral macroscopic fat and hemorrhage can be used to differentiate the benign from malignant solid renal masses.

  11. Microscopic and macroscopic models for pedestrian crowds

    OpenAIRE

    Makmul, Juntima

    2016-01-01

    This thesis is concerned with microscopic and macroscopic models for pedes- trian crowds. In the first chapter, we consider pedestrians exit choices and model human behaviour in an evacuation process. Two microscopic models, discrete and continuous, are studied in this chapter. The former is a cellular automaton model and the latter is a social force model. Different numerical test cases are investigated and their results are compared. In chapter 2, a hierarchy of models for...

  12. Neonates with Bartter syndrome have enormous fluid and sodium requirements.

    Science.gov (United States)

    Azzi, Antonio; Chehade, Hassib; Deschênes, Georges

    2015-07-01

    Managing neonatal Bartter syndrome by achieving adequate weight gain is challenging. We assessed the correlation between weight gain in neonatal Bartter syndrome and the introduction of fluid and sodium supplementations and indomethacin during the first 4 weeks of life. Daily fluid and electrolytes requirements were analysed using linear regression and Spearman correlation coefficients. The weight gain coefficient was calculated as daily weight gain after physiological neonatal weight loss. We studied seven infants. The highest weight gain coefficients occurred between weeks two and four in the five neonates who either received prompt amounts of fluid (maximum 810 mL/kg/day) and sodium (maximum 70 mmol/kg/day) or were treated with indomethacin. For the two patients with the highest weight gain coefficient, water and sodium supplementations were decreased in weeks two to four leading to a significant negative Spearman correlation between weight gain and fluid supplements (r = -0.55 and -0.68) and weight gain and sodium supplementations (r = -0.96 and -0.72). The two patients with the lowest weight gain coefficient had positive Spearman correlation coefficients between weight gain and fluid and sodium supplementations. Infants with neonatal Bartter syndrome required rapid and enormous fluid and sodium supplementations or the early introduction of indomethacin treatment to achieve adequate weight gain during the early postnatal period. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  13. Analysis of macroscopic and microscopic rotating motions in rotating jets: A direct numerical simulation

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2015-05-01

    Full Text Available A direct numerical simulation study of the characteristics of macroscopic and microscopic rotating motions in swirling jets confined in a rectangular flow domain is carried out. The different structures of vortex cores for different swirl levels are illustrated. It is found that the vortex cores of low swirl flows are of regular cylindrical-helix patterns, whereas those of the high swirl flows are characterized by the formation of the bubble-type vortex breakdown followed by the radiant processing vortex cores. The results of mean velocity fields show the general procedures of vortex origination. Moreover, the effects of macroscopic and microscopic rotating motions with respect to the mean and fluctuation fields of the swirling flows are evaluated. The microscopic rotating effects, especially the effects with respect to the turbulent fluctuation motion, are increasingly intermittent with the increase in the swirl levels. In contrast, the maximum value of the probability density functions with respect to the macroscopic rotating effects of the fluctuation motion occurs at moderate swirl levels since the macroscopic rotating effects are attenuated by the formation of the bubble vortex breakdown with a region of stagnant fluids at supercritical swirl levels.

  14. Problems related to macroscopic electric fields in the magnetosphere

    International Nuclear Information System (INIS)

    Faelthammar, C.

    1977-01-01

    The macroscopic electric fields in the magnetosphere originate from internal as well as external sources. The fields are intimately coupled with the dynamics of magnetospheric plasma convection. They also depend on the complicated electrical properties of the hot collisionless plasma. Macroscopic electric fields are responsible for some important kinds of energization of charged particles that take place in the magnetosphere and affect not only particles of auroral energy but also, by multistep processes, trapped high-energy particles. A particularly interesting feature of magnetospheric electric fields is that they can have substantial components along the geomagnetic field, as has recently been confirmed by observations. Several physical mechanisms have been identified by which such electric fields can be supported even when collisions between particles are negligible. Comments are made on the magnetic mirror effect, anomalous resistivity, the collisionless thermoelectric effect, and electric double layers, emphasizing key features and differences and their significance in the light of recent observational data

  15. Estimating minimum polycrystalline aggregate size for macroscopic material homogeneity

    International Nuclear Information System (INIS)

    Kovac, M.; Simonovski, I.; Cizelj, L.

    2002-01-01

    During severe accidents the pressure boundary of reactor coolant system can be subjected to extreme loadings, which might cause failure. Reliable estimation of the extreme deformations can be crucial to determine the consequences of severe accidents. Important drawback of classical continuum mechanics is idealization of inhomogenous microstructure of materials. Classical continuum mechanics therefore cannot predict accurately the differences between measured responses of specimens, which are different in size but geometrical similar (size effect). A numerical approach, which models elastic-plastic behavior on mesoscopic level, is proposed to estimate minimum size of polycrystalline aggregate above which it can be considered macroscopically homogeneous. The main idea is to divide continuum into a set of sub-continua. Analysis of macroscopic element is divided into modeling the random grain structure (using Voronoi tessellation and random orientation of crystal lattice) and calculation of strain/stress field. Finite element method is used to obtain numerical solutions of strain and stress fields. The analysis is limited to 2D models.(author)

  16. Preparation of rock samples for measurement of the thermal neutron macroscopic absorption cross-section

    International Nuclear Information System (INIS)

    Czubek, J.A.; Burda, J.; Drozdowicz, K.; Igielski, A.; Kowalik, W.; Krynicka-Drozdowicz, E.; Woznicka, U.

    1986-03-01

    Preparation of rock samples for the measurement of the thermal neutron macroscopic absorption cross-section in small cylindrical two-region systems by a pulsed technique is presented. Requirements which should be fulfilled during the preparation of the samples due to physical assumptions of the method are given. A cylindrical vessel is filled with crushed rock and saturated with a medium strongly absorbing thermal neutrons. Water solutions of boric acid of well-known macroscopic absorption cross-section are used. Mass contributions of the components in the sample are specified. This is necessary for the calculation of the thermal neutron macroscopic absorption cross-section of the rock matrix. The conditions necessary for assuring the required accuracy of the measurement are given and the detailed procedure of preparation of the rock sample is described. (author)

  17. Macroscopic behaviour of a charged Boltzmann gas

    International Nuclear Information System (INIS)

    Banyai, L.; Gartner, P.; Protopopescu, V.

    1980-08-01

    We consider a classical charged gas (with self-consistent Coulomb interaction) described by a solvable linearized Boltzman equation with thermaljzation on unifopmly distributed scatterers. It is shown that jf one scales the time t, the reciprocal space coordinate k vector and the Debye length l as lambda 2 t, k vector/lambda, lambda l respectively, in the lambda→infinity limit the charge density is equal to the solution of the corresponding diffusion-conduction (macroscopic) equation. (author)

  18. Grasping the Second Law of Thermodynamics at University: The Consistency of Macroscopic and Microscopic Explanations

    Science.gov (United States)

    Leinonen, Risto; Asikainen, Mervi A.; Hirvonen, Pekka E.

    2015-01-01

    This study concentrates on evaluating the consistency of upper-division students' use of the second law of thermodynamics at macroscopic and microscopic levels. Data were collected by means of a paper and pencil test (N = 48) focusing on the macroscopic and microscopic features of the second law concerned with heat transfer processes. The data…

  19. Magnetic properties and macroscopic heterogeneity of FeCoNbB Hitperms

    Energy Technology Data Exchange (ETDEWEB)

    Butvin, Pavol [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia)], E-mail: fyzipbut@savba.sk; Butvinova, Beata [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Sitek, Jozef; Degmova, Jarmila [Department of Nuclear Physics and Technology, FEI, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Vlasak, Gabriel; Svec, Peter; Janickovic, Dusan [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia)

    2008-03-15

    Nanocrystalline ribbons of Fe{sub 81-x}Co{sub x}Nb{sub 7}B{sub 12} (where x ranges from 0 to 40.5 at%) Hitperm alloys have been investigated as to their basic magnetic properties and the influence of the macroscopic heterogeneity. Different crystalline share at surfaces compared with the volume average is observed by conversion electron Moessbauer spectroscopy (CEMS) and Moessbauer spectroscopy (MS), respectively. This marks the presence of macroscopic heterogeneity in these Hitperms. The heterogeneity is generally more significant in Ar-annealed samples than in the vacuum-annealed ones. The characteristic slant hysteresis loops (hard-ribbon-axis) are seen as a rule with few exceptions. An inspection of hysteresis loop response of resin potted samples shows that the surfaces bi-axially squeeze the ribbon interior in heterogeneous Hitperms when the ribbons cool down after annealing. Certain compositions show macroscopic viscous flow prior to crystallization so the heterogeneity gets another chance to induce anisotropy during annealing. The induction attains 1.5 T but saturates poorly due to the heterogeneity and the ensuing anisotropy. Moreover the heterogeneity appears to hamper the crystallization within the ribbon interior. Unlike Finemets, the density of these Hitperms show no pronounced trend with annealing.

  20. From microscopic to macroscopic dynamics in mean-field theory: effect of neutron skin on fusion barrier and dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D

    2001-07-01

    In this work, we introduce a method to reduce the microscopic mean-field theory to a classical macroscopic dynamics at the initial stage of fusion reaction. We show that TDHF (Time-dependent Hartree-Fock) could be a useful tool to infer information on the fusion barrier as well as on one-body dissipation effect. We apply the reduction of information to the case of head-on reaction between a {sup 16}O and {sup 16,22,24,28}O in order to quantify the effect of neutron skin on fusion. We show that the precise determination of fusion barrier requires, in addition to the relative distance between center of mass, the introduction of an additional collective coordinate that explicitly breaks the neutron-proton symmetry. With this additional collective variable, we obtain a rather precise determination of the barrier position, height and diffuseness as well as one-body friction. (author)

  1. A Macroscopic Multifractal Analysis of Parabolic Stochastic PDEs

    Science.gov (United States)

    Khoshnevisan, Davar; Kim, Kunwoo; Xiao, Yimin

    2018-05-01

    It is generally argued that the solution to a stochastic PDE with multiplicative noise—such as \\dot{u}= 1/2 u''+uξ, where {ξ} denotes space-time white noise—routinely produces exceptionally-large peaks that are "macroscopically multifractal." See, for example, Gibbon and Doering (Arch Ration Mech Anal 177:115-150, 2005), Gibbon and Titi (Proc R Soc A 461:3089-3097, 2005), and Zimmermann et al. (Phys Rev Lett 85(17):3612-3615, 2000). A few years ago, we proved that the spatial peaks of the solution to the mentioned stochastic PDE indeed form a random multifractal in the macroscopic sense of Barlow and Taylor (J Phys A 22(13):2621-2626, 1989; Proc Lond Math Soc (3) 64:125-152, 1992). The main result of the present paper is a proof of a rigorous formulation of the assertion that the spatio-temporal peaks of the solution form infinitely-many different multifractals on infinitely-many different scales, which we sometimes refer to as "stretch factors." A simpler, though still complex, such structure is shown to also exist for the constant-coefficient version of the said stochastic PDE.

  2. Reversible optical control of macroscopic polarization in ferroelectrics

    Science.gov (United States)

    Rubio-Marcos, Fernando; Ochoa, Diego A.; Del Campo, Adolfo; García, Miguel A.; Castro, Germán R.; Fernández, José F.; García, José E.

    2018-01-01

    The optical control of ferroic properties is a subject of fascination for the scientific community, because it involves the establishment of new paradigms for technology1-9. Domains and domain walls are known to have a great impact on the properties of ferroic materials1-24. Progress is currently being made in understanding the behaviour of the ferroelectric domain wall, especially regarding its dynamic control10-12,17,19. New research is being conducted to find effective methodologies capable of modulating ferroelectric domain motion for future electronics. However, the practical use of ferroelectric domain wall motion should be both stable and reversible (rewritable) and, in particular, be able to produce a macroscopic response that can be monitored easily12,17. Here, we show that it is possible to achieve a reversible optical change of ferroelectric domains configuration. This effect leads to the tuning of macroscopic polarization and its related properties by means of polarized light, a non-contact external control. Although this is only the first step, it nevertheless constitutes the most crucial one in the long and complex process of developing the next generation of photo-stimulated ferroelectric devices.

  3. A Macroscopic Multifractal Analysis of Parabolic Stochastic PDEs

    Science.gov (United States)

    Khoshnevisan, Davar; Kim, Kunwoo; Xiao, Yimin

    2018-04-01

    It is generally argued that the solution to a stochastic PDE with multiplicative noise—such as \\dot{u}= 1/2 u''+uξ, where {ξ} denotes space-time white noise—routinely produces exceptionally-large peaks that are "macroscopically multifractal." See, for example, Gibbon and Doering (Arch Ration Mech Anal 177:115-150, 2005), Gibbon and Titi (Proc R Soc A 461:3089-3097, 2005), and Zimmermann et al. (Phys Rev Lett 85(17):3612-3615, 2000). A few years ago, we proved that the spatial peaks of the solution to the mentioned stochastic PDE indeed form a random multifractal in the macroscopic sense of Barlow and Taylor (J Phys A 22(13):2621-2626, 1989; Proc Lond Math Soc (3) 64:125-152, 1992). The main result of the present paper is a proof of a rigorous formulation of the assertion that the spatio-temporal peaks of the solution form infinitely-many different multifractals on infinitely-many different scales, which we sometimes refer to as "stretch factors." A simpler, though still complex, such structure is shown to also exist for the constant-coefficient version of the said stochastic PDE.

  4. Measurement contextuality is implied by macroscopic realism

    International Nuclear Information System (INIS)

    Chen Zeqian; Montina, A.

    2011-01-01

    Ontological theories of quantum mechanics provide a realistic description of single systems by means of well-defined quantities conditioning the measurement outcomes. In order to be complete, they should also fulfill the minimal condition of macroscopic realism. Under the assumption of outcome determinism and for Hilbert space dimension greater than 2, they were all proved to be contextual for projective measurements. In recent years a generalized concept of noncontextuality was introduced that applies also to the case of outcome indeterminism and unsharp measurements. It was pointed out that the Beltrametti-Bugajski model is an example of measurement noncontextual indeterminist theory. Here we provide a simple proof that this model is the only one with such a feature for projective measurements and Hilbert space dimension greater than 2. In other words, there is no extension of quantum theory providing more accurate predictions of outcomes and simultaneously preserving the minimal labeling of events through projective operators. As a corollary, noncontextuality for projective measurements implies noncontextuality for unsharp measurements. By noting that the condition of macroscopic realism requires an extension of quantum theory, unless a breaking of unitarity is invoked, we arrive at the conclusion that the only way to solve the measurement problem in the framework of an ontological theory is by relaxing the hypothesis of measurement noncontextuality in its generalized sense.

  5. The use of multi representative learning materials: definitive, macroscopic, microscopic, symbolic, and practice in analyzing students’ concept understanding

    Science.gov (United States)

    Susilaningsih, E.; Wulandari, C.; Supartono; Kasmui; Alighiri, D.

    2018-03-01

    This research aims to compose learning material which contains definitive macroscopic, microscopic and symbolic to analyze students’ conceptual understanding in acid-base learning materials. This research was conducted in eleven grade, natural science class, senior high school 1 (SMAN 1) Karangtengah, Demak province, Indonesia as the low level of students’ conceptual understanding and the high level of students’ misconception. The data collecting technique is by test to assess the cognitive aspect, questionnaire to assess students’ responses to multi representative learning materials (definitive, macroscopic, microscopic, symbolic), and observation to assess students’ macroscopic aspects. Three validators validate the multi-representative learning materials (definitive, macroscopic, microscopic, symbolic). The results of the research show that the multi-representative learning materials (definitive, macroscopic, microscopes, symbolic) being used is valid in the average score 62 of 75. The data is analyzed using the descriptive qualitative method. The results of the research show that 72.934 % students understand, 7.977 % less understand, 8.831 % do not understand, and 10.256 % misconception. In comparison, the second experiment class shows 54.970 % students understand, 5.263% less understand, 11.988 % do not understand, 27.777 % misconception. In conclusion, the application of multi representative learning materials (definitive, macroscopic, microscopic, symbolic) can be used to analyze the students’ understanding of acid-base materials.

  6. Testing quantum behaviour at the macroscopic level

    International Nuclear Information System (INIS)

    Ghirardi, G.C.

    1994-07-01

    We reconsider recent proposals to test macro realism versus quantum mechanics in experiments involving noninvasive measurement processes on a Squid. In spite of the fact that we are able to prove that the proposed experiments do not represent a test of macro realism but simply of macroscopic quantum coherence we call attention to their extreme conceptual relevance. We also discuss some recent criticisms which have been raised against the considered proposal and we show that they are not relevant. (author). 12 refs

  7. Pseudo-Goldstone bosons and new macroscopic forces

    International Nuclear Information System (INIS)

    Hill, C.T.; Ross, G.G.

    1988-01-01

    Pseudoscalar Goldstone bosons may readily be associated with weakly, explicitly broken symmetries giving them mixed CP quantum numbers. In general this leads to scalar couplings to nucleons and leptons, which produces coherent long range forces. This can naturally accommodate detectable long range macroscopic forces mediated by bosons completely consistent with conventional cosmological limits, e.g., new interactions with the range of present 'fifth force' searches which probe a scale of new physics of f ≅ 10 14 GeV. (orig.)

  8. Nanoparticle heterodimers: The role of size and interparticle gap distance on the optical response

    Science.gov (United States)

    Mokkath, Junais Habeeb

    2018-05-01

    Composite plasmonic nanostructures with controlled size, shape and relative arrangement is a subject of significant current research interest. Much of this is stimulated by the prospects by generating enormous near-field enhancements of the surface and interparticle gap regions for potential applications in surface-enhanced spectroscopies. In this manuscript, using time-dependent density functional theory (TDDFT) calculations, we investigate how the optical response in size matched homodimers and size mismatched heterodimers composed of Aluminum modify while varying the size and interparticle gap distances in the sub-nanometer range. Both systems show interesting optical response evolution. In particular, the size mismatched heterodimers show even more complex optical response evolution due to a symmetry-breaking in the system.

  9. Comparison of collisionless macroscopic models and application to the ion-electron instability

    International Nuclear Information System (INIS)

    Ahedo, E.; Lapuerta, V.

    2001-01-01

    In a first part, different macroscopic models of linear Landau damping are compared using a concise one-dimensional (1-D) collisionless formulation. The three-moment model of Chang and Callen (CC) [Phys. Fluids B 4, 1167 (1992)] with two closure relations (complex in the Fourier space) for the viscous stress and the heat conduction is found to be equivalent to the two-moment model of Stubbe-Sukhorukov (SS) [Phys. Plasmas 6, 2976 (1999)], which uses a single (complex) closure relation for the pressure. The comparison of the respective closure relations favors clearly the SS pressure law, which associates an anomalous resistivity to the Landau damping. In a second part, a macroscopic interpretation, with the SS model, of the ion-electron instability shows its resistive character for low and intermediate drift velocities, and the transition to the reactive Buneman limit. The pressure law for the electrons is found to verify a simple law, whereas approximate laws are discussed for the ion pressure. These laws are used to close a macroscopic model for stability analyses of nonhomogeneous plasma structures, where SS and CC models are not applicable easily

  10. Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters

    DEFF Research Database (Denmark)

    Nedelchev, L.; Nikolova, L.; Matharu, A.

    2002-01-01

    A study of the propagation of elliptically polarized light and the resulting formation of macroscopic chiral structures in a series of azobenzene side-chain copolyesters, in which the morphology is varied from liquid crystalline to amorphous, is reported. Real-time measurements are presented...

  11. Microstructure and macroscopic properties of polydisperse systems of hard spheres

    NARCIS (Netherlands)

    Ogarko, V.

    2014-01-01

    This dissertation describes an investigation of systems of polydisperse smooth hard spheres. This includes the development of a fast contact detection algorithm for computer modelling, the development of macroscopic constitutive laws that are based on microscopic features such as the moments of the

  12. Modification of the Charlesby law. Pt. 2. Macroscopic sensitivity

    International Nuclear Information System (INIS)

    Schiltz, A.; Weil, A.; Paniez, P.

    1984-01-01

    In part II, results are presented showing that for doses below macroscopic sensitivity, Qsub(sm), degradation due to fluence of the particles seems to be non-uniform over the entire area. In the light of this, a modification of the Charlesby's law is proposed providing a solution to the problems considered in part I [fr

  13. The macroscopic harmonic oscillator and quantum measurements

    International Nuclear Information System (INIS)

    Hayward, R.W.

    1982-01-01

    A quantum mechanical description of a one-dimensional macroscopic harmonic oscillator interacting with its environment is given. Quasi-coherent states are introduced to serve as convenient basis states for application of a density matrix formalism to characterize the system. Attention is given to the pertinent quantum limits to the precision of measurement of physical observables that may provide some information on the nature of a weak classical force interacting with the oscillator. A number of ''quantum nondemolition'' schemes proposed by various authors are discussed. (Auth.)

  14. From Microscopic to Macroscopic Descriptions of Cell Migration on Growing Domains

    KAUST Repository

    Baker, Ruth E.

    2009-10-28

    Cell migration and growth are essential components of the development of multicellular organisms. The role of various cues in directing cell migration is widespread, in particular, the role of signals in the environment in the control of cell motility and directional guidance. In many cases, especially in developmental biology, growth of the domain also plays a large role in the distribution of cells and, in some cases, cell or signal distribution may actually drive domain growth. There is an almost ubiquitous use of partial differential equations (PDEs) for modelling the time evolution of cellular density and environmental cues. In the last 20 years, a lot of attention has been devoted to connecting macroscopic PDEs with more detailed microscopic models of cellular motility, including models of directional sensing and signal transduction pathways. However, domain growth is largely omitted in the literature. In this paper, individual-based models describing cell movement and domain growth are studied, and correspondence with a macroscopic-level PDE describing the evolution of cell density is demonstrated. The individual-based models are formulated in terms of random walkers on a lattice. Domain growth provides an extra mathematical challenge by making the lattice size variable over time. A reaction-diffusion master equation formalism is generalised to the case of growing lattices and used in the derivation of the macroscopic PDEs. © 2009 Society for Mathematical Biology.

  15. Sialic acid-triggered macroscopic properties switching on a smart polymer surface

    Science.gov (United States)

    Xiong, Yuting; Li, Minmin; Wang, Hongxi; Qing, Guangyan; Sun, Taolei

    2018-01-01

    Constructing smart surfaces with responsive polymers capable of dynamically and reversibly changing their chemical and physical properties by responding to the recognition of biomolecules remains a challenging task. And, the key to achieving this purpose relies on the design of polymers to precisely interact with the target molecule and successfully transform the interaction signal into tunable macroscopic properties, further achieve special bio-functions. Herein, inspired by carbohydrate-carbohydrate interaction (CCI) in life system, we developed a three-component copolymer poly(NIPAAm-co-PT-co-Glc) bearing a binding unit glucose (Glc) capable of recognizing sialic acid, a type of important molecular targets for cancer diagnosis and therapy, and reported the sialic acid triggered macroscopic properties switching on this smart polymer surface. Detailed mechanism studies indicated that multiple hydrogen bonding interactions between Glc unit and Neu5Ac destroyed the initial hydrogen bond network of the copolymer, leading to a reversible "contraction-to-swelling" conformational transition of the copolymer chains, accompanied with distinct macroscopic property switching (i.e., surface wettability, morphology, stiffness) of the copolymer film. And these features enabled this copolymer to selectively capture sialic acid-containing glycopeptides from complex protein samples. This work provides an inspiration for the design of novel smart polymeric materials with sensitive responsiveness to sialic acid, which would promote the development of sialic acid-specific bio-devices and drug delivery systems.

  16. Microscopic and Macroscopic Structures of Carbon Nanotubes Produced by Pyrolysis of Iron Phthalocyanine

    International Nuclear Information System (INIS)

    Huang Shaoming; Dai Liming

    2002-01-01

    By pyrolysis of iron phthalocyanine (FePc), either in a patterned or non-patterned fashion, under an Ar/H 2 atmosphere, we have demonstrated the large-scale production of aligned carbon nanotubes perpendicular to the substrate surface useful for building devices with three-dimensional structures. Depending on the particular pyrolytic conditions used, carbon nanotubes with a wide range of microscopic structures having curved, helical, coiled, branched, and tube-within-tube shapes have also been prepared by the pyrolysis of FePc. This, coupled with several microfabrication methods (photolithography, soft-lithography, self-assembling, micro-contact transfer, etc.), has enabled us to produce carbon nanotube arrays of various macroscopic architectures including polyhedral, flower-like, dendritic, circular, multilayered, and micropatterned geometries. In this article, we summarize our work on the preparation of FePc-generated carbon nanotubes with the large variety of microscopic and macroscopic structures and give a brief overview on the perspectives of making carbon nanotubes with tailor-made microscopic/macroscopic structures, and hence well-defined physicochemical properties, for specific applications

  17. On the problem of contextuality in macroscopic magnetization measurements

    International Nuclear Information System (INIS)

    Soeda, Akihito; Kurzyński, Paweł; Ramanathan, Ravishankar; Grudka, Andrzej; Thompson, Jayne; Kaszlikowski, Dagomir

    2013-01-01

    We show that sharp measurements of total magnetization cannot be used to reveal contextuality in macroscopic many-body systems of spins of arbitrary dimension. We decompose each such measurement into set of projectors corresponding to well-defined value of total magnetization. We then show that such sets of projectors are too restricted to construct Kochen–Specker sets.

  18. Relationship Between Filler-Matrix Interface and Macroscopical Properties of Polymer Nanocomposites

    KAUST Repository

    Ventura, Isaac Aguilar

    2017-01-01

    The macroscopic properties of Multiwall Carbon Nanotube (MWCNT) polymer nano-composites and multiscale composites have been studied from a multifunctional standpoint. The objective is to understand and correlate the mechanisms in which the addition

  19. Macroscopic quantum tunneling in Mn12-acetat

    International Nuclear Information System (INIS)

    Beiter, J.; Reissner, M.; Hilscher, G.; Steiner, W.; Pajic, D.; Zadro, K.; Bartel, M.; Linert, W.

    2004-01-01

    Molecules provide the exciting opportunity to study magnetism on the passage from atomic to macroscopic level. One of the most interesting effects in such mesoscopic systems is the appearance of quantum tunnelling of magnetization (MQT) at low temperatures. In the last decade molecular chemistry has had a large impact in this field by providing new single molecule magnets. They consist of small clusters exhibiting superparamagnetic behavior, similar to that of conventional nanomagnetic particles. The advantage of these new materials is that they form macroscopic samples consisting of regularly arranged small identical high-spin clusters which are widely separated by organic molecules. The lack of distributions in size and shape of the magnetic clusters and the very weak intercluster interaction lead in principle to only one barrier for the spin reversal. We present detailed magnetic investigations on a Mn 12 -ac single crystal. In this compound the tetragonal ordered clusters consist of a central tetrahedron of four Mn 4+ (S = 3/2) atoms surrounded by eight Mn 3+ (S = 2) atoms with antiparallel oriented spins, leading to an overall spin moment of S = 10. In the hysteresis loops nine different jumps at regularly spaced fields are identified in the investigated temperature range (1.5 < T < 3 K). At these fields the relaxation of moment due to thermal activation is superimposed by strong quantum tunnelling. In lowering the temperature the time dependence changes from thermally activated to thermally assisted tunnelling. (author)

  20. Silicon quantum processor with robust long-distance qubit couplings

    Energy Technology Data Exchange (ETDEWEB)

    Tosi, Guilherme; Mohiyaddin, Fahd A.; Schmitt, Vivien; Tenberg, Stefanie; Rahman, Rajib; Klimeck, Gerhard; Morello, Andrea

    2017-09-06

    Practical quantum computers require a large network of highly coherent qubits, interconnected in a design robust against errors. Donor spins in silicon provide state-of-the-art coherence and quantum gate fidelities, in a platform adapted from industrial semiconductor processing. Here we present a scalable design for a silicon quantum processor that does not require precise donor placement and leaves ample space for the routing of interconnects and readout devices. We introduce the flip-flop qubit, a combination of the electron-nuclear spin states of a phosphorus donor that can be controlled by microwave electric fields. Two-qubit gates exploit a second-order electric dipole-dipole interaction, allowing selective coupling beyond the nearest-neighbor, at separations of hundreds of nanometers, while microwave resonators can extend the entanglement to macroscopic distances. We predict gate fidelities within fault-tolerance thresholds using realistic noise models. This design provides a realizable blueprint for scalable spin-based quantum computers in silicon.

  1. Innovations in macroscopic evaluation of pancreatic specimens and radiologic correlation

    Directory of Open Access Journals (Sweden)

    Charikleia Triantopoulou

    2016-01-01

    Full Text Available The purpose of this study was to evaluate the feasibility of a novel dissection technique of surgical specimens in different cases of pancreatic tumors and provide a radiologic pathologic correlation. In our hospital, that is a referral center for pancreatic diseases, the macroscopic evaluation of the pancreatectomy specimens is performed by the pathologists using the axial slicing technique (instead of the traditional procedure with longitudinal opening of the main pancreatic and/or common bile duct and slicing along the plane defined by both ducts. The specimen is sliced in an axial plane that is perpendicular to the longitudinal axis of the descending duodenum. The procedure results in a large number of thin slices (3–4 mm. This plane is identical to that of CT or MRI and correlation between pathology and imaging is straightforward. We studied 70 cases of suspected different solid and cystic pancreatic tumors and we correlated the tumor size and location, the structure—consistency (areas of necrosis—hemorrhage—fibrosis—inflammation, the degree of vessels’ infiltration, the size of pancreatic and common bile duct and the distance from resection margins. Missed findings by imaging or pitfalls were recorded and we tried to explain all discrepancies between radiology evaluation and the histopathological findings. Radiologic-pathologic correlation is extremely important, adding crucial information on imaging limitations and enabling quality assessment of surgical specimens. The deep knowledge of different pancreatic tumors’ consistency and way of extension helps to improve radiologists’ diagnostic accuracy and minimize the radiological-surgical mismatching, preventing patients from unnecessary surgery.

  2. Effect of isovector coupling channel on the macroscopic part of the nuclear binding energy

    International Nuclear Information System (INIS)

    Haddad, S.

    2011-04-01

    The effect of the isovector coupling channel on the macroscopic part of the nuclear binding energy is determined utilizing the relativistic density dependent Thomas-Fermi approach for the calculation of the macroscopic part of the nuclear binding energy, and the dependency of this effect on the numbers of neutrons and protons is studied. The isovector coupling channel leads to increased nuclear binding energy, and this effect sharpens with growing excess of the number of neutrons on the number of protons. (author)

  3. The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers.

    Science.gov (United States)

    Gao, Yun; Liu, Lu-Qi; Zu, Sheng-Zhen; Peng, Ke; Zhou, Ding; Han, Bao-Hang; Zhang, Zhong

    2011-03-22

    High mechanical performances of macroscopic graphene oxide (GO) papers are attracting great interest owing to their merits of lightweight and multiple functionalities. However, the loading role of individual nanosheets and its effect on the mechanical properties of the macroscopic GO papers are not yet well understood. Herein, we effectively tailored the interlayer adhesions of the GO papers by introducing small molecules, that is, glutaraldehyde (GA) and water molecules, into the gallery regions. With the help of in situ Raman spectroscopy, we compared the varied load-reinforcing roles of nanosheets, and further predicted the Young's moduli of the GO papers. Systematic mechanical tests have proven that the enhancement of the tensile modulus and strength of the GA-treated GO paper arose from the improved load-bearing capability of the nanosheets. On the basis of Raman and macroscopic mechanical tests, the influences of interlayer adhesions on the fracture mechanisms of the strained GO papers were inferred.

  4. Time-dependent entropy evolution in microscopic and macroscopic electromagnetic relaxation

    International Nuclear Information System (INIS)

    Baker-Jarvis, James

    2005-01-01

    This paper is a study of entropy and its evolution in the time and frequency domains upon application of electromagnetic fields to materials. An understanding of entropy and its evolution in electromagnetic interactions bridges the boundaries between electromagnetism and thermodynamics. The approach used here is a Liouville-based statistical-mechanical theory. I show that the microscopic entropy is reversible and the macroscopic entropy satisfies an H theorem. The spectral entropy development can be very useful for studying the frequency response of materials. Using a projection-operator based nonequilibrium entropy, different equations are derived for the entropy and entropy production and are applied to the polarization, magnetization, and macroscopic fields. I begin by proving an exact H theorem for the entropy, progress to application of time-dependent entropy in electromagnetics, and then apply the theory to relevant applications in electromagnetics. The paper concludes with a discussion of the relationship of the frequency-domain form of the entropy to the permittivity, permeability, and impedance

  5. Analysis and Enhancements of a Prolific Macroscopic Model of Epilepsy

    Directory of Open Access Journals (Sweden)

    Christopher Fietkiewicz

    2016-01-01

    Full Text Available Macroscopic models of epilepsy can deliver surprisingly realistic EEG simulations. In the present study, a prolific series of models is evaluated with regard to theoretical and computational concerns, and enhancements are developed. Specifically, we analyze three aspects of the models: (1 Using dynamical systems analysis, we demonstrate and explain the presence of direct current potentials in the simulated EEG that were previously undocumented. (2 We explain how the system was not ideally formulated for numerical integration of stochastic differential equations. A reformulated system is developed to support proper methodology. (3 We explain an unreported contradiction in the published model specification regarding the use of a mathematical reduction method. We then use the method to reduce the number of equations and further improve the computational efficiency. The intent of our critique is to enhance the evolution of macroscopic modeling of epilepsy and assist others who wish to explore this exciting class of models further.

  6. Macroscopic quantum electrodynamics of high-Q cavities

    Energy Technology Data Exchange (ETDEWEB)

    Khanbekyan, Mikayel

    2009-10-27

    In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the

  7. Triboelectricity: macroscopic charge patterns formed by self-arraying ions on polymer surfaces.

    Science.gov (United States)

    Burgo, Thiago A L; Ducati, Telma R D; Francisco, Kelly R; Clinckspoor, Karl J; Galembeck, Fernando; Galembeck, Sergio E

    2012-05-15

    Tribocharged polymers display macroscopically patterned positive and negative domains, verifying the fractal geometry of electrostatic mosaics previously detected by electric probe microscopy. Excess charge on contacting polyethylene (PE) and polytetrafluoroethylene (PTFE) follows the triboelectric series but with one caveat: net charge is the arithmetic sum of patterned positive and negative charges, as opposed to the usual assumption of uniform but opposite signal charging on each surface. Extraction with n-hexane preferentially removes positive charges from PTFE, while 1,1-difluoroethane and ethanol largely remove both positive and negative charges. Using suitable analytical techniques (electron energy-loss spectral imaging, infrared microspectrophotometry and carbonization/colorimetry) and theoretical calculations, the positive species were identified as hydrocarbocations and the negative species were identified as fluorocarbanions. A comprehensive model is presented for PTFE tribocharging with PE: mechanochemical chain homolytic rupture is followed by electron transfer from hydrocarbon free radicals to the more electronegative fluorocarbon radicals. Polymer ions self-assemble according to Flory-Huggins theory, thus forming the experimentally observed macroscopic patterns. These results show that tribocharging can only be understood by considering the complex chemical events triggered by mechanical action, coupled to well-established physicochemical concepts. Patterned polymers can be cut and mounted to make macroscopic electrets and multipoles.

  8. Multiscale Investigation on Biofilm Distribution and Its Impact on Macroscopic Biogeochemical Reaction Rates: BIOFILM DISTRIBUTION AND RATE SCALING

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhifeng [Institute of Surface-Earth System Science, Tianjin University, Tianjin China; Pacific Northwest National Laboratory, Richland WA USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland WA USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen China; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland WA USA; School of Earth Science and Engineering, Nanjing University, Nanjing China; Bailey, Vanessa L. [Pacific Northwest National Laboratory, Richland WA USA

    2017-11-01

    Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models, and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical properties was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.

  9. Charge of a macroscopic particle in a plasma sheath

    International Nuclear Information System (INIS)

    Samarian, A.A.; Vladimirov, S.V.

    2003-01-01

    Charging of a macroscopic body levitating in a rf plasma sheath is studied experimentally and theoretically. The nonlinear charge vs size dependence is obtained. The observed nonlinearity is explained on the basis of an approach taking into account different plasma conditions for the levitation positions of different particles. The importance of suprathermal electrons' contribution to the charging process is demonstrated

  10. Macroscopic and microscopic magnetism of metal-metalloid amorphous alloys

    International Nuclear Information System (INIS)

    Vasconcellos, M.A.Z.; Fichtner, P.F.P.; Livi, F.P.; Costa, M.I. da; Baibich, M.N.

    1984-01-01

    In this paper is investigated the interrelation between macroscopic and microscopic magnetic phenomena using experimetnal data from Moessbauer effect and the magnetization of layers of amorphous (Fe 1-x Ni x ) 80 B 20 . The Moessbauer effect measurement show a distribution of hyperfine fields in Fe site as well as a likely distribution of isomeric shifts (M.W.O.) [pt

  11. From Microscopic to Macroscopic Descriptions of Cell Migration on Growing Domains

    KAUST Repository

    Baker, Ruth E.; Yates, Christian A.; Erban, Radek

    2009-01-01

    are studied, and correspondence with a macroscopic-level PDE describing the evolution of cell density is demonstrated. The individual-based models are formulated in terms of random walkers on a lattice. Domain growth provides an extra mathematical challenge

  12. Macroscopic superposition states and decoherence by quantum telegraph noise

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Benjamin Simon

    2008-12-19

    In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)

  13. Parameterized representation of macroscopic cross section for PWR reactor

    International Nuclear Information System (INIS)

    Fiel, João Cláudio Batista; Carvalho da Silva, Fernando; Senra Martinez, Aquilino; Leal, Luiz C.

    2015-01-01

    Highlights: • This work describes a parameterized representation of the homogenized macroscopic cross section for PWR reactor. • Parameterization enables a quick determination of problem-dependent cross-sections to be used in few group calculations. • This work allows generating group cross-section data to perform PWR core calculations without computer code calculations. - Abstract: The purpose of this work is to describe, by means of Chebyshev polynomials, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 92 U enrichment. The cross-section data analyzed are fission, scattering, total, transport, absorption and capture. The parameterization enables a quick and easy determination of problem-dependent cross-sections to be used in few group calculations. The methodology presented in this paper will allow generation of group cross-section data from stored polynomials to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by the proposed methodology when compared with results from the SCALE code calculations show very good agreement

  14. Macroscopic superposition states and decoherence by quantum telegraph noise

    International Nuclear Information System (INIS)

    Abel, Benjamin Simon

    2008-01-01

    In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)

  15. Macroscopic Hematuria After Conventional or Hypofractionated Radiation Therapy: Results From a Prospective Phase 3 Study

    Energy Technology Data Exchange (ETDEWEB)

    Sanguineti, Giuseppe, E-mail: sanguineti@ifo.it [Department of Radiation Oncology, Regina Elena National Cancer Institute, Rome (Italy); Arcidiacono, Fabio [Department of Radiation Oncology, Regina Elena National Cancer Institute, Rome (Italy); Landoni, Valeria [Department of Physics, Regina Elena National Cancer Institute, Rome (Italy); Saracino, Bianca Maria; Farneti, Alessia; Arcangeli, Stefano; Petrongari, Maria Grazia; Gomellini, Sara [Department of Radiation Oncology, Regina Elena National Cancer Institute, Rome (Italy); Strigari, Lidia [Department of Physics, Regina Elena National Cancer Institute, Rome (Italy); Arcangeli, Giorgio [Department of Radiation Oncology, Regina Elena National Cancer Institute, Rome (Italy)

    2016-10-01

    Purpose: To assess the macroscopic hematuria rates within a single-institution randomized phase 3 trial comparing dose-escalated, conventionally fractionated radiation therapy (CFRT) and moderately hypofractionated radiation therapy (MHRT) for localized prostate cancer. Methods and Materials: Patients with intermediate- to high-risk localized prostate cancer were treated with conformal RT and short-course androgen deprivation. Both the prostate and the entire seminal vesicles were treated to 80 Gy in 40 fractions over 8 weeks (CFRT) or 62 Gy in 20 fractions over 5 weeks (MHRT). The endpoint of the present study was the development of any episode or grade of macroscopic hematuria. The median follow-up period was 93 months (range 6-143). Results: Macroscopic hematuria was reported by 25 of 168 patients (14.9%). The actuarial estimate of hematuria at 8 years was 17.0% (95% confidence interval [CI] 10.7%-23.3%). The number of patients with hematuria was 6 and 19 in the CFRT and MHRT arms, respectively, for an actuarial 8-year estimate of 9.7% and 24.3%, respectively (hazard ratio 3.468, 95% CI 1.385-8.684; P=.008). Overall, 8 of 25 patients were found to have biopsy-proven urothelial carcinoma (3 in the CFRT arm and 5 in the MHRT arm; P=.27). Thus, the 8-year actuarial incidence of macroscopic hematuria (after censoring urothelial cancer–related episodes) was 4.1% and 18.2% after CFRT and MHRT, respectively (hazard ratio 4.961, 95% CI 1.426-17.263; P=.012). The results were confirmed by multivariate analysis after accounting for several patient-, treatment-, and tumor-related covariates. Conclusions: MHRT was associated with a statistically significant increased risk of macroscopic hematuria compared with CFRT.

  16. Macroscopic Hematuria After Conventional or Hypofractionated Radiation Therapy: Results From a Prospective Phase 3 Study

    International Nuclear Information System (INIS)

    Sanguineti, Giuseppe; Arcidiacono, Fabio; Landoni, Valeria; Saracino, Bianca Maria; Farneti, Alessia; Arcangeli, Stefano; Petrongari, Maria Grazia; Gomellini, Sara; Strigari, Lidia; Arcangeli, Giorgio

    2016-01-01

    Purpose: To assess the macroscopic hematuria rates within a single-institution randomized phase 3 trial comparing dose-escalated, conventionally fractionated radiation therapy (CFRT) and moderately hypofractionated radiation therapy (MHRT) for localized prostate cancer. Methods and Materials: Patients with intermediate- to high-risk localized prostate cancer were treated with conformal RT and short-course androgen deprivation. Both the prostate and the entire seminal vesicles were treated to 80 Gy in 40 fractions over 8 weeks (CFRT) or 62 Gy in 20 fractions over 5 weeks (MHRT). The endpoint of the present study was the development of any episode or grade of macroscopic hematuria. The median follow-up period was 93 months (range 6-143). Results: Macroscopic hematuria was reported by 25 of 168 patients (14.9%). The actuarial estimate of hematuria at 8 years was 17.0% (95% confidence interval [CI] 10.7%-23.3%). The number of patients with hematuria was 6 and 19 in the CFRT and MHRT arms, respectively, for an actuarial 8-year estimate of 9.7% and 24.3%, respectively (hazard ratio 3.468, 95% CI 1.385-8.684; P=.008). Overall, 8 of 25 patients were found to have biopsy-proven urothelial carcinoma (3 in the CFRT arm and 5 in the MHRT arm; P=.27). Thus, the 8-year actuarial incidence of macroscopic hematuria (after censoring urothelial cancer–related episodes) was 4.1% and 18.2% after CFRT and MHRT, respectively (hazard ratio 4.961, 95% CI 1.426-17.263; P=.012). The results were confirmed by multivariate analysis after accounting for several patient-, treatment-, and tumor-related covariates. Conclusions: MHRT was associated with a statistically significant increased risk of macroscopic hematuria compared with CFRT.

  17. Grasping the second law of thermodynamics at university: The consistency of macroscopic and microscopic explanations

    Directory of Open Access Journals (Sweden)

    Risto Leinonen

    2015-09-01

    Full Text Available [This paper is part of the Focused Collection on Upper Division Physics Courses.] This study concentrates on evaluating the consistency of upper-division students’ use of the second law of thermodynamics at macroscopic and microscopic levels. Data were collected by means of a paper and pencil test (N=48 focusing on the macroscopic and microscopic features of the second law concerned with heat transfer processes. The data analysis was based on a qualitative content analysis where students’ responses to the macroscopic- and microscopic-level items were categorized to provide insight into the consistency of the students’ ideas; if students relied on the same idea at both levels, they ended up in the same category at both levels, and their use of the second law was consistent. The most essential finding is that a majority of students, 52%–69% depending on the physical system under evaluation, used the second law of thermodynamics consistently at macroscopic and microscopic levels; approximately 40% of the students used it correctly in terms of physics while others relied on erroneous ideas, such as the idea of conserving entropy. The most common inconsistency harbored by 10%–15% of the students (depending on the physical system under evaluation was students’ tendency to consider the number of accessible microstates to remain constant even if the entropy was stated to increase in a similar process; other inconsistencies were only seen in the answers of a few students. In order to address the observed inconsistencies, we would suggest that lecturers should utilize tasks that challenge students to evaluate phenomena at macroscopic and microscopic levels concurrently and tasks that would guide students in their search for contradictions in their thinking.

  18. A macroscopic model for magnetic shape-memory single crystals

    Czech Academy of Sciences Publication Activity Database

    Bessoud, A. L.; Kružík, Martin; Stefanelli, U.

    2013-01-01

    Roč. 64, č. 2 (2013), s. 343-359 ISSN 0044-2275 R&D Projects: GA AV ČR IAA100750802; GA ČR GAP201/10/0357 Institutional support: RVO:67985556 Keywords : magnetostriction * evolution Subject RIV: BA - General Mathematics Impact factor: 1.214, year: 2013 http://library.utia.cas.cz/separaty/2012/MTR/kruzik-a macroscopic model for magnetic shape- memory single crystals.pdf

  19. The Two-Time Interpretation and Macroscopic Time-Reversibility

    Directory of Open Access Journals (Sweden)

    Yakir Aharonov

    2017-03-01

    Full Text Available The two-state vector formalism motivates a time-symmetric interpretation of quantum mechanics that entails a resolution of the measurement problem. We revisit a post-selection-assisted collapse model previously suggested by us, claiming that unlike the thermodynamic arrow of time, it can lead to reversible dynamics at the macroscopic level. In addition, the proposed scheme enables us to characterize the classical-quantum boundary. We discuss the limitations of this approach and its broad implications for other areas of physics.

  20. Vascular flora and macroscopic fauna on the Fernow Experimental Forest

    Science.gov (United States)

    Darlene M. Madarish; Jane L. Rodrigue; Mary Beth Adams

    2002-01-01

    This report is the first comprehensive inventory of the vascular flora and macroscopic fauna known to occur within the Fernow Experimental Forest in north-central West Virignia. The compendium is based on information obtained from previous surveys, current research, and the personal observations of USDA Forest Service personnel and independent scientists. More than 750...

  1. Macroscopic and microscopic findings in avascular necrosis of the femoral head.

    Science.gov (United States)

    Kamal, Diana; Alexandru, D O; Kamal, C K; Streba, C T; Grecu, D; Mogoantă, L

    2012-01-01

    The avascular necrosis of the femoral head is an illness induced by the cutoff of blood flow to the femoral head and it affects mostly young adults between the ages of 30 and 50 years, raising therapeutic and diagnostic issues. Many risk factors are incriminated in the development of avascular necrosis of the femoral head like: trauma, chronic alcohol consumption, smoking, administration of corticosteroid drugs, most of the cases are considered to be idiopathic. The main goal of our paper is to describe the macroscopic and microscopic variations of the bone structure, which occur in patients with avascular necrosis of the femoral head. The biological material needed for our study was obtained following hip arthroplasty surgery in 26 patients between the ages of 29 and 59 years, which previously were diagnosed with avascular necrosis of the femoral head and admitted in the Orthopedics Department of the Emergency County Hospital of Craiova (Romania) between 2010 and 2011. From a macroscopic point of view, we found well defined areas of necrosis, most of which were neatly demarcated of the adjacent viable tissue by hyperemic areas, loss of shape and contour of the femoral head and transformations of the articular cartilage above the area of necrosis. When examined under the microscope, we found vast areas of fibrosis, narrow bone trabeculae, obstructed blood vessels or blood vessels with clots inside, hypertrophic fat cells, bone sequestration but also small cells and pyknotic nuclei. The microscopic and macroscopic findings on the femoral head sections varied with the patients and the stage of the disease.

  2. Inverted rank distributions: Macroscopic statistics, universality classes, and critical exponents

    Science.gov (United States)

    Eliazar, Iddo; Cohen, Morrel H.

    2014-01-01

    An inverted rank distribution is an infinite sequence of positive sizes ordered in a monotone increasing fashion. Interlacing together Lorenzian and oligarchic asymptotic analyses, we establish a macroscopic classification of inverted rank distributions into five “socioeconomic” universality classes: communism, socialism, criticality, feudalism, and absolute monarchy. We further establish that: (i) communism and socialism are analogous to a “disordered phase”, feudalism and absolute monarchy are analogous to an “ordered phase”, and criticality is the “phase transition” between order and disorder; (ii) the universality classes are characterized by two critical exponents, one governing the ordered phase, and the other governing the disordered phase; (iii) communism, criticality, and absolute monarchy are characterized by sharp exponent values, and are inherently deterministic; (iv) socialism is characterized by a continuous exponent range, is inherently stochastic, and is universally governed by continuous power-law statistics; (v) feudalism is characterized by a continuous exponent range, is inherently stochastic, and is universally governed by discrete exponential statistics. The results presented in this paper yield a universal macroscopic socioeconophysical perspective of inverted rank distributions.

  3. State-space based analysis and forecasting of macroscopic road safety trends in Greece.

    Science.gov (United States)

    Antoniou, Constantinos; Yannis, George

    2013-11-01

    In this paper, macroscopic road safety trends in Greece are analyzed using state-space models and data for 52 years (1960-2011). Seemingly unrelated time series equations (SUTSE) models are developed first, followed by richer latent risk time-series (LRT) models. As reliable estimates of vehicle-kilometers are not available for Greece, the number of vehicles in circulation is used as a proxy to the exposure. Alternative considered models are presented and discussed, including diagnostics for the assessment of their model quality and recommendations for further enrichment of this model. Important interventions were incorporated in the models developed (1986 financial crisis, 1991 old-car exchange scheme, 1996 new road fatality definition) and found statistically significant. Furthermore, the forecasting results using data up to 2008 were compared with final actual data (2009-2011) indicating that the models perform properly, even in unusual situations, like the current strong financial crisis in Greece. Forecasting results up to 2020 are also presented and compared with the forecasts of a model that explicitly considers the currently on-going recession. Modeling the recession, and assuming that it will end by 2013, results in more reasonable estimates of risk and vehicle-kilometers for the 2020 horizon. This research demonstrates the benefits of using advanced state-space modeling techniques for modeling macroscopic road safety trends, such as allowing the explicit modeling of interventions. The challenges associated with the application of such state-of-the-art models for macroscopic phenomena, such as traffic fatalities in a region or country, are also highlighted. Furthermore, it is demonstrated that it is possible to apply such complex models using the relatively short time-series that are available in macroscopic road safety analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. On the origin and elimination of macroscopic defects in MBE films

    Science.gov (United States)

    Wood, C. E. C.; Rathbun, L.; Ohno, H.; DeSimone, D.

    1981-02-01

    Spitting of group III metal droplets from Knudsen type effusion cells has been found culpable for a genre of problematical macroscopic surface topographical defects observed in the growth of semiconductor films by molecular beam epitaxy. Successful precautions are described which virtually eliminate the problem.

  5. Flux dynamics and magnetovoltage measurements in a macroscopic cylindrical hole drilled in BSCCO

    International Nuclear Information System (INIS)

    Yetis, H.; Altinkok, A.; Olutas, M.; Kilic, A.; Kilic, K.

    2007-01-01

    Slow transport relaxation measurements (V-t curves) and magnetovoltage measurements (V-H curves) were carried out in a polycrystalline sample of Bi 1.7 Pb 0.3 Sr 2 Ca 2 Cu 3 O x (BSCCO) with a macroscopic cylindrically drilled hole (CH). The time evolution of quenched state in V-t curves was interpreted in terms of enhancement of the superconducting order parameter and the relaxation of moving entity. Upon cycling of the external magnetic field with different sweep rates, unusual counter clockwise hysteresis effects and asymmetry in V-H curves are observed in BSCCO sample with CH, which can also be correlated to the trapping of the macroscopic flux bundles in CH

  6. Flux dynamics and magnetovoltage measurements in a macroscopic cylindrical hole drilled in BSCCO

    Science.gov (United States)

    Yetiş, H.; Altinkok, A.; Olutaş, M.; Kiliç, A.; Kiliç, K.

    2007-10-01

    Slow transport relaxation measurements (V-t curves) and magnetovoltage measurements (V-H curves) were carried out in a polycrystalline sample of Bi1.7Pb0.3Sr2Ca2Cu3Ox (BSCCO) with a macroscopic cylindrically drilled hole (CH). The time evolution of quenched state in V-t curves was interpreted in terms of enhancement of the superconducting order parameter and the relaxation of moving entity. Upon cycling of the external magnetic field with different sweep rates, unusual counter clockwise hysteresis effects and asymmetry in V-H curves are observed in BSCCO sample with CH, which can also be correlated to the trapping of the macroscopic flux bundles in CH.

  7. An exploration for the macroscopic physical meaning of entropy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The macroscopic physical meaning of entropy is analyzed based on the exergy (availability) of a combined system (a closed system and its environment), which is the maximum amount of useful work obtainable from the system and the environment as the system is brought into equilibrium with the environment. The process the system experiences can be divided in two sequent sub-processes, the process at constant volume, which represents the heat interaction of the system with the environment, and the adiabatic process, which represents the work interaction of the system with the environment. It is shown that the macroscopic physical meaning of entropy is a measure of the unavailable energy of a closed system for doing useful work through heat interaction. This statement is more precise than those reported in prior literature. The unavailability function of a closed system can be defined as T0S and p0V in volume constant process and adiabatic process, respectively. Their changes, that is, AiTgS) and A (p0V) represent the unusable parts of the internal energy of a closed system for doing useful work in corresponding processes. Finally, the relation between Clausius entropy and Boltzmann entropy is discussed based on the comparison of their expressions for absolute entropy.

  8. Macroscopic quantum tunneling of the magnetic moment

    Science.gov (United States)

    Tejada, J.; Hernandez, J. M.; del Barco, E.

    1999-05-01

    In this paper we review the work done on magnetic relaxation during the last 10 years on both single-domain particles and magnetic molecules and its contribution to the discovery of quantum tunneling of the magnetic moment (Chudnovsky and Tejada, Macroscopic Quantum tunneling of the Magnetic moment, Cambridge University press, Cambridge, 1998). We present first the theoretical expressions and their connection to quantum relaxation and secondly, we show and discuss the experimental results. Finally, we discuss very recent hysteresis data on Mn 12Ac molecules at extremely large sweeping rate for the external magnetic field which suggest the existence of quantum spin—phonon avalanches.

  9. Macroscopic quantum tunneling in a dc SQUID

    International Nuclear Information System (INIS)

    Chen, Y.C.

    1986-01-01

    The theory of macroscopic quantum tunneling is applied to a current-biased dc SQUID whose dynamics can be described by a two-dimensional mechanical system with a dissipative environment. Based on the phenomenological model proposed by Caldeira and Leggett, the dissipative environment is represented by a set of harmonic oscillators coupling to the system. After integrating out the environmental degrees of freedom, an effective Euclidean action is found for the two-dimensional system. The action is used to provide the quantum tunneling rate formalism for the dc SQUID. Under certain conditions, the tunneling rate reduces to that of a single current-biased Josephson junction with an adjustable effective critical current

  10. Seismic scanning tunneling macroscope - Theory

    KAUST Repository

    Schuster, Gerard T.

    2012-09-01

    We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.

  11. Seismic scanning tunneling macroscope - Theory

    KAUST Repository

    Schuster, Gerard T.; Hanafy, Sherif M.; Huang, Yunsong

    2012-01-01

    We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.

  12. Negative heat capacity at phase-separation in macroscopic systems

    OpenAIRE

    Gross, D. H. E.

    2005-01-01

    Systems with long-range as well with short-range interactions should necessarily have a convex entropy S(E) at proper phase transitions of first order, i.e. when a separation of phases occurs. Here the microcanonical heat capacity c(E)= -\\frac{(\\partial S/\\partial E)^2}{\\partial^2S/\\partial E^2} is negative. This should be observable even in macroscopic systems when energy fluctuations with the surrounding world can be sufficiently suppressed.

  13. How can macroscopically normal peritoneum contribute to the pathogenesis of endometriosis?

    Science.gov (United States)

    Fassbender, Amelie; Overbergh, Lut; Verdrengh, Eefje; Kyama, Cleophas M; Vodolazakaia, Alexandra; Bokor, Attila; Meuleman, Christel; Peeraer, Karen; Tomassetti, Carla; Waelkens, Etienne; Mathieu, Chantal; D'Hooghe, Thomas

    2011-09-01

    This study indicates that the immunobiology of macroscopically normal peritoneum is relevant to understand the pathogenesis of endometriosis. Peritoneal interleukin 6, interleukin 12, and ferritin were differentially expressed in women with and without endometriosis. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  14. A simple vibrating sample magnetometer for macroscopic samples

    Science.gov (United States)

    Lopez-Dominguez, V.; Quesada, A.; Guzmán-Mínguez, J. C.; Moreno, L.; Lere, M.; Spottorno, J.; Giacomone, F.; Fernández, J. F.; Hernando, A.; García, M. A.

    2018-03-01

    We here present a simple model of a vibrating sample magnetometer (VSM). The system allows recording magnetization curves at room temperature with a resolution of the order of 0.01 emu and is appropriated for macroscopic samples. The setup can be mounted with different configurations depending on the requirements of the sample to be measured (mass, saturation magnetization, saturation field, etc.). We also include here examples of curves obtained with our setup and comparison curves measured with a standard commercial VSM that confirms the reliability of our device.

  15. Transport processes in macroscopically disordered media from mean field theory to percolation

    CERN Document Server

    Snarskii, Andrei A; Sevryukov, Vladimir A; Morozovskiy, Alexander; Malinsky, Joseph

    2016-01-01

    This book reflects on recent advances in the understanding of percolation systems to present a wide range of transport phenomena in inhomogeneous disordered systems. Further developments in the theory of macroscopically inhomogeneous media are also addressed. These developments include galvano-electric, thermoelectric, elastic properties, 1/f noise and higher current momenta, Anderson localization, and harmonic generation in composites in the vicinity of the percolation threshold. The book describes how one can find effective characteristics, such as conductivity, dielectric permittivity, magnetic permeability, with knowledge of the distribution of different components constituting an inhomogeneous medium. Considered are a wide range of recent studies dedicated to the elucidation of physical properties of macroscopically disordered systems. Aimed at researchers and advanced students, it contains a straightforward set of useful tools which will allow the reader to derive the basic physical properties of compli...

  16. All-carbon nanotube diode and solar cell statistically formed from macroscopic network

    Institute of Scientific and Technical Information of China (English)

    Albert G. Nasibulin[1,2,3; Adinath M. Funde[3,4; Ilya V. Anoshkin[3; Igor A. Levitskyt[5,6

    2015-01-01

    Schottky diodes and solar cells are statistically created in the contact area between two macroscopic films of single-walled carbon nanotubes (SWNTs) at the junction of semiconducting and quasi-metallic bundles consisting of several high quality tubes. The n-doping of one of the films allows for photovoltaic action, owing to an increase in the built-in potential at the bundle-to-bundle interface. Statistical analysis demonstrates that the Schottky barrier device contributes significantly to the I-V characteristics, compared to the p-n diode. The upper limit of photovoltaic conversion efficiency has been estimated at N20%, demonstrating that the light energy conversion is very efficient for such a unique solar cell. While there have been multiple studies on rectifying SWNT diodes in the nanoscale environment, this is the first report of a macroscopic all-carbon nanotube diode and solar cell.

  17. Laparoscopic vs open total mesorectal excision for rectal cancer: an evaluation of the mesorectum's macroscopic quality.

    Science.gov (United States)

    Breukink, S O; Grond, A J K; Pierie, J P E N; Hoff, C; Wiggers, T; Meijerink, W J H J

    2005-03-01

    Next to surgical margins, yield of lymph nodes, and length of bowel resected, macroscopic completeness of mesorectal excision may serve as another quality control of total mesorectal excision (TME). In this study, the macroscopic completeness of laparoscopic TME was evaluated. A series of 25 patients with rectal cancer were managed laparoscopically (LTME) and included in this study. The pathologic specimens of the LTME group were prospectively examined and matched with a historical group of resection specimens from patients who had undergone open TME (OTME). The two groups were matched for gender and type of resection (low anterior or abdominoperineal resection). Special care was given to the macroscopic judgment concerning the completeness of the mesorectum. A three-grade scoring system showed no differences between the LTME and OTME groups. The current study supports the hypothesis that oncologic resection using laparoscopic TME is feasible and adequate.

  18. Electrically and mechanically induced macroscopic body couple, a newly recognized phenomenon of electromechanical interaction

    International Nuclear Information System (INIS)

    Chen, P.J.

    1986-01-01

    Microscopically, when the molecules of certain materials are under the influence of external stimuli such as mechanical and electrical forces, several processes can happen. In particular, the centers of charge of the positive and negative ions of a molecule may displace with respect to each other. This notion leads to the macroscopic concept of polarization which has been exploited in the classical studies of piezoelectric and ferroelectric materials. In addition, the ions of the molecule may also rotate angularly relative to one another. Here an entirely new macroscopic concept of body couple which differs from the classical concept is introduced. It is shown that the simplest representations of the proposed constitutive relations lead to an equation within the context of the classical bending theory of thin plates whose solution is in remarkable agreement with recent experimental results concerning the bending of thin virgin ferroelectric ceramic discs under the action of small d.c. voltages. These experimental results cannot be explained by the classical notion of polarization. Therefore, the concept of macroscopic body couple introduced here is a fundamental feature which must be taken into account in the considerations of electromechanical interactions

  19. Gecko toe and lamellar shear adhesion on macroscopic, engineered rough surfaces.

    Science.gov (United States)

    Gillies, Andrew G; Henry, Amy; Lin, Hauwen; Ren, Angela; Shiuan, Kevin; Fearing, Ronald S; Full, Robert J

    2014-01-15

    The role in adhesion of the toes and lamellae - intermediate-sized structures - found on the gecko foot remains unclear. Insight into the function of these structures can lead to a more general understanding of the hierarchical nature of the gecko adhesive system, but in particular how environmental topology may relate to gecko foot morphology. We sought to discern the mechanics of the toes and lamellae by examining gecko adhesion on controlled, macroscopically rough surfaces. We used live Tokay geckos, Gekko gecko, to observe the maximum shear force a gecko foot can attain on an engineered substrate constructed with sinusoidal patterns of varying amplitudes and wavelengths in sizes similar to the dimensions of the toes and lamellae structures (0.5 to 6 mm). We found shear adhesion was significantly decreased on surfaces that had amplitudes and wavelengths approaching the lamella length and inter-lamella spacing, losing 95% of shear adhesion over the range tested. We discovered that the toes are capable of adhering to surfaces with amplitudes much larger than their dimensions even without engaging claws, maintaining 60% of shear adhesion on surfaces with amplitudes of 3 mm. Gecko adhesion can be predicted by the ratio of the lamella dimensions to surface feature dimensions. In addition to setae, remarkable macroscopic-scale features of gecko toes and lamellae that include compliance and passive conformation are necessary to maintain contact, and consequently, generate shear adhesion on macroscopically rough surfaces. Findings on the larger scale structures in the hierarchy of gecko foot function could provide the biological inspiration to drive the design of more effective and versatile synthetic fibrillar adhesives.

  20. A comparison of macroscopic models describing the collective response of sedimenting rod-like particles in shear flows

    KAUST Repository

    Helzel, Christiane; Tzavaras, Athanasios

    2016-01-01

    We consider a kinetic model, which describes the sedimentation of rod-like particles in dilute suspensions under the influence of gravity, presented in Helzel and Tzavaras (submitted for publication). Here we restrict our considerations to shear flow and consider a simplified situation, where the particle orientation is restricted to the plane spanned by the direction of shear and the direction of gravity. For this simplified kinetic model we carry out a linear stability analysis and we derive two different nonlinear macroscopic models which describe the formation of clusters of higher particle density. One of these macroscopic models is based on a diffusive scaling, the other one is based on a so-called quasi-dynamic approximation. Numerical computations, which compare the predictions of the macroscopic models with the kinetic model, complete our presentation.

  1. A comparison of macroscopic models describing the collective response of sedimenting rod-like particles in shear flows

    KAUST Repository

    Helzel, Christiane

    2016-07-22

    We consider a kinetic model, which describes the sedimentation of rod-like particles in dilute suspensions under the influence of gravity, presented in Helzel and Tzavaras (submitted for publication). Here we restrict our considerations to shear flow and consider a simplified situation, where the particle orientation is restricted to the plane spanned by the direction of shear and the direction of gravity. For this simplified kinetic model we carry out a linear stability analysis and we derive two different nonlinear macroscopic models which describe the formation of clusters of higher particle density. One of these macroscopic models is based on a diffusive scaling, the other one is based on a so-called quasi-dynamic approximation. Numerical computations, which compare the predictions of the macroscopic models with the kinetic model, complete our presentation.

  2. Flux dynamics and magnetovoltage measurements in a macroscopic cylindrical hole drilled in BSCCO

    Energy Technology Data Exchange (ETDEWEB)

    Yetis, H.; Altinkok, A.; Olutas, M. [Abant Izzet Baysal University, Department of Physics, Turgut Gulez Research Laboratory, 14280 Bolu (Turkey); Kilic, A. [Abant Izzet Baysal University, Department of Physics, Turgut Gulez Research Laboratory, 14280 Bolu (Turkey)], E-mail: kilic_a@ibu.edu.tr; Kilic, K. [Abant Izzet Baysal University, Department of Physics, Turgut Gulez Research Laboratory, 14280 Bolu (Turkey)

    2007-10-01

    Slow transport relaxation measurements (V-t curves) and magnetovoltage measurements (V-H curves) were carried out in a polycrystalline sample of Bi{sub 1.7}Pb{sub 0.3}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (BSCCO) with a macroscopic cylindrically drilled hole (CH). The time evolution of quenched state in V-t curves was interpreted in terms of enhancement of the superconducting order parameter and the relaxation of moving entity. Upon cycling of the external magnetic field with different sweep rates, unusual counter clockwise hysteresis effects and asymmetry in V-H curves are observed in BSCCO sample with CH, which can also be correlated to the trapping of the macroscopic flux bundles in CH.

  3. Effect of the isovector coupling channel on the macroscopic part of ...

    Indian Academy of Sciences (India)

    Physics Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria. E-mail: pscientific@aec.org.sy. MS received 10 June 2012; revised 18 October 2012; accepted 12 December 2012. Abstract. The effect of isovector coupling channel on the macroscopic part of the nuclear binding energy is studied ...

  4. New nuclear data set ABBN-90 and its testing on macroscopic experiments

    International Nuclear Information System (INIS)

    Kosh'cheev, V.N.; Manturov, G.N.; Nikolaev, M.N.; Rineyskiy, A.A.; Sinitsa, V.V.; Tsyboolya, A.M.; Zabrodskaya, S.V.

    1993-01-01

    The new group constant set ABBN-90 is developed now. It based on the FOND-2 evaluated neutron data library processed with the code GRUCON. Some results of the testing ABBN-90 set in different macroscopic experiments are presented. (author)

  5. Macroscopic Biological Characteristics of Individualized Therapy in Chinese Mongolian Osteopathy

    Science.gov (United States)

    Namula, Zhao; Mei, Wang; Li, Xue-en

    Objective: Chinese Mongolian osteopathy has been passed down from ancient times and includes unique practices and favorable efficacy. In this study, we investigate the macroscopic biological characteristics of individualized Chinese Mongolian osteopathy, in order to provide new principle and methods for the treatment of bone fracture. Method: With a view to provide a vital link between nature and humans, the four stages of Chinese Mongolian osteopathy focus on the unity of the mind and body, the limbs and body organs, the body and its functions, and humans and nature. Results: We discuss the merits of individualized osteopathy in terms of the underlying concepts, and evaluate the approaches and principles of traditional medicine, as well as biomechanics. Conclusions: Individualized Mongolian osteopathy targets macroscopic biological components including dynamic reduction, natural fixation, and functional healing. Chinese Mongolian osteopathy is a natural, ecological and non-invasive osteopathy that values the link between nature and humans, including the unity of mind and body. The biological components not only serve as a foundation for Chinese Mongolian osteopathy but are also important for the future development of modern osteopathy, focusing on individualization, actualization and integration.

  6. PERBANDINGAN EUCLIDEAN DISTANCE DENGAN CANBERRA DISTANCE PADA FACE RECOGNITION

    Directory of Open Access Journals (Sweden)

    Sendhy Rachmat Wurdianarto

    2014-08-01

    Full Text Available Perkembangan ilmu pada dunia komputer sangatlah pesat. Salah satu yang menandai hal ini adalah ilmu komputer telah merambah pada dunia biometrik. Arti biometrik sendiri adalah karakter-karakter manusia yang dapat digunakan untuk membedakan antara orang yang satu dengan yang lainnya. Salah satu pemanfaatan karakter / organ tubuh pada setiap manusia yang digunakan untuk identifikasi (pengenalan adalah dengan memanfaatkan wajah. Dari permasalahan diatas dalam pengenalan lebih tentang aplikasi Matlab pada Face Recognation menggunakan metode Euclidean Distance dan Canberra Distance. Model pengembangan aplikasi yang digunakan adalah model waterfall. Model waterfall beriisi rangkaian aktivitas proses yang disajikan dalam proses analisa kebutuhan, desain menggunakan UML (Unified Modeling Language, inputan objek gambar diproses menggunakan Euclidean Distance dan Canberra Distance. Kesimpulan yang dapat ditarik adalah aplikasi face Recognation menggunakan metode euclidean Distance dan Canverra Distance terdapat kelebihan dan kekurangan masing-masing. Untuk kedepannya aplikasi tersebut dapat dikembangkan dengan menggunakan objek berupa video ataupun objek lainnya.   Kata kunci : Euclidean Distance, Face Recognition, Biometrik, Canberra Distance

  7. Microscopic and macroscopic models for the onset and progression of Alzheimer's disease

    Science.gov (United States)

    Bertsch, Michiel; Franchi, Bruno; Carla Tesi, Maria; Tosin, Andrea

    2017-10-01

    In the first part of this paper we review a mathematical model for the onset and progression of Alzheimer’s disease (AD) that was developed in subsequent steps over several years. The model is meant to describe the evolution of AD in vivo. In Achdou et al (2013 J. Math. Biol. 67 1369-92) we treated the problem at a microscopic scale, where the typical length scale is a multiple of the size of the soma of a single neuron. Subsequently, in Bertsch et al (2017 Math. Med. Biol. 34 193-214) we concentrated on the macroscopic scale, where brain neurons are regarded as a continuous medium, structured by their degree of malfunctioning. In the second part of the paper we consider the relation between the microscopic and the macroscopic models. In particular we show under which assumptions the kinetic transport equation, which in the macroscopic model governs the evolution of the probability measure for the degree of malfunctioning of neurons, can be derived from a particle-based setting. The models are based on aggregation and diffusion equations for β-Amyloid (Aβ from now on), a protein fragment that healthy brains regularly produce and eliminate. In case of dementia Aβ monomers are no longer properly washed out and begin to coalesce forming eventually plaques. Two different mechanisms are assumed to be relevant for the temporal evolution of the disease: (i) diffusion and agglomeration of soluble polymers of amyloid, produced by damaged neurons; (ii) neuron-to-neuron prion-like transmission. In the microscopic model we consider mechanism (i), modelling it by a system of Smoluchowski equations for the amyloid concentration (describing the agglomeration phenomenon), with the addition of a diffusion term as well as of a source term on the neuronal membrane. At the macroscopic level instead we model processes (i) and (ii) by a system of Smoluchowski equations for the amyloid concentration, coupled to a kinetic-type transport equation for the distribution function of the

  8. Partitioning a macroscopic system into independent subsystems

    Science.gov (United States)

    Delle Site, Luigi; Ciccotti, Giovanni; Hartmann, Carsten

    2017-08-01

    We discuss the problem of partitioning a macroscopic system into a collection of independent subsystems. The partitioning of a system into replica-like subsystems is nowadays a subject of major interest in several fields of theoretical and applied physics. The thermodynamic approach currently favoured by practitioners is based on a phenomenological definition of an interface energy associated with the partition, due to a lack of easily computable expressions for a microscopic (i.e. particle-based) interface energy. In this article, we outline a general approach to derive sharp and computable bounds for the interface free energy in terms of microscopic statistical quantities. We discuss potential applications in nanothermodynamics and outline possible future directions.

  9. Distinct molecular features of different macroscopic subtypes of colorectal neoplasms.

    Directory of Open Access Journals (Sweden)

    Kenichi Konda

    Full Text Available Colorectal adenoma develops into cancer with the accumulation of genetic and epigenetic changes. We studied the underlying molecular and clinicopathological features to better understand the heterogeneity of colorectal neoplasms (CRNs.We evaluated both genetic (mutations of KRAS, BRAF, TP53, and PIK3CA, and microsatellite instability [MSI] and epigenetic (methylation status of nine genes or sequences, including the CpG island methylator phenotype [CIMP] markers alterations in 158 CRNs including 56 polypoid neoplasms (PNs, 25 granular type laterally spreading tumors (LST-Gs, 48 non-granular type LSTs (LST-NGs, 19 depressed neoplasms (DNs and 10 small flat-elevated neoplasms (S-FNs on the basis of macroscopic appearance.S-FNs showed few molecular changes except SFRP1 methylation. Significant differences in the frequency of KRAS mutations were observed among subtypes (68% for LST-Gs, 36% for PNs, 16% for DNs and 6% for LST-NGs (P<0.001. By contrast, the frequency of TP53 mutation was higher in DNs than PNs or LST-Gs (32% vs. 5% or 0%, respectively (P<0.007. We also observed significant differences in the frequency of CIMP between LST-Gs and LST-NGs or PNs (32% vs. 6% or 5%, respectively (P<0.005. Moreover, the methylation level of LINE-1 was significantly lower in DNs or LST-Gs than in PNs (58.3% or 60.5% vs. 63.2%, P<0.05. PIK3CA mutations were detected only in LSTs. Finally, multivariate analyses showed that macroscopic morphologies were significantly associated with an increased risk of molecular changes (PN or LST-G for KRAS mutation, odds ratio [OR] 9.11; LST-NG or DN for TP53 mutation, OR 5.30; LST-G for PIK3CA mutation, OR 26.53; LST-G or DN for LINE-1 hypomethylation, OR 3.41.We demonstrated that CRNs could be classified into five macroscopic subtypes according to clinicopathological and molecular differences, suggesting that different mechanisms are involved in the pathogenesis of colorectal tumorigenesis.

  10. Quantum teleportation between stationary macroscopic objects

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Xiao-Hui; Yuan, Zhen-Sheng; Pan, Jian-Wei [Physikalisches Institut, Universitaet Heidelberg (Germany); Hefei National Laboratory for Physical Sciences at Microscale, Department of Modern Physics, University of Science and Technology of China, Hefei (China); Xu, Xiao-Fan [Physikalisches Institut, Universitaet Heidelberg (Germany); Li, Che-Ming [Physikalisches Institut, Universitaet Heidelberg (Germany); Department of Physics, National Center for Theoretical Sciences, National Cheng Kung University, Tainan (China)

    2010-07-01

    Quantum teleportation is a process to transfer a quantum state of an object without transferring the state carrier itself. So far, most of the teleportation experiments realized are within the photonic regime. For the teleportation of stationary states, the largest system reported is a single ion. We are now performing an experiment to teleport the state of an macroscopic atomic cloud which consists about 10{sup 6} single atoms. In our experiment two atomic ensembles are utilized. In the first ensemble A we prepare the collective atomic state to be teleported using the quantum feedback technique. The second ensemble B is utilized to generate entanglement between it collective state with a scattered single-photon. Teleportation is realized by converting the atomic state of A to a single-photon and making a Bell state measurement with the scattered single-photon from ensemble B.

  11. Maximum Entropy Methods as the Bridge Between Microscopic and Macroscopic Theory

    Science.gov (United States)

    Taylor, Jamie M.

    2016-09-01

    This paper is concerned with an investigation into a function of macroscopic variables known as the singular potential, building on previous work by Ball and Majumdar. The singular potential is a function of the admissible statistical averages of probability distributions on a state space, defined so that it corresponds to the maximum possible entropy given known observed statistical averages, although non-classical entropy-like objective functions will also be considered. First the set of admissible moments must be established, and under the conditions presented in this work the set is open, bounded and convex allowing a description in terms of supporting hyperplanes, which provides estimates on the development of singularities for related probability distributions. Under appropriate conditions it is shown that the singular potential is strictly convex, as differentiable as the microscopic entropy, and blows up uniformly as the macroscopic variable tends to the boundary of the set of admissible moments. Applications of the singular potential are then discussed, and particular consideration will be given to certain free-energy functionals typical in mean-field theory, demonstrating an equivalence between certain microscopic and macroscopic free-energy functionals. This allows statements about L^1-local minimisers of Onsager's free energy to be obtained which cannot be given by two-sided variations, and overcomes the need to ensure local minimisers are bounded away from zero and +∞ before taking L^∞ variations. The analysis also permits the definition of a dual order parameter for which Onsager's free energy allows an explicit representation. Also, the difficulties in approximating the singular potential by everywhere defined functions, in particular by polynomial functions, are addressed, with examples demonstrating the failure of the Taylor approximation to preserve relevant shape properties of the singular potential.

  12. Macroscopic description of complex adaptive networks coevolving with dynamic node states

    Science.gov (United States)

    Wiedermann, Marc; Donges, Jonathan F.; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen

    2015-05-01

    In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.

  13. CH-π Interaction Driven Macroscopic Property Transition on Smart Polymer Surface

    Science.gov (United States)

    Li, Minmin; Qing, Guangyan; Xiong, Yuting; Lai, Yuekun; Sun, Taolei

    2015-10-01

    Life systems have evolved to utilize weak noncovalent interactions, particularly CH-π interaction, to achieve various biofunctions, for example cellular communication, immune response, and protein folding. However, for artificial materials, it remains a great challenge to recognize such weak interaction, further transform it into tunable macroscopic properties and realize special functions. Here we integrate monosaccharide-based CH-π receptor capable of recognizing aromatic peptides into a smart polymer with three-component “Recognition-Mediating-Function” design, and report the CH-π interaction driven surface property switching on smart polymer film, including wettability, adhesion, viscoelasticity and stiffness. Detailed studies indicate that, the CH-π interaction induces the complexation between saccharide unit and aromatic peptide, which breaks the initial amphiphilic balance of the polymer network, resulting in contraction-swelling conformational transition for polymer chains and subsequent dramatic switching in surface properties. This work not only presents a new approach to control the surface property of materials, but also points to a broader research prospect on CH-π interaction at a macroscopic level.

  14. Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.

    Science.gov (United States)

    Tsai, Jaw-Shen

    2010-01-01

    Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.

  15. Encyclopedia of distances

    CERN Document Server

    Deza, Michel Marie

    2016-01-01

    This 4th edition of the leading reference volume on distance metrics is characterized by updated and rewritten sections on some items suggested by experts and readers, as well a general streamlining of content and the addition of essential new topics. Though the structure remains unchanged, the new edition also explores recent advances in the use of distances and metrics for e.g. generalized distances, probability theory, graph theory, coding theory, data analysis. New topics in the purely mathematical sections include e.g. the Vitanyi multiset-metric, algebraic point-conic distance, triangular ratio metric, Rossi-Hamming metric, Taneja distance, spectral semimetric between graphs, channel metrization, and Maryland bridge distance. The multidisciplinary sections have also been supplemented with new topics, including: dynamic time wrapping distance, memory distance, allometry, atmospheric depth, elliptic orbit distance, VLBI distance measurements, the astronomical system of units, and walkability distance. Lea...

  16. Distance Learning

    National Research Council Canada - National Science Library

    Braddock, Joseph

    1997-01-01

    A study reviewing the existing Army Distance Learning Plan (ADLP) and current Distance Learning practices, with a focus on the Army's training and educational challenges and the benefits of applying Distance Learning techniques...

  17. Evaluation of healing potential of autogenous, macroscopic fat deposited or fat free, omental graft in experimental radius bone defect in rabbit: Radiological study

    International Nuclear Information System (INIS)

    Masouleh, M.N.; Haghdoost, I.S.; Heydari, G.A.C.; Raissi, A.; Mohitmafi, S.

    2011-01-01

    This study was designed for evaluation of the difference between the ability of greater omentum graft with or without macroscopic fat deposition in acceleration of bone healing process. Adult female New Zealand white rabbits (n=15) were randomly divided into three equal groups. In groups A and B, the drilled hole on the left radius was filled by the omentum without and with macroscopic fat deposition, respectively while drilled hole on the right radius left intact for consideration as control. In group C, the drilled hole on the left and right radius was filled by the omentum sample with and without macroscopic fat deposition, respectively. Experimental bone defects on the radiuses were secured by the pieces of greater omentum, with or without macroscopic fat deposition, which obtained as an autogenous graft from each rabbit in accompany with control samples. Standardized serial radiography for evaluation of bone healing was performed and the difference in bone healing process in three groups of study was determined. According to the obtained data, the radius bones which filled by omentum without macroscopic fat deposition showed faster healing process than the radius bones which filled by omentum with macroscopic fat deposition (P<0.05). (author)

  18. Comparison of prevalence estimation of Mycobacterium avium subsp. paratuberculosis infection by sampling slaughtered cattle with macroscopic lesions vs. systematic sampling.

    Science.gov (United States)

    Elze, J; Liebler-Tenorio, E; Ziller, M; Köhler, H

    2013-07-01

    The objective of this study was to identify the most reliable approach for prevalence estimation of Mycobacterium avium ssp. paratuberculosis (MAP) infection in clinically healthy slaughtered cattle. Sampling of macroscopically suspect tissue was compared to systematic sampling. Specimens of ileum, jejunum, mesenteric and caecal lymph nodes were examined for MAP infection using bacterial microscopy, culture, histopathology and immunohistochemistry. MAP was found most frequently in caecal lymph nodes, but sampling more tissues optimized the detection rate. Examination by culture was most efficient while combination with histopathology increased the detection rate slightly. MAP was detected in 49/50 animals with macroscopic lesions representing 1.35% of the slaughtered cattle examined. Of 150 systematically sampled macroscopically non-suspect cows, 28.7% were infected with MAP. This indicates that the majority of MAP-positive cattle are slaughtered without evidence of macroscopic lesions and before clinical signs occur. For reliable prevalence estimation of MAP infection in slaughtered cattle, systematic random sampling is essential.

  19. Energetic macroscopic representation and inversion-based control of a CVT-based HEV

    NARCIS (Netherlands)

    Chouhou, M.; Grée, F.; Jivan, C.; Bouscayrol, A.; Hofman, T.

    2014-01-01

    A Continuous Variable Transmission (CVT) is introduced in the simulation model of a Hybrid Electric Vehicle (HEV). The CVT-based vehicle simulation and its control are deduced from the Energetic Macroscopic Representation (EMR). Simulations are provided to show the interest of the CVT in term of

  20. Energetic macroscopic representation and inversion- based control of a CVT-based HEV

    NARCIS (Netherlands)

    Chouhou, M.; Grée, F.; Jivan, C.; Bouscayrol, A.; Hofman, T.

    2013-01-01

    A Continuous Variable Transmission (CVT) is introduced in the simulation model of a Hybrid Electric Vehicle (HEV). The CVT-based vehicle simulation and its control are deduced from the Energetic Macroscopic Representation (EMR). Simulations are provided to show the interest of the CVT in term of

  1. Bilateral subacromial bursitis with macroscopic rice bodies: Ultrasound, CT and MR appearance

    International Nuclear Information System (INIS)

    Law, T.C.; Chong, S.F.; Lu, P.P.; Mak, K.H.

    1998-01-01

    The radiological findings of ultrasound, CT and MR of a case of bilateral subacromial bursitis with macroscopic rice bodies is described. MRI is the investigation of choice and the intravenous gadolinium-enhanced usefulness was noted. The previous literature is also reviewed. Copyright (1998) Blackwell Science Pty Ltd

  2. Lability of Nanoparticulate Metal Complexes at a Macroscopic Metal Responsive (Bio)interface

    NARCIS (Netherlands)

    Duval, Jérôme F.L.; Town, Raewyn M.; Leeuwen, Van Herman P.

    2018-01-01

    The lability of metal complexes expresses the extent of the dissociative contribution of the complex species to the flux of metal ions toward a macroscopic metal-responsive (bio)interface, for example, an electrodic sensor or an organism. While the case of molecular ligands is well-established, it

  3. Self-similar drag reduction in plug-flow of suspensions of macroscopic fibers

    NARCIS (Netherlands)

    Gillissen, J.J.J.; Hoving, J.P.

    2012-01-01

    Pipe flow experiments show that turbulent drag reduction in plug-flow of concentrated suspensions of macroscopic fibers is a self-similar function of the wall shear stress over the fiber network yield stress. We model the experimental observations, by assuming a central fiber network plug, whose

  4. REPRESENTATIONS OF DISTANCE: DIFFERENCES IN UNDERSTANDING DISTANCE ACCORDING TO TRAVEL METHOD

    Directory of Open Access Journals (Sweden)

    Gunvor Riber Larsen

    2017-12-01

    Full Text Available This paper explores how Danish tourists represent distance in relation to their holiday mobility and how these representations of distance are a result of being aero-mobile as opposed to being land-mobile. Based on interviews with Danish tourists, whose holiday mobility ranges from the European continent to global destinations, the first part of this qualitative study identifies three categories of representations of distance that show how distance is being ‘translated’ by the tourists into non-geometric forms: distance as resources, distance as accessibility, and distance as knowledge. The representations of distance articulated by the Danish tourists show that distance is often not viewed in ‘just’ kilometres. Rather, it is understood in forms that express how transcending the physical distance through holiday mobility is dependent on individual social and economic contexts, and on whether the journey was undertaken by air or land. The analysis also shows that being aeromobile is the holiday transportation mode that removes the tourists the furthest away from physical distance, resulting in the distance travelled by air being represented in ways that have the least correlation, in the tourists’ minds, with physical distance measured in kilometres.

  5. The influence of microscopic and macroscopic non-stoichiometry on interfacial planarity during the solid-phase epitaxial growth of amorphized GaAs

    International Nuclear Information System (INIS)

    Belay, K.B.; Ridgway, M.C.; Llewellyn, D.J.

    1996-01-01

    The influence of microscopic and macroscopic non-stoichiometry on the Solid-Phase Epitaxial Growth of GaAs has been studied. Ion implantation has been employed to produce microscopic non-stoichiometry via Ga and As implants and macroscopic non-stoichiometry via Ga or As implants. In-situ Time Resolved Reflectivity and Transmission Electron Microscopy and ex-situ Rutherford Backscattering Spectroscopy and Channeling have been used to investigate the regrowth of amorphized GaAs layers. As non-stoichiometry shifts from microscopic to macroscopic the interface loses its planar nature and subsequently gets rougher. 7 refs., 3 figs

  6. The influence of microscopic and macroscopic non-stoichiometry on interfacial planarity during the solid-phase epitaxial growth of amorphized GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Belay, K.B.; Ridgway, M.C.; Llewellyn, D.J. [Australian National Univ., Canberra, ACT (Australia). Dept. of Physics

    1996-12-31

    The influence of microscopic and macroscopic non-stoichiometry on the Solid-Phase Epitaxial Growth of GaAs has been studied. Ion implantation has been employed to produce microscopic non-stoichiometry via Ga and As implants and macroscopic non-stoichiometry via Ga or As implants. In-situ Time Resolved Reflectivity and Transmission Electron Microscopy and ex-situ Rutherford Backscattering Spectroscopy and Channeling have been used to investigate the regrowth of amorphized GaAs layers. As non-stoichiometry shifts from microscopic to macroscopic the interface loses its planar nature and subsequently gets rougher. 7 refs., 3 figs.

  7. The influence of microscopic and macroscopic non-stoichiometry on interfacial planarity during the solid-phase epitaxial growth of amorphized GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Belay, K B; Ridgway, M C; Llewellyn, D J [Australian National Univ., Canberra, ACT (Australia). Dept. of Physics

    1997-12-31

    The influence of microscopic and macroscopic non-stoichiometry on the Solid-Phase Epitaxial Growth of GaAs has been studied. Ion implantation has been employed to produce microscopic non-stoichiometry via Ga and As implants and macroscopic non-stoichiometry via Ga or As implants. In-situ Time Resolved Reflectivity and Transmission Electron Microscopy and ex-situ Rutherford Backscattering Spectroscopy and Channeling have been used to investigate the regrowth of amorphized GaAs layers. As non-stoichiometry shifts from microscopic to macroscopic the interface loses its planar nature and subsequently gets rougher. 7 refs., 3 figs.

  8. Digging deep: Burlington extracts enormous wealth from enormous depths

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.

    2003-05-01

    Production successes achieved by Burlington Resources Inc., from the deepest operating onshore gas field in the Rocky Mountain region are discussed. The wells in question are located in the Wind River Basin of Wyoming; they are over 25,000-feet deep; they are not only the deepest, but at 290 mmcf of gas per day, the handful of six producing wells are responsible for about 0.5 per cent of total U.S.gas output. Value of the monthly output per well is estimated in the millions of dollars at current natural gas prices; based on estimated reserves of better than 2.8 tcf, the wells are expected to keep flowing for at least two decades. The area is considered to be the harshest operating environment in the industry: searing temperatures of up to 430 degrees F are combined with pressures of 10,400 lbs/sq in, and corrosive concentrations of 12 per cent hydrogen sulfide in an unusual combination with 19 per cent carbon dioxide. To add to the challenges on both the drilling and producing sides, there is also ammonia, unusual in itself, and atypically high pressures in formations above the producing formation. Cost cutting innovations introduced by Burlington in wellbore and casing design and other new approaches, including oil-based drilling fluids, drilling bit improvements, and reverse cementing, all of which were key to the company's success, are also reviewed. On the production side, there is a brief description of the special metallurgy, double-walled pipeline and highly corrosion-resistant alloy tubular products that were developed to deal with the highly corrosive gas stream flowing at wellhead temperatures in excess of 300 degrees F.

  9. Macroscopic Theory for Evolving Biological Systems Akin to Thermodynamics.

    Science.gov (United States)

    Kaneko, Kunihiko; Furusawa, Chikara

    2018-05-20

    We present a macroscopic theory to characterize the plasticity, robustness, and evolvability of biological responses and their fluctuations. First, linear approximation in intracellular reaction dynamics is used to demonstrate proportional changes in the expression of all cellular components in response to a given environmental stress, with the proportion coefficient determined by the change in growth rate as a consequence of the steady growth of cells. We further demonstrate that this relationship is supported through adaptation experiments of bacteria, perhaps too well as this proportionality is held even across cultures of different types of conditions. On the basis of simulations of cell models, we further show that this global proportionality is a consequence of evolution in which expression changes in response to environmental or genetic perturbations are constrained along a unique one-dimensional curve, which is a result of evolutionary robustness. It then follows that the expression changes induced by environmental changes are proportionally reduced across different components of a cell by evolution, which is akin to the Le Chatelier thermodynamics principle. Finally, with the aid of a fluctuation-response relationship, this proportionality is shown to hold between fluctuations caused by genetic changes and those caused by noise. Overall, these results and support from the theoretical and experimental literature suggest a formulation of cellular systems akin to thermodynamics, in which a macroscopic potential is given by the growth rate (or fitness) represented as a function of environmental and evolutionary changes.

  10. Macroscopic networks in the human brain: mapping connectivity in healthy and damaged brains

    NARCIS (Netherlands)

    Nijhuis, E.H.J.

    2013-01-01

    The human brain contains a network of interconnected neurons. Recent advances in functional and structural in-vivo magnetic resonance neuroimaging (MRI) techniques have provided opportunities to model the networks of the human brain on a macroscopic scale. This dissertation investigates the

  11. Encyclopedia of distances

    CERN Document Server

    Deza, Michel Marie

    2014-01-01

    This updated and revised third edition of the leading reference volume on distance metrics includes new items from very active research areas in the use of distances and metrics such as geometry, graph theory, probability theory and analysis. Among the new topics included are, for example, polyhedral metric space, nearness matrix problems, distances between belief assignments, distance-related animal settings, diamond-cutting distances, natural units of length, Heidegger’s de-severance distance, and brain distances. The publication of this volume coincides with intensifying research efforts into metric spaces and especially distance design for applications. Accurate metrics have become a crucial goal in computational biology, image analysis, speech recognition and information retrieval. Leaving aside the practical questions that arise during the selection of a ‘good’ distance function, this work focuses on providing the research community with an invaluable comprehensive listing of the main available di...

  12. GRUCAL, a computer program for calculating macroscopic group constants

    International Nuclear Information System (INIS)

    Woll, D.

    1975-06-01

    Nuclear reactor calculations require material- and composition-dependent, energy averaged nuclear data to describe the interaction of neutrons with individual isotopes in material compositions of reactor zones. The code GRUCAL calculates these macroscopic group constants for given compositions from the material-dependent data of the group constant library GRUBA. The instructions for calculating group constants are not fixed in the program, but will be read at the actual execution time from a separate instruction file. This allows to accomodate GRUCAL to various problems or different group constant concepts. (orig.) [de

  13. Monitoring road traffic congestion using a macroscopic traffic model and a statistical monitoring scheme

    KAUST Repository

    Zeroual, Abdelhafid; Harrou, Fouzi; Sun, Ying; Messai, Nadhir

    2017-01-01

    Monitoring vehicle traffic flow plays a central role in enhancing traffic management, transportation safety and cost savings. In this paper, we propose an innovative approach for detection of traffic congestion. Specifically, we combine the flexibility and simplicity of a piecewise switched linear (PWSL) macroscopic traffic model and the greater capacity of the exponentially-weighted moving average (EWMA) monitoring chart. Macroscopic models, which have few, easily calibrated parameters, are employed to describe a free traffic flow at the macroscopic level. Then, we apply the EWMA monitoring chart to the uncorrelated residuals obtained from the constructed PWSL model to detect congested situations. In this strategy, wavelet-based multiscale filtering of data has been used before the application of the EWMA scheme to improve further the robustness of this method to measurement noise and reduce the false alarms due to modeling errors. The performance of the PWSL-EWMA approach is successfully tested on traffic data from the three lane highway portion of the Interstate 210 (I-210) highway of the west of California and the four lane highway portion of the State Route 60 (SR60) highway from the east of California, provided by the Caltrans Performance Measurement System (PeMS). Results show the ability of the PWSL-EWMA approach to monitor vehicle traffic, confirming the promising application of this statistical tool to the supervision of traffic flow congestion.

  14. Monitoring road traffic congestion using a macroscopic traffic model and a statistical monitoring scheme

    KAUST Repository

    Zeroual, Abdelhafid

    2017-08-19

    Monitoring vehicle traffic flow plays a central role in enhancing traffic management, transportation safety and cost savings. In this paper, we propose an innovative approach for detection of traffic congestion. Specifically, we combine the flexibility and simplicity of a piecewise switched linear (PWSL) macroscopic traffic model and the greater capacity of the exponentially-weighted moving average (EWMA) monitoring chart. Macroscopic models, which have few, easily calibrated parameters, are employed to describe a free traffic flow at the macroscopic level. Then, we apply the EWMA monitoring chart to the uncorrelated residuals obtained from the constructed PWSL model to detect congested situations. In this strategy, wavelet-based multiscale filtering of data has been used before the application of the EWMA scheme to improve further the robustness of this method to measurement noise and reduce the false alarms due to modeling errors. The performance of the PWSL-EWMA approach is successfully tested on traffic data from the three lane highway portion of the Interstate 210 (I-210) highway of the west of California and the four lane highway portion of the State Route 60 (SR60) highway from the east of California, provided by the Caltrans Performance Measurement System (PeMS). Results show the ability of the PWSL-EWMA approach to monitor vehicle traffic, confirming the promising application of this statistical tool to the supervision of traffic flow congestion.

  15. Characterization of Mangifera indica cultivars in Thailand based on macroscopic, microscopic, and genetic characters

    Directory of Open Access Journals (Sweden)

    Aunyachulee Ganogpichayagrai

    2016-01-01

    Full Text Available Thai mango cultivars are classified into six groups plus one miscellaneous group according to germplasm database for mango. Characterization is important for conservation and the development of Thai mango cultivars. This study investigated macroscopic, microscopic leaf characteristics, and genetic relationship among 17 cultivars selected from six groups of mango in Thailand. Selected mango samples were obtained from three different locations in Thailand (n = 57. They were observed for their leaf and fruit macroscopic characteristics. Leaf measurement for the stomatal number, veinlet termination number, and palisade ratio was evaluated under a microscope attached with digital camera. DNA fingerprint was performed using CTAB extraction of DNA and inter-simple sequence repeat (ISSR amplification. Forty-five primers were screened; then, seven primers that amplified the reproducible band patterns were selected to amplified and generate dendrogram by Unweighted Pair-Group Method with Arithmetic Average. These selected 17 Thai mango cultivars had individually macroscopic characteristics based on fruits and leaves. For microscopic characteristics, the stomatal number, veinlet termination number, and palisade ratio were slightly differentiable. For genetic identification, 78 bands of 190-2660 bps were amplified, of which 82.05% were polymorphic. The genetic relationship among these cultivars was demonstrated and categorized into two main clusters. It was shown that ISSR markers could be useful for Thai mango cultivar identification.

  16. Interface Simulation Distances

    Directory of Open Access Journals (Sweden)

    Pavol Černý

    2012-10-01

    Full Text Available The classical (boolean notion of refinement for behavioral interfaces of system components is the alternating refinement preorder. In this paper, we define a distance for interfaces, called interface simulation distance. It makes the alternating refinement preorder quantitative by, intuitively, tolerating errors (while counting them in the alternating simulation game. We show that the interface simulation distance satisfies the triangle inequality, that the distance between two interfaces does not increase under parallel composition with a third interface, and that the distance between two interfaces can be bounded from above and below by distances between abstractions of the two interfaces. We illustrate the framework, and the properties of the distances under composition of interfaces, with two case studies.

  17. Bilateral subacromial bursitis with macroscopic rice bodies: Ultrasound, CT and MR appearance

    Energy Technology Data Exchange (ETDEWEB)

    Law, T.C.; Chong, S.F.; Lu, P.P. [Kwong Wah Hospital (Hong Kong). Department of Radiology; Mak, K.H. [Kwong Wah Hospital (Hong Kong). Department of Orthopaedics and Traumatology

    1998-05-01

    The radiological findings of ultrasound, CT and MR of a case of bilateral subacromial bursitis with macroscopic rice bodies is described. MRI is the investigation of choice and the intravenous gadolinium-enhanced usefulness was noted. The previous literature is also reviewed. Copyright (1998) Blackwell Science Pty Ltd 5 refs., 1 tab., 4 figs.

  18. Macroscopic balance model for wave rotors

    Science.gov (United States)

    Welch, Gerard E.

    1996-01-01

    A mathematical model for multi-port wave rotors is described. The wave processes that effect energy exchange within the rotor passage are modeled using one-dimensional gas dynamics. Macroscopic mass and energy balances relate volume-averaged thermodynamic properties in the rotor passage control volume to the mass, momentum, and energy fluxes at the ports. Loss models account for entropy production in boundary layers and in separating flows caused by blade-blockage, incidence, and gradual opening and closing of rotor passages. The mathematical model provides a basis for predicting design-point wave rotor performance, port timing, and machine size. Model predictions are evaluated through comparisons with CFD calculations and three-port wave rotor experimental data. A four-port wave rotor design example is provided to demonstrate model applicability. The modeling approach is amenable to wave rotor optimization studies and rapid assessment of the trade-offs associated with integrating wave rotors into gas turbine engine systems.

  19. Theory of superfluidity macroscopic quantum waves

    International Nuclear Information System (INIS)

    Ventura, I.

    1978-10-01

    A new description of superfluidity is proposed, based upon the fact that Bogoliubov's theory of superfluidity exhibits some so far unsuspected macroscopic quantum waves (MQWs), which have a topological nature and travel within the fluid at subsonic velocities. To quantize the bounded quasi-particles the field theoretic version of the Bohr-Sommerfeld quantization rule, is employed and also resort to a variational computation. In an instantaneous configuration the MQWs cut the condensate into blocks of phase, providing, by analogy with ferromagnetism, a nice explanation of what could be the lambda-transition. A crude estimate of the critical temperature gives T sub(c) approximately equal to 2-4K. An attempt is made to understand Tisza's two-fluid model in terms of the MQWs, and we rise the conjecture that they play an important role in the motion of second. We present also a qualitative prediction concerning to the behavior of the 'phononroton' peak below 1.0K, and propose two experiments to look for MQWs [pt

  20. Towards an Einstein–Podolsky–Rosen paradox between two macroscopic atomic ensembles at room temperature

    International Nuclear Information System (INIS)

    He, Q Y; Reid, M D

    2013-01-01

    Experiments have reported the entanglement of two spatially separated macroscopic atomic ensembles at room temperature (Krauter et al 2011 Phys. Rev. Lett. 107 080503; Julsgaard et al 2001 Nature 413 400). We show how an Einstein–Podolsky–Rosen (EPR) paradox is realizable with this experiment. Our proposed test involves violation of an inferred Heisenberg uncertainty principle, which is a sufficient condition for an EPR paradox. This is a stronger test of nonlocality than entanglement. Our proposal would enable the first definitive confirmation of quantum EPR paradox correlations between two macroscopic objects at room temperature. This is a necessary intermediate step towards a nonlocal experiment with causal measurement separations. As well as having fundamental significance, the realization of an atomic EPR paradox could provide a resource for novel applications in quantum technology. (paper)

  1. Towards an Einstein-Podolsky-Rosen paradox between two macroscopic atomic ensembles at room temperature

    Science.gov (United States)

    He, Q. Y.; Reid, M. D.

    2013-06-01

    Experiments have reported the entanglement of two spatially separated macroscopic atomic ensembles at room temperature (Krauter et al 2011 Phys. Rev. Lett. 107 080503; Julsgaard et al 2001 Nature 413 400). We show how an Einstein-Podolsky-Rosen (EPR) paradox is realizable with this experiment. Our proposed test involves violation of an inferred Heisenberg uncertainty principle, which is a sufficient condition for an EPR paradox. This is a stronger test of nonlocality than entanglement. Our proposal would enable the first definitive confirmation of quantum EPR paradox correlations between two macroscopic objects at room temperature. This is a necessary intermediate step towards a nonlocal experiment with causal measurement separations. As well as having fundamental significance, the realization of an atomic EPR paradox could provide a resource for novel applications in quantum technology.

  2. Elucidation of molecular kinetic schemes from macroscopic traces using system identification.

    Directory of Open Access Journals (Sweden)

    Miguel Fribourg

    2017-02-01

    Full Text Available Overall cellular responses to biologically-relevant stimuli are mediated by networks of simpler lower-level processes. Although information about some of these processes can now be obtained by visualizing and recording events at the molecular level, this is still possible only in especially favorable cases. Therefore the development of methods to extract the dynamics and relationships between the different lower-level (microscopic processes from the overall (macroscopic response remains a crucial challenge in the understanding of many aspects of physiology. Here we have devised a hybrid computational-analytical method to accomplish this task, the SYStems-based MOLecular kinetic scheme Extractor (SYSMOLE. SYSMOLE utilizes system-identification input-output analysis to obtain a transfer function between the stimulus and the overall cellular response in the Laplace-transformed domain. It then derives a Markov-chain state molecular kinetic scheme uniquely associated with the transfer function by means of a classification procedure and an analytical step that imposes general biological constraints. We first tested SYSMOLE with synthetic data and evaluated its performance in terms of its rate of convergence to the correct molecular kinetic scheme and its robustness to noise. We then examined its performance on real experimental traces by analyzing macroscopic calcium-current traces elicited by membrane depolarization. SYSMOLE derived the correct, previously known molecular kinetic scheme describing the activation and inactivation of the underlying calcium channels and correctly identified the accepted mechanism of action of nifedipine, a calcium-channel blocker clinically used in patients with cardiovascular disease. Finally, we applied SYSMOLE to study the pharmacology of a new class of glutamate antipsychotic drugs and their crosstalk mechanism through a heteromeric complex of G protein-coupled receptors. Our results indicate that our methodology

  3. Macroscopic Description of Pressure-anisotropy-driven Collective Instability in Intense Charged Particle Beams

    International Nuclear Information System (INIS)

    Strasburg, Sean; Davidson, Ronald C.

    2000-01-01

    The macroscopic warm-fluid model developed by Lund and Davidson [Phys.Plasmas 5, 3028 (1998)] is used in the smooth-focusing approximation to investigate detailed stability properties of an intense charged particle beam with pressure anisotropy, assuming small-amplitude electrostatic perturbations about a waterbag equilibrium

  4. On monogamy of non-locality and macroscopic averages: examples and preliminary results

    Directory of Open Access Journals (Sweden)

    Rui Soares Barbosa

    2014-12-01

    Full Text Available We explore a connection between monogamy of non-locality and a weak macroscopic locality condition: the locality of the average behaviour. These are revealed by our analysis as being two sides of the same coin. Moreover, we exhibit a structural reason for both in the case of Bell-type multipartite scenarios, shedding light on but also generalising the results in the literature [Ramanathan et al., Phys. Rev. Lett. 107, 060405 (2001; Pawlowski & Brukner, Phys. Rev. Lett. 102, 030403 (2009]. More specifically, we show that, provided the number of particles in each site is large enough compared to the number of allowed measurement settings, and whatever the microscopic state of the system, the macroscopic average behaviour is local realistic, or equivalently, general multipartite monogamy relations hold. This result relies on a classical mathematical theorem by Vorob'ev [Theory Probab. Appl. 7(2, 147-163 (1962] about extending compatible families of probability distributions defined on the faces of a simplicial complex – in the language of the sheaf-theoretic framework of Abramsky & Brandenburger [New J. Phys. 13, 113036 (2011], such families correspond to no-signalling empirical models, and the existence of an extension corresponds to locality or non-contextuality. Since Vorob'ev's theorem depends solely on the structure of the simplicial complex, which encodes the compatibility of the measurements, and not on the specific probability distributions (i.e. the empirical models, our result about monogamy relations and locality of macroscopic averages holds not just for quantum theory, but for any empirical model satisfying the no-signalling condition. In this extended abstract, we illustrate our approach by working out a couple of examples, which convey the intuition behind our analysis while keeping the discussion at an elementary level.

  5. Macroscopic quantum tunneling of a Bose-Einstein condensate through double Gaussian barriers

    Science.gov (United States)

    Maeda, Kenji; Urban, Gregor; Weidemüller, Matthias; Carr, Lincoln D.

    2015-05-01

    Macroscopic quantum tunneling is one of the great manifestations of quantum physics, not only showing passage through a potential barrier but also emerging in a many-body wave function. We study a quasi-1D Bose-Einstein condensate of Lithium, confined by two Gaussian barriers, and show that in an experimentally realistic potential tens of thousands of atoms tunnel on time scales of 10 to 100 ms. Using a combination of variational and WKB approximations based on the Gross-Pitaevskii or nonlinear Schrödinger equation, we show that many unusual tunneling features appear due to the nonlinearity, including the number of trapped atoms exhibiting non-exponential decay, severe distortion of the barriers by the mean field, and even formation of a triple barrier in certain regimes. In the first 10ms, nonlinear many-body effects make the tunneling rates significantly larger than background loss rates, from 10 to 70 Hz. Thus we conclude that macroscopic quantum tunneling can be observed on experimental time scales. Funded by NSF, AFOSR, the Alexander von Humboldt foundation, and the Heidelberg Center for Quantum Dynamics.

  6. Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material.

    Science.gov (United States)

    Gautier, G; Kelders, L; Groby, J P; Dazel, O; De Ryck, L; Leclaire, P

    2011-09-01

    Wave propagation in macroscopically inhomogeneous porous materials has received much attention in recent years. The wave equation, derived from the alternative formulation of Biot's theory of 1962, was reduced and solved recently in the case of rigid frame inhomogeneous porous materials. This paper focuses on the solution of the full wave equation in which the acoustic and the elastic properties of the poroelastic material vary in one-dimension. The reflection coefficient of a one-dimensional macroscopically inhomogeneous porous material on a rigid backing is obtained numerically using the state vector (or the so-called Stroh) formalism and Peano series. This coefficient can then be used to straightforwardly calculate the scattered field. To validate the method of resolution, results obtained by the present method are compared to those calculated by the classical transfer matrix method at both normal and oblique incidence and to experimental measurements at normal incidence for a known two-layers porous material, considered as a single inhomogeneous layer. Finally, discussion about the absorption coefficient for various inhomogeneity profiles gives further perspectives. © 2011 Acoustical Society of America

  7. Modeling two-stage bunch compression with wakefields: Macroscopic properties and microbunching instability

    Directory of Open Access Journals (Sweden)

    R. A. Bosch

    2008-09-01

    Full Text Available In a two-stage compression and acceleration system, where each stage compresses a chirped bunch in a magnetic chicane, wakefields affect high-current bunches. The longitudinal wakes affect the macroscopic energy and current profiles of the compressed bunch and cause microbunching at short wavelengths. For macroscopic wavelengths, impedance formulas and tracking simulations show that the wakefields can be dominated by the resistive impedance of coherent edge radiation. For this case, we calculate the minimum initial bunch length that can be compressed without producing an upright tail in phase space and associated current spike. Formulas are also obtained for the jitter in the bunch arrival time downstream of the compressors that results from the bunch-to-bunch variation of current, energy, and chirp. Microbunching may occur at short wavelengths where the longitudinal space-charge wakes dominate or at longer wavelengths dominated by edge radiation. We model this range of wavelengths with frequency-dependent impedance before and after each stage of compression. The growth of current and energy modulations is described by analytic gain formulas that agree with simulations.

  8. On Macroscopic Quantum Phenomena in Biomolecules and Cells: From Levinthal to Hopfield

    Directory of Open Access Journals (Sweden)

    Dejan Raković

    2014-01-01

    Full Text Available In the context of the macroscopic quantum phenomena of the second kind, we hereby seek for a solution-in-principle of the long standing problem of the polymer folding, which was considered by Levinthal as (semiclassically intractable. To illuminate it, we applied quantum-chemical and quantum decoherence approaches to conformational transitions. Our analyses imply the existence of novel macroscopic quantum biomolecular phenomena, with biomolecular chain folding in an open environment considered as a subtle interplay between energy and conformation eigenstates of this biomolecule, governed by quantum-chemical and quantum decoherence laws. On the other hand, within an open biological cell, a system of all identical (noninteracting and dynamically noncoupled biomolecular proteins might be considered as corresponding spatial quantum ensemble of these identical biomolecular processors, providing spatially distributed quantum solution to a single corresponding biomolecular chain folding, whose density of conformational states might be represented as Hopfield-like quantum-holographic associative neural network too (providing an equivalent global quantum-informational alternative to standard molecular-biology local biochemical approach in biomolecules and cells and higher hierarchical levels of organism, as well.

  9. Correlation of macroscopic osteoarthrotic changes and radiographic findings in the acromioclavicular joint

    International Nuclear Information System (INIS)

    Stenlund, B.; Marions, O.; Engstroem, K.F.; Goldie, I.; Soedersjukhuset, Stockholm; Karolinska Sjukhuset, Stockholm

    1988-01-01

    In a total of 108 acromioclavicular articulations from cadavers the osteoarthrotic changes were studied. The articulations were macroscopically and radiographically ranked according to their grade of osteoarthrosis. The two ranking lines were correlated statistically and showed a rank correlation of 0.741. In 38 articulations tomography was also carried out. These articulations were classified into five grades of osteoarthrosis and the macroscopic, conventional radiographic and tomographic gradings were compared. The correlation coefficient for tomography versus macroscopy was 0.714. Tomography versus standard radiography showed a correlation of 0.767 and standard radiography versus macroscopy a correlation of 0.841. The standard radiographic investigation reveals moderate and severe osteoarthrotic changes in the acromioclavicular joint but cannot depict smaller changes. Tomography does not seem to improve the specificity. There is a need for a better radiologic technique in the examination of the acromioclavicular joint. Radiography during some kind of loading might be a practical way of improving the specificity and make it possible to show early osteoarthrosis in the acromioclavicular articulation. (orig.)

  10. Correlation of macroscopic osteoarthrotic changes and radiographic findings in the acromioclavicular joint

    Energy Technology Data Exchange (ETDEWEB)

    Stenlund, B.; Marions, O.; Engstroem, K.F.; Goldie, I.

    In a total of 108 acromioclavicular articulations from cadavers the osteoarthrotic changes were studied. The articulations were macroscopically and radiographically ranked according to their grade of osteoarthrosis. The two ranking lines were correlated statistically and showed a rank correlation of 0.741. In 38 articulations tomography was also carried out. These articulations were classified into five grades of osteoarthrosis and the macroscopic, conventional radiographic and tomographic gradings were compared. The correlation coefficient for tomography versus macroscopy was 0.714. Tomography versus standard radiography showed a correlation of 0.767 and standard radiography versus macroscopy a correlation of 0.841. The standard radiographic investigation reveals moderate and severe osteoarthrotic changes in the acromioclavicular joint but cannot depict smaller changes. Tomography does not seem to improve the specificity. There is a need for a better radiologic technique in the examination of the acromioclavicular joint. Radiography during some kind of loading might be a practical way of improving the specificity and make it possible to show early osteoarthrosis in the acromioclavicular articulation.

  11. The "G-Spot" Is Not a Structure Evident on Macroscopic Anatomic Dissection of the Vaginal Wall.

    Science.gov (United States)

    Hoag, Nathan; Keast, Janet R; O'Connell, Helen E

    2017-12-01

    Controversy exists in the literature regarding the presence or absence of an anatomic "G-spot." However, few studies have examined the detailed topographic or histologic anatomy of the putative G-spot location. To determine the anatomy of the anterior vaginal wall and present detailed, systematic, accessible findings from female cadaveric dissections to provide anatomic clarity with respect to this location. Systematic anatomic dissections were performed on 13 female cadavers (32-97 years old, 8 fixed and 5 fresh) to characterize the gross anatomy of the anterior vaginal wall. Digital photography was used to document dissections. Dissection preserved the anterior vaginal wall, urethra, and clitoris. In 9 cadavers, the vaginal epithelial layer was reflected to expose the underlying urethral wall and associated tissues. In 4 cadavers, the vaginal wall was left intact before preservation. Once photographed, 8 specimens were transversely sectioned for macroscopic inspection and histologic examination. The presence or absence of a macroscopic anatomic structure at detailed cadaveric pelvis dissection that corresponds to the previously described G-spot and gross anatomic description of the anterior vaginal wall. Deep to the lining epithelium of the anterior vaginal wall is the urethra. There is no macroscopic structure other than the urethra and vaginal wall lining in the location of the putative G-spot. Specifically, there is no apparent erectile or "spongy" tissue in the anterior vaginal wall, except where the urethra abuts the clitoris distally. The absence of an anatomic structure corresponding to the putative G-spot helps clarify the controversy on this subject. Limitations to this study include limited access to specimens immediately after death and potential for observational bias. In addition, age, medical history, and cause of death are not publishable for privacy reasons. However, it is one of the most thorough and complete anatomic evaluations documenting the

  12. Determination of the macroscopic chloride diffusivity in cementitious by porous materials coupling periodic homogenization of Nernst-Planck equation with experimental protocol

    Directory of Open Access Journals (Sweden)

    Olivier Millet

    2008-03-01

    Full Text Available In this paper, we propose a macroscopic migration model for cementitious porous media obtained from periodic homogenization technique. The dimensional analysis of Nernst-Planck equation leads to dimensionless numbers characterizing the problem. According to the order of magnitude of the dimensionless numbers, the homogenization of Nernst-Planck equation leads at the leading order to a macroscopic model where several rates can be coupled or not. For a large applied electrical field accelerating the transfer of ionic species, we obtain a macroscopic model only involving migration. A simple experimental procedure of measurement of the homogenized chlorides diffusivity is then proposed for cement-based materials.

  13. Reducing the distance in distance-caregiving by technology innovation

    Directory of Open Access Journals (Sweden)

    Lazelle E Benefield

    2007-07-01

    Full Text Available Lazelle E Benefield1, Cornelia Beck21College of Nursing, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; 2Pat & Willard Walker Family Memory Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USAAbstract: Family caregivers are responsible for the home care of over 34 million older adults in the United States. For many, the elder family member lives more than an hour’s distance away. Distance caregiving is a growing alternative to more familiar models where: 1 the elder and the family caregiver(s may reside in the same household; or 2 the family caregiver may live nearby but not in the same household as the elder. The distance caregiving model involves elders and their family caregivers who live at some distance, defined as more than a 60-minute commute, from one another. Evidence suggests that distance caregiving is a distinct phenomenon, differs substantially from on-site family caregiving, and requires additional assistance to support the physical, social, and contextual dimensions of the caregiving process. Technology-based assists could virtually connect the caregiver and elder and provide strong support that addresses the elder’s physical, social, cognitive, and/or sensory impairments. Therefore, in today’s era of high technology, it is surprising that so few affordable innovations are being marketed for distance caregiving. This article addresses distance caregiving, proposes the use of technology innovation to support caregiving, and suggests a research agenda to better inform policy decisions related to the unique needs of this situation.Keywords: caregiving, family, distance, technology, elders

  14. Macroscopic relationship in primal-dual portfolio optimization problem

    Science.gov (United States)

    Shinzato, Takashi

    2018-02-01

    In the present paper, using a replica analysis, we examine the portfolio optimization problem handled in previous work and discuss the minimization of investment risk under constraints of budget and expected return for the case that the distribution of the hyperparameters of the mean and variance of the return rate of each asset are not limited to a specific probability family. Findings derived using our proposed method are compared with those in previous work to verify the effectiveness of our proposed method. Further, we derive a Pythagorean theorem of the Sharpe ratio and macroscopic relations of opportunity loss. Using numerical experiments, the effectiveness of our proposed method is demonstrated for a specific situation.

  15. Censoring distances based on labeled cortical distance maps in cortical morphometry.

    Science.gov (United States)

    Ceyhan, Elvan; Nishino, Tomoyuki; Alexopolous, Dimitrios; Todd, Richard D; Botteron, Kelly N; Miller, Michael I; Ratnanather, J Tilak

    2013-01-01

    It has been demonstrated that shape differences in cortical structures may be manifested in neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM) which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM) voxels with respect to GM/white matter (WM) surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information contained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs) of subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy control (Ctrl) subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface) for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  16. Censoring Distances Based on Labeled Cortical Distance Maps in Cortical Morphometry

    Directory of Open Access Journals (Sweden)

    Elvan eCeyhan

    2013-10-01

    Full Text Available It has been demonstrated that shape differences are manifested in cortical structures due to neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM voxels with respect to GM/white matter (WM surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information con-tained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs of subjects with major depressive disorder (MDD, subjects at high risk (HR of MDD, and healthy control (Ctrl subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.

  17. Training for Distance Teaching through Distance Learning.

    Science.gov (United States)

    Cadorath, Jill; Harris, Simon; Encinas, Fatima

    2002-01-01

    Describes a mixed-mode bachelor degree course in English language teaching at the Universidad Autonoma de Puebla (Mexico) that was designed to help practicing teachers write appropriate distance education materials by giving them the experience of being distance students. Includes a course outline and results of a course evaluation. (Author/LRW)

  18. Linking stress with macroscopic and microscopic leaf response in trees: New diagnostic perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Guenthardt-Goerg, Madeleine S. [Swiss Federal Institute for Forest, Snow and Landscape Research, WSL, Zuercherstrasse 111, CH-8903 Birmensdorf (Switzerland)]. E-mail: madeleine.goerg@wsl.ch; Vollenweider, Pierre [Swiss Federal Institute for Forest, Snow and Landscape Research, WSL, Zuercherstrasse 111, CH-8903 Birmensdorf (Switzerland)

    2007-06-15

    Visible symptoms in tree foliage can be used for stress diagnosis once validated with microscopical analyses. This paper reviews and illustrates macroscopical and microscopical markers of stress with a biotic (bacteria, fungi, insects) or abiotic (frost, drought, mineral deficiency, heavy metal pollution in the soil, acidic deposition and ozone) origin helpful for the validation of symptoms in broadleaved and conifer trees. Differentiation of changes in the leaf or needle physiology, through ageing, senescence, accelerated cell senescence, programmed cell death and oxidative stress, provides additional clues raising diagnosis efficiency, especially in combination with information about the target of the stress agent at the tree, leaf/needle, tissue, cell and ultrastructural level. Given the increasing stress in a changing environment, this review discusses how integrated diagnostic approaches lead to better causal analysis to be applied for specific monitoring of stress factors affecting forest ecosystems. - Macroscopic leaf symptoms and their microscopic analysis as stress bioindications.

  19. Linking stress with macroscopic and microscopic leaf response in trees: New diagnostic perspectives

    International Nuclear Information System (INIS)

    Guenthardt-Goerg, Madeleine S.; Vollenweider, Pierre

    2007-01-01

    Visible symptoms in tree foliage can be used for stress diagnosis once validated with microscopical analyses. This paper reviews and illustrates macroscopical and microscopical markers of stress with a biotic (bacteria, fungi, insects) or abiotic (frost, drought, mineral deficiency, heavy metal pollution in the soil, acidic deposition and ozone) origin helpful for the validation of symptoms in broadleaved and conifer trees. Differentiation of changes in the leaf or needle physiology, through ageing, senescence, accelerated cell senescence, programmed cell death and oxidative stress, provides additional clues raising diagnosis efficiency, especially in combination with information about the target of the stress agent at the tree, leaf/needle, tissue, cell and ultrastructural level. Given the increasing stress in a changing environment, this review discusses how integrated diagnostic approaches lead to better causal analysis to be applied for specific monitoring of stress factors affecting forest ecosystems. - Macroscopic leaf symptoms and their microscopic analysis as stress bioindications

  20. Measurements of effective total macroscopic cross sections and effective energy of continuum beam

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Hisao [Rikkyo Univ., Yokosuka, Kanagawa (Japan). Inst. for Atomic Energy

    1998-03-01

    Two practically useful quantities are introduced in this study to characterize a continuum neutron beam and to describe transmission phenomena of the beam in field of quantitative neutron radiography: an effective energy instead of a peak energy or a mean energy of the spectrum and an effective total macroscopic (ETM) cross section instead of a total macroscopic (TM) cross section defined at the monochromatic energy. The effective energy was evaluated by means of energy dependence of ETM cross section. To realize the method a beam quality indicator (BQI) has been proposed recently. Several effective energies were measured for non-filtered, filtered neutron beams, and outputs of neutron guide tubes in world by the BQI. A thermal neutron beam and three beams modulated by Pb filters with different thicknesses are studied to measure ETM cross sections for various materials and summarized in a table. Validity of the effective energy determined by the BQI is discussed relating with ETM cross sections of materials. (author)

  1. Tourists consuming distance

    DEFF Research Database (Denmark)

    Larsen, Gunvor Riber

    The environmental impact of tourism mobility is linked to the distances travelled in order to reach a holiday destination, and with tourists travelling more and further than previously, an understanding of how the tourists view the distance they travel across becomes relevant. Based on interviews...... contribute to an understanding of how it is possible to change tourism travel behaviour towards becoming more sustainable. How tourists 'consume distance' is discussed, from the practical level of actually driving the car or sitting in the air plane, to the symbolic consumption of distance that occurs when...... travelling on holiday becomes part of a lifestyle and a social positioning game. Further, different types of tourist distance consumers are identified, ranging from the reluctant to the deliberate and nonchalant distance consumers, who display very differing attitudes towards the distance they all travel...

  2. Analytic processing of distance.

    Science.gov (United States)

    Dopkins, Stephen; Galyer, Darin

    2018-01-01

    How does a human observer extract from the distance between two frontal points the component corresponding to an axis of a rectangular reference frame? To find out we had participants classify pairs of small circles, varying on the horizontal and vertical axes of a computer screen, in terms of the horizontal distance between them. A response signal controlled response time. The error rate depended on the irrelevant vertical as well as the relevant horizontal distance between the test circles with the relevant distance effect being larger than the irrelevant distance effect. The results implied that the horizontal distance between the test circles was imperfectly extracted from the overall distance between them. The results supported an account, derived from the Exemplar Based Random Walk model (Nosofsky & Palmieri, 1997), under which distance classification is based on the overall distance between the test circles, with relevant distance being extracted from overall distance to the extent that the relevant and irrelevant axes are differentially weighted so as to reduce the contribution of irrelevant distance to overall distance. The results did not support an account, derived from the General Recognition Theory (Ashby & Maddox, 1994), under which distance classification is based on the relevant distance between the test circles, with the irrelevant distance effect arising because a test circle's perceived location on the relevant axis depends on its location on the irrelevant axis, and with relevant distance being extracted from overall distance to the extent that this dependency is absent. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The effect of learning multimedia on students’ understanding of macroscopic, sub-microscopic, and symbolic levels in electrolyte and nonelectrolyte

    Science.gov (United States)

    Eliyawati; Rohman, I.; Kadarohman, A.

    2018-05-01

    This research aims to investigate the effect of learning multimedia on students’ understanding of macroscopic, sub-microscopic, and symbolic levels in electrolyte and nonelectrolyte topic. The quasi-experimental with one group pre-test post-test design was used. Thirty-five students were experimental class and another thirty-five were control class. The instrument was used is three representation levels. The t-test was performed on average level of 95% to identify the significant difference between experimental class and control class. The results show that the normalized gain average of experimental class is 0.75 (high) and the normalized gain average of control class is 0.45 (moderate). There is significant difference in students’ understanding in sub-microscopic and symbolic levels and there is not significant difference of students’ understanding in macroscopic level between experimental class and control class. The normalized gain of students’ understanding of macroscopic, sub-microscopic and symbolic in experimental class are 0.6 (moderate), 0.75 (high), and 0.64 (moderate), while the normalized gain of students’ understanding of macroscopic, sub-microscopic and symbolic in control class are 0.49 (moderate), 0.39 (high), and 0.3 (moderate). Therefore, it can be concluded that learning multimedia can help in improving students’ understanding especially in sub-microscopic and symbolic levels.

  4. Conductance fluctuations in a macroscopic 3-dimensional Anderson insulator

    International Nuclear Information System (INIS)

    Sanquer, M.

    1990-01-01

    We report magnetoconductance experiment on a amorphous Y x -Si 1-x alloy (∼0.3). which is an Anderson insulator where spin-orbit scattering is strong. Two principal and new features emerge from the data: the first one is an halving of the localization length by the application of a magnetic field of about 2.5 Teslas. This effect is predicted by a new approach of transport in Anderson insulators where basic symetry considerations are the most important ingredient. The second one is the observation of reproducible conductance fluctuations at very low temperature in this macroscopic 3 D amorphous material

  5. Distancing, not embracing, the Distancing-Embracing model of art reception.

    Science.gov (United States)

    Davies, Stephen

    2017-01-01

    Despite denials in the target article, the Distancing-Embracing model appeals to compensatory ideas in explaining the appeal of artworks that elicit negative affect. The model also appeals to the deflationary effects of psychological distancing. Having pointed to the famous rejection in the 1960s of the view that aesthetic experience involves psychological distancing, I suggest that "distance" functions here as a weak metaphor that cannot sustain the explanatory burden the theory demands of it.

  6. All at sea without a clock - Longitude from lunar distances.

    Science.gov (United States)

    Floyd, D. J. E.

    2005-12-01

    I present a brief history of the ``Lunar Distance" technique for determining Longitude at sea, as developed by Astronomer Royal Neville Maskelyne (1732-1811) and others. I illustrate this history using images and results from a recent (2001) BBC History project to re-enact part of Captain James Cook's first voyage, from near-shipwreck on the east coast Australia, back to the relative safety of Batavia (modern-day Djakarta). I demonstrate the practical use of Lunars to determine longitude at sea, illustrated through comparison to GPS coordinates obtained along the voyage. During windows of lunar visibility, using new tables drawn up at HMNAO, we were able to match or exceed Maskelyne's stated accuracy of 30 nautical miles (0.5 degrees). Close to New Moon, dependent on our own skills of dead-reckoning, we prove far less able navigators than Cook and his cohort! I acknowledge the enormous assistance of Catherine Hohenkerk of the HMNAO, Tanya Batchelor of the BBC, George Huxtable, John Jeffrey, and John Selwyn-Gilbert in researching this subject. I gratefully acknowledge funding from the BBC, and HM Bark Endeavour Foundation for the use of their glorious ship, the Endeavour.

  7. Foundations of Distance Education. Third Edition. Routledge Studies in Distance Education.

    Science.gov (United States)

    Keegan, Desmond

    This text gives an overview of distance education for students, administrators, and practitioners in distance education. Chapter 1 discusses the study of distance education. Chapter 2 analyzes forms of nonconventional education (open, nontraditional) that may have similarities to distance education but are not to be identified with it. Chapter 3…

  8. modelling distances

    Directory of Open Access Journals (Sweden)

    Robert F. Love

    2001-01-01

    Full Text Available Distance predicting functions may be used in a variety of applications for estimating travel distances between points. To evaluate the accuracy of a distance predicting function and to determine its parameters, a goodness-of-fit criteria is employed. AD (Absolute Deviations, SD (Squared Deviations and NAD (Normalized Absolute Deviations are the three criteria that are mostly employed in practice. In the literature some assumptions have been made about the properties of each criterion. In this paper, we present statistical analyses performed to compare the three criteria from different perspectives. For this purpose, we employ the ℓkpθ-norm as the distance predicting function, and statistically compare the three criteria by using normalized absolute prediction error distributions in seventeen geographical regions. We find that there exist no significant differences between the criteria. However, since the criterion SD has desirable properties in terms of distance modelling procedures, we suggest its use in practice.

  9. Are the toroidal shapes of heavy-ion reactions seen in macroscopic drop collisions?

    International Nuclear Information System (INIS)

    Menchaca R, A.; Borunda, M.; Hidalgo, S.S.; Huidobro, F.; Michaelian, K.; Perez, A.; Rodriguez, V.

    1996-01-01

    Experiments involving the collisions of water, and mineral oil, drops are reported. The aim is to search for toroidal configurations predicted by, both, macroscopic fluid dynamic and nuclear models. Instead, we find the formation of thin liquid sheets surrounded by a somewhat thicker rim presenting a fingering instability. (Author)

  10. Can We Advance Macroscopic Quantum Systems Outside the Framework of Complex Decoherence Theory?

    Science.gov (United States)

    Brezinski, Mark E; Rupnick, Maria

    2016-01-01

    Macroscopic quantum systems (MQS) are macroscopic systems driven by quantum rather than classical mechanics, a long studied area with minimal success till recently. Harnessing the benefits of quantum mechanics on a macroscopic level would revolutionize fields ranging from telecommunication to biology, the latter focused on here for reasons discussed. Contrary to misconceptions, there are no known physical laws that prevent the development of MQS. Instead, they are generally believed universally lost in complex systems from environmental entanglements (decoherence). But we argue success is achievable MQS with decoherence compensation developed, naturally or artificially, from top-down rather current reductionist approaches. This paper advances the MQS field by a complex systems approach to decoherence. First, why complex system decoherence approaches (top-down) are needed is discussed. Specifically, complex adaptive systems (CAS) are not amenable to reductionist models (and their master equations) because of emergent behaviour, approximation failures, not accounting for quantum compensatory mechanisms, ignoring path integrals, and the subentity problem. In addition, since MQS must exist within the context of the classical world, where rapid decoherence and prolonged coherence are both needed. Nature has already demonstrated this for quantum subsystems such as photosynthesis and magnetoreception. Second, we perform a preliminary study that illustrates a top-down approach to potential MQS. In summary, reductionist arguments against MQS are not justifiable. It is more likely they are not easily detectable in large intact classical systems or have been destroyed by reductionist experimental set-ups. This complex systems decoherence approach, using top down investigations, is critical to paradigm shifts in MQS research both in biological and non-biological systems. PMID:29200743

  11. Electricity in foams: from one soapy interface to the macroscopic material

    Science.gov (United States)

    Biance, Anne-Laure

    2017-11-01

    Liquid foams (a dispersion of gas bubbles in a soapy solution) destabilize with time due to coarsening, coalescence and gravity driven drainage. We propose here to inhibit (or trigger) the foam destabilization by applying an electric field to the material. This effect is investigated at the different scales of the system: one soapy interface, one liquid film, the macroscopic foam. The generation of an electroosmotic flow near a soapy liquid/gas interface raises many issues. How does the flow affect surfactant repartition? Is there a Marangoni stress at the interface? At the scale of one soap film, how the electric field affects the film stability and deformation? In a macroscopic foam, one can wonder whether the electric field can indeed reverse gravity driven drainage and increase foam lifetime? These different issues are considered by developing new experimental techniques allowing us to probe surfactant repartition at liquid interfaces, soap film thicknesses and liquid foam properties when an electric field is applied. The results will be presented together with a comprehensive picture of the mechanisms arising at each scale of the material, to conclude with the potential use of electricity in liquid foams to control destabilization. Collaborators: Baptiste Blanc, Oriane Bonhomme, Laurent Joly, Christophe Ybert.

  12. Macroscopic influence on the spontaneous symmetry breaking in quantum field

    International Nuclear Information System (INIS)

    Kirzhnitz, D.A.

    1977-01-01

    Major results of investigations concerning macroscopic influence (heating, compression, external field and current) on elementary particle systems with spontaneous symmetry breaking are briefly reviewed. The study of this problem has been stimulated by recent progress in the unified renormalizable theory of elementary particles. Typically it appears that at some values of external parameters a phase transition with symmetry restoration takes place. There exists a profound and far going analogy with phase transition in many-body physics especially with superconductivity phenomenon. Some applications to cosmology are also considered

  13. Brownian distance covariance

    OpenAIRE

    Székely, Gábor J.; Rizzo, Maria L.

    2010-01-01

    Distance correlation is a new class of multivariate dependence coefficients applicable to random vectors of arbitrary and not necessarily equal dimension. Distance covariance and distance correlation are analogous to product-moment covariance and correlation, but generalize and extend these classical bivariate measures of dependence. Distance correlation characterizes independence: it is zero if and only if the random vectors are independent. The notion of covariance with...

  14. Time-dependent mechanical behavior of human amnion: Macroscopic and microscopic characterization

    OpenAIRE

    2014-01-01

    © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Characterizing the mechanical response of the human amnion is essential to understand and to eventually prevent premature rupture of fetal membranes. In this study a large set of macroscopic and microscopic mechanical tests have been carried out on fresh unfixed amnion to gain insight into the time dependent material response and the underlying mechanisms. Creep and relaxation responses of amnion were characterized in...

  15. Macroscopic angular-momentum stages of Bose-Einstein condensates in toroidal traps

    International Nuclear Information System (INIS)

    Benakli, M.; Raghavan, S.; Smerzi, A.; Fantoni, S.; Shenoy, S.R.

    2001-03-01

    We study the stability of a rotating repulsive-atom Bose-Einstein condensate in a toroidal trap. The resulting macroscopic angular-momentum states with integer vorticity l spread radially, lowering rotational energies. These states are robust against vorticity-lowering decays, with estimated metastability barriers capable of sustaining large angular momenta (1 < or ∼ 10) for typical parameters. We identify the centrifugally squashed l-dependent density profile as a possible signature of condensate rotation and superfluidity. (author)

  16. Traversing psychological distance.

    Science.gov (United States)

    Liberman, Nira; Trope, Yaacov

    2014-07-01

    Traversing psychological distance involves going beyond direct experience, and includes planning, perspective taking, and contemplating counterfactuals. Consistent with this view, temporal, spatial, and social distances as well as hypotheticality are associated, affect each other, and are inferred from one another. Moreover, traversing all distances involves the use of abstraction, which we define as forming a belief about the substitutability for a specific purpose of subjectively distinct objects. Indeed, across many instances of both abstraction and psychological distancing, more abstract constructs are used for more distal objects. Here, we describe the implications of this relation for prediction, choice, communication, negotiation, and self-control. We ask whether traversing distance is a general mental ability and whether distance should replace expectancy in expected-utility theories. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Microscopic and macroscopic models for the onset and progression of Alzheimer's disease

    International Nuclear Information System (INIS)

    Bertsch, Michiel; Franchi, Bruno; Tesi, Maria Carla; Tosin, Andrea

    2017-01-01

    In the first part of this paper we review a mathematical model for the onset and progression of Alzheimer’s disease (AD) that was developed in subsequent steps over several years. The model is meant to describe the evolution of AD in vivo . In Achdou et al (2013 J. Math. Biol . 67 1369–92) we treated the problem at a microscopic scale, where the typical length scale is a multiple of the size of the soma of a single neuron. Subsequently, in Bertsch et al (2017 Math. Med. Biol . 34 193–214) we concentrated on the macroscopic scale, where brain neurons are regarded as a continuous medium, structured by their degree of malfunctioning. In the second part of the paper we consider the relation between the microscopic and the macroscopic models. In particular we show under which assumptions the kinetic transport equation, which in the macroscopic model governs the evolution of the probability measure for the degree of malfunctioning of neurons, can be derived from a particle-based setting. The models are based on aggregation and diffusion equations for β -Amyloid (A β from now on), a protein fragment that healthy brains regularly produce and eliminate. In case of dementia A β monomers are no longer properly washed out and begin to coalesce forming eventually plaques. Two different mechanisms are assumed to be relevant for the temporal evolution of the disease: (i) diffusion and agglomeration of soluble polymers of amyloid, produced by damaged neurons; (ii) neuron-to-neuron prion-like transmission. In the microscopic model we consider mechanism (i), modelling it by a system of Smoluchowski equations for the amyloid concentration (describing the agglomeration phenomenon), with the addition of a diffusion term as well as of a source term on the neuronal membrane. At the macroscopic level instead we model processes (i) and (ii) by a system of Smoluchowski equations for the amyloid concentration, coupled to a kinetic-type transport equation for the distribution

  18. Generation of macroscopic singlet states in atomic ensembles

    Science.gov (United States)

    Tóth, Géza; Mitchell, Morgan W.

    2010-05-01

    We study squeezing of the spin uncertainties by quantum non-demolition (QND) measurement in non-polarized spin ensembles. Unlike the case of polarized ensembles, the QND measurements can be performed with negligible back-action, which allows, in principle, perfect spin squeezing as quantified by Tóth et al (2007 Phys. Rev. Lett. 99 250405). The generated spin states approach many-body singlet states and contain a macroscopic number of entangled particles even when individual spin is large. We introduce the Gaussian treatment of unpolarized spin states and use it to estimate the achievable spin squeezing for realistic experimental parameters. Our proposal might have applications for magnetometry with a high spatial resolution or quantum memories storing information in decoherence free subspaces.

  19. Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon

    Science.gov (United States)

    Abdullah, N.; Rinaldi, A.; Muhammad, I. S.; Hamid, S. B. Abd.; Su, D. S.; Schlogl, R.

    2009-06-01

    Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300° C for an hour in each step. The catalytic growth of nanocarbon in C2H4/H2 was carried out at temperature of 550° C for 2 hrs with different rotating angle in the fluidization system. SEM and N2 isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.

  20. Automatic macroscopic characterization of diesel sprays by means of a new image processing algorithm

    Science.gov (United States)

    Rubio-Gómez, Guillermo; Martínez-Martínez, S.; Rua-Mojica, Luis F.; Gómez-Gordo, Pablo; de la Garza, Oscar A.

    2018-05-01

    A novel algorithm is proposed for the automatic segmentation of diesel spray images and the calculation of their macroscopic parameters. The algorithm automatically detects each spray present in an image, and therefore it is able to work with diesel injectors with a different number of nozzle holes without any modification. The main characteristic of the algorithm is that it splits each spray into three different regions and then segments each one with an individually calculated binarization threshold. Each threshold level is calculated from the analysis of a representative luminosity profile of each region. This approach makes it robust to irregular light distribution along a single spray and between different sprays of an image. Once the sprays are segmented, the macroscopic parameters of each one are calculated. The algorithm is tested with two sets of diesel spray images taken under normal and irregular illumination setups.

  1. Stochastic space interval as a link between quantum randomness and macroscopic randomness?

    Science.gov (United States)

    Haug, Espen Gaarder; Hoff, Harald

    2018-03-01

    For many stochastic phenomena, we observe statistical distributions that have fat-tails and high-peaks compared to the Gaussian distribution. In this paper, we will explain how observable statistical distributions in the macroscopic world could be related to the randomness in the subatomic world. We show that fat-tailed (leptokurtic) phenomena in our everyday macroscopic world are ultimately rooted in Gaussian - or very close to Gaussian-distributed subatomic particle randomness, but they are not, in a strict sense, Gaussian distributions. By running a truly random experiment over a three and a half-year period, we observed a type of random behavior in trillions of photons. Combining our results with simple logic, we find that fat-tailed and high-peaked statistical distributions are exactly what we would expect to observe if the subatomic world is quantized and not continuously divisible. We extend our analysis to the fact that one typically observes fat-tails and high-peaks relative to the Gaussian distribution in stocks and commodity prices and many aspects of the natural world; these instances are all observable and documentable macro phenomena that strongly suggest that the ultimate building blocks of nature are discrete (e.g. they appear in quanta).

  2. Prediction of macroscopic and local stress-strain behaviors of perforated plates under primary and secondary creep conditions

    International Nuclear Information System (INIS)

    Igari, Toshihide; Tokiyoshi, Takumi; Mizokami, Yorikata

    2000-01-01

    Prediction methods of macroscopic and local creep behaviors of perforated plates are examined in order to apply these methods to the structural design of perforated structures such as heat exchangers used in elevated temperatures. Both primary and secondary creeps are considered for predicting macroscopic and local creep behaviors of perorated plates which are made of actual structural materials. Both uniaxial and multiaxial loading of perforated plates are taken into consideration. The concept of effective stress is applied to the prediction of macroscopic creep behaviors of perforated plates, and the predicted results are compared with the numerical results by FEM for the unit section of perorated plated under creep, in order to confirm the propriety of the proposed method. Based on the idea that stress exponents in creep equations govern the stress distribution of perforated plates, a modified Neuber's rule is used for predicting local stress and strain concentrations. The propriety of this prediction method is shown through a comparison of the prediction with the numerical results by FEM for the unit section of perforated plates under creep, and experimental results by the Moire method. (author)

  3. Collective motion of macroscopic spheres floating on capillary ripples: Dynamic heterogeneity and dynamic criticality

    NARCIS (Netherlands)

    Sanli, Ceyda; Saitoh, K.; Luding, Stefan; van der Meer, Roger M.

    2014-01-01

    When a densely packed monolayer of macroscopic spheres floats on chaotic capillary Faraday waves, a coexistence of large scale convective motion and caging dynamics typical for glassy systems is observed. We subtract the convective mean flow using a coarse graining (homogenization) method and reveal

  4. Levitation of Bose-Einstein condensates induced by macroscopic non-adiabatic quantum tunneling

    OpenAIRE

    Nakamura, Katsuhiro; Kohi, Akihisa; Yamasaki, Hisatsugu; Perez-Garcia, Victor M.

    2006-01-01

    We study the dynamics of two-component Bose-Einstein condensates trapped in different vertical positions in the presence of an oscillating magnetic field. It is shown here how tuning appropriately the oscillation frequency of the magnetic field leads to the levitation of the system against gravity. This phenomenon is a manifestation of a macroscopic non-adiabatic tunneling in a system with internal degrees of freedom.

  5. A macroscopic constitutive model of temperature-induced phase transition of polycrystalline Ni2MnGa by directional solidification

    International Nuclear Information System (INIS)

    Zhu, Yuping; Gu, Yunling; Liu, Hongguang

    2015-01-01

    Directional solidification technology has been widely used to improve the properties of polycrystalline Ni 2 MnGa materials. Mechanical training can adjust the internal organizational structures of the materials, reduce the stress of twin boundaries motion, and then result in larger strain at lower outfield levels. In this paper, we test the microscopic structure of Ni 2 MnGa polycrystalline ferromagnetic shape memory alloy produced by directional solidification and compress it along two axes successively for mechanical training. The influences of pre-compressive stresses on the temperature-induced strains are analyzed. The macroscopic mechanical behaviors show anisotropy. According to the generating mechanism of the macroscopic strain, a three-dimensional constitutive model is established. Based on thermodynamic method, the kinetic equations of the martensitic transformation and inverse transformation are presented considering the driving force and energy dissipation. The prediction curves of temperature-induce strains along two different directions are investigated. And the results coincide well with the experiment data. It well explains the macroscopic anisotropy mechanical behaviors and fits for using in engineering

  6. A fortran code CVTRAN to provide cross-section file for TWODANT by using macroscopic file written by SRAC

    International Nuclear Information System (INIS)

    Yamane, Tsuyoshi; Tsuchihashi, Keichiro

    1999-03-01

    A code CVTRAN provides the macroscopic cross-sections in the format of XSLIB file which is one of Standard interface files for a two-dimensional Sn transport code TWODANT by reading a macroscopic cross section file in the PDS format which is prepared by SRAC execution. While a two-dimensional Sn transport code TWOTRAN published by LANL is installed as a module in the SRAC code system, several functions such as alpha search, concentration search, zone thickness search and various edits are suppressed. Since the TWODANT code was released from LANL, its short running time, stable convergence and plenty of edits have attracted many users. The code CVTRAN makes the TWODANT available to the SRAC user by providing the macroscopic cross-sections on a card-image file XSLIB. The CVTRAN also provides material dependent fission spectra into a card-image format file CVLIB, together with group velocities, group boundary energies and material names. The user can feed them into the TWODANT input, if necessary, by cut-and-paste command. (author)

  7. Macroscopic quantum coherence in a magnetic nanoparticle above the surface of a superconductor

    Science.gov (United States)

    Chudnovsky; Friedman

    2000-12-11

    We study macroscopic quantum tunneling of the magnetic moment in a single-domain particle placed above the surface of a superconductor. Such a setup allows one to manipulate the height of the energy barrier, preserving the degeneracy of the ground state. The tunneling amplitude and the effect of the dissipation in the superconductor are computed.

  8. Macroscopic Quantum Coherence in a Magnetic Nanoparticle Above the Surface of a Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Eugene M.; Friedman, Jonathan R.

    2000-12-11

    We study macroscopic quantum tunneling of the magnetic moment in a single-domain particle placed above the surface of a superconductor. Such a setup allows one to manipulate the height of the energy barrier, preserving the degeneracy of the ground state. The tunneling amplitude and the effect of the dissipation in the superconductor are computed.

  9. Macroscopic Quantum Coherence in a Magnetic Nanoparticle Above the Surface of a Superconductor

    International Nuclear Information System (INIS)

    Chudnovsky, Eugene M.; Friedman, Jonathan R.

    2000-01-01

    We study macroscopic quantum tunneling of the magnetic moment in a single-domain particle placed above the surface of a superconductor. Such a setup allows one to manipulate the height of the energy barrier, preserving the degeneracy of the ground state. The tunneling amplitude and the effect of the dissipation in the superconductor are computed

  10. Salvage radiotherapy for macroscopic local recurrences after radical prostatectomy. A national survey on patterns of practice

    Energy Technology Data Exchange (ETDEWEB)

    Dal Pra, Alan [Bern University Hospital, Inselspital Bern, Department of Radiation Oncology, Bern (Switzerland); Panje, Cedric; Glatzer, Markus; Putora, Paul Martin [Kantonsspital St. Gallen, Department of Radiation Oncology, St. Gallen (Switzerland); Zilli, Thomas [Hospitaux Universitaires de Geneve, Department of Radiation Oncology, Geneve (Switzerland); Arnold, Winfried [Luzerner Kantonsspital, Department of Radiation Oncology, Luzerner (Switzerland); Brouwer, Kathrin [Stadtspital Triemli, Department of Radiation Oncology, Zuerich (Switzerland); Garcia, Helena [Universitaetsspital Zuerich, Department of Radiation Oncology, Zuerich (Switzerland); Gomez, Silvia [Kantonsspital Aarau, Department of Radiation Oncology, Aarau (Switzerland); Herrera, Fernanda [Centre Hospitalier Universitaire Vaudois, Department of Radiation Oncology, Lausanne (Switzerland); Kaouthar, Khanfir [Hopital du Valais, Department of Radiation Oncology, Sion (Switzerland); Papachristofilou, Alexandros [Universitaetsspital Basel, Department of Radiation Oncology, Basel (Switzerland); Pesce, Gianfranco [EOC Bellinzona, Department of Radiation Oncology, Bellinzona (Switzerland); Reuter, Christiane [Kantonsspital Muensterlingen, Department of Radiation Oncology, Muensterlingen (Switzerland); Vees, Hansjoerg [Klinik Hirslanden, Department of Radiation Oncology, Zuerich (Switzerland); Zwahlen, Daniel Rudolf [Kantonsspital Graubuenden, Department of Radiation Oncology, Chur (Switzerland); Engeler, Daniel [Kantonsspital St. Gallen, Department of Urology, St. Gallen (Switzerland)

    2018-01-15

    Although salvage radiotherapy (SRT) for PSA recurrence after radical prostatectomy provides better oncological outcomes when delivered early, in the absence of detectable disease many patients are treated for macroscopic locally recurrent tumors. Due to limited data from prospective studies, we hypothesized an important variability in the SRT management of these patients. Our aim was to investigate current practice patterns of SRT for local macroscopic recurrence after radical prostatectomy. A total of 14 Swiss radiation oncology centers were asked to complete a survey on treatment specifications for macroscopic locally recurrent disease including information on pretherapeutic diagnostic procedures, dose prescription, radiation delivery techniques and androgen deprivation therapy (ADT). Treatment recommendations on ADT were analyzed using the objective consensus methodology. The majority of centers recommended pretreatment magnetic resonance imaging (MRI) of the pelvis and choline positron emission tomography (PET). The median prescribed dose to the prostate bed was 66 Gy (range 65-72 Gy) with a boost to the macroscopic lesion used by 79% of the centers with a median total dose of 72 Gy (range 70-80 Gy). Intensity-modulated rotational techniques were used by all centers and daily cone beam computed tomography (CT) was recommended by 43%. The use of concomitant ADT for any macroscopic recurrence was recommended by 43% of the centers while the remaining centers recommended it only for high-risk disease, which was not consistently defined. We observed a high variability of treatment paradigms when SRT is indicated for macroscopic local recurrences after prostatectomy. These data reflect the need for more standardized approaches and ultimately further research in this field. (orig.) [German] Obwohl die Evidenz fuer eine fruehzeitige Salvage-Radiotherapie (SRT) bei einem PSA-Rezidiv nach radikaler Prostatektomie spricht, werden viele Patienten erst bei einem

  11. [Cartilage tissue reconstruction by the polymer biomaterials--early macroscopic and histological results].

    Science.gov (United States)

    Scierski, Wojciech; Polok, Aleksandra; Namysłowski, Grzegorz; Nozyński, Jerzy; Turecka, Lucyna; Urbaniec, Natalia; Pamuła, Elzbieta

    2009-09-01

    The surgical treatment of large cartilage defects in the region of head and neck is often impossible because of the atrophy of surrounding tissues and lack of suitable material for reconstruction. In the surgical treatment many of methods and reconstructive materials have been used. For many years the suitable synthetic material for the cartilage defects reconstruction has been searched for. Was to evaluate two different biomaterials with proper mechanical and biological features for the cartilage replacement. Two type of biomaterials in this study were used: resorbable polymer - poly(L-lactide-co-glycolide) (PLG) acting as a supportive matrix. A thin layer of sodium hyaluronate (Hyal) was also deposited on the surface as well in the pore walls of PLG scaffolds in order to provide biologically active molecules promoting differentiation and regeneration of the tissue. The studies were performed on the 50 animals--rabbits divided into 2 groups. The animals were operated in the general anaesthesia. The incision was done along the edge of the rabbit's auricle. Perichondrium and cartilage of the auricle on the surface 4 x 3 cm were prepared. Subperichondrically 1 x 1 cm fragment of the cartilage was removed by the scissors. This fragment was then replaced by the biomaterials: PLG in first group of 25 rabbits and PLG-Hyal in second group 25 rabbits. The tissues were sutured with polyglycolide Safil 3-0. The animals obtained Enrofloxacin for three days after the operation. Then 1, 4 and 12 weeks after the surgery the animals were painlessly euthanized by an overdose of Morbital. Implants and surrounding tissues were excised and observed macroscopically and using an optical microscope. In all the observation periods we observed proper macroscopic healing process of biomaterials. We didn't stated strong inflammatory process and necrosis around the implanted biomaterials. The histological and macroscopic examinations indicated that both materials developed in this study have

  12. Induction of novel macroscopic properties by local symmetry violations in spin-spiral multiferroics

    Science.gov (United States)

    Meier, D.; Leo, N.; Becker, P.; Bohaty, L.; Ramesh, R.; Fiebig, M.

    2011-03-01

    Incommensurate (IC) structures are omnipresent in strongly correlated electron systems as high-TC superconductors, CMR manganites, as well as multiferroics. In each case they are origin of a pronounced symmetry reduction reflecting the complexity of the underlying microscopic interactions. Macroscopically, this can lead to new phases and possibilities to gain control of the host material. Here we report how the IC nature of a spin-spiral multiferroic induces new physical properties by renormalizing the relevant length scales of the system. Local symmetry violations directly manifest in the macroscopic response of the material and co-determine the multiferroic order giving rise to additional domain states. These usually hidden degrees of freedom become visible when non-homogenous fields are applied and condition for instance the second harmonic generation. Our study shows that incommensurabilities play a vital role in the discussion of the physical properties of multiferroics -- they represent a key ingredient for further enhancing the functionality of this class of materials. This work was supported by the DFG through the SFB 608. D.M. thanks the AvH for financial support.

  13. Open and Distance Learning Today. Routledge Studies in Distance Education Series.

    Science.gov (United States)

    Lockwood, Fred, Ed.

    This book contains the following papers on open and distance learning today: "Preface" (Daniel); "Big Bang Theory in Distance Education" (Hawkridge); "Practical Agenda for Theorists of Distance Education" (Perraton); "Trends, Directions and Needs: A View from Developing Countries" (Koul); "American…

  14. Understanding Analysis Macroscopic, microscopic, and Acid-Base Titration Symbolic Student Class XI Science High School and Improvement Efforts Microscopy Approach

    Directory of Open Access Journals (Sweden)

    Putu Indrayani

    2014-06-01

    Full Text Available Analisis Pemahaman Makroskopik, Mikroskopik, dan Simbolik Titrasi Asam-Basa Siswa Kelas XI IPA SMA serta Upaya Perbaikannya dengan Pendekatan Mikroskopik Abstract: This study aims to determine: (1 the level of understanding of the macroscopic, microscopic and symbolic students; (2 the error understanding of macroscopic, microscopic and symbolic students; (3 the effectiveness of the microscopic approach in an effort to improve students' ability to solve the problems macroscopic, symbolic and microscopic material acid-base titration. This research uses descriptive research design and quasi-experimental research design. Data research is the understanding of macroscopic, symbolic and microscopic students on the material acid-base titration. Student comprehension test measured with instruments that include: (1 macroscopic comprehension tests, (2 test the understanding of symbolic, and (3 understanding of the microscopic tests. Content validity was tested by a team of experts and the reliability of test questions macroscopic and microscopic calculated using the Spearman-Brown while reliability symbolic test item was calculated using Cronbach's Alpha. Data were analyzed using descriptive analysis and statistical tests using Anacova. Results of the study are as follows. (1 The level of understanding of the macroscopic students is high, while the symbolic and microscopic levels of understanding of students is very low. (2 Errors identified macroscopic understanding is that students do not understand that the color shown by indicators related to the nature of the solution. Symbolic understanding of the identified errors are: (i the student can not write ionization reaction; and (ii students can not choose the formula used to calculate the pH of the solution. Errors identified microscopic understanding is that students can not provide a microscopic picture of a solution of a strong acid, strong base, weak acid, weak base, and salt solutions because they do

  15. Macroscopic treatment of radio emission from cosmic ray air showers based on shower simulations

    NARCIS (Netherlands)

    Werner, Klaus; Scholten, Olaf

    We present a macroscopic calculation of coherent electro-magnetic radiation from air showers initiated by ultra-high energy cosmic rays, based on currents obtained from Monte Carlo simulations of air showers in a realistic geo-magnetic field. We can clearly relate the time signal to the time

  16. Pulse shaping in the presence of enormous second-order dispersion in Al:ZnO/ZnO epsilon-near-zero metamaterial

    Science.gov (United States)

    Kelly, Priscilla; Kuznetsova, Lyuba

    2018-04-01

    A numerical study of the ultra-short pulse propagation in the aluminum-doped zinc oxide multi-layered metamaterial at the epsilon-near-zero spectral point is presented. The Drude model for dielectric permittivity and comparison with recent experimental data predict that damping frequency γD has the highest impact on the material losses and results in enormous second-order dispersion. Numerical simulations using both, the finite-difference time domain algorithm and the split-step Fourier method, show that variations of group velocity across the pulse at the epsilon-near-zero point results in a unique "soliton-like" propagation regime without nonlinearity for the propagation lengths of up to 300 nm.

  17. On the inclusion of macroscopic theory in Monte Carlo simulation using game theory

    International Nuclear Information System (INIS)

    Tatarkiewicz, J.

    1980-01-01

    This paper presents the inclusion of macroscopic damage theory into Monte Carlo particle-range simulation using game theory. A new computer code called RADDI was developed on the basis of this inclusion. Results of Monte Carlo damage simulation after 6.3 MeV proton bombardment of silicon are compared with experimental data of Bulgakov et al. (orig.)

  18. From a distance: implications of spontaneous self-distancing for adaptive self-reflection.

    Science.gov (United States)

    Ayduk, Ozlem; Kross, Ethan

    2010-05-01

    Although recent experimental work indicates that self-distancing facilitates adaptive self-reflection, it remains unclear (a) whether spontaneous self-distancing leads to similar adaptive outcomes, (b) how spontaneous self-distancing relates to avoidance, and (c) how this strategy impacts interpersonal behavior. Three studies examined these issues demonstrating that the more participants spontaneously self-distanced while reflecting on negative memories, the less emotional (Studies 1-3) and cardiovascular (Study 2) reactivity they displayed in the short term. Spontaneous self-distancing was also associated with lower emotional reactivity and intrusive ideation over time (Study 1). The negative association between spontaneous self-distancing and emotional reactivity was mediated by how participants construed their experience (i.e., less recounting relative to reconstruing) rather than avoidance (Studies 1-2). In addition, spontaneous self-distancing was associated with more problem-solving behavior and less reciprocation of negativity during conflicts among couples in ongoing relationships (Study 3). Although spontaneous self-distancing was empirically related to trait rumination, it explained unique variance in predicting key outcomes. 2010 APA, all rights reserved

  19. Bell inequalities and experiments on quantum correlations for macroscopic distances

    International Nuclear Information System (INIS)

    Grib, A.A.

    1984-01-01

    Recently in different laboratories experiments checking the validity of Bell's inequalities were made. These inequalities give the answer to the qUestion which interpretation of quantum mechanics is correct: either Einstein's interpretation according to which properties of quantum system exist as elements of physical reality independently from their observation or Copenhagen's interpretation due to Bohr and Fock according to which quantUm properties described by noncommuting operators don't exist independently from measurement. Experiments are classified on three groups: Those with optical photons with γ-quanta and with nucleons. The experiments undoubtedly show that Bell's inequalities are not satisfied, so the Copenhagen's interpretation of quantum mehanics and the principle of relativity to the means of measurement of properties of the microsystem give the only non-contradicting-to-experiment description of quantum phenomena

  20. Distance-regular graphs

    NARCIS (Netherlands)

    van Dam, Edwin R.; Koolen, Jack H.; Tanaka, Hajime

    2016-01-01

    This is a survey of distance-regular graphs. We present an introduction to distance-regular graphs for the reader who is unfamiliar with the subject, and then give an overview of some developments in the area of distance-regular graphs since the monograph 'BCN'[Brouwer, A.E., Cohen, A.M., Neumaier,

  1. Hierarchical traits distances explain grassland Fabaceae species' ecological niches distances

    Science.gov (United States)

    Fort, Florian; Jouany, Claire; Cruz, Pablo

    2015-01-01

    Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e., ecological niches. We measured a wide range of functional traits (root traits, leaf traits, and whole plant traits) in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species' ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems) are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems) are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance. PMID:25741353

  2. Hierarchical traits distances explain grassland Fabaceae species’ ecological niches distances

    Directory of Open Access Journals (Sweden)

    Florian eFort

    2015-02-01

    Full Text Available Fabaceae species play a key role in ecosystem functioning through their capacity to fix atmospheric nitrogen via their symbiosis with Rhizobium bacteria. To increase benefits of using Fabaceae in agricultural systems, it is necessary to find ways to evaluate species or genotypes having potential adaptations to sub-optimal growth conditions. We evaluated the relevance of phylogenetic distance, absolute trait distance and hierarchical trait distance for comparing the adaptation of 13 grassland Fabaceae species to different habitats, i.e. ecological niches. We measured a wide range of functional traits (root traits, leaf traits and whole plant traits in these species. Species phylogenetic and ecological distances were assessed from a species-level phylogenetic tree and species’ ecological indicator values, respectively. We demonstrated that differences in ecological niches between grassland Fabaceae species were related more to their hierarchical trait distances than to their phylogenetic distances. We showed that grassland Fabaceae functional traits tend to converge among species with the same ecological requirements. Species with acquisitive root strategies (thin roots, shallow root systems are competitive species adapted to non-stressful meadows, while conservative ones (coarse roots, deep root systems are able to tolerate stressful continental climates. In contrast, acquisitive species appeared to be able to tolerate low soil-P availability, while conservative ones need high P availability. Finally we highlight that traits converge along the ecological gradient, providing the assumption that species with similar root-trait values are better able to coexist, regardless of their phylogenetic distance.

  3. Numerical distance protection

    CERN Document Server

    Ziegler, Gerhard

    2011-01-01

    Distance protection provides the basis for network protection in transmission systems and meshed distribution systems. This book covers the fundamentals of distance protection and the special features of numerical technology. The emphasis is placed on the application of numerical distance relays in distribution and transmission systems.This book is aimed at students and engineers who wish to familiarise themselves with the subject of power system protection, as well as the experienced user, entering the area of numerical distance protection. Furthermore it serves as a reference guide for s

  4. Designed Er(3+)-singly doped NaYF4 with double excitation bands for simultaneous deep macroscopic and microscopic upconverting bioimaging.

    Science.gov (United States)

    Wen, Xuanyuan; Wang, Baoju; Wu, Ruitao; Li, Nana; He, Sailing; Zhan, Qiuqiang

    2016-06-01

    Simultaneous deep macroscopic imaging and microscopic imaging is in urgent demand, but is challenging to achieve experimentally due to the lack of proper fluorescent probes. Herein, we have designed and successfully synthesized simplex Er(3+)-doped upconversion nanoparticles (UCNPs) with double excitation bands for simultaneous deep macroscopic and microscopic imaging. The material structure and the excitation wavelength of Er(3+)-singly doped UCNPs were further optimized to enhance the upconversion emission efficiency. After optimization, we found that NaYF4:30%Er(3+)@NaYF4:2%Er(3+) could simultaneously achieve efficient two-photon excitation (2PE) macroscopic tissue imaging and three-photon excitation (3PE) deep microscopic when excited by 808 nm continuous wave (CW) and 1480 nm CW lasers, respectively. In vitro cell imaging and in vivo imaging have also been implemented to demonstrate the feasibility and potential of the proposed simplex Er(3+)-doped UCNPs as bioprobe.

  5. The Distance Standard Deviation

    OpenAIRE

    Edelmann, Dominic; Richards, Donald; Vogel, Daniel

    2017-01-01

    The distance standard deviation, which arises in distance correlation analysis of multivariate data, is studied as a measure of spread. New representations for the distance standard deviation are obtained in terms of Gini's mean difference and in terms of the moments of spacings of order statistics. Inequalities for the distance variance are derived, proving that the distance standard deviation is bounded above by the classical standard deviation and by Gini's mean difference. Further, it is ...

  6. Distance Education in Turkey

    Directory of Open Access Journals (Sweden)

    Dr. Nursel Selver RUZGAR,

    2004-04-01

    Full Text Available Distance Education in Turkey Assistant Professor Dr. Nursel Selver RUZGAR Technical Education Faculty Marmara University, TURKEY ABSTRACT Many countries of the world are using distance education with various ways, by internet, by post and by TV. In this work, development of distance education in Turkey has been presented from the beginning. After discussing types and applications for different levels of distance education in Turkey, the distance education was given in the cultural aspect of the view. Then, in order to create the tendencies and thoughts of graduates of Higher Education Institutions and Distance Education Institutions about being competitors in job markets, sufficiency of education level, advantages for education system, continuing education in different Institutions, a face-to-face survey was applied to 1284 graduates, 958 from Higher Education Institutions and 326 from Distance Education Institutions. The results were evaluated and discussed. In the last part of this work, suggestions to become widespread and improve the distance education in the country were made.

  7. Light induced electrical and macroscopic changes in hydrogenated polymorphous silicon solar cells

    Directory of Open Access Journals (Sweden)

    Roca i Cabarrocas P.

    2012-07-01

    Full Text Available We report on light-induced electrical and macroscopic changes in hydrogenated polymorphous silicon (pm-Si:H PIN solar cells. To explain the particular light-soaking behavior of such cells – namely an increase of the open circuit voltage (Voc and a rapid drop of the short circuit current density (Jsc – we correlate these effects to changes in hydrogen incorporation and structural properties in the layers of the cells. Numerous techniques such as current-voltage characteristics, infrared spectroscopy, hydrogen exodiffusion, Raman spectroscopy, atomic force microscopy, scanning electron microscopy and spectroscopic ellipsometry are used to study the light-induced changes from microscopic to macroscopic scales (up to tens of microns. Such comprehensive use of complementary techniques lead us to suggest that light-soaking produces the diffusion of molecular hydrogen, hydrogen accumulation at p-layer/substrate interface and localized delamination of the interface. Based on these results we propose that light-induced degradation of PIN solar cells has to be addressed from not only as a material issue, but also a device point of view. In particular we bring experimental evidence that localized delamination at the interface between the p-layer and SnO2 substrate by light-induced hydrogen motion causes the rapid drop of Jsc.

  8. Macroscopic Rock Texture Image Classification Using a Hierarchical Neuro-Fuzzy Class Method

    Directory of Open Access Journals (Sweden)

    Laercio B. Gonçalves

    2010-01-01

    Full Text Available We used a Hierarchical Neuro-Fuzzy Class Method based on binary space partitioning (NFHB-Class Method for macroscopic rock texture classification. The relevance of this study is in helping Geologists in the diagnosis and planning of oil reservoir exploration. The proposed method is capable of generating its own decision structure, with automatic extraction of fuzzy rules. These rules are linguistically interpretable, thus explaining the obtained data structure. The presented image classification for macroscopic rocks is based on texture descriptors, such as spatial variation coefficient, Hurst coefficient, entropy, and cooccurrence matrix. Four rock classes have been evaluated by the NFHB-Class Method: gneiss (two subclasses, basalt (four subclasses, diabase (five subclasses, and rhyolite (five subclasses. These four rock classes are of great interest in the evaluation of oil boreholes, which is considered a complex task by geologists. We present a computer method to solve this problem. In order to evaluate system performance, we used 50 RGB images for each rock classes and subclasses, thus producing a total of 800 images. For all rock classes, the NFHB-Class Method achieved a percentage of correct hits over 73%. The proposed method converged for all tests presented in the case study.

  9. GRUCAL: a program system for the calculation of macroscopic group constants

    International Nuclear Information System (INIS)

    Woll, D.

    1984-01-01

    Nuclear reactor calculations require material- and composition-dependent, energy-averaged neutron physical data in order to decribe the interaction between neutrons and isotopes. The multigroup cross section code GRUCAL calculates these macroscopic group constants for given material compositions from the material-dependent data of the group constant library GRUBA. The instructions for calculating group constants are not fixed in the program, but are read in from an instruction file. This makes it possible to adapt GRUCAL to various problems or different group constant concepts

  10. Quantum laws of the microworld and the wealth of macroscopic structures

    International Nuclear Information System (INIS)

    Noga, M.

    2000-01-01

    The reasons are highlighted why classical physics was unable to explain the formation of any collective self-organized arrangement such as magnetism and how the wealth of macroscopic self-organized structures emerges spontaneously from quantum theory applied to the given physical system. This is demonstrated on the simplest multi-electron system, viz. the model of a metal as electron gas with Coulomb interaction with a background of homogeneously distributed positive charge possessing a constant density so as to ensure charge neutrality of the system

  11. Haptic Discrimination of Distance

    Science.gov (United States)

    van Beek, Femke E.; Bergmann Tiest, Wouter M.; Kappers, Astrid M. L.

    2014-01-01

    While quite some research has focussed on the accuracy of haptic perception of distance, information on the precision of haptic perception of distance is still scarce, particularly regarding distances perceived by making arm movements. In this study, eight conditions were measured to answer four main questions, which are: what is the influence of reference distance, movement axis, perceptual mode (active or passive) and stimulus type on the precision of this kind of distance perception? A discrimination experiment was performed with twelve participants. The participants were presented with two distances, using either a haptic device or a real stimulus. Participants compared the distances by moving their hand from a start to an end position. They were then asked to judge which of the distances was the longer, from which the discrimination threshold was determined for each participant and condition. The precision was influenced by reference distance. No effect of movement axis was found. The precision was higher for active than for passive movements and it was a bit lower for real stimuli than for rendered stimuli, but it was not affected by adding cutaneous information. Overall, the Weber fraction for the active perception of a distance of 25 or 35 cm was about 11% for all cardinal axes. The recorded position data suggest that participants, in order to be able to judge which distance was the longer, tried to produce similar speed profiles in both movements. This knowledge could be useful in the design of haptic devices. PMID:25116638

  12. Haptic discrimination of distance.

    Directory of Open Access Journals (Sweden)

    Femke E van Beek

    Full Text Available While quite some research has focussed on the accuracy of haptic perception of distance, information on the precision of haptic perception of distance is still scarce, particularly regarding distances perceived by making arm movements. In this study, eight conditions were measured to answer four main questions, which are: what is the influence of reference distance, movement axis, perceptual mode (active or passive and stimulus type on the precision of this kind of distance perception? A discrimination experiment was performed with twelve participants. The participants were presented with two distances, using either a haptic device or a real stimulus. Participants compared the distances by moving their hand from a start to an end position. They were then asked to judge which of the distances was the longer, from which the discrimination threshold was determined for each participant and condition. The precision was influenced by reference distance. No effect of movement axis was found. The precision was higher for active than for passive movements and it was a bit lower for real stimuli than for rendered stimuli, but it was not affected by adding cutaneous information. Overall, the Weber fraction for the active perception of a distance of 25 or 35 cm was about 11% for all cardinal axes. The recorded position data suggest that participants, in order to be able to judge which distance was the longer, tried to produce similar speed profiles in both movements. This knowledge could be useful in the design of haptic devices.

  13. A macroscopic constitutive model of temperature-induced phase transition of polycrystalline Ni{sub 2}MnGa by directional solidification

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuping, E-mail: zhuyuping@126.com; Gu, Yunling; Liu, Hongguang

    2015-02-25

    Directional solidification technology has been widely used to improve the properties of polycrystalline Ni{sub 2}MnGa materials. Mechanical training can adjust the internal organizational structures of the materials, reduce the stress of twin boundaries motion, and then result in larger strain at lower outfield levels. In this paper, we test the microscopic structure of Ni{sub 2}MnGa polycrystalline ferromagnetic shape memory alloy produced by directional solidification and compress it along two axes successively for mechanical training. The influences of pre-compressive stresses on the temperature-induced strains are analyzed. The macroscopic mechanical behaviors show anisotropy. According to the generating mechanism of the macroscopic strain, a three-dimensional constitutive model is established. Based on thermodynamic method, the kinetic equations of the martensitic transformation and inverse transformation are presented considering the driving force and energy dissipation. The prediction curves of temperature-induce strains along two different directions are investigated. And the results coincide well with the experiment data. It well explains the macroscopic anisotropy mechanical behaviors and fits for using in engineering.

  14. Using Non-linear Homogenization to Improve the Performance of Macroscopic Damage Models of Trabecular Bone.

    Science.gov (United States)

    Levrero-Florencio, Francesc; Pankaj, Pankaj

    2018-01-01

    Realistic macro-level finite element simulations of the mechanical behavior of trabecular bone, a cellular anisotropic material, require a suitable constitutive model; a model that incorporates the mechanical response of bone for complex loading scenarios and includes post-elastic phenomena, such as plasticity (permanent deformations) and damage (permanent stiffness reduction), which bone is likely to experience. Some such models have been developed by conducting homogenization-based multiscale finite element simulations on bone micro-structure. While homogenization has been fairly successful in the elastic regime and, to some extent, in modeling the macroscopic plastic response, it has remained a challenge with respect to modeling damage. This study uses a homogenization scheme to upscale the damage behavior from the tissue level (microscale) to the organ level (macroscale) and assesses the suitability of different damage constitutive laws. Ten cubic specimens were each subjected to 21 strain-controlled load cases for a small range of macroscopic post-elastic strains. Isotropic and anisotropic criteria were considered, density and fabric relationships were used in the formulation of the damage law, and a combined isotropic/anisotropic law with tension/compression asymmetry was formulated, based on the homogenized results, as a possible alternative to the currently used single scalar damage criterion. This computational study enhances the current knowledge on the macroscopic damage behavior of trabecular bone. By developing relationships of damage progression with bone's micro-architectural indices (density and fabric) the study also provides an aid for the creation of more precise macroscale continuum models, which are likely to improve clinical predictions.

  15. Study using macroscopic autoradiography of the distribution of vanadium 48 in the rat and mouse

    International Nuclear Information System (INIS)

    Serhrouchni, M.

    1982-07-01

    Study of vanadium 48 distribution in the laboratory animal by macroscopic autoradiography. Vanadium 48 bioavailability is zero after oral administration and good after pulmonary administration. It is distributed throughout the body with a particular affinity for bone and teeth. Study of perinatal metabolism [fr

  16. Innovations in macroscopic evaluation of pancreatic specimens and radiologic correlation

    International Nuclear Information System (INIS)

    Triantopoulou, Charikleia; Papaparaskeva, Kleo; Agalianos, Christos; Dervenis, Christos

    2016-01-01

    •The axial slicing technique offers many advantages in accurate estimation of tumors extend and staging.•Cross-sectional axial imaging is the best technique for accurate radiologic-pathologic correlation.•Correlation may explain any discrepancies between radiological and histopathological findings.•Pathology correlation may offer a better understanding of the missed findings by imaging or pitfalls The axial slicing technique offers many advantages in accurate estimation of tumors extend and staging. Cross-sectional axial imaging is the best technique for accurate radiologic-pathologic correlation. Correlation may explain any discrepancies between radiological and histopathological findings. Pathology correlation may offer a better understanding of the missed findings by imaging or pitfalls The purpose of this study was to evaluate the feasibility of a novel dissection technique of surgical specimens in different cases of pancreatic tumors and provide a radiologic pathologic correlation. In our hospital, that is a referral center for pancreatic diseases, the macroscopic evaluation of the pancreatectomy specimens is performed by the pathologists using the axial slicing technique (instead of the traditional procedure with longitudinal opening of the main pancreatic and/or common bile duct and slicing along the plane defined by both ducts). The specimen is sliced in an axial plane that is perpendicular to the longitudinal axis of the descending duodenum. The procedure results in a large number of thin slices (3–4 mm). This plane is identical to that of CT or MRI and correlation between pathology and imaging is straightforward. We studied 70 cases of suspected different solid and cystic pancreatic tumors and we correlated the tumor size and location, the structure—consistency (areas of necrosis—hemorrhage—fibrosis—inflammation), the degree of vessels’ infiltration, the size of pancreatic and common bile duct and the distance from resection margins

  17. Determination of crystallographic and macroscopic orientation of planar structures in TEM

    DEFF Research Database (Denmark)

    Huang, X.; Liu, Q.

    1998-01-01

    With the aid of a double-tilt holder in a transmission electron microscope (TEM), simple methods are described for determination of the crystallographic orientation of a planar structure and for calculation of the macroscopic orientation of the planar structure. The correlation between a planar...... structure and a crystallographic plane can be found by comparing the differences in their trace directions on the projection plane and inclination angles with respect to that plane. The angles between the traces of planar structures and the sample axis measured from the TEM micrographs, which have been...

  18. Inverse Bayesian inference as a key of consciousness featuring a macroscopic quantum logical structure.

    Science.gov (United States)

    Gunji, Yukio-Pegio; Shinohara, Shuji; Haruna, Taichi; Basios, Vasileios

    2017-02-01

    To overcome the dualism between mind and matter and to implement consciousness in science, a physical entity has to be embedded with a measurement process. Although quantum mechanics have been regarded as a candidate for implementing consciousness, nature at its macroscopic level is inconsistent with quantum mechanics. We propose a measurement-oriented inference system comprising Bayesian and inverse Bayesian inferences. While Bayesian inference contracts probability space, the newly defined inverse one relaxes the space. These two inferences allow an agent to make a decision corresponding to an immediate change in their environment. They generate a particular pattern of joint probability for data and hypotheses, comprising multiple diagonal and noisy matrices. This is expressed as a nondistributive orthomodular lattice equivalent to quantum logic. We also show that an orthomodular lattice can reveal information generated by inverse syllogism as well as the solutions to the frame and symbol-grounding problems. Our model is the first to connect macroscopic cognitive processes with the mathematical structure of quantum mechanics with no additional assumptions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Macroscopic chirality of a liquid crystal from nonchiral molecules

    International Nuclear Information System (INIS)

    Jakli, A.; Nair, G. G.; Lee, C. K.; Sun, R.; Chien, L. C.

    2001-01-01

    The transfer of chirality from nonchiral polymer networks to the racemic B2 phase of nonchiral banana-shaped molecules is demonstrated. This corresponds to the transfer of chirality from an achiral material to another achiral material. There are two levels of chirality transfers. (a) On a microscopic level the presence of a polymer network (chiral or nonchiral) favors a chiral state over a thermodynamically stable racemic state due to the inversion symmetry breaking at the polymer-liquid crystal interfaces. (b) A macroscopically chiral (enantimerically enriched) sample can be produced if the polymer network has a helical structure, and/or contains chemically chiral groups. The chirality transfer can be locally suppressed by exposing the liquid crystal to a strong electric field treatment

  20. On the inherent self-excited macroscopic randomness of chaotic three-body system

    OpenAIRE

    Liao, Shijun; Li, Xiaoming

    2014-01-01

    What is the origin of macroscopic randomness (uncertainty)? This is one of the most fundamental open questions for human being. In this paper, 10000 samples of reliable (convergent), multiple-scale (from 1.0E-60 to 100) numerical simulations of a chaotic three-body system indicate that, without any external disturbance, the microscopic inherent uncertainty (in the level of 1.0E-60) due to physical fluctuation of initial positions of the three-body system enlarges exponentially into macroscopi...

  1. Covariant chronogeometry and extreme distances

    International Nuclear Information System (INIS)

    Segal, I.E.

    1981-01-01

    A theory for the analysis of major features of the fundamental physical structure of the universe, from micro- to macroscopic is proposed. It indicates that gravity is essentially the transform of the aggregate of the basic microscopic forces under conformal inversion. The theory also suggests a natural form for elementary particle structure that implies a nonparametric cosmological effect and indicates an intrinsic hierarchy among the microscopic forces. (author)

  2. Macroscopic local-field effects on photoabsorption processes

    International Nuclear Information System (INIS)

    Ma Xiaoguang; Gong Yubing; Wang Meishan; Wang Dehua

    2008-01-01

    The influence of the local-field effect on the photoabsorption cross sections of the atoms which are embedded in the macroscopic medium has been studied by a set of alternative expressions in detail. Some notes on the validity of some different local-field models used to study the photoabsorption cross sections of atoms in condensed matter have been given for the first time. Our results indicate that the local fields can have substantial and different influence on the photoabsorption cross section of atoms in condensed matter for different models. Clausius-Mossotti model and Onsager model have proved to be more reasonable to describe the local field in gas, liquid, or even some simple solid, while Glauber-Lewenstein model probably is wrong in these conditions except for the ideal gas. A procedure which can avoid the errors introduced by Kramers-Kronig transformation has been implemented in this work. This procedure can guarantee that the theoretical studies on the local field effects will not be influenced by the integral instability of the Kramers-Kronig transformation

  3. Distancing from experienced self: how global-versus-local perception affects estimation of psychological distance.

    Science.gov (United States)

    Liberman, Nira; Förster, Jens

    2009-08-01

    In 4 studies, the authors examined the prediction derived from construal level theory (CLT) that higher level of perceptual construal would enhance estimated egocentric psychological distance. The authors primed participants with global perception, local perception, or both (the control condition). Relative to the control condition, global processing made participants estimate larger psychological distances in time (Study 1), space (Study 2), social distance (Study 3), and hypotheticality (Study 4). Local processing had the opposite effect. Consistent with CLT, all studies show that the effect of global-versus-local processing did emerge when participants estimated egocentric distances, which are distances from the experienced self in the here and now, but did not emerge with temporal distances not from now (Study 1), spatial distances not from here (Study 2), social distances not from the self (Study 3), or hypothetical events that did not involve altering an experienced reality (Study 4).

  4. Macroscopic Floquet topological crystalline steel and superconductor pump

    Science.gov (United States)

    Rossi, Anna M. E. B.; Bugase, Jonas; Fischer, Thomas M.

    2017-08-01

    The transport of a macroscopic steel sphere and a superconducting sphere on top of two-dimensional periodic magnetic patterns is studied experimentally and compared with the theory and with experiments on topological transport of magnetic colloids. Transport of the steel and superconducting sphere is achieved by moving an external permanent magnet on a closed loop around the two-dimensional crystal. The transport is topological, i.e., the spheres are transported by a primitive unit vector of the lattice when the external magnet loop winds around specific directions. We experimentally determine the set of directions the loops must enclose for nontrivial transport of the spheres into various directions. We show that the loops can be used to sort steel and superconducting spheres. We show that the topological transport is robust with respect to the scale of the system and therefore speculate on its down scalability to the molecular scale.

  5. Fast Computing for Distance Covariance

    OpenAIRE

    Huo, Xiaoming; Szekely, Gabor J.

    2014-01-01

    Distance covariance and distance correlation have been widely adopted in measuring dependence of a pair of random variables or random vectors. If the computation of distance covariance and distance correlation is implemented directly accordingly to its definition then its computational complexity is O($n^2$) which is a disadvantage compared to other faster methods. In this paper we show that the computation of distance covariance and distance correlation of real valued random variables can be...

  6. ORDERED WEIGHTED DISTANCE MEASURE

    Institute of Scientific and Technical Information of China (English)

    Zeshui XU; Jian CHEN

    2008-01-01

    The aim of this paper is to develop an ordered weighted distance (OWD) measure, which is thegeneralization of some widely used distance measures, including the normalized Hamming distance, the normalized Euclidean distance, the normalized geometric distance, the max distance, the median distance and the min distance, etc. Moreover, the ordered weighted averaging operator, the generalized ordered weighted aggregation operator, the ordered weighted geometric operator, the averaging operator, the geometric mean operator, the ordered weighted square root operator, the square root operator, the max operator, the median operator and the min operator axe also the special cases of the OWD measure. Some methods depending on the input arguments are given to determine the weights associated with the OWD measure. The prominent characteristic of the OWD measure is that it can relieve (or intensify) the influence of unduly large or unduly small deviations on the aggregation results by assigning them low (or high) weights. This desirable characteristic makes the OWD measure very suitable to be used in many actual fields, including group decision making, medical diagnosis, data mining, and pattern recognition, etc. Finally, based on the OWD measure, we develop a group decision making approach, and illustrate it with a numerical example.

  7. Detailed Simulation of Complex Hydraulic Problems with Macroscopic and Mesoscopic Mathematical Methods

    Directory of Open Access Journals (Sweden)

    Chiara Biscarini

    2013-01-01

    Full Text Available The numerical simulation of fast-moving fronts originating from dam or levee breaches is a challenging task for small scale engineering projects. In this work, the use of fully three-dimensional Navier-Stokes (NS equations and lattice Boltzmann method (LBM is proposed for testing the validity of, respectively, macroscopic and mesoscopic mathematical models. Macroscopic simulations are performed employing an open-source computational fluid dynamics (CFD code that solves the NS combined with the volume of fluid (VOF multiphase method to represent free-surface flows. The mesoscopic model is a front-tracking experimental variant of the LBM. In the proposed LBM the air-gas interface is represented as a surface with zero thickness that handles the passage of the density field from the light to the dense phase and vice versa. A single set of LBM equations represents the liquid phase, while the free surface is characterized by an additional variable, the liquid volume fraction. Case studies show advantages and disadvantages of the proposed LBM and NS with specific regard to the computational efficiency and accuracy in dealing with the simulation of flows through complex geometries. In particular, the validation of the model application is developed by simulating the flow propagating through a synthetic urban setting and comparing results with analytical and experimental laboratory measurements.

  8. A macroscopic cross-section model for BWR pin-by-pin core analysis

    International Nuclear Information System (INIS)

    Fujita, Tatsuya; Endo, Tomohiro; Yamamoto, Akio

    2014-01-01

    A macroscopic cross-section model used in boiling water reactor (BWR) pin-by-pin core analysis is studied. In the pin-by-pin core calculation method, pin-cell averaged cross sections are calculated for many combinations of core state and depletion history variables and are tabulated prior to core calculations. Variations of cross sections in a core simulator are caused by two different phenomena (i.e. instantaneous and history effects). We treat them through the core state variables and the exposure-averaged core state variables, respectively. Furthermore, the cross-term effect among the core state and the depletion history variables is considered. In order to confirm the calculation accuracy and discuss the treatment of the cross-term effect, the k-infinity and the pin-by-pin fission rate distributions in a single fuel assembly geometry are compared. Some cross-term effects could be negligible since the impacts of them are sufficiently small. However, the cross-term effects among the control rod history (or the void history) and other variables have large impacts; thus, the consideration of them is crucial. The present macroscopic cross-section model, which considers such dominant cross-term effects, well reproduces the reference results and can be a candidate in practical applications for BWR pin-by-pin core analysis on the normal operations. (author)

  9. On the macroscopic modeling of dilute emulsions under flow in the presence of particle inertia

    Science.gov (United States)

    Mwasame, Paul M.; Wagner, Norman J.; Beris, Antony N.

    2018-03-01

    Recently, Mwasame et al. ["On the macroscopic modeling of dilute emulsions under flow," J. Fluid Mech. 831, 433 (2017)] developed a macroscopic model for the dynamics and rheology of a dilute emulsion with droplet morphology in the limit of negligible particle inertia using the bracket formulation of non-equilibrium thermodynamics of Beris and Edwards [Thermodynamics of Flowing Systems: With Internal Microstructure (Oxford University Press on Demand, 1994)]. Here, we improve upon that work to also account for particle inertia effects. This advance is facilitated by using the bracket formalism in its inertial form that allows for the natural incorporation of particle inertia effects into macroscopic level constitutive equations, while preserving consistency to the previous inertialess approximation in the limit of zero inertia. The parameters in the resultant Particle Inertia Thermodynamically Consistent Ellipsoidal Emulsion (PITCEE) model are selected by utilizing literature-available mesoscopic theory for the rheology at small capillary and particle Reynolds numbers. At steady state, the lowest level particle inertia effects can be described by including an additional non-affine inertial term into the evolution equation for the conformation tensor, thereby generalizing the Gordon-Schowalter time derivative. This additional term couples the conformation and vorticity tensors and is a function of the Ohnesorge number. The rheological and microstructural predictions arising from the PITCEE model are compared against steady-shear simulation results from the literature. They show a change in the signs of the normal stress differences that is accompanied by a change in the orientation of the major axis of the emulsion droplet toward the velocity gradient direction with increasing Reynolds number, capturing the two main signatures of particle inertia reported in simulations.

  10. Macroscopic Study of the Isthmus of the Thyroid Gland in Bangladeshi People: A Postmortem Study

    Directory of Open Access Journals (Sweden)

    Fakhrul Amin Mohammad Hasanul Banna

    2017-01-01

    Full Text Available Background: The position and size of isthmus of thyroid gland varies considerably in human with age, sex, physiologic state, race and geographical location and sometimes the isthmus may be absent. So this study was designed to find out the macroscopic differences in isthmus of thyroid gland of different age and sex groups in Bangladeshi people. Objective: To record the macroscopic characteristics of isthmus of thyroid gland with advancing age in both sexes with a view to help establishing normal standard of Bangladeshi people. Materials and Methods: This descriptive cross-sectional study was carried out on 54 autopsied human thyroid glands aged 5 to 65 years. Thyroid glands were collected from unclaimed dead bodies autopsied in the morgue of Sylhet M. A. G. Osmani Medical College, Sylhet. The collected specimens were divided into groups –– A (20 years and below, B (21 to 50 years and C (50 years and above. All specimens were examined morphologically by careful gross dissection method. Results: The isthmus was absent in 5.56% cases. In most of the cases (35.29% it was against the 1st–4th tracheal rings. There was significant difference in length between Group A and Group C (p<0.05 and in breadth between Group A and Group C and between Group B and Group C (p<0.05. No significant difference was found in length, breadth and thickness of isthmus of the thyroid gland between males and females. Conclusion: The presence or absence, positional change and variation in gross dimension of isthmus of thyroid gland were evident in human. The macroscopic difference was found with increasing age but not with sex.

  11. Searching for the nanoscopic–macroscopic boundary

    Energy Technology Data Exchange (ETDEWEB)

    Velásquez, E.A. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Grupo de Investigación en Modelamiento y Simulación Computacional, Universidad de San Buenaventura Sec. Medellín, A.A. 5222, Medellín (Colombia); Altbir, D. [Departamento de Física, Universidad de Santiago de Chile (USACH), CEDENNA, Santiago (Chile); Mazo-Zuluaga, J. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Duque, L.F. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Grupo de Física Teórica, Aplicada y Didáctica, Facultad de Ciencias Exactas y Aplicadas Instituto Tecnológico Metropolitano, Medellín (Colombia); Mejía-López, J., E-mail: jmejia@puc.cl [Facultad de Física, Pontificia Universidad Católica de Chile, CEDENNA, Santiago (Chile)

    2013-12-15

    Several studies have focused on the size-dependent properties of elements, looking for a unique definition of the nanoscopic–macroscopic boundary. By using a novel approach consisting of an energy variational method combined with a quantum Heisenberg model, here we address the size at which the ordering temperature of a magnetic nanoparticle reaches its bulk value. We consider samples with sizes in the range 1–500 nm, as well as several geometries and crystalline lattices and observe that, contrarily to what is commonly argued, the nanoscopic-microscopic boundary depends on both factors: shape and crystalline structure. This suggests that the surface-to-volume ratio is not the unique parameter that defines the behavior of a nanometric sample whenever its size increases reaching the bulk dimension. Comparisons reveal very good agreement with experimental evidence with differences less than 2%. Our results have broad implications for practical issues in measurements on systems at the nanometric scale. - Highlights: • A novel quantum-Heisenberg variational energy method is implemented. • The asymptotic behavior toward the thermodynamic limit is explored. • An important dependence of the nano-bulk boundary on the geometry is found. • And also an important dependence on the crystalline lattice. • We obtain a very good agreement with experimental evidence with differences <2%.

  12. Macroscopically constrained Wang-Landau method for systems with multiple order parameters and its application to drawing complex phase diagrams

    Science.gov (United States)

    Chan, C. H.; Brown, G.; Rikvold, P. A.

    2017-05-01

    A generalized approach to Wang-Landau simulations, macroscopically constrained Wang-Landau, is proposed to simulate the density of states of a system with multiple macroscopic order parameters. The method breaks a multidimensional random-walk process in phase space into many separate, one-dimensional random-walk processes in well-defined subspaces. Each of these random walks is constrained to a different set of values of the macroscopic order parameters. When the multivariable density of states is obtained for one set of values of fieldlike model parameters, the density of states for any other values of these parameters can be obtained by a simple transformation of the total system energy. All thermodynamic quantities of the system can then be rapidly calculated at any point in the phase diagram. We demonstrate how to use the multivariable density of states to draw the phase diagram, as well as order-parameter probability distributions at specific phase points, for a model spin-crossover material: an antiferromagnetic Ising model with ferromagnetic long-range interactions. The fieldlike parameters in this model are an effective magnetic field and the strength of the long-range interaction.

  13. Macroscopic proof of the Jarzynski–Wójcik fluctuation theorem for heat exchange

    International Nuclear Information System (INIS)

    Sughiyama, Yuki; Abe, Sumiyoshi

    2008-01-01

    In a recent work, Jarzynski and Wójcik (2004 Phys. Rev. Lett. 92 230602) have shown by using the properties of Hamiltonian dynamics and a statistical mechanical consideration that heat exchange through contact between two systems initially prepared at different temperatures obeys a fluctuation theorem. Here, another proof is presented, in which only macroscopic thermodynamic quantities are employed. The detailed balance condition is found to play an essential role. As a result, the theorem is found to hold under very general conditions

  14. Quantum description of microscopic and macroscopic systems: Old problems and recent investigations

    International Nuclear Information System (INIS)

    Ghirardi, G.C.

    1986-04-01

    We review some open problems and some proposed solutions which are encountered in the quantum description of the microscopic systems, of the macroscopic ones, and of the interactions between these two types of objects. We describe a recent attempt allowing a unified description of all phenomena, reproducing the quantum mechanical situation for microscopic systems and inducing in a completely consistent way the classical behaviour of macro object and the phenomena of wave packet reduction in the system-apparatus interaction. (author)

  15. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage

    DEFF Research Database (Denmark)

    Méndez-García, Celia; Mesa, Victoria; Sprenger, Richard Remko

    2014-01-01

    Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH...

  16. Microbial stratification in low pH oxic and suboxic macroscopic growths along an acid mine drainage

    NARCIS (Netherlands)

    Méndez-Garcia, C.; Mesa, V.; Sprenger, R.R.; Richter, M.; Suarez Diez, M.; Solano, J.; Bargiela, R.; Golyshina, O.V.; Manteca, A.; Ramos, J.L.; Gallego, J.R.; Llorente, I.; Martins Dos Santos, V.A.P.; Jensen, O.N.; Paláez, A.I.; Sánchez, J.; Ferrer, M.

    2014-01-01

    Macroscopic growths at geographically separated acid mine drainages (AMDs) exhibit distinct populations. Yet, local heterogeneities are poorly understood. To gain novel mechanistic insights into this, we used OMICs tools to profile microbial populations coexisting in a single pyrite gallery AMD (pH

  17. Clinical significance of macroscopic completeness of mesorectal resection in rectal cancer.

    Science.gov (United States)

    Leite, J S; Martins, S C; Oliveira, J; Cunha, M F; Castro-Sousa, F

    2011-04-01

    Local recurrence after resection of rectal cancer is usually regarded as being due to a 'failure' of surgery. The completeness of resection of the mesorectum has been proposed as an indicator of the 'quality' of the resection. We determined the prognostic value of macroscopic evaluation of rectal cancer resection specimens and the circumferential resection margin (CRM) after curative surgery. From 1999 to 2006, the macroscopic quality of the mesorectum and the CRM were prospectively assessed in 127 patients who underwent rectal cancer resection with curative intent (R0+R1). Chemoradiotherapy was administered for 61 tumours staged as locally advanced tumours (T3, T4 and N+). Univariate analysis of time to local recurrence and cancer-free survival were tested (Kaplan-Meier) and multivariate analysis calculated with a Cox regression model. The mesorectum was incomplete in 34 (26.8%) patients. At a median follow up of 34 months (range, 9-96 months), in the group with an adequate mesorectal excision, the cumulative risk of local recurrence at 5 years was 10%. This was 25% if the mesorectum was incomplete (P CRM and the mesorectal score as independent factors for local recurrence, and T and N status and the mesorectal score as independent factors for disease-free survival. The outcome of surgical treatment of rectal cancer is related to the completeness of mesorectal excision. It is a more discriminative prognostic factor than the classic tumour-node-metastasis (TNM) system. © 2011 The Authors. Colorectal Disease © 2011 The Association of Coloproctology of Great Britain and Ireland.

  18. Fault detection by surface seismic scanning tunneling macroscope: Field test

    KAUST Repository

    Hanafy, Sherif M.

    2014-08-05

    The seismic scanning tunneling macroscope (SSTM) is proposed for detecting the presence of near-surface impedance anomalies and faults. Results with synthetic data are consistent with theory in that scatterers closer to the surface provide brighter SSTM profiles than those that are deeper. The SSTM profiles show superresolution detection if the scatterers are in the near-field region of the recording line. The field data tests near Gulf of Aqaba, Haql, KSA clearly show the presence of the observable fault scarp, and identify the subsurface presence of the hidden faults indicated in the tomograms. Superresolution detection of the fault is achieved, even when the 35 Hz data are lowpass filtered to the 5-10 Hz band.

  19. Fault detection by surface seismic scanning tunneling macroscope: Field test

    KAUST Repository

    Hanafy, Sherif M.; Schuster, Gerard T.

    2014-01-01

    The seismic scanning tunneling macroscope (SSTM) is proposed for detecting the presence of near-surface impedance anomalies and faults. Results with synthetic data are consistent with theory in that scatterers closer to the surface provide brighter SSTM profiles than those that are deeper. The SSTM profiles show superresolution detection if the scatterers are in the near-field region of the recording line. The field data tests near Gulf of Aqaba, Haql, KSA clearly show the presence of the observable fault scarp, and identify the subsurface presence of the hidden faults indicated in the tomograms. Superresolution detection of the fault is achieved, even when the 35 Hz data are lowpass filtered to the 5-10 Hz band.

  20. Seismic scanning tunneling macroscope - Elastic simulations and Arizona mine test

    KAUST Repository

    Hanafy, Sherif M.; Schuster, Gerard T.

    2012-01-01

    Elastic seismic simulations and field data tests are used to validate the theory of a seismic scanning tunneling macroscope (SSTM). For nearfield elastic simulation, the SSTM results show superresolution to be better than λ/8 if the only scattered data are used as input data. If the direct P and S waves are muted then the resolution of the scatterer locations are within about λ/5. Seismic data collected in an Arizona tunnel showed a superresolution limit of at least λ/19. These test results are consistent with the theory of the SSTM and suggest that the SSTM can be a tool used by geophysicists as a probe for near-field scatterers.

  1. THE DISTANCE TO M51

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W. [University of Texas at Austin, McDonald Observatory, 2515 Speedway, Stop C1400 Austin, TX 78712 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Berg, Danielle [Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States); Kennicutt, Robert, E-mail: kmcquinn@astro.as.utexas.edu [Institute for Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2016-07-20

    Great investments of observing time have been dedicated to the study of nearby spiral galaxies with diverse goals ranging from understanding the star formation process to characterizing their dark matter distributions. Accurate distances are fundamental to interpreting observations of these galaxies, yet many of the best studied nearby galaxies have distances based on methods with relatively large uncertainties. We have started a program to derive accurate distances to these galaxies. Here we measure the distance to M51—the Whirlpool galaxy—from newly obtained Hubble Space Telescope optical imaging using the tip of the red giant branch method. We measure the distance modulus to be 8.58 ± 0.10 Mpc (statistical), corresponding to a distance modulus of 29.67 ± 0.02 mag. Our distance is an improvement over previous results as we use a well-calibrated, stable distance indicator, precision photometry in a optimally selected field of view, and a Bayesian Maximum Likelihood technique that reduces measurement uncertainties.

  2. Pollen and macroscopic analyses of sediments from two lakes in the High Tatra mountains, Slovakia

    Czech Academy of Sciences Publication Activity Database

    Rybníčková, Eliška; Rybníček, Kamil

    2006-01-01

    Roč. 15, - (2006), s. 345-356 ISSN 0939-6314 R&D Projects: GA ČR(CZ) GA206/96/0531; GA ČR GA206/02/0568 Institutional research plan: CEZ:AV0Z60050516 Keywords : Pollen analyses * macroscopic analyses * high mointain lakes Subject RIV: EF - Botanics Impact factor: 0.649, year: 2006

  3. Applicability of the Reaction Layer Principle to Nanoparticulate Metal Complexes at a Macroscopic Reactive (Bio)Interface

    NARCIS (Netherlands)

    Duval, Jérôme F.L.; Town, Raewyn M.; Leeuwen, Van Herman P.

    2017-01-01

    The reaction layer concept is commonly adopted to estimate the contribution of metal complexes to the flux of free metal ions (M) toward a macroscopic M-accumulating (bio)interface, e.g., a biosurface (microorganism) or a sensor (electrode). This concept is well-established for molecular ligands

  4. Encyclopedia of distances

    CERN Document Server

    Deza, Michel Marie

    2009-01-01

    Distance metrics and distances have become an essential tool in many areas of pure and applied Mathematics. This title offers both independent introductions and definitions, while at the same time making cross-referencing easy through hyperlink-like boldfaced references to original definitions.

  5. Coherent tunneling of Bose-Einstein condensates: Exact solutions for Josephson effects and macroscopic quantum self-trapping

    International Nuclear Information System (INIS)

    Raghavan, S.; Fantoni, S.; Shenoy, S.R.; Smerzi, A.

    1997-07-01

    We consider coherent atomic tunneling between two weakly coupled Bose-Einstein condensates (BEC) at T = 0 in (possibly asymmetric) double-well trap. The condensate dynamics of the macroscopic amplitudes in the two wells is modeled by two Gross-Pitaevskii equations (GPE) coupled by a tunneling matrix element. The evolution of the inter-well fractional population imbalance (related to the condensate phase difference) is obtained in terms of elliptic functions, generalizing well-known Josephson effects such as the 'ac' effect, the 'plasma oscillations', and the resonant Shapiro effect, to the nonsiusoidal regimes. We also present exact solutions for a novel 'macroscopic quantum self-trapping' effect arising from nonlinear atomic self-interaction in the GPE. The coherent BEC tunneling signatures are obtained in terms of the oscillations periods and the Fourier spectrum of the imbalance oscillations, as a function of the initial values of GPE parameters. Experimental procedures are suggested to make contact with theoretical predictions. (author). 44 refs, 8 figs

  6. The association between histological, macroscopic and magnetic resonance imaging assessed synovitis in end-stage knee osteoarthritis

    DEFF Research Database (Denmark)

    Riis, R G C; Gudbergsen, H; Simonsen, O

    2017-01-01

    the DCE-MRI variable MExNvoxel (surrogate of the volume and degree of synovitis) and the macroscopic score showed correlations above the pre-specified threshold for acceptance with histological inflammation. The maximum R2-value obtained in Model 1 was R2 = 0.39. In Model 2, where the CE......-MRI-variables were added, the highest R2 = 0.52. In Model 3, a four-variable model consisting of the gender, one CE-MRI and two DCE-MRI-variables yielded a R2 = 0.71. CONCLUSION: DCE-MRI is correlated with histological synovitis in end-stage KOA and the combination of CE and DCE-MRI may be a useful, non......-enhanced magnetic resonance imaging (CE-MRI) and dynamic contrast-enhanced (DCE)-MRI prior to (TKR) and correlated with microscopic and macroscopic assessments of synovitis obtained intraoperatively. Multiple bivariate correlations were used with a pre-specified threshold of 0.70 for significance. Also, multiple...

  7. Molecular dynamics simulations of a fully hydrated dipalmitoyl phosphatidylcholine bilayer with different macroscopic boundary conditions and parameters

    NARCIS (Netherlands)

    Tieleman, D.P; Berendsen, H.J.C.

    1996-01-01

    We compared molecular dynamics simulations of a bilayer of 128 fully hydrated phospholipid (DPPC) molecules, using different parameters and macroscopic boundary conditions. The same system was studied under constant pressure, constant volume, and constant surface tension boundary conditions, with

  8. Impact of local diffusion on macroscopic dispersion in three-dimensional porous media

    Science.gov (United States)

    Dartois, Arthur; Beaudoin, Anthony; Huberson, Serge

    2018-02-01

    While macroscopic longitudinal and transverse dispersion in three-dimensional porous media has been simulated previously mostly under purely advective conditions, the impact of diffusion on macroscopic dispersion in 3D remains an open question. Furthermore, both in 2D and 3D, recurring difficulties have been encountered due to computer limitation or analytical approximation. In this work, we use the Lagrangian velocity covariance function and the temporal derivative of second-order moments to study the influence of diffusion on dispersion in highly heterogeneous 2D and 3D porous media. The first approach characterizes the correlation between the values of Eulerian velocity components sampled by particles undergoing diffusion at two times. The second approach allows the estimation of dispersion coefficients and the analysis of their behaviours as functions of diffusion. These two approaches allowed us to reach new results. The influence of diffusion on dispersion seems to be globally similar between highly heterogeneous 2D and 3D porous media. Diffusion induces a decrease in the dispersion in the direction parallel to the flow direction and an increase in the dispersion in the direction perpendicular to the flow direction. However, the amplification of these two effects with the permeability variance is clearly different between 2D and 3D. For the direction parallel to the flow direction, the amplification is more important in 3D than in 2D. It is reversed in the direction perpendicular to the flow direction.

  9. Intense nonneutral beam propagation in a periodic solenoidal field using a macroscopic fluid model with zero thermal emittance

    International Nuclear Information System (INIS)

    Davidson, R.C.; Stoltz, P.; Chen, C.

    1997-08-01

    A macroscopic fluid model is developed to describe the nonlinear dynamics and collective processes in an intense high-current beam propagating in the z-direction through a periodic focusing solenoidal field B z (z + S) = B z (z), where S is the axial periodicity length. The analysis assumes that space-charge effects dominate the effects of thermal beam emittance, Kr b 2 much-gt ε th 2 , and is based on the macroscopic moment-Maxwell equations, truncated by neglecting the pressure tensor and higher-order moments. Assuming a thin beam with r b much-lt S, azimuthally symmetric beam equilibria with ∂/∂t = 0 = ∂/∂θ are investigated. To illustrate the considerable flexibility of the macroscopic formalism, assuming (nearly) uniform axial flow velocity V b over the beam cross section, beam equilibrium properties are calculated for two examples: (a) uniform radial density profile over the interval 0 ≤ r b (z), and (b) an infinitesimally thin annular beam centered at r = r b (z). The analysis generally allows for the azimuthal flow velocity V θb (r,z) to differ from the Larmor frequency, and the model is used to calculate the (leading-order) correction δV zb (r,z) to the axial flow velocity for the step-function density profile in case (a) above

  10. Adiabatic process reversibility: microscopic and macroscopic views

    International Nuclear Information System (INIS)

    Anacleto, Joaquim; Pereira, Mario G

    2009-01-01

    The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r≥1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values. (letters and comments)

  11. A test of Gaia Data Release 1 parallaxes: implications for the local distance scale

    Science.gov (United States)

    Casertano, Stefano; Riess, Adam G.; Bucciarelli, Beatrice; Lattanzi, Mario G.

    2017-03-01

    Aims: We present a comparison of Gaia Data Release 1 (DR1) parallaxes with photometric parallaxes for a sample of 212 Galactic Cepheids at a median distance of 2 kpc, and explore their implications on the distance scale and the local value of the Hubble constant H0. Methods: The Cepheid distances are estimated from a recent calibration of the near-infrared period-luminosity (P-L) relation. The comparison is carried out in parallax space, where the DR1 parallax errors, with a median value of half the median parallax, are expected to be well-behaved. Results: With the exception of one outlier, the DR1 parallaxes are in very good global agreement with the predictions from a well-established P-L relation, with a possible indication that the published errors may be conservatively overestimated by about 20%. This confirms that the quality of DR1 parallaxes for the Cepheids in our sample is well within their stated errors. We find that the parallaxes of 9 Cepheids brighter than G = 6 may be systematically underestimated. If interpreted as an independent calibration of the Cepheid luminosities and assumed to be otherwise free of systematic uncertainties, DR1 parallaxes are in very good agreement (within 0.3%) with the current estimate of the local Hubble constant, and in conflict at the level of 2.5σ (3.5σ if the errors are scaled) with the value inferred from Planck cosmic microwave background data used in conjunction with ΛCDM. We also test for a zeropoint error in Gaia parallaxes and find none to a precision of 20 μas. We caution however that with this early release, the complete systematic properties of the measurements may not be fully understood at the statistical level of the Cepheid sample mean, a level an order of magnitude below the individual uncertainties. The early results from DR1 demonstrate again the enormous impact that the full mission will likely have on fundamental questions in astrophysics and cosmology.

  12. Observation of unusual irreversible/reversible effects in a macroscopic cylindrical hole drilled in superconducting Bi-Sr-Ca-Cu-O

    International Nuclear Information System (INIS)

    Yetis, H.; Kilic, A.; Kilic, K.; Altinkok, A.; Olutas, M.

    2008-01-01

    Current-voltage (I-V) measurements were carried out for different current sweep rates (dI/dt) of transport current at zero magnetic field (H = 0) and H ≠ 0 in a polycrystalline sample of Bi 1.7 Pb 0.3 Sr 2 Ca 2 Cu 3 O x (BSCCO) with a macroscopic cylindrical hole (CH) drilled. Similar measurements were also performed in the same BSCCO sample without CH for a comparison before drilling CH. For the same values of H, T, and dI/dt taken for both samples, it was observed that hysteresis effects appear in I-V curves upon cycling of transport current in upward and downward directions which contain the increasing and decreasing current values, respectively. However these effects which are seen in I-V curves of BSCCO sample with CH is more prominent than that of the BSCCO sample without CH. Further, the irreversibility effects in I-V curves of the BSCCO sample without CH disappears for H ≠ 0 exhibiting nearly a linear behaviour, whereas the hysteretic behaviour in I-V curves of the BSCCO sample with CH is still observed. This interesting behaviour could be evaluated that macroscopic cylindrical hole improves pinning properties of sample acting as a macroscopic flux pinning center for flux lines

  13. Experimental determination of neutron lifetimes through macroscopic neutron noise in the IPEN/MB-01 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gonnelli, Eduardo; Diniz, Ricardo [Instituto de Pesquisas Energeticas e Nucleares - IPEN/CNEN-SP Travessa R-400, 05508-900, Cidade Universitaria, Sao Paulo (Brazil)

    2013-05-06

    The neutron lifetimes of the core, reflector, and global were experimentally obtained through macroscopic neutron noise in the IPEN/MB-01 reactor for five levels of subcriticality. The theoretical Auto Power Spectral Densities were derived by point kinetic equations taking the reflector effect into account, and one of the approaches consider an additional group of delayed neutrons.

  14. Diagnosis of bladder tumours in patients with macroscopic haematuria

    DEFF Research Database (Denmark)

    Gandrup, Karen L; Løgager, Vibeke B; Bretlau, Thomas

    2015-01-01

    patients underwent CTU, MRU and flexible cystoscopy. Two uroradiologists individually reviewed the images without any clinical information, using a questionnaire. Patient records and pathology reports were also reviewed. RESULTS: At flexible cystoscopy, MRU and CTU, 32, 19 and 15 bladder lesions were...... identified, respectively. Histopathology showed that 13 of the 29 biopsied lesions were transitional cell carcinomas. Compared with the histopathology, the sensitivity and specificity for detection of tumours by CTU and MRU were 61.5% and 94.9%, and 79.9% and 93.4%, respectively. False-positive detection...... of bladder tumours, compared with histopathology, was reported in seven CTUs and nine MRUs, whereas the number of false-negative findings was five for CTUs and three for MRUs. CONCLUSIONS: Split-bolus CTU or MRU cannot replace cystoscopy in cases of macroscopic haematuria. MRU has a higher sensitivity than...

  15. Modeling Macroscopic Shape Distortions during Sintering of Multi-layers

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye

    as to help achieve defect free multi-layer components. The initial thickness ratio between the layers making the multi-layer has also significant effect on the extent of camber evolution depending on the material systems. During sintering of tubular bi-layer structures, tangential (hoop) stresses are very...... large compared to radial stresses. The maximum value of hoop stress, which can generate processing defects such as cracks and coating peel-offs, occurs at the beginning of the sintering cycle. Unlike most of the models defining material properties based on porosity and grain size only, the multi...... (firing). However, unintended features like shape instabilities of samples, cracks or delamination of layers may arise during sintering of multi-layer composites. Among these defects, macroscopic shape distortions in the samples can cause problems in the assembly or performance of the final component...

  16. Learner characteristics involved in distance learning

    Energy Technology Data Exchange (ETDEWEB)

    Cernicek, A.T.; Hahn, H.A.

    1991-01-01

    Distance learning represents a strategy for leveraging resources to solve educational and training needs. Although many distance learning programs have been developed, lessons learned regarding differences between distance learning and traditional education with respect to learner characteristics have not been well documented. Therefore, we conducted a survey of 20 distance learning professionals. The questionnaire was distributed to experts attending the second Distance Learning Conference sponsored by Los Alamos National Laboratory. This survey not only acquired demographic information from each of the respondents but also identified important distance learning student characteristics. Significant distance learner characteristics, which were revealed statistically and which influence the effectiveness of distance learning, include the following: reading level, student autonomy, and self-motivation. Distance learning cannot become a more useful and effective method of instruction without identifying and recognizing learner characteristics. It will be important to consider these characteristics when designing all distance learning courses. This paper will report specific survey findings and their implications for developing distance learning courses. 9 refs., 6 tabs.

  17. Micro-finite-element method to assess elastic properties of trabecular bone at micro- and macroscopic level.

    Science.gov (United States)

    Rieger, R; Auregan, J C; Hoc, T

    2018-03-01

    The objective of the present study is to assess the mechanical behavior of trabecular bone based on microCT imaging and micro-finite-element analysis. In this way two methods are detailed: (i) direct determination of macroscopic elastic property of trabecular bone; (ii) inverse approach to assess mechanical properties of trabecular bone tissue. Thirty-five females and seven males (forty-two subjects) mean aged (±SD) 80±11.7 years from hospitals of Assistance publique-Hôpitaux de Paris (AP-HP) diagnosed with osteoporosis following a femoral neck fracture due to a fall from standing were included in this study. Fractured heads were collected during hip replacement surgery. Standardized bone cores were removed from the femoral head's equator by a trephine in a water bath. MicroCT images acquisition and analysis were performed with CTan ® software and bone volume fraction was then determined. Micro-finite-element simulations were per-formed using Abaqus 6.9-2 ® software in order to determine the macroscopic mechanical behaviour of the trabecular bone. After microCT acquisition, a longitudinal compression test was performed and the experimental macroscopic Young's Modulus was extracted. An inverse approach based on the whole trabecular bone's mechanical response and micro-finite-element analysis was performed to determine microscopic mechanical properties of trabecular bone. In the present study, elasticity of the tissue was shown to be similar to that of healthy tissue but with a lower yield stress. Classical histomorphometric analysis form microCT imaging associated with an inverse micro-finite-element method allowed to assess microscopic mechanical trabecular bone parameters. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Macroscopic barotrauma caused by stiff and soft-tipped airway exchange catheters: an in vitro case series.

    Science.gov (United States)

    Axe, Robert; Middleditch, Alex; Kelly, Fiona E; Batchelor, Tim J; Cook, Tim M

    2015-02-01

    Many airway management guidelines include the use of airway exchange catheters (AECs). There are reports, however, of harm from their use, from both malpositioning and in particular from the administration of oxygen via an AEC leading to barotrauma. We used an in vitro pig lung model to investigate the safety of administering oxygen at 4 different flow rates from a high-pressure source via 2 different AECs: a standard catheter and a soft-tipped catheter. Experiments were performed with the catheters positioned either above the carina or below it at the first point of resistance to advancement (hold-up). The experiments were then repeated to produce a series of 32 cases. With an AEC positioned above the carina, we did not observe macroscopic lung damage after the administration of oxygen. The administration of oxygen through an AEC positioned below the carina resulted in macroscopic barotrauma regardless of the rate of oxygen delivery. Increasing speed of oxygen flow led to faster and more extensive damage. Use of an "injector" at 2.5 or 4 bar led to instantaneous macroscopic lung damage and advancement of the AEC through the lung tissue. Our observations were the same when both types of AECs were used. Our results are consistent with reports of harm during the use of AECs and demonstrate the risk of administering oxygen through these devices when they are positioned below the carina. An indicator, ideally made on an AEC at the time of manufacture and designed to lie at the same level as the teeth, may be useful in preventing the insertion of that AEC beyond the level of the carina and improve the safety of using such devices.

  19. Distance Magic-Type and Distance Antimagic-Type Labelings of Graphs

    Science.gov (United States)

    Freyberg, Bryan J.

    Generally speaking, a distance magic-type labeling of a graph G of order n is a bijection l from the vertex set of the graph to the first n natural numbers or to the elements of a group of order n, with the property that the weight of each vertex is the same. The weight of a vertex x is defined as the sum (or appropriate group operation) of all the labels of vertices adjacent to x. If instead we require that all weights differ, then we refer to the labeling as a distance antimagic-type labeling. This idea can be generalized for directed graphs; the weight will take into consideration the direction of the arcs. In this manuscript, we provide new results for d-handicap labeling, a distance antimagic-type labeling, and introduce a new distance magic-type labeling called orientable Gamma-distance magic labeling. A d-handicap distance antimagic labeling (or just d-handicap labeling for short) of a graph G = ( V,E) of order n is a bijection l from V to the set {1,2,...,n} with induced weight function [special characters omitted]. such that l(xi) = i and the sequence of weights w(x 1),w(x2),...,w (xn) forms an arithmetic sequence with constant difference d at least 1. If a graph G admits a d-handicap labeling, we say G is a d-handicap graph. A d-handicap incomplete tournament, H(n,k,d ) is an incomplete tournament of n teams ranked with the first n natural numbers such that each team plays exactly k games and the strength of schedule of the ith ranked team is d more than the i + 1st ranked team. That is, strength of schedule increases arithmetically with strength of team. Constructing an H(n,k,d) is equivalent to finding a d-handicap labeling of a k-regular graph of order n.. In Chapter 2 we provide general constructions for every d for large classes of both n and k, providing breadfth and depth to the catalog of known H(n,k,d)'s. In Chapters 3 - 6, we introduce a new type of labeling called orientable Gamma-distance magic labeling. Let Gamma be an abelian group of order

  20. Distance-transitive graphs

    NARCIS (Netherlands)

    Cohen, A.M.; Beineke, L.W.; Wilson, R.J.; Cameron, P.J.

    2004-01-01

    In this chapter we investigate the classification of distance-transitive graphs: these are graphs whose automorphism groups are transitive on each of the sets of pairs of vertices at distance i, for i = 0, 1,.... We provide an introduction into the field. By use of the classification of finite

  1. New limits on the detection of a composition-dependent macroscopic force

    International Nuclear Information System (INIS)

    Boynton, P.; Aronson, S.

    1990-01-01

    We report here on a continuing experimental search for a macroscopic, composition dependent force coupling to ordinary matter. Within the phenomenological framework commonly employed -- a Yukawa representation of the interaction potential, and composition specified as some linear combination of baryon and lepton numbers -- the Index 3 experiment sets the most stringent upper limits yet on the interaction strength for coupling from B-2L to B-L, and for an interaction range from 200 m to 10 km. It is also the first null result to conflict with the marginal detection reported for the Index 1 experiment for all relevant values of the composition and range parameters

  2. Macroscopic effects in electromagnetically-induced transparency in a Doppler-broadened system

    International Nuclear Information System (INIS)

    Pei Li-Ya; Qu Yi-Zhi; Niu Jin-Yan; Wang Ru-Quan; Wu Ling-An; Fu Pan-Ming; Zuo Zhan-Chun

    2015-01-01

    We study the electromagnetically-induced transparency (EIT) in a Doppler-broadened cascaded three-level system. We decompose the susceptibility responsible for the EIT resonance into a linear and a nonlinear part, and the EIT resonance reflects mainly the characteristics of the nonlinear susceptibility. It is found that the macroscopic polarization interference effect plays a crucial role in determining the EIT resonance spectrum. To obtain a Doppler-free spectrum there must be polarization interference between atoms of different velocities. A dressed-state model, which analyzes the velocities at which the atoms are in resonance with the dressed states through Doppler frequency shifting, is employed to explain the results. (paper)

  3. Macroscopic damping model for zero degree energy distribution in ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Gao Chongshou; Wang Chengshing

    1993-01-01

    A macroscopic damping model is proposed to calculate the zero degree energy distribution in ultra-relativistic heavy ion collisions. The main features of the measured distributions are reproduced, good agreement is obtained in the middle energy region while overestimation results on the high energy side. The average energy loss coefficient of incident nucleons, varying in the reasonable region 0.2-0.6, depends on beam energy and target size

  4. Dynamic Model and Control of a Photovoltaic Generation System using Energetic Macroscopic Representation

    Science.gov (United States)

    Solano, Javier; Duarte, José; Vargas, Erwin; Cabrera, Jhon; Jácome, Andrés; Botero, Mónica; Rey, Juan

    2016-10-01

    This paper addresses the Energetic Macroscopic Representation EMR, the modelling and the control of photovoltaic panel PVP generation systems for simulation purposes. The model of the PVP considers the variations on irradiance and temperature. A maximum power point tracking MPPT algorithm is considered to control the power converter. A novel EMR is proposed to consider the dynamic model of the PVP with variations in the irradiance and the temperature. The EMR is evaluated through simulations of a PVP generation system.

  5. Making Distance Visible: Assembling Nearness in an Online Distance Learning Programme

    Science.gov (United States)

    Ross, Jen; Gallagher, Michael Sean; Macleod, Hamish

    2013-01-01

    Online distance learners are in a particularly complex relationship with the educational institutions they belong to (Bayne, Gallagher, & Lamb, 2012). For part-time distance students, arrivals and departures can be multiple and invisible as students take courses, take breaks, move into independent study phases of a programme, find work or…

  6. Steiner Distance in Graphs--A Survey

    OpenAIRE

    Mao, Yaping

    2017-01-01

    For a connected graph $G$ of order at least $2$ and $S\\subseteq V(G)$, the \\emph{Steiner distance} $d_G(S)$ among the vertices of $S$ is the minimum size among all connected subgraphs whose vertex sets contain $S$. In this paper, we summarize the known results on the Steiner distance parameters, including Steiner distance, Steiner diameter, Steiner center, Steiner median, Steiner interval, Steiner distance hereditary graph, Steiner distance stable graph, average Steiner distance, and Steiner ...

  7. Theoretical Principles of Distance Education.

    Science.gov (United States)

    Keegan, Desmond, Ed.

    This book contains the following papers examining the didactic, academic, analytic, philosophical, and technological underpinnings of distance education: "Introduction"; "Quality and Access in Distance Education: Theoretical Considerations" (D. Randy Garrison); "Theory of Transactional Distance" (Michael G. Moore);…

  8. THE DISTANCE TO M104

    Energy Technology Data Exchange (ETDEWEB)

    McQuinn, Kristen B. W. [University of Texas at Austin, McDonald Observatory, 2515 Speedway, Stop C1400 Austin, TX 78712 (United States); Skillman, Evan D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street, SE, University of Minnesota, Minneapolis, MN 55455 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 E. Hermans Road, Tucson, AZ 85756 (United States); Berg, Danielle [Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211 (United States); Kennicutt, Robert, E-mail: kmcquinn@astro.as.utexas.edu [Institute for Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom)

    2016-11-01

    M104 (NGC 4594; the Sombrero galaxy) is a nearby, well-studied elliptical galaxy included in scores of surveys focused on understanding the details of galaxy evolution. Despite the importance of observations of M104, a consensus distance has not yet been established. Here, we use newly obtained Hubble Space Telescope optical imaging to measure the distance to M104 based on the tip of the red giant branch (TRGB) method. Our measurement yields the distance to M104 to be 9.55 ± 0.13 ± 0.31 Mpc equivalent to a distance modulus of 29.90 ± 0.03 ± 0.07 mag. Our distance is an improvement over previous results as we use a well-calibrated, stable distance indicator, precision photometry in a optimally selected field of view, and a Bayesian maximum likelihood technique that reduces measurement uncertainties. The most discrepant previous results are due to Tully–Fisher method distances, which are likely inappropriate for M104 given its peculiar morphology and structure. Our results are part of a larger program to measure accurate distances to a sample of well-known spiral galaxies (including M51, M74, and M63) using the TRGB method.

  9. The Distance to M51

    Science.gov (United States)

    McQuinn, Kristen. B. W.; Skillman, Evan D.; Dolphin, Andrew E.; Berg, Danielle; Kennicutt, Robert

    2016-07-01

    Great investments of observing time have been dedicated to the study of nearby spiral galaxies with diverse goals ranging from understanding the star formation process to characterizing their dark matter distributions. Accurate distances are fundamental to interpreting observations of these galaxies, yet many of the best studied nearby galaxies have distances based on methods with relatively large uncertainties. We have started a program to derive accurate distances to these galaxies. Here we measure the distance to M51—the Whirlpool galaxy—from newly obtained Hubble Space Telescope optical imaging using the tip of the red giant branch method. We measure the distance modulus to be 8.58 ± 0.10 Mpc (statistical), corresponding to a distance modulus of 29.67 ± 0.02 mag. Our distance is an improvement over previous results as we use a well-calibrated, stable distance indicator, precision photometry in a optimally selected field of view, and a Bayesian Maximum Likelihood technique that reduces measurement uncertainties. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  10. Zero time tunneling: macroscopic experiments with virtual particles

    Directory of Open Access Journals (Sweden)

    Nimtz Günter

    2015-01-01

    Full Text Available Feynman introduced virtual particles in his diagrams as intermediate states of an interaction process. They represent necessary intermediate states between observable real states. Such virtual particles were introduced to describe the interaction process between an electron and a positron and for much more complicated interaction processes. Other candidates for virtual particles are evanescent modes in optics and in elastic fields. Evanescent modes have a purely imaginary wave number, they represent the mathematical analogy of the tunneling solutions of the Schrödinger equation. Evanescent modes exist in the forbidden frequency bands of a photonic lattice and in undersized wave guides, for instance. The most prominent example for the occurrence of evanescent modes is the frustrated total internal reflection (FTIR at double prisms. Evanescent modes and tunneling lie outside the bounds of the special theory of relativity. They can cause faster than light (FTL signal velocities. We present examples of the quantum mechanical behavior of evanescent photons and phonons at a macroscopic scale. The evanescent modes of photons are described by virtual particles as predicted by former QED calculations.

  11. Microscopic and macroscopic characterization of the charging effects in SiC/Si nanocrystals/SiC sandwiched structures

    International Nuclear Information System (INIS)

    Xu, Jie; Xu, Jun; Wang, Yuefei; Cao, Yunqing; Li, Wei; Yu, Linwei; Chen, Kunji

    2014-01-01

    Microscopic charge injection into the SiC/Si nanocrystals/SiC sandwiched structures through a biased conductive AFM tip is subsequently characterized by both electrostatic force microscopy and Kelvin probe force microscopy (KPFM). The charge injection and retention characteristics are found to be affected by not only the band offset at the Si nanocrystals/SiC interface but also the doping type of the Si substrate. On the other hand, capacitance–voltage (C–V) measurements investigate the macroscopic charging effect of the sandwiched structures with a thicker SiC capping layer, where the charges are injected from the Si substrates. The calculated macroscopic charging density is 3–4 times that of the microscopic one, and the possible reason is the underestimation of the microscopic charging density caused by the averaging effect and detection delay in the KPFM measurements. (paper)

  12. Are contemporary tourists consuming distance?

    DEFF Research Database (Denmark)

    Larsen, Gunvor Riber

    2012. Background The background for this research, which explores how tourists represent distance and whether or not distance can be said to be consumed by contemporary tourists, is the increasing leisure mobility of people. Travelling for the purpose of visiting friends and relatives is increasing...... of understanding mobility at a conceptual level, and distance matters to people's manifest mobility: how they travel and how far they travel are central elements of their movements. Therefore leisure mobility (indeed all mobility) is the activity of relating across distance, either through actual corporeal...... metric representation. These representations are the focus for this research. Research Aim and Questions The aim of this research is thus to explore how distance is being represented within the context of leisure mobility. Further the aim is to explore how or whether distance is being consumed...

  13. Terminology report respect distance. The Use of the term respect distance in Posiva and SKB

    International Nuclear Information System (INIS)

    Lampinen, H.

    2007-09-01

    The term respect distance is used in some key publications of the Finnish Nuclear Waste Management Company, Posiva, and the Swedish Nuclear Waste Management Company, SKB (Svensk Kaernbrenslehantering). Posiva and SKB researchers use the same terms in their reports, and it is acknowledged that the terms used by both companies are not used in the same way, though the differences are often subtle. This report is a literature study of the term 'respect distance' and the terms immediately associated to it. Vital terms related to the respect distance and issues concerning the use of scale concepts in Posiva and SKB are gathered in the end of report. Posiva's respect distances consider the seismic, hydrological and mechanical properties of the deterministic deformation zones as important issues that constitute a risk for longterm safety. These requirements for respect distances are an interpretation of STUK's YVL 8.4 Guide. At present, Posiva's criteria regarding respect distances follow the instructions given in the Host Rock Classification system (HRC), whereas the size of a deformation zone to which respect distances are applied vary from the regional to local major and minor. This and other criteria that are given for respect distances may, however, change in the near future as Posiva's Rock Suitability Criteria (RSC) programme proceeds. SKB's considerations of respect distances acknowledge that the hydraulic and mechanical aspects of a deformation zone have an effect on the respect distance. However, the seismic risk is considered to overshadow the other effects on a regional scale. The respect distance defined for a deformation zone is coupled with the size of a fracture where secondary slip could occur. In the safety assessment it is assumed that this fracture cuts a deposition hole location. In SKB the respect distance is determined for regional and local major deformation zones. The trace length of such a zone is defined as being ≥ 3 km. For deformation zones

  14. New Maximal Two-distance Sets

    DEFF Research Database (Denmark)

    Lisonek, Petr

    1996-01-01

    A two-distance set in E^d is a point set X inthe d-dimensional Euclidean spacesuch that the distances between distinct points in Xassume only two different non-zero values. Based on results from classical distance geometry, we developan algorithm to classify, for a given dimension, all maximal...... (largest possible)two-distance sets in E^d.Using this algorithm we have completed the full classificationfor all dimensions less than or equal to 7, andwe have found one set in E^8 whosemaximality follows from Blokhuis' upper bound on sizes of s-distance sets.While in the dimensions less than or equal to 6...

  15. Direct measurement of macroscopic electric fields produced by collective effects in electron-impact experiments

    International Nuclear Information System (INIS)

    Velotta, R.; Avaldi, L.; Camilloni, R.; Giammanco, F.; Spinelli, N.; Stefani, G.

    1996-01-01

    The macroscopic electric field resulting from the space charge produced in electron-impact experiments has been characterized by using secondary electrons of well-defined energy (e.g., Auger or autoionizing electrons) as a probe. It is shown that the measurement of the kinetic-energy shifts suffered by secondary electrons is a suitable tool for the analysis of the self-generated electric field in a low-density plasma. copyright 1996 The American Physical Society

  16. Macroscopic anatomy, irrigation and venous drainage of female reproductive apparatus of llama (Lama glama)

    OpenAIRE

    León M., Eric; Sato S., Alberto; Navarrete Z., Miluska; Cisneros S., Jannet

    2011-01-01

    The anatomical description of the reproductive tract of the female llama was studied in four animals. Macroscopically, the reproductive system is morphologically similar to the cow. However, the difference is the absence of intercornual ligament and cotyledons, and the presence of an intercornual septum, as in the alpaca. The distribution of the arteries and veins that irrigated and drained the blood to and from the pelvic cavity and reproductive system presented a vascular distribution almos...

  17. Observation of unusual irreversible/reversible effects in a macroscopic cylindrical hole drilled in superconducting Bi-Sr-Ca-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Yetis, H. [Department of Physics, Turgut Gulez Research Laboratory, Abant Izzet Baysal University, 14280 Bolu (Turkey)], E-mail: yetis_h@ibu.edu.tr; Kilic, A.; Kilic, K.; Altinkok, A.; Olutas, M. [Department of Physics, Turgut Gulez Research Laboratory, Abant Izzet Baysal University, 14280 Bolu (Turkey)

    2008-09-15

    Current-voltage (I-V) measurements were carried out for different current sweep rates (dI/dt) of transport current at zero magnetic field (H = 0) and H {ne} 0 in a polycrystalline sample of Bi{sub 1.7}Pb{sub 0.3}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (BSCCO) with a macroscopic cylindrical hole (CH) drilled. Similar measurements were also performed in the same BSCCO sample without CH for a comparison before drilling CH. For the same values of H, T, and dI/dt taken for both samples, it was observed that hysteresis effects appear in I-V curves upon cycling of transport current in upward and downward directions which contain the increasing and decreasing current values, respectively. However these effects which are seen in I-V curves of BSCCO sample with CH is more prominent than that of the BSCCO sample without CH. Further, the irreversibility effects in I-V curves of the BSCCO sample without CH disappears for H {ne} 0 exhibiting nearly a linear behaviour, whereas the hysteretic behaviour in I-V curves of the BSCCO sample with CH is still observed. This interesting behaviour could be evaluated that macroscopic cylindrical hole improves pinning properties of sample acting as a macroscopic flux pinning center for flux lines.

  18. A neutron diffraction study of macroscopically entangled proton states in the high temperature phase of the KHCO3 crystal at 340 K

    International Nuclear Information System (INIS)

    Fillaux, Francois; Cousson, Alain; Gutmann, Matthias J

    2008-01-01

    We utilize single-crystal neutron diffraction to study the C 2/m structure of potassium hydrogen carbonate (KHCO 3 ) and macroscopic quantum entanglement above the phase transition at T c = 318 K. Whereas split atom sites could be due to disorder, the diffraction pattern at 340 K evidences macroscopic proton states identical to those previously observed below T c by Fillaux et al (2006 J. Phys.: Condens. Matter 18 3229). We propose a theoretical framework for decoherence-free proton states and the calculated differential cross-section accords with observations. The structural transition occurs from one ordered P 2 1 /a structure (T c ) to another ordered C 2/m structure. There is no breakdown of the quantum regime. It is suggested that the crystal is a macroscopic quantum object which can be represented by a state vector. Raman spectroscopy and quasi-elastic neutron scattering suggest that the |C2/m> state vector is a superposition of the state vectors for two P 2 1 /a-like structures symmetric with respect to (a,c) planes

  19. Distance learning

    Directory of Open Access Journals (Sweden)

    Katarina Pucelj

    2006-12-01

    Full Text Available I would like to underline the role and importance of knowledge, which is acquired by individuals as a result of a learning process and experience. I have established that a form of learning, such as distance learning definitely contributes to a higher learning quality and leads to innovative, dynamic and knowledgebased society. Knowledge and skills enable individuals to cope with and manage changes, solve problems and also create new knowledge. Traditional learning practices face new circumstances, new and modern technologies appear, which enable quick and quality-oriented knowledge implementation. The centre of learning process at distance learning is to increase the quality of life of citizens, their competitiveness on the workforce market and ensure higher economic growth. Intellectual capital is the one, which represents the biggest capital of each society and knowledge is the key factor for succes of everybody, who are fully aware of this. Flexibility, openness and willingness of people to follow new IT solutions form suitable environment for developing and deciding to take up distance learning.

  20. Macroscopic Modeling of Transport Phenomena in Direct Methanol Fuel Cells

    DEFF Research Database (Denmark)

    Olesen, Anders Christian

    An increasing need for energy efficiency and high energy density has sparked a growing interest in direct methanol fuel cells for portable power applications. This type of fuel cell directly generates electricity from a fuel mixture consisting of methanol and water. Although this technology...... surpasses batteries in important areas, fundamental research is still required to improve durability and performance. Particularly the transport of methanol and water within the cell structure is difficult to study in-situ. A demand therefore exist for the fundamental development of mathematical models...... for studying their transport. In this PhD dissertation the macroscopic transport phenomena governing direct methanol fuel cell operation are analyzed, discussed and modeled using the two-fluid approach in the computational fluid dynamics framework of CFX 14. The overall objective of this work is to extend...

  1. Correlation between macroscopic fluorescence and protoporphyrin IX content in psoriasis and actinic keratosis following application of aminolevulinic acid.

    NARCIS (Netherlands)

    Smits, T.; Robles, C.A.; Erp, P.E.J. van; Kerkhof, P.C.M. van de; Gerritsen, M.J.P.

    2005-01-01

    In fluorescence diagnosis with 5-aminolevulinic acid (ALA)-induced porphyrins (FDAP), protoporphyrin IX (PpIX) accumulation can be macroscopically visualized. Interpretation of these data is still problematic because of the low reproducibility of the procedure and poor understanding of the

  2. Cloud Macroscopic Organization: Order Emerging from Randomness

    Science.gov (United States)

    Yuan, Tianle

    2011-01-01

    Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds, and that it follows a power-law distribution with exponent gamma close to 2. gamma is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also demonstrate symmetry between clear and cloudy skies in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random local interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. We also propose a concept of cloud statistic mechanics approach. This approach is fully complementary to deterministic models, and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.

  3. Fast Exact Euclidean Distance (FEED): A new class of adaptable distance transforms

    NARCIS (Netherlands)

    Schouten, Theo E.; van den Broek, Egon

    2014-01-01

    A new unique class of foldable distance transforms of digital images (DT) is introduced, baptized: Fast Exact Euclidean Distance (FEED) transforms. FEED class algorithms calculate the DT starting directly from the definition or rather its inverse. The principle of FEED class algorithms is

  4. Fast Exact Euclidean Distance (FEED) : A new class of adaptable distance transforms

    NARCIS (Netherlands)

    Schouten, Theo E.; van den Broek, Egon L.

    2014-01-01

    A new unique class of foldable distance transforms of digital images (DT) is introduced, baptized: Fast Exact Euclidean Distance (FEED) transforms. FEED class algorithms calculate the DT startingdirectly from the definition or rather its inverse. The principle of FEED class algorithms is introduced,

  5. Distance covariance for stochastic processes

    DEFF Research Database (Denmark)

    Matsui, Muneya; Mikosch, Thomas Valentin; Samorodnitsky, Gennady

    2017-01-01

    The distance covariance of two random vectors is a measure of their dependence. The empirical distance covariance and correlation can be used as statistical tools for testing whether two random vectors are independent. We propose an analog of the distance covariance for two stochastic processes...

  6. Managing Time, Workload and Costs in Distance Education: Findings from a Literature Review of "Distances et Médiations des Savoirs" (Formerly "Distances et Savoirs")

    Science.gov (United States)

    Moeglin, Pierre; Vidal, Martine

    2015-01-01

    The purpose of this review, spanning over 12 years of publication of "Distances et Médiations des Savoirs" ("DMS"), formerly "Distance et Savoirs" ("DMS") (2003-2014), is guided by the question why and how French-speaking researchers addressed the issues of time, workload and costs in distance learning, and…

  7. Critical Points in Distance Learning System

    Directory of Open Access Journals (Sweden)

    Airina Savickaitė

    2013-08-01

    Full Text Available Purpose – This article presents the results of distance learning system analysis, i.e. the critical elements of the distance learning system. The critical points of distance learning are a part of distance education online environment interactivity/community process model. The most important is the fact that the critical point is associated with distance learning participants. Design/methodology/approach – Comparative review of articles and analysis of distance learning module. Findings – A modern man is a lifelong learner and distance learning is a way to be a modern person. The focus on a learner and feedback is the most important thing of learning distance system. Also, attention should be paid to the lecture-appropriate knowledge and ability to convey information. Distance system adaptation is the way to improve the learner’s learning outcomes. Research limitations/implications – Different learning disciplines and learning methods may have different critical points. Practical implications – The information of analysis could be important for both lecturers and students, who studies distance education systems. There are familiar critical points which may deteriorate the quality of learning. Originality/value – The study sought to develop remote systems for applications in order to improve the quality of knowledge. Keywords: distance learning, process model, critical points. Research type: review of literature and general overview.

  8. Connecting long distance: semantic distance in analogical reasoning modulates frontopolar cortex activity.

    Science.gov (United States)

    Green, Adam E; Kraemer, David J M; Fugelsang, Jonathan A; Gray, Jeremy R; Dunbar, Kevin N

    2010-01-01

    Solving problems often requires seeing new connections between concepts or events that seemed unrelated at first. Innovative solutions of this kind depend on analogical reasoning, a relational reasoning process that involves mapping similarities between concepts. Brain-based evidence has implicated the frontal pole of the brain as important for analogical mapping. Separately, cognitive research has identified semantic distance as a key characteristic of the kind of analogical mapping that can support innovation (i.e., identifying similarities across greater semantic distance reveals connections that support more innovative solutions and models). However, the neural substrates of semantically distant analogical mapping are not well understood. Here, we used functional magnetic resonance imaging (fMRI) to measure brain activity during an analogical reasoning task, in which we parametrically varied the semantic distance between the items in the analogies. Semantic distance was derived quantitatively from latent semantic analysis. Across 23 participants, activity in an a priori region of interest (ROI) in left frontopolar cortex covaried parametrically with increasing semantic distance, even after removing effects of task difficulty. This ROI was centered on a functional peak that we previously associated with analogical mapping. To our knowledge, these data represent a first empirical characterization of how the brain mediates semantically distant analogical mapping.

  9. Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.N., E-mail: Julia.Wagner@kit.edu [KNMF, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hofmann, M. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), TU München, Lichtenbergstr. 1, 85747 Garching (Germany); Wimpory, R. [Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin Wannsee (Germany); Krempaszky, C. [Christian-Doppler-Labor für Werkstoffmechanik von Hochleistungslegierungen, TU München, Boltzmannstr. 15, 85747 Garching (Germany); Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, TU München, Boltzmannstr. 15, 85747 Garching (Germany); Stockinger, M. [Böhler Schmiedetechnik GmbH and Co KG, Mariazeller Straße 25, 8605 Kapfenberg (Austria)

    2014-11-17

    Knowledge of the macroscopic residual stresses in components of complex high performance alloys is crucial when it comes to considering the safety and manufacturing aspects of components. Diffraction experiments are one of the key methods for studying residual stresses. However a component of the residual strain determined by diffraction experiments, known as microstrain or intergranular residual strain, occurs over the length scale of the grains and thus plays only a minor role for the life time of such components. For the reliable determination of macroscopic strains (with the minimum influence of these intergranular residual strains), the ISO standard recommends the use of particular Bragg reflections. Here we compare the build-up of intergranular strain of two different precipitation hardened IN 718 (INCONEL 718) samples, with identical chemical composition. Since intergranular strains are also affected by temperature, results from room temperature measurement are compared to results at T=550 °C. It turned out that microstructural parameters, such as grain size or type of precipitates, have a larger effect on the intergranular strain evolution than the influence of temperature at the measurement temperature of T=550 °C. The results also show that the choice of Bragg reflections for the diffractometric residual stress analysis is dependent not only on its chemical composition, but also on the microstructure of the sample. In addition diffraction elastic constants (DECs) for all measured Bragg reflections are given.

  10. Macroscopic and histological characteristics of retained placenta: A prospectively collected case-control study.

    Science.gov (United States)

    Endler, Margit; Saltvedt, Sissel; Papadogiannakis, Nikos

    2016-05-01

    Retained placenta is a potentially fatal obstetric disorder due to postpartum hemorrhage, its pathophysiology is however unknown. We aimed to assess if retained placenta was associated with increased macroscopic and histological signs of placental maternal underperfusion, a pattern otherwise seen in preeclampsia and other disorders of defective placentation. This was a case-control study of retained (n = 49) and non-retained (n = 47) placentas, collected from full-term singleton and otherwise healthy pregnancies, carried out at a tertiary level obstetric department. Macroscopic and histological analysis was performed. Signs of maternal placental underperfusion and signs of placental inflammation, fetal vascular thrombo-occlusive disease and increased placental attachment were recorded in a primary and secondary analysis respectively. Variables were compared groupwise using unconditional logistic regression or comparison of median or mean values. Compared to non-retained placentas retained placentas had a significantly smaller surface area (p = 0.05), were more oblong in shape (OR 5.24 95% CI:1.34-20.21) and showed overall more signs of maternal underperfusion (OR 2.52 95% CI: 1.07-5.87). There was no significant difference in signs of placental inflammation, fetal vascular thrombo-occlusive disease or placenta accreta but basal plate myometrial fibers were more common among retained placentas. In regard to shape, surface area and histological signs of maternal placental underperfusion, retained placentas showed a histological pattern similar to that seen in preeclamptic placentas. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Equivalence of massive propagator distance and mathematical distance on graphs

    International Nuclear Information System (INIS)

    Filk, T.

    1992-01-01

    It is shown in this paper that the assignment of distance according to the massive propagator method and according to the mathematical definition (length of minimal path) on arbitrary graphs with a bound on the degree leads to equivalent large scale properties of the graph. Especially, the internal scaling dimension is the same for both definitions. This result holds for any fixed, non-vanishing mass, so that a really inequivalent definition of distance requires the limit m → 0

  12. Macroscopic weak superconductivity of an NXN Josephson junction array below the Kosterlitz-Thouless transition

    International Nuclear Information System (INIS)

    Shenoy, S.R.; Karlsruhe Univ.

    1983-07-01

    A two-dimensional NXN array of coupled Josephson junctions, each of size tau 0 and Josephson length lambdasub(JO)>>tau 0 , is shown to exhibit macroscopic weak superconductivity. The Josephson phase coherence here extends across the array, vanishing discontinuously at the Kosterlitz-Thouless transition temperature. The transverse size Ntau 0 must be smaller than a few times the effective Josephson screening length lambdasub(J)sup(eff) proportional to lambdasub(JO), for a sharp transition to be seen. (author)

  13. Towards an Einstein-Podolsky-Rosen paradox between two macroscopic atomic ensembles at room temperature

    OpenAIRE

    He, Q Y; Reid, M D

    2013-01-01

    Experiments have reported the entanglement of two spatially separated macroscopic atomic ensembles at room temperature (Krauter et al 2011 Phys. Rev. Lett. 107 080503; Julsgaard et al 2001 Nature 413 400). We show how an Einstein-Podolsky-Rosen (EPR) paradox is realizable with this experiment. Our proposed test involves violation of an inferred Heisenberg uncertainty principle, which is a sufficient condition for an EPR paradox. This is a stronger test of nonlocality than entanglement. Our pr...

  14. Non-Poissonian photon statistics from macroscopic photon cutting materials.

    Science.gov (United States)

    de Jong, Mathijs; Meijerink, Andries; Rabouw, Freddy T

    2017-05-24

    In optical materials energy is usually extracted only from the lowest excited state, resulting in fundamental energy-efficiency limits such as the Shockley-Queisser limit for single-junction solar cells. Photon-cutting materials provide a way around such limits by absorbing high-energy photons and 'cutting' them into multiple low-energy excitations that can subsequently be extracted. The occurrence of photon cutting or quantum cutting has been demonstrated in a variety of materials, including semiconductor quantum dots, lanthanides and organic dyes. Here we show that photon cutting results in bunched photon emission on the timescale of the excited-state lifetime, even when observing a macroscopic number of optical centres. Our theoretical derivation matches well with experimental data on NaLaF 4 :Pr 3+ , a material that can cut deep-ultraviolet photons into two visible photons. This signature of photon cutting can be used to identify and characterize new photon-cutting materials unambiguously.

  15. The N-salicylidene aniline mesogen: Microscopic and macroscopic properties

    International Nuclear Information System (INIS)

    Nesrullazade, A.

    2004-01-01

    The vast majority of compounds exhibiting Iiquid crystalline phases may be regarded as having a rigid molecular central group with one or two flexible terminal alkyl or alkyloxy chains. The N-saIicyIidene anilines are very interesting and important materials both from fundamental and application points of view. These materials are on the one hand the ligands used to obtain metal containing complexes and on the other hand they are materials having the thermotropic mesomorphism. In this work we present investigations of microscopic and macroscopic properties of the 4-(Octyloxy)-N-(4-hexylphenyl)-2-hydrobenzaIimine (8SA) compound which was synthesized by our group. The 8SA compound shows the smectic C and nematic mesophases. These mesophases are enantiotropic and display specific confocal and schlieren textures, respectively. Thermotropic and thermodynamical properties of the straight and reverse phase transitions between smectic C and nematic mesophases and between nematic mesophase and isotropic liquid have been investigated

  16. Language distance and tree reconstruction

    International Nuclear Information System (INIS)

    Petroni, Filippo; Serva, Maurizio

    2008-01-01

    Languages evolve over time according to a process in which reproduction, mutation and extinction are all possible. This is very similar to haploid evolution for asexual organisms and for the mitochondrial DNA of complex ones. Exploiting this similarity, it is possible, in principle, to verify hypotheses concerning the relationship among languages and to reconstruct their family tree. The key point is the definition of the distances among pairs of languages in analogy with the genetic distances among pairs of organisms. Distances can be evaluated by comparing grammar and/or vocabulary, but while it is difficult, if not impossible, to quantify grammar distance, it is possible to measure a distance from vocabulary differences. The method used by glottochronology computes distances from the percentage of shared 'cognates', which are words with a common historical origin. The weak point of this method is that subjective judgment plays a significant role. Here we define the distance of two languages by considering a renormalized edit distance among words with the same meaning and averaging over the two hundred words contained in a Swadesh list. In our approach the vocabulary of a language is the analogue of DNA for organisms. The advantage is that we avoid subjectivity and, furthermore, reproducibility of results is guaranteed. We apply our method to the Indo-European and the Austronesian groups, considering, in both cases, fifty different languages. The two trees obtained are, in many respects, similar to those found by glottochronologists, with some important differences as regards the positions of a few languages. In order to support these different results we separately analyze the structure of the distances of these languages with respect to all the others

  17. Language distance and tree reconstruction

    Science.gov (United States)

    Petroni, Filippo; Serva, Maurizio

    2008-08-01

    Languages evolve over time according to a process in which reproduction, mutation and extinction are all possible. This is very similar to haploid evolution for asexual organisms and for the mitochondrial DNA of complex ones. Exploiting this similarity, it is possible, in principle, to verify hypotheses concerning the relationship among languages and to reconstruct their family tree. The key point is the definition of the distances among pairs of languages in analogy with the genetic distances among pairs of organisms. Distances can be evaluated by comparing grammar and/or vocabulary, but while it is difficult, if not impossible, to quantify grammar distance, it is possible to measure a distance from vocabulary differences. The method used by glottochronology computes distances from the percentage of shared 'cognates', which are words with a common historical origin. The weak point of this method is that subjective judgment plays a significant role. Here we define the distance of two languages by considering a renormalized edit distance among words with the same meaning and averaging over the two hundred words contained in a Swadesh list. In our approach the vocabulary of a language is the analogue of DNA for organisms. The advantage is that we avoid subjectivity and, furthermore, reproducibility of results is guaranteed. We apply our method to the Indo-European and the Austronesian groups, considering, in both cases, fifty different languages. The two trees obtained are, in many respects, similar to those found by glottochronologists, with some important differences as regards the positions of a few languages. In order to support these different results we separately analyze the structure of the distances of these languages with respect to all the others.

  18. Interactive Distance Learning in Connecticut.

    Science.gov (United States)

    Pietras, Jesse John; Murphy, Robert J.

    This paper provides an overview of distance learning activities in Connecticut and addresses the feasibility of such activities. Distance education programs have evolved from the one dimensional electronic mail systems to the use of sophisticated digital fiber networks. The Middlesex Distance Learning Consortium has developed a long-range plan to…

  19. Influence of functionalized silicones on hair fiber-fiber interactions and on the relationship with the macroscopic behavior of hair assembly.

    Science.gov (United States)

    Dussaud, Anne; Fieschi-Corso, Lara

    2009-01-01

    It is well established that silicones alter hair surface properties and that silicones have a significant impact on the macroscopic behavior of hair assembly, such as visual appearance, combing performance and manageability of the hair. In order to fine-tune the chemistry of functionlized silicones for specific consumer benefits and hair types, we investigated the influence of silicones on hair fiber-fiber interactions and their correlation to hair volume. The incline plane fiber loop method, implemented with a high-precision motorized rotary stage, was used to quantify the fiber-fiber interactions. Low load static friction was studied as a function of polymer molecular weight, dose and chemical architecture. This information was related to the macroscopic behavior of hair assembly, using virgin curly hair in high humidity.

  20. Macroscopic lattice Boltzmann model for heat and moisture transfer process with phase transformation in unsaturated porous media during freezing process

    Directory of Open Access Journals (Sweden)

    Song Wenyu

    2017-06-01

    Full Text Available In the current study, a macroscopic lattice Boltzmann model for simulating the heat and moisture transport phenomenon in unsaturated porous media during the freezing process was proposed. The proposed model adopted percolation threshold to reproduce the extra resistance in frozen fringe during the freezing process. The freezing process in Kanagawa sandy loam soil was demonstrated by the proposed model. The numerical result showed good agreement with the experimental result. The proposed model also offered higher computational efficiency and better agreement with the experimental result than the existing numerical models. Lattice Boltzmann method is suitable for simulating complex heat and mass transfer process in porous media at macroscopic scale under proper dimensionless criterion, which makes it a potentially powerful tool for engineering application.

  1. Motivation in Distance Leaming

    Directory of Open Access Journals (Sweden)

    Daniela Brečko

    1996-12-01

    Full Text Available It is estimated that motivation is one of the most important psychological functions making it possible for people to leam even in conditions that do not meet their needs. In distance learning, a form of autonomous learning, motivation is of outmost importance. When adopting this method in learning an individual has to stimulate himself and take learning decisions on his or her own. These specific characteristics of distance learning should be taken into account. This all different factors maintaining the motivation of partici­pants in distance learning are to be included. Moreover, motivation in distance learning can be stimulated with specific learning materials, clear instructions and guide-lines, an efficient feed back, personal contact between tutors and parti­cipants, stimulating learning letters, telephone calls, encouraging letters and through maintaining a positive relationship between tutor and participant.

  2. Machine learning enhanced optical distance sensor

    Science.gov (United States)

    Amin, M. Junaid; Riza, N. A.

    2018-01-01

    Presented for the first time is a machine learning enhanced optical distance sensor. The distance sensor is based on our previously demonstrated distance measurement technique that uses an Electronically Controlled Variable Focus Lens (ECVFL) with a laser source to illuminate a target plane with a controlled optical beam spot. This spot with varying spot sizes is viewed by an off-axis camera and the spot size data is processed to compute the distance. In particular, proposed and demonstrated in this paper is the use of a regularized polynomial regression based supervised machine learning algorithm to enhance the accuracy of the operational sensor. The algorithm uses the acquired features and corresponding labels that are the actual target distance values to train a machine learning model. The optimized training model is trained over a 1000 mm (or 1 m) experimental target distance range. Using the machine learning algorithm produces a training set and testing set distance measurement errors of learning. Applications for the proposed sensor include industrial scenario distance sensing where target material specific training models can be generated to realize low <1% measurement error distance measurements.

  3. General quantitative analysis of stress partitioning and boundary conditions in undrained biphasic porous media via a purely macroscopic and purely variational approach

    Science.gov (United States)

    Serpieri, Roberto; Travascio, Francesco

    2016-03-01

    In poroelasticity, the effective stress law relates the external stress applied to the medium to the macroscopic strain of the solid phase and the interstitial pressure of the fluid saturating the mixture. Such relationship has been formerly introduced by Terzaghi in form of a principle. To date, no poroelastic theory is capable of recovering a stress partitioning law in agreement with Terzaghi's postulated one in the absence of ad hoc constitutive assumptions on the medium. We recently proposed a variational macroscopic continuum description of two-phase poroelasticity to derive a general biphasic formulation at finite deformations, termed variational macroscopic theory of porous media (VMTPM). Such approach proceeds from the inclusion of the intrinsic volumetric strain among the kinematic descriptors aside to macroscopic displacements, and as a variational theory, uses the Hamilton least-action principle as the unique primitive concept of mechanics invoked to derive momentum balance equations. In a previous related work it was shown that, for the subclass of undrained problems, VMTPM predicts that stress is partitioned in the two phases in strict compliance with Terzaghi's law, irrespective of the microstructural and constitutive features of a given medium. In the present contribution, we further develop the linearized framework of VMTPM to arrive at a general operative formula that allows the quantitative determination of stress partitioning in a jacketed test over a generic isotropic biphasic specimen. This formula is quantitative and general, in that it relates the partial phase stresses to the externally applied stress as function of partitioning coefficients that are all derived by strictly following a purely variational and purely macroscopic approach, and in the absence of any specific hypothesis on the microstructural or constitutive features of a given medium. To achieve this result, the stiffness coefficients of the theory are derived by using

  4. Quantum teleportation from light beams to vibrational states of a macroscopic diamond

    Science.gov (United States)

    Hou, P.-Y.; Huang, Y.-Y.; Yuan, X.-X.; Chang, X.-Y.; Zu, C.; He, L.; Duan, L.-M.

    2016-01-01

    With the recent development of optomechanics, the vibration in solids, involving collective motion of trillions of atoms, gradually enters into the realm of quantum control. Here, building on the recent remarkable progress in optical control of motional states of diamonds, we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. Through quantum process tomography, we demonstrate average teleportation fidelity (90.6±1.0)%, clearly exceeding the classical limit of 2/3. The experiment pushes the target of quantum teleportation to the biggest object so far, with interesting implications for optomechanical quantum control and quantum information science. PMID:27240553

  5. Experimental study of macroscopic quantum tunnelling in Bi2212 intrinsic Josephson junctions

    International Nuclear Information System (INIS)

    Matsumoto, Tetsuro; Kashiwaya, Hiromi; Shibata, Hajime; Kashiwaya, Satoshi; Kawabata, Shiro; Eisaki, Hiroshi; Yoshida, Yoshiyuki; Tanaka, Yukio

    2007-01-01

    The quantum dynamics of Bi 2 Sr 2 CaCu 2 O 8+δ intrinsic Josephson junctions (IJJs) is studied based on escape rate measurements. The saturations observed in the escape temperature and in the width of the switching current below 0.5 K (= T * ) indicate the transition of the switching mechanism from thermal activation to macroscopic quantum tunnelling. It is shown that the switching properties are consistently explained in terms of the underdamped Josephson junction with a quality factor of 70 ± 20 in spite of possible damping due to the nodal quasiparticles of d-wave superconductivity. The present result gives the upper limit of the damping of IJJs

  6. Long-distance calls in Neotropical primates

    Directory of Open Access Journals (Sweden)

    Oliveira Dilmar A.G.

    2004-01-01

    Full Text Available Long-distance calls are widespread among primates. Several studies concentrate on such calls in just one or in few species, while few studies have treated more general trends within the order. The common features that usually characterize these vocalizations are related to long-distance propagation of sounds. The proposed functions of primate long-distance calls can be divided into extragroup and intragroup ones. Extragroup functions relate to mate defense, mate attraction or resource defense, while intragroup functions involve group coordination or alarm. Among Neotropical primates, several species perform long-distance calls that seem more related to intragroup coordination, markedly in atelines. Callitrichids present long-distance calls that are employed both in intragroup coordination and intergroup contests or spacing. Examples of extragroup directed long-distance calls are the duets of titi monkeys and the roars and barks of howler monkeys. Considerable complexity and gradation exist in the long-distance call repertoires of some Neotropical primates, and female long-distance calls are probably more important in non-duetting species than usually thought. Future research must focus on larger trends in the evolution of primate long-distance calls, including the phylogeny of calling repertoires and the relationships between form and function in these signals.

  7. Robustness of Distance-to-Default

    DEFF Research Database (Denmark)

    Jessen, Cathrine; Lando, David

    2013-01-01

    Distance-to-default is a remarkably robust measure for ranking firms according to their risk of default. The ranking seems to work despite the fact that the Merton model from which the measure is derived produces default probabilities that are far too small when applied to real data. We use...... simulations to investigate the robustness of the distance-to-default measure to different model specifications. Overall we find distance-to-default to be robust to a number of deviations from the simple Merton model that involve different asset value dynamics and different default triggering mechanisms....... A notable exception is a model with stochastic volatility of assets. In this case both the ranking of firms and the estimated default probabilities using distance-to-default perform significantly worse. We therefore propose a volatility adjustment of the distance-to-default measure, that significantly...

  8. Method for accounting for macroscopic heterogeneities in reactor material balance generation in fuel cycle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bagdatlioglu, Cem, E-mail: cemb@utexas.edu; Schneider, Erich

    2016-06-15

    Highlights: • Describes addition of spatially dependent power sharing to a previous methodology. • The methodology is used for calculating the input and output isotopics and burnup. • Generalizes to simulate reactors with strong spatial and flux heterogeneities. • Presents cases where the old approach would not have been sufficient. - Abstract: This paper describes the addition of spatially dependent power sharing to a methodology used for calculating the input and output isotopics and burnup of nuclear reactors within a nuclear fuel cycle simulator. Neutron balance and depletion calculations are carried out using pre-calculated fluence-based libraries. These libraries track the transmutation and neutron economy evolution of unit masses of nuclides available in input fuel. The work presented in the paper generalizes the method to simulate reactors that contain more than one type of fuel as well as strong spatial and flux heterogeneities, for instance breeders with a driver–blanket configuration. To achieve this, spatial flux calculations are used to determine the fluence-dependent relative average fluxes inside macroscopic spatial regions. These fluxes are then used to determine the average power of macroscopic spatial regions as well as to more accurately calculate region-specific transmutation rates. The paper presents several cases where the fluence based approach alone would not have been sufficient to determine results.

  9. Distance Education in Technological Age

    Directory of Open Access Journals (Sweden)

    R .C. SHARMA

    2005-04-01

    Full Text Available Distance Education in Technological AgeRomesh Verma (Editor, New Delhi: Anmol Publications, 2005, ISBN 81-261-2210-2, pp. 419 Reviewed by R C SHARMARegional DirectorIndira Gandhi National Open University-INDIA The advancements in information and communication technologies have brought significant changes in the way the open and distance learning are provided to the learners. The impact of such changes is quite visible in both developed and developing countries. Switching over to online mode, joining hands with private initiatives and making a presence in foreign waters, are some of the hallmarks of the open and distance education (ODE institutions in developing countries. The compilation of twenty six essays on themes as applicable to ODE has resulted in the book, “Distance Education in Technological Age”. These essays follow a progressive style of narration, starting from describing conceptual framework of distance education, how the distance education was emerged on the global scene and in India, and then goes on to discuss emergence of online distance education and research aspects in ODE. The initial four chapters provide a detailed account of historical development and growth of distance education in India and State Open University and National Open University Model in India . Student support services are pivot to any distance education and much of its success depends on how well the support services are provided. These are discussed from national and international perspective. The issues of collaborative learning, learning on demand, life long learning, learning-unlearning and re-learning model and strategic alliances have also given due space by the authors. An assortment of technologies like communication technology, domestic technology, information technology, mass media and entertainment technology, media technology and educational technology give an idea of how these technologies are being adopted in the open universities. The study

  10. Improved Iris Recognition through Fusion of Hamming Distance and Fragile Bit Distance.

    Science.gov (United States)

    Hollingsworth, Karen P; Bowyer, Kevin W; Flynn, Patrick J

    2011-12-01

    The most common iris biometric algorithm represents the texture of an iris using a binary iris code. Not all bits in an iris code are equally consistent. A bit is deemed fragile if its value changes across iris codes created from different images of the same iris. Previous research has shown that iris recognition performance can be improved by masking these fragile bits. Rather than ignoring fragile bits completely, we consider what beneficial information can be obtained from the fragile bits. We find that the locations of fragile bits tend to be consistent across different iris codes of the same eye. We present a metric, called the fragile bit distance, which quantitatively measures the coincidence of the fragile bit patterns in two iris codes. We find that score fusion of fragile bit distance and Hamming distance works better for recognition than Hamming distance alone. To our knowledge, this is the first and only work to use the coincidence of fragile bit locations to improve the accuracy of matches.

  11. Partial distance correlation with methods for dissimilarities

    OpenAIRE

    Székely, Gábor J.; Rizzo, Maria L.

    2014-01-01

    Distance covariance and distance correlation are scalar coefficients that characterize independence of random vectors in arbitrary dimension. Properties, extensions, and applications of distance correlation have been discussed in the recent literature, but the problem of defining the partial distance correlation has remained an open question of considerable interest. The problem of partial distance correlation is more complex than partial correlation partly because the squared distance covari...

  12. Making Distance Visible: Assembling Nearness in an Online Distance Learning Programme

    Directory of Open Access Journals (Sweden)

    Jen Ross

    2013-09-01

    Full Text Available Online distance learners are in a particularly complex relationship with the educational institutions they belong to (Bayne, Gallagher, & Lamb, 2012. For part-time distance students, arrivals and departures can be multiple and invisible as students take courses, take breaks, move into independent study phases of a programme, find work or family commitments overtaking their study time, experience personal upheaval or loss, and find alignments between their professional and academic work. These comings and goings indicate a fluid and temporary assemblage of engagement, not a permanent or stable state of either “presence” or “distance”. This paper draws from interview data from the “New Geographies of Learning” project, a research project exploring the notions of space and institution for the MSc in Digital Education at the University of Edinburgh, and from literature on distance learning and online community. The concept of nearness emerged from the data analyzing the comings and goings of students on a fully online programme. It proposes that “nearness” to a distance programme is a temporary assemblage of people, circumstances, and technologies. This state is difficult to establish and impossible to sustain in an uninterrupted way over the long period of time that many are engaged in part-time study. Interruptions and subsequent returns should therefore be seen as normal in the practice of studying as an online distance learner, and teachers and institutions should work to help students develop resilience in negotiating various states of nearness. Four strategies for increasing this resilience are proposed: recognising nearness as effortful; identifying affinities; valuing perspective shifts; and designing openings.

  13. Adsorption and diffusion of dilute gases in microporous graphite pellets in relation to their macroscopic structure

    International Nuclear Information System (INIS)

    Savvakis, C.; Tsimillis, K.; Petropoulos, J.H.

    1982-01-01

    The adsorption and gas-phase or surface diffusion properties of a series of microporous pellets made by the compaction of very fine graphite powder are reported. The overall degree of compaction of the powder was very nearly the same in all cases, but the mode of compaction was varied. The resulting variation in the macroscopic structural inhomogeneity of the pellets (examined in some detail in a parallel study) has been shown to affect both adsorption and diffusion properties. The effect on adsorption properties was modest but definite and can be accounted for by the dependence of the extent of adsorption on pore size. On the other hand, the experimental gas-phase and surface diffusion coefficients were strongly dependent on macroscopic structure. The dependence of the surface diffusion coefficient was particularly marked and is of special interest: such effects have not, so far, been taken into account in interpretations of experimental data, although they can be predicted theoretically. Previous analyses of the structure dependence of experimental gas-phase and surface diffusion coefficients are thus subject to revision in the light of the present conclusions. (author)

  14. Macroscopic and microscopic effects of gamma radiation on the shallot onions, Allium cepa var. aggregatum

    International Nuclear Information System (INIS)

    Medina, V.F.O.

    1995-01-01

    The document is a study on the relationship between irradiation dose and the macroscopic and microscopic parameters and chromosomal aberrations in the onions. The data were analyzed using analysis of variance or F-test to determine significant differences among treatments as affected by does of radiation followed by Duncan's Multiple Range Test (DMRT). LSD test was also used in comparing means when the F-ratio was significant. 23 refs.; 19 figs.; tabs

  15. Distance labeling schemes for trees

    DEFF Research Database (Denmark)

    Alstrup, Stephen; Gørtz, Inge Li; Bistrup Halvorsen, Esben

    2016-01-01

    We consider distance labeling schemes for trees: given a tree with n nodes, label the nodes with binary strings such that, given the labels of any two nodes, one can determine, by looking only at the labels, the distance in the tree between the two nodes. A lower bound by Gavoille et al. [Gavoille...... variants such as, for example, small distances in trees [Alstrup et al., SODA, 2003]. We improve the known upper and lower bounds of exact distance labeling by showing that 1/4 log2(n) bits are needed and that 1/2 log2(n) bits are sufficient. We also give (1 + ε)-stretch labeling schemes using Theta...

  16. A Possible Link Between Macroscopic Wear and Temperature Dependent Friction Behaviors of MoS2 Coatings

    Science.gov (United States)

    2008-09-01

    measured during operation without breaking the gas environment. For this study, coatings were deposited on 304 stainless steel spheres and rectangular...activated behavior in macroscopic tribology is reserved for systems with stable interfaces and ultra-low wear, and athermal behavior is characteristic to...efforts to measure and under- stand tribological behavior at cryogenic temperatures; to date, results of these efforts show either no trend or con- flicting

  17. Connecting grain-scale physics to macroscopic granular flow behavior using discrete contact-dynamics simulations, centrifuge experiments, and continuum modeling

    Science.gov (United States)

    Reitz, Meredith; Stark, Colin; Hung, Chi-Yao; Smith, Breannan; Grinspin, Eitan; Capart, Herve; Li, Liming; Crone, Timothy; Hsu, Leslie; Ling, Hoe

    2014-05-01

    A complete theoretical understanding of geophysical granular flow is essential to the reliable assessment of landslide and debris flow hazard and for the design of mitigation strategies, but several key challenges remain. Perhaps the most basic is a general treatment of the processes of internal energy dissipation, which dictate the runout velocity and the shape and scale of the affected area. Currently, dissipation is best described by macroscopic, empirical friction coefficients only indirectly related to the grain-scale physics. Another challenge is describing the forces exerted at the boundaries of the flow, which dictate the entrainment of further debris and the erosion of cohesive surfaces. While the granular effects on these boundary forces have been shown to be large compared to predictions from continuum approximations, the link between granular effects and erosion or entrainment rates has not been settled. Here we present preliminary results of a multi-disciplinary study aimed at improving our understanding of granular flow energy dissipation and boundary forces, through an effort to connect grain-scale physics to macroscopic behaviors. Insights into grain-scale force distributions and energy dissipation mechanisms are derived from discrete contact-dynamics simulations. Macroscopic erosion and flow behaviors are documented from a series of granular flow experiments, in which a rotating drum half-filled with grains is placed within a centrifuge payload, in order to drive effective gravity levels up to ~100g and approach the forces present in natural systems. A continuum equation is used to characterize the flowing layer depth and velocity resulting from the force balance between the down-slope pull of gravity and the friction at the walls. In this presentation we will focus on the effect of granular-specific physics such as force chain networks and grain-grain collisions, derived from the contact dynamics simulations. We will describe our efforts to

  18. Tracking frequency laser distance gauge

    International Nuclear Information System (INIS)

    Phillips, J.D.; Reasenberg, R.D.

    2005-01-01

    Advanced astronomical missions with greatly enhanced resolution and physics missions of unprecedented accuracy will require laser distance gauges of substantially improved performance. We describe a laser gauge, based on Pound-Drever-Hall locking, in which the optical frequency is adjusted to maintain an interferometer's null condition. This technique has been demonstrated with pm performance. Automatic fringe hopping allows it to track arbitrary distance changes. The instrument is intrinsically free of the nm-scale cyclic bias present in traditional (heterodyne) high-precision laser gauges. The output is a radio frequency, readily measured to sufficient accuracy. The laser gauge has operated in a resonant cavity, which improves precision, can suppress the effects of misalignments, and makes possible precise automatic alignment. The measurement of absolute distance requires little or no additional hardware, and has also been demonstrated. The proof-of-concept version, based on a stabilized HeNe laser and operating on a 0.5 m path, has achieved 10 pm precision with 0.1 s integration time, and 0.1 mm absolute distance accuracy. This version has also followed substantial distance changes as fast as 16 mm/s. We show that, if the precision in optical frequency is a fixed fraction of the linewidth, both incremental and absolute distance precision are independent of the distance measured. We discuss systematic error sources, and present plans for a new version of the gauge based on semiconductor lasers and fiber-coupled components

  19. ADULT LEARNERS IN DISTANCE HIGHER EDUCATION

    Directory of Open Access Journals (Sweden)

    NORICA-FELICIA BUCUR

    2012-05-01

    Full Text Available This paper attempts at identifying the main features that characterize distance higher education and adult education, respectively, in order to be able to establish to what extent adult learners can fit in distance higher education programs. The historical background of distance learning education, the factors that influence adult learners, and distance learning’s key objectives, effects, issues, advantages, and disadvantages are to be briefly investigated in order to reach the purpose of this paper. Recent developments in Information Technology have led to a new approach to teaching and learning, especially as far as adult learning and distance learning are concerned. Thus, this study will also focus on the consequences of using technology for course design, delivery, and the perception of adult learners participating in distance learning.

  20. Distance and Cable Length Measurement System

    Science.gov (United States)

    Hernández, Sergio Elias; Acosta, Leopoldo; Toledo, Jonay

    2009-01-01

    A simple, economic and successful design for distance and cable length detection is presented. The measurement system is based on the continuous repetition of a pulse that endlessly travels along the distance to be detected. There is a pulse repeater at both ends of the distance or cable to be measured. The endless repetition of the pulse generates a frequency that varies almost inversely with the distance to be measured. The resolution and distance or cable length range could be adjusted by varying the repetition time delay introduced at both ends and the measurement time. With this design a distance can be measured with centimeter resolution using electronic system with microsecond resolution, simplifying classical time of flight designs which require electronics with picosecond resolution. This design was also applied to position measurement. PMID:22303169

  1. Distance Education in Entwicklungslandern.

    Science.gov (United States)

    German Foundation for International Development, Bonn (West Germany).

    Seminar and conference reports and working papers on distance education of adults, which reflect the experiences of many countries, are presented. Contents include the draft report of the 1979 International Seminar on Distance Education held in Addis Ababa, Ethiopia, which was jointly sponsored by the United Nations Economic Commission for Africa…

  2. Distance sampling methods and applications

    CERN Document Server

    Buckland, S T; Marques, T A; Oedekoven, C S

    2015-01-01

    In this book, the authors cover the basic methods and advances within distance sampling that are most valuable to practitioners and in ecology more broadly. This is the fourth book dedicated to distance sampling. In the decade since the last book published, there have been a number of new developments. The intervening years have also shown which advances are of most use. This self-contained book covers topics from the previous publications, while also including recent developments in method, software and application. Distance sampling refers to a suite of methods, including line and point transect sampling, in which animal density or abundance is estimated from a sample of distances to detected individuals. The book illustrates these methods through case studies; data sets and computer code are supplied to readers through the book’s accompanying website.  Some of the case studies use the software Distance, while others use R code. The book is in three parts.  The first part addresses basic methods, the ...

  3. Polynomial parameterized representation of macroscopic cross section for PWR reactor

    International Nuclear Information System (INIS)

    Fiel, Joao Claudio B.

    2015-01-01

    The purpose of this work is to describe, by means of Tchebychev polynomial, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 U 92 enrichment. Analyzed cross sections are: fission, scattering, total, transport, absorption and capture. This parameterization enables a quick and easy determination of the problem-dependent cross-sections to be used in few groups calculations. The methodology presented here will enable to provide cross-sections values to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by parameterized cross-sections functions, when compared with the cross-section generated by SCALE code calculations, or when compared with K inf , generated by MCNPX code calculations, show a difference of less than 0.7 percent. (author)

  4. Anxiety and Resistance in Distance Learning

    OpenAIRE

    Nazime Tuncay; Huseyin Uzunboylu

    2010-01-01

    The purpose of this study was to investigate students' anxiety and resistance towards learning through distance education.Specifically, the study sought answers to the following questions: -What are the reasons of students not choosing distancelearning courses? -Which symptoms of anxiety, if any, do distance learner’s exhibit towards distance learning? Does genderhave any significant relationships with distance learners' perception of factors that affect their anxiety and resistance? A totalo...

  5. Revised Distances to 21 Supernova Remnants

    Science.gov (United States)

    Ranasinghe, S.; Leahy, D. A.

    2018-05-01

    We carry out a comprehensive study of H I 21 cm line observations and 13CO line observations of 21 supernova remnants (SNRs). The aim of the study is to search for H I absorption features to obtain kinematic distances in a consistent manner. The 21 SNRs are in the region of sky covered by the Very Large Array Galactic Plane Survey (H I 21 cm observations) and Galactic Ring Survey (13CO line observations). We obtain revised distances for 10 SNRs based on new evidence in the H I and 13CO observations. We revise distances for the other 11 SNRs based on an updated rotation curve and new error analysis. The mean change in distance for the 21 SNRs is ≃25%, i.e., a change of 1.5 kpc compared to a mean distance for the sample of 6.4 kpc. This has a significant impact on interpretation of the physical state of these SNRs. For example, using a Sedov model, age and explosion energy scale as the square of distance, and inferred ISM density scales as distance.

  6. A cognitively grounded measure of pronunciation distance.

    Directory of Open Access Journals (Sweden)

    Martijn Wieling

    Full Text Available In this study we develop pronunciation distances based on naive discriminative learning (NDL. Measures of pronunciation distance are used in several subfields of linguistics, including psycholinguistics, dialectology and typology. In contrast to the commonly used Levenshtein algorithm, NDL is grounded in cognitive theory of competitive reinforcement learning and is able to generate asymmetrical pronunciation distances. In a first study, we validated the NDL-based pronunciation distances by comparing them to a large set of native-likeness ratings given by native American English speakers when presented with accented English speech. In a second study, the NDL-based pronunciation distances were validated on the basis of perceptual dialect distances of Norwegian speakers. Results indicated that the NDL-based pronunciation distances matched perceptual distances reasonably well with correlations ranging between 0.7 and 0.8. While the correlations were comparable to those obtained using the Levenshtein distance, the NDL-based approach is more flexible as it is also able to incorporate acoustic information other than sound segments.

  7. Fast Exact Euclidean Distance (FEED) Transformation

    NARCIS (Netherlands)

    Schouten, Theo; Kittler, J.; van den Broek, Egon; Petrou, M.; Nixon, M.

    2004-01-01

    Fast Exact Euclidean Distance (FEED) transformation is introduced, starting from the inverse of the distance transformation. The prohibitive computational cost of a naive implementation of traditional Euclidean Distance Transformation, is tackled by three operations: restriction of both the number

  8. Templated synthesis, characterization, and sensing application of macroscopic platinum nanowire network electrodes

    DEFF Research Database (Denmark)

    Wang, D. H.; Kou, R.; Gil, M. P.

    2005-01-01

    properties of the electrodes, such as electrochemical active area and methanol oxidation, have also been studied. Compared with conventional polycrystalline Pt electrodes, these novel nanowire network electrodes possess high electrochemical active areas and demonstrate higher current densities and a lower...... onset potential for methanol electro-oxidation. Enzymatic Pt nanowire-network-based sensors show higher sensitivity for glucose detection than that using conventional polycrystalline Pt electrode. Such macroscopic nanowire network electrodes provide ideal platforms for sensing and other device......Abstract: Novel platinum nanowire network electrodes have been fabricated through electrodeposition using mesoporous silica thin films as templates. These electrodes were characterized by X-ray diffraction, transmission electron microscope, and scanning electron microscope. The electrochemical...

  9. Macroscopic-microscopic energy of rotating nuclei in the fusion-like deformation valley

    International Nuclear Information System (INIS)

    Gherghescu, R.A.; Royer, Guy

    2000-01-01

    The energy of rotating nuclei in the fusion-like deformation valley has been determined within a liquid drop model including the proximity energy, the two-center shell model and the Strutinsky method. The potential barriers of the 84 Zr, 132 Ce, 152 Dy and 192 Hg nuclei have been determined. A first minimum having a microscopic origin and lodging the normally deformed states disappears with increasing angular momenta. The microscopic and macroscopic energies contribute to generate a second minimum where superdeformed states may survive. It becomes progressively the lowest one at intermediate spins. At higher angular momenta, the minimum moves towards the foot of the external fission barrier leading to hyperdeformed quasi-molecular states. (author)

  10. Macroscopic electrical field distribution and field-induced surface stresses of needle-shaped field emitters

    Energy Technology Data Exchange (ETDEWEB)

    Moy, Charles K.S., E-mail: charles.moy@sydney.edu.au [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia); School of Civil Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Ranzi, Gianluca [ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia); School of Civil Engineering, The University of Sydney, Sydney, NSW 2006 (Australia); Petersen, Timothy C. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); Ringer, Simon P. [Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, NSW 2006 (Australia); ARC Centre of Excellence for Design in Light Metals, The University of Sydney, Sydney, NSW 2006 (Australia)

    2011-05-15

    One major concern since the development of the field ion microscope is the mechanical strength of the specimens. The macroscopic shape of the imaging tip greatly influences field-induced stresses and there is merit in further study of this phenomenon from a classical perspective. Understanding the geometrical, as opposed to localized electronic, factors that affect the stress might improve the quality and success rate of atom probe experiments. This study uses macroscopic electrostatic principles and finite element modelling to investigate field-induced stresses in relation to the shape of the tip. Three two-dimensional idealized models are considered, namely hyperbolic, parabolic and sphere-on-orthogonal-cone; the shapes of which are compared to experimental tips prepared by electro-polishing. Three dimensional morphologies of both a nano-porous and single-crystal aluminium tip are measured using electron tomography to quantitatively test the assumption of cylindrical symmetry for electro-polished tips. The porous tip was prepared and studied to demonstrate a fragile specimen for which such finite element studies could determine potential mechanical failure, prior to any exhaustive atom probe investigation. -- Research highlights: {yields} We use electrostatic principles and finite element to model field-induced stresses. {yields} We study two-dimensional idealized needle-shaped field emitters. {yields} Stress distribution of hyperbolic, parabolic and sphere-on-orthogonal-cone tips mapped. {yields} Electron tomography to obtain the morphology of three-dimensional aluminium tips. {yields} Studies of the morphology of the porous tip demonstrate a fragile specimen.

  11. Towards a theory of macroscopic gravity

    International Nuclear Information System (INIS)

    Zalaletdinov, R.M.

    1993-01-01

    By averaging out Cartan's structure equations for a four-dimensional Riemannian space over space regions, the structure equations for the averaged space have been derived with the procedure being valid on an arbitrary Riemannian space. The averaged space is characterized by a metric, Riemannian and non-Riemannian curvature 2-forms, and correlation 2-, 3- and 4-forms, an affine deformation 1-form being due to the non-metricity of one of two connection 1-forms. Using the procedure for the space-time averaging of the Einstein equations produces the averaged ones with the terms of geometric correction by the correlation tensors. The equations of motion for averaged energy momentum, obtained by averaging out the coritracted Bianchi identifies, also include such terms. Considering the gravitational induction tensor to be the Riemannian curvature tensor (the non-Riemannian one is then the field tensor), a theorem is proved which relates the algebraic structure of the averaged microscopic metric to that of the induction tensor. It is shown that the averaged Einstein equations can be put in the form of the Einstein equations with the conserved macroscopic energy-momentum tensor of a definite structure including the correlation functions. By using the high-frequency approximation of Isaacson with second-order correction to the microscopic metric, the self-consistency and compatibility of the equations and relations obtained are shown. Macrovacuum turns out to be Ricci non-flat, the macrovacuum source being defined in terms of the correlation functions. In the high-frequency limit the equations are shown to become Isaacson's ones with the macrovacuum source becoming Isaacson's stress tensor for gravitational waves. 17 refs

  12. Macroscopic and microscopic evaluation of a new implant design supporting immediately loaded full arch rehabilitation

    OpenAIRE

    Tetè, Stefano; Zizzari, Vincenzo; De Carlo, Alessandro; Sinjari, Bruna; Gherlone, Enrico

    2012-01-01

    The purpose of this study is to evaluate macroscopic and microscopic appearance of a new implant design, with particular emphasis given to the type of prosthesis connection. Two dental implants of the same type (Torque Type®, WinSix®, BioSAFin. S.r.l. - Ancona, Italy), with sandblasted and acid etched surfaces (Micro Rough Surface®), but differing from each other for the prosthesis connection system, were examined by scanning electron microscope (SEM) analysis at different magnifications: TTI...

  13. Finite element simulation of nanoindentation tests using a macroscopic computational model

    International Nuclear Information System (INIS)

    Khelifa, Mourad; Fierro, Vanessa; Celzard, Alain

    2014-01-01

    The aim of this work was to develop a numerical procedure to simulate nanoindentation tests using a macroscopic computational model. Both theoretical and numerical aspects of the proposed methodology, based on the coupling of isotropic elasticity and anisotropic plasticity described with the quadratic criterion of Hill are presented to model this behaviour. The anisotropic plastic behaviour accounts for the mixed nonlinear hardening (isotropic and kinematic) under large plastic deformation. Nanoindentation tests were simulated to analyse the nonlinear mechanical behaviour of aluminium alloy. The predicted results of the finite element (FE) modelling are in good agreement with the experimental data, thereby confirming the accuracy level of the suggested FE method of analysis. The effects of some technological and mechanical parameters known to have an influence during the nanoindentation tests were also investigated.

  14. A dualism in entanglement and testing quantum identicity of macroscopic objects

    International Nuclear Information System (INIS)

    Bose, S.; Home, D.

    2005-01-01

    Full text: Identical quantum objects are known to behave very differently from their classical counterparts by exhibiting bosonic/fermionic statistics. We present another consequence of the impossibility of distinguishing identical quantum objects through their superselected innate attributes. If two quantum objects distinguished through a dynamical variable A are entangled in another dynamical variable B, then (under certain conditions) they are also entangled in variable A when distinguished from each other by variable B. This dualism is independent of and more general than quantum statistics. We formulate a general scheme to test this dualism through polarization entangled photons. The dualism enables one to use prior entanglement to avoid scattering while probing the identicity of two mutually interacting, even macroscopic objects. It thus opens the way for studying the quantum to classical transition of identicity. (author)

  15. Distance : between deixis and perspectivity

    OpenAIRE

    Meermann, Anastasia; Sonnenhauser, Barbara

    2015-01-01

    Discussing exemplary applications of the notion of distance in linguistic analysis, this paper shows that very different phenomena are described in terms of this concept. It is argued that in order to overcome the problems arising from this mixup, deixis, distance and perspectivity have to be distinguished and their interrelations need to be described. Thereby, distance emerges as part of a recursive process mediating between situation-bound deixis and discourse-level perspectivity. This is i...

  16. Agent-Based and Macroscopic Modeling of the Complex Socio-Economic Systems

    Directory of Open Access Journals (Sweden)

    Aleksejus Kononovičius

    2013-08-01

    Full Text Available Purpose – The focus of this contribution is the correspondence between collective behavior and inter-individual interactions in the complex socio-economic systems. Currently there is a wide selection of papers proposing various models for the both collective behavior and inter-individual interactions in the complex socio-economic systems. Yet the papers directly relating these two concepts are still quite rare. By studying this correspondence we discuss a cutting edge approach to the modeling of complex socio-economic systems. Design/methodology/approach – The collective behavior is often modeled using stochastic and ordinary calculus, while the inter-individual interactions are modeled using agent-based models. In order to obtain the ideal model, one should start from these frameworks and build a bridge to reach another. This is a formidable task, if we consider the top-down approach, namely starting from the collective behavior and moving towards inter-individual interactions. The bottom-up approach also fails, if complex inter-individual interaction models are considered, yet in this case we can start with simple models and increase the complexity as needed. Findings – The bottom-up approach, considering simple agent-based herding model as a model for the inter-individual interactions, allows us to derive certain macroscopic models of the complex socio-economic systems from the agent-based perspective. This provides interesting insights into the collective behavior patterns observed in the complex socio-economic systems. Research limitations/implications –The simplicity of the agent-based herding model might be considered to be somewhat limiting. Yet this simplicity implies that the model is highly universal. It reproduces universal features of social behavior and also can be further extended to fit different socio-economic scenarios. Practical implications – Insights provided in this contribution might be used to modify existing

  17. The distances of the Galactic Novae

    Science.gov (United States)

    Ozdonmez, Aykut; Guver, Tolga; Cabrera-Lavers, Antonio; Ak, Tansel

    2016-07-01

    Using location of the RC stars on the CMDs obtained from the UKIDSS, VISTA and 2MASS photometry, we have derived the reddening-distance relations towards each Galactic nova for which at least one independent reddening measurement exists. We were able to determine the distances of 72 Galactic novae and set lower limits on the distances of 45 systems. The reddening curves of the systems are presented. These curves can be also used to estimate reddening or the distance of any source, whose location is close to the position of the nova in our sample. The distance measurement method in our study can be easily applicable to any source, especially for ones that concentrated along the Galactic plane.

  18. ETUDE - European Trade Union Distance Education.

    Science.gov (United States)

    Creanor, Linda; Walker, Steve

    2000-01-01

    Describes transnational distance learning activities among European trade union educators carried out as part of the European Trade Union Distance Education (ETUDE) project, supported by the European Commission. Highlights include the context of international trade union distance education; tutor training course; tutors' experiences; and…

  19. Space-efficient path-reporting approximate distance oracles

    DEFF Research Database (Denmark)

    Elkin, Michael; Neiman, Ofer; Wulff-Nilsen, Christian

    2016-01-01

    We consider approximate path-reporting distance oracles, distance labeling and labeled routing with extremely low space requirements, for general undirected graphs. For distance oracles, we show how to break the nlog⁡n space bound of Thorup and Zwick if approximate paths rather than distances need...

  20. What do long-distance caregivers do? : judgment of propositions and the epistemics of long-distance family relationships

    OpenAIRE

    中川, 敦; Atsushi, NAKAGAWA

    2015-01-01

    This study clarifies what long-distance caregivers do. To this end, I conducted a conversation analysis of video data of a care conference in which a long-distance caregiver participated. When a professional caregiver proposes a care plan to a long-distance caregiver, he/she substitutes technical terms with laymen terms for easy understanding, indicating his/her orientation that a long-distance caregiver is not a professional. However, if the caregiver laughs or averts his/her eyes during the...

  1. Macroscopic and spectroscopic investigations on the immobilization of radionuclides by hardened cement paste

    International Nuclear Information System (INIS)

    Wieland, E.; Bonhoure, I.; Tits, J.; Scheidegger, A.M.; Bradbury, M.H.

    2002-01-01

    The uptake of safety-relevant radionuclides was studied using a combination of macroscopic (wet chemistry) and spectroscopic (X-ray absorption fine structure (XAFS) spectroscopy) techniques with the aim of gaining a mechanistic understanding of the uptake processes on hardened cement paste (HCP) and deducing robust sets of sorption values. HCP contains impurities of metal cations in the ppb to ppm concentration range. As a consequence, the inventories of stable isotopes are expected to be significant in a cementitious near-field and may even exceed the radionuclide inventories of the waste matrix for many safety-relevant radioelements. In view of the significant inventories of stable isotopes, it is suggested that isotopic exchange - replacement of stable isotopes by their radioactive counterparts in the cement matrix - is an important immobilisation process in HCP. However, it is not a priori known what proportion of each elemental inventory is available for isotopic exchange. Wet chemistry studies with Cs and Sr show that the total inventory of these elements is reversibly bound and that their partitioning between HCP and pore water can be modelled using the distribution values deduced from studies of the corresponding tracers ( 137 Cs and 85 Sr). This finding corroborates the relevance of isotopic exchange in cementitious systems. Wet chemistry investigations need to be complemented by spectroscopic techniques, e.g., XAFS, in order to gain a mechanistic understanding of the chemical processes by which waste ions become immobilised in cement-based matrices. XAFS can be used to obtain information at the atomic/molecular level, i.e., the type, number and distance of neighbouring atoms. XAFS studies on cementitious systems are still rather rare, and therefore information on the potential and limitations of this technique is sparse. Mechanistic aspects of the immobilisation processes are discussed for some safety-relevant radionuclides (e.g. Ni and Sr) using the

  2. Elasticity-dependent fast underwater adhesion demonstrated by macroscopic supramolecular assembly.

    Science.gov (United States)

    Ju, Guannan; Cheng, Mengjiao; Guo, Fengli; Zhang, Qian; Shi, Feng

    2018-05-30

    Macroscopic supramolecular assembly (MSA) is a recent progress in supramolecular chemistry to associate visible building blocks through non-covalent interactions in a multivalent manner. Although various substrates (e. g. hydrogels, rigid materials) have been used, a general design rule of building blocks in MSA systems and interpretation of the assembly mechanism are still lacking and urgently in demand. Here we design three model systems with varied modulus and correlated the MSA probability with the elasticity. Based on the effects of substrate deformability on multivalency, we have proposed an elastic-modulus-dependent rule that building blocks below a critical modulus of 2.5 MPa can achieve MSA for the used host/guest system. Moreover, this MSA rule applies well to the design of materials applicable for fast underwater adhesion: Soft substrates (0.5 MPa) can achieve underwater adhesion within 10 s with one magnitude higher strength than that of rigid substrates (2.5 MPa). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Information and Self-Organization A Macroscopic Approach to Complex Systems

    CERN Document Server

    Haken, Hermann

    2006-01-01

    This book presents the concepts needed to deal with self-organizing complex systems from a unifying point of view that uses macroscopic data. The various meanings of the concept "information" are discussed and a general formulation of the maximum information (entropy) principle is used. With the aid of results from synergetics, adequate objective constraints for a large class of self-organizing systems are formulated and examples are given from physics, life and computer science. The relationship to chaos theory is examined and it is further shown that, based on possibly scarce and noisy data, unbiased guesses about processes of complex systems can be made and the underlying deterministic and random forces determined. This allows for probabilistic predictions of processes, with applications to numerous fields in science, technology, medicine and economics. The extensions of the third edition are essentially devoted to an introduction to the meaning of information in the quantum context. Indeed, quantum inform...

  4. Theory and feasibility tests for a seismic scanning tunnelling macroscope

    KAUST Repository

    Schuster, Gerard T.

    2012-09-01

    We propose a seismic scanning tunnelling macroscope (SSTM) that can detect subwavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the scatterer is in the near-field region. This means that, as the scatterer approaches the source, imaging of the scatterer with super-resolution can be achieved. Acoustic and elastic simulations support this concept, and a seismic experiment in an Arizona tunnel shows a TRM profile with super-resolution adjacent to the fault location. The SSTM is analogous to the optical scanning tunnelling microscopes having subwavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by the imaging of near-field seismic energy.

  5. Phylogenetic inference with weighted codon evolutionary distances.

    Science.gov (United States)

    Criscuolo, Alexis; Michel, Christian J

    2009-04-01

    We develop a new approach to estimate a matrix of pairwise evolutionary distances from a codon-based alignment based on a codon evolutionary model. The method first computes a standard distance matrix for each of the three codon positions. Then these three distance matrices are weighted according to an estimate of the global evolutionary rate of each codon position and averaged into a unique distance matrix. Using a large set of both real and simulated codon-based alignments of nucleotide sequences, we show that this approach leads to distance matrices that have a significantly better treelikeness compared to those obtained by standard nucleotide evolutionary distances. We also propose an alternative weighting to eliminate the part of the noise often associated with some codon positions, particularly the third position, which is known to induce a fast evolutionary rate. Simulation results show that fast distance-based tree reconstruction algorithms on distance matrices based on this codon position weighting can lead to phylogenetic trees that are at least as accurate as, if not better, than those inferred by maximum likelihood. Finally, a well-known multigene dataset composed of eight yeast species and 106 codon-based alignments is reanalyzed and shows that our codon evolutionary distances allow building a phylogenetic tree which is similar to those obtained by non-distance-based methods (e.g., maximum parsimony and maximum likelihood) and also significantly improved compared to standard nucleotide evolutionary distance estimates.

  6. Evolution of the Contact Area with Normal Load for Rough Surfaces: from Atomic to Macroscopic Scales.

    Science.gov (United States)

    Huang, Shiping

    2017-11-13

    The evolution of the contact area with normal load for rough surfaces has great fundamental and practical importance, ranging from earthquake dynamics to machine wear. This work bridges the gap between the atomic scale and the macroscopic scale for normal contact behavior. The real contact area, which is formed by a large ensemble of discrete contacts (clusters), is proven to be much smaller than the apparent surface area. The distribution of the discrete contact clusters and the interaction between them are key to revealing the mechanism of the contacting solids. To this end, Green's function molecular dynamics (GFMD) is used to study both how the contact cluster evolves from the atomic scale to the macroscopic scale and the interaction between clusters. It is found that the interaction between clusters has a strong effect on their formation. The formation and distribution of the contact clusters is far more complicated than that predicted by the asperity model. Ignorance of the interaction between them leads to overestimating the contacting force. In real contact, contacting clusters are smaller and more discrete due to the interaction between the asperities. Understanding the exact nature of the contact area with the normal load is essential to the following research on friction.

  7. Macroscopic transport equations in many-body systems from microscopic exclusion processes in disordered media: a review

    Directory of Open Access Journals (Sweden)

    Marta Galanti

    2016-08-01

    Full Text Available Describing particle transport at the macroscopic or mesoscopic level in non-ideal environments poses fundamental theoretical challenges in domains ranging from inter and intra-cellular transport in biology to diffusion in porous media. Yet, often the nature of the constraints coming from many-body interactions or reflecting a complex and confining environment are better understood and modeled at the microscopic level.In this paper we review the subtle link between microscopic exclusion processes and the mean-field equations that ensue from them in the continuum limit. We show that in an inhomogeneous medium, i.e. when jumps are controlled by site-dependent hopping rates, one can obtain three different nonlinear advection-diffusion equations in the continuum limit, suitable for describing transport in the presence of quenched disorder and external fields, depending on the particular rule embodying site inequivalence at the microscopic level. In a situation that might be termed point-like scenario, when particles are treated as point-like objects, the effect of crowding as imposed at the microscopic level manifests in the mean-field equations only if some degree of inhomogeneity is enforced into the model. Conversely, when interacting agents are assigned a finite size, under the more realistic extended crowding framework, exclusion constraints persist in the unbiased macroscopic representation.

  8. Distance Education at Silesian University of Technology

    Directory of Open Access Journals (Sweden)

    Piotr Klosowski

    2008-12-01

    Full Text Available This paper presents Distance Learning Platform used by Silesian University of Technology. Distance Learning Platform is based on modular object-oriented dynamic learning environment, represents LMS (Learning Management Systems technology, a software package designed to help educators create quality online courses. Currently on Distance Learning Platform at Silesian University of Technology are available over 520 online courses created for students of twelve University's faculties. Number of Distance Learning Platform users exceeds 12000. Distance Learning Platform works as typically asynchronous e-learning service, but in the future more synchronous e-learning services will be added. Distance Learning Platform has great potential to create a successful elearning experience by providing a plethora of excellent tools that can be used to enhance conventional classroom instruction, in hybrid courses, or any distance learning arrangements.

  9. Macroscopic quantum tunneling in 1 μm Nb junctions below 100mK

    International Nuclear Information System (INIS)

    Voss, R.F.; Webb, R.A.

    1981-01-01

    The transition probabilities out of the superconducting state of low current density 1 μm Nb Josephson junctions with capacitance < 0.15 pF have been measured as a function of temperature T down to 3 mK. Below 100 mK the distribution widths become independent of T. Junctions with critical currents that differ by an order of magnitude have the same dependence of relative width on T. The low T results are interpreted in terms of quantum tunneling of the (macroscopic) junction phase. The observed low temperature widths are smaller than expected indicating the necessity of corrections to the simple WKB tunneling rates. (orig.)

  10. A Streaming Distance Transform Algorithm for Neighborhood-Sequence Distances

    Directory of Open Access Journals (Sweden)

    Nicolas Normand

    2014-09-01

    Full Text Available We describe an algorithm that computes a “translated” 2D Neighborhood-Sequence Distance Transform (DT using a look up table approach. It requires a single raster scan of the input image and produces one line of output for every line of input. The neighborhood sequence is specified either by providing one period of some integer periodic sequence or by providing the rate of appearance of neighborhoods. The full algorithm optionally derives the regular (centered DT from the “translated” DT, providing the result image on-the-fly, with a minimal delay, before the input image is fully processed. Its efficiency can benefit all applications that use neighborhood- sequence distances, particularly when pipelined processing architectures are involved, or when the size of objects in the source image is limited.

  11. Cepheids Geometrical Distances Using Space Interferometry

    Science.gov (United States)

    Marengo, M.; Karovska, M.; Sasselov, D. D.; Sanchez, M.

    2004-05-01

    A space based interferometer with a sub-milliarcsecond resolution in the UV-optical will provide a new avenue for the calibration of primary distance indicators with unprecedented accuracy, by allowing very accurate and stable measurements of Cepheids pulsation amplitudes at wavelengths not accessible from the ground. Sasselov & Karovska (1994) have shown that interferometers allow very accurate measurements of Cepheids distances by using a ``geometric'' variant of the Baade-Wesselink method. This method has been succesfully applied to derive distances and radii of nearby Cepheids using ground-based near-IR and optical interferometers, within a 15% accuracy level. Our study shows that the main source of error in these measurements is due to the perturbing effects of the Earth atmosphere, which is the limiting factor in the interferometer stability. A space interferometer will not suffer from this intrinsic limitations, and can potentially lead to improve astronomical distance measurements by an order of magnitude in precision. We discuss here the technical requirements that a space based facility will need to carry out this project, allowing distance measurements within a few percent accuracy level. We will finally discuss how a sub-milliarcsecond resolution will allow the direct distance determination for hundreds of galactic sources, and provide a substantial improvement in the zero-point of the Cepheid distance scale.

  12. THE WEIGHTED POINCARÉ DISTANCE IN THE HALF PLANE

    OpenAIRE

    Byun, Jisoo; Baek, Seung Min; Cho, Hong Rae; Lee, Han-Wool

    2014-01-01

    In this paper we introduce the weighted Poincaré distance and the induced distance by the weighted Bloch type space. We prove that the weighted Poincaré distance is identical to the inner distance generated by the induced distance.

  13. Macroscopic optical constants of a cloud of randomly oriented nonspherical scatterers

    International Nuclear Information System (INIS)

    Borghese, F.; Denti, P.; Saija, R.; Toscano, G.; Sindoni, O.I.

    1984-01-01

    A method to calculate the macroscopic optical constants of a low-density medium consisting of a cloud of identical nonspherical scatterers is presented. The scatterers in the medium are clusters of dielectric spheres and the electromagnetic field scattered by each of the clusters is obtained as a superposition of multipole fields, as previously proposed by the authors. The transformation properties of the spherical multipoles under rotation allow the orientation-dependent terms in the expression for the forward-scattering amplitude of each of the clusters to be factored out. In this way the sum of the scattering amplitudes of the clusters with different orientations, needed to calculate the optical response of the medium, is greatly facilitated and admits a simple analytic expression in the case of randomly oriented clusters. Results of calculations of the optical constants for a few model media are presented

  14. Build-up of macroscopic eigenstates in a memory-based constrained system

    International Nuclear Information System (INIS)

    Labousse, M; Perrard, S; Couder, Y; Fort, E

    2014-01-01

    A bouncing drop and its associated accompanying wave forms a walker. Based on previous works, we show in this article that it is possible to formulate a simple theoretical framework for the walker dynamics. It relies on a time scale decomposition corresponding to the effects successively generated when the memory effects increase. While the short time scale effect is simply responsible for the walker's propulsion, the intermediate scale generates spontaneously pivotal structures endowed with angular momentum. At an even larger memory scale, if the walker is spatially confined, the pivots become the building blocks of a self-organization into a global structure. This new theoretical framework is applied in the presence of an external harmonic potential, and reveals the underlying mechanisms leading to the emergence of the macroscopic spatial organization reported by Perrard et al (2014 Nature Commun. 5 3219). (paper)

  15. Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model

    International Nuclear Information System (INIS)

    Lian Jin-Ling; Zhang Yuan-Wei; Liang Jiu-Qing

    2012-01-01

    The energy spectrum of Dicke Hamiltonians with and without the rotating wave approximation for an arbitrary atom number is obtained analytically by means of the variational method, in which the effective pseudo-spin Hamiltonian resulting from the expectation value in the boson-field coherent state is diagonalized by the spin-coherent-state transformation. In addition to the ground-state energy, an excited macroscopic quantum-state is found corresponding to the south- and north-pole gauges of the spin-coherent states, respectively. Our results of ground-state energies in exact agreement with various approaches show that these models exhibit a zero-temperature quantum phase transition of the second order for any number of atoms, which was commonly considered as a phenomenon of the thermodynamic limit with the atom number tending to infinity. The critical behavior of the geometric phase is analyzed. (general)

  16. Dynamic Chiral Magnetic Effect and Faraday Rotation in Macroscopically Disordered Helical Metals.

    Science.gov (United States)

    Ma, J; Pesin, D A

    2017-03-10

    We develop an effective medium theory for electromagnetic wave propagation through gapless nonuniform systems with a dynamic chiral magnetic effect. The theory allows us to calculate macroscopic-disorder-induced corrections to the values of optical, as well as chiral magnetic conductivities. In particular, we show that spatial fluctuations of the optical conductivity induce corrections to the effective value of the chiral magnetic conductivity. The absolute value of the effect varies strongly depending on the system parameters, but yields the leading frequency dependence of the polarization rotation and circular dichroism signals. Experimentally, these corrections can be observed as features in the Faraday rotation angle near frequencies that correspond to the bulk plasmon resonances of a material. Such features are not expected to be present in single-crystal samples.

  17. Measuring distances between complex networks

    International Nuclear Information System (INIS)

    Andrade, Roberto F.S.; Miranda, Jose G.V.; Pinho, Suani T.R.; Lobao, Thierry Petit

    2008-01-01

    A previously introduced concept of higher order neighborhoods in complex networks, [R.F.S. Andrade, J.G.V. Miranda, T.P. Lobao, Phys. Rev. E 73 (2006) 046101] is used to define a distance between networks with the same number of nodes. With such measure, expressed in terms of the matrix elements of the neighborhood matrices of each network, it is possible to compare, in a quantitative way, how far apart in the space of neighborhood matrices two networks are. The distance between these matrices depends on both the network topologies and the adopted node numberings. While the numbering of one network is fixed, a Monte Carlo algorithm is used to find the best numbering of the other network, in the sense that it minimizes the distance between the matrices. The minimal value found for the distance reflects differences in the neighborhood structures of the two networks that arise only from distinct topologies. This procedure ends up by providing a projection of the first network on the pattern of the second one. Examples are worked out allowing for a quantitative comparison for distances among distinct networks, as well as among distinct realizations of random networks

  18. Computing Distances between Probabilistic Automata

    Directory of Open Access Journals (Sweden)

    Mathieu Tracol

    2011-07-01

    Full Text Available We present relaxed notions of simulation and bisimulation on Probabilistic Automata (PA, that allow some error epsilon. When epsilon is zero we retrieve the usual notions of bisimulation and simulation on PAs. We give logical characterisations of these notions by choosing suitable logics which differ from the elementary ones, L with negation and L without negation, by the modal operator. Using flow networks, we show how to compute the relations in PTIME. This allows the definition of an efficiently computable non-discounted distance between the states of a PA. A natural modification of this distance is introduced, to obtain a discounted distance, which weakens the influence of long term transitions. We compare our notions of distance to others previously defined and illustrate our approach on various examples. We also show that our distance is not expansive with respect to process algebra operators. Although L without negation is a suitable logic to characterise epsilon-(bisimulation on deterministic PAs, it is not for general PAs; interestingly, we prove that it does characterise weaker notions, called a priori epsilon-(bisimulation, which we prove to be NP-difficult to decide.

  19. Analysing designed experiments in distance sampling

    Science.gov (United States)

    Stephen T. Buckland; Robin E. Russell; Brett G. Dickson; Victoria A. Saab; Donal N. Gorman; William M. Block

    2009-01-01

    Distance sampling is a survey technique for estimating the abundance or density of wild animal populations. Detection probabilities of animals inherently differ by species, age class, habitats, or sex. By incorporating the change in an observer's ability to detect a particular class of animals as a function of distance, distance sampling leads to density estimates...

  20. Permutation-invariant distance between atomic configurations

    Science.gov (United States)

    Ferré, Grégoire; Maillet, Jean-Bernard; Stoltz, Gabriel

    2015-09-01

    We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity.

  1. Permutation-invariant distance between atomic configurations

    International Nuclear Information System (INIS)

    Ferré, Grégoire; Maillet, Jean-Bernard; Stoltz, Gabriel

    2015-01-01

    We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity

  2. Distance learning: its advantages and disadvantages

    OpenAIRE

    KEGEYAN SVETLANA ERIHOVNA

    2016-01-01

    Distance learning has become popular in higher institutions because of its flexibility and availability to learners and teachers at anytime, regardless of geographic location. With so many definitions and phases of distance education, this paper only focuses on the delivery mode of distance education (the use of information technology), background, and its disadvantages and advantages for today’s learners.

  3. Modern Geometric Methods of Distance Determination

    Science.gov (United States)

    Thévenin, Frédéric; Falanga, Maurizio; Kuo, Cheng Yu; Pietrzyński, Grzegorz; Yamaguchi, Masaki

    2017-11-01

    Building a 3D picture of the Universe at any distance is one of the major challenges in astronomy, from the nearby Solar System to distant Quasars and galaxies. This goal has forced astronomers to develop techniques to estimate or to measure the distance of point sources on the sky. While most distance estimates used since the beginning of the 20th century are based on our understanding of the physics of objects of the Universe: stars, galaxies, QSOs, the direct measures of distances are based on the geometric methods as developed in ancient Greece: the parallax, which has been applied to stars for the first time in the mid-19th century. In this review, different techniques of geometrical astrometry applied to various stellar and cosmological (Megamaser) objects are presented. They consist in parallax measurements from ground based equipment or from space missions, but also in the study of binary stars or, as we shall see, of binary systems in distant extragalactic sources using radio telescopes. The Gaia mission will be presented in the context of stellar physics and galactic structure, because this key space mission in astronomy will bring a breakthrough in our understanding of stars, galaxies and the Universe in their nature and evolution with time. Measuring the distance to a star is the starting point for an unbiased description of its physics and the estimate of its fundamental parameters like its age. Applying these studies to candles such as the Cepheids will impact our large distance studies and calibration of other candles. The text is constructed as follows: introducing the parallax concept and measurement, we shall present briefly the Gaia satellite which will be the future base catalogue of stellar astronomy in the near future. Cepheids will be discussed just after to demonstrate the state of the art in distance measurements in the Universe with these variable stars, with the objective of 1% of error in distances that could be applied to our closest

  4. Trends and Issues in Distance Education: International Perspectives

    Directory of Open Access Journals (Sweden)

    Erhan EROGLU

    2006-04-01

    Full Text Available Trends and Issues in Distance Education: International Perspectives Edited by Yusra Laila Visser, Lya Visser, Michael Simonsın, & Ray Amirault, 2005, United States of America: Information Age Publishing, Inc. pp. 315. ISBN 1-59311-212-2 Reviewed by Dr. Erhan EROGLU Anadolu University Eskisehir, TURKEY In this book, the terms of “distance education” has been discussed from different perspectives. The term “distance education” conjures up in many minds the image of modern, computer-enabled technology that has blossomed in only the last twenty years. Many of the lessons learned over the last century of distance education research and practice have been implemented in a wide variety of distance education programs worldwide, from higher education online learning programs in the United States to rural, radio-based instructional programs in developing countries. Distance education is truly international discipline. While it is true that the term “distance education” has a universal definiton, local distance ducation experiences are often quite idiosyncratic. This idiosyncratic nature emerges from the need to integrate distance education within the constraints, oppurtunities, and realities of spesific cultural and geographic contexts. From these local distance education experiences, educators are developing new understandings of the broader field of distance education, including the trends and issues present in the field. ORGANIZATION OF THE SECTIONS This book has been organized by thematic content into four main sections. Each of these sections represents a unique level of analysis for trends and issues in distance education. Part I presents five distinct perspectives on the state of distance education and the trends and issues of the field. First perspective of five distinct perpectives is “a survey of progressive and conservative trends in education with implications for distance education practice.” Second perspective is

  5. The Australian Bogong Moth Agrotis infusa: A Long-Distance Nocturnal Navigator

    Directory of Open Access Journals (Sweden)

    Eric Warrant

    2016-04-01

    Full Text Available The nocturnal Bogong moth (Agrotis infusa is an iconic and well-known Australian insect that is also a remarkable nocturnal navigator. Like the Monarch butterflies of North America, Bogong moths make a yearly migration over enormous distances, from southern Queensland, western and northwestern New South Wales (NSW and western Victoria, to the alpine regions of NSW and Victoria. After emerging from their pupae in early spring, adult Bogong moths embark on a long nocturnal journey towards the Australian Alps, a journey that can take many days or even weeks and cover over 1000 km. Once in the Alps (from the end of September, Bogong moths seek out the shelter of selected and isolated high ridge-top caves and rock crevices (typically at elevations above 1800 m. In hundreds of thousands, moths line the interior walls of these cool alpine caves where they “hibernate” over the summer months (referred to as “estivation”. Towards the end of the summer (February and March, the same individuals that arrived months earlier leave the caves and begin their long return trip to their breeding grounds. Once there, moths mate, lay eggs and die. The moths that hatch in the following spring then repeat the migratory cycle afresh. Despite having had no previous experience of the migratory route, these moths find their way to the Alps and locate their estivation caves that are dotted along the high alpine ridges of southeastern Australia. How naïve moths manage this remarkable migratory feat still remains a mystery, although there are many potential sensory cues along the migratory route that moths might rely on during their journey, including visual, olfactory, mechanical and magnetic cues. Here we review our current knowledge of the Bogong moth, including its natural history, its ecology, its cultural importance to the Australian Aborigines and what we understand about the sensory basis of its long-distance nocturnal migration. From this analysis it becomes

  6. Magnetic resonance imaging-determined synovial membrane and joint effusion volumes in rheumatoid arthritis and osteoarthritis: comparison with the macroscopic and microscopic appearance of the synovium

    DEFF Research Database (Denmark)

    Østergaard, Mikkel; Stoltenberg, M; Løvgreen-Nielsen, P

    1997-01-01

    OBJECTIVE: To evaluate the relationship between synovial membrane and joint effusion volumes determined by magnetic resonance imaging (MRI) and macroscopic and microscopic synovial pathologic findings in patients with rheumatoid arthritis (RA) and osteoarthritis (OA). METHODS: Synovial biopsies...... were performed, and macroscopic grades of synovitis assigned, at preselected knee sites during arthroscopy or arthrotomy in 17 knees with RA and 25 with OA. Synovial inflammation and 9 separate tissue characteristics were graded histologically. Synovial membrane and joint effusion volumes were...... membrane and effusion volumes may be sensitive markers and/or predictors of disease activity and treatment outcome in RA....

  7. Measuring and testing dependence by correlation of distances

    OpenAIRE

    Székely, Gábor J.; Rizzo, Maria L.; Bakirov, Nail K.

    2007-01-01

    Distance correlation is a new measure of dependence between random vectors. Distance covariance and distance correlation are analogous to product-moment covariance and correlation, but unlike the classical definition of correlation, distance correlation is zero only if the random vectors are independent. The empirical distance dependence measures are based on certain Euclidean distances between sample elements rather than sample moments, yet have a compact representation analogous to the clas...

  8. Ethnical distance in Vojvodina: Research results

    Directory of Open Access Journals (Sweden)

    Lazar Žolt

    2005-01-01

    Full Text Available This article presents the results of the ethnical distance measuring in Vojvodina, the north Province of the Republic of Serbia. The measuring was carried out on autumn 2002, during realization of the wider project of multiculturalism research in the mentioned region. According to the results the ethnical distances in Vojvodina are quite equalized and they are grouped around the attitude "all the same". Vojvodinian Serbs are more favorable partners for the majority of social contacts, and the relatively largest distance is shown toward Roma. The ethnical distance results also discovers two very important factors for understanding the interethnic relations in Vojvodina: first, the "rational" kind of social contacts with the members of the other ethnical groups are more preferable for the majority of respondents, and second, they have very equal distances toward their own ethnical groups.

  9. Three Generations of Distance Education Pedagogy

    Directory of Open Access Journals (Sweden)

    Terry Anderson

    2011-03-01

    Full Text Available This paper defines and examines three generations of distance education pedagogy. Unlike earlier classifications of distance education based on the technology used, this analysis focuses on the pedagogy that defines the learning experiences encapsulated in the learning design. The three generations of cognitive-behaviourist, social constructivist, and connectivist pedagogy are examined, using the familiar community of inquiry model (Garrison, Anderson, & Archer, 2000 with its focus on social, cognitive, and teaching presences. Although this typology of pedagogies could also be usefully applied to campus-based education, the need for and practice of openness and explicitness in distance education content and process makes the work especially relevant to distance education designers, teachers, and developers. The article concludes that high-quality distance education exploits all three generations as determined by the learning content, context, and learning expectations.

  10. Global minimum profile error (GMPE) - a least-squares-based approach for extracting macroscopic rate coefficients for complex gas-phase chemical reactions.

    Science.gov (United States)

    Duong, Minh V; Nguyen, Hieu T; Mai, Tam V-T; Huynh, Lam K

    2018-01-03

    Master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) has shown to be a powerful framework for modeling kinetic and dynamic behaviors of a complex gas-phase chemical system on a complicated multiple-species and multiple-channel potential energy surface (PES) for a wide range of temperatures and pressures. Derived from the ME time-resolved species profiles, the macroscopic or phenomenological rate coefficients are essential for many reaction engineering applications including those in combustion and atmospheric chemistry. Therefore, in this study, a least-squares-based approach named Global Minimum Profile Error (GMPE) was proposed and implemented in the MultiSpecies-MultiChannel (MSMC) code (Int. J. Chem. Kinet., 2015, 47, 564) to extract macroscopic rate coefficients for such a complicated system. The capability and limitations of the new approach were discussed in several well-defined test cases.

  11. Social Distance and Intergenerational Relations

    Science.gov (United States)

    Kidwell, I. Jane; Booth, Alan

    1977-01-01

    Questionnaires were administered to a sample of adults to assess the extent of social distance between people of different ages. The findings suggest that the greater the age difference (younger or older) between people, the greater the social distance they feel. (Author)

  12. The Psychology of Psychic Distance

    DEFF Research Database (Denmark)

    Håkanson, Lars; Ambos, Björn; Schuster, Anja

    2016-01-01

    and their theoretical underpinnings assume psychic distances to be symmetric. Building on insights from psychology and sociology, this paper demonstrates how national factors and cognitive processes interact in the formation of asymmetric distance perceptions. The results suggest that exposure to other countries...

  13. Cognitive Styles and Distance Education.

    Science.gov (United States)

    Liu, Yuliang; Ginther, Dean

    1999-01-01

    Considers how to adapt the design of distance education to students' cognitive styles. Discusses cognitive styles, including field dependence versus independence, holistic-analytic, sensory preference, hemispheric preferences, and Kolb's Learning Style Model; and the characteristics of distance education, including technology. (Contains 92…

  14. Robustness of Distance-to-Default

    DEFF Research Database (Denmark)

    Jessen, Cathrine; Lando, David

    2013-01-01

    . A notable exception is a model with stochastic volatility of assets. In this case both the ranking of firms and the estimated default probabilities using distance-to-default perform significantly worse. We therefore propose a volatility adjustment of the distance-to-default measure, that significantly...

  15. Microcracking and macroscopic failure in intermetallic titanium aluminides; Mikrorissbildung und makroskopisches Versagen in intermetallischen Titanaluminiden

    Energy Technology Data Exchange (ETDEWEB)

    Wiesand-Valk, B. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    2000-07-01

    This paper deals with the correlations between microstructural disorder, that means statistical distribution of phases and local material properties, and macroscopic failure of disordered multiphase materials. On a microscopic level the microstructural disorder leads to randomly distributed local damage before failure (in brittle materials to microcracks) and eventually to localisation of damage. On a macroscopic level the value and scatter of fracture strength and its dependence on specimen size are essentially determined by the microstructural disorder. The failure behaviour is treated by using the discrete chain-of-bundles-model, which treats the details of the microstructure not explicitly but as locally distributed fluctuations of characteristical material parameters. The model has been verified by comparing with experimental results for four intermetallic titanium aluminides and its validity has been demonstrated. (orig.) [German] Die Arbeit behandelt die Zusammenhaenge zwischen der Stochastizitaet des Gefueges, das heisst, einer statistischen Verteilung von Phasen und lokalen Materialeigenschaften und dem makroskopischen Versagen von ungeordneten mehrphasigen Werkstoffen. Auf mikroskopischer Ebene fuehrt die Stochastizitaet des Gefueges vor dem Versagen zu lokalen Schaedigungen (in sproeden Werkstoffen zu Mikrorissen) und schliesslich (abhaengig vom Grad der Unordnung) zur Lokalisierung des Bruchgeschehens. Makroskopisch werden die Groesse und Streuung von Bruchfestigkeitswerten und ihre Probengroessenabhaengigkeit durch die mikrostrukturelle Unordnung wesentlich bestimmt. Dieses Versagensverhalten wird in dem diskreten Chain-of-Bundles-Modell beschrieben, das die Details der Mikrostruktur nicht explizit sondern als lokale statistische Schwankungen von charakteristischen Werkstoffparametern erfasst. Am Beispiel von vier ausgewaehlten Titan-Aluminiden wird das Modell validiert und verifiziert. (orig.)

  16. Distance criterion for hydrogen bond

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Distance criterion for hydrogen bond. In a D-H ...A contact, the D...A distance must be less than the sum of van der Waals Radii of the D and A atoms, for it to be a hydrogen bond.

  17. Distance Learning: Practice and Dilemmas

    Science.gov (United States)

    Tatkovic, Nevenka; Sehanovic, Jusuf; Ruzic, Maja

    2006-01-01

    In accordance with the European processes of integrated and homogeneous education, the paper presents the essential viewpoints and questions covering the establishment and development of "distance learning" (DL) in Republic of Croatia. It starts from the advantages of distance learning versus traditional education taking into account…

  18. Quantum hologram of macroscopically entangled light via the mechanism of diffuse light storage

    International Nuclear Information System (INIS)

    Gerasimov, L V; Sokolov, I M; Kupriyanov, D V; Havey, M D

    2012-01-01

    In this paper, we consider a quantum memory scheme for light diffusely propagating through a spatially disordered atomic gas. A unique characteristic is enhanced trapping of the signal light pulse by quantum multiple scattering, which can be naturally integrated with the mechanism of stimulated Raman conversion into a long-lived spin coherence. Then, the quantum state of the light can be mapped onto the disordered atomic spin subsystem and can be stored in it for a relatively long time. The proposed memory scheme can be applicable for storage of the macroscopic analogue of the Ψ (−) Bell state and the prepared entangled atomic state performs its quantum hologram, which suggests the possibility of further quantum information processing. (paper)

  19. Long distance travel ‘today’

    DEFF Research Database (Denmark)

    Christensen, Linda

    2014-01-01

    This paper presents an overview of the Dane’s long distance travel. It is a part of the Drivers and Limits project about long distance travel. Long distance travel is in the project defined as infrequent travel with overnight stay. Danes 15-85 years-old travel in average 5.5 long distance travel...... per year og which a third is for international destinations, a third is for domestic second homes and a third are other domestic trips. However, 87% of the kilometres are for international destinations and only 4% are for domestic second homes. Travel activity is very uneven distributed with only half...... of the population having had a journey during the last three month. At the other hand 60% have travelled internationally during the last year and only 2% have never travelled abroad. The paper presents among other things how the travel activity is distributed on travel purpose and mode and how the mode choice...

  20. Decoherence, environment-induced superselection, and classicality of a macroscopic quantum superposition generated by quantum cloning

    International Nuclear Information System (INIS)

    De Martini, Francesco; Sciarrino, Fabio; Spagnolo, Nicolo

    2009-01-01

    The high resilience to decoherence shown by a recently discovered macroscopic quantum superposition (MQS) generated by a quantum-injected optical parametric amplifier and involving a number of photons in excess of 5x10 4 motivates the present theoretical and numerical investigation. The results are analyzed in comparison with the properties of the MQS based on |α> and N-photon maximally entangled states (NOON), in the perspective of the comprehensive theory of the subject by Zurek. In that perspective the concepts of 'pointer state' and 'environment-induced superselection' are applied to the new scheme.