Current-voltage curves of gold quantum point contacts revisited
DEFF Research Database (Denmark)
Hansen, K.; Nielsen, S K.; Brandbyge, Mads;
2000-01-01
We present measurements of current-voltage (I-V) curves on gold quantum point contacts (QPCs) with a conductance up to 4 G(0) (G(0) = 2e(2)/h is the conductance quantum) and voltages up to 2 V. The QPCs are formed between the gold tip of a scanning tunneling microscope and a Au(110) surface under...... clean ultra-high-vacuum conditions at room temperature. The I - V curves are found to he almost linear in contrast to previous reports. Tight-binding calculations of I - V curves for one- and two-atom contacts are in excellent agreement with our measurements. On the other hand, clearly nonlinear I - V...
Current-voltage curve of a bipolar membrane at high current density
Aritomi, T.; Boomgaard, van den Th.; Strathmann, H.
1996-01-01
The potential drop across a bipolar membrane was measured as a function of the applied current density. As a result, an inflection point was observed in the obtained current-voltage curve at high current density. This inflection point indicates that at high current densities water supply from outsid
Current-voltage curve of a bipolar membrane at high current density
Aritomi, T.; van den Boomgaard, Anthonie; Strathmann, H.
1996-01-01
The potential drop across a bipolar membrane was measured as a function of the applied current density. As a result, an inflection point was observed in the obtained current-voltage curve at high current density. This inflection point indicates that at high current densities water supply from
Energy Technology Data Exchange (ETDEWEB)
Boix, Pablo P.; Guerrero, Antonio; Garcia-Belmonte, Germa; Bisquert, Juan [Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, ES-12071 Castello (Spain); Marchesi, Luis F. [Laboratorio Interdisciplinar de, Eletroquimica e Ceramica (LIEC), Universidade Federal de Sao Carlos (Brazil); Photovoltaic and Optoelectronic Devices Group, Departament de Fisica, Universitat Jaume I, ES-12071 Castello (Spain)
2011-11-15
A connection is established between recombination and series resistances extracted from impedance spectroscopy and current-voltage curves of polythiophene:fullerene organic solar cells. Recombination is shown to depend exclusively on the (Fermi level) voltage, which allows construction of the current-voltage characteristics in any required conditions based on a restricted set of measurements. The analysis highlights carrier recombination current as the determining mechanism of organic solar cell performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Field emission current-voltage curves as a diagnostic for scanning tunneling microscope tips
Meyer, J. A.; Stranick, S. J.; Wang, J. B.; Weiss, P. S.
1991-12-01
The current-voltage (I-V) characteristics of a low temperature ultrahigh vacuum scanning tunneling microscope (STM) tip positioned greater than 100 A from a planar surface have been recorded. We find curvature in the Fowler-Nordheim plots (log 10 I/V(sup 2) vs. I/V) due to the tip-plane geometry as has been predicted theoretically. Additionally, oscillations and sharp breaks in these I-V curves are observed over a wide voltage range, 50-1000 V. These I-V curves are used to characterize the STM tips prior to tunneling.
DEFF Research Database (Denmark)
Fuchs, W; Larsen, Erik Hviid; Lindemann, B
1977-01-01
) was clamped to zero and step-changes of Na activity in the outer solution ((Na)(o)) were performed with a fast-flow chamber at constant ionic strength, while the short-circuit current was recorded.3. At pre-selected times after a step-change of (Na)(o) the current response (I) to a fast voltage staircase...... was recorded. This procedure was repeated after blocking the Na channels with amiloride to obtain the current-voltage curve of transmembrane and paracellular shunt pathways. The current-voltage curve of the Na channels was computed by subtracting the shunt current from the total current.4. The instantaneous I...... transport through open Na-selective channels of the outward facing membrane of the stratum granulosum cells can be described as an electrodiffusion process which as such does not saturate with increasing (Na)(o). However, when added to the outer border of the membrane Na causes a decrease of P(Na) within...
CURRENT-VOLTAGE CURVES FOR TREATING EFFLUENT CONTAINING HEDP: DETERMINATION OF THE LIMITING CURRENT
Directory of Open Access Journals (Sweden)
T. Scarazzato
2015-12-01
Full Text Available Abstract Membrane separation techniques have been explored for treating industrial effluents to allow water reuse and component recovery. In an electrodialysis system, concentration polarization causes undesirable alterations in the ionic transportation mechanism. The graphic construction of the current voltage curve is proposed for establishing the value of the limiting current density applied to the cell. The aim of this work was to determine the limiting current density in an electrodialysis bench stack, the function of which was the treatment of an electroplating effluent containing HEDP. For this, a system with five compartments was used with a working solution simulating the rinse waters of HEDP-based baths. The results demonstrated correlation between the regions defined by theory and the experimental data.
Krol, J.J.; Wessling, M.; Strathmann, H.
1999-01-01
Concentration polarization is studied using a commercial anion and cation exchange membrane. Current¿voltage curves show the occurrence of an overlimiting current. The nature of this overlimiting current is investigated in more detail, especially with respect to the contribution of water dissociatio
Cojocaru, Ludmila; Uchida, Satoshi; Jayaweera, Piyankarage V. V.; Kaneko, Shoji; Toyoshima, Yasutake; Nakazaki, Jotaro; Kubo, Takaya; Segawa, Hiroshi
2017-02-01
Physical modeling of hysteretic behavior in current-voltage (I-V) curves of perovskite solar cells (PSCs) is necessary for further improving their power conversion efficiencies (PCEs). The reduction of hysteresis in inverted planar structure PSCs (p-PSCs) has been achieved by using a [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) layer. In the cases, the opposite trend of the I-V hysteresis has been observed where the forward scan shows slightly higher efficiency than the reverse scan. In this paper, an equivalent circuit model with inductance is proposed. This model consists of a Schottky diode involving a parasitic inductance focusing PCBM/Al(Ca) interface and accurately represents the opposite trend of the I-V hysteresis of the p-PSC with an inverted structure.
Usak, P
2003-01-01
The measurement of the current-voltage (I-V) characteristics of BSCCO-2223/Ag multifilamentary tapes in a silver matrix has been performed on short samples (of several centimetres) as well as on long tape (1 m), wound in the form of a helical one-layer coil. Measurements at 77 K and in zero external magnetic field have revealed good reproducibility of the I-V hysteresis in most runs. Nevertheless, strange irregularities have sometimes been observed in the I-V curve behaviour during current ramping up and down. Quasi-reproducible drops from the ascending hysteretic branch in the direction of the descending one have been measured at higher voltage levels (approx 1 mV cm sup - sup 1) on the curve measured on the helical coil. These have recently been explained by a sudden change in the heat transfer coefficient [1]. Rarely and non-reproducibly we have also observed these drops on short samples at E approx 1 x 10 sup - sup 2 V m sup - sup 1 , (and even under 1 x 10 sup - sup 3 V m sup - sup 1). The accidental dro...
DEFF Research Database (Denmark)
Nielsen, S.K.; Brandbyge, Mads; Hansen, K.
2002-01-01
We present an experimental study of current-voltage (I-V) curves on atomic-sized Au and Pt contacts formed under cryogenic vacuum (4.2 K). Whereas I-V curves for Au are almost Ohmic, the conductance G=I/V for Pt decreases with increasing voltage, resulting in distinct nonlinear I-V behavior...
Foster, J. M.
2013-01-01
In this study, a drift-diffusion model is used to derive the current-voltage curves of an organic bilayer solar cell consisting of slabs of electron acceptor and electron donor materials sandwiched together between current collectors. A simplified version of the standard drift-diffusion equations is employed in which minority carrier densities are neglected. This is justified by the large disparities in electron affinity and ionisation potential between the two materials. The resulting equations are solved (via both asymptotic and numerical techniques) in conjunction with (i) Ohmic boundary conditions on the contacts and (ii) an internal boundary condition, imposed on the interface between the two materials, that accounts for charge pair generation (resulting from the dissociation of excitons) and charge pair recombination. Current-voltage curves are calculated from the solution to this model as a function of the strength of the solar charge generation. In the physically relevant power generating regime, it is shown that these current-voltage curves are well-approximated by a Shockley equivalent circuit model. Furthermore, since our drift-diffusion model is predictive, it can be used to directly calculate equivalent circuit parameters from the material parameters of the device. © 2013 AIP Publishing LLC.
DEFF Research Database (Denmark)
Medford, Andrew James; Lilliedal, Mathilde Raad
2010-01-01
Inflection point behaviour is often observed in the current-voltage (IV) curve of polymer and organic solar cells. This phenomenon is examined in the context of flexible roll-to-roll (R2R) processed polymer solar cells in a large series of devices with a layer structure of: PET-ITO-ZnO-P3HT......:PCBM-PEDOT:PSS-Ag. The devices were manufactured using a combination of slot-die coating and screen printing; they were then encapsulated by lamination using a polymer based barrier material. All manufacturing steps were carried out in ambient air. The freshly prepared devices showed a consistent inflection point in the IV...
Ridenti, M. A.; Pascholati, P. R.; Gonçalves, J. A. C.; Bueno, C. C.
2015-09-01
The I - ΔV characteristic curve of a well type ionization chamber irradiated with 192Ir sources (0.75 Ci-120 Ci) was fitted using the exact solution of the Thomson problem. The recombination coefficient and saturation current were estimated using this new approach. The saturation current was compared with the results of the conventional method based on Boag-Wilson formula. It was verified that differences larger than 1% between both methods only occurred at activities higher than 55 Ci. We concluded that this new approach is recommended for a more accurate estimate of the saturation current when it is not possible to measure currents satisfying the condition I /Isat > 0.95. From the calibration curve the average value of pairs of carriers created per unit volume was estimated to be equal to η = 8.1 ×10-3cm-3s-1 Bq-1 and from that value it was estimated that ~ 17 pairs were created on average per second for each decay of the source.
Rogov, A. B.; Shayapov, V. R.
2017-02-01
In this paper, the influence of cationic electrolytes composition on electrical and optical responses of plasma electrolytic oxidation process of A1050 aluminum alloy under alternating polarization is considered. The electrolytes consist of 0.1 M boric acid with addition of one of the following hydroxides: LiOH, NaOH, KOH, tetraethylammonium hydroxide, Ca(OH)2 up to pH value 9.2. Coatings microstructure, elemental and phase compositions were studied by SEM, EDS and XRD. It was shown that the hysteresis of anodic current-voltage curve (specific feature of "Soft sparking" PEO) was clear observed in the presence of sodium and potassium cations. It was found that composition of microdischarges plasma is also affected by the nature of the cations. It was shown that there are a number of reciprocal processes, which take place under anodic and cathodic polarization.
DEFF Research Database (Denmark)
Medford, Andrew James; Lilliedal, Mathilde Raad
2010-01-01
Inflection point behaviour is often observed in the current-voltage (IV) curve of polymer and organic solar cells. This phenomenon is examined in the context of flexible roll-to-roll (R2R) processed polymer solar cells in a large series of devices with a layer structure of: PET-ITO-ZnO-P3HT...... that the findings are applicable to various other device structures based on semiconducting oxides. The findings may have influences on the possibilities and scale-up of polymer solar technologies.......:PCBM-PEDOT:PSS-Ag. The devices were manufactured using a combination of slot-die coating and screen printing; they were then encapsulated by lamination using a polymer based barrier material. All manufacturing steps were carried out in ambient air. The freshly prepared devices showed a consistent inflection point in the IV...
Giorgi, Giacomo; Yamashita, Koichi
2015-11-06
Starting from a brief description of the main architectures characterizing the novel solar technology of perovskite-based solar cells, we focus our attention on the anomalous hysteresis experimentally found to affect the measurement of the current-voltage curve of such devices. This detrimental effect, associated with slow dynamic reorganization processes, depends on several parameters; among them, the scan rate of the measurements, the architecture of the cell, and the perovskite deposition rate are crucial. Even if a conclusive explanation of the origin of the hysteresis has not been provided so far, several experimental findings ascribe its origin to ionic migration at an applied bias and dielectric polarization that occurs in the perovskite layer. Consistently, a dipole-moment-reduced cation such as formamidinium ion is experimentally reported to quantitatively reduce the hysteresis from perovskite-based devices. By means of a density-functional theory-based set of calculations, we have predicted and characterized guanidinium ion (GA = (+)[C(NH2)3], a zero-dipole moment cation by symmetry)-based organic-inorganic halide perovskite's structural and electronic properties, speculating that such a cation and the alloys it may form with other organic cations can represent a possible chemical solution for the puzzling issue of the hysteresis.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The water dissociation mechanism on a bipolar membrane under the electrical field was investigated and characterized in terms of ionic transport and limiting current density. It is considered that the depletion layer exists at the junction of a bipolar membrane, which is coincided with the viewpoint of the most literatures, but we also consider that the thickness and conductivity of this layer is not only related with the increase of the applied voltage but also with the limiting current density. Below the limiting current density, the thickness of the depletion layer keeps a constant and the conductivity decreases with the increase of the applied voltage;while above the limiting current density, the depletion thickness will increase with the increase of the applied voltage and the conductivity keeps a very low constant. Based on the data reported in the literatures and independent determinations, the limiting current density was calculated and the experimental curves Ⅰ- Ⅴ in the two directions were compared with the theoretical calculations. It is demonstrated that above the limiting current density, the experimental results,either in the L-H direction or in the H-L direction, are consistent with the theoretical calculations; below the limiting current density, a slight deviation exists between the experimental and the theoretical results, and between the experimental results in the two directions. The change in Donnan potential due to the asymmetry of the mono-layers and the changes of ionic composition in the two directions is possibly responsible for this deviation.
Institute of Scientific and Technical Information of China (English)
Qian-ying Chen; Jing Gao; Kun Dai; Huan Pang; Jia-zhuang Xu; Jian-hua Tang; Zhong-ming Li
2013-01-01
Current-voltage electrical behavior of in situ microfibrillar carbon black (CB)/poly(ethylene terephthalate)(PET)/polyethylene (PE) (m-CB/PET/PE) composites with various CB concentrations at ambient temperatures was studied under a direct-current electric field.The current-voltage (Ⅰ-Ⅴ) curves exhibited nonlinearity beyond a critical value of voltage.The dynamic random resistor network (DRRN) model was adopted to semi-qualitatively explain the nonlinear conduction behavior of m-CB/PET/PE composites.Macroscopic nonlinearity originated from the interracial interactions between CB/PET micro fibrils and additional conduction channels.Combined with the special conductive networks,an illustration was proposed to interpret the nonlinear Ⅰ-Ⅴ characteristics by a field emission or tunneling mechanism between CB particles in the CB/PET microfibers intersections.
Current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation
Directory of Open Access Journals (Sweden)
N Hatefi Kargan
2013-09-01
Full Text Available In this paper, current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation has been calculated and compared with the results when there is no electromagnetic radiation. For calculating current -voltage characteristic, it is required to calculate the transmission coefficient of electrons from the well and barrier structures of this device. For calculating the transmission coefficient of electrons at the presence of electromagnetic radiation, Finite Difference Time Domain (FDTD method has been used and when there is no electromagnetic radiation Transfer Matrix Method (TMM and finite diffirence time domain method have been used. The results show that the presence of electromagnetic radiation causes resonant states other than principal resonant state (without presence of electromagnetic radiation to appear on the transmition coefficient curve where they are in distances from the principal peak and from each other. Also, the presence of electromagnetic radiation causes peaks other than principal peak to appear on the current-voltage characteristics of the device. Under electromagnetic radiation, the number of peaks on the current-voltage curve is smaller than the number of peaks on the current-voltage transmission coefficient. This is due to the fact that current-voltage curve is the result of integration on the energy of electrons, Thus, the sharper and low height peaks on the transmission coefficient do not appear on the current-voltage characteristic curve.
Current-voltage characteristics of double-strand DNA sequences
Bezerril, L. M.; Moreira, D. A.; Albuquerque, E. L.; Fulco, U. L.; de Oliveira, E. L.; de Sousa, J. S.
2009-09-01
We use a tight-binding formulation to investigate the transmissivity and the current-voltage (I-V) characteristics of sequences of double-strand DNA molecules. In order to reveal the relevance of the underlying correlations in the nucleotides distribution, we compare the results for the genomic DNA sequence with those of artificial sequences (the long-range correlated Fibonacci and Rudin-Shapiro one) and a random sequence, which is a kind of prototype of a short-range correlated system. The random sequence is presented here with the same first neighbors pair correlations of the human DNA sequence. We found that the long-range character of the correlations is important to the transmissivity spectra, although the I-V curves seem to be mostly influenced by the short-range correlations.
Current-voltage characteristics of double-strand DNA sequences
Energy Technology Data Exchange (ETDEWEB)
Bezerril, L.M.; Moreira, D.A. [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN (Brazil); Albuquerque, E.L., E-mail: eudenilson@dfte.ufrn.b [Departamento de Fisica, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN (Brazil); Fulco, U.L. [Departamento de Biofisica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970, Natal-RN (Brazil); Oliveira, E.L. de; Sousa, J.S. de [Departamento de Fisica, Universidade Federal do Ceara, 60455-760, Fortaleza-CE (Brazil)
2009-09-07
We use a tight-binding formulation to investigate the transmissivity and the current-voltage (I-V) characteristics of sequences of double-strand DNA molecules. In order to reveal the relevance of the underlying correlations in the nucleotides distribution, we compare the results for the genomic DNA sequence with those of artificial sequences (the long-range correlated Fibonacci and Rudin-Shapiro one) and a random sequence, which is a kind of prototype of a short-range correlated system. The random sequence is presented here with the same first neighbors pair correlations of the human DNA sequence. We found that the long-range character of the correlations is important to the transmissivity spectra, although the I-V curves seem to be mostly influenced by the short-range correlations.
Current-voltage relation for thin tunnel barriers: Parabolic barrier model
DEFF Research Database (Denmark)
Hansen, Kim; Brandbyge, Mads
2004-01-01
We derive a simple analytic result for the current-voltage curve for tunneling of electrons through a thin uniform insulating layer modeled by a parabolic barrier. Our model, which goes beyond the Wentzel–Kramers–Brillouin approximation, is applicable also in the limit of highly transparant barri...
On Calculating the Current-Voltage Characteristic of Multi-Diode Models for Organic Solar Cells
Roberts, Ken
2016-01-01
We provide an alternative formulation of the exact calculation of the current-voltage characteristic of solar cells which have been modeled with a lumped parameters equivalent circuit with one or two diodes. Such models, for instance, are suitable for describing organic solar cells whose current-voltage characteristic curve has an inflection point, also known as an S-shaped anomaly. Our formulation avoids the risk of numerical overflow in the calculation. It is suitable for implementation in Fortran, C or on micro-controllers.
Directory of Open Access Journals (Sweden)
S. L. Bravina
2011-01-01
Full Text Available The characterization of the asymmetries of bipolar charge-voltage and current-voltage loops of polarization reversal and unipolar current-voltage curves for Pt/PZT-film/Pt:Ti/SiO2/Si-substrate systems was performed in the dynamic mode. The asymmetry of local deformation-voltage loops was observed by piezoresponse force microscopy. The comparison of the dependences of introduced asymmetry factors for the bipolar charge-voltage and current-voltage loops and unipolar current-voltage curves on drive voltage indicates the interconnection of ferroelectric and electrical space charge transfer asymmetries.
Institute of Scientific and Technical Information of China (English)
P. Ohlckers; P. Pipinys
2009-01-01
@@ In "Electrical Conductivity and Current-Voltage Characteristics of Individual Conducting Polymer PEDOT Nanowires", Long et al.[1] reported the currentvoltage ( Ⅰ - Ⅴ) characteristics of individual poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires in the temperature range from 20 to 50K (Fig. 2(a)). The authors stated that at temperatures equal to 50 K and higher, the Ⅰ - Ⅴ curves were linear. With decreasing temperature the Ⅰ - Ⅴ curves gradually became nonlinear. The temperature behavior of Ⅰ - Ⅴ characteristics is not suitably explained.
Current-voltage characteristics of an individual helical CdS nanowire rope
Institute of Scientific and Technical Information of China (English)
Long Yun-Ze; Wang Wen-Long; Bai Feng-Lian; Chen Zhao-Jia; Jin Ai-Zi; Gu Chang-Zhi
2008-01-01
This paper studies the electronic transport in an individual helically twisted CdS nanowire rope, on which platinum microleacls are attached by focused-ion beam deposition. The current-voltage (Ⅰ - Ⅴ ) characteristics are nonlinear from 300 down to 60 K. Some step-like structures in the Ⅰ - Ⅴ curves and oscillation peaks in the differential conductance (dⅠ/dⅤ - Ⅴ) curves have been observed even at room temperature. It proposes that the observed behaviour can be attributed to Coulomb-blockade transport in the one-dimensional CdS nanowires with diameters of 6-10 nm.
Current-voltage model of LED light sources
DEFF Research Database (Denmark)
Beczkowski, Szymon; Munk-Nielsen, Stig
2012-01-01
Amplitude modulation is rarely used for dimming light-emitting diodes in polychromatic luminaires due to big color shifts caused by varying magnitude of LED driving current and nonlinear relationship between intensity of a diode and driving current. Current-voltage empirical model of light...
Current-Voltage Characteristics of Quasi-One-Dimensional Superconductors
DEFF Research Database (Denmark)
Vodolazov, D.Y.; Peeters, F.M.; Piraux, L.
2003-01-01
The current-voltage (I-V) characteristics of quasi-one-dimensional superconductors were discussed. The I-V characteristics exhibited an unusual S behavior. The dynamics of superconducting condensate and the existence of two different critical currents resulted in such an unusual behavior....
Experimental observation of direct current voltage-induced phase synchronization
Indian Academy of Sciences (India)
Haihong Li; Weiqing Liu; Qiongling Dai; Jinghua Xiao
2006-09-01
The dynamics of two uncoupled distinct Chua circuits driven by a common direct current voltage is explored experimentally. It was found that, with increasing current intensity, the dominant frequencies of these two Chua circuits will first vary at different speeds, approach an identical value for a certain current intensity and then separate. Techniques such as synchronization index and phase difference distribution were employed to analyze the phase coherence between these two Chua circuits.
Branching in current-voltage characteristics of intrinsic Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Shukrinov, Yu M [BLTP, JINR, Dubna, Moscow Region, 141980 (Russian Federation); Mahfouzi, F [Institute for Advanced Studies in Basic Sciences, PO Box 45195-1159, Zanjan (Iran, Islamic Republic of)
2007-02-15
We study branching in the current-voltage characteristics of the intrinsic Josephson junctions of high-temperature superconductors in the framework of the capacitively coupled Josephson junction model with diffusion current. A system of dynamical equations for the gauge-invariant phase differences between superconducting layers for a stack of ten intrinsic junctions has been numerically solved. We have obtained a total branch structure in the current-voltage characteristics. We demonstrate the existence of a 'breakpoint region' on the current-voltage characteristics and explain it as a result of resonance between Josephson and plasma oscillations. The effect of the boundary conditions is investigated. The existence of two outermost branches and correspondingly two breakpoint regions for the periodic boundary conditions is shown. One branch, which is observed only at periodic boundary conditions, corresponds to the propagating of the plasma mode. The second one corresponds to the situation when the charge oscillations on the superconducting layers are absent, excluding the breakpoint. A time dependence of the charge oscillations at breakpoints is presented.
Branching in current voltage characteristics of intrinsic Josephson junctions
Shukrinov, Yu M.; Mahfouzi, F.
2007-02-01
We study branching in the current-voltage characteristics of the intrinsic Josephson junctions of high-temperature superconductors in the framework of the capacitively coupled Josephson junction model with diffusion current. A system of dynamical equations for the gauge-invariant phase differences between superconducting layers for a stack of ten intrinsic junctions has been numerically solved. We have obtained a total branch structure in the current-voltage characteristics. We demonstrate the existence of a 'breakpoint region' on the current-voltage characteristics and explain it as a result of resonance between Josephson and plasma oscillations. The effect of the boundary conditions is investigated. The existence of two outermost branches and correspondingly two breakpoint regions for the periodic boundary conditions is shown. One branch, which is observed only at periodic boundary conditions, corresponds to the propagating of the plasma mode. The second one corresponds to the situation when the charge oscillations on the superconducting layers are absent, excluding the breakpoint. A time dependence of the charge oscillations at breakpoints is presented.
Energy Technology Data Exchange (ETDEWEB)
Chen Zuhui [Lee-Kuan-Yew Postdoctoral Fellow, 2007-2010, Nanyang Technological University, Singapore 639798 (Singapore); Jie Binbin; Sah Chihtang, E-mail: bb_jie@msn.com [Department of Physics, Xiamen University, Xiamen 361005 (China)
2010-12-15
Impurity deionization on the direct-current current-voltage characteristics from electron-hole recombination (R-DCIV) at SiO{sub 2}/Si interface traps in MOS transistors is analyzed using the steady-state Shockley-Read-Hall recombination kinetics and the Fermi distributions for electrons and holes. Insignificant distortion is observed over 90% of the bell-shaped R-DCIV curves centered at their peaks when impurity deionization is excluded in the theory. This is due to negligible impurity deionization because of the much lower electron and hole concentrations at the interface than the impurity concentration in the 90% range. (invited papers)
Current-voltage characteristics in macroporous silicon/SiOx/SnO2:F heterojunctions.
Garcés, Felipe A; Urteaga, Raul; Acquaroli, Leandro N; Koropecki, Roberto R; Arce, Roberto D
2012-07-25
We study the electrical characteristics of macroporous silicon/transparent conductor oxide junctions obtained by the deposition of fluorine doped-SnO2 onto macroporous silicon thin films using the spray pyrolysis technique. Macroporous silicon was prepared by the electrochemical anodization of a silicon wafer to produce pore sizes ranging between 0.9 to 1.2 μm in diameter. Scanning electronic microscopy was performed to confirm the pore filling and surface coverage. The transport of charge carriers through the interface was studied by measuring the current-voltage curves in the dark and under illumination. In the best configuration, we obtain a modest open-circuit voltage of about 70 mV and a short-circuit current of 3.5 mA/cm2 at an illumination of 110 mW/cm2. In order to analyze the effects of the illumination on the electrical properties of the junction, we proposed a model of two opposing diodes, each one associated with an independent current source. We obtain a good accordance between the experimental data and the model. The current-voltage curves in illuminated conditions are well fitted with the same parameters obtained in the dark where only the photocurrent intensities in the diodes are free parameters.
A linear auroral current-voltage relation in fluid theory
Directory of Open Access Journals (Sweden)
J. Vedin
2004-04-01
Full Text Available Progress in our understanding of auroral currents and auroral electron acceleration has for decades been hampered by an apparent incompatibility between kinetic and fluid models of the physics involved. A well established kinetic model predicts that steady upward field-aligned currents should be linearly related to the potential drop along the field line, but collisionless fluid models that reproduce this linear current-voltage relation have not been found. Using temperatures calculated from the kinetic model in the presence of an upward auroral current, we construct here approximants for the parallel and perpendicular temperatures. Although our model is rather simplified, we find that the fluid equations predict a realistic large-scale parallel electric field and a linear current-voltage relation when these approximants are employed as nonlocal equations of state. This suggests that the concepts we introduce can be applied to the development of accurate equations of state for fluid simulations of auroral flux tubes.
Key words. Magnetospheric physics (auroral phenomena; magnetosphere-ionosphere interactions – Space plasma physics (kinetic and MHD theory
Current-voltage characteristics of borophene and borophane sheets.
Izadi Vishkayi, Sahar; Bagheri Tagani, Meysam
2017-08-16
Motivated by recent experimental and theoretical research on a monolayer of boron atoms, borophene, the current-voltage characteristics of three different borophene sheets, 2Pmmn, 8Pmmn, and 8Pmmm, are calculated using density functional theory combined with the nonequilibrium Green's function formalism. Borophene sheets with two and eight atoms in a unit cell are considered. Their band structure, electron density, and structural anisotropy are analyzed in detail. The results show that the 8Pmmn and 8Pmmm structures that have eight atoms in the unit cell have less anisotropy than 2Pmmn. In addition, although 8Pmmn shows a Dirac cone in the band structure, its current is lower than that of the other two. We also consider a fully hydrogenated borophene, borophane, and find that the hydrogenation process reduces the structural anisotropy and the current significantly. Our findings reveal that the current-voltage characteristics of the borophene sheets can be used to detect the type and the growth direction of the sample because it is strongly dependent on the direction of the electron transport, anisotropy, and details of the unit cell of the borophene.
Current-voltage characteristics of light-emitting diodes under optical and electrical excitation
Institute of Scientific and Technical Information of China (English)
Wen Jing; Wen Yumei; Li Ping; Li Lian
2011-01-01
The factors influencing the current-voltage (Ⅰ-Ⅴ) characteristics of light-emitting diodes (LEDs) are investigated to reveal the connection of Ⅰ-Ⅴ characteristics under optical excitation and those under electrical excitation.By inspecting the Ⅰ-Ⅴ curves under optical and electrical excitation at identical injection current,it has been found that the Ⅰ-Ⅴ curves exhibit apparent differences in voltage values.Furthermore,the differences are found to originate from the junction temperatures in diverse excitation ways.Experimental results indicate that if the thermal effect of illuminating spot is depressed to an ignorable extent by using pulsed light,the junction temperature will hardly deflect from that under optical excitation,and then the Ⅰ-Ⅴ characteristics under two diverse excitation ways will be the same.
Verification of a thermal interpretation of BSCCO-2223/Ag current voltage hysteresis
Sastry, P. V. P. S. S.; Nguyen, D. N.; Usak, P.; Schwartz, J.
2004-03-01
The current-voltage characteristic hysteresis of Bi-2223 tape in a silver matrix cooled by liquid nitrogen (LN2) at 77 K can be interpreted thermally, i.e. while the ramping-up temperature of the tape is higher than the ramping-down temperature for the same current levels. The reason for this could be hysteresis of the heat transfer coefficient. The coefficient is smaller during ramping up and larger (better cooling) during ramping down. To verify or deny this concept we have measured the surface temperature of the tape at LN2 temperature with and without a thermal insulation sheet upon the tape during ramping up over Ic and ramping down back under Ic. Different ramping rates were applied. The amplitudes of E on the tape was under 0.5 mV cm-1. In spite of measurement error and thermal fluctuations, we observed a difference between the surface temperature curve branch during ramping up and the higher branch during ramping down for a non-insulated tape. Furthermore, the measurements showed that a positive current-voltage (I-V) hysteresis pattern (with the down branch shifted to higher currents and smaller voltages) was observed even with thermal insulation. Under these conditions, however, the down branch of the temperature curve clearly revealed a higher temperature with respect to the up branch of the temperature, contrary to expectations of the thermal interpretation of I-V hysteresis. According to this result, the thermal concept of positive I-V hysteresis under stable cooling conditions can be denied. On the other hand, an accidental voltage drop in the I-V curve was observed on one degraded sample accompanied by a corresponding drop in temperature. This proves the thermal interpretation of voltage drops in I-V curves of locally degraded tapes.
Verification of a thermal interpretation of BSCCO-2223/Ag current-voltage hysteresis
Energy Technology Data Exchange (ETDEWEB)
Sastry, P V P S S [Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310 (United States); Nguyen, D N [Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310 (United States); Usak, P [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava, Sk84239 (Slovakia); Schwartz, J [Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310 (United States)
2004-03-01
The current-voltage characteristic hysteresis of Bi-2223 tape in a silver matrix cooled by liquid nitrogen (LN{sub 2}) at 77 K can be interpreted thermally, i.e. while the ramping-up temperature of the tape is higher than the ramping-down temperature for the same current levels. The reason for this could be hysteresis of the heat transfer coefficient. The coefficient is smaller during ramping up and larger (better cooling) during ramping down. To verify or deny this concept we have measured the surface temperature of the tape at LN{sub 2} temperature with and without a thermal insulation sheet upon the tape during ramping up over I{sub c} and ramping down back under I{sub c}. Different ramping rates were applied. The amplitudes of E on the tape was under 0.5 mV cm{sup -1}. In spite of measurement error and thermal fluctuations, we observed a difference between the surface temperature curve branch during ramping up and the higher branch during ramping down for a non-insulated tape. Furthermore, the measurements showed that a positive current-voltage (I-V) hysteresis pattern (with the down branch shifted to higher currents and smaller voltages) was observed even with thermal insulation. Under these conditions, however, the down branch of the temperature curve clearly revealed a higher temperature with respect to the up branch of the temperature, contrary to expectations of the thermal interpretation of I-V hysteresis. According to this result, the thermal concept of positive I-V hysteresis under stable cooling conditions can be denied. On the other hand, an accidental voltage drop in the I-V curve was observed on one degraded sample accompanied by a corresponding drop in temperature. This proves the thermal interpretation of voltage drops in I-V curves of locally degraded tapes.
Current-voltage characteristics of carbon nanotubes with substitutional nitrogen
DEFF Research Database (Denmark)
Kaun, C.C.; Larade, B.; Mehrez, H.;
2002-01-01
We report ab initio analysis of current-voltage (I-V) characteristics of carbon nanotubes with nitrogen substitution doping. For zigzag semiconducting tubes, doping with a single N impurity increases current flow and, for small radii tubes, narrows the current gap. Doping a N impurity per nanotube...... unit cell generates a metallic transport behavior. Nonlinear I-V characteristics set in at high bias and a negative differential resistance region is observed for the doped tubes. These behaviors can be well understood from the alignment/mis-alignment of the current carrying bands in the nanotube leads...... due to the applied bias voltage. For a armchair metallic nanotube, a reduction of current is observed with substitutional doping due to elastic backscattering by the impurity....
Temperature-dependent current-voltage characteristics of niobium SNIS Josephson junctions
Energy Technology Data Exchange (ETDEWEB)
Lacquaniti, V; Andreone, D; Cassiago, C; De Leo, N; Fretto, M; Sosso, A [National Institute of Metrological Research, Electromagnetism Division, Strada delle Cacce 91, 10135 Torino (Italy); Belogolovskii, M, E-mail: v.lacquaniti@inrim.i [Donetsk Physical and Technical Institute, National Academy of Sciences of Ukraine, Str. Rosa Luxemburg. 72, 83114 Donetsk (Ukraine)
2010-06-01
Motivated by a search for a suitable technology to fabricate Josephson junctions with a tunable damping regime, we performed a systematic study of the temperature effect on the critical current in Nb/Al-AlO{sub x}-Nb heterostructures with a nanometer-thick Al interlayer. For Al layer thicknesses ranging from 40 to 110 nm, we have observed a transition from hysteretic (below 4.2 K) to non-hysteretic (above 4.2 K) current-voltage curves. Measured supercurrent-vs-temperature characteristics which significantly differ from those of traditional SIS and SNS devices are interpreted in terms of the superconducting proximity effect between Al and Nb films. Thermal stability and good reproducibility of our junctions are demonstrated.
Smestad, Greg P.
1992-12-01
A connection is made between the luminescence or radiative recombination in an absorber material and the current voltage characteristics of a quantum converter of light. A relationship between luminescence and voltage is derived, using detailed balance and the chemical potential of the excitation, which is similar to that obtained using the techniques of Shockley and Queisser or R. T. Ross. This model relates the absorptivity and photoluminescence efficiency of the light absorber to the I V curve. In this way both thermodynamic properties, or voltage, and the kinetics, or charge transfer and current, can be combined in order to optimize materials and configurations. The model is applied to dye sensitized Ti02 solar cells, and compared with preliminary experimental data for Ru based charge transfer dyes and inorganic compounds. The luminescence model is found to be applicable to dye sensitized converters, as well as to standard silicon solar cells, light detectors, and LEDs.
Modeling the current-voltage characteristics of bilayer polymer photovoltaic devices
Barker, J. A.; Ramsdale, C. M.; Greenham, N. C.
2003-02-01
We have developed a numerical model to predict the current-voltage curves of bilayer conjugated polymer photovoltaic devices. The model accounts for charge photogeneration, injection, drift, diffusion, and recombination, and includes the effect of space charge on the electric field within the device. Charge separation at the polymer-polymer interface leads to the formation of bound polaron pairs which may either recombine monomolecularly or be dissociated into free charges, and we develop expressions for the field dependence of the dissociation rate. We find that the short-circuit quantum efficiency is determined by the competition between polaron pair dissociation and recombination. The model shows a logarithmic dependence of the open-circuit voltage on the incident intensity, as seen experimentally. This additional intensity-dependent voltage arises from the field required to produce a drift current that balances the current due to diffusion of carriers away from the interface.
Current-voltage-temperature characteristics of DNA origami
Energy Technology Data Exchange (ETDEWEB)
Bellido, Edson P; Bobadilla, Alfredo D; Rangel, Norma L; Seminario, Jorge M [Department of Chemical Engineering, Texas A and M University, College Station, TX 77843 (United States); Zhong Hong; Norton, Michael L [Department of Chemistry, Marshall University, Huntington, WV 25755 (United States); Sinitskii, Alexander [Department of Chemistry, Rice University, Houston, TX 77005 (United States)
2009-04-29
The temperature dependences of the current-voltage characteristics of a sample of triangular DNA origami deposited in a 100 nm gap between platinum electrodes are measured using a probe station. Below 240 K, the sample shows high impedance, similar to that of the substrate. Near room temperature the current shows exponential behavior with respect to the inverse of temperature. Sweep times of 1 s do not yield a steady state; however sweep times of 450 s for the bias voltage secure a steady state. The thermionic emission and hopping conduction models yield similar barriers of {approx}0.7 eV at low voltages. For high voltages, the hopping conduction mechanism yields a barrier of 0.9 eV and the thermionic emission yields 1.1 eV. The experimental data set suggests that the dominant conduction mechanism is hopping in the range 280-320 K. The results are consistent with theoretical and experimental estimates of the barrier for related molecules.
Improved analytical current voltage characteristics of a solar cell
Energy Technology Data Exchange (ETDEWEB)
Yli-Koski, M.; Tuominen, E.; Acerbis, M.; Sinkkonen, J.
1997-12-31
Application of the Green`s function method to the calculation of the current voltage characteristics of a pn-junction solar cell makes possible to extract more reliable and exact information about the behavior of the cell. With this method not only the minority carrier diffusion currents but also the drift currents in quasi- neutral regions of the solar cell can be taken into consideration. Furthermore, this approach is not limited to an exponentially decaying minority carrier generation function but is valid for any type of optical generation. In addition, the injection boundary condition is exploited with the result that not only the pn-diode current but also the current resulting from the optical generation depends on the voltage of the solar cell. Applying the method also gives the so called position dependent collection efficiency function which is defined as the probability that an electron-hole pair created at a certain point inside the solar cell will contribute to the current leaving the cell. (orig.) 15 refs.
Current-voltage relationship in the auroral particle acceleration region
Directory of Open Access Journals (Sweden)
M. Morooka
2004-11-01
Full Text Available The current-voltage relationship in the auroral particle acceleration region has been studied statistically by the Akebono (EXOS-D satellite in terms of the charge carriers of the upward field-aligned current. The Akebono satellite often observed field-aligned currents which were significantly larger than the model value predicted by Knight (1973. We compared the upward field-aligned current estimated by three different methods, and found that low-energy electrons often play an important role as additional current carriers, together with the high-energy primary electrons which are expected from Knight's relation. Such additional currents have been observed especially at high and middle altitudes of the particle acceleration region. Some particular features of electron distribution functions, such as "cylindrical distribution functions" and "electron conics", have often been observed coinciding with the additional currents. They indicated time variability of the particle acceleration region. Therefore, we have concluded that the low-energy electrons within the "forbidden" region of electron phase space in the stationary model often contribute to charge carriers of the current because of the rapid time variability of the particle acceleration region. "Cylindrical distribution functions" are expected to be found below the time-varying potential difference. We statistically examined the locations of "cylindrical distribution function", and found that their altitudes are related to the location where the additional currents have been observed. This result is consistent with the idea that the low-energy electrons can also carry significant current when the acceleration region changes in time.
Institute of Scientific and Technical Information of China (English)
张平; 王弋; 付立民; 艾希成; 张建平
2015-01-01
In the present work, we investigated the dynamics of charge col ection and recombination in dye-sensitized solar cel s (DSSCs) spanning a large region of bias voltages using transient photoconductivity. The rate of charge col ection was much faster than that of charge recombination at varied voltages, which was responsible for the nearly uniform charge col ection efficiency. Based on this result, we simplified the diode characteristic model, which al owed us to directly fit the current-voltage (I-V) curve. A series of parameters related to the photo-to-electric processes in working DSSCs could be extracted from the proposed model, which could be used to evaluate the processes of charge generation, transport, and recombination in DSSCs, as wel as the rectification of DSSC devices. We applied the fitting method to DSSCs with different 4-tert-butyl pyridine (TBP) concentrations of electrolyte. It was found that the rate of charge recombination significantly differed while that of charge col ection was rather constant under different TBP concentrations, which was in good agreement with the results of I-V curve fitting. In addition, this research shows that the change of TBP concentration significantly affects the ideality factor (m) of DSSC devices.%利用瞬态光电导技术研究了在一个大的偏压范围内染料敏化太阳能电池(DSSC)中的电荷收集和电荷复合过程的动力学。结果表明，在不同的电压下电荷收集速率远快于电荷复合速率，用以解释电荷的收集效率几乎不变。基于这个结果，简化了DSSC二极管特性模型，从而实现了对电流-电压(I-V)曲线的直接拟合。利用这一模型拟合的结果提取出一系列与工作条件下DSSC光电转化过程相关的参数，可以用以描述包括电荷生成、电荷收集和复合以及DSSC器件的整流特性等关键性质。将这一拟合方法应用于不同叔丁基吡啶(TBP)浓度电解液的电池，获得的结果表明
VANDENBERG, IP
1991-01-01
We present a mathematical model for the ''river-phenomenon'': striking concentrations of trajectories of ordinary differential equations. This model of ''macroscopic rivers'' is formulated within nonstandard analysis, and stated in terms of macroscopes and singular perturbations. For a subclass, the
Shukrinov, Yu. M.; Mahfouzi, F.; Suzuki, M.
2008-10-01
A fine structure of the breakpoint region in the current-voltage characteristics of the coupled intrinsic Josephson junctions in the layered superconductors is found. We establish a correspondence between the features in the current-voltage characteristics and the character of the charge oscillations in superconducting layers in the stack and explain the origin of the breakpoint region structure.
Solar Cell Parameters Extraction from a Current-Voltage Characteristic Using Genetic Algorithm
Directory of Open Access Journals (Sweden)
Sanjaykumar J. Patel
2013-05-01
Full Text Available The determination of solar cell parameters is very important for the evaluation of the cell performance as well as to extract maximum possible output power from the cell. In this paper, we propose a computational based binary-coded genetic algorithm (GA to extract the parameters (I0, Iph and n for a single diode model of solar cell from its current-voltage (I-V characteristic. The algorithm was implemented using LabVIEW as a programming tool and validated by applying it to the I-V curve synthesized from the literature using reported values. The values of parameters obtained by GA are in good agreement with those of the reported values for silicon and plastic solar cells. change to “After the validation of the program, it was used to extract parameters for an experimental I-V characteristic of 4 × 4 cm2 polycrystalline silicon solar cell measured under 900 W/m. The I-V characteristic obtained using GA shows excellent match with the experimental one.
Current-voltage characteristics of individual conducting polymer nanotubes and nanowires
Institute of Scientific and Technical Information of China (English)
Long Yun-ze; Yin Zhi-Hua; Li Meng-Meng; Gu Chang-Zhi; Duvail Jean-Luc; Jin Ai-zi; Wan Mei-xiang
2009-01-01
We report the current-voltage (Ⅰ-Ⅴ) characteristics of individual polypyrrole nanotubes and poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires in a temperature range from 300 K to 2 K. Considering the complex structures of such quasi-one-dimensional systems with an array of ordered conductive regions separated by disordered barriers, we use the extended fluctuation-induced tunneling (FIT) and thermal excitation model (Kaiser expression) to fit the temperature and electric-field dependent Ⅰ-Ⅴ curves. It is found that the Ⅰ-Ⅴ data measured at higher temperatures or higher voltages can be well fitted by the Kaiser expression. However, the low-temperature data around the zero bias clearly deviate from those obtained from this model. The deviation (or zero-bias conductance suppression)could be possibly ascribed to the occurrence of the Coulomb-gap in the density of states near the Femi level and/or the enhancement of electron-electron interaction resulting from nanosize effects, which have been revealed in the previous studies on low-temperature electronic transport in conducting polymer films, pellets and nanostructures. In addition,similar Ⅰ-Ⅴ characteristics and deviation are also observed in an isolated K0.27MnO2 nanowire.
Zorba, S; Le, Q T; Watkins, N J; Yan, L; Gao, Y
2001-09-01
Atomic force microscopy was used to study the growth modes (on SiO2, MoS2, and Au substrates) and the current-voltage (I-V) characteristics of organic semiconductor pentacene. Pentacene films grow on SiO2 substrate in a layer-by-layer manner with full coverage at an average thickness of 20 A and have the highest degree of molecular ordering with large dendritic grains among the pentacene films deposited on the three different substrates. Films grown on MoS2 substrate reveal two different growth modes, snowflake-like growth and granular growth, both of which seem to compete with each other. On the other hand, films deposited on Au substrate show granular structure for thinner coverages (no crystal structure) and dendritic growth for higher coverages (crystal structure). I-V measurements were performed with a platinum tip on a pentacene film deposited on a Au substrate. The I-V curves on pentacene film reveal symmetric tunneling type character. The field dependence of the current indicates that the main transport mechanism at high field intensities is hopping (Poole-Frenkel effect). From these measurements, we have estimated a field lowering coefficient of 9.77 x 10(-6) V-1/2 m1/2 and an ideality factor of 18 for pentacene.
Current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation
National Research Council Canada - National Science Library
N Hatefi Kargan
2013-01-01
In this paper, current-voltage characteristic of a resonant tunneling diode under electromagnetic radiation has been calculated and compared with the results when there is no electromagnetic radiation...
Classification of methods for measuring current-voltage characteristics of semiconductor devices
Directory of Open Access Journals (Sweden)
Iermolenko Ia. O.
2014-06-01
Full Text Available It is shown that computer systems for measuring current-voltage characteristics are very important for semiconductor devices production. The main criteria of efficiency of such systems are defined. It is shown that efficiency of such systems significantly depends on the methods for measuring current-voltage characteristics of semiconductor devices. The aim of this work is to analyze existing methods for measuring current-voltage characteristics of semiconductor devices and to create the classification of these methods in order to specify the most effective solutions in terms of defined criteria. To achieve this aim, the most common classifications of methods for measuring current-voltage characteristics of semiconductor devices and their main disadvantages are considered. Automated and manual, continuous, pulse, mixed, isothermal and isodynamic methods for measuring current-voltage characteristics are analyzed. As a result of the analysis and generalization of existing methods the next classification criteria are defined: the level of automation, the form of measurement signals, the condition of semiconductor device during the measurements, and the use of mathematical processing of the measurement results. With the use of these criteria the classification scheme of methods for measuring current-voltage characteristics of semiconductor devices is composed and the most effective methods are specified.
Würfel, Uli; Neher, Dieter; Spies, Annika; Albrecht, Steve
2015-04-24
This work elucidates the impact of charge transport on the photovoltaic properties of organic solar cells. Here we show that the analysis of current-voltage curves of organic solar cells under illumination with the Shockley equation results in values for ideality factor, photocurrent and parallel resistance, which lack physical meaning. Drift-diffusion simulations for a wide range of charge-carrier mobilities and illumination intensities reveal significant carrier accumulation caused by poor transport properties, which is not included in the Shockley equation. As a consequence, the separation of the quasi Fermi levels in the organic photoactive layer (internal voltage) differs substantially from the external voltage for almost all conditions. We present a new analytical model, which considers carrier transport explicitly. The model shows excellent agreement with full drift-diffusion simulations over a wide range of mobilities and illumination intensities, making it suitable for realistic efficiency predictions for organic solar cells.
The PPTN-02 new-generation current-voltage transducers for measuring of photosignals
Directory of Open Access Journals (Sweden)
Butenko V. K.
2008-02-01
Full Text Available The measurement results of technical characteristics of new-generation current-voltage transducers which have low input resistance (<10 Оhm and providing ptotodiodes photocurrent measurement from 1·10-12 to 1·10-3 A are presented.
Bidirectional current-voltage converters based on magnetostrictive/piezoelectric composites
Jia, Y.; Or, S.W.; Chan, H.L.W.; Jiao, J.; Luo, H.; Van der Zwaag, S.
2009-01-01
We report a power supply-free, bidirectional electric current-voltage converter based on a coil-wound laminated composite of magnetostrictive alloy and piezoelectric crystal. An electric current applied to the coil induces a magnetic field, resulting in an electric voltage from the composite due to
Current-voltage characteristics of Pb and Sn granular superconducting nanowires
DEFF Research Database (Denmark)
Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.
2003-01-01
Current-voltage characteristics of Pb and Sn granular superconducting nanowires were investigated. The nanowires were prepared by electrodeposition in nanoporous membranes. It was observed that phase-slip-centers were formed far below the critical temperature when dc current was introduced inside...
ELASTIC-SCATTERING AND THE CURRENT-VOLTAGE CHARACTERISTICS OF SUPERCONDUCTING NB-INAS-NB JUNCTIONS
VANDERPOST, N; NITTA, J; TAKAYANAGI, H
1993-01-01
Superconducting niobium contacts are attached to a 0.8-mum-long epitaxially grown InAs channel sandwiched between insulating InGaAs layers. The current-voltage characteristics show nonlinearities at submultiples of the superconducting energy gap indicative of multiple-Andreev reflections. We demonst
Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization
Energy Technology Data Exchange (ETDEWEB)
Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)
2007-08-15
The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is obtained.
Current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization
Stoyanov, Dimitar G
2007-01-01
The balances of particles and charges in the volume of parallel-plane ionization chamber are considered. Differential equations describing the distribution of current densities in the chamber volume are obtained. As a result of the differential equations solution an analytical form of the current-voltage characteristic of parallel-plane ionization chamber with inhomogeneous ionization in the volume is got.
Effects of hydrogen bonding on current-voltage characteristics of molecular junctions
Kula, Mathias; Jiang, Jun; Lu, Wei; Luo, Yi
2006-11-01
We present a first-principles study of hydrogen bonding effect on current-voltage characteristics of molecular junctions. Three model charge-transfer molecules, 2'-amino-4,4'-di(ethynylphenyl)-1-benzenethiolate (DEPBT-D), 4,4'-di(ethynylphenyl)-2'-nitro-1-benzenethiolate (DEPBT-A), and 2'-amino-4,4'-di(ethynylphenyl)-5'-nitro-1-benzenethiolate (DEPBT-DA), have been examined and compared with the corresponding hydrogen bonded complexes formed with different water molecules. Large differences in current-voltage characteristics are observed for DEPBT-D and DEPBT-A molecules with or without hydrogen bonded waters, while relatively small differences are found for DEPBT-DA. It is predicted that the presence of water clusters can drastically reduce the conductivities of the charge-transfer molecules. The underlying microscopic mechanism has been discussed.
The Current-voltage Characteristics Simulation of the Betavoltaic Power Supply
Directory of Open Access Journals (Sweden)
S.U. Urchuk
2015-12-01
Full Text Available In order to optimize betavoltaic power supply it was calculated the current-voltage characteristics when changing the depth of the upper p-layer and at changing doping levels structure areas. It is shown that an increase in the depth reduces the short-circuit current and thus reduces the open circuit voltage. It has been observed that the concentration of the lightly doped region more significantly influence on the current-voltage characteristics than the depth of the p-n-junction. The concentration of the n-region, equal to 1014 cm – 3, can be considered as during betavoltaic power supply design. It is shown that, by increasing the power supply activity the conversion efficiency of the structure increases, too.
Closed-form expression for the current/ voltage characteristics of pin solar cells
Energy Technology Data Exchange (ETDEWEB)
Taretto, K.; Rau, U.; Werner, J.H. [Institut fuer Physikalische Elektronik, Pfaffenwaldring 47, 70569, Stuttgart (Germany)
2003-12-01
A closed-form expression for the current-voltage relationship of pin diodes and pin solar cells is obtained. The model considers drift and diffusion currents, and assumes a uniform electric field in the intrinsic layer, equal diffusion lengths for electrons and holes and a homogeneous generation rate. We show that both drift and diffusion currents must be taken into account to describe the current over a wide range of applied voltage. The inclusion of both transport mechanisms results in diode ideality factors between 1.8 at low, and 1.2 at high applied voltages. Comparisons of current/voltage characteristics and solar cell output parameters obtained from our model with experimental data of thin-film silicon solar cells show that our model accurately explains the output characteristics of pin solar cells. (orig.)
Master Equation Approach to Current-Voltage Characteristics of Solar Cells
Oh, Sangchul; Zhang, Yiteng; Alharbi, Fahhad; Kais, Sabre
2015-03-01
The current-voltage characteristics of solar cells is obtained using quantum master equations for electrons, holes, and excitons, in which generation, recombination, and transport processes are taken into account. As a first example, we simulate a photocell with a molecular aggregate donor to investigate whether a delocalized quantum state could enhance the efficiency. As a second example, we calculate the current-voltage characteristics of conventional p-n junction solar cells and perovskite solar cells using the master equation. The connection between the drift-diffusion model and the master equation method is established. The short-circuit current and the open-circuit voltage are calculated numerically as a function of the intensity of the sunlight and material properties such as energy gaps, diffusion constants, etc.
Analytical form of current-voltage characteristic of cylindrical and spherical ionization chambers
Stoyanov, Dimitar G
2007-01-01
The basic processes of ionization and recombination of gas-filled ionization chamber are presented in this article. A differential equation describing the distribution of current densities in the volume of the ionization chamber is obtained from the balance of the particles and charges densities. As a result of the differential equation solving an analytical form of the current-voltage characteristic of cylindrical and spherical ionization chambers is got.
A simple approximation for the current-voltage characteristics of high-power, relativistic diodes
Ekdahl, Carl
2016-06-01
A simple approximation for the current-voltage characteristics of a relativistic electron diode is presented. The approximation is accurate from non-relativistic through relativistic electron energies. Although it is empirically developed, it has many of the fundamental properties of the exact diode solutions. The approximation is simple enough to be remembered and worked on almost any pocket calculator, so it has proven to be quite useful on the laboratory floor.
Investigations on the electrical current-voltage response in protein light receptors
Alfinito, E; Reggiani, L
2014-01-01
We report a theoretical/computational approach for modeling the current-voltage characteristics of sensing proteins. The modeling is applied to a couple of transmembrane proteins, bacteriorhodopsin and proteorhodopsin, sensitive to visible light and promising biomaterials for the development of a new generation of photo-transducers. The agreement between theory and experiments sheds new light on the microscopic interpretation of charge transfer in proteins and biological materials in general.
Simulation of a perfect CVD diamond Schottky diode steep forward current-voltage characteristic
Kukushkin, V. A.
2016-10-01
The kinetic equation approach to the simulation of the perfect CVD diamond Schottky diode current-voltage characteristic is considered. In result it is shown that the latter has a significantly steeper forward branch than that of perfect devices of such a type on usual semiconductors. It means that CVD diamond-based Schottky diodes have an important potential advantage over analogous devices on conventional materials.
Institute of Scientific and Technical Information of China (English)
ZHAO Xu; WANG Yan; YU Zhi-Ping
2006-01-01
@@ Current-voltage characteristics of ballistic carbon-nanotube field-effect transistors are characterized with an it-erative simulation program. The influence of carbon-nanotube chirality and diameter on the output current is considered. An analytical current-voltage expression under the quantum capacitance limit and low-voltage application is derived. Our simulation results are compared with actual measurement data.
Institute of Scientific and Technical Information of China (English)
ZHAO Kun; FENG Jiafeng; HE Meng; L(U) Huibin; JIN Kuijuan; ZHOU Yueliang; YANG Guozhen3
2008-01-01
The current-induced resistive switching behavior in the micron-scale pillars of low-doped La0.9Sr0.1MnO3 thin films using laser molecular-beam epitaxy was reported. It was demonstrated that the current-voltage curves at 120 K showed hysteresis with several threshold currents corresponding to the switching in resistance to metastable low resistance states, and finally, four closed loops were formed. A mode was proposed, which was based on the low-temperature canted antiferromagnetism ordering for a lightly doped insulating regime.
Krylov, P. S.; Berestennikov, A. S.; Fefelov, S. A.; Komolov, A. S.; Aleshin, A. N.
2016-12-01
The resistive switching effects in composite films containing polyfunctional polymers, such as derivatives of carbazole (PVK), fluorene (PFD), and polyvinyl chloride (PVC), and also graphene particles (Gr) and graphene oxide (GO), the concentration of which in the polymer matrices varied in the range from 1 to 3 wt % corresponding to the percolation threshold in such systems, have been studied. The analysis of the elemental composition of the investigated composites by means of X-ray photoelectron spectroscopy have shown that the oxidation degree of Gr in GO is about 9 to 10%. It has been established that a sharp conductivity jump characterized by S-shaped current-voltage curves and the presence of their hysteresis occurs upon applying a voltage pulse to the Au/PVK (PFD; PVC): Gr (GO)/ITO/PET structures, where ITO is indium tin oxide, and PET is poly(ethylene terephthalate), with the switching time, t, in the range from 1 to 30 μs. The observed effects are attributed to the influence of redox reactions taking place on the Gr and GO particles enclosed in the polymer matrix, and the additional influence of thermomechanical properties of the polymer constituent of the matrix.
Current voltage characteristics of intrinsic Josephson junctions with charge-imbalance effect
Shukrinov, Yu. M.; Mahfouzi, F.
2007-09-01
The current-voltage characteristics (IVC) of intrinsic Josephson junctions are numerically calculated taking into account the quasiparticle charge-imbalance effect. We solve numerically the full set of the equations including second order differential equations for phase differences, kinetic equations and generalized Josephson relations for a stack of Josephson junctions. The boundary conditions due to the proximity effect are used. We obtain the branch structure of IVC and investigate it as a function of disequilibrium parameter at different values of coupling constant and McCumber parameter. An increase in the disequilibrium parameter essentially changes the character of IVC at large values of McCumber parameter.
Shukrinov, Yu M.; Mans, M.; Scherbel, J.; Seidel, P.
2007-02-01
The current-voltage characteristics of a micrometre bridge of intrinsic Josephson junctions under microwave irradiation are studied. The collective switching of the group of four junctions splits up as the AC signal amplitude is gradually increased. The switching current of the remaining group of junctions is increased with increasing radiation power. We consider that microwave irradiation injects an additional quasiparticle current into the Josephson junction array. We use ideas of breakdown of quasineutrality and quasiparticle charge imbalance in the superconducting layers and explain the experimental results by the competition between the 'current effect' and the effect of suppression of the switching current by irradiation.
Current-voltage characteristics of intrinsic Josephson junctions with charge-imbalance effect
Energy Technology Data Exchange (ETDEWEB)
Shukrinov, Yu.M. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Physical Technical Institute, Dushanbe 734063 (Tajikistan)], E-mail: shukrinv@theor.jinr.ru; Mahfouzi, F. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of)
2007-09-01
The current-voltage characteristics (IVC) of intrinsic Josephson junctions are numerically calculated taking into account the quasiparticle charge-imbalance effect. We solve numerically the full set of the equations including second order differential equations for phase differences, kinetic equations and generalized Josephson relations for a stack of Josephson junctions. The boundary conditions due to the proximity effect are used. We obtain the branch structure of IVC and investigate it as a function of disequilibrium parameter at different values of coupling constant and McCumber parameter. An increase in the disequilibrium parameter essentially changes the character of IVC at large values of McCumber parameter.
Energy Technology Data Exchange (ETDEWEB)
Shukrinov, Yu M [BLTP, JINR, Dubna, Moscow Region, 141980 (Russian Federation); Mans, M [Institut fur Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, D-07743 Jena (Germany); Scherbel, J [Institut fur Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, D-07743 Jena (Germany); Seidel, P [Institut fur Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, D-07743 Jena (Germany)
2007-02-15
The current-voltage characteristics of a micrometre bridge of intrinsic Josephson junctions under microwave irradiation are studied. The collective switching of the group of four junctions splits up as the AC signal amplitude is gradually increased. The switching current of the remaining group of junctions is increased with increasing radiation power. We consider that microwave irradiation injects an additional quasiparticle current into the Josephson junction array. We use ideas of breakdown of quasineutrality and quasiparticle charge imbalance in the superconducting layers and explain the experimental results by the competition between the 'current effect' and the effect of suppression of the switching current by irradiation.
Irie, A.; Shukrinov, Yu M.; Oya, G.
2008-01-01
The experimental evidence of the breakpoint on the current-voltage characteristics (IVCs) of the stacks of intrinsic Josephson junctions (IJJs) is presented. The influence of the capacitive coupling on the IVCs of Bi$_2$Sr$_2$CaCu$_2$O$_y$ IJJs has been investigated. At 4.2 K, clear breakpoint region is observed on the branches in the IVCs. It is found that the hysteresis observed on the IVC is suppressed due to the coupling compared with that expected from the McCumber parameter. Measurement...
Irie, A.; Shukrinov, Yu. M.; Oya, G.
2008-10-01
The experimental evidence of the breakpoint on the current-voltage characteristics (IVCs) of the stacks of intrinsic Josephson junctions (IJJs) is presented. The influence of the capacitive coupling on the IVCs of Bi2Sr2CaCu2Oy IJJs has been investigated. At 4.2K, clear breakpoint region is observed on the branches in the IVCs. It is found that due to the coupling between junctions, the hysteresis observed on the IVC is small compared to that expected from the McCumber parameter. Measurements agree well with the results predicted by the capacitively coupled Josephson junction model including the diffusion current.
Modeling And Simulation of Speed and flux Estimator Based on Current & voltage Model
Directory of Open Access Journals (Sweden)
Dinesh Chandra Jain
2011-10-01
Full Text Available This paper introduce a estimator based on and current & voltage model used in induction motor (IM drive. The rotor speed estimation is based on the model reference adaptive system (MRAS approach. The closed loop control mechanism is based on the voltage and current model. The control and estimation algorithms utilize the synchronous coordinates as a frame of reference. A speed sensor less induction motor (IM drive with Robust control characteristics is introduced. First, a speed observation system, which is insensitive to the variations of motor parameters.
Podgorny, Yu. V.; Lavrov, P. P.; Vorotilov, K. A.; Sigov, A. S.
2015-03-01
The role of a change in the spontaneous polarization charge in the formation of negative differential conductance regions of the current-voltage characteristics of thin ferroelectric films has been determined. It has been shown that the polarization recovery current, which appears due to partial depolarization of a preliminarily polarized film, prevails over the intrinsic leakage current of the ferroelectric film in the coercive field region and corresponds to the Weibull distribution. The influence of polarization recovery current decreases with decreasing voltage sweep rate.
Energy Technology Data Exchange (ETDEWEB)
Shukrinov, Yu.M. [BLTP, JINR, Moscow Region, Dubna 141980 (Russian Federation) and Physical Technical Institute, Dushanbe 734063 (Tajikistan)]. E-mail: shukrinv@theor.jinr.ru; Mahfouzi, F. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan (Iran, Islamic Republic of)
2006-02-01
We study the current-voltage characteristics of intrinsic Josephson junctions in high-T {sub c} superconductors by numerical calculations and in framework of capacitively coupled Josephson junctions model we obtain the total number of branches. The influence of the coupling parameter {alpha} on the current-voltage characteristics at fixed parameter {beta} ({beta} {sup 2} 1/{beta} {sub c}, where {beta} {sub c} is McCumber parameter) and the influence of {alpha} on {beta}-dependence of the current-voltage characteristics are investigated. We obtain the {alpha}-dependence of the branch's slopes and branch's endpoints. The presented results show new features of the coupling effect on the scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high-T {sub c} superconductors.
Shukrinov, Yu. M.; Mahfouzi, F.
2006-02-01
We study the current-voltage characteristics of intrinsic Josephson junctions in high-Tc superconductors by numerical calculations and in framework of capacitively coupled Josephson junctions model we obtain the total number of branches. The influence of the coupling parameter α on the current-voltage characteristics at fixed parameter β (β2 = 1/βc, where βc is McCumber parameter) and the influence of α on β-dependence of the current-voltage characteristics are investigated. We obtain the α-dependence of the branch's slopes and branch's endpoints. The presented results show new features of the coupling effect on the scheme of hysteresis jumps in current-voltage characteristics of intrinsic Josephson junctions in high-Tc superconductors.
An automatic method to analyze the Capacity-Voltage and Current-Voltage curves of a sensor
Matorras Cuevas, Pablo
2017-01-01
An automatic method to perform Capacity versus voltage analysis for all kind of silicon sensor is provided. It successfully calculates the depletion voltage to unirradiated and irradiated sensors, and with measurements with outliers or reaching breakdown. It is built using C++ and using ROOT trees with an analogous skeleton as TRICS, where the data as well as the results of the ts are saved, to make further analysis.
Institute of Scientific and Technical Information of China (English)
LONG Yun-Ze; DUVAIL Jean-Luc; CHEN Zhao-Jia; JIN Ai-Zi; GU Chang-Zhi
2008-01-01
We report the current-voltage (I-V) characteristics and electrical conductivity of individual template-synthesized poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires (190 ± 6 nm in diameter and σRT : 11.2±2Ω-1cm-1)over a wide temperature range from 300 to 10K. With lowering temperature, the Ⅰ- Ⅴ characteristics become nonlinear around 50 K, and a clear Coulomb gap-like structure appears in the differential conductance (dI/dV)spectra. The temperature dependence of the resistance below 70 K follows ln R ∝ T-1/2, which can be interpreted as Efros-Shklovskii hopping conduction in the presence of a Coulomb gap. In addition, the influences of measurement methods such as the applied bias voltage magnitude, the two-probe and four-probe techniques used in the resistance measurements are also reported and discussed.
Current voltage analysis and band diagram of Ti/TiO{sub 2} nanotubes Schottky junction
Energy Technology Data Exchange (ETDEWEB)
Mini, P.A.; Sherine, Alex; Shalumon, K.T.; Balakrishnan, Avinash; Nair, S.V.; Subramanian, K.R.V. [Amrita Vishwa Vidyapeetham (University), Amrita Centre for Nanosciences and Molecular Medicine, Kochi (India)
2012-08-15
Here, we report on how the energy band diagram of a nanostructured semiconductor- metal interface aligns in accordance with semiconductor morphology. Electrochemically, titanium metal is anodized to form titanium dioxide nanotubes, which forms a junction with the free Ti substrate and this junction forms a natural Schottky barrier. With reduced dimensionality of the nanotube structures (lower wall thickness), we have observed band edge movements and band gap quantum confinement effects and lowering of the Schottky barrier. These results were corroborated with the help of cyclic voltammetry, ultraviolet-visible spectrometry, and impedance analysis. Current voltage analysis of the Schottky barrier showed a lowering of the barrier (by 25 %) with reducing dimensionality of the nanotube structures. At externally applied voltages higher than the Schottky barrier, charges can travel along the nanotubes and reside at an interface between the nanotubes and a high-{kappa} dielectric. This property was utilized to develop high surface area solid-state capacitors. (orig.)
Current voltage analysis and band diagram of Ti/TiO2 nanotubes Schottky junction
Mini, P. A.; Sherine, Alex; Shalumon, K. T.; Balakrishnan, Avinash; Nair, S. V.; Subramanian, K. R. V.
2012-08-01
Here, we report on how the energy band diagram of a nanostructured semiconductor- metal interface aligns in accordance with semiconductor morphology. Electrochemically, titanium metal is anodized to form titanium dioxide nanotubes, which forms a junction with the free Ti substrate and this junction forms a natural Schottky barrier. With reduced dimensionality of the nanotube structures (lower wall thickness), we have observed band edge movements and band gap quantum confinement effects and lowering of the Schottky barrier. These results were corroborated with the help of cyclic voltammetry, ultraviolet-visible spectrometry, and impedance analysis. Current voltage analysis of the Schottky barrier showed a lowering of the barrier (by 25 %) with reducing dimensionality of the nanotube structures. At externally applied voltages higher than the Schottky barrier, charges can travel along the nanotubes and reside at an interface between the nanotubes and a high- κ dielectric. This property was utilized to develop high surface area solid-state capacitors.
Measurement system for determination of current-voltage characteristics of PV modules
Idzkowski, Adam; Walendziuk, Wojciech; Borawski, Mateusz; Sawicki, Aleksander
2015-09-01
The realization of a laboratory stand for testing photovoltaic panels is presented here. The project of the laboratory stand was designed in SolidWorks software. The aim of the project was to control the electrical parameters of a PV panel. For this purpose a meter that measures electrical parameters i.e. voltage, current and power, was realized. The meter was created with the use of LabJack DAQ device and LabVIEW software. The presented results of measurements were obtained in different conditions (variable distance from the source of light, variable tilt angle of the panel). Current voltage characteristics of photovoltaic panel were created and all parameters could be detected in different conditions. The standard uncertainties of sample voltage, current, power measurements were calculated. The paper also gives basic information about power characteristics and efficiency of a solar cell.
Current-voltage characteristics and transition voltage spectroscopy of individual redox proteins.
Artés, Juan M; López-Martínez, Montserrat; Giraudet, Arnaud; Díez-Pérez, Ismael; Sanz, Fausto; Gorostiza, Pau
2012-12-19
Understanding how molecular conductance depends on voltage is essential for characterizing molecular electronics devices. We reproducibly measured current-voltage characteristics of individual redox-active proteins by scanning tunneling microscopy under potentiostatic control in both tunneling and wired configurations. From these results, transition voltage spectroscopy (TVS) data for individual redox molecules can be calculated and analyzed statistically, adding a new dimension to conductance measurements. The transition voltage (TV) is discussed in terms of the two-step electron transfer (ET) mechanism. Azurin displays the lowest TV measured to date (0.4 V), consistent with the previously reported distance decay factor. This low TV may be advantageous for fabricating and operating molecular electronic devices for different applications. Our measurements show that TVS is a helpful tool for single-molecule ET measurements and suggest a mechanism for gating of ET between partner redox proteins.
Temperature current-voltage characterisation of MOCVD grown InGaN/GaN MQW LEDs
Energy Technology Data Exchange (ETDEWEB)
Moldovan, Grigore; Humphreys, Colin J. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ (United Kingdom); Phillips, Andrew [phconsult Ltd., 54 Covent Garden, Cambridge, CB1 2HR (United Kingdom); Thrush, E.J. [Thomas Swan Scientific Equipment Limited, Buckingway Business Park, Cambridge, CB4 5UK (United Kingdom)
2006-06-15
A methodology of temperature current-voltage characterisation for blue GaN-based LED is described, with emphasis on artefacts arising from self-heating at high forward currents and voltage transients at low forward currents. Examples of LEDs with Al{sub 2}O{sub 3} and SiC substrates are discussed, with methods of accounting and avoiding these errors. For the devices studied here it is found that tunnelling dominates the charge transport and that two parallel conduction pathways are present. A method of interpretation of extracted data is also presented, in the context of desired device performance. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Improved performance of a barrier-discharge plasma jet biased by a direct-current voltage
Li, Xuechen; Li, Yaru; Zhang, Panpan; Jia, Pengying; Dong, Lifang
2016-01-01
One of the challenges that plasma research encounters is how to generate a large-scale plasma plume at atmospheric pressure. Through utilizing a third electrode biased by a direct-current voltage, a longer plasma plume is generated by a plasma jet in dielectric barrier discharge configurations. Results indicate that the plume length increases until it reaches the third electrode with increasing the bias voltage. By fast photography, it is found that the plume consists of two types of streamers under the influence of the bias voltage, which develops from a guided streamer to a branching one with leaving the tube opening. The transition from the guided streamer to the branching one can be attributed to the electric field and the air/argon fraction. PMID:27759080
Improved performance of a barrier-discharge plasma jet biased by a direct-current voltage
Li, Xuechen; Li, Yaru; Zhang, Panpan; Jia, Pengying; Dong, Lifang
2016-10-01
One of the challenges that plasma research encounters is how to generate a large-scale plasma plume at atmospheric pressure. Through utilizing a third electrode biased by a direct-current voltage, a longer plasma plume is generated by a plasma jet in dielectric barrier discharge configurations. Results indicate that the plume length increases until it reaches the third electrode with increasing the bias voltage. By fast photography, it is found that the plume consists of two types of streamers under the influence of the bias voltage, which develops from a guided streamer to a branching one with leaving the tube opening. The transition from the guided streamer to the branching one can be attributed to the electric field and the air/argon fraction.
Zeghdar, Kamal; Dehimi, Lakhdar; Saadoune, Achour; Sengouga, Nouredine
2015-12-01
We report the current-voltage (I-V) characteristics of the Schottky diode (Au/n-InP) as a function of temperature. The SILVACO-TCAD numerical simulator is used to calculate the I-V characteristic in the temperature range of 280-400 K. This is to study the effect of temperature on the I-V curves and assess the main parameters that characterize the Schottky diode such as the ideality factor, the height of the barrier and the series resistance. The I-V characteristics are analyzed on the basis of standard thermionic emission (TE) theory and the inhomogeneous barrier heights (BHs) assuming a Gaussian distribution. It is shown that the ideality factor decreases while the barrier height increases with increasing temperature, on the basis of TE theory. Furthermore, the homogeneous BH value of approximately 0.524 eV for the device has been obtained from the linear relationship between the temperature-dependent experimentally effective BHs and ideality factors. The modified Richardson plot, according to the inhomogeneity of the BHs, has a good linearity over the temperature range. The evaluated Richardson constant A* was 10.32 A·cm-2·K-2, which is close to the theoretical value of 9.4 A·cm-2·K-2 for n-InP. The temperature dependence of the I-V characteristics of the Au/n-InP Schottky diode have been successfully explained on the basis of the thermionic emission (TE) mechanism with a Gaussian distribution of the Schottky barrier heights (SBHs). Simulated I-V characteristics are in good agreement with the measurements [Korucu D, Mammadov T S. J Optoelectronics Advanced Materials, 2012, 14: 41]. The barrier height obtained using Gaussian Schottky barrier distribution is 0.52 eV, which is about half the band gap of InP.
Directory of Open Access Journals (Sweden)
M. Greyson Christoforo
2015-11-01
Full Text Available The determination of the power conversion efficiency of solar cells based on organo-metal-halides is subject to an ongoing debate. As solar cell devices may exhibit very slow transient response, current-voltage scans in different directions may not be congruent, which is an effect often referred to as hysteresis. We here discuss time-resolved current-voltage measurements as a means to evaluate appropriate delay times (voltage settling times to be used in current-voltage measurements of solar cells. Furthermore, this method allows the analysis of transient current response to extract time constants that can be used to compare characteristic differences between devices of varying architecture types, selective contacts and changes in devices due to storage or degradation conditions.
Institute of Scientific and Technical Information of China (English)
Lü Yuan-Jie; Lin Zhao-Jun; Yu Ying-Xia; Meng Ling-Guo; Cao Zhi-Fang; Luan Chong-Biao; Wang Zhan-Guo
2012-01-01
An Ni Schottky contact on the AlGaN/GaN heterostructure is fabricated.The flat-band voltage for the Schottky contact on the AlGaN/GaN heterostructure is obtained from the forward current-voltage characteristics.With the measured capacitance-voltage curve and the flat-band voltage,the polarization charge density in the AlGaN/GaN heterostructure is investigated,and a simple formula for calculating the polarization charge density is obtained and analyzed.With the approach described in this paper,the obtained polarization charge density agrees well with the one calculated by self-consistently solving Schrodinger's and Poisson's equations.
A dynamic Monte Carlo study of anomalous current voltage behaviour in organic solar cells
Energy Technology Data Exchange (ETDEWEB)
Feron, K., E-mail: Krishna.Feron@csiro.au; Fell, C. J. [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia); CSIRO Energy Flagship, Newcastle, NSW 2300 (Australia); Zhou, X.; Belcher, W. J.; Dastoor, P. C. [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia)
2014-12-07
We present a dynamic Monte Carlo (DMC) study of s-shaped current-voltage (I-V) behaviour in organic solar cells. This anomalous behaviour causes a substantial decrease in fill factor and thus power conversion efficiency. We show that this s-shaped behaviour is induced by charge traps that are located at the electrode interface rather than in the bulk of the active layer, and that the anomaly becomes more pronounced with increasing trap depth or density. Furthermore, the s-shape anomaly is correlated with interface recombination, but not bulk recombination, thus highlighting the importance of controlling the electrode interface. While thermal annealing is known to remove the s-shape anomaly, the reason has been not clear, since these treatments induce multiple simultaneous changes to the organic solar cell structure. The DMC modelling indicates that it is the removal of aluminium clusters at the electrode, which act as charge traps, that removes the anomalous I-V behaviour. Finally, this work shows that the s-shape becomes less pronounced with increasing electron-hole recombination rate; suggesting that efficient organic photovoltaic material systems are more susceptible to these electrode interface effects.
Variable Temperature Current-Voltage Measurements of CdTe Solar Cells
Smith, A. D.
2000-03-01
We have used a 2" x 2" Peltier heat pump chip powered with 24 V from a computer power supply to build a variable temperature stage for current voltage measurements of solar cells. A voltage divider was used to achieve several different set point temperatures from 25 oC to -24 oC. This system was used with a halogen lamp to study the electrical performance of polycrystalline thin-film solar cells fabricated in our group. These cells have the superstrate structure glass/SnO2:F/CdS/CdTe/metal.(1) The I-V characteristic shows evidence of a blocking back-diode which sets in below room temperature. This behavior will be related to the diffusion into the CdTe of the metals used for our back contact.(2) 1. M. Shao, A. Fischer, D. Grecu, U. Jayamaha, E. Bykov, G. Contreras-Puente, R.G. Bohn, and A.D. Compaan, Appl. Phys. Lett. 69, 3045-3047 (1996). 2. D. Grecu and A.D. Compaan, Appl. Phys. Lett. 75, 361-363 (1999).
Chauhan, A. K.; Aswal, D. K.; Koiry, S. P.; Gupta, S. K.; Yakhmi, J. V.; Sürgers, C.; Guerin, D.; Lenfant, S.; Vuillaume, D.
2008-03-01
We report the deposition of 3-aminopropyltrimethoxysilane (APTMS) multilayers on SiOx/Si(p++) substrates by a layer-by-layer self-assembly process. The multilayers were grafted in a glove box having nitrogen ambient with both humidity and oxygen contents water contact angle, ellipsometry, X-rayphotoelectron spectroscopy and atomic force microscope measurements revealed that self-assembling of the multilayers takes place in two distinct stages: (i) the first APTMS monolayer chemisorbs on a hydroxylated oxide surface by a silanization process and, (ii) the surface amino group of the first monolayer chemisorbs the hydrolyzed silane group of other APTMS molecules present in the solution, leading to the formation of a bilayer. The second stage is a self-replicating process that results in the layer-by-layer self-assembly of the multilayers with trapped NH3 + ions. The current-voltage characteristics of the multilayers exhibit a hysteresis effect along with a negative differential resistance, suggesting their potential application in the molecular memory devices. A possible mechanism for the observed hysteresis effect based on filling and de-filling of the NH3 + acting as traps is presented.
Pati, Ranjit; Karna, Shashi P.
2001-03-01
Recent advancements in the experimental measurement of conductance across a single molecule(M. A. Reed et al, Science, 278) , 252 (1997). have generated great deal of interest in the feasibility of molecular electronic devices. A successful realization of molecule based electronic devices rests on a detailed understanding of the physical principles underlying controlled transport of electron/hole across molecular units. In order to develop such a fundamental understanding, we have investigated current-voltage characteristics of metal atom (Ag, Au) substituted 1,4-dithiobenzene within Green's function approach according to Datta and coworkers( W. Tian et al, J. Chem. Phys., 109), 2874 (1998).. Ab initio Hamiltonian matrix elements are used to construct the Green's function. The calculated conductance spectrum for the molecule with S bonded to Au atoms qualitatively agrees with the experiment^1. However, large quantitative difference between the calculated and measured conductance is noted. The Au and Ag bonded 1,4-dithiobenzene molecules exhibit marked difference in their resistance and conductance spectra. The conductance of the Ag-bonded molecule is calculated to be about 1.5 times larger than that bonded with Au.
Interference of macroscopic superpositions
Vecchi, I
2000-01-01
We propose a simple experimental procedure based on the Elitzur-Vaidman scheme to implement a quantum nondemolition measurement testing the persistence of macroscopic superpositions. We conjecture that its implementation will reveal the persistence of superpositions of macroscopic objects in the absence of a direct act of observation.
Stoyanov, Dimitar G
2007-01-01
The elementary processes taking place in the formation of charged particles and their flow in the ionization chamber are considered. On the basic of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage.
DEFF Research Database (Denmark)
Spataru, Sergiu; Sera, Dezso; Hacke, Peter
2014-01-01
Photovoltaic system (PV) maintenance and diagnostic tools are often based on performance models of the system, complemented with light current-voltage (I-V) measurements, visual inspection and/or thermal imaging. Although these are invaluable tools in diagnosing PV system performance losses and f...
Shukrinov, Yu M.; Mahfouzi, F.
2005-01-01
We report the numerical calculations of the current-voltage characteristics of intrinsic Josephson junctions in high- superconductors. The charging effect at superconducting layers is taken into account. A set of equations is used to study the non-linear dynamics of the system. In framework of capacitively coupled Josephson junctions model we obtain the total number of branches using fixed initial conditions for phases and their derivatives. The influence of the coupling constant \\alpha on th...
Macroscopic quantum resonators (MAQRO)
Kaltenbaek, Rainer; Kiesel, Nikolai; Romero-Isart, Oriol; Johann, Ulrich; Aspelmeyer, Markus
2012-01-01
Quantum physics challenges our understanding of the nature of physical reality and of space-time and suggests the necessity of radical revisions of their underlying concepts. Experimental tests of quantum phenomena involving massive macroscopic objects would provide novel insights into these fundamental questions. Making use of the unique environment provided by space, MAQRO aims at investigating this largely unexplored realm of macroscopic quantum physics. MAQRO has originally been proposed as a medium-sized fundamental-science space mission for the 2010 call of Cosmic Vision. MAQRO unites two experiments: DECIDE (DECoherence In Double-Slit Experiments) and CASE (Comparative Acceleration Sensing Experiment). The main scientific objective of MAQRO, which is addressed by the experiment DECIDE, is to test the predictions of quantum theory for quantum superpositions of macroscopic objects containing more than 10e8 atoms. Under these conditions, deviations due to various suggested alternative models to quantum th...
Macroscopic Theory of Dark Sector
Directory of Open Access Journals (Sweden)
Boris E. Meierovich
2014-01-01
Full Text Available A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out to be an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields describe two different forms of dark matter. The space-like massive vector field is attractive. It is responsible for the observed plateau in galaxy rotation curves. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four-parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating nonsingular scenarios of evolution of the Universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerated expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the lower boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows displaying the main properties of the dark sector analytically. Although the physical nature of dark sector is still unknown, the macroscopic theory can help analyze the role of dark matter in astrophysical phenomena without resorting to artificial model assumptions.
Directory of Open Access Journals (Sweden)
Szmyd Janusz S.
2014-09-01
Full Text Available This paper discusses the transient characteristics of the planar type SOFC cell stack, of which the standard output is 300 W. The transient response of the voltage to the manipulation of an electric current was investigated. The effects of the response and of the operating condition determined by the operating temperature of the stack were studied by mapping a current-voltage (I-V correlation. The current-based fuel control (CBFC was adopted for keeping the fuel utilization factor at constant while the value of the electric current was ramped at the constant rate. The present experimental study shows that the transient characteristics of the cell voltage are determined by primarily the operating temperature caused by the manipulation of the current. Particularly, the slope of the I-V curve and the overshoot found on the voltage was remarkably influenced by the operating temperature. The different values of the fuel utilization factor influence the height of the settled voltages. The CBFC has significance in determining the slope of the I-V characteristic, but the different values ofthe fuel utilization factor does not affect the slope as the operating temperature does. The CBFC essentially does not alter the amplitude of the overshoot on the voltage response, since this is dominated by the operating temperature and its change is caused by manipulating the current.
Energy Technology Data Exchange (ETDEWEB)
Stoyanov, D G [Faculty of Engineering and Pedagogy in Sliven, Technical University of Sofia, 59, Bourgasko Shaussee Blvd, 8800 Sliven (Bulgaria)
2007-11-15
The elementary processes taking place in the formation of charged particles and their flow in parallel-plane, cylindrical and spherical geometry cases of ionization chamber are considered. On the basis of particles and charges balance a differential equation describing the distribution of current densities in the ionization chamber volume is obtained. As a result of the differential equation solution an analytical form of the current-voltage characteristic of an ionization chamber with homogeneous ionization is obtained. For the parallel-plane case comparision with experimental data is performed.
Fingerprint Feature Extraction Based on Macroscopic Curvature
Institute of Scientific and Technical Information of China (English)
Zhang Xiong; He Gui-ming; Zhang Yun
2003-01-01
In the Automatic Fingerprint Identification System (AFIS), extracting the feature of fingerprint is very important. The local curvature of ridges of fingerprint is irregular, so people have the barrier to effectively extract the fingerprint curve features to describe fingerprint. This article proposes a novel algorithm; it embraces information of few nearby fingerprint ridges to extract a new characteristic which can describe the curvature feature of fingerprint. Experimental results show the algorithm is feasible, and the characteristics extracted by it can clearly show the inner macroscopic curve properties of fingerprint. The result also shows that this kind of characteristic is robust to noise and pollution.
Fingerprint Feature Extraction Based on Macroscopic Curvature
Institute of Scientific and Technical Information of China (English)
Zhang; Xiong; He; Gui-Ming; 等
2003-01-01
In the Automatic Fingerprint Identification System(AFIS), extracting the feature of fingerprint is very important. The local curvature of ridges of fingerprint is irregular, so people have the barrier to effectively extract the fingerprint curve features to describe fingerprint. This article proposes a novel algorithm; it embraces information of few nearby fingerprint ridges to extract a new characterstic which can describe the curvature feature of fingerprint. Experimental results show the algorithm is feasible, and the characteristics extracted by it can clearly show the inner macroscopic curve properties of fingerprint. The result also shows that this kind of characteristic is robust to noise and pollution.
Directory of Open Access Journals (Sweden)
T.M.Mishchenko
2013-02-01
Full Text Available Purpose. To define the characteristics of numerical calculations of mathematical model with one or more cyclic current voltage characteristics (CVC. This is an urgent problem, since any electric traction system device and electrified track in general, like non-linear passive or active two-terminal network in the present operating mode is described by current-voltage characteristic (CVC, which is based on the given input voltage and input current. Me-thodology. The electromagnetic process calculation in the power circuits of traction electric energy supply is the probabilistic task with solving nonlinear stochastic differential equations requiring for the development of special methods. Given the calculation difficulty, it is reasonable to perform them either by real CVC graph bypass or initially by applying its equivalent replacement with, for example, an ellipse. Findings. Numerical calculations of the mathematical model with one or more cyclic CVC can be performed by “real” CVC bypass or by "idealization" i. e. approximate replacement of real cyclic CVC. Originality. This paper presents the dynamic CVC of the DS3 and 2ES5K electric locomotives at different currents of electric locomotives. Practical value. Cyclic CVC normally and definitely can be applied in the system of electromagnetic state equations while transient state calculating in the traction system. Therefore while calculating the experimentally obtained CVC for the most “difficult and complex” (or/and the “easiest” mode is applied.
Directory of Open Access Journals (Sweden)
Tonkoshkur A. S.
2014-12-01
Full Text Available Prolonged exposure of zinc oxide varistors to the electrical load leads to current-voltage characteristics (CVC deformation, which is associated with a change in the height and width of the intergranular barriers, which are main structural element of the varistors. Polarization phenomena in zinc oxide ceramics are studied in a number of works, but those are mainly limited to the study of the physics of the CVC deformation process and to determining the parameters of localized electronic states involved in this process. This paper presents the results on the simulation of the deformation of pulse CVC of a separate intergranular potential barrier at transient polarization/depolarization, associated with recharging of surface electronic states (SES, which cause this barrier. It is found that at high density of SES their degree of electron filling is small and the effect of DC voltage leads to a shift of pulse current-voltage characteristics into the region of small currents. Conversely, the low density SES are almost completely filled with electrons, and after crystallite polarization CVC is shifted to high currents. Experimental studies have confirmed the possibility of applying the discovered laws to ceramic varistor structures. The proposed model allows interpreting the «anomalous» effects (such as increase in the classification voltage and reduction of active losses power observed during the varistors accelerated aging test.
Szelenyi, Andrea; Journee, Henricus Louis; Herrlich, Simon; Galistu, Gianni M.; van den Berg, Joris; van Dijk, J. Marc C.
Background: Transcranial electric stimulation as used during intraoperative neurostimulation is dependent on electrode and skull impedances. Objective: Threshold currents, voltages and electrode impedances were evaluated with electrical stimulation at 8 successive layers between the skin and the
Szelenyi, Andrea; Journee, Henricus Louis; Herrlich, Simon; Galistu, Gianni M.; van den Berg, Joris; van Dijk, J. Marc C.
2013-01-01
Background: Transcranial electric stimulation as used during intraoperative neurostimulation is dependent on electrode and skull impedances. Objective: Threshold currents, voltages and electrode impedances were evaluated with electrical stimulation at 8 successive layers between the skin and the cer
Energy Technology Data Exchange (ETDEWEB)
Mondal, Aniruddha, E-mail: aniruddhamo@gmail.com; Das, Amit Kumar [Department of Physics, National Institute of technology Durgapur, Mahatma Gandhi Rd, A-Zone, Durgapur, West Bengal, India-713209 (India); Dey, Anubhab [Indian Institute of Science Education and Research, Thiruvananthapuram, Computer Science Building, College of Engineering Trivandrum Campus, Thiruvananthapuram, Kerala 695016 (India); Choudhuri, Bijit [Department of Electronics & Communication Engineering, National Institute of Technology Agartala, Jirania, Tripura, India - 799046 (India)
2016-05-06
The 1D perpendicular In{sub 2-x}O{sub 3-y} nanostructure arrays have been synthesized by using glancing angle deposition (GLAD) technique. A low deposition rate of 0.5 A°/S produced highly porous structure. The current - voltage characteristics for the In{sub 2-x}O{sub 3-y}nanocolumnar array based were measured through a gold Schottky contact at different temperatures. The temperature dependent ideality factor was calculated from the observed current – voltage characteristics. The ideality factor was found to vary from 4.19 to 2.75 with a variation in temperature from 313 K to 473 K.
Institute of Scientific and Technical Information of China (English)
Pu Yan; Pang Lei; Chen Xiao-Juan; Yuan Ting-Ting; Luo Wei-Jun; Liu Xin-Yu
2011-01-01
The current voltage (IV) characteristics are greatly influenced by the dispersion effects in AlGaN/GaN highelectron mobility transistors. The direct current (DC) IV and pulsed IV measurements are performed to give a deep investigation into the dispersion effects,which are mainly related to the trap and self-heating mechanisms. The results show that traps play an important role in the kink effects,and high stress can introduce more traps and defects in the device. With the help of the pulsed IV measurements,the trapping effects and self-heating effects can be separated.The impact of time constants on the dispersion effects is also discussed. In order to achieve an accurate static DC IV measurement,the steady state of the bias points must be considered carefully to avoid the dispersion effects.
Lafleur, T.; Delattre, P. A.; Booth, J. P.; Johnson, E. V.; Dine, S.
2013-01-01
A broad-band, inline current-voltage probe, with a characteristic impedance of 50 Ω, is presented for the measurement of voltage and current waveforms, impedance, and power in rf systems. The probe, which uses capacitive and inductive sensors to determine the voltage and current, respectively, can be used for the measurement of single or multi-frequency signals into both matched and unmatched loads, over a frequency range of about 1-100 MHz. The probe calibration and impedance/power measurement technique are described in detail, and the calibrated probe results are compared with those obtained from a vector network analyzer and other commercial power meters. Use of the probe is demonstrated with the measurement of power into an unmatched capacitively coupled plasma excited by multi-frequency tailored voltage waveforms.
Lafleur, T; Delattre, P A; Booth, J P; Johnson, E V; Dine, S
2013-01-01
A broad-band, inline current-voltage probe, with a characteristic impedance of 50 Ω, is presented for the measurement of voltage and current waveforms, impedance, and power in rf systems. The probe, which uses capacitive and inductive sensors to determine the voltage and current, respectively, can be used for the measurement of single or multi-frequency signals into both matched and unmatched loads, over a frequency range of about 1-100 MHz. The probe calibration and impedance/power measurement technique are described in detail, and the calibrated probe results are compared with those obtained from a vector network analyzer and other commercial power meters. Use of the probe is demonstrated with the measurement of power into an unmatched capacitively coupled plasma excited by multi-frequency tailored voltage waveforms.
DEFF Research Database (Denmark)
Spataru, Sergiu; Sera, Dezso; Hacke, Peter
2014-01-01
Photovoltaic system (PV) maintenance and diagnostic tools are often based on performance models of the system, complemented with light current-voltage (I-V) measurements, visual inspection and/or thermal imaging. Although these are invaluable tools in diagnosing PV system performance losses...... or contacts are damaged/degraded). With the recent growth and development of new module level dc-dc optimizers and micro inverters, capable of bidirectional current flow, it is now possible to implement both dark I-V and light I-V measurements as complementary diagnostic tools. By complementing light I-V...... measurements, which reflect both the optical and electrical performance parameters of the PV device, with dark I-V measurements, which focus only on the electrical characteristic of the PV device, the optical factors determining power loss (such as partial shadows, soiling, discoloration of the plastic...
DEFF Research Database (Denmark)
Spataru, Sergiu; Sera, Dezso; Hacke, Peter
2016-01-01
(soiling, shading, discoloration). The premise of the method that is proposed is that different degradation modes affect the light and dark I-V characteristics of the PV module in different ways, leaving distinct signatures. This work focuses on identifying and correlating these specific signatures present......This article proposes a fault identification method, based on the complementary analysis of the light and dark current-voltage (I-V) characteristics of the photovoltaic (PV) module, to distinguish between four important degradation modes that lead to power loss in PV modules: (a) degradation...... in the light and dark I-V measurements, to specific degradation modes; a number of new dark I-V diagnostic parameters are proposed to quantify these signatures. The experimental results show that these dark I-V diagnostic parameters, complemented by light I-V performance and series resistance measurements can...
Energy Technology Data Exchange (ETDEWEB)
Ryzhii, M. [Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Ryzhii, V. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Institute of Ultra High Frequency Semiconductor Electronics, Russian Academy of Sciences, Moscow 111005 (Russian Federation); Otsuji, T. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Maltsev, P. P. [Institute of Ultra High Frequency Semiconductor Electronics, Russian Academy of Sciences, Moscow 111005 (Russian Federation); Leiman, V. G. [Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700 (Russian Federation); Ryabova, N. [Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University, Moscow 105005 (Russian Federation); Mitin, V. [Department of Electrical Engineering, University at Buffalo, Buffalo, New York 1460-1920 (United States)
2014-01-14
We evaluate the effect of the recombination associated with interlayer transitions in ungated and gated double-graphene-layer (GL) structures on the injection of electrons and holes. Using the proposed model, we derive analytical expressions for the spatial distributions of the electron and hole Fermi energies and the energy gap between the Dirac points in GLs as well as their dependences on the bias and gate voltages. The current-voltage characteristics are calculated as well. The model is based on hydrodynamic equations for the electron and hole transports in GLs under the self-consistent electric field. It is shown that in undoped double-GL structures with weak scattering of electrons and holes on disorder, the Fermi energies and the energy gap are virtually constant across the main portions of GLs, although their values strongly depend on the voltages and recombination parameters. In contrast, the electron and hole scattering on disorder lead to substantial nonuniformities. The resonant inter-GL tunneling enables N-shaped current-voltage characteristics provided that GLs are sufficiently short. The width of the current maxima is much larger than the broadening of the tunneling resonance. In the double-GL structures with relatively long GLs, the N-shaped characteristics transform into the Z-shaped characteristics. The obtained results are in line with the experimental observations [Britnell et al., Nat. Commun. 4, 1794–1799 (2013)] and might be useful for design and optimization of different devices based on double-GL structures, including field-effect transistors and terahertz lasers.
Covariant Macroscopic Quantum Geometry
Hogan, Craig J
2012-01-01
A covariant noncommutative algebra of position operators is presented, and interpreted as the macroscopic limit of a geometry that describes a collective quantum behavior of the positions of massive bodies in a flat emergent space-time. The commutator defines a quantum-geometrical relationship between world lines that depends on their separation and relative velocity, but on no other property of the bodies, and leads to a transverse uncertainty of the geometrical wave function that increases with separation. The number of geometrical degrees of freedom in a space-time volume scales holographically, as the surface area in Planck units. Ongoing branching of the wave function causes fluctuations in transverse position, shared coherently among bodies with similar trajectories. The theory can be tested using appropriately configured Michelson interferometers.
The macroscopic pancake bounce
Andersen Bro, Jonas; Sternberg Brogaard Jensen, Kasper; Nygaard Larsen, Alex; Yeomans, Julia M.; Hecksher, Tina
2017-01-01
We demonstrate that the so-called pancake bounce of millimetric water droplets on surfaces patterned with hydrophobic posts (Liu et al 2014 Nat. Phys. 10 515) can be reproduced on larger scales. In our experiment, a bed of nails plays the role of the structured surface and a water balloon models the water droplet. The macroscopic version largely reproduces the features of the microscopic experiment, including the Weber number dependence and the reduced contact time for pancake bouncing. The scalability of the experiment confirms the mechanisms of pancake bouncing, and allows us to measure the force exerted on the surface during the bounce. The experiment is simple and inexpensive and is an example where front-line research is accessible to student projects.
Canonical quantization of macroscopic electromagnetism
Energy Technology Data Exchange (ETDEWEB)
Philbin, T G, E-mail: tgp3@st-andrews.ac.u [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)
2010-12-15
Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetodielectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.
Canonical quantization of macroscopic electromagnetism
Philbin, T G
2010-01-01
Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetoelectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.
Rahmonov, I. R.; Shukrinov, Yu. M.; Atanasova, P. Kh.; Zemlyanaya, E. V.; Bashashin, M. V.
2017-01-01
We have studied the current-voltage characteristic of a system of long Josephson junctions taking into account the inductive and capacitive coupling. The dependence of the average time derivative of the phase difference on the bias current and spatiotemporal dependences of the phase difference and magnetic field in each junction are considered. The possibility of branching of the current-voltage characteristic in the region of zero field step, which is associated with different numbers of fluxons in individual Josephson junctions, is demonstrated. The current-voltage characteristic of the system of Josephson junctions is compared with the case of a single junction, and it is shown that the observed branching is due to coupling between the junctions. The intensity of electromagnetic radiation associated with motion of fluxons is calculated, and the effect of coupling between junctions on the radiation power is analyzed.
Palmour, J. W.; Levinshtein, M. E.; Ivanov, P. A.; Zhang, Q. J.
2015-06-01
Isothermal forward current-voltage characteristics of high-voltage 4H-SiC junction barrier Schottky rectifiers (JBS) have been studied for the first time. Isothermal characteristics were measured with JBS having a blocking voltage of 1700 V up to a current density j ≈ 4200 A cm-2 in the temperature range 297-460 K. Quasi-isothermal current-voltage characteristics of these devices were studied with injection of minority carriers (holes) up to j ≈ 7200 A cm-2 and ambient temperatures of 297 and 460 K. The isothermal forward current-voltage characteristics make it possible to numerically calculate (for example, by an iteration procedure) the overheating in an arbitrary operation mode.
Cao, Y.; Shen, J.; Randall, C. A.; Chen, L. Q.
2014-05-01
A self-consistent model has been proposed to study the switchable current-voltage (I-V) characteristics in Cu/BaTiO3/Cu sandwiched structure combining the phase-field model of ferroelectric domains and diffusion equations for ionic/electronic transport. The electrochemical transport equations and Ginzburg-Landau equations are solved using the Chebyshev collocation algorithm. We considered a single parallel plate capacitor configuration which consists of a single layer BaTiO3 containing a single tetragonal domain orientated normal to the plate electrodes (Cu) and is subject to a sweep of ac bias from -1.0 to 1.0 V at 25 °C. Our simulation clearly shows rectifying I-V response with rectification ratios amount to 102. The diode characteristics are switchable with an even larger rectification ratio after the polarization direction is flipped. The effects of interfacial polarization charge, dopant concentration, and dielectric constant on current responses were investigated. The switchable I-V behavior is attributed to the polarization bound charges that modulate the bulk conduction.
Institute of Scientific and Technical Information of China (English)
Junqin Zhang; Yintang Yang; Lifei Lou; Yan Zhao
2008-01-01
The current-voltage (I-V) characteristics of 4H-SiC metal-semiconductor-metal (MSM) ultraviolet pho-todetector with different finger widths and spacings, different carrier concentrations and thicknesses of n-type epitaxial layer are simulated. The simulation results indicate that the dark current and the pho-tocurrent both increase when the finger width increases. But the effect of finger width on the dark current is more significant. On the other hand, the effect of finger spacing on the photocurrent is more significant. When the finger spacing increases, the photocurrent decreases and the dark current is almost changeless. In addition, it is found that the smaller the carrier concentration of n-type epitaxial layer is, the smaller the dark current and the larger the photocurrent wiU be. It is also found that I-V characteristics of MSM detector also depend on the epitaxial layer thickness. The dark current of detector is smaller and the photocurrent is larger when the epitaxial layer thickness is about 3 μm.
Imer, Arife Gencer; Ocak, Yusuf Selim
2016-10-01
An organic-inorganic contact was fabricated by forming a thin film of sunset yellow dye ( SY) on a p- Si wafer. The device showed a good rectification property, and the sunset yellow thin film modified the barrier height (Φb) of Al/ p- Si contact by influencing the space charge region. The heterojunction had a strong response to the different illumination intensities and showed that it can be suitable for photodiode applications. The I- V measurements of the device were also applied in the temperature range of 100-500 K. It was seen that characteristic parameters of the device were strongly dependent upon temperature. While the value of Φb increased, the ideality factor ( n) decreased with the increase in temperature. This variation was attributed to spatial inhomogeneity at the interface. The Norde function was used to determine the temperature-dependent series resistance and Φb values, and there was a good agreement with that of ln I- V data. The values of the Richardson constant ( A*) and mean Φb were determined as 29.47 Acm-2 K-2 by means of a modified activation energy plot, matching with a theoretical one, and 1.032 eV, respectively. Therefore, it was stated that the current voltage characteristic with the temperature can be explained by thermionic emission theory with Gaussian distribution of the Φb at the interface.
Briechle, Bernd M; Kim, Youngsang; Ehrenreich, Philipp; Erbe, Artur; Sysoiev, Dmytro; Huhn, Thomas; Groth, Ulrich; Scheer, Elke
2012-01-01
We report on an experimental analysis of the charge transport through sulfur-free photochromic molecular junctions. The conductance of individual molecules contacted with gold electrodes and the current-voltage characteristics of these junctions are measured in a mechanically controlled break-junction system at room temperature and in liquid environment. We compare the transport properties of a series of molecules, labeled TSC, MN, and 4Py, with the same switching core but varying side-arms and end-groups designed for providing the mechanical and electrical contact to the gold electrodes. We perform a detailed analysis of the transport properties of TSC in its open and closed states. We find rather broad distributions of conductance values in both states. The analysis, based on the assumption that the current is carried by a single dominating molecular orbital, reveals distinct differences between both states. We discuss the appearance of diode-like behavior for the particular species 4Py that features end-groups, which preferentially couple to the metal electrode by physisorption. We show that the energetic position of the molecular orbital varies as a function of the transmission. Finally, we show for the species MN that the use of two cyano end-groups on each side considerably enhances the coupling strength compared to the typical behavior of a single cyano group.
Directory of Open Access Journals (Sweden)
Ashish Kumar
2011-01-01
Full Text Available In the present work, the I-V characteristics of Ni/GaN Schottky diodes have been studied. The Schottky diodes, having different sizes using Ni/Au and ohmic contacts using Ti/Al/Ni/Au were made on n-GaN. The GaN was epitaxially grown on c-plane sapphire by metal organic chemical vapor deposition (MOCVD technique and had a thickness of about 3.7 µm. The calculated ideality factor and barrier height from current-voltage (I-V characteristics (at 300 K for two GaN Schottky diodes were close to ~1.3 and ~ 0.8 eV respectively. A high reverse leakage current in the order of 10 – 4A/cm2 (at – 1 V was observed in both diodes. A careful analysis of forward bias I-V characteristics showed very high series resistance and calculation for ideality factor indicated presence of other current transport mechanism apart from thermionic model at room temperature.
Ionic polarization-induced current-voltage hysteresis in CH3NH3PbX3 perovskite solar cells.
Meloni, Simone; Moehl, Thomas; Tress, Wolfgang; Franckevičius, Marius; Saliba, Michael; Lee, Yong Hui; Gao, Peng; Nazeeruddin, Mohammad Khaja; Zakeeruddin, Shaik Mohammed; Rothlisberger, Ursula; Graetzel, Michael
2016-02-01
CH3NH3PbX3 (MAPbX3) perovskites have attracted considerable attention as absorber materials for solar light harvesting, reaching solar to power conversion efficiencies above 20%. In spite of the rapid evolution of the efficiencies, the understanding of basic properties of these semiconductors is still ongoing. One phenomenon with so far unclear origin is the so-called hysteresis in the current-voltage characteristics of these solar cells. Here we investigate the origin of this phenomenon with a combined experimental and computational approach. Experimentally the activation energy for the hysteretic process is determined and compared with the computational results. First-principles simulations show that the timescale for MA(+) rotation excludes a MA-related ferroelectric effect as possible origin for the observed hysteresis. On the other hand, the computationally determined activation energies for halide ion (vacancy) migration are in excellent agreement with the experimentally determined values, suggesting that the migration of this species causes the observed hysteretic behaviour of these solar cells.
Zuo, Yi; Wan, Xiangjian; Long, Guankui; Kan, Bin; Ni, Wang; Zhang, Hongtao; Chen, Yongsheng
2015-07-15
In order to understand the photovoltaic performance differences between the recently reported DR3TBTT-HD and DR3TBDT2T based solar cells, a modified two-diode model with Hecht equation was built to simulate the corresponding current-voltage characteristics. The simulation results reveal that the poor device performance of the DR3TBDTT-HD based device mainly originated from its insufficient charge transport ability, where an average current of 5.79 mA cm(-2) was lost through this pathway at the maximum power point for the DR3TBDTT-HD device, nearly three times as large as that of the DR3TBDT2T based device under the same device fabrication conditions. The morphology studies support these simulation results, in which both Raman and 2D-GIXD data reveal that DR3TBTT-HD based blend films exhibit lower crystallinity. Spin coating at low temperature was used to increase the crystallinity of DR3TBDTT-HD based blend films, and the average current loss through insufficient charge transport at maximum power point was suppressed to 2.08 mA cm(-2). As a result, the average experimental power conversion efficiency of DR3TBDTT-HD based solar cells increased by over 40%.
Quantum equilibria for macroscopic systems
Energy Technology Data Exchange (ETDEWEB)
Grib, A [Department of Theoretical Physics and Astronomy, Russian State Pedagogical University, St. Petersburg (Russian Federation); Khrennikov, A [Centre for Mathematical Modelling in Physics and Cognitive Sciences Vaexjoe University (Sweden); Parfionov, G [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation); Starkov, K [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation)
2006-06-30
Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered.
Directory of Open Access Journals (Sweden)
R. N. Bhowmik
2015-06-01
Full Text Available We have studied current-voltage (I-V characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP 0.345(± 0.001 V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (∼500-700%, magnetoresistance (70-135 % and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.
Macroscopic-microscopic mass models
Nix, J R; Nix, J Rayford; Moller, Peter
1995-01-01
We discuss recent developments in macroscopic-microscopic mass models, including the 1992 finite-range droplet model, the 1992 extended-Thomas-Fermi Strutinsky-integral model, and the 1994 Thomas-Fermi model, with particular emphasis on how well they extrapolate to new regions of nuclei. We also address what recent developments in macroscopic-microscopic mass models are teaching us about such physically relevant issues as the nuclear curvature energy, a new congruence energy arising from a greater-than-average overlap of neutron and proton wave functions, the nuclear incompressibility coefficient, and the Coulomb redistribution energy arising from a central density depression. We conclude with a brief discussion of the recently discovered rock of metastable superheavy nuclei near 272:110 that had been correctly predicted by macroscopic-microscopic models, along with a possible new tack for reaching an island near 290:110 beyond our present horizon.
Institute of Scientific and Technical Information of China (English)
LONG Yun-Ze
2009-01-01
@@ Recently we reported electrical properties of an individual PEDOT nanowire.[1] Ohlckers and Pipinys[2]suggested that the temperature-behavior of Ⅰ- Ⅴcurves and resistance can be described in the framework of a phonon-assisted tunneling (PhAT) model.
Energy Technology Data Exchange (ETDEWEB)
Thurzo, I. (Inst. of Physics, Slovak Academy of Sciences, Bratislava (Slovakia)); Hrubcin, L. (Inst. of Electrical Engineering, Slovak Academy of Sciences, Bratislava (Slovakia)); Bartos, J. (Inst. of Physics, Slovak Academy of Sciences, Bratislava (Slovakia)); Pincik, E. (Inst. of Physics, Slovak Academy of Sciences, Bratislava (Slovakia))
1993-10-01
Changes in the current-voltage characteristics and charge DLTS spectra of Schottky diodes on semi-insulating GaAs after irradiation by protons at different energies and doses are presented and discussed. Apart from a progressive degradation of the Schottky barriers with enhanced proton energy and dose, there is a threshold, positioned between 10[sup 14] and 10[sup 15] protons/cm[sup 2], for observing trap-limited transients. (orig.)
Directory of Open Access Journals (Sweden)
P. Janhunen
Full Text Available We derive the current-voltage relationship in the auroral region taking into account magnetospheric electrons for the bi-Maxwellian and kappa source plasma distribution functions. The current-voltage formulas have in principle been well known for a long time, but the kappa energy flux formulas have not appeared in the literature before. We give a unified treatment of the bi-Maxwellian and kappa distributions, correcting some errors in previous work. We give both exact results and two kinds of approximate formulas for the current density and the energy flux. The first approximation is almost generally valid and is practical to compute. The first approximation formulas are therefore suitable for use in simulations. In the second approximation we assume in addition that the thermal energy is small compared to the potential drop. This yields even simpler linear formulas which are suitable for many types of event studies and which have a more transparent physical interpretation than the first approximation formulas. We also show how it is possible to derive the first approximation formulas even for those distributions for which the exact results can not be computed analytically. The kappa field-aligned conductance value turns out always to be smaller than the corresponding Maxwellian conductance. We also verify that the obtained kappa current density and energy flux formulas go to Maxwellian results when κ→∞.
Key words. Current-voltage relationship · Bi-Maxwellian distributions · Kappa distribution
Arkharov, A. M.; Lavrov, N. A.; Romanovskii, V. R.
2014-06-01
The current instability is studied in high-temperature superconducting current-carrying elements with I- V characteristics described by power or exponential equations. Stability analysis of the macroscopic states is carried out in terms of a stationary zero-dimensional model. In linear temperature approximation criteria are derived that allow one to find the maximum allowable values of the induced current, induced electric field intensity, and overheating of the superconductor. A condition is formulated for the complete thermal stabilization of the superconducting composite with regard to the nonlinearity of its I- V characteristic. It is shown that both subcritical and supercritical stable states may arise. In the latter case, the current and electric field intensity are higher than the preset critical parameters of the superconductor. Conditions for these states depending on the properties of the matrix, superconductor's critical current, fill factor, and nonlinearity of the I- V characteristic are discussed. The obtained results considerably augment the class of allowable states for high-temperature superconductors: it is demonstrated that there exist stable resistive conditions from which superconductors cannot pass to the normal state even if the parameters of these conditions are supercritical.
Energy Technology Data Exchange (ETDEWEB)
Crisan, A. [Institute of Cryogenics, University of Southampton, Southampton (United Kingdom); Institute of Physics and Technology of Materials, Bucharest (Romania); Miu, L.; Popa, S. [Institute of Physics and Technology of Materials, Bucharest (Romania); Yang, Y.; Beduz, C. [Institute of Cryogenics, University of Southampton, Southampton (United Kingdom)
1997-05-01
Current-voltage characteristics of multifilamentary Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10+x}/Ag tapes (short samples) produced by the 'powder in tube' technique were measured at different temperatures close to the mean-field critical temperature, and inzero applied magnetic field. After performing the required corrections due to the current flowing in the silver matrix, the I-V curves were interpreted in terms of current-induced unbinding of the thermally created vortex-antivortex pairs. Two possible mechanisms for appearance of a finite critical current in zero applied magnetic field are discussed: the Jensen-Minnhagen quasi-two-dimensional (2D) approach, that takes into account the interlayer Josephson coupling, and a model of size limitation of vortex fluctuations. From our analysis, it seems that the latter model is more suitable for this kind of superconducting material, due probably to an accentuated intrinsic anisotropy. (author)
Energy Technology Data Exchange (ETDEWEB)
Sirikulrat, N., E-mail: scphi003@chiangmai.ac.th
2012-02-29
The current-voltage (I-V) relationship of aluminum doped zinc oxide thin film-antimony doped barium strontium titanate single heterojunction diodes was investigated. The linear I-V characteristics are similar to those of the PN junction diodes. The linear conduction at a low forward bias voltage as predicted by the space charge limited current theory and the trap free square law at a higher forward voltage are observed. The overall current density-voltage (J-V) characteristics of the diodes are found to be well described by the Power Series Equation J= N-Ary-Summation {sub m}C{sub m}V{sup m} where C{sub m} is the leakage constant at particular power m with the best fit for the power m found to be at the fourth and fifth orders for the forward and reverse bias respectively. - Highlights: Black-Right-Pointing-Pointer The n-n isotype heterojunction diodes of ceramic oxide semiconductors were prepared. Black-Right-Pointing-Pointer The current density-voltage (J-V) curves were analyzed using the Power Series (PS). Black-Right-Pointing-Pointer The J-V characteristics were found to be well described with PS at low order. Black-Right-Pointing-Pointer The thermionic emission and diode leakage currents were comparatively discussed.
Room temperature current-voltage (I-V) characteristics of Ag/InGaN/n-Si Schottky barrier diode
Erdoğan, Erman; Kundakçı, Mutlu
2017-02-01
Metal-semiconductors (MSs) or Schottky barrier diodes (SBDs) have a significant potential in the integrated device technology. In the present paper, electrical characterization of Ag/InGaN/n-Si Schottky diode have been systematically carried out by simple Thermionic method (TE) and Norde function based on the I-V characteristics. Ag ohmic and schottky contacts are deposited on InGaN/n-Si film by thermal evaporation technique under a vacuum pressure of 1×10-5 mbar. Ideality factor, barrier height and series resistance values of this diode are determined from I-V curve. These parameters are calculated by TE and Norde methods and findings are given in a comparetive manner. The results show the consistency for both method and also good agreement with other results obtained in the literature. The value of ideality factor and barrier height have been determined to be 2.84 and 0.78 eV at room temperature using simple TE method. The value of barrier height obtained with Norde method is calculated as 0.79 eV.
Cataldo, Enrico; Maccarrone, Francesco; Paffuti, Giampiero
2016-01-01
We show that in a simple experiment at undergraduate level, suitable to be performed in classes of science and engineering students, it is possible to test accurately, on a popular 1N4148 p-n diode, the range of the junction currents where the Shockley equation model can be considered satisfactory. The experiment benefits from a system of temperature control and data collection driven in a LabVIEW environment. With these tools a large quantity of data can be recorded in the temporal frame of a lab session. Significant deviations of the experimental I-V with respect to the ideal behaviour curve predicted by the Shockley equation are observed, both at low and high current. A better agreement over the entire range is obtained introducing, as is customary, a four parameters model, including a parallel and a series resistance. A new iterative fitting procedure is presented which treats the I-V data of different regimes on the same level, and allows a simultaneous determination of the four parameters for each tempe...
Energy Technology Data Exchange (ETDEWEB)
Hernandez, A.D.; Hart, C.; Martinez, C.M.; Ares, O. [Superconductivity Lab, IMRE-University of Havana, Vedado 10400, Havana (Cuba)
1999-07-01
The self-field and percolative influences on transport measurements of polycrystalline bridges engraved on YBaCuO thick film have been investigated. A maximum in the dependence of the critical current density on cross-sectional area of the bridge (A = 0.003 mm{sup 2}-0.3 mm{sup 2}) has been found experimentally, in samples with low critical current densities (J{sub c}<50 A cm{sup -2}). The result of the measurements are in agreement with Mulet and coworkers, who have predicted that, under certain conditions, the self-field effects on transport measurements are negligible and the J{sub c} dependence on the sample dimensions is determined by the percolative character of the transport current. Self-field influences have also been observed in current-voltage characteristics, which have been analysed using the Ambegaokar-Halperin phase-slip theory. By allowing the noise parameter ({gamma}) to change with temperature, magnetic field and transport current, adequate agreement between theoretical and experimental current-voltage characteristics has been obtained. The dependence of the noise parameter with the transport current is demonstrated to be related with the self-field. (author)
Macroscopically-Discrete Quantum Cosmology
Chew, Geoffrey F
2008-01-01
To Milne's Lorentz-group-based spacetime and Gelfand-Naimark unitary representations of this group we associate a Fock space of 'cosmological preons'-quantum-theoretic universe constituents. Milne's 'cosmological principle' relies on Lorentz invariance of 'age'--global time. We divide Milne's spacetime into 'slices' of fixed macroscopic width in age, with 'cosmological rays' defined on (hyperbolic) slice boundaries-Fock space attaching only to these exceptional universe ages. Each (fixed-age) preon locates within a 6-dimensional manifold, one of whose 3 'extra' dimensions associates in Dirac sense to a self-adjoint operator that represents preon (continuous) local time, the operator canonically-conjugate thereto representing preon (total) energy. Self-adjoint-operator expectations at any spacetime-slice boundary prescribe throughout the following slice a non-fluctuating 'mundane reality'- electromagnetic and gravitational potentials 'tethered' to current densities of locally-conserved electric charge and ener...
Seismic scanning tunneling macroscope - Theory
Schuster, Gerard T.
2012-09-01
We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.
Model I - V curves and figures of merit of underdamped deterministic Josephson ratchets
Goldobin, E.; Menditto, R.; Koelle, D.; Kleiner, R.
2016-09-01
We propose simple models for the current-voltage characteristics of typical Josephson ratchets. We consider the case of a ratchet working against a constant applied counter force and derive analytical expressions for the key characteristics of such a ratchet: rectification curve, stopping force, input and output powers, and rectification efficiency. Optimization of the ratchet performance is discussed.
Energy Technology Data Exchange (ETDEWEB)
Shukrinov, Yu.M. [Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of); Physical Technical Institute of Tajik Academy of Sciences, Dushanbe (Tajikistan); Nasrulaev, Kh. [Physical Technical Institute of Tajik Academy of Sciences, Dushanbe (Tajikistan); Sargolzaei, M. [Institute for Advanced Studies in Basic Sciences, Zanjan (Iran, Islamic Republic of); Oya, G.; Irie, A. [Utsunomiya University, Yoto, Utsunomiya (Japan); CREST, Japan Science and Technology Corporation (JST), Kawaguchi, Saitama (Japan)
2002-01-01
The subgap structure in current-voltage (I-V) characteristics of a stack of intrinsic Josephson junctions in high-T{sub c} superconductors is studied. An analytical formula for the I-V characteristics is obtained which had taken into account the influence of the dynamically breaking of charge neutrality (DBCN) in CuO{sub 2} layers on the subgap structure. It is shown that DBCN does not affect the positions and the amplitudes of the subgap peaks, but changes the curvature of the branches in the I-V characteristics. As a possible manifestation of the non-equivalence of the junction, the experimental I-V characteristics of intrinsic Josephson junctions are presented. (author)
Chen, Zuhui; Jie, Bin B.; Sah, Chih-Tang
2008-11-01
Steady-state Shockley-Read-Hall kinetics is employed to explore the high concentration effect of neutral-potential-well interface traps on the electron-hole recombination direct-current current-voltage (R-DCIV) properties in metal-oxide-silicon field-effect transistors. Extensive calculations include device parameter variations in neutral-trapping-potential-well electron interface-trap density NET (charge states 0 and -1), dopant impurity concentration PIM, oxide thickness Xox, forward source/drain junction bias VPN, and transistor temperature T. It shows significant distortion of the R-DCIV lineshape by the high concentrations of the interface traps. The result suggests that the lineshape distortion observed in past experiments, previously attributed to spatial variation in surface impurity concentration and energy distribution of interface traps in the silicon energy gap, can also arise from interface-trap concentration along surface channel region.
Nagase, Masanori; Takahashi, Tokio; Shimizu, Mitsuaki
2016-10-01
Resistance switching memory operations using the bistability in the current-voltage (I-V) characteristics of GaN/AlN resonant tunneling diodes (RTDs) were investigated to realize an ultrafast nonvolatile memory operating at a picosecond time scale. Resistance switching memory operations based on electron accumulation due to intersubband transitions and electron release due to tunneling current were demonstrated with high reproducibility at room temperature when the leakage of electrons accumulating in the quantum well from the deep level in the AlN barrier was suppressed. A nonvolatile memory for the processor core in a normally off computing system is expected to be realized using the bistability in the I-V characteristics of GaN/AlN RTDs.
Macroscopic theory of dark sector
Meierovich, Boris E
2013-01-01
A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields {\\phi}_{I} with {\\phi}^{K}{\\phi}_{K}0 describe two different forms of dark matter. The space-like ({\\phi}^{K}{\\phi}_{K}0) massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating soluti...
MACROSCOPIC DIVERSITY FOR CDMA MOBILE SYSTEM
Institute of Scientific and Technical Information of China (English)
Pei Xiaoyan; Hu Jiandong
2002-01-01
A novel system of macroscopic diversity with voting rule in CDMA cellular system is suggested in order to raise the coverage and quality of service of CDMA mobile communication system. The estimation of the impact of macroscopic diversity on performance of CDMA cellular system is analyzed and investigated.
MACROSCOPIC DIVERSITY FOR CDMA MOBILE SYSTEM
Institute of Scientific and Technical Information of China (English)
PeiXiaoyan; HuJiandong
2002-01-01
A novel system of macroscopic diversity with voting rule in CDMA cellular system is suggested in order to raise the coverage and quality of service of CDMA mobile communication system.The estimation of the impact of macroscopic diversity on performance of CDMA cellular system is analyzed and investigated.
Hansen, U P; Gradmann, D; Sanders, D; Slayman, C L
1981-01-01
This paper develops a simple reaction-kinetic model to describe electrogenic pumping and co- (or counter-) transport of ions. It uses the standard steady-state approach for cyclic enzyme- or carrier-mediated transport, but does not assume rate-limitation by any particular reaction step. Voltage-dependence is introduced, after the suggestion of Läuger and Stark (Biochim. Biophys. Acta 211:458-466, 1970), via a symmetric Eyring barrier, in which the charge-transit reaction constants are written as k12 = ko12 exp(zF delta psi/2RT) and k21 = ko21 exp(-zF delta psi/2RT). For interpretation of current-voltage relationships, all voltage-independent reaction steps are lumped together, so the model in its simplest form can be described as a pseudo-2-state model. It is characterized by the two voltage-dependent reaction constants, two lumped voltage-independent reaction constants (k12, k21), and two reserve factors (ri, ro) which formally take account of carrier states that are indistinguishable in the current-voltage (I-V) analysis. The model generates a wide range of I-V relationships, depending on the relative magnitudes of the four reaction constants, sufficient to describe essentially all I-V datas now available on "active" ion-transport systems. Algebraic and numerical analysis of the reserve factors, by means of expanded pseudo-3-, 4-, and 5-state models, shows them to be bounded and not large for most combinations of reaction constants in the lumped pathway. The most important exception to this rule occurs when carrier decharging immediately follows charge transit of the membrane and is very fast relative to other constituent voltage-independent reactions. Such a circumstance generates kinetic equivalence of chemical and electrical gradients, thus providing a consistent definition of ion-motive forces (e.g., proton-motive force, PMF). With appropriate restrictions, it also yields both linear and log-linear relationships between net transport velocity and either
Light induced electrical and macroscopic changes in hydrogenated polymorphous silicon solar cells
Kim, K. H.; Johnson, E. V.; Abramov, A.; Cabarrocas, P. Roca i.
2012-07-01
We report on light-induced electrical and macroscopic changes in hydrogenated polymorphous silicon (pm-Si:H) PIN solar cells. To explain the particular light-soaking behavior of such cells - namely an increase of the open circuit voltage (Voc) and a rapid drop of the short circuit current density (Jsc) - we correlate these effects to changes in hydrogen incorporation and structural properties in the layers of the cells. Numerous techniques such as current-voltage characteristics, infrared spectroscopy, hydrogen exodiffusion, Raman spectroscopy, atomic force microscopy, scanning electron microscopy and spectroscopic ellipsometry are used to study the light-induced changes from microscopic to macroscopic scales (up to tens of microns). Such comprehensive use of complementary techniques lead us to suggest that light-soaking produces the diffusion of molecular hydrogen, hydrogen accumulation at p-layer/substrate interface and localized delamination of the interface. Based on these results we propose that light-induced degradation of PIN solar cells has to be addressed from not only as a material issue, but also a device point of view. In particular we bring experimental evidence that localized delamination at the interface between the p-layer and SnO2 substrate by light-induced hydrogen motion causes the rapid drop of Jsc.
Light induced electrical and macroscopic changes in hydrogenated polymorphous silicon solar cells
Directory of Open Access Journals (Sweden)
Roca i Cabarrocas P.
2012-07-01
Full Text Available We report on light-induced electrical and macroscopic changes in hydrogenated polymorphous silicon (pm-Si:H PIN solar cells. To explain the particular light-soaking behavior of such cells – namely an increase of the open circuit voltage (Voc and a rapid drop of the short circuit current density (Jsc – we correlate these effects to changes in hydrogen incorporation and structural properties in the layers of the cells. Numerous techniques such as current-voltage characteristics, infrared spectroscopy, hydrogen exodiffusion, Raman spectroscopy, atomic force microscopy, scanning electron microscopy and spectroscopic ellipsometry are used to study the light-induced changes from microscopic to macroscopic scales (up to tens of microns. Such comprehensive use of complementary techniques lead us to suggest that light-soaking produces the diffusion of molecular hydrogen, hydrogen accumulation at p-layer/substrate interface and localized delamination of the interface. Based on these results we propose that light-induced degradation of PIN solar cells has to be addressed from not only as a material issue, but also a device point of view. In particular we bring experimental evidence that localized delamination at the interface between the p-layer and SnO2 substrate by light-induced hydrogen motion causes the rapid drop of Jsc.
Rank distributions: A panoramic macroscopic outlook
Eliazar, Iddo I.; Cohen, Morrel H.
2014-01-01
This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions—top-down, bottom-up, and global—and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.
Energy Technology Data Exchange (ETDEWEB)
Cao, Y., E-mail: yxc238@psu.edu; Randall, C. A.; Chen, L. Q. [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Shen, J. [Department of Mathematics, Purdue University, West Lafayette, Indiana 47907 (United States)
2014-05-05
A self-consistent model has been proposed to study the switchable current-voltage (I-V) characteristics in Cu/BaTiO{sub 3}/Cu sandwiched structure combining the phase-field model of ferroelectric domains and diffusion equations for ionic/electronic transport. The electrochemical transport equations and Ginzburg-Landau equations are solved using the Chebyshev collocation algorithm. We considered a single parallel plate capacitor configuration which consists of a single layer BaTiO{sub 3} containing a single tetragonal domain orientated normal to the plate electrodes (Cu) and is subject to a sweep of ac bias from −1.0 to 1.0 V at 25 °C. Our simulation clearly shows rectifying I-V response with rectification ratios amount to 10{sup 2}. The diode characteristics are switchable with an even larger rectification ratio after the polarization direction is flipped. The effects of interfacial polarization charge, dopant concentration, and dielectric constant on current responses were investigated. The switchable I-V behavior is attributed to the polarization bound charges that modulate the bulk conduction.
Energy Technology Data Exchange (ETDEWEB)
Islam, S. M. Z. [IUSL, Department of Physics, The City College of New York, 160 Convent Ave., New York, New York 10031 (United States); Department of Physics and Engineering Physics, Fordham University, 441 E. Fordham Road, Bronx, New York 10458 (United States); Department of Electrical Engineering, The City College of New York, 160 Convent Ave., New York, New York 10031 (United States); Gayen, Taposh [IUSL, Department of Physics, The City College of New York, 160 Convent Ave., New York, New York 10031 (United States); Department of Physics and Engineering Physics, Fordham University, 441 E. Fordham Road, Bronx, New York 10458 (United States); Tint, Naing; Alfano, Robert, E-mail: ralfano@sci.ccny.cuny.edu [IUSL, Department of Physics, The City College of New York, 160 Convent Ave., New York, New York 10031 (United States); Department of Electrical Engineering, The City College of New York, 160 Convent Ave., New York, New York 10031 (United States); Shi, Lingyan [IUSL, Department of Physics, The City College of New York, 160 Convent Ave., New York, New York 10031 (United States); Department of Biomedical Engineering, The City College of New York, 160 Convent Ave., New York, New York 10031 (United States); Seredych, Mykola; Bandosz, Teresa J. [Department of Chemistry, The City College of New York, 160 Convent Ave., New York, New York 10031 (United States)
2014-11-07
The effects of fabrication temperature are investigated on the performance of CdSe quantum dot (QD)-sensitized hybrid solar cells of the composite material of zinc (hydr)oxide (ZnOH-GO)with 2 wt. % graphite oxide. The current-voltage (I-V) and photo-current measurements show that higher fabrication temperatures yield greater photovoltaic power conversion efficiencies that essentially indicate more efficient solar cells. Two Photon Fluorescence images show the effects of temperature on the internal morphologies of the solar devices based on such materials. The CdSe-QD sensitized ZnOH-GO hybrid solar cells fabricated at 450 °C showing conversion of ∼10.60% under a tungsten lamp (12.1 mW/cm{sup 2}) are reported here, while using potassium iodide as an electrolyte. The output photocurrent, I (μA) with input power, P (mW/cm{sup 2}) is found to be superlinear, showing a relation of I = P{sup n}, where n = 1.4.
Islam, S. M. Z.; Gayen, Taposh; Tint, Naing; Shi, Lingyan; Seredych, Mykola; Bandosz, Teresa J.; Alfano, Robert
2014-11-01
The effects of fabrication temperature are investigated on the performance of CdSe quantum dot (QD)-sensitized hybrid solar cells of the composite material of zinc (hydr)oxide (ZnOH-GO)with 2 wt. % graphite oxide. The current-voltage (I-V) and photo-current measurements show that higher fabrication temperatures yield greater photovoltaic power conversion efficiencies that essentially indicate more efficient solar cells. Two Photon Fluorescence images show the effects of temperature on the internal morphologies of the solar devices based on such materials. The CdSe-QD sensitized ZnOH-GO hybrid solar cells fabricated at 450 °C showing conversion of ˜10.60% under a tungsten lamp (12.1 mW/cm2) are reported here, while using potassium iodide as an electrolyte. The output photocurrent, I (μA) with input power, P (mW/cm2) is found to be superlinear, showing a relation of I = Pn, where n = 1.4.
Energy Technology Data Exchange (ETDEWEB)
Jiang, C.; Samnakay, R.; Balandin, A. A., E-mail: balandin@ee.ucr.edu [Nano-Device Laboratory (NDL), Department of Electrical Engineering, Bourns College of Engineering, University of California—Riverside, Riverside, California 92521 (United States); Phonon Optimized Engineered Materials (POEM) Center, Materials Science and Engineering Program, University of California—Riverside, Riverside, California 92521 (United States); Rumyantsev, S. L. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Ioffe Physical-Technical Institute, St. Petersburg 194021 (Russian Federation); Shur, M. S. [Department of Electrical, Computer, and Systems Engineering, Center for Integrated Electronics, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)
2015-02-14
We report on fabrication of MoS{sub 2} thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS{sub 2} devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS{sub 2} thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a “memory step,” was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS{sub 2} thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS{sub 2} thin-film transistors in extreme-temperature electronics and sensors.
Energy Technology Data Exchange (ETDEWEB)
Nishi, Shohei; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa, E-mail: iwamoto@pe.titech.ac.jp [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 S3-33, O-okayama, Meguro-ku, Tokyo 152-8552 (Japan)
2015-06-28
By using electric-field-induced optical second-harmonic generation measurement coupled with the conventional current-voltage (I-V) measurement, we studied the carrier transport of organic double-layer diodes with a Au/pentacene/fluorine polymer (FP)/indium zinc oxide (IZO) structure. The rectifying I-V characteristics were converted into the I-E characteristics of the FP and pentacene layers. Results suggest a model in which Schottky-type electron injection from the IZO electrode to the FP layer governs the forward electrical conduction (V > 0), where the space charge electric field produced in the FP layer by accumulated holes at the pentacene/FP interface makes a significant contribution. On the other hand, Schottky-type injection by accumulated interface electrons from the pentacene layer to the FP layer governs the backward electrical conduction (V < 0). The electroluminescence generated from the pentacene layer in the region V > 0 verifies the electron transport across the FP layer, and supports the above suggested model.
Manifacier, J. C.
2010-12-01
Theoretical and numerical investigations of carriers transport in N-Semi-Insulating (SI)-N and P-SI-P diodes is extended to the case of extrinsic (N type) or SI samples with Gunn like electric field dependent mobilities. The results obtained in a preceding publication [1] are valid as long as the bulk electric field does not increase above a threshold field E th associated with the beginning of negative electron differential mobility values: μ n,diff = ( dv n/ dE) diodes. SI(N -) characterizes a SI layer which keeps, under applied bias, a free electron concentration close to its thermal equilibrium value up to the beginning of electron space charge injection. A systematic study has been made by varying the contact boundary properties: flat band, metallic, N + or P +; the length of the sample and the electric parameters of the deep compensating trap of the SI layers. We show that these steady state numerical instabilities are related to the existence of multiple current-voltage solutions when numerical modelisation is made using the drift-diffusion model.
Understanding the Pulsar High Energy Emission: Macroscopic and Kinetic Models
Kalapotharakos, Constantinos; Brambilla, Gabriele; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demos
2017-08-01
Pulsars are extraordinary objects powered by the rotation of magnetic fields of order 10^8, 10^12G anchored onto neutron stars and rotating with periods 10^(-3)-10s. These fields mediate the conversion of their rotational energy into MHD winds and at the same time accelerate particles to energies sufficiently high to produce GeV photons. Fermi, since its launch in 2008, has established several trends among the observed gamma-ray pulsar properties playing a catalytic role in the current modeling of the high energy emission in pulsar magnetospheres. We judiciously use the guidance provided by the Fermi data to yield meaningful constraints on the macroscopic parameters of our global dissipative pulsar magnetosphere models. Our FIDO (Force-Free Inside, Dissipative Outside) models indicate that the dissipative regions lie outside the light cylinder near the equatorial current sheet. Our models reproduce the light-curve phenomenology while a detailed comparison of the model spectral properties with those observed by Fermi reveals the dependence of the macroscopic conductivity parameter on the spin-down rate providing a unique insight into the understanding of the physical mechanisms behind the high-energy emission in pulsar magnetospheres. Finally, we further exploit these important results by building self-consistent 3D global kinetic particle-in-cell (PIC) models which, eventually, provide the dependence of the macroscopic parameter behavior (e.g. conductivity) on the microphysical properties (e.g. particle multiplicities, particle injection rates). Our PIC models provide field structures and particle distributions that are not only consistent with each other but also able to reproduce a broad range of the observed gamma-ray phenomenology (light curves and spectral properties) of both young and millisecond pulsars.
Macroscopic (and microscopic massless modes
Directory of Open Access Journals (Sweden)
Michael C. Abbott
2015-05-01
Full Text Available We study certain spinning strings exploring the flat directions of AdS3×S3×S3×S1, the massless sector cousins of su(2 and sl(2 sector spinning strings. We describe these, and their vibrational modes, using the D(2,1;α2 algebraic curve. By exploiting a discrete symmetry of this structure which reverses the direction of motion on the spheres, and alters the masses of the fermionic modes s→κ−s, we find out how to treat the massless fermions which were previously missing from this formalism. We show that folded strings behave as a special case of circular strings, in a sense which includes their mode frequencies, and we are able to recover this fact in the worldsheet formalism. We use these frequencies to calculate one-loop corrections to the energy, with a version of the Beisert–Tseytlin resummation.
Macroscopic transport by synthetic molecular machines
Berna, J; Leigh, DA; Lubomska, M; Mendoza, SM; Perez, EM; Rudolf, P; Teobaldi, G; Zerbetto, F
2005-01-01
Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with - and perform physical tasks in - the macroscopic world represents a significant hurdle
Assessments of macroscopicity for quantum optical states
DEFF Research Database (Denmark)
Laghaout, Amine; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund
2015-01-01
With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should...... enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished. © 2014....
Quantum Bell Inequalities from Macroscopic Locality
Yang, Tzyh Haur; Sheridan, Lana; Scarani, Valerio
2010-01-01
We propose a method to generate analytical quantum Bell inequalities based on the principle of Macroscopic Locality. By imposing locality over binary processings of virtual macroscopic intensities, we establish a correspondence between Bell inequalities and quantum Bell inequalities in bipartite scenarios with dichotomic observables. We discuss how to improve the latter approximation and how to extend our ideas to scenarios with more than two outcomes per setting.
Macroscopic optical response and photonic bands
Perez-Huerta, J S; Mendoza, Bernardo S; Mochan, W Luis
2012-01-01
We develop a formalism for the calculation of the macroscopic dielectric response of composite systems made of particles of one material embedded periodically within a matrix of another material, each of which is characterized by a well defined dielectric function. The nature of these dielectric functions is arbitrary, and could correspond to dielectric or conducting, transparent or opaque, absorptive and dispersive materials. The geometry of the particles and the Bravais lattice of the composite are also arbitrary. Our formalism goes beyond the longwavelenght approximation as it fully incorporates retardation effects. We test our formalism through the study the propagation of electromagnetic waves in 2D photonic crystals made of periodic arrays of cylindrical holes in a dispersionless dielectric host. Our macroscopic theory yields a spatially dispersive macroscopic response which allows the calculation of the full photonic band structure of the system, as well as the characterization of its normal modes, upo...
A macroscopic challenge for quantum spacetime
Amelino-Camelia, Giovanni
2013-01-01
Over the last decade a growing number of quantum-gravity researchers has been looking for opportunities for the first ever experimental evidence of a Planck-length quantum property of spacetime. These studies are usually based on the analysis of some candidate indirect implications of spacetime quantization, such as a possible curvature of momentum space. Some recent proposals have raised hope that we might also gain direct experimental access to quantum properties of spacetime, by finding evidence of limitations to the measurability of the center-of-mass coordinates of some macroscopic bodies. However I here observe that the arguments that originally lead to speculating about spacetime quantization do not apply to the localization of the center of mass of a macroscopic body. And I also analyze some popular formalizations of the notion of quantum spacetime, finding that when the quantization of spacetime is Planckian for the constituent particles then for the composite macroscopic body the quantization of spa...
On Macroscopic Complexity and Perceptual Coding
Scoville, John
2010-01-01
While Shannon information establishes limits to the universal data compression of binary data, no existing theory provides an equivalent characterization of the lossy data compression algorithms prevalent in audiovisual media. The current paper proposes a mathematical framework for perceptual coding and inference which quantifies the complexity of objects indistinguishable to a particular observer. A definition of the complexity is presented and related to a generalization of Boltzmann entropy for these equivalence classes. When the classes are partitions of phase space, corresponding to classical observations, this is the proper Boltzmann entropy and the macroscopic complexity agrees with the Algorithmic Entropy. For general classes, the macroscopic complexity measure determines the optimal lossy compression of the data. Conversely, perceptual coding algorithms may be used to construct upper bounds on certain macroscopic complexities. Knowledge of these complexities, in turn, allows perceptual inference whic...
Nanoplasmon-enabled macroscopic thermal management
Jonsson, Gustav Edman; Dmitriev, Alexandre
2013-01-01
In numerous applications of energy harvesting via transformation of light into heat the focus recently shifted towards highly absorptive materials featuring nanoplasmons. It is currently established that noble metals-based absorptive plasmonic platforms deliver significant light-capturing capability and can be viewed as super-absorbers of optical radiation. However, direct experimental evidence of plasmon-enabled macroscopic temperature increase that would result from these efficient absorptive properties is scarce. Here we derive a general quantitative method of characterizing light-capturing properties of a given heat-generating absorptive layer by macroscopic thermal imaging. We further monitor macroscopic areas that are homogeneously heated by several degrees with plasmon nanostructures that occupy a mere 8% of the surface, leaving it essentially transparent and evidencing significant heat generation capability of nanoplasmon-enabled light capture. This has a direct bearing to thermophotovoltaics and othe...
Separation of the Microscopic and Macroscopic Domains
Van Zandt, L. L.
1977-01-01
Examines the possibility of observing interference in quantum magnification experiments such as the celebrated "Schroedinger cat". Uses the possibility of observing interference for separating the realm of microscopic from macroscopic dynamics; estimates the dividing line to fall at system sizes of about 100 Daltons. (MLH)
Entropy, Macroscopic Information, and Phase Transitions
Parrondo, Juan M. R.
1999-01-01
The relationship between entropy and information is reviewed, taking into account that information is stored in macroscopic degrees of freedom, such as the order parameter in a system exhibiting spontaneous symmetry breaking. It is shown that most problems of the relationship between entropy and information, embodied in a variety of Maxwell demons, are also present in any symmetry breaking transition.
Macroscopic Modeling of Polymer-Electrolyte Membranes
Energy Technology Data Exchange (ETDEWEB)
Weber, A.Z.; Newman, J.
2007-04-01
In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.
Lozenge Tilings, Glauber Dynamics and Macroscopic Shape
Laslier, Benoît; Toninelli, Fabio Lucio
2015-09-01
We study the Glauber dynamics on the set of tilings of a finite domain of the plane with lozenges of side 1/ L. Under the invariant measure of the process (the uniform measure over all tilings), it is well known (Cohn et al. J Am Math Soc 14:297-346, 2001) that the random height function associated to the tiling converges in probability, in the scaling limit , to a non-trivial macroscopic shape minimizing a certain surface tension functional. According to the boundary conditions, the macroscopic shape can be either analytic or contain "frozen regions" (Arctic Circle phenomenon Cohn et al. N Y J Math 4:137-165, 1998; Jockusch et al. Random domino tilings and the arctic circle theorem, arXiv:math/9801068, 1998). It is widely conjectured, on the basis of theoretical considerations (Henley J Statist Phys 89:483-507, 1997; Spohn J Stat Phys 71:1081-1132, 1993), partial mathematical results (Caputo et al. Commun Math Phys 311:157-189, 2012; Wilson Ann Appl Probab 14:274-325, 2004) and numerical simulations for similar models (Destainville Phys Rev Lett 88:030601, 2002; cf. also the bibliography in Henley (J Statist Phys 89:483-507, 1997) and Wilson (Ann Appl Probab 14:274-325, 2004), that the Glauber dynamics approaches the equilibrium macroscopic shape in a time of order L 2+ o(1). In this work we prove this conjecture, under the assumption that the macroscopic equilibrium shape contains no "frozen region".
Macroscopic invisibility cloaking of visible light
DEFF Research Database (Denmark)
Chen, Xianzhong; Luo, Y.; Zhang, Jingjing
2011-01-01
to a few wavelengths. Here, we report the first realization of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding, for a specific light polarization, three-dimensional objects of the scale...
Macroscopic quantum mechanics in a classical spacetime.
Yang, Huan; Miao, Haixing; Lee, Da-Shin; Helou, Bassam; Chen, Yanbei
2013-04-26
We apply the many-particle Schrödinger-Newton equation, which describes the coevolution of a many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schrödinger-Newton equation for their centers of mass, which can be monitored and manipulated at quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, its quantum uncertainty is found to evolve at a frequency different from its classical eigenfrequency-with a difference that depends on the internal structure of the object-and can be observable using current technology. For several objects, the Schrödinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet quantum uncertainty cannot be transferred from one object to another.
Macroscopic Invisibility Cloaking of Visible Light
Chen, Xianzhong; Zhang, Jingjing; Jiang, Kyle; Pendry, John B; Zhang, Shuang
2010-01-01
Invisibility cloaks of light, which used to be confined to the imagination, have now been turned into a scientific reality, thanks to the enabling theoretical tools of transformation optics and conformal mapping. Inspired by those theoretical works, the experimental realisation of electromagnetic invisibility cloaks has been reported at various electromagnetic frequencies. All the invisibility cloaks demonstrated thus far, however, have relied on nano- or micro-fabricated artificial composite materials with spatially varying electromagnetic properties, which limit the size of the cloaked region to a few wavelengths. Here we report realisation of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding three-dimensional objects of the scale of centimetres and millimetres. Our work opens avenues for future applications with macroscopic cloaking devices.
Macroscopic spin and charge transport theory
Institute of Scientific and Technical Information of China (English)
Li Da-Fang; Shi Jun-Ren
2009-01-01
According to the general principle of non-equilibrium thermodynamics, we propose a set of macroscopic transport equations for the spin transport and the charge transport. In particular, the spin torque is introduced as a generalized 'current density' to describe the phenomena associated with the spin non-conservation in a unified framework. The Einstein relations and the Onsager relations between different transport phenomena are established. Specifically, the spin transport properties of the isotropic non-magnetic and the isotropic magnetic two-dimensional electron gases are fully described by using this theory, in which only the macroscopic-spin-related transport phenomena allowed by the symmetry of the system are taken into account.
Macroscopic entrainment of periodically forced oscillatory ensembles.
Popovych, Oleksandr V; Tass, Peter A
2011-03-01
Large-amplitude oscillations of macroscopic neuronal signals, such as local field potentials and electroencephalography or magnetoencephalography signals, are commonly considered as being generated by a population of mutually synchronized neurons. In a computational study in generic networks of phase oscillators and bursting neurons, however, we show that this common belief may be wrong if the neuronal population receives an external rhythmic input. The latter may stem from another neuronal population or an external, e.g., sensory or electrical, source. In that case the population field potential may be entrained by the rhythmic input, whereas the individual neurons are phase desynchronized both mutually and with their field potential. Intriguingly, the corresponding large-amplitude oscillations of the population mean field are generated by pairwise desynchronized neurons oscillating at frequencies shifted far away from the frequency of the macroscopic field potential.
Adsorption modeling for macroscopic contaminant dispersal analysis
Energy Technology Data Exchange (ETDEWEB)
Axley, J.W.
1990-05-01
Two families of macroscopic adsorption models are formulated, based on fundamental principles of adsorption science and technology, that may be used for macroscopic (such as whole-building) contaminant dispersal analysis. The first family of adsorption models - the Equilibrium Adsorption (EA) Models - are based upon the simple requirement of equilibrium between adsorbent and room air. The second family - the Boundary Layer Diffusion Controlled Adsorption (BLDC) Models - add to the equilibrium requirement a boundary layer model for diffusion of the adsorbate from the room air to the adsorbent surface. Two members of each of these families are explicitly discussed, one based on the linear adsorption isotherm model and the other on the Langmuir model. The linear variants of each family are applied to model the adsorption dynamics of formaldehyde in gypsum wall board and compared to measured data.
Macroscopic Invisible Cloak for Visible Light
Zhang, Baile; Liu, Xiaogang; Barbastathis, George
2011-01-01
Invisibility cloaks, a subject that usually occurs in science fiction and myths, have attracted wide interest recently because of their possible realization. The biggest challenge to true invisibility is known to be the cloaking of a macroscopic object in the broad range of wavelengths visible to the human eye. Here we experimentally solve this problem by incorporating the principle of transformation optics into a conventional optical lens fabrication with low-cost materials and simple manufacturing techniques. A transparent cloak made of two pieces of calcite is created. This cloak is able to conceal a macroscopic object with a maximum height of 2 mm, larger than 3500 free-space-wavelength, inside a transparent liquid environment. Its working bandwidth encompassing red, green and blue light is also demonstrated.
Macroscopic Quantum Resonators (MAQRO): 2015 update
Energy Technology Data Exchange (ETDEWEB)
Kaltenbaek, Rainer [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Aspelmeyer, Markus; Kiesel, Nikolai [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Barker, Peter F.; Bose, Sougato [University College London, Department of Physics and Astronomy, London (United Kingdom); Bassi, Angelo [University of Trieste, Department of Physics, Trieste (Italy); INFN - Trieste Section, Trieste (Italy); Bateman, James [University of Swansea, Department of Physics, College of Science, Swansea (United Kingdom); Bongs, Kai; Cruise, Adrian Michael [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Braxmaier, Claus [University of Bremen, Center of Applied Space Technology and Micro Gravity (ZARM), Bremen (Germany); Institute of Space Systems, German Aerospace Center (DLR), Bremen (Germany); Brukner, Caslav [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Austrian Academy of Sciences, Institute of Quantum Optics and Quantum Information (IQOQI), Vienna (Austria); Christophe, Bruno; Rodrigues, Manuel [The French Aerospace Lab, ONERA, Chatillon (France); Chwalla, Michael; Johann, Ulrich [Airbus Defence and Space GmbH, Immenstaad (Germany); Cohadon, Pierre-Francois; Heidmann, Antoine; Lambrecht, Astrid; Reynaud, Serge [ENS-PSL Research University, Laboratoire Kastler Brossel, UPMC-Sorbonne Universites, CNRS, College de France, Paris (France); Curceanu, Catalina [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dholakia, Kishan; Mazilu, Michael [University of St. Andrews, School of Physics and Astronomy, St. Andrews (United Kingdom); Diosi, Lajos [Wigner Research Center for Physics, P.O. Box 49, Budapest (Hungary); Doeringshoff, Klaus; Peters, Achim [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Ertmer, Wolfgang; Rasel, Ernst M. [Leibniz Universitaet Hannover, Institut fuer Quantenoptik, Hannover (Germany); Gieseler, Jan; Novotny, Lukas; Rondin, Loic [ETH Zuerich, Photonics Laboratory, Zuerich (Switzerland); Guerlebeck, Norman; Herrmann, Sven; Laemmerzahl, Claus [University of Bremen, Center of Applied Space Technology and Micro Gravity (ZARM), Bremen (Germany); Hechenblaikner, Gerald [Airbus Defence and Space GmbH, Immenstaad (Germany); European Southern Observatory (ESO), Garching bei Muenchen (Germany); Hossenfelder, Sabine [KTH Royal Institute of Technology and Stockholm University, Nordita, Stockholm (Sweden); Kim, Myungshik [Imperial College London, QOLS, Blackett Laboratory, London (United Kingdom); Milburn, Gerard J. [University of Queensland, ARC Centre for Engineered Quantum Systems, Brisbane (Australia); Mueller, Holger [University of California, Department of Physics, Berkeley, CA (United States); Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Pikovski, Igor [Harvard-Smithsonian Center for Astrophysics, ITAMP, Cambridge, MA (United States); Pilan Zanoni, Andre [Airbus Defence and Space GmbH, Immenstaad (Germany); CERN - European Organization for Nuclear Research, EN-STI-TCD, Geneva (Switzerland); Riedel, Charles Jess [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Roura, Albert [Universitaet Ulm, Institut fuer Quantenphysik, Ulm (Germany); Schleich, Wolfgang P. [Universitaet Ulm, Institut fuer Quantenphysik, Ulm (Germany); Texas A and M University Institute for Advanced Study (TIAS), Institute for Quantum Science and Engineering (IQSE), and Department of Physics and Astronomy, College Station, TX (United States); Schmiedmayer, Joerg [Vienna University of Technology, Vienna Center for Quantum Science and Technology, Institute of Atomic and Subatomic Physics, Vienna (Austria); Schuldt, Thilo [Institute of Space Systems, German Aerospace Center (DLR), Bremen (Germany); Schwab, Keith C. [California Institute of Technology, Applied Physics, Pasadena, CA (United States)
2016-12-15
Do the laws of quantum physics still hold for macroscopic objects - this is at the heart of Schroedinger's cat paradox - or do gravitation or yet unknown effects set a limit for massive particles? What is the fundamental relation between quantum physics and gravity? Ground-based experiments addressing these questions may soon face limitations due to limited free-fall times and the quality of vacuum and microgravity. The proposed mission Macroscopic Quantum Resonators (MAQRO) may overcome these limitations and allow addressing such fundamental questions. MAQRO harnesses recent developments in quantum optomechanics, high-mass matter-wave interferometry as well as state-of-the-art space technology to push macroscopic quantum experiments towards their ultimate performance limits and to open new horizons for applying quantum technology in space. The main scientific goal is to probe the vastly unexplored 'quantum-classical' transition for increasingly massive objects, testing the predictions of quantum theory for objects in a size and mass regime unachievable in ground-based experiments. The hardware will largely be based on available space technology. Here, we present the MAQRO proposal submitted in response to the 4th Cosmic Vision call for a medium-sized mission (M4) in 2014 of the European Space Agency (ESA) with a possible launch in 2025, and we review the progress with respect to the original MAQRO proposal for the 3rd Cosmic Vision call for a medium-sized mission (M3) in 2010. In particular, the updated proposal overcomes several critical issues of the original proposal by relying on established experimental techniques from high-mass matter-wave interferometry and by introducing novel ideas for particle loading and manipulation. Moreover, the mission design was improved to better fulfill the stringent environmental requirements for macroscopic quantum experiments. (orig.)
A macroscopic approach to creating exotic matter
Ridgely, C. T.
2000-01-01
Herein the Casimir effect is used to present a simple macroscopic view on creating exotic matter. The energy arising between two nearly perfectly conducting parallel plates is shown to become increasingly negative as the plate separation is reduced. It is proposed that the Casimir energy appears increasingly negative simply because the vacuum electromagnetic zero-point field performs positive work in pushing the plates together, transforming field energy into kinetic energy of the plates. Nex...
Shot noise in linear macroscopic resistors
Gomila Lluch, Gabriel; Pennetta, C.; Reggiani, L.; Ferrari, G; Sampietro, M.; G. Bertuccio(Politecnico di Milano, Italy)
2004-01-01
We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devi...
Shot Noise in Linear Macroscopic Resistors
Gomila, G.; Pennetta, C.; Reggiani, L.; Sampietro, M.; Ferrari, G.; Bertuccio, G.
2004-06-01
We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devices.
Macroscopic Objects, Intrinsic Spin, and Lorentz Violation
Atkinson, David W; Tasson, Jay D
2013-01-01
The framework of the Standard-Model Extension (SME) provides a relativistic quantum field theory for the study of Lorentz violation. The classical, nonrelativistic equations of motion can be extracted as a limit that is useful in various scenarios. In this work, we consider the effects of certain SME coefficients for Lorentz violation on the motion of macroscopic objects having net intrinsic spin in the classical, nonrelativistic limit.
Active Polar Two-Fluid Macroscopic Dynamics
Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.
2014-03-01
We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.
Rainbow correlation imaging with macroscopic twin beam
Allevi, Alessia; Bondani, Maria
2017-06-01
We present the implementation of a correlation-imaging protocol that exploits both the spatial and spectral correlations of macroscopic twin-beam states generated by parametric downconversion. In particular, the spectral resolution of an imaging spectrometer coupled to an EMCCD camera is used in a proof-of-principle experiment to encrypt and decrypt a simple code to be transmitted between two parties. In order to optimize the trade-off between visibility and resolution, we provide the characterization of the correlation images as a function of the spatio-spectral properties of twin beams generated at different pump power values.
Macroscopic Quantum Criticality in a Circuit QED
Wang, Y D; Nori, F; Quan, H T; Sun, C P; Liu, Yu-xi; Nori, Franco
2006-01-01
Cavity quantum electrodynamic (QED) is studied for two strongly-coupled charge qubits interacting with a single-mode quantized field, which is provided by a on-chip transmission line resonator. We analyze the dressed state structure of this superconducting circuit QED system and the selection rules of electromagnetic-induced transitions between any two of these dressed states. Its macroscopic quantum criticality, in the form of ground state level crossing, is also analyzed, resulting from competition between the Ising-type inter-qubit coupling and the controllable on-site potentials.
Macroscopic fluctuations theory of aerogel dynamics
Lefevere, Raphael; Zambotti, Lorenzo
2010-01-01
We consider extensive deterministic dynamics made of $N$ particles modeling aerogels under a macroscopic fluctuation theory description. By using a stochastic model describing those dynamics after a diffusive rescaling, we show that the functional giving the exponential decay in $N$ of the probability of observing a given energy and current profile is not strictly convex as a function of the current. This behaviour is caused by the fact that the energy current is carried by particles which may have arbitrary low speed with sufficiently large probability.
Spin models as microfoundation of macroscopic market models
Krause, Sebastian M.; Bornholdt, Stefan
2013-09-01
Macroscopic price evolution models are commonly used for investment strategies. There are first promising achievements in defining microscopic agent based models for the same purpose. Microscopic models allow a deeper understanding of mechanisms in the market than the purely phenomenological macroscopic models, and thus bear the chance for better models for market regulation. However microscopic models and macroscopic models are commonly studied separately. Here, we exemplify a unified view of a microscopic and a macroscopic market model in a case study, deducing a macroscopic Langevin equation from a microscopic spin market model closely related to the Ising model. The interplay of the microscopic and the macroscopic view allows for a better understanding and adjustment of the microscopic model, as well, and may guide the construction of agent based market models as basis of macroscopic models.
MACROSCOPIC STRAIN POTENTIALS IN NONLINEAR POROUS MATERIALS
Institute of Scientific and Technical Information of China (English)
刘熠; 黄筑平
2003-01-01
By taking a hollow sphere as a representative volume element (RVE), the macroscopic strain potentials of porous materials with power-law incompressible matrix are studied in this paper.According to the principles of the minimum potential energy in nonlinear elasticity and the variational procedure, static admissible stress fields and kinematic admissible displacement fields are constructed,and hence the upper and the lower bounds of the macroscopic strain potential are obtained. The bounds given in the present paper differ so slightly that they both provide perfect approximations of the exact strain potential of the studied porous materials. It is also found that the upper bound proposed by previous authors is much higher than the present one, and the lower bounds given by Cocks is much lower. Moreover, the present calculation is also compared with the variational lower bound of Ponte Castafneda for statistically isotropic porous materials. Finally, the validity of the hollow spherical RVE for the studied nonlinear porous material is discussed by the difference between the present numerical results and the Cocks bound.
Macroscopic theory for capillary-pressure hysteresis.
Athukorallage, Bhagya; Aulisa, Eugenio; Iyer, Ram; Zhang, Larry
2015-03-03
In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials.
Sarfraz, M.; Yoon, P. H.; Saeed, Sundas; Abbas, G.; Shah, H. A.
2017-01-01
A number of different microinstabilities are known to be responsible for regulating the upper bound of temperature anisotropies in solar wind protons, alpha particles, and electrons. In the present paper, quasilinear kinetic theory is employed to investigate the time variation in electron temperature anisotropies in response to the excitation of parallel electron firehose instability in homogeneous and non-collisional solar wind plasma under the condition of T∥e>T⊥e . By assuming the bi-Maxwellian form of velocity distribution functions, various velocity moments of the particle kinetic equation are taken in order to reduce the theory to macroscopic model in which the wave-particle interaction is incorporated, hence, the macroscopic quasilinear theory. The threshold condition for the parallel electron firehose instability, empirically constructed as a curve in (β∥e,T⊥e/T∥e) phase space, is implicit in the present macroscopic quasilinear calculation. Even though the present calculation excludes the oblique firehose instability, which is known to possess a higher growth rate, the basic methodology may be further extended to include such a mode. Among the findings is that the parallel electron firehose instability dynamically couples the electrons and protons, which implies that this instability may be important for overall solar wind dynamics. The present analysis shows that the macroscopic quasilinear approach may eventually be incorporated in global-kinetic models of the solar wind electrons and ions.
Quantum correlations of lights in macroscopic environments
Sua, Yong Meng
This dissertation presents a detailed study in exploring quantum correlations of lights in macroscopic environments. We have explored quantum correlations of single photons, weak coherent states, and polarization-correlated/polarization-entangled photons in macroscopic environments. These included macroscopic mirrors, macroscopic photon number, spatially separated observers, noisy photons source and propagation medium with loss or disturbances. We proposed a measurement scheme for observing quantum correlations and entanglement in the spatial properties of two macroscopic mirrors using single photons spatial compass state. We explored the phase space distribution features of spatial compass states, such as chessboard pattern by using the Wigner function. The displacement and tilt correlations of the two mirrors were manifested through the propensities of the compass states. This technique can be used to extract Einstein-Podolsky-Rosen correlations (EPR) of the two mirrors. We then formulated the discrete-like property of the propensity P b(m,n), which can be used to explore environmental perturbed quantum jumps of the EPR correlations in phase space. With single photons spatial compass state, the variances in position and momentum are much smaller than standard quantum limit when using a Gaussian TEM 00 beam. We observed intrinsic quantum correlations of weak coherent states between two parties through balanced homodyne detection. Our scheme can be used as a supplement to decoy-state BB84 protocol and differential phase-shift QKD protocol. We prepared four types of bipartite correlations +/- cos2(theta1 +/- theta 2) that shared between two parties. We also demonstrated bits correlations between two parties separated by 10 km optical fiber. The bits information will be protected by the large quantum phase fluctuation of weak coherent states, adding another physical layer of security to these protocols for quantum key distribution. Using 10 m of highly nonlinear
Dey, P.; Debnath, Rajesh; Singh, Swati; Mandal, S. K.; Roy, J. N.
2017-01-01
Room temperature I-V characteristics study, both in presence and absence of magnetic field (1800 Oe), has been performed on NiFe2O4 nanoparticles, having different particle size (V~14, 21 and 31 nm). Our experiments on these nanoparticles provide evidences for: (1) electrical irreversibility or hysteretic behaviour; (2) positive magnetoresistance and (3) magnetic field dependent electrical irreversibility or hysteresis in the sample. "Hysteretic" nature of I-V curve reveals the existence of electrical memory effect in the sample. Significantly, such hysteresis has been found to be tuned by magnetic field. In order to explain the observed electrical irreversibility, we have proposed a phenomenological model on the light of induced polarization in the sample. Both the positive magnetoresistance and the observed magnetic field dependence of electrical irreversibility have been explained through magnetostriction phenomenon. Interestingly, such effects are found to get reduced with increasing particle size. For NiFe2O4 nanoparticles having V=31 nm, we did not observe any irreversibility effect. This feature has been attributed to the enhanced grain surface effect that in turn gives rise to the residual polarization and hence electrical memory effect in NiFe2O4 nanoparticles, having small nanoscopic particle size.
Koehler, M.; Yamamoto, N. A. D.; Macedo, A. G.; Grodniski, D. Z.; Roman, L. S.; da Luz, M. G. E.
2013-07-01
A general description of dark transport properties in bi-layer organic photovoltaic devices formed by a heterojunction of a semiconducting co-polymer and fullerene (C60) is presented. The copolymers are composed of thiophene, phenylene, and fluorene units, where the thiophene content is kept constant while the fluorene/phenylene ratio is varied. Measurements show that the j × V characteristics display typical diode behavior (exponential increasing) at low and are space-charge limited at high voltages. Extending a theoretical analysis by Koehler et al. [J. Appl. Phys. 92, 5575 (2002)], a model which assumes a space-charge dependent inner series resistance—attributed to molecular and morphological aspects of the materials—is proposed. It turns out to be general and able to nicely fit the experimental curves for all the studied samples. Furthermore, the model quantifies relevant parameters (the effective mobility and the diode reverse saturation current j0) which will determine the systems efficiency. The framework hence allows to foremost the devices functioning under illumination from direct experiments of the active material in the dark.
Monitoring and Fault Detection in Photovoltaic Systems Based On Inverter Measured String I-V Curves
DEFF Research Database (Denmark)
Spataru, Sergiu; Sera, Dezso; Kerekes, Tamas;
2015-01-01
Most photovoltaic (PV) string inverters have the hardware capability to measure at least part of the current-voltage (I-V) characteristic curve of the PV strings connected at the input. However, this intrinsic capability of the inverters is not used, since I-V curve measurement and monitoring......-of-system components through increased series resistance losses, or shunting of the PV modules. To achieve this, we propose and experimentally demonstrate three complementary PV system monitoring methods that make use of the I-V curve measurement capability of a commercial string inverter. The first method is suitable...... for monitoring single or independent PV strings, and is based on evaluating the ratio of certain operation points on the string I-V curve. The second method is applicable to PV systems with identical strings, and is based on monitoring and inter-comparison of string I-V curve parameters. For PV systems with non...
Directory of Open Access Journals (Sweden)
Vishnu Gopal
2015-09-01
Full Text Available It is shown that current-voltage characteristics of infrared photo-detectors based on type-II InAs/GaSb super-lattices with uni-polar blocking layers can be modelled similar to a junction diode with a finite series resistance on account of blocking barriers. As an example this paper presents the results of a study of current-voltage characteristics of a type II InAs/GaSb super-lattice diode with PbIbN architecture using a recently proposed [J. Appl. Phys. 116, 084502 (2014] method for modelling of illuminated photovoltaic detectors. The thermal diffusion, generation – recombination (g-r, and ohmic currents are found as principal components besides a component of photocurrent due to background illumination. The experimentally observed reverse bias diode current in excess of thermal current (diffusion + g-r, photo-current and ohmic shunt current is reported to be best described by an exponential function of the type, Iexcess = Ir0 + K1exp(K2 V, where Ir0, K1 and K2 are fitting parameters and V is the applied bias voltage. The present investigations suggest that the exponential growth of excess current with the applied bias voltage may be taking place along the localized regions in the diode. These localized regions are the shunt resistance paths on account of the surface leakage currents and/or defects and dislocations in the base of the diode.
Angular Goos-Hänchen effect in curved dielectric microstructures.
Tran, N H; Dutriaux, L; Balcou, P; Floch, A L; Bretenaker, F
1995-06-01
A macroscopic angular Goos-Hänchen effect at total reflection on curved interfaces is studied experimentally. The results are compared with the complex-angular-momentum model of quasi-critical scattering. An extremum in angular deflection, which has not yet been predicted by any theory other than exact Mie scattering computations, is identified at low size parameters.
Macroscopic Quantum Coherence in Antiferromagnetic Molecular Magnets
Institute of Scientific and Technical Information of China (English)
HU Hui; LO Rong; ZHU Jia-Lin; XIONG Jia-Jiong
2001-01-01
The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model. On the basis of instanton technique in the spin-coherent-state path-integral representation, both the rigorous Wentzel-Kramers-Brillouin exponent and pre-exponential factor for the ground-state tunnel splitting are obtained. We find that the quantum fluctuations around the classical paths can not only induce a new quantum phase previously reported by Chiolero and Loss (Phys. Rev. Lett. 80 (1998) 169), but also have great influence on the intensity of the ground-state tunnel splitting. Those features clearly have no analogue in the ferromagnetic molecular magnets. We suggest that they may be the universal behaviors in all antiferromagnetic molecular magnets. The analytical results are complemented by exact diagonalization calculation.
Micro- and macroscopic simulation of periodic metamaterials
Directory of Open Access Journals (Sweden)
R. Schuhmann
2008-05-01
Full Text Available In order to characterize three-dimensional, left-handed metamaterials (LHM we use electromagnetic field simulations of unit cells. For waves traveling in one of the main directions of the periodic LHM-arrays, the analysis is concentrated on the calculation of global quantities of the unit cells, such as scattering parameters or dispersion diagrams, and a careful interpretation of the results. We show that the concept of equivalent material values – which may be negative in a narrow frequency range – can be validated by large "global" simulations of a wedge structure. We also discuss the limitations of this concept, since in some cases the macroscopic behavior of an LHM cannot be accurately described by equivalent material values.
Microscopic versus macroscopic calculation of dielectric nanospheres
Kühn, M.; Kliem, H.
2008-12-01
The issue of nanodielectrics has recently become an important field of interest. The term describes nanometric dielectrics, i. e. dielectric materials with structural dimensions typically smaller than 100 run. In contrast to the behaviour of a bulk material the nanodielectrics can behave completely different. With shrinking dimensions the surface or rather boundary effects outweigh the volume effects. This leads to a different observable physics at the nanoscale. A crucial point is the question whether a continuum model for the calculation of dielectric properties is still applicable for these nanomaterials. In order to answer this question we simulated dielectric nanospheres with a microscopic local field method and compared the results to the macroscopic mean field theory.
Partitioning a macroscopic system into independent subsystems
Delle Site, Luigi; Ciccotti, Giovanni; Hartmann, Carsten
2017-08-01
We discuss the problem of partitioning a macroscopic system into a collection of independent subsystems. The partitioning of a system into replica-like subsystems is nowadays a subject of major interest in several fields of theoretical and applied physics. The thermodynamic approach currently favoured by practitioners is based on a phenomenological definition of an interface energy associated with the partition, due to a lack of easily computable expressions for a microscopic (i.e. particle-based) interface energy. In this article, we outline a general approach to derive sharp and computable bounds for the interface free energy in terms of microscopic statistical quantities. We discuss potential applications in nanothermodynamics and outline possible future directions.
Casimir effect from macroscopic quantum electrodynamics
Energy Technology Data Exchange (ETDEWEB)
Philbin, T G, E-mail: tgp3@st-andrews.ac.uk [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)
2011-06-15
The canonical quantization of macroscopic electromagnetism was recently presented in (Philbin 2010 New J. Phys. 12 123008). This theory is used here to derive the Casimir effect, by considering the special case of thermal and zero-point fields. The stress-energy-momentum tensor of the canonical theory follows from Noether's theorem, and its electromagnetic part in thermal equilibrium gives the Casimir energy density and stress tensor. The results hold for arbitrary inhomogeneous magnetodielectrics and are obtained from a rigorous quantization of electromagnetism in dispersive, dissipative media. Continuing doubts about the status of the standard Lifshitz theory as a proper quantum treatment of Casimir forces do not apply to the derivation given here. Moreover, the correct expressions for the Casimir energy density and stress tensor inside media follow automatically from the simple restriction to thermal equilibrium, without the need for complicated thermodynamical or mechanical arguments.
Taming macroscopic jamming in transportation networks
Ezaki, Takahiro; Nishinari, Katsuhiro
2015-01-01
In transportation networks, a spontaneous jamming transition is often observed, e.g in urban road networks and airport networks. Because of this instability, flow distribution is significantly imbalanced on a macroscopic level. To mitigate the congestion, we consider a simple control method, in which congested nodes are closed temporarily, and investigate how it influences the overall system. Depending on the timing of the node closure and opening, and congestion level of a network, the system displays three different phases: free-flow phase, controlled phase, and deadlock phase. We show that when the system is in the controlled phase, the average flow is significantly improved, whereas when in the deadlock phase, the flow drops to zero. We study how the control method increases the network flow and obtain their transition boundary analytically.
Black Holes and Quantumness on Macroscopic Scales
Flassig, D; Wintergerst, N
2012-01-01
It has recently been suggested that black holes may be described as condensates of weakly interacting gravitons at a critical point, exhibiting strong quantum effects. In this paper, we study a model system of attractive bosons in one spatial dimension which is known to undergo a quantum phase transition. We demonstrate explicitly that indeed quantum effects are important at the critical point, even if the number of particles is macroscopic. Most prominently, we evaluate the entropy of entanglement between different momentum modes and observe it to become maximal at the critical point. Furthermore, we explicitly see that the leading entanglement is between long wavelength modes and is hence a feature independent of ultraviolet physics. If applicable to black holes, our findings substantiate the conjectured breakdown of semiclassical physics even for large black holes. This can resolve long standing mysteries, such as the information paradox and the no-hair theorem.
Variability of macroscopic dimensions of Moso bamboo.
Cui, Le; Peng, Wanxi; Sun, Zhengjun; Sun, Zhengjun; Sun, Zhengjun; Lu, Huangfei; Chen, Guoning
2015-03-01
In order to the macroscopic geometry distributions of vascular bundles in Moso bamboo tubes. The circumference of bamboo tubes was measured, used a simple quadratic diameter formula to analyze the differences between the tubes in bamboo culm, and the arrangement of vascular bundles was investigated by cross sectional images of bamboo tubes. The results shown that the vascular bundles were differently distributed in a bamboo tube. In the outer layer, the vascular bundles had a variety of shapes, and were aligned parallel to each other. In the inner layers, the vascular bundles weren't aligned but uniform in shape. It was concluded that the vascular bundle sections arranged in parallel should be separated from the non-parallel sections for the maximum bamboo utilization.
Robust macroscopic entanglement without complex encodings
Chaves, Rafael; Acín, Antonio
2011-01-01
One of the main challenges for the experimental manipulation and storage of macroscopic entanglement is its fragility under noise. We present a simple recipe for the systematic enhancement of the resistance of multipartite entanglement against any local noise with a privileged direction in the Bloch sphere. For the case of exact local dephasing along any given basis, and for all noise strengths, our prescription grants full robustness: even states whose entanglement decays exponentially with the number of parts are mapped to states whose entanglement is constant. In contrast to previous techniques resorting to complex logical-qubit encodings, such enhancement is attained simply by performing local unitary rotations before the noise acts. The scheme is therefore highly experimentally-friendly, as it brings no overhead of extra physical qubits to encode logical ones. In addition, we show that, apart from entanglement, the resilience of the states as resources for useful practical tasks such as metrology and non...
Macroscopic Quantum Coherence in Antiferromagnetic Molecular Magnets
Institute of Scientific and Technical Information of China (English)
HUHui; LURong; 等
2001-01-01
The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model.On the basis of instanton technique in the spin-coherent-state path-integral representation,both the rigorous Wentzel-Kramers-Brillouin exponent and pre-exponential factor for the ground-state tunnel splitting are obtained.We find that the quantum fluctuations around the classical paths can not only induce a new quantum phase previously reported by Chiolero and Loss (Phys.Rev.Lett.80(1998)169),but also have great influence on the intensity of the ground-state tunnel splitting.Those features clearly have no analogue in the ferromagnetic molecular magnets.We suggest that they may be the universal behaviors in all antiferromagnetic molecular magnets.The analytical results are complemented by exact diagonalization calculation.
Determining the Macroscopic Properties of Relativistic Jets
Hardee, P. E.
2004-08-01
The resolved relativistic jets contain structures whose observed proper motions are typically assumed to indicate the jet flow speed. In addition to structures moving with the flow, various normal mode structures such as pinching or helical and elliptical twisting can be produced by ejection events or twisting perturbations to the jet flow. The normal mode structures associated with relativistic jets, as revealed by numerical simulation, theoretical calculation, and suggested by observation, move more slowly than the jet speed. The pattern speed is related to the jet speed by the sound speed in the jet and in the surrounding medium. In the event that normal mode structures are observed, and where proper motions of pattern and flow speed are available or can be estimated, it is possible to determine the sound speed in the jet and surrounding medium. Where spatial development of normal mode structures is observed, it is possible to make inferences as to the heating rate/macroscopic viscosity of the jet fluid. Ultimately it may prove possible to separate the microscopic energization of the synchrotron radiating particles from the macroscopic heating of the jet fluid. Here I present the relevant properties of useful normal mode structures and illustrate the use of this technique. Various aspects of the work presented here have involved collaboration with I. Agudo (Max-Planck, Bonn), M.A. Aloy (Max-Planck, Garching), J. Eilek (NM Tech), J.L. Gómez (U. Valencia), P. Hughes (U. Michigan), A. Lobanov (Max-Planck, Bonn), J.M. Martí (U. Valencia), & C. Walker (NRAO).
Influence of macroscopic graphite particulates on the damping properties of Zn-Al eutectoid alloy
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The paper presents in detail the effects of macroscopic graphite (Gr) particulates on the damping behavior of Zn-Al eutectoid alloy (Zn-Al). Macroscopic defects are graphite particulates with sizes of the order of a millimeter (0.5 mm and 1.0 mm). Macroscopic graphite particulate-reinforced Zn-Al eutectoid alloys were prepared by the air pressure infiltration process. The damping characterization was conducted on a multifunction internal friction apparatus (MFIFA). The internal friction (IF), as well as the relative dynamic modulus, was measured at different frequencies over the temperature range of 20 to 400℃. The damping capacity of the Zn-Al/Gr, with two different volume fractions of macroscopic graphite particulates, was compared with that of bulk Zn-Al eutectoid alloy. The damping capacity of the materials is shown to increase with increasing volume fraction of macroscopic graphite particulates. Two IF peaks were found in the IF-temperature curves. The first is a grain boundary peak, which is associated with the diffusive flux on a boundary between like phases, Al/Al. Its activation energy has been calculated to be 1.13±0.03 eV and the pre-exponential factor is 10?14 s in IF measurements. The second is a phase transition peak, which results from the transformation of Zn-Al eutectoid. In light of internal friction measurements and differential scanning calorimetry (DSC) experiments, its activation energy has been calculated to be 2.36±0.08 eV.
Influence of macroscopic graphite particulates on the damping properties of Zn-Al eutectoid alloy
Institute of Scientific and Technical Information of China (English)
WEI JianNing; SONG ShiHua; HU KongGang; XIE WeiJun; MA MingLiang; LI GenMei
2009-01-01
The paper presents in detail the effects of macroscopic graphite (Gr) particulates on the damping be-havior of Zn-AI eutectoid alloy (Zn-AI). Macroscopic defects are graphite particulates with sizes of the order of a millimeter (0.5 mm and 1.0 mm). Macroscopic graphite particulate-reinforced Zn-AI eutectoid alloys were prepared by the air pressure infiltration process. The damping characterization was con-ducted on a multifunction internal friction apparatus (MFIFA). The internal friction (IF), as well as the relative dynamic modulus, was measured at different frequencies over the temperature range of 20 to 400"C. The damping capacity of the Zn-AI/Gr, with two different volume fractions of macroscopic graphite particulates, was compared with that of bulk Zn-Al eutectoid alloy. The damping capacity of the materials is shown to increase with increasing volume fraction of macroscopic graphite particulates. Two IF peaks were found in the IF-temperature curves. The first is a grain boundary peak, which is as-sociated with the diffusive flux on a boundary between like phases, Al/Al. Its activation energy has been calculated to be 1.13±0.03 eV and the pre-exponential factor is 10-14 s in IF measurements. The second is a phase transition peak, which results from the transformation of Zn-AI eutectoid. In light of internal friction measurements and differential scanning calorimetry (DSC) experiments, its activation energy has been calculated to be 2.36±0.08 eV.
钙钛矿太阳能电池中S形伏安特性研究∗%S-shap ed current-voltage characteristics in p erovskite solar cell
Institute of Scientific and Technical Information of China (English)
石将建; 孟庆波; 卫会云; 朱立峰; 许信; 徐余颛; 吕松涛; 吴会觉; 罗艳红; 李冬梅
2015-01-01
Analysis of the DC current-voltage (I-V ) characteristics is an effective approach to investigate the charge transport properties in a solar cell. The perovskite solar cell attracted wide research interest in the past two years due to their outstanding photovoltaic capacity. However, the charge transport characteristics and working principles of this kind of cells have not been clearly clarified. In this work, the I-V characteristics of the perovskite solar cell have been investigated from the experimental and theoretical perspective views. Moreover, the S-shaped I-V feature coming from the limitation of interfacial charge transport was focused on. With a series connected diode model, the I-V characteristics of the solar cell are investigated and simulated. It is found that the charge accumulation appears gradually when the interfacial charge transport velocity is decreased, lowering the output of the cell. When the interfacial charge transport decreases gradually, the short-circuit current density and the fill factor of the cell also decrease obviously. In experiments, limitations of charge transport at the front and back contacts of the cell have been designed, successfully producing varied S-shaped I-V features. It is found that both in the hole transport material-free and in the p-i-n perovskite solar cells, the S-shaped I-V characteristics can appear. Moreover, the origins of these features in various experimental conditions have also been discussed, which can be the energy barriers or large charge transport resistances in the cell. These energy barriers and resistances will lower the charge transport velocity and may cause charge accumulation, thus leading to the appearence of the S-shaped features. Meanhiwle, the emerging S-shaped I-V curves all have their own features, which may be due to the specific interfacial energy band structures. Thus, to promote the cell performance, the charge transport and interface energy barrier should be attached importance to
Observability of relative phases of macroscopic quantum states
Pati, A K
1998-01-01
After a measurement, to observe the relative phases of macroscopically distinguishable states we have to ``undo'' a quantum measurement. We generalise an earlier model of Peres from two state to N-state quantum system undergoing measurement process and discuss the issue of observing relative phases of different branches. We derive an inequality which is satisfied by the relative phases of macroscopically distinguishable states and consequently any desired relative phases can not be observed in interference setups. The principle of macroscopic complementarity is invoked that might be at ease with the macroscopic world. We illustrate the idea of limit on phase observability in Stern-Gerlach measurements and the implications are discussed.
Institute of Scientific and Technical Information of China (English)
CHANG Hong; ZHAO Yong-Gang
2011-01-01
By adding La and Ti, we improve the magnetic and ferroelectric properties of BiQ.sLa0.2Feo.g2Ti0.08O3 and Bio.sLa0.2FeO3 Rims on 0.7%Nb-SrTiO3. In Bio.8La0.2Feo.92Ti0.08O3 and Bio.sLa0.2FeOa, the saturation magnetization and the coercivity are several times higher than those in BiFeO3. The La and Ti additions reduce the leakage current, and increase the remnant electric polarization. A resistance switching is observed in Bio.8Lao.2Feo.92Tio.o803/0.7%Nb-SrTi03 and Bi0.8La0.2FeO3/0.7%Nb-SrTiO3 interfaces. Also, it is observed that Bio.sLao.2Feo.92 Ti0.08O3/0.7%Nb-SrTiO3 has a wider current-voltage hysteresis and a larger resistance difference than Bi0.sLao.2Fe03/0.7%Nb-SrTi03. In the interface of Bi0.8Lao.2Fe0.92Ti0.08 O3/0.7%JVb-SrTiO3, the ratio of high to low resistance is 103 and 105 times, at 300K and 10 K, respectively. The voltage pulses can switch the resistance to vary in the 2 states. The transport mechanisms show that a trap-controlled space-charge-limited current induces current-voltage hysteresis and resistance switching. The current of Bio.8Lao.2Feo.g2 Tio.os O3/0.7%Nb-SrTiO3 decays with the Curie-Von Schweidler law.%@@ By adding La and Ti, we improve the magnetic and ferroelectric properties of BiLaFeTiO and BiLaFeO films on 0.7%Nb-SrTiO.In BiLaFeTiO and BiLaFeO, the saturation mag- netization and the coercivity are several times higher than those in BiFeO.The La and Ti additions re- duce the leakage current, and increase the remnant electric polarization.A resistance switching is observed in BiLaFe TiO/0.7%Nb-SrTiO and BiLaFeO/0.7%Nb-SrTiO interfaces.Also, it is observed that BiLaFe TiO/0.7%Nb-SrTiO has a wider current-voltage hysteresis and a larger resistance differ- ence than BiLaFeO/0.7%Nb-SrTiO.In the interface of BiLaFeTiO/0.7%Nb-SrTiO, the ratio of high to low resistance is 10 and 10 times, at 300 K and 10K, respectively.The voltage pulses can switch the resistance to vary in the 2 states.The transport mechanisms show that a trap
He, Yandong; Zhang, Ganggang; Zhang, Xing
2014-01-01
With the process compatibility with the mainstream standard complementary metal-oxide-semiconductor (CMOS), shallow trench isolation (STI) based laterally diffused metal-oxide-semiconductor (LDMOS) devices have become popular for its better tradeoff between breakdown voltage and performance, especially for smart power applications. A multi-region direct current current-voltage (MR-DCIV) technique with spectroscopic features was demonstrated to map the interface state generation in the channel, accumulation and STI drift regions. High temperature behavior of MR-DCIV spectroscopy was analyzed and a physical model was verified. Degradation of STI-based LDMOS transistors under high temperature reverse bias (HTRB) stress is experimentally studied by MR-DCIV spectroscopy. The impact of interface state location on device electrical characteristics was investigated. Our results show that the major contribution to HTRB degradation, in term of the on-resistance degradation, was attributed to interface state generation under STI drift region.
Investigation of dissipative forces near macroscopic media
Energy Technology Data Exchange (ETDEWEB)
Becker, R.S.
1982-12-01
The interaction of classical charged particles with the fields they induce in macroscopic dielectric media is investigated. For 10- to 1000-eV electrons, the angular perturbation of the trajectory by the image potential for surface impact parameters of 50 to 100 A is shown to be of the order of 0.001 rads over a distance of 100 A. The energy loss incurred by low-energy particles due to collective excitations such as surface plasmons is shown to be observable with a transition probability of 0.01 to 0.001 (Becker, et al., 1981b). The dispersion of real surface plasmon modes in planar and cylindrical geometries is discussed and is derived for pinhole geometry described in terms of a single-sheeted hyperboloid of revolution. An experimental apparatus for the measurement of collective losses for medium-energy electrons translating close to a dielectric surface is described and discussed. Data showing such losses at electron energies of 500 to 900 eV in silver foils containing many small apertures are presented and shown to be in good agreement with classical stopping power calculations and quantum mechanical calculations carried out in the low-velocity limit. The data and calculations are compared and contrasted with earlier transmission and reflection measurements, and the course of further investigation is discussed.
Searching for the nanoscopic–macroscopic boundary
Energy Technology Data Exchange (ETDEWEB)
Velásquez, E.A. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Grupo de Investigación en Modelamiento y Simulación Computacional, Universidad de San Buenaventura Sec. Medellín, A.A. 5222, Medellín (Colombia); Altbir, D. [Departamento de Física, Universidad de Santiago de Chile (USACH), CEDENNA, Santiago (Chile); Mazo-Zuluaga, J. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Duque, L.F. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Grupo de Física Teórica, Aplicada y Didáctica, Facultad de Ciencias Exactas y Aplicadas Instituto Tecnológico Metropolitano, Medellín (Colombia); Mejía-López, J., E-mail: jmejia@puc.cl [Facultad de Física, Pontificia Universidad Católica de Chile, CEDENNA, Santiago (Chile)
2013-12-15
Several studies have focused on the size-dependent properties of elements, looking for a unique definition of the nanoscopic–macroscopic boundary. By using a novel approach consisting of an energy variational method combined with a quantum Heisenberg model, here we address the size at which the ordering temperature of a magnetic nanoparticle reaches its bulk value. We consider samples with sizes in the range 1–500 nm, as well as several geometries and crystalline lattices and observe that, contrarily to what is commonly argued, the nanoscopic-microscopic boundary depends on both factors: shape and crystalline structure. This suggests that the surface-to-volume ratio is not the unique parameter that defines the behavior of a nanometric sample whenever its size increases reaching the bulk dimension. Comparisons reveal very good agreement with experimental evidence with differences less than 2%. Our results have broad implications for practical issues in measurements on systems at the nanometric scale. - Highlights: • A novel quantum-Heisenberg variational energy method is implemented. • The asymptotic behavior toward the thermodynamic limit is explored. • An important dependence of the nano-bulk boundary on the geometry is found. • And also an important dependence on the crystalline lattice. • We obtain a very good agreement with experimental evidence with differences <2%.
The Proell Effect: A Macroscopic Maxwell's Demon
Rauen, Kenneth M.
2011-12-01
Maxwell's Demon is a legitimate challenge to the Second Law of Thermodynamics when the "demon" is executed via the Proell effect. Thermal energy transfer according to the Kinetic Theory of Heat and Statistical Mechanics that takes place over distances greater than the mean free path of a gas circumvents the microscopic randomness that leads to macroscopic irreversibility. No information is required to sort the particles as no sorting occurs; the entire volume of gas undergoes the same transition. The Proell effect achieves quasi-spontaneous thermal separation without sorting by the perturbation of a heterogeneous constant volume system with displacement and regeneration. The classical analysis of the constant volume process, such as found in the Stirling Cycle, is incomplete and therefore incorrect. There are extra energy flows that classical thermo does not recognize. When a working fluid is displaced across a regenerator with a temperature gradient in a constant volume system, complimentary compression and expansion work takes place that transfers energy between the regenerator and the bulk gas volumes of the hot and cold sides of the constant volume system. Heat capacity at constant pressure applies instead of heat capacity at constant volume. The resultant increase in calculated, recyclable energy allows the Carnot Limit to be exceeded in certain cycles. Super-Carnot heat engines and heat pumps have been designed and a US patent has been awarded.
Macroscopic superpositions and gravimetry with quantum magnetomechanics
Johnsson, Mattias T.; Brennen, Gavin K.; Twamley, Jason
2016-11-01
Precision measurements of gravity can provide tests of fundamental physics and are of broad practical interest for metrology. We propose a scheme for absolute gravimetry using a quantum magnetomechanical system consisting of a magnetically trapped superconducting resonator whose motion is controlled and measured by a nearby RF-SQUID or flux qubit. By driving the mechanical massive resonator to be in a macroscopic superposition of two different heights our we predict that our interferometry protocol could, subject to systematic errors, achieve a gravimetric sensitivity of Δg/g ~ 2.2 × 10-10 Hz-1/2, with a spatial resolution of a few nanometres. This sensitivity and spatial resolution exceeds the precision of current state of the art atom-interferometric and corner-cube gravimeters by more than an order of magnitude, and unlike classical superconducting interferometers produces an absolute rather than relative measurement of gravity. In addition, our scheme takes measurements at ~10 kHz, a region where the ambient vibrational noise spectrum is heavily suppressed compared the ~10 Hz region relevant for current cold atom gravimeters.
Cloud Macroscopic Organization: Order Emerging from Randomness
Yuan, Tianle
2011-01-01
Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds, and that it follows a power-law distribution with exponent gamma close to 2. gamma is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also demonstrate symmetry between clear and cloudy skies in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random local interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. We also propose a concept of cloud statistic mechanics approach. This approach is fully complementary to deterministic models, and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.
Distributivity breaking and macroscopic quantum games
Grib, A A; Parfionov, G N; Starkov, K A
2005-01-01
Examples of games between two partners with mixed strategies, calculated by the use of the probability amplitude as some vector in Hilbert space are given. The games are macroscopic, no microscopic quantum agent is supposed. The reason for the use of the quantum formalism is in breaking of the distributivity property for the lattice of yes-no questions arising due to the special rules of games. The rules of the games suppose two parts: the preparation and measurement. In the first part due to use of the quantum logical orthocomplemented non-distributive lattice the partners freely choose the wave functions as descriptions of their strategies. The second part consists of classical games described by Boolean sublattices of the initial non-Boolean lattice with same strategies which were chosen in the first part. Examples of games for spin one half are given. New Nash equilibria are found for some cases. Heisenberg uncertainty relations without the Planck constant are written for the "spin one half game".
Cloud macroscopic organization: order emerging from randomness
Directory of Open Access Journals (Sweden)
T. Yuan
2011-01-01
Full Text Available Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds and it follows a power-law distribution with exponent γ close to 2. γ is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also show clear-cloudy sky symmetry in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random simple interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. This approach is fully complementary to deterministic models and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.
Multiphasic growth curve analysis.
Koops, W.J.
1986-01-01
Application of a multiphasic growth curve is demonstrated with 4 data sets, adopted from literature. The growth curve used is a summation of n logistic growth functions. Human height growth curves of this type are known as "double logistic" (n = 2) and "triple logistic" (n = 3) growth curves (Bock
An Experimental Proposal for Demonstration of Macroscopic Quantum Effects
Directory of Open Access Journals (Sweden)
Jensen R.
2010-10-01
Full Text Available An experiment is proposed, whose purpose is to determine whether quantum indeterminism can be observed on a truly macroscopic scale. The experiment involves using a double-slit plate or interferometer and a macroscopic mechanical switch. The objective is to determine whether or not the switch can take on an indeterminate state.
An Experimental Proposal for Demonstration of Macroscopic Quantum Effects
Directory of Open Access Journals (Sweden)
Jensen R.
2010-10-01
Full Text Available An experiment is proposed, whose purpose is to determine whether quantum indeter- minism can be observed on a truly macroscopic scale. The experiment involves using a double-slit plate or interferometer and a macroscopic mechanical switch. The objective is to determine whether or not the switch can take on an indeterminate state.
Macroscopic and microscopic observations of needle insertion into gels
Veen, van Youri R.J.; Jahya, Alex; Misra, Sarthak
2012-01-01
Needle insertion into soft tissue is one of the most common medical interventions. This study provides macroscopic and microscopic observations of needle–gel interactions. A gelatin mixture is used as a soft-tissue simulant. For the macroscopic studies, system parameters, such as insertion velocity,
Time-dependent mechanical behavior of human amnion: macroscopic and microscopic characterization.
Mauri, Arabella; Perrini, Michela; Ehret, Alexander E; De Focatiis, Davide S A; Mazza, Edoardo
2015-01-01
Characterizing the mechanical response of the human amnion is essential to understand and to eventually prevent premature rupture of fetal membranes. In this study, a large set of macroscopic and microscopic mechanical tests have been carried out on fresh unfixed amnion to gain insight into the time-dependent material response and the underlying mechanisms. Creep and relaxation responses of amnion were characterized in macroscopic uniaxial tension, biaxial tension and inflation configurations. For the first time, these experiments were complemented by microstructural information from nonlinear laser scanning microscopy performed during in situ uniaxial relaxation tests. The amnion showed large tension reduction during relaxation and small inelastic strain accumulation in creep. The short-term relaxation response was related to a concomitant in-plane and out-of-plane contraction, and was dependent on the testing configuration. The microscopic investigation revealed a large volume reduction at the beginning, but no change of volume was measured long-term during relaxation. Tension-strain curves normalized with respect to the maximum strain were highly repeatable in all configurations and allowed the quantification of corresponding characteristic parameters. The present data indicate that dissipative behavior of human amnion is related to two mechanisms: (i) volume reduction due to water outflow (up to ∼20 s) and (ii) long-term dissipative behavior without macroscopic deformation and no systematic global reorientation of collagen fibers.
Quantifying and Reducing Curve-Fitting Uncertainty in Isc: Preprint
Energy Technology Data Exchange (ETDEWEB)
Campanelli, Mark; Duck, Benjamin; Emery, Keith
2015-09-28
Current-voltage (I-V) curve measurements of photovoltaic (PV) devices are used to determine performance parameters and to establish traceable calibration chains. Measurement standards specify localized curve fitting methods, e.g., straight-line interpolation/extrapolation of the I-V curve points near short-circuit current, Isc. By considering such fits as statistical linear regressions, uncertainties in the performance parameters are readily quantified. However, the legitimacy of such a computed uncertainty requires that the model be a valid (local) representation of the I-V curve and that the noise be sufficiently well characterized. Using more data points often has the advantage of lowering the uncertainty. However, more data points can make the uncertainty in the fit arbitrarily small, and this fit uncertainty misses the dominant residual uncertainty due to so-called model discrepancy. Using objective Bayesian linear regression for straight-line fits for Isc, we investigate an evidence-based method to automatically choose data windows of I-V points with reduced model discrepancy. We also investigate noise effects. Uncertainties, aligned with the Guide to the Expression of Uncertainty in Measurement (GUM), are quantified throughout.
Experimental demonstration of macroscopic quantum coherence in Gaussian states
DEFF Research Database (Denmark)
Marquardt, C.; Andersen, Ulrik Lund; Leuchs, G.
2007-01-01
We witness experimentally the presence of macroscopic coherence in Gaussian quantum states using a recently proposed criterion [E. G. Cavalcanti and M. D. Reid, Phys. Rev. Lett. 97 170405 (2006)]. The macroscopic coherence stems from interference between macroscopically distinct states in phase...... space, and we prove experimentally that a coherent state contains these features with a distance in phase space of 0.51 +/- 0.02 shot noise units. This is surprising because coherent states are generally considered being at the border between classical and quantum states, not yet displaying any...
There are four natural curves in the spinal column. The cervical, thoracic, lumbar, and sacral curvature. The curves, along with the intervertebral disks, help to absorb and distribute stresses that occur from everyday activities such as walking or from ...
Directory of Open Access Journals (Sweden)
Janusz Charatonik
1991-11-01
Full Text Available Results concerning contractibility of curves (equivalently: of dendroids are collected and discussed in the paper. Interrelations tetween various conditions which are either sufficient or necessary for a curve to be contractible are studied.
Parametrizing Algebraic Curves
Lemmermeyer, Franz
2011-01-01
We present the technique of parametrization of plane algebraic curves from a number theorist's point of view and present Kapferer's simple and beautiful (but little known) proof that nonsingular curves of degree > 2 cannot be parametrized by rational functions.
Terahertz Science and Technology of Macroscopically Aligned Carbon Nanotube Films
Kono, Junichiro
One of the outstanding challenges in nanotechnology is how to assemble individual nano-objects into macroscopic architectures while preserving their extraordinary properties. For example, the one-dimensional character of electrons in individual carbon nanotubes leads to extremely anisotropic transport, optical, and magnetic phenomena, but their macroscopic manifestations have been limited. Here, we describe methods for preparing macroscopic films, sheets, and fibers of highly aligned carbon nanotubes and their applications to basic and applied terahertz studies. Sufficiently thick films act as ideal terahertz polarizers, and appropriately doped films operate as polarization-sensitive, flexible, powerless, and ultra-broadband detectors. Together with recently developed chirality enrichment methods, these developments will ultimately allow us to study dynamic conductivities of interacting one-dimensional electrons in macroscopic single crystals of single-chirality single-wall carbon nanotubes.
Accumulation of small protein molecules in a macroscopic complex coacervate
Lindhoud, S.; Claessens, M.M.A.E.
2016-01-01
To obtain insight into the accumulation of proteins into macroscopic complex coacervate phases, the lysozyme concentration in complex coacervates containing the cationic polyelectrolyte poly-(N,N dimethylaminoethyl methacrylate) and the anionic polyelectrolyte polyacrylic acid was investigated as a
Macroscopic cumulative fatigue damage of material under nonsymmetrical cycle
Institute of Scientific and Technical Information of China (English)
盖秉政
2002-01-01
Hashin's macroscopic theory of fatigue damage is further discussed and a new method has been proposed for prediction of cumulative fatigue damage of material and its lifetime under nonsymmetrical cyclic loading.
Large Deviations for the Macroscopic Motion of an Interface
Birmpa, P.; Dirr, N.; Tsagkarogiannis, D.
2017-03-01
We study the most probable way an interface moves on a macroscopic scale from an initial to a final position within a fixed time in the context of large deviations for a stochastic microscopic lattice system of Ising spins with Kac interaction evolving in time according to Glauber (non-conservative) dynamics. Such interfaces separate two stable phases of a ferromagnetic system and in the macroscopic scale are represented by sharp transitions. We derive quantitative estimates for the upper and the lower bound of the cost functional that penalizes all possible deviations and obtain explicit error terms which are valid also in the macroscopic scale. Furthermore, using the result of a companion paper about the minimizers of this cost functional for the macroscopic motion of the interface in a fixed time, we prove that the probability of such events can concentrate on nucleations should the transition happen fast enough.
Quantum fluctuations, gauge freedom and mesoscopic/macroscopic stability
Energy Technology Data Exchange (ETDEWEB)
Del Giudice, E [Istituto Nazionale di Fisica Nucleare, Via Celoria 16, I-20133 Milan (Italy); Vitiello, G [Dipartimento di Matematica e Informatica, Universita di Salerno and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Salerno, 84100 Salerno (Italy)
2007-11-15
We study how the mesoscopic/macroscopic stability of coherent extended domains is generated out of the phase locking between gauge field and matter field. The role of the radiative gauge field in sustaining the coherent regime is discussed.
New Tests of Macroscopic Local Realism using Continuous Variable Measurements
Reid, M D
2001-01-01
We show that quantum mechanics predicts an Einstein-Podolsky-Rosen paradox (EPR), and also a contradiction with local hidden variable theories, for photon number measurements which have limited resolving power, to the point of imposing an uncertainty in the photon number result which is macroscopic in absolute terms. We show how this can be interpreted as a failure of a new, very strong premise, called macroscopic local realism. We link this premise to the Schrodinger-cat paradox. Our proposed experiments ensure all fields incident on each measurement apparatus are macroscopic. We show that an alternative measurement scheme corresponds to balanced homodyne detection of quadrature phase amplitudes. The implication is that where either EPR correlations or failure of local realism is predicted for continuous variable (quadrature phase amplitude) measurements, one can perform a modified experiment which would lead to conclusions about the much stronger premise of macroscopic local realism.
The existence of a double S-shaped process curve during reactive magnetron sputtering
Schelfhout, R.; Strijckmans, K.; Depla, D.
2016-09-01
The four dimensional parameter space (discharge voltage and current and reactive gas flow and pressure) related to a reactive Ar/O2 DC magnetron discharge with an aluminum target and constant pumping speed was acquired by measuring current-voltage characteristics at different oxygen flows. The projection onto the pressure-flow plane allows us to study the well-known S-shaped process curve. This experimental procedure guarantees no time dependent effects on the result. The obtained process curve appears not to be unique but rather two significantly different S-shaped curves are noticed which depend on the history of the steady state target condition. As such, this result has not only an important impact on the fundamental description of the reactive sputtering process but it can also have its consequences on typical feedback control systems for the operation in the transition regime of the hysteresis during reactive magnetron sputtering.
DEFF Research Database (Denmark)
Bernstein, Daniel J.; Birkner, Peter; Lange, Tanja;
2013-01-01
This paper introduces EECM-MPFQ, a fast implementation of the elliptic-curve method of factoring integers. EECM-MPFQ uses fewer modular multiplications than the well-known GMP-ECM software, takes less time than GMP-ECM, and finds more primes than GMP-ECM. The main improvements above the modular......-arithmetic level are as follows: (1) use Edwards curves instead of Montgomery curves; (2) use extended Edwards coordinates; (3) use signed-sliding-window addition-subtraction chains; (4) batch primes to increase the window size; (5) choose curves with small parameters and base points; (6) choose curves with large...
Energy Technology Data Exchange (ETDEWEB)
Huber, Martin, E-mail: martin.huberVIH@infineon.com [Infineon Technologies Austria AG, Siemensstrasse 2, A-9500 Villach, Austria and Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstrasse 69, A-4040 Linz (Austria); Daumiller, Ingo; Andreev, Andrei; Silvestri, Marco; Knuuttila, Lauri; Lundskog, Anders [Infineon Technologies Austria AG, Siemensstrasse 2, A-9500 Villach (Austria); Wahl, Michael; Kopnarski, Michael [IFOS Institut fuer Oberflaechen- und Schichtanalytik GmbH, Trippstadter Strasse 120, D-67663 Kaiserslautern (Germany); Bonanni, Alberta [Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Altenbergerstrasse 69, A-4040 Linz (Austria)
2016-03-28
Complementary studies of atom probe tomography, secondary ion mass spectrometry, and vertical current-voltage measurements are carried out in order to unravel the influence of C-doping of GaN on the vertical leakage current of AlN/AlGaN/GaN:C heterostructures. A systematic increment of the vertical blocking voltage at a given current density is observed in the structures, when moving from the nominally undoped conditions—corresponding to a residual C-background of ∼10{sup 17 }cm{sup −3}—to a C-content of ∼10{sup 19 }cm{sup −3} in the GaN layer. The value of the vertical blocking voltage saturates for C concentrations higher than ∼10{sup 19 }cm{sup −3}. Atom probe tomography confirms the homogeneity of the GaN:C layers, demonstrating that there is no clustering at C-concentrations as high as 10{sup 20 }cm{sup −3}. It is inferred that the vertical blocking voltage saturation is not likely to be related to C-clustering.
Energy Technology Data Exchange (ETDEWEB)
Ozden, Burcu; Yang, Chungman; Tong, Fei; Khanal, Min P.; Mirkhani, Vahid; Sk, Mobbassar Hassan; Ahyi, Ayayi Claude; Park, Minseo, E-mail: park@physics.auburn.edu [Department of Physics, Auburn University, Auburn, Alabama 36849 (United States)
2014-10-27
We have demonstrated that the depth-dependent defect distribution of the deep level traps in the AlGaN/GaN high electron mobility transistor (HEMT) epi-structures can be analyzed by using the depth-resolved ultra-violet (UV) spectroscopic photo current-voltage (IV) (DR-UV-SPIV). It is of great importance to analyze deep level defects in the AlGaN/GaN HEMT structure, since it is recognized that deep level defects are the main source for causing current collapse phenomena leading to reduced device reliability. The AlGaN/GaN HEMT epi-layers were grown on a 6 in. Si wafer by metal-organic chemical vapor deposition. The DR-UV-SPIV measurement was performed using a monochromatized UV light illumination from a Xe lamp. The key strength of the DR-UV-SPIV is its ability to provide information on the depth-dependent electrically active defect distribution along the epi-layer growth direction. The DR-UV-SPIV data showed variations in the depth-dependent defect distribution across the wafer. As a result, rapid feedback on the depth-dependent electrical homogeneity of the electrically active defect distribution in the AlGaN/GaN HEMT epi-structure grown on a Si wafer with minimal sample preparation can be elucidated from the DR-UV-SPIV in combination with our previously demonstrated spectroscopic photo-IV measurement with the sub-bandgap excitation.
Micro and macroscopic investigation to quantify tillage impact on soil hydrodynamic behaviour
Beckers, E.; Roisin, C.; Plougonven, E.; Deraedt, D.; Léonard, A.; Degré, A.
2012-04-01
Nowadays, tillage simplification is an increasing practice. Many advantages are cited in the literature, such as energy saving, soil conservation etc. Agricultural management practices influence soil structure, but consequent changes in soil hydrodynamic behaviour at the field scale are still not well understood. Many studies focus only on macroscopic measurements which do not provide mechanistic explanations. Moreover, research shows divergent conclusions over structure modification. The aim of this work is to fill this gap by quantifying soil structure modification depending on tillage intensity through both macroscopic and microscopic measurements, the latter improving our comprehension of the fundamental mechanisms involved. Our experiment takes place in Gentinnes (Walloon Brabant, Belgium), on a field organized in a Latin square scheme. Since 2004, plots have been cultivated in conventional tillage (CT) or in reduced tillage (RT). The latter consists in sowing after stubble ploughing of about 10cm. The crop rotation is sugar beet followed by winter wheat. The soil is mainly composed of silt loam and can be classified as a Luvisol. Macroscopic investigations consist in establishing pF and K(h) curves and 3D soil strength profiles. At the microscale, 3D morphologic parameters are measured using X-ray microtomography. Because of the variation of working depth between management practices (10cm for RT vs. 25cm for CT), two horizons were investigated: H1 between 0-10cm and H2 between 12-25cm. 3D soil strength profiles were established thanks to a fully automated penetrometer (30° angle cone with a base area of 10mm2) which covered a 160 × 80cm2 area with 5cm spacing between neighbouring points. At each node, penetration was performed and soil strength measurements were collected every 1cm from 5 to 55cm depth. K(h) curves were provided by 20cm diameter tension-infiltrometer measurements (Eijkelkamp Agrisearch Equipment). Undisturbed soil samples were removed from
Coppens, Marc
2011-01-01
We consider coverings of real algebraic curves to real rational algebraic curves. We show the existence of such coverings having prescribed topological degree on the real locus. From those existence results we prove some results on Brill-Noether Theory for pencils on real curves. For coverings having topological degree 0 we introduce the covering number k and we prove the existence of coverings of degree 4 with prescribed covering number.
Directory of Open Access Journals (Sweden)
René Pellissier
2012-01-01
Full Text Available This paper explores the notion ofjump ing the curve,following from Handy 's S-curve onto a new curve with new rules policies and procedures. . It claims that the curve does not generally lie in wait but has to be invented by leadership. The focus of this paper is the identification (mathematically and inferentially ofthat point in time, known as the cusp in catastrophe theory, when it is time to change - pro-actively, pre-actively or reactively. These three scenarios are addressed separately and discussed in terms ofthe relevance ofeach.
Mtangi, W.; Auret, F. D.; Meyer, W. E.; Legodi, M. J.; Janse van Rensburg, P. J.; Coelho, S. M. M.; Diale, M.; Nel, J. M.
2012-05-01
Effects of annealing ZnO in hydrogen, oxygen, and argon have been investigated using deep level transient spectroscopy (DLTS) and Laplace-DLTS (LDLTS) measurements. Current-voltage (IV) measurements indicate a decrease in zero-bias barrier height for all the annealed samples. Conventional DLTS measurements reveal the presence of three prominent peaks in the un-annealed and annealed samples. A new peak with an activation enthalpy of 0.60 eV has been observed in the H2 annealed samples, while an estimated energy level of 0.67 eV has been observed in Ar annealed samples. O2 annealing does not introduce new peaks but causes a decrease in the concentration of the E3 peak and an increase in concentration of the E1 peak. The concentrations of all the intrinsic defects have decreased after H2 and Ar annealing; with Ar annealing giving peaks with the lowest concentrations. The E2 peak anneals out after annealing ZnO in Ar and H2 at 300 °C. From the annealing behaviour of E3, we have attributed to transition metal ion related defects, while E4 has been explained as a defect, whose formation favours oxygen deficient conditions. Laplace DLTS has successfully been employed to resolve the closely spaced energy levels in the E4 peak, splitting it into three peaks with energy levels, 0.68 eV, 0.58 eV, and 0.50 eV below the minimum of the conduction band for the Ar annealed sample.
Simulating Supernova Light Curves
Energy Technology Data Exchange (ETDEWEB)
Even, Wesley Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dolence, Joshua C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-05-05
This report discusses supernova light simulations. A brief review of supernovae, basics of supernova light curves, simulation tools used at LANL, and supernova results are included. Further, it happens that many of the same methods used to generate simulated supernova light curves can also be used to model the emission from fireballs generated by explosions in the earth’s atmosphere.
Tempo curves considered harmful
Desain, P.; Honing, H.
1993-01-01
In the literature of musicology, computer music research and the psychology of music, timing or tempo measurements are mostly presented in the form of continuous curves. The notion of these tempo curves is dangerous, despite its widespread use, because it lulls its users into the false impression th
Pairings on hyperelliptic curves
Balakrishnan, Jennifer; Chisholm, Sarah; Eisentraeger, Kirsten; Stange, Katherine; Teske, Edlyn
2009-01-01
We assemble and reorganize the recent work in the area of hyperelliptic pairings: We survey the research on constructing hyperelliptic curves suitable for pairing-based cryptography. We also showcase the hyperelliptic pairings proposed to date, and develop a unifying framework. We discuss the techniques used to optimize the pairing computation on hyperelliptic curves, and present many directions for further research.
National Research Council Canada - National Science Library
Andreas Chai; Alessio Moneta
2010-01-01
..., Professor of Economics, University of Illinois, Chicago, at jpersky@uic.edu jpersky@uic.edu.. Introduction Introduction Engel curves describe how household expenditure on particular goods or Engel curves describe how household expenditure on particular goods or services depends on household income. The name comes from the German st...
Martínez, Sol Sáez; de la Rosa, Félix Martínez; Rojas, Sergio
2017-01-01
In Advanced Calculus, our students wonder if it is possible to graphically represent a tornado by means of a three-dimensional curve. In this paper, we show it is possible by providing the parametric equations of such tornado-shaped curves.
Chou, Kai-Seng
2001-01-01
Although research in curve shortening flow has been very active for nearly 20 years, the results of those efforts have remained scattered throughout the literature. For the first time, The Curve Shortening Problem collects and illuminates those results in a comprehensive, rigorous, and self-contained account of the fundamental results.The authors present a complete treatment of the Gage-Hamilton theorem, a clear, detailed exposition of Grayson''s convexity theorem, a systematic discussion of invariant solutions, applications to the existence of simple closed geodesics on a surface, and a new, almost convexity theorem for the generalized curve shortening problem.Many questions regarding curve shortening remain outstanding. With its careful exposition and complete guide to the literature, The Curve Shortening Problem provides not only an outstanding starting point for graduate students and new investigations, but a superb reference that presents intriguing new results for those already active in the field.
Extended Macroscopic Study of Dilute Gas Flow within a Microcavity
Directory of Open Access Journals (Sweden)
Mohamed Hssikou
2016-01-01
Full Text Available The behaviour of monatomic and dilute gas is studied in the slip and early transition regimes using the extended macroscopic theory. The gas is confined within a two-dimensional microcavity where the longitudinal sides are in the opposite motion with constant velocity ±Uw. The microcavity walls are kept at the uniform and reference temperature T0. Thus, the gas flow is transported only by the shear stress induced by the motion of upper and lower walls. From the macroscopic point of view, the regularized 13-moment equations of Grad, R13, are solved numerically. The macroscopic gas proprieties are studied for different values of the so-called Knudsen number (Kn, which gives the gas-rarefaction degree. The results are compared with those obtained using the classical continuum theory of Navier-Stokes and Fourier (NSF.
The quantum interaction of macroscopic objects and gravitons
Piran, Tsvi
2016-09-01
Copious production of gravitational radiation requires a compact source that moves relativistically. Such sources are rare and are found only in extreme cases such as the formation of a black hole in either via a gravitational collapse or via a merger. Noncompact, nonrelativistic objects emit gravitational radiation, however, this emission is extremely weak due to very large value of the Planck energy. The quantum nature of gravitons, namely the fact that a single graviton carries energy of order ℏω implies that macroscopic objects whose kinetic energy is less than the Planck energy emit gravitons quantum mechanically, emitting a single graviton at a time. This is a unique situation in which a macroscopic object behaves quantum mechanically. While it is impossible to check experimentally this quantum gravitational effect, it might be possible to carry out analogous electromagnetic experiments that will shed light on this macroscopic quantum mechanical behavior.
Geometric aspects of Schnakenberg's network theory of macroscopic nonequilibrium observables
Polettini, M.
2011-03-01
Schnakenberg's network theory deals with macroscopic thermodynamical observables (forces, currents and entropy production) associated to the steady states of diffusions on generic graphs. Using results from graph theory and from the theory of discrete differential forms we recast Schnakenberg's treatment in the form of a simple discrete gauge theory, which allows to interpret macroscopic forces as the Wilson loops of a real connection. We discuss the geometric properties of transient states, showing that heat fluxes allow for a notion of duality of macroscopic observables which interchanges the role of the environment and that of the system. We discuss possible generalizations to less trivial gauge groups and the relevance for nonequilibrium fluctuation theorems. Based on work in collaboration with professor A. Maritan, University of Padua, to be published.
Broadband Macroscopic Cortical Oscillations Emerge from Intrinsic Neuronal Response Failures
Directory of Open Access Journals (Sweden)
Amir eGoldental
2015-10-01
Full Text Available Broadband spontaneous macroscopic neural oscillations are rhythmic cortical firing which was extensively examined during the last century, however, their possible origination is still controversial. In this work we show how macroscopic oscillations emerge in solely excitatory random networks and without topological constraints. We experimentally and theoretically show that these oscillations stem from the counterintuitive underlying mechanism - the intrinsic stochastic neuronal response failures. These neuronal response failures, which are characterized by short-term memory, lead to cooperation among neurons, resulting in sub- or several- Hertz macroscopic oscillations which coexist with high frequency gamma oscillations. A quantitative interplay between the statistical network properties and the emerging oscillations is supported by simulations of large networks based on single-neuron in-vitro experiments and a Langevin equation describing the network dynamics. Results call for the examination of these oscillations in the presence of inhibition and external drives.
Reconciling power laws in microscopic and macroscopic neural recordings
Pettersen, Klas H; Tetzlaff, Tom; Einevoll, Gaute T
2013-01-01
Power laws, characterized by quantities following 1/x^\\alpha{} distributions, are commonly reported when observing nature or society, and the question of their origin has for a long time intrigued physicists. Power laws have also been observed in neural recordings, both at the macroscopic and microscopic levels: at the macroscopic level, the power spectral density (PSD) of the electroencephalogram (EEG) has been seen to follow 1/f^\\alpha{} distributions; at the microscopic level similar power laws have been observed in single-neuron recordings of the neuronal soma potential and soma current, yet with different values of the power-law exponent \\alpha. In this theoretical study we find that these observed macroscopic and microscopic power laws may, despite the widely different spatial scales and different exponents, have the same source. By a combination of simulation on a biophysical detailed, pyramidal neuron model and analytical investigations of a simplified ball and stick neuron, we find that the transfer ...
Microscopic and macroscopic infarct complicating pediatric epilepsy surgery.
Rubinger, Luc; Hazrati, Lili-Naz; Ahmed, Raheel; Rutka, James; Snead, Carter; Widjaja, Elysa
2017-03-01
There is some suggestion that microscopic infarct could be associated with invasive monitoring, but it is unclear if the microscopic infarct is also visible on imaging and associated with neurologic deficits. The aims of this study were to assess the rates of microscopic and macroscopic infarct and other major complications of pediatric epilepsy surgery, and to determine if these complications were higher following invasive monitoring. We reviewed the epilepsy surgery data from a tertiary pediatric center, and collected data on microscopic infarct on histology and macroscopic infarct on postoperative computed tomography (CT) or magnetic resonance imaging (MRI) done one day after surgery and major complications. Three hundred fifty-two patients underwent surgical resection and there was one death. Forty-two percent had invasive monitoring. Thirty patients (9%) had microscopic infarct. Univariable analyses showed that microscopic infarct was higher among patients with invasive monitoring relative to no invasive monitoring (20% vs. 0.5%, respectively, p microscopic infarct had transient right hemiparesis, and two with both macroscopic and microscopic infarct had unexpected persistent neurologic deficits. Thirty-two major complications (9.1%) were reported, with no difference in major complications between invasive monitoring and no invasive monitoring (10% vs. 7%, p = 0.446). In the multivariable analysis, invasive monitoring increased the odds of microscopic infarct (odds ratio [OR] 15.87, p = 0.009), but not macroscopic infarct (OR 2.6, p = 0.173) or major complications (OR 1.4, p = 0.500), after adjusting for age at surgery, sex, age at seizure onset, operative type, and operative location. Microscopic infarct was associated with invasive monitoring, and none of the patients had permanent neurologic deficits. Macroscopic infarct was not associated with invasive monitoring, and two patients with macroscopic infarct had persistent neurologic deficits. Wiley
Approximating macroscopic observables in quantum spin systems with commuting matrices
Ogata, Yoshiko
2011-01-01
Macroscopic observables in a quantum spin system are given by sequences of spatial means of local elements $\\frac{1}{2n+1}\\sum_{j=-n}^n\\gamma_j(A_{i}), \\; n\\in{\\mathbb N},\\; i=1,...,m$ in a UHF algebra. One of their properties is that they commute asymptotically, as $n$ goes to infinity. It is not true that any given set of asymptotically commuting matrices can be approximated by commuting ones in the norm topology. In this paper, we show that for macroscopic observables, this is true.
On the notion of a macroscopic quantum system
Khrenikov, A Yu
2004-01-01
We analyse the notion of macroscopic quantum system from the point of view of the statistical structure of quantum theory. We come to conclusion that the presence of interference of probabilities should be used the main characteristic of quantumness (in the opposition to N. Bohr who permanently emphasized the crucial role of quantum action). In the light of recent experiments with statistical ensembles of people who produced interference of probabilities for special pairs of questions (which can be considered as measurements on people) human being should be considered as a macroscopic quantum system. There is also discussed relation with experiments of A. Zeilinger on interference of probabilities for macromoleculas.
Stimuli-deformable graphene materials: from nanosheet to macroscopic assembly
Directory of Open Access Journals (Sweden)
Fei Zhao
2016-04-01
Full Text Available Stimulus-induced deformation (SID of graphene-based materials has triggered rapidly increasing research interest due to the spontaneous response to external stimulations, which enables precise configurational regulation of single graphene nanosheets (GNSs through control over the environmental conditions. While the micro-strain of GNS is barely visible, the deformation of graphene-based macroscopic assemblies (GMAs is remarkable, thereby presenting significant potential for future application in smart devices. This review presents the current progress of SID of graphene in the manner of nanosheets and macroscopic assemblies in both the experimental and theoretical fronts, and summarizes recent advancements of SID of graphene for applications in smart systems.
Statistical thermodynamics understanding the properties of macroscopic systems
Fai, Lukong Cornelius
2012-01-01
Basic Principles of Statistical PhysicsMicroscopic and Macroscopic Description of StatesBasic PostulatesGibbs Ergodic AssumptionGibbsian EnsemblesExperimental Basis of Statistical MechanicsDefinition of Expectation ValuesErgodic Principle and Expectation ValuesProperties of Distribution FunctionRelative Fluctuation of an Additive Macroscopic ParameterLiouville TheoremGibbs Microcanonical EnsembleMicrocanonical Distribution in Quantum MechanicsDensity MatrixDensity Matrix in Energy RepresentationEntropyThermodynamic FunctionsTemperatureAdiabatic ProcessesPressureThermodynamic IdentityLaws of Th
Institute of Scientific and Technical Information of China (English)
DAI Zhen-Hong; NI Jun
2006-01-01
@@ We investigate the non-equilibrium electron transport properties of double-barrier AlGaAs/GaAs/AlGaAs resonanttunnelling devices in nonlinear bias using the time-dependent simulation technique. It is found that the bias step of the external bias voltage applied on the device has an important effect on the final current-voltage (I - V) curves. The results show that different bias step applied on the device can change the bistability, hysteresis and current plateau structure of the I - V curve. The current plateau occurs only in the case of small bias step. As the bias step increases, this plateau structure disappears.
Directory of Open Access Journals (Sweden)
Paulo Prochno
2004-07-01
Full Text Available Learning curves have been studied for a long time. These studies provided strong support to the hypothesis that, as organizations produce more of a product, unit costs of production decrease at a decreasing rate (see Argote, 1999 for a comprehensive review of learning curve studies. But the organizational mechanisms that lead to these results are still underexplored. We know some drivers of learning curves (ADLER; CLARK, 1991; LAPRE et al., 2000, but we still lack a more detailed view of the organizational processes behind those curves. Through an ethnographic study, I bring a comprehensive account of the first year of operations of a new automotive plant, describing what was taking place on in the assembly area during the most relevant shifts of the learning curve. The emphasis is then on how learning occurs in that setting. My analysis suggests that the overall learning curve is in fact the result of an integration process that puts together several individual ongoing learning curves in different areas throughout the organization. In the end, I propose a model to understand the evolution of these learning processes and their supporting organizational mechanisms.
Connecting Pore Scale Dynamics to Macroscopic Models for Two-Fluid Phase Flow
McClure, J. E.; Dye, A. L.; Miller, C. T.; Gray, W. G.
2015-12-01
Imaging technologies such as computed micro-tomography (CMT) provide high resolution three-dimensional images of real porous medium systems that reveal the true geometric structure of fluid and solid phases. Simulation and analysis tools are essential to extract knowledge from this raw data, and can be applied in tandem to provide information that is otherwise inaccessible. Guidance from multi-scale averaging theory is used to develop a multi-scale analysis framework to determine phase connectivity and extract interfacial areas, curvatures, common line length, contact angle and the velocities of the interface and common curve. The approach is applied to analyze pore-scale dynamics based on a multiphase lattice Boltzmann method. Dense sets of simulations are performed to evaluate the equilibrium relationship between capillary pressure, saturation and interfacial area for several experimentally imaged porous media. The approach is also used study the evolution of macroscopic quantities under dynamic conditions, which is compared to the equilibrium data.
Institute of Scientific and Technical Information of China (English)
王平; 孙久勋; 杨凯
2011-01-01
An analytical current-voltage relationship is proposed for single-carrier organic light emitting diodes. The model is based on the mobility model of Pasveer et al. [Phys. Rev. Lett. 94 (2005), 206601] that accounts for the most important physical quantities that influence the current transport in organic disordered semiconductors: temperature, carrier concentration, and electric field. The full-analytical formulation is obtained through replacing the constant mobility in Mott-Gurney relationship by the mobility model of Pasveer et al. With carrier concentration and electric field being replaced by their average values evaluated using the strict solutions at constant mobility, and leads to a simple analytical expression. It was validated with experimental data collected from different materials in a wide range of operating conditions.%提出一种有机半导体二极管电流电压关系的解析表达式.该表达式是基于Pasveer等人[Phys.Rev.Lett.94,206601 (2005)]的迁移率模型建立的,其中考虑了影响有机半导体载流子输运最重要的因素,包括温度、载流子浓度和电场强度.将Pasveer等人迁移率公式中的载流子浓度和电场强度用常数迁移率下严格解计算的平均值代入,然后将得到的迁移率取代Mott-Gurney电流电压关系中的常数迁移率从而得到解析电流电压表达式.将新解析表达式应用于三种材料制作的有机二极管,计算结果与实验数据符合很好,表明解析表达式是合理的.
U.S. Environmental Protection Agency — an UV calibration curve for SRHA quantitation. This dataset is associated with the following publication: Chang, X., and D. Bouchard. Surfactant-Wrapped Multiwalled...
Directory of Open Access Journals (Sweden)
Sutawanir Darwis
2012-05-01
Full Text Available Empirical decline curve analysis of oil production data gives reasonable answer in hyperbolic type curves situations; however the methodology has limitations in fitting real historical production data in present of unusual observations due to the effect of the treatment to the well in order to increase production capacity. The development ofrobust least squares offers new possibilities in better fitting production data using declinecurve analysis by down weighting the unusual observations. This paper proposes a robustleast squares fitting lmRobMM approach to estimate the decline rate of daily production data and compares the results with reservoir simulation results. For case study, we usethe oil production data at TBA Field West Java. The results demonstrated that theapproach is suitable for decline curve fitting and offers a new insight in decline curve analysis in the present of unusual observations.
Quantum statistical derivation of the macroscopic Maxwell equations
Schram, K.
1960-01-01
The macroscopic Maxwell equations in matter are derived on a quantum statistical basis from the microscopic equations for the field operators. Both the density operator formalism and the Wigner distribution function method are discussed. By both methods it can be proved that the quantum statistical
Macroscopic and Microscopic Gradient Structures of Bamboo Culms
Directory of Open Access Journals (Sweden)
Suwat SUTNAUN
2005-01-01
Full Text Available This work studied the structure of bamboo culms which is naturally designed to retard the bending stress caused by a wind load. A macroscopic gradient structure (diameter, thickness and internodal length and a microscopic one (distribution of fiber of three sympodial bamboo species i.e. Tong bamboo (Dendrocalamus asper Backer., Pah bamboo (Gigantochloa bambos and Pak bamboo (Gigantochloa hasskarliana were examined. From the macroscopic point of view, the wind-load generated bending stress for the tapered hollow tube of bamboo was found to vary uniformly with height, especially at the middle of the culms. Furthermore, the macroscopic shape of bamboo culm is about 2-6 times stiffer in bending mode than one with a solid circular section for the same amount of wood material. Microscopically, the distribution of fiber in the radial direction linearly decreases from the outer surface to the inner surface in the same manner as that of the distribution of the bending stress in the radial direction. Distribution of fiber along the vertical length of bamboos at each height is proportional to the level of bending stress generated by the wind load. Both macroscopic and microscopic gradient structures of sympodial type bamboos were found to be less effective to retard the bending stress than those of monopodial type bamboo.
Microstructure and macroscopic properties of polydisperse systems of hard spheres
Ogarko, Vitaliy Anatolyevich
2014-01-01
This dissertation describes an investigation of systems of polydisperse smooth hard spheres. This includes the development of a fast contact detection algorithm for computer modelling, the development of macroscopic constitutive laws that are based on microscopic features such as the moments of the
Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters
DEFF Research Database (Denmark)
Nedelchev, L.; Nikolova, L.; Matharu, A.
2002-01-01
A study of the propagation of elliptically polarized light and the resulting formation of macroscopic chiral structures in a series of azobenzene side-chain copolyesters, in which the morphology is varied from liquid crystalline to amorphous, is reported. Real-time measurements are presented...
[Macroscopic observations on corneal epithelial wound healing in the rabbit].
Hayashi, K
1991-02-01
A newly-developed macroscope was applied to observe the healing process of corneal epithelial wound in vivo. After removing epithelium of the central cornea, the changes of the corneal surface were observed with the macroscope and the findings were compared with histological examinations. At 12 hours after abrasion, areas unstained with Richardson's staining (R staining) appeared. In the histological section, a single layer of regenerating epithelial cells covered the same area. At 24 and 36 hours after abrasion, the epithelial defects became smaller but surrounding epithelium was rough and showed dot-like staining with R solution. By 2 days, the epithelial defects disappeared. On macroscopic observation, the central corneal surface showed a pavement-like appearance. Histology revealed that the regenerating epithelium still consisted of one or two layers. At 3 days, dot-like stainings were present only in the center and the corneal surface appeared considerably smooth. Histology also showed that regenerating epithelium became columnar and multilayered, thereby suggesting stratification. By 7 days, the abraded corneal surface had recovered its smooth appearance. Histologic sections also demonstrated that the epithelium had regained its normal structure. Thus, using this macroscope, findings suggesting the process of epithelial migration and proliferation could be observed.
The black hole information paradox and macroscopic superpositions
Hsu, Stephen D H
2010-01-01
We investigate the experimental capabilities required to test whether black holes destroy information. We show that an experiment capable of illuminating the information puzzle must necessarily be able to detect or manipulate macroscopic superpositions (i.e., Everett branches). Hence, it could also address the fundamental question of decoherence versus wavefunction collapse.
Macroscopic domain formation in the platelet plasma membrane
DEFF Research Database (Denmark)
Bali, Rachna; Savino, Laura; Ramirez, Diego A.;
2009-01-01
There has been ample debate on whether cell membranes can present macroscopic lipid domains as predicted by three-component phase diagrams obtained by fluorescence microscopy. Several groups have argued that membrane proteins and interactions with the cytoskeleton inhibit the formation of large d...
A Macroscopic Analogue of the Nuclear Pairing Potential
Dunlap, Richard A.
2013-01-01
A macroscopic system involving permanent magnets is used as an analogue to nucleons in a nucleus to illustrate the significance of the pairing interaction. This illustrates that the view of the total nuclear energy based only on the nucleon occupancy of the energy levels can yield erroneous results and it is only when the pairing interaction is…
Data requirements for traffic control on a macroscopic level
Knoop, V.L.; Van Lint, J.W.C.; Hoogendoorn, S.P.
2011-01-01
With current techniques, traffic monitoring and control is a data intensive process. Network control on a higher level, using high level variables, can make this process less data demanding. The macroscopic fundamental diagram relates accumulation, i.e. the number of vehicles in an area, to the netw
Stereodynamics: From elementary processes to macroscopic chemical reactions
Energy Technology Data Exchange (ETDEWEB)
Kasai, Toshio [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Che, Dock-Chil [Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Tsai, Po-Yu [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Lin, King-Chuen [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Palazzetti, Federico [Scuola Normale Superiore, Pisa (Italy); Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, Vincenzo [Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Roma (Italy); Instituto de Fisica, Universidade Federal da Bahia, Salvador (Brazil)
2015-12-31
This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.
Mesoscopic kinetic basis of macroscopic chemical thermodynamics: A mathematical theory.
Ge, Hao; Qian, Hong
2016-11-01
Gibbs' macroscopic chemical thermodynamics is one of the most important theories in chemistry. Generalizing it to mesoscaled nonequilibrium systems is essential to biophysics. The nonequilibrium stochastic thermodynamics of chemical reaction kinetics suggested a free energy balance equation dF^{(meso)}/dt=E_{in}-e_{p} in which the free energy input rate E_{in} and dissipation rate e_{p} are both non-negative, and E_{in}≤e_{p}. We prove that in the macroscopic limit by merely allowing the molecular numbers to be infinite, the generalized mesoscopic free energy F^{(meso)} converges to φ^{ss}, the large deviation rate function for the stationary distributions. This generalized macroscopic free energy φ^{ss} now satisfies a balance equation dφ^{ss}(x)/dt=cmf(x)-σ(x), in which x represents chemical concentration. The chemical motive force cmf(x) and entropy production rate σ(x) are both non-negative, and cmf(x)≤σ(x). The balance equation is valid generally in isothermal driven systems and is different from mechanical energy conservation and the first law; it is actually an unknown form of the second law. Consequences of the emergent thermodynamic quantities and equalities are further discussed. The emergent "law" is independent of underlying kinetic details. Our theory provides an example showing how a macroscopic law emerges from a level below.
Diagnosis of bladder tumours in patients with macroscopic haematuria
DEFF Research Database (Denmark)
Gandrup, Karen L; Løgager, Vibeke B; Bretlau, Thomas
2015-01-01
OBJECTIVE: The aim of this study was to compare split-bolus computed tomography urography (CTU), magnetic resonance urography (MRU) and flexible cystoscopy in patients with macroscopic haematuria regarding the diagnosis of bladder tumours. MATERIALS AND METHODS: In this prospective study, 150...
Microstructure and macroscopic properties of polydisperse systems of hard spheres
Ogarko, V.
2014-01-01
This dissertation describes an investigation of systems of polydisperse smooth hard spheres. This includes the development of a fast contact detection algorithm for computer modelling, the development of macroscopic constitutive laws that are based on microscopic features such as the moments of the
Integrating a macro emission model with a macroscopic traffic model
Klunder, G.A.; Stelwagen, U.; Taale, H.
2013-01-01
This paper presents a macro emission module for macroscopic traffic models to be used for assessment of ITS and traffic management. It especially focuses on emission estimates for different intersection types. It provides emission values for CO, CO2, HC, NOx, and PM10. It is applied and validated fo
From 1D to 3D - macroscopic nanowire aerogel monoliths.
Cheng, Wei; Rechberger, Felix; Niederberger, Markus
2016-08-01
Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.
Numerical solutions of a generalized theory for macroscopic capillarity
Doster, F.; Zegeling, P.A.; Hilfer, R.
2010-01-01
A recent macroscopic theory of biphasic flow in porous media [R. Hilfer, Phys. Rev. E 73, 016307 (2006)] has proposed to treat microscopically percolating fluid regions differently from microscopically nonpercolating regions. Even in one dimension the theory reduces to an analytically intractable se
The fundamental diagram : a macroscopic traffic flow model.
Botma, H.
1976-01-01
In models of traffic flow, the interactions between vehicles are of prime interest, and are based on characteristics of the drivers, road and vehicles. The fundamental diagram is a representation of a relationship on a macroscopic level in the steady state between the quantity of traffic and a chara
Charge accumulation in DC cables: a macroscopic approach
DEFF Research Database (Denmark)
McAllister, Iain Wilson; Crichton, George C; Pedersen, Aage
1994-01-01
The accumulation of space charge in solid dielectrics is examined from the macroscopic point of view using electromagnetic field theory. For practical dielectrics, it is shown that the occurrence of such charges is an inherent consequence of a non-uniform conductivity. The influence of both tempe...
Mesoscopic kinetic basis of macroscopic chemical thermodynamics: A mathematical theory
Ge, Hao; Qian, Hong
2016-11-01
Gibbs' macroscopic chemical thermodynamics is one of the most important theories in chemistry. Generalizing it to mesoscaled nonequilibrium systems is essential to biophysics. The nonequilibrium stochastic thermodynamics of chemical reaction kinetics suggested a free energy balance equation d F(meso)/d t =Ein-ep in which the free energy input rate Ein and dissipation rate ep are both non-negative, and Ein≤ep . We prove that in the macroscopic limit by merely allowing the molecular numbers to be infinite, the generalized mesoscopic free energy F(meso) converges to φss, the large deviation rate function for the stationary distributions. This generalized macroscopic free energy φss now satisfies a balance equation d φss(x ) /d t =cmf(x ) -σ (x ) , in which x represents chemical concentration. The chemical motive force cmf(x ) and entropy production rate σ (x ) are both non-negative, and cmf(x )≤σ (x ) . The balance equation is valid generally in isothermal driven systems and is different from mechanical energy conservation and the first law; it is actually an unknown form of the second law. Consequences of the emergent thermodynamic quantities and equalities are further discussed. The emergent "law" is independent of underlying kinetic details. Our theory provides an example showing how a macroscopic law emerges from a level below.
Large Curved Surface Measurement
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The measurement principle of large curved surface through theodolite industry survey system is introduced. Two methods are suggested with respect to the distribution range of curved surface error. The experiments show that the measurement precision can be up to 0.15mm with relative precision of 3×10-5. Finally, something needed paying attention to and the application aspects on theodolite industry survey system are given.
2015-01-01
In this paper we consider an elementary, and largely unexplored, combinatorial problem in low-dimensional topology. Consider a real 2-dimensional compact surface $S$, and fix a number of points $F$ on its boundary. We ask: how many configurations of disjoint arcs are there on $S$ whose boundary is $F$? We find that this enumerative problem, counting curves on surfaces, has a rich structure. For instance, we show that the curve counts obey an effective recursion, in the general framework of to...
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
This is the note for a series of lectures that the author gave at the Centre de Recerca Matemtica (CRM), Bellaterra, Barcelona, Spain on October 19–24, 2009. The aim is to give a comprehensive description of some recent work of the author and his students on generalisations of the Gross-Zagier formula, Euler systems on Shimura curves, and rational points on elliptic curves.
Highly curved microchannel plates
Siegmund, O. H. W.; Cully, S.; Warren, J.; Gaines, G. A.; Priedhorsky, W.; Bloch, J.
1990-01-01
Several spherically curved microchannel plate (MCP) stack configurations were studied as part of an ongoing astrophysical detector development program, and as part of the development of the ALEXIS satellite payload. MCP pairs with surface radii of curvature as small as 7 cm, and diameters up to 46 mm have been evaluated. The experiments show that the gain (greater than 1.5 x 10 exp 7) and background characteristics (about 0.5 events/sq cm per sec) of highly curved MCP stacks are in general equivalent to the performance achieved with flat MCP stacks of similar configuration. However, gain variations across the curved MCP's due to variations in the channel length to diameter ratio are observed. The overall pulse height distribution of a highly curved surface MCP stack (greater than 50 percent FWHM) is thus broader than its flat counterpart (less than 30 percent). Preconditioning of curved MCP stacks gives comparable results to flat MCP stacks, but it also decreases the overall gain variations. Flat fields of curved MCP stacks have the same general characteristics as flat MCP stacks.
Macroscopic quantum phenomena from the large N perspective
Chou, C. H.; Hu, B. L.; Subaşi, Y.
2011-07-01
Macroscopic quantum phenomena (MQP) is a relatively new research venue, with exciting ongoing experiments and bright prospects, yet with surprisingly little theoretical activity. What makes MQP intellectually stimulating is because it is counterpoised against the traditional view that macroscopic means classical. This simplistic and hitherto rarely challenged view need be scrutinized anew, perhaps with much of the conventional wisdoms repealed. In this series of papers we report on a systematic investigation into some key foundational issues of MQP, with the hope of constructing a viable theoretical framework for this new endeavour. The three major themes discussed in these three essays are the large N expansion, the correlation hierarchy and quantum entanglement for systems of 'large' sizes, with many components or degrees of freedom. In this paper we use different theories in a variety of contexts to examine the conditions or criteria whereby a macroscopic quantum system may take on classical attributes, and, more interestingly, that it keeps some of its quantum features. The theories we consider here are, the O(N) quantum mechanical model, semiclassical stochastic gravity and gauge / string theories; the contexts include that of a 'quantum roll' in inflationary cosmology, entropy generation in quantum Vlasov equation for plasmas, the leading order and next-to-leading order large N behaviour, and hydrodynamic / thermodynamic limits. The criteria for classicality in our consideration include the use of uncertainty relations, the correlation between classical canonical variables, randomization of quantum phase, environment-induced decoherence, decoherent history of hydrodynamic variables, etc. All this exercise is to ask only one simple question: Is it really so surprising that quantum features can appear in macroscopic objects? By examining different representative systems where detailed theoretical analysis has been carried out, we find that there is no a priori
The origins of macroscopic quantum coherence in high temperature superconductivity
Energy Technology Data Exchange (ETDEWEB)
Turner, Philip, E-mail: ph.turner@napier.ac.uk [Edinburgh Napier University, 10 Colinton Road, Edinburgh EH10 5DT (United Kingdom); Nottale, Laurent, E-mail: laurent.nottale@obspm.fr [CNRS, LUTH, Observatoire de Paris-Meudon, 5 Place Janssen, 92190 Meudon (France)
2015-08-15
Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new
Macroscopic quantum phenomena from the large N perspective
Energy Technology Data Exchange (ETDEWEB)
Chou, C H [department of Physics, National Cheng Kung University, Tainan, Taiwan 701 (China) and National Center for Theoretical Sciences (South), Tainan, Taiwan 701 (China); Hu, B L; Subasi, Y, E-mail: hubeilok@gmail.com [Joint Quantum Institute and Maryland Center for Fundamental Physics, University of Maryland, College Park, Maryland 20742 (United States)
2011-07-08
Macroscopic quantum phenomena (MQP) is a relatively new research venue, with exciting ongoing experiments and bright prospects, yet with surprisingly little theoretical activity. What makes MQP intellectually stimulating is because it is counterpoised against the traditional view that macroscopic means classical. This simplistic and hitherto rarely challenged view need be scrutinized anew, perhaps with much of the conventional wisdoms repealed. In this series of papers we report on a systematic investigation into some key foundational issues of MQP, with the hope of constructing a viable theoretical framework for this new endeavour. The three major themes discussed in these three essays are the large N expansion, the correlation hierarchy and quantum entanglement for systems of 'large' sizes, with many components or degrees of freedom. In this paper we use different theories in a variety of contexts to examine the conditions or criteria whereby a macroscopic quantum system may take on classical attributes, and, more interestingly, that it keeps some of its quantum features. The theories we consider here are, the O(N) quantum mechanical model, semiclassical stochastic gravity and gauge / string theories; the contexts include that of a 'quantum roll' in inflationary cosmology, entropy generation in quantum Vlasov equation for plasmas, the leading order and next-to-leading order large N behaviour, and hydrodynamic / thermodynamic limits. The criteria for classicality in our consideration include the use of uncertainty relations, the correlation between classical canonical variables, randomization of quantum phase, environment-induced decoherence, decoherent history of hydrodynamic variables, etc. All this exercise is to ask only one simple question: Is it really so surprising that quantum features can appear in macroscopic objects? By examining different representative systems where detailed theoretical analysis has been carried out, we find that
Approximation by planar elastic curves
DEFF Research Database (Denmark)
Brander, David; Gravesen, Jens; Nørbjerg, Toke Bjerge
2016-01-01
We give an algorithm for approximating a given plane curve segment by a planar elastic curve. The method depends on an analytic representation of the space of elastic curve segments, together with a geometric method for obtaining a good initial guess for the approximating curve. A gradient......-driven optimization is then used to find the approximating elastic curve....
Stankova-Frenkel, Z E
1997-01-01
We study the moduli of trigonal curves. We establish the exact upper bound of ${36(g+1)}/(5g+1)$ for the slope of trigonal fibrations. Here, the slope of any fibration $X\\to B$ of stable curves with smooth general member is the ratio Hodge class $\\lambda$ on the moduli space $\\bar{\\mathfrak{M}}_g$ to the base $B$. We associate to a trigonal family $X$ a canonical rank two vector bundle $V$, and show that for Bogomolov-semistable $V$ the slope satisfies the stronger inequality ${\\delta_B}/{\\lambda_B}\\leq 7+{6}/{g}$. We further describe the rational Picard group of the {trigonal} locus $\\bar{\\mathfrak T}_g$ in the moduli space $\\bar{\\mathfrak{M}}_g$ of genus $g$ curves. In the even genus case, we interpret the above Bogomolov semistability condition in terms of the so-called Maroni divisor in $\\bar{\\mathfrak T}_g$.
DEFF Research Database (Denmark)
Gómez Arranz, Paula; Vesth, Allan
This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here, the refere......This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here......, the reference wind speed used in the power curve is the equivalent wind speed obtained from lidar measurements at several heights between lower and upper blade tip, in combination with a hub height meteorological mast. The measurements have been performed using DTU’s measurement equipment, the analysis...
Leslie, Mark; Holloway, Charles A
2006-01-01
When a company launches a new product into a new market, the temptation is to immediately ramp up sales force capacity to gain customers as quickly as possible. But hiring a full sales force too early just causes the firm to burn through cash and fail to meet revenue expectations. Before it can sell an innovative product efficiently, the entire organization needs to learn how customers will acquire and use it, a process the authors call the sales learning curve. The concept of a learning curve is well understood in manufacturing. Employees transfer knowledge and experience back and forth between the production line and purchasing, manufacturing, engineering, planning, and operations. The sales learning curve unfolds similarly through the give-and-take between the company--marketing, sales, product support, and product development--and its customers. As customers adopt the product, the firm modifies both the offering and the processes associated with making and selling it. Progress along the manufacturing curve is measured by tracking cost per unit: The more a firm learns about the manufacturing process, the more efficient it becomes, and the lower the unit cost goes. Progress along the sales learning curve is measured in an analogous way: The more a company learns about the sales process, the more efficient it becomes at selling, and the higher the sales yield. As the sales yield increases, the sales learning process unfolds in three distinct phases--initiation, transition, and execution. Each phase requires a different size--and kind--of sales force and represents a different stage in a company's production, marketing, and sales strategies. Adjusting those strategies as the firm progresses along the sales learning curve allows managers to plan resource allocation more accurately, set appropriate expectations, avoid disastrous cash shortfalls, and reduce both the time and money required to turn a profit.
Algebraic curves and cryptography
Murty, V Kumar
2010-01-01
It is by now a well-known paradigm that public-key cryptosystems can be built using finite Abelian groups and that algebraic geometry provides a supply of such groups through Abelian varieties over finite fields. Of special interest are the Abelian varieties that are Jacobians of algebraic curves. All of the articles in this volume are centered on the theme of point counting and explicit arithmetic on the Jacobians of curves over finite fields. The topics covered include Schoof's \\ell-adic point counting algorithm, the p-adic algorithms of Kedlaya and Denef-Vercauteren, explicit arithmetic on
DEFF Research Database (Denmark)
Gómez Arranz, Paula; Villanueva, Héctor
This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here......, the reference wind speed used in the power curve is the equivalent wind speed obtained from lidar measurements at several heights between lower and upper blade tip, in combination with a hub height meteorological mast. The measurements have been performed using DTU’s measurement equipment, the analysis...
DEFF Research Database (Denmark)
Villanueva, Héctor; Vesth, Allan
are not performed according to IEC 61400-12-1 [1]. Therefore, the results presented in this report cannot be considered a power curve according to the reference standard, and are referred to as “power curve investigation” instead. The measurements have been performed by a customer and the data analysis has been......This report describes the analysis carried out with data from a given turbine in a wind farm and a chosen period. The purpose of the analysis is to correlate the power output of the wind turbine to the wind speed measured by a nacelle-mounted anemometer. The measurements and analysis...
Energy Technology Data Exchange (ETDEWEB)
Nichterwitz, Melanie
2012-01-10
This work contributes to the understanding of generation dependent charge-carrier transport properties in Cu(In,Ga)Se{sub 2} (CIGSe)/ CdS/ ZnO solar cells and a consistent model for the electronic band diagram of the heterojunction region of the device is developed. Cross section electron-beam induced current (EBIC) and temperature and illumination dependent current voltage (IV) measurements are performed on CIGSe solar cells with varying absorber layer compositions and CdS thickness. For a better understanding of possibilities and limitations of EBIC measurements applied on CIGSe solar cells, detailed numerical simulations of cross section EBIC profiles for varying electron beam and solar cell parameters are performed and compared to profiles obtained from an analytical description. Especially the effects of high injection conditions are considered. Even though the collection function of the solar cell is not independent of the generation function of the electron beam, the local electron diffusion length in CIGSe can still be extracted. Grain specific values ranging from (480±70) nm to (2.3±0.2) μm are determined for a CuInSe{sub 2} absorber layer and a value of (2.8±0.3) μm for CIGSe with a Ga-content of 0.3. There are several models discussed in literature to explain generation dependent charge carrier transport, all assuming a high acceptor density either located in the CIGSe layer close to the CIGSe/CdS interface (p{sup +} layer), within the CdS layer or at the CdS/ZnO interface. In all models, a change in charge carrier collection properties is caused by a generation dependent occupation probability of the acceptor type defect state and the resulting potential distribution throughout the device. Numerical simulations of EBIC and IV data are performed with parameters according to these models. The model that explains the experimental data best is that of a p{sup +} layer at the CIGSe/CdS interface and acceptor type defect states at the CdS/ZnO interface
Wave speeds in the macroscopic extended model for ultrarelativistic gases
Energy Technology Data Exchange (ETDEWEB)
Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)
2013-11-15
Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.
From 1D to 3D - macroscopic nanowire aerogel monoliths
Cheng, Wei; Rechberger, Felix; Niederberger, Markus
2016-07-01
Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying. Electronic supplementary information (ESI) available: Experimental details, SEM and TEM images, and digital photographs. See DOI: 10.1039/c6nr04429h
Microscopic versus macroscopic approaches to non-equilibrium systems
Derrida, Bernard
2011-01-01
The one-dimensional symmetric simple exclusion process (SSEP) is one of the very few exactly soluble models of non-equilibrium statistical physics. It describes a system of particles which diffuse with hard core repulsion on a one-dimensional lattice in contact with two reservoirs of particles at unequal densities. The goal of this paper is to review the two main approaches which lead to the exact expression of the large deviation functional of the density of the SSEP in its steady state: a microscopic approach (based on the matrix product ansatz and an additivity property) and a macroscopic approach (based on the macroscopic fluctuation theory of Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim).
Wave speeds in the macroscopic extended model for ultrarelativistic gases
Energy Technology Data Exchange (ETDEWEB)
Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)
2013-11-15
Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.
Applying quantum mechanics to macroscopic and mesoscopic systems
T., N Poveda
2012-01-01
There exists a paradigm in which Quantum Mechanics is an exclusively developed theory to explain phenomena on a microscopic scale. As the Planck's constant is extremely small, $h\\sim10^{-34}{J.s}$, and as in the relation of de Broglie the wavelength is inversely proportional to the momentum; for a mesoscopic or macroscopic object the Broglie wavelength is very small, and consequently the undulatory behavior of this object is undetectable. In this paper we show that with a particle oscillating around its classical trajectory, the action is an integer multiple of a quantum of action, $S = nh_{o}$. The quantum of action, $h_{o}$, which plays a role equivalent to Planck's constant, is a free parameter that must be determined and depends on the physical system considered. For a mesoscopic and macroscopic system: $h_{o}\\gg h$, this allows us to describe these systems with the formalism of quantum mechanics.
Analysis and Enhancements of a Prolific Macroscopic Model of Epilepsy
Directory of Open Access Journals (Sweden)
Christopher Fietkiewicz
2016-01-01
Full Text Available Macroscopic models of epilepsy can deliver surprisingly realistic EEG simulations. In the present study, a prolific series of models is evaluated with regard to theoretical and computational concerns, and enhancements are developed. Specifically, we analyze three aspects of the models: (1 Using dynamical systems analysis, we demonstrate and explain the presence of direct current potentials in the simulated EEG that were previously undocumented. (2 We explain how the system was not ideally formulated for numerical integration of stochastic differential equations. A reformulated system is developed to support proper methodology. (3 We explain an unreported contradiction in the published model specification regarding the use of a mathematical reduction method. We then use the method to reduce the number of equations and further improve the computational efficiency. The intent of our critique is to enhance the evolution of macroscopic modeling of epilepsy and assist others who wish to explore this exciting class of models further.
Indirect measurement of interfacial melting from macroscopic ice observations.
Saruya, Tomotaka; Kurita, Kei; Rempel, Alan W
2014-06-01
Premelted water that is adsorbed to particle surfaces and confined to capillary regions remains in the liquid state well below the bulk melting temperature and can supply the segregated growth of ice lenses. Using macroscopic measurements of ice-lens initiation position in step-freezing experiments, we infer how the nanometer-scale thicknesses of premelted films depend on temperature depression below bulk melting. The interfacial interactions between ice, liquid, and soda-lime glass particles exhibit a power-law behavior that suggests premelting in our system is dominated by short-range electrostatic forces. Using our inferred film thicknesses as inputs to a simple force-balance model with no adjustable parameters, we obtain good quantitative agreement between numerical predictions and observed ice-lens thickness. Macroscopic observations of lensing behavior have the potential as probes of premelting behavior in other systems.
Optomechanical entanglement of a macroscopic oscillator by quantum feedback
Wu, E.; Li, Fengzhi; Zhang, Xuefeng; Ma, Yonghong
2016-07-01
We propose a scheme to generate the case of macroscopic entanglement in the optomechanical system, which consist of Fabry-Perot cavity and a mechanical oscillator by applying a homodyne-mediated quantum feedback. We explore the effect of feedback on the entanglement in vacuum and coherent state, respectively. The results show that the introduction of quantum feedback can increase the entanglement effectively between the cavity mode and the oscillator mode.
Identification of Bodies Exposed to High Temperatures Based on Macroscopic...
Barraza Salcedo, María del Socorro; Universidad Metropolitana de Barranquilla. Barranquilla; Rebolledo Cobos, Martha Leonor; Universidad Metropolitana de Barranquilla
2016-01-01
ABSTRACT. Background: Forensic dentistry in cases of incineration provides scientific elements that allow the identification of bodies, by analyzing dental organs, through the isolation of DNA obtained from the pulp as an alternative to confirm the identity of the victim. When the degree of temperature is highly elevated, dental tissues are vulnerable and therefore the DNA pulp is not salvageable, wasting resources and time by lack of standards to identify macroscopic characteristics that ind...
CONTRIBUTION OF MACROSCOPIC DIMENSION EFFECT TO PIEZOELFCTRICITY IN POLYVINYLIDENE FLUORIDE
Institute of Scientific and Technical Information of China (English)
WEN Jianxun; TAKEO FURUKAWA
1987-01-01
In this paper, we have studied the piezoelectricity in the poled uniaxially drawn polyvinylidene fluoride. The piezoelectric constants d31, d32, da33 and Young's moduli 1/s11 and 1/s22 have been determined as a function of the remanent polarization Pr. The piezoelectric constants of the samples show a strong in-plane anisotropy. Such an anisotropy is mostly attributable to different Poisson's ratio. It is found that the piezoelectric activity mainly arises from macroscopic dimensional change.
Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.
Tsai, Jaw-Shen
2010-01-01
Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.
Measurement-Induced Macroscopic Superposition States in Cavity Optomechanics
Hoff, Ulrich B.; Kollath-Bönig, Johann; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L.
2016-09-01
A novel protocol for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator is proposed, compatible with existing optomechanical devices operating in the bad-cavity limit. By combining a pulsed optomechanical quantum nondemolition (QND) interaction with nonclassical optical resources and measurement-induced feedback, the need for strong single-photon coupling is avoided. We outline a three-pulse sequence of QND interactions encompassing squeezing-enhanced cooling by measurement, state preparation, and tomography.
Paths of algebraic hyperbolic curves
Institute of Scientific and Technical Information of China (English)
Ya-juan LI; Li-zheng LU; Guo-zhao WANG
2008-01-01
Cubic algebraic hyperbolic (AH) Bezier curves and AH spline curves are defined with a positive parameter α in the space spanned by {1, t, sinht, cosht}. Modifying the value of α yields a family of AH Bezier or spline curves with the family parameter α. For a fixed point on the original curve, it will move on a defined curve called "path of AH curve" (AH Bezier and AH spline curves) when α changes. We describe the geometric effects of the paths and give a method to specify a curve passing through a given point.
Macroscopic Quantum Phenomena from the Correlation, Coupling and Criticality Perspectives
Chou, C. H.; Hu, B. L.; Subaşi, Y.
2011-12-01
In this sequel paper we explore how macroscopic quantum phenomena can be measured or understood from the behavior of quantum correlations which exist in a quantum system of many particles or components and how the interaction strengths change with energy or scale, under ordinary situations and when the system is near its critical point. We use the nPI (master) effective action related to the Boltzmann-BBGKY / Schwinger-Dyson hierarchy of equations as a tool for systemizing the contributions of higher order correlation functions to the dynamics of lower order correlation functions. Together with the large N expansion discussed in our first paper [1] we explore 1) the conditions whereby an H-theorem is obtained, which can be viewed as a signifier of the emergence of macroscopic behavior in the system. We give two more examples from past work: 2) the nonequilibrium dynamics of N atoms in an optical lattice under the large Script N (field components), 2PI and second order perturbative expansions, illustrating how N and Script N enter in these three aspects of quantum correlations, coherence and coupling strength. 3) the behavior of an interacting quantum system near its critical point, the effects of quantum and thermal fluctuations and the conditions under which the system manifests infrared dimensional reduction. We also discuss how the effective field theory concept bears on macroscopic quantum phenomena: the running of the coupling parameters with energy or scale imparts a dynamical-dependent and an interaction-sensitive definition of 'macroscopia'.
Stochastic and Macroscopic Thermodynamics of Strongly Coupled Systems
Jarzynski, Christopher
2017-01-01
We develop a thermodynamic framework that describes a classical system of interest S that is strongly coupled to its thermal environment E . Within this framework, seven key thermodynamic quantities—internal energy, entropy, volume, enthalpy, Gibbs free energy, heat, and work—are defined microscopically. These quantities obey thermodynamic relations including both the first and second law, and they satisfy nonequilibrium fluctuation theorems. We additionally impose a macroscopic consistency condition: When S is large, the quantities defined within our framework scale up to their macroscopic counterparts. By satisfying this condition, we demonstrate that a unifying framework can be developed, which encompasses both stochastic thermodynamics at one end, and macroscopic thermodynamics at the other. A central element in our approach is a thermodynamic definition of the volume of the system of interest, which converges to the usual geometric definition when S is large. We also sketch an alternative framework that satisfies the same consistency conditions. The dynamics of the system and environment are modeled using Hamilton's equations in the full phase space.
Macroscopic quantum oscillator based on a flux qubit
Energy Technology Data Exchange (ETDEWEB)
Singh, Mandip, E-mail: mandip@iisermohali.ac.in
2015-09-25
In this paper a macroscopic quantum oscillator is proposed, which consists of a flux-qubit in the form of a cantilever. The net magnetic flux threading through the flux-qubit and the mechanical degrees of freedom of the cantilever are naturally coupled. The coupling between the cantilever and the magnetic flux is controlled through an external magnetic field. The ground state of the flux-qubit-cantilever turns out to be an entangled quantum state, where the cantilever deflection and the magnetic flux are the entangled degrees of freedom. A variant, which is a special case of the flux-qubit-cantilever without a Josephson junction, is also discussed. - Highlights: • In this paper a flux-qubit-cantilever is proposed. • Coupling can be varied by an external magnetic field. • Ground state is a macroscopic entangled quantum state. • Ground state of the superconducting-loop-oscillator is a macroscopic quantum superposition. • Proposed scheme is based on a generalized quantum approach.
Macroscopic description of the limb muscles of Tupinambis merianae
Directory of Open Access Journals (Sweden)
Juliana Barbosa Casals
2012-03-01
Full Text Available Tegu lizard (Tupinambis merianae belongs to the Teiidae family. It is distributed throughout the Americas, with many species, including Brazilian ones. They are from the Tupinambis genus, the largest representatives of the Teiidae family. For this study three animals (run over coming from donation were used. The dissected lizards were fixed in 10%, formaldehyde, and the macroscopic analysis was carried out in a detailed and photo documented way, keeping the selected structures “in situ”. This paper had as its main aim contributing to the macroscopic description of the chest myology, as well as the thoracic and pelvic limbs of the lizard T. merianae. The results obtained from this research were compared to authors who have studied animals from the same Reptilia class. Thus, we conclude that our macroscopic results are similar to those already described by the researchers Hildebrand (1995, Moro and Abdala (2004 and Abdala and Diogo (2010. We should highlight that the knowledge on anatomy has importance and applications to various areas within Biology, contributing in a substantial way to the areas of human health and technology.
Mesoscopic Kinetic Basis of Macroscopic Chemical Thermodynamics: A Mathematical Theory
Ge, Hao
2016-01-01
From a mathematical model that describes a complex chemical kinetic system of $N$ species and $M$ elementrary reactions in a rapidly stirred vessel of size $V$ as a Markov process, we show that a macroscopic chemical thermodynamics emerges as $V\\rightarrow\\infty$. The theory is applicable to linear and nonlinear reactions, closed systems reaching chemical equilibrium, or open, driven systems approaching to nonequilibrium steady states. A generalized mesoscopic free energy gives rise to a macroscopic chemical energy function $\\varphi^{ss}(\\vx)$ where $\\vx=(x_1,\\cdots,x_N)$ are the concentrations of the $N$ chemical species. The macroscopic chemical dynamics $\\vx(t)$ satisfies two emergent laws: (1) $(\\rd/\\rd t)\\varphi^{ss}[\\vx(t)]\\le 0$, and (2)$(\\rd/\\rd t)\\varphi^{ss}[\\vx(t)]=\\text{cmf}(\\vx)-\\sigma(\\vx)$ where entropy production rate $\\sigma\\ge 0$ represents the sink for the chemical energy, and chemical motive force $\\text{cmf}\\ge 0$ is non-zero if the system is driven under a sustained nonequilibrium chemos...
Noise-driven interfaces and their macroscopic representation
Dentz, Marco; Neuweiler, Insa; Méheust, Yves; Tartakovsky, Daniel M.
2016-11-01
We study the macroscopic representation of noise-driven interfaces in stochastic interface growth models in (1 +1 ) dimensions. The interface is characterized macroscopically by saturation, which represents the fluctuating sharp interface by a smoothly varying phase field with values between 0 and 1. We determine the one-point interface height statistics for the Edwards-Wilkinson (EW) and Kadar-Paris-Zhang (KPZ) models in order to determine explicit deterministic equations for the phase saturation for each of them. While we obtain exact results for the EW model, we develop a Gaussian closure approximation for the KPZ model. We identify an interface compression term, which is related to mass transfer perpendicular to the growth direction, and a diffusion term that tends to increase the interface width. The interface compression rate depends on the mesoscopic mass transfer process along the interface and in this sense provides a relation between meso- and macroscopic interface dynamics. These results shed light on the relation between mesoscale and macroscale interface models, and provide a systematic framework for the upscaling of stochastic interface dynamics.
Jorda, Helena; Perelman, Adi; Lazarovitch, Naftali; Vanderborght, Jan
2017-04-01
and Hoffman (1984) function were highly dependent on both potential transpiration and RLD. Plant salt tolerance was lower under high evaporative demand and lower RLD. In addition, the shape of the stress curve, which is defined by p, was found to be steeper under larger RLD and low transpiration rate. Time-variant macroscopic parameters based on knowledge of current potential transpiration rate per root unit length would be more convenient to accurately predict osmotic stress, and hence root water uptake, during a growing season. In a next step, simulations considering the whole root systems will be conducted to assess how macroscopic parameters are also related to root architectural characteristics. van Genuchten, M.T., Hoffman, G., 1984. Analysis of crop production. Soil Salin. Irrig. Springer Berl. 258-271.
DEFF Research Database (Denmark)
Gómez Arranz, Paula; Wagner, Rozenn
This report describes the power curve measurements performed with a nacelle LIDAR on a given wind turbine in a wind farm and during a chosen measurement period. The measurements and analysis are carried out in accordance to the guidelines in the procedure “DTU Wind Energy-E-0019” [1]. The reporting...
Kool, J.
2013-01-01
This thesis has three main subjects. The first subject is Measure-theoretic rigidity of Mumford Curves. One can describe isomorphism of two compact hyperbolic Riemann surfaces of the same genus by a measure-theoretic property: a chosen isomorphism of their fundamental groups corresponds to a homeomo
DEFF Research Database (Denmark)
Vesth, Allan; Kock, Carsten Weber
The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present anal...
DEFF Research Database (Denmark)
Villanueva, Héctor; Gómez Arranz, Paula
The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...
DEFF Research Database (Denmark)
Gómez Arranz, Paula; Villanueva, Héctor
The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...
Ph.H.B.F. Franses (Philip Hans)
1994-01-01
textabstractIn this paper, a simple Gompertz curve-fitting procedure is proposed. Its advantages include the facts that the stability of the saturation level over the sample period can be checked, and that no knowledge of its value is necessary for forecasting. An application to forecasting the stoc
Gompertz curves with seasonality
Ph.H.B.F. Franses (Philip Hans)
1994-01-01
textabstractThis paper considers an extension of the usual Gompertz curve by allowing the parameters to vary over the seasons. This means that, for example, saturation levels can be different over the year. An estimation and testing method is proposed and illustrated with an example.
DEFF Research Database (Denmark)
Gómez Arranz, Paula; Vesth, Allan
The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...
DEFF Research Database (Denmark)
Vesth, Allan; Yordanova, Ginka
The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...
Lawes, Jonathan F.
2013-01-01
Graphing polar curves typically involves a combination of three traditional techniques, all of which can be time-consuming and tedious. However, an alternative method--graphing the polar function on a rectangular plane--simplifies graphing, increases student understanding of the polar coordinate system, and reinforces graphing techniques learned…
Power Curve Measurements, REWS
DEFF Research Database (Denmark)
Villanueva, Héctor; Gómez Arranz, Paula
This report describes the power curve measurements carried out on a given wind turbine in a chosen period. The measurements were carried out following the measurement procedure in the draft of IEC 61400-12-1 Ed.2 [1], with some deviations mostly regarding uncertainty calculation. Here, the refere...
DEFF Research Database (Denmark)
Federici, Paolo; Kock, Carsten Weber
This report describes the power curve measurements performed with a nacelle LIDAR on a given wind turbine in a wind farm and during a chosen measurement period. The measurements and analysis are carried out in accordance to the guidelines in the procedure “DTU Wind Energy-E-0019” [1]. The reporting...
Straightening Out Learning Curves
Corlett, E. N.; Morecombe, V. J.
1970-01-01
The basic mathematical theory behind learning curves is explained, together with implications for clerical and industrial training, evaluation of skill development, and prediction of future performance. Brief studies of textile worker and typist training are presented to illustrate such concepts as the reduction fraction (a consistent decrease in…
Groot, L.F.M.
The purpose of this paper is twofold. First, it exhibits that standard tools in the measurement of income inequality, such as the Lorenz curve and the Gini-index, can successfully be applied to the issues of inequality measurement of carbon emissions and the equity of abatement policies across
DEFF Research Database (Denmark)
Kock, Carsten Weber; Federici, Paolo
The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine....
DEFF Research Database (Denmark)
Kock, Carsten Weber; Vesth, Allan
The report describes power curve measurements carried out on a given wind turbine. The measurements are carried out in accordance to Ref. [1]. A site calibration has been carried out; see Ref. [2], and the measured flow correction factors for different wind directions are used in the present...... analyze of power performance of the turbine....
Kruyt, N.P.; Rothenburg, L.; Gutkowski, Witold; Kowalewski, Tomasz A.
2004-01-01
Using Discrete Element Method (DEM) simulations with varying interparticle friction coefficient, the relation between interparticle friction coefficient and macroscopic continuum friction and dissipation is investigated. As expected, macroscopic friction and dilatancy increase with interparticle fri
Kobayashi, Tsunehiro
1996-01-01
Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.
Energy Technology Data Exchange (ETDEWEB)
Vijayasri, G., E-mail: vsvijiguna.physics@gmail.com; Bhowmik, R. N. [Department of Physics, Pondicherry University, R..Venkataraman Nagar, Kalapet, Puducherry – 605 014 (India)
2015-06-24
We report the influence of magnetic field on I-V characteristics of α-Fe{sub 1.64}Ga{sub 0.36}O{sub 3} sample. Synchrotron X-ray diffraction pattern and Raman Spectroscopy have confirmed rhombohedral structure with space group R3C in the sample. The sample exhibits ferromagnetic feature at room temperature and non saturation of magnetization up to 7Tesla suggests the effect of non-collinear structure (canting) of the spins on the ferromagnetic properties. We have recorded I-V characteristics of the sample under magnetic field to study the effect of non-collinear spin structure on the electrical properties. Space charge limited current mechanism controlled the nature of non-linear I-V curves and the curves are significantly affected by magnetic field.
Energy Technology Data Exchange (ETDEWEB)
Groot, L. [Utrecht University, Utrecht School of Economics, Janskerkhof 12, 3512 BL Utrecht (Netherlands)
2008-11-15
The purpose of this paper is twofold. First, it exhibits that standard tools in the measurement of income inequality, such as the Lorenz curve and the Gini-index, can successfully be applied to the issues of inequality measurement of carbon emissions and the equity of abatement policies across countries. These tools allow policy-makers and the general public to grasp at a single glance the impact of conventional distribution rules such as equal caps or grandfathering, or more sophisticated ones, on the distribution of greenhouse gas emissions. Second, using the Samuelson rule for the optimal provision of a public good, the Pareto-optimal distribution of carbon emissions is compared with the distribution that follows if countries follow Nash-Cournot abatement strategies. It is shown that the Pareto-optimal distribution under the Samuelson rule can be approximated by the equal cap division, represented by the diagonal in the Lorenz curve diagram.
Directory of Open Access Journals (Sweden)
Iram Ansari
2012-01-01
Full Text Available Dilaceration is the result of a developmental anomaly in which there has been an abrupt change in the axial inclination between the crown and the root of a tooth. Dilaceration can be seen in both the permanent and deciduous dentitions, and is more commonly found in posterior teeth and in maxilla. Periapical radiographs are the most appropriate way to diagnose the presence of root dilacerations. The controlled regularly tapered preparation of the curved canals is the ultimate challenge in endodontics. Careful and meticulous technique will yield a safe and sufficient enlargement of the curved canals. This article gives a review of the literature and three interesting case reports of root dilacerations.
Vo, Martin
2017-08-01
Light Curves Classifier uses data mining and machine learning to obtain and classify desired objects. This task can be accomplished by attributes of light curves or any time series, including shapes, histograms, or variograms, or by other available information about the inspected objects, such as color indices, temperatures, and abundances. After specifying features which describe the objects to be searched, the software trains on a given training sample, and can then be used for unsupervised clustering for visualizing the natural separation of the sample. The package can be also used for automatic tuning parameters of used methods (for example, number of hidden neurons or binning ratio). Trained classifiers can be used for filtering outputs from astronomical databases or data stored locally. The Light Curve Classifier can also be used for simple downloading of light curves and all available information of queried stars. It natively can connect to OgleII, OgleIII, ASAS, CoRoT, Kepler, Catalina and MACHO, and new connectors or descriptors can be implemented. In addition to direct usage of the package and command line UI, the program can be used through a web interface. Users can create jobs for ”training” methods on given objects, querying databases and filtering outputs by trained filters. Preimplemented descriptors, classifier and connectors can be picked by simple clicks and their parameters can be tuned by giving ranges of these values. All combinations are then calculated and the best one is used for creating the filter. Natural separation of the data can be visualized by unsupervised clustering.
Pelce, Pierre
1989-01-01
In recent years, much progress has been made in the understanding of interface dynamics of various systems: hydrodynamics, crystal growth, chemical reactions, and combustion. Dynamics of Curved Fronts is an important contribution to this field and will be an indispensable reference work for researchers and graduate students in physics, applied mathematics, and chemical engineering. The book consist of a 100 page introduction by the editor and 33 seminal articles from various disciplines.
Estimating Corporate Yield Curves
Antionio Diaz; Frank Skinner
2001-01-01
This paper represents the first study of retail deposit spreads of UK financial institutions using stochastic interest rate modelling and the market comparable approach. By replicating quoted fixed deposit rates using the Black Derman and Toy (1990) stochastic interest rate model, we find that the spread between fixed and variable rates of interest can be modeled (and priced) using an interest rate swap analogy. We also find that we can estimate an individual bank deposit yield curve as a spr...
Steenwyk, Steven D; Molnar, Lawrence A
2013-01-01
We have identified some two-hundred new variable stars in a systematic study of a data archive obtained with the Calvin-Rehoboth observatory. Of these, we present five close binaries showing behaviors presumably due to star spots or other magnetic activity. For context, we first present two new RS CVn systems whose behavior can be readily attribute to star spots. Then we present three new close binary systems that are rather atypical, with light curves that are changing over time in ways not easily understood in terms of star spot activity generally associated with magnetically active binary systems called RS CVn systems. Two of these three are contact binaries that exhibit gradual changes in average brightness without noticeable changes in light curve shape. A third system has shown such large changes in light curve morphology that we speculate this may be a rare instance of a system that transitions back and forth between contact and noncontact configurations, perhaps driven by magnetic cycles in at least o...
Self-Feeding Turbulent Magnetic Reconnection on Macroscopic Scales
Lapenta, Giovanni
2008-01-01
Within a MHD approach we find magnetic reconnection to progress in two entirely different ways. The first is well-known: the laminar Sweet-Parker process. But a second, completely different and chaotic reconnection process is possible. This regime has properties of immediate practical relevance: i) it is much faster, developing on scales of the order of the Alfv\\'en time, and ii) the areas of reconnection become distributed chaotically over a macroscopic region. The onset of the faster process is the formation of closed circulation patterns where the jets going out of the reconnection regions turn around and forces their way back in, carrying along copious amounts of magnetic flux.
Single-atom quantum control of macroscopic mechanical oscillators
Bariani, F.; Otterbach, J.; Tan, Huatang; Meystre, P.
2014-01-01
We investigate a hybrid electromechanical system consisting of a pair of charged macroscopic mechanical oscillators coupled to a small ensemble of Rydberg atoms. The resonant dipole-dipole coupling between an internal atomic Rydberg transition and the mechanics allows cooling to its motional ground state with a single atom despite the considerable mass imbalance between the two subsystems. We show that the rich electronic spectrum of Rydberg atoms, combined with their high degree of optical control, paves the way towards implementing various quantum-control protocols for the mechanical oscillators.
The Two-Time Interpretation and Macroscopic Time-Reversibility
Directory of Open Access Journals (Sweden)
Yakir Aharonov
2017-03-01
Full Text Available The two-state vector formalism motivates a time-symmetric interpretation of quantum mechanics that entails a resolution of the measurement problem. We revisit a post-selection-assisted collapse model previously suggested by us, claiming that unlike the thermodynamic arrow of time, it can lead to reversible dynamics at the macroscopic level. In addition, the proposed scheme enables us to characterize the classical-quantum boundary. We discuss the limitations of this approach and its broad implications for other areas of physics.
Emergence of an urban traffic macroscopic fundamental diagram
DEFF Research Database (Denmark)
Ranjan, Abhishek; Fosgerau, Mogens; Jenelius, Erik
2016-01-01
This paper examines mild conditions under which a macroscopic fundamental diagram (MFD) emerges, relating space-averaged speed to occupancy in some area. These conditions are validated against empirical data. We allow local speedoccupancy relationships and, in particular, require no equilibrating...... process to be in operation. This means that merely observing the stable relationship between the space-averages of speed, flow and occupancy are not sufficient to infer a robust relationship and the emerging MFD cannot be guaranteed to be stable if traffic interventions are implemented....
Violation of smooth observable macroscopic realism in a harmonic oscillator.
Leshem, Amir; Gat, Omri
2009-08-14
We study the emergence of macrorealism in a harmonic oscillator subject to consecutive measurements of a squeezed action. We demonstrate a breakdown of dynamical realism in a wide parameter range that is maximized in a scaling limit of extreme squeezing, where it is based on measurements of smooth observables, implying that macroscopic realism is not valid in the harmonic oscillator. We propose an indirect experimental test of these predictions with entangled photons by demonstrating that local realism in a composite system implies dynamical realism in a subsystem.
Seismic scanning tunneling macroscope - Elastic simulations and Arizona mine test
Hanafy, Sherif M.
2012-01-01
Elastic seismic simulations and field data tests are used to validate the theory of a seismic scanning tunneling macroscope (SSTM). For nearfield elastic simulation, the SSTM results show superresolution to be better than λ/8 if the only scattered data are used as input data. If the direct P and S waves are muted then the resolution of the scatterer locations are within about λ/5. Seismic data collected in an Arizona tunnel showed a superresolution limit of at least λ/19. These test results are consistent with the theory of the SSTM and suggest that the SSTM can be a tool used by geophysicists as a probe for near-field scatterers.
Macroscopic description of teeth of Azara's agouti (Dasyprocta azarae
Directory of Open Access Journals (Sweden)
Fabrício S. Oliveira
2012-01-01
Full Text Available The teeth of Azara's agouti (Dasyprocta azarae were described macroscopically in order to provide biological data on one of the largest wild rodents of the Americas. Radiography was taken on six heads and the teeth were described. Enamel surrounds the coronal dentin, projects to the roots and is present as parallel inner laminae in buccolingual direction. The dentin is located among the enamel laminae and surrounds the pulp horns. The cementum is located internally to the enamel laminae. On the lingual surface, the cementum and dentin are the outer elements.
Macroscopic and microscopic self-organization by nonlocal anisotropic interactions
Cristiani, Emiliano; Tosin, Andrea
2009-01-01
This paper is concerned with mathematical modeling of intelligent systems, such as human crowds and animal groups. In particular, the focus is on the emergence of different self-organized patterns from non-locality and anisotropy of the interactions among individuals. A mathematical technique by time-evolving measures is introduced to deal with both macroscopic and microscopic scales within a unified modeling framework. Then self-organization issues are investigated and numerically reproduced at the proper scale, according to the kind of agents under consideration.
An investigation into why macroscopic systems behave classically
Hallwood, David W.; Burnett, Keith; Dunningham, Jacob
2006-01-01
We study why it is quite so hard to make a superposition of superfluid flows in a Bose-Einstein condensate. To do this we initially investigate the quantum states of $N$ atoms trapped in a 1D ring with a barrier at one position and a phase applied around it. We show how macroscopic superpositions can in principle be produced and investigate factors which affect the superposition. We then use the Bose-Hubbard model to study an array of Bose-Einstein condensates trapped in optical potentials an...
Measurement-induced macroscopic superposition states in cavity optomechanics
Hoff, Ulrich B; Neergaard-Nielsen, Jonas S; Andersen, Ulrik L
2016-01-01
We present a novel proposal for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator, compatible with existing optomechanical devices operating in the readily achievable bad-cavity limit. The scheme is based on a pulsed cavity optomechanical quantum non-demolition (QND) interaction, driven by displaced non-Gaussian states, and measurement-induced feedback, avoiding the need for strong single-photon optomechanical coupling. Furthermore, we show that single-quadrature cooling of the mechanical oscillator is sufficient for efficient state preparation, and we outline a three-pulse protocol comprising a sequence of QND interactions for squeezing-enhanced cooling, state preparation, and tomography.
Flagella bending affects macroscopic properties of bacterial suspensions
Energy Technology Data Exchange (ETDEWEB)
Potomkin, M.; Tournus, M.; Berlyand, L. V.; Aranson, I. S.
2017-05-01
To survive in harsh conditions, motile bacteria swim in complex environments and respond to the surrounding flow. Here, we develop a mathematical model describing how flagella bending affects macroscopic properties of bacterial suspensions. First, we show how the flagella bending contributes to the decrease in the effective viscosity observed in dilute suspension. Our results do not impose tumbling (random reorientation) as was previously done to explain the viscosity reduction. Second, we demonstrate how a bacterium escapes from wall entrapment due to the self-induced buckling of flagella. Our results shed light on the role of flexible bacterial flagella in interactions of bacteria with shear flow and walls or obstacles.
Modelling and simulations of macroscopic multi-group pedestrian flow
Mahato, Naveen K; Tiwari, Sudarshan
2016-01-01
We consider a multi-group microscopic model for pedestrian flow describing the behaviour of large groups. It is based on an interacting particle system coupled to an eikonal equation. Hydrodynamic multi-group models are derived from the underlying particle system as well as scalar multi-group models. The eikonal equation is used to compute optimal paths for the pedestrians. Particle methods are used to solve the macroscopic equations. Numerical test cases are investigated and the models and, in particular, the resulting evacuation times are compared for a wide range of different parameters.
Macroscopic modeling for traffic flow on three-lane highways
Chen, Jianzhong; Fang, Yuan
2015-04-01
In this paper, a macroscopic traffic flow model for three-lane highways is proposed. The model is an extension of the speed gradient model by taking into account the lane changing. The new source and sink terms of lane change rate are added into the continuity equations and the speed dynamic equations to describe the lane-changing behavior. The result of the steady state analysis shows that our model can describe the lane usage inversion phenomenon. The numerical results demonstrate that the present model effectively reproduces several traffic phenomena observed in real traffic such as shock and rarefaction waves, stop-and-go waves and local clusters.
Curved PVDF airborne transducer.
Wang, H; Toda, M
1999-01-01
In the application of airborne ultrasonic ranging measurement, a partially cylindrical (curved) PVDF transducer can effectively couple ultrasound into the air and generate strong sound pressure. Because of its geometrical features, the ultrasound beam angles of a curved PVDF transducer can be unsymmetrical (i.e., broad horizontally and narrow vertically). This feature is desired in some applications. In this work, a curved PVDF air transducer is investigated both theoretically and experimentally. Two resonances were observed in this transducer. They are length extensional mode and flexural bending mode. Surface vibration profiles of these two modes were measured by a laser vibrometer. It was found from the experiment that the surface vibration was not uniform along the curvature direction for both vibration modes. Theoretical calculations based on a model developed in this work confirmed the experimental results. Two displacement peaks were found in the piezoelectric active direction of PVDF film for the length extensional mode; three peaks were found for the flexural bending mode. The observed peak positions were in good agreement with the calculation results. Transient surface displacement measurements revealed that vibration peaks were in phase for the length extensional mode and out of phase for the flexural bending mode. Therefore, the length extensional mode can generate a stronger ultrasound wave than the flexural bending mode. The resonance frequencies and vibration amplitudes of the two modes strongly depend on the structure parameters as well as the material properties. For the transducer design, the theoretical model developed in this work can be used to optimize the ultrasound performance.
Magnetism in curved geometries
Streubel, Robert; Fischer, Peter; Kronast, Florian; Kravchuk, Volodymyr P.; Sheka, Denis D.; Gaididei, Yuri; Schmidt, Oliver G.; Makarov, Denys
2016-09-01
Extending planar two-dimensional structures into the three-dimensional space has become a general trend in multiple disciplines, including electronics, photonics, plasmonics and magnetics. This approach provides means to modify conventional or to launch novel functionalities by tailoring the geometry of an object, e.g. its local curvature. In a generic electronic system, curvature results in the appearance of scalar and vector geometric potentials inducing anisotropic and chiral effects. In the specific case of magnetism, even in the simplest case of a curved anisotropic Heisenberg magnet, the curvilinear geometry manifests two exchange-driven interactions, namely effective anisotropy and antisymmetric exchange, i.e. Dzyaloshinskii-Moriya-like interaction. As a consequence, a family of novel curvature-driven effects emerges, which includes magnetochiral effects and topologically induced magnetization patterning, resulting in theoretically predicted unlimited domain wall velocities, chirality symmetry breaking and Cherenkov-like effects for magnons. The broad range of altered physical properties makes these curved architectures appealing in view of fundamental research on e.g. skyrmionic systems, magnonic crystals or exotic spin configurations. In addition to these rich physics, the application potential of three-dimensionally shaped objects is currently being explored as magnetic field sensorics for magnetofluidic applications, spin-wave filters, advanced magneto-encephalography devices for diagnosis of epilepsy or for energy-efficient racetrack memory devices. These recent developments ranging from theoretical predictions over fabrication of three-dimensionally curved magnetic thin films, hollow cylinders or wires, to their characterization using integral means as well as the development of advanced tomography approaches are in the focus of this review.
Energy Technology Data Exchange (ETDEWEB)
Cano-Andrade, S.; Hernandez-Guerrero, A.; Damian-Ascencio, C.E.; Rubio-Arana, J.C. [Department of Mechanical Engineering, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago 3.5 + 1.8 km, Comunidad de Palo Blanco, Salamanca, Gto. (Mexico); von Spakovsky, M.R. [Center for Energy Systems Research, Mechanical Engineering Department, Virginia Tech, Blacksburg, VA 24061 (United States)
2010-02-15
A numerical solution of the current density and velocity fields of a 3-D PEM radial configuration fuel cell is presented. The energy, momentum and electrochemical equations are solved using a computational fluid dynamics (CFD) code based on a finite volume scheme. There are three cases of principal interest for this radial model: four channels, eight channels and twelve channels placed in a symmetrical path over the flow field plate. The figures for the current-voltage curves for the three models proposed are presented, and the main factors that affect the behavior of each of the curves are discussed. Velocity contours are presented for the three different models, showing how the fuel cell behavior is affected by the velocity variations in the radial configuration. All these results are presented for the case of high relative humidity. The favorable results obtained for this unconventional geometry seems to indicate that this geometry could replace the conventional commercial geometries currently in use. (author)
Macroscopic Quantum Phenomena from the Correlation, Coupling and Criticality Perspectives
Chou, C H; Subasi, Y
2011-01-01
In this sequel paper we explore how macroscopic quantum phenomena can be measured or understood from the behavior of quantum correlations which exist in a quantum system of many particles or components and how the interaction strengths change with energy or scale, under ordinary situations and when the system is near its critical point. We use the nPI (master) effective action related to the Boltzmann-BBGKY / Schwinger-Dyson hierarchy of equations as a tool for systemizing the contributions of higher order correlation functions to the dynamics of lower order correlation functions. Together with the large N expansion discussed in our first paper(MQP1) we explore 1) the conditions whereby an H-theorem is obtained, which can be viewed as a signifier of the emergence of macroscopic behavior in the system. We give two more examples from past work: 2) the nonequilibrium dynamics of N atoms in an optical lattice under the large $\\cal N$ (field components), 2PI and second order perturbative expansions, illustrating h...
Macroscopic superposition states and decoherence by quantum telegraph noise
Energy Technology Data Exchange (ETDEWEB)
Abel, Benjamin Simon
2008-12-19
In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)
Tribological behaviour of graphite powders at nano- and macroscopic scales
Schmitt, M.; Bistac, S.; Jradi, K.
2007-04-01
With its high resistance, good hardness and electrical conductibility in the basal plans, graphite is used for many years in various tribological fields such as seals, bearings or electrical motor brushes, and also for applications needing excellent lubrication and wearreducing properties. But thanks to its low density, graphite is at the moment destined for technologies which need a reducing of the weight combined with an enhancement of the efficiency, as it is the case in aeronautical industry. In this contexte, the friction and wear of natural (named graphite A) and synthetic (called graphites B and C) powders were evaluated, first at the macroscopic scale when sliding against steel counterfaces, under various applied normal loads. Scanning Electron Microscopy and AFM in tapping mode were used to observe the morphological modifications of the graphites. It is noticed that an enlargement of the applied normal load leads to an increase of the friction coefficient for graphites A and C; but for the graphite B, it seems that a ''limit'' load can induce a complete change of the tribological behaviour. At the same time, the nano-friction properties of these powders were evaluated by AFM measurements in contact mode, at different contact loads. As it was the case at the macroscopic scale, an increase of the nano-contact load induces higher friction coefficients. The determining of the friction and wear mechanisms of the graphite powders, as a function of both their intrinsic characteristics and the applied normal load, is then possible.
How does Planck’s constant influence the macroscopic world?
Yang, Pao-Keng
2016-09-01
In physics, Planck’s constant is a fundamental physical constant accounting for the energy-quantization phenomenon in the microscopic world. The value of Planck’s constant also determines in which length scale the quantum phenomenon will become conspicuous. Some students think that if Planck’s constant were to have a larger value than it has now, the quantum effect would only become observable in a world with a larger size, whereas the macroscopic world might remain almost unchanged. After reasoning from some basic physical principles and theories, we found that doubling Planck’s constant might result in a radical change on the geometric sizes and apparent colors of macroscopic objects, the solar spectrum and luminosity, the climate and gravity on Earth, as well as energy conversion between light and materials such as the efficiency of solar cells and light-emitting diodes. From the discussions in this paper, students can appreciate how Planck’s constant affects various aspects of the world in which we are living now.
Macroscopic Biological Characteristics of Individualized Therapy in Chinese Mongolian Osteopathy
Namula, Zhao; Mei, Wang; Li, Xue-en
Objective: Chinese Mongolian osteopathy has been passed down from ancient times and includes unique practices and favorable efficacy. In this study, we investigate the macroscopic biological characteristics of individualized Chinese Mongolian osteopathy, in order to provide new principle and methods for the treatment of bone fracture. Method: With a view to provide a vital link between nature and humans, the four stages of Chinese Mongolian osteopathy focus on the unity of the mind and body, the limbs and body organs, the body and its functions, and humans and nature. Results: We discuss the merits of individualized osteopathy in terms of the underlying concepts, and evaluate the approaches and principles of traditional medicine, as well as biomechanics. Conclusions: Individualized Mongolian osteopathy targets macroscopic biological components including dynamic reduction, natural fixation, and functional healing. Chinese Mongolian osteopathy is a natural, ecological and non-invasive osteopathy that values the link between nature and humans, including the unity of mind and body. The biological components not only serve as a foundation for Chinese Mongolian osteopathy but are also important for the future development of modern osteopathy, focusing on individualization, actualization and integration.
Motion of macroscopic bodies in the electromagnetic field
Horsley, S A R
2013-01-01
A theory is presented for calculating the effect of the electromagnetic field on the centre of mass of a macroscopic dielectric body that is valid in both quantum and classical regimes. We apply the theory to find the classical equation of motion for the centre of mass of a macroscopic object in a classical field, and the spreading of an initially localized wave-packet representing the centre of mass of a small object, in a quantum field. The classical force is found to be consistent with the identification of the Abraham momentum with the mechanical momentum of light, and the motion of the wave-packet is found to be subject to an acceleration due to the Casimir force, and a time dependent fluctuating motion due the creation of pairs of excitations within the object. The theory is valid for any dielectric that has susceptibilities satisfying the Kramers-Kronig relations, and is not subject to arguments regarding the form of the electromagnetic energy-momentum tensor within a medium.
Parametric equations for calculation of macroscopic cross sections
Energy Technology Data Exchange (ETDEWEB)
Botelho, Mario Hugo; Carvalho, Fernando, E-mail: mariobotelho@poli.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear
2015-07-01
Neutronic calculations of the core of a nuclear reactor is one thing necessary and important for the design and management of a nuclear reactor in order to prevent accidents and control the reactor efficiently as possible. To perform these calculations a library of nuclear data, including cross sections is required. Currently, to obtain a cross section computer codes are used, which require a large amount of processing time and computer memory. This paper proposes the calculation of macroscopic cross section through the development of parametric equations. The paper illustrates the proposal for the case of macroscopic cross sections of absorption (Σa), which was chosen due to its greater complexity among other cross sections. Parametric equations created enable, quick and dynamic way, the determination of absorption cross sections, enabling the use of them in calculations of reactors. The results show efficient when compared with the absorption cross sections obtained by the ALPHA 8.8.1 code. The differences between the cross sections are less than 2% for group 2 and less than 0.60% for group 1. (author)
An exploration for the macroscopic physical meaning of entropy
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The macroscopic physical meaning of entropy is analyzed based on the exergy (availability) of a combined system (a closed system and its environment), which is the maximum amount of useful work obtainable from the system and the environment as the system is brought into equilibrium with the environment. The process the system experiences can be divided in two sequent sub-processes, the process at constant volume, which represents the heat interaction of the system with the environment, and the adiabatic process, which represents the work interaction of the system with the environment. It is shown that the macroscopic physical meaning of entropy is a measure of the unavailable energy of a closed system for doing useful work through heat interaction. This statement is more precise than those reported in prior literature. The unavailability function of a closed system can be defined as T0S and p0V in volume constant process and adiabatic process, respectively. Their changes, that is, AiTgS) and A (p0V) represent the unusable parts of the internal energy of a closed system for doing useful work in corresponding processes. Finally, the relation between Clausius entropy and Boltzmann entropy is discussed based on the comparison of their expressions for absolute entropy.
Macroscopic model and truncation error of discrete Boltzmann method
Hwang, Yao-Hsin
2016-10-01
A derivation procedure to secure the macroscopically equivalent equation and its truncation error for discrete Boltzmann method is proffered in this paper. Essential presumptions of two time scales and a small parameter in the Chapman-Enskog expansion are disposed of in the present formulation. Equilibrium particle distribution function instead of its original non-equilibrium form is chosen as key variable in the derivation route. Taylor series expansion encompassing fundamental algebraic manipulations is adequate to realize the macroscopically differential counterpart. A self-contained and comprehensive practice for the linear one-dimensional convection-diffusion equation is illustrated in details. Numerical validations on the incurred truncation error in one- and two-dimensional cases with various distribution functions are conducted to verify present formulation. As shown in the computational results, excellent agreement between numerical result and theoretical prediction are found in the test problems. Straightforward extensions to more complicated systems including convection-diffusion-reaction, multi-relaxation times in collision operator as well as multi-dimensional Navier-Stokes equations are also exposed in the Appendix to point out its expediency in solving complicated flow problems.
Inverted rank distributions: Macroscopic statistics, universality classes, and critical exponents
Eliazar, Iddo; Cohen, Morrel H.
2014-01-01
An inverted rank distribution is an infinite sequence of positive sizes ordered in a monotone increasing fashion. Interlacing together Lorenzian and oligarchic asymptotic analyses, we establish a macroscopic classification of inverted rank distributions into five “socioeconomic” universality classes: communism, socialism, criticality, feudalism, and absolute monarchy. We further establish that: (i) communism and socialism are analogous to a “disordered phase”, feudalism and absolute monarchy are analogous to an “ordered phase”, and criticality is the “phase transition” between order and disorder; (ii) the universality classes are characterized by two critical exponents, one governing the ordered phase, and the other governing the disordered phase; (iii) communism, criticality, and absolute monarchy are characterized by sharp exponent values, and are inherently deterministic; (iv) socialism is characterized by a continuous exponent range, is inherently stochastic, and is universally governed by continuous power-law statistics; (v) feudalism is characterized by a continuous exponent range, is inherently stochastic, and is universally governed by discrete exponential statistics. The results presented in this paper yield a universal macroscopic socioeconophysical perspective of inverted rank distributions.
Macroscopic Behavior of Nematics with D2d Symmetry
Pleiner, Harald; Brand, Helmut R.
2010-03-01
We discuss the symmetry properties and the macroscopic behavior of a nematic liquid crystal phase with D2d symmetry. Such a phase is a prime candidate for nematic phases made from banana-shaped molecules where the usual quadrupolar order coexists with octupolar (tetrahedratic) order. The resulting nematic phase is non-polar. While this phase could resemble the classic D∞h nematic in the polarizing microscope, it has many static as well as reversible and irreversible properties unknown to non-polar nematics without octupolar order. In particular, there is a linear gradient term in the free energy that selects parity leading to ambidextrously helical ground states when the molecules are achiral. In addition, there are static and irreversible coupling terms of a type only met otherwise in macroscopically chiral liquid crystals, e.g. the ambidextrous analogues of Lehmann-type effects known from cholesteric liquid crystals. Finally, we discuss certain nonlinear aspects of the dynamics related to the non-commutativity of three-dimensional finite rotations as well as other structural nonlinear hydrodynamic effects.
Application of advanced master curve approaches on WWER-440 reactor pressure vessel steels
Energy Technology Data Exchange (ETDEWEB)
Viehrig, Hans-Werner [Forschungszentrum Rossendorf e.V. (Germany)]. E-mail: h.w.viehrig@fz-rossendorf.de; Scibetta, Marc [SCK-CEN, Reactor Materials Research (Belgium); Wallin, Kim [VTT Industrial Systems, Materials and Structural Integrity (Finland)
2006-08-15
The master curve (MC) approach used to measure the transition temperature, T , was standarised in the ASTM Standard Test Method E 1921 in 1997. The basic MC approach for analysis of fracture test results is intended for macroscopically homogeneous steels with a body centred cubic (ferritic) structure only. In reality, due to the manufacturing process, the steels in question are seldom fully macroscopically homogeneous. The fracture toughness values measured on Charpy size SE(B) specimens of base metal from the Greifswald Unit 8 rector pressure vessel (RPV) show large scatter. The basic MC evaluation following ASTM E1921 supplies a MC with many fracture toughness values which lie below the 5% fracture probability line. It is therefore suspected that this material is macroscopically inhomogeneous. In this paper, two recent extensions of the MC for inhomogeneous materials are applied to these fracture toughness data.
Superfluids in Curved Spacetime
Villegas, Kristian Hauser A
2015-01-01
Superfluids under an intense gravitational field are typically found in neutron star and quark star cores. Most treatments of these superfluids, however, are done in a flat spacetime background. In this paper, the effect of spacetime curvature on superfluidity is investigated. An effective four-fermion interaction is derived by integrating out the mediating scalar field. The fermions interacting via the mediating gauge vector bosons is also discussed. Two possible cases are considered in the mean-field treatment: antifermion-fermion and fermion-fermion pairings. An effective action, quadratic in fermion field, and a self-consistent equation are derived for both cases. The effective Euclidean action and the matrix elements of the heat kernel operator, which are very useful in curved-spacetime QFT calculations, are derived for the fermion-fermion pairing. Finally, explicit numerical calculation of the gravitational correction to the pairing order parameter is performed for the scalar superfluid case. It is foun...
Yaman, K; Solis, F J; Witten, T A
1996-01-01
We apply results derived in other contexts for the spectrum of the Laplace operator in curved geometries to the study of an ideal polymer chain confined to a spherical annulus in arbitrary space dimension D and conclude that the free energy compared to its value for an uncurved box of the same thickness and volume, is lower when $D < 3$, stays the same when $D = 3$, and is higher when lowers the effective bending elasticity of the walls, and might induce spontaneous symmetry breaking, i.e. bending. (Actually, the above mentioned results show that {\\em {any}} shell in $D = 3$ induces this effect, except for a spherical shell). We compute the contribution of this effect to the bending rigidities in the Helfrich free energy expression.
Evolutes of Hyperbolic Plane Curves
Institute of Scientific and Technical Information of China (English)
Shyuichi IZUMIYA; Dong He PEI; Takashi SANO; Erika TORII
2004-01-01
We define the notion of evolutes of curves in a hyperbolic plane and establish the relationships between singularities of these subjects and geometric invariants of curves under the action of the Lorentz group. We also describe how we can draw the picture of an evolute of a hyperbolic plane curve in the Poincar(e) disk.
The Arithmetic of Elliptic Curves
Silverman, Joseph H
2009-01-01
Treats the arithmetic theory of elliptic curves in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. This book discusses the necessary algebro-geometric results, and offers an exposition of the geometry of elliptic curves, and the formal group of an elliptic curve.
Directory of Open Access Journals (Sweden)
Je Hyun Baekt
2000-01-01
Full Text Available A numerical study is conducted on the fully-developed laminar flow of an incompressible viscous fluid in a square duct rotating about a perpendicular axis to the axial direction of the duct. At the straight duct, the rotation produces vortices due to the Coriolis force. Generally two vortex cells are formed and the axial velocity distribution is distorted by the effect of this Coriolis force. When a convective force is weak, two counter-rotating vortices are shown with a quasi-parabolic axial velocity profile for weak rotation rates. As the rotation rate increases, the axial velocity on the vertical centreline of the duct begins to flatten and the location of vorticity center is moved near to wall by the effect of the Coriolis force. When the convective inertia force is strong, a double-vortex secondary flow appears in the transverse planes of the duct for weak rotation rates but as the speed of rotation increases the secondary flow is shown to split into an asymmetric configuration of four counter-rotating vortices. If the rotation rates are increased further, the secondary flow restabilizes to a slightly asymmetric double-vortex configuration. Also, a numerical study is conducted on the laminar flow of an incompressible viscous fluid in a 90°-bend square duct that rotates about axis parallel to the axial direction of the inlet. At a 90°-bend square duct, the feature of flow by the effect of a Coriolis force and a centrifugal force, namely a secondary flow by the centrifugal force in the curved region and the Coriolis force in the downstream region, is shown since the centrifugal force in curved region and the Coriolis force in downstream region are dominant respectively.
Symmetry properties of macroscopic transport coefficients in porous media
Lasseux, D.; Valdés-Parada, F. J.
2017-04-01
We report on symmetry properties of tensorial effective transport coefficients characteristic of many transport phenomena in porous systems at the macroscopic scale. The effective coefficients in the macroscopic models (derived by upscaling (volume averaging) the governing equations at the underlying scale) are obtained from the solution of closure problems that allow passing the information from the lower to the upper scale. The symmetry properties of the macroscopic coefficients are identified from a formal analysis of the closure problems and this is illustrated for several different physical mechanisms, namely, one-phase flow in homogeneous porous media involving inertial effects, slip flow in the creeping regime, momentum transport in a fracture relying on the Reynolds model including slip effects, single-phase flow in heterogeneous porous media embedding a porous matrix and a clear fluid region, two-phase momentum transport in homogeneous porous media, as well as dispersive heat and mass transport. The results from the analysis of these study cases are summarized as follows. For inertial single-phase flow, the apparent permeability tensor is irreducibly decomposed into its symmetric (viscous) and skew-symmetric (inertial) parts; for creeping slip-flow, the apparent permeability tensor is not symmetric; for one-phase slightly compressible gas flow in the slip regime within a fracture, the effective transmissivity tensor is symmetric, a result that remains valid in the absence of slip; for creeping one-phase flow in heterogeneous media, the permeability tensor is symmetric; for two-phase flow, we found the dominant permeability tensors to be symmetric, whereas the coupling tensors do not exhibit any special symmetry property; finally for dispersive heat transfer, the thermal conductivity tensors include a symmetric and a skew-symmetric part, the latter being a consequence of convective transport only. A similar result is achieved for mass dispersion. Beyond the
Distinct molecular features of different macroscopic subtypes of colorectal neoplasms.
Directory of Open Access Journals (Sweden)
Kenichi Konda
Full Text Available BACKGROUND: Colorectal adenoma develops into cancer with the accumulation of genetic and epigenetic changes. We studied the underlying molecular and clinicopathological features to better understand the heterogeneity of colorectal neoplasms (CRNs. METHODS: We evaluated both genetic (mutations of KRAS, BRAF, TP53, and PIK3CA, and microsatellite instability [MSI] and epigenetic (methylation status of nine genes or sequences, including the CpG island methylator phenotype [CIMP] markers alterations in 158 CRNs including 56 polypoid neoplasms (PNs, 25 granular type laterally spreading tumors (LST-Gs, 48 non-granular type LSTs (LST-NGs, 19 depressed neoplasms (DNs and 10 small flat-elevated neoplasms (S-FNs on the basis of macroscopic appearance. RESULTS: S-FNs showed few molecular changes except SFRP1 methylation. Significant differences in the frequency of KRAS mutations were observed among subtypes (68% for LST-Gs, 36% for PNs, 16% for DNs and 6% for LST-NGs (P<0.001. By contrast, the frequency of TP53 mutation was higher in DNs than PNs or LST-Gs (32% vs. 5% or 0%, respectively (P<0.007. We also observed significant differences in the frequency of CIMP between LST-Gs and LST-NGs or PNs (32% vs. 6% or 5%, respectively (P<0.005. Moreover, the methylation level of LINE-1 was significantly lower in DNs or LST-Gs than in PNs (58.3% or 60.5% vs. 63.2%, P<0.05. PIK3CA mutations were detected only in LSTs. Finally, multivariate analyses showed that macroscopic morphologies were significantly associated with an increased risk of molecular changes (PN or LST-G for KRAS mutation, odds ratio [OR] 9.11; LST-NG or DN for TP53 mutation, OR 5.30; LST-G for PIK3CA mutation, OR 26.53; LST-G or DN for LINE-1 hypomethylation, OR 3.41. CONCLUSION: We demonstrated that CRNs could be classified into five macroscopic subtypes according to clinicopathological and molecular differences, suggesting that different mechanisms are involved in the pathogenesis of colorectal
Macroscopic Modeling of Transport Phenomena in Direct Methanol Fuel Cells
DEFF Research Database (Denmark)
Olesen, Anders Christian
An increasing need for energy efficiency and high energy density has sparked a growing interest in direct methanol fuel cells for portable power applications. This type of fuel cell directly generates electricity from a fuel mixture consisting of methanol and water. Although this technology...... for studying their transport. In this PhD dissertation the macroscopic transport phenomena governing direct methanol fuel cell operation are analyzed, discussed and modeled using the two-fluid approach in the computational fluid dynamics framework of CFX 14. The overall objective of this work is to extend...... the present fundamental understanding of direct methanol fuel cell operation by developing a three-dimensional, two-phase, multi-component, non-isotherm mathematical model including detailed non-ideal thermodynamics, non-equilibrium phase change and non-equilibrium sorption-desorption of methanol and water...
Macroscopic quantum electrodynamics of high-Q cavities
Energy Technology Data Exchange (ETDEWEB)
Khanbekyan, Mikayel
2009-10-27
In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the
Self-feeding turbulent magnetic reconnection on macroscopic scales.
Lapenta, Giovanni
2008-06-13
Within a MHD approach we find magnetic reconnection to progress in two entirely different ways. The first is well known: the laminar Sweet-Parker process. But a second, completely different and chaotic reconnection process is possible. This regime has properties of immediate practical relevance: (i) it is much faster, developing on scales of the order of the Alfvén time, and (ii) the areas of reconnection become distributed chaotically over a macroscopic region. The onset of the faster process is the formation of closed-circulation patterns where the jets going out of the reconnection regions turn around and force their way back in, carrying along copious amounts of magnetic flux.
Room Temperature Experiments with a Macroscopic Sapphire Mechanical Oscillator
Bourhill, Jeremy; Ivanov, Eugene; Tobar, Micahel
2015-03-01
We present initial results from a number of experiments conducted on a 0.53 kg sapphire ``dumbbell'' crystal. Mechanical motion of the crystal structure alters the dimensions of the crystal, and the induced strain changes the permittivity. These two effects frequency modulate resonant microwave whispering gallery modes, simultaneously excited within the crystal. A novel microwave readout system is described allowing extremely low noise measurements of this frequency modulation with a phase noise floor of -160 dBc/Hz at 100 kHz, near our modes of interest. Fine-tuning of the crystal's suspension have allowed for the optimisation of mechanical Q-factors in preparation for cryogenic experiments, with a value of 8 x 107 achieved so far. Finally, results are presented that demonstrate the excitation of mechanical modes via radiation pressure force. These are all important steps towards the overall goal of the experiment; to cool a macroscopic device to the quantum ground state.
Macroscopic electromagnetic response of metamaterials with toroidal resonances
Savinov, V; Zheludev, N I
2013-01-01
Toroidal dipole, first described by Ia. B. Zeldovich [Sov. Phys. JETP 33, 1184 (1957)], is a distinct electromagnetic excitation that differs both from the electric and the magnetic dipoles. It has a number of intriguing properties: static toroidal nuclear dipole is responsible for parity violation in atomic spectra; interactions between static toroidal dipole and oscillating magnetic dipole are claimed to violate Newton's Third Law while non-stationary charge-current configurations involving toroidal multipoles have been predicted to produce vector potential in the absence of electromagnetic fields. Existence of the toroidal response in metamaterials was recently demonstrated and is now a growing field of research. However, no direct analytical link has yet been established between the transmission and reflection of macroscopic electromagnetic media and toroidal dipole excitations. To address this essential gap in electromagnetic theory we have developed an analytical approach linking microscopic and macrosc...
Experiments testing macroscopic quantum superpositions must be slow
Mari, Andrea; Giovannetti, Vittorio
2015-01-01
We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations an...
Macroscopic heat transport equations and heat waves in nonequilibrium states
Guo, Yangyu; Jou, David; Wang, Moran
2017-03-01
Heat transport may behave as wave propagation when the time scale of processes decreases to be comparable to or smaller than the relaxation time of heat carriers. In this work, a generalized heat transport equation including nonlinear, nonlocal and relaxation terms is proposed, which sums up the Cattaneo-Vernotte, dual-phase-lag and phonon hydrodynamic models as special cases. In the frame of this equation, the heat wave propagations are investigated systematically in nonequilibrium steady states, which were usually studied around equilibrium states. The phase (or front) speed of heat waves is obtained through a perturbation solution to the heat differential equation, and found to be intimately related to the nonlinear and nonlocal terms. Thus, potential heat wave experiments in nonequilibrium states are devised to measure the coefficients in the generalized equation, which may throw light on understanding the physical mechanisms and macroscopic modeling of nanoscale heat transport.
A macroscopic model of traffic jams in axons.
Kuznetsov, A V; Avramenko, A A
2009-04-01
The purpose of this paper is to develop a minimal macroscopic model capable of explaining the formation of traffic jams in fast axonal transport. The model accounts for the decrease of the number density of positively (and negatively) oriented microtubules near the location of the traffic jam due to formation of microtubule swirls; the model also accounts for the reduction of the effective velocity of organelle transport in the traffic jam region due to organelles falling off microtubule tracks more often in the swirl region. The model is based on molecular-motor-assisted transport equations and the hydrodynamic model of traffic jams in highway traffic. Parametric analyses of the model's predictions for various values of viscosity of the traffic flow, variance of the velocity distribution, diffusivity of microtubule-bound and free organelles, rate constants for binding to and detachment from microtubules, relaxation time, and average motor velocities of the retrograde and anterograde transport, are carried out.
Effect of inhibitors on macroscopical oxidation kinetics of calcium sulfite
Institute of Scientific and Technical Information of China (English)
ZHAO Yi; WANG Li-dong; WANG Xiao-ming; LI Qiang-wei; XU Pei-yao
2005-01-01
In the presence of inhibitors, the macroscopical oxidation kinetics of calcium sulfite, the main byproduct in wet limestone scrubbing, was studied for the first time by adding different inhibitors and varying pH, concentration of calcium sulfite, oxygen partial pressure, concentration of inhibitors and temperature. The mathematical model about the general oxidation reaction was established,which was controlled by three steps involving dissolution of calcium sulfite, mass transfer of oxygen and chemical reaction in the solution.It was concluded that the general reaction was controlled by mass transfer of oxygen under uncatalyzed conditions, while it was controlled by dissolution of calcium sulfite after adding three kinds of inhibitors. Thus, the theory was provided for investigating the mechanism and oxidation kinetics of sulfite. The beneficial references were also supplied for design of oxidation technics in the wet limestone scrubbing.
Elastic Enhancement Factor: from Mesoscopic Systems to Macroscopic Analogous Devices
Sokolov, Valentin V
2014-01-01
Excess of probabilities of the elastic processes over the inelastic ones is a common feature of the resonance phenomena, described in the framework of the random matrix theory. This phenomenon is quantitatively characterized by the elastic enhancement factor $F^{(\\beta)}$ that is a typical ratio of elastic and inelastic cross sections. Being measured experimentally, this quantity can supply us with information on the character of dynamics of the intermediate complicated open system. We discuss properties of the enhancement factor in a wide scope from mesoscopoic systems to macroscopic analogous devices and demonstrate essential qualitative distinction between the elastic enhancement factor's peculiarities in these two cases. Complete analytical solution is found for the case of systems without time-reversal symmetry and only a few open equivalent scattering channels.
Macroscopic and direct light propulsion of bulk graphene material
Zhang, Tengfei; Wu, Yingpeng; Xiao, Peishuang; Yi, Ningbo; Lu, Yanhong; Ma, Yanfeng; Huang, Yi; Zhao, Kai; Yan, Xiao-Qing; Liu, Zhi-Bo; Tian, Jian-Guo; Chen, Yongsheng
2015-01-01
It has been a great challenge to achieve the direct light manipulation of matter on a bulk scale. In this work, the direct light propulsion of matter was observed on a macroscopic scale for the first time using a bulk graphene based material. The unique structure and properties of graphene and the morphology of the bulk graphene material make it capable of not only absorbing light at various wavelengths but also emitting energetic electrons efficiently enough to drive the bulk material following Newtonian mechanics. Thus, the unique photonic and electronic properties of individual graphene sheets are manifested in the response of the bulk state. These results offer an exciting opportunity to bring about bulk scale light manipulation with the potential to realize long-sought proposals in areas such as the solar sail and space transportation driven directly by sunlight.
Macroscopic self-reorientation of interacting two-dimensional crystals.
Woods, C R; Withers, F; Zhu, M J; Cao, Y; Yu, G; Kozikov, A; Ben Shalom, M; Morozov, S V; van Wijk, M M; Fasolino, A; Katsnelson, M I; Watanabe, K; Taniguchi, T; Geim, A K; Mishchenko, A; Novoselov, K S
2016-03-10
Microelectromechanical systems, which can be moved or rotated with nanometre precision, already find applications in such fields as radio-frequency electronics, micro-attenuators, sensors and many others. Especially interesting are those which allow fine control over the motion on the atomic scale because of self-alignment mechanisms and forces acting on the atomic level. Such machines can produce well-controlled movements as a reaction to small changes of the external parameters. Here we demonstrate that, for the system of graphene on hexagonal boron nitride, the interplay between the van der Waals and elastic energies results in graphene mechanically self-rotating towards the hexagonal boron nitride crystallographic directions. Such rotation is macroscopic (for graphene flakes of tens of micrometres the tangential movement can be on hundreds of nanometres) and can be used for reproducible manufacturing of aligned van der Waals heterostructures.
Macroscopic acousto-mechanical analogy of a microbubble
Chaline, Jennifer; Mehrem, Ahmed; Bouakaz, Ayache; Santos, Serge Dos; Sánchez-Morcillo, Víctor J
2015-01-01
Microbubbles, either in the form of free gas bubbles surrounded by a fluid or encapsulated bubbles used currently as contrast agents for medical echography, exhibit complex dynamics under specific acoustic excitations. Nonetheless, considering their micron size and the complexity of their interaction phenomenon with ultrasound waves, expensive and complex experiments and/or simulations are required for their analysis. The behavior of a microbubble along its equator can be linked to a system of coupled oscillators. In this study, the oscillatory behavior of a microbubble has been investigated through an acousto-mechanical analogy based on a ring-shaped chain of coupled pendula. Observation of parametric vibration modes of the pendula ring excited at frequencies between $1$ and $5$ Hz is presented. Simulations have been carried out and show mode mixing phenomena. The relevance of the analogy between a microbubble and the macroscopic acousto-mechanical setup is discussed and suggested as an alternative way to in...
Combined macroscopic and microscopic detection of viral genes in tissues
Energy Technology Data Exchange (ETDEWEB)
Haase, A.T.; Gantz, D.; Blum, H.; Stowring, L.; Ventura, P.; Geballe, A.; Moyer, B.; Brahic, M.
1985-01-15
A hybridization technique has been devised for detecting and quantitating viral genes in tissues that combines macroscopic and microscopic analyses in the same section. The method is based on dual labeling virus-specific probes with /sup 125/I and /sup 35/S to generate signals that can be detected both with X-ray films and nuclear track emulsions. The regions of increased hybridization evident in the X-ray film serve as a guide to the portion of the section that warrants microscopic examination. Detection of viral RNA in tissues with Visna virus and viral DNA with hepatitis B virus are illustrated, and potential applications of this technique in virology and other disciplines are discussed.
Innovating e-waste management: From macroscopic to microscopic scales.
Zeng, Xianlai; Yang, Congren; Chiang, Joseph F; Li, Jinhui
2017-01-01
Waste electrical and electronic equipment (WEEE or e-waste) has become a global problem, due to its potential environmental pollution and human health risk, and its containing valuable resources (e.g., metals, plastics). Recycling for e-waste will be a necessity, not only to address the shortage of mineral resources for electronics industry, but also to decline environmental pollution and human health risk. To systematically solve the e-waste problem, more attention of e-waste management should transfer from macroscopic to microscopic scales. E-waste processing technology should be significantly improved to diminish and even avoid toxic substance entering into downstream of material. The regulation or policy related to new production of hazardous substances in recycled materials should also be carried out on the agenda. All the findings can hopefully improve WEEE legislation for regulated countries and non-regulated countries.
Witnessing Macroscopic Entanglement in a Staggered Magnetic Field
Hide, J; Son, W; Vedral, V; Hide, Jenny; Lawrie, Ian; Son, Wonmin; Vedral, Vlatko
2007-01-01
We investigate macroscopic entanglement in an infinite XX spin-1/2 chain with staggered magnetic field, $B_l=B+e^{-i\\pi l}b$. Using single-site entropy and by constructing an entanglement witness, we search for the existence of entanglement when the system is at absolute zero, as well as in thermal equilibrium. Although the role of the alternating magnetic field $b$ is, in general, to suppress entanglement as do $B$ and $T$, we find that when T=0, introducing $b$ allows the existence of entanglement even when the uniform magnetic field $B$ is arbitrarily large. We find that the region and the amount of entanglement in the spin chain can be enhanced by a staggered magnetic field.
Microscopic and Macroscopic Simulation of Competition between Languages
Stauffer, D; Stauffer, Dietrich; Schulze, Christian
2005-01-01
The similarity of the evolution of human languages (or alphabets, bird songs, >...) to biological evolution of species is utilized to study with up to $10^9$ people the rise and fall of languages either by macroscopic differential equations similar to biological Lotka-Volterra equation, or by microscopic Monte Carlo simulations of bit-strings incorporating the birth, maturity, and death of every individual. For our bit-string model, depending on parameters either one language comprises the majority of speakers (dominance), or the population splits into many languages having in order of magnitude the same number of speakers (fragmentation); in the latter case the size distribution is log-normal, with upward deviations for small sizes, just as in reality for human languages. On a lattice two different dominating languages can coexist in neighbouring regions, without being favoured or disfavoured by different status. We deal with modifications and competition for existing languages, not with the evolution or lea...
Dissipative Optomechanical Preparation of Macroscopic Quantum Superposition States
Abdi, M.; Degenfeld-Schonburg, P.; Sameti, M.; Navarrete-Benlloch, C.; Hartmann, M. J.
2016-06-01
The transition from quantum to classical physics remains an intensely debated question even though it has been investigated for more than a century. Further clarifications could be obtained by preparing macroscopic objects in spatial quantum superpositions and proposals for generating such states for nanomechanical devices either in a transient or a probabilistic fashion have been put forward. Here, we introduce a method to deterministically obtain spatial superpositions of arbitrary lifetime via dissipative state preparation. In our approach, we engineer a double-well potential for the motion of the mechanical element and drive it towards the ground state, which shows the desired spatial superposition, via optomechanical sideband cooling. We propose a specific implementation based on a superconducting circuit coupled to the mechanical motion of a lithium-decorated monolayer graphene sheet, introduce a method to verify the mechanical state by coupling it to a superconducting qubit, and discuss its prospects for testing collapse models for the quantum to classical transition.
Anisotropic magnetothermopower in ferromagnetic thin films grown on macroscopic substrates
Energy Technology Data Exchange (ETDEWEB)
Jayathilaka, P.B. [Department of Physical Sciences, Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale (Sri Lanka); Belyea, D.D. [Department of Physics, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States); Fawcett, T.J. [College of Engineering, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States); Miller, Casey W. [School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 (United States)
2015-05-15
We report observing the anisotropic magnetothermopower in a variety of ferromagnetic thin films grown on macroscopic substrates. These measurements were enabled by eliminating spurious signals related to the Anomalous Nernst Effect by butt-mounting the sample to the heat source and sink, and appropriate positioning of electrical contacts to avoid unwanted thermal gradients. This protocol enabled detailed measurements of the magnetothermopower in the transverse and longitudinal configurations. This may enable Spin Seebeck Effect studies in the in-plane geometry. - Highlights: • Unintentional thermal gradients along surface normal mitigated via butt-mounting. • Longitudinal/transverse magnetothermopower measured on many systems. • Anomalous Nernst Effect reduced. • Importance of magnetic anisotropy identified with angle-dependent measurements.
Macroscopic quantum electrodynamics of high-Q cavities
Energy Technology Data Exchange (ETDEWEB)
Khanbekyan, Mikayel
2009-10-27
In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the
Fault detection by surface seismic scanning tunneling macroscope: Field test
Hanafy, Sherif M.
2014-08-05
The seismic scanning tunneling macroscope (SSTM) is proposed for detecting the presence of near-surface impedance anomalies and faults. Results with synthetic data are consistent with theory in that scatterers closer to the surface provide brighter SSTM profiles than those that are deeper. The SSTM profiles show superresolution detection if the scatterers are in the near-field region of the recording line. The field data tests near Gulf of Aqaba, Haql, KSA clearly show the presence of the observable fault scarp, and identify the subsurface presence of the hidden faults indicated in the tomograms. Superresolution detection of the fault is achieved, even when the 35 Hz data are lowpass filtered to the 5-10 Hz band.
Effects of varying interfacial surface tension on macroscopic polymer lenses
Zimmerman, Charlotte; White, Mason; Baylor, Martha-Elizabeth
2015-09-01
We investigate macroscopic polymer lenses (0.5- to 2.5-cm diameter) fabricated by dropping hydrophobic photocurable resin onto the surface of various hydrophilic liquid surfaces. Due to the intermolecular forces along the interface between the two liquids, a lens shape is formed. We find that we can vary the lens geometry by changing the region over which the resin is allowed to spread and the surface tension of the substrate to produce lenses with theoretically determined focal lengths ranging from 5 to 25 mm. These effects are varied by changing the container width, substrate composition, and substrate temperature. We present data for five different variants, demonstrating that we can control the lens dimensions for polymer lens applications that require high surface quality.
Johnson, L. E.; Kim, J.; Cifelli, R.; Chandra, C. V.
2016-12-01
Potential water retention, S, is one of parameters commonly used in hydrologic modeling for soil moisture accounting. Physically, S indicates total amount of water which can be stored in soil and is expressed in units of depth. S can be represented as a change of soil moisture content and in this context is commonly used to estimate direct runoff, especially in the Soil Conservation Service (SCS) curve number (CN) method. Generally, the lumped and the distributed hydrologic models can easily use the SCS-CN method to estimate direct runoff. Changes in potential water retention have been used in previous SCS-CN studies; however, these studies have focused on long-term hydrologic simulations where S is allowed to vary at the daily time scale. While useful for hydrologic events that span multiple days, the resolution is too coarse for short-term applications such as flash flood events where S may not recover its full potential. In this study, a new method for estimating a time-variable potential water retention at hourly time-scales is presented. The methodology is applied for the Napa River basin, California. The streamflow gage at St Helena, located in the upper reaches of the basin, is used as the control gage site to evaluate the model performance as it is has minimal influences by reservoirs and diversions. Rainfall events from 2011 to 2012 are used for estimating the event-based SCS CN to transfer to S. As a result, we have derived the potential water retention curve and it is classified into three sections depending on the relative change in S. The first is a negative slope section arising from the difference in the rate of moving water through the soil column, the second is a zero change section representing the initial recovery the potential water retention, and the third is a positive change section representing the full recovery of the potential water retention. Also, we found that the soil water moving has traffic jam within 24 hours after finished first
Zhang, Qing; Le Roy, Robert; VANDAMME, Mathieu; ZUBER, Bruno
2014-01-01
This study is dedicated to comparing minutes-long microindentation creep experiments on cement paste with years-long macroscopic creep experiments on concrete and months-long macroscopic creep experiments on cement paste. For all experiments, after a transient period the creep function was well captured by a logarithmic function of time, the amplitude of which is governed by a so-called creep modulus. The non-logarithmic transient periods lasted for days at the macroscopic scale, but only for...
Cubic B-spline curve approximation by curve unclamping
Chen, Xiao-Diao; Ma, Weiyin; Paul, Jean-Claude
2010-01-01
International audience; A new approach for cubic B-spline curve approximation is presented. The method produces an approximation cubic B-spline curve tangent to a given curve at a set of selected positions, called tangent points, in a piecewise manner starting from a seed segment. A heuristic method is provided to select the tangent points. The first segment of the approximation cubic B-spline curve can be obtained using an inner point interpolation method, least-squares method or geometric H...
Exploratory numerical experiments with a macroscopic theory of interfacial interactions
Giordano, D.; Solano-López, P.; Donoso, J. M.
2017-09-01
Phenomenological theories of interfacial interactions are founded on the core idea to model macroscopically the thin layer that forms between media in contact as a two-dimensional continuum (surface phase or interface) characterised by physical properties per unit area; the temporal evolution of the latter is governed by surface balance equations whose set acts as bridging channel in between the governing equations of the volume phases. These theories have targeted terrestrial applications since long time and their exploitation has inspired our research programme to build up, on the same core idea, a macroscopic theory of gas-surface interactions targeting the complex phenomenology of hypersonic reentry flows as alternative to standard methods in aerothermodynamics based on accommodation coefficients. The objective of this paper is the description of methods employed and results achieved in the exploratory study that kicked off our research programme, that is, the unsteady heat transfer between two solids in contact in planar and cylindrical configurations with and without interface. It is a simple numerical-demonstrator test case designed to facilitate quick numerical calculations but, at the same time, to bring forth already sufficiently meaningful aspects relevant to thermal protection due to the formation of the interface. The paper begins with a brief introduction on the subject matter and a review of relevant literature within an aerothermodynamics perspective. Then the case is considered in which the interface is absent. The importance of tension (force per unit area) continuity as boundary condition on the same footing of heat-flux continuity is recognised and the role of the former in governing the establishment of the temperature-difference distribution over the separation surface is explicitly shown. Evidence is given that the standard temperature-continuity boundary condition is just a particular case. Subsequently the case in which the interface is
Reflection of curved shock waves
Mölder, S.
2017-03-01
Shock curvatures are related to pressure gradients, streamline curvatures and vorticity in flows with planar and axial symmetry. Explicit expressions, in an influence coefficient format, are used to relate post-shock pressure gradient, streamline curvature and vorticity to pre-shock gradients and shock curvature in steady flow. Using higher order, von Neumann-type, compatibility conditions, curved shock theory is applied to calculate the flow near singly and doubly curved shocks on curved surfaces, in regular shock reflection and in Mach reflection. Theoretical curved shock shapes are in good agreement with computational fluid dynamics calculations and experiment.
Reflection of curved shock waves
Mölder, S.
2017-09-01
Shock curvatures are related to pressure gradients, streamline curvatures and vorticity in flows with planar and axial symmetry. Explicit expressions, in an influence coefficient format, are used to relate post-shock pressure gradient, streamline curvature and vorticity to pre-shock gradients and shock curvature in steady flow. Using higher order, von Neumann-type, compatibility conditions, curved shock theory is applied to calculate the flow near singly and doubly curved shocks on curved surfaces, in regular shock reflection and in Mach reflection. Theoretical curved shock shapes are in good agreement with computational fluid dynamics calculations and experiment.
Heegner modules and elliptic curves
Brown, Martin L
2004-01-01
Heegner points on both modular curves and elliptic curves over global fields of any characteristic form the topic of this research monograph. The Heegner module of an elliptic curve is an original concept introduced in this text. The computation of the cohomology of the Heegner module is the main technical result and is applied to prove the Tate conjecture for a class of elliptic surfaces over finite fields; this conjecture is equivalent to the Birch and Swinnerton-Dyer conjecture for the corresponding elliptic curves over global fields.
Closed planar curves without inflections
Ohno, Shuntaro; Umehara, Masaaki
2011-01-01
We define a computable topological invariant $\\mu(\\gamma)$ for generic closed planar regular curves $\\gamma$, which gives an effective lower bound for the number of inflection points on a given generic closed planar curve. Using it, we classify the topological types of locally convex curves (i.e. closed planar regular curves without inflections) whose numbers of crossings are less than or equal to five. Moreover, we discuss the relationship between the number of double tangents and the invariant $\\mu(\\gamma)$ on a given $\\gamma$.
The Unique Macroscopic Appearance of Gouty Arthritis of the Knee.
Mittl, Gregory S; Zuckerman, Joseph D
2015-07-01
Patients with significant gouty arthritis can develop disabling joint pain secondary to monosodium urate (MSU) articular deposition. We report a case of white, chalky MSU crystal deposition covering the articular surfaces of the knee as discovered by total knee arthroplasty. A 65-year-old male with a history of gout presented with bilateral knee pain. His radiographic imaging was negative for gouty tophi, and he elected to undergo left total knee arthroplasty. Intraoperatively a distinct chalky, white paste consistent with MSU deposition was observed covering the articular surfaces of the knee consistent with the diagnosis of gouty arthritis. Gout is the most common inflammatory arthritis affecting more than 3 million people in the USA. The inflammation results from the phagocytosis of monosodium urate crystals (MSU) and the release of inflammatory cytokines within the joint. Gout progresses from acute to chronic over many years and frequently causes chronic arthropathy. When significant knee pain and disability is associated with gouty arthropathy, total knee arthroplasty is certainly an option. The pathological appearance of gouty joints is characteristic. Macroscopic examination of joints affected by gout reveals a nodular, white, chalky appearance. Polarized microscopy of gout demonstrates negative birefringent needle-shaped MSU crystals. In this case report, we describe the characteristic chalky, white MSU deposit that covers the articular surfaces of a knee joint in a patient with a history of gout undergoing total knee arthroplasty. The investigators have obtained the patient's informed written consent for print and electronic publication of the case report.
A macroscopic crowd motion model of gradient flow type
Maury, Bertrand; Santambrogio, Filippo
2010-01-01
A simple model to handle the flow of people in emergency evacuation situations is considered: at every point x, the velocity U(x) that individuals at x would like to realize is given. Yet, the incompressibility constraint prevents this velocity field to be realized and the actual velocity is the projection of the desired one onto the set of admissible velocities. Instead of looking at a microscopic setting (where individuals are represented by rigid discs), here the macroscopic approach is investigated, where the unknwon is the evolution of the density . If a gradient structure is given, say U is the opposite of the gradient of D where D is, for instance, the distance to the exit door, the problem is presented as a Gradient Flow in the Wasserstein space of probability measures. The functional which gives the Gradient Flow is neither finitely valued (since it takes into account the constraints on the density), nor geodesically convex, which requires for an ad-hoc study of the convergence of a discrete scheme.
Macroscopic Dynamical Description of Rotating au + au System
Cârjan, N.; Siwek-Wilczyńska, K.; Skwira-Chalot, I.; Wilczyński, J.
Events with more than two heavy fragments have been abundantly observed in heavy-ion semi-peripheral (fission-like) reaction 197Au+197Au at 15 MeV/nucleon. This raised interesting questions about their origin and about the time-scale at which they occur. As a possible explanation of this process, the surface instability of the cylindrical neck that is formed along the path from contact to reseparation of the rotating Au+Au system is investigated in the present paper. For this purpose the Los Alamos finite-range macroscopic dynamical model was used. The calculations were performed at relatively high angular momenta, L = 100 to 300 ħ, for two types of dissipation mechanisms: two-body viscosity and one-body dissipation. Various initial nuclear deformations and initial kinetic energies in the fission direction were considered. The resulting dynamical evolution in the multidimensional deformation space always led to multifragment scission configurations suggesting that ternary and quaternary break-up can occur during the heavy-ion reaction studied.
Feedback Gating Control for Network Based on Macroscopic Fundamental Diagram
Directory of Open Access Journals (Sweden)
YangBeibei Ji
2016-01-01
Full Text Available Empirical data from Yokohama, Japan, showed that a macroscopic fundamental diagram (MFD of urban traffic provides for different network regions a unimodal low-scatter relationship between network vehicle density and network space-mean flow. This provides new tools for network congestion control. Based on MFD, this paper proposed a feedback gating control policy which can be used to mitigate network congestion by adjusting signal timings of gating intersections. The objective of the feedback gating control model is to maximize the outflow and distribute the allowed inflows properly according to external demand and capacity of each gating intersection. An example network is used to test the performance of proposed feedback gating control model. Two types of background signalization types for the intersections within the test network, fixed-time and actuated control, are considered. The results of extensive simulation validate that the proposed feedback gating control model can get a Pareto improvement since the performance of both gating intersections and the whole network can be improved significantly especially under heavy demand situations. The inflows and outflows can be improved to a higher level, and the delay and queue length at all gating intersections are decreased dramatically.
The assembly of C. elegans lamins into macroscopic fibers.
Zingerman-Koladko, Irena; Khayat, Maayan; Harapin, Jan; Shoseyov, Oded; Gruenbaum, Yosef; Salman, Ahmad; Medalia, Ohad; Ben-Harush, Kfir
2016-10-01
Intermediate filament (IF) proteins are known mainly by their propensity to form viscoelastic filamentous networks within cells. In addition, IF-proteins are essential parts of various biological materials, such as horn and hagfish slime threads, which exhibit a range of mechanical properties from hard to elastic. These properties and their self-assembly nature made IF-proteins attractive building blocks for biomimetic and biological materials in diverse applications. Here we show that a type V IF-protein, the Caenorhabditis elegans nuclear lamin (Ce-lamin), is a promising building block for protein-based fibers. Electron cryo-tomography of vitrified sections enabled us to depict the higher ordered assembly of the Ce-lamin into macroscopic fibers through the creation of paracrystalline fibers, which are prominent in vitro structures of lamins. The lamin fibers respond to tensile force as other IF-protein-based fibers, i.e., hagfish slime threads, and possess unique mechanical properties that may potentially be used in certain applications. The self-assembly nature of lamin proteins into a filamentous structure, which is further assembled into a complex network, can be easily modulated. This knowledge may lead to a better understanding of the relationship in IF-proteins-based fibers and materials, between their hierarchical structures and their mechanical properties.
Scattering of acoustic waves by macroscopically inhomogeneous poroelastic tubes.
Groby, J-P; Dazel, O; Depollier, C; Ogam, E; Kelders, L
2012-07-01
Wave propagation in macroscopically inhomogeneous porous materials has received much attention in recent years. For planar configurations, the wave equation, derived from the alternative formulation of Biot's theory of 1962, was reduced and solved recently: first in the case of rigid frame inhomogeneous porous materials and then in the case of inhomogeneous poroelastic materials in the framework of Biot's theory. This paper focuses on the solution of the full wave equation in cylindrical coordinates for poroelastic tubes in which the acoustic and elastic properties of the poroelastic tube vary in the radial direction. The reflection coefficient is obtained numerically using the state vector (or the so-called Stroh) formalism and Peano series. This coefficient can then be used to straightforwardly calculate the scattered field. To validate the method of resolution, results obtained by the present method are compared to those calculated by the classical transfer matrix method in the case of a two-layer poroelastic tube. As an example, a long bone excited in the sagittal plane is considered. Finally, a discussion is given of ultrasonic time domain scattered field for various inhomogeneity profiles, which could lead to the prospect of long bone characterization.
Macroscopic effects of the spectral structure in turbulent flows
Tran, T.; Chakraborty, P.; Guttenberg, N.; Prescott, A.; Kellay, H.; Goldburg, W.; Goldenfeld, N.; Gioia, G.
2010-11-01
There is a missing link between macroscopic properties of turbulent flows, such as the frictional drag of a wall-bounded flow, and the turbulent spectrum. To seek the missing link we carry out unprecedented experimental measurements of the frictional drag in turbulent soap-film flows over smooth walls. These flows are effectively two-dimensional, and we are able to create soap-film flows with the two types of turbulent spectrum that are theoretically possible in two dimensions: the "enstrophy cascade," for which the spectral exponent α= 3, and the "inverse energy cascade," for which the spectral exponent α= 5/3. We find that the functional relation between the frictional drag f and the Reynolds number Re depends on the spectral exponent: where α= 3, f ˜Re-1/2; where α= 5/3, f ˜Re-1/4. Each of these scalings may be predicted from the attendant value of α by using a recently proposed spectral theory of the frictional drag. In this theory the frictional drag of turbulent flows on smooth walls is predicted to be f ˜Re^(1-α)/(1+α).
Properties of nuclear matter from macroscopic-microscopic mass formulas
Wang, Ning; Liu, Min; Ou, Li; Zhang, Yingxun
2015-12-01
Based on the standard Skyrme energy density functionals together with the extended Thomas-Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic-microscopic mass formulas: Lublin-Strasbourg nuclear drop energy (LSD) formula and Weizsäcker-Skyrme (WS*) formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are K∞ = 230 ± 11 MeV and 235 ± 11 MeV, respectively. The slope parameter of symmetry energy at saturation density is L = 41.6 ± 7.6 MeV for LSD and 51.5 ± 9.6 MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [4]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron-proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrme Hartree-Fock-Bogoliubov calculations and nucleon optical potentials, and the standard deviations are large and increase rapidly with density. A better constraint for the effective mass is helpful to reduce uncertainties of the depth of the mean-field potential.
Tunable Broadband Transparency of Macroscopic Quantum Superconducting Metamaterials
Directory of Open Access Journals (Sweden)
Daimeng Zhang
2015-12-01
Full Text Available Narrow-band invisibility in an otherwise opaque medium has been achieved by electromagnetically induced transparency (EIT in atomic systems. The quantum EIT behavior can be classically mimicked by specially engineered metamaterials via carefully controlled interference with a “dark mode.” However, the narrow transparency window limits the potential applications that require a tunable wideband transparent performance. Here, we present a macroscopic quantum superconducting metamaterial with manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional EIT or its classical analogs. A near-complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bistability of the meta-atoms and can be tuned on and off easily by altering rf and dc magnetic fields, temperature, and history. Hysteretic in situ 100% tunability of transparency paves the way for autocloaking metamaterials, intensity-dependent filters, and fast-tunable power limiters.
Towards a macroscopic modeling of the complexity in traffic flow.
Rosswog, Stephan; Wagner, Peter
2002-03-01
Based on the assumption of a safe velocity U(e)(rho) depending on the vehicle density rho, a macroscopic model for traffic flow is presented that extends the model of the Kühne-Kerner-Konhäuser by an interaction term containing the second derivative of U(e)(rho). We explore two qualitatively different forms of U(e): a conventional Fermi-type function and, motivated by recent experimental findings, a function that exhibits a plateau at intermediate densities, i.e., in this density regime the exact distance to the car ahead is only of minor importance. To solve the fluid-like equations a Lagrangian particle scheme is developed. The suggested model shows a much richer dynamical behavior than the usual fluid-like models. A large variety of encountered effects is known from traffic observations, many of which are usually assigned to the elusive state of "synchronized flow." Furthermore, the model displays alternating regimes of stability and instability at intermediate densities. It can explain data scatter in the fundamental diagram and complicated jam patterns. Within this model, a consistent interpretation of the emergence of very different traffic phenomena is offered: they are determined by the velocity relaxation time, i.e., the time needed to relax towards U(e)(rho). This relaxation time is a measure of the average acceleration capability and can be attributed to the composition (e.g., the percentage of trucks) of the traffic flow.
Zero time tunneling: macroscopic experiments with virtual particles
Directory of Open Access Journals (Sweden)
Nimtz Günter
2015-01-01
Full Text Available Feynman introduced virtual particles in his diagrams as intermediate states of an interaction process. They represent necessary intermediate states between observable real states. Such virtual particles were introduced to describe the interaction process between an electron and a positron and for much more complicated interaction processes. Other candidates for virtual particles are evanescent modes in optics and in elastic fields. Evanescent modes have a purely imaginary wave number, they represent the mathematical analogy of the tunneling solutions of the Schrödinger equation. Evanescent modes exist in the forbidden frequency bands of a photonic lattice and in undersized wave guides, for instance. The most prominent example for the occurrence of evanescent modes is the frustrated total internal reflection (FTIR at double prisms. Evanescent modes and tunneling lie outside the bounds of the special theory of relativity. They can cause faster than light (FTL signal velocities. We present examples of the quantum mechanical behavior of evanescent photons and phonons at a macroscopic scale. The evanescent modes of photons are described by virtual particles as predicted by former QED calculations.
Macroscopic strain controlled ion current in an elastomeric microchannel
Energy Technology Data Exchange (ETDEWEB)
Kuo, Chin-Chang; Nguyen, Du; Buchsbaum, Steven; Innes, Laura; Dennin, Michael, E-mail: mdennin@uci.edu [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Li, Yongxue [Department of Civil and Environmental Engineering, University of California, Irvine, California 92697 (United States); Esser-Kahn, Aaron P. [Department of Chemistry, University of California, Irvine, California 92697 (United States); Valdevit, Lorenzo [Department of Mechanical and Aerospace Engineering, University of California, Irvine, California 92697-3975 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Sun, Lizhi [Department of Civil and Environmental Engineering, University of California, Irvine, California 92697 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Siwy, Zuzanna [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Department of Chemistry, University of California, Irvine, California 92697 (United States)
2015-05-07
We report on the fabrication of an ultra-high aspect ratio ionically conductive single microchannel with tunable diameter from ≈ 20 μm to fully closed. The 4 mm-long channel is fabricated in a Polydimethylsiloxane (PDMS) mold and its cross-sectional area is controlled by applying macroscopic compressive strain to the mold in a direction perpendicular to the channel length. We investigated the ionic conduction properties of the channel. For a wide range of compressive strain up to ≈ 0.27, the strain dependence of the resistance is monotonic and fully reversible. For strain > 0.27, ionic conduction suddenly shuts off and the system becomes hysteretic (whereby a finite strain reduction is required to reopen the channel). Upon unloading, the original behavior is retrieved. This reversible behavior is observed over 200 compression cycles. The cross-sectional area of the channel can be inferred from the ion current measurement, as confirmed by a Nano-Computed Tomography investigation. We show that the cross-sectional area decreases monotonically with the applied compressive strain in the reversible range, in qualitative agreement with linear elasticity theory. We find that the shut-off strain is affected by the spatial extent of the applied strain, which provides additional tunability. Our tunable channel is well-suited for multiple applications in micro/nano-fluidic devices.
Gravitational wave echoes from macroscopic quantum gravity effects
Barceló, Carlos; Carballo-Rubio, Raúl; Garay, Luis J.
2017-05-01
New theoretical approaches developed in the last years predict that macroscopic quantum gravity effects in black holes should lead to modifications of the gravitational wave signals expected in the framework of classical general relativity, with these modifications being characterized in certain scenarios by the existence of dampened rep-etitions of the primary signal. Here we use the fact that non-perturbative corrections to the near-horizon external geometry of black holes are necessary for these modifications to exist, in order to classify different proposals and paradigms with respect to this criterion and study in a neat and systematic way their phenomenology. Proposals that lead naturally to the existence of echoes in the late-time ringdown of gravitational wave signals from black hole mergers must share the replacement of black holes by horizonless configurations with a physical surface showing reflective properties in the relevant range of frequencies. On the other hand, proposals or paradigms that restrict quantum gravity effects on the external geometry to be perturbative, such as black hole complementarity or the closely related firewall proposal, do not display echoes. For the sake of completeness we exploit the interplay between the timescales associated with the formation of firewalls and the mechanism behind the existence of echoes in order to conclude that even unconventional distortions of the firewall concept (such as naked firewalls) do not lead to this phenomenon.
Experiments testing macroscopic quantum superpositions must be slow
Mari, Andrea; de Palma, Giacomo; Giovannetti, Vittorio
2016-03-01
We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation.
LETTERS AND COMMENTS: Adiabatic process reversibility: microscopic and macroscopic views
Anacleto, Joaquim; Pereira, Mário G.
2009-05-01
The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r \\ge 1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values.
Lymphoepithelioma-like esophageal carcinoma with macroscopic reduction
Institute of Scientific and Technical Information of China (English)
Masaya; Uesato; Tuguaki; Kono; Tooru; Shiratori; Yasunori; Akutsu; Isamu; Hoshino; Kentarou; Murakami; Daisuke; Horibe; Tetsurou; Maruyama; Yoshihide; Semba; Ryuma; Urahama; Yukiko; Ogura; Takashi; Oide; Toru; Tanizawa; Hisahiro; Matsubara
2014-01-01
Esophageal lymphoepithelioma-like carcinoma(LELC) is extremely rare. We report the first case of esopha-geal LELC showing macroscopic reduction. A 67-year-old male presented with dysphagia and, by endoscopic examination, was found to have a significantly raised tumor of 10 mm in diameter in the thoracic esophagus. The biopsied material showed esophageal cancer. We performed endoscopic submucosal dissection. However, the tumor became flattened, similar to a scar, in only 2 mo. Histologically, the carcinoma cells had infiltrated the submucosal layer. Prominent infiltration of T lymphoid cells that stained positive for CD8 was observed aroundthe carcinoma cells. Therefore, this lesion was consid-ered to be an LELC with poorly differentiated squamous cells. Because the margin was positive, an esophagec-tomy was performed. Carcinoma cells were detected in the neck in one lymph node. The staging was T1N0M1 b. However, the patient has been well, without adjuvant therapy or recurrence, for more than 5 years.
Single-file diffusion of macroscopic charged particles.
Coste, C; Delfau, J-B; Even, C; Saint Jean, M
2010-05-01
In this paper, we study a macroscopic system of electrically interacting metallic beads organized as a sequence along an annulus. A random mechanical shaking mimics the thermal excitation. We exhibit non-Fickian diffusion (single-file diffusion) at large time. We measure the mobility of the particles and compare it to theoretical expectations. We show that our system cannot be accurately described by theories assuming only hard-sphere interactions. Its behavior is qualitatively described by a theory extended to more realistic potentials [M. Kollmann, Phys. Rev. Lett. 90, 180602 (2003)]. A correct quantitative agreement is shown and we interpret the discrepancies by the violation of the assumption of overdamped dynamics, which is a key point in the theory. We recast previous results on colloids with known interaction potentials and compare them quantitatively to the theory. Focusing on the transition between ordinary and single-file diffusions, we exhibit a dimensionless crossover time that is of order 1 both for colloids and our system, although the time and length scales differ by several orders of magnitude.
Quantum-limited heat conduction over macroscopic distances
Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko
2016-05-01
The emerging quantum technological apparatuses, such as the quantum computer, call for extreme performance in thermal engineering. Cold distant heat sinks are needed for the quantized electric degrees of freedom owing to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance. However, the short distance between the heat-exchanging bodies in the previous experiments hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics, which provides a basis for the superconducting quantum computer. Especially, our results facilitate remote cooling of nanoelectronic devices using faraway in situ-tunable heat sinks. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications.
Semiconductor spintronics in a participating phonon medium: Macroscopic equations
Directory of Open Access Journals (Sweden)
A. Rossani
2013-09-01
Full Text Available In the last two decades considerable interest has arisen on the spin related phenomena in semiconductor devices. In semiconductor materials two essential mechanisms act on the spin dynamics: the spin-orbit coupling and the spin-flip interactions. Here the novelty is that we adopt the asymptotic approach developed in previous papers of mine [A. Rossani, Physica A 305, 323 (2002; A. Rossani, G. Spiga, and A. Domaingo, J. Phys. A 36, 11955 (2003; A. Rossani and G. Spiga, J. Math. Phys. 47, 013301 (2006; A. Rossani and A. M. Scarfone, Physica B 334, 292 (2003; A. Rossani, J. Phys. A 43, 165002 (2010]. The aim of this paper is to derive macroscopic equations starting from a kinetic approach. Moreover an equation for the evolution of the spin density is added, which account for a general dispersion relation. The treatment of spin-flip processes, derived from first principles, is new and leads to an explicit expression of the relaxation time as a function of the temperature.
Properties of nuclear matter from macroscopic-microscopic mass formulas
Wang, Ning; Ou, Li; Zhang, Yingxun
2015-01-01
Based on the standard Skyrme energy density functionals together with the extended Thomas-Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic-microscopic mass formulas: Lublin-Strasbourg nuclear drop energy (LSD) formula and Weizs\\"acker-Skyrme (WS*) formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are $K_\\infty=230 \\pm 11$ MeV and $235\\pm 11$ MeV, respectively. The slope parameter of symmetry energy at saturation density is $L=41.6\\pm 7.6$ MeV for LSD and $51.5\\pm 9.6$ MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [ApJ. \\textbf{771}, 51 (2013)]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron-proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrm...
Theory and feasibility tests for a seismic scanning tunnelling macroscope
Schuster, Gerard T.
2012-09-01
We propose a seismic scanning tunnelling macroscope (SSTM) that can detect subwavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the scatterer is in the near-field region. This means that, as the scatterer approaches the source, imaging of the scatterer with super-resolution can be achieved. Acoustic and elastic simulations support this concept, and a seismic experiment in an Arizona tunnel shows a TRM profile with super-resolution adjacent to the fault location. The SSTM is analogous to the optical scanning tunnelling microscopes having subwavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by the imaging of near-field seismic energy.
Direct Observation of Spatial Quantum Correlations in the Macroscopic Regime
Kumar, Ashok; Marino, A M
2016-01-01
Spatial quantum correlations in the transverse degree of freedom promise to enhance optical resolution, image detection, and quantum communications through parallel quantum information encoding. In particular, the ability to observe these spatial quantum correlations in a single shot will enable such enhancements in applications that require real time imaging, such as particle tracking and in-situ imaging of atomic systems. Here, we report on the direct measurement of spatial quantum correlations in the macroscopic regime in single images using an electron-multiplying charge-coupled device camera. A four-wave mixing process in hot rubidium atoms is used to generate narrowband-bright-entangled pulsed twin-beams of light with $\\sim10^8$ photons in each beam. Owing to momentum conservation in this process, the twin-beams are momentum correlated, which leads to spatial quantum correlations in far field. We show around 2 dB of spatial quantum noise reduction with respect to the shot noise limit. The spatial squeez...
Kinetic Modelling of Macroscopic Properties Changes during Crosslinked Polybutadiene Oxidation
Audouin, Ludmila; Coquillat, Marie; Colin, Xavier; Verdu, Jacques; Nevière, Robert
2008-08-01
The thermal oxidation of additive free hydroxyl-terminated polybutadiene (HTPB) isocyanate crosslinked rubber bulk samples has been studied at 80, 100 and 120 °C in air. The oxidation kinetics has been monitored by gravimetry and thickness distribution of oxidation products was determined by FTIR mapping. Changes of elastic shear modulus G' during oxidation were followed during oxidation at the same temperatures. The kinetic model established previously for HTPB has been adapted for bulk sample oxidation using previously determined set of kinetic parameters. Oxygen diffusion control of oxidation has been introduced into the model. The mass changes kinetic curves and oxidation products profiles were simulated and adequate fit was obtained. Using the rubber elasticity theory the elastic modulus changes were simulated taking into account the elastically active chains concentration changes due to chain scission and crosslinking reactions. The reasonable fit of G' as a function of oxidation time experimental curves was obtained.
Leinonen, Risto; Asikainen, Mervi A.; Hirvonen, Pekka E.
2015-01-01
This study concentrates on evaluating the consistency of upper-division students' use of the second law of thermodynamics at macroscopic and microscopic levels. Data were collected by means of a paper and pencil test (N = 48) focusing on the macroscopic and microscopic features of the second law concerned with heat transfer processes. The data…
Leinonen, Risto; Asikainen, Mervi A.; Hirvonen, Pekka E.
2015-01-01
This study concentrates on evaluating the consistency of upper-division students' use of the second law of thermodynamics at macroscopic and microscopic levels. Data were collected by means of a paper and pencil test (N = 48) focusing on the macroscopic and microscopic features of the second law concerned with heat transfer processes. The data…
A Model for Macroscopic Quantum Tunneling of Bose-Einstein Condensate with Attractive Interaction
Institute of Scientific and Technical Information of China (English)
YAN Ke-Zhu; TAN Wei-Han
2000-01-01
Based on the numerical wave function solutions of neutral atoms with attractive interaction in a harmonic trap, we propose an exactly solvable model for macroscopic quantum tunneling of a Bose condensate with attractive interaction. We calculate the rate of macroscopic quantum tunneling from a metastable condensate state to the collapse state and analyze the stability of the attractive Bose-Einstein condensation.
Göncü, F.; Luding, S.
2013-01-01
The macroscopic mechanical behavior of granular materials inherently depends on the properties of particles that compose them. Using the discrete element method, the effect of particle contact friction and polydispersity on the macroscopic stress response of 3D sphere packings is studied. The analyt
DEFF Research Database (Denmark)
Brücker, Herbert; Jahn, Elke J.
Based on a wage curve approach we examine the labor market effects of migration in Germany. The wage curve relies on the assumption that wages respond to a change in the unemployment rate, albeit imperfectly. This allows one to derive the wage and employment effects of migration simultaneously...
Macroscopic realism, wave-particle duality and the superposition principle for entangled states
Chuprikov, N L
2006-01-01
On the basis of our model of a one-dimensional (1D) completed scattering (Russian Physics, 49, p.119 and p.314 (2006)) we argue that the linear formalism of quantum mechanics (QM) respects the principles of the macroscopic realism (J. Phys.: Condens. Matter, 14, R415-R451 (2002)). In QM one has to distinguish two kinds of pure ensembles: pure unentangled ensembles to be macroscopically inseparable, and pure entangled ones to be macroscopically separable. A pure entangled ensemble is an intermediate link between a pure unentangled ensemble and classical mixture. Like the former it strictly respects the linear formalism of QM. Like the latter it is decomposable into macroscopically distinct subensembles, in spite of interference between them; our new model exemplifies how to perform such a decomposition in the case of a 1D completed scattering. To respect macroscopic realism, the superposition principle must be reformulated: it must forbid introducing observables for entangled states.
Macroscopic erosion of divertor and first wall armour in future tokamaks
Würz, H.; Bazylev, B.; Landman, I.; Pestchanyi, S.; Safronov, V.
2002-12-01
Sputtering, evaporation and macroscopic erosion determine the lifetime of the 'in vessel' armour materials CFC, tungsten and beryllium presently under discussion for future tokamaks. For CFC armour macroscopic erosion means brittle destruction and dust formation whereas for metallic armour melt layer erosion by melt motion and droplet splashing. Available results on macroscopic erosion from hot plasma and e-beam simulation experiments and from tokamaks are critically evaluated and a comprehensive discussion of experimental and numerical macroscopic erosion and its extrapolation to future tokamaks is given. Shielding of divertor armour materials by their own vapor exists during plasma disruptions. The evolving plasma shield protects the armour from high heat loads, absorbs the incoming energy and reradiates it volumetrically thus reducing drastically the deposited energy. As a result, vertical target erosion by vaporization turns out to be of the order of a few microns per disruption event and macroscopic erosion becomes the dominant erosion source.
NURBS curve blending using extension
Institute of Scientific and Technical Information of China (English)
Yong-jin LIU; Rong-qi QIU; Xiao-hui LIANG
2009-01-01
Curve and surface blending is an important operation in CAD systems, in which a non-uniform rational B-spline (NURBS) has been used as the de facto standard. In local comer blending, two curves intersecting at that comer are first made disjoint, and then the third blending curve is added-in to smoothly join the two curves with G1-or G2-continuity. In this paper we present a study to solve the joint problem based on curve extension. The following nice properties of this extension algorithm are exploited in depth: (1) The parameterization of the original shapes does not change; (2) No additional fragments are created.Various examples are presented to demonstrate that our solution is simple and efficient.
Energy Technology Data Exchange (ETDEWEB)
Darga, A. [Laboratoire de Genie Electrique de Paris, CNRS UMR8507, SUPELEC, UPMC Univ Paris 06, Univ Paris-Sud, 11 rue Joliot-Curie, Plateau de Moulon, F-91192 Gif-sur-Yvette Cedex (France)], E-mail: arouna.darga@lgep.supelec.fr; Mencaraglia, D.; Djebbour, Z.; Dubois, A. Migan; Chouffot, R.; Serhan, J. [Laboratoire de Genie Electrique de Paris, CNRS UMR8507, SUPELEC, UPMC Univ Paris 06, Univ Paris-Sud, 11 rue Joliot-Curie, Plateau de Moulon, F-91192 Gif-sur-Yvette Cedex (France); Couzinie-Devy, F.; Barreau, N.; Kessler, J. [Institut des Materiaux Jean Rouxel (IMN)-UMR 6502, Universite de Nantes, CNRS, 2 rue de la Houssiniere, BP 32229, 44322 Nantes cedex 3 (France)
2009-02-02
Co-evaporated Cu(In,Ga)Se{sub 2} (CIGSe) based solar cells with Physical Vapour Deposited (PVD) Indium Sulphide (In{sub 2}S{sub 3}) as buffer layer have been studied by admittance spectroscopy and current-voltage characteristics measurements. The results have been compared to those obtained with a reference CBD-CdS/CIGSe device. In darkness, the PVD-In{sub 2}S{sub 3} buffer layer devices exhibit higher densities of trapping defects and low values of shunt resistance. However, under illumination we have observed an important improvement of the In{sub 2}S{sub 3}/CIGSe electronic transport properties. This behavior seems to be linked to the presence of a metastable defect with activation energy of 0.3 eV.
Nonclassical interactions portrait in a macroscopic pedestrian flow model
Rosini, Massimiliano D.
In this paper we describe the main characteristics of the macroscopic model for pedestrian flows introduced in [R.M. Colombo, M.D. Rosini, Pedestrian flows and non-classical shocks, Math. Methods Appl. Sci. 28 (13) (2005) 1553-1567] and recently sperimentally verified in [D. Helbing, A. Johansson, H.Z. Al-Abideen, Dynamics of crowd disasters: An empirical study, Phys. Rev. E (Statistical, Nonlinear, and Soft Matter Physics) 75 (4) (2007) 046109]. After a detailed study of all the possible wave interactions, we prove the existence of a weighted total variation that does not increase after any interaction. This is the main ingredient used in [R.M. Colombo, M.D. Rosini, Existence of nonclassical Cauchy problem modeling pedestrian flows, technical report, Brescia Department of Mathematics, 2008] to tackle the Cauchy problem through wave front tracking, see [A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, Oxford Lecture Ser. Math. Appl., vol. 20, Oxford Univ. Press, Oxford, 2000, The one-dimensional Cauchy problem; A. Bressan, The front tracking method for systems of conservation laws, in: C.M. Dafermos, E. Feireisl (Eds.), Handbook of Differential Equations; Evolutionary Equations, vol. 1, Elsevier, 2004, pp. 87-168; R.M. Colombo, Wave front tracking in systems of conservation laws, Appl. Math. 49 (6) (2004) 501-537]. From the mathematical point of view, this model is one of the few examples of conservation laws in which nonclassical solutions have a physical motivation, see [P.G. Lefloch, Hyperbolic Systems of Conservation Laws, Lectures Math. ETH Zürich, Birkhäuser, Basel, 2002, The theory of classical and nonclassical shock waves], and an existence result is available.
Nuclear magnetic resonance studies of macroscopic morphology and dynamics
Energy Technology Data Exchange (ETDEWEB)
Barrall, Geoffrey Alden [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry
1995-09-01
Nuclear magnetic resonance techniques are traditionally used to study molecular level structure and dynamics with a noted exception in medically applied NMR imaging (MRI). In this work, new experimental methods and theory are presented relevant to the study of macroscopic morphology and dynamics using NMR field gradient techniques and solid state two-dimensional exchange NMR. The goal in this work is not to take some particular system and study it in great detail, rather it is to show the utility of a number of new and novel techniques using ideal systems primarily as a proof of principle. By taking advantage of the analogy between NMR imaging and diffraction, one may simplify the experiments necessary for characterizing the statistical properties of the sample morphology. For a sample composed of many small features, e.g. a porous medium, the NMR diffraction techniques take advantage of both the narrow spatial range and spatial isotropy of the sample`s density autocorrelation function to obtain high resolution structural information in considerably less time than that required by conventional NMR imaging approaches. The time savings of the technique indicates that NMR diffraction is capable of finer spatial resolution than conventional NMR imaging techniques. Radio frequency NMR imaging with a coaxial resonator represents the first use of cylindrically symmetric field gradients in imaging. The apparatus as built has achieved resolution at the micron level for water samples, and has the potential to be very useful in the imaging of circularly symmetric systems. The study of displacement probability densities in flow through a random porous medium has revealed the presence of features related to the interconnectedness of the void volumes. The pulsed gradient techniques used have proven successful at measuring flow properties for time and length scales considerably shorter than those studied by more conventional techniques.
Innovations in macroscopic evaluation of pancreatic specimens and radiologic correlation
Directory of Open Access Journals (Sweden)
Charikleia Triantopoulou
2016-01-01
Full Text Available The purpose of this study was to evaluate the feasibility of a novel dissection technique of surgical specimens in different cases of pancreatic tumors and provide a radiologic pathologic correlation. In our hospital, that is a referral center for pancreatic diseases, the macroscopic evaluation of the pancreatectomy specimens is performed by the pathologists using the axial slicing technique (instead of the traditional procedure with longitudinal opening of the main pancreatic and/or common bile duct and slicing along the plane defined by both ducts. The specimen is sliced in an axial plane that is perpendicular to the longitudinal axis of the descending duodenum. The procedure results in a large number of thin slices (3–4 mm. This plane is identical to that of CT or MRI and correlation between pathology and imaging is straightforward. We studied 70 cases of suspected different solid and cystic pancreatic tumors and we correlated the tumor size and location, the structure—consistency (areas of necrosis—hemorrhage—fibrosis—inflammation, the degree of vessels’ infiltration, the size of pancreatic and common bile duct and the distance from resection margins. Missed findings by imaging or pitfalls were recorded and we tried to explain all discrepancies between radiology evaluation and the histopathological findings. Radiologic-pathologic correlation is extremely important, adding crucial information on imaging limitations and enabling quality assessment of surgical specimens. The deep knowledge of different pancreatic tumors’ consistency and way of extension helps to improve radiologists’ diagnostic accuracy and minimize the radiological-surgical mismatching, preventing patients from unnecessary surgery.
Macroscopic behavior and microscopic magnetic properties of nanocarbon
Energy Technology Data Exchange (ETDEWEB)
Lähderanta, E., E-mail: Erkki.Lahderanta@lut.fi [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Ryzhov, V.A. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Coppice, Gatchina, Leningrad province 188300 (Russian Federation); Lashkul, A.V. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Galimov, D.M. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); South Ural State University, 454080 Chelyabinsk (Russian Federation); Titkov, A.N. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg (Russian Federation); Matveev, V.V. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Saint-Petersburg State University, Saint-Petersburg 198504 (Russian Federation); Mokeev, M.V. [Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg (Russian Federation); Kurbakov, A.I. [Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Coppice, Gatchina, Leningrad province 188300 (Russian Federation); Lisunov, K.G. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Institute of Applied Physics ASM, Academiei Str., 5, MD 2028 Kishinev (Moldova, Republic of)
2015-06-01
Here are presented investigations of powder and glass-like samples containing carbon nanoparticles, not intentionally doped and doped with Ag, Au and Co. The neutron diffraction study reveals an amorphous structure of the samples doped with Au and Co, as well as the magnetic scattering due to a long-range FM order in the Co-doped sample. The composition and molecular structure of the sample doped with Au is clarified with the NMR investigations. The temperature dependence of the magnetization, M (T), exhibits large irreversibility in low fields of B=1–7 mT. M (B) saturates already above 2 T at high temperatures, but deviates from the saturation behavior below ~50 (150 K). Magnetic hysteresis is observed already at 300 K and exhibits a power-law temperature decay of the coercive field, B{sub c} (T). The macroscopic behavior above is typical of an assembly of partially blocked magnetic nanoparticles. The values of the saturation magnetization, M{sub s}, and the blocking temperature, T{sub b}, are obtained as well. However, the hysteresis loop in the Co-doped sample differs from that in other samples, and the values of B{sub c} and M{sub s} are noticeably increased. - Highlights: • We have investigated powder and glassy samples with carbon nanoparticles. • They include an undoped sample and those doped with Ag, Au and Co. • Neutron diffraction study reveals amorphous structure of Au- and Co-doped samples. • Composition and molecular structure of Au-doped sample was investigated with NMR. • Magnetic behavior is typical of an assembly of partially blocked magnetic nanoparticles.
Proton irradiation effects on beryllium - A macroscopic assessment
Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando
2016-10-01
Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.
Energy Technology Data Exchange (ETDEWEB)
Zhu, Yuping, E-mail: zhuyuping@126.com; Gu, Yunling; Liu, Hongguang
2015-02-25
Directional solidification technology has been widely used to improve the properties of polycrystalline Ni{sub 2}MnGa materials. Mechanical training can adjust the internal organizational structures of the materials, reduce the stress of twin boundaries motion, and then result in larger strain at lower outfield levels. In this paper, we test the microscopic structure of Ni{sub 2}MnGa polycrystalline ferromagnetic shape memory alloy produced by directional solidification and compress it along two axes successively for mechanical training. The influences of pre-compressive stresses on the temperature-induced strains are analyzed. The macroscopic mechanical behaviors show anisotropy. According to the generating mechanism of the macroscopic strain, a three-dimensional constitutive model is established. Based on thermodynamic method, the kinetic equations of the martensitic transformation and inverse transformation are presented considering the driving force and energy dissipation. The prediction curves of temperature-induce strains along two different directions are investigated. And the results coincide well with the experiment data. It well explains the macroscopic anisotropy mechanical behaviors and fits for using in engineering.
Equations of hyperelliptic Shimura curves
Molina, Santiago
2010-01-01
We describe an algorithm that computes explicit models of hyperelliptic Shimura curves attached to an indefnite quaternion algebra over Q and Atkin-Lehner quotients of them. It exploits Cerednik-Drinfeld's non-archimedean uniformisation of Shimura curves, a formula of Gross and Zagier for the endomorphism ring of Heegner points over Artinian rings and the connection between Ribet's bimodules and the specialization of Heegner points. As an application, we provide a list of equations of Shimura curves and quotients of them obtained by our algorithm that had been conjectured by Kurihara.
Poiseuille flow in curved spaces
Debus, J -D; Succi, S; Herrmann, H J
2015-01-01
We investigate Poiseuille channel flow through intrinsically curved (campylotic) media, equipped with localized metric perturbations (campylons). To this end, we study the flux of a fluid driven through the curved channel in dependence of the spatial deformation, characterized by the campylon parameters (amplitude, range and density). We find that the flux depends only on a specific combination of campylon parameters, which we identify as the average campylon strength, and derive a universal flux law for the Poiseuille flow. For the purpose of this study, we have improved and validated our recently developed lattice Boltzmann model in curved space by considerably reducing discrete lattice effects.
Description of dose response curve
Al-Samarai, Firas
2011-01-01
The book included several methods to estimate LD50, in addition to explain how to use several programs to estimate LD50. Moreover the book illustrate the description of the dose response curves. Firas Al-Samarai
Normal origamis of Mumford curves
Kremer, Karsten
2010-01-01
An origami (also known as square-tiled surface) is a Riemann surface covering a torus with at most one branch point. Lifting two generators of the fundamental group of the punctured torus decomposes the surface into finitely many unit squares. By varying the complex structure of the torus one obtains easily accessible examples of Teichm\\"uller curves in the moduli space of Riemann surfaces. The p-adic analogues of Riemann surfaces are Mumford curves. A p-adic origami is defined as a covering of Mumford curves with at most one branch point, where the bottom curve has genus one. A classification of all normal non-trivial p-adic origamis is presented and used to calculate some invariants. These can be used to describe p-adic origamis in terms of glueing squares.
String networks as tropical curves
Ray, Koushik
2008-01-01
A prescription for obtaining supergravity solutions for planar (p,q)-string networks is presented, based on earlier results. It shows that networks may be looked upon as tropical curves emerging as the spine of the amoeba of a holomorphic curve in M-theory. The Kaehler potential of supergravity is identified with the corresponding Ronkin function. Implications of this identification in counting dyons is discussed.
Growth curves for Laron syndrome.
Laron, Z; Lilos, P; Klinger, B.
1993-01-01
Growth curves for children with Laron syndrome were constructed on the basis of repeated measurements made throughout infancy, childhood, and puberty in 24 (10 boys, 14 girls) of the 41 patients with this syndrome investigated in our clinic. Growth retardation was already noted at birth, the birth length ranging from 42 to 46 cm in the 12/20 available measurements. The postnatal growth curves deviated sharply from the normal from infancy on. Both sexes showed no clear pubertal spurt. Girls co...
Flow over riblet curved surfaces
Energy Technology Data Exchange (ETDEWEB)
Loureiro, J B R; Freire, A P Silva, E-mail: atila@mecanica.ufrj.br [Mechanical Engineering Program, Federal University of Rio de Janeiro (COPPE/UFRJ), C.P. 68503, 21.941-972, Rio de Janeiro, RJ (Brazil)
2011-12-22
The present work studies the mechanics of turbulent drag reduction over curved surfaces by riblets. The effects of surface modification on flow separation over steep and smooth curved surfaces are investigated. Four types of two-dimensional surfaces are studied based on the morphometric parameters that describe the body of a blue whale. Local measurements of mean velocity and turbulence profiles are obtained through laser Doppler anemometry (LDA) and particle image velocimetry (PIV).
Studies into the averaging problem: Macroscopic gravity and precision cosmology
Wijenayake, Tharake S.
2016-08-01
With the tremendous improvement in the precision of available astrophysical data in the recent past, it becomes increasingly important to examine some of the underlying assumptions behind the standard model of cosmology and take into consideration nonlinear and relativistic corrections which may affect it at percent precision level. Due to its mathematical rigor and fully covariant and exact nature, Zalaletdinov's macroscopic gravity (MG) is arguably one of the most promising frameworks to explore nonlinearities due to inhomogeneities in the real Universe. We study the application of MG to precision cosmology, focusing on developing a self-consistent cosmology model built on the averaging framework that adequately describes the large-scale Universe and can be used to study real data sets. We first implement an algorithmic procedure using computer algebra systems to explore new exact solutions to the MG field equations. After validating the process with an existing isotropic solution, we derive a new homogeneous, anisotropic and exact solution. Next, we use the simplest (and currently only) solvable homogeneous and isotropic model of MG and obtain an observable function for cosmological expansion using some reasonable assumptions on light propagation. We find that the principal modification to the angular diameter distance is through the change in the expansion history. We then linearize the MG field equations and derive a framework that contains large-scale structure, but the small scale inhomogeneities have been smoothed out and encapsulated into an additional cosmological parameter representing the averaging effect. We derive an expression for the evolution of the density contrast and peculiar velocities and integrate them to study the growth rate of large-scale structure. We find that increasing the magnitude of the averaging term leads to enhanced growth at late times. Thus, for the same matter content, the growth rate of large scale structure in the MG model
Investigating the mechanics of earthquakes using macroscopic seismic parameters
Venkataraman, Anupama
2002-09-01
To understand the physics of earthquake rupture mechanics, we have to relate seismologically observable parameters to the dynamics of faulting. One of the key seismological parameters that will help us achieve this objective is the energy radiated by seismic waves. In this work, we develop a new method of estimating radiated energy from regional data using an empirical Green's function method; we also modify existing methods of estimating radiated energy from teleseismic data by improving the corrections applied to the observed seismic data for attenuation and directivity effects. We compute teleseismic estimates of radiated energy for 23 large subduction zone earthquakes recorded between 1992 and 2001; most of these earthquakes have a magnitude Mw > 7.5, but we also include some smaller (Mw ˜ 6.7) well-studied subduction zone earthquakes and 6 crustal earthquakes. We compile the static stress drop estimates for these 29 earthquakes from published literature. We then determine radiation efficiency of these earthquakes using a stress relaxation model that relates measurable and macroscopic seismological parameters to the physical processes on the fault zone via fracture energy. We also determine the rupture velocity of these earthquakes from published literature. A comparison of radiation efficiencies and rupture velocities of these earthquakes with the expected theoretical values for different modes crack propagation validates the use of the stress relaxation model to understand earthquake rupture mechanics. From our calculations, we observe that most earthquakes have radiation efficiencies between 0.25 and 1 and are hence efficient in generating seismic waves, but tsunami earthquakes and two deep earthquakes, the 1994 deep earthquake that occurred in Bolivia and the 1999 Russia-China border earthquake, have very small radiation efficiencies (<0.25) and hence dissipate a large amount of energy on the fault plane. We suggest that the difference in the radiation
Linear Systems on Tropical Curves
Haase, Christian; Yu, Josephine
2009-01-01
A tropical curve \\Gamma is a metric graph with possibly unbounded edges, and tropical rational functions are continuous piecewise linear functions with integer slopes. We define the complete linear system |D| of a divisor D on a tropical curve \\Gamma analogously to the classical counterpart. We investigate the structure of |D| as a cell complex and show that linear systems are quotients of tropical modules, finitely generated by vertices of the cell complex. Using a finite set of generators, |D| defines a map from \\Gamma to a tropical projective space, and the image can be extended to a tropical curve of degree equal to \\deg(D). The tropical convex hull of the image realizes the linear system |D| as a polyhedral complex. We show that curves for which the canonical divisor is not very ample are hyperelliptic. We also show that the Picard group of a \\Q-tropical curve is a direct limit of critical groups of finite graphs converging to the curve.
From microscopic taxation and redistribution models to macroscopic income distributions
Bertotti, Maria Letizia; 10.1016/j.physa.2011.06.008
2011-01-01
We present here a general framework, expressed by a system of nonlinear differential equations, suitable for the modelling of taxation and redistribution in a closed (trading market) society. This framework allows to describe the evolution of the income distribution over the population and to explain the emergence of collective features based on the knowledge of the individual interactions. By making different choices of the framework parameters, we construct different models, whose long-time behavior is then investigated. Asymptotic stationary distributions are found, which enjoy similar properties as those observed in empirical distributions. In particular, they exhibit power law tails of Pareto type and their Lorenz curves and Gini indices are consistent with some real world ones.
From microscopic taxation and redistribution models to macroscopic income distributions
Bertotti, Maria Letizia; Modanese, Giovanni
2011-10-01
We present here a general framework, expressed by a system of nonlinear differential equations, suitable for the modeling of taxation and redistribution in a closed society. This framework allows one to describe the evolution of income distribution over the population and to explain the emergence of collective features based on knowledge of the individual interactions. By making different choices of the framework parameters, we construct different models, whose long-time behavior is then investigated. Asymptotic stationary distributions are found, which enjoy similar properties as those observed in empirical distributions. In particular, they exhibit power law tails of Pareto type and their Lorenz curves and Gini indices are consistent with some real world ones.
Current-Voltage Relations for Electrochemical Thin Films
Bazant, M Z; Bayly, B J; Bazant, Martin Z.; Chu, Kevin T.
2004-01-01
The dc response of an electrochemical thin film, such as the separator in a micro-battery, is analyzed by solving the Poisson-Nernst-Planck equations, subject to boundary conditions appropriate for an electrolytic/galvanic cell. The model system consists of a binary electrolyte between parallel-plate electrodes, each possessing a compact Stern layer, which mediates Faradaic reactions with nonlinear Butler-Volmer kinetics. Analytical results are obtained by matched asymptotic expansions in the limit of thin double layers and compared with full numerical solutions. The analysis shows that (i) decreasing the system size relative to the Debye screening length decreases the voltage of the cell and allows currents higher than the classical diffusion-limited current; (ii) finite reaction rates lead to the important possibility of a reaction-limited current; (iii) the Stern-layer capacitance is critical for allowing the cell to achieve currents above the reaction-limited current; and (iv) all polarographic (current-v...
Effect of current-voltage characteristics on plasma reforming
Energy Technology Data Exchange (ETDEWEB)
Hwang, N. [Univ. of Science and Technology, Daejeon (Korea, Republic of). Environmental System Engineering; Korea Inst. of Machinery and Materials, Daejeon (Korea, Republic of). Environmental System Research Division; Hur, M.; Kim, K.T.; Kim, S.J.; Song, Y.H. [Korea Inst. of Machinery and Materials, Daejeon (Korea, Republic of). Environmental System Research Division
2010-07-01
Studies have shown that the energy costs associated with plasma fuel reforming can vary depending on the type of plasma generation technique. The reasons for the different energy costs, however, are not yet clear, since different types of plasma reactor lead to not only different plasma conditions but also lead to different reaction conditions that is not relevant to plasma, such as gas residence time, heat and mass flow conditions. This paper presented the results of a parametric study on methane partial oxidation which was conducted to determine the optimal operating conditions and geometrical design of an arc jet plasma fuel reformer. The arc reactor used in this study was designed to control various operating parameters such as arc length, gas residence time, and gas mixing. Two different types of power supply were tested, notably one that produced high voltage with low current, and one that produced relatively low voltage and high current. The effects of these different voltage-current characteristics on gas reforming process were analyzed based on methane conversion rates, selectivity of products, and thermal efficiencies. The study showed that the input power but not the voltage plays an important role in the present partial oxidation process. The gas residence time was also found to be an important factor in controlling the reformer process. 10 refs., 8 figs.
Current-Voltage Characteristics of Molecular Devices at Low Bias
Institute of Scientific and Technical Information of China (English)
LIAO Yun-Xing; CHEN Hao; R.Note; H.Mizuseki; Y.Kawazoe
2004-01-01
We use density functional theory and the Green function formalism with charge energy effect included in the self-consistent calculation of the Ⅰ- Ⅴ characteristics of a single benzene ring with an appendage of cf3, and identify some interesting properties of the Ⅰ-Ⅴ characteristics at low bias. The molecule picks up a fractional charge at zero bias, then the additional fractional charge produces a barrier on the junction of the molecule and contacts to perturb current flow on the molecule. This phenomenon may be useful for the design of future molecular devices.
Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal.
Guo, Liangqia; Ye, Peirong; Wang, Jing; Fu, Fengfu; Wu, Zujian
2015-11-15
3D graphene macroscopic gel synthesized via self-assembly of GO nanosheets under basic conditions at low temperature is modified with polydopamine and Fe3O4 nanoparticles. The modification of polydopamine can not only strengthen the 3D graphene-based macroscopic architecture but also enhance the loadage and binding ability of Fe3O4 nanoparticles. The synthesized 3D Fe3O4-graphene macroscopic composites are characterized by SEM, XRD, XPS, BET, Raman and magnetic property and used as a versatile adsorbent for sub-ppm concentration of As(III) and As(V) removal from aqueous solutions. The experimental results suggest that the synthesized 3D Fe3O4-graphene macroscopic composites are promising for treating low concentration of arsenic contaminated water. Copyright © 2015 Elsevier B.V. All rights reserved.
Menzel, Andreas M
2016-01-01
One possibility to adjust material properties to a specific need is to embed units of one substance into a matrix of another substance. Even materials that are readily tunable during operation can be generated in this way. In (visco)elastic substances, both the matrix material as well as the inclusions and/or their immediate environment can be dynamically deformed. If the typical dynamic response time of the inclusions and their surroundings approach the macroscopic response time, their deformation processes need to be included into a dynamic macroscopic characterization. Along these lines, we present a hydrodynamic description of (visco)elastic composite materials. For this purpose, additional strain variables reflect the state of the inclusions and their immediate environment. These additional strain variables in general are not set by a coarse-grained macroscopic displacement field. Apart from that, during our derivation, we also include the macroscopic variables of relative translations and relative rotat...
Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng
2016-05-01
Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m-3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.
Curve Digitizer – A software for multiple curves digitizing
Directory of Open Access Journals (Sweden)
Florentin ŞPERLEA
2010-06-01
Full Text Available The Curve Digitizer is software that extracts data from an image file representing a graphicand returns them as pairs of numbers which can then be used for further analysis and applications.Numbers can be read on a computer screen stored in files or copied on paper. The final result is adata set that can be used with other tools such as MSEXCEL. Curve Digitizer provides a useful toolfor any researcher or engineer interested in quantifying the data displayed graphically. The image filecan be obtained by scanning a document
Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces
Energy Technology Data Exchange (ETDEWEB)
Voisin, David
2002-07-01
the CSC have been determined for mixtures of cationically modified guar gums (of varying charge density) with two anionic surfactants: sodium lauryl (or dodecyl) ether sulfate [SLES] and sodium dodecyl sulfate [SDS], for various concentrations of the polyelectrolyte and added sodium chloride, at room temperature. The addition of sodium chloride has only a minor net effect on the CFC, but increases the CSC significantly. The interactions between the cationic polyelectrolyte and the surfactant have been studied in the one-phase regions, i.e. below the CFC and above the CSC, using different techniques. Surface tension, electrophoresis, light scattering and viscosimetry have been employed. In the two-phase region, the sedimented floe phase has been analysed and the flocculation has been investigated. Rheology of the floe phase has been studied, after a mild compression by centrifugation. The initial rate of flocculation has been determined, using stop-flow equipment. The growth and the structure of the flocs have been investigated by light scattering. The open-network flocs of polyelectrolyte-surfactant particles grow to {approx}10's {mu}m in size, prior to their eventual settling out. Other colloidal particles can be trapped within these large flocs, and the flocs can be used to transport these particles to a macroscopic surface. The deposition and the removal of such composite flocs on glass surfaces, under flow, have been studied using a flow cell device coupled with an optical microscope. Scanning electron microscopy and atomic force microscopy have also been employed. (author)
Cima, Lionel F.; Mir, Lluis M.
2004-11-01
A method is described to experimentally determine the temporal evolution of state variables involved in the electroporation of biological tissue, i.e., the transmembrane voltage and the macroscopic current flowing in the electropores. Indeed, the electrical parameters of the extracellular, intracellular, and unaltered membrane contributions as well as the electropores electrical characteristics can be deduced from the measurement of the tissue bioimpedance and from the variations of both the macroscopic voltage applied to the tissue and the delivered current.
Institute of Scientific and Technical Information of China (English)
Yuichi; Sanada; Yujo; Kawashita; Satomi; Okada; Takashi; Azuma; Shigetoshi; Matsuo
2014-01-01
Intrahepatic cholangiocarcinoma is macroscopically classified into three subtypes, mass-forming-type, periductal infiltrating-type, and intraductal growth-type. Each subtype should be preoperatively differentiated to perform the valid surgical resection. Recent researches have revealed the clinical, radiologic, pathobiological characteristics of each subtype. We reviewed recently published studies covering various aspects of intrahepatic cholangiocarcinoma(ICC), focusing especially on the macroscopic subtypes and stem cell features to better understand the pathophysiology of ICC and to establish the valid therapeutic strategy.
Critical Current in YBCO Coated Conductors in the Presence of a Macroscopic Defect (POSTPRINT)
2010-03-01
AFRL-RZ-WP-TP-2010-2084 CRITICAL CURRENT IN YBCO COATED CONDUCTORS IN THE PRESENCE OF A MACROSCOPIC DEFECT (POSTPRINT) Milan Polak and...CRITICAL CURRENT IN YBCO COATED CONDUCTORS IN THE PRESENCE OF A MACROSCOPIC DEFECT (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c...display, or disclose the work. 14. ABSTRACT We have studied the effects of localized defects in the YBCO coated conductors on the critical current. The
Topological recursion and mirror curves
Bouchard, Vincent
2012-01-01
We study the constant contributions to the free energies obtained through the topological recursion applied to the complex curves mirror to toric Calabi-Yau threefolds. We show that the recursion reproduces precisely the corresponding Gromov-Witten invariants, which can be encoded in powers of the MacMahon function. As a result, we extend the scope of the "remodeling conjecture" to the full free energies, including the constant contributions. In the process we study how the pair of pants decomposition of the mirror curves plays an important role in the topological recursion. We also show that the free energies are not, strictly speaking, symplectic invariants, and that the recursive construction of the free energies does not commute with certain limits of mirror curves.
Laffer Curves and Home Production
Directory of Open Access Journals (Sweden)
Kotamäki Mauri
2017-06-01
Full Text Available In the earlier related literature, consumption tax rate Laffer curve is found to be strictly increasing (see Trabandt and Uhlig (2011. In this paper, a general equilibrium macro model is augmented by introducing a substitute for private consumption in the form of home production. The introduction of home production brings about an additional margin of adjustment – an increase in consumption tax rate not only decreases labor supply and reduces the consumption tax base but also allows a substitution of market goods with home-produced goods. The main objective of this paper is to show that, after the introduction of home production, the consumption tax Laffer curve exhibits an inverse U-shape. Also the income tax Laffer curves are significantly altered. The result shown in this paper casts doubt on some of the earlier results in the literature.
Rational points on elliptic curves
Silverman, Joseph H
2015-01-01
The theory of elliptic curves involves a pleasing blend of algebra, geometry, analysis, and number theory. This book stresses this interplay as it develops the basic theory, thereby providing an opportunity for advanced undergraduates to appreciate the unity of modern mathematics. At the same time, every effort has been made to use only methods and results commonly included in the undergraduate curriculum. This accessibility, the informal writing style, and a wealth of exercises make Rational Points on Elliptic Curves an ideal introduction for students at all levels who are interested in learning about Diophantine equations and arithmetic geometry. Most concretely, an elliptic curve is the set of zeroes of a cubic polynomial in two variables. If the polynomial has rational coefficients, then one can ask for a description of those zeroes whose coordinates are either integers or rational numbers. It is this number theoretic question that is the main subject of this book. Topics covered include the geometry and ...
Canonical curves with low apolarity
Ballico, Edoardo; Notari, Roberto
2010-01-01
Let $k$ be an algebraically closed field and let $C$ be a non--hyperelliptic smooth projective curve of genus $g$ defined over $k$. Since the canonical model of $C$ is arithmetically Gorenstein, Macaulay's theory of inverse systems allows to associate to $C$ a cubic form $f$ in the divided power $k$--algebra $R$ in $g-2$ variables. The apolarity of $C$ is the minimal number $t$ of linear form in $R$ needed to write $f$ as sum of their divided power cubes. It is easy to see that the apolarity of $C$ is at least $g-2$ and P. De Poi and F. Zucconi classified curves with apolarity $g-2$ when $k$ is the complex field. In this paper, we give a complete, characteristic free, classification of curves $C$ with apolarity $g-1$ (and $g-2$).
Szpak, Nikodem
2014-01-01
We present some new ideas on how to design analogue models of quantum fields living in curved spacetimes using ultra-cold atoms in optical lattices. We discuss various types of static and dynamical curved spacetimes achievable by simple manipulations of the optical setup. Examples presented here contain two-dimensional spaces of positive and negative curvature as well as homogeneous cosmological models and metric waves. Most of them are extendable to three spatial dimensions. We mention some interesting phenomena of quantum field theory in curved spacetimes which might be simulated in such optical lattices loaded with bosonic or fermionic ultra-cold atoms. We also argue that methods of differential geometry can be used, as an alternative mathematical approach, for dealing with realistic inhomogeneous optical lattices.
The New Keynesian Phillips Curve
DEFF Research Database (Denmark)
Ólafsson, Tjörvi
This paper provides a survey on the recent literature on the new Keynesian Phillips curve: the controversies surrounding its microfoundation and estimation, the approaches that have been tried to improve its empirical fit and the challenges it faces adapting to the open-economy framework. The new...... Keynesian Phillips curve has been severely criticized for poor empirical dynamics. Suggested improvements involve making some adjustments to the standard sticky price framework, e.g. introducing backwardness and real rigidities, or abandoning the sticky price model and relying on models of inattentiveness......, learning or state-dependant pricing. The introduction of openeconomy factors into the new Keynesian Phillips curve complicate matters further as it must capture the nexus between price setting, inflation and the exchange rate. This is nevertheless a crucial feature for any model to be used for inflation...
Algebraic curves of maximal cyclicity
Caubergh, Magdalena; Dumortier, Freddy
2006-01-01
The paper deals with analytic families of planar vector fields, studying methods to detect the cyclicity of a non-isolated closed orbit, i.e. the maximum number of limit cycles that can locally bifurcate from it. It is known that this multi-parameter problem can be reduced to a single-parameter one, in the sense that there exist analytic curves in parameter space along which the maximal cyclicity can be attained. In that case one speaks about a maximal cyclicity curve (mcc) in case only the number is considered and of a maximal multiplicity curve (mmc) in case the multiplicity is also taken into account. In view of obtaining efficient algorithms for detecting the cyclicity, we investigate whether such mcc or mmc can be algebraic or even linear depending on certain general properties of the families or of their associated Bautin ideal. In any case by well chosen examples we show that prudence is appropriate.
Shock detachment from curved wedges
Mölder, S.
2017-03-01
Curved shock theory is used to show that the flow behind attached shocks on doubly curved wedges can have either positive or negative post-shock pressure gradients depending on the freestream Mach number, the wedge angle and the two wedge curvatures. Given enough wedge length, the flow near the leading edge can choke to force the shock to detach from the wedge. This local choking can preempt both the maximum deflection and the sonic criteria for shock detachment. Analytical predictions for detachment by local choking are supported by CFD results.
Shock detachment from curved wedges
Mölder, S.
2017-09-01
Curved shock theory is used to show that the flow behind attached shocks on doubly curved wedges can have either positive or negative post-shock pressure gradients depending on the freestream Mach number, the wedge angle and the two wedge curvatures. Given enough wedge length, the flow near the leading edge can choke to force the shock to detach from the wedge. This local choking can preempt both the maximum deflection and the sonic criteria for shock detachment. Analytical predictions for detachment by local choking are supported by CFD results.
Caloric Curves and Nuclear Expansion
Natowitz, J B; Ma, Y; Murray, M; Qin, L; Shlomo, S; Wada, R; Wang, J
2002-01-01
Nuclear caloric curves have been analyzed using an expanding Fermi gas hypothesis to extract average nuclear densities. In this approach the observed flattening of the caloric curves reflects progressively increasing expansion with increasing excitation energy. This expansion results in a corresponding decrease in the density and Fermi energy of the excited system. For nuclei of medium to heavy mass apparent densities $~0.3\\rho_0$ are reached at the higher excitation energies. The average densities derived in this manner are in good agreement with those derived using other, more complicated, techniques.
Curved branes with regular support
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, Ignatios [Sorbonne Universites, LPTHE, UMR CNRS 7589, Paris (France); University of Bern, Albert Einstein Center for Fundamental Physics, ITP, Bern (Switzerland); Cotsakis, Spiros; Klaoudatou, Ifigeneia [American University of the Middle East, Department of Mathematics, P. O. Box 220, Dasman (Kuwait)
2016-09-15
We study spacetime singularities in a general five-dimensional braneworld with curved branes satisfying four-dimensional maximal symmetry. The bulk is supported by an analog of perfect fluid with the time replaced by the extra coordinate. We show that contrary to the existence of finite-distance singularities from the brane location in any solution with flat (Minkowski) branes, in the case of curved branes there are singularity-free solutions for a range of equations of state compatible with the null energy condition. (orig.)
Interpolation and Polynomial Curve Fitting
Yang, Yajun; Gordon, Sheldon P.
2014-01-01
Two points determine a line. Three noncollinear points determine a quadratic function. Four points that do not lie on a lower-degree polynomial curve determine a cubic function. In general, n + 1 points uniquely determine a polynomial of degree n, presuming that they do not fall onto a polynomial of lower degree. The process of finding such a…
Principal Curves on Riemannian Manifolds.
Hauberg, Soren
2016-09-01
Euclidean statistics are often generalized to Riemannian manifolds by replacing straight-line interpolations with geodesic ones. While these Riemannian models are familiar-looking, they are restricted by the inflexibility of geodesics, and they rely on constructions which are optimal only in Euclidean domains. We consider extensions of Principal Component Analysis (PCA) to Riemannian manifolds. Classic Riemannian approaches seek a geodesic curve passing through the mean that optimizes a criteria of interest. The requirements that the solution both is geodesic and must pass through the mean tend to imply that the methods only work well when the manifold is mostly flat within the support of the generating distribution. We argue that instead of generalizing linear Euclidean models, it is more fruitful to generalize non-linear Euclidean models. Specifically, we extend the classic Principal Curves from Hastie & Stuetzle to data residing on a complete Riemannian manifold. We show that for elliptical distributions in the tangent of spaces of constant curvature, the standard principal geodesic is a principal curve. The proposed model is simple to compute and avoids many of the pitfalls of traditional geodesic approaches. We empirically demonstrate the effectiveness of the Riemannian principal curves on several manifolds and datasets.
Variability among polysulphone calibration curves
Energy Technology Data Exchange (ETDEWEB)
Casale, G R [University of Rome ' La Sapienza' , Physics Department, P.le A. Moro 2, I-00185, Rome (Italy); Borra, M [ISPESL - Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro, Occupational Hygiene Department, Via Fontana Candida 1, I-0040 Monteporzio Catone (RM) (Italy); Colosimo, A [University of Rome ' La Sapienza' , Department of Human Physiology and Pharmacology, P.le A. Moro 2, I-00185, Rome (Italy); Colucci, M [ISPESL - Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro, Occupational Hygiene Department, Via Fontana Candida 1, I-0040 Monteporzio Catone (RM) (Italy); Militello, A [ISPESL - Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro, Occupational Hygiene Department, Via Fontana Candida 1, I-0040 Monteporzio Catone (RM) (Italy); Siani, A M [University of Rome ' La Sapienza' , Physics Department, P.le A. Moro 2, I-00185, Rome (Italy); Sisto, R [ISPESL - Istituto Superiore per la Prevenzione E la Sicurezza del Lavoro, Occupational Hygiene Department, Via Fontana Candida 1, I-0040 Monteporzio Catone (RM) (Italy)
2006-09-07
Within an epidemiological study regarding the correlation between skin pathologies and personal ultraviolet (UV) exposure due to solar radiation, 14 field campaigns using polysulphone (PS) dosemeters were carried out at three different Italian sites (urban, semi-rural and rural) in every season of the year. A polysulphone calibration curve for each field experiment was obtained by measuring the ambient UV dose under almost clear sky conditions and the corresponding change in the PS film absorbance, prior and post exposure. Ambient UV doses were measured by well-calibrated broad-band radiometers and by electronic dosemeters. The dose-response relation was represented by the typical best fit to a third-degree polynomial and it was parameterized by a coefficient multiplying a cubic polynomial function. It was observed that the fit curves differed from each other in the coefficient only. It was assessed that the multiplying coefficient was affected by the solar UV spectrum at the Earth's surface whilst the polynomial factor depended on the photoinduced reaction of the polysulphone film. The mismatch between the polysulphone spectral curve and the CIE erythemal action spectrum was responsible for the variability among polysulphone calibration curves. The variability of the coefficient was related to the total ozone amount and the solar zenith angle. A mathematical explanation of such a parameterization was also discussed.
Space curves, anholonomy and nonlinearity
Indian Academy of Sciences (India)
Radha Balakrishnan
2005-04-01
Using classical differential geometry, we discuss the phenomenon of anholonomy that gets associated with a static and a moving curve. We obtain the expressions for the respective geometric phases in the two cases and interpret them. We show that there is a close connection between anholonomy and nonlinearity in a wide class of nonlinear systems.
The New Keynesian Phillips Curve
DEFF Research Database (Denmark)
Ólafsson, Tjörvi
, learning or state-dependant pricing. The introduction of openeconomy factors into the new Keynesian Phillips curve complicate matters further as it must capture the nexus between price setting, inflation and the exchange rate. This is nevertheless a crucial feature for any model to be used for inflation...... forecasting in a small open economy like Iceland....
Murre, J.M.J.
2014-01-01
In this article, learning curves for foreign vocabulary words are investigated, distinguishing between a subject-specific learning rate and a material-specific parameter that is related to the complexity of the items, such as the number of syllables. Two experiments are described, one with Turkish w
The soil reference shrinkage curve
Chertkov, V Y
2014-01-01
A recently proposed model showed how a clay shrinkage curve is transformed to the soil shrinkage curve at the soil clay content higher than a critical one. The objective of the present work was to generalize this model to the soil clay content lower a critical one. I investigated (i) the reference shrinkage curve, that is, one without cracks; (ii) the superficial layer of aggregates, with changed pore structure compared with the intraaggregate matrix; and (iii) soils with sufficiently low clay content where there are large pores inside the intraaggregate clay (so-called lacunar pores). The methodology is based on detail accounting for different contributions to the soil volume and water content during shrinkage. The key point is the calculation of the lacunar pore volume variance at shrinkage. The reference shrinkage curve is determined by eight physical soil parameters: (1) oven-dried specific volume; (2) maximum swelling water content; (3) mean solid density; (4) soil clay content; (5) oven-dried structural...
Bending and elongation effects on the random packing of curved spherocylinders.
Meng, Lingyi; Li, Shuixiang; Lu, Peng; Li, Teng; Jin, Weiwei
2012-12-01
Studies on the macroscopic and microscopic packing properties of nonconvex particles are scarce. As a common concave form, the curved spherocylinder is used in the simulations, and its bending and elongation effects on the random packings are investigated numerically with sphere assembly models and a relaxation algorithm. The aspect ratio is demonstrated to be the main factor regarding the packing density. However, at certain aspect ratios of low densities around 0.3-0.4, the density of curved spherocylinders may increase by 15% more than that of the straight ones, indicating that bending is also a contributor to the packing density. The excluded volume of the curved spherocylinder decreases with the increase of the bending angle, indicating that the excluded volume is applicable in explaining the bending effect on the packing density variation of nonconvex particles. The packings are verified to be randomly distributed in orientation with no significant layering or in-plane order. The local arrangements are further analyzed from the radial distribution function and contact results. The results show that the random packings of nonconvex particles have significant differences and richer characteristics on both the macroscopic and microscopic properties compared with convex objects.
Application of Advanced Master Curve Approaches to the EURO Fracture Toughness Data Set
Energy Technology Data Exchange (ETDEWEB)
Lucon, E.; Scibetta, M.
2007-01-15
The so-called EURO data set is the largest set ever assembled, consisting of fracture toughness results obtained in the ductile-to-brittle transition region. It was the outcome of a large EU sponsored project which involved ten European laboratories in the second half of the 90ies. Several post-project investigations have identified one of the blocks from which specimens were extracted (block SX9) as macroscopically inhomogeneous and significantly tougher than the remaining blocks. In this study, the variability of block SX9 has been investigated using the conventional Master Curve (MC) methodology and some recent MC extensions, namely the SINTAP lower tail, the single point estimation, the bi-modal Master Curve and the multi-modal Master Curve. The basic MC method is intended for macroscopically homogeneous ferritic steels only, and the alternative approaches have been developed for the investigation of inhomogeneous materials. Therefore, these methods can be used to study the behaviour of block SX9 within the EURO data set. It has been found that the bi-modal and multi-modal MC approaches are quite effective in detecting the anomaly represented by block SX9, but only when analyses are performed on data sets of comparable size.
Zhu, Zhongcheng; Li, Yang; Xu, Hui; Peng, Xin; Chen, Ya-Nan; Shang, Cong; Zhang, Qin; Liu, Jiaqi; Wang, Huiliang
2016-06-22
Bulk graphene oxide (GO) nanocomposite materials with macroscopically oriented GO liquid crystalline (LC) structures exhibit interesting anisotropic properties, but their facile preparations remain challenging. This work reports for the first time the facile preparation of poly(N-isopropylacrylamide) (PNIPAM)/GO nanocomposite hydrogels with macroscopically oriented LC structures with the assistance of a flow field induced by vacuum degassing and the in situ polymerization accelerated by GO. The hydrogel prepared with a GO concentration of 5.0 mg mL(-1) exhibits macroscopically aligned LC structures, which endow the gels with anisotropic optical, mechanical properties, and dimensional changes during the phase transition. The hydrogels show dramatically enhanced tensile mechanical properties and phase transition rates. The oriented LC structures are not damaged during the phase transition of the PNIPAM/GO hydrogels, and hence their LC behavior undergoes reversible change. Moreover, highly oriented LC structures can also be formed when the gels are elongated, even for the gels which do not have macroscopically oriented LC structures. Very impressively, the oriented LC structures in the hydrogels can be permanently maintained by drying the gel samples elongated to and then kept at a constant tensile strain. The thermosensitive nature of PNIPAM and the angle-dependent nature of the macroscopically aligned GO LC structures allow the practical applications of the PNIPAM/GO hydrogels as optical switches, soft sensors, and actuators and so on.
Wong, L. N. Y.; Einstein, H. H.
2009-06-01
Cracking and coalescence behavior has been studied experimentally with prismatic laboratory-molded gypsum and Carrara marble specimens containing two parallel pre-existing open flaws. This was done at both the macroscopic and the microscopic scales, and the results are presented in two separate papers. This paper (the first of two) summarizes the macroscopic experimental results and investigates the influence of the different flaw geometries and material, on the cracking processes. In the companion paper (also in this issue), most of the macroscopic deformation and cracking processes shown in this present paper will be related to the underlying microscopic changes. In the present study, a high speed video system was used, which allowed us to precisely observe the cracking mechanisms. Nine crack coalescence categories with different crack types and trajectories were identified. The flaw inclination angle ( β), the ligament length ( L), that is, intact rock length between the flaws, and the bridging angle ( α), that is, the inclination of a line linking up the inner flaw tips, between two flaws, had different effects on the coalescence patterns. One of the pronounced differences observed between marble and gypsum during the compression loading test was the development of macroscopic white patches prior to the initiation of macroscopic cracks in marble, but not in gypsum. Comparing the cracking and coalescence behaviors in the two tested materials, tensile cracking generally occurred more often in marble than in gypsum for the same flaw pair geometries.
Thermal Equilibrium of a Macroscopic Quantum System in a Pure State
Goldstein, Sheldon; Huse, David A.; Lebowitz, Joel L.; Tumulka, Roderich
2015-09-01
We consider the notion of thermal equilibrium for an individual closed macroscopic quantum system in a pure state, i.e., described by a wave function. The macroscopic properties in thermal equilibrium of such a system, determined by its wave function, must be the same as those obtained from thermodynamics, e.g., spatial uniformity of temperature and chemical potential. When this is true we say that the system is in macroscopic thermal equilibrium (MATE). Such a system may, however, not be in microscopic thermal equilibrium (MITE). The latter requires that the reduced density matrices of small subsystems be close to those obtained from the microcanonical, equivalently the canonical, ensemble for the whole system. The distinction between MITE and MATE is particularly relevant for systems with many-body localization for which the energy eigenfuctions fail to be in MITE while necessarily most of them, but not all, are in MATE. We note, however, that for generic macroscopic systems, including those with MBL, most wave functions in an energy shell are in both MATE and MITE. For a classical macroscopic system, MATE holds for most phase points on the energy surface, but MITE fails to hold for any phase point.