WorldWideScience

Sample records for macroscopic boundary angles

  1. Searching for the nanoscopic–macroscopic boundary

    Energy Technology Data Exchange (ETDEWEB)

    Velásquez, E.A. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Grupo de Investigación en Modelamiento y Simulación Computacional, Universidad de San Buenaventura Sec. Medellín, A.A. 5222, Medellín (Colombia); Altbir, D. [Departamento de Física, Universidad de Santiago de Chile (USACH), CEDENNA, Santiago (Chile); Mazo-Zuluaga, J. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Duque, L.F. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Grupo de Física Teórica, Aplicada y Didáctica, Facultad de Ciencias Exactas y Aplicadas Instituto Tecnológico Metropolitano, Medellín (Colombia); Mejía-López, J., E-mail: jmejia@puc.cl [Facultad de Física, Pontificia Universidad Católica de Chile, CEDENNA, Santiago (Chile)

    2013-12-15

    Several studies have focused on the size-dependent properties of elements, looking for a unique definition of the nanoscopic–macroscopic boundary. By using a novel approach consisting of an energy variational method combined with a quantum Heisenberg model, here we address the size at which the ordering temperature of a magnetic nanoparticle reaches its bulk value. We consider samples with sizes in the range 1–500 nm, as well as several geometries and crystalline lattices and observe that, contrarily to what is commonly argued, the nanoscopic-microscopic boundary depends on both factors: shape and crystalline structure. This suggests that the surface-to-volume ratio is not the unique parameter that defines the behavior of a nanometric sample whenever its size increases reaching the bulk dimension. Comparisons reveal very good agreement with experimental evidence with differences less than 2%. Our results have broad implications for practical issues in measurements on systems at the nanometric scale. - Highlights: • A novel quantum-Heisenberg variational energy method is implemented. • The asymptotic behavior toward the thermodynamic limit is explored. • An important dependence of the nano-bulk boundary on the geometry is found. • And also an important dependence on the crystalline lattice. • We obtain a very good agreement with experimental evidence with differences <2%.

  2. Nucleation of small angle boundaries

    CSIR Research Space (South Africa)

    Nabarro, FRN

    1996-12-01

    Full Text Available -ANGLE BOUNDARIES F.R.N. Nabarro Condensed Matter Physics Research Unit, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, and Division of Materials Science and Technology, CSIR, P.O. Box 395, Pretoria, South... with eq. 11. Acknowledgment F.R.N. Nabarro is grateful to the University of Virginia for hospitality during the course of this work. D. Kuhlmann-Wilsdorf thanks the National Science Foundation, (Surface Engineering...

  3. Monte Carlo method of macroscopic modulation of small-angle charged particle reflection from solid surfaces

    CERN Document Server

    Bratchenko, M I

    2001-01-01

    A novel method of Monte Carlo simulation of small-angle reflection of charged particles from solid surfaces has been developed. Instead of atomic-scale simulation of particle-surface collisions the method treats the reflection macroscopically as 'condensed history' event. Statistical parameters of reflection are sampled from the theoretical distributions upon energy and angles. An efficient sampling algorithm based on combination of inverse probability distribution function method and rejection method has been proposed and tested. As an example of application the results of statistical modeling of particles flux enhancement near the bottom of vertical Wehner cone are presented and compared with simple geometrical model of specular reflection.

  4. Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography.

    Science.gov (United States)

    Liebi, Marianne; Georgiadis, Marios; Menzel, Andreas; Schneider, Philipp; Kohlbrecher, Joachim; Bunk, Oliver; Guizar-Sicairos, Manuel

    2015-11-19

    The mechanical properties of many materials are based on the macroscopic arrangement and orientation of their nanostructure. This nanostructure can be ordered over a range of length scales. In biology, the principle of hierarchical ordering is often used to maximize functionality, such as strength and robustness of the material, while minimizing weight and energy cost. Methods for nanoscale imaging provide direct visual access to the ultrastructure (nanoscale structure that is too small to be imaged using light microscopy), but the field of view is limited and does not easily allow a full correlative study of changes in the ultrastructure over a macroscopic sample. Other methods of probing ultrastructure ordering, such as small-angle scattering of X-rays or neutrons, can be applied to macroscopic samples; however, these scattering methods remain constrained to two-dimensional specimens or to isotropically oriented ultrastructures. These constraints limit the use of these methods for studying nanostructures with more complex orientation patterns, which are abundant in nature and materials science. Here, we introduce an imaging method that combines small-angle scattering with tensor tomography to probe nanoscale structures in three-dimensional macroscopic samples in a non-destructive way. We demonstrate the method by measuring the main orientation and the degree of orientation of nanoscale mineralized collagen fibrils in a human trabecula bone sample with a spatial resolution of 25 micrometres. Symmetries within the sample, such as the cylindrical symmetry commonly observed for mineralized collagen fibrils in bone, allow for tractable sampling requirements and numerical efficiency. Small-angle scattering tensor tomography is applicable to both biological and materials science specimens, and may be useful for understanding and characterizing smart or bio-inspired materials. Moreover, because the method is non-destructive, it is appropriate for in situ measurements and

  5. Nanostructure surveys of macroscopic specimens by small-angle scattering tensor tomography

    Science.gov (United States)

    Liebi, Marianne; Georgiadis, Marios; Menzel, Andreas; Schneider, Philipp; Kohlbrecher, Joachim; Bunk, Oliver; Guizar-Sicairos, Manuel

    2015-11-01

    The mechanical properties of many materials are based on the macroscopic arrangement and orientation of their nanostructure. This nanostructure can be ordered over a range of length scales. In biology, the principle of hierarchical ordering is often used to maximize functionality, such as strength and robustness of the material, while minimizing weight and energy cost. Methods for nanoscale imaging provide direct visual access to the ultrastructure (nanoscale structure that is too small to be imaged using light microscopy), but the field of view is limited and does not easily allow a full correlative study of changes in the ultrastructure over a macroscopic sample. Other methods of probing ultrastructure ordering, such as small-angle scattering of X-rays or neutrons, can be applied to macroscopic samples; however, these scattering methods remain constrained to two-dimensional specimens or to isotropically oriented ultrastructures. These constraints limit the use of these methods for studying nanostructures with more complex orientation patterns, which are abundant in nature and materials science. Here, we introduce an imaging method that combines small-angle scattering with tensor tomography to probe nanoscale structures in three-dimensional macroscopic samples in a non-destructive way. We demonstrate the method by measuring the main orientation and the degree of orientation of nanoscale mineralized collagen fibrils in a human trabecula bone sample with a spatial resolution of 25 micrometres. Symmetries within the sample, such as the cylindrical symmetry commonly observed for mineralized collagen fibrils in bone, allow for tractable sampling requirements and numerical efficiency. Small-angle scattering tensor tomography is applicable to both biological and materials science specimens, and may be useful for understanding and characterizing smart or bio-inspired materials. Moreover, because the method is non-destructive, it is appropriate for in situ measurements and

  6. Atomistic aspects of crack propagation along high angle grain boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, D. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Science and Engineering

    1997-12-31

    The author presents atomistic simulations of the crack tip configuration near a high angle {Sigma} = 5 [001](210) symmetrical tilt grain boundary in NiAl. The simulations were carried out using molecular statics and embedded atom (EAM) potentials. The cracks are stabilized near a Griffith condition involving the cohesive energy of the grain boundary. The atomistic configurations of the tip region are different in the presence of the high angle grain boundary than in the bulk. Three different configurations of the grain boundary were studied corresponding to different local compositions. It was found that in ordered NiAl, cracks along symmetrical tilt boundaries show a more brittle behavior for Al rich boundaries than for Ni-rich boundaries. Lattice trapping effects in grain boundary fracture were found to be more significant than in the bulk.

  7. Poincare duality angles for Riemannian manifolds with boundary

    CERN Document Server

    Shonkwiler, Clayton

    2009-01-01

    On a compact Riemannian manifold with boundary, the absolute and relative cohomology groups appear as certain subspaces of harmonic forms. DeTurck and Gluck showed that these concrete realizations of the cohomology groups decompose into orthogonal subspaces corresponding to cohomology coming from the interior and boundary of the manifold. The principal angles between these interior subspaces are all acute and are called Poincare duality angles. This paper determines the Poincare duality angles of a collection of interesting manifolds with boundary derived from complex projective spaces and from Grassmannians, providing evidence that the Poincare duality angles measure, in some sense, how "close" a manifold is to being closed. This paper also elucidates a connection between the Poincare duality angles and the Dirichlet-to-Neumann operator for differential forms, which generalizes the classical Dirichlet-to-Neumann map arising in the problem of Electrical Impedance Tomography. Specifically, the Poincare duality...

  8. A new angle on microscopic suspension feeders near boundaries.

    Science.gov (United States)

    Pepper, Rachel E; Roper, Marcus; Ryu, Sangjin; Matsumoto, Nobuyoshi; Nagai, Moeto; Stone, Howard A

    2013-10-15

    Microscopic sessile suspension feeders are a critical component in aquatic ecosystems, acting as an intermediate trophic stage between bacteria and higher eukaryotic taxa. Because they live attached to boundaries, it has long been thought that recirculation of the feeding currents produced by sessile suspension feeders inhibits their ability to access fresh fluid. However, previous models for the feeding flows of these organisms assume that they feed by pushing fluid perpendicular to surfaces they live upon, whereas we observe that sessile suspension feeders often feed at an angle to these boundaries. Using experiments and calculations, we show that living suspension feeders (Vorticella) likely actively regulate the angle that they feed relative to a substratum. We then use theory and simulations to show that angled feeding increases nutrient and particle uptake by reducing the reprocessing of depleted water. This work resolves an open question of how a key class of suspension-feeding organisms escapes physical limitations associated with their sessile lifestyle.

  9. Single macroscopic pillars as model system for bioinspired adhesives: influence of tip dimension, aspect ratio, and tilt angle.

    Science.gov (United States)

    Micciché, Maurizio; Arzt, Eduard; Kroner, Elmar

    2014-05-28

    The goal of our study is to better understand the design parameters of bioinspired dry adhesives inspired by geckos. For this, we fabricated single macroscopic pillars of 400 μm diameter with different aspect ratios and different tip shapes (i.e., flat tips, spherical tips with different radii, and mushroom tips with different diameters). Tilt-angle-dependent adhesion measurements showed that although the tip shape of the pillars strongly influences the pull-off force, the pull-off strength is similar for flat and mushroom-shaped tips. We found no tilt-angle dependency of adhesion for spherical tip structures and, except for high tilt angle and low preload experiments, no tilt-angle effect for mushroom-tip pillars. For flat-tip pillars, we found a strong influence of tilt angle on adhesion, which decreased linearly with increasing aspect ratio. The experiments show that for the tested aspect ratios between 1 and 5, a linear decrease of tilt-angle dependency is found. The results of our studies will help to design bioinspired adhesives for application on smooth and rough surfaces.

  10. The favourable large misorientation angle grain boundaries in graphene.

    Science.gov (United States)

    Zhang, Xiuyun; Xu, Ziwei; Yuan, Qinghong; Xin, John; Ding, Feng

    2015-12-21

    A grain boundary (GB) in graphene is a linear defect between two specifically oriented graphene edges, whose title angles are denoted as θ1 and θ2, respectively. Here we present a systematic theoretical study on the structure and stability of GBs in graphene as a function of the misorientation angle, Φ = (θ1-θ2) and the GB orientation in multi-crystalline graphene, which is denoted by Θ = (θ1 + θ2). It is surprising that although the number of disorders of the GB, i.e., the pentagon-heptagon pairs (5|7s), reaches the maximum at Φ∼ 30°, the GB formation energy versus the Φ curve reaches a local minimum. The subsequent M-shape of the Efvs. the Φ curve is due to the strong cancellation of the local strains around 5|7 pairs by the "head-to-tail" formation. This study successfully explains many previously observed experimental puzzles, such as the multimodal distribution of GBs and the abundance of GB misorientation angles of ∼30°. Besides, this study also showed that the formation energy of GBs is less sensitive to Θ, although the twin boundaries are slightly more stable than others.

  11. Microscopic and Macroscopic Dynamic Interface Shapes and the Interpretation of Dynamic Contact Angles.

    Science.gov (United States)

    Ramé; Garoff

    1996-01-15

    We have studied shapes of dynamic fluid interfaces at distances contact line at capillary numbers (Ca) ranging from 10(-3) to 10(-1). Near the moving contact line where viscous deformation is important, an analysis valid to O(1) in Ca describes the shape of the fluid interface. Static capillarity should describe the interface shape far from the contact line. We have quantitatively determined the extent of the regions described by the analysis with viscous deformation and by a static shape as a function of Ca. We observe a third portion of the interface between the two regions cited above, which is not described by either the analysis with viscous deformation or a static shape. In this third region the interface shape is controlled by viscous and gravitational forces of comparable magnitude. We detect significant viscous deformation even far from the contact line at Ca approximately > 0.01. Our measured dynamic contact angle parameter extracted by fitting the analysis with viscous deformation to the shape near the moving contact line coincides with the contact angle of the static-like shape far from the contact line. We measure and explain the discrepancy between this dynamic contact angle parameter and the apparent contact angles based on meniscus or apex heights. Our observations of viscous effects at large distances from the contact line have implications for dynamic contact angle measurements in capillary tubes.

  12. The Pinning by Particles of Low and High Angle Grain Boundaries during Grain Growth

    DEFF Research Database (Denmark)

    Tweed, C.J.; Ralph, B.; Hansen, Niels

    1984-01-01

    and coworkers. These estimates of local driving pressures have shown that they are similar for both the low and the high angle boundaries encountered in the samples. The pinning effects by particles at high angle boundaries are in general accord with the model due to Zener whilst those at low angle boundaries...

  13. AFM Study of Surface Nanobubbles on Binary Self-Assembled Monolayers on Ultraflat Gold with Identical Macroscopic Static Water Contact Angles and Different Terminal Functional Groups.

    Science.gov (United States)

    Song, Bo; Chen, Kun; Schmittel, Michael; Schönherr, Holger

    2016-11-01

    All experimental findings related to surface nanobubbles, such as their pronounced stability and the striking differences of macroscopic and apparent nanoscopic contact angles, need to be addressed in any theory or model of surface nanobubbles. In this work we critically test a recent explanation of surface nanobubble stability and their consequences and contrast this with previously proposed models. In particular, we elucidated the effect of surface chemical composition of well-controlled solid-aqueous interfaces of identical roughness and defect density on the apparent nanoscopic contact angles. Expanding on a previous atomic force microscopy (AFM) study on the systematic variation of the macroscopic wettability using binary self-assembled monolayers (SAMs) on ultraflat template stripped gold (TSG), we assessed here the effect of different surface chemical composition for macroscopically identical static water contact angles. SAMs on TSG with a constant macroscopic water contact angle of 81 ± 2° were obtained by coadsorption of a methyl-terminated thiol and a second thiol with different terminal functional groups, including hydroxy, amino, and carboxylic acid groups. In addition, surface nanobubbles formed by entrainment of air on SAMs of a bromoisobutyrate-terminated thiol were analyzed by AFM. Despite the widely differing surface potentials and different functionality, such as hydrogen bond acceptor or donor, and different dipole moments and polarizability, the nanoscopic contact angles (measured through the condensed phase and corrected for AFM tip broadening effects) were found to be 145 ± 10° for all surfaces. Hence, different chemical functionalities at identical macroscopic static water contact angle do not noticeably influence the apparent nanoscopic contact angle of surface nanobubbles. This universal contact angle is in agreement with recent models that rely on contact line pinning and the equilibrium of gas outflux due to the Laplace pressure and

  14. Macroscopic properties and dynamical large deviations of the boundary driven Kawasaki process with long range interaction

    CERN Document Server

    Mourragui, Mustapha

    2011-01-01

    We consider a boundary driven exclusion process associated to particles evolving under Kawasaki (conservative) dynamics and long range interaction in a regime in which at equilibrium phase separation might occur. We show that the empirical density under the diffusive scaling solves a non linear integro differential evolution equation with Dirichlet boundary conditions and we prove the associated dynamical large deviations principle. Further, tuning suitable the intensity of the interaction, in the uniqueness phase regime, we show that under the stationary measure the empirical density solves a non local, stationary, transport equation.

  15. Effects of Boundary Condition and Helix Angle On Meshing Performance of TI Worm Gearing

    Institute of Scientific and Technical Information of China (English)

    SUN Yue-hai; DUAN Lu-qian; WANG Shu-ren; ZHANG Ce

    2006-01-01

    To exactly describe the contact state and contact area oftooth surface oftoroidalinvolute(TI) worm gearing.the authors introduced boundary condition into contact line analysis.With helix angle chosen as parameter,the criterion for the existence of meshing boundary line on the surface of TI worm gearing is derived.Results show that there can be four situations for meshing boundary line on the tooth surface of gear.namely,inexistence of meshing boundary line.a unique line,two lines,and two coincident lines.If the helix angle is equal to or slightly smaller than the bigger angle,which makes two meshing boundary lines superpose,a preferable meshing performance is obtained.Computer simulation proves the validity Of the above conclusion.

  16. Spectral Properties of Grain Boundaries at Small Angles of Rotation

    CERN Document Server

    Hempel, Rainer

    2010-01-01

    We study some spectral properties of a simple two-dimensional model for small angle defects in crystals and alloys. Starting from a periodic potential $V \\colon \\R^2 \\to \\R$, we let $V_\\theta(x,y) = V(x,y)$ in the right half-plane $\\{x \\ge 0\\}$ and $V_\\theta = V \\circ M_{-\\theta}$ in the left half-plane $\\{x < 0\\}$, where $M_\\theta \\in \\R^{2 \\times 2}$ is the usual matrix describing rotation of the coordinates in $\\R^2$ by an angle $\\theta$. As a main result, it is shown that spectral gaps of the periodic Schr\\"odinger operator $H_0 = -\\Delta + V$ fill with spectrum of $R_\\theta = -\\Delta + V_\\theta$ as $0 \

  17. A New Angle on Microscopic Suspension Feeders near Boundaries

    OpenAIRE

    Pepper, Rachel E.; Roper, Marcus; Ryu, Sangjin; Matsumoto, Nobuyoshi; Nagai, Moeto; Stone, Howard A.

    2013-01-01

    Microscopic sessile suspension feeders are a critical component in aquatic ecosystems, acting as an intermediate trophic stage between bacteria and higher eukaryotic taxa. Because they live attached to boundaries, it has long been thought that recirculation of the feeding currents produced by sessile suspension feeders inhibits their ability to access fresh fluid. However, previous models for the feeding flows of these organisms assume that they feed by pushing fluid perpendicular to surfaces...

  18. THE METHOD OF GRAPHIC SIMPLIFICATION OF AREA FEATURE BOUNDARY WITH RIGHT ANGLES

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Some rules of simplification of area feature boundary and the method of acquiring spatial knowledge,such as maintaining area and shape of area feature, are discussed.This paper focuses on the progressive method of graphic simplification of area feature boundary with right angles based on its characteristics.

  19. The Influence of Structure Heights and Opening Angles of Micro- and Nanocones on the Macroscopic Surface Wetting Properties

    DEFF Research Database (Denmark)

    Sun, Ling; Laustsen, Milan; Mandsberg, Nikolaj

    2016-01-01

    We discuss the influence of surface structure, namely the height and opening angles of nano-and microcones on the surface wettability. We show experimental evidence that the opening angle of the cones is the critical parameter on sample superhydrophobicity, namely static contact angles and roll...... to superhydrophobic without altering surface structures. In addition, we show examples of polymer replicas (polypropylene and poly(methyl methacrylate) with different wettability, fabricated by injection moulding using templates of the silicon cone-structures....

  20. Stability Analysis of Hypersonic Boundary Layer over a Cone at Small Angle of Attack

    Directory of Open Access Journals (Sweden)

    Feng Ji

    2014-04-01

    Full Text Available An investigation on the stability of hypersonic boundary layer over a cone at small angle of attack has been performed. After obtaining the steady base flow, linear stability theory (LST analysis has been made with local parallel assumption. The growth rates of the first mode and second mode waves at different streamwise locations and different azimuthal angles are obtained. The results show that the boundary layer stability was greatly influenced by small angles of attack. The maximum growth rate of the most unstable wave on the leeward is larger than that on the windward. Moreover, dominating second mode wave starts earlier on the leeward than that on the windward. The LST result also shows that there is a “valley” region around 120°~150° meridian in the maximum growth rates curve.

  1. The potential link between high angle grain boundary morphology and grain boundary deformation in a nickel-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Jennifer L.W., E-mail: jennifer.w.carter@case.edu [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 44321 (United States); Sosa, John M. [Center for Accelerated Maturation of Materials, The Ohio State University, Columbus, OH 44321 (United States); Shade, Paul A. [Air Force Research Laboratory, Materials & Manufacturing Directorate, AFRL/RXCM, Wright-Patterson AFB, Dayton, OH 45433 (United States); Fraser, Hamish L. [Center for Accelerated Maturation of Materials, The Ohio State University, Columbus, OH 44321 (United States); Uchic, Michael D. [Air Force Research Laboratory, Materials & Manufacturing Directorate, AFRL/RXCM, Wright-Patterson AFB, Dayton, OH 45433 (United States); Mills, Michael J. [Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 44321 (United States)

    2015-07-29

    Focused ion beam (FIB) based serial sectioning was utilized to characterize the morphology of two high angle grain boundaries (HAGB) in a nickel based superalloy, one that experienced grain boundary sliding (GBS) and the other experienced strain accumulation, during elevated temperature constant stress loading conditions. A custom script was utilized to serial section and collect ion-induced secondary electron images from the FIB-SEM system. The MATLAB based MIPAR{sup TM} software was utilized to align, segment and reconstruct 3D volumes from the sectioned images. Analysis of the 3D data indicates that the HAGB that exhibited GBS had microscale curvature that was planar in nature, and local serrations on the order of ±150 nm. In contrast, the HAGB that exhibited strain accumulation was not planar and had local serrations an order of magnitude greater than the other grain boundary. It is hypothesized that the serrations and the local grain boundary network are key factors in determining which grain boundaries experience GBS during creep deformation.

  2. On the small angle twist sub-grain boundaries in Ti3AlC2

    Science.gov (United States)

    Zhang, Hui; Zhang, Chao; Hu, Tao; Zhan, Xun; Wang, Xiaohui; Zhou, Yanchun

    2016-04-01

    Tilt-dominated grain boundaries have been investigated in depth in the deformation of MAX phases. In stark contrast, another important type of grain boundaries, twist grain boundaries, have long been overlooked. Here, we report on the observation of small angle twist sub-grain boundaries in a typical MAX phase Ti3AlC2 compressed at 1200 °C, which comprise hexagonal screw dislocation networks formed by basal dislocation reactions. By first-principles investigations on atomic-scale deformation and general stacking fault energy landscapes, it is unequivocally demonstrated that the twist sub-grain boundaries are most likely located between Al and Ti4f (Ti located at the 4f Wyckoff sites of P63/mmc) layers, with breaking of the weakly bonded Al–Ti4f. The twist angle increases with the increase of deformation and is estimated to be around 0.5° for a deformation of 26%. This work may shed light on sub-grain boundaries of MAX phases, and provide fundamental information for future atomic-scale simulations.

  3. Mechanism of transition in a hypersonic sharp cone boundary layer with zero angle of attack

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Firstly, the steady laminar flow field of a hypersonic sharp cone boundary layer with zero angle of attack was computed. Then, two groups of finite amplitude T-S wave disturbances were introduced at the entrance of the computational field, and the spatial mode transition process was studied by direct numerical simulation (DNS) method.The mechanism of the transition process was analyzed. It was found that the change of the stability characteristics of the mean flow profile was the key issue. Furthermore, the characteristics of evolution for the disturbances of different modes in the hypersonic sharp cone boundary layer were discussed.

  4. Depairing current density through a low-angle grain boundary in a superconducting film

    Directory of Open Access Journals (Sweden)

    Feng Xue

    2016-05-01

    Full Text Available In this paper, the effect of a grain boundary (GB on the depairing current density of a high-temperature superconducting film is investigated. The modified effective free energy is proposed by considering the interaction of the superconducting condensate with the deformation of the superconductor due to the dislocations which constitute a grain boundary. After the elastic strain field of the dislocation is obtained, we analyzed the depress effect of the GB on the depairing current density of a superconducting film. The results are qualitatively agreement with the classic exponential relationship with the misorientation angles of the critical current density of high-temperature superconductors.

  5. Dislocation structures and electrical conduction properties of low angle tilt grain boundaries in LiNbO3

    Science.gov (United States)

    Furushima, Yuho; Nakamura, Atsutomo; Tochigi, Eita; Ikuhara, Yuichi; Toyoura, Kazuaki; Matsunaga, Katsuyuki

    2016-10-01

    Dislocations in crystalline materials constitute unique, atomic-scale, one-dimensional structure and have a potential to induce peculiar physical properties that are not found in the bulk. In this study, we fabricated LiNbO3 bicrystals with low angle tilt grain boundaries and investigated the relationship between the atomic structure of the boundary dislocations and their electrical conduction properties. Observations by using transmission electron microscopy revealed that dislocation structures at the (0001) low angle tilt grain boundaries depend on the tilt angle of the boundaries. Specifically, the characteristic dislocation structures with a large Burgers vector were formed in the boundary with the tilt angle of 2°. It is noteworthy that only the grain boundary of 2° exhibits distinct electrical conductivity after reduction treatment, although LiNbO3 is originally insulating. This unique electrical conductivity is suggested to be due to the characteristic dislocation structures with a large Burgers vector.

  6. Relationship between boundary misorientation angle and true strain during high temperature deformation of 7050 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    HU Hui-e; YANG Li; ZHEN Liang; SHAO Wen-zhu; ZHANG Bao-you

    2008-01-01

    Tensile tests of solid solution treated 7050 aluminum alloy were conducted to different strain degrees (0.1, 0.4, 0.6 and failure) at 460 ℃ with the strain rate of 1.0×10-4-1.0×10-1s-1. The boundary misorientation angle evolution during hot deformation of the 7050 aluminum alloy was studied by EBSD technique and the fracture surfaces were observed using SEM. A linear relationship between the increase in the average boundary misorientation angle and the true strain at different strain rates is assumed when aluminum alloy is deformed at 460 ℃. The increasing rate of average boundary misorientation angle is 15.1-, 15.7- and -0.75- corresponding to the strain rate of 1.0×10-4, 1.0×10-2 and 0.1 s-1, respectively. The main softening mechanism is continuous dynamic recrystallization when the strain rates are 1.0×10-4 and 1.0×10-2 s-1, and it is dynamic recovery when strain rate is 0.1 s-1.

  7. Transition prediction for supersonic and hypersonic boundary layers on a cone with angle of attack

    Institute of Scientific and Technical Information of China (English)

    SU CaiHong; ZHOU Heng

    2009-01-01

    Transition prediction for boundary layers has always been one of the urgent problems waiting for a solution for the development of aero-space technology, yet there is no reliable and effective method due to the complexity of the problem. The eN method has been regarded as an effective method for the transition prediction of boundary layers. However, it heavily relies on experiment or experience. And in cases with three-dimensional base flow, for instance, the boundary layer on a cone with angle of attack, the result of its application is not satisfactory. The authors have found its cause and proposed the method for its improvement, which did yield the fairly satisfactory result for a given test case, and also did not rely so much on experiment or experience. However, before people can really apply this method to practical problems, more test cases have to be studied. In this paper, more test cases for the appli- cation of the improved eN method to problems of transition prediction of supersonic and hypersonic boundary layers on cones with angle of attack will be studied. The results are compared with those obtained by experiments and/or direct numerical simulations, confirming that the improved eN method is effective and reliable. We also find that there may be more than one ZARF for each meridian plane, and which one should be chosen for the eN method has been clarified.

  8. MACROSCOPIC RIVERS

    NARCIS (Netherlands)

    VANDENBERG, IP

    1991-01-01

    We present a mathematical model for the ''river-phenomenon'': striking concentrations of trajectories of ordinary differential equations. This model of ''macroscopic rivers'' is formulated within nonstandard analysis, and stated in terms of macroscopes and singular perturbations. For a subclass, the

  9. Broadband and wide-angle negative reflection at a phononic crystal boundary

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Degang; Zhu, Xuefeng, E-mail: ernestzhu.nju@gmail.com; Yi, Lin [Department of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Ye, Yangtao; Xu, Shengjun [Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China)

    2014-01-27

    We have theoretically and experimentally demonstrated the anomalous negative reflection at the boundary of a well-designed two-dimensional phononic crystal. This exotic phenomenon is attributed to the selective enhancement of −1st order diffraction mode with the zero-order diffraction mode being dramatically suppressed. After material and structural optimization, the negative reflection can be maintained in a broadband of frequencies and for a wide incident angle range. Our system can be employed to design Littrow configuration to realize perfect broadband and wide-angle blazing. The study gives a possibility to achieve greater flexibility and stronger effects in manipulating reflected acoustic waves, which has potential applications in underwater communication, medical ultrasonics, etc.

  10. Driven isotropic Heisenberg spin chain with arbitrary boundary twisting angle: exact results.

    Science.gov (United States)

    Popkov, V; Karevski, D; Schütz, G M

    2013-12-01

    We consider an open isotropic Heisenberg quantum spin chain, coupled at the ends to boundary reservoirs polarized in different directions, which sets up a twisting gradient across the chain. Using a matrix product ansatz, we calculate the exact magnetization profiles and magnetization currents in the nonequilibrium steady state of a chain with N sites. The magnetization profiles are harmonic functions with a frequency proportional to the twisting angle θ. The currents of the magnetization components lying in the twisting plane and in the orthogonal direction behave qualitatively differently: In-plane steady-state currents scale as 1/N^{2} for fixed and sufficiently large boundary coupling, and vanish as the coupling increases, while the transversal current increases with the coupling and saturates to 2θ/N.

  11. Recursive Determination for Effect of Alloying Element on Impurity Induced Low Angle Grain Boundary Embrittlement

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The effect of alloying element (Ni, Co, Mn) on P doped Fe 5.3° low angle grain boundary (GB) embrittlement was investigated by the Recursion method. The model of dislocations was used to construct the atomic structure for the P doped GB. The result indicated that the role of impurity and alloying element segregation to GB can be studied with BOI and the difference between their segregation energies at GB and at free surface (FS) (ΔE=Egbseg-Efsseg). The BOI results showed that P leads the “loosening” of the 5.3° low angle GB and decreases the cohesion strength of P doped GB when the alloying element (Ni, Co, or Mn) is added into the P doped 5.3° low angle GB. The ΔE value reveals that the alloying element Ni, Co and Mn have higher energy at P doped 5.3° low angle GB, indicating it serves as a GB embrittler. The BOI results and ΔE calculation were comparable with each other, and they are also consistent with the experimental results, which confirm the embrittling effect of alloying element (Ni, Co, Mn) on P-induced GB embrittlement.

  12. Gap States at Low-Angle Grain Boundaries in Monolayer Tungsten Diselenide

    KAUST Repository

    Huang, Yu Li

    2016-05-03

    Two-dimensional (2D) transition metal dichalcogenides (TMDs) have revealed many novel properties of interest to future device applications. In particular, the presence of grain boundaries (GBs) can significantly influence the material properties of 2D TMDs. However, direct characterization of the electronic properties of the GB defects at the atomic scale remains extremely challenging. In this study, we employ scanning tunneling microscopy and spectroscopy to investigate the atomic and electronic structure of low-angle GBs of monolayer tungsten diselenide (WSe2) with misorientation angles of 3-6°. Butterfly features are observed along the GBs, with the periodicity depending on the misorientation angle. Density functional theory calculations show that these butterfly features correspond to gap states that arise in tetragonal dislocation cores and extend to distorted six-membered rings around the dislocation core. Understanding the nature of GB defects and their influence on transport and other device properties highlights the importance of defect engineering in future 2D device fabrication. © 2016 American Chemical Society.

  13. Methods for calculating the transonic boundary layer separation for V/STOL inlets at high incidence angles

    Science.gov (United States)

    Chou, D. C.; Lee, H. C.; Luidens, R. W.; Stockman, N. O.

    1978-01-01

    A semi-empirical scheme for the prediction of transonic pressure distribution on the surface of V/STOL inlets at high incidence angles has been developed. The investigation is intended to improve the boundary layer calculation and separation prediction by including the effects of shock wave-boundary layer interaction into the Lewis Inlet Viscous Computer Program. Wind-tunnel results and theoretical pressure calculation for critical cases are used in constructing the transonic pressure distribution. The program, which describes the development of the boundary layer and predicts the possible flow separation, can handle the cases of inlets at high incidence angles where local supersonic region may occur in the flow.

  14. Low-Angle Grain Boundaries in Sublimation Grown 6H-SiC Crystals

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    High-resolution X-ray diffractometry (HRXRD) was used to assess the quality of 6H-SiC crystals grown by sublimation method. The results show the occurrence of low-angle grain boundaries (LB) is close relative to the inclination of the crystal interface. At the central faceted region with 0° inclination the crystal is of high structural perfection. However, at the region close to the facet with less than 5° inclination LB occurs slightly and at the region close to the peripheral polytype ring with more than 5° inclination LB defect occurs heavily. The density of LB can be drastically reduced by decreasing radial temperature gradient that determines the shape of the crystal growth interface.

  15. Wetting on a plate with three-dimensional random heterogeneity and roughness. Equilibrium state and contact angle observed macroscopically; Sanjigen random na seijo wo motsu kotaimenjo deno nure kyodo. Energy heiko joken to kyshitekina sesshokukaku no kankei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kato, K.; Azuma, T. [Osaka City Univ., Osaka (Japan)

    1999-11-25

    A theoretical study was conducted to investigate the wetting behavior of liquid meniscus on a vertical plate with three-dimensional random characteristics of heterogeneity and roughness. The thermodynamic stable condition was derived by considering the minimum of system free energy. The local stable condition leads to a result similar to that obtained for a plate with two-dimensional characteristics, i.e., the system has many meta-stable states. For the stable condition of the whole system, a relation was derived between macroscopically observed contact angle and the surface characteristics. The product of cosine of the contact angle and liquid surface tension is equal to the energy difference for the liquid to wet the plate by apparent unit area. If the liquid wets the solid surface reversibly, there is only one contact angle observed macroscopically. This fact suggests that the contact angle hysteresis is caused by the irreversible motion when the liquid advances or recedes on the solid surface. The well-known Cassie and Wenzel's contact angles are explained as those corresponding to thermodynamically stable condition when the liquid wets the solid reversibly. (author)

  16. Angle resolved photoemission spectroscopy reveals spin charge separation in metallic MoSe2 grain boundary

    Science.gov (United States)

    Ma, Yujing; Diaz, Horacio Coy; Avila, José; Chen, Chaoyu; Kalappattil, Vijaysankar; Das, Raja; Phan, Manh-Huong; Čadež, Tilen; Carmelo, José M. P.; Asensio, Maria C.; Batzill, Matthias

    2017-02-01

    Material line defects are one-dimensional structures but the search and proof of electron behaviour consistent with the reduced dimension of such defects has been so far unsuccessful. Here we show using angle resolved photoemission spectroscopy that twin-grain boundaries in the layered semiconductor MoSe2 exhibit parabolic metallic bands. The one-dimensional nature is evident from a charge density wave transition, whose periodicity is given by kF/π, consistent with scanning tunnelling microscopy and angle resolved photoemission measurements. Most importantly, we provide evidence for spin- and charge-separation, the hallmark of one-dimensional quantum liquids. Our studies show that the spectral line splits into distinctive spinon and holon excitations whose dispersions exactly follow the energy-momentum dependence calculated by a Hubbard model with suitable finite-range interactions. Our results also imply that quantum wires and junctions can be isolated in line defects of other transition metal dichalcogenides, which may enable quantum transport measurements and devices.

  17. Wall-bounded multiphase flows of N immiscible incompressible fluids: consistency and contact-angle boundary condition

    CERN Document Server

    Dong, S

    2016-01-01

    We present an effective method for simulating wall-bounded multiphase flows consisting of $N$ ($N\\geqslant 2$) immiscible incompressible fluids with different densities, viscosities and pairwise surface tensions. The N-phase physical formulation is based on a modified thermodynamically consistent phase field model that is more general than in a previous work, and it is developed by considering the reduction consistency if some of the fluid components were absent from the system. We propose an N-phase contact-angle boundary condition that is reduction consistent between $N$ phases and $M$ phases ($2\\leqslant M\\leqslant N-1$). We also present a numerical algorithm for solving the N-phase governing equations together with the contact-angle boundary conditions developed herein. Extensive numerical experiments are presented for several flow problems involving multiple fluid components and solid-wall boundaries to investigate the wettability effects with multiple types of contact angles. In particular, we compare s...

  18. Partial dislocation configurations in a low-angle boundary in {alpha}-Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Tochigi, E. [Department of Materials Science, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Shibata, N. [Institute of Engineering Innovation, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); PRESTO, JST, 4-1-8, Honcho Kawaguchi, Saitama 332-0012 (Japan); Nakamura, A. [Department of Intelligent Materials Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshiku, Osaka 558-8585 (Japan); Yamamoto, T. [Institute of Engineering Innovation, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan); Ikuhara, Y. [Institute of Engineering Innovation, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan)], E-mail: ikuhara@sigma.t.u-tokyo.ac.jp

    2008-05-15

    The dislocation structures of a low-angle tilt grain boundary in alumina bicrystal were investigated by transmission electron microscopy. The grain boundary was found to consist of two regions: an area with pairs of partial dislocations and an area with groups of odd numbered partial dislocations (multiple-partial-structure). Eight kinds of multiple-partial-structures were found in the fabricated grain boundary. The Burgers vectors of each partial dislocation in the grain boundary can be distinguished by dark-field imaging, and thus the arrangement of partial dislocations in the multiple-partial-structures are determined. It is concluded that a slight twist component of the boundary is the origin of the characteristic multiple-partial-structures.

  19. Macroscopic theory for capillary-pressure hysteresis.

    Science.gov (United States)

    Athukorallage, Bhagya; Aulisa, Eugenio; Iyer, Ram; Zhang, Larry

    2015-03-03

    In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials.

  20. An Alternative Method to Implement Contact Angle Boundary Condition on Immersed Surfaces for Phase-Field Simulations

    CERN Document Server

    Huang, Jun-Jie

    2016-01-01

    In this paper, we propose an alternative approach to implement the contact angle boundary condition on immersed surfaces for phase-field simulations of two-phase flows using the Cahn-Hilliard equation on a Cartesian mesh. This simple and effective method was inspired by previous works on the geometric formulation of the wetting boundary condition. In two dimensions, by making full use of the hyperbolic tangent profile of the order parameter, we were able to obtain its unknown value at a ghost point from the information at only one point in the fluid. This is in contrast with previous approaches using interpolations involving several points. The special feature allows this method to be easily implemented on immersed surfaces (including curved ones) that cut through the grid lines. It is verified through the study of two examples: (1) the shape of a drop on a circular cylinder with different contact angles; (2) the spreading of a drop on an embedded inclined wall with a given contact angle.

  1. Interplay between intrinsic point defects and low-angle grain boundary in bcc tungsten: effects of local stress field.

    Science.gov (United States)

    Niu, Liang-Liang; Zhang, Ying; Shu, Xiaolin; Jin, Shuo; Zhou, Hong-Bo; Gao, Fei; Lu, Guang-Hong

    2015-07-01

    We have used molecular statics in conjunction with an embedded atom method to explore the interplay between native point defects (vacancies and self-interstitials (SIAs)) and a low-angle grain boundary (GB) in bcc tungsten. The low-angle GB has biased absorption of SIAs over vacancies. We emphasize the significance of phenomena such as vacancy delocalization and SIA instant absorption around the GB dislocation cores in stabilizing the defect structures. Interstitial loading into the GB can dramatically enhance the interaction strength between the point defects and the GB due to SIA clustering (SIA cloud formation) or SIA vacancy recombination. We propose that the 'maximum atom displacement' can complement the 'vacancy formation energy' in evaluating unstable vacancy sites. Calculations of point defect migration barriers in the vicinity of GB dislocation cores show that vacancies and SIAs preferentially migrate along the pathways in the planes immediately above and below the core, respectively.

  2. Interplay between intrinsic point defects and low-angle grain boundary in bcc tungsten: effects of local stress field

    Science.gov (United States)

    Niu, Liang-Liang; Zhang, Ying; Shu, Xiaolin; Jin, Shuo; Zhou, Hong-Bo; Gao, Fei; Lu, Guang-Hong

    2015-06-01

    We have used molecular statics in conjunction with an embedded atom method to explore the interplay between native point defects (vacancies and self-interstitials (SIAs)) and a low-angle grain boundary (GB) in bcc tungsten. The low-angle GB has biased absorption of SIAs over vacancies. We emphasize the significance of phenomena such as vacancy delocalization and SIA instant absorption around the GB dislocation cores in stabilizing the defect structures. Interstitial loading into the GB can dramatically enhance the interaction strength between the point defects and the GB due to SIA clustering (SIA cloud formation) or SIA vacancy recombination. We propose that the ‘maximum atom displacement’ can complement the ‘vacancy formation energy’ in evaluating unstable vacancy sites. Calculations of point defect migration barriers in the vicinity of GB dislocation cores show that vacancies and SIAs preferentially migrate along the pathways in the planes immediately above and below the core, respectively.

  3. Natural convection air flow in vertical upright-angled triangular cavities under realistic thermal boundary conditions

    Directory of Open Access Journals (Sweden)

    Sieres Jaime

    2016-01-01

    Full Text Available This paper presents an analytical and numerical computation of laminar natural convection in a collection of vertical upright-angled triangular cavities filled with air. The vertical wall is heated with a uniform heat flux; the inclined wall is cooled with a uniform temperature; while the upper horizontal wall is assumed thermally insulated. The defining aperture angle φ is located at the lower vertex between the vertical and inclined walls. The finite element method is implemented to perform the computational analysis of the conservation equations for three aperture angles φ (= 15º, 30º and 45º and height-based modified Rayleigh numbers ranging from a low Ra = 0 (pure conduction to a high 109. Numerical results are reported for the velocity and temperature fields as well as the Nusselt numbers at the heated vertical wall. The numerical computations are also focused on the determination of the value of the maximum or critical temperature along the hot vertical wall and its dependence with the modified Rayleigh number and the aperture angle.

  4. Mesoscopic modeling of a two-phase flow in the presence of boundaries: The contact angle

    NARCIS (Netherlands)

    Benzi, R.; Biferale, L.; Sbragaglia, M.; Succi, S.; Toschi, F.

    2006-01-01

    We present a mesoscopic model, based on the Boltzmann equation, for the interaction between a solid wall and a nonideal fluid. We present an analytic derivation of the contact angle in terms of the surface tension between the liquid-gas, the liquid-solid, and the gas-solid phases. We study the depen

  5. Two Wide-Angle Imaging Neutral-Atom Spectrometers and Interstellar Boundary Explorer energetic neutral atom imaging of the 5 April 2010 substorm

    Science.gov (United States)

    McComas, D. J.; Buzulukova, N.; Connors, M. G.; Dayeh, M. A.; Goldstein, J.; Funsten, H. O.; Fuselier, S.; Schwadron, N. A.; Valek, P.

    2012-03-01

    This study is the first to combine energetic neutral atom (ENA) observations from Two Wide-Angle Imaging Neutral-Atom Spectrometers (TWINS) and Interstellar Boundary Explorer (IBEX). Here we examine the arrival of an interplanetary shock and the subsequent geomagnetically effective substorm on 5 April 2010, which was associated with the Galaxy 15 communications satellite anomaly. IBEX shows sharply enhanced ENA emissions immediately upon compression of the dayside magnetosphere at 08:26:17+/-9 s UT. The compression drove a markedly different spectral shape for the dayside emissions, with a strong enhancement at energies >1 keV, which persisted for hours after the shock arrival, consistent with the higher solar wind speed, density, and dynamic pressure (˜10 nPa) after the shock. TWINS ENA observations indicate a slower response of the ring current and precipitation of ring current ions as low-altitude emissions ˜15 min later, with the >50 keV ion precipitation leading the internal magnetospheric processes are occurring after compression of the magnetosphere and before the ring current ions end up in the loss cone and precipitate into the ionosphere. We also compare MHD simulation results with both the TWINS and IBEX ENA observations; while the overall fluxes and distributions of emissions were generally similar, there were significant quantitative differences. Such differences emphasize the complexity of the magnetospheric system and importance of the global perspective for macroscopic magnetospheric studies. Finally, Appendix A documents important details of the TWINS data processing, including improved binning procedures, smoothing of images to a given level of statistical accuracy, and differential background subtraction.

  6. Dislocation problems for periodic Schr\\"odinger operators and mathematical aspects of small angle grain boundaries

    CERN Document Server

    Hempel, Rainer

    2011-01-01

    We discuss two types of defects in two-dimensional lattices, namely (1) translational dislocations and (2) defects produced by a rotation of the lattice in a half-space. For Lipschitz-continuous and $\\Z^2$-periodic potentials, we first show that translational dislocations produce spectrum inside the gaps of the periodic problem; we also give estimates for the (integrated) density of the associated surface states. We then study lattices with a small angle defect where we find that the gaps of the periodic problem fill with spectrum as the defect angle goes to zero. To introduce our methods, we begin with the study of dislocation problems on the real line and on an infinite strip. Finally, we consider examples of muffin tin type. Our overview refers to results in [HK1, HK2].

  7. Particle contact angles at fluid interfaces: pushing the boundary beyond hard uniform spherical colloids

    Science.gov (United States)

    Zanini, Michele; Isa, Lucio

    2016-08-01

    Micro and nanoparticles at fluid interfaces have been attracting increasing interest in the last few decades as building blocks for materials, as mechanical and structural probes for complex interfaces and as models for two-dimensional systems. The three-phase contact angle enters practically all aspects of the particle behavior at the interface: its thermodynamics (binding energy to the interface), dynamics (motion and drag at the interface) and interactions with the interface (adsorption and wetting). Moreover, many interactions among particles at the interface also strongly depend on the contact angle. These concepts have been extensively discussed for non-deformable, homogeneous and mostly spherical particles, but recent progress in particle synthesis and fabrication has instead moved in the direction of producing more complex micro and nanoscale objects, which can be responsive, deformable, heterogenous and/or anisotropic in shape, surface chemistry and material properties. These new particles have a much greater potential for applications and new science, and the study of their behavior at interfaces has only very recently started. In this paper, we critically review the current state of the art of the experimental methods available to measure the contact angle of micro and nanoparticles at fluid interfaces, indicating their strengths and limitations. We then comment on new particle systems that are currently attracting increasing interest in relation to their adsorption and assembly at fluid interfaces and discuss if and which ones of the current techniques are suited to investigate their properties at interfaces. Based on this discussion, we will finally try to indicate a direction in which new experimental methods should develop in the future to tackle the new challenges posed by the novel types of particles that more and more often are used at interfaces.

  8. Effects of hysteresis of static contact angle (HSCA) and boundary slip on the hydrodynamics of water striders

    Science.gov (United States)

    Zheng, J.; Wang, B. S.; Chen, W. Q.; Han, X. Y.; Li, C. F.; Zhang, J. Z.; Yu, K. P.

    2017-02-01

    It is known that contact lines keep relatively still on solids until static contact angles exceed an interval of hysteresis of static contact angle (HSCA), and contact angles keep changing as contact lines relatively slide on the solid. Here, the effects of HSCA and boundary slip were first distinguished on the micro-curvature force (MCF) on the seta. Hence, the total MCF is partitioned into static and dynamic MCFs correspondingly. The static MCF was found proportional to the HSCA and related with the asymmetry of the micro-meniscus near the seta. The dynamic MCF, exerting on the relatively sliding contact line, is aroused by the boundary slip. Based on the Blake-Haynes mechanism, the dynamic MCF was proved important for water walking insects with legs slower than the minimum wave speed 23 cm\\cdot s^{-1}. As insects brush the water by laterally swinging legs backwards, setae on the front side of the leg are pulled and the ones on the back side are pushed to cooperatively propel bodies forward. If they pierce the water surface by vertically swinging legs downwards, setae on the upside of the legs are pulled, and the ones on the downside are pushed to cooperatively obtain a jumping force. Based on the dependency between the slip length and shear rate, the dynamic MCF was found correlated with the leg speed U, as F˜ C1U+C2 U^{2+ɛ}, where C1 and C2 are determined by the dimple depth. Discrete points on this curve could give fitted relations as F˜ Ub (Suter et al., J. Exp. Biol. 200, 2523-2538, 1997). Finally, the axial torque on the inclined and partially submerged seta was found determined by the surface tension, contact angle, HSCA, seta width, and tilt angle. The torque direction coincides with the orientation of the spiral grooves of the seta, which encourages us to surmise it is a mechanical incentive for the formation of the spiral morphology of the setae of water striders.

  9. Development of low angle grain boundaries in lightly deformed superconducting niobium and their influence on hydride distribution and flux perturbation

    Science.gov (United States)

    Sung, Z.-H.; Wang, M.; Polyanskii, A. A.; Santosh, C.; Balachandran, S.; Compton, C.; Larbalestier, D. C.; Bieler, T. R.; Lee, P. J.

    2017-05-01

    This study shows that low angle grain boundaries (LAGBs) can be created by small 5% strains in high purity (residual resistivity ratio ≥ 200) superconducting radio frequency (SRF)-grade single crystalline niobium (Nb) and that these boundaries act as hydrogen traps as indicated by the distribution of niobium hydrides (Nb1-xHx). Nb1-xHx is detrimental to SRF Nb cavities due to its normal conducting properties at cavity operating temperatures. By designing a single crystal tensile sample extracted from a large grain (>5 cm) Nb ingot slice for preferred slip on one slip plane, LAGBs and dense dislocation boundaries developed. With chemical surface treatments following standard SRF cavity fabrication practice, Nb1-xHx phases were densely precipitated at the LAGBs upon cryogenic cooling (8-10 K/min). Micro-crystallographic analysis confirmed heterogeneous hydride precipitation, which included significant hydrogen atom accumulation in LAGBs. Magneto-optical imaging analysis showed that these sites can then act as sites for both premature flux penetration and eventually flux trapping. However, this hydrogen related degradation at LAGBs did not completely disappear even after an 800 °C/2 h anneal typically used for hydrogen removal in SRF Nb cavities. These findings suggest that hydride precipitation at an LAGB is facilitated by a non-equilibrium concentration of vacancy-hydrogen (H) complexes aided by mechanical deformation and the hydride phase interferes with the recovery process under 800 °C annealing.

  10. The effect of inclination angle on the plastic deformation behavior of bicrystalline silver nanowires with Σ3 asymmetric tilt grain boundaries

    Science.gov (United States)

    Yuan, Lin; Jing, Peng; Shan, Debin; Guo, Bin

    2017-01-01

    Atomistic simulations were used to investigate the plastic deformation behavior of bicrystalline silver nanowires with Σ3 asymmetric tilt grain boundaries at 0.1 K. The calculated grain boundary energies of Σ3 asymmetric tilt grain boundaries corresponded well with the energies measured in experiments and predicted by the theoretical description. The Σ3 asymmetric tilt grain boundaries with low inclination angles were composed of a replication of twin boundary segments separated by small ledges. The results demonstrated that the combination effect of Schmid factor and non-Schmid factors could explain dislocations emission into grain 1 only in models with low inclination angles (Ф nanocrystalline materials and provide insights into the synthesis of nanocrystalline materials with superior strength and ductility.

  11. The influence of grain boundary I c on the macroscopic strain effect of I c in BHO-doped GdBCO-coated conductors

    Science.gov (United States)

    Usami, Takashi; Ichino, Yusuke; Yoshida, Yutaka; Sugano, Michinaka; Ibi, Akira; Izumi, Teruo

    2016-07-01

    The effect of strain in REBa2Cu3O y (REBCO: RE = Y, Gd, Sm, Eu) coated conductors (CCs) on the critical current (I c) is one of the most fundamental factors for superconducting coil applications because CCs experience a variety of stresses. In this study, we carried out bending tests and measured the peak strain and the strain sensitivity of I c (a-value) for GdBCO CCs at 77 K under self-field. These values were evaluated for pure GdBCO CCs and BaHfO3 BHO-doped GdBCO CCs, which had oxide buffer layers with varying in-plane grain alignments of the CeO2 top layer. As a result, the peak strains and a-values for the BHO-doped GdBCO CCs depended on the FWHM of the CeO2 220 reflection in the φ-scan profile (Δφ), and decreased monotonically with decreasing Δφ. On the other hand, the peak strain and a-value were nearly independent of Δφ in the pure-GdBCO CCs. The change in peak strains for the BHO-doped GdBCO CCs are discussed on the basis of the relative contribution of intra-grain I c and inter-grain I c to the macroscopic strain effect of I c in the CCs.

  12. Interference of macroscopic superpositions

    CERN Document Server

    Vecchi, I

    2000-01-01

    We propose a simple experimental procedure based on the Elitzur-Vaidman scheme to implement a quantum nondemolition measurement testing the persistence of macroscopic superpositions. We conjecture that its implementation will reveal the persistence of superpositions of macroscopic objects in the absence of a direct act of observation.

  13. Macroscopically-Discrete Quantum Cosmology

    CERN Document Server

    Chew, Geoffrey F

    2008-01-01

    To Milne's Lorentz-group-based spacetime and Gelfand-Naimark unitary representations of this group we associate a Fock space of 'cosmological preons'-quantum-theoretic universe constituents. Milne's 'cosmological principle' relies on Lorentz invariance of 'age'--global time. We divide Milne's spacetime into 'slices' of fixed macroscopic width in age, with 'cosmological rays' defined on (hyperbolic) slice boundaries-Fock space attaching only to these exceptional universe ages. Each (fixed-age) preon locates within a 6-dimensional manifold, one of whose 3 'extra' dimensions associates in Dirac sense to a self-adjoint operator that represents preon (continuous) local time, the operator canonically-conjugate thereto representing preon (total) energy. Self-adjoint-operator expectations at any spacetime-slice boundary prescribe throughout the following slice a non-fluctuating 'mundane reality'- electromagnetic and gravitational potentials 'tethered' to current densities of locally-conserved electric charge and ener...

  14. Three-dimensional evaluation of gettering ability for oxygen atoms at small-angle tilt boundaries in Czochralski-grown silicon crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ohno, Yutaka, E-mail: yutakaohno@imr.tohoku.ac.jp; Inoue, Kaihei; Fujiwara, Kozo; Deura, Momoko; Kutsukake, Kentaro; Yonenaga, Ichiro [Institute for Materials Research (IMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan); Shimizu, Yasuo; Inoue, Koji; Ebisawa, Naoki; Nagai, Yasuyoshi [The Oarai Center, IMR, Tohoku University, Oarai, Ibaraki 311-1313 (Japan)

    2015-06-22

    Three-dimensional distribution of oxygen atoms at small-angle tilt boundaries (SATBs) in Czochralski-grown p-type silicon ingots was investigated by atom probe tomography combined with transmission electron microscopy. Oxygen gettering along edge dislocations composing SATBs, post crystal growth, was observed. The gettering ability of SATBs would depend both on the dislocation strain and on the dislocation density. Oxygen atoms would agglomerate in the atomic sites under the tensile hydrostatic stress larger than about 2.0 GPa induced by the dislocations. It was suggested that the density of the atomic sites, depending on the tilt angle of SATBs, determined the gettering ability of SATBs.

  15. Macroscopic quantum resonators (MAQRO)

    CERN Document Server

    Kaltenbaek, Rainer; Kiesel, Nikolai; Romero-Isart, Oriol; Johann, Ulrich; Aspelmeyer, Markus

    2012-01-01

    Quantum physics challenges our understanding of the nature of physical reality and of space-time and suggests the necessity of radical revisions of their underlying concepts. Experimental tests of quantum phenomena involving massive macroscopic objects would provide novel insights into these fundamental questions. Making use of the unique environment provided by space, MAQRO aims at investigating this largely unexplored realm of macroscopic quantum physics. MAQRO has originally been proposed as a medium-sized fundamental-science space mission for the 2010 call of Cosmic Vision. MAQRO unites two experiments: DECIDE (DECoherence In Double-Slit Experiments) and CASE (Comparative Acceleration Sensing Experiment). The main scientific objective of MAQRO, which is addressed by the experiment DECIDE, is to test the predictions of quantum theory for quantum superpositions of macroscopic objects containing more than 10e8 atoms. Under these conditions, deviations due to various suggested alternative models to quantum th...

  16. Macroscopic Theory of Dark Sector

    Directory of Open Access Journals (Sweden)

    Boris E. Meierovich

    2014-01-01

    Full Text Available A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out to be an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields describe two different forms of dark matter. The space-like massive vector field is attractive. It is responsible for the observed plateau in galaxy rotation curves. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four-parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating nonsingular scenarios of evolution of the Universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerated expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the lower boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows displaying the main properties of the dark sector analytically. Although the physical nature of dark sector is still unknown, the macroscopic theory can help analyze the role of dark matter in astrophysical phenomena without resorting to artificial model assumptions.

  17. Transition prediction of a hypersonic boundary layer over a cone at small angle of attack——with the improvement of e~N method

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The problem of transition prediction for hypersonic boundary layers over a sharp cone has been studied in this work. The Mach number of the oncoming flow is 6, the cone half-angle is 5o,and the angle of attack is 1o. The conventional eN method is used, but the transition location so obtained is obviously incorrect. The reason is that in the conventional method, only the amplifying waves are taken into account, while in fact, for different meridians the decay processes of the disturbances before they begin to grow are different. Based on our own previous work, new interpretation and essential improvement for the eN method are proposed. Not only the amplification process but also the decay process is considered. The location, where by linear stability theory, the amplitude of disturbance wave is amplified from its initial small value to 1%, is considered to be the transition location. The new result for transition prediction thus obtained is found to be fairly satisfactory. It is also indicated that for the calculation of base flow, boundary layer equations can be used for a small angle of attack. Its computational cost is much smaller than those for DNS.

  18. Transition prediction of a hypersonic boundary layer over a cone at small angle of attack--with the improvement of eN method

    Institute of Scientific and Technical Information of China (English)

    SU CaiHong; ZHOU Heng

    2009-01-01

    The problem of transition prediction for hypersonic boundary layers over a sharp cone has been stud-ied in this work. The Mach number of the oncoming flow is 6, the cone half-angle is 5Ω, and the angle of attack is 1Ω. The conventional eN method is used, but the transition location so obtained is obviously incorrect. The reason is that in the conventional method, only the amplifying waves are taken into ac-count, while in fact, for different meridians the decay processes of the disturbances before they begin to grow are different. Based on our own previous work, new interpretation and essential improvement for the eN method are proposed. Not only the amplification process but also the decay process is con-sidered. The location, where by linear stability theory, the amplitude of disturbance wave is amplified from its initial small value to 1%, is considered to be the transition location. The new result for transi-tion prediction thus obtained is found to be fairly satisfactory. It is also indicated that for the calculation of base flow, boundary layer equations can be used for a small angle of attack. Its computational cost is much smaller than those for DNS.

  19. A computer program for the calculation of the flow field including boundary layer effects for mixed-compression inlets at angle of attack

    Science.gov (United States)

    Vadyak, J.; Hoffman, J. D.

    1982-01-01

    A computer program was developed which is capable of calculating the flow field in the supersonic portion of a mixed compression aircraft inlet operating at angle of attack. The supersonic core flow is computed using a second-order three dimensional method-of-characteristics algorithm. The bow shock and the internal shock train are treated discretely using a three dimensional shock fitting procedure. The boundary layer flows are computed using a second-order implicit finite difference method. The shock wave-boundary layer interaction is computed using an integral formulation. The general structure of the computer program is discussed, and a brief description of each subroutine is given. All program input parameters are defined, and a brief discussion on interpretation of the output is provided. A number of sample cases, complete with data listings, are provided.

  20. Adsorption modeling for macroscopic contaminant dispersal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Axley, J.W.

    1990-05-01

    Two families of macroscopic adsorption models are formulated, based on fundamental principles of adsorption science and technology, that may be used for macroscopic (such as whole-building) contaminant dispersal analysis. The first family of adsorption models - the Equilibrium Adsorption (EA) Models - are based upon the simple requirement of equilibrium between adsorbent and room air. The second family - the Boundary Layer Diffusion Controlled Adsorption (BLDC) Models - add to the equilibrium requirement a boundary layer model for diffusion of the adsorbate from the room air to the adsorbent surface. Two members of each of these families are explicitly discussed, one based on the linear adsorption isotherm model and the other on the Langmuir model. The linear variants of each family are applied to model the adsorption dynamics of formaldehyde in gypsum wall board and compared to measured data.

  1. Lozenge Tilings, Glauber Dynamics and Macroscopic Shape

    Science.gov (United States)

    Laslier, Benoît; Toninelli, Fabio Lucio

    2015-09-01

    We study the Glauber dynamics on the set of tilings of a finite domain of the plane with lozenges of side 1/ L. Under the invariant measure of the process (the uniform measure over all tilings), it is well known (Cohn et al. J Am Math Soc 14:297-346, 2001) that the random height function associated to the tiling converges in probability, in the scaling limit , to a non-trivial macroscopic shape minimizing a certain surface tension functional. According to the boundary conditions, the macroscopic shape can be either analytic or contain "frozen regions" (Arctic Circle phenomenon Cohn et al. N Y J Math 4:137-165, 1998; Jockusch et al. Random domino tilings and the arctic circle theorem, arXiv:math/9801068, 1998). It is widely conjectured, on the basis of theoretical considerations (Henley J Statist Phys 89:483-507, 1997; Spohn J Stat Phys 71:1081-1132, 1993), partial mathematical results (Caputo et al. Commun Math Phys 311:157-189, 2012; Wilson Ann Appl Probab 14:274-325, 2004) and numerical simulations for similar models (Destainville Phys Rev Lett 88:030601, 2002; cf. also the bibliography in Henley (J Statist Phys 89:483-507, 1997) and Wilson (Ann Appl Probab 14:274-325, 2004), that the Glauber dynamics approaches the equilibrium macroscopic shape in a time of order L 2+ o(1). In this work we prove this conjecture, under the assumption that the macroscopic equilibrium shape contains no "frozen region".

  2. Influence of surface structure of (0001 sapphire substrate on the elimination of small-angle grain boundary in AlN epilayer

    Directory of Open Access Journals (Sweden)

    Ryan G. Banal

    2015-09-01

    Full Text Available AlN epilayers were grown on (0001 sapphire substrates by metal-organic vapor phase epitaxy, and the influence of the substrate’s surface structure on the formation of in-plane rotation domain is studied. The surface structure is found to change with increasing temperature under H2 ambient. The ML steps of sapphire substrate formed during high-temperature (HT thermal cleaning is found to cause the formation of small-angle grain boundary (SAGB. To suppress the formation of such structure, the use of LT-AlN BL technique was demonstrated, thereby eliminating the SAGB. The BL growth temperature (Tg is also found to affect the surface morphology and structural quality of AlN epilayer. The optical emission property by cathodoluminescence (CL measurement showed higher emission intensity from AlN without SAGB. The LT-AlN BL is a promising technique for eliminating the SAGB.

  3. Macroscopic theory of dark sector

    CERN Document Server

    Meierovich, Boris E

    2013-01-01

    A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields {\\phi}_{I} with {\\phi}^{K}{\\phi}_{K}0 describe two different forms of dark matter. The space-like ({\\phi}^{K}{\\phi}_{K}0) massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating soluti...

  4. Critical current density behaviors across a grain boundary inclined to current with different angles in YBa2Cu3O7-δ bicrystal junctions

    Science.gov (United States)

    Tao, Hua; Wei-Wei, Xu; Zheng-Ming, Ji; Da-Yuan, Guo; Qing-Yun, Wang; Xiang-Rong, Ma; Rui-Yu, Liang

    2016-06-01

    The critical current density behaviors across a bicrystal grain boundary (GB) inclined to the current direction with different angles in YBa2Cu3O7-δ bicrystal junctions in magnetic fields are investigated. There are two main reasons for the difference in critical current density in junctions at different GB inclined angles in the same magnetic field: (i) the GB plane area determines the current carrying cross section; (ii) the vortex motion dynamics at the GB affects the critical current value when the vortex starts to move along the GB by Lorentz force. Furthermore, the vortex motion in a bicrystal GB is studied by investigating transverse (Hall) and longitudinal current-voltage characteristics (I-V xx and I-V xy ). It is found that the I-V xx curve diverges from linearity at a high driving current, while the I-V xy curve keeps nearly linear, which indicates the vortices inside the GB break out of the GB by Lorentz force. Project supported by the National Natural Science Foundation of China (Grant Nos. 61501222, 61371036, and 61571219) and the School Scientific Research Fund of Nanjing Institute of Technology, China (Grant Nos. YKJ201418).

  5. Covariant Macroscopic Quantum Geometry

    CERN Document Server

    Hogan, Craig J

    2012-01-01

    A covariant noncommutative algebra of position operators is presented, and interpreted as the macroscopic limit of a geometry that describes a collective quantum behavior of the positions of massive bodies in a flat emergent space-time. The commutator defines a quantum-geometrical relationship between world lines that depends on their separation and relative velocity, but on no other property of the bodies, and leads to a transverse uncertainty of the geometrical wave function that increases with separation. The number of geometrical degrees of freedom in a space-time volume scales holographically, as the surface area in Planck units. Ongoing branching of the wave function causes fluctuations in transverse position, shared coherently among bodies with similar trajectories. The theory can be tested using appropriately configured Michelson interferometers.

  6. The macroscopic pancake bounce

    Science.gov (United States)

    Andersen Bro, Jonas; Sternberg Brogaard Jensen, Kasper; Nygaard Larsen, Alex; Yeomans, Julia M.; Hecksher, Tina

    2017-01-01

    We demonstrate that the so-called pancake bounce of millimetric water droplets on surfaces patterned with hydrophobic posts (Liu et al 2014 Nat. Phys. 10 515) can be reproduced on larger scales. In our experiment, a bed of nails plays the role of the structured surface and a water balloon models the water droplet. The macroscopic version largely reproduces the features of the microscopic experiment, including the Weber number dependence and the reduced contact time for pancake bouncing. The scalability of the experiment confirms the mechanisms of pancake bouncing, and allows us to measure the force exerted on the surface during the bounce. The experiment is simple and inexpensive and is an example where front-line research is accessible to student projects.

  7. Canonical quantization of macroscopic electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Philbin, T G, E-mail: tgp3@st-andrews.ac.u [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2010-12-15

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetodielectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.

  8. Canonical quantization of macroscopic electromagnetism

    CERN Document Server

    Philbin, T G

    2010-01-01

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetoelectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.

  9. Quantum equilibria for macroscopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Grib, A [Department of Theoretical Physics and Astronomy, Russian State Pedagogical University, St. Petersburg (Russian Federation); Khrennikov, A [Centre for Mathematical Modelling in Physics and Cognitive Sciences Vaexjoe University (Sweden); Parfionov, G [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation); Starkov, K [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation)

    2006-06-30

    Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered.

  10. Macroscopic-microscopic mass models

    CERN Document Server

    Nix, J R; Nix, J Rayford; Moller, Peter

    1995-01-01

    We discuss recent developments in macroscopic-microscopic mass models, including the 1992 finite-range droplet model, the 1992 extended-Thomas-Fermi Strutinsky-integral model, and the 1994 Thomas-Fermi model, with particular emphasis on how well they extrapolate to new regions of nuclei. We also address what recent developments in macroscopic-microscopic mass models are teaching us about such physically relevant issues as the nuclear curvature energy, a new congruence energy arising from a greater-than-average overlap of neutron and proton wave functions, the nuclear incompressibility coefficient, and the Coulomb redistribution energy arising from a central density depression. We conclude with a brief discussion of the recently discovered rock of metastable superheavy nuclei near 272:110 that had been correctly predicted by macroscopic-microscopic models, along with a possible new tack for reaching an island near 290:110 beyond our present horizon.

  11. Microscopic versus macroscopic calculation of dielectric nanospheres

    Science.gov (United States)

    Kühn, M.; Kliem, H.

    2008-12-01

    The issue of nanodielectrics has recently become an important field of interest. The term describes nanometric dielectrics, i. e. dielectric materials with structural dimensions typically smaller than 100 run. In contrast to the behaviour of a bulk material the nanodielectrics can behave completely different. With shrinking dimensions the surface or rather boundary effects outweigh the volume effects. This leads to a different observable physics at the nanoscale. A crucial point is the question whether a continuum model for the calculation of dielectric properties is still applicable for these nanomaterials. In order to answer this question we simulated dielectric nanospheres with a microscopic local field method and compared the results to the macroscopic mean field theory.

  12. Taming macroscopic jamming in transportation networks

    CERN Document Server

    Ezaki, Takahiro; Nishinari, Katsuhiro

    2015-01-01

    In transportation networks, a spontaneous jamming transition is often observed, e.g in urban road networks and airport networks. Because of this instability, flow distribution is significantly imbalanced on a macroscopic level. To mitigate the congestion, we consider a simple control method, in which congested nodes are closed temporarily, and investigate how it influences the overall system. Depending on the timing of the node closure and opening, and congestion level of a network, the system displays three different phases: free-flow phase, controlled phase, and deadlock phase. We show that when the system is in the controlled phase, the average flow is significantly improved, whereas when in the deadlock phase, the flow drops to zero. We study how the control method increases the network flow and obtain their transition boundary analytically.

  13. Effects of wall cooling and angle of attack on boundary layer transition on sharp cones at free stream Mach 7.4

    Science.gov (United States)

    Mateer, G. G.

    1972-01-01

    Tests were conducted on 5 deg and 15 deg half-angle sharp cones at wall-to-total-temperature ratios of 0.08 to 0.4, and angles of attack from 0 deg to 20 deg. The results indicate that (1) transition Reynolds numbers decrease with decreasing temperature ratio, (2) local transition Reynolds numbers decrease from the windward to the leeward side of the model, and (3) transition data on the windward ray of cones can be correlated in terms of the crossflow velocity gradient, momentum thickness Reynolds number, local Mach number, and cone half-angle.

  14. The effect of the VOF-CSF static contact angle boundary condition on the dynamics of sliding and bouncing ellipsoidal bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Senthilkumar, S., E-mail: sundararaj.senthilkumar2@mail.dcu.ie [School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin (Ireland); Delaure, Y.M.C., E-mail: yan.delaure@dcu.ie [School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin (Ireland); Murray, D.B.; Donnelly, B. [Department of Mechanical and Manufacturing Engineering, Trinity College, Dublin (Ireland)

    2011-10-15

    Highlights: > The static contact angle {theta}{sub c} has a significant effect on the bubble dynamics. > The mean bubble slide velocity is most significantly affected by {theta}{sub c} at low plate inclination. > Increasing {theta}{sub c} stretches the bubble in the direction normal to the plate promoting detachment. > Imposing the contact angle suppresses the liquid film between the bubble and solid surfaces. - Abstract: The static contact angle is the only empiricism introduced in a Volume of Fluid-Continuum Surface Force (VOF-CSF) model of bubbly flow. Although it has previously been shown to have a relatively limited effect on the accuracy of velocity and shape predictions in the case of large gas bubbles sliding under inclined walls (e.g. ), it may have a more determining influence on the numerical prediction of the dynamics of smaller ellipsoidal bubbles which were shown by to bounce repeatedly when sliding under inclined walls at certain wall inclinations. The present paper reports on the influence of surface tension and the static contact angle on the dynamics of an ellipsoidal air bubble of equivalent diameter D{sub e} = 3.4 mm. The bubble Eoetvoes and Morton numbers are Eo = 1.56 and Mo = 2 x 10{sup -11} respectively. The computational results are achieved with a Piecewise Linear Construction (PLIC) of the interface and are reviewed with reference to experimental measurements of bubble velocity and interface shape oscillations recorded using a high speed digital camera. Tests are performed at plate inclination angles {theta} element of {l_brace}10{sup o}, 20{sup o}, 30{sup o}, 45{sup o}{r_brace} to the horizontal and computational models consider three static contact angles {theta}{sub c} element of {l_brace}10{sup o}, 20{sup o}, 30{sup o}{r_brace}. The static contact angle has been found to have a significant effect on the bubble dynamics but to varying degree depending on the plate inclination. It is shown to promote lift off and bouncing when the plate

  15. Apparent and Actual Dynamic Contact Angles in Confined Two-Phase Flows

    Science.gov (United States)

    Omori, Takeshi; Kajishima, Takeo

    2016-11-01

    To accurately predict the fluid flow with moving contact lines, it has a crucial importance to use a model for the dynamic contact angle which gives contact angles on the length scale corresponding to the spacial resolution of the fluid solver. The angle which a moving fluid interface forms to a solid surface deviates from an actual (microscopic) dynamic contact angle depending on the distance from the contact line and should be called an apparent (macroscopic) dynamic contact angle. They were, however, often undistinguished especially in the experimental works, on which a number of empirical correlations between a contact angle and a contact line velocity have been proposed. The present study is the first attempt to measure both apparent and actual contact angles from the identical data sets to discuss the difference and the relationship between these two contact angles of difference length scales. The study is conducted by means of numerical simulation, solving the Navier-Stokes equation and the Cahn-Hilliard equation under the generalized Navier boundary condition for the immiscible two-phase flow in channels. The present study also illustrates how the system size and the physical properties of the adjoining fluid affect the apparent and the actual dynamic contact angles. JSPS KAKENHI Grant No. 15K17974.

  16. Electron pitch angle variations recorded at the high magnetic latitude boundary layer by the NUADU instrument on the TC-2 spacecraft

    Directory of Open Access Journals (Sweden)

    L. Lu

    2005-11-01

    Full Text Available The NUADU (NeUtral Atom Detector Unit experiment aboard TC-2 recorded, with high temporal and spatial resolution, 4π solid angle images of electrons (~50-125 keV spiraling around geomagnetic field lines at high northern magnetic latitudes (L>10, during its in-orbit commissioning phase (September 2004. The ambient magnetic field, as well as electrons in other energy ranges, were simultaneously measured by the TC-2 magnetometer (FGM, the plasma electron and current experiment (PEACE, the low energy ion detector (LEID and the high energy electron detector (HEED. The NUADU data showed that up-flowing electron beams could form "ring-like" and "dumbbell-type" pitch angle distributions (PADs in the region sampled. Changes in these pitch angle distributions due to transient magnetic variations are suggested to have been associated with electron acceleration along the geomagnetic field lines. A nested magnetic bottle configuration that formed due to the propagation towards the Earth of a magnetic pulse, is proposed to have been associated with this process.

  17. Seismic scanning tunneling macroscope - Theory

    KAUST Repository

    Schuster, Gerard T.

    2012-09-01

    We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.

  18. Numerical Simulation of Dynamic Contact Angles and Contact Lines in Multiphase Flows using Level Set Method

    Science.gov (United States)

    Pendota, Premchand

    Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach.

  19. Slip patterns and preferred dislocation boundary planes

    DEFF Research Database (Denmark)

    Winther, G.

    2003-01-01

    The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single and polycryst......The planes of deformation induced extended planar dislocation boundaries are analysed in two different co-ordinate systems, namely the macroscopic system defined by the deformation axes and the crystallographic system given by the crystallographic lattice. The analysis covers single...... and polycrystals of fcc metals in three deformation modes (rolling, tension and torsion). In the macroscopic system, boundaries lie close to the macroscopically most stressed planes. In the crystallographic system, the boundary plane depends on the grain/crystal orientation. The boundary planes in both co......-ordinate systems are rationalised based on the slip. The more the slip is concentrated on a slip plane, the closer the boundaries lie to this. The macroscopic preference arises from the macroscopic directionality of the slip. The established relations are applied to (a) prediction of boundary planes from slip...

  20. MACROSCOPIC DIVERSITY FOR CDMA MOBILE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Pei Xiaoyan; Hu Jiandong

    2002-01-01

    A novel system of macroscopic diversity with voting rule in CDMA cellular system is suggested in order to raise the coverage and quality of service of CDMA mobile communication system. The estimation of the impact of macroscopic diversity on performance of CDMA cellular system is analyzed and investigated.

  1. MACROSCOPIC DIVERSITY FOR CDMA MOBILE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    PeiXiaoyan; HuJiandong

    2002-01-01

    A novel system of macroscopic diversity with voting rule in CDMA cellular system is suggested in order to raise the coverage and quality of service of CDMA mobile communication system.The estimation of the impact of macroscopic diversity on performance of CDMA cellular system is analyzed and investigated.

  2. The Two-Time Interpretation and Macroscopic Time-Reversibility

    Directory of Open Access Journals (Sweden)

    Yakir Aharonov

    2017-03-01

    Full Text Available The two-state vector formalism motivates a time-symmetric interpretation of quantum mechanics that entails a resolution of the measurement problem. We revisit a post-selection-assisted collapse model previously suggested by us, claiming that unlike the thermodynamic arrow of time, it can lead to reversible dynamics at the macroscopic level. In addition, the proposed scheme enables us to characterize the classical-quantum boundary. We discuss the limitations of this approach and its broad implications for other areas of physics.

  3. Entanglement routers using macroscopic singlets.

    Science.gov (United States)

    Bayat, Abolfazl; Bose, Sougato; Sodano, Pasquale

    2010-10-29

    We propose a mechanism where high entanglement between very distant boundary spins is generated by suddenly connecting two long Kondo spin chains. We show that this procedure provides an efficient way to route entanglement between multiple distant sites. We observe that the key features of the entanglement dynamics of the composite spin chain are well described by a simple model of two singlets, each formed by two spins. The proposed routing mechanism is a footprint of the emergence of a Kondo cloud in a Kondo system and can be engineered and observed in varied physical settings.

  4. Rank distributions: A panoramic macroscopic outlook

    Science.gov (United States)

    Eliazar, Iddo I.; Cohen, Morrel H.

    2014-01-01

    This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions—top-down, bottom-up, and global—and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.

  5. Phase-field-crystal Simulation of Effect of Different O-rientation Angle on Annihilation of Grain Boundary%晶体相场模拟取向角对晶界湮没过程的影响

    Institute of Scientific and Technical Information of China (English)

    刘瑶; 袁龙乐; 卢强华; 黄创高; 高英俊

    2016-01-01

    Objective]The dislocation motions and their interaction of grain boundary are ana-lyzed to reveal the intrinsic reason of emission dislocation of grain boundary.[Methods]Grain boundaries (GB)with different orientation angles under strains are simulated by phase-field-crystal (PFC)model.[Results]The process of the GB decay can be divided into several main typical stages as follows:Dislocation climbs firstly along the GB,and then the GB emits pair dislocations to glide in grain instead of climbing along GB;gliding for a while,the dislocation crosses the grain and annihilates at the opposite side of grain boundary.The remains of disloca-tion in the GB can still climb along the GB,and then the GB emits the dislocations to glide a-gain.Gliding dislocations encounter with other dislocations inside the grain and the annihilation occurs.[Conclusion]The valley for dislocation annihilation on GB is shallow,while that inside the grain is deep.The more the numbers of dislocation for climbing are,the higher the peak of the curve is.%【目的】研究大角晶界的位错运动和相互作用,揭示晶界发射位错的内在原因。【方法】采用晶体相场模型模拟不同取向角的晶界位错湮没过程。【结果】晶界湮没有如下主要过程:开始时位错沿晶界攀移,随后晶界发生位错发射,位错运动方式由攀移转化为滑移;位错滑移穿过晶粒内部,在到达对面晶界处发生湮没;其余的晶界位错仍作攀移运动,再次出现晶界发射位错;滑移位错与其它位错在晶内相遇发生湮没。【结论】位错在晶界处湮没,自由能曲线的谷较浅,而在晶粒内部湮没,能量曲线的谷较深;晶界攀移的位错越多,能量曲线的峰越高。

  6. Macroscopic transport by synthetic molecular machines

    NARCIS (Netherlands)

    Berna, J; Leigh, DA; Lubomska, M; Mendoza, SM; Perez, EM; Rudolf, P; Teobaldi, G; Zerbetto, F

    2005-01-01

    Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with - and perform physical tasks in - the macroscopic world represents a significant hurdle

  7. Assessments of macroscopicity for quantum optical states

    DEFF Research Database (Denmark)

    Laghaout, Amine; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund

    2015-01-01

    With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should...... enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished. © 2014....

  8. Quantum Bell Inequalities from Macroscopic Locality

    CERN Document Server

    Yang, Tzyh Haur; Sheridan, Lana; Scarani, Valerio

    2010-01-01

    We propose a method to generate analytical quantum Bell inequalities based on the principle of Macroscopic Locality. By imposing locality over binary processings of virtual macroscopic intensities, we establish a correspondence between Bell inequalities and quantum Bell inequalities in bipartite scenarios with dichotomic observables. We discuss how to improve the latter approximation and how to extend our ideas to scenarios with more than two outcomes per setting.

  9. Nonlocal hydrodynamic influence on the dynamic contact angle: slip models versus experiment.

    Science.gov (United States)

    Wilson, Mark C T; Summers, Jonathan L; Shikhmurzaev, Yulii D; Clarke, Andrew; Blake, Terence D

    2006-04-01

    Experiments reported by Blake [Phys. Fluids., 11, 1995 (1999)] suggest that the dynamic contact angle formed between the free surface of a liquid and a moving solid boundary at a fixed contact-line speed depends on the flow field and geometry near the moving contact line. We examine quantitatively whether or not it is possible to attribute this effect to the bending of the free surface due to hydrodynamic stresses acting upon it and hence interpret the results in terms of the so-called "apparent" contact angle. It is shown that this is not the case. Numerical analysis of the problem demonstrates that, at the spatial resolution reported in the experiments, the variations of the "apparent" contact angle (defined in two different ways) caused by variations in the flow field, at a fixed contact-line speed, are too small to account for the observed effect. The results clearly indicate that the actual (macroscopic) dynamic contact angle--i.e., the one used in fluid mechanics as a boundary condition for the equation determining the free surface shape--must be regarded as dependent not only on the contact-line speed but also on the flow field and geometry in the vicinity of the moving contact line.

  10. A Toolbox for Geometric Grain Boundary Characterization

    Science.gov (United States)

    Glowinski, Krzysztof; Morawiec, Adam

    Properties of polycrystalline materials are affected by grain boundary networks. The most basic aspect of boundary analysis is boundary geometry. This paper describes a package of computer programs for geometric boundary characterization based on macroscopic boundary parameters. The program allows for determination whether a boundary can be classified as near-tilt, -twist, -symmetric et cetera. Since calculations on experimental, i.e., error affected data are assumed, the program also provides distances to the nearest geometrically characteristic boundaries. The software has a number of other functions helpful in grain boundary analysis. One of them is the determination of planes of all characteristic boundaries for a given misorientation. The resulting diagrams of geometrically characteristic boundaries can be linked to experimentally determined grain boundary distributions. In computations, all symmetrically equivalent representations of boundaries are taken into account. Cubic and hexagonal holohedral crystal symmetries are allowed.

  11. Fluctuation conductivity and pseudogap in HoBa{sub 2}Cu{sub 3}O{sub 7-δ} single crystals under pressure with transport current flowing under an angle 45° to the twin boundaries

    Energy Technology Data Exchange (ETDEWEB)

    Solovjov, A.L.; Tkachenko, M.A. [B.I. Verkin Institute for Low Temperature Physics and Engineering of National Academy of Science of Ukraine, 47 Lenin ave., 61103 Kharkov (Ukraine); International Laboratory of High Magnetic Fields and Low Temperatures, 95 Gajowicka Str., 53-421 Wroclaw (Poland); Vovk, R.V. [V.N. Karazin Kharkov National University, 4 Svobody sq., 61077 Kharkov (Ukraine); Chroneos, A., E-mail: alexander.chroneos@imperial.ac.uk [Department of Materials, Imperial College, London SW7 2AZ (United Kingdom)

    2014-06-15

    Highlights: • The substitution of Y by Ho significantly affects the charge distribution. • The disordering in the oxygen subsystem which is affected by pressure. • Twin boundaries are effective scattering centers of normal carriers. • Near T{sub c} the conductivity is described by the Aslamasov–Larkin theory. • Δ{sup ∗}(T) demonstrates two representative maxima which disappear under pressure. - Abstract: The influence of hydrostatic pressure up to 0.48 GPa on the fluctuation conductivity σ{sup ′}(T) and pseudogap (PG) Δ{sup ∗}(T) of slightly doped HoBa{sub 2}Cu{sub 3}O{sub 7-δ} single crystals with T{sub c}≈ 62 K and δ≈0.35 is studied with current passing under an angle 45° to the twin boundaries. It is shown that near T{sub c} the conductivity σ{sup ′}(T) is well described by the Aslamasov–Larkin and Hikami–Larkin fluctuation theories demonstrating 3D–2D crossover with the increase of temperature. Δ{sup ∗}(T) displays two representative maxima at T{sub max1}≈219K and T{sub max2}≈241K likely caused by the phase stratification of the single crystal. Pressure leads to disappearance of these maxima and linear Δ{sup ∗}(T) with a positive gradient at high temperatures. Essentially, with the removal of pressure the maxima are restored. The comparison of our results with those obtained for YBa{sub 2}Cu{sub 3}O{sub 7-δ} sheds more light on the role of magnetic subsystem in the high-T{sub c} superconductors.

  12. Crack Coalescence in Molded Gypsum and Carrara Marble: Part 1. Macroscopic Observations and Interpretation

    Science.gov (United States)

    Wong, L. N. Y.; Einstein, H. H.

    2009-06-01

    Cracking and coalescence behavior has been studied experimentally with prismatic laboratory-molded gypsum and Carrara marble specimens containing two parallel pre-existing open flaws. This was done at both the macroscopic and the microscopic scales, and the results are presented in two separate papers. This paper (the first of two) summarizes the macroscopic experimental results and investigates the influence of the different flaw geometries and material, on the cracking processes. In the companion paper (also in this issue), most of the macroscopic deformation and cracking processes shown in this present paper will be related to the underlying microscopic changes. In the present study, a high speed video system was used, which allowed us to precisely observe the cracking mechanisms. Nine crack coalescence categories with different crack types and trajectories were identified. The flaw inclination angle ( β), the ligament length ( L), that is, intact rock length between the flaws, and the bridging angle ( α), that is, the inclination of a line linking up the inner flaw tips, between two flaws, had different effects on the coalescence patterns. One of the pronounced differences observed between marble and gypsum during the compression loading test was the development of macroscopic white patches prior to the initiation of macroscopic cracks in marble, but not in gypsum. Comparing the cracking and coalescence behaviors in the two tested materials, tensile cracking generally occurred more often in marble than in gypsum for the same flaw pair geometries.

  13. Macroscopic optical response and photonic bands

    CERN Document Server

    Perez-Huerta, J S; Mendoza, Bernardo S; Mochan, W Luis

    2012-01-01

    We develop a formalism for the calculation of the macroscopic dielectric response of composite systems made of particles of one material embedded periodically within a matrix of another material, each of which is characterized by a well defined dielectric function. The nature of these dielectric functions is arbitrary, and could correspond to dielectric or conducting, transparent or opaque, absorptive and dispersive materials. The geometry of the particles and the Bravais lattice of the composite are also arbitrary. Our formalism goes beyond the longwavelenght approximation as it fully incorporates retardation effects. We test our formalism through the study the propagation of electromagnetic waves in 2D photonic crystals made of periodic arrays of cylindrical holes in a dispersionless dielectric host. Our macroscopic theory yields a spatially dispersive macroscopic response which allows the calculation of the full photonic band structure of the system, as well as the characterization of its normal modes, upo...

  14. A macroscopic challenge for quantum spacetime

    CERN Document Server

    Amelino-Camelia, Giovanni

    2013-01-01

    Over the last decade a growing number of quantum-gravity researchers has been looking for opportunities for the first ever experimental evidence of a Planck-length quantum property of spacetime. These studies are usually based on the analysis of some candidate indirect implications of spacetime quantization, such as a possible curvature of momentum space. Some recent proposals have raised hope that we might also gain direct experimental access to quantum properties of spacetime, by finding evidence of limitations to the measurability of the center-of-mass coordinates of some macroscopic bodies. However I here observe that the arguments that originally lead to speculating about spacetime quantization do not apply to the localization of the center of mass of a macroscopic body. And I also analyze some popular formalizations of the notion of quantum spacetime, finding that when the quantization of spacetime is Planckian for the constituent particles then for the composite macroscopic body the quantization of spa...

  15. On Macroscopic Complexity and Perceptual Coding

    CERN Document Server

    Scoville, John

    2010-01-01

    While Shannon information establishes limits to the universal data compression of binary data, no existing theory provides an equivalent characterization of the lossy data compression algorithms prevalent in audiovisual media. The current paper proposes a mathematical framework for perceptual coding and inference which quantifies the complexity of objects indistinguishable to a particular observer. A definition of the complexity is presented and related to a generalization of Boltzmann entropy for these equivalence classes. When the classes are partitions of phase space, corresponding to classical observations, this is the proper Boltzmann entropy and the macroscopic complexity agrees with the Algorithmic Entropy. For general classes, the macroscopic complexity measure determines the optimal lossy compression of the data. Conversely, perceptual coding algorithms may be used to construct upper bounds on certain macroscopic complexities. Knowledge of these complexities, in turn, allows perceptual inference whic...

  16. Nanoplasmon-enabled macroscopic thermal management

    CERN Document Server

    Jonsson, Gustav Edman; Dmitriev, Alexandre

    2013-01-01

    In numerous applications of energy harvesting via transformation of light into heat the focus recently shifted towards highly absorptive materials featuring nanoplasmons. It is currently established that noble metals-based absorptive plasmonic platforms deliver significant light-capturing capability and can be viewed as super-absorbers of optical radiation. However, direct experimental evidence of plasmon-enabled macroscopic temperature increase that would result from these efficient absorptive properties is scarce. Here we derive a general quantitative method of characterizing light-capturing properties of a given heat-generating absorptive layer by macroscopic thermal imaging. We further monitor macroscopic areas that are homogeneously heated by several degrees with plasmon nanostructures that occupy a mere 8% of the surface, leaving it essentially transparent and evidencing significant heat generation capability of nanoplasmon-enabled light capture. This has a direct bearing to thermophotovoltaics and othe...

  17. Macroscopic Properties of Hollow Cone Spray Using an Outwardly Opening Piezoelectric Injector in GCI Engine

    KAUST Repository

    Cheng, Penghui

    2016-07-01

    Fuel mixture formation and spray characteristics are crucial for the advancement of Gasoline Compression Ignition (GCI) engine. For investigations of spray characteristics, a high-pressure high-temperature spray chamber with constant volume has been designed, tested and commissioned at CCRC, KAUST. Back light illumination technique has been applied to investigate the macroscopic spray properties of an outwardly opening piezoelec- tric injector. Three parameters including injection pressure, ambient pressure, and ambient temperature have been involved. A total of 18 combinations of experimental conditions were tested under non-reactive conditions. Through qualitative analysis of spray morphology under different operating conditions, an apparent distinction of spray morphology has been noticed. Spray morphology and propagation have shown strong dependencies on ambient pressure and ambient tempera- ture while injection pressure has a negligible effect on spray shape. Increasingly compact and bushier spray patterns were observed in the cases of high ambient pressure due to in- creasing aerodynamic drag force on spray boundary. It should also be noted that ambient temperature plays a fairly important role in fuel evaporation rate. At 200 °C, oscillating and considerably short spray shape was produced. Also, circumferential ring-like vortices and distinctive string-like structures have been identified for the fuel spray exiting this hollow cone injector. It has been observed that high ambient pressure conditions (Pamb = 4 bar and 10.5 bar) are favorable to the vortices generation, which has also been reported in previous literature. The quantitative description of macroscopic spray properties reveals that ambient pres- sure and ambient temperature are found to be the most influential parameters on liquid penetration length. The rise of ambient pressure results in considerably shorter liquid pen- etration length. Ambient temperature also appears to be a very effective

  18. Numerical study of liquid-gas flow on complex boundaries

    Science.gov (United States)

    Wang, Sheng; Desjardins, Olivier

    2015-11-01

    Simulation techniques for liquid-gas flows near solid boundaries tend to fall two categories, either focusing on accurate treatment of the phase interface away from wall, or focusing on detailed modeling of contact line dynamics. In order to fill the gap between these two categories and to simulate liquid-gas flows in large scale engineering devices with complex boundaries, we develop a conservative, robust, and efficient framework for handling moving contact lines. This approach combines a conservative level set method to capture the interface, an immersed boundary method to represent the curved boundary, and a macroscopic moving contact line model. The performance of the proposed approach is assessed through several simulations. A drop spreading on a flat plate and a circular cylinder validate the equilibrium contact angle. The migration of a drop on an inclined plane is employed to validate the contact line dynamics. The framework is then applied to perform a 3D simulation of the migration of a drop through porous media, which consists of irregular placed cylinders. The conservation error is shown to remain small for all the simulations.

  19. Anisotropic magnetothermopower in ferromagnetic thin films grown on macroscopic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jayathilaka, P.B. [Department of Physical Sciences, Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale (Sri Lanka); Belyea, D.D. [Department of Physics, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States); Fawcett, T.J. [College of Engineering, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States); Miller, Casey W. [School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2015-05-15

    We report observing the anisotropic magnetothermopower in a variety of ferromagnetic thin films grown on macroscopic substrates. These measurements were enabled by eliminating spurious signals related to the Anomalous Nernst Effect by butt-mounting the sample to the heat source and sink, and appropriate positioning of electrical contacts to avoid unwanted thermal gradients. This protocol enabled detailed measurements of the magnetothermopower in the transverse and longitudinal configurations. This may enable Spin Seebeck Effect studies in the in-plane geometry. - Highlights: • Unintentional thermal gradients along surface normal mitigated via butt-mounting. • Longitudinal/transverse magnetothermopower measured on many systems. • Anomalous Nernst Effect reduced. • Importance of magnetic anisotropy identified with angle-dependent measurements.

  20. Transformation-optics macroscopic visible-light cloaking beyond two dimensions

    CERN Document Server

    Chu, Chia-Wei; Lee, Chih Jie; Duan, Yubo; Tsai, Din Ping; Zhang, Baile; Luo, Yuan

    2014-01-01

    Transformation optics, a recent geometrical design strategy of controlling light by combining Maxwell's principles of electromagnetism with Einstein's general relativity, promises without precedent an invisibility cloaking device that can render a macroscopic object invisible in three dimensions. However, most previous proof-of-concept transformation-optics cloaking devices focused predominantly on two dimensions, whereas detection of a macroscopic object along its third dimension was always unfailing. Here, we report the first experimental demonstration of transformation-optics macroscopic visible-light cloaking beyond two dimensions. This almost-three-dimensional cloak exhibits three-dimensional (3D) invisibility for illumination near its center (i.e. with a limited field of view), and its ideal wide-angle invisibility performance is preserved in multiple two-dimensional (2D) planes intersecting in the 3D space. Both light ray trajectories and optical path lengths have been verified experimentally at the ma...

  1. Student views of macroscopic and microscopic energy in physics and biology

    Science.gov (United States)

    Dreyfus, Benjamin W.; Redish, Edward F.; Watkins, Jessica

    2012-02-01

    Energy concepts are fundamental across the sciences, yet these concepts can be fragmented along disciplinary boundaries, rather than integrated into a coherent whole. To teach physics effectively to biology students, we need to understand students' disciplinary perspectives. We present interview data from an undergraduate student who displays multiple stances towards the concept of energy. At times he views energy in macroscopic contexts as a separate entity from energy in microscopic (particularly biological) contexts, while at other times he uses macroscopic physics phenomena as productive analogies for understanding energy in the microscopic biological context, and he reasons about energy transformations between the microscopic and macroscopic scales. This case study displays preliminary evidence for the context dependence of students' ability to translate energy concepts across scientific disciplines. This points to challenges that must be taken into account in developing curricula for biology students that integrate physics and biology concepts.

  2. Students' Views of Macroscopic and Microscopic Energy in Physics and Biology

    CERN Document Server

    Dreyfus, Benjamin W; Watkins, Jessica

    2011-01-01

    Energy concepts are fundamental across the sciences, yet these concepts can be fragmented along disciplinary boundaries, rather than integrated into a coherent whole. To teach physics effectively to biology students, we need to understand students' disciplinary perspectives. We present interview data from an undergraduate student who displays multiple stances towards the concept of energy. At times he views energy in macroscopic contexts as a separate entity from energy in microscopic (particularly biological) contexts, while at other times he uses macroscopic physics phenomena as productive analogies for understanding energy in the microscopic biological context, and he reasons about energy transformations between the microscopic and macroscopic scales. This case study displays preliminary evidence for the context dependence of students' ability to translate energy concepts across scientific disciplines. This points to challenges that must be taken into account in developing curricula for biology students th...

  3. Simple Navier’s slip boundary condition for the non-Newtonian Lattice Boltzmann fluid dynamics solver

    DEFF Research Database (Denmark)

    Svec, Oldrich; Skoček, Jan

    2013-01-01

    The ability of the Lattice Boltzmann method, as the fluid dynamics solver, to properly simulate macroscopic Navier’s slip boundary condition is investigated. An approximate equation relating the Lattice Boltzmann variable slip boundary condition with the macroscopic Navier’s slip boundary condition...

  4. Separation of the Microscopic and Macroscopic Domains

    Science.gov (United States)

    Van Zandt, L. L.

    1977-01-01

    Examines the possibility of observing interference in quantum magnification experiments such as the celebrated "Schroedinger cat". Uses the possibility of observing interference for separating the realm of microscopic from macroscopic dynamics; estimates the dividing line to fall at system sizes of about 100 Daltons. (MLH)

  5. Entropy, Macroscopic Information, and Phase Transitions

    OpenAIRE

    Parrondo, Juan M. R.

    1999-01-01

    The relationship between entropy and information is reviewed, taking into account that information is stored in macroscopic degrees of freedom, such as the order parameter in a system exhibiting spontaneous symmetry breaking. It is shown that most problems of the relationship between entropy and information, embodied in a variety of Maxwell demons, are also present in any symmetry breaking transition.

  6. Macroscopic Modeling of Polymer-Electrolyte Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Weber, A.Z.; Newman, J.

    2007-04-01

    In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.

  7. Macroscopic invisibility cloaking of visible light

    DEFF Research Database (Denmark)

    Chen, Xianzhong; Luo, Y.; Zhang, Jingjing

    2011-01-01

    to a few wavelengths. Here, we report the first realization of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding, for a specific light polarization, three-dimensional objects of the scale...

  8. Deformation induced dislocation boundaries: Alignment and effect on mechanical properties

    DEFF Research Database (Denmark)

    Winther, G.; Juul Jensen, D.

    1997-01-01

    The dislocation boundaries formed during cold-rolling of FCC metals have been reported to have a preferred macroscopic direction with respect to the sample axes. However, boundaries have also been reported to form on crystallographic slip planes. The directions of the boundaries formed on crystal...

  9. Tough and Thermosensitive Poly(N-isopropylacrylamide)/Graphene Oxide Hydrogels with Macroscopically Oriented Liquid Crystalline Structures.

    Science.gov (United States)

    Zhu, Zhongcheng; Li, Yang; Xu, Hui; Peng, Xin; Chen, Ya-Nan; Shang, Cong; Zhang, Qin; Liu, Jiaqi; Wang, Huiliang

    2016-06-22

    Bulk graphene oxide (GO) nanocomposite materials with macroscopically oriented GO liquid crystalline (LC) structures exhibit interesting anisotropic properties, but their facile preparations remain challenging. This work reports for the first time the facile preparation of poly(N-isopropylacrylamide) (PNIPAM)/GO nanocomposite hydrogels with macroscopically oriented LC structures with the assistance of a flow field induced by vacuum degassing and the in situ polymerization accelerated by GO. The hydrogel prepared with a GO concentration of 5.0 mg mL(-1) exhibits macroscopically aligned LC structures, which endow the gels with anisotropic optical, mechanical properties, and dimensional changes during the phase transition. The hydrogels show dramatically enhanced tensile mechanical properties and phase transition rates. The oriented LC structures are not damaged during the phase transition of the PNIPAM/GO hydrogels, and hence their LC behavior undergoes reversible change. Moreover, highly oriented LC structures can also be formed when the gels are elongated, even for the gels which do not have macroscopically oriented LC structures. Very impressively, the oriented LC structures in the hydrogels can be permanently maintained by drying the gel samples elongated to and then kept at a constant tensile strain. The thermosensitive nature of PNIPAM and the angle-dependent nature of the macroscopically aligned GO LC structures allow the practical applications of the PNIPAM/GO hydrogels as optical switches, soft sensors, and actuators and so on.

  10. Determination of crystallographic and macroscopic orientation of planar structures in TEM

    DEFF Research Database (Denmark)

    Huang, X.; Liu, Q.

    1998-01-01

    With the aid of a double-tilt holder in a transmission electron microscope (TEM), simple methods are described for determination of the crystallographic orientation of a planar structure and for calculation of the macroscopic orientation of the planar structure. The correlation between a planar s...... taken at tilted positions, can be transformed to the real macroscopic orientation of the planar structures with estimated error of about +/- 2 degrees. (C) 1998 Elsevier Science B.V. All rights reserved....... structure and a crystallographic plane can be found by comparing the differences in their trace directions on the projection plane and inclination angles with respect to that plane. The angles between the traces of planar structures and the sample axis measured from the TEM micrographs, which have been...

  11. Macroscopic quantum mechanics in a classical spacetime.

    Science.gov (United States)

    Yang, Huan; Miao, Haixing; Lee, Da-Shin; Helou, Bassam; Chen, Yanbei

    2013-04-26

    We apply the many-particle Schrödinger-Newton equation, which describes the coevolution of a many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schrödinger-Newton equation for their centers of mass, which can be monitored and manipulated at quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, its quantum uncertainty is found to evolve at a frequency different from its classical eigenfrequency-with a difference that depends on the internal structure of the object-and can be observable using current technology. For several objects, the Schrödinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet quantum uncertainty cannot be transferred from one object to another.

  12. Macroscopic Invisibility Cloaking of Visible Light

    CERN Document Server

    Chen, Xianzhong; Zhang, Jingjing; Jiang, Kyle; Pendry, John B; Zhang, Shuang

    2010-01-01

    Invisibility cloaks of light, which used to be confined to the imagination, have now been turned into a scientific reality, thanks to the enabling theoretical tools of transformation optics and conformal mapping. Inspired by those theoretical works, the experimental realisation of electromagnetic invisibility cloaks has been reported at various electromagnetic frequencies. All the invisibility cloaks demonstrated thus far, however, have relied on nano- or micro-fabricated artificial composite materials with spatially varying electromagnetic properties, which limit the size of the cloaked region to a few wavelengths. Here we report realisation of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding three-dimensional objects of the scale of centimetres and millimetres. Our work opens avenues for future applications with macroscopic cloaking devices.

  13. Macroscopic spin and charge transport theory

    Institute of Scientific and Technical Information of China (English)

    Li Da-Fang; Shi Jun-Ren

    2009-01-01

    According to the general principle of non-equilibrium thermodynamics, we propose a set of macroscopic transport equations for the spin transport and the charge transport. In particular, the spin torque is introduced as a generalized 'current density' to describe the phenomena associated with the spin non-conservation in a unified framework. The Einstein relations and the Onsager relations between different transport phenomena are established. Specifically, the spin transport properties of the isotropic non-magnetic and the isotropic magnetic two-dimensional electron gases are fully described by using this theory, in which only the macroscopic-spin-related transport phenomena allowed by the symmetry of the system are taken into account.

  14. Macroscopic entrainment of periodically forced oscillatory ensembles.

    Science.gov (United States)

    Popovych, Oleksandr V; Tass, Peter A

    2011-03-01

    Large-amplitude oscillations of macroscopic neuronal signals, such as local field potentials and electroencephalography or magnetoencephalography signals, are commonly considered as being generated by a population of mutually synchronized neurons. In a computational study in generic networks of phase oscillators and bursting neurons, however, we show that this common belief may be wrong if the neuronal population receives an external rhythmic input. The latter may stem from another neuronal population or an external, e.g., sensory or electrical, source. In that case the population field potential may be entrained by the rhythmic input, whereas the individual neurons are phase desynchronized both mutually and with their field potential. Intriguingly, the corresponding large-amplitude oscillations of the population mean field are generated by pairwise desynchronized neurons oscillating at frequencies shifted far away from the frequency of the macroscopic field potential.

  15. Macroscopic Invisible Cloak for Visible Light

    CERN Document Server

    Zhang, Baile; Liu, Xiaogang; Barbastathis, George

    2011-01-01

    Invisibility cloaks, a subject that usually occurs in science fiction and myths, have attracted wide interest recently because of their possible realization. The biggest challenge to true invisibility is known to be the cloaking of a macroscopic object in the broad range of wavelengths visible to the human eye. Here we experimentally solve this problem by incorporating the principle of transformation optics into a conventional optical lens fabrication with low-cost materials and simple manufacturing techniques. A transparent cloak made of two pieces of calcite is created. This cloak is able to conceal a macroscopic object with a maximum height of 2 mm, larger than 3500 free-space-wavelength, inside a transparent liquid environment. Its working bandwidth encompassing red, green and blue light is also demonstrated.

  16. Macroscopic Quantum Resonators (MAQRO): 2015 update

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenbaek, Rainer [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Aspelmeyer, Markus; Kiesel, Nikolai [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Barker, Peter F.; Bose, Sougato [University College London, Department of Physics and Astronomy, London (United Kingdom); Bassi, Angelo [University of Trieste, Department of Physics, Trieste (Italy); INFN - Trieste Section, Trieste (Italy); Bateman, James [University of Swansea, Department of Physics, College of Science, Swansea (United Kingdom); Bongs, Kai; Cruise, Adrian Michael [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Braxmaier, Claus [University of Bremen, Center of Applied Space Technology and Micro Gravity (ZARM), Bremen (Germany); Institute of Space Systems, German Aerospace Center (DLR), Bremen (Germany); Brukner, Caslav [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Austrian Academy of Sciences, Institute of Quantum Optics and Quantum Information (IQOQI), Vienna (Austria); Christophe, Bruno; Rodrigues, Manuel [The French Aerospace Lab, ONERA, Chatillon (France); Chwalla, Michael; Johann, Ulrich [Airbus Defence and Space GmbH, Immenstaad (Germany); Cohadon, Pierre-Francois; Heidmann, Antoine; Lambrecht, Astrid; Reynaud, Serge [ENS-PSL Research University, Laboratoire Kastler Brossel, UPMC-Sorbonne Universites, CNRS, College de France, Paris (France); Curceanu, Catalina [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dholakia, Kishan; Mazilu, Michael [University of St. Andrews, School of Physics and Astronomy, St. Andrews (United Kingdom); Diosi, Lajos [Wigner Research Center for Physics, P.O. Box 49, Budapest (Hungary); Doeringshoff, Klaus; Peters, Achim [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Ertmer, Wolfgang; Rasel, Ernst M. [Leibniz Universitaet Hannover, Institut fuer Quantenoptik, Hannover (Germany); Gieseler, Jan; Novotny, Lukas; Rondin, Loic [ETH Zuerich, Photonics Laboratory, Zuerich (Switzerland); Guerlebeck, Norman; Herrmann, Sven; Laemmerzahl, Claus [University of Bremen, Center of Applied Space Technology and Micro Gravity (ZARM), Bremen (Germany); Hechenblaikner, Gerald [Airbus Defence and Space GmbH, Immenstaad (Germany); European Southern Observatory (ESO), Garching bei Muenchen (Germany); Hossenfelder, Sabine [KTH Royal Institute of Technology and Stockholm University, Nordita, Stockholm (Sweden); Kim, Myungshik [Imperial College London, QOLS, Blackett Laboratory, London (United Kingdom); Milburn, Gerard J. [University of Queensland, ARC Centre for Engineered Quantum Systems, Brisbane (Australia); Mueller, Holger [University of California, Department of Physics, Berkeley, CA (United States); Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Pikovski, Igor [Harvard-Smithsonian Center for Astrophysics, ITAMP, Cambridge, MA (United States); Pilan Zanoni, Andre [Airbus Defence and Space GmbH, Immenstaad (Germany); CERN - European Organization for Nuclear Research, EN-STI-TCD, Geneva (Switzerland); Riedel, Charles Jess [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Roura, Albert [Universitaet Ulm, Institut fuer Quantenphysik, Ulm (Germany); Schleich, Wolfgang P. [Universitaet Ulm, Institut fuer Quantenphysik, Ulm (Germany); Texas A and M University Institute for Advanced Study (TIAS), Institute for Quantum Science and Engineering (IQSE), and Department of Physics and Astronomy, College Station, TX (United States); Schmiedmayer, Joerg [Vienna University of Technology, Vienna Center for Quantum Science and Technology, Institute of Atomic and Subatomic Physics, Vienna (Austria); Schuldt, Thilo [Institute of Space Systems, German Aerospace Center (DLR), Bremen (Germany); Schwab, Keith C. [California Institute of Technology, Applied Physics, Pasadena, CA (United States)

    2016-12-15

    Do the laws of quantum physics still hold for macroscopic objects - this is at the heart of Schroedinger's cat paradox - or do gravitation or yet unknown effects set a limit for massive particles? What is the fundamental relation between quantum physics and gravity? Ground-based experiments addressing these questions may soon face limitations due to limited free-fall times and the quality of vacuum and microgravity. The proposed mission Macroscopic Quantum Resonators (MAQRO) may overcome these limitations and allow addressing such fundamental questions. MAQRO harnesses recent developments in quantum optomechanics, high-mass matter-wave interferometry as well as state-of-the-art space technology to push macroscopic quantum experiments towards their ultimate performance limits and to open new horizons for applying quantum technology in space. The main scientific goal is to probe the vastly unexplored 'quantum-classical' transition for increasingly massive objects, testing the predictions of quantum theory for objects in a size and mass regime unachievable in ground-based experiments. The hardware will largely be based on available space technology. Here, we present the MAQRO proposal submitted in response to the 4th Cosmic Vision call for a medium-sized mission (M4) in 2014 of the European Space Agency (ESA) with a possible launch in 2025, and we review the progress with respect to the original MAQRO proposal for the 3rd Cosmic Vision call for a medium-sized mission (M3) in 2010. In particular, the updated proposal overcomes several critical issues of the original proposal by relying on established experimental techniques from high-mass matter-wave interferometry and by introducing novel ideas for particle loading and manipulation. Moreover, the mission design was improved to better fulfill the stringent environmental requirements for macroscopic quantum experiments. (orig.)

  17. A macroscopic approach to creating exotic matter

    OpenAIRE

    Ridgely, C. T.

    2000-01-01

    Herein the Casimir effect is used to present a simple macroscopic view on creating exotic matter. The energy arising between two nearly perfectly conducting parallel plates is shown to become increasingly negative as the plate separation is reduced. It is proposed that the Casimir energy appears increasingly negative simply because the vacuum electromagnetic zero-point field performs positive work in pushing the plates together, transforming field energy into kinetic energy of the plates. Nex...

  18. Shot noise in linear macroscopic resistors

    OpenAIRE

    Gomila Lluch, Gabriel; Pennetta, C.; Reggiani, L.; Ferrari, G; Sampietro, M.; G. Bertuccio(Politecnico di Milano, Italy)

    2004-01-01

    We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devi...

  19. Shot Noise in Linear Macroscopic Resistors

    Science.gov (United States)

    Gomila, G.; Pennetta, C.; Reggiani, L.; Sampietro, M.; Ferrari, G.; Bertuccio, G.

    2004-06-01

    We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devices.

  20. Macroscopic Objects, Intrinsic Spin, and Lorentz Violation

    CERN Document Server

    Atkinson, David W; Tasson, Jay D

    2013-01-01

    The framework of the Standard-Model Extension (SME) provides a relativistic quantum field theory for the study of Lorentz violation. The classical, nonrelativistic equations of motion can be extracted as a limit that is useful in various scenarios. In this work, we consider the effects of certain SME coefficients for Lorentz violation on the motion of macroscopic objects having net intrinsic spin in the classical, nonrelativistic limit.

  1. Active Polar Two-Fluid Macroscopic Dynamics

    Science.gov (United States)

    Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.

    2014-03-01

    We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.

  2. Contact angle dynamics in droplet impact on flat surfaces: Effect of surface wettability

    Science.gov (United States)

    Bayer, Ilker

    2005-11-01

    Contact angle dynamics is examined experimentally during spreading/recoiling of mm-sized water droplets impacting orthogonally on various flat surfaces with We = O(0.1)-O(10), Ca = O(0.001)- O(0.01), Oh = O(0.001) and Bo = O(0.1). In this impact regime, inertial, viscous, and capillary phenomena act in unison to influence contact angle dynamics. The wetting properties of the target surfaces range from wettable to non-wettable. The objective of the work is to provide insight into the dynamic behavior of the apparent (macroscopic) contact angle θ and its dependence on contact line velocity VCL at various degrees of surface wetting for droplets impacting with low to moderate Weber numbers. The hydrodynamic wetting theory of Cox (1998) is implemented to relate the microscopic wetting parameters to the observed θ vs. VCL data. It is concluded that Cox's model works well in the fast spreading regime, but proves inadequate for slow spreading where solid/liquid interactions are dominant. In addition, the molecular-kinetic theory of wetting by Blake and Haynes (1969) is tested with good results. This study offers guidance for numerical or analytical studies, which require special attention to the boundary conditions at the contact line, and more specifically the functional dependence of contact angle on contact line speed.

  3. Influence of macroscopic graphite particulates on the damping properties of Zn-Al eutectoid alloy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The paper presents in detail the effects of macroscopic graphite (Gr) particulates on the damping behavior of Zn-Al eutectoid alloy (Zn-Al). Macroscopic defects are graphite particulates with sizes of the order of a millimeter (0.5 mm and 1.0 mm). Macroscopic graphite particulate-reinforced Zn-Al eutectoid alloys were prepared by the air pressure infiltration process. The damping characterization was conducted on a multifunction internal friction apparatus (MFIFA). The internal friction (IF), as well as the relative dynamic modulus, was measured at different frequencies over the temperature range of 20 to 400℃. The damping capacity of the Zn-Al/Gr, with two different volume fractions of macroscopic graphite particulates, was compared with that of bulk Zn-Al eutectoid alloy. The damping capacity of the materials is shown to increase with increasing volume fraction of macroscopic graphite particulates. Two IF peaks were found in the IF-temperature curves. The first is a grain boundary peak, which is associated with the diffusive flux on a boundary between like phases, Al/Al. Its activation energy has been calculated to be 1.13±0.03 eV and the pre-exponential factor is 10?14 s in IF measurements. The second is a phase transition peak, which results from the transformation of Zn-Al eutectoid. In light of internal friction measurements and differential scanning calorimetry (DSC) experiments, its activation energy has been calculated to be 2.36±0.08 eV.

  4. Influence of macroscopic graphite particulates on the damping properties of Zn-Al eutectoid alloy

    Institute of Scientific and Technical Information of China (English)

    WEI JianNing; SONG ShiHua; HU KongGang; XIE WeiJun; MA MingLiang; LI GenMei

    2009-01-01

    The paper presents in detail the effects of macroscopic graphite (Gr) particulates on the damping be-havior of Zn-AI eutectoid alloy (Zn-AI). Macroscopic defects are graphite particulates with sizes of the order of a millimeter (0.5 mm and 1.0 mm). Macroscopic graphite particulate-reinforced Zn-AI eutectoid alloys were prepared by the air pressure infiltration process. The damping characterization was con-ducted on a multifunction internal friction apparatus (MFIFA). The internal friction (IF), as well as the relative dynamic modulus, was measured at different frequencies over the temperature range of 20 to 400"C. The damping capacity of the Zn-AI/Gr, with two different volume fractions of macroscopic graphite particulates, was compared with that of bulk Zn-Al eutectoid alloy. The damping capacity of the materials is shown to increase with increasing volume fraction of macroscopic graphite particulates. Two IF peaks were found in the IF-temperature curves. The first is a grain boundary peak, which is as-sociated with the diffusive flux on a boundary between like phases, Al/Al. Its activation energy has been calculated to be 1.13±0.03 eV and the pre-exponential factor is 10-14 s in IF measurements. The second is a phase transition peak, which results from the transformation of Zn-AI eutectoid. In light of internal friction measurements and differential scanning calorimetry (DSC) experiments, its activation energy has been calculated to be 2.36±0.08 eV.

  5. Rainbow correlation imaging with macroscopic twin beam

    Science.gov (United States)

    Allevi, Alessia; Bondani, Maria

    2017-06-01

    We present the implementation of a correlation-imaging protocol that exploits both the spatial and spectral correlations of macroscopic twin-beam states generated by parametric downconversion. In particular, the spectral resolution of an imaging spectrometer coupled to an EMCCD camera is used in a proof-of-principle experiment to encrypt and decrypt a simple code to be transmitted between two parties. In order to optimize the trade-off between visibility and resolution, we provide the characterization of the correlation images as a function of the spatio-spectral properties of twin beams generated at different pump power values.

  6. Fingerprint Feature Extraction Based on Macroscopic Curvature

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiong; He Gui-ming; Zhang Yun

    2003-01-01

    In the Automatic Fingerprint Identification System (AFIS), extracting the feature of fingerprint is very important. The local curvature of ridges of fingerprint is irregular, so people have the barrier to effectively extract the fingerprint curve features to describe fingerprint. This article proposes a novel algorithm; it embraces information of few nearby fingerprint ridges to extract a new characteristic which can describe the curvature feature of fingerprint. Experimental results show the algorithm is feasible, and the characteristics extracted by it can clearly show the inner macroscopic curve properties of fingerprint. The result also shows that this kind of characteristic is robust to noise and pollution.

  7. Fingerprint Feature Extraction Based on Macroscopic Curvature

    Institute of Scientific and Technical Information of China (English)

    Zhang; Xiong; He; Gui-Ming; 等

    2003-01-01

    In the Automatic Fingerprint Identification System(AFIS), extracting the feature of fingerprint is very important. The local curvature of ridges of fingerprint is irregular, so people have the barrier to effectively extract the fingerprint curve features to describe fingerprint. This article proposes a novel algorithm; it embraces information of few nearby fingerprint ridges to extract a new characterstic which can describe the curvature feature of fingerprint. Experimental results show the algorithm is feasible, and the characteristics extracted by it can clearly show the inner macroscopic curve properties of fingerprint. The result also shows that this kind of characteristic is robust to noise and pollution.

  8. Macroscopic Quantum Criticality in a Circuit QED

    CERN Document Server

    Wang, Y D; Nori, F; Quan, H T; Sun, C P; Liu, Yu-xi; Nori, Franco

    2006-01-01

    Cavity quantum electrodynamic (QED) is studied for two strongly-coupled charge qubits interacting with a single-mode quantized field, which is provided by a on-chip transmission line resonator. We analyze the dressed state structure of this superconducting circuit QED system and the selection rules of electromagnetic-induced transitions between any two of these dressed states. Its macroscopic quantum criticality, in the form of ground state level crossing, is also analyzed, resulting from competition between the Ising-type inter-qubit coupling and the controllable on-site potentials.

  9. Macroscopic fluctuations theory of aerogel dynamics

    CERN Document Server

    Lefevere, Raphael; Zambotti, Lorenzo

    2010-01-01

    We consider extensive deterministic dynamics made of $N$ particles modeling aerogels under a macroscopic fluctuation theory description. By using a stochastic model describing those dynamics after a diffusive rescaling, we show that the functional giving the exponential decay in $N$ of the probability of observing a given energy and current profile is not strictly convex as a function of the current. This behaviour is caused by the fact that the energy current is carried by particles which may have arbitrary low speed with sufficiently large probability.

  10. Spin models as microfoundation of macroscopic market models

    Science.gov (United States)

    Krause, Sebastian M.; Bornholdt, Stefan

    2013-09-01

    Macroscopic price evolution models are commonly used for investment strategies. There are first promising achievements in defining microscopic agent based models for the same purpose. Microscopic models allow a deeper understanding of mechanisms in the market than the purely phenomenological macroscopic models, and thus bear the chance for better models for market regulation. However microscopic models and macroscopic models are commonly studied separately. Here, we exemplify a unified view of a microscopic and a macroscopic market model in a case study, deducing a macroscopic Langevin equation from a microscopic spin market model closely related to the Ising model. The interplay of the microscopic and the macroscopic view allows for a better understanding and adjustment of the microscopic model, as well, and may guide the construction of agent based market models as basis of macroscopic models.

  11. Exploratory numerical experiments with a macroscopic theory of interfacial interactions

    Science.gov (United States)

    Giordano, D.; Solano-López, P.; Donoso, J. M.

    2017-09-01

    Phenomenological theories of interfacial interactions are founded on the core idea to model macroscopically the thin layer that forms between media in contact as a two-dimensional continuum (surface phase or interface) characterised by physical properties per unit area; the temporal evolution of the latter is governed by surface balance equations whose set acts as bridging channel in between the governing equations of the volume phases. These theories have targeted terrestrial applications since long time and their exploitation has inspired our research programme to build up, on the same core idea, a macroscopic theory of gas-surface interactions targeting the complex phenomenology of hypersonic reentry flows as alternative to standard methods in aerothermodynamics based on accommodation coefficients. The objective of this paper is the description of methods employed and results achieved in the exploratory study that kicked off our research programme, that is, the unsteady heat transfer between two solids in contact in planar and cylindrical configurations with and without interface. It is a simple numerical-demonstrator test case designed to facilitate quick numerical calculations but, at the same time, to bring forth already sufficiently meaningful aspects relevant to thermal protection due to the formation of the interface. The paper begins with a brief introduction on the subject matter and a review of relevant literature within an aerothermodynamics perspective. Then the case is considered in which the interface is absent. The importance of tension (force per unit area) continuity as boundary condition on the same footing of heat-flux continuity is recognised and the role of the former in governing the establishment of the temperature-difference distribution over the separation surface is explicitly shown. Evidence is given that the standard temperature-continuity boundary condition is just a particular case. Subsequently the case in which the interface is

  12. MACROSCOPIC STRAIN POTENTIALS IN NONLINEAR POROUS MATERIALS

    Institute of Scientific and Technical Information of China (English)

    刘熠; 黄筑平

    2003-01-01

    By taking a hollow sphere as a representative volume element (RVE), the macroscopic strain potentials of porous materials with power-law incompressible matrix are studied in this paper.According to the principles of the minimum potential energy in nonlinear elasticity and the variational procedure, static admissible stress fields and kinematic admissible displacement fields are constructed,and hence the upper and the lower bounds of the macroscopic strain potential are obtained. The bounds given in the present paper differ so slightly that they both provide perfect approximations of the exact strain potential of the studied porous materials. It is also found that the upper bound proposed by previous authors is much higher than the present one, and the lower bounds given by Cocks is much lower. Moreover, the present calculation is also compared with the variational lower bound of Ponte Castafneda for statistically isotropic porous materials. Finally, the validity of the hollow spherical RVE for the studied nonlinear porous material is discussed by the difference between the present numerical results and the Cocks bound.

  13. Evolution and distribution of macroscopic gas channels in an overburden strata

    Institute of Scientific and Technical Information of China (English)

    Liu; Hongtao; Ma; Nianjie; Ma; Wang; Ren; Guoqiang

    2012-01-01

    The evolution of gas bearing channels in the roof,and their spatial distribution,was studied.A complete consideration of gas flow changes through the stress-strain changes in the roof near a working face is made.The theoretical abutment pressure distribution using displacement monitors and borehole visual recording instruments allow a theoretical analysis.Field test research determined the conditions for formation of macroscopic gas channels.These appear along the working face roof,normally distributed to it.These results show that the coal rock stratification becomes a macroscopic gas channel boundary if its deformation is less than the lower layer,or greater than the layer above it.At the same time the stability is greater than the distance from the roof for hanging dew conditions.The working face advances and the roof gas channels experience a cycle of development.Microscopic channels dominate the initial stage then macroscopic gas channels form,develop,and close.The evolution of the macroscopic channels depends on the ratio between the distances from the new compaction area in the goaf to the initial stress area in front of the working face.The amount of daily advance of the face also affects channel development.The experimental observations in one mining area showed that the main gas channels are located about 2 and 6.2 m above the lower surface of the roof and that they have an evolution period 7 to 11 days long.

  14. Quantum correlations of lights in macroscopic environments

    Science.gov (United States)

    Sua, Yong Meng

    This dissertation presents a detailed study in exploring quantum correlations of lights in macroscopic environments. We have explored quantum correlations of single photons, weak coherent states, and polarization-correlated/polarization-entangled photons in macroscopic environments. These included macroscopic mirrors, macroscopic photon number, spatially separated observers, noisy photons source and propagation medium with loss or disturbances. We proposed a measurement scheme for observing quantum correlations and entanglement in the spatial properties of two macroscopic mirrors using single photons spatial compass state. We explored the phase space distribution features of spatial compass states, such as chessboard pattern by using the Wigner function. The displacement and tilt correlations of the two mirrors were manifested through the propensities of the compass states. This technique can be used to extract Einstein-Podolsky-Rosen correlations (EPR) of the two mirrors. We then formulated the discrete-like property of the propensity P b(m,n), which can be used to explore environmental perturbed quantum jumps of the EPR correlations in phase space. With single photons spatial compass state, the variances in position and momentum are much smaller than standard quantum limit when using a Gaussian TEM 00 beam. We observed intrinsic quantum correlations of weak coherent states between two parties through balanced homodyne detection. Our scheme can be used as a supplement to decoy-state BB84 protocol and differential phase-shift QKD protocol. We prepared four types of bipartite correlations +/- cos2(theta1 +/- theta 2) that shared between two parties. We also demonstrated bits correlations between two parties separated by 10 km optical fiber. The bits information will be protected by the large quantum phase fluctuation of weak coherent states, adding another physical layer of security to these protocols for quantum key distribution. Using 10 m of highly nonlinear

  15. Scaling of misorientation angle distributions

    DEFF Research Database (Denmark)

    Hughes, D.A.; Chrzan, D.C.; Liu, Q.

    1998-01-01

    The measurement of misorientation angle distributions following different amounts of deformation in cold-rolled aluminum and nickel and compressed stainless steel is reported. The sealing of the dislocation cell boundary misorientation angle distributions is studied. Surprisingly, the distributions...... for the small to large strain regimes for aluminum, 304L stainless steel, nickel, and copper (taken from the literature )appear to be identical. Hence the distributions may be "universal." These results have significant implications for the development of dislocation based deformation models. [S0031...

  16. Seeking the boundary of boundary extension.

    Science.gov (United States)

    McDunn, Benjamin A; Siddiqui, Aisha P; Brown, James M

    2014-04-01

    Boundary extension (BE) is a remarkably consistent visual memory error in which participants remember seeing a more wide-angle image of a scene than was actually viewed (Intraub & Richardson, Journal of Experimental Psychology: Learning, Memory, and Cognition 15:179-187, 1989). Multiple stimulus factors are thought to contribute to the occurrence of BE, including object recognition, conceptual knowledge of scenes, and amodal perception at the view boundaries (Intraub, Wiley Interdisciplinary Reviews: Cognitive Science 3:117-127, 2012). In the present study, we used abstract scenes instead of images of the real world, in order to remove expectations based on semantic associations with objects and the schematic context of the view. Close-angle and wide-angle scenes were created using irregular geometric shapes rated by independent observers as lacking any easily recognizable structure. The abstract objects were tested on either a random-dot or a blank background in order to assess the influence of implied continuation of the image beyond its boundaries. The random-dot background conditions had background occlusion cues either present or absent at the image border, in order to test their influence on BE in the absence of high-level information about the scenes. The results indicate that high-level information about objects and schematic context is unnecessary for BE to occur, and that occlusion information at the image boundary also has little influence on BE. Contrary to previous studies, we also found clear BE for all conditions, despite using scenes depicting undetailed objects on a blank white background. The results highlighted the ubiquitous nature of BE and the adaptability of scene perception processes.

  17. Vortex rings impinging on permeable boundaries

    Science.gov (United States)

    Mujal-Colilles, Anna; Dalziel, Stuart B.; Bateman, Allen

    2015-01-01

    Experiments with vortex rings impinging permeable and solid boundaries are presented in order to investigate the influence of permeability. Utilizing Particle Image Velocimetry, we compared the behaviour of a vortex ring impinging four different reticulated foams (with permeability k ˜ 26 - 85 × 10-8 m2) and a solid boundary. Results show how permeability affects the stretching phenomena of the vortex ring and the formation and evolution of the secondary vortex ring with opposite sign. Moreover, permeability also affects the macroscopic no-slip boundary condition found on the solid boundary, turning it into an apparent slip boundary condition for the most permeable boundary. The apparent slip-boundary condition and the flux exchange between the ambient fluid and the foam are jointly responsible for both the modified formation of the secondary vortex and changes on the vortex ring diameter increase.

  18. Macroscopic Quantum Coherence in Antiferromagnetic Molecular Magnets

    Institute of Scientific and Technical Information of China (English)

    HU Hui; LO Rong; ZHU Jia-Lin; XIONG Jia-Jiong

    2001-01-01

    The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model. On the basis of instanton technique in the spin-coherent-state path-integral representation, both the rigorous Wentzel-Kramers-Brillouin exponent and pre-exponential factor for the ground-state tunnel splitting are obtained. We find that the quantum fluctuations around the classical paths can not only induce a new quantum phase previously reported by Chiolero and Loss (Phys. Rev. Lett. 80 (1998) 169), but also have great influence on the intensity of the ground-state tunnel splitting. Those features clearly have no analogue in the ferromagnetic molecular magnets. We suggest that they may be the universal behaviors in all antiferromagnetic molecular magnets. The analytical results are complemented by exact diagonalization calculation.

  19. Micro- and macroscopic simulation of periodic metamaterials

    Directory of Open Access Journals (Sweden)

    R. Schuhmann

    2008-05-01

    Full Text Available In order to characterize three-dimensional, left-handed metamaterials (LHM we use electromagnetic field simulations of unit cells. For waves traveling in one of the main directions of the periodic LHM-arrays, the analysis is concentrated on the calculation of global quantities of the unit cells, such as scattering parameters or dispersion diagrams, and a careful interpretation of the results. We show that the concept of equivalent material values – which may be negative in a narrow frequency range – can be validated by large "global" simulations of a wedge structure. We also discuss the limitations of this concept, since in some cases the macroscopic behavior of an LHM cannot be accurately described by equivalent material values.

  20. Partitioning a macroscopic system into independent subsystems

    Science.gov (United States)

    Delle Site, Luigi; Ciccotti, Giovanni; Hartmann, Carsten

    2017-08-01

    We discuss the problem of partitioning a macroscopic system into a collection of independent subsystems. The partitioning of a system into replica-like subsystems is nowadays a subject of major interest in several fields of theoretical and applied physics. The thermodynamic approach currently favoured by practitioners is based on a phenomenological definition of an interface energy associated with the partition, due to a lack of easily computable expressions for a microscopic (i.e. particle-based) interface energy. In this article, we outline a general approach to derive sharp and computable bounds for the interface free energy in terms of microscopic statistical quantities. We discuss potential applications in nanothermodynamics and outline possible future directions.

  1. Casimir effect from macroscopic quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Philbin, T G, E-mail: tgp3@st-andrews.ac.uk [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2011-06-15

    The canonical quantization of macroscopic electromagnetism was recently presented in (Philbin 2010 New J. Phys. 12 123008). This theory is used here to derive the Casimir effect, by considering the special case of thermal and zero-point fields. The stress-energy-momentum tensor of the canonical theory follows from Noether's theorem, and its electromagnetic part in thermal equilibrium gives the Casimir energy density and stress tensor. The results hold for arbitrary inhomogeneous magnetodielectrics and are obtained from a rigorous quantization of electromagnetism in dispersive, dissipative media. Continuing doubts about the status of the standard Lifshitz theory as a proper quantum treatment of Casimir forces do not apply to the derivation given here. Moreover, the correct expressions for the Casimir energy density and stress tensor inside media follow automatically from the simple restriction to thermal equilibrium, without the need for complicated thermodynamical or mechanical arguments.

  2. Black Holes and Quantumness on Macroscopic Scales

    CERN Document Server

    Flassig, D; Wintergerst, N

    2012-01-01

    It has recently been suggested that black holes may be described as condensates of weakly interacting gravitons at a critical point, exhibiting strong quantum effects. In this paper, we study a model system of attractive bosons in one spatial dimension which is known to undergo a quantum phase transition. We demonstrate explicitly that indeed quantum effects are important at the critical point, even if the number of particles is macroscopic. Most prominently, we evaluate the entropy of entanglement between different momentum modes and observe it to become maximal at the critical point. Furthermore, we explicitly see that the leading entanglement is between long wavelength modes and is hence a feature independent of ultraviolet physics. If applicable to black holes, our findings substantiate the conjectured breakdown of semiclassical physics even for large black holes. This can resolve long standing mysteries, such as the information paradox and the no-hair theorem.

  3. Variability of macroscopic dimensions of Moso bamboo.

    Science.gov (United States)

    Cui, Le; Peng, Wanxi; Sun, Zhengjun; Sun, Zhengjun; Sun, Zhengjun; Lu, Huangfei; Chen, Guoning

    2015-03-01

    In order to the macroscopic geometry distributions of vascular bundles in Moso bamboo tubes. The circumference of bamboo tubes was measured, used a simple quadratic diameter formula to analyze the differences between the tubes in bamboo culm, and the arrangement of vascular bundles was investigated by cross sectional images of bamboo tubes. The results shown that the vascular bundles were differently distributed in a bamboo tube. In the outer layer, the vascular bundles had a variety of shapes, and were aligned parallel to each other. In the inner layers, the vascular bundles weren't aligned but uniform in shape. It was concluded that the vascular bundle sections arranged in parallel should be separated from the non-parallel sections for the maximum bamboo utilization.

  4. Robust macroscopic entanglement without complex encodings

    CERN Document Server

    Chaves, Rafael; Acín, Antonio

    2011-01-01

    One of the main challenges for the experimental manipulation and storage of macroscopic entanglement is its fragility under noise. We present a simple recipe for the systematic enhancement of the resistance of multipartite entanglement against any local noise with a privileged direction in the Bloch sphere. For the case of exact local dephasing along any given basis, and for all noise strengths, our prescription grants full robustness: even states whose entanglement decays exponentially with the number of parts are mapped to states whose entanglement is constant. In contrast to previous techniques resorting to complex logical-qubit encodings, such enhancement is attained simply by performing local unitary rotations before the noise acts. The scheme is therefore highly experimentally-friendly, as it brings no overhead of extra physical qubits to encode logical ones. In addition, we show that, apart from entanglement, the resilience of the states as resources for useful practical tasks such as metrology and non...

  5. Macroscopic Quantum Coherence in Antiferromagnetic Molecular Magnets

    Institute of Scientific and Technical Information of China (English)

    HUHui; LURong; 等

    2001-01-01

    The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model.On the basis of instanton technique in the spin-coherent-state path-integral representation,both the rigorous Wentzel-Kramers-Brillouin exponent and pre-exponential factor for the ground-state tunnel splitting are obtained.We find that the quantum fluctuations around the classical paths can not only induce a new quantum phase previously reported by Chiolero and Loss (Phys.Rev.Lett.80(1998)169),but also have great influence on the intensity of the ground-state tunnel splitting.Those features clearly have no analogue in the ferromagnetic molecular magnets.We suggest that they may be the universal behaviors in all antiferromagnetic molecular magnets.The analytical results are complemented by exact diagonalization calculation.

  6. Determining the Macroscopic Properties of Relativistic Jets

    Science.gov (United States)

    Hardee, P. E.

    2004-08-01

    The resolved relativistic jets contain structures whose observed proper motions are typically assumed to indicate the jet flow speed. In addition to structures moving with the flow, various normal mode structures such as pinching or helical and elliptical twisting can be produced by ejection events or twisting perturbations to the jet flow. The normal mode structures associated with relativistic jets, as revealed by numerical simulation, theoretical calculation, and suggested by observation, move more slowly than the jet speed. The pattern speed is related to the jet speed by the sound speed in the jet and in the surrounding medium. In the event that normal mode structures are observed, and where proper motions of pattern and flow speed are available or can be estimated, it is possible to determine the sound speed in the jet and surrounding medium. Where spatial development of normal mode structures is observed, it is possible to make inferences as to the heating rate/macroscopic viscosity of the jet fluid. Ultimately it may prove possible to separate the microscopic energization of the synchrotron radiating particles from the macroscopic heating of the jet fluid. Here I present the relevant properties of useful normal mode structures and illustrate the use of this technique. Various aspects of the work presented here have involved collaboration with I. Agudo (Max-Planck, Bonn), M.A. Aloy (Max-Planck, Garching), J. Eilek (NM Tech), J.L. Gómez (U. Valencia), P. Hughes (U. Michigan), A. Lobanov (Max-Planck, Bonn), J.M. Martí (U. Valencia), & C. Walker (NRAO).

  7. In situ assessment of the contact angles of nanoparticles adsorbed at fluid interfaces by multiple angle of incidence ellipsometry.

    Science.gov (United States)

    Stocco, Antonio; Su, Ge; Nobili, Maurizio; In, Martin; Wang, Dayang

    2014-09-28

    Here multiple angle of incidence ellipsometry was successfully applied to in situ assess the contact angle and surface coverage of gold nanoparticles as small as 18 nm, coated with stimuli-responsive polymers, at water-oil and water-air interfaces in the presence of NaCl and NaOH, respectively. The interfacial adsorption of the nanoparticles was found to be very slow and took days to reach a fairly low surface coverage. For water-oil interfaces, in situ nanoparticle contact angles agree with the macroscopic equilibrium contact angles of planar gold surfaces with the same polymer coatings, whilst for water-air interfaces, significant differences have been observed.

  8. Observability of relative phases of macroscopic quantum states

    CERN Document Server

    Pati, A K

    1998-01-01

    After a measurement, to observe the relative phases of macroscopically distinguishable states we have to ``undo'' a quantum measurement. We generalise an earlier model of Peres from two state to N-state quantum system undergoing measurement process and discuss the issue of observing relative phases of different branches. We derive an inequality which is satisfied by the relative phases of macroscopically distinguishable states and consequently any desired relative phases can not be observed in interference setups. The principle of macroscopic complementarity is invoked that might be at ease with the macroscopic world. We illustrate the idea of limit on phase observability in Stern-Gerlach measurements and the implications are discussed.

  9. Macroscopic corrosion front computations of sulfate attack in sewer pipes based on a micro-macro reaction-diffusion model

    CERN Document Server

    Chalupecký, Vladimír; Kruschwitz, Jens; Muntean, Adrian

    2012-01-01

    We consider a two-scale reaction diffusion system able to capture the corrosion of concrete with sulfates. Our aim here is to define and compute two macroscopic corrosion indicators: typical pH drop and gypsum profiles. Mathematically, the system is coupled, endowed with micro-macro transmission conditions, and posed on two different spatially-separated scales: one microscopic (pore scale) and one macroscopic (sewer pipe scale). We use a logarithmic expression to compute values of pH from the volume averaged concentration of sulfuric acid which is obtained by resolving numerically the two-scale system (microscopic equations with direct feedback with the macroscopic diffusion of one of the reactants). Furthermore, we also evaluate the content of the main sulfatation reaction (corrosion) product---the gypsum---and point out numerically a persistent kink in gypsum's concentration profile. Finally, we illustrate numerically the position of the free boundary separating corroded from not-yet-corroded regions.

  10. Influence of Disclination Strength and Damping Coeffi-cient on Decay of Low Angle Grain Boundaries in Nano-crystalline Materials%向错强度与阻尼系数对纳米晶材料小角度晶界湮没的影响

    Institute of Scientific and Technical Information of China (English)

    刘晓骅; 叶里; 温振川; 邓芊芊; 高英俊

    2015-01-01

    【目的】研究一维纳米晶材料演化过程中的小角度晶界湮没过程,探究向错强度与阻尼系数对位错湮没的影响。【方法】建立位错运动方程,计算模拟小角度晶界的晶格位错在外应力作用下发生的变化。【结果】随着切应力增加,晶界由过阻尼运动变为无穷远的单向运动,向错强度越大晶界越难以湮没,并且晶界位错由同时湮没转变为两端先湮没,中心后湮没;阻尼系数越大,湮没临界切应力越大,但到达一定值时,阻尼系数不再影响临界值。【结论】晶界湮没存在临界切应力,向错强度主要影响临界切应力,阻尼系数主要影响位错初始速度和运动停止时间。%[Objective]The evolution process of the annihilation of small angle grain boundaries in an one-dimensional crystal material was researched,and the effects of disclination strength and damping coefficient on the annihilation of dislocations were explored.[Methods]The movement equations of dislocations were established,and the dislocation motions in low angle grain boundaries were calculated and simulated under external shear stress.[Results]With shear stress progressing,the movement of grain boundary turns to directional motion in which dislo-cations can go to infinity.The bigger the value of disclination strength is,the more difficult the grain boundary annihilation is.Furthermore,grain boundary annihilation changes from simulta-neously running away to central dislocation releasing after escaping of dislocations in both ends.The bigger the damping coefficient is,the bigger the critical shear stress of annihilation. But when it reaches a certain point,damping coefficient doesn’t have an impact on critical stress anymore.[Conclusion]There is a critical value for grain boundary annihilation.Disclina-tion strength mainly affects critical value,while damping coefficient plays an indispensable role in original velocity and motion

  11. Grain boundary structure in Ni{sub 3}Al

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, D. [Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States). Dept. of Materials Engineering

    1996-08-01

    The multiplicity of possible grain boundary structures was studied for the ordered compound Ni{sub 3}Al. Two symmetrical tilt boundaries were chosen for the detailed study corresponding to {Sigma}=3 left angle 110 right angle {l_brace}112{r_brace} and {Sigma}=9 left angle 110 right angle {l_brace}114{r_brace}. These boundaries were investigated considering possible variations of the local chemical composition and environment using atomistic computer simulation with EAM interatomic potentials. Many different grain boundary structures were found having very similar energies for the same orientation of the two crystals and the grain boundary plane. Possible transformations among these structures may result from the interaction of the boundaries with dislocations or antiphase boundaries. The role of the multiplicity of structures and these transformations in the grain boundary mechanical properties is discussed. In this paper, we explore the role that different possible grain boundary structures play in intermetallic alloys. (orig.)

  12. Investigation of dissipative forces near macroscopic media

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R.S.

    1982-12-01

    The interaction of classical charged particles with the fields they induce in macroscopic dielectric media is investigated. For 10- to 1000-eV electrons, the angular perturbation of the trajectory by the image potential for surface impact parameters of 50 to 100 A is shown to be of the order of 0.001 rads over a distance of 100 A. The energy loss incurred by low-energy particles due to collective excitations such as surface plasmons is shown to be observable with a transition probability of 0.01 to 0.001 (Becker, et al., 1981b). The dispersion of real surface plasmon modes in planar and cylindrical geometries is discussed and is derived for pinhole geometry described in terms of a single-sheeted hyperboloid of revolution. An experimental apparatus for the measurement of collective losses for medium-energy electrons translating close to a dielectric surface is described and discussed. Data showing such losses at electron energies of 500 to 900 eV in silver foils containing many small apertures are presented and shown to be in good agreement with classical stopping power calculations and quantum mechanical calculations carried out in the low-velocity limit. The data and calculations are compared and contrasted with earlier transmission and reflection measurements, and the course of further investigation is discussed.

  13. The Proell Effect: A Macroscopic Maxwell's Demon

    Science.gov (United States)

    Rauen, Kenneth M.

    2011-12-01

    Maxwell's Demon is a legitimate challenge to the Second Law of Thermodynamics when the "demon" is executed via the Proell effect. Thermal energy transfer according to the Kinetic Theory of Heat and Statistical Mechanics that takes place over distances greater than the mean free path of a gas circumvents the microscopic randomness that leads to macroscopic irreversibility. No information is required to sort the particles as no sorting occurs; the entire volume of gas undergoes the same transition. The Proell effect achieves quasi-spontaneous thermal separation without sorting by the perturbation of a heterogeneous constant volume system with displacement and regeneration. The classical analysis of the constant volume process, such as found in the Stirling Cycle, is incomplete and therefore incorrect. There are extra energy flows that classical thermo does not recognize. When a working fluid is displaced across a regenerator with a temperature gradient in a constant volume system, complimentary compression and expansion work takes place that transfers energy between the regenerator and the bulk gas volumes of the hot and cold sides of the constant volume system. Heat capacity at constant pressure applies instead of heat capacity at constant volume. The resultant increase in calculated, recyclable energy allows the Carnot Limit to be exceeded in certain cycles. Super-Carnot heat engines and heat pumps have been designed and a US patent has been awarded.

  14. Macroscopic superpositions and gravimetry with quantum magnetomechanics

    Science.gov (United States)

    Johnsson, Mattias T.; Brennen, Gavin K.; Twamley, Jason

    2016-11-01

    Precision measurements of gravity can provide tests of fundamental physics and are of broad practical interest for metrology. We propose a scheme for absolute gravimetry using a quantum magnetomechanical system consisting of a magnetically trapped superconducting resonator whose motion is controlled and measured by a nearby RF-SQUID or flux qubit. By driving the mechanical massive resonator to be in a macroscopic superposition of two different heights our we predict that our interferometry protocol could, subject to systematic errors, achieve a gravimetric sensitivity of Δg/g ~ 2.2 × 10-10 Hz-1/2, with a spatial resolution of a few nanometres. This sensitivity and spatial resolution exceeds the precision of current state of the art atom-interferometric and corner-cube gravimeters by more than an order of magnitude, and unlike classical superconducting interferometers produces an absolute rather than relative measurement of gravity. In addition, our scheme takes measurements at ~10 kHz, a region where the ambient vibrational noise spectrum is heavily suppressed compared the ~10 Hz region relevant for current cold atom gravimeters.

  15. Cloud Macroscopic Organization: Order Emerging from Randomness

    Science.gov (United States)

    Yuan, Tianle

    2011-01-01

    Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds, and that it follows a power-law distribution with exponent gamma close to 2. gamma is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also demonstrate symmetry between clear and cloudy skies in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random local interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. We also propose a concept of cloud statistic mechanics approach. This approach is fully complementary to deterministic models, and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.

  16. Distributivity breaking and macroscopic quantum games

    CERN Document Server

    Grib, A A; Parfionov, G N; Starkov, K A

    2005-01-01

    Examples of games between two partners with mixed strategies, calculated by the use of the probability amplitude as some vector in Hilbert space are given. The games are macroscopic, no microscopic quantum agent is supposed. The reason for the use of the quantum formalism is in breaking of the distributivity property for the lattice of yes-no questions arising due to the special rules of games. The rules of the games suppose two parts: the preparation and measurement. In the first part due to use of the quantum logical orthocomplemented non-distributive lattice the partners freely choose the wave functions as descriptions of their strategies. The second part consists of classical games described by Boolean sublattices of the initial non-Boolean lattice with same strategies which were chosen in the first part. Examples of games for spin one half are given. New Nash equilibria are found for some cases. Heisenberg uncertainty relations without the Planck constant are written for the "spin one half game".

  17. Cloud macroscopic organization: order emerging from randomness

    Directory of Open Access Journals (Sweden)

    T. Yuan

    2011-01-01

    Full Text Available Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds and it follows a power-law distribution with exponent γ close to 2. γ is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also show clear-cloudy sky symmetry in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random simple interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. This approach is fully complementary to deterministic models and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.

  18. First study of macroscopic neutron dark field imaging using scattering grids

    Energy Technology Data Exchange (ETDEWEB)

    Schillinger, B., E-mail: Burkhard.Schillinger@frm2.tum.de [Technische Universitaet Muenchen, FRM II and Faculty for Physics E21, Lichtenbergstr. 1, 85748 Garching (Germany); Badurek, G. [Technische Universitaet Wien, Atominstitut Stadionallee 2, 1020 Wien (Austria)

    2011-09-21

    Instead of using the phase grating concept for dark field imaging, macroscopic scattering grids were employed at the ANTARES neutron imaging facility. Two Cadmium grids with a 1 mm gap and 1.2 mm bar were adjusted in a distance of only a few cm in order to block the direct beam. Thus, by placing the samples between these two grids only neutrons that were scattered at the samples were transmitted. A linear motion of the coupled grids allowed scanning across the samples and obtaining complete scattering projections, which delivered surprisingly sharp images. The geometric relation between grids permits determination of the transmitted scattering angles.

  19. Contact angle dynamics in droplets impacting on flat surfaces with different wetting characteristics

    Science.gov (United States)

    Bayer, Ilker S.; Megaridis, Constantine M.

    2006-07-01

    An experimental study is presented on contact angle dynamics during spreading/recoiling of mm-sized water droplets impacting orthogonally on various surfaces with We {=} O(0.1)-O(10), Ca {=} O(0.001)-O(0.01), Re {=} O(100)-O(1000), Oh {=} O(0.001) and Bo {=} O(0.1). In this impact regime, inertial, viscous and capillary phenomena act in unison to influence contact angle dynamics. The wetting properties of the target surfaces range from wettable to non-wettable. The experiments feature accelerating and decelerating wetting lines, capillary surface waves in the early impact stages, contact angle hysteresis, and droplet rebound under non-wetting conditions. The objective of the work is to provide insight into the dynamic behaviour of the apparent (macroscopic) contact angle theta and its dependence on contact line velocity V_{scriptsizeCL} at various degrees of surface wetting. By correlating the temporal behaviours of theta and V_{scriptsizeCL}, the angle vs. speed relationship is established for each case examined. The results reveal that surface wettability has a critical influence on dynamic contact angle behaviour. The hydrodynamic wetting theory of Cox (J. Fluid Mech. vol. 357, 1998, p. 249) and the molecular-kinetic theory of wetting by Blake & Haynes (J. Colloid Interface Sci.) vol. 30, 1969, p. 421) are implemented to extract values of the corresponding microscopic wetting parameters required to match the experimentally observed theta vs. V_{scriptsizeCL} data. Application of hydrodynamic theory indicates that in the slow stage of forced spreading the slip length and the microscopic contact angle should be contact line velocity dependent. The hydrodynamic theory performs well during kinematic (fast) spreading, in which solid/liquid interactions are weak. Application of the molecular kinetic theory yields physically reasonable molecular wetting parameters, which, however, vary with impact conditions. The results indicate that even for a single liquid there is

  20. An Experimental Proposal for Demonstration of Macroscopic Quantum Effects

    Directory of Open Access Journals (Sweden)

    Jensen R.

    2010-10-01

    Full Text Available An experiment is proposed, whose purpose is to determine whether quantum indeterminism can be observed on a truly macroscopic scale. The experiment involves using a double-slit plate or interferometer and a macroscopic mechanical switch. The objective is to determine whether or not the switch can take on an indeterminate state.

  1. An Experimental Proposal for Demonstration of Macroscopic Quantum Effects

    Directory of Open Access Journals (Sweden)

    Jensen R.

    2010-10-01

    Full Text Available An experiment is proposed, whose purpose is to determine whether quantum indeter- minism can be observed on a truly macroscopic scale. The experiment involves using a double-slit plate or interferometer and a macroscopic mechanical switch. The objective is to determine whether or not the switch can take on an indeterminate state.

  2. Macroscopic and microscopic observations of needle insertion into gels

    NARCIS (Netherlands)

    Veen, van Youri R.J.; Jahya, Alex; Misra, Sarthak

    2012-01-01

    Needle insertion into soft tissue is one of the most common medical interventions. This study provides macroscopic and microscopic observations of needle–gel interactions. A gelatin mixture is used as a soft-tissue simulant. For the macroscopic studies, system parameters, such as insertion velocity,

  3. The development and application of an automatic boundary segmentation methodology to evaluate the vaporizing characteristics of diesel spray under engine-like conditions

    Science.gov (United States)

    Ma, Y. J.; Huang, R. H.; Deng, P.; Huang, S.

    2015-04-01

    Studying the vaporizing characteristics of diesel spray could greatly help to reduce engine emission and improve performance. The high-speed schlieren imaging method is an important optical technique for investigating the macroscopic vaporizing morphological evolution of liquid fuel, and pre-combustion constant volume combustion bombs are often used to simulate the high pressure and high temperature conditions occurring in diesel engines. Complicated background schlieren noises make it difficult to segment the spray region in schlieren spray images. To tackle this problem, this paper develops a vaporizing spray boundary segmentation methodology based on an automatic threshold determination algorithm. The methodology was also used to quantify the macroscopic characteristics of vaporizing sprays including tip penetration, near-field and far-field angles, and projected spray area and spray volume. The spray boundary segmentation methodology was realized in a MATLAB-based program. Comparisons were made between the spray characteristics obtained using the program method and those acquired using a manual method and the Hiroyasu prediction model. It is demonstrated that the methodology can segment and measure vaporizing sprays precisely and efficiently. Furthermore, the experimental results show that the spray angles were slightly affected by the injection pressure at high temperature and high pressure and under inert conditions. A higher injection pressure leads to longer spray tip penetration and a larger projected area and volume, while elevating the temperature of the environment can significantly promote the evaporation of cold fuel.

  4. Measurement of Critical Contact Angle in a Microgravity Space Experiment

    Science.gov (United States)

    Concus, P.; Finn, R.; Weislogel, M.

    1998-01-01

    Mathematical theory predicts that small changes in container shape or in contact angle can give rise to large shifts of liquid in a microgravity environment. This phenomenon was investigated in the Interface Configuration Experiment on board the USMT,2 Space Shuttle flight. The experiment's "double proboscis" containers were designed to strike a balance between conflicting requirements of sizable volume of liquid shift (for ease of observation) and abruptness of the shift (for accurate determination of critical contact angle). The experimental results support the classical concept of macroscopic contact angle and demonstrate the role of hysteresis in impeding orientation toward equilibrium.

  5. Electromagnetic stress at the boundary: photon pressure or tension?

    CERN Document Server

    Wang, Shubo; Xiao, Meng; Chan, C T

    2015-01-01

    It is well known that incident photons carrying momentum hk exert a positive photon pressure. But if light is impinging from a negative refractive medium in which hk is directed towards the source of radiation, should light insert a photon "tension" instead of a photon pressure? Using an ab initio method that takes the underlying microstructure of a material into account, we find that when an electromagnetic wave propagates from one material into another, the electromagnetic stress at the boundary is in fact indeterminate if only the macroscopic parameters are specified. Light can either pull or push the boundary, depending not only on the macroscopic parameters but also on the microscopic lattice structure of the polarizable units that constitute the medium. Within the context of effective medium approach, the lattice effect is attributed to electrostriction and magnetostriction which can be accounted for by the Helmholtz stress tensor if we employ the macroscopic fields to calculate the boundary optical str...

  6. Exact Solution to Integrable Open Multi-species SSEP and Macroscopic Fluctuation Theory

    Science.gov (United States)

    Vanicat, M.

    2017-03-01

    We introduce a multi-species generalization of the symmetric simple exclusion process with open boundaries. This model possesses the property of being integrable and appears as physically relevant because the boundary conditions can be interpreted as the interaction with particles reservoirs with fixed densities of each species. The system is driven out-of-equilibrium by these reservoirs. The steady state is analytically computed in a matrix product form. This algebraic structure allows us to obtain exact expressions for the mean particle currents and for the one and two-point correlation functions. An additivity principle is also derived from the matrix ansatz and permits the computation of the large deviation functional of the density profile. We also propose a description of the model in the context of the macroscopic fluctuation theory and we check the consistency with the exact computations from the finite size lattice.

  7. Exact Solution to Integrable Open Multi-species SSEP and Macroscopic Fluctuation Theory

    Science.gov (United States)

    Vanicat, M.

    2017-01-01

    We introduce a multi-species generalization of the symmetric simple exclusion process with open boundaries. This model possesses the property of being integrable and appears as physically relevant because the boundary conditions can be interpreted as the interaction with particles reservoirs with fixed densities of each species. The system is driven out-of-equilibrium by these reservoirs. The steady state is analytically computed in a matrix product form. This algebraic structure allows us to obtain exact expressions for the mean particle currents and for the one and two-point correlation functions. An additivity principle is also derived from the matrix ansatz and permits the computation of the large deviation functional of the density profile. We also propose a description of the model in the context of the macroscopic fluctuation theory and we check the consistency with the exact computations from the finite size lattice.

  8. A new angle on the Euler angles

    Science.gov (United States)

    Markley, F. Landis; Shuster, Malcolm D.

    1995-01-01

    We present a generalization of the Euler angles to axes beyond the twelve conventional sets. The generalized Euler axes must satisfy the constraint that the first and the third are orthogonal to the second; but the angle between the first and third is arbitrary, rather than being restricted to the values 0 and pi/2, as in the conventional sets. This is the broadest generalization of the Euler angles that provides a representation of an arbitrary rotation matrix. The kinematics of the generalized Euler angles and their relation to the attitude matrix are presented. As a side benefit, the equations for the generalized Euler angles are universal in that they incorporate the equations for the twelve conventional sets of Euler angles in a natural way.

  9. Experimental demonstration of macroscopic quantum coherence in Gaussian states

    DEFF Research Database (Denmark)

    Marquardt, C.; Andersen, Ulrik Lund; Leuchs, G.

    2007-01-01

    We witness experimentally the presence of macroscopic coherence in Gaussian quantum states using a recently proposed criterion [E. G. Cavalcanti and M. D. Reid, Phys. Rev. Lett. 97 170405 (2006)]. The macroscopic coherence stems from interference between macroscopically distinct states in phase...... space, and we prove experimentally that a coherent state contains these features with a distance in phase space of 0.51 +/- 0.02 shot noise units. This is surprising because coherent states are generally considered being at the border between classical and quantum states, not yet displaying any...

  10. Glaucoma, Open-Angle

    Science.gov (United States)

    ... Programs Home > Statistics and Data > Glaucoma, Open-angle Glaucoma, Open-angle Open-angle Glaucoma Defined In open-angle glaucoma, the fluid passes ... 2010 2010 U.S. Age-Specific Prevalence Rates for Glaucoma by Age and Race/Ethnicity The prevalence of ...

  11. A review of macroscopic ductile failure criteria.

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo; Reedlunn, Benjamin

    2013-09-01

    The objective of this work was to describe several of the ductile failure criteria com- monly used to solve practical problems. The following failure models were considered: equivalent plastic strain, equivalent plastic strain in tension, maximum shear, Mohr- Coulomb, Wellman's tearing parameter, Johnson-Cook and BCJ MEM. The document presents the main characteristics of each failure model as well as sample failure predic- tions for simple proportional loading stress histories in three dimensions and in plane stress. Plasticity calculations prior to failure were conducted with a simple, linear hardening, J2 plasticity model. The resulting failure envelopes were plotted in prin- cipal stress space and plastic strain space, where the dependence on stress triaxiality and Lode angle are clearly visible. This information may help analysts select a ductile fracture model for a practical problem and help interpret analysis results.

  12. Macroscopic inhomogeneous deformation behavior arising in single crystal Ni-Mn-Ga foils under tensile loading

    Science.gov (United States)

    Murasawa, Go; Yeduru, Srinivasa R.; Kohl, Manfred

    2016-12-01

    This study investigated macroscopic inhomogeneous deformation occurring in single-crystal Ni-Mn-Ga foils under uniaxial tensile loading. Two types of single-crystal Ni-Mn-Ga foil samples were examined as-received and after thermo-mechanical training. Local strain and the strain field were measured under tensile loading using laser speckle and digital image correlation. The as-received sample showed a strongly inhomogeneous strain field with intermittence under progressive deformation, but the trained sample result showed strain field homogeneity throughout the specimen surface. The as-received sample is a mainly polycrystalline-like state composed of the domain structure. The sample contains many domain boundaries and large domain structures in the body. Its structure would cause large local strain band nucleation with intermittence. However, the trained one is an ideal single-crystalline state with a transformation preferential orientation of variants after almost all domain boundary and large domain structures vanish during thermo-mechanical training. As a result, macroscopic homogeneous deformation occurs on the trained sample surface during deformation.

  13. Multi-angle compound imaging

    DEFF Research Database (Denmark)

    Jespersen, Søren Kragh; Wilhjelm, Jens Erik; Sillesen, Henrik

    1998-01-01

    to conventional B-mode imaging MACI offers better defined tissue boundaries and lower variance of the speckle pattern, resulting in an image with reduced random variations. Design and implementation of a compound imaging system is described, images of rubber tubes and porcine aorta are shown and effects......This paper reports on a scanning technique, denoted multi-angle compound imaging (MACI), using spatial compounding. The MACI method also contains elements of frequency compounding, as the transmit frequency is lowered for the highest beam angles in order to reduce grating lobes. Compared...... on visualization are discussed. The speckle reduction is analyzed numerically and the results are found to be in excellent agreement with existing theory. An investigation of detectability of low-contrast lesions shows significant improvements compared to conventional imaging. Finally, possibilities for improving...

  14. Terahertz Science and Technology of Macroscopically Aligned Carbon Nanotube Films

    Science.gov (United States)

    Kono, Junichiro

    One of the outstanding challenges in nanotechnology is how to assemble individual nano-objects into macroscopic architectures while preserving their extraordinary properties. For example, the one-dimensional character of electrons in individual carbon nanotubes leads to extremely anisotropic transport, optical, and magnetic phenomena, but their macroscopic manifestations have been limited. Here, we describe methods for preparing macroscopic films, sheets, and fibers of highly aligned carbon nanotubes and their applications to basic and applied terahertz studies. Sufficiently thick films act as ideal terahertz polarizers, and appropriately doped films operate as polarization-sensitive, flexible, powerless, and ultra-broadband detectors. Together with recently developed chirality enrichment methods, these developments will ultimately allow us to study dynamic conductivities of interacting one-dimensional electrons in macroscopic single crystals of single-chirality single-wall carbon nanotubes.

  15. Accumulation of small protein molecules in a macroscopic complex coacervate

    NARCIS (Netherlands)

    Lindhoud, S.; Claessens, M.M.A.E.

    2016-01-01

    To obtain insight into the accumulation of proteins into macroscopic complex coacervate phases, the lysozyme concentration in complex coacervates containing the cationic polyelectrolyte poly-(N,N dimethylaminoethyl methacrylate) and the anionic polyelectrolyte polyacrylic acid was investigated as a

  16. Macroscopic cumulative fatigue damage of material under nonsymmetrical cycle

    Institute of Scientific and Technical Information of China (English)

    盖秉政

    2002-01-01

    Hashin's macroscopic theory of fatigue damage is further discussed and a new method has been proposed for prediction of cumulative fatigue damage of material and its lifetime under nonsymmetrical cyclic loading.

  17. Large Deviations for the Macroscopic Motion of an Interface

    Science.gov (United States)

    Birmpa, P.; Dirr, N.; Tsagkarogiannis, D.

    2017-03-01

    We study the most probable way an interface moves on a macroscopic scale from an initial to a final position within a fixed time in the context of large deviations for a stochastic microscopic lattice system of Ising spins with Kac interaction evolving in time according to Glauber (non-conservative) dynamics. Such interfaces separate two stable phases of a ferromagnetic system and in the macroscopic scale are represented by sharp transitions. We derive quantitative estimates for the upper and the lower bound of the cost functional that penalizes all possible deviations and obtain explicit error terms which are valid also in the macroscopic scale. Furthermore, using the result of a companion paper about the minimizers of this cost functional for the macroscopic motion of the interface in a fixed time, we prove that the probability of such events can concentrate on nucleations should the transition happen fast enough.

  18. Quantum fluctuations, gauge freedom and mesoscopic/macroscopic stability

    Energy Technology Data Exchange (ETDEWEB)

    Del Giudice, E [Istituto Nazionale di Fisica Nucleare, Via Celoria 16, I-20133 Milan (Italy); Vitiello, G [Dipartimento di Matematica e Informatica, Universita di Salerno and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Salerno, 84100 Salerno (Italy)

    2007-11-15

    We study how the mesoscopic/macroscopic stability of coherent extended domains is generated out of the phase locking between gauge field and matter field. The role of the radiative gauge field in sustaining the coherent regime is discussed.

  19. New Tests of Macroscopic Local Realism using Continuous Variable Measurements

    CERN Document Server

    Reid, M D

    2001-01-01

    We show that quantum mechanics predicts an Einstein-Podolsky-Rosen paradox (EPR), and also a contradiction with local hidden variable theories, for photon number measurements which have limited resolving power, to the point of imposing an uncertainty in the photon number result which is macroscopic in absolute terms. We show how this can be interpreted as a failure of a new, very strong premise, called macroscopic local realism. We link this premise to the Schrodinger-cat paradox. Our proposed experiments ensure all fields incident on each measurement apparatus are macroscopic. We show that an alternative measurement scheme corresponds to balanced homodyne detection of quadrature phase amplitudes. The implication is that where either EPR correlations or failure of local realism is predicted for continuous variable (quadrature phase amplitude) measurements, one can perform a modified experiment which would lead to conclusions about the much stronger premise of macroscopic local realism.

  20. Non-specular reflections in a macroscopic system with wave-particle duality: Spiral waves in bounded media

    Science.gov (United States)

    Langham, Jacob; Barkley, Dwight

    2013-03-01

    Spiral waves in excitable media possess both wave-like and particle-like properties. When resonantly forced (forced at the spiral rotation frequency) spiral cores travel along straight trajectories, but may reflect from medium boundaries. Here, numerical simulations are used to study reflections from two types of boundaries. The first is a no-flux boundary which waves cannot cross, while the second is a step change in the medium excitability which waves do cross. Both small-core and large-core spirals are investigated. The predominant feature in all cases is that the reflected angle varies very little with incident angle for large ranges of incident angles. Comparisons are made to the theory of Biktashev and Holden. Large-core spirals exhibit other phenomena such as binding to boundaries. The dynamics of multiple reflections is briefly considered.

  1. Contact angle hysteresis of cylindrical drops on chemically heterogeneous striped surfaces

    OpenAIRE

    Iwamatsu, Masao

    2005-01-01

    Contact angle hysteresis of a macroscopic droplet on a heterogeneous but flat substrate is studied using the interface displacement model. First, the apparent contact angle of a droplet on a heterogeneous surface under the condition of constant volume is considered. By assuming a cylindrical liquid-vapor surface (meniscus) and minimizing the total free energy, we derive an equation for the apparent contact angle, which is similar but different from the well-known Cassie's law. Next, using thi...

  2. Emerging boundaries

    DEFF Research Database (Denmark)

    Løvschal, Mette

    2014-01-01

    This article proposes a processual ontology for the emergence of man-made, linear boundaries across northwestern Europe, particularly in the first millennium BC. Over a significant period of time, these boundaries became new ways of organizing the landscape and settlements—a phenomenon that has...... of this phenomenon emerged along equivalent trajectories. At the same time, variation in the regional incorporation of these linear phenomena points toward situation-specific applications and independent development....

  3. Boundary Spanning

    DEFF Research Database (Denmark)

    Zølner, Mette

    The paper explores how locals span boundaries between corporate and local levels. The aim is to better comprehend potentialities and challenges when MNCs draws on locals’ culture specific knowledge. The study is based on an in-depth, interpretive case study of boundary spanning by local actors in...... approach with pattern matching is a way to shed light on the tacit local knowledge that organizational actors cannot articulate and that an exclusively inductive research is not likely to unveil....

  4. Picoliter water contact angle measurement on polymers.

    Science.gov (United States)

    Taylor, Michael; Urquhart, Andrew J; Zelzer, Mischa; Davies, Martyn C; Alexander, Morgan R

    2007-06-19

    Water contact angle measurement is the most common method for determining a material's wettability, and the sessile drop approach is the most frequently used. However, the method is generally limited to macroscopic measurements because the base diameter of the droplet is usually greater than 1 mm. Here we report for the first time on a dosing system to dispense smaller individual droplets with control of the position and investigate whether water contact angles determined from picoliter volume water droplets are comparable with those obtained from the conventional microliter volume water droplets. This investigation was conducted on a group of commonly used polymers. To demonstrate the higher spatial resolution of wettability that can be achieved using picoliter volume water droplets, the wettability of a radial plasma polymer gradient was mapped using a 250 microm interval grid.

  5. Normal transmitting boundary conditions

    Institute of Scientific and Technical Information of China (English)

    廖振鹏

    1996-01-01

    The multi-transmitting formula (MTF) governed by a single artificial speed is analytically developed into a generalized MTF governed by a few artificial speeds to improve its capacity in simultaneous simulation of several one-way waves propagating at different speeds.The generalized MTF is then discretized and further generalized using the space extrapolation to improve its accuracies in numerical simulation of transient waves at large angles of incidence.The above two successive generalizitions of MTF based on the notion of normal transmission lead to a compact formula of local non-reflecting boundary condition.The formula not only provides a general representation of the major schemes of existing local boundary conditions but can be used to generate new schemes,which combine advantages of different schemes.

  6. Model Reduction by Manifold Boundaries

    Science.gov (United States)

    Transtrum, Mark K.; Qiu, Peng

    2015-01-01

    Understanding the collective behavior of complex systems from their basic components is a difficult yet fundamental problem in science. Existing model reduction techniques are either applicable under limited circumstances or produce “black boxes” disconnected from the microscopic physics. We propose a new approach by translating the model reduction problem for an arbitrary statistical model into a geometric problem of constructing a low-dimensional, submanifold approximation to a high-dimensional manifold. When models are overly complex, we use the observation that the model manifold is bounded with a hierarchy of widths and propose using the boundaries as submanifold approximations. We refer to this approach as the manifold boundary approximation method. We apply this method to several models, including a sum of exponentials, a dynamical systems model of protein signaling, and a generalized Ising model. By focusing on parameters rather than physical degrees of freedom, the approach unifies many other model reduction techniques, such as singular limits, equilibrium approximations, and the renormalization group, while expanding the domain of tractable models. The method produces a series of approximations that decrease the complexity of the model and reveal how microscopic parameters are systematically “compressed” into a few macroscopic degrees of freedom, effectively building a bridge between the microscopic and the macroscopic descriptions. PMID:25216014

  7. Contact Angle Goniometer

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The FTA32 goniometer provides video-based contact angle and surface tension measurement. Contact angles are measured by fitting a mathematical expression...

  8. Modification of Classical SPM for Slightly Rough Surface Scattering with Low Grazing Angle Incidence

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on the impedance/admittance rough boundaries, the reflection coefficients and the scattering cross section with low grazing angle incidence are obtained for both VV and HH polarizations. The error of the classical perturbation method at grazing angle is overcome for the vertical polarization at a rough Neumann boundary of infinite extent. The derivation of the formulae and the numerical results show that the backscattering cross section depends on the grazing angle to the fourth power for both Neumann and Dirichlet boundary conditions with low grazing angle incidence. Our results can reduce to that of the classical small perturbation method by neglecting the Neumann and Dirichlet boundary conditions.

  9. Blurring Boundaries

    DEFF Research Database (Denmark)

    Neergaard, Ulla; Nielsen, Ruth

    2010-01-01

    ; and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...... of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services; 2) Fundamental rights and non-discrimination law aspects...... and distributive justice at national level....

  10. Blurring Boundaries

    DEFF Research Database (Denmark)

    Neergaard, Ulla; Nielsen, Ruth

    2010-01-01

    ; and 3) Services of general interest. In the Blurring Boundaries project, three aspects of the European Social Model have been particularly highlighted: the constitutionalisation of the European Social Model, its multi-level legal character, and the clash between market access justice at EU level...... of welfare functions into EU law both from an internal market law and a constitutional law perspective. The main problem areas covered by the Blurring Boundaries project were studied in sub-projects on: 1) Internal market law and welfare services; 2) Fundamental rights and non-discrimination law aspects...... and distributive justice at national level....

  11. Macroscopic Thermal Energy Balance on Montane Valley Aquifers and Groundwater Recharge Source Identification

    Science.gov (United States)

    Trask, J. C.; Fogg, G. E.

    2010-12-01

    Several recent publications have highlighted the need to improve definition of groundwater flow patterns in montane regions, presenting case studies with several field investigative approaches. Determination of the depth of upland bedrock groundwater circulation and identification of valley aquifer recharge sources in montane areas is needed for improved characterization of montane groundwater flow patterns and for aquifer source protection planning. In most upland bedrock regions, wells and boreholes are scarce, adding to the challenges inherent to investigating groundwater flow in fractured rock systems. Approaches using natural environmental tracers have previously been shown to be effective in quantifying subsurface recharge into valley aquifers from groundwater flow within adjoining mountain-front and mountain-block areas. Thermal tracing of montane groundwater flow is easy and inexpensive relative to other environmental tracer and geophysical techniques, and can complement other approaches (e.g. Manning and Solomon, 2005). We present a heat flow tracer approach to identification of montane valley aquifer recharge sources. A novel application of a macroscopic thermal energy balance is introduced and used in recharge source analysis for two mountain-front bounding basin-fill aquifers located in the Sierra Nevada, USA. We show that robust upper and lower bounds on total heat flow and sources of recharge into montane valley aquifers may be determined without numerical modeling by using a macroscopic thermal energy balance. Several factors tend to enhance focusing of geothermal conductive heat flow from depth toward montane valley margins. Analytic bracketing techniques, applicable to domains with irregular boundary geometry and non-uniform thermal boundary conditions, are used together with thermal data to obtain quantitative bounds on conductive heat flow across aquifer domain boundaries. Thermal data required include: (i) a rough estimate of regional geothermal

  12. Measurement of dihedral angles by scanning electron microscopy.

    Science.gov (United States)

    Achutaramayya, G.; Scott, W. D.

    1973-01-01

    The extension of Hoover's (1971) technique to the case of dihedral-angle measurement is described. Dihedral angles are often determined by interferometry on thermally grooved grain boundaries to obtain information on relative interfacial energies. In the technique considered the measured angles approach the true angles as the tilt angle approaches 90 deg. It is pointed out that the scanning electron microscopy method provides a means of seeing the real root of a groove at a lateral magnification which is higher than that obtainable with interferometry.

  13. Measurement of dihedral angles by scanning electron microscopy.

    Science.gov (United States)

    Achutaramayya, G.; Scott, W. D.

    1973-01-01

    The extension of Hoover's (1971) technique to the case of dihedral-angle measurement is described. Dihedral angles are often determined by interferometry on thermally grooved grain boundaries to obtain information on relative interfacial energies. In the technique considered the measured angles approach the true angles as the tilt angle approaches 90 deg. It is pointed out that the scanning electron microscopy method provides a means of seeing the real root of a groove at a lateral magnification which is higher than that obtainable with interferometry.

  14. Blurring Boundaries

    DEFF Research Database (Denmark)

    Neergaard, Ulla; Nielsen, Ruth

    2010-01-01

    This article builds on the results obtained in the so-called Blurring Boundaries project which was undertaken at the Law Department, Copenhagen Business School, in the period from 2007 to 2009. It looks at the sustainability of the Danish welfare state in an EU law context and on the integration ...

  15. Negotiating boundaries

    DEFF Research Database (Denmark)

    Aarhus, Rikke; Ballegaard, Stinne Aaløkke

    2010-01-01

    To move treatment successfully from the hospital to that of technology assisted self-care at home, it is vital in the design of such technologies to understand the setting in which the health IT should be used. Based on qualitative studies we find that people engage in elaborate boundary work to ...

  16. Extended Macroscopic Study of Dilute Gas Flow within a Microcavity

    Directory of Open Access Journals (Sweden)

    Mohamed Hssikou

    2016-01-01

    Full Text Available The behaviour of monatomic and dilute gas is studied in the slip and early transition regimes using the extended macroscopic theory. The gas is confined within a two-dimensional microcavity where the longitudinal sides are in the opposite motion with constant velocity ±Uw. The microcavity walls are kept at the uniform and reference temperature T0. Thus, the gas flow is transported only by the shear stress induced by the motion of upper and lower walls. From the macroscopic point of view, the regularized 13-moment equations of Grad, R13, are solved numerically. The macroscopic gas proprieties are studied for different values of the so-called Knudsen number (Kn, which gives the gas-rarefaction degree. The results are compared with those obtained using the classical continuum theory of Navier-Stokes and Fourier (NSF.

  17. The quantum interaction of macroscopic objects and gravitons

    Science.gov (United States)

    Piran, Tsvi

    2016-09-01

    Copious production of gravitational radiation requires a compact source that moves relativistically. Such sources are rare and are found only in extreme cases such as the formation of a black hole in either via a gravitational collapse or via a merger. Noncompact, nonrelativistic objects emit gravitational radiation, however, this emission is extremely weak due to very large value of the Planck energy. The quantum nature of gravitons, namely the fact that a single graviton carries energy of order ℏω implies that macroscopic objects whose kinetic energy is less than the Planck energy emit gravitons quantum mechanically, emitting a single graviton at a time. This is a unique situation in which a macroscopic object behaves quantum mechanically. While it is impossible to check experimentally this quantum gravitational effect, it might be possible to carry out analogous electromagnetic experiments that will shed light on this macroscopic quantum mechanical behavior.

  18. Geometric aspects of Schnakenberg's network theory of macroscopic nonequilibrium observables

    Science.gov (United States)

    Polettini, M.

    2011-03-01

    Schnakenberg's network theory deals with macroscopic thermodynamical observables (forces, currents and entropy production) associated to the steady states of diffusions on generic graphs. Using results from graph theory and from the theory of discrete differential forms we recast Schnakenberg's treatment in the form of a simple discrete gauge theory, which allows to interpret macroscopic forces as the Wilson loops of a real connection. We discuss the geometric properties of transient states, showing that heat fluxes allow for a notion of duality of macroscopic observables which interchanges the role of the environment and that of the system. We discuss possible generalizations to less trivial gauge groups and the relevance for nonequilibrium fluctuation theorems. Based on work in collaboration with professor A. Maritan, University of Padua, to be published.

  19. Broadband Macroscopic Cortical Oscillations Emerge from Intrinsic Neuronal Response Failures

    Directory of Open Access Journals (Sweden)

    Amir eGoldental

    2015-10-01

    Full Text Available Broadband spontaneous macroscopic neural oscillations are rhythmic cortical firing which was extensively examined during the last century, however, their possible origination is still controversial. In this work we show how macroscopic oscillations emerge in solely excitatory random networks and without topological constraints. We experimentally and theoretically show that these oscillations stem from the counterintuitive underlying mechanism - the intrinsic stochastic neuronal response failures. These neuronal response failures, which are characterized by short-term memory, lead to cooperation among neurons, resulting in sub- or several- Hertz macroscopic oscillations which coexist with high frequency gamma oscillations. A quantitative interplay between the statistical network properties and the emerging oscillations is supported by simulations of large networks based on single-neuron in-vitro experiments and a Langevin equation describing the network dynamics. Results call for the examination of these oscillations in the presence of inhibition and external drives.

  20. Reconciling power laws in microscopic and macroscopic neural recordings

    CERN Document Server

    Pettersen, Klas H; Tetzlaff, Tom; Einevoll, Gaute T

    2013-01-01

    Power laws, characterized by quantities following 1/x^\\alpha{} distributions, are commonly reported when observing nature or society, and the question of their origin has for a long time intrigued physicists. Power laws have also been observed in neural recordings, both at the macroscopic and microscopic levels: at the macroscopic level, the power spectral density (PSD) of the electroencephalogram (EEG) has been seen to follow 1/f^\\alpha{} distributions; at the microscopic level similar power laws have been observed in single-neuron recordings of the neuronal soma potential and soma current, yet with different values of the power-law exponent \\alpha. In this theoretical study we find that these observed macroscopic and microscopic power laws may, despite the widely different spatial scales and different exponents, have the same source. By a combination of simulation on a biophysical detailed, pyramidal neuron model and analytical investigations of a simplified ball and stick neuron, we find that the transfer ...

  1. Critical behavior of a two-dimensional complex fluid: Macroscopic and mesoscopic views

    Science.gov (United States)

    Choudhuri, Madhumita; Datta, Alokmay

    2016-04-01

    Liquid disordered (Ld) to liquid ordered (Lo) phase transition in myristic acid [MyA, CH3(CH2) 12COOH ] Langmuir monolayers was studied macroscopically as well as mesoscopically to locate the critical point. Macroscopically, isotherms of the monolayer were obtained across the 20 ∘C-38 ∘Ctemperature (T ) range and the critical point was estimated, primarily from the vanishing of the order parameter, at ≈38 ∘C. Mesoscopically, domain morphology in the Ld-Lo coexistence regime was imaged using the technique of Brewster angle microscopy (BAM) as a function of T and the corresponding power spectral density function (PSDF) obtained. Monolayer morphology passed from stable circular domains and a sharp peak in PSDF to stable dendritic domains and a divergence of the correlation length as the critical point was approached from below. The critical point was found to be consistent at ≈38 ∘Cfrom both isotherm and BAM results. In the critical regime the scaling behavior of the transition followed the two-dimensional Ising model. Additionally, we obtained a precritical regime, over a temperature range of ≈8 ∘C below Tc, characterized by fluctuations in the order parameter at the macroscopic scale and at the mesoscopic scale characterized by unstable domains of fingering or dendritic morphology as well as proliferation of a large number of small sized domains, multiple peaks in the power spectra, and a corresponding fluctuation in the peak q values with T . Further, while comparing temperature studies on an ensemble of MyA monolayers with those on a single monolayer, the system was found to be not strictly ergodic in that the ensemble development did not strictly match with the time development in the system. In particular, the critical temperature was found to be lowered in the latter. These results clearly show that the critical behavior in fatty acid monolayer phase transitions have features of both complex and nonequilibrium systems.

  2. Reweighting twisted boundary conditions

    CERN Document Server

    Bussone, Andrea; Hansen, Martin; Pica, Claudio

    2015-01-01

    Imposing twisted boundary conditions on the fermionic fields is a procedure extensively used when evaluating, for example, form factors on the lattice. Twisting is usually performed for one flavour and only in the valence, and this causes a breaking of unitarity. In this work we explore the possibility of restoring unitarity through the reweighting method. We first study some properties of the approach at tree level and then we stochastically evaluate ratios of fermionic determinants for different boundary conditions in order to include them in the gauge averages, avoiding in this way the expensive generation of new configurations for each choice of the twisting angle, $\\theta$. As expected the effect of reweighting is negligible in the case of large volumes but it is important when the volumes are small and the twisting angles are large. In particular we find a measurable effect for the plaquette and the pion correlation function in the case of $\\theta=\\pi/2$ in a volume $16\\times 8^3$, and we observe a syst...

  3. Maximum Entropy Methods as the Bridge Between Microscopic and Macroscopic Theory

    Science.gov (United States)

    Taylor, Jamie M.

    2016-09-01

    This paper is concerned with an investigation into a function of macroscopic variables known as the singular potential, building on previous work by Ball and Majumdar. The singular potential is a function of the admissible statistical averages of probability distributions on a state space, defined so that it corresponds to the maximum possible entropy given known observed statistical averages, although non-classical entropy-like objective functions will also be considered. First the set of admissible moments must be established, and under the conditions presented in this work the set is open, bounded and convex allowing a description in terms of supporting hyperplanes, which provides estimates on the development of singularities for related probability distributions. Under appropriate conditions it is shown that the singular potential is strictly convex, as differentiable as the microscopic entropy, and blows up uniformly as the macroscopic variable tends to the boundary of the set of admissible moments. Applications of the singular potential are then discussed, and particular consideration will be given to certain free-energy functionals typical in mean-field theory, demonstrating an equivalence between certain microscopic and macroscopic free-energy functionals. This allows statements about L^1-local minimisers of Onsager's free energy to be obtained which cannot be given by two-sided variations, and overcomes the need to ensure local minimisers are bounded away from zero and +∞ before taking L^∞ variations. The analysis also permits the definition of a dual order parameter for which Onsager's free energy allows an explicit representation. Also, the difficulties in approximating the singular potential by everywhere defined functions, in particular by polynomial functions, are addressed, with examples demonstrating the failure of the Taylor approximation to preserve relevant shape properties of the singular potential.

  4. A new macroscopically anisotropic pressure dependent yield function for metal matrix composite based on strain gradient plasticity for the microstructure

    DEFF Research Database (Denmark)

    Azizi, Reza; Legarth, Brian Nyvang; Niordson, Christian Frithiof

    2013-01-01

    Metal matrix composites with long aligned elastic fibers are studied using an energetic rate independent strain gradient plasticity theory with an isotropic pressure independent yield function at the microscale. The material response is homogenized to obtain a conventional macroscopic model...... that exhibits anisotropic yield properties with a pressure dependence. At the microscale free energy includes both elastic strains and plastic strain gradients, and the theory demands higher order boundary conditions in terms of plastic strain or work conjugate higher order tractions. The mechanical response...... of the composite is inclined compared to a standard pressure independent yield surfaces. The evolution of the macroscopic yield surface is investigated by quantifying both anisotropic hardening (expansion) and kinematic hardening (translation), where the coefficients of anisotropy and the Bauschinger stress...

  5. Microscopic and macroscopic infarct complicating pediatric epilepsy surgery.

    Science.gov (United States)

    Rubinger, Luc; Hazrati, Lili-Naz; Ahmed, Raheel; Rutka, James; Snead, Carter; Widjaja, Elysa

    2017-03-01

    There is some suggestion that microscopic infarct could be associated with invasive monitoring, but it is unclear if the microscopic infarct is also visible on imaging and associated with neurologic deficits. The aims of this study were to assess the rates of microscopic and macroscopic infarct and other major complications of pediatric epilepsy surgery, and to determine if these complications were higher following invasive monitoring. We reviewed the epilepsy surgery data from a tertiary pediatric center, and collected data on microscopic infarct on histology and macroscopic infarct on postoperative computed tomography (CT) or magnetic resonance imaging (MRI) done one day after surgery and major complications. Three hundred fifty-two patients underwent surgical resection and there was one death. Forty-two percent had invasive monitoring. Thirty patients (9%) had microscopic infarct. Univariable analyses showed that microscopic infarct was higher among patients with invasive monitoring relative to no invasive monitoring (20% vs. 0.5%, respectively, p microscopic infarct had transient right hemiparesis, and two with both macroscopic and microscopic infarct had unexpected persistent neurologic deficits. Thirty-two major complications (9.1%) were reported, with no difference in major complications between invasive monitoring and no invasive monitoring (10% vs. 7%, p = 0.446). In the multivariable analysis, invasive monitoring increased the odds of microscopic infarct (odds ratio [OR] 15.87, p = 0.009), but not macroscopic infarct (OR 2.6, p = 0.173) or major complications (OR 1.4, p = 0.500), after adjusting for age at surgery, sex, age at seizure onset, operative type, and operative location. Microscopic infarct was associated with invasive monitoring, and none of the patients had permanent neurologic deficits. Macroscopic infarct was not associated with invasive monitoring, and two patients with macroscopic infarct had persistent neurologic deficits. Wiley

  6. Classical system boundaries cannot be determined within quantum Darwinism

    Science.gov (United States)

    Fields, Chris

    Multiple observers who interact with environmental encodings of the states of a macroscopic quantum system S as required by quantum Darwinism cannot demonstrate that they are jointly observing S without a joint a priori assumption of a classical boundary separating S from its environment E. Quantum Darwinism cannot, therefore, be regarded as providing a purely quantum-mechanical explanation of the "emergence" of classicality.

  7. Approximating macroscopic observables in quantum spin systems with commuting matrices

    CERN Document Server

    Ogata, Yoshiko

    2011-01-01

    Macroscopic observables in a quantum spin system are given by sequences of spatial means of local elements $\\frac{1}{2n+1}\\sum_{j=-n}^n\\gamma_j(A_{i}), \\; n\\in{\\mathbb N},\\; i=1,...,m$ in a UHF algebra. One of their properties is that they commute asymptotically, as $n$ goes to infinity. It is not true that any given set of asymptotically commuting matrices can be approximated by commuting ones in the norm topology. In this paper, we show that for macroscopic observables, this is true.

  8. On the notion of a macroscopic quantum system

    CERN Document Server

    Khrenikov, A Yu

    2004-01-01

    We analyse the notion of macroscopic quantum system from the point of view of the statistical structure of quantum theory. We come to conclusion that the presence of interference of probabilities should be used the main characteristic of quantumness (in the opposition to N. Bohr who permanently emphasized the crucial role of quantum action). In the light of recent experiments with statistical ensembles of people who produced interference of probabilities for special pairs of questions (which can be considered as measurements on people) human being should be considered as a macroscopic quantum system. There is also discussed relation with experiments of A. Zeilinger on interference of probabilities for macromoleculas.

  9. Stimuli-deformable graphene materials: from nanosheet to macroscopic assembly

    Directory of Open Access Journals (Sweden)

    Fei Zhao

    2016-04-01

    Full Text Available Stimulus-induced deformation (SID of graphene-based materials has triggered rapidly increasing research interest due to the spontaneous response to external stimulations, which enables precise configurational regulation of single graphene nanosheets (GNSs through control over the environmental conditions. While the micro-strain of GNS is barely visible, the deformation of graphene-based macroscopic assemblies (GMAs is remarkable, thereby presenting significant potential for future application in smart devices. This review presents the current progress of SID of graphene in the manner of nanosheets and macroscopic assemblies in both the experimental and theoretical fronts, and summarizes recent advancements of SID of graphene for applications in smart systems.

  10. Statistical thermodynamics understanding the properties of macroscopic systems

    CERN Document Server

    Fai, Lukong Cornelius

    2012-01-01

    Basic Principles of Statistical PhysicsMicroscopic and Macroscopic Description of StatesBasic PostulatesGibbs Ergodic AssumptionGibbsian EnsemblesExperimental Basis of Statistical MechanicsDefinition of Expectation ValuesErgodic Principle and Expectation ValuesProperties of Distribution FunctionRelative Fluctuation of an Additive Macroscopic ParameterLiouville TheoremGibbs Microcanonical EnsembleMicrocanonical Distribution in Quantum MechanicsDensity MatrixDensity Matrix in Energy RepresentationEntropyThermodynamic FunctionsTemperatureAdiabatic ProcessesPressureThermodynamic IdentityLaws of Th

  11. Characterizing twist grain boundaries in BCC Nb by molecular simulation: Structure and shear deformation

    Science.gov (United States)

    Liu, Zeng-Hui; Feng, Ya-Xin; Shang, Jia-Xiang

    2016-05-01

    Atomic scale modeling was used to study the structure, energy and shear behaviors of (110) twist grain boundaries (TWGBs) in body-centered cubic Nb. The relation between grain boundary energy (GBE) and the twist angle θ agrees well with the Read-Shockley equation in low-angle range. At higher angles, the GBEs show no distinct trend with the variation of the twist angle or the density of coincident lattice sites. All (110) twist boundaries can be classified into two types: low-angle grain boundaries (LAGBs) and high-angle grain boundaries (HAGBs). LAGBs contain a hexagonal dislocation network (HDN) which is composed of 1/2 [ 111 ], 1/2 [ 1 bar 1 bar 1 ] and [001] screw dislocations. HAGBs can be classified into three sub-types further: special boundaries with low Σ, boundaries in the vicinity of special boundaries with similar structures and ordinary HAGBs consisting of periodic patterns. Besides, a dependence of grain boundary shear response vs the twist angle over the entire twist angle range is obtained. Pure sliding behavior is found at all TWGBs. When θ < 12°, the flow stress of LAGBs is found to be correlated with the HDNs and decreases with the increasing twist angle. For ordinary HAGBs, the magnitude of flow stress is around 0.8-1.0 GPa and the twist angle has little effect on the anisotropy mobility. For special grain boundaries with low Σ, the boundary structures govern the GBEs and shear motion behavior significantly.

  12. Influence of SiC grain boundary character on fission product transport in irradiated TRISO fuel

    Science.gov (United States)

    Lillo, T. M.; van Rooyen, I. J.

    2016-05-01

    In this study, the fission product precipitates at silicon carbide grain boundaries from an irradiated TRISO particle were identified and correlated with the associated grain boundary characteristics. Precession electron diffraction in the transmission electron microscope provided the crystallographic information needed to identify grain boundary misorientation and boundary type (i.e., low angle, random high angle or coincident site lattice (CSL)-related). The silicon carbide layer was found to be composed mainly of twin boundaries and small fractions of random high angle and low angle grain boundaries. Most fission products were found at random, high-angle grain boundaries, with small fractions at low-angle and CSL-related grain boundaries. Palladium (Pd) was found at all types of grain boundaries while Pd-uranium and Pd-silver precipitates were only associated with CSL-related and random, high-angle grain boundaries. Precipitates containing only Ag were found only at random, high-angle grain boundaries, but not at low angle or CSL-related grain boundaries.

  13. Dynamic Chiral Magnetic Effect and Faraday Rotation in Macroscopically Disordered Helical Metals

    Science.gov (United States)

    Ma, J.; Pesin, D. A.

    2017-03-01

    We develop an effective medium theory for electromagnetic wave propagation through gapless nonuniform systems with a dynamic chiral magnetic effect. The theory allows us to calculate macroscopic-disorder-induced corrections to the values of optical, as well as chiral magnetic conductivities. In particular, we show that spatial fluctuations of the optical conductivity induce corrections to the effective value of the chiral magnetic conductivity. The absolute value of the effect varies strongly depending on the system parameters, but yields the leading frequency dependence of the polarization rotation and circular dichroism signals. Experimentally, these corrections can be observed as features in the Faraday rotation angle near frequencies that correspond to the bulk plasmon resonances of a material. Such features are not expected to be present in single-crystal samples.

  14. Fast determination of three-dimensional fibril orientation of type-I collagen via macroscopic chirality

    Science.gov (United States)

    Zhuo, Guan-Yu; Chen, Mei-Yu; Yeh, Chao-Yuan; Guo, Chin-Lin; Kao, Fu-Jen

    2017-01-01

    Polarization-resolved second harmonic generation (SHG) microscopy is appealing for studying structural proteins and well-organized biophotonic nanostructures, due to its highly sensitized structural specificity. In recent years, it has been used to investigate the chiroptical effect, particularly SHG circular dichroism (SHG-CD) in biological tissues. Although SHG-CD attributed to macromolecular structures has been demonstrated, the corresponding quantitative analysis and interpretation on how SHG correlates with second-order susceptibility χ(2) under circularly polarized excitations remains unclear. In this study, we demonstrate a method based on macroscopic chirality to elucidate the correlation between SHG-CD and the orientation angle of the molecular structure. By exploiting this approach, three-dimensional (3D) molecular orientation of type-I collagen is revealed with only two cross polarized SHG images (i.e., interactions of left and right circular polarizations) without acquiring an image stack of varying polarization.

  15. Connecting Pore Scale Dynamics to Macroscopic Models for Two-Fluid Phase Flow

    Science.gov (United States)

    McClure, J. E.; Dye, A. L.; Miller, C. T.; Gray, W. G.

    2015-12-01

    Imaging technologies such as computed micro-tomography (CMT) provide high resolution three-dimensional images of real porous medium systems that reveal the true geometric structure of fluid and solid phases. Simulation and analysis tools are essential to extract knowledge from this raw data, and can be applied in tandem to provide information that is otherwise inaccessible. Guidance from multi-scale averaging theory is used to develop a multi-scale analysis framework to determine phase connectivity and extract interfacial areas, curvatures, common line length, contact angle and the velocities of the interface and common curve. The approach is applied to analyze pore-scale dynamics based on a multiphase lattice Boltzmann method. Dense sets of simulations are performed to evaluate the equilibrium relationship between capillary pressure, saturation and interfacial area for several experimentally imaged porous media. The approach is also used study the evolution of macroscopic quantities under dynamic conditions, which is compared to the equilibrium data.

  16. Optical driving of macroscopic mechanical motion by a single two-level system

    Science.gov (United States)

    Auffèves, A.; Richard, M.

    2014-08-01

    A quantum emitter coupled to a nanomechanical oscillator is a hybrid system where a macroscopic degree of freedom is coupled to a purely quantum system. Recent progress in nanotechnology has led to the realization of such devices by embedding single artificial atoms, such as quantum dots or superconducting qubits, into vibrating wires or membranes, opening up new perspectives for quantum information technologies and for the exploration of the quantum-classical boundary. In this paper, we show that the quantum emitter can be turned into a strikingly efficient light-controlled source of mechanical power by exploiting constructive interferences of classical phonon fields in the mechanical oscillator. We show that this mechanism can be exploited to carry out low-background nondestructive single-shot measurement of an optically active quantum bit state.

  17. Changing Boundaries

    DEFF Research Database (Denmark)

    Brodkin, Evelyn; Larsen, Flemming

    2013-01-01

    In recent decades, workfare-style policies have become part of the institutional architecture of welfare and labor market arrangements around the world. In this article, we offer a comparative, historical view of workfare´s advance. Our analysis recognizes the complexity and diversity of what we...... call the “policies of workfare” and highlights the different paths through which these policies have developed in the U.S. and parts of Europe. We argue that it is necessary to look beyond familiar policy labels and language in order to consider workfare-style policies as part of a broader political...... project that is altering the boundary between the democratic welfare state and the market economy. We see workfare policies as boundary-changing with potentially profound implications both for individuals disadvantaged by market arrangements and for societies seeking to grapple with the increasing...

  18. Computer simulation of dislocation core structure of metastable left angle 111 right angle dislocations in NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Z.Y. (Dept. of Materials Science and Engineering, Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)); Vailhe, C. (Dept. of Materials Science and Engineering, Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States)); Farkas, D. (Dept. of Materials Science and Engineering, Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States))

    1993-10-01

    The atomistic structure of dislocation cores of left angle 111 right angle dislocations in NiAl was simulated using embedded atom method potentials and molecular statics computer simulation. In agreement with previous simulation work and experimental observations, the complete left angle 111 right angle dislocation is stable with respect to the two superpartials of 1/2 left angle 111 right angle separated by an antiphase boundary. The structure of the latter configuration, though metastable, is of interest in the search for ways of improving ductility in this material. The structure of the complete dislocation and that of the metastable superpartials was studied using atomistic computer simulation. An improved visualization method was used for the representation of the resulting structures. The structure of the partials is different from that typical of 1/2 left angle 111 right angle dislocations in b.c.c. materials and that reported previously for the B2 structure using model pair potentials. (orig.)

  19. Macroscopic momentum and mechanical energy equations for incompressible single-phase flow in porous media

    Science.gov (United States)

    Paéz-García, Catherine Teresa; Valdés-Parada, Francisco J.; Lasseux, Didier

    2017-02-01

    Modeling flow in porous media is usually focused on the governing equations for mass and momentum transport, which yield the velocity and pressure at the pore or Darcy scales. However, in many applications, it is important to determine the work (or power) needed to induce flow in porous media, and this can be achieved when the mechanical energy equation is taken into account. At the macroscopic scale, this equation may be postulated to be the result of the inner product of Darcy's law and the seepage velocity. However, near the porous medium boundaries, this postulate seems questionable due to the spatial variations of the effective properties (velocity, permeability, porosity, etc.). In this work we derive the macroscopic mechanical energy equation using the method of volume averaging for the simple case of incompressible single-phase flow in porous media. Our analysis shows that the result of averaging the pore-scale version of the mechanical energy equation at the Darcy scale is not, in general, the expected product of Darcy's law and the seepage velocity. As a matter of fact, this result is only applicable in the bulk region of the porous medium and, in the derivation of this result, the properties of the permeability tensor are determinant. Furthermore, near the porous medium boundaries, a more novel version of the mechanical energy equation is obtained, which incorporates additional terms that take into account the rapid variations of structural properties taking place in this particular portion of the system. This analysis can be applied to multiphase and compressible flows in porous media and in many other multiscale systems.

  20. Quantum statistical derivation of the macroscopic Maxwell equations

    NARCIS (Netherlands)

    Schram, K.

    1960-01-01

    The macroscopic Maxwell equations in matter are derived on a quantum statistical basis from the microscopic equations for the field operators. Both the density operator formalism and the Wigner distribution function method are discussed. By both methods it can be proved that the quantum statistical

  1. Macroscopic and Microscopic Gradient Structures of Bamboo Culms

    Directory of Open Access Journals (Sweden)

    Suwat SUTNAUN

    2005-01-01

    Full Text Available This work studied the structure of bamboo culms which is naturally designed to retard the bending stress caused by a wind load. A macroscopic gradient structure (diameter, thickness and internodal length and a microscopic one (distribution of fiber of three sympodial bamboo species i.e. Tong bamboo (Dendrocalamus asper Backer., Pah bamboo (Gigantochloa bambos and Pak bamboo (Gigantochloa hasskarliana were examined. From the macroscopic point of view, the wind-load generated bending stress for the tapered hollow tube of bamboo was found to vary uniformly with height, especially at the middle of the culms. Furthermore, the macroscopic shape of bamboo culm is about 2-6 times stiffer in bending mode than one with a solid circular section for the same amount of wood material. Microscopically, the distribution of fiber in the radial direction linearly decreases from the outer surface to the inner surface in the same manner as that of the distribution of the bending stress in the radial direction. Distribution of fiber along the vertical length of bamboos at each height is proportional to the level of bending stress generated by the wind load. Both macroscopic and microscopic gradient structures of sympodial type bamboos were found to be less effective to retard the bending stress than those of monopodial type bamboo.

  2. Microstructure and macroscopic properties of polydisperse systems of hard spheres

    NARCIS (Netherlands)

    Ogarko, Vitaliy Anatolyevich

    2014-01-01

    This dissertation describes an investigation of systems of polydisperse smooth hard spheres. This includes the development of a fast contact detection algorithm for computer modelling, the development of macroscopic constitutive laws that are based on microscopic features such as the moments of the

  3. Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters

    DEFF Research Database (Denmark)

    Nedelchev, L.; Nikolova, L.; Matharu, A.

    2002-01-01

    A study of the propagation of elliptically polarized light and the resulting formation of macroscopic chiral structures in a series of azobenzene side-chain copolyesters, in which the morphology is varied from liquid crystalline to amorphous, is reported. Real-time measurements are presented...

  4. [Macroscopic observations on corneal epithelial wound healing in the rabbit].

    Science.gov (United States)

    Hayashi, K

    1991-02-01

    A newly-developed macroscope was applied to observe the healing process of corneal epithelial wound in vivo. After removing epithelium of the central cornea, the changes of the corneal surface were observed with the macroscope and the findings were compared with histological examinations. At 12 hours after abrasion, areas unstained with Richardson's staining (R staining) appeared. In the histological section, a single layer of regenerating epithelial cells covered the same area. At 24 and 36 hours after abrasion, the epithelial defects became smaller but surrounding epithelium was rough and showed dot-like staining with R solution. By 2 days, the epithelial defects disappeared. On macroscopic observation, the central corneal surface showed a pavement-like appearance. Histology revealed that the regenerating epithelium still consisted of one or two layers. At 3 days, dot-like stainings were present only in the center and the corneal surface appeared considerably smooth. Histology also showed that regenerating epithelium became columnar and multilayered, thereby suggesting stratification. By 7 days, the abraded corneal surface had recovered its smooth appearance. Histologic sections also demonstrated that the epithelium had regained its normal structure. Thus, using this macroscope, findings suggesting the process of epithelial migration and proliferation could be observed.

  5. The black hole information paradox and macroscopic superpositions

    CERN Document Server

    Hsu, Stephen D H

    2010-01-01

    We investigate the experimental capabilities required to test whether black holes destroy information. We show that an experiment capable of illuminating the information puzzle must necessarily be able to detect or manipulate macroscopic superpositions (i.e., Everett branches). Hence, it could also address the fundamental question of decoherence versus wavefunction collapse.

  6. Macroscopic domain formation in the platelet plasma membrane

    DEFF Research Database (Denmark)

    Bali, Rachna; Savino, Laura; Ramirez, Diego A.;

    2009-01-01

    There has been ample debate on whether cell membranes can present macroscopic lipid domains as predicted by three-component phase diagrams obtained by fluorescence microscopy. Several groups have argued that membrane proteins and interactions with the cytoskeleton inhibit the formation of large d...

  7. A Macroscopic Analogue of the Nuclear Pairing Potential

    Science.gov (United States)

    Dunlap, Richard A.

    2013-01-01

    A macroscopic system involving permanent magnets is used as an analogue to nucleons in a nucleus to illustrate the significance of the pairing interaction. This illustrates that the view of the total nuclear energy based only on the nucleon occupancy of the energy levels can yield erroneous results and it is only when the pairing interaction is…

  8. Data requirements for traffic control on a macroscopic level

    NARCIS (Netherlands)

    Knoop, V.L.; Van Lint, J.W.C.; Hoogendoorn, S.P.

    2011-01-01

    With current techniques, traffic monitoring and control is a data intensive process. Network control on a higher level, using high level variables, can make this process less data demanding. The macroscopic fundamental diagram relates accumulation, i.e. the number of vehicles in an area, to the netw

  9. Stereodynamics: From elementary processes to macroscopic chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Toshio [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Che, Dock-Chil [Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Tsai, Po-Yu [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Lin, King-Chuen [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Palazzetti, Federico [Scuola Normale Superiore, Pisa (Italy); Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, Vincenzo [Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Roma (Italy); Instituto de Fisica, Universidade Federal da Bahia, Salvador (Brazil)

    2015-12-31

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  10. Mesoscopic kinetic basis of macroscopic chemical thermodynamics: A mathematical theory.

    Science.gov (United States)

    Ge, Hao; Qian, Hong

    2016-11-01

    Gibbs' macroscopic chemical thermodynamics is one of the most important theories in chemistry. Generalizing it to mesoscaled nonequilibrium systems is essential to biophysics. The nonequilibrium stochastic thermodynamics of chemical reaction kinetics suggested a free energy balance equation dF^{(meso)}/dt=E_{in}-e_{p} in which the free energy input rate E_{in} and dissipation rate e_{p} are both non-negative, and E_{in}≤e_{p}. We prove that in the macroscopic limit by merely allowing the molecular numbers to be infinite, the generalized mesoscopic free energy F^{(meso)} converges to φ^{ss}, the large deviation rate function for the stationary distributions. This generalized macroscopic free energy φ^{ss} now satisfies a balance equation dφ^{ss}(x)/dt=cmf(x)-σ(x), in which x represents chemical concentration. The chemical motive force cmf(x) and entropy production rate σ(x) are both non-negative, and cmf(x)≤σ(x). The balance equation is valid generally in isothermal driven systems and is different from mechanical energy conservation and the first law; it is actually an unknown form of the second law. Consequences of the emergent thermodynamic quantities and equalities are further discussed. The emergent "law" is independent of underlying kinetic details. Our theory provides an example showing how a macroscopic law emerges from a level below.

  11. Diagnosis of bladder tumours in patients with macroscopic haematuria

    DEFF Research Database (Denmark)

    Gandrup, Karen L; Løgager, Vibeke B; Bretlau, Thomas

    2015-01-01

    OBJECTIVE: The aim of this study was to compare split-bolus computed tomography urography (CTU), magnetic resonance urography (MRU) and flexible cystoscopy in patients with macroscopic haematuria regarding the diagnosis of bladder tumours. MATERIALS AND METHODS: In this prospective study, 150...

  12. Microstructure and macroscopic properties of polydisperse systems of hard spheres

    NARCIS (Netherlands)

    Ogarko, V.

    2014-01-01

    This dissertation describes an investigation of systems of polydisperse smooth hard spheres. This includes the development of a fast contact detection algorithm for computer modelling, the development of macroscopic constitutive laws that are based on microscopic features such as the moments of the

  13. Integrating a macro emission model with a macroscopic traffic model

    NARCIS (Netherlands)

    Klunder, G.A.; Stelwagen, U.; Taale, H.

    2013-01-01

    This paper presents a macro emission module for macroscopic traffic models to be used for assessment of ITS and traffic management. It especially focuses on emission estimates for different intersection types. It provides emission values for CO, CO2, HC, NOx, and PM10. It is applied and validated fo

  14. From 1D to 3D - macroscopic nanowire aerogel monoliths.

    Science.gov (United States)

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-08-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.

  15. Numerical solutions of a generalized theory for macroscopic capillarity

    NARCIS (Netherlands)

    Doster, F.; Zegeling, P.A.; Hilfer, R.

    2010-01-01

    A recent macroscopic theory of biphasic flow in porous media [R. Hilfer, Phys. Rev. E 73, 016307 (2006)] has proposed to treat microscopically percolating fluid regions differently from microscopically nonpercolating regions. Even in one dimension the theory reduces to an analytically intractable se

  16. The fundamental diagram : a macroscopic traffic flow model.

    NARCIS (Netherlands)

    Botma, H.

    1976-01-01

    In models of traffic flow, the interactions between vehicles are of prime interest, and are based on characteristics of the drivers, road and vehicles. The fundamental diagram is a representation of a relationship on a macroscopic level in the steady state between the quantity of traffic and a chara

  17. Charge accumulation in DC cables: a macroscopic approach

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C; Pedersen, Aage

    1994-01-01

    The accumulation of space charge in solid dielectrics is examined from the macroscopic point of view using electromagnetic field theory. For practical dielectrics, it is shown that the occurrence of such charges is an inherent consequence of a non-uniform conductivity. The influence of both tempe...

  18. Mesoscopic kinetic basis of macroscopic chemical thermodynamics: A mathematical theory

    Science.gov (United States)

    Ge, Hao; Qian, Hong

    2016-11-01

    Gibbs' macroscopic chemical thermodynamics is one of the most important theories in chemistry. Generalizing it to mesoscaled nonequilibrium systems is essential to biophysics. The nonequilibrium stochastic thermodynamics of chemical reaction kinetics suggested a free energy balance equation d F(meso)/d t =Ein-ep in which the free energy input rate Ein and dissipation rate ep are both non-negative, and Ein≤ep . We prove that in the macroscopic limit by merely allowing the molecular numbers to be infinite, the generalized mesoscopic free energy F(meso) converges to φss, the large deviation rate function for the stationary distributions. This generalized macroscopic free energy φss now satisfies a balance equation d φss(x ) /d t =cmf(x ) -σ (x ) , in which x represents chemical concentration. The chemical motive force cmf(x ) and entropy production rate σ (x ) are both non-negative, and cmf(x )≤σ (x ) . The balance equation is valid generally in isothermal driven systems and is different from mechanical energy conservation and the first law; it is actually an unknown form of the second law. Consequences of the emergent thermodynamic quantities and equalities are further discussed. The emergent "law" is independent of underlying kinetic details. Our theory provides an example showing how a macroscopic law emerges from a level below.

  19. Accelerating multi-scale sheet forming simulations by exploiting local macroscopic quasi-homogeneities

    Science.gov (United States)

    Gawad, J.; Khairullah, Md; Roose, D.; Van Bael, A.

    2016-08-01

    Multi-scale simulations are computationally expensive if a two-way coupling is employed. In the context of sheet metal forming simulations, a fine-scale representative volume element (RVE) crystal plasticity (CP) model would supply the Finite Element analysis with plastic properties, taking into account the evolution of crystallographic texture and other microstructural features. The main bottleneck is that the fine-scale model must be evaluated at virtually every integration point in the macroscopic FE mesh. We propose to address this issue by exploiting a verifiable assumption that fine-scale state variables of similar RVEs, as well as the derived properties, subjected to similar macroscopic boundary conditions evolve along nearly identical trajectories. Furthermore, the macroscopic field variables primarily responsible for the evolution of fine-scale state variables often feature local quasi-homogeneities. Adjacent integration points in the FE mesh can be then clustered together in the regions where the field responsible for the evolution shows low variance. This way the fine-scale evolution is tracked only at a limited number of material points and the derived plastic properties are propagated to the surrounding integration points subjected to similar deformation. Optimal configurations of the clusters vary in time as the local deformation conditions may change during the forming process, so the clusters must be periodically adapted. We consider two operations on the clusters of integration points: splitting (refinement) and merging (unrefinement). The concept is tested in the Hierarchical Multi-Scale (HMS) framework [1] that computes macroscopic deformations by means of the FEM, whereas the micro-structural evolution at the individual FE integration points is predicted by a CP model. The HMS locally and adaptively approximates homogenized stress responses of the CP model by means of analytical plastic potential or yield criterion function. Our earlier work

  20. Macroscopic quantum phenomena from the large N perspective

    Science.gov (United States)

    Chou, C. H.; Hu, B. L.; Subaşi, Y.

    2011-07-01

    Macroscopic quantum phenomena (MQP) is a relatively new research venue, with exciting ongoing experiments and bright prospects, yet with surprisingly little theoretical activity. What makes MQP intellectually stimulating is because it is counterpoised against the traditional view that macroscopic means classical. This simplistic and hitherto rarely challenged view need be scrutinized anew, perhaps with much of the conventional wisdoms repealed. In this series of papers we report on a systematic investigation into some key foundational issues of MQP, with the hope of constructing a viable theoretical framework for this new endeavour. The three major themes discussed in these three essays are the large N expansion, the correlation hierarchy and quantum entanglement for systems of 'large' sizes, with many components or degrees of freedom. In this paper we use different theories in a variety of contexts to examine the conditions or criteria whereby a macroscopic quantum system may take on classical attributes, and, more interestingly, that it keeps some of its quantum features. The theories we consider here are, the O(N) quantum mechanical model, semiclassical stochastic gravity and gauge / string theories; the contexts include that of a 'quantum roll' in inflationary cosmology, entropy generation in quantum Vlasov equation for plasmas, the leading order and next-to-leading order large N behaviour, and hydrodynamic / thermodynamic limits. The criteria for classicality in our consideration include the use of uncertainty relations, the correlation between classical canonical variables, randomization of quantum phase, environment-induced decoherence, decoherent history of hydrodynamic variables, etc. All this exercise is to ask only one simple question: Is it really so surprising that quantum features can appear in macroscopic objects? By examining different representative systems where detailed theoretical analysis has been carried out, we find that there is no a priori

  1. The origins of macroscopic quantum coherence in high temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Philip, E-mail: ph.turner@napier.ac.uk [Edinburgh Napier University, 10 Colinton Road, Edinburgh EH10 5DT (United Kingdom); Nottale, Laurent, E-mail: laurent.nottale@obspm.fr [CNRS, LUTH, Observatoire de Paris-Meudon, 5 Place Janssen, 92190 Meudon (France)

    2015-08-15

    Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new

  2. Macroscopic quantum phenomena from the large N perspective

    Energy Technology Data Exchange (ETDEWEB)

    Chou, C H [department of Physics, National Cheng Kung University, Tainan, Taiwan 701 (China) and National Center for Theoretical Sciences (South), Tainan, Taiwan 701 (China); Hu, B L; Subasi, Y, E-mail: hubeilok@gmail.com [Joint Quantum Institute and Maryland Center for Fundamental Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2011-07-08

    Macroscopic quantum phenomena (MQP) is a relatively new research venue, with exciting ongoing experiments and bright prospects, yet with surprisingly little theoretical activity. What makes MQP intellectually stimulating is because it is counterpoised against the traditional view that macroscopic means classical. This simplistic and hitherto rarely challenged view need be scrutinized anew, perhaps with much of the conventional wisdoms repealed. In this series of papers we report on a systematic investigation into some key foundational issues of MQP, with the hope of constructing a viable theoretical framework for this new endeavour. The three major themes discussed in these three essays are the large N expansion, the correlation hierarchy and quantum entanglement for systems of 'large' sizes, with many components or degrees of freedom. In this paper we use different theories in a variety of contexts to examine the conditions or criteria whereby a macroscopic quantum system may take on classical attributes, and, more interestingly, that it keeps some of its quantum features. The theories we consider here are, the O(N) quantum mechanical model, semiclassical stochastic gravity and gauge / string theories; the contexts include that of a 'quantum roll' in inflationary cosmology, entropy generation in quantum Vlasov equation for plasmas, the leading order and next-to-leading order large N behaviour, and hydrodynamic / thermodynamic limits. The criteria for classicality in our consideration include the use of uncertainty relations, the correlation between classical canonical variables, randomization of quantum phase, environment-induced decoherence, decoherent history of hydrodynamic variables, etc. All this exercise is to ask only one simple question: Is it really so surprising that quantum features can appear in macroscopic objects? By examining different representative systems where detailed theoretical analysis has been carried out, we find that

  3. Reading Angles in Maps

    Science.gov (United States)

    Izard, Véronique; O'Donnell, Evan; Spelke, Elizabeth S.

    2014-01-01

    Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections…

  4. Boundary issues

    Science.gov (United States)

    Townsend, Alan R.; Porder, Stephen

    2011-03-01

    What is our point of no return? Caesar proclaimed 'the die is cast' while crossing the Rubicon, but rarely does modern society find so visible a threshold in our continued degradation of ecosystems and the services they provide. Humans have always used their surroundings to make a living— sometimes successfully, sometimes not (Diamond 2005)—and we intuitively know that there are boundaries to our exploitation. But defining these boundaries has been a challenge since Malthus first prophesied that nature would limit the human population (Malthus 1798). In 2009, Rockström and colleagues tried to quantify what the 6.8 billion (and counting) of us could continue to get away with, and what we couldn't (Rockström et al 2009). In selecting ten 'planetary boundaries', the authors contend that a sustainable human enterprise requires treating a number of environmental thresholds as points of no return. They suggest we breach these Rubicons at our own peril, and that we've already crossed three: biodiversity loss, atmospheric CO2, and disruption of the global nitrogen (N) cycle. As they clearly hoped, the very act of setting targets has provoked scientific inquiry about their accuracy, and about the value of hard targets in the first place (Schlesinger 2009). Such debate is a good thing. Despite recent emphasis on the science of human-ecosystem interactions, understanding of our planetary boundaries is still in its infancy, and controversy can speed scientific progress (Engelhardt and Caplan 1987). A few weeks ago in this journal, Carpenter and Bennett (2011) took aim at one of the more controversial boundaries in the Rockström analysis: that for human alteration of the global phosphorus (P) cycle. Rockström's group chose riverine P export as the key indicator, suggesting that humans should not exceed a value that could trigger widespread marine anoxic events—and asserting that we have not yet crossed this threshold. There are defensible reasons for a marine

  5. boundary dissipation

    Directory of Open Access Journals (Sweden)

    Mehmet Camurdan

    1998-01-01

    are coupled by appropriate trace operators. This overall model differs from those previously studied in the literature in that the elastic chamber floor is here more realistically modeled by a hyperbolic Kirchoff equation, rather than by a parabolic Euler-Bernoulli equation with Kelvin-Voight structural damping, as in past literature. Thus, the hyperbolic/parabolic coupled system of past literature is replaced here by a hyperbolic/hyperbolic coupled model. The main result of this paper is a uniform stabilization of the coupled PDE system by a (physically appealing boundary dissipation.

  6. The Contact Angle in Inviscid Fluid Mechanics

    Indian Academy of Sciences (India)

    P N Shankar; R Kidambi

    2005-05-01

    We show that in general, the specification of a contact angle condition at the contact line in inviscid fluid motions is incompatible with the classical field equations and boundary conditions generally applicable to them. The limited conditions under which such a specification is permissible are derived;however, these include cases where the static meniscus is not flat. In view of this situation, the status of the many `solutions’ in the literature which prescribe a contact angle in potential flows comes into question. We suggest that these solutions which attempt to incorporate a phenomenological, but incompatible, condition are in some, imprecise sense `weak-type solutions’;they satisfy or are likely to satisfy, at least in the limit, the governing equations and boundary conditions everywhere except in the neighbourhood of the contact line. We discuss the implications of the result for the analysis of inviscid flows with free surfaces.

  7. A Novel Macroscopic Wave Geometric Effect of the Sunbeam and A Novel Simple Way to show the Earth-Self Rotation and Orbiting around the Sun

    CERN Document Server

    Nam, Sang Boo

    2009-01-01

    I present a novel macroscopic wave geometric effect of the sunbeam occurring when the sunbeam directional (shadow by a bar) angle c velocity is observed on the earth surface and a sunbeam global positioning device with a needle at the center of radial angle graph paper. The angle c velocity at sunrise or sunset is found to be same as the rotating rate of swing plane of Foucault pendulum, showing the earth-self rotation. The angle c velocity at noon is found to have an additional term resulted from a novel macroscopic wave geometric effect of the sunbeam. Observing the sunbeam direction same as the earth orbit radial direction, the inclination angle q of the earth rotation axis in relation to the sunbeam front plane is found to be related with the earth orbit angle, describing the earth orbit radial distance. The eccentricity of the earth orbit and a calendar counting days from perihelion are obtained by dq/dt and q measured on the earth surface, showing the earth orbiting around the sun. PACS numbers: 03.65.V...

  8. Empirical investigation on safety constraints of merging pedestrian crowd through macroscopic and microscopic analysis.

    Science.gov (United States)

    Shi, Xiaomeng; Ye, Zhirui; Shiwakoti, Nirajan; Tang, Dounan; Wang, Chao; Wang, Wei

    2016-10-01

    A recent crowd stampede during a New Year's Eve celebration in Shanghai, China resulted in 36 fatalities and over 49 serious injuries. Many of such tragic crowd accidents around the world resulted from complex multi-direction crowd movement such as merging behavior. Although there are a few studies on merging crowd behavior, none of them have conducted a systematic analysis considering the impact of both merging angle and flow direction towards the safety of pedestrian crowd movement. In this study, a series of controlled laboratory experiments were conducted to examine the safety constraints of merging pedestrian crowd movements considering merging angle (60°, 90° and 180°) and flow direction under slow running and blocked vision condition. Then, macroscopic and microscopic properties of crowd dynamics are obtained and visualized through the analysis of pedestrian crowd trajectory data derived from video footage. It was found that merging angle had a significant influence on the fluctuations of pedestrian flows, which is important in a critical situation such as emergency evacuation. As the merging angle increased, mean velocity and mean flow at the measuring region in the exit corridors decreased, while mean density increased. A similar trend was observed for the number of weaving and overtaking conflicts, which resulted in the increase of mean headway. Further, flow direction had a significant impact on the outflow of the individuals while blocked vision had an influence on pedestrian crowd interactions and merging process. Finally, this paper discusses safety assessments on crowd merging behaviors along with some recommendations for future research. Findings from this study can assist in the development and validation of pedestrian crowd simulation models as well as organization and control of crowd events.

  9. A fortran code CVTRAN to provide cross-section file for TWODANT by using macroscopic file written by SRAC

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, Tsuyoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Tsuchihashi, Keichiro

    1999-03-01

    A code CVTRAN provides the macroscopic cross-sections in the format of XSLIB file which is one of Standard interface files for a two-dimensional Sn transport code TWODANT by reading a macroscopic cross section file in the PDS format which is prepared by SRAC execution. While a two-dimensional Sn transport code TWOTRAN published by LANL is installed as a module in the SRAC code system, several functions such as alpha search, concentration search, zone thickness search and various edits are suppressed. Since the TWODANT code was released from LANL, its short running time, stable convergence and plenty of edits have attracted many users. The code CVTRAN makes the TWODANT available to the SRAC user by providing the macroscopic cross-sections on a card-image file XSLIB. The CVTRAN also provides material dependent fission spectra into a card-image format file CVLIB, together with group velocities, group boundary energies and material names. The user can feed them into the TWODANT input, if necessary, by cut-and-paste command. (author)

  10. Boundary layer control for airships

    Science.gov (United States)

    Pake, F. A.; Pipitone, S. J.

    1975-01-01

    An investigation is summarized of the aerodynamic principle of boundary layer control for nonrigid LTA craft. The project included a wind tunnel test on a BLC body of revolution at zero angle of attack. Theoretical analysis is shown to be in excellent agreement with the test data. Methods are evolved for predicting the boundary layer development on a body of revolution and the suction pumping and propulsive power requirements. These methods are used to predict the performance characteristics of a full-scale airship. The analysis indicates that propulsive power reductions of 15 to 25 percent and endurance improvements of 20 to 40 percent may be realized in employing boundary-layer control to nonrigid airships.

  11. Photoelectric angle converter

    Science.gov (United States)

    Podzharenko, Volodymyr A.; Kulakov, Pavlo I.

    2001-06-01

    The photo-electric angle transmitter of rotation is offered, at which the output voltage is linear function of entering magnitude. In a transmitter the linear phototransducer is used on the basis of pair photo diode -- operating amplifier, which output voltage is linear function of the area of an illuminated photosensitive stratum, and modulator of a light stream of the special shape, which ensures a linear dependence of this area from an angle of rotation. The transmitter has good frequent properties and can be used for dynamic measurements of an angular velocity and angle of rotation, in systems of exact drives and systems of autocontrol.

  12. Wave speeds in the macroscopic extended model for ultrarelativistic gases

    Energy Technology Data Exchange (ETDEWEB)

    Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)

    2013-11-15

    Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.

  13. From 1D to 3D - macroscopic nanowire aerogel monoliths

    Science.gov (United States)

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-07-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying. Electronic supplementary information (ESI) available: Experimental details, SEM and TEM images, and digital photographs. See DOI: 10.1039/c6nr04429h

  14. Microscopic versus macroscopic approaches to non-equilibrium systems

    Science.gov (United States)

    Derrida, Bernard

    2011-01-01

    The one-dimensional symmetric simple exclusion process (SSEP) is one of the very few exactly soluble models of non-equilibrium statistical physics. It describes a system of particles which diffuse with hard core repulsion on a one-dimensional lattice in contact with two reservoirs of particles at unequal densities. The goal of this paper is to review the two main approaches which lead to the exact expression of the large deviation functional of the density of the SSEP in its steady state: a microscopic approach (based on the matrix product ansatz and an additivity property) and a macroscopic approach (based on the macroscopic fluctuation theory of Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim).

  15. Wave speeds in the macroscopic extended model for ultrarelativistic gases

    Energy Technology Data Exchange (ETDEWEB)

    Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)

    2013-11-15

    Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.

  16. Applying quantum mechanics to macroscopic and mesoscopic systems

    CERN Document Server

    T., N Poveda

    2012-01-01

    There exists a paradigm in which Quantum Mechanics is an exclusively developed theory to explain phenomena on a microscopic scale. As the Planck's constant is extremely small, $h\\sim10^{-34}{J.s}$, and as in the relation of de Broglie the wavelength is inversely proportional to the momentum; for a mesoscopic or macroscopic object the Broglie wavelength is very small, and consequently the undulatory behavior of this object is undetectable. In this paper we show that with a particle oscillating around its classical trajectory, the action is an integer multiple of a quantum of action, $S = nh_{o}$. The quantum of action, $h_{o}$, which plays a role equivalent to Planck's constant, is a free parameter that must be determined and depends on the physical system considered. For a mesoscopic and macroscopic system: $h_{o}\\gg h$, this allows us to describe these systems with the formalism of quantum mechanics.

  17. Analysis and Enhancements of a Prolific Macroscopic Model of Epilepsy

    Directory of Open Access Journals (Sweden)

    Christopher Fietkiewicz

    2016-01-01

    Full Text Available Macroscopic models of epilepsy can deliver surprisingly realistic EEG simulations. In the present study, a prolific series of models is evaluated with regard to theoretical and computational concerns, and enhancements are developed. Specifically, we analyze three aspects of the models: (1 Using dynamical systems analysis, we demonstrate and explain the presence of direct current potentials in the simulated EEG that were previously undocumented. (2 We explain how the system was not ideally formulated for numerical integration of stochastic differential equations. A reformulated system is developed to support proper methodology. (3 We explain an unreported contradiction in the published model specification regarding the use of a mathematical reduction method. We then use the method to reduce the number of equations and further improve the computational efficiency. The intent of our critique is to enhance the evolution of macroscopic modeling of epilepsy and assist others who wish to explore this exciting class of models further.

  18. Indirect measurement of interfacial melting from macroscopic ice observations.

    Science.gov (United States)

    Saruya, Tomotaka; Kurita, Kei; Rempel, Alan W

    2014-06-01

    Premelted water that is adsorbed to particle surfaces and confined to capillary regions remains in the liquid state well below the bulk melting temperature and can supply the segregated growth of ice lenses. Using macroscopic measurements of ice-lens initiation position in step-freezing experiments, we infer how the nanometer-scale thicknesses of premelted films depend on temperature depression below bulk melting. The interfacial interactions between ice, liquid, and soda-lime glass particles exhibit a power-law behavior that suggests premelting in our system is dominated by short-range electrostatic forces. Using our inferred film thicknesses as inputs to a simple force-balance model with no adjustable parameters, we obtain good quantitative agreement between numerical predictions and observed ice-lens thickness. Macroscopic observations of lensing behavior have the potential as probes of premelting behavior in other systems.

  19. Optomechanical entanglement of a macroscopic oscillator by quantum feedback

    Science.gov (United States)

    Wu, E.; Li, Fengzhi; Zhang, Xuefeng; Ma, Yonghong

    2016-07-01

    We propose a scheme to generate the case of macroscopic entanglement in the optomechanical system, which consist of Fabry-Perot cavity and a mechanical oscillator by applying a homodyne-mediated quantum feedback. We explore the effect of feedback on the entanglement in vacuum and coherent state, respectively. The results show that the introduction of quantum feedback can increase the entanglement effectively between the cavity mode and the oscillator mode.

  20. Identification of Bodies Exposed to High Temperatures Based on Macroscopic...

    OpenAIRE

    Barraza Salcedo, María del Socorro; Universidad Metropolitana de Barranquilla. Barranquilla; Rebolledo Cobos, Martha Leonor; Universidad Metropolitana de Barranquilla

    2016-01-01

    ABSTRACT. Background: Forensic dentistry in cases of incineration provides scientific elements that allow the identification of bodies, by analyzing dental organs, through the isolation of DNA obtained from the pulp as an alternative to confirm the identity of the victim. When the degree of temperature is highly elevated, dental tissues are vulnerable and therefore the DNA pulp is not salvageable, wasting resources and time by lack of standards to identify macroscopic characteristics that ind...

  1. CONTRIBUTION OF MACROSCOPIC DIMENSION EFFECT TO PIEZOELFCTRICITY IN POLYVINYLIDENE FLUORIDE

    Institute of Scientific and Technical Information of China (English)

    WEN Jianxun; TAKEO FURUKAWA

    1987-01-01

    In this paper, we have studied the piezoelectricity in the poled uniaxially drawn polyvinylidene fluoride. The piezoelectric constants d31, d32, da33 and Young's moduli 1/s11 and 1/s22 have been determined as a function of the remanent polarization Pr. The piezoelectric constants of the samples show a strong in-plane anisotropy. Such an anisotropy is mostly attributable to different Poisson's ratio. It is found that the piezoelectric activity mainly arises from macroscopic dimensional change.

  2. Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.

    Science.gov (United States)

    Tsai, Jaw-Shen

    2010-01-01

    Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.

  3. Measurement-Induced Macroscopic Superposition States in Cavity Optomechanics

    Science.gov (United States)

    Hoff, Ulrich B.; Kollath-Bönig, Johann; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L.

    2016-09-01

    A novel protocol for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator is proposed, compatible with existing optomechanical devices operating in the bad-cavity limit. By combining a pulsed optomechanical quantum nondemolition (QND) interaction with nonclassical optical resources and measurement-induced feedback, the need for strong single-photon coupling is avoided. We outline a three-pulse sequence of QND interactions encompassing squeezing-enhanced cooling by measurement, state preparation, and tomography.

  4. The ULF wave foreshock boundary: Cluster observations

    CERN Document Server

    Andres, Nahuel; Mazelle, Christian; Bertucci, Cesar; Gomez, Daniel

    2014-01-01

    The interaction of backstreaming ions with the incoming solar wind in the upstream region of the bow shock gives rise to a number of plasma instabilities from which ultra-low frequency (ULF) waves can grow. Because of their finite growth rate, the ULF waves are spatially localized in the foreshock region. Previous studies have reported observational evidences of the existence of a ULF wave foreshock boundary, which geometrical characteristics are very sensitive to the interplanetary magnetic field (IMF) cone angle. The statistical properties of the ULF wave foreshock boundary is examined in detail using Cluster data. A new identification of the ULF wave foreshock boundary is presented using specific and accurate criterion for a precises determination of boundary crossings. The criterion is based on the degree of IMF rotation as Cluster crosses the boundary. The obtained ULF wave foreshock boundary is compared with previous results reported in the literature as well as with theoretical predictions. Also, we ex...

  5. An Experimental Study on the Macroscopic Spray Characteristics of Biodiesel and Diesel in a Constant Volume Chamber

    Directory of Open Access Journals (Sweden)

    Hongzhan Xie

    2015-06-01

    Full Text Available The objective of this study was to investigate the macroscopic spray characteristics of different 0%–100% blends of biodiesel derived from drainage oil and diesel (BD0, BD20, BD50, BD80, BD100, such as spray tip penetration, average tip velocity at penetration, spray angle, average spray angle, spray evolution process, spray area and spray volume under different injection pressures (60, 70, 80, 90, 100 MPa and ambient pressures (0.1, 0.3, 0.5, 0.7, 0.9 MPa using a common rail system equipped with a constant volume chamber. The characteristic data was extracted from spray images grabbed by a high speed visualization system. The results showed that the ambient pressure and injection pressure had significant effects on the spray characteristics. As the ambient pressure increased, the spray angle increased, while the spray tip penetration and the peak of average tip velocity decreased. As the injection pressure increased, the spray tip penetration, spray angle, spray area and spray volume increased. The increasing blend ratio of biodiesel brought about a shorter spray tip penetration and a smaller spray angle compared with those of diesel. This is due to the comparatively higher viscosity and surface tension of biodiesel, which enhanced the friction effect between fuel and the injector nozzle surface and inhibited the breakup of the liquid jet.

  6. Macroscopic Quantum Phenomena from the Correlation, Coupling and Criticality Perspectives

    Science.gov (United States)

    Chou, C. H.; Hu, B. L.; Subaşi, Y.

    2011-12-01

    In this sequel paper we explore how macroscopic quantum phenomena can be measured or understood from the behavior of quantum correlations which exist in a quantum system of many particles or components and how the interaction strengths change with energy or scale, under ordinary situations and when the system is near its critical point. We use the nPI (master) effective action related to the Boltzmann-BBGKY / Schwinger-Dyson hierarchy of equations as a tool for systemizing the contributions of higher order correlation functions to the dynamics of lower order correlation functions. Together with the large N expansion discussed in our first paper [1] we explore 1) the conditions whereby an H-theorem is obtained, which can be viewed as a signifier of the emergence of macroscopic behavior in the system. We give two more examples from past work: 2) the nonequilibrium dynamics of N atoms in an optical lattice under the large Script N (field components), 2PI and second order perturbative expansions, illustrating how N and Script N enter in these three aspects of quantum correlations, coherence and coupling strength. 3) the behavior of an interacting quantum system near its critical point, the effects of quantum and thermal fluctuations and the conditions under which the system manifests infrared dimensional reduction. We also discuss how the effective field theory concept bears on macroscopic quantum phenomena: the running of the coupling parameters with energy or scale imparts a dynamical-dependent and an interaction-sensitive definition of 'macroscopia'.

  7. Stochastic and Macroscopic Thermodynamics of Strongly Coupled Systems

    Science.gov (United States)

    Jarzynski, Christopher

    2017-01-01

    We develop a thermodynamic framework that describes a classical system of interest S that is strongly coupled to its thermal environment E . Within this framework, seven key thermodynamic quantities—internal energy, entropy, volume, enthalpy, Gibbs free energy, heat, and work—are defined microscopically. These quantities obey thermodynamic relations including both the first and second law, and they satisfy nonequilibrium fluctuation theorems. We additionally impose a macroscopic consistency condition: When S is large, the quantities defined within our framework scale up to their macroscopic counterparts. By satisfying this condition, we demonstrate that a unifying framework can be developed, which encompasses both stochastic thermodynamics at one end, and macroscopic thermodynamics at the other. A central element in our approach is a thermodynamic definition of the volume of the system of interest, which converges to the usual geometric definition when S is large. We also sketch an alternative framework that satisfies the same consistency conditions. The dynamics of the system and environment are modeled using Hamilton's equations in the full phase space.

  8. Macroscopic quantum oscillator based on a flux qubit

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mandip, E-mail: mandip@iisermohali.ac.in

    2015-09-25

    In this paper a macroscopic quantum oscillator is proposed, which consists of a flux-qubit in the form of a cantilever. The net magnetic flux threading through the flux-qubit and the mechanical degrees of freedom of the cantilever are naturally coupled. The coupling between the cantilever and the magnetic flux is controlled through an external magnetic field. The ground state of the flux-qubit-cantilever turns out to be an entangled quantum state, where the cantilever deflection and the magnetic flux are the entangled degrees of freedom. A variant, which is a special case of the flux-qubit-cantilever without a Josephson junction, is also discussed. - Highlights: • In this paper a flux-qubit-cantilever is proposed. • Coupling can be varied by an external magnetic field. • Ground state is a macroscopic entangled quantum state. • Ground state of the superconducting-loop-oscillator is a macroscopic quantum superposition. • Proposed scheme is based on a generalized quantum approach.

  9. Macroscopic description of the limb muscles of Tupinambis merianae

    Directory of Open Access Journals (Sweden)

    Juliana Barbosa Casals

    2012-03-01

    Full Text Available Tegu lizard (Tupinambis merianae belongs to the Teiidae family. It is distributed throughout the Americas, with many species, including Brazilian ones. They are from the Tupinambis genus, the largest representatives of the Teiidae family. For this study three animals (run over coming from donation were used. The dissected lizards were fixed in 10%, formaldehyde, and the macroscopic analysis was carried out in a detailed and photo documented way, keeping the selected structures “in situ”. This paper had as its main aim contributing to the macroscopic description of the chest myology, as well as the thoracic and pelvic limbs of the lizard T. merianae. The results obtained from this research were compared to authors who have studied animals from the same Reptilia class. Thus, we conclude that our macroscopic results are similar to those already described by the researchers Hildebrand (1995, Moro and Abdala (2004 and Abdala and Diogo (2010. We should highlight that the knowledge on anatomy has importance and applications to various areas within Biology, contributing in a substantial way to the areas of human health and technology.

  10. Mesoscopic Kinetic Basis of Macroscopic Chemical Thermodynamics: A Mathematical Theory

    CERN Document Server

    Ge, Hao

    2016-01-01

    From a mathematical model that describes a complex chemical kinetic system of $N$ species and $M$ elementrary reactions in a rapidly stirred vessel of size $V$ as a Markov process, we show that a macroscopic chemical thermodynamics emerges as $V\\rightarrow\\infty$. The theory is applicable to linear and nonlinear reactions, closed systems reaching chemical equilibrium, or open, driven systems approaching to nonequilibrium steady states. A generalized mesoscopic free energy gives rise to a macroscopic chemical energy function $\\varphi^{ss}(\\vx)$ where $\\vx=(x_1,\\cdots,x_N)$ are the concentrations of the $N$ chemical species. The macroscopic chemical dynamics $\\vx(t)$ satisfies two emergent laws: (1) $(\\rd/\\rd t)\\varphi^{ss}[\\vx(t)]\\le 0$, and (2)$(\\rd/\\rd t)\\varphi^{ss}[\\vx(t)]=\\text{cmf}(\\vx)-\\sigma(\\vx)$ where entropy production rate $\\sigma\\ge 0$ represents the sink for the chemical energy, and chemical motive force $\\text{cmf}\\ge 0$ is non-zero if the system is driven under a sustained nonequilibrium chemos...

  11. Noise-driven interfaces and their macroscopic representation

    Science.gov (United States)

    Dentz, Marco; Neuweiler, Insa; Méheust, Yves; Tartakovsky, Daniel M.

    2016-11-01

    We study the macroscopic representation of noise-driven interfaces in stochastic interface growth models in (1 +1 ) dimensions. The interface is characterized macroscopically by saturation, which represents the fluctuating sharp interface by a smoothly varying phase field with values between 0 and 1. We determine the one-point interface height statistics for the Edwards-Wilkinson (EW) and Kadar-Paris-Zhang (KPZ) models in order to determine explicit deterministic equations for the phase saturation for each of them. While we obtain exact results for the EW model, we develop a Gaussian closure approximation for the KPZ model. We identify an interface compression term, which is related to mass transfer perpendicular to the growth direction, and a diffusion term that tends to increase the interface width. The interface compression rate depends on the mesoscopic mass transfer process along the interface and in this sense provides a relation between meso- and macroscopic interface dynamics. These results shed light on the relation between mesoscale and macroscale interface models, and provide a systematic framework for the upscaling of stochastic interface dynamics.

  12. Application of a single root-scale model to improve macroscopic modeling of root water uptake: focus on osmotic stress

    Science.gov (United States)

    Jorda, Helena; Perelman, Adi; Lazarovitch, Naftali; Vanderborght, Jan

    2017-04-01

    Root water uptake is a fundamental process in the hydrological cycle and it largely regulates the water balance in the soil vadose zone. Macroscopic stress functions are currently used to estimate the effect of salinity on root water uptake. These functions commonly assume stress to be a function of bulk salinity and of the plant sensitivity to osmotic stress expressed as the salinity at which transpiration is reduced by half or so called tolerance value. However, they fail to integrate additional relevant factors such as atmospheric conditions or root architectural traits. We conducted a comprehensive simulation study on a single root using a 3-D physically-based model that resolves flow and transport to individual root segments and that couples flow in the soil and root system. The effect of salt concentrations on root water uptake was accounted for by including osmotic water potential gradients between the solution at the soil root interface and the root xylem sap in the hydraulic gradient between the soil and root. A large set of factors were studied, namely, potential transpiration rate and dynamics, root length density (RLD), irrigation water quality and irrigation frequency, and leaching fraction. Results were fitted to the macroscopic function developed by van Genuchten and Hoffman (1984) and the dependency of osmotic stress and the fitted macroscopic parameters on the studied factors was evaluated. Osmotic stress was found to be highly dependent on RLD. Low RLDs result in a larger stress to the plant due to high evaporative demand per root length unit. In addition, osmotic stress was positively correlated to potential transpiration rate, and sinusoidal potential transpiration lead to larger stress than when imposed as a constant boundary condition. Macroscopic parameters are usually computed as single values for each crop and used for the entire growing season. However, our study shows that both tolerance value and shape parameter p from the van Genuchten

  13. Angle-Ply Weaving

    Science.gov (United States)

    Farley, Gary L.

    1990-01-01

    Bias-direction or angle-ply weaving is proposed new process for weaving fibers along bias in conventional planar fabric or in complicated three-dimensional multilayer fabric preform of fiber-reinforced composite structure. Based upon movement of racks of needles and corresponding angle yarns across fabric as fabric being formed. Fibers woven along bias increases shear stiffness and shear strength of preform, increasing value of preform as structural member.

  14. A comparative study of Macroscopic Fundamental Diagrams of urban road networks governed by different traffic signal systems

    CERN Document Server

    Zhang, Lele; de Gier, Jan

    2011-01-01

    Using a stochastic cellular automaton model for urban traffic flow, we study and compare Macroscopic Fundamental Diagrams (MFDs) of arterial road networks governed by different types of adaptive traffic signal systems. In particular, we simulate realistic signal systems that include signal linking and adaptive cycle times, and compare their performance against a network using highly adaptive self-organizing traffic signals. We find that for networks with time- independent boundary conditions, well-defined stationary MFDs are observed, whose shape depends on the particular signal system used, and also on the level of heterogeneity in the system. We find that the spatial heterogeneity of both density and flow provide important indicators of network performance. We also study networks with time-dependent boundary conditions, containing morning and afternoon peaks. In this case, intricate hysteresis loops are observed in the MFDs which are strongly correlated with the density heterogeneity. Our results show that ...

  15. Micromechanical study of macroscopic friction and dissipation in idealised granular materials: the effect of interparticle friction

    NARCIS (Netherlands)

    Kruyt, N.P.; Rothenburg, L.; Gutkowski, Witold; Kowalewski, Tomasz A.

    2004-01-01

    Using Discrete Element Method (DEM) simulations with varying interparticle friction coefficient, the relation between interparticle friction coefficient and macroscopic continuum friction and dissipation is investigated. As expected, macroscopic friction and dilatancy increase with interparticle fri

  16. Solvable Quantum Macroscopic Motions and Decoherence Mechanisms in Quantum Mechanics on Nonstandard Space

    Science.gov (United States)

    Kobayashi, Tsunehiro

    1996-01-01

    Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.

  17. Wetting Effects at a Grain Boundary

    Science.gov (United States)

    Abraham, D. B.; Mustonen, Ville; Wood, A. J.

    2004-08-01

    We consider a tier of weakened bonds along the center line of a two-dimensional Ising ferromagnet strip as a model of a grain boundary. When an interface traverses such a strip at an angle, whether or not there is a continuous pinning-depinning transition at subcritical temperature depends on this angle and the degree of bond weakening. We also study the relaxation of such a system to its equilibrium state using continuous time Monte Carlo simulation with Kawasaki dynamics; this reveals a matter transport mechanism confined to the grain boundary.

  18. Micro and macroscopic investigation to quantify tillage impact on soil hydrodynamic behaviour

    Science.gov (United States)

    Beckers, E.; Roisin, C.; Plougonven, E.; Deraedt, D.; Léonard, A.; Degré, A.

    2012-04-01

    Nowadays, tillage simplification is an increasing practice. Many advantages are cited in the literature, such as energy saving, soil conservation etc. Agricultural management practices influence soil structure, but consequent changes in soil hydrodynamic behaviour at the field scale are still not well understood. Many studies focus only on macroscopic measurements which do not provide mechanistic explanations. Moreover, research shows divergent conclusions over structure modification. The aim of this work is to fill this gap by quantifying soil structure modification depending on tillage intensity through both macroscopic and microscopic measurements, the latter improving our comprehension of the fundamental mechanisms involved. Our experiment takes place in Gentinnes (Walloon Brabant, Belgium), on a field organized in a Latin square scheme. Since 2004, plots have been cultivated in conventional tillage (CT) or in reduced tillage (RT). The latter consists in sowing after stubble ploughing of about 10cm. The crop rotation is sugar beet followed by winter wheat. The soil is mainly composed of silt loam and can be classified as a Luvisol. Macroscopic investigations consist in establishing pF and K(h) curves and 3D soil strength profiles. At the microscale, 3D morphologic parameters are measured using X-ray microtomography. Because of the variation of working depth between management practices (10cm for RT vs. 25cm for CT), two horizons were investigated: H1 between 0-10cm and H2 between 12-25cm. 3D soil strength profiles were established thanks to a fully automated penetrometer (30° angle cone with a base area of 10mm2) which covered a 160 × 80cm2 area with 5cm spacing between neighbouring points. At each node, penetration was performed and soil strength measurements were collected every 1cm from 5 to 55cm depth. K(h) curves were provided by 20cm diameter tension-infiltrometer measurements (Eijkelkamp Agrisearch Equipment). Undisturbed soil samples were removed from

  19. Turbulent boundary layer on perforated surfaces with vector injection

    Science.gov (United States)

    Eroshenko, V. M.; Zaichik, L. I.; Klimov, A. A.; Ianovskii, L. S.; Kondratev, V. I.

    1980-10-01

    The paper presents an experimental investigation of a turbulent boundary layer on perforated plates with uniform vector injection at various angles to gas flow. It was shown that with strong injection at angles oriented in the flow direction the intensity of turbulent pulsation is decreased, while injection at angles in the opposite direction increase the intensity. A relationship was established between the critical parameters of the boundary layer injection angles; it was concluded that the asymptotic theory of Kutateladze and Leontiev can be used for determining the coefficient of friction of vector injection.

  20. Scaling laws and bulk-boundary decoupling in heat flow.

    Science.gov (United States)

    del Pozo, Jesús J; Garrido, Pedro L; Hurtado, Pablo I

    2015-03-01

    When driven out of equilibrium by a temperature gradient, fluids respond by developing a nontrivial, inhomogeneous structure according to the governing macroscopic laws. Here we show that such structure obeys strikingly simple scaling laws arbitrarily far from equilibrium, provided that both macroscopic local equilibrium and Fourier's law hold. Extensive simulations of hard disk fluids confirm the scaling laws even under strong temperature gradients, implying that Fourier's law remains valid in this highly nonlinear regime, with putative corrections absorbed into a nonlinear conductivity functional. In addition, our results show that the scaling laws are robust in the presence of strong finite-size effects, hinting at a subtle bulk-boundary decoupling mechanism which enforces the macroscopic laws on the bulk of the finite-sized fluid. This allows one to measure the marginal anomaly of the heat conductivity predicted for hard disks.

  1. Simulation of grain boundary effect on characteristics of ZnO thin film transistor by considering the location and orientation of grain boundary

    Institute of Scientific and Technical Information of China (English)

    Zhou Yu-Ming; He Yi-Gang; Lu Ai-Xia; Wan Qing

    2009-01-01

    The grain boundaries (GBs) have a strong effect on the electric properties of ZnO thin film transistors (TFTs).A novel grain boundary model was developed to analyse the effect. The model was characterized with different angles between the orientation of the grain boundary and the channel direction. The potential barriers formed by the grain boundaries increase with the increase of the grain boundary angle,so the degradation of the transistor characteristics increases. When a grain boundary is close to the drain edge,the potential barrier height reduces,so the electric properties were improved.

  2. On the toughening of brittle materials by grain bridging:promoting intergranular fracture through grain angle, strength, andtoughness

    Energy Technology Data Exchange (ETDEWEB)

    Foulk III, J.W.; Johnson, G.C.; Klein, P.A.; Ritchie, R.O.

    2007-11-15

    The structural reliability of many brittle materials such asstructural ceramics relies on the occurrence of intergranular, as opposedto transgranular, fracture in order to induce toughening by grainbridging. For a constant grain boundary strength and grain boundarytoughness, the current work examines the role of grain strength, graintoughness, and grain angle in promoting intergranular fracture in orderto maintain such toughening. Previous studies have illustrated that anintergranular path and the consequent grain bridging process can bepartitioned into five distinct regimes, namely: propagate, kink, arrest,stall and bridge. To determine the validity of the assumed intergranularpath, the classical penentration/deflection problem of a crack impingingon an interface is reexamined within a cohesive zone framework forintergranular and transgranular fracture. Results considering both modesof propagation, i.e., a transgranular and intergranular path, reveal thatcrack-tip shielding is a natural outcome of the cohesive zone approach tofracture. Cohesive zone growth in one mode shields the opposing mode fromthe stresses required for cohesive zone initiation. Although stablepropagation occurs when the required driving force is equivalent to thetoughness for either transgranular or intergranular fracture, the mode ofpropagation depends on the normalized grain strength, normalized graintoughness, and grain angle. For each grain angle, the intersection ofsingle path and multiple path solutions demarcates "strong" grains thatincrease the macroscopic toughness and "weak" grains that decrease it.The unstable transition to intergranular fracture reveals that anincreasinggrain toughness requires a growing region of the transgranularcohesive zone be at and near the peak cohesive strength. The inability ofthe body to provide the requisite stress field yields an overdriven andunstable configuration. The current results provide restrictions for theachievement of substantial toughening

  3. Limited Angle Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho Kyung; Cho, Min Kook; Kim, Seong Sik [Pusan National University, Busan (Korea, Republic of)

    2007-07-01

    In computed tomography (CT), many situations are restricted to obtain enough number of projections or views to avoid artifacts such as streaking and geometrical distortion in the reconstructed images. Speed of motion of an object to be imaged can limit the number of views. Cardiovascular imaging is a representative example. Size of an object can also limit the complete traverse motion or geometrical complexity can obscure to be imaged at certain range of angles. These situations are frequently met in industrial nondestructive testing and evaluation. Dental CT also suffers from similar situation because cervical spine causes less x-ray penetration from some directions such that the available information is not sufficient for standard reconstruction algorithms. The limited angle tomography is now greatly paid attention as a new genre in medical and industrial imaging, popularly known as digital tomosynthesis. In this study, we introduce a modified filtered backprojection method in limited angle tomography and demonstrate its application for the dental imaging.

  4. Understanding the Pulsar High Energy Emission: Macroscopic and Kinetic Models

    Science.gov (United States)

    Kalapotharakos, Constantinos; Brambilla, Gabriele; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demos

    2017-08-01

    Pulsars are extraordinary objects powered by the rotation of magnetic fields of order 10^8, 10^12G anchored onto neutron stars and rotating with periods 10^(-3)-10s. These fields mediate the conversion of their rotational energy into MHD winds and at the same time accelerate particles to energies sufficiently high to produce GeV photons. Fermi, since its launch in 2008, has established several trends among the observed gamma-ray pulsar properties playing a catalytic role in the current modeling of the high energy emission in pulsar magnetospheres. We judiciously use the guidance provided by the Fermi data to yield meaningful constraints on the macroscopic parameters of our global dissipative pulsar magnetosphere models. Our FIDO (Force-Free Inside, Dissipative Outside) models indicate that the dissipative regions lie outside the light cylinder near the equatorial current sheet. Our models reproduce the light-curve phenomenology while a detailed comparison of the model spectral properties with those observed by Fermi reveals the dependence of the macroscopic conductivity parameter on the spin-down rate providing a unique insight into the understanding of the physical mechanisms behind the high-energy emission in pulsar magnetospheres. Finally, we further exploit these important results by building self-consistent 3D global kinetic particle-in-cell (PIC) models which, eventually, provide the dependence of the macroscopic parameter behavior (e.g. conductivity) on the microphysical properties (e.g. particle multiplicities, particle injection rates). Our PIC models provide field structures and particle distributions that are not only consistent with each other but also able to reproduce a broad range of the observed gamma-ray phenomenology (light curves and spectral properties) of both young and millisecond pulsars.

  5. Dynamical angled brane

    Science.gov (United States)

    Maeda, Kei-ichi; Uzawa, Kunihito

    2016-12-01

    We discuss the dynamical D p -brane solutions describing any number of D p branes whose relative orientations are given by certain SU(2) rotations. These are the generalization of the static angled D p -brane solutions. We study the collision of the dynamical D3 brane with angles in type-II string theory, and show that the particular orientation of the smeared D3-brane configuration can provide an example of colliding branes if they have the same charges. Otherwise a singularity appears before D3 branes collide.

  6. Self-Feeding Turbulent Magnetic Reconnection on Macroscopic Scales

    CERN Document Server

    Lapenta, Giovanni

    2008-01-01

    Within a MHD approach we find magnetic reconnection to progress in two entirely different ways. The first is well-known: the laminar Sweet-Parker process. But a second, completely different and chaotic reconnection process is possible. This regime has properties of immediate practical relevance: i) it is much faster, developing on scales of the order of the Alfv\\'en time, and ii) the areas of reconnection become distributed chaotically over a macroscopic region. The onset of the faster process is the formation of closed circulation patterns where the jets going out of the reconnection regions turn around and forces their way back in, carrying along copious amounts of magnetic flux.

  7. Single-atom quantum control of macroscopic mechanical oscillators

    Science.gov (United States)

    Bariani, F.; Otterbach, J.; Tan, Huatang; Meystre, P.

    2014-01-01

    We investigate a hybrid electromechanical system consisting of a pair of charged macroscopic mechanical oscillators coupled to a small ensemble of Rydberg atoms. The resonant dipole-dipole coupling between an internal atomic Rydberg transition and the mechanics allows cooling to its motional ground state with a single atom despite the considerable mass imbalance between the two subsystems. We show that the rich electronic spectrum of Rydberg atoms, combined with their high degree of optical control, paves the way towards implementing various quantum-control protocols for the mechanical oscillators.

  8. Emergence of an urban traffic macroscopic fundamental diagram

    DEFF Research Database (Denmark)

    Ranjan, Abhishek; Fosgerau, Mogens; Jenelius, Erik

    2016-01-01

    This paper examines mild conditions under which a macroscopic fundamental diagram (MFD) emerges, relating space-averaged speed to occupancy in some area. These conditions are validated against empirical data. We allow local speedoccupancy relationships and, in particular, require no equilibrating...... process to be in operation. This means that merely observing the stable relationship between the space-averages of speed, flow and occupancy are not sufficient to infer a robust relationship and the emerging MFD cannot be guaranteed to be stable if traffic interventions are implemented....

  9. Violation of smooth observable macroscopic realism in a harmonic oscillator.

    Science.gov (United States)

    Leshem, Amir; Gat, Omri

    2009-08-14

    We study the emergence of macrorealism in a harmonic oscillator subject to consecutive measurements of a squeezed action. We demonstrate a breakdown of dynamical realism in a wide parameter range that is maximized in a scaling limit of extreme squeezing, where it is based on measurements of smooth observables, implying that macroscopic realism is not valid in the harmonic oscillator. We propose an indirect experimental test of these predictions with entangled photons by demonstrating that local realism in a composite system implies dynamical realism in a subsystem.

  10. Seismic scanning tunneling macroscope - Elastic simulations and Arizona mine test

    KAUST Repository

    Hanafy, Sherif M.

    2012-01-01

    Elastic seismic simulations and field data tests are used to validate the theory of a seismic scanning tunneling macroscope (SSTM). For nearfield elastic simulation, the SSTM results show superresolution to be better than λ/8 if the only scattered data are used as input data. If the direct P and S waves are muted then the resolution of the scatterer locations are within about λ/5. Seismic data collected in an Arizona tunnel showed a superresolution limit of at least λ/19. These test results are consistent with the theory of the SSTM and suggest that the SSTM can be a tool used by geophysicists as a probe for near-field scatterers.

  11. Macroscopic description of teeth of Azara's agouti (Dasyprocta azarae

    Directory of Open Access Journals (Sweden)

    Fabrício S. Oliveira

    2012-01-01

    Full Text Available The teeth of Azara's agouti (Dasyprocta azarae were described macroscopically in order to provide biological data on one of the largest wild rodents of the Americas. Radiography was taken on six heads and the teeth were described. Enamel surrounds the coronal dentin, projects to the roots and is present as parallel inner laminae in buccolingual direction. The dentin is located among the enamel laminae and surrounds the pulp horns. The cementum is located internally to the enamel laminae. On the lingual surface, the cementum and dentin are the outer elements.

  12. Macroscopic and microscopic self-organization by nonlocal anisotropic interactions

    CERN Document Server

    Cristiani, Emiliano; Tosin, Andrea

    2009-01-01

    This paper is concerned with mathematical modeling of intelligent systems, such as human crowds and animal groups. In particular, the focus is on the emergence of different self-organized patterns from non-locality and anisotropy of the interactions among individuals. A mathematical technique by time-evolving measures is introduced to deal with both macroscopic and microscopic scales within a unified modeling framework. Then self-organization issues are investigated and numerically reproduced at the proper scale, according to the kind of agents under consideration.

  13. An investigation into why macroscopic systems behave classically

    OpenAIRE

    Hallwood, David W.; Burnett, Keith; Dunningham, Jacob

    2006-01-01

    We study why it is quite so hard to make a superposition of superfluid flows in a Bose-Einstein condensate. To do this we initially investigate the quantum states of $N$ atoms trapped in a 1D ring with a barrier at one position and a phase applied around it. We show how macroscopic superpositions can in principle be produced and investigate factors which affect the superposition. We then use the Bose-Hubbard model to study an array of Bose-Einstein condensates trapped in optical potentials an...

  14. Measurement-induced macroscopic superposition states in cavity optomechanics

    CERN Document Server

    Hoff, Ulrich B; Neergaard-Nielsen, Jonas S; Andersen, Ulrik L

    2016-01-01

    We present a novel proposal for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator, compatible with existing optomechanical devices operating in the readily achievable bad-cavity limit. The scheme is based on a pulsed cavity optomechanical quantum non-demolition (QND) interaction, driven by displaced non-Gaussian states, and measurement-induced feedback, avoiding the need for strong single-photon optomechanical coupling. Furthermore, we show that single-quadrature cooling of the mechanical oscillator is sufficient for efficient state preparation, and we outline a three-pulse protocol comprising a sequence of QND interactions for squeezing-enhanced cooling, state preparation, and tomography.

  15. Flagella bending affects macroscopic properties of bacterial suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Potomkin, M.; Tournus, M.; Berlyand, L. V.; Aranson, I. S.

    2017-05-01

    To survive in harsh conditions, motile bacteria swim in complex environments and respond to the surrounding flow. Here, we develop a mathematical model describing how flagella bending affects macroscopic properties of bacterial suspensions. First, we show how the flagella bending contributes to the decrease in the effective viscosity observed in dilute suspension. Our results do not impose tumbling (random reorientation) as was previously done to explain the viscosity reduction. Second, we demonstrate how a bacterium escapes from wall entrapment due to the self-induced buckling of flagella. Our results shed light on the role of flexible bacterial flagella in interactions of bacteria with shear flow and walls or obstacles.

  16. Modelling and simulations of macroscopic multi-group pedestrian flow

    CERN Document Server

    Mahato, Naveen K; Tiwari, Sudarshan

    2016-01-01

    We consider a multi-group microscopic model for pedestrian flow describing the behaviour of large groups. It is based on an interacting particle system coupled to an eikonal equation. Hydrodynamic multi-group models are derived from the underlying particle system as well as scalar multi-group models. The eikonal equation is used to compute optimal paths for the pedestrians. Particle methods are used to solve the macroscopic equations. Numerical test cases are investigated and the models and, in particular, the resulting evacuation times are compared for a wide range of different parameters.

  17. Macroscopic modeling for traffic flow on three-lane highways

    Science.gov (United States)

    Chen, Jianzhong; Fang, Yuan

    2015-04-01

    In this paper, a macroscopic traffic flow model for three-lane highways is proposed. The model is an extension of the speed gradient model by taking into account the lane changing. The new source and sink terms of lane change rate are added into the continuity equations and the speed dynamic equations to describe the lane-changing behavior. The result of the steady state analysis shows that our model can describe the lane usage inversion phenomenon. The numerical results demonstrate that the present model effectively reproduces several traffic phenomena observed in real traffic such as shock and rarefaction waves, stop-and-go waves and local clusters.

  18. Technology for Boundaries

    DEFF Research Database (Denmark)

    Bødker, Susanne; Kristensen, Jannie Friis; Nielsen, Christina

    2003-01-01

    This paper presents a study of an organisation, which is undergoing a process transforming organisational and technological boundaries. In particular, we shall look at three kinds of boundaries: the work to maintain and change the boundary between the organisation and its customers; boundaries.......After analysing the history and the current boundary work, the paper will propose new technological support for boundary work. In particular the paper will suggest means of supporting boundaries when these are productive and for changing boundaries when this seems more appropriate. In total, flexible technologies...... seem a core issue when dealing with technology for boundaries....

  19. Influence of Boundary Conditions on Yielding in a Soft Glassy Material

    Science.gov (United States)

    Gibaud, Thomas; Barentin, Catherine; Manneville, Sébastien

    2008-12-01

    The yielding behavior of a sheared Laponite suspension is investigated within a 1 mm gap under two different boundary conditions. No-slip conditions, ensured by using rough walls, lead to shear localization as already reported in various soft glassy materials. When apparent wall slip is allowed using a smooth geometry, the sample breaks up into macroscopic solid pieces that get slowly eroded by the surrounding fluidized material up to the point where the whole sample is fluid. Such a drastic effect of boundary conditions on yielding suggests the existence of some macroscopic characteristic length that could be connected to cooperativity effects in jammed materials under shear.

  20. The quadriceps angle

    DEFF Research Database (Denmark)

    Miles, James Edward; Frederiksen, Jane V.; Jensen, Bente Rona

    2012-01-01

    : Pelvic limbs from red foxes (Vulpes vulpes). METHODS: Q angles were measured on hip dysplasia (HD) and whole limb (WL) view radiographs of each limb between the acetabular rim, mid-point (Q1: patellar center, Q2: femoral trochlea), and tibial tuberosity. Errors of 0.5-2.0 mm at measurement landmarks...

  1. Macroscopic Quantum Phenomena from the Correlation, Coupling and Criticality Perspectives

    CERN Document Server

    Chou, C H; Subasi, Y

    2011-01-01

    In this sequel paper we explore how macroscopic quantum phenomena can be measured or understood from the behavior of quantum correlations which exist in a quantum system of many particles or components and how the interaction strengths change with energy or scale, under ordinary situations and when the system is near its critical point. We use the nPI (master) effective action related to the Boltzmann-BBGKY / Schwinger-Dyson hierarchy of equations as a tool for systemizing the contributions of higher order correlation functions to the dynamics of lower order correlation functions. Together with the large N expansion discussed in our first paper(MQP1) we explore 1) the conditions whereby an H-theorem is obtained, which can be viewed as a signifier of the emergence of macroscopic behavior in the system. We give two more examples from past work: 2) the nonequilibrium dynamics of N atoms in an optical lattice under the large $\\cal N$ (field components), 2PI and second order perturbative expansions, illustrating h...

  2. Macroscopic superposition states and decoherence by quantum telegraph noise

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Benjamin Simon

    2008-12-19

    In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)

  3. Tribological behaviour of graphite powders at nano- and macroscopic scales

    Science.gov (United States)

    Schmitt, M.; Bistac, S.; Jradi, K.

    2007-04-01

    With its high resistance, good hardness and electrical conductibility in the basal plans, graphite is used for many years in various tribological fields such as seals, bearings or electrical motor brushes, and also for applications needing excellent lubrication and wearreducing properties. But thanks to its low density, graphite is at the moment destined for technologies which need a reducing of the weight combined with an enhancement of the efficiency, as it is the case in aeronautical industry. In this contexte, the friction and wear of natural (named graphite A) and synthetic (called graphites B and C) powders were evaluated, first at the macroscopic scale when sliding against steel counterfaces, under various applied normal loads. Scanning Electron Microscopy and AFM in tapping mode were used to observe the morphological modifications of the graphites. It is noticed that an enlargement of the applied normal load leads to an increase of the friction coefficient for graphites A and C; but for the graphite B, it seems that a ''limit'' load can induce a complete change of the tribological behaviour. At the same time, the nano-friction properties of these powders were evaluated by AFM measurements in contact mode, at different contact loads. As it was the case at the macroscopic scale, an increase of the nano-contact load induces higher friction coefficients. The determining of the friction and wear mechanisms of the graphite powders, as a function of both their intrinsic characteristics and the applied normal load, is then possible.

  4. How does Planck’s constant influence the macroscopic world?

    Science.gov (United States)

    Yang, Pao-Keng

    2016-09-01

    In physics, Planck’s constant is a fundamental physical constant accounting for the energy-quantization phenomenon in the microscopic world. The value of Planck’s constant also determines in which length scale the quantum phenomenon will become conspicuous. Some students think that if Planck’s constant were to have a larger value than it has now, the quantum effect would only become observable in a world with a larger size, whereas the macroscopic world might remain almost unchanged. After reasoning from some basic physical principles and theories, we found that doubling Planck’s constant might result in a radical change on the geometric sizes and apparent colors of macroscopic objects, the solar spectrum and luminosity, the climate and gravity on Earth, as well as energy conversion between light and materials such as the efficiency of solar cells and light-emitting diodes. From the discussions in this paper, students can appreciate how Planck’s constant affects various aspects of the world in which we are living now.

  5. Macroscopic Biological Characteristics of Individualized Therapy in Chinese Mongolian Osteopathy

    Science.gov (United States)

    Namula, Zhao; Mei, Wang; Li, Xue-en

    Objective: Chinese Mongolian osteopathy has been passed down from ancient times and includes unique practices and favorable efficacy. In this study, we investigate the macroscopic biological characteristics of individualized Chinese Mongolian osteopathy, in order to provide new principle and methods for the treatment of bone fracture. Method: With a view to provide a vital link between nature and humans, the four stages of Chinese Mongolian osteopathy focus on the unity of the mind and body, the limbs and body organs, the body and its functions, and humans and nature. Results: We discuss the merits of individualized osteopathy in terms of the underlying concepts, and evaluate the approaches and principles of traditional medicine, as well as biomechanics. Conclusions: Individualized Mongolian osteopathy targets macroscopic biological components including dynamic reduction, natural fixation, and functional healing. Chinese Mongolian osteopathy is a natural, ecological and non-invasive osteopathy that values the link between nature and humans, including the unity of mind and body. The biological components not only serve as a foundation for Chinese Mongolian osteopathy but are also important for the future development of modern osteopathy, focusing on individualization, actualization and integration.

  6. Motion of macroscopic bodies in the electromagnetic field

    CERN Document Server

    Horsley, S A R

    2013-01-01

    A theory is presented for calculating the effect of the electromagnetic field on the centre of mass of a macroscopic dielectric body that is valid in both quantum and classical regimes. We apply the theory to find the classical equation of motion for the centre of mass of a macroscopic object in a classical field, and the spreading of an initially localized wave-packet representing the centre of mass of a small object, in a quantum field. The classical force is found to be consistent with the identification of the Abraham momentum with the mechanical momentum of light, and the motion of the wave-packet is found to be subject to an acceleration due to the Casimir force, and a time dependent fluctuating motion due the creation of pairs of excitations within the object. The theory is valid for any dielectric that has susceptibilities satisfying the Kramers-Kronig relations, and is not subject to arguments regarding the form of the electromagnetic energy-momentum tensor within a medium.

  7. Parametric equations for calculation of macroscopic cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Mario Hugo; Carvalho, Fernando, E-mail: mariobotelho@poli.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    Neutronic calculations of the core of a nuclear reactor is one thing necessary and important for the design and management of a nuclear reactor in order to prevent accidents and control the reactor efficiently as possible. To perform these calculations a library of nuclear data, including cross sections is required. Currently, to obtain a cross section computer codes are used, which require a large amount of processing time and computer memory. This paper proposes the calculation of macroscopic cross section through the development of parametric equations. The paper illustrates the proposal for the case of macroscopic cross sections of absorption (Σa), which was chosen due to its greater complexity among other cross sections. Parametric equations created enable, quick and dynamic way, the determination of absorption cross sections, enabling the use of them in calculations of reactors. The results show efficient when compared with the absorption cross sections obtained by the ALPHA 8.8.1 code. The differences between the cross sections are less than 2% for group 2 and less than 0.60% for group 1. (author)

  8. An exploration for the macroscopic physical meaning of entropy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The macroscopic physical meaning of entropy is analyzed based on the exergy (availability) of a combined system (a closed system and its environment), which is the maximum amount of useful work obtainable from the system and the environment as the system is brought into equilibrium with the environment. The process the system experiences can be divided in two sequent sub-processes, the process at constant volume, which represents the heat interaction of the system with the environment, and the adiabatic process, which represents the work interaction of the system with the environment. It is shown that the macroscopic physical meaning of entropy is a measure of the unavailable energy of a closed system for doing useful work through heat interaction. This statement is more precise than those reported in prior literature. The unavailability function of a closed system can be defined as T0S and p0V in volume constant process and adiabatic process, respectively. Their changes, that is, AiTgS) and A (p0V) represent the unusable parts of the internal energy of a closed system for doing useful work in corresponding processes. Finally, the relation between Clausius entropy and Boltzmann entropy is discussed based on the comparison of their expressions for absolute entropy.

  9. Macroscopic model and truncation error of discrete Boltzmann method

    Science.gov (United States)

    Hwang, Yao-Hsin

    2016-10-01

    A derivation procedure to secure the macroscopically equivalent equation and its truncation error for discrete Boltzmann method is proffered in this paper. Essential presumptions of two time scales and a small parameter in the Chapman-Enskog expansion are disposed of in the present formulation. Equilibrium particle distribution function instead of its original non-equilibrium form is chosen as key variable in the derivation route. Taylor series expansion encompassing fundamental algebraic manipulations is adequate to realize the macroscopically differential counterpart. A self-contained and comprehensive practice for the linear one-dimensional convection-diffusion equation is illustrated in details. Numerical validations on the incurred truncation error in one- and two-dimensional cases with various distribution functions are conducted to verify present formulation. As shown in the computational results, excellent agreement between numerical result and theoretical prediction are found in the test problems. Straightforward extensions to more complicated systems including convection-diffusion-reaction, multi-relaxation times in collision operator as well as multi-dimensional Navier-Stokes equations are also exposed in the Appendix to point out its expediency in solving complicated flow problems.

  10. Inverted rank distributions: Macroscopic statistics, universality classes, and critical exponents

    Science.gov (United States)

    Eliazar, Iddo; Cohen, Morrel H.

    2014-01-01

    An inverted rank distribution is an infinite sequence of positive sizes ordered in a monotone increasing fashion. Interlacing together Lorenzian and oligarchic asymptotic analyses, we establish a macroscopic classification of inverted rank distributions into five “socioeconomic” universality classes: communism, socialism, criticality, feudalism, and absolute monarchy. We further establish that: (i) communism and socialism are analogous to a “disordered phase”, feudalism and absolute monarchy are analogous to an “ordered phase”, and criticality is the “phase transition” between order and disorder; (ii) the universality classes are characterized by two critical exponents, one governing the ordered phase, and the other governing the disordered phase; (iii) communism, criticality, and absolute monarchy are characterized by sharp exponent values, and are inherently deterministic; (iv) socialism is characterized by a continuous exponent range, is inherently stochastic, and is universally governed by continuous power-law statistics; (v) feudalism is characterized by a continuous exponent range, is inherently stochastic, and is universally governed by discrete exponential statistics. The results presented in this paper yield a universal macroscopic socioeconophysical perspective of inverted rank distributions.

  11. Macroscopic Behavior of Nematics with D2d Symmetry

    Science.gov (United States)

    Pleiner, Harald; Brand, Helmut R.

    2010-03-01

    We discuss the symmetry properties and the macroscopic behavior of a nematic liquid crystal phase with D2d symmetry. Such a phase is a prime candidate for nematic phases made from banana-shaped molecules where the usual quadrupolar order coexists with octupolar (tetrahedratic) order. The resulting nematic phase is non-polar. While this phase could resemble the classic D∞h nematic in the polarizing microscope, it has many static as well as reversible and irreversible properties unknown to non-polar nematics without octupolar order. In particular, there is a linear gradient term in the free energy that selects parity leading to ambidextrously helical ground states when the molecules are achiral. In addition, there are static and irreversible coupling terms of a type only met otherwise in macroscopically chiral liquid crystals, e.g. the ambidextrous analogues of Lehmann-type effects known from cholesteric liquid crystals. Finally, we discuss certain nonlinear aspects of the dynamics related to the non-commutativity of three-dimensional finite rotations as well as other structural nonlinear hydrodynamic effects.

  12. Structure of grain boundaries in hexagonal materials

    CERN Document Server

    Sarrazit, F

    1998-01-01

    which allows the behaviour of line-defects to be studied in complex interfacial processes. The work presented in this thesis describes experimental and theoretical aspects associated with the structure of grain boundaries in hexagonal materials. It has been found useful to classify grain boundaries as low-angle, special or general on the basis of their structure. High-angle grain boundaries were investigated in tungsten carbide (WC) using conventional electron microscopy techniques, and three examples characteristic of the interfaces observed in this material were studied extensively. Three-dimensionally periodic patterns are proposed as plausible reference configurations, and the Burgers vectors of observed interfacial dislocations were predicted using a theory developed recently. The comparison of experimental observations with theoretical predictions proved to be difficult as contrast simulation techniques require further development for analysis to be completed confidently. Another part of this work invol...

  13. Symmetry properties of macroscopic transport coefficients in porous media

    Science.gov (United States)

    Lasseux, D.; Valdés-Parada, F. J.

    2017-04-01

    We report on symmetry properties of tensorial effective transport coefficients characteristic of many transport phenomena in porous systems at the macroscopic scale. The effective coefficients in the macroscopic models (derived by upscaling (volume averaging) the governing equations at the underlying scale) are obtained from the solution of closure problems that allow passing the information from the lower to the upper scale. The symmetry properties of the macroscopic coefficients are identified from a formal analysis of the closure problems and this is illustrated for several different physical mechanisms, namely, one-phase flow in homogeneous porous media involving inertial effects, slip flow in the creeping regime, momentum transport in a fracture relying on the Reynolds model including slip effects, single-phase flow in heterogeneous porous media embedding a porous matrix and a clear fluid region, two-phase momentum transport in homogeneous porous media, as well as dispersive heat and mass transport. The results from the analysis of these study cases are summarized as follows. For inertial single-phase flow, the apparent permeability tensor is irreducibly decomposed into its symmetric (viscous) and skew-symmetric (inertial) parts; for creeping slip-flow, the apparent permeability tensor is not symmetric; for one-phase slightly compressible gas flow in the slip regime within a fracture, the effective transmissivity tensor is symmetric, a result that remains valid in the absence of slip; for creeping one-phase flow in heterogeneous media, the permeability tensor is symmetric; for two-phase flow, we found the dominant permeability tensors to be symmetric, whereas the coupling tensors do not exhibit any special symmetry property; finally for dispersive heat transfer, the thermal conductivity tensors include a symmetric and a skew-symmetric part, the latter being a consequence of convective transport only. A similar result is achieved for mass dispersion. Beyond the

  14. Distinct molecular features of different macroscopic subtypes of colorectal neoplasms.

    Directory of Open Access Journals (Sweden)

    Kenichi Konda

    Full Text Available BACKGROUND: Colorectal adenoma develops into cancer with the accumulation of genetic and epigenetic changes. We studied the underlying molecular and clinicopathological features to better understand the heterogeneity of colorectal neoplasms (CRNs. METHODS: We evaluated both genetic (mutations of KRAS, BRAF, TP53, and PIK3CA, and microsatellite instability [MSI] and epigenetic (methylation status of nine genes or sequences, including the CpG island methylator phenotype [CIMP] markers alterations in 158 CRNs including 56 polypoid neoplasms (PNs, 25 granular type laterally spreading tumors (LST-Gs, 48 non-granular type LSTs (LST-NGs, 19 depressed neoplasms (DNs and 10 small flat-elevated neoplasms (S-FNs on the basis of macroscopic appearance. RESULTS: S-FNs showed few molecular changes except SFRP1 methylation. Significant differences in the frequency of KRAS mutations were observed among subtypes (68% for LST-Gs, 36% for PNs, 16% for DNs and 6% for LST-NGs (P<0.001. By contrast, the frequency of TP53 mutation was higher in DNs than PNs or LST-Gs (32% vs. 5% or 0%, respectively (P<0.007. We also observed significant differences in the frequency of CIMP between LST-Gs and LST-NGs or PNs (32% vs. 6% or 5%, respectively (P<0.005. Moreover, the methylation level of LINE-1 was significantly lower in DNs or LST-Gs than in PNs (58.3% or 60.5% vs. 63.2%, P<0.05. PIK3CA mutations were detected only in LSTs. Finally, multivariate analyses showed that macroscopic morphologies were significantly associated with an increased risk of molecular changes (PN or LST-G for KRAS mutation, odds ratio [OR] 9.11; LST-NG or DN for TP53 mutation, OR 5.30; LST-G for PIK3CA mutation, OR 26.53; LST-G or DN for LINE-1 hypomethylation, OR 3.41. CONCLUSION: We demonstrated that CRNs could be classified into five macroscopic subtypes according to clinicopathological and molecular differences, suggesting that different mechanisms are involved in the pathogenesis of colorectal

  15. Contact angle hysteresis explained.

    Science.gov (United States)

    Gao, Lichao; McCarthy, Thomas J

    2006-07-04

    A view of contact angle hysteresis from the perspectives of the three-phase contact line and of the kinetics of contact line motion is given. Arguments are made that advancing and receding are discrete events that have different activation energies. That hysteresis can be quantified as an activation energy by the changes in interfacial area is argued. That this is an appropriate way of viewing hysteresis is demonstrated with examples.

  16. The lateral angle revisited

    DEFF Research Database (Denmark)

    Morgan, Jeannie; Lynnerup, Niels; Hoppa, R.D.

    2013-01-01

    measurements taken from computed tomography (CT) scans. Previous reports have observed that the lateral angle size in females is significantly larger than in males. The method was applied to an independent series of 77 postmortem CT scans (42 males, 35 females) to validate its accuracy and reliability...... method appears to be of minimal practical use in forensic anthropology and archeology. © 2013 American Academy of Forensic Sciences....

  17. Electromagnetic stress at the boundary: Photon pressure or tension?

    Science.gov (United States)

    Wang, Shubo; Ng, Jack; Xiao, Meng; Chan, Che Ting

    2016-03-01

    It is well known that incident photons carrying momentum ℏk exert a positive photon pressure. But if light is impinging from a negative refractive medium in which ℏk is directed toward the source of radiation, should light exert a photon "tension" instead of a photon pressure? Using an ab initio method that takes the underlying microstructure of a material into account, we find that when an electromagnetic wave propagates from one material into another, the electromagnetic stress at the boundary is, in fact, indeterminate if only the macroscopic parameters are specified. Light can either pull or push the boundary, depending not only on the macroscopic parameters but also on the microscopic lattice structure of the polarizable units that constitute the medium. Within the context of an effective-medium approach, the lattice effect is attributed to electrostriction and magnetostriction, which can be accounted for by the Helmholtz stress tensor if we use the macroscopic fields to calculate the boundary optical stress.

  18. Theory of Macroscopic Quantum Tunneling in High-T_c c-Axis Josephson Junctions

    CERN Document Server

    Yokoyama, Takehito; Kato, Takeo; Tanaka, Yukio

    2007-01-01

    We study macroscopic quantum tunneling (MQT) in c-axis twist Josephson junctions made of high-T_c superconductors in order to clarify the influence of the anisotropic order parameter symmetry (OPS) on MQT. The dependence of the MQT rate on the twist angle $\\gamma$ about the c-axis is calculated by using the functional integral and the bounce method. Due to the d-wave OPS, the $\\gamma$ dependence of standard deviation of the switching current distribution and the crossover temperature from thermal activation to MQT are found to be given by $\\cos2\\gamma$ and $\\sqrt{\\cos2\\gamma}$, respectively. We also show that a dissipative effect resulting from the nodal quasiparticle excitation on MQT is negligibly small, which is consistent with recent MQT experiments using Bi${}_2$Sr${}_2$CaCu${}_2$O${}_{8 + \\delta}$ intrinsic junctions. These results indicate that MQT in c-axis twist junctions becomes a useful experimental tool for testing the OPS of high-T_c materials at low temperature, and suggest high potential of suc...

  19. Exploring the relationship between nanoscale dynamics and macroscopic rheology in natural polymer gums.

    Science.gov (United States)

    Grein-Iankovski, Aline; Riegel-Vidotti, Izabel C; Simas-Tosin, Fernanda F; Narayanan, Suresh; Leheny, Robert L; Sandy, Alec R

    2016-11-23

    We report a study connecting the nanoscale and macroscale structure and dynamics of Acacia mearnsii gum as probed by small-angle X-ray scattering (SAXS), X-ray photon correlation spectroscopy (XPCS) and rheology. Acacia gum, in general, is a complex polysaccharide used extensively in industry. Over the analyzed concentration range (15 to 30 wt%) the A. mearnsii gum is found to have a gel-like linear rheology and to exhibit shear thinning flow behavior under steady shear. The gum solutions exhibited a steadily increasing elastic modulus with increasing time after they were prepared and also the emergence of shear thickening events within the shear thinning behavior, characteristic of associative polymers. XPCS measurements using gold nanoparticles as tracers were used to explore the microscopic dynamics within the biopolymer gels and revealed a two-step relaxation process with a partial decay at inaccessibly short times, suggesting caged motion of the nanoparticles, followed by a slow decay at later delay times. Non-diffusive motion evidenced by a compressed exponential line shape and an inverse relationship between relaxation time and wave vector characterizes the slow dynamics of A. mearnsii gum gels. Surprisingly, we have determined that the nanometer-scale mean square displacement of the nanoparticles showed a close relationship to the values predicted from the macroscopic elastic properties of the material, obtained through the rheology experiments. Our results demonstrate the potential applicability of the XPCS technique in the natural polymers field to connect their macroscale properties with their nanoscale structure and dynamics.

  20. Assembly of tobacco mosaic virus into fibrous and macroscopic bundled arrays mediated by surface aniline polymerization.

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Z.; Bruckman, M.; Li, S.; Lee, A.; Lee, B.; Pingali, S.-V.; Thiyagarajan, P.; Wang, Q.; Univ. of South Carolina

    2007-06-05

    One-dimensional (1D) polyaniline/tobacco mosaic virus (TMV) composite nanofibers and macroscopic bundles of such fibers were generated via a self-assembly process of TMV assisted by in-situ polymerization of polyaniline on the surface of TMV. At near-neutral reaction pH, branched polyaniline formed on the surface of TMV preventing lateral association. Therefore, long 1D nanofibers were observed with high aspect ratios and excellent processibility. At a lower pH, transmission electron microscopy (TEM) analysis revealed that initially long nanofibers were formed which resulted in bundled structures upon long-time reaction, presumably mediated by the hydrophobic interaction because of the polyaniline on the surface of TMV. In-situ time-resolved small-angle X-ray scattering study of TMV at different reaction conditions supported this mechanism. This novel strategy to assemble TMV into 1D and 3D supramolecular composites could be utilized in the fabrication of advanced materials for potential applications including electronics, optics, sensing, and biomedical engineering.

  1. Studies of Dynamic, Radiative Macroscopic Magnetized HED Plasmas with Closed B-Field Lines

    Energy Technology Data Exchange (ETDEWEB)

    Frese, Michael H. [NumerEx, LLC, Albuquerque, NM (United States); Frese, Sherry D. [NumerEx, LLC, Albuquerque, NM (United States)

    2013-11-01

    The purpose of this research has been to study the physics of macroscopic magnetized high-energy-density laboratory plasmas (HEDLPs) created through the compression of a high-beta compact toroid (CT) plasma having closed magnetic field lines. The high-beta CT chosen for this work is a field-reversed configuration (FRC). The basic approach is to investigate CT plasmas as they are compressed to a HED state by the electromagnetic implosion of a surrounding metallic shell or solid liner (Figure 1). The shell provides an axisymmetric, electrically-conducting boundary around the plasma and its supporting magnetic field and is imploded by means of the magnetic pressure force arising from axial current flow in the liner interacting with its associated azimuthal magnetic field. Compression of the CT will bring the plasma to fusion temperatures at higher densities and magnetic fields (multi-MegaGauss [MG]) than have previously been present in conventional magnetic fusion approaches. The resulting energy densities will be ~1 Mbar or greater and thus will place the plasma in a parameter space intermediate to MFE and IFE. This work has been a collaboration between the Air Force Research Laboratory, Los Alamos National Laboratory, and NumerEx, LLC.

  2. Macroscopic Modeling of Transport Phenomena in Direct Methanol Fuel Cells

    DEFF Research Database (Denmark)

    Olesen, Anders Christian

    An increasing need for energy efficiency and high energy density has sparked a growing interest in direct methanol fuel cells for portable power applications. This type of fuel cell directly generates electricity from a fuel mixture consisting of methanol and water. Although this technology...... for studying their transport. In this PhD dissertation the macroscopic transport phenomena governing direct methanol fuel cell operation are analyzed, discussed and modeled using the two-fluid approach in the computational fluid dynamics framework of CFX 14. The overall objective of this work is to extend...... the present fundamental understanding of direct methanol fuel cell operation by developing a three-dimensional, two-phase, multi-component, non-isotherm mathematical model including detailed non-ideal thermodynamics, non-equilibrium phase change and non-equilibrium sorption-desorption of methanol and water...

  3. Macroscopic quantum electrodynamics of high-Q cavities

    Energy Technology Data Exchange (ETDEWEB)

    Khanbekyan, Mikayel

    2009-10-27

    In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the

  4. Self-feeding turbulent magnetic reconnection on macroscopic scales.

    Science.gov (United States)

    Lapenta, Giovanni

    2008-06-13

    Within a MHD approach we find magnetic reconnection to progress in two entirely different ways. The first is well known: the laminar Sweet-Parker process. But a second, completely different and chaotic reconnection process is possible. This regime has properties of immediate practical relevance: (i) it is much faster, developing on scales of the order of the Alfvén time, and (ii) the areas of reconnection become distributed chaotically over a macroscopic region. The onset of the faster process is the formation of closed-circulation patterns where the jets going out of the reconnection regions turn around and force their way back in, carrying along copious amounts of magnetic flux.

  5. Room Temperature Experiments with a Macroscopic Sapphire Mechanical Oscillator

    Science.gov (United States)

    Bourhill, Jeremy; Ivanov, Eugene; Tobar, Micahel

    2015-03-01

    We present initial results from a number of experiments conducted on a 0.53 kg sapphire ``dumbbell'' crystal. Mechanical motion of the crystal structure alters the dimensions of the crystal, and the induced strain changes the permittivity. These two effects frequency modulate resonant microwave whispering gallery modes, simultaneously excited within the crystal. A novel microwave readout system is described allowing extremely low noise measurements of this frequency modulation with a phase noise floor of -160 dBc/Hz at 100 kHz, near our modes of interest. Fine-tuning of the crystal's suspension have allowed for the optimisation of mechanical Q-factors in preparation for cryogenic experiments, with a value of 8 x 107 achieved so far. Finally, results are presented that demonstrate the excitation of mechanical modes via radiation pressure force. These are all important steps towards the overall goal of the experiment; to cool a macroscopic device to the quantum ground state.

  6. Macroscopic electromagnetic response of metamaterials with toroidal resonances

    CERN Document Server

    Savinov, V; Zheludev, N I

    2013-01-01

    Toroidal dipole, first described by Ia. B. Zeldovich [Sov. Phys. JETP 33, 1184 (1957)], is a distinct electromagnetic excitation that differs both from the electric and the magnetic dipoles. It has a number of intriguing properties: static toroidal nuclear dipole is responsible for parity violation in atomic spectra; interactions between static toroidal dipole and oscillating magnetic dipole are claimed to violate Newton's Third Law while non-stationary charge-current configurations involving toroidal multipoles have been predicted to produce vector potential in the absence of electromagnetic fields. Existence of the toroidal response in metamaterials was recently demonstrated and is now a growing field of research. However, no direct analytical link has yet been established between the transmission and reflection of macroscopic electromagnetic media and toroidal dipole excitations. To address this essential gap in electromagnetic theory we have developed an analytical approach linking microscopic and macrosc...

  7. Experiments testing macroscopic quantum superpositions must be slow

    CERN Document Server

    Mari, Andrea; Giovannetti, Vittorio

    2015-01-01

    We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations an...

  8. Macroscopic heat transport equations and heat waves in nonequilibrium states

    Science.gov (United States)

    Guo, Yangyu; Jou, David; Wang, Moran

    2017-03-01

    Heat transport may behave as wave propagation when the time scale of processes decreases to be comparable to or smaller than the relaxation time of heat carriers. In this work, a generalized heat transport equation including nonlinear, nonlocal and relaxation terms is proposed, which sums up the Cattaneo-Vernotte, dual-phase-lag and phonon hydrodynamic models as special cases. In the frame of this equation, the heat wave propagations are investigated systematically in nonequilibrium steady states, which were usually studied around equilibrium states. The phase (or front) speed of heat waves is obtained through a perturbation solution to the heat differential equation, and found to be intimately related to the nonlinear and nonlocal terms. Thus, potential heat wave experiments in nonequilibrium states are devised to measure the coefficients in the generalized equation, which may throw light on understanding the physical mechanisms and macroscopic modeling of nanoscale heat transport.

  9. A macroscopic model of traffic jams in axons.

    Science.gov (United States)

    Kuznetsov, A V; Avramenko, A A

    2009-04-01

    The purpose of this paper is to develop a minimal macroscopic model capable of explaining the formation of traffic jams in fast axonal transport. The model accounts for the decrease of the number density of positively (and negatively) oriented microtubules near the location of the traffic jam due to formation of microtubule swirls; the model also accounts for the reduction of the effective velocity of organelle transport in the traffic jam region due to organelles falling off microtubule tracks more often in the swirl region. The model is based on molecular-motor-assisted transport equations and the hydrodynamic model of traffic jams in highway traffic. Parametric analyses of the model's predictions for various values of viscosity of the traffic flow, variance of the velocity distribution, diffusivity of microtubule-bound and free organelles, rate constants for binding to and detachment from microtubules, relaxation time, and average motor velocities of the retrograde and anterograde transport, are carried out.

  10. Effect of inhibitors on macroscopical oxidation kinetics of calcium sulfite

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yi; WANG Li-dong; WANG Xiao-ming; LI Qiang-wei; XU Pei-yao

    2005-01-01

    In the presence of inhibitors, the macroscopical oxidation kinetics of calcium sulfite, the main byproduct in wet limestone scrubbing, was studied for the first time by adding different inhibitors and varying pH, concentration of calcium sulfite, oxygen partial pressure, concentration of inhibitors and temperature. The mathematical model about the general oxidation reaction was established,which was controlled by three steps involving dissolution of calcium sulfite, mass transfer of oxygen and chemical reaction in the solution.It was concluded that the general reaction was controlled by mass transfer of oxygen under uncatalyzed conditions, while it was controlled by dissolution of calcium sulfite after adding three kinds of inhibitors. Thus, the theory was provided for investigating the mechanism and oxidation kinetics of sulfite. The beneficial references were also supplied for design of oxidation technics in the wet limestone scrubbing.

  11. Elastic Enhancement Factor: from Mesoscopic Systems to Macroscopic Analogous Devices

    CERN Document Server

    Sokolov, Valentin V

    2014-01-01

    Excess of probabilities of the elastic processes over the inelastic ones is a common feature of the resonance phenomena, described in the framework of the random matrix theory. This phenomenon is quantitatively characterized by the elastic enhancement factor $F^{(\\beta)}$ that is a typical ratio of elastic and inelastic cross sections. Being measured experimentally, this quantity can supply us with information on the character of dynamics of the intermediate complicated open system. We discuss properties of the enhancement factor in a wide scope from mesoscopoic systems to macroscopic analogous devices and demonstrate essential qualitative distinction between the elastic enhancement factor's peculiarities in these two cases. Complete analytical solution is found for the case of systems without time-reversal symmetry and only a few open equivalent scattering channels.

  12. Macroscopic and direct light propulsion of bulk graphene material

    CERN Document Server

    Zhang, Tengfei; Wu, Yingpeng; Xiao, Peishuang; Yi, Ningbo; Lu, Yanhong; Ma, Yanfeng; Huang, Yi; Zhao, Kai; Yan, Xiao-Qing; Liu, Zhi-Bo; Tian, Jian-Guo; Chen, Yongsheng

    2015-01-01

    It has been a great challenge to achieve the direct light manipulation of matter on a bulk scale. In this work, the direct light propulsion of matter was observed on a macroscopic scale for the first time using a bulk graphene based material. The unique structure and properties of graphene and the morphology of the bulk graphene material make it capable of not only absorbing light at various wavelengths but also emitting energetic electrons efficiently enough to drive the bulk material following Newtonian mechanics. Thus, the unique photonic and electronic properties of individual graphene sheets are manifested in the response of the bulk state. These results offer an exciting opportunity to bring about bulk scale light manipulation with the potential to realize long-sought proposals in areas such as the solar sail and space transportation driven directly by sunlight.

  13. Macroscopic self-reorientation of interacting two-dimensional crystals.

    Science.gov (United States)

    Woods, C R; Withers, F; Zhu, M J; Cao, Y; Yu, G; Kozikov, A; Ben Shalom, M; Morozov, S V; van Wijk, M M; Fasolino, A; Katsnelson, M I; Watanabe, K; Taniguchi, T; Geim, A K; Mishchenko, A; Novoselov, K S

    2016-03-10

    Microelectromechanical systems, which can be moved or rotated with nanometre precision, already find applications in such fields as radio-frequency electronics, micro-attenuators, sensors and many others. Especially interesting are those which allow fine control over the motion on the atomic scale because of self-alignment mechanisms and forces acting on the atomic level. Such machines can produce well-controlled movements as a reaction to small changes of the external parameters. Here we demonstrate that, for the system of graphene on hexagonal boron nitride, the interplay between the van der Waals and elastic energies results in graphene mechanically self-rotating towards the hexagonal boron nitride crystallographic directions. Such rotation is macroscopic (for graphene flakes of tens of micrometres the tangential movement can be on hundreds of nanometres) and can be used for reproducible manufacturing of aligned van der Waals heterostructures.

  14. Macroscopic acousto-mechanical analogy of a microbubble

    CERN Document Server

    Chaline, Jennifer; Mehrem, Ahmed; Bouakaz, Ayache; Santos, Serge Dos; Sánchez-Morcillo, Víctor J

    2015-01-01

    Microbubbles, either in the form of free gas bubbles surrounded by a fluid or encapsulated bubbles used currently as contrast agents for medical echography, exhibit complex dynamics under specific acoustic excitations. Nonetheless, considering their micron size and the complexity of their interaction phenomenon with ultrasound waves, expensive and complex experiments and/or simulations are required for their analysis. The behavior of a microbubble along its equator can be linked to a system of coupled oscillators. In this study, the oscillatory behavior of a microbubble has been investigated through an acousto-mechanical analogy based on a ring-shaped chain of coupled pendula. Observation of parametric vibration modes of the pendula ring excited at frequencies between $1$ and $5$ Hz is presented. Simulations have been carried out and show mode mixing phenomena. The relevance of the analogy between a microbubble and the macroscopic acousto-mechanical setup is discussed and suggested as an alternative way to in...

  15. Combined macroscopic and microscopic detection of viral genes in tissues

    Energy Technology Data Exchange (ETDEWEB)

    Haase, A.T.; Gantz, D.; Blum, H.; Stowring, L.; Ventura, P.; Geballe, A.; Moyer, B.; Brahic, M.

    1985-01-15

    A hybridization technique has been devised for detecting and quantitating viral genes in tissues that combines macroscopic and microscopic analyses in the same section. The method is based on dual labeling virus-specific probes with /sup 125/I and /sup 35/S to generate signals that can be detected both with X-ray films and nuclear track emulsions. The regions of increased hybridization evident in the X-ray film serve as a guide to the portion of the section that warrants microscopic examination. Detection of viral RNA in tissues with Visna virus and viral DNA with hepatitis B virus are illustrated, and potential applications of this technique in virology and other disciplines are discussed.

  16. Innovating e-waste management: From macroscopic to microscopic scales.

    Science.gov (United States)

    Zeng, Xianlai; Yang, Congren; Chiang, Joseph F; Li, Jinhui

    2017-01-01

    Waste electrical and electronic equipment (WEEE or e-waste) has become a global problem, due to its potential environmental pollution and human health risk, and its containing valuable resources (e.g., metals, plastics). Recycling for e-waste will be a necessity, not only to address the shortage of mineral resources for electronics industry, but also to decline environmental pollution and human health risk. To systematically solve the e-waste problem, more attention of e-waste management should transfer from macroscopic to microscopic scales. E-waste processing technology should be significantly improved to diminish and even avoid toxic substance entering into downstream of material. The regulation or policy related to new production of hazardous substances in recycled materials should also be carried out on the agenda. All the findings can hopefully improve WEEE legislation for regulated countries and non-regulated countries.

  17. Witnessing Macroscopic Entanglement in a Staggered Magnetic Field

    CERN Document Server

    Hide, J; Son, W; Vedral, V; Hide, Jenny; Lawrie, Ian; Son, Wonmin; Vedral, Vlatko

    2007-01-01

    We investigate macroscopic entanglement in an infinite XX spin-1/2 chain with staggered magnetic field, $B_l=B+e^{-i\\pi l}b$. Using single-site entropy and by constructing an entanglement witness, we search for the existence of entanglement when the system is at absolute zero, as well as in thermal equilibrium. Although the role of the alternating magnetic field $b$ is, in general, to suppress entanglement as do $B$ and $T$, we find that when T=0, introducing $b$ allows the existence of entanglement even when the uniform magnetic field $B$ is arbitrarily large. We find that the region and the amount of entanglement in the spin chain can be enhanced by a staggered magnetic field.

  18. Microscopic and Macroscopic Simulation of Competition between Languages

    CERN Document Server

    Stauffer, D; Stauffer, Dietrich; Schulze, Christian

    2005-01-01

    The similarity of the evolution of human languages (or alphabets, bird songs, >...) to biological evolution of species is utilized to study with up to $10^9$ people the rise and fall of languages either by macroscopic differential equations similar to biological Lotka-Volterra equation, or by microscopic Monte Carlo simulations of bit-strings incorporating the birth, maturity, and death of every individual. For our bit-string model, depending on parameters either one language comprises the majority of speakers (dominance), or the population splits into many languages having in order of magnitude the same number of speakers (fragmentation); in the latter case the size distribution is log-normal, with upward deviations for small sizes, just as in reality for human languages. On a lattice two different dominating languages can coexist in neighbouring regions, without being favoured or disfavoured by different status. We deal with modifications and competition for existing languages, not with the evolution or lea...

  19. Dissipative Optomechanical Preparation of Macroscopic Quantum Superposition States

    Science.gov (United States)

    Abdi, M.; Degenfeld-Schonburg, P.; Sameti, M.; Navarrete-Benlloch, C.; Hartmann, M. J.

    2016-06-01

    The transition from quantum to classical physics remains an intensely debated question even though it has been investigated for more than a century. Further clarifications could be obtained by preparing macroscopic objects in spatial quantum superpositions and proposals for generating such states for nanomechanical devices either in a transient or a probabilistic fashion have been put forward. Here, we introduce a method to deterministically obtain spatial superpositions of arbitrary lifetime via dissipative state preparation. In our approach, we engineer a double-well potential for the motion of the mechanical element and drive it towards the ground state, which shows the desired spatial superposition, via optomechanical sideband cooling. We propose a specific implementation based on a superconducting circuit coupled to the mechanical motion of a lithium-decorated monolayer graphene sheet, introduce a method to verify the mechanical state by coupling it to a superconducting qubit, and discuss its prospects for testing collapse models for the quantum to classical transition.

  20. Macroscopic quantum electrodynamics of high-Q cavities

    Energy Technology Data Exchange (ETDEWEB)

    Khanbekyan, Mikayel

    2009-10-27

    In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the

  1. Fault detection by surface seismic scanning tunneling macroscope: Field test

    KAUST Repository

    Hanafy, Sherif M.

    2014-08-05

    The seismic scanning tunneling macroscope (SSTM) is proposed for detecting the presence of near-surface impedance anomalies and faults. Results with synthetic data are consistent with theory in that scatterers closer to the surface provide brighter SSTM profiles than those that are deeper. The SSTM profiles show superresolution detection if the scatterers are in the near-field region of the recording line. The field data tests near Gulf of Aqaba, Haql, KSA clearly show the presence of the observable fault scarp, and identify the subsurface presence of the hidden faults indicated in the tomograms. Superresolution detection of the fault is achieved, even when the 35 Hz data are lowpass filtered to the 5-10 Hz band.

  2. Effects of varying interfacial surface tension on macroscopic polymer lenses

    Science.gov (United States)

    Zimmerman, Charlotte; White, Mason; Baylor, Martha-Elizabeth

    2015-09-01

    We investigate macroscopic polymer lenses (0.5- to 2.5-cm diameter) fabricated by dropping hydrophobic photocurable resin onto the surface of various hydrophilic liquid surfaces. Due to the intermolecular forces along the interface between the two liquids, a lens shape is formed. We find that we can vary the lens geometry by changing the region over which the resin is allowed to spread and the surface tension of the substrate to produce lenses with theoretically determined focal lengths ranging from 5 to 25 mm. These effects are varied by changing the container width, substrate composition, and substrate temperature. We present data for five different variants, demonstrating that we can control the lens dimensions for polymer lens applications that require high surface quality.

  3. Determination of the Contact Angle Based on the Casimir Effect

    Science.gov (United States)

    Mazuruk, Konstantin; Volz, Martin P.

    2015-01-01

    On a macroscopic scale, a nonreactive liquid partially covering a homogeneous solid surface will intersect the solid at an angle called the contact angle. For molten metals and semiconductors, the contact angle is materially dependent upon both the solid and liquid and typical values fall in the range 80-170 deg, depending on the crucible material. On a microscopic scale, there does not exist a precise and sharp contact angle but rather the liquid and solid surfaces merge smoothly and continuously. Consider the example of the so called detached Bridgman crystal growth process. In this technique, a small gap is formed between the growing crystal and the crucible. At the crystal/melt interface, a meniscus ring is formed. Its width can be in the range of a few micrometers, approaching a microscopic scale. It then becomes questionable to describe the shape of this meniscus by the contact angle. A more advanced treatment of the interface is needed and here we propose such a refined model. The interaction of the liquid surface with the solid can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir or van der Waals force.

  4. Modeling of stresses at grain boundaries with respect to occurrence of stress corrosion cracking

    Energy Technology Data Exchange (ETDEWEB)

    Kozaczek, K.J. [Oak Ridge National Lab., TN (United States); Sinharoy, A.; Ruud, C.O. [Pennsylvania State Univ., University Park, PA (United States); McIlree, A.R. [Electric Power Research Institute, Palo Alto, CA (United States)

    1995-12-31

    The distributions of elastic stresses/strains in the grain boundary regions were studied by the analytical and the finite element models. The grain boundaries represent the sites where stress concentration occurs as a result of discontinuity of elastic properties across the grain boundary and the presence of second phase particles elastically different from the surrounding matrix grains. A quantitative analysis of those stresses for steels and nickel based alloys showed that the stress concentrations in the grain boundary regions are high enough to cause a local microplastic deformation even when the material is in the macroscopic elastic regime. The stress redistribution as a result of such a plastic deformation was discussed.

  5. Relationship between the Angle of Repose and Angle of Internal ...

    African Journals Online (AJOL)

    Keywords: Angle of repose, angle of internal friction, granular materials, triaxial compression ... such a granular material is sharp, making a steep .... study. Therefore, grains had to be condi- tioned to the respective moisture contents by adding ...

  6. Effect of grain boundary on the mechanical behaviors of irradiated metals: a review

    Science.gov (United States)

    Xiao, XiaZi; Chu, HaiJian; Duan, HuiLing

    2016-06-01

    The design of high irradiation-resistant materials is very important for the development of next-generation nuclear reactors. Grain boundaries acting as effective defect sinks are thought to be able to moderate the deterioration of mechanical behaviors of irradiated materials, and have drawn increasing attention in recent years. The study of the effect of grain boundaries on the mechanical behaviors of irradiated materials is a multi-scale problem. At the atomic level, grain boundaries can effectively affect the production and formation of irradiation-induced point defects in grain interiors, which leads to the change of density, size distribution and evolution of defect clusters at grain level. The change of microstructure would influence the macroscopic mechanical properties of the irradiated polycrystal. Here we give a brief review about the effect of grain boundaries on the mechanical behaviors of irradiated metals from three scales: microscopic scale, mesoscopic scale and macroscopic scale.

  7. Long-term creep properties of cementitious materials: Comparing microindentation testing with macroscopic uniaxial compressive testing

    OpenAIRE

    Zhang, Qing; Le Roy, Robert; VANDAMME, Mathieu; ZUBER, Bruno

    2014-01-01

    This study is dedicated to comparing minutes-long microindentation creep experiments on cement paste with years-long macroscopic creep experiments on concrete and months-long macroscopic creep experiments on cement paste. For all experiments, after a transient period the creep function was well captured by a logarithmic function of time, the amplitude of which is governed by a so-called creep modulus. The non-logarithmic transient periods lasted for days at the macroscopic scale, but only for...

  8. Macroscopically aligned molecular stacking structures in mesogenic phthalocyanine derivative films fabricated by heated spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Higashi, Takuya; Fiderana Ramananarivo, Mihary; Ohmori, Masashi; Yoshida, Hiroyuki; Fujii, Akihiko, E-mail: afujii@opal.eei.eng.osaka-u.ac.jp; Ozaki, Masanori

    2015-11-02

    Spin-coated films of a mesogenic phthalocyanine derivative, 1,4,8,11,15,18,22,25-octahexylphthalocyanine (C6PcH{sub 2}), with macroscopic alignment of molecular stacking structure were obtained by processing in liquid-crystal phase of C6PcH{sub 2}. The column axis direction of the hexagonal columnar structure of C6PcH{sub 2} was determined by microscopic observation and polarized optical absorption measurement and was uniform in the millimeter-scale area. Highly ordered molecular stacking structure in the film, which is similar to the single crystal, was clarified by measurement of molecular tilting angle with respect to the column axis. The origin of the macroscopic molecular alignment during film formation was investigated by taking the process-temperature-dependent properties of the films into consideration. - Highlights: • We fabricated mesogenic phthalocyanine films by heated spin-coating method. • The maximum domain size was obtained by fabricating at mesogenic-phase temperature. • The optic axis direction in the film was uniform in the millimeter-scale area. • The crystalline structure in the film was similar to that of the single crystal. • The effects of mesogenic phase during the formation on the molecular alignment were presumed.

  9. Swelling/deswelling of polyacrylamide gels in aqueous NaCl solution: Light scattering and macroscopic swelling study

    Indian Academy of Sciences (India)

    M Sivanantham; B V R Tata

    2012-09-01

    Swelling kinetics of water-swollen polyacrylamide (PAAm) hydrogels (WSG) was investigated in various concentrations of aqueous NaCl by macroscopic swelling measurements. For lower concentration of NaCl, WSG showed exponential swelling whereas at higher concentration of NaCl it underwent deswelling at short times and exponential swelling at long times. From these studies, collective diffusion coefficient, , of the polymer network and polymer–solvent interaction parameter, , were calculated and found to decrease with increase in [NaCl]. Collective diffusion coefficients measured from dynamic light scattering (DLS) and that obtained from macroscopic swelling measurements are found to agree well. Measured ensemble-averaged dynamic structure factor (, ) for WSG and salt-swollen gels (SSG) showed an initial decay followed by a plateau at long times and it can be described by harmonically bound Brownian particle (HBBP) model. Enhanced scattering intensity at low scattering angles using static light scattering (SLS) measurements revealed the presence of inhomogeneities in PAAm gels. The reasons for increased scattering intensity of SSG over WSG gel and the linear decrease of with increase in NaCl concentration are explained.

  10. The Cassie-Wenzel transition of fluids on nanostructured substrates: Macroscopic force balance versus microscopic density-functional theory

    Science.gov (United States)

    Tretyakov, Nikita; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen; Dünweg, Burkhard; Daoulas, Kostas Ch.

    2016-10-01

    Classical density functional theory is applied to investigate the validity of a phenomenological force-balance description of the stability of the Cassie state of liquids on substrates with nanoscale corrugation. A bulk free-energy functional of third order in local density is combined with a square-gradient term, describing the liquid-vapor interface. The bulk free energy is parameterized to reproduce the liquid density and the compressibility of water. The square-gradient term is adjusted to model the width of the water-vapor interface. The substrate is modeled by an external potential, based upon the Lennard-Jones interactions. The three-dimensional calculation focuses on substrates patterned with nanostripes and square-shaped nanopillars. Using both the force-balance relation and density-functional theory, we locate the Cassie-to-Wenzel transition as a function of the corrugation parameters. We demonstrate that the force-balance relation gives a qualitatively reasonable description of the transition even on the nanoscale. The force balance utilizes an effective contact angle between the fluid and the vertical wall of the corrugation to parameterize the impalement pressure. This effective angle is found to have values smaller than the Young contact angle. This observation corresponds to an impalement pressure that is smaller than the value predicted by macroscopic theory. Therefore, this effective angle embodies effects specific to nanoscopically corrugated surfaces, including the finite range of the liquid-solid potential (which has both repulsive and attractive parts), line tension, and the finite interface thickness. Consistently with this picture, both patterns (stripes and pillars) yield the same effective contact angles for large periods of corrugation.

  11. Study of Boundary Structures.

    Science.gov (United States)

    1982-09-01

    THEORY OF ABC-CBA STACKING BOUNDARY IN fcc STRUCTURE .......... 11 - 4 TRANSITIONS AND PHASE EQUILIBRIA AMONG GRAIN BOUNDARY STRUCTURES...19 B THEORY OF ABC-CBA STACKING BOUNDARY IN fcc STRUCTURE .......... 37 C TRANSITIONS AND PHASE EQUILIBRIA AMONG GRAIN BOUNDARY...layer structure. 10 SECTION 3 THEORY OF ABC-CBA STACKING BOUNDARY IN fcc STRUCTURE The (111) planes of the fcc structure is stacked as ABCABC... as

  12. Generalized Supersymetric Boundary State

    OpenAIRE

    1999-01-01

    Following our previous paper (hep-th/9909027), we generalize a supersymmetric boundary state so that arbitrary configuration of the gauge field coupled to the boundary of the worldsheet is incorpolated. This generalized boundary state is BRST invariant and satisfy the non-linear boundary conditions with non-constant gauge field strength. This boundary state contains divergence which is identical with the loop divergence in a superstring sigma model. Hence vanishing of the beta function in the...

  13. Grain boundary wetness of partially molten dunite

    Science.gov (United States)

    Mu, S.; Faul, U.

    2013-12-01

    The grain scale melt distribution plays a key role for physical properties of partially molten regions in Earth's upper mantle, but our current understanding of the distribution of basaltic melt at the grain scale is still incomplete. A recent experimental study shows that wetted two-grain boundaries are a common feature of partially molten dunite at small melt fractions (Garapic et al., G3, 2013). In early ideal models which assume isotropic surface energy, the grain scale melt distribution is uniquely determined by knowing the melt fraction and the dihedral angle between two crystalline grains and the melt (von Bargen and Waff, JGR, 1986). Olivine is anisotropic in surface energy, hence the grain scale melt distribution at given melt fraction cannot be characterized by the dihedral angle alone. The grain boundary wetness, which is defined as the ratio of solid-liquid boundary area over the total interfacial area (Takei, JGR, 1998), is a more objective measure of the grain scale melt distribution. The aim of this study is to quantify the relationship between grain size, melt fraction, temperature and grain boundary wetness of partially molten dunite under dry conditions. We annealed olivine-basalt aggregates with melt fractions from 0.03% to 6% at a range of temperatures and 1 GPa in a piston cylinder for 1 to 336 hours, with resulting mean grain sizes of 10 to 60 μm. The samples were sectioned, polished and imaged at high resolution by using a field emission SEM. Each image had a size of 2048 x 1536 pixels with a resolution of 0.014 to 0.029 μm/pixel, depending on magnification. For each sample, depending on grain sizes, we made mosaics of 3 x 3 or 6 x 6 overlapping images. Measurements of melt fraction, grain boundary wetness and grain size were carried out on these high resolution mosaics by using ImageJ software. Analyses of mosaics show that grain boundary wetness increases with increasing melt fraction at constant grain size to values well above those

  14. Tuned Transition from Quantum to Classical for Macroscopic Quantum States

    NARCIS (Netherlands)

    Fedorov, A.; Macha, P.; Feofanov, A.K.; Harmans, C.J.P.M.; Mooij, J.E.

    2011-01-01

    The boundary between the classical and quantum worlds has been intensely studied. It remains fascinating to explore how far the quantum concept can reach with use of specially fabricated elements. Here we employ a tunable flux qubit with basis states having persistent currents of 1  μA carried by a

  15. Variable angle correlation spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y K [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    In this dissertation, a novel nuclear magnetic resonance (NMR) technique, variable angle correlation spectroscopy (VACSY) is described and demonstrated with {sup 13}C nuclei in rapidly rotating samples. These experiments focus on one of the basic problems in solid state NMR: how to extract the wealth of information contained in the anisotropic component of the NMR signal while still maintaining spectral resolution. Analysis of the anisotropic spectral patterns from poly-crystalline systems reveal information concerning molecular structure and dynamics, yet in all but the simplest of systems, the overlap of spectral patterns from chemically distinct sites renders the spectral analysis difficult if not impossible. One solution to this problem is to perform multi-dimensional experiments where the high-resolution, isotropic spectrum in one dimension is correlated with the anisotropic spectral patterns in the other dimensions. The VACSY technique incorporates the angle between the spinner axis and the static magnetic field as an experimental parameter that may be incremented during the course of the experiment to help correlate the isotropic and anisotropic components of the spectrum. The two-dimensional version of the VACSY experiments is used to extract the chemical shift anisotropy tensor values from multi-site organic molecules, study molecular dynamics in the intermediate time regime, and to examine the ordering properties of partially oriented samples. The VACSY technique is then extended to three-dimensional experiments to study slow molecular reorientations in a multi-site polymer system.

  16. Comparative study of grain-boundary migration and grain-boundary self-diffusion of [0 0 1] twist-grain boundaries in copper by atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, B. [Institut fuer Metallkunde und Metallphysik, RWTH Aachen University, Kopernikusstrasse 14, D-52056 Aachen (Germany); Gottstein, G. [Institut fuer Metallkunde und Metallphysik, RWTH Aachen University, Kopernikusstrasse 14, D-52056 Aachen (Germany)]. E-mail: gottstein@imm.rwth-aachen.de; Shvindlerman, L.S. [Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Moscow 142432 (Russian Federation)

    2005-04-15

    Molecular-dynamics simulations were used to study grain-boundary migration as well as grain-boundary self-diffusion of low-angle and high-angle [0 0 1] planar twist grain boundaries (GBs) in copper. Elastic strain was imposed to drive the planar [0 0 1] twist GBs. The temperature dependence of the GB mobility was determined over a wide misorientation range. Additionally grain-boundary self-diffusion was studied for all investigated [0 0 1] planar twist GBs. A comparison of the activation energies determined shows that grain-boundary migration and self-diffusion are distinctly different processes. The behavior of atoms during grain-boundary migration was analyzed for all studied GBs. The analysis reveals that usually in absolute pure materials high-angle planar [0 0 1] twist GBs move by a collective shuffle mechanism while low-angle GBs move by a dislocation based mechanism. The obtained activation parameters were analyzed with respect to the compensation effect.

  17. Angle-deviation optical profilometer

    Institute of Scientific and Technical Information of China (English)

    Chen-Tai Tan; Yuan-Sheng Chan; Zhen-Chin Lin; Ming-Hung Chiu

    2011-01-01

    @@ We propose a new optical profilometer for three-dimensional (3D) surface profile measurement in real time.The deviation angle is based on geometrical optics and is proportional to the apex angle of a test plate.Measuring the reflectivity of a parallelogram prism allows detection of the deviation angle when the beam is incident at the nearby critical angle. The reflectivity is inversely proportional to the deviation angle and proportional to the apex angle and surface height. We use a charge-coupled device (CCD) camera at the image plane to capture the reflectivity profile and obtain the 3D surface profile directly.%We propose a new optical profilometer for three-dimensional (3D) surface profile measurement in real time.The deviation angle is based on geometrical optics and is proportional to the apex angle of a test plate.Measuring the refiectivity of a parallelogram prism allows detection of the deviation angle when the beam is incident at the nearby critical angle. The refiectivity is inversely proportional to the deviation angle and proportional to the apex angle and surface height. We use a charge-coupled device (CCD) camera at the image plane to capture the refiectivity profile and obtain the 3D surface profile directly.

  18. Influence of twist angle on crack propagation of nanoscale bicrystal nickel film based on molecular dynamics simulation

    Science.gov (United States)

    Zhang, Yanqiu; Jiang, Shuyong; Zhu, Xiaoming; Zhao, Yanan

    2017-03-01

    Tensile deformation of nanoscale bicrystal nickel film with twist grain boundary, which includes various twist angles, is investigated via molecular dynamics simulation to obtain the influence of twist angle on crack propagation. The twist angle has a significant influence on crack propagation. At the tensile strain of 0.667, as for the twist angles of 0°, 3.54° and 7.05°, the bicrystal nickel films are subjected to complete fracture, while as for the twist angles of 16.1° and 33.96°, no complete fracture occurs in the bicrystal nickel films. When the twist angles are 16.1° and 33.96°, the dislocations emitted from the crack tip are almost unable to go across the grain boundary and enter into the other grain along the slip planes {111}. There should appear a critical twist angle above which the crack propagation is suppressed at the grain boundary. The higher energy in the grain boundary with larger twist angle contributes to facilitating the movement of the glissile dislocation along the grain boundary rather than across the grain boundary, which leads to the propagation of the crack along the grain boundary.

  19. Characterizing the microscopic physics near moving contact lines using dynamic contact angle data.

    Science.gov (United States)

    Ramé, E; Garoff, S; Willson, K R

    2004-09-01

    Directly probing the fluid flow and liquid-vapor interface shape in the microscopic immediate vicinity of the moving contact line can only be accomplished in very specific and isolated cases. Yet this physics is critical to macroscopic dynamic wetting. Here we examine the microscopic (or inner) physics of spreading silicone fluids using data of macroscopic dynamic contact angle versus Capillary number Ca=U mu/sigma. This dynamic contact angle is precisely defined so that it can be related back to the microscopic behavior through detailed theory. Our results indicate that the parameters describing the inner region have a detectable dependence on spreading velocity when this velocity exceeds a critical value. This dependence is not scaled (i.e., the data are not collapsed) by Ca, which suggests that an additional time scale must be present in the model of the inner region.

  20. Small angle diffraction imaging for disease diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Wilkinson, S.J. [Department of Materials and Medical Sciences, Cranfield University, Shrivenham, Swindon, Wiltshire SN6 8LA (United Kingdom)]. E-mail: s.j.wilkinson@dl.ac.uk; Rogers, K.D. [Department of Materials and Medical Sciences, Cranfield University, Shrivenham, Swindon, Wiltshire SN6 8LA (United Kingdom); Hall, C.J. [Darebury Research Laboratory, Keckwick Lane, Warrington, Cheshire, WA4 4AD (United Kingdom); Lewis, R.A. [Monash University, Melbourne, Victoria (Australia); Round, A. [Darebury Research Laboratory, Keckwick Lane, Warrington, Cheshire, WA4 4AD (United Kingdom); Pinder, S.E. [Nottingham City Hospital, Nottingham (United Kingdom); Boggis, C. [Withington Hospital, Manchester (United Kingdom); Hufton, A. [Christie Hospital, Manchester (United Kingdom)

    2005-08-11

    Current work in small angle X-ray scattering (SAXS) as a means of determining the disease state of tissue biopsy samples is showing encouraging results. Statistical analyses of SAXS patterns have identified components of the data which correlate well with the presence or absence of cancer in breast tissue. A study has now been started which attempts to create images of macroscopic scale samples using this information. One way of building up a two-dimensional map of this SAXS information on such a sample would be to raster scan a small X-ray beam. However, the time taken to perform such a scan is likely to make this technique impractical, especially if it would be considered for use in a clinical environment. Some initial work using a wide, thin X-ray beam, has shown that it is possible to deconvolve a model SAXS pattern from the smeared out SAXS pattern and is verified using slightly modified methods. Three distinct tissue types were successfully distinguished and imaged from a single scan of the beam. We are continuing this work by building a more sophisticated phantom and using a higher quality SAXS facility on the SRS in the UK. The results of the first steps towards disease specific imaging are presented. The possibility of making tomographic SAXS images is also being pursued. Techniques for data analysis on SAXS from blocks of tissues are discussed.

  1. Small angle diffraction imaging for disease diagnosis

    Science.gov (United States)

    Wilkinson, S. J.; Rogers, K. D.; Hall, C. J.; Lewis, R. A.; Round, A.; Pinder, S. E.; Boggis, C.; Hufton, A.

    2005-08-01

    Current work in small angle X-ray scattering (SAXS) as a means of determining the disease state of tissue biopsy samples is showing encouraging results. Statistical analyses of SAXS patterns have identified components of the data which correlate well with the presence or absence of cancer in breast tissue. A study has now been started which attempts to create images of macroscopic scale samples using this information. One way of building up a two-dimensional map of this SAXS information on such a sample would be to raster scan a small X-ray beam. However, the time taken to perform such a scan is likely to make this technique impractical, especially if it would be considered for use in a clinical environment. Some initial work using a wide, thin X-ray beam, has shown that it is possible to deconvolve a model SAXS pattern from the smeared out SAXS pattern and is verified using slightly modified methods. Three distinct tissue types were successfully distinguished and imaged from a single scan of the beam. We are continuing this work by building a more sophisticated phantom and using a higher quality SAXS facility on the SRS in the UK. The results of the first steps towards disease specific imaging are presented. The possibility of making tomographic SAXS images is also being pursued. Techniques for data analysis on SAXS from blocks of tissues are discussed.

  2. Heterodyne Interferometer Angle Metrology

    Science.gov (United States)

    Hahn, Inseob; Weilert, Mark A.; Wang, Xu; Goullioud, Renaud

    2010-01-01

    A compact, high-resolution angle measurement instrument has been developed that is based on a heterodyne interferometer. The common-path heterodyne interferometer metrology is used to measure displacements of a reflective target surface. In the interferometer setup, an optical mask is used to sample the measurement laser beam reflecting back from a target surface. Angular rotations, around two orthogonal axes in a plane perpendicular to the measurement- beam propagation direction, are determined simultaneously from the relative displacement measurement of the target surface. The device is used in a tracking telescope system where pitch and yaw measurements of a flat mirror were simultaneously performed with a sensitivity of 0.1 nrad, per second, and a measuring range of 0.15 mrad at a working distance of an order of a meter. The nonlinearity of the device is also measured less than one percent over the measurement range.

  3. Microscopic filter feeders near boundaries

    Science.gov (United States)

    Pepper, Rachel; Roper, Marcus; Ryu, Sangjin; Matsudiara, Paul; Stone, Howard

    2009-11-01

    We show through calculations, simulations, and experiments that the eddies often observed near sessile filter feeders are due to the presence of nearby boundaries. We model the common filter feeder Vorticella, which is approx 50 μm across and which feeds by removing bacteria from ocean or pond water that it draws towards itself. We use an analytic stokeslet model and a Brinkman flow approximation with the organism modeled as a cylinder with two different boundary conditions to predict the size of the eddy caused by two parallel no-slip boundaries that represent the slides between which experimental observations are often made. We also use three-dimensional finite-element simulations to fully solve for the flow around a model Vorticella. Additionally, we track particles around live feeding Vorticella in order to determine the experimental flow field. Our models are in good agreement both with each other and with the experiments. We also show through calculations that filter feeders such as Vorticella can greatly enhance their nutrient uptake by feeding at an angle rather than perpendicular to a substrate.

  4. The Unique Macroscopic Appearance of Gouty Arthritis of the Knee.

    Science.gov (United States)

    Mittl, Gregory S; Zuckerman, Joseph D

    2015-07-01

    Patients with significant gouty arthritis can develop disabling joint pain secondary to monosodium urate (MSU) articular deposition. We report a case of white, chalky MSU crystal deposition covering the articular surfaces of the knee as discovered by total knee arthroplasty. A 65-year-old male with a history of gout presented with bilateral knee pain. His radiographic imaging was negative for gouty tophi, and he elected to undergo left total knee arthroplasty. Intraoperatively a distinct chalky, white paste consistent with MSU deposition was observed covering the articular surfaces of the knee consistent with the diagnosis of gouty arthritis. Gout is the most common inflammatory arthritis affecting more than 3 million people in the USA. The inflammation results from the phagocytosis of monosodium urate crystals (MSU) and the release of inflammatory cytokines within the joint. Gout progresses from acute to chronic over many years and frequently causes chronic arthropathy. When significant knee pain and disability is associated with gouty arthropathy, total knee arthroplasty is certainly an option. The pathological appearance of gouty joints is characteristic. Macroscopic examination of joints affected by gout reveals a nodular, white, chalky appearance. Polarized microscopy of gout demonstrates negative birefringent needle-shaped MSU crystals. In this case report, we describe the characteristic chalky, white MSU deposit that covers the articular surfaces of a knee joint in a patient with a history of gout undergoing total knee arthroplasty. The investigators have obtained the patient's informed written consent for print and electronic publication of the case report.

  5. A macroscopic crowd motion model of gradient flow type

    CERN Document Server

    Maury, Bertrand; Santambrogio, Filippo

    2010-01-01

    A simple model to handle the flow of people in emergency evacuation situations is considered: at every point x, the velocity U(x) that individuals at x would like to realize is given. Yet, the incompressibility constraint prevents this velocity field to be realized and the actual velocity is the projection of the desired one onto the set of admissible velocities. Instead of looking at a microscopic setting (where individuals are represented by rigid discs), here the macroscopic approach is investigated, where the unknwon is the evolution of the density . If a gradient structure is given, say U is the opposite of the gradient of D where D is, for instance, the distance to the exit door, the problem is presented as a Gradient Flow in the Wasserstein space of probability measures. The functional which gives the Gradient Flow is neither finitely valued (since it takes into account the constraints on the density), nor geodesically convex, which requires for an ad-hoc study of the convergence of a discrete scheme.

  6. Macroscopic Dynamical Description of Rotating au + au System

    Science.gov (United States)

    Cârjan, N.; Siwek-Wilczyńska, K.; Skwira-Chalot, I.; Wilczyński, J.

    Events with more than two heavy fragments have been abundantly observed in heavy-ion semi-peripheral (fission-like) reaction 197Au+197Au at 15 MeV/nucleon. This raised interesting questions about their origin and about the time-scale at which they occur. As a possible explanation of this process, the surface instability of the cylindrical neck that is formed along the path from contact to reseparation of the rotating Au+Au system is investigated in the present paper. For this purpose the Los Alamos finite-range macroscopic dynamical model was used. The calculations were performed at relatively high angular momenta, L = 100 to 300 ħ, for two types of dissipation mechanisms: two-body viscosity and one-body dissipation. Various initial nuclear deformations and initial kinetic energies in the fission direction were considered. The resulting dynamical evolution in the multidimensional deformation space always led to multifragment scission configurations suggesting that ternary and quaternary break-up can occur during the heavy-ion reaction studied.

  7. Feedback Gating Control for Network Based on Macroscopic Fundamental Diagram

    Directory of Open Access Journals (Sweden)

    YangBeibei Ji

    2016-01-01

    Full Text Available Empirical data from Yokohama, Japan, showed that a macroscopic fundamental diagram (MFD of urban traffic provides for different network regions a unimodal low-scatter relationship between network vehicle density and network space-mean flow. This provides new tools for network congestion control. Based on MFD, this paper proposed a feedback gating control policy which can be used to mitigate network congestion by adjusting signal timings of gating intersections. The objective of the feedback gating control model is to maximize the outflow and distribute the allowed inflows properly according to external demand and capacity of each gating intersection. An example network is used to test the performance of proposed feedback gating control model. Two types of background signalization types for the intersections within the test network, fixed-time and actuated control, are considered. The results of extensive simulation validate that the proposed feedback gating control model can get a Pareto improvement since the performance of both gating intersections and the whole network can be improved significantly especially under heavy demand situations. The inflows and outflows can be improved to a higher level, and the delay and queue length at all gating intersections are decreased dramatically.

  8. The assembly of C. elegans lamins into macroscopic fibers.

    Science.gov (United States)

    Zingerman-Koladko, Irena; Khayat, Maayan; Harapin, Jan; Shoseyov, Oded; Gruenbaum, Yosef; Salman, Ahmad; Medalia, Ohad; Ben-Harush, Kfir

    2016-10-01

    Intermediate filament (IF) proteins are known mainly by their propensity to form viscoelastic filamentous networks within cells. In addition, IF-proteins are essential parts of various biological materials, such as horn and hagfish slime threads, which exhibit a range of mechanical properties from hard to elastic. These properties and their self-assembly nature made IF-proteins attractive building blocks for biomimetic and biological materials in diverse applications. Here we show that a type V IF-protein, the Caenorhabditis elegans nuclear lamin (Ce-lamin), is a promising building block for protein-based fibers. Electron cryo-tomography of vitrified sections enabled us to depict the higher ordered assembly of the Ce-lamin into macroscopic fibers through the creation of paracrystalline fibers, which are prominent in vitro structures of lamins. The lamin fibers respond to tensile force as other IF-protein-based fibers, i.e., hagfish slime threads, and possess unique mechanical properties that may potentially be used in certain applications. The self-assembly nature of lamin proteins into a filamentous structure, which is further assembled into a complex network, can be easily modulated. This knowledge may lead to a better understanding of the relationship in IF-proteins-based fibers and materials, between their hierarchical structures and their mechanical properties.

  9. Scattering of acoustic waves by macroscopically inhomogeneous poroelastic tubes.

    Science.gov (United States)

    Groby, J-P; Dazel, O; Depollier, C; Ogam, E; Kelders, L

    2012-07-01

    Wave propagation in macroscopically inhomogeneous porous materials has received much attention in recent years. For planar configurations, the wave equation, derived from the alternative formulation of Biot's theory of 1962, was reduced and solved recently: first in the case of rigid frame inhomogeneous porous materials and then in the case of inhomogeneous poroelastic materials in the framework of Biot's theory. This paper focuses on the solution of the full wave equation in cylindrical coordinates for poroelastic tubes in which the acoustic and elastic properties of the poroelastic tube vary in the radial direction. The reflection coefficient is obtained numerically using the state vector (or the so-called Stroh) formalism and Peano series. This coefficient can then be used to straightforwardly calculate the scattered field. To validate the method of resolution, results obtained by the present method are compared to those calculated by the classical transfer matrix method in the case of a two-layer poroelastic tube. As an example, a long bone excited in the sagittal plane is considered. Finally, a discussion is given of ultrasonic time domain scattered field for various inhomogeneity profiles, which could lead to the prospect of long bone characterization.

  10. Macroscopic effects of the spectral structure in turbulent flows

    Science.gov (United States)

    Tran, T.; Chakraborty, P.; Guttenberg, N.; Prescott, A.; Kellay, H.; Goldburg, W.; Goldenfeld, N.; Gioia, G.

    2010-11-01

    There is a missing link between macroscopic properties of turbulent flows, such as the frictional drag of a wall-bounded flow, and the turbulent spectrum. To seek the missing link we carry out unprecedented experimental measurements of the frictional drag in turbulent soap-film flows over smooth walls. These flows are effectively two-dimensional, and we are able to create soap-film flows with the two types of turbulent spectrum that are theoretically possible in two dimensions: the "enstrophy cascade," for which the spectral exponent α= 3, and the "inverse energy cascade," for which the spectral exponent α= 5/3. We find that the functional relation between the frictional drag f and the Reynolds number Re depends on the spectral exponent: where α= 3, f ˜Re-1/2; where α= 5/3, f ˜Re-1/4. Each of these scalings may be predicted from the attendant value of α by using a recently proposed spectral theory of the frictional drag. In this theory the frictional drag of turbulent flows on smooth walls is predicted to be f ˜Re^(1-α)/(1+α).

  11. Properties of nuclear matter from macroscopic-microscopic mass formulas

    Science.gov (United States)

    Wang, Ning; Liu, Min; Ou, Li; Zhang, Yingxun

    2015-12-01

    Based on the standard Skyrme energy density functionals together with the extended Thomas-Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic-microscopic mass formulas: Lublin-Strasbourg nuclear drop energy (LSD) formula and Weizsäcker-Skyrme (WS*) formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are K∞ = 230 ± 11 MeV and 235 ± 11 MeV, respectively. The slope parameter of symmetry energy at saturation density is L = 41.6 ± 7.6 MeV for LSD and 51.5 ± 9.6 MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [4]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron-proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrme Hartree-Fock-Bogoliubov calculations and nucleon optical potentials, and the standard deviations are large and increase rapidly with density. A better constraint for the effective mass is helpful to reduce uncertainties of the depth of the mean-field potential.

  12. Tunable Broadband Transparency of Macroscopic Quantum Superconducting Metamaterials

    Directory of Open Access Journals (Sweden)

    Daimeng Zhang

    2015-12-01

    Full Text Available Narrow-band invisibility in an otherwise opaque medium has been achieved by electromagnetically induced transparency (EIT in atomic systems. The quantum EIT behavior can be classically mimicked by specially engineered metamaterials via carefully controlled interference with a “dark mode.” However, the narrow transparency window limits the potential applications that require a tunable wideband transparent performance. Here, we present a macroscopic quantum superconducting metamaterial with manipulative self-induced broadband transparency due to a qualitatively novel nonlinear mechanism that is different from conventional EIT or its classical analogs. A near-complete disappearance of resonant absorption under a range of applied rf flux is observed experimentally and explained theoretically. The transparency comes from the intrinsic bistability of the meta-atoms and can be tuned on and off easily by altering rf and dc magnetic fields, temperature, and history. Hysteretic in situ 100% tunability of transparency paves the way for autocloaking metamaterials, intensity-dependent filters, and fast-tunable power limiters.

  13. Towards a macroscopic modeling of the complexity in traffic flow.

    Science.gov (United States)

    Rosswog, Stephan; Wagner, Peter

    2002-03-01

    Based on the assumption of a safe velocity U(e)(rho) depending on the vehicle density rho, a macroscopic model for traffic flow is presented that extends the model of the Kühne-Kerner-Konhäuser by an interaction term containing the second derivative of U(e)(rho). We explore two qualitatively different forms of U(e): a conventional Fermi-type function and, motivated by recent experimental findings, a function that exhibits a plateau at intermediate densities, i.e., in this density regime the exact distance to the car ahead is only of minor importance. To solve the fluid-like equations a Lagrangian particle scheme is developed. The suggested model shows a much richer dynamical behavior than the usual fluid-like models. A large variety of encountered effects is known from traffic observations, many of which are usually assigned to the elusive state of "synchronized flow." Furthermore, the model displays alternating regimes of stability and instability at intermediate densities. It can explain data scatter in the fundamental diagram and complicated jam patterns. Within this model, a consistent interpretation of the emergence of very different traffic phenomena is offered: they are determined by the velocity relaxation time, i.e., the time needed to relax towards U(e)(rho). This relaxation time is a measure of the average acceleration capability and can be attributed to the composition (e.g., the percentage of trucks) of the traffic flow.

  14. Zero time tunneling: macroscopic experiments with virtual particles

    Directory of Open Access Journals (Sweden)

    Nimtz Günter

    2015-01-01

    Full Text Available Feynman introduced virtual particles in his diagrams as intermediate states of an interaction process. They represent necessary intermediate states between observable real states. Such virtual particles were introduced to describe the interaction process between an electron and a positron and for much more complicated interaction processes. Other candidates for virtual particles are evanescent modes in optics and in elastic fields. Evanescent modes have a purely imaginary wave number, they represent the mathematical analogy of the tunneling solutions of the Schrödinger equation. Evanescent modes exist in the forbidden frequency bands of a photonic lattice and in undersized wave guides, for instance. The most prominent example for the occurrence of evanescent modes is the frustrated total internal reflection (FTIR at double prisms. Evanescent modes and tunneling lie outside the bounds of the special theory of relativity. They can cause faster than light (FTL signal velocities. We present examples of the quantum mechanical behavior of evanescent photons and phonons at a macroscopic scale. The evanescent modes of photons are described by virtual particles as predicted by former QED calculations.

  15. Macroscopic strain controlled ion current in an elastomeric microchannel

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Chin-Chang; Nguyen, Du; Buchsbaum, Steven; Innes, Laura; Dennin, Michael, E-mail: mdennin@uci.edu [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Li, Yongxue [Department of Civil and Environmental Engineering, University of California, Irvine, California 92697 (United States); Esser-Kahn, Aaron P. [Department of Chemistry, University of California, Irvine, California 92697 (United States); Valdevit, Lorenzo [Department of Mechanical and Aerospace Engineering, University of California, Irvine, California 92697-3975 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Sun, Lizhi [Department of Civil and Environmental Engineering, University of California, Irvine, California 92697 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Siwy, Zuzanna [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States); Department of Chemistry, University of California, Irvine, California 92697 (United States)

    2015-05-07

    We report on the fabrication of an ultra-high aspect ratio ionically conductive single microchannel with tunable diameter from ≈ 20 μm to fully closed. The 4 mm-long channel is fabricated in a Polydimethylsiloxane (PDMS) mold and its cross-sectional area is controlled by applying macroscopic compressive strain to the mold in a direction perpendicular to the channel length. We investigated the ionic conduction properties of the channel. For a wide range of compressive strain up to ≈ 0.27, the strain dependence of the resistance is monotonic and fully reversible. For strain > 0.27, ionic conduction suddenly shuts off and the system becomes hysteretic (whereby a finite strain reduction is required to reopen the channel). Upon unloading, the original behavior is retrieved. This reversible behavior is observed over 200 compression cycles. The cross-sectional area of the channel can be inferred from the ion current measurement, as confirmed by a Nano-Computed Tomography investigation. We show that the cross-sectional area decreases monotonically with the applied compressive strain in the reversible range, in qualitative agreement with linear elasticity theory. We find that the shut-off strain is affected by the spatial extent of the applied strain, which provides additional tunability. Our tunable channel is well-suited for multiple applications in micro/nano-fluidic devices.

  16. Gravitational wave echoes from macroscopic quantum gravity effects

    Science.gov (United States)

    Barceló, Carlos; Carballo-Rubio, Raúl; Garay, Luis J.

    2017-05-01

    New theoretical approaches developed in the last years predict that macroscopic quantum gravity effects in black holes should lead to modifications of the gravitational wave signals expected in the framework of classical general relativity, with these modifications being characterized in certain scenarios by the existence of dampened rep-etitions of the primary signal. Here we use the fact that non-perturbative corrections to the near-horizon external geometry of black holes are necessary for these modifications to exist, in order to classify different proposals and paradigms with respect to this criterion and study in a neat and systematic way their phenomenology. Proposals that lead naturally to the existence of echoes in the late-time ringdown of gravitational wave signals from black hole mergers must share the replacement of black holes by horizonless configurations with a physical surface showing reflective properties in the relevant range of frequencies. On the other hand, proposals or paradigms that restrict quantum gravity effects on the external geometry to be perturbative, such as black hole complementarity or the closely related firewall proposal, do not display echoes. For the sake of completeness we exploit the interplay between the timescales associated with the formation of firewalls and the mechanism behind the existence of echoes in order to conclude that even unconventional distortions of the firewall concept (such as naked firewalls) do not lead to this phenomenon.

  17. Experiments testing macroscopic quantum superpositions must be slow

    Science.gov (United States)

    Mari, Andrea; de Palma, Giacomo; Giovannetti, Vittorio

    2016-03-01

    We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations and for the possibility of entangling a particle with quantum gravitational radiation.

  18. LETTERS AND COMMENTS: Adiabatic process reversibility: microscopic and macroscopic views

    Science.gov (United States)

    Anacleto, Joaquim; Pereira, Mário G.

    2009-05-01

    The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r \\ge 1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values.

  19. Lymphoepithelioma-like esophageal carcinoma with macroscopic reduction

    Institute of Scientific and Technical Information of China (English)

    Masaya; Uesato; Tuguaki; Kono; Tooru; Shiratori; Yasunori; Akutsu; Isamu; Hoshino; Kentarou; Murakami; Daisuke; Horibe; Tetsurou; Maruyama; Yoshihide; Semba; Ryuma; Urahama; Yukiko; Ogura; Takashi; Oide; Toru; Tanizawa; Hisahiro; Matsubara

    2014-01-01

    Esophageal lymphoepithelioma-like carcinoma(LELC) is extremely rare. We report the first case of esopha-geal LELC showing macroscopic reduction. A 67-year-old male presented with dysphagia and, by endoscopic examination, was found to have a significantly raised tumor of 10 mm in diameter in the thoracic esophagus. The biopsied material showed esophageal cancer. We performed endoscopic submucosal dissection. However, the tumor became flattened, similar to a scar, in only 2 mo. Histologically, the carcinoma cells had infiltrated the submucosal layer. Prominent infiltration of T lymphoid cells that stained positive for CD8 was observed aroundthe carcinoma cells. Therefore, this lesion was consid-ered to be an LELC with poorly differentiated squamous cells. Because the margin was positive, an esophagec-tomy was performed. Carcinoma cells were detected in the neck in one lymph node. The staging was T1N0M1 b. However, the patient has been well, without adjuvant therapy or recurrence, for more than 5 years.

  20. Single-file diffusion of macroscopic charged particles.

    Science.gov (United States)

    Coste, C; Delfau, J-B; Even, C; Saint Jean, M

    2010-05-01

    In this paper, we study a macroscopic system of electrically interacting metallic beads organized as a sequence along an annulus. A random mechanical shaking mimics the thermal excitation. We exhibit non-Fickian diffusion (single-file diffusion) at large time. We measure the mobility of the particles and compare it to theoretical expectations. We show that our system cannot be accurately described by theories assuming only hard-sphere interactions. Its behavior is qualitatively described by a theory extended to more realistic potentials [M. Kollmann, Phys. Rev. Lett. 90, 180602 (2003)]. A correct quantitative agreement is shown and we interpret the discrepancies by the violation of the assumption of overdamped dynamics, which is a key point in the theory. We recast previous results on colloids with known interaction potentials and compare them quantitatively to the theory. Focusing on the transition between ordinary and single-file diffusions, we exhibit a dimensionless crossover time that is of order 1 both for colloids and our system, although the time and length scales differ by several orders of magnitude.

  1. Quantum-limited heat conduction over macroscopic distances

    Science.gov (United States)

    Partanen, Matti; Tan, Kuan Yen; Govenius, Joonas; Lake, Russell E.; Mäkelä, Miika K.; Tanttu, Tuomo; Möttönen, Mikko

    2016-05-01

    The emerging quantum technological apparatuses, such as the quantum computer, call for extreme performance in thermal engineering. Cold distant heat sinks are needed for the quantized electric degrees of freedom owing to the increasing packaging density and heat dissipation. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance. However, the short distance between the heat-exchanging bodies in the previous experiments hinders their applicability in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus, it seems that quantum-limited heat conduction has no fundamental distance cutoff. This work establishes the integration of normal-metal components into the framework of circuit quantum electrodynamics, which provides a basis for the superconducting quantum computer. Especially, our results facilitate remote cooling of nanoelectronic devices using faraway in situ-tunable heat sinks. Furthermore, quantum-limited heat conduction is important in contemporary thermodynamics. Here, the long distance may lead to ultimately efficient mesoscopic heat engines with promising practical applications.

  2. Semiconductor spintronics in a participating phonon medium: Macroscopic equations

    Directory of Open Access Journals (Sweden)

    A. Rossani

    2013-09-01

    Full Text Available In the last two decades considerable interest has arisen on the spin related phenomena in semiconductor devices. In semiconductor materials two essential mechanisms act on the spin dynamics: the spin-orbit coupling and the spin-flip interactions. Here the novelty is that we adopt the asymptotic approach developed in previous papers of mine [A. Rossani, Physica A 305, 323 (2002; A. Rossani, G. Spiga, and A. Domaingo, J. Phys. A 36, 11955 (2003; A. Rossani and G. Spiga, J. Math. Phys. 47, 013301 (2006; A. Rossani and A. M. Scarfone, Physica B 334, 292 (2003; A. Rossani, J. Phys. A 43, 165002 (2010]. The aim of this paper is to derive macroscopic equations starting from a kinetic approach. Moreover an equation for the evolution of the spin density is added, which account for a general dispersion relation. The treatment of spin-flip processes, derived from first principles, is new and leads to an explicit expression of the relaxation time as a function of the temperature.

  3. Properties of nuclear matter from macroscopic-microscopic mass formulas

    CERN Document Server

    Wang, Ning; Ou, Li; Zhang, Yingxun

    2015-01-01

    Based on the standard Skyrme energy density functionals together with the extended Thomas-Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic-microscopic mass formulas: Lublin-Strasbourg nuclear drop energy (LSD) formula and Weizs\\"acker-Skyrme (WS*) formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are $K_\\infty=230 \\pm 11$ MeV and $235\\pm 11$ MeV, respectively. The slope parameter of symmetry energy at saturation density is $L=41.6\\pm 7.6$ MeV for LSD and $51.5\\pm 9.6$ MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [ApJ. \\textbf{771}, 51 (2013)]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron-proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrm...

  4. Theory and feasibility tests for a seismic scanning tunnelling macroscope

    KAUST Repository

    Schuster, Gerard T.

    2012-09-01

    We propose a seismic scanning tunnelling macroscope (SSTM) that can detect subwavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the scatterer is in the near-field region. This means that, as the scatterer approaches the source, imaging of the scatterer with super-resolution can be achieved. Acoustic and elastic simulations support this concept, and a seismic experiment in an Arizona tunnel shows a TRM profile with super-resolution adjacent to the fault location. The SSTM is analogous to the optical scanning tunnelling microscopes having subwavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by the imaging of near-field seismic energy.

  5. Direct Observation of Spatial Quantum Correlations in the Macroscopic Regime

    CERN Document Server

    Kumar, Ashok; Marino, A M

    2016-01-01

    Spatial quantum correlations in the transverse degree of freedom promise to enhance optical resolution, image detection, and quantum communications through parallel quantum information encoding. In particular, the ability to observe these spatial quantum correlations in a single shot will enable such enhancements in applications that require real time imaging, such as particle tracking and in-situ imaging of atomic systems. Here, we report on the direct measurement of spatial quantum correlations in the macroscopic regime in single images using an electron-multiplying charge-coupled device camera. A four-wave mixing process in hot rubidium atoms is used to generate narrowband-bright-entangled pulsed twin-beams of light with $\\sim10^8$ photons in each beam. Owing to momentum conservation in this process, the twin-beams are momentum correlated, which leads to spatial quantum correlations in far field. We show around 2 dB of spatial quantum noise reduction with respect to the shot noise limit. The spatial squeez...

  6. Equilibrium contact angle or the most-stable contact angle?

    Science.gov (United States)

    Montes Ruiz-Cabello, F J; Rodríguez-Valverde, M A; Cabrerizo-Vílchez, M A

    2014-04-01

    It is well-established that the equilibrium contact angle in a thermodynamic framework is an "unattainable" contact angle. Instead, the most-stable contact angle obtained from mechanical stimuli of the system is indeed experimentally accessible. Monitoring the susceptibility of a sessile drop to a mechanical stimulus enables to identify the most stable drop configuration within the practical range of contact angle hysteresis. Two different stimuli may be used with sessile drops: mechanical vibration and tilting. The most stable drop against vibration should reveal the changeless contact angle but against the gravity force, it should reveal the highest resistance to slide down. After the corresponding mechanical stimulus, once the excited drop configuration is examined, the focus will be on the contact angle of the initial drop configuration. This methodology needs to map significantly the static drop configurations with different stable contact angles. The most-stable contact angle, together with the advancing and receding contact angles, completes the description of physically realizable configurations of a solid-liquid system. Since the most-stable contact angle is energetically significant, it may be used in the Wenzel, Cassie or Cassie-Baxter equations accordingly or for the surface energy evaluation.

  7. Grasping the Second Law of Thermodynamics at University: The Consistency of Macroscopic and Microscopic Explanations

    Science.gov (United States)

    Leinonen, Risto; Asikainen, Mervi A.; Hirvonen, Pekka E.

    2015-01-01

    This study concentrates on evaluating the consistency of upper-division students' use of the second law of thermodynamics at macroscopic and microscopic levels. Data were collected by means of a paper and pencil test (N = 48) focusing on the macroscopic and microscopic features of the second law concerned with heat transfer processes. The data…

  8. Grasping the Second Law of Thermodynamics at University: The Consistency of Macroscopic and Microscopic Explanations

    Science.gov (United States)

    Leinonen, Risto; Asikainen, Mervi A.; Hirvonen, Pekka E.

    2015-01-01

    This study concentrates on evaluating the consistency of upper-division students' use of the second law of thermodynamics at macroscopic and microscopic levels. Data were collected by means of a paper and pencil test (N = 48) focusing on the macroscopic and microscopic features of the second law concerned with heat transfer processes. The data…

  9. A Model for Macroscopic Quantum Tunneling of Bose-Einstein Condensate with Attractive Interaction

    Institute of Scientific and Technical Information of China (English)

    YAN Ke-Zhu; TAN Wei-Han

    2000-01-01

    Based on the numerical wave function solutions of neutral atoms with attractive interaction in a harmonic trap, we propose an exactly solvable model for macroscopic quantum tunneling of a Bose condensate with attractive interaction. We calculate the rate of macroscopic quantum tunneling from a metastable condensate state to the collapse state and analyze the stability of the attractive Bose-Einstein condensation.

  10. Effect of particle friction and polydispersity on the macroscopic stress–strain relations of granular materials

    NARCIS (Netherlands)

    Göncü, F.; Luding, S.

    2013-01-01

    The macroscopic mechanical behavior of granular materials inherently depends on the properties of particles that compose them. Using the discrete element method, the effect of particle contact friction and polydispersity on the macroscopic stress response of 3D sphere packings is studied. The analyt

  11. SILICON CARBIDE GRAIN BOUNDARY DISTRIBUTIONS, IRRADIATION CONDITIONS, AND SILVER RETENTION IN IRRADIATED AGR-1 TRISO FUEL PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    Lillo, T. M.; Rooyen, I. J.; Aguiar, J. A.

    2016-11-01

    Precession electron diffraction in the transmission electron microscope was used to map grain orientation and ultimately determine grain boundary misorientation angle distributions, relative fractions of grain boundary types (random high angle, low angle or coincident site lattice (CSL)-related boundaries) and the distributions of CSL-related grain boundaries in the SiC layer of irradiated TRISO-coated fuel particles. Two particles from the AGR-1 experiment exhibiting high Ag-110m retention (>80%) were compared to a particle exhibiting low Ag-110m retention (<19%). Irradiated particles with high Ag-110m retention exhibited a lower fraction of random, high angle grain boundaries compared to the low Ag-110m retention particle. An inverse relationship between the random, high angle grain boundary fraction and Ag-110m retention is found and is consistent with grain boundary percolation theory. Also, comparison of the grain boundary distributions with previously reported unirradiated grain boundary distributions, based on SEM-based EBSD for similarly fabricated particles, showed only small differences, i.e. a greater low angle grain boundary fraction in unirradiated SiC. It was, thus, concluded that SiC layers with grain boundary distributions susceptible to Ag-110m release were present prior to irradiation. Finally, irradiation parameters were found to have little effect on the association of fission product precipitates with specific grain boundary types.

  12. HUD GIS Boundary Files

    Data.gov (United States)

    Department of Housing and Urban Development — The HUD GIS Boundary Files are intended to supplement boundary files available from the U.S. Census Bureau. The files are for community planners interested in...

  13. Political State Boundary (National)

    Data.gov (United States)

    Department of Transportation — State boundaries with political limit - boundaries extending into the ocean (NTAD). The TIGER/Line Files are shapefiles and related database files (.dbf) that are an...

  14. State Agency Administrative Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — This database comprises 28 State agency boundaries and point of contact. The Kansas Geological Survey collected legal descriptions of the boundaries for various...

  15. Mingo Wilderness boundaries

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document gives information as to the exact legal boundaries of the Mingo Wilderness area. It also includes a map showing the boundaries visually.

  16. County Political Boundaries (National)

    Data.gov (United States)

    Department of Transportation — County boundaries with political limit - boundaries extending into the ocean (NTAD 2015). The TIGER/Line shapefiles and related database files (.dbf) are an extract...

  17. Allegheny County Municipal Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...

  18. Allegheny County Municipal Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset demarcates the municipal boundaries in Allegheny County. Data was created to portray the boundaries of the 130 Municipalities in Allegheny County the...

  19. Boundary Layer Effect on Behavior of Discrete Models

    Directory of Open Access Journals (Sweden)

    Jan Eliáš

    2017-02-01

    Full Text Available The paper studies systems of rigid bodies with randomly generated geometry interconnected by normal and tangential bonds. The stiffness of these bonds determines the macroscopic elastic modulus while the macroscopic Poisson’s ratio of the system is determined solely by the normal/tangential stiffness ratio. Discrete models with no directional bias have the same probability of element orientation for any direction and therefore the same mechanical properties in a statistical sense at any point and direction. However, the layers of elements in the vicinity of the boundary exhibit biased orientation, preferring elements parallel with the boundary. As a consequence, when strain occurs in this direction, the boundary layer becomes stiffer than the interior for the normal/tangential stiffness ratio larger than one, and vice versa. Nonlinear constitutive laws are typically such that the straining of an element in shear results in higher strength and ductility than straining in tension. Since the boundary layer tends, due to the bias in the elemental orientation, to involve more tension than shear at the contacts, it also becomes weaker and less ductile. The paper documents these observations and compares them to the results of theoretical analysis.

  20. Self-organization of cadmium sulfide nanoparticles on the macroscopic scale

    Science.gov (United States)

    Rempel, Andrej A.; Kozhevnikova, Natalia S.; van den Berghe, Sven; van Renterghem, Wouter; Leenaers, Ann J. G.

    2005-06-01

    A self-organization of chemical bath deposited cadmium sulfide colloidal particles into well shaped hexagonal prisms of nearly the same size in a micrometer range is found. The self-organization phenomenon itself and the size of resulting prisms depend on the chemical affinity of the deposition reaction. In spite of the nearly perfect shape, the inner structure of the CdS colloidal crystals is highly disordered and has at least two hierarchy levels. On the scale of scanning electron microscopy, the loose and disordered microstructure of the colloidal crystals consists of nonuniformly shaped coagulates, with sizes between 150 and 250 nm. Transmission electron microscopy shows that the coagulates are polycrystals with large angle boundaries between nonuniformly shaped grains with an average size of 7 +/- 2 nm.

  1. Macroscopic realism, wave-particle duality and the superposition principle for entangled states

    CERN Document Server

    Chuprikov, N L

    2006-01-01

    On the basis of our model of a one-dimensional (1D) completed scattering (Russian Physics, 49, p.119 and p.314 (2006)) we argue that the linear formalism of quantum mechanics (QM) respects the principles of the macroscopic realism (J. Phys.: Condens. Matter, 14, R415-R451 (2002)). In QM one has to distinguish two kinds of pure ensembles: pure unentangled ensembles to be macroscopically inseparable, and pure entangled ones to be macroscopically separable. A pure entangled ensemble is an intermediate link between a pure unentangled ensemble and classical mixture. Like the former it strictly respects the linear formalism of QM. Like the latter it is decomposable into macroscopically distinct subensembles, in spite of interference between them; our new model exemplifies how to perform such a decomposition in the case of a 1D completed scattering. To respect macroscopic realism, the superposition principle must be reformulated: it must forbid introducing observables for entangled states.

  2. Macroscopic erosion of divertor and first wall armour in future tokamaks

    Science.gov (United States)

    Würz, H.; Bazylev, B.; Landman, I.; Pestchanyi, S.; Safronov, V.

    2002-12-01

    Sputtering, evaporation and macroscopic erosion determine the lifetime of the 'in vessel' armour materials CFC, tungsten and beryllium presently under discussion for future tokamaks. For CFC armour macroscopic erosion means brittle destruction and dust formation whereas for metallic armour melt layer erosion by melt motion and droplet splashing. Available results on macroscopic erosion from hot plasma and e-beam simulation experiments and from tokamaks are critically evaluated and a comprehensive discussion of experimental and numerical macroscopic erosion and its extrapolation to future tokamaks is given. Shielding of divertor armour materials by their own vapor exists during plasma disruptions. The evolving plasma shield protects the armour from high heat loads, absorbs the incoming energy and reradiates it volumetrically thus reducing drastically the deposited energy. As a result, vertical target erosion by vaporization turns out to be of the order of a few microns per disruption event and macroscopic erosion becomes the dominant erosion source.

  3. On the relationship between grain-boundary migration and grain-boundary diffusion by molecular-dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Schoenfelder, B. [Argonne National Lab., IL (United States). Materials Science Div.]|[RWTH Aachen (Germany). Inst. fuer Metallkunde und Metallphysik; Keblinski, P.; Wolf, D.; Phillpot, S.R. [Argonne National Lab., IL (United States). Materials Science Div.

    1998-07-01

    A molecular-dynamics method for the simulation of the intrinsic migration behavior of individual, flat grain boundaries is presented. A constant driving force for grain-boundary migration is generated by imposing an anisotropic elastic strain on a bicrystal such that the elastic-energy densities in its two halves are different. For the model case of the large-planar-unit-cell, high-angle (001) twist boundary in Cu the authors demonstrate that the drift velocity is proportional to the applied driving force, thus enabling determination of the boundary mobility. The activation energy for grain-boundary migration is found to be distinctly lower than that for grain-boundary self-diffusion. A decrease in the related activation energies with increasing temperature is shown to arise from a crossover in the underlying mechanisms, from solid-like at low temperatures to liquid-like at high-temperatures that is accompanied by an underlying grain-boundary structural transition.

  4. THE VIRIAL OF ANGLE-DEPENDENT POTENTIALS IN MOLECULAR-DYNAMICS SIMULATIONS

    NARCIS (Netherlands)

    BEKKER, H; AHLSTROM, P

    1994-01-01

    It is proved that the scalar virial of potentials that only depend on angles is zero. This is proved for nonperiodic boundary conditions as well as periodic boundary condition (PBC) systems. This theory is tested on an molecular dynamics simulation of butane with PBC.

  5. Flow tilt angles near forest edges - Part 1: Sonic anemometry

    DEFF Research Database (Denmark)

    Dellwik, Ebba; Mann, Jakob; Larsen, Klaus Steenberg

    2010-01-01

    -sets. These features of the investigated sonic anemometers make them unsuitable for measuring vertical velocities over highly turbulent forested terrain. By comparing the sonic anemometer results to that of a conically scanning Doppler lidar (Dellwik et al., 2010b), sonic anemometer accuracy for measuring mean flow...... distortion and vertical alignment, it was only possible to a limited extent to relate sonic anemometer flow tilt angles to upwind forest edges, but the results by the lidar indicated that an internal boundary layer affect flow tilt angles at 21m above the forest. This is in accordance with earlier studies......An analysis of flow tilt angles from a fetch-limited beech forest site with clearings is presented in the context of vertical advection of carbon dioxide. Flow angles and vertical velocities from two sonic anemometers by different manufacturers were analyzed. Instead of using rotations, where zero...

  6. The Case against Boundaries

    Science.gov (United States)

    Borck, Howard

    1977-01-01

    In this tongue-in-cheek article, sociological boundaries are on trial in a simulated courtroom. It is argued that sociologists concerned with establishing boundaries are neglecting the significant issues facing social scientists whereas the defense contends that boundaries are essential to the discipline. (Author/JR)

  7. Geometry and crystallographic configuration of grain boundaries

    Science.gov (United States)

    Eichler, Jan; Weikusat, Ilka; Kipfstuhl, Sepp; Binder, Tobias

    2015-04-01

    Ice cores provide a unique opportunity to study fundamental mechanisms which control the internal flow of ice sheets. Different kinds of deformation processes acting on the micro-scale are responsible for the viscoplastic behavior on large scale. Careful interpretation of microstructural features such as grain size, shape, lattice orientation and the occurrence of subgrain boundaries can help us to follow these processes and to improve our understanding of ice rheology. Polarized light microscopy experienced a quick development in the last decade. A new generation of automatic fabric analyzers enables to measure c-axis orientations in µm-resolution. This high amount and quality of fabric data motivates to apply digital-image-processing routines (DIP) for the recognition and quantification of microstructural patterns. Here we present a study on grain boundaries based on the acquisition of more than 700 fabric images recorded along the NEEM ice core (Greenland). Geometrical characteristics of grain boundaries are studied as well as their cross-sectional orientations in relation to the c-axis orientations of the corresponding adjacent grains. We could follow the evolution from the initial N-type and P-type low-angle boundaries (Weikusat et al., 2011) to high angle boundaries during rotation recrystallization. In agreement with some previous studies we confirm that the established three-stage-recrystallization model may be an oversimplification. According to our results, rotation recrystallization as well as grain boundary migration are actually present in all depths with varying intensities at NEEM. I. Weikusat, A. Miyamoto, S. H. Faria, S. Kipfstuhl, N. Azuma, and T. Hondoh: Subgrain boundaries in Antarctic ice quantified by X-ray Laue diffraction. J. Glaciol., 57(201):85-94, 2011. doi: 10013/epic.36402.

  8. Applying Contact Angle to a 2D Multiphase Smoothed Particle Hydrodynamics Model

    OpenAIRE

    Farrokhpanah, Amirsaman; Samareh, Babak; Mostaghimi, Javad

    2016-01-01

    Equilibrium contact angle of liquid drops over horizontal surfaces has been modeled using Smoothed Particle Hydrodynamics (SPH). The model is capable of accurate implementation of contact angles to stationary and moving contact lines. In this scheme, the desired value for stationary or dynamic contact angle is used to correct the profile near the triple point. This is achieved by correcting the surface normals near the contact line and also interpolating the drop profile into the boundaries. ...

  9. Watershed Boundaries - Watershed Boundary Database for Montana

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This data set is a complete digital hydrologic unit boundary layer of the Subbasins (8-digit), Watersheds (10-digit), and Subwatersheds (12-digit) for Montana. This...

  10. Nonclassical interactions portrait in a macroscopic pedestrian flow model

    Science.gov (United States)

    Rosini, Massimiliano D.

    In this paper we describe the main characteristics of the macroscopic model for pedestrian flows introduced in [R.M. Colombo, M.D. Rosini, Pedestrian flows and non-classical shocks, Math. Methods Appl. Sci. 28 (13) (2005) 1553-1567] and recently sperimentally verified in [D. Helbing, A. Johansson, H.Z. Al-Abideen, Dynamics of crowd disasters: An empirical study, Phys. Rev. E (Statistical, Nonlinear, and Soft Matter Physics) 75 (4) (2007) 046109]. After a detailed study of all the possible wave interactions, we prove the existence of a weighted total variation that does not increase after any interaction. This is the main ingredient used in [R.M. Colombo, M.D. Rosini, Existence of nonclassical Cauchy problem modeling pedestrian flows, technical report, Brescia Department of Mathematics, 2008] to tackle the Cauchy problem through wave front tracking, see [A. Bressan, Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem, Oxford Lecture Ser. Math. Appl., vol. 20, Oxford Univ. Press, Oxford, 2000, The one-dimensional Cauchy problem; A. Bressan, The front tracking method for systems of conservation laws, in: C.M. Dafermos, E. Feireisl (Eds.), Handbook of Differential Equations; Evolutionary Equations, vol. 1, Elsevier, 2004, pp. 87-168; R.M. Colombo, Wave front tracking in systems of conservation laws, Appl. Math. 49 (6) (2004) 501-537]. From the mathematical point of view, this model is one of the few examples of conservation laws in which nonclassical solutions have a physical motivation, see [P.G. Lefloch, Hyperbolic Systems of Conservation Laws, Lectures Math. ETH Zürich, Birkhäuser, Basel, 2002, The theory of classical and nonclassical shock waves], and an existence result is available.

  11. Nuclear magnetic resonance studies of macroscopic morphology and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Barrall, Geoffrey Alden [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1995-09-01

    Nuclear magnetic resonance techniques are traditionally used to study molecular level structure and dynamics with a noted exception in medically applied NMR imaging (MRI). In this work, new experimental methods and theory are presented relevant to the study of macroscopic morphology and dynamics using NMR field gradient techniques and solid state two-dimensional exchange NMR. The goal in this work is not to take some particular system and study it in great detail, rather it is to show the utility of a number of new and novel techniques using ideal systems primarily as a proof of principle. By taking advantage of the analogy between NMR imaging and diffraction, one may simplify the experiments necessary for characterizing the statistical properties of the sample morphology. For a sample composed of many small features, e.g. a porous medium, the NMR diffraction techniques take advantage of both the narrow spatial range and spatial isotropy of the sample`s density autocorrelation function to obtain high resolution structural information in considerably less time than that required by conventional NMR imaging approaches. The time savings of the technique indicates that NMR diffraction is capable of finer spatial resolution than conventional NMR imaging techniques. Radio frequency NMR imaging with a coaxial resonator represents the first use of cylindrically symmetric field gradients in imaging. The apparatus as built has achieved resolution at the micron level for water samples, and has the potential to be very useful in the imaging of circularly symmetric systems. The study of displacement probability densities in flow through a random porous medium has revealed the presence of features related to the interconnectedness of the void volumes. The pulsed gradient techniques used have proven successful at measuring flow properties for time and length scales considerably shorter than those studied by more conventional techniques.

  12. Innovations in macroscopic evaluation of pancreatic specimens and radiologic correlation

    Directory of Open Access Journals (Sweden)

    Charikleia Triantopoulou

    2016-01-01

    Full Text Available The purpose of this study was to evaluate the feasibility of a novel dissection technique of surgical specimens in different cases of pancreatic tumors and provide a radiologic pathologic correlation. In our hospital, that is a referral center for pancreatic diseases, the macroscopic evaluation of the pancreatectomy specimens is performed by the pathologists using the axial slicing technique (instead of the traditional procedure with longitudinal opening of the main pancreatic and/or common bile duct and slicing along the plane defined by both ducts. The specimen is sliced in an axial plane that is perpendicular to the longitudinal axis of the descending duodenum. The procedure results in a large number of thin slices (3–4 mm. This plane is identical to that of CT or MRI and correlation between pathology and imaging is straightforward. We studied 70 cases of suspected different solid and cystic pancreatic tumors and we correlated the tumor size and location, the structure—consistency (areas of necrosis—hemorrhage—fibrosis—inflammation, the degree of vessels’ infiltration, the size of pancreatic and common bile duct and the distance from resection margins. Missed findings by imaging or pitfalls were recorded and we tried to explain all discrepancies between radiology evaluation and the histopathological findings. Radiologic-pathologic correlation is extremely important, adding crucial information on imaging limitations and enabling quality assessment of surgical specimens. The deep knowledge of different pancreatic tumors’ consistency and way of extension helps to improve radiologists’ diagnostic accuracy and minimize the radiological-surgical mismatching, preventing patients from unnecessary surgery.

  13. Macroscopic behavior and microscopic magnetic properties of nanocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Lähderanta, E., E-mail: Erkki.Lahderanta@lut.fi [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Ryzhov, V.A. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Coppice, Gatchina, Leningrad province 188300 (Russian Federation); Lashkul, A.V. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Galimov, D.M. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); South Ural State University, 454080 Chelyabinsk (Russian Federation); Titkov, A.N. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg (Russian Federation); Matveev, V.V. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Saint-Petersburg State University, Saint-Petersburg 198504 (Russian Federation); Mokeev, M.V. [Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg (Russian Federation); Kurbakov, A.I. [Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Coppice, Gatchina, Leningrad province 188300 (Russian Federation); Lisunov, K.G. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Institute of Applied Physics ASM, Academiei Str., 5, MD 2028 Kishinev (Moldova, Republic of)

    2015-06-01

    Here are presented investigations of powder and glass-like samples containing carbon nanoparticles, not intentionally doped and doped with Ag, Au and Co. The neutron diffraction study reveals an amorphous structure of the samples doped with Au and Co, as well as the magnetic scattering due to a long-range FM order in the Co-doped sample. The composition and molecular structure of the sample doped with Au is clarified with the NMR investigations. The temperature dependence of the magnetization, M (T), exhibits large irreversibility in low fields of B=1–7 mT. M (B) saturates already above 2 T at high temperatures, but deviates from the saturation behavior below ~50 (150 K). Magnetic hysteresis is observed already at 300 K and exhibits a power-law temperature decay of the coercive field, B{sub c} (T). The macroscopic behavior above is typical of an assembly of partially blocked magnetic nanoparticles. The values of the saturation magnetization, M{sub s}, and the blocking temperature, T{sub b}, are obtained as well. However, the hysteresis loop in the Co-doped sample differs from that in other samples, and the values of B{sub c} and M{sub s} are noticeably increased. - Highlights: • We have investigated powder and glassy samples with carbon nanoparticles. • They include an undoped sample and those doped with Ag, Au and Co. • Neutron diffraction study reveals amorphous structure of Au- and Co-doped samples. • Composition and molecular structure of Au-doped sample was investigated with NMR. • Magnetic behavior is typical of an assembly of partially blocked magnetic nanoparticles.

  14. Proton irradiation effects on beryllium - A macroscopic assessment

    Science.gov (United States)

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando

    2016-10-01

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

  15. A macroscopic constitutive model of temperature-induced phase transition of polycrystalline Ni{sub 2}MnGa by directional solidification

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuping, E-mail: zhuyuping@126.com; Gu, Yunling; Liu, Hongguang

    2015-02-25

    Directional solidification technology has been widely used to improve the properties of polycrystalline Ni{sub 2}MnGa materials. Mechanical training can adjust the internal organizational structures of the materials, reduce the stress of twin boundaries motion, and then result in larger strain at lower outfield levels. In this paper, we test the microscopic structure of Ni{sub 2}MnGa polycrystalline ferromagnetic shape memory alloy produced by directional solidification and compress it along two axes successively for mechanical training. The influences of pre-compressive stresses on the temperature-induced strains are analyzed. The macroscopic mechanical behaviors show anisotropy. According to the generating mechanism of the macroscopic strain, a three-dimensional constitutive model is established. Based on thermodynamic method, the kinetic equations of the martensitic transformation and inverse transformation are presented considering the driving force and energy dissipation. The prediction curves of temperature-induce strains along two different directions are investigated. And the results coincide well with the experiment data. It well explains the macroscopic anisotropy mechanical behaviors and fits for using in engineering.

  16. Generalization of the Euler Angles

    Science.gov (United States)

    Bauer, Frank H. (Technical Monitor); Shuster, Malcolm D.; Markley, F. Landis

    2002-01-01

    It is shown that the Euler angles can be generalized to axes other than members of an orthonormal triad. As first shown by Davenport, the three generalized Euler axes, hereafter: Davenport axes, must still satisfy the constraint that the first two and the last two axes be mutually perpendicular if these axes are to define a universal set of attitude parameters. Expressions are given which relate the generalized Euler angles, hereafter: Davenport angles, to the 3-1-3 Euler angles of an associated direction-cosine matrix. The computation of the Davenport angles from the attitude matrix and their kinematic equation are presented. The present work offers a more direct development of the Davenport angles than Davenport's original publication and offers additional results.

  17. Small angle neutron scattering

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available Small Angle Neutron Scattering (SANS is a technique that enables to probe the 3-D structure of materials on a typical size range lying from ∼ 1 nm up to ∼ a few 100 nm, the obtained information being statistically averaged on a sample whose volume is ∼ 1 cm3. This very rich technique enables to make a full structural characterization of a given object of nanometric dimensions (radius of gyration, shape, volume or mass, fractal dimension, specific area… through the determination of the form factor as well as the determination of the way objects are organized within in a continuous media, and therefore to describe interactions between them, through the determination of the structure factor. The specific properties of neutrons (possibility of tuning the scattering intensity by using the isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons make it particularly interesting in the fields of soft matter, biophysics, magnetic materials and metallurgy. In particular, the contrast variation methods allow to extract some informations that cannot be obtained by any other experimental techniques. This course is divided in two parts. The first one is devoted to the description of the principle of SANS: basics (formalism, coherent scattering/incoherent scattering, notion of elementary scatterer, form factor analysis (I(q→0, Guinier regime, intermediate regime, Porod regime, polydisperse system, structure factor analysis (2nd Virial coefficient, integral equations, characterization of aggregates, and contrast variation methods (how to create contrast in an homogeneous system, matching in ternary systems, extrapolation to zero concentration, Zero Averaged Contrast. It is illustrated by some representative examples. The second one describes the experimental aspects of SANS to guide user in its future experiments: description of SANS spectrometer, resolution of the spectrometer, optimization of

  18. Twisted Boundary Conditions in Lattice Simulations

    CERN Document Server

    Sachrajda, Christopher T C

    2004-01-01

    By imposing twisted boundary conditions on quark fields it is possible to access components of momenta other than integer multiples of 2pi/L on a lattice with spatial volume L^3. We use Chiral Perturbation Theory to study finite-volume effects with twisted boundary conditions for quantities without final-state interactions, such as meson masses, decay constants and semileptonic form factors, and confirm that they remain exponentially small with the volume. We show that this is also the case for "partially twisted" boundary conditions, in which (some of) the valence quarks satisfy twisted boundary conditions but the sea quarks satisfy periodic boundary conditions. This observation implies that it is not necessary to generate new gluon configurations for every choice of the twist angle, making the method much more practicable. For K->pipi decays we show that the breaking of isospin symmetry by the twisted boundary conditions implies that the amplitudes cannot be determined in general (on this point we disagree ...

  19. The Effect of Twin Boundaries on the Spectroscopic Performance of CdZnTe Detectors

    Science.gov (United States)

    Parker, Bradford H.; Stahle, C. M.; Roth, D.; Babu, S.; Tueller, Jack; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Most single grains in cadmium zinc telluride (CdZnTe) grown by the high-pressure Bridgman (HPB) technique contain multiple twin boundaries. As a consequence, twin boundaries are one of the most common macroscopic material defects found in large area (400 to 700 sq mm) CdZnTe specimens obtained from HPB ingots. Due to the prevalence of twin boundaries, understanding their effect on detector performance is key to the material selection process. Twin boundaries in several 2 mm thick large area specimens were first, documented using infrared transmission imaging. These specimens were then fabricated into either 2 mm pixel or planar detectors in order to examine the effect of the twin boundaries on detector performance. Preliminary results show that twin boundaries, which are decorated with tellurium inclusions, produce a reduction in detector efficiency and a degradation in resolution. The extent of the degradation appears to be a function of the density of tellurium inclusions.

  20. Studies into the averaging problem: Macroscopic gravity and precision cosmology

    Science.gov (United States)

    Wijenayake, Tharake S.

    2016-08-01

    With the tremendous improvement in the precision of available astrophysical data in the recent past, it becomes increasingly important to examine some of the underlying assumptions behind the standard model of cosmology and take into consideration nonlinear and relativistic corrections which may affect it at percent precision level. Due to its mathematical rigor and fully covariant and exact nature, Zalaletdinov's macroscopic gravity (MG) is arguably one of the most promising frameworks to explore nonlinearities due to inhomogeneities in the real Universe. We study the application of MG to precision cosmology, focusing on developing a self-consistent cosmology model built on the averaging framework that adequately describes the large-scale Universe and can be used to study real data sets. We first implement an algorithmic procedure using computer algebra systems to explore new exact solutions to the MG field equations. After validating the process with an existing isotropic solution, we derive a new homogeneous, anisotropic and exact solution. Next, we use the simplest (and currently only) solvable homogeneous and isotropic model of MG and obtain an observable function for cosmological expansion using some reasonable assumptions on light propagation. We find that the principal modification to the angular diameter distance is through the change in the expansion history. We then linearize the MG field equations and derive a framework that contains large-scale structure, but the small scale inhomogeneities have been smoothed out and encapsulated into an additional cosmological parameter representing the averaging effect. We derive an expression for the evolution of the density contrast and peculiar velocities and integrate them to study the growth rate of large-scale structure. We find that increasing the magnitude of the averaging term leads to enhanced growth at late times. Thus, for the same matter content, the growth rate of large scale structure in the MG model

  1. Investigating the mechanics of earthquakes using macroscopic seismic parameters

    Science.gov (United States)

    Venkataraman, Anupama

    2002-09-01

    To understand the physics of earthquake rupture mechanics, we have to relate seismologically observable parameters to the dynamics of faulting. One of the key seismological parameters that will help us achieve this objective is the energy radiated by seismic waves. In this work, we develop a new method of estimating radiated energy from regional data using an empirical Green's function method; we also modify existing methods of estimating radiated energy from teleseismic data by improving the corrections applied to the observed seismic data for attenuation and directivity effects. We compute teleseismic estimates of radiated energy for 23 large subduction zone earthquakes recorded between 1992 and 2001; most of these earthquakes have a magnitude Mw > 7.5, but we also include some smaller (Mw ˜ 6.7) well-studied subduction zone earthquakes and 6 crustal earthquakes. We compile the static stress drop estimates for these 29 earthquakes from published literature. We then determine radiation efficiency of these earthquakes using a stress relaxation model that relates measurable and macroscopic seismological parameters to the physical processes on the fault zone via fracture energy. We also determine the rupture velocity of these earthquakes from published literature. A comparison of radiation efficiencies and rupture velocities of these earthquakes with the expected theoretical values for different modes crack propagation validates the use of the stress relaxation model to understand earthquake rupture mechanics. From our calculations, we observe that most earthquakes have radiation efficiencies between 0.25 and 1 and are hence efficient in generating seismic waves, but tsunami earthquakes and two deep earthquakes, the 1994 deep earthquake that occurred in Bolivia and the 1999 Russia-China border earthquake, have very small radiation efficiencies (<0.25) and hence dissipate a large amount of energy on the fault plane. We suggest that the difference in the radiation

  2. Boundary Shear Acceleration in the Jet of MKN501

    CERN Document Server

    Sahayanathan, S

    2009-01-01

    The high resolution image of the jet of the BL Lac object MKN501 in radio, show a limb-brightened feature. An explanation of this feature as an outcome of differential Doppler boosting of jet spine and jet boundary due to transverse velocity structure of the jet requires large viewing angle. However this inference contradicts with the constraints derived from the high energy $\\gamma$-ray studies unless the jets bends over a large angle immediately after the $\\gamma$-ray zone (close to the central engine). In this letter we propose an alternate explanation to the limb-brightened feature of MKN501 by considering the diffusion of electrons accelerated at the boundary shear layer into the jet medium and this consideration does not require large viewing angle. Also the observed difference in the spectral index at the jet boundary and jet spine can be understood within the frame work of shear acceleration.

  3. Connecting grain-scale physics to macroscopic granular flow behavior using discrete contact-dynamics simulations, centrifuge experiments, and continuum modeling

    Science.gov (United States)

    Reitz, Meredith; Stark, Colin; Hung, Chi-Yao; Smith, Breannan; Grinspin, Eitan; Capart, Herve; Li, Liming; Crone, Timothy; Hsu, Leslie; Ling, Hoe

    2014-05-01

    A complete theoretical understanding of geophysical granular flow is essential to the reliable assessment of landslide and debris flow hazard and for the design of mitigation strategies, but several key challenges remain. Perhaps the most basic is a general treatment of the processes of internal energy dissipation, which dictate the runout velocity and the shape and scale of the affected area. Currently, dissipation is best described by macroscopic, empirical friction coefficients only indirectly related to the grain-scale physics. Another challenge is describing the forces exerted at the boundaries of the flow, which dictate the entrainment of further debris and the erosion of cohesive surfaces. While the granular effects on these boundary forces have been shown to be large compared to predictions from continuum approximations, the link between granular effects and erosion or entrainment rates has not been settled. Here we present preliminary results of a multi-disciplinary study aimed at improving our understanding of granular flow energy dissipation and boundary forces, through an effort to connect grain-scale physics to macroscopic behaviors. Insights into grain-scale force distributions and energy dissipation mechanisms are derived from discrete contact-dynamics simulations. Macroscopic erosion and flow behaviors are documented from a series of granular flow experiments, in which a rotating drum half-filled with grains is placed within a centrifuge payload, in order to drive effective gravity levels up to ~100g and approach the forces present in natural systems. A continuum equation is used to characterize the flowing layer depth and velocity resulting from the force balance between the down-slope pull of gravity and the friction at the walls. In this presentation we will focus on the effect of granular-specific physics such as force chain networks and grain-grain collisions, derived from the contact dynamics simulations. We will describe our efforts to

  4. The twin paradox with macroscopic clocks in superconducting circuits

    CERN Document Server

    Lindkvist, Joel; Fuentes, Ivette; Dragan, Andrzej; Svensson, Ida-Maria; Delsing, Per; Johansson, Göran

    2014-01-01

    Time dilation, a striking prediction of Einstein's relativity, plays an important role in applications such as the Global Positioning System. One of the most compelling consequences of time dilation is known as the twin paradox, where a twin at rest ages more than her sibling travelling at relativistic speeds. In this paper, we propose an implementation of the twin paradox in superconducting circuits with velocities as large as a few percent of the speed of light. Ultrafast modulation of the boundary conditions for the electromagnetic field in a microwave cavity simulates a clock moving at relativistic speeds. While previous demonstrations of this effect involve point-like clocks, our superconducting cavity has a finite length, allowing us to investigate the role of clock size as well as interesting quantum effects on time dilation. In particular, our theoretical results show that the travelling twin ages slower for larger cavity lengths and that quantum particle creation, known in this context as the dynamic...

  5. Characterizations of boundary pluripolar hulls

    NARCIS (Netherlands)

    Djire, I.K.; Wiegerinck, J.

    2016-01-01

    We present some basic properties of the so-called boundary relative extremal function and discuss boundary pluripolar sets and boundary pluripolar hulls. We show that for B-regular domains the boundary pluripolar hull is always trivial on the boundary of the domain and present a “boundary version” o

  6. Characterizations of boundary pluripolar hulls

    NARCIS (Netherlands)

    Djire, I.K.; Wiegerinck, J.

    2016-01-01

    We present some basic properties of the so-called boundary relative extremal function and discuss boundary pluripolar sets and boundary pluripolar hulls. We show that for B-regular domains the boundary pluripolar hull is always trivial on the boundary of the domain and present a “boundary version” o

  7. BoundaryOther_BNDHASH

    Data.gov (United States)

    Vermont Center for Geographic Information — The BNDHASH dataset depicts Vermont villages, towns, counties, Regional Planning Commissions (RPC), and LEPC (Local Emergency Planning Committee) boundaries. It is a...

  8. Correlating the Local Defect-Level Density with the Macroscopic Composition and Energetics of Chalcopyrite Thin-Film Surfaces.

    Science.gov (United States)

    Bröker, Sebastian; Kück, Dennis; Timmer, Alexander; Lauermann, Iver; Ümsür, Bünyamin; Greiner, Dieter; Kaufmann, Christian A; Mönig, Harry

    2015-06-17

    The unusual defect chemistry of polycrystalline Cu(In,Ga)Se2 (CIGSe) thin films is a main issue for a profound understanding of recombination losses in chalcopyrite thin-film solar cells. Especially, impurity-driven passivation of electronic levels due to point defects segregating at the surface and at grain boundaries is extensively debated. By combining current imaging tunneling spectroscopy with photoelectron spectroscopy, the local defect-level density and unusual optoelectronic grain-boundary properties of this material are correlated with the macroscopic energy levels and surface composition. Vacuum annealing of different CIGSe materials provides evidence that Na diffusion from the glass substrate does not affect the surface defect passivation or grain-boundary properties of standard Cu-poor materials. Furthermore, we find no major impact on the observed thermally activated dipole compensation or the accompanying change in surface band bending (up to 0.6 eV) due to Na. In contrast, Cu-rich CIGSe shows an opposing surface defect chemistry with only minor heat-induced band bending. Our results lead to a comprehensive picture, where the highly desirable type inversion at the p/n interface in standard chalcopyrite thin-film solar cells is dominated by band bending within the CIGSe absorber rather than the result of Na impurities or an n-type defect phase segregating at the interface. This is in accordance with recent studies suggesting a surface reconstruction as the origin for Cu depletion and band-gap widening at the surface of chalcopyrite thin films.

  9. Three-dimensional Fe3O4-graphene macroscopic composites for arsenic and arsenate removal.

    Science.gov (United States)

    Guo, Liangqia; Ye, Peirong; Wang, Jing; Fu, Fengfu; Wu, Zujian

    2015-11-15

    3D graphene macroscopic gel synthesized via self-assembly of GO nanosheets under basic conditions at low temperature is modified with polydopamine and Fe3O4 nanoparticles. The modification of polydopamine can not only strengthen the 3D graphene-based macroscopic architecture but also enhance the loadage and binding ability of Fe3O4 nanoparticles. The synthesized 3D Fe3O4-graphene macroscopic composites are characterized by SEM, XRD, XPS, BET, Raman and magnetic property and used as a versatile adsorbent for sub-ppm concentration of As(III) and As(V) removal from aqueous solutions. The experimental results suggest that the synthesized 3D Fe3O4-graphene macroscopic composites are promising for treating low concentration of arsenic contaminated water. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Hydrodynamic description of (visco)elastic composite materials and relative strains as a new macroscopic variable

    CERN Document Server

    Menzel, Andreas M

    2016-01-01

    One possibility to adjust material properties to a specific need is to embed units of one substance into a matrix of another substance. Even materials that are readily tunable during operation can be generated in this way. In (visco)elastic substances, both the matrix material as well as the inclusions and/or their immediate environment can be dynamically deformed. If the typical dynamic response time of the inclusions and their surroundings approach the macroscopic response time, their deformation processes need to be included into a dynamic macroscopic characterization. Along these lines, we present a hydrodynamic description of (visco)elastic composite materials. For this purpose, additional strain variables reflect the state of the inclusions and their immediate environment. These additional strain variables in general are not set by a coarse-grained macroscopic displacement field. Apart from that, during our derivation, we also include the macroscopic variables of relative translations and relative rotat...

  11. Generating giant and tunable nonlinearity in a macroscopic mechanical resonator from a single chemical bond

    Science.gov (United States)

    Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng

    2016-05-01

    Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m-3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.

  12. The Influence of Convergence Movement on Turbulent Transportation in the Atmospheric Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    胡隐樵; 左洪超

    2003-01-01

    Classical turbulent K closure theory of the atmospheric boundary layer assumes that the verticalturbulent transport flux of any macroscopic quantity is equivalent to that quantity's vertical gradienttransport flux. But a cross coupling between the thermodynamic processes and the dynamic processesin the atmospheric system is demonstrated based on the Curier-Prigogine principle of cross coupling oflinear thermodynamics. The vertical turbulent transportation of energy and substance in the atmosphericboundary layer is related not only to their macroscopic gradient but also to the convergence and the di-vergence movement. The transportation of the convergence or divergence movement is important for theatmospheric boundary layer of the heterogeneous underlying surface and the convection boundary layer.Based on this, the turbulent transportatiou in the atmospheric boundary layer, the energy budget of theheterogeneous underlying surface and the convection boundary layer, and the boundary layer parameteri-zation of land surface processes over the heterogeneous underlying surface are studied. This research offersclues not only for establishing the atmospheric boundary layer theory about the heterogeneous underlyingsurface, but also for overcoming the difficulties encountered recently in the application of the atmosphericboundary layer theory.

  13. Polyelectrolyte surfactant aggregates and their deposition on macroscopic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Voisin, David

    2002-07-01

    the CSC have been determined for mixtures of cationically modified guar gums (of varying charge density) with two anionic surfactants: sodium lauryl (or dodecyl) ether sulfate [SLES] and sodium dodecyl sulfate [SDS], for various concentrations of the polyelectrolyte and added sodium chloride, at room temperature. The addition of sodium chloride has only a minor net effect on the CFC, but increases the CSC significantly. The interactions between the cationic polyelectrolyte and the surfactant have been studied in the one-phase regions, i.e. below the CFC and above the CSC, using different techniques. Surface tension, electrophoresis, light scattering and viscosimetry have been employed. In the two-phase region, the sedimented floe phase has been analysed and the flocculation has been investigated. Rheology of the floe phase has been studied, after a mild compression by centrifugation. The initial rate of flocculation has been determined, using stop-flow equipment. The growth and the structure of the flocs have been investigated by light scattering. The open-network flocs of polyelectrolyte-surfactant particles grow to {approx}10's {mu}m in size, prior to their eventual settling out. Other colloidal particles can be trapped within these large flocs, and the flocs can be used to transport these particles to a macroscopic surface. The deposition and the removal of such composite flocs on glass surfaces, under flow, have been studied using a flow cell device coupled with an optical microscope. Scanning electron microscopy and atomic force microscopy have also been employed. (author)

  14. Macroscopic characterization of cell electroporation in biological tissue based on electrical measurements

    Science.gov (United States)

    Cima, Lionel F.; Mir, Lluis M.

    2004-11-01

    A method is described to experimentally determine the temporal evolution of state variables involved in the electroporation of biological tissue, i.e., the transmembrane voltage and the macroscopic current flowing in the electropores. Indeed, the electrical parameters of the extracellular, intracellular, and unaltered membrane contributions as well as the electropores electrical characteristics can be deduced from the measurement of the tissue bioimpedance and from the variations of both the macroscopic voltage applied to the tissue and the delivered current.

  15. Review to better understand the macroscopic subtypes and histogenesis of intrahepatic cholangiocarcinoma

    Institute of Scientific and Technical Information of China (English)

    Yuichi; Sanada; Yujo; Kawashita; Satomi; Okada; Takashi; Azuma; Shigetoshi; Matsuo

    2014-01-01

    Intrahepatic cholangiocarcinoma is macroscopically classified into three subtypes, mass-forming-type, periductal infiltrating-type, and intraductal growth-type. Each subtype should be preoperatively differentiated to perform the valid surgical resection. Recent researches have revealed the clinical, radiologic, pathobiological characteristics of each subtype. We reviewed recently published studies covering various aspects of intrahepatic cholangiocarcinoma(ICC), focusing especially on the macroscopic subtypes and stem cell features to better understand the pathophysiology of ICC and to establish the valid therapeutic strategy.

  16. Critical Current in YBCO Coated Conductors in the Presence of a Macroscopic Defect (POSTPRINT)

    Science.gov (United States)

    2010-03-01

    AFRL-RZ-WP-TP-2010-2084 CRITICAL CURRENT IN YBCO COATED CONDUCTORS IN THE PRESENCE OF A MACROSCOPIC DEFECT (POSTPRINT) Milan Polak and...CRITICAL CURRENT IN YBCO COATED CONDUCTORS IN THE PRESENCE OF A MACROSCOPIC DEFECT (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c...display, or disclose the work. 14. ABSTRACT We have studied the effects of localized defects in the YBCO coated conductors on the critical current. The

  17. Hysteresis during contact angles measurement.

    Science.gov (United States)

    Diaz, M Elena; Fuentes, Javier; Cerro, Ramon L; Savage, Michael D

    2010-03-15

    A theory, based on the presence of an adsorbed film in the vicinity of the triple contact line, provides a molecular interpretation of intrinsic hysteresis during the measurement of static contact angles. Static contact angles are measured by placing a sessile drop on top of a flat solid surface. If the solid surface has not been previously in contact with a vapor phase saturated with the molecules of the liquid phase, the solid surface is free of adsorbed liquid molecules. In the absence of an adsorbed film, molecular forces configure an advancing contact angle larger than the static contact angle. After some time, due to an evaporation/adsorption process, the interface of the drop coexists with an adsorbed film of liquid molecules as part of the equilibrium configuration, denoted as the static contact angle. This equilibrium configuration is metastable because the droplet has a larger vapor pressure than the surrounding flat film. As the drop evaporates, the vapor/liquid interface contracts and the apparent contact line moves towards the center of the drop. During this process, the film left behind is thicker than the adsorbed film and molecular attraction results in a receding contact angle, smaller than the equilibrium contact angle.

  18. Determination of the Contact Angle Based on the Casimir Effect

    Science.gov (United States)

    Mazuruk, K.; Volz, M. P.

    2015-01-01

    In several crystal growth processed based on capillarity, a melt comes into contact with a crucible wall at an angle defined as the contact angle. For molten metals and semiconductors, this contact angle is dependent upon both the crucible and melt material and typical values fall in the range 80-170deg. However, on a microscopic scale, there does not exist a precise and sharp contact angle but rather the melt and solid surfaces merge smoothly and continuously over a distance of up to several micrometers. Accurate modeling requires a more advanced treatment of this interaction. The interaction between the melt and solid surfaces can be calculated by considering two forces: a short-range repulsive force and a longer range (up to a few micrometers) Casimir force. The Casimir force between the two bodies of complex geometry is calculated using a retarded temperature Green's function (Matsubara type) for the photon in the medium. The governing equations are cast in the form of a set of boundary integral equations which are then solved numerically for the case of molten Ge on SiO2. The shape of the molten surface approaching the flat solid body is determined, and the contact angle is defined as the angle between the two surfaces at the microscopically asymptotic distance of 1-2 micrometers. The formulation of this model and the results of the numerical calculations will be presented and discussed.

  19. Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method

    Science.gov (United States)

    Nguyen, Van-Dung; Wu, Ling; Noels, Ludovic

    2017-03-01

    This work provides a unified treatment of arbitrary kinds of microscopic boundary conditions usually considered in the multi-scale computational homogenization method for nonlinear multi-physics problems. An efficient procedure is developed to enforce the multi-point linear constraints arising from the microscopic boundary condition either by the direct constraint elimination or by the Lagrange multiplier elimination methods. The macroscopic tangent operators are computed in an efficient way from a multiple right hand sides linear system whose left hand side matrix is the stiffness matrix of the microscopic linearized system at the converged solution. The number of vectors at the right hand side is equal to the number of the macroscopic kinematic variables used to formulate the microscopic boundary condition. As the resolution of the microscopic linearized system often follows a direct factorization procedure, the computation of the macroscopic tangent operators is then performed using this factorized matrix at a reduced computational time.

  20. Generalized Supersymetric Boundary State

    CERN Document Server

    Hashimoto, K

    2000-01-01

    Following our previous paper (hep-th/9909027), we generalize a supersymmetric boundary state so that arbitrary configuration of the gauge field coupled to the boundary of the worldsheet is incorpolated. This generalized boundary state is BRST invariant and satisfy the non-linear boundary conditions with non-constant gauge field strength. This boundary state contains divergence which is identical with the loop divergence in a superstring sigma model. Hence vanishing of the beta function in the superstring sigma model corresponds to a well-defined boundary state with no divergence. The coupling of a single closed superstring massless mode with multiple open string massless modes is encoded in the boundary state, and we confirm that derivative correction to the D-brane action in this sector vanishes up to the first non-trivial order O(alpha'(derivative)^2). Combining T-dualities, we incorpolate also general configurations of the scalar fields on the D-brane, and construct boundary states representing branes stuc...

  1. Emergence of Macroscopic Transport Barriers from Staircase Structures

    Science.gov (United States)

    Ashourvan, Arash; Diamond, Patrick H.

    2016-10-01

    A theory is presented for the formation and evolution of coupled density staircases (SC) and zonal shear profiles in a simple model of drift-wave turbulence. Density, vorticity and fluctuation potential enstrophy are the fields evolved for this system. Formation of SC structures is due to inhomogeneous mixing of generalized potential vorticity (PV), resulting in the sharpening of density and vorticity gradients in some regions and weakening them in others. The positive feedback which drives SC formation is implemented via a Rhines scale dependent mixing length. When PV gradients steepen, the density SC structure develops into a lattice of mesoscale `jumps', and `steps', which are respectively, regions of local gradient steepening and flattening. The jumps merge and migrate in radius, leading to the development of macroscale profile structures from mesoscale elements. Furthermore, depending on the sources and boundary conditions, either a region of enhanced confinement, or a region with strong turbulence can form at the edge. We present extensive studies of bifurcation physics of the global state, including results on the flux-gradient landscapes. This model is the first to demonstrate how mesoscale condensation of SCs leads to global states of enhanced confinement. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Numbers DE-FG02-04ER54738 and DE-SC0008378.

  2. Biphasic flow: structure and upscaling, consequences on macroscopic transport properties

    CERN Document Server

    Toussaint, Renaud; Méheust, Yves; Løvoll, Grunde; Jankov, Mihailo; Schäfer, Gerhard; Schmittbuhl, Jean

    2012-01-01

    In disordered porous media, two-phase flow of immiscible fluids (biphasic flow) is organized in patterns that sometimes exhibit fractal geometries over a range of length scales, depending on the capillary, gravitational and viscous forces at play. These forces, as well as the boundary conditions, also determine whether the flow leads to the appearance of fingering pathways, i.e., unstable flow, or not. We present here a short review of these aspects, focusing on drainage and summarizing when these flows are expected to be stable or not, what fractal dimensions can be expected, and in which range of scales. We base our review on experimental studies performed in two-dimensional Hele-Shaw cells, or addressing three dimensional porous media by use of several imaging techniques. We first present configurations in which solely capillary forces and gravity play a role. Next, we review configurations in which capillarity and viscosity are the main forces at play. Eventually, we examine how the microscopic geometry o...

  3. Renormalized Volumes with Boundary

    CERN Document Server

    Gover, A Rod

    2016-01-01

    We develop a general regulated volume expansion for the volume of a manifold with boundary whose measure is suitably singular along a separating hypersurface. The expansion is shown to have a regulator independent anomaly term and a renormalized volume term given by the primitive of an associated anomaly operator. These results apply to a wide range of structures. We detail applications in the setting of measures derived from a conformally singular metric. In particular, we show that the anomaly generates invariant (Q-curvature, transgression)-type pairs for hypersurfaces with boundary. For the special case of anomalies coming from the volume enclosed by a minimal hypersurface ending on the boundary of a Poincare--Einstein structure, this result recovers Branson's Q-curvature and corresponding transgression. When the singular metric solves a boundary version of the constant scalar curvature Yamabe problem, the anomaly gives generalized Willmore energy functionals for hypersurfaces with boundary. Our approach ...

  4. The ULF wave foreshock boundary: Cluster observations

    Science.gov (United States)

    Andres, N.; Meziane, K.; Mazelle, C. X.; Bertucci, C.; Gomez, D. O.

    2013-12-01

    In the upstream region of the bow shock, the interaction of backstreaming ions with the incoming solar wind gives rise to a number of plasma instabilities from which ultra-low frequency (ULF) waves can grow. Due to the finite growth rate, it is expected that the region of ULF wave activity is spatially localized in the ion foreshock. Observational evidence of the ULF wave foreshock boundary has accumulated over the last three decades. Among other things, it has been shown that the geometrical characteristics of the boundary are very sensitive to the interplanetary magnetic field (IMF) cone angle. In the present work, we aimed at revisiting the properties of the ULF wave foreshock boundary. For this purpose, we use the first three years of magnetic field data from the flux gate magnetometer (FGM), and the plasma densities and velocities from the hot ion analyzer (HIA) low-geometry factor side on board RUMBA (SC 1). We use a specific and accurate criterion for the determination of boundary crossings, and a 3-D structure bow shock model to reconstruct the foreshock geometry. In particular, our criterion is used to qualitatively measure the differences between the magnetic field in the wave and no-wave zones, taking into account possible rotations of the IMF. A new identification of the ULF wave foreshock boundary is presented and it is compared with previous results reported in the literature as well as with theoretical predictions.

  5. Two Comments on Bond Angles

    Science.gov (United States)

    Glaister, P.

    1997-09-01

    Tetrahedral Bond Angle from Elementary Trigonometry The alternative approach of using the scalar (or dot) product of vectors enables the determination of the bond angle in a tetrahedral molecule in a simple way. There is, of course, an even more straightforward derivation suitable for students who are unfamiliar with vectors, or products thereof, but who do know some elementary trigonometry. The starting point is the figure showing triangle OAB. The point O is the center of a cube, and A and B are at opposite corners of a face of that cube in which fits a regular tetrahedron. The required bond angle alpha = AÔB; and using Pythagoras' theorem, AB = 2(square root 2) is the diagonal of a face of the cube. Hence from right-angled triangle OEB, tan(alpha/2) = (square root 2) and therefore alpha = 2tan-1(square root 2) is approx. 109° 28' (see Fig. 1).

  6. Oriented angles in affine space

    Directory of Open Access Journals (Sweden)

    Włodzimierz Waliszewski

    2004-05-01

    Full Text Available The concept of a smooth oriented angle in an arbitrary affine space is introduced. This concept is based on a kinematics concept of a run. Also, a concept of an oriented angle in such a space is considered. Next, it is shown that the adequacy of these concepts holds if and only if the affine space, in question, is of dimension 2 or 1.

  7. Contact angle hysteresis of cylindrical drops on chemically heterogeneous striped surfaces.

    Science.gov (United States)

    Iwamatsu, Masao

    2006-05-15

    Contact angle hysteresis of a macroscopic droplet on a heterogeneous but flat substrate is studied using the interface displacement model. First, the apparent contact angle of a droplet on a heterogeneous surface under the condition of constant volume is considered. By assuming a cylindrical liquid-vapor surface (meniscus) and minimizing the total free energy, we derive an equation for the apparent contact angle, which is similar but different from the well-known Cassie's law. Next, using this modified Cassie's law as a guide to predict the behavior of a droplet on a heterogeneous striped surface, we examine several scenarios of contact angle hysteresis using a periodically striped surface model. By changing the volume of the droplet, we predict a sudden jump of the droplet edge, and a continuous change of the apparent contact angle at the edge of two stripes. Our results suggest that as drop volume is increased (advancing contact lines), the predominant drop configuration observed is the one whose contact angle is large; whereas, decreasing drop volume from a large value (receding contact lines) yields drop configuration that predominantly exhibit the smaller contact angle.

  8. Kapitza Resistance of the Grain Boundaries in Ceria

    Energy Technology Data Exchange (ETDEWEB)

    David Bai; Jian Gan; Aleksandr Chernatynskiy

    2014-06-01

    Thermal conductivity is one of the key performance metrics of the nuclear fuels. In electrical insulators, such as most ubiquitous nuclear fuel – UO2, thermal transport is due to phonons, or lattice waves. Their propagation is impeded by any lattice defect, such as impurities or vacancies, as well as larger microstructural features: grain boundaries, dislocations and pores/bubbles. Detailed description of the phonons interactions with these features is still lacking. In this work, we elucidate the dependence of the grain boundary thermal resistance, also known as a Kapitza resistance, on the type and misorientation angle of the grain boundary in model system of CeO2.

  9. Molecular dynamics simulations of the contact angle between water droplets and graphite surfaces

    CERN Document Server

    Sergi, Danilo; Ortona, Alberto

    2012-01-01

    Wetting is a widespread phenomenon, most prominent in a number of cases, both in nature and technology. Droplets of pure water with initial radius ranging from 20 to 80 [\\AA] spreading on graphitic surfaces are studied by molecular dynamics simulations. The equilibrium contact angle is determined and the transition to the macroscopic limit is discussed using Young equation in its modified form. While the largest droplets are almost perfectly spherical, the profiles of the smallest ones are no more properly described by a circle. For the sake of accuracy, we employ a more general fitting procedure based on local linear regressions. Furthermore, our results reveal that there is a possible transition to the macroscopic limit. The modified Young equation is particularly precise for characteristic lengths (radii and contact-line curvatures) around 40 [\\AA].

  10. Obliquity along plate boundaries

    Science.gov (United States)

    Philippon, Mélody; Corti, Giacomo

    2016-12-01

    Most of the plate boundaries are activated obliquely with respect to the direction of far field stresses, as roughly only 8% of the plate boundaries total length shows a very low obliquity (ranging from 0 to 10°, sub-orthogonal to the plate displacement). The obliquity along plate boundaries is controlled by (i) lateral rheological variations within the lithosphere and (ii) consistency with the global plate circuit. Indeed, plate tectonics and magmatism drive rheological changes within the lithosphere and consequently influence strain localization. Geodynamical evolution controls large-scale mantle convection and plate formation, consumption, and re-organization, thus triggering plate kinematics variations, and the adjustment and re-orientation of far field stresses. These geological processes may thus result in plate boundaries that are not perpendicular but oblique to the direction of far field stresses. This paper reviews the global patterns of obliquity along plate boundaries. Using GPlate, we provide a statistical analysis of present-day obliquity along plate boundaries. Within this framework, by comparing natural examples and geological models, we discuss deformation patterns and kinematics recorded along oblique plate boundaries.

  11. A mesoscopic model for microscale hydrodynamics and interfacial phenomena: Slip, films, and contact angle hysteresis

    CERN Document Server

    Colosqui, Carlos E; Papathanasiou, Athanasios G; Kevrekidis, Ioannis G

    2012-01-01

    We present a model based on the lattice Boltzmann equation that is suitable for the simulation of dynamic wetting. The model is capable of exhibiting fundamental interfacial phenomena such as weak adsorption of fluid on the solid substrate and the presence of a thin surface film within which a disjoining pressure acts. Dynamics in this surface film, tightly coupled with hydrodynamics in the fluid bulk, determine macroscopic properties of primary interest: the hydrodynamic slip; the equilibrium contact angle; and the static and dynamic hysteresis of the contact angles. The pseudo- potentials employed for fluid-solid interactions are composed of a repulsive core and an attractive tail that can be independently adjusted. This enables effective modification of the functional form of the disjoining pressure so that one can vary the static and dynamic hysteresis on surfaces that exhibit the same equilibrium contact angle. The modeled solid-fluid interface is diffuse, represented by a wall probability function which...

  12. Effect of contact angle hysteresis on the measurement of capillary forces.

    Science.gov (United States)

    De Souza, E J; Gao, L; McCarthy, T J; Arzt, E; Crosby, A J

    2008-02-19

    We conduct experimental investigations of macroscopic capillary forces between two flat rigid substrates characterized by their advancing and receding contact angles with water. Our results exhibit excellent agreement with theoretical predictions obtained by the numerical solution of the capillary equation. On the basis of this comparison, we use the measurements of the capillary force to investigate the phenomenon of contact angle hysteresis. We present examples of force measurements for surfaces that display low, moderate, and high contact angle hysteresis and compare results for a larger variety of substrates. Finally, we show that for the case of water, the role of viscosity is insignificant within the range of force and velocity measured in the present work.

  13. Drops on soft solids: Free energy and double transition of contact angles

    CERN Document Server

    Lubbers, Luuk A; Botto, Lorenzo; Das, Siddhartha; Andreotti, Bruno; Snoeijer, Jacco H

    2013-01-01

    The equilibrium shape of liquid drops on elastic substrates is determined by minimising elastic and capillary free energies. The problem is governed by three length scales: the size of the drop $R$, the molecular size $a$, and the ratio of surface tension to elastic modulus $\\gamma/E$. We show that the contact angles undergo two transitions upon changing the substrates from rigid to soft. The microscopic wetting angles deviate from Young's law when $\\gamma/Ea \\gg 1$, while the apparent macroscopic angle only changes in the very soft limit $\\gamma/ER \\gg 1$. Details of the elastic deformations are worked out in the simplifying case where the surface energy of the solid is assumed independent of the elastic strain. The total free energy is found to be lowest on softer substrates, consistent with recent experiments. Finally, we discuss how the variational framework can be generalized to properly account for surface stress.

  14. Boundary Conformal Field Theory

    CERN Document Server

    Cardy, J L

    2004-01-01

    Boundary conformal field theory (BCFT) is simply the study of conformal field theory (CFT) in domains with a boundary. It gains its significance because, in some ways, it is mathematically simpler: the algebraic and geometric structures of CFT appear in a more straightforward manner; and because it has important applications: in string theory in the physics of open strings and D-branes, and in condensed matter physics in boundary critical behavior and quantum impurity models. In this article, however, I describe the basic ideas from the point of view of quantum field theory, without regard to particular applications nor to any deeper mathematical formulations.

  15. The Semiotic and Conceptual Genesis of Angle

    Science.gov (United States)

    Tanguay, Denis; Venant, Fabienne

    2016-01-01

    In the present study, we try to understand how students at the end of primary school conceive of angle: Is an angle a magnitude for them or a geometric figure, and how do they manage to coordinate the two aspects in their understanding of the concepts of angle and of angle measurement? With the aim of better grasping the way "angle" is…

  16. Decoding low dihedral angles in gabbroic layered intrusions

    Science.gov (United States)

    Holness, M. B.; Humphreys, M.; Veksler, I. V.

    2010-12-01

    Texturally equilibrated rocks are granular with a unimodal grain size, smoothly curved grain boundaries, and angles at three-grain junctions of 110-140°. Gabbros are not texturally equilibrated: primocrysts commonly have planar faces whereas later-formed phases fill in the interstitial spaces. Augite-plagioclase-plagioclase dihedral angles (Θcpp) rarely attain the equilibrium value in gabbros and the population of disequilibrium angles preserves otherwise inaccessible information about rock history. The Θcpp population varies significantly between different basaltic bodies. In a rapidly cooled dolerite Θcpp has a low median (60-70°) and a high standard deviation (20-25°). The plagioclase-augite grain boundaries are generally planar. In more slowly cooled gabbros in layered intrusions, the angle populations have a higher median (80-110°) with a low standard deviation (10-15°). The plagioclase-augite grain boundaries are generally planar far from the triple junction, but curve within 10 microns of the junction. This curvature is commonly asymmetric. The angle population in solidified gabbros infiltrated by low-temperature melts is similar to that in dolerites, although the low angles are associated with cuspate interstitial grains. The dihedral angle is a function of both the original solidification process and subsequent high-temperature (melt-absent) grain boundary migration. Infilling of a melt pocket by overgrowth of the bounding solid phases necessitates supersaturation, and this is easier to attain for planar faces, resulting in inhibition of augite growth into pores bounded by planar plagioclase grains and an asymmetry of the initial augite-plag-plag junction. If the solidified gabbro is kept sufficiently hot these initial junction geometries can change during textural equilibration. In the Skaergaard, Rum and Bushveld intrusions, the median Θcpp varies with liquidus assemblage, increasing step-wise on the addition of a new liquidus phase. Locally

  17. The Mechanisms of Grain Boundaries - Slip Transmission, Migration, and Sliding

    Energy Technology Data Exchange (ETDEWEB)

    Briant, Clyde L.

    2005-03-02

    During the last eight years, we have worked on the general problems associated with grain boundaries in metals with DOE support. This final report summarizes the work that has been performed. At the start of this work, we took a much more atomistic approach to grain boundaries. However, as we performed this research it became clear that such approaches had the drawbacks listed above, and that we were not proceeding toward the more general understanding of grain boundaries that we have hoped to achieve. We then moved toward more macroscopic based experiments that we could use to understand the structure and motion of grain boundaries. From these we were able to begin deducing some of the most important results of this work and to provide information that can be used by others to understand the role of grain boundaries in materials. We thus present this report in a topical way and provide the experimental and theoretical underpinning that is needed at each point as we go forward.

  18. Thermal Equilibrium of a Macroscopic Quantum System in a Pure State

    Science.gov (United States)

    Goldstein, Sheldon; Huse, David A.; Lebowitz, Joel L.; Tumulka, Roderich

    2015-09-01

    We consider the notion of thermal equilibrium for an individual closed macroscopic quantum system in a pure state, i.e., described by a wave function. The macroscopic properties in thermal equilibrium of such a system, determined by its wave function, must be the same as those obtained from thermodynamics, e.g., spatial uniformity of temperature and chemical potential. When this is true we say that the system is in macroscopic thermal equilibrium (MATE). Such a system may, however, not be in microscopic thermal equilibrium (MITE). The latter requires that the reduced density matrices of small subsystems be close to those obtained from the microcanonical, equivalently the canonical, ensemble for the whole system. The distinction between MITE and MATE is particularly relevant for systems with many-body localization for which the energy eigenfuctions fail to be in MITE while necessarily most of them, but not all, are in MATE. We note, however, that for generic macroscopic systems, including those with MBL, most wave functions in an energy shell are in both MATE and MITE. For a classical macroscopic system, MATE holds for most phase points on the energy surface, but MITE fails to hold for any phase point.

  19. Shared care and boundaries:

    DEFF Research Database (Denmark)

    Winthereik, Brit Ross

    2008-01-01

    and technology studies. Findings – The paper shows how a version of “the responsible patient” emerges from the project which is different from the version envisioned by the project organisation. The emerging one is concerned with the boundary between primary and secondary sector care, and not with the boundary...... of healthcare in relation to IT design. Originality/value – The paper shows that “unshared” care does not exist; care is always shared among human and nonhuman actors. It also points to the value of studying how boundaries are enacted in projects that seek to create continuity across boundaries. Udgivelsesdato......Purpose – The paper seeks to examine how an online maternity record involving pregnant women worked as a means to create shared maternity care. Design/methodology/approach – Ethnographic techniques have been used. The paper adopts a theoretical/methodological framework based on science...

  20. FWS Approved Acquisition Boundaries

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This data layer depicts the external boundaries of lands and waters that are approved for acquisition by the U.S. Fish and Wildlife Service (USFWS) in North America,...

  1. FWS Approved Acquisition Boundaries

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This data layer depicts the external boundaries of lands and waters that are approved for acquisition by the U.S. Fish and Wildlife Service (USFWS) in North...

  2. VT Telephone Exchange Boundaries

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The UtilityTelecom_EXCHANGE represents Vermont Telephone Exchange boundaries as defined by the VT Public Service Board. The original data was...

  3. NM School District Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The dataset represents the boundaries of all public school districts in the state of New Mexico. The source for the data layer is the New Mexico Public Education...

  4. FWS Approved Acquisition Boundaries

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This data layer depicts the external boundaries of lands and waters that are approved for acquisition by the U.S. Fish and Wildlife Service (USFWS) in North America,...

  5. Tax Unit Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — The Statewide GIS Tax Unit boundary file was created through a collaborative partnership between the State of Kansas Department of Revenue Property Valuation...

  6. Watershed Boundary Areas

    Data.gov (United States)

    Department of Homeland Security — This map layer contains hydrologic unit boundaries and codes for the United States, Puerto Rico, and the U.S. Virgin Islands. It was revised for inclusion in the...

  7. HUC 8 Boundaries

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set is a digital hydrologic unit boundary that is at the 4-digit, 6-digit, 8-digit, and 11-digit level. The data set was developed by delineating the...

  8. Site Area Boundaries

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of site boundaries from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times and...

  9. The boundary l

    Directory of Open Access Journals (Sweden)

    Muhammad Naseer

    2014-09-01

    Full Text Available The present problem is the steady boundary layer flow and heat transfer of a hyperbolic tangent fluid flowing over a vertical exponentially stretching cylinder in its axial direction. After applying usual boundary layer with a suitable similarity transformation to the given partial differential equations and the boundary conditions, a system of coupled nonlinear ordinary differential equations is obtained. This system of ordinary differential equations subject to the boundary conditions is solved with the help of Runge–Kutta–Fehlberg method. The effects of the involved parameters such as Reynolds numbers, Prandtl numbers, Weissenberg numbers and the natural convection parameter are presented through the graphs. The associated physical properties on the flow and heat transfer characteristics that is the skin friction coefficient and Nusselt numbers are presented for different parameters.

  10. 500 Cities: City Boundaries

    Data.gov (United States)

    U.S. Department of Health & Human Services — This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities...

  11. Allegheny County Boundary

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains the Allegheny County boundary. If viewing this description on the Western Pennsylvania Regional Data Center’s open data portal...

  12. Allegheny County Parcel Boundaries

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains parcel boundaries attributed with county block and lot number. Use the Property Information Extractor for more control downloading a filtered...

  13. Site Area Boundaries

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of site boundaries from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times and...

  14. State Park Statutory Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — Legislative statutory boundaries for sixty six state parks, six state recreation areas, and eight state waysides. These data are derived principally from DNR's...

  15. National Forest Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — This theme shows the USFS national forest boundaries in the state. This data was acquired from the GIS coordinators at both the Chippewa National Forest and the...

  16. Minnesota County Boundaries

    Data.gov (United States)

    Minnesota Department of Natural Resources — Minnesota county boundaries derived from a combination of 1:24,000 scale PLS lines, 1:100,000 scale TIGER, 1:100,000 scale DLG, and 1:24,000 scale hydrography...

  17. Flow visualization of swept wing boundary layer transition

    NARCIS (Netherlands)

    Serpieri, J.; Kotsonis, M.

    2015-01-01

    In this work the flow visualization of the transition pattern occurring on a swept wing in a subsonic flow is presented. This is done by means of fluorescent oil flow technique and boundary layer hot-wire scans. The experiment was performed at Reynolds number of 2:15 . 106 and at angle of attack of

  18. VT Federal Aid Urban Boundaries

    Data.gov (United States)

    Vermont Center for Geographic Information — Federal Aid Urban boundaries are defined based on US Census data. The roadways within these boundaries have urban classifications. These FAU boundaries were updated...

  19. GRAI N-BOUNDARY DIFFUSION

    OpenAIRE

    Peterson, N.

    1982-01-01

    The more useful experimental techniques for determining grain-boundary diffusion are briefly described followed by a presentation of results that shed light on the models and mechanisms of grain-boundary and dislocation diffusion. Studies of the following grain-boundary diffusion phenomena will be considered ; anisotropy in grain-boundary diffusion, effect of orientation relationship on grain-boundary diffusion, effect of boundary type and dislocation dissociation, lattice structure, correlat...

  20. Lasing and macroscopic coherence of periodic 2D and 3D microstructures in organic microcavities (Conference Presentation)

    Science.gov (United States)

    Mischok, Andreas; Wagner, Tim; Brückner, Robert; Sudzius, Markas; Fröb, Hartmut; Lyssenko, Vadim G.; Leo, Karl

    2016-09-01

    Two of the most successful microresonator concepts are the vertical cavity surface emitting laser (VCSEL), comprising a vertical cavity of highly reflective DBRs sandwiching an active layer, and the distributed feedback (DFB) laser, where a periodic optical grating selects laser modes from an active waveguide (WG) layer. Here, an organic microcavity is coupled with in-plane periodic photonic wires or dots to facilitate a coherent interaction between waveguided and vertically emitting modes as well as creating an additional in-plane confinement. The vertical positioning of such patterning plays a crucial role in the observable features. While embedding metallic or dielectric wires directly in the cavity layer leads to a strong lateral confinement as well as the observation of photonic Bloch states [1,2], the deposition of the full VCSEL stack on top of a periodic grating reveals novel features. In such a device, we demonstrate the coherent coupling between parabolic VCSEL and linear WG modes in the angle-resolved far field emission. In this system, lasing occurs not only at the VCSEL parabola apex but also at points of hybridization, when the dispersion of modes cross, showing a drastically enhanced in-plane coherence [3]. The coherent coupling of two conceptually different devices with perpendicular propagation directions paired with the macroscopic coherence facilitate a multitude of new applications. [1] Adv. Opt. Mater. 2(8), 746 (2014) [2] Phys. Rev. Appl. 3, 064016 (2015). [3] Adv. Opt. Mater. under review (2016).

  1. Proposed stratigraphic nomenclature and macroscopic identification of lithostratigraphic units of the Paintbrush Group exposed at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Buesch, D.C.; Spengler, R.W.; Moyer, T.C.; Geslin, J.K.

    1996-09-01

    This paper describes the formations of the Paintbrush Group exposed at Yucca Mountain, Nevada, presents a detailed stratigraphic nomenclature for the Tiva Canyon and Topopah spring Tuffs, and discusses the criteria that define lithostratigraphic units. The Tiva Canyon and Topopah Spring Tuffs are divided into zones, subzones, and intervals on the basis of macroscopic features observed in surface exposures and borehole samples. Primary divisions reflect depositional and compositional zoning that is expressed by variations in crystal content, phenocryst assemblage, pumice content and composition, and lithic content. Secondary divisions define welding and crystlalization zones, depositional features, or fracture characteristics. Both formations are divided into crystal-rich and crystal-poor members that have an identical sequency of zones, although subzone designations vary slightly between the two units. The identified lithostratigraphic divisions can be used to approximate thermal-mechanical and hydrogeologic boundaries in the field. Linking these three systems of nomenclature provides a framework within which to correlate these properties through regions of sparse data.

  2. Frequency scaling for angle gathers

    KAUST Repository

    Zuberi, M. A H

    2014-01-01

    Angle gathers provide an extra dimension to analyze the velocity after migration. Space-shift and time shift-imaging conditions are two methods used to obtain angle gathers, but both are reasonably expensive. By scaling the time-lag axis of the time-shifted images, the computational cost of the time shift imaging condition can be considerably reduced. In imaging and more so Full waveform inversion, frequencydomain Helmholtz solvers are used more often to solve for the wavefields than conventional time domain extrapolators. In such cases, we do not need to extend the image, instead we scale the frequency axis of the frequency domain image to obtain the angle gathers more efficiently. Application on synthetic data demonstrate such features.

  3. Capillary Contact Angle in a Completely Wet Groove

    Science.gov (United States)

    Parry, A. O.; Malijevský, A.; Rascón, C.

    2014-10-01

    We consider the phase equilibria of a fluid confined in a deep capillary groove of width L with identical side walls and a bottom made of a different material. All walls are completely wet by the liquid. Using density functional theory and interfacial models, we show that the meniscus separating liquid and gas phases at two phase capillary coexistence meets the bottom capped end of the groove at a capillary contact angle θcap(L) which depends on the difference between the Hamaker constants. If the bottom wall has a weaker wall-fluid attraction than the side walls, then θcap>0 even though all the isolated walls are themselves completely wet. This alters the capillary condensation transition which is now first order; this would be continuous in a capped capillary made wholly of either type of material. We show that the capillary contact angle θcap(L) vanishes in two limits, corresponding to different capillary wetting transitions. These occur as the width (i) becomes macroscopically large, and (ii) is reduced to a microscopic value determined by the difference in Hamaker constants. This second wetting transition is characterized by large scale fluctuations and essential critical singularities arising from marginal interfacial interactions.

  4. Effects of macroscopic bulk defects on the damping behaviors of materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A large number of macroscopic pores or graphite particulates wereintroduced into commercially pure Al and ZA27 alloy by infiltration proces s to comparatively study the influence of macroscopic defects on the damping beh aviors of the materials. The mean diameter of the bulk defects is (1.0±0.5) mm, and the volume fractions of pores and graphite particulates are in the range of 50%—75% and 19%—94%, separately. It is shown that addition of a number of por es or graphite particulates can significantly improve the damping of commerciall y pure Al, due to the comprehensive effects of the macroscopic and microscopic d efects. However, the pores have little effect on the damping capacity of high da mping ZA27 alloy, and graphite particulates make the high temperature internal f riction peak decrease. It is considered that graphite particulates may repress t he intrinsic damping mechanism of ZA27 alloy.

  5. Microscopic and macroscopic theories for the dynamics of polar liquid crystals.

    Science.gov (United States)

    Wittkowski, Raphael; Löwen, Hartmut; Brand, Helmut R

    2011-10-01

    We derive and analyze the dynamic equations for polar liquid crystals in two spatial dimensions in the framework of classical dynamical density functional theory (DDFT). Translational density variations, polarization, and quadrupolar order are used as order-parameter fields. The results are critically compared with those obtained using the macroscopic approach of time-dependent Ginzburg-Landau (GL) equations for the analogous order-parameter fields. We demonstrate that, for both the microscopic DDFT and the macroscopic GL approach, the resulting dissipative dynamics can be derived from a dissipation function. We obtain microscopic expressions for all diagonal contributions and for many of the cross-coupling terms emerging from a GL approach. Thus, we establish a bridge between molecular correlations and macroscopic modeling for the dissipative dynamics of polar liquid crystals.

  6. The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers.

    Science.gov (United States)

    Gao, Yun; Liu, Lu-Qi; Zu, Sheng-Zhen; Peng, Ke; Zhou, Ding; Han, Bao-Hang; Zhang, Zhong

    2011-03-22

    High mechanical performances of macroscopic graphene oxide (GO) papers are attracting great interest owing to their merits of lightweight and multiple functionalities. However, the loading role of individual nanosheets and its effect on the mechanical properties of the macroscopic GO papers are not yet well understood. Herein, we effectively tailored the interlayer adhesions of the GO papers by introducing small molecules, that is, glutaraldehyde (GA) and water molecules, into the gallery regions. With the help of in situ Raman spectroscopy, we compared the varied load-reinforcing roles of nanosheets, and further predicted the Young's moduli of the GO papers. Systematic mechanical tests have proven that the enhancement of the tensile modulus and strength of the GA-treated GO paper arose from the improved load-bearing capability of the nanosheets. On the basis of Raman and macroscopic mechanical tests, the influences of interlayer adhesions on the fracture mechanisms of the strained GO papers were inferred.

  7. Mechanical Behaviour of Materials Volume 1 Micro- and Macroscopic Constitutive Behaviour

    CERN Document Server

    François, Dominique; Zaoui, André

    2012-01-01

    Advances in technology are demanding ever-increasing mastery over the materials being used: the challenge is to gain a better understanding of their behaviour, and more particularly of the relations between their microstructure and their macroscopic properties.   This work, of which this is the first volume, aims to provide the means by which this challenge may be met. Starting from the mechanics of deformation, it develops the laws governing macroscopic behaviour – expressed as the constitutive equations – always taking account of the physical phenomena which underlie rheological behaviour. The most recent developments are presented, in particular those concerning heterogeneous materials such as metallic alloys, polymers and composites. Each chapter is devoted to one of the major classes of material behaviour.   As the subtitles indicate, Volume 1 deals with micro- and macroscopic constitutive behaviour and Volume 2 with damage and fracture mechanics. A third volume will be devoted to exercises and the...

  8. On the macroscopic quantization in mesoscopic rings and single-electron devices

    Science.gov (United States)

    Semenov, Andrew G.

    2016-05-01

    In this letter we investigate the phenomenon of macroscopic quantization and consider particle on the ring interacting with the dissipative bath as an example. We demonstrate that even in presence of environment, there is macroscopically quantized observable which can take only integer values in the zero temperature limit. This fact follows from the total angular momentum conservation combined with momentum quantization for bare particle on the ring. The nontrivial thing is that the model under consideration, including the notion of quantized observable, can be mapped onto the Ambegaokar-Eckern-Schon model of the single-electron box (SEB). We evaluate SEB observable, originating after mapping, and reveal new physics, which follows from the macroscopic quantization phenomenon and the existence of additional conservation law. Some generalizations of the obtained results are also presented.

  9. Macroscopic extent of gastric mucosal atrophy: increased risk factor for esophageal squamous cell carcinoma in Japan

    Directory of Open Access Journals (Sweden)

    Kobayashi Noritoshi

    2009-05-01

    Full Text Available Abstract Background We aimed to estimate whether the macroscopic extent of gastric mucosal atrophy is associated with a risk for esophageal squamous cell carcinoma using a case-control study in Japanese subjects, a population known to have a high prevalence of CagA-positive H. pylori infection. Methods Two hundred and fifty-three patients who were diagnosed as having esophageal squamous cell carcinoma, and 253 sex- and age-matched controls were enrolled in the present study. The macroscopic extent of gastric mucosal atrophy was evaluated based on the Kimura and Takemoto Classification. A conditional logistic regression model with adjustment for potential confounding factors was used to assess the associations. Results Body gastritis, defined endoscopically, was independently associated with an increased risk for esophageal squamous cell carcinoma. Conclusion Our findings suggest that macroscopic body gastritis may be a risk factor for esophageal squamous cell carcinoma in Japan. Further studies are needed to confirm these findings.

  10. A strict experimental test of macroscopic realism in a superconducting flux qubit.

    Science.gov (United States)

    Knee, George C; Kakuyanagi, Kosuke; Yeh, Mao-Chuang; Matsuzaki, Yuichiro; Toida, Hiraku; Yamaguchi, Hiroshi; Saito, Shiro; Leggett, Anthony J; Munro, William J

    2016-11-04

    Macroscopic realism is the name for a class of modifications to quantum theory that allow macroscopic objects to be described in a measurement-independent manner, while largely preserving a fully quantum mechanical description of the microscopic world. Objective collapse theories are examples which aim to solve the quantum measurement problem through modified dynamical laws. Whether such theories describe nature, however, is not known. Here we describe and implement an experimental protocol capable of constraining theories of this class, that is more noise tolerant and conceptually transparent than the original Leggett-Garg test. We implement the protocol in a superconducting flux qubit, and rule out (by ∼84 s.d.) those theories which would deny coherent superpositions of 170 nA currents over a ∼10 ns timescale. Further, we address the 'clumsiness loophole' by determining classical disturbance with control experiments. Our results constitute strong evidence for the superposition of states of nontrivial macroscopic distinctness.

  11. Bouncing droplets: a classroom experiment to visualize wave-particle duality on the macroscopic level

    Science.gov (United States)

    Sleutel, Pascal; Dietrich, Erik; Van der Veen, Jan T.; van Joolingen, Wouter R.

    2016-09-01

    This study brings a recently discovered macroscopic phenomenon with wave-particle characteristics into the classroom. The system consists of a liquid droplet levitating over a vertically shaken liquid pool. The droplets allow visualization of a wave-particle system in a directly observable way. We show how to interpret this macroscopic phenomenon and how to set up and carry out this experiment. A class of students performed single slit diffraction experiments with droplets. By scoring individual droplet trajectories students find a diffraction pattern. This pilot application in the classroom shows that students can study and discuss the wave-particle nature of the bouncing droplet experiment. The experiment therefore provides a useful opportunity to show wave-particle behavior on the macroscopic level.

  12. Correlations between Nanoindentation Hardness and Macroscopic Mechanical Properties in DP980 Steels

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Mark D.; Choi, Kyoo Sil; Sun, Xin; Matlock, David K.; Packard, Corrine; Xu, Le; Barlat, Frederic

    2014-03-01

    Multiphase advanced high strength steels (AHSS) are being increasingly used in the automotive industry due to their low cost, good availability and excellent combination of strength and ductility. There is a keen interest from the automotive and steel industry for more fundamental understandings on the key microstructure features influencing the macroscopic properties, i.e., tensile properties, hole-expansion ratio and localized formability of AHSS. In this study, the micro- and macro-level properties for eight commercial DP980 steels are first characterized and quantified with various experimental methods. Correlations between macroscopic-level properties and relationships between various micro- and macro- properties for these steels are then established based on the experimental measurements. It is found that, despite their differences in their chemistry, processing parameters and sheet thickness, the eight DP980 steels do have common microstructural level properties governing their specific macroscopic properties in terms of strength, elongation and hole expansion performance.

  13. Macroscopic quantum superposition of spin ensembles with ultra-long coherence times via superradiant masing

    CERN Document Server

    Jin, Liang; Wrachtrup, Jörg; Liu, Ren-Bao

    2014-01-01

    Macroscopic quantum phenomena such as lasers, Bose-Einstein condensates, superfluids, and superconductors are of great importance in foundations and applications of quantum mechanics. In particular, quantum superposition of a large number of spins in solids is highly desirable for both quantum information processing and ultrasensitive magnetometry. Spin ensembles in solids, however, have rather short collective coherence time (typically less than microseconds). Here we demonstrate that under realistic conditions it is possible to maintain macroscopic quantum superposition of a large spin ensemble (such as about ~10^{14} nitrogen-vacancy center electron spins in diamond) with an extremely long coherence time ~10^8 sec under readily accessible conditions. The scheme, following the mechanism of superradiant lasers, is based on superradiant masing due to coherent coupling between collective spin excitations (magnons) and microwave cavity photons. The coherence time of the macroscopic quantum superposition is the ...

  14. Ground testing of bioconvective variables such as morphological characterizations and mechanisms which regulate macroscopic patterns

    Science.gov (United States)

    Johnson, Adriel D.

    1992-01-01

    Conditions simulating low- and high-gravity, reveal changes in macroscopic pattern formation in selected microorganisms, but whether these structures are gravity dependent is not clear. Two theories have been identified in the fluid dynamics community which support macroscopic pattern formation. The first one is gravity dependent (fluid density models) where small concentrated regions of organisms sink unstably, and the second is gravity independent (wave reinforcement theory) where organisms align their movements in concert, such that either their swimming strokes beat in phase or their vortices entrain neighbors to follow parallel paths. Studies have shown that macroscopic pattern formation is consistent with the fluid density models for protozoa and algae and wave reinforcement hypothesis for caprine spermatozoa.

  15. Macroscopic effect of plasmon-driven high-order-harmonic generation

    Science.gov (United States)

    Wang, Feng; Liu, Weiwei; He, Lixin; Li, Liang; Wang, Baoning; Zhu, Xiaosong; Lan, Pengfei; Lu, Peixiang

    2017-09-01

    We present a numerical method to calculate the macroscopic harmonic spectrum generated from the gas-exposed nanostructure. This method includes the propagation of plasmonic and harmonic fields in the macroscopic medium as well as the response of the single atom exposed to plasmonic field. Based on the simulation, we demonstrate that the macroscopic harmonic yields drop dramatically in the high-energy region. This result well interprets the disagreement in the cutoff between the single-atom prediction and the experimental detection. Moreover, we also show that the harmonic cutoff difference induced by a π shift in carrier-envelope phase (CEP) of laser pulses depends sensitively on the spatial position. However, when the collective effect of plasmon-driven high-order-harmonic generation is considered, this cutoff difference is eliminated.

  16. Angle independent velocity spectrum determination

    DEFF Research Database (Denmark)

    2014-01-01

    An ultrasound imaging system (100) includes a transducer array (102) that emits an ultrasound beam and produces at least one transverse pulse-echo field that oscillates in a direction transverse to the emitted ultrasound beam and that receive echoes produced in response thereto and a spectral vel...... velocity estimator (110) that determines a velocity spectrum for flowing structure, which flows at an angle of 90 degrees and flows at angles less than 90 degrees with respect to the emitted ultrasound beam, based on the received echoes....

  17. Systematic variations in divergence angle

    CERN Document Server

    Okabe, Takuya

    2012-01-01

    Practical methods for quantitative analysis of radial and angular coordinates of leafy organs of vascular plants are presented and applied to published phyllotactic patterns of various real systems from young leaves on a shoot tip to florets on a flower head. The constancy of divergence angle is borne out with accuracy of less than a degree. It is shown that apparent fluctuations in divergence angle are in large part systematic variations caused by the invalid assumption of a fixed center and/or by secondary deformations, while random fluctuations are of minor importance.

  18. On reweighting for twisted boundary conditions

    CERN Document Server

    Bussone, Andrea; Hansen, Martin; Pica, Claudio

    2016-01-01

    We consider the possibility of using reweighting techniques in order to correct for the breaking of unitarity when twisted boundary conditions are imposed on valence fermions in simulations of lattice gauge theories. We start by studying the properties of reweighting factors and their variances at tree-level. That leads us to the introduction of a factorization for the fermionic reweighting determinant. In the numerical, stochastic, implementation of the method, we find that the effect of reweighting is negligible in the case of large volumes but it is sizeable when the volumes are small and the twisting angles are large. More importantly, we find that for un-improved Wilson fermions, and in small volumes, the dependence of the critical quark mass on the twisting angle is quite pronounced and results in large violations of the continuum dispersion relation.

  19. Multiscale Modeling of Grain-Boundary Fracture: Cohesive Zone Models Parameterized From Atomistic Simulations

    Science.gov (United States)

    Glaessgen, Edward H.; Saether, Erik; Phillips, Dawn R.; Yamakov, Vesselin

    2006-01-01

    A multiscale modeling strategy is developed to study grain boundary fracture in polycrystalline aluminum. Atomistic simulation is used to model fundamental nanoscale deformation and fracture mechanisms and to develop a constitutive relationship for separation along a grain boundary interface. The nanoscale constitutive relationship is then parameterized within a cohesive zone model to represent variations in grain boundary properties. These variations arise from the presence of vacancies, intersticies, and other defects in addition to deviations in grain boundary angle from the baseline configuration considered in the molecular dynamics simulation. The parameterized cohesive zone models are then used to model grain boundaries within finite element analyses of aluminum polycrystals.

  20. Crystallographic Characteristics of Grain Boundaries in Dense Yttria-Stabilized Zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Lam Helmick; Shen J. Dillon; Kirk Gerdes; Randall Gemmen; Gregory S. Rohrer; Sridhar Seetharaman; Paul A. Salvador

    2010-04-01

    Grain-boundary plane, misorientation angle, grain size, and grain-boundary energy distributions were quantified using electron backscatter diffraction data for dense polycrystalline yttria-stabilized zirconia, to understand interfacial crystallography in solid oxide fuel cells. Tape-cast samples were sintered at 14501C for 4 h and annealed for at least 100 h between 8001C and 16501C. Distributions obtained from both three-dimensional (3D) reconstructions and stereological analyses of 2D sections demonstrated that the (100) boundary planes {(111)} have relative areas larger {smaller} than expected in a random distribution, and that the boundary plane distribution is inversely correlated to the boundary energy distribution.