WorldWideScience

Sample records for macros including egfr

  1. Permeability of Granite Including Macro-Fracture Naturally Filled with Fine-Grained Minerals

    Science.gov (United States)

    Nara, Yoshitaka; Kato, Masaji; Niri, Ryuhei; Kohno, Masanori; Sato, Toshinori; Fukuda, Daisuke; Sato, Tsutomu; Takahashi, Manabu

    2018-03-01

    Information on the permeability of rock is essential for various geoengineering projects, such as geological disposal of radioactive wastes, hydrocarbon extraction, and natural hazard risk mitigation. It is especially important to investigate how fractures and pores influence the physical and transport properties of rock. Infiltration of groundwater through the damage zone fills fractures in granite with fine-grained minerals. However, the permeability of rock possessing a fracture naturally filled with fine-grained mineral grains has yet to be investigated. In this study, the permeabilities of granite samples, including a macro-fracture filled with clay and a mineral vein, are investigated. The permeability of granite with a fine-grained mineral vein agrees well with that of the intact sample, whereas the permeability of granite possessing a macro-fracture filled with clay is lower than that of the macro-fractured sample. The decrease in the permeability is due to the filling of fine-grained minerals and clay in the macro-fracture. It is concluded that the permeability of granite increases due to the existence of the fractures, but decreases upon filling them with fine-grained minerals.

  2. Phosphorylated EGFR expression may predict outcome of EGFR-TKIs therapy for the advanced NSCLC patients with wild-type EGFR

    Directory of Open Access Journals (Sweden)

    Wang Fen

    2012-08-01

    Full Text Available Abstract Background EGFR mutation is a strong predictive factor of EGFR-TKIs therapy. However, at least 10% of patients with EGFR wild-type are responsive to TKIs, suggesting that other determinants of outcome besides EGFR mutation might exist. We hypothesized that activation of phosphorylated EGFR could be a potential predictive biomarker to EGFR-TKIs treatment among patients in wild-type EGFR. Method Total of 205 stage IIIb and IV NSCLC patients, tissue samples of whom were available for molecular analysis, were enrolled in this study. The phosphorylation of EGFR at tyrosine 1068 (pTyr1068 and 1173 (pTyr1173 were assessed by immunohistochemistry, and EGFR mutations were detected by denaturing high performance liquid chromatograph (DHPLC. Results Among 205 patients assessable for EGFR mutation and phosphorylation analysis, 92 (44.9% were EGFR mutant and 165 patients (57.6% had pTyr1173 expression. Superior progression-free survival (PFS was seen after EGFR-TKIs therapy in patients with pTyr1068 expression compared to pTyr1068 negative ones (median PFS 7.0 months vs. 1.2 months, P P = 0.016. In subgroup of patients with wild-type EGFR, pTyr1068 expression positive ones had a significantly prolonged PFS (4.2 months vs.1.2 months P  Conclusion pTyr1068 may be a predictive biomarker for screening the population for clinical response to EGFR-TKIs treatment; especially for patients with wild-type EGFR.

  3. A protein diet score, including plant and animal protein, investigating the association with HbA1c and eGFR - the PREVIEW project

    DEFF Research Database (Denmark)

    Møller, Grith; Sluik, Diewertje; Ritz, Christian

    2017-01-01

    with glycated haemoglobin (HbA1c) and estimated glomerular filtration rate (eGFR). Analyses were based on three population studies included in the PREVIEW project (PREVention of diabetes through lifestyle Intervention and population studies in Europe and around the World): NQplus, Lifelines, and the Young Finns.......02 ± 0.01 mmol/mol, p eGFR in Lifelines (slope 0.17 ± 0.02 mL/min/1.73 m², p

  4. Association between BIM deletion polymorphism and clinical outcome of EGFR-mutated NSCLC patient with EGFR-TKI therapy: A meta-analysis.

    Science.gov (United States)

    Ma, Ji-Yong; Yan, Hai-Jun; Gu, Wei

    2015-01-01

    BIM deletion polymorphism was deemed to be associated with downregulation of BIM, resulting in a decreased apoptosis induced by epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) in EGFR mutation-positive non-small cell lung cancer (NSCLC). However, accumulating evidences concerning the association between BIM deletion polymorphism and efficacy of EGFR-TKI and survival in EGFR-mutation-driven NSCLC patient reported contradictory results. A meta-analysis was conducted by combing six original eligible studies including 871 NSCLC patients. Our study showed that BIM deletion polymorphism was significantly associated with poor response to EGFR-TKI therapy in mutant EGFRNSCLC patients (P(h) = 0.309, P(z) = 0.001, OR = 0.39, 95% confidence interval (CI) = 0.23-0.67). Disease control rate (DCR) in mutant EGFRNSCLC patient with treatment of EGFR-TKI was significantly decreased in patients with BIM deletion polymorphism comparing to patients harbored BIM wild variant (P(h) = 0.583, P(Z) = 0.007, OR = 0.46, 95%CI = 0.25-0.85). EGFR mutation-derived NSCLC patient carrying BIM deletion polymorphism had a shorter progression-free survival (PFS; P(h) deletion polymorphism might be a cause that contributes to primary EGFR-TKI resistance, and it could be used as a genetic predictor for EGFR-TKI outcome and an independent prognostic factor of EGFR mutation-driven NSCLC patient.

  5. EGFR T790M mutation after chemotherapy for small cell lung cancer transformation of EGFR-positive non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Tomoaki Sonoda

    Full Text Available In non-small cell lung cancer (NSCLC with an epidermal growth factor receptor (EGFR mutation, 50%–65% of cases acquire resistance after treatment with EGFR-tyrosine kinase inhibitors (EGFR-TKIs because of an EGFR T790M point mutation and 3%–14% of these cases transformed to small cell lung cancer (SCLC. Generally, the EGFR T790M secondary mutation develops with ongoing ATP competitive inhibition. We present a case of a 76-year-old woman with lung adenocarcinoma harboring an EGFR-L858R mutation who received first-line gefitinib and developed SCLC transformation. She was administered several chemotherapy agents, including a platinum doublet. The primary lesion that showed SCLC transformation had reconverted to adenocarcinoma with EGFR L858R and T790M mutations at the time of a second re-biopsy. Therefore, she was administered osimertinib, which resulted in clinical remission. This case suggested that serial biopsies are necessary even after SCLC transformation. Keywords: NSCLC, EGFR mutation, SCLC transformation, T790M, Osimertinib

  6. EGFR Mutation Status in Uighur Lung Adenocarcinoma Patients

    Directory of Open Access Journals (Sweden)

    Li SHAN

    2013-02-01

    Full Text Available Background and objective Epidermal growth factor receptor (EGFR, a transmembrane protein, is a member of the tyrosine kinase family. Gefitinib, an EGFR tyrosine-kinase inhibitors, has shown a high response rate in the treatment of lung cancer in patients with EGFR mutation. However, significant differences in EGFR mutations exist among different ethnic groups. The aim of this study is to investigate the prevalence of EGFR mutations in Uighur lung adenocarcinoma patients by using a rapid and sensitive detection method and to analyze EGFR mutation differences compared with Han lung adenocarcinoma patients. Methods We examined lung adenocarcinoma tissues from 138 patients, including 68 Uighur lung adenocarcinoma patients and 70 Han lung adenocarcinoma patients, for EGFR mutations in exons 18, 19, 20, and 21 by using the amplification refractory mutation system (ARMS PCR method. The mutation differences between Uighur and Han lung adenocarcinoma were compared by using the chi-square test method. Results EGFR mutations were detected in 43 (31.2% of the 138 lung adenocarcinoma patients. EGFR mutations were detected in 11 (16.2% of the 68 Uighur lung adenocarcinoma patients and in 32 (45.7% of the 70 Han lung adenocarcinoma patients. Significant differences were observed in the EGFR mutations between Uighur lung adenocarcinoma patients and Han lung adenocarcinoma patients (P<0.001. Conclusion Our results indicate that the EGFR mutation in Uighur lung adenocarcinoma patients (16.2% is significantly lower than that in Han lung adenocarcinoma patients (45.7%.

  7. Prognostic value of plasma EGFR ctDNA in NSCLC patients treated with EGFR-TKIs.

    Directory of Open Access Journals (Sweden)

    Chengjuan Zhang

    Full Text Available Epidermal growth factor receptor (EGFR specific mutations have been known to improve survival of patients with non-small-cell lung carcinoma (NSCLC. However, whether there are any changes of EGFR mutations after targeted therapy and its clinical significance is unclear. This study was to identify the status of EGFR mutations after targeted therapy and predict the prognostic significance for NSCLC patients.A total of forty-five (45 NSCLC patients who received EGFR-TKI therapy were enrolled. We identified the changes of EGFR mutations in plasma ctDNA by Amplification Refractory Mutation System (ARMS PCR technology.In the 45 cases of NSCLC with EGFR mutations, the EGFR mutation status changed in 26 cases, in which, 12 cases (26.7% from positive to negative, and 14 cases (31.1% from T790M mutation negative to positive after TKI targeted therapy. The T790M occurance group had a shorter Progression -Free-Survival (PFS than the groups of EGFR mutation undetected and EGFR mutation turned out to have no change after EGFR-TKI therapy (p < 0.05.According to this study, it's necessary to closely monitor EGFR mutations during follow-up to predict the prognosis of NSCLC patients who are to receive the TKI targeted therapy.

  8. SAMPO 90 - High resolution interactive gamma spectrum analysis including automation with macros

    International Nuclear Information System (INIS)

    Aarnio, P.A.; Nikkinen, M.T.; Routti, J.T.

    1991-01-01

    SAMPO 90 is a high performance gamma spectrum analysis program for personal computers. It uses high resolution color graphics to display calibrations, spectra, fitting results as multiplet components, and analysis results. All the analysis phases can be done either under full interactive user control or by using macros for automated measurement and analysis sequences including the control of MCAs and sample changers. Semi-automated calibrations for peak shapes (Gaussian with exponential tails), detector efficiency, and energy are available with a possibility for user intervention through interactive graphics. Accurate peak area determination of even the most complex multiplets, of up to 32 components, is accomplished using linear, non-linear and mixed mode fitting, where the component energies and areas can be either frozen or allowed to float in arbitrary combinations. Nuclide identification is done using associated lines techniques which allow interference correction for fully overlapping peaks. Peaked Background Subtraction can be performed and Minimum Detectable Activities calculated. Attenuation corrections can be taken into account in detector efficiency calculation. The most common PC-based MCA spectrum formats (Canberra S100, Ortec ACE, Nucleus PCA, ND AccuSpec) are supported as well as ASCII spectrum files. A gamma-line library is included together with an editor for user configurable libraries. The analysis reports and program parameters are fully customizable. Function key macros can be used to automate the most common analysis procedures. Small batch type modules are additionally available for routine work. SAMPO 90 is a result of over twenty man years of programming and contains 25,000 lines of Fortran, 10,000 lines of C, and 12,000 lines of assembler

  9. Molecular genetic alterations in egfr CA-SSR-1 microsatellite and egfr copy number changes are associated with aggressiveness in thymoma.

    Science.gov (United States)

    Conti, Salvatore; Gallo, Enzo; Sioletic, Stefano; Facciolo, Francesco; Palmieri, Giovannella; Lauriola, Libero; Evoli, Amelia; Martucci, Robert; Di Benedetto, Anna; Novelli, Flavia; Giannarelli, Diana; Deriu, Gloria; Granone, Pierluigi; Ottaviano, Margaret; Muti, Paola; Pescarmona, Edoardo; Marino, Mirella

    2016-03-01

    The key role of egfr in thymoma pathogenesis has been questioned following the failure in identifying recurrent genetic alterations of egfr coding sequences and relevant egfr amplification rate. We investigated the role of the non-coding egfr CA simple sequence repeat 1 (CA-SSR-1) in a thymoma case series. We used sequencing and egfr-fluorescence in situ hybridization (FISH) to genotype 43 thymomas; (I) for polymorphisms and somatic loss of heterozygosity of the non-coding egfr CA-SSR-1 microsatellite and (II) for egfr gene copy number changes. We found two prevalent CA-SSR-1 genotypes: a homozygous 16 CA repeat and a heterozygous genotype, bearing alleles with 16 and 20 CA repeats. The average combined allele length was correlated with tumor subtype: shorter sequences were significantly associated with the more aggressive WHO thymoma subtype group including B2/B3, B3 and B3/C histotypes. Four out of 29 informative cases analysed for somatic CA-SSR-1 loss of heterozygosity showed allelic imbalance (AI), 3/4 with loss of the longer allele. By egfr-FISH analysis, 9 out of 33 cases were FISH positive. Moreover, the two integrated techniques demonstrated that 3 out of 4 CA-SSR-1-AI positive cases with short allele relative prevalence showed significantly low or high chromosome 7 "polysomy"/increased gene copy number by egfr-FISH. Our molecular and genetic and follow up data indicated that CA-SSR-1-allelic imbalance with short allele relative prevalence significantly correlated with EGFR 3+ immunohistochemical score, increased egfr Gene Copy Number, advanced stage and with relapsing/metastatic behaviour in thymomas.

  10. EGFR and KRAS mutation coexistence in lung adenocarcinomas

    Directory of Open Access Journals (Sweden)

    Vitor Manuel Leitão de Sousa

    2015-04-01

    Full Text Available Lung cancer is one of the most common causes of cancer deaths. The development of EGFR targeted therapies, including monoclonal antibodies and tyrosine kinase inhibitors have generated an interest in the molecular characterization of these tumours. KRAS mutations are associated with resistance to EGFR TKIs. EGFR and KRAS mutations have been considered as mutually exclusive. This paper presents three bronchial-pulmonary carcinomas, two adenocarcinomas and one pleomorphic sarcomatoid carcinoma, harboring EGFR and KRAS mutations. Case 1 corresponded to an adenocarcinoma with EGFR exon 21 mutation (L858R and KRAS codon 12 point mutation (G12V; case 2, a  mucinous adenocarcinoma expressed coexistence of EGFR exon 21 mutation (L858R and KRAS codon 12 point mutation (G12V; and case 3 a sarcomatoid carcinoma with EGFR exon 19 deletion – del 9bp and KRAS codon 12 point mutation (G12C - cysteine. Based on our experience and on the literature, we conclude that EGFR and KRAS mutations can indeed coexist in the same bronchial-pulmonary carcinoma, either in the same histological type or in different patterns. The biological implications of this coexistence are still poorly understood mainly because these cases are not frequent or currently searched. It is therefore necessary to study larger series of cases with the two mutations to better understand the biological, clinical and therapeutic implications.

  11. Gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancers by accelerating EGFR turnover.

    Science.gov (United States)

    Nam, Boas; Rho, Jin Kyung; Shin, Dong-Myung; Son, Jaekyoung

    2016-10-01

    Gallic acid is a common botanic phenolic compound, which is present in plants and foods worldwide. Gallic acid is implicated in various biological processes such as cell growth and apoptosis. Indeed, gallic acid has been shown to induce apoptosis in many cancer types. However, the molecular mechanisms of gallic acid-induced apoptosis in cancer, particularly lung cancer, are still unclear. Here, we report that gallic acid induces apoptosis in EGFR-mutant non-small cell lung cancer (NSCLC) cells, but not in EGFR-WT NSCLC cells. Treatment with gallic acid resulted in a significant reduction in proliferation and induction of apoptosis, only in EGFR-mutant NSCLC cells. Interestingly, treatment with gallic acid led to a robust decrease in EGFR levels, which is critical for NSCLC survival. Treatment with gallic acid had no significant effect on transcription, but induced EGFR turnover. Indeed, treatment with a proteasome inhibitor dramatically reversed gallic acid-induced EGFR downregulation. Moreover, treatment with gallic acid induced EGFR turnover leading to apoptosis in EGFR-TKI (tyrosine kinase inhibitor)-resistant cell lines, which are dependent on EGFR signaling for survival. Thus, these studies suggest that gallic acid can induce apoptosis in EGFR-dependent lung cancers that are dependent on EGFR for growth and survival via acceleration of EGFR turnover. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. 101 Ready-To-Use Excel Macros

    CERN Document Server

    Alexander, Michael

    2012-01-01

    Save time and be more productive with this helpful guide to Excel macros! While most books about Excel macros offer only minor examples, usually aimed at illustrating a particular topic, this invaluable resource provides you with the tools needed to efficiently and effectively program Excel macros immediately. Step-by-step instructions show you how to create VBA macros and explain how to customize your applications to look and work exactly as you want them to. By the end of the book, you will understand how each featured macro works, be able to reuse the macros included in the book and online,

  13. A Targetable EGFR-Dependent Tumor-Initiating Program in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Paul Savage

    2017-10-01

    Full Text Available Summary: Therapies targeting epidermal growth factor receptor (EGFR have variable and unpredictable responses in breast cancer. Screening triple-negative breast cancer (TNBC patient-derived xenografts (PDXs, we identify a subset responsive to EGFR inhibition by gefitinib, which displays heterogeneous expression of wild-type EGFR. Deep single-cell RNA sequencing of 3,500 cells from an exceptional responder identified subpopulations displaying distinct biological features, where elevated EGFR expression was significantly enriched in a mesenchymal/stem-like cellular cluster. Sorted EGFRhi subpopulations exhibited enhanced stem-like features, including ALDH activity, sphere-forming efficiency, and tumorigenic and metastatic potential. EGFRhi cells gave rise to EGFRhi and EGFRlo cells in primary and metastatic tumors, demonstrating an EGFR-dependent expansion and hierarchical state transition. Similar tumorigenic EGFRhi subpopulations were identified in independent PDXs, where heterogeneous EGFR expression correlated with gefitinib sensitivity. This provides new understanding for an EGFR-dependent hierarchy in TNBC and for patient stratification for therapeutic intervention. : Savage et al. demonstrate that sensitivity to EGFR inhibitor, gefitinib, in triple-negative breast cancer is paradoxically associated with EGFR heterogeneity. Using single-cell RNA sequencing in conjunction with functional assays, they identify TNBC tumors in which EGFR expression identifies cells with tumor-initiating capacity whose proliferative expansion is sensitive to EGFR inhibition. Keywords: breast cancer, tumor heterogeneity, patient-derived xenograft, single-cell RNA sequencing, EGFR inhibition, therapeutic response, tumor-initiating cell, cell hierarchy, BRCA1 mutation

  14. EGFR-targeted anti-cancer drugs in radiotherapy: Preclinical evaluation of mechanisms

    International Nuclear Information System (INIS)

    Baumann, Michael; Krause, Mechthild; Dikomey, Ekkehard; Dittmann, Klaus; Doerr, Wolfgang; Kasten-Pisula, Ulla; Rodemann, H. Peter

    2007-01-01

    Preclinical and clinical results indicate that the EGFR can mediate radioresistance in different solid human tumours. Combination of radiotherapy and EGFR inhibitors can improve local tumour control compared to irradiation alone and has been introduced into clinical radiotherapy practice. So far several mechanisms have been identified in preclinical studies to contribute to improved local tumour control after radiation combined with EGFR inhibitors. These include direct kill of cancer stem cells by EGFR inhibitors, cellular radiosensitization through modified signal transduction, inhibition of repair of DNA damage, reduced repopulation and improved reoxygenation during fractionated radiotherapy. Effects and mechanisms may differ for different classes of EGFR inhibitors, for different tumours and for normal tissues. The mechanisms underlying this heterogeneity are currently poorly understood, and predictive assays are not available yet. Importantly, mechanisms and predictors for the combined effects of radiation with EGFR inhibitors appear to be considerably different to those for application of EGFR inhibitors alone or in combination with chemotherapy. Therefore to further evaluate the efficacy and mechanisms of EGFR-inhibition in combined treatments, radiotherapy-specific preclinical research strategies, which include in vivo experiments using local tumour control as an endpoint, as well as animal studies on normal tissue toxicity are needed

  15. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT.

    Directory of Open Access Journals (Sweden)

    Kumari Sonal Choudhary

    2016-06-01

    Full Text Available Epithelial to mesenchymal transition (EMT is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR, are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E and mesenchymal (EGFR_M networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.

  16. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT.

    Science.gov (United States)

    Choudhary, Kumari Sonal; Rohatgi, Neha; Halldorsson, Skarphedinn; Briem, Eirikur; Gudjonsson, Thorarinn; Gudmundsson, Steinn; Rolfsson, Ottar

    2016-06-01

    Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelling and analysis of the breast epithelial EMT cell model D492 and its mesenchymal counterpart D492M. We built an EGFR signalling network for EMT based on stoichiometric coefficients and constrained the network with gene expression data to build epithelial (EGFR_E) and mesenchymal (EGFR_M) networks. Metabolic alterations arising from differential expression of EGFR genes was derived from a literature review of AKT regulated metabolic genes. Signaling flux differences between EGFR_E and EGFR_M models subsequently allowed metabolism in D492 and D492M cells to be assessed. Higher flux within AKT pathway in the D492 cells compared to D492M suggested higher glycolytic activity in D492 that we confirmed experimentally through measurements of glucose uptake and lactate secretion rates. The signaling genes from the AKT, RAS/MAPK and CaM pathways were predicted to revert D492M to D492 phenotype. Follow-up analysis of EGFR signaling metabolic crosstalk in three additional breast epithelial cell lines highlighted variability in in vitro cell models of EMT. This study shows that the metabolic phenotype may be predicted by in silico analyses of gene expression data of EGFR signaling genes, but this phenomenon is cell-specific and does not follow a simple trend.

  17. Macro-Fiber Composite Based Transduction

    Science.gov (United States)

    2016-03-01

    substrate Material properties of single crystal macro fiber composite actuators for active twist rotor blades Park, Jae-Sang (Seoul National...Passive Smart Structures and Integrated Systems 2007 Material properties of single crystal macro fiber composite actuators for active twist rotor ...19b. TELEPHONE NUMBER (Include area code) 10-03-20 16 Final Report 01 Jan 2013 - 31 Dec 2015 Macro-Fiber Composite Based Transduction N000-14-13-1-0212

  18. SAMPO 90 high resolution interactive gamma-spectrum analysis including automation with macros

    International Nuclear Information System (INIS)

    Aarnio, P.A.; Nikkinen, M.T.; Routti, J.T.

    1992-01-01

    SAMPO 90 is high performance gamma-spectrum analysis program for personal computers. It uses color graphics to display calibrations, spectra, fitting results as multiplet components, and analysis results. All the analysis phases can be done either under full interactive user control or macros and programmable function keys can be used for completely automated measurement and analysis sequences including the control of MACs and sample changers. Accurate peak area determination of even the most complex multiplets, of up to 32 components, is accomplished using linear and mixed mode fitting. Nuclide identification is done using associated lines techniques allowing interference correction for fully overlapping peaks. Peaked Background Subtraction can be performed and Minimum Detectable Activities calculated. The analysis reports and program parameters are fully customizable. (author) 13 refs.; 1 fig

  19. The Use of EGFR Tyrosine Kinase Inhibitors in EGFR Wild-Type Non-Small-Cell Lung Cancer.

    Science.gov (United States)

    Stinchcombe, Thomas E

    2016-04-01

    The objective response rate and progression-free survival observed with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) in patients with metastatic epidermal growth factor receptor (EGFR) wild-type non-small cell lung cancer (NSCLC) are modest. The adverse events associated with EGFR TKIs are manageable but they must be considered in the context of the limited efficacy. The development of anti-PD-1 immunotherapy as second-line therapy has reduced the role of EGFR TKIs in EGFR wild-type NSCLC. Recently, there has been increased recognition of the benefit of the earlier integration of palliative care and symptom management, and this is reasonable alternative to treatment with an EGFR TKI for many patients. My practice pattern for patients with EGFR wild-type NSCLC is platinum-based chemotherapy as first-line therapy, immunotherapy as second-line therapy, and single-agent chemotherapy as third-line therapy for patients with preserved performance status who want to pursue further therapy. Only a small proportion of patients are eligible for fourth-line therapy, and I prefer to enroll them in clinical trials rather than use EGFR TKIs. I suspect that the use of EGFR TKIs in clinical use and as a comparator arm for clinical trials will continue to decline over the next several years.

  20. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data

    Energy Technology Data Exchange (ETDEWEB)

    Jorge, S.E.D.C.; Kobayashi, S.S.; Costa, D.B. [Harvard Medical School, Beth Israel Deaconess Medical Center, Department of Medicine, Division of Hematology/Oncology, Boston, MA (United States)

    2014-09-05

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC.

  1. Epidermal growth factor receptor (EGFR) mutations in lung cancer: preclinical and clinical data

    International Nuclear Information System (INIS)

    Jorge, S.E.D.C.; Kobayashi, S.S.; Costa, D.B.

    2014-01-01

    Lung cancer leads cancer-related mortality worldwide. Non-small-cell lung cancer (NSCLC), the most prevalent subtype of this recalcitrant cancer, is usually diagnosed at advanced stages, and available systemic therapies are mostly palliative. The probing of the NSCLC kinome has identified numerous nonoverlapping driver genomic events, including epidermal growth factor receptor (EGFR) gene mutations. This review provides a synopsis of preclinical and clinical data on EGFR mutated NSCLC and EGFR tyrosine kinase inhibitors (TKIs). Classic somatic EGFR kinase domain mutations (such as L858R and exon 19 deletions) make tumors addicted to their signaling cascades and generate a therapeutic window for the use of ATP-mimetic EGFR TKIs. The latter inhibit these kinases and their downstream effectors, and induce apoptosis in preclinical models. The aforementioned EGFR mutations are stout predictors of response and augmentation of progression-free survival when gefitinib, erlotinib, and afatinib are used for patients with advanced NSCLC. The benefits associated with these EGFR TKIs are limited by the mechanisms of tumor resistance, such as the gatekeeper EGFR-T790M mutation, and bypass activation of signaling cascades. Ongoing preclinical efforts for treating resistance have started to translate into patient care (including clinical trials of the covalent EGFR-T790M TKIs AZD9291 and CO-1686) and hold promise to further boost the median survival of patients with EGFR mutated NSCLC

  2. Epigenetic suppression of EGFR signaling in G-CIMP+ glioblastomas.

    Science.gov (United States)

    Li, Jie; Taich, Zachary J; Goyal, Amit; Gonda, David; Akers, Johnny; Adhikari, Bandita; Patel, Kunal; Vandenberg, Scott; Yan, Wei; Bao, Zhaoshi; Carter, Bob S; Wang, Renzhi; Mao, Ying; Jiang, Tao; Chen, Clark C

    2014-09-15

    The intrinsic signaling cascades and cell states associated with the Glioma CpG Island Methylator Phenotype (G-CIMP) remain poorly understood. Using published mRNA signatures associated with EGFR activation, we demonstrate that G-CIMP+ tumors harbor decreased EGFR signaling using three independent datasets, including the Chinese Glioma Genome Atlas(CGGA; n=155), the REMBRANDT dataset (n=288), and The Cancer Genome Atlas (TCGA; n=406). Additionally, an independent collection of 25 fresh-frozen glioblastomas confirmed lowered pERK levels in G-CIMP+ specimens (pCIMP+ glioblastomas harbored lowered mRNA levels for EGFR and H-Ras. Induction of G-CIMP+ state by exogenous expression of a mutated isocitrate dehydrogenase 1, IDH1-R132H, suppressed EGFR and H-Ras protein expression as well as pERK accumulation in independent glioblastoma models. These suppressions were associated with increased deposition of the repressive histone markers, H3K9me3 and H3K27me3, in the EGFR and H-Ras promoter regions. The IDH1-R132H expression-induced pERK suppression can be reversed by exogenous expression of H-RasG12V. Finally, the G-CIMP+ Ink4a-Arf-/- EGFRvIII glioblastoma line was more resistant to the EGFR inhibitor, Gefitinib, relative to its isogenic G-CIMP- counterpart. These results suggest that G-CIMP epigenetically regulates EGFR signaling and serves as a predictive biomarker for EGFR inhibitors in glioblastoma patients.

  3. Prognostic and predictive values of EGFR overexpression and EGFR copy number alteration in HER2-positive breast cancer.

    Science.gov (United States)

    Lee, H J; Seo, A N; Kim, E J; Jang, M H; Kim, Y J; Kim, J H; Kim, S-W; Ryu, H S; Park, I A; Im, S-A; Gong, G; Jung, K H; Kim, H J; Park, S Y

    2015-01-06

    Epidermal growth factor receptor (EGFR) is overexpressed in a subset of human epidermal growth factor receptor 2 (HER2)-positive breast cancers, and coexpression of HER2 and EGFR has been reported to be associated with poor clinical outcome. Moreover, interaction between HER2 and EGFR has been suggested to be a possible basis for trastuzumab resistance. We analysed the clinical significance of EGFR overexpression and EGFR gene copy number alterations in 242 HER2-positive primary breast cancers. In addition, we examined the correlations between EGFR overexpression, trastuzumab response and clinical outcome in 447 primary, and 112 metastatic HER2-positive breast cancer patients treated by trastuzumab. Of the 242 primary cases, the level of EGFR overexpression was 2+ in 12.7% and 3+ in 11.8%. High EGFR gene copy number was detected in 10.3%. Epidermal growth factor receptor overexpression was associated with hormone receptor negativity and high Ki-67 proliferation index. In survival analyses, EGFR overexpression, but not high EGFR copy number, was associated with poor disease-free survival in all patients, and in the subgroup not receiving adjuvant trastuzumab. In 447 HER2-positive primary breast cancer patients treated with adjuvant trastuzumab, EGFR overexpression was also an independent poor prognostic factor. However, EGFR overexpression was not associated with trastuzumab response, progression-free survival or overall survival in the metastatic setting. Epidermal growth factor receptor overexpression, but not high EGFR copy number, is a poor prognostic factor in HER2-positive primary breast cancer. Epidermal growth factor receptor overexpression is a predictive factor for trastuzumab response in HER2-positive primary breast cancer, but not in metastatic breast cancer.

  4. Collagen type I induces EGFR-TKI resistance in EGFR-mutated cancer cells by mTOR activation through Akt-independent pathway.

    Science.gov (United States)

    Yamazaki, Shota; Higuchi, Youichi; Ishibashi, Masayuki; Hashimoto, Hiroko; Yasunaga, Masahiro; Matsumura, Yasuhiro; Tsuchihara, Katsuya; Tsuboi, Masahiro; Goto, Koichi; Ochiai, Atsushi; Ishii, Genichiro

    2018-06-01

    Primary resistance to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) is a serious problem in lung adenocarcinoma patients harboring EGFR mutations. The aim of this study was to examine whether and how collagen type I (Col I), the most abundantly deposited matrix in tumor stroma, affects EGFR-TKI sensitivity in EGFR-mutant cells. We evaluated the EGFR-TKI sensitivity of EGFR-mutated cancer cells cultured with Col I. Changes in the activation of downstream signaling molecules of EGFR were analyzed. We also examined the association between the Col I expression in tumor stroma in surgical specimens and EGFR-TKI response of postoperative recurrence patients with EGFR mutations. Compared to cancer cells without Col I, the survival rate of cancer cells cultured with Col I was significantly higher after EGFR-TKI treatment. In cancer cells cultured with and without Col I, EGFR-TKI suppressed the levels of phosphorylated (p-)EGFR, p-ERK1/2, and p-Akt. When compared to cancer cells without Col I, expression of p-P70S6K, a hallmark of mTOR activation, was dramatically upregulated in cancer cells with Col I. This activation was maintained even after EGFR-TKI treatment. Simultaneous treatment with EGFR-TKI and mTOR inhibitor abrogated Col I-induced resistance to EGFR-TKI. Patients with Col I-rich stroma had a significantly shorter progression-free survival time after EGFR-TKI therapy (238 days vs 404 days; P Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  5. Identifying EGFR-Expressed Cells and Detecting EGFR Multi-Mutations at Single-Cell Level by Microfluidic Chip

    Science.gov (United States)

    Li, Ren; Zhou, Mingxing; Li, Jine; Wang, Zihua; Zhang, Weikai; Yue, Chunyan; Ma, Yan; Peng, Hailin; Wei, Zewen; Hu, Zhiyuan

    2018-03-01

    EGFR mutations companion diagnostics have been proved to be crucial for the efficacy of tyrosine kinase inhibitor targeted cancer therapies. To uncover multiple mutations occurred in minority of EGFR-mutated cells, which may be covered by the noises from majority of un-mutated cells, is currently becoming an urgent clinical requirement. Here we present the validation of a microfluidic-chip-based method for detecting EGFR multi-mutations at single-cell level. By trapping and immunofluorescently imaging single cells in specifically designed silicon microwells, the EGFR-expressed cells were easily identified. By in situ lysing single cells, the cell lysates of EGFR-expressed cells were retrieved without cross-contamination. Benefited from excluding the noise from cells without EGFR expression, the simple and cost-effective Sanger's sequencing, but not the expensive deep sequencing of the whole cell population, was used to discover multi-mutations. We verified the new method with precisely discovering three most important EGFR drug-related mutations from a sample in which EGFR-mutated cells only account for a small percentage of whole cell population. The microfluidic chip is capable of discovering not only the existence of specific EGFR multi-mutations, but also other valuable single-cell-level information: on which specific cells the mutations occurred, or whether different mutations coexist on the same cells. This microfluidic chip constitutes a promising method to promote simple and cost-effective Sanger's sequencing to be a routine test before performing targeted cancer therapy.[Figure not available: see fulltext.

  6. EGFR Amplification as a Target in Gastroesophageal Adenocarcinoma: Do Anti-EGFR Therapies Deserve a Second Chance?

    Science.gov (United States)

    Strickler, John H

    2018-06-01

    Anti-EGFR therapies have failed to improve survival for unselected patients with metastatic gastroesophageal cancer, but in a subset of patients, EGFR amplification may predict treatment benefit. Maron and colleagues report the clinical activity of anti-EGFR therapies in a cohort of patients with EGFR -amplified metastatic gastroesophageal cancer and utilize serial blood and tumor tissue collection to identify molecular drivers of treatment sensitivity and resistance. Their insights offer a path to overcome technical limitations associated with EGFR amplification and facilitate molecularly targeted therapeutic strategies. Cancer Discov; 8(6); 679-81. ©2018 AACR See related article by Maron et al., p. 696 . ©2018 American Association for Cancer Research.

  7. Cellular Immunotherapy for Carcinoma Using Genetically Modified EGFR-Specific T Lymphocytes

    Directory of Open Access Journals (Sweden)

    Xikun Zhou

    2013-05-01

    Full Text Available Epidermal growth factor receptor (EGFR is overexpressed in a variety of human malignancies, including pancreatic cancer, breast cancer, colon cancer, and non-small cell lung cancer. Overexpression of EGFR is a predictive marker of therapeutic response and several lines of evidence suggest that EGFR is an excellent target for tumor therapy. However, the effective antitumor capacity of EGFR-specific T cells against EGFR-overexpressing tumor cells has not been fully elucidated. In our previous study, we identified an anti-EGFR single-chain variable fragment (scFv with specific and high affinity after screening by ribosome display. In this study, the anticancer potential of anti-EGFR scFv was investigated on the basis of cell-targeted therapy. A chimeric antigen receptor (CAR targeting EGFR was constructed and expressed on the cell membrane of T lymphocytes. These CAR-modified T cells demonstrated antitumor efficacy both in vitro and in vivo. In addition, the safety evaluation showed that CAR-modified lymphocytes have no or very minimal acute systemic toxicity. Taken together, our study provided the experimental basis for clinical application of genetically engineered lymphocytes; moreover, we also evaluate a new and interesting cell therapy protocol.

  8. Loss of activating EGFR mutant gene contributes to acquired resistance to EGFR tyrosine kinase inhibitors in lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Keisuke Tabara

    Full Text Available Non-small-cell lung cancer harboring epidermal growth factor receptor (EGFR mutations attains a meaningful response to EGFR-tyrosine kinase inhibitors (TKIs. However, acquired resistance to EGFR-TKIs could affect long-term outcome in almost all patients. To identify the potential mechanisms of resistance, we established cell lines resistant to EGFR-TKIs from the human lung cancer cell lines PC9 and11-18, which harbored activating EGFR mutations. One erlotinib-resistant cell line from PC9 and two erlotinib-resistant cell lines and two gefitinib-resistant cell lines from 11-18 were independently established. Almost complete loss of mutant delE746-A750 EGFR gene was observed in the erlotinib-resistant cells isolated from PC9, and partial loss of the mutant L858R EGFR gene copy was specifically observed in the erlotinib- and gefitinib-resistant cells from 11-18. However, constitutive activation of EGFR downstream signaling, PI3K/Akt, was observed even after loss of the mutated EGFR gene in all resistant cell lines even in the presence of the drug. In the erlotinib-resistant cells from PC9, constitutive PI3K/Akt activation was effectively inhibited by lapatinib (a dual TKI of EGFR and HER2 or BIBW2992 (pan-TKI of EGFR family proteins. Furthermore, erlotinib with either HER2 or HER3 knockdown by their cognate siRNAs also inhibited PI3K/Akt activation. Transfection of activating mutant EGFR complementary DNA restored drug sensitivity in the erlotinib-resistant cell line. Our study indicates that loss of addiction to mutant EGFR resulted in gain of addiction to both HER2/HER3 and PI3K/Akt signaling to acquire EGFR-TKI resistance.

  9. Preselection of EGFR mutations in non-small-cell lung cancer patients by immunohistochemistry: comparison with DNA-sequencing, EGFR wild-type expression, gene copy number gain and clinicopathological data.

    Science.gov (United States)

    Gaber, Rania; Watermann, Iris; Kugler, Christian; Vollmer, Ekkehard; Perner, Sven; Reck, Martin; Goldmann, Torsten

    2017-01-01

    Targeting epidermal growth factor receptor (EGFR) in patients with non-small-cell lung cancer (NSCLC) having EGFR mutations is associated with an improved overall survival. The aim of this study is to verify, if EGFR mutations detected by immunohistochemistry (IHC) is a convincing way to preselect patients for DNA-sequencing and to figure out, the statistical association between EGFR mutation, wild-type EGFR overexpression, gene copy number gain, which are the main factors inducing EGFR tumorigenic activity and the clinicopathological data. Two hundred sixteen tumor tissue samples of primarily chemotherapeutic naïve NSCLC patients were analyzed for EGFR mutations E746-A750del and L858R and correlated with DNA-sequencing. Two hundred six of which were assessed by IHC, using 6B6 and 43B2 specific antibodies followed by DNA-sequencing of positive cases and 10 already genotyped tumor tissues were also included to investigate debugging accuracy of IHC. In addition, EGFR wild-type overexpression was IHC evaluated and EGFR gene copy number determination was performed by fluorescence in situ hybridization (FISH). Forty-one÷206 (19.9%) cases were positive for mutated EGFR by IHC. Eight of them had EGFR mutations of exons 18-21 by DNA-sequencing. Hit rate of 10 already genotyped NSCLC mutated cases was 90% by IHC. Positive association was found between EGFR mutations determined by IHC and both EGFR overexpression and increased gene copy number (p=0.002 and p<0.001, respectively). Additionally, positive association was detected between EGFR mutations, high tumor grade and clinical stage (p<0.001). IHC staining with mutation specific antibodies was demonstrated as a possible useful screening test to preselect patients for DNA-sequencing.

  10. Monitoring of high-density lipoprotein cholesterol level is predictive of EGFR mutation and efficacy of EGFR-TKI in patients with advanced lung adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Lv Y

    2016-01-01

    Cox proportional hazards model analyses showed the same result (P<0.001; hazard ratio =0.003; 95% CI, 0.001–0.018. Current results suggest that HDL-C seems to be a good independent predictive biomarker for advanced lung adenocarcinoma patients treated with the first-line EGFR-TKI. Roles of this biomarker include indicating EGFR mutation, assessing the efficacy of EGFR-TKI, and predicting the progression-free survival. Keywords: lung adenocarcinoma, high-density lipoprotein cholesterol, EGFR mutation, EGFR-TKI, PFS

  11. Interaction between EGFR and EphA2

    DEFF Research Database (Denmark)

    Larsen, Alice Bjerregaard

    2010-01-01

    Enhanced or altered epidermal growth factor receptor (EGFR) activity has been reported in many human cancers and several molecular targeting therapies has been developed. However, despite intense research, therapies targeting EGFR have shown conflicting results in clinical studies, indicating...... the involvement of other important molecular players. Several different EGFR mutations have been reported in cancer, one of which is the cancer specific type III EGFR deletion mutant (EGFRvIII, de2-7EGFR, ΔEGFR). In a global search for EGFR and EGFRvIII regulated genes we identified the receptor tyrosine kinase...... (RTK) EphA2. EphA2 belongs to the large Eph-receptor family, which has mainly been associated with neuronal development. More recently, expression of several Eph-receptors has been detected in many different cancer types. Elevated EphA2 expression has been reported in a broad range of human cancer...

  12. Interaction between EGFR and EphA2

    DEFF Research Database (Denmark)

    Larsen, Alice Bjerregaard

    2010-01-01

    Enhanced or altered epidermal growth factor receptor (EGFR) activity has been reported in many human cancers and several molecular targeting therapies has been developed. However, despite intense research, therapies targeting EGFR have shown conflicting results in clinical studies, indicating...... the involvement of other important molecular players. Several different EGFR mutations have been reported in cancer, one of which is the cancer specific type III EGFR deletion mutant (EGFRvIII, de2-7EGFR, ¿EGFR). In a global search for EGFR and EGFRvIII regulated genes we identified the receptor tyrosine kinase...... (RTK) EphA2. EphA2 belongs to the large Eph-receptor family, which has mainly been associated with neuronal development. More recently, expression of several Eph-receptors has been detected in many different cancer types. Elevated EphA2 expression has been reported in a broad range of human cancer...

  13. Clinical efficacy of first-generation EGFR-TKIs in patients with advanced non-small-cell lung cancer harboring EGFR exon 20 mutations

    Directory of Open Access Journals (Sweden)

    Chen D

    2016-07-01

    Full Text Available Dan Chen,1 Zhengbo Song,2 Guoping Cheng3 1Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 2Department of Chemotherapy, 3Department of Pathology, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China Purpose: Subsets of non-small-cell lung cancer patients with epidermal growth factor receptor (EGFR mutations carry uncommon subtypes. We evaluated the efficacy of first-generation EGFR-tyrosine kinase inhibitors (TKIs; erlotinib, gefitinib, and icotinib in patients with non-small-cell lung cancer carrying insertions and T790M and S768I mutations in EGFR exon 20. Patients and methods: Patients carrying EGFR exon 20 insertion/T790M/S768I mutations and treated with EGFR-TKIs were evaluated from 2005 to 2014 in Zhejiang Cancer Hospital. The efficacy was evaluated using the Kaplan–Meier method and compared with the log-rank test. Results: Sixty-two patients with exon 20 insertion/T790M/S768I mutations were enrolled. Mutations including exon 20 insertions and T790M and S768I mutations were observed in 29, 23, and ten patients, respectively. In total, the response rate and median progression-free survival (PFS were 8.1% and 2.1 months, respectively. Patients with S768I mutation manifested the longest median PFS (2.7 months, followed by those with T790M (2.4 months and exon 20 insertions (1.9 months; P=0.022. Patients with complex mutations show a better PFS than those with single mutations (2.7 months vs 1.9 months; P=0.034. Conclusion: First-generation EGFR-TKIs are less effective in patients with exon 20 uncommon mutations than in those with common mutations. Patients with complex mutations benefited more from first-generation EGFR-TKIs than those with single mutations. Keywords: non-small cell lung cancer, epidermal growth factor receptor, EGFR mutations, exon 20, tyrosine kinase inhibitor

  14. Therapeutic Efficacy Comparison of 5 Major EGFR-TKIs in Advanced EGFR-positive Non-Small-cell Lung Cancer: A Network Meta-analysis Based on Head-to-Head Trials.

    Science.gov (United States)

    Zhang, Yaxiong; Zhang, Zhonghan; Huang, Xiaodan; Kang, Shiyang; Chen, Gang; Wu, Manli; Miao, Siyu; Huang, Yan; Zhao, Hongyun; Zhang, Li

    2017-09-01

    Five major first- and second-generation epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), including erlotinib, gefitinib, icotinib, afatinib, and dacomitinib, are currently optional for patients with advanced non-small-cell lung cancer (NSCLC) who harbor EGFR mutations. However, there was no head-to-head-based network meta-analysis among all the TKIs in EGFR-mutated populations. Eligible literature was searched from an electronic database. Data of objective response rate, disease control rate, progression-free survival, and overall survival were extracted from enrolled studies. Multiple treatment comparisons based on Bayesian network integrated the efficacy of all included treatments. Six phase III randomized trials involving 1055 EGFR-mutated patients with advanced NSCLC were enrolled. Multiple treatment comparisons showed that 5 different EGFR-TKIs shared equivalent therapeutic efficacy in terms of all outcome measures. Rank probabilities indicated that dacomitinib and afatinib had potentially better efficacy compared with erlotinib, gefitinib, and icotinib in the EGFR-mutated patients. When compared with other agents, potential survival benefits (progression-free and overall survival) were observed in dacomitinib, whereas afatinib showed a better rank probability in overall response rate and disease control rate. Our study indicated a preferable therapeutic efficacy in the second-generation TKIs (dacomitinib and afatinib) when compared with the first-generation TKIs (erlotinib, gefitinib, and icotinib). Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Response to the Dorsal Anterior Gradient of EGFR Signaling in Drosophila Oogenesis Is Prepatterned by Earlier Posterior EGFR Activation

    Directory of Open Access Journals (Sweden)

    Mariana Fregoso Lomas

    2013-08-01

    Full Text Available Spatially restricted epidermal growth factor receptor (EGFR activity plays a central role in patterning the follicular epithelium of the Drosophila ovary. In midoogenesis, localized EGFR activation is achieved by the graded dorsal anterior localization of its ligand, Gurken. Graded EGFR activity determines multiple dorsal anterior fates along the dorsal-ventral axis but cannot explain the sharp posterior limit of this domain. Here, we show that posterior follicle cells express the T-box transcription factors Midline and H15, which render cells unable to adopt a dorsal anterior fate in response to EGFR activation. The posterior expression of Midline and H15 is itself induced in early oogenesis by posteriorly localized EGFR signaling, defining a feedback loop in which early induction of Mid and H15 confers a molecular memory that fundamentally alters the outcome of later EGFR signaling. Spatial regulation of the EGFR pathway thus occurs both through localization of the ligand and through localized regulation of the cellular response.

  16. Anti-EGFR Therapy: Mechanism and Advances in Clinical Efficacy in Breast Cancer

    Directory of Open Access Journals (Sweden)

    John F. Flynn

    2009-01-01

    Full Text Available This review will focus on recent advances in the application of antiepidermal growth factor receptor (anti-EGFR for the treatment of breast cancer. The choice of EGFR, a member of the ErbB tyrosine kinase receptor family, stems from evidence pinpointing its role in various anti-EGFR therapies. Therefore, an increase in our understanding of EGFR mechanism and signaling might reveal novel targets amenable to intervention in the clinic. This knowledge base might also improve existing medical treatment options and identify research gaps in the design of new therapeutic agents. While the approved use of drugs like the dual kinase inhibitor Lapatinib represents significant advances in the clinical management of breast cancer, confirmatory studies must be considered to foster the use of anti-EGFR therapies including safety, pharmacokinetics, and clinical efficacy.

  17. EGFR Signal-Network Reconstruction Demonstrates Metabolic Crosstalk in EMT

    OpenAIRE

    Choudhary, Kumari Sonal; Rohatgi, Neha; Halldorsson, Skarphedinn; Briem, Eirikur; Gudjonsson, Thorarinn; Gudmundsson, Steinn; Rolfsson, Ottar

    2016-01-01

    Epithelial to mesenchymal transition (EMT) is an important event during development and cancer metastasis. There is limited understanding of the metabolic alterations that give rise to and take place during EMT. Dysregulation of signalling pathways that impact metabolism, including epidermal growth factor receptor (EGFR), are however a hallmark of EMT and metastasis. In this study, we report the investigation into EGFR signalling and metabolic crosstalk of EMT through constraint-based modelli...

  18. Nuclear EGFR as a molecular target in cancer

    International Nuclear Information System (INIS)

    Brand, Toni M.; Iida, Mari; Luthar, Neha; Starr, Megan M.; Huppert, Evan J.; Wheeler, Deric L.

    2013-01-01

    The epidermal growth factor receptor (EGFR) has been one of the most targeted receptors in the field of oncology. While anti-EGFR inhibitors have demonstrated clinical success in specific cancers, most patients demonstrate either intrinsic or acquired resistance within one year of treatment. Many mechanisms of resistance to EGFR inhibitors have been identified, one of these being attributed to alternatively localized EGFR from the cell membrane into the cell’s nucleus. Inside the nucleus, EGFR functions as a co-transcription factor for several genes involved in cell proliferation and angiogenesis, and as a tyrosine kinase to activate and stabilize proliferating cell nuclear antigen and DNA dependent protein kinase. Nuclear localized EGFR is highly associated with disease progression, worse overall survival in numerous cancers, and enhanced resistance to radiation, chemotherapy, and the anti-EGFR therapies gefitinib and cetuximab. In this review the current knowledge of how nuclear EGFR enhances resistance to cancer therapeutics is discussed, in addition to highlighting ways to target nuclear EGFR as an anti-cancer strategy in the future

  19. Acquired resistance to EGFR inhibitors: mechanisms and prevention strategies

    International Nuclear Information System (INIS)

    Viloria-Petit, Alicia M.; Kerbel, Robert S.

    2004-01-01

    Potent and specific, or relatively specific, inhibitors of epidermal growth factor receptor (EGFR) signaling, including monoclonal antibodies and small molecular weight compounds, have been successfully developed. Both types of agent have been found to have significant antitumor activity, especially when used in combination with radio- hormone- and chemotherapy in preclinical studies. Because of the potentiation of the conventional drug activity in these combination settings, inhibitors of EGFR signaling have often been referred to as sensitizers for chemotherapy or radiation, as well as drug resistance reversal agents. Phase II clinical trials in head-and-neck as well as lung cancer suggested this concept of chemosensitization might translate into the clinic, but this remains to be definitively proven in randomized, double-blind Phase III trials. Given the extensive preclinical literature on EGFR blocking drugs and the advanced clinical development of such agents, it is surprising that the possibility of development of acquired resistance to the EGFR inhibitors themselves, a common clinical problem with virtually all other currently used anticancer drugs, remains a largely unexplored subject of investigation. Here we summarize some of the possible mechanisms that can result in acquired resistance to EGFR-targeting drugs. Alternative combination therapies to circumvent and delay this problem are suggested

  20. Icotinib in Patients with Pretreated Advanced Esophageal Squamous Cell Carcinoma with EGFR Overexpression or EGFR Gene Amplification: A Single-Arm, Multicenter Phase 2 Study.

    Science.gov (United States)

    Huang, Jing; Fan, Qingxia; Lu, Ping; Ying, Jianming; Ma, Changwu; Liu, Wei; Liu, Ying; Tan, Fenlai; Sun, Yan

    2016-06-01

    Epidermal growth factor receptor (EGFR) has been reported to be overexpressed and amplified in a high percentage of patients with esophageal squamous cell carcinoma (ESCC). The activity of icotinib, an EGFR tyrosine kinase inhibitor, was assessed in previously treated ESCC with EGFR overexpression or amplification. For this phase 2, single-arm, multicenter trial undertaken at six hospitals in China, we included Chinese patients with previously treated, histologically confirmed advanced ESCC and EGFR overexpression (immunohistochemical staining sore of 3+) or amplification (positive fluorescence in situ hybridization result). These patients received oral icotinib (250 mg, three times daily).The primary end point was the proportion of patients with objective responses as assessed by an independent radiology review committee. Between December 5, 2013, and May 28, 2015, a total of 281 patients were screened. Fifty-four eligible patients were enrolled. Nine responses were observed, including one complete response and eight partial responses, and 16 patients had stable disease, resulting in a 16.7% objective response rate (95% confidence interval [CI]: 6.7-26.6) and 46.3% disease control rate (95% CI: 33.0-59.6). The median progression-free survival and overall survival times were 52 (95% CI: 40-95) days and 153 (95% CI: 139-218) days, respectively. A total of 43 patients experienced at least one adverse event, but most were only grade 1 to 2 in severity. The most frequent was rash (48.1%), followed by diarrhea (22.2%). Icotinib showed favorable activity in patients with advanced, previously treated ESCC with EGFR overexpression or amplification. These findings suggest further research into EGFR overexpression or amplification for selecting responsive patients. Copyright © 2016 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  1. Expression and clinical value of EGFR in human meningiomas

    Directory of Open Access Journals (Sweden)

    Magnus B. Arnli

    2017-03-01

    Full Text Available Background Meningiomas are common intracranial tumors in humans that frequently recur despite having a predominantly benign nature. Even though these tumors have been shown to commonly express EGFR/c-erbB1 (epidermal growth factor receptor, results from previous studies are uncertain regarding the expression of either intracellular or extracellular domains, cellular localization, activation state, relations to malignancy grade, and prognosis. Aims This study was designed to investigate the expression of the intracellular and extracellular domains of EGFR and of the activated receptor as well as its ligands EGF and TGFα in a large series of meningiomas with long follow-up data, and investigate if there exists an association between antibody expression and clinical and histological data. Methods A series of 186 meningiomas consecutively operated within a 10-year period was included. Tissue microarrays were constructed and immunohistochemically analyzed with antibodies targeting intracellular and extracellular domains of EGFR, phosphorylated receptor, and EGF and TGFα. Expression levels were recorded as a staining index (SI. Results Positive immunoreactivity was observed for all antibodies in most cases. There was in general high SIs for the intracellular domain of EGFR, phosphorylated EGFR, EGF, and TGFα but lower for the extracellular domain. Normal meninges were negative for all antibodies. Higher SIs for the phosphorylated EGFR were observed in grade II tumors compared with grade I (p = 0.018. Survival or recurrence was significantly decreased in the time to recurrence analysis (TTR with high SI-scores of the extracellular domain in a univariable survival analysis (HR 1.152, CI (1.036–1.280, p = 0.009. This was not significant in a multivariable analysis. Expression of the other antigens did not affect survival. Conclusion EGFR is overexpressed and in an activated state in human meningiomas. High levels of ligands also support this

  2. Dual targeting of EGFR and focal adhesion kinase in 3D grown HNSCC cell cultures

    International Nuclear Information System (INIS)

    Eke, Iris; Cordes, Nils

    2011-01-01

    Purpose: Epidermal growth factor receptor (EGFR) and focal adhesion kinase (FAK) show frequent overexpression and hyperactivity in various human malignancies including head and neck squamous cell carcinomas (HNSCC). To examine effects of dual EGFR/FAK inhibition on cellular radiosensitivity of HNSCC cells in a more physiological environment, we employed a previously established laminin-rich extracellular matrix (lrECM) based three-dimensional (3D) cell culture model. Materials and methods: UTSCC15 and SAS HNSCC cell lines stably transfected with EGFR-CFP or CFP were used. Single or combined EGFR (Cetuximab, siRNA) and FAK (TAE226, siRNA) inhibition were accomplished prior to measuring clonogenic survival and protein expression and phosphorylation. Immunofluorescence enabled visualization of EGFR-CFP and FAK. Results: Cetuximab resulted in higher radiosensitization in EGFR-CFP overexpressing cell lines than CFP controls. Single EGFR or FAK inhibition mediated radiosensitization, while dual EGFR/FAK targeting further augmented this effect. Despite signaling alterations upon Cetuximab and siRNA knockdown, analysis of protein expression and phosphorylation indicates EGFR and FAK signaling coexistence without obvious overlap. Conclusions: Combined EGFR/FAK targeting yielded stronger radiosensitization than either approach alone, which might be based on non-overlapping downstream signaling. Whether dual targeting of EGFR and FAK can reasonably be combined with radiotherapy and chemotherapy needs clarification.

  3. Metaplastic Breast Cancer and EGFR Expression

    Directory of Open Access Journals (Sweden)

    Nilufer Avci

    2014-03-01

    Full Text Available Aim: Metaplastic breast cancer has poor prognosis and is usually triple negative. Although it is morphologically more heterogeneous than triple negative breast cancers, expression profile is more homogeneous. In this study, we investigated our metaplastic breast cancer cases regarding their pathology and clinical characteristics. Material and Method: 16 metaplastic breast cancer cases from four different center were included in the study. Pathology and clinical characteristics of the cases were evaluated retrospectively. Results: All the cases are female and median age is 48 (39-45. Tumor is commonly localized to the outer quadrant and mean diameter of the mass is 37.5 (15-100 mm. Tumor diameter is ≤20 mm in 3 (15.8%, >20-≤50 mm in 11 (57.9% and >50 mm in 3 (10.51% of the cases. Only 4 (16.1% patients have axillary lymph node involvement. When considering histological subtypes, five of the cases has squamous cell, five of them has spindle cell, one of them has mucoepidermoid, and in five cases the subtype was not identified. Considering hormone receptor status ER and PR was negative in 78.9%, 63.2% respectively. HER2 protein expression was positive by immunohistochemical staining in 1 (5.3% case. CK5/6 and CK17 was both positive in 7 (36.8% cases. EGFR expression was positive in 4 (21.1% cases, was negative in 5 (26.3% cases and not identified in 7 (36.8% cases. Three of the cases were offered neoadjuvant chemotherapy. As neoadjuvant chemotherapy, anthracycline and taxane combination (n:2 TAC, n:1 AC-paclitaxel was preferred. Mean follow-up was 41 months. Mean survival was 42.4 months in EGFR negative patients and 47.5 months in EGFR positive patients. This difference was not statistically significant. During follow-up 3 cases had recurrence. Discussion: EGFR expression is seen in metaplastic breast cancer. Although EGFR expression is related to poor prognosis, it is not a predictive marker. Therefore, predictive molecular markers are

  4. Dual Inhibition of EGFR with Afatinib and Cetuximab in Kinase Inhibitor-Resistant EGFR-Mutant Lung Cancer with and without T790M Mutations

    NARCIS (Netherlands)

    Janjigian, Yelena Y.; Smit, Egbert F.; Groen, Harry J. M.; Horn, Leora; Gettinger, Scott; Camidge, D. Ross; Riely, Gregory J.; Wang, Bushi; Fu, Yali; Chand, Vikram K.; Miller, Vincent A.; Pao, William

    EGFR-mutant lung cancers responsive to reversible EGFR inhibitors (gefitinib/erlotinib) develop acquired resistance, mediated by second-site EGFR T790M mutation in >50% of cases. Preclinically, afatinib (irreversible ErbB family blocker) plus cetuximab (anti-EGFR monoclonal antibody) overcomes

  5. Contribution of EGFR and ErbB-3 Heterodimerization to the EGFR Mutation-Induced Gefitinib- and Erlotinib-Resistance in Non-Small-Cell Lung Carcinoma Treatments.

    Directory of Open Access Journals (Sweden)

    Debby D Wang

    Full Text Available EGFR mutation-induced drug resistance has become a major threat to the treatment of non-small-cell lung carcinoma. Essentially, the resistance mechanism involves modifications of the intracellular signaling pathways. In our work, we separately investigated the EGFR and ErbB-3 heterodimerization, regarded as the origin of intracellular signaling pathways. On one hand, we combined the molecular interaction in EGFR heterodimerization with that between the EGFR tyrosine kinase and its inhibitor. For 168 clinical subjects, we characterized their corresponding EGFR mutations using molecular interactions, with three potential dimerization partners (ErbB-2, IGF-1R and c-Met of EGFR and two of its small molecule inhibitors (gefitinib and erlotinib. Based on molecular dynamics simulations and structural analysis, we modeled these mutant-partner or mutant-inhibitor interactions using binding free energy and its components. As a consequence, the mutant-partner interactions are amplified for mutants L858R and L858R_T790M, compared to the wild type EGFR. Mutant delL747_P753insS represents the largest difference between the mutant-IGF-1R interaction and the mutant-inhibitor interaction, which explains the shorter progression-free survival of an inhibitor to this mutant type. Besides, feature sets including different energy components were constructed, and efficient regression trees were applied to map these features to the progression-free survival of an inhibitor. On the other hand, we comparably examined the interactions between ErbB-3 and its partners (EGFR mutants, IGF-1R, ErbB-2 and c-Met. Compared to others, c-Met shows a remarkably-strong binding with ErbB-3, implying its significant role in regulating ErbB-3 signaling. Moreover, EGFR mutants corresponding to poor clinical outcomes, such as L858R_T790M, possess lower binding affinities with ErbB-3 than c-Met does. This may promote the communication between ErbB-3 and c-Met in these cancer cells. The

  6. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy.

    Science.gov (United States)

    Nitta, Masayuki; Kozono, David; Kennedy, Richard; Stommel, Jayne; Ng, Kimberly; Zinn, Pascal O; Kushwaha, Deepa; Kesari, Santosh; Inda, Maria-del-Mar; Wykosky, Jill; Furnari, Frank; Hoadley, Katherine A; Chin, Lynda; DePinho, Ronald A; Cavenee, Webster K; D'Andrea, Alan; Chen, Clark C

    2010-05-24

    Despite the critical role of Epidermal Growth Factor Receptor (EGFR) in glioblastoma pathogenesis, EGFR targeted therapies have achieved limited clinical efficacy. Here we propose an alternate therapeutic strategy based on the conceptual framework of non-oncogene addiction. A directed RNAi screen revealed that glioblastoma cells over-expressing EGFRvIII, an oncogenic variant of EGFR, become hyper-dependent on a variety of DNA repair genes. Among these, there was an enrichment of Base Excision Repair (BER) genes required for the repair of Reactive Oxygen Species (ROS)-induced DNA damage, including poly-ADP ribose polymerase 1 (PARP1). Subsequent studies revealed that EGFRvIII over-expression in glioblastoma cells caused increased levels of ROS, DNA strand break accumulation, and genome instability. In a panel of primary glioblastoma lines, sensitivity to PARP1 inhibition correlated with the levels of EGFR activation and oxidative stress. Gene expression analysis indicated that reduced expression of BER genes in glioblastomas with high EGFR expression correlated with improved patient survival. These observations suggest that oxidative stress secondary to EGFR hyper-activation necessitates increased cellular reliance on PARP1 mediated BER, and offer critical insights into clinical trial design.

  7. Targeting EGFR induced oxidative stress by PARP1 inhibition in glioblastoma therapy.

    Directory of Open Access Journals (Sweden)

    Masayuki Nitta

    Full Text Available Despite the critical role of Epidermal Growth Factor Receptor (EGFR in glioblastoma pathogenesis, EGFR targeted therapies have achieved limited clinical efficacy. Here we propose an alternate therapeutic strategy based on the conceptual framework of non-oncogene addiction. A directed RNAi screen revealed that glioblastoma cells over-expressing EGFRvIII, an oncogenic variant of EGFR, become hyper-dependent on a variety of DNA repair genes. Among these, there was an enrichment of Base Excision Repair (BER genes required for the repair of Reactive Oxygen Species (ROS-induced DNA damage, including poly-ADP ribose polymerase 1 (PARP1. Subsequent studies revealed that EGFRvIII over-expression in glioblastoma cells caused increased levels of ROS, DNA strand break accumulation, and genome instability. In a panel of primary glioblastoma lines, sensitivity to PARP1 inhibition correlated with the levels of EGFR activation and oxidative stress. Gene expression analysis indicated that reduced expression of BER genes in glioblastomas with high EGFR expression correlated with improved patient survival. These observations suggest that oxidative stress secondary to EGFR hyper-activation necessitates increased cellular reliance on PARP1 mediated BER, and offer critical insights into clinical trial design.

  8. Interdisciplinary management of EGFR-inhibitor-induced skin reactions: a German expert opinion.

    Science.gov (United States)

    Potthoff, K; Hofheinz, R; Hassel, J C; Volkenandt, M; Lordick, F; Hartmann, J T; Karthaus, M; Riess, H; Lipp, H P; Hauschild, A; Trarbach, T; Wollenberg, A

    2011-03-01

    Anti-epidermal growth factor receptor treatment strategies, i.e. monoclonal antibodies such as cetuximab and panitumumab, or epidermal growth factor receptor (EGFR) small molecule tyrosine kinase inhibitors, such as erlotinib and gefitinib, have expanded the treatment options for different tumor types. Dermatologic toxic effects are the most common side-effects of EGFR inhibitor therapy. They can profoundly affect the patient's quality of life. The aim of this study was to provide interdisciplinary expert recommendations on how to treat patients with skin reactions undergoing anti-EGFR treatment. An expert panel from Germany with expertise in medical oncology, dermatology or clinical pharmacology was convened to develop expert recommendations based on published peer-reviewed literature. The expert recommendations for the state-of-the-art treatment of skin reactions induced by EGFR inhibitor therapy include recommendations for diagnostics and grading as well as grade-specific and stage-adapted treatment approaches and preventive measures. It was concluded that EGFR-inhibitor-related dermatologic reactions should always be treated combining basic care of the skin and a specific therapy adapted to stage and grade of skin reaction. For grade 2 and above, specific treatment recommendations for early- and later-stage skin reactions induced by EGFR-inhibitor therapy were proposed. This paper presents a German national expert opinion for the treatment of skin reactions in patients receiving EGFR inhibitor therapy.

  9. Clinical efficacy of icotinib in lung cancer patients with different EGFR mutation status: a meta-analysis.

    Science.gov (United States)

    Qu, Jian; Wang, Ya-Nan; Xu, Ping; Xiang, Da-Xiong; Yang, Rui; Wei, Wei; Qu, Qiang

    2017-05-16

    Icotinib is a novel and the third listed epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), which exerts a good anti-tumor efficacy on non-small cell lung cancer (NSCLC). The efficacy of EGFR-TKIs has been shown to be associated with the EGFR mutation status, especially exon 19 deletion (19Del) and exon 21 L858R mutation. Therefore, a meta-analysis was performed to assess the efficacy of icotinib in NSCLC patients harboring EGFR mutations (19Del or L858R) and wild type (19Del and L858R loci wild type). A total of 24 studies were included for comparing the objective response rate (ORR) in the EGFR wild type and mutant patients treated with icotinib. The ORRs of EGFR mutant patients (19Del or L858R) are better than those of EGFR wild type patients (OR = 7.03(5.09-9.71), P icotinib treatment; EGFR 19Del patients treated with icotinib have better ORRs than EGFR L858R patients. EGFR mutation status is a useful biomarker for the evaluation of icotinib efficacy in NSCLC patients.

  10. Activity of EGFR-tyrosine kinase and ALK inhibitors for EML4–ALK-rearranged non–small–cell lung cancer harbored coexisting EGFR mutation

    International Nuclear Information System (INIS)

    Miyanaga, Akihiko; Kawamoto, Masashi; Tsuchiya, Shinichi; Hagiwara, Koichi; Soda, Manabu; Takeuchi, Kengo; Yamamoto, Nobuyuki; Mano, Hiroyuki; Ishikawa, Yuichi; Gemma, Akihiko; Shimizu, Kumi; Noro, Rintaro; Seike, Masahiro; Kitamura, Kazuhiro; Kosaihira, Seiji; Minegishi, Yuji; Shukuya, Takehito; Yoshimura, Akinobu

    2013-01-01

    The EML4–ALK (echinoderm microtubule-associated protein-like 4 gene and the anaplastic lymphoma kinase gene) fusion oncogene represents a novel molecular target in a small subset of non–small–cell lung cancers (NSCLCs). The EML4–ALK fusion gene occurs generally in NSCLC without mutations in epidermal growth factor receptor (EGFR) and KRAS. We report that a case of EML4–ALK-positive NSCLC with EGFR mutation had a response of stable disease to both an EGFR tyrosine kinase inhibitor (EGFR-TKI) and ALK inhibitor. We described the first clinical report of a patient with EML4–ALK-positive NSCLC with EGFR mutation that had a response of stable disease to both single-agent EGFR-TKI and ALK inhibitor. EML4–ALK translocation may be associated with resistance to EGFR-TKI, and EGFR signaling may contribute to resistance to ALK inhibitor in EML4–ALK-positive NSCLC

  11. Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody

    International Nuclear Information System (INIS)

    Cai, Weibo; Chen, Kai; He, Lina; Cao, Qizhen; Chen, Xiaoyuan; Koong, Albert

    2007-01-01

    Cetuximab, a chimeric monoclonal antibody targeting epidermal growth factor receptor (EGFR) on the surface of cancer cells, was approved by the FDA to treat patients with metastatic colorectal cancer. It is currently also in advanced-stage development for the treatment of several other solid tumors. Here we report for the first time the quantitative positron emission tomography (PET) imaging of EGFR expression in xenograft-bearing mice using 64 Cu-labeled cetuximab. We conjugated cetuximab with macrocyclic chelating agent 1,4,7,10-tetraazadodecane-N,N',N'',N'''-tetraacetic acid (DOTA), labeled with 64 Cu, and tested the resulting 64 Cu-DOTA-cetuximab in seven xenograft tumor models. The tracer uptake measured by PET was correlated with the EGFR expression quantified by western blotting. The estimated human dosimetry based on the PET data in Sprague-Dawley rats was also calculated. MicroPET imaging showed that 64 Cu-DOTA-cetuximab had increasing tumor activity accumulation over time in EGFR-positive tumors but relatively low uptake in EGFR-negative tumors at all times examined ( 2 0.80) between the tracer uptake (measured by PET) and the EGFR expression level (measured by western blotting). Human dosimetry estimation indicated that the tracer may be safely administered to human patients for tumor diagnosis, with the dose-limiting organ being the liver. The success of EGFR-positive tumor imaging using 64 Cu-DOTA-cetuximab can be translated into the clinic to characterize the pharmacokinetics, to select the right population of patients for EGFR-targeted therapy, to monitor the therapeutic efficacy of anti-EGFR treatment, and to optimize the dosage of either cetuximab alone or cetuximab in combination with other therapeutic agents. (orig.)

  12. EGFR immunoexpression, RAS immunoexpression and their effects on survival in lung adenocarcinoma cases.

    Science.gov (United States)

    Gundogdu, Ahmet Gokhan; Onder, Sevgen; Firat, Pinar; Dogan, Riza

    2014-06-01

    The impacts of epidermal growth factor receptor (EGFR) immunoexpression and RAS immunoexpression on the survival and prognosis of lung adenocarcinoma patients are debated in the literature. Twenty-six patients, who underwent pulmonary resections between 2002 and 2007 in our clinic, and whose pathologic examinations yielded adenocarcinoma, were included in the study. EGFR and RAS expression levels were examined by immunohistochemical methods. The results were compared with the survival, stage of the disease, nodal involvement, lymphovascular invasion, and pleural invasion. Nonparametric bivariate analyses were used for statistical analyses. A significant link between EGFR immunoexpression and survival has been identified while RAS immunoexpression and survival have been proven to be irrelevant. Neither EGFR, nor RAS has displayed a significant link with the stage of the disease, nodal involvement, lymphovascular invasion, or pleural invasion. Positive EGFR immunoexpression affects survival negatively, while RAS immunoexpression has no effect on survival in lung adenocarcinoma patients.

  13. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials

    DEFF Research Database (Denmark)

    Voldborg, B R; Damstrup, L; Spang-Thomsen, M

    1997-01-01

    The epidermal growth factor receptor (EGFR) is a growth factor receptor that induces cell differentiation and proliferation upon activation through the binding of one of its ligands. The receptor is located at the cell surface, where the binding of a ligand activates a tyrosine kinase in the intr...... aspects of therapeutic targeting of EGFR....

  14. Monitoring of Circulating Tumor Cells and Their Expression of EGFR/Phospho-EGFR During Combined Radiotherapy Regimens in Locally Advanced Squamous Cell Carcinoma of the Head and Neck

    Energy Technology Data Exchange (ETDEWEB)

    Tinhofer, Ingeborg, E-mail: ingeborg.tinhofer@charite.de [Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charite Campus Mitte, Charite Universitaetsmedizin Berlin, Berlin (Germany); Hristozova, Tsvetana; Stromberger, Carmen [Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charite Campus Mitte, Charite Universitaetsmedizin Berlin, Berlin (Germany); KeilhoIz, Ulrich [Department of Hematology and Oncology, Campus Benjamin Franklin, Charite Universitaetsmedizin Berlin, Berlin (Germany); Budach, Volker [Translational Radiooncology Laboratory, Department of Radiooncology and Radiotherapy, Charite Campus Mitte, Charite Universitaetsmedizin Berlin, Berlin (Germany)

    2012-08-01

    Purpose: The numbers of circulating tumor cells (CTCs) and their expression/activation of epidermal growth factor receptor (EGFR) during the course of combined chemo- or bioradiotherapy regimens as potential biomarkers of treatment efficacy in squamous cell carcinoma of the head and neck (SCCHN) were determined. Methods and Materials: Peripheral blood samples from SCCHN patients with locally advanced stage IVA/B disease who were treated with concurrent radiochemotherapy or induction chemotherapy followed by bioradiation with cetuximab were included in this study. Using flow cytometry, the absolute number of CTCs per defined blood volume as well as their expression of EGFR and its phosphorylated form (pEGFR) during the course of treatment were assessed. Results: Before treatment, we detected {>=}1 CTC per 3.75 mL blood in 9 of 31 patients (29%). Basal expression of EGFR was detected in 100% and pEGFR in 55% of the CTC+ cases. The frequency of CTC detection was not influenced by induction chemotherapy. However, the number of CTC+ samples significantly increased after radiotherapy. This radiation-induced increase in CTC numbers was less pronounced when radiotherapy was combined with cetuximab compared to its combination with cisplatin/5-fluorouracil. The former treatment regimen was also more effective in reducing pEGFR expression in CTCs. Conclusions: Definitive radiotherapy regimens of locally advanced SCCHN can increase the number of CTCs and might thus contribute to a systemic spread of tumor cells. Further studies are needed to evaluate the predictive value of the radiation-induced increase in CTC numbers and the persistent activation of the EGFR signalling pathway in individual CTC+ cases.

  15. Toward precision medicine with next-generation EGFR inhibitors in non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Yap TA

    2014-09-01

    Full Text Available Timothy A Yap,1,2 Sanjay Popat1,3 1Lung Cancer Unit, Department of Medicine, The Royal Marsden National Health Service Foundation Trust, London, United Kingdom; 2The Institute of Cancer Research, London, United Kingdom; 3National Heart and Lung Institute, London, United Kingdom Abstract: The use of genomics to discover novel targets and biomarkers has placed the field of oncology at the forefront of precision medicine. First-generation epidermal growth factor receptor (EGFR inhibitors have transformed the therapeutic landscape of EGFR mutant non-small-cell lung carcinoma through the genetic stratification of tumors from patients with this disease. Somatic EGFR mutations in lung adenocarcinoma are now well established as predictive biomarkers of response and resistance to small-molecule EGFR inhibitors. Despite early patient benefit, primary resistance and subsequent tumor progression to first-generation EGFR inhibitors are seen in 10%–30% of patients with EGFR mutant non-small-cell lung carcinoma. Acquired drug resistance is also inevitable, with patients developing disease progression after only 10–13 months of antitumor therapy. This review details strategies pursued in circumventing T790M-mediated drug resistance to EGFR inhibitors, which is the most common mechanism of acquired resistance, and focuses on the clinical development of second-generation EGFR inhibitors, exemplified by afatinib (BIBW2992. We discuss the rationale, mechanism of action, clinical efficacy, and toxicity profile of afatinib, including the LUX-Lung studies. We also discuss the emergence of third-generation irreversible mutant-selective inhibitors of EGFR and envision the future management of EGFR mutant lung adenocarcinoma. Keywords: afatinib, EGFR, erlotinib, gefitinib, LUX-Lung, NSCLC 

  16. Micro-processus et macro-structures

    Directory of Open Access Journals (Sweden)

    Aaron Victor Cicourel

    2008-10-01

    Traditional sociological approaches have defined societal macro-structures as a particular level of social reality to be distinguished from the micro-episodes of social action. This has allowed them to conceive of and search for these macro-structures more or less independent of the observable practices of everyday life. Cicourel argue that (macro social facts are not simply given, but emerge from the routine practices of everyday life. The macro in the sense of typified, normalized, context-free summary descriptions is a typical product of organizational and interactive procedures which transform micro-events into macro-social structures. Thus a precondition for the integration of micro- and macro-social phenomena in our theory and methodology is that we identify the processes which contribute to the creation of macro-structures by routine inferences, interpretations and summary procedures. The paper also points out that differences between micro-sociologies parallel differences between micro- and macro-approaches. By focusing only on small fragments of conversational interaction, some versions of micro-sociology tend to ignore the context which informs the conversational interaction for participants themselves. The decontextualized accounts produced by such methods are not unlike the decontextualization which results from macro-sociological aggregate measurement procedure. Against this Cicourel argues for the generation of comparative data base which includes not only the context of single interactions, but which also studies social phenomena systematically over different contexts.Microprocesos y macroestructuras. Notas sobre la articulación de diferentes nivéles del análisisDiferentes aproximaciones sociológicas han definido ciertas macro estructuras sociales como un nivel particular de la realidad social diferente de los micro-episodios de la acción social. Esto les ha llevado a concebir esas macro estructuras y a llevar a cabo ciertas investigaciones de manera mas o menos

  17. Correlation of EGFR expression, gene copy number and clinicopathological status in NSCLC.

    Science.gov (United States)

    Gaber, Rania; Watermann, Iris; Kugler, Christian; Reinmuth, Nils; Huber, Rudolf M; Schnabel, Philipp A; Vollmer, Ekkehard; Reck, Martin; Goldmann, Torsten

    2014-09-17

    Epidermal Growth Factor Receptor (EGFR) targeting therapies are currently of great relevance for the treatment of lung cancer. For this reason, in addition to mutational analysis immunohistochemistry (IHC) of EGFR in lung cancer has been discussed for the decision making of according therapeutic strategies. The aim of this study was to obtain standardization of EGFR-expression methods for the selection of patients who might benefit of EGFR targeting therapies. As a starting point of a broad investigation, aimed at elucidating the expression of EGFR on different biological levels, four EGFR specific antibodies were analyzed concerning potential differences in expression levels by Immunohistochemistry (IHC) and correlated with fluorescence in situ hybridization (FISH) analysis and clinicopathological data. 206 tumor tissues were analyzed in a tissue microarray format employing immunohistochemistry with four different antibodies including Dako PharmDx kit (clone 2-18C9), clone 31G7, clone 2.1E1 and clone SP84 using three different scoring methods. Protein expression was compared to FISH utilizing two different probes. EGFR protein expression determined by IHC with Dako PharmDx kit, clone 31G7 and clone 2.1E1 (p ≤ 0.05) correlated significantly with both FISH probes independently of the three scoring methods; best correlation is shown for 31G7 using the scoring method that defined EGFR positivity when ≥ 10% of the tumor cells show membranous staining of moderate and severe intensity (p=0.001). Overall, our data show differences in EGFR expression determined by IHC, due to the applied antibody. Highest concordance with FISH is shown for antibody clone 31G7, evaluated with score B (p=0.001). On this account, this antibody clone might by utilized for standard evaluation of EGFR expression by IHC. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_165.

  18. MACRO

    International Nuclear Information System (INIS)

    Rogner, H.H.

    1989-01-01

    The description is given to MACRO which is a numerically formulated macroeconomic model constructed to reflect the economy of the European Community. The model belongs to the group of general equilibrium models often applied in long-term macroeconomic energy modeling. Furthermore, MACRO was designed so as to interact with other more technically oriented energy demand and supply models. It's main objective is to provide consistency checks between assumptions concerning energy trade, energy prices, resource availability and energy-related capital requirements. 5 figs

  19. Osimertinib and Necitumumab in Treating Patients With EGFR-Mutant Stage IV or Recurrent Non-small Cell Lung Cancer Who Have Progressed on a Previous EGFR Tyrosine Kinase Inhibitor

    Science.gov (United States)

    2018-03-07

    EGFR Exon 19 Deletion Mutation; EGFR Exon 20 Insertion Mutation; EGFR NP_005219.2:p.G719X; EGFR NP_005219.2:p.L858R; EGFR NP_005219.2:p.L861Q; EGFR NP_005219.2:p.T790M; EGFR T790M Mutation Negative; Recurrent Non-Small Cell Lung Carcinoma; Stage IV Non-Small Cell Lung Cancer AJCC v7

  20. EGFR and Bcl-2 in gastric mucosa of children infected with Helicobacter pylori

    Directory of Open Access Journals (Sweden)

    Ewa Ryszczuk

    2016-03-01

    Full Text Available Aim: The aim of the study was to evaluate the expression of EGFR and Bcl-2 proteins as inhibitory markers of apoptosis in surface epithelial cells and gland cells of antral gastric mucosa in children infected with Helicobacter pylori according to the severity and activity of antral gastritis and to assess the correlation between the number of cells expressing EGFR and the number of cells expressing Bcl-2 in H. pylori infected children.Materials and methods: The study included 44 children: 68.2% with chronic gastritis and positive IgG against H. pylori, and 31.8% with functional disorders of the gastrointestinal tract and with normal IgG against H. pylori. The evaluation of EGFR expression in gastric mucosa was performed immunohistochemically using monoclonal mouse anti-EGFR antibody. The polyclonal antibody was used to determine the expression of anti-Bcl-2.Results: A significant increase in the number of cells expressing EGFR and Bcl-2 protein was found in the epithelial cells in severe as well as mild and moderate gastritis in the group of children infected with H. pylori. An increase in the number of cells expressing EGFR and Bcl-2 protein was also found in the epithelial cells in group I according to the activity of gastritis. There was a statistically significant positive correlation between the numbers of cells expressing EGFR and Bcl-2 in H. pylori infected children.Conclusion: Increased expression of EGFR and Bcl-2 proteins in the epithelial cells and a statistically significant positive correlation between the numbers of cells expressing EGFR and Bcl-2 in H. pylori infected children could suggest increased regeneration abilities of gastric mucosa.

  1. TNF-driven adaptive response mediates resistance to EGFR inhibition in lung cancer.

    Science.gov (United States)

    Gong, Ke; Guo, Gao; Gerber, David E; Gao, Boning; Peyton, Michael; Huang, Chun; Minna, John D; Hatanpaa, Kimmo J; Kernstine, Kemp; Cai, Ling; Xie, Yang; Zhu, Hong; Fattah, Farjana J; Zhang, Shanrong; Takahashi, Masaya; Mukherjee, Bipasha; Burma, Sandeep; Dowell, Jonathan; Dao, Kathryn; Papadimitrakopoulou, Vassiliki A; Olivas, Victor; Bivona, Trever G; Zhao, Dawen; Habib, Amyn A

    2018-06-01

    Although aberrant EGFR signaling is widespread in cancer, EGFR inhibition is effective only in a subset of non-small cell lung cancer (NSCLC) with EGFR activating mutations. A majority of NSCLCs express EGFR wild type (EGFRwt) and do not respond to EGFR inhibition. TNF is a major mediator of inflammation-induced cancer. We find that a rapid increase in TNF level is a universal adaptive response to EGFR inhibition in NSCLC, regardless of EGFR status. EGFR signaling actively suppresses TNF mRNA levels by inducing expression of miR-21, resulting in decreased TNF mRNA stability. Conversely, EGFR inhibition results in loss of miR-21 and increased TNF mRNA stability. In addition, TNF-induced NF-κB activation leads to increased TNF transcription in a feed-forward loop. Inhibition of TNF signaling renders EGFRwt-expressing NSCLC cell lines and an EGFRwt patient-derived xenograft (PDX) model highly sensitive to EGFR inhibition. In EGFR-mutant oncogene-addicted cells, blocking TNF enhances the effectiveness of EGFR inhibition. EGFR plus TNF inhibition is also effective in NSCLC with acquired resistance to EGFR inhibition. We suggest concomitant EGFR and TNF inhibition as a potentially new treatment approach that could be beneficial for a majority of lung cancer patients.

  2. Predictive efficacy of low burden EGFR mutation detected by next-generation sequencing on response to EGFR tyrosine kinase inhibitors in non-small-cell lung carcinoma.

    Directory of Open Access Journals (Sweden)

    Hye Sook Kim

    Full Text Available Direct sequencing remains the most widely used method for the detection of epidermal growth factor receptor (EGFR mutations in lung cancer; however, its relatively low sensitivity limits its clinical use. The objective of this study was to investigate the sensitivity of detecting an epidermal growth factor receptor (EGFR mutation from peptide nucleic acid-locked nucleic acid polymerase chain reaction (PNA-LNA PCR clamp and Ion Torrent Personal Genome Machine (PGM techniques compared to that by direct sequencing. Furthermore, the predictive efficacy of EGFR mutations detected by PNA-LNA PCR clamp was evaluated. EGFR mutational status was assessed by direct sequencing, PNA-LNA PCR clamp, and Ion Torrent PGM in 57 patients with non-small cell lung cancer (NSCLC. We evaluated the predictive efficacy of PNA-LNA PCR clamp on the EGFR-TKI treatment in 36 patients with advanced NSCLC retrospectively. Compared to direct sequencing (16/57, 28.1%, PNA-LNA PCR clamp (27/57, 47.4% and Ion Torrent PGM (26/57, 45.6% detected more EGFR mutations. EGFR mutant patients had significantly longer progressive free survival (14.31 vs. 21.61 months, P = 0.003 than that of EGFR wild patients when tested with PNA-LNA PCR clamp. However, no difference in response rate to EGFR TKIs (75.0% vs. 82.4%, P = 0.195 or overall survival (34.39 vs. 44.10 months, P = 0.422 was observed between the EGFR mutations by direct sequencing or PNA-LNA PCR clamp. Our results demonstrate firstly that patients with EGFR mutations were detected more frequently by PNA-LNA PCR clamp and Ion Torrent PGM than those by direct sequencing. EGFR mutations detected by PNA-LNA PCR clamp may be as a predicative factor for EGFR TKI response in patients with NSCLC.

  3. Quantitative PET of EGFR expression in xenograft-bearing mice using {sup 64}Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Weibo; Chen, Kai; He, Lina; Cao, Qizhen; Chen, Xiaoyuan [Stanford University School of Medicine, The Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program, Stanford, CA (United States); Koong, Albert [Stanford University School of Medicine, Department of Radiation Oncology, Stanford, CA (United States)

    2007-06-15

    Cetuximab, a chimeric monoclonal antibody targeting epidermal growth factor receptor (EGFR) on the surface of cancer cells, was approved by the FDA to treat patients with metastatic colorectal cancer. It is currently also in advanced-stage development for the treatment of several other solid tumors. Here we report for the first time the quantitative positron emission tomography (PET) imaging of EGFR expression in xenograft-bearing mice using {sup 64}Cu-labeled cetuximab. We conjugated cetuximab with macrocyclic chelating agent 1,4,7,10-tetraazadodecane-N,N',N'',N'''-tetraacetic acid (DOTA), labeled with {sup 64}Cu, and tested the resulting {sup 64}Cu-DOTA-cetuximab in seven xenograft tumor models. The tracer uptake measured by PET was correlated with the EGFR expression quantified by western blotting. The estimated human dosimetry based on the PET data in Sprague-Dawley rats was also calculated. MicroPET imaging showed that {sup 64}Cu-DOTA-cetuximab had increasing tumor activity accumulation over time in EGFR-positive tumors but relatively low uptake in EGFR-negative tumors at all times examined (<5%ID/g). There was a good correlation (R {sup 2} = 0.80) between the tracer uptake (measured by PET) and the EGFR expression level (measured by western blotting). Human dosimetry estimation indicated that the tracer may be safely administered to human patients for tumor diagnosis, with the dose-limiting organ being the liver. The success of EGFR-positive tumor imaging using {sup 64}Cu-DOTA-cetuximab can be translated into the clinic to characterize the pharmacokinetics, to select the right population of patients for EGFR-targeted therapy, to monitor the therapeutic efficacy of anti-EGFR treatment, and to optimize the dosage of either cetuximab alone or cetuximab in combination with other therapeutic agents. (orig.)

  4. Sapanisertib and Osimertinib in Treating Patients With Stage IV EGFR Mutation Positive Non-small Cell Lung Cancer After Progression on a Previous EGFR Tyrosine Kinase Inhibitor

    Science.gov (United States)

    2018-04-25

    EGFR Activating Mutation; EGFR Exon 19 Deletion Mutation; EGFR NP_005219.2:p.G719X; EGFR NP_005219.2:p.L858R; EGFR NP_005219.2:p.L861Q; EGFR T790M Mutation Negative; Recurrent Non-Small Cell Lung Carcinoma; Stage III Non-Small Cell Lung Cancer AJCC v7; Stage IIIA Non-Small Cell Lung Cancer AJCC v7; Stage IIIB Non-Small Cell Lung Cancer AJCC v7; Stage IV Non-Small Cell Lung Cancer AJCC v7

  5. ADCC responses and blocking of EGFR-mediated signaling and cell growth by combining the anti-EGFR antibodies imgatuzumab and cetuximab in NSCLC cells

    NARCIS (Netherlands)

    Kol, Arjan; Terwisscha van Scheltinga, Anton; Pool, Martin; Gerdes, Christian; de Vries, Elisabeth; de Jong, Steven

    2017-01-01

    Imgatuzumab is a novel glycoengineered anti-epidermal growth factor receptor (EGFR) monoclonal antibody optimized to induce both antibody-dependent cellular cytotoxicity (ADCC) and EGFR signal transduction inhibition. We investigated antiEGFR monoclonal antibodies imgatuzumab and cetuximab-induced

  6. Convergent Akt activation drives acquired EGFR inhibitor resistance in lung cancer

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine; Bertran-Alamillo, Jordi; Molina, Miguel Angel

    2017-01-01

    Non-small-cell lung cancer patients with activating epidermal growth factor receptor (EGFR) mutations typically benefit from EGFR tyrosine kinase inhibitor treatment. However, virtually all patients succumb to acquired EGFR tyrosine kinase inhibitor resistance that occurs via diverse mechanisms....... The diversity and unpredictability of EGFR tyrosine kinase inhibitor resistance mechanisms presents a challenge for developing new treatments to overcome EGFR tyrosine kinase inhibitor resistance. Here, we show that Akt activation is a convergent feature of acquired EGFR tyrosine kinase inhibitor resistance......, across a spectrum of diverse, established upstream resistance mechanisms. Combined treatment with an EGFR tyrosine kinase inhibitor and Akt inhibitor causes apoptosis and synergistic growth inhibition in multiple EGFR tyrosine kinase inhibitor-resistant non-small-cell lung cancer models. Moreover...

  7. Complex fluids with mobile charge-regulating macro-ions

    Science.gov (United States)

    Markovich, Tomer; Andelman, David; Podgornik, Rudi

    2017-10-01

    We generalize the concept of charge regulation of ionic solutions, and apply it to complex fluids with mobile macro-ions having internal non-electrostatic degrees of freedom. The suggested framework provides a convenient tool for investigating systems where mobile macro-ions can self-regulate their charge (e.g., proteins). We show that even within a simplified charge-regulation model, the charge dissociation equilibrium results in different and notable properties. Consequences of the charge regulation include a positional dependence of the effective charge of the macro-ions, a non-monotonic dependence of the effective Debye screening length on the concentration of the monovalent salt, a modification of the electric double-layer structure, and buffering by the macro-ions of the background electrolyte.

  8. Parser Macros for Scala

    OpenAIRE

    Duhem, Martin; Burmako, Eugene

    2015-01-01

    Parser macros are a new kind of macros that allow developers to create new language constructs and to define their own syntax for using them. In this report, we present why parser macros are useful and the kind of problems that they help to solve. We will also see how they are implemented and gain insight about how they take advantage from scala.meta, the new metaprogramming toolkit for Scala. Finally, we will discuss what are the current limitations of parser macros and what is left for futu...

  9. An RNA-Seq strategy to detect the complete coding and non-coding transcriptome including full-length imprinted macro ncRNAs.

    Directory of Open Access Journals (Sweden)

    Ru Huang

    Full Text Available Imprinted macro non-protein-coding (nc RNAs are cis-repressor transcripts that silence multiple genes in at least three imprinted gene clusters in the mouse genome. Similar macro or long ncRNAs are abundant in the mammalian genome. Here we present the full coding and non-coding transcriptome of two mouse tissues: differentiated ES cells and fetal head using an optimized RNA-Seq strategy. The data produced is highly reproducible in different sequencing locations and is able to detect the full length of imprinted macro ncRNAs such as Airn and Kcnq1ot1, whose length ranges between 80-118 kb. Transcripts show a more uniform read coverage when RNA is fragmented with RNA hydrolysis compared with cDNA fragmentation by shearing. Irrespective of the fragmentation method, all coding and non-coding transcripts longer than 8 kb show a gradual loss of sequencing tags towards the 3' end. Comparisons to published RNA-Seq datasets show that the strategy presented here is more efficient in detecting known functional imprinted macro ncRNAs and also indicate that standardization of RNA preparation protocols would increase the comparability of the transcriptome between different RNA-Seq datasets.

  10. Differential effect of EGFR inhibitors on tamoxifen-resistant breast cancer cells.

    Science.gov (United States)

    Kim, Sangmin; Lee, Jeongmin; Oh, Soo Jin; Nam, Seok Jin; Lee, Jeong Eon

    2015-09-01

    Although tamoxifen is the most common and effective therapy for treatment of estrogen receptor-α (ER-α) breast cancer patients, resistance of endocrine therapy occurs, either de novo or acquired during therapy. Here, we investigated the clinical value of epidermal growth factor receptor (EGFR) in tamoxifen-resistant (TamR) patients and the differential effect of EGFR inhibitors, neratinib and gefitinib, on TamR breast cancer cell model. The morphology of TamR MCF7 cells showed mesenchymal phenotypes and did not induce cell death by tamoxifen treatment compared with tamoxifen‑sensitive (TamS) MCF7 cells. In addition, mesenchymal marker proteins, including N-cadherin (N-cad), fibronectin (FN), and Slug, significantly increased in TamR cells. In contrast, ER-α and E-cadherin (E-cad) were greatly decreased. We also found that the levels of EGFR and HER2 expression were increased in TamR cells. Furthermore, we observed that EGFR expression was directly involved with poor prognosis of tamoxifen-treated breast cancer patients using the GSE1378 date set. Thus, we treated TamR and TamS cells with EGFR inhibitors, neratinib and gefitinib, respectively. Interestingly, neratinib induced apoptotic cell death of TamR but not gefitinib. Cleaved PARP-1 expression was also increased by neratinib treatment in TamR cells. Therefore, we suggest that neratinib may be a potential therapeutic drug for treating TamR breast cancer.

  11. HPV infection and EGFR activation/alteration in HIV-infected East African patients with conjunctival carcinoma.

    Directory of Open Access Journals (Sweden)

    Jing Jie Yu

    2010-05-01

    Full Text Available There has been substantial growth in the numbers of patients with conjunctival squamous cell carcinoma infected with HIV in East Africa. The natural history of the conjunctival squamous cell carcinoma appears to be unique in this region of the world, but the etiologic mechanism unclear and therapeutic options limited. This research was carried out to determine if conjunctival squamous cell carcinoma harbors human papillomavirus DNA and is associated with activation of the EGFR signaling pathway. Positive findings would identify etiologic causes and provide clinical guidance to improve treatment.Expression of p-MAPK/MAPK, p-Akt/Akt and p-EGFR/EGFR in cell nuclei and cytoplasm of 38 FFPE specimens were assessed by immunohistochemistry; HPV genotype was detected by qPCR assay; EGFR mutation was assessed by DNA sequencing analysis; and EGFR mRNA expression was measured using relative qPCR. Statistical analyses included two-sided Fisher exact test or chi-square test, Spearman correlation coefficient and ANOVA. HPV 18 was found in 61% of samples, with HPV 16 double-genotype in 6 patients (16%. Immunohistochemistry and qPCR data suggest that activation and expression of the EGFR signaling pathway is related to disease progression of conjunctival cancer. The associations between cytoplasmic p-MAPK, cytoplasmic p-Akt and tumor invasiveness were significant (p = 0.05 or 0.028. Nuclear p-EGFR appeared only in invasive tumors. A significant positive association between EGFR expression and disease invasiveness was observed (p = 0.01. A SNP in 10 patients and one missense mutation were found within EGFR tyrosine kinase domain. Statistical analysis indicates that patients with measurable EGFR expression more likely harbor EGFR mutations, compared to those with negative EGFR expression (35.3% vs. 0%.We conclude that HPV types 16/18 infection is frequent in East African patients with AIDS-associated squamous cell carcinoma of the conjunctiva. EGFR activation

  12. EGFR Activation and Ultraviolet Light‐Induced Skin Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Taghrid B. El-Abaseri

    2007-01-01

    Full Text Available The epidermal growth factor receptor (EGFR regulates the proliferation of keratinocytes through multiple mechanisms that differ depending on the localization of the cell within the skin. Ultraviolet (UV irradiation, the main etiologic factor in the development of skin cancer, also activates the receptor. In this review, we discuss how the UV-induced activation of EGFR regulates the response of the skin to UV. UV-induced EGFR activation increases keratinocyte proliferation, suppresses apoptosis, and augments and accelerates epidermal hyperplasia in response to UV. Pharmacological inhibition of the UV-induced activation of EGFR in a genetically initiated mouse skin tumorigenesis model suppresses tumorigenesis and the activation of mitogen-activated protein (MAP kinases and phosphatidyl inositol-3-kinase (PI3K/AKT signaling pathways. EGFR has pleiotropic, complex, and cell-type-specific functions in cutaneous keratinocytes; suggesting that the receptor is an appropriate target for the development of molecularly targeted therapies for skin cancer and other pathologies.

  13. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    International Nuclear Information System (INIS)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M.; Rodrigues, Michele A.; Gomes, Dawidson A.

    2016-01-01

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  14. Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Jerusa A.Q.A.; Andrade, Carolina de; Goes, Alfredo M. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Rodrigues, Michele A. [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Department of General Pathology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil); Gomes, Dawidson A., E-mail: dawidson@ufmg.br [Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Belo Horizonte, MG, 31270-901 (Brazil)

    2016-09-09

    The epidermal growth factor receptor (EGFR) is activated through binding to specific ligands and generates signals for proliferation, differentiation, migration, and cell survival. Recent data show the role of nuclear EGFR in tumors. Although many EGFR ligands are upregulated in cancers, little is known about their effects on EGFR nuclear translocation. We have compared the effects of six EGFR ligands (EGF, HB-EGF, TGF-α, β-Cellulin, amphiregulin, and epiregulin) on nuclear translocation of EGFR, receptor phosphorylation, migration, and proliferation. Cell fractionation and confocal immunofluorescence detected EGFR in the nucleus after EGF, HB-EGF, TGF-α and β-Cellulin stimulation in a dose-dependent manner. In contrast, amphiregulin and epiregulin did not generate nuclear translocation of EGFR. EGF, HB-EGF, TGF-α and β-Cellulin showed correlations between a higher rate of wound closure and increased phosphorylation of residues in the carboxy-terminus of EGFR, compared to amphiregulin and epiregulin. The data indicate that EGFR is translocated to the nucleus after stimulation with EGF, HB-EGF, TGF-α and β-Cellulin, and that these ligands are related to increased phosphorylation of EGFR tyrosine residues, inducing migration of SkHep-1 cells. - Highlights: • EGF, HB-EGF, TGF-α, β-Cellulin are involved in the EGFR nuclear translocation. • Amphiregulin and epiregulin did not promote nuclear translocation of EGFR. • EGF, HB-EGF, TGF-α and β-Cellulin have a role in SkHep-1 cells migration. • EGFR ligands associated with better prognosis don't stimulate EGFR translocation.

  15. Anti-EGFR-Targeted Therapy for Esophageal and Gastric Cancers: An Evolving Concept

    Directory of Open Access Journals (Sweden)

    Tomislav Dragovich

    2009-01-01

    Full Text Available Cancers of the esophagus and stomach present a major health burden worldwide. In the past 30 years we have witnessed some interesting shifts in terms of epidemiology of esophago gastric cancers. Regardless of a world region, the majority of patients diagnosed with esophageal or gastric cancers die from progression or recurrence of their disease. While there are many active cytotoxic agents for esophageal and stomach cancers, their impact on the disease course has been modest at best. Median survival for patients with advanced gastroesophageal cancer is still less than a year. Therefore, novel strategies, based on our understanding of biology and genetics, are desperately needed. Epidermal growth factor receptor (EGFR pathway has been implicated in pathophysiology of many epithelial malignancies, including esophageal and stomach cancers. EGFR inhibitors, small molecule tyrosine kinase inhibitors and monoclonal antibodies, have been explored in patients with esophageal and gastric cancers. It appears that tumors of the distal esophagus and gastroesophageal junction (GEJ may be more sensitive to EGFR blockade than distal gastric adenocarcinomas. Investigations looking into potential molecular predictors of sensitivity to EGFR inhibitors for patients with esophageal and GEJ cancers are ongoing. While we are still searching for those predictors, it is clear that they will be different from ones identified in lung and colorectal cancers. Further development of EGFR inhibitors for esophageal and GEJ cancers should be driven by better understanding of EGFR pathway disregulation that drives cancer progression in a sensitive patient population.

  16. Targeted Inhibition of EGFR and Glutaminase Induces Metabolic Crisis in EGFR Mutant Lung Cancer.

    Science.gov (United States)

    Momcilovic, Milica; Bailey, Sean T; Lee, Jason T; Fishbein, Michael C; Magyar, Clara; Braas, Daniel; Graeber, Thomas; Jackson, Nicholas J; Czernin, Johannes; Emberley, Ethan; Gross, Matthew; Janes, Julie; Mackinnon, Andy; Pan, Alison; Rodriguez, Mirna; Works, Melissa; Zhang, Winter; Parlati, Francesco; Demo, Susan; Garon, Edward; Krysan, Kostyantyn; Walser, Tonya C; Dubinett, Steven M; Sadeghi, Saman; Christofk, Heather R; Shackelford, David B

    2017-01-17

    Cancer cells exhibit increased use of nutrients, including glucose and glutamine, to support the bioenergetic and biosynthetic demands of proliferation. We tested the small-molecule inhibitor of glutaminase CB-839 in combination with erlotinib on epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) as a therapeutic strategy to simultaneously impair cancer glucose and glutamine utilization and thereby suppress tumor growth. Here, we show that CB-839 cooperates with erlotinib to drive energetic stress and activate the AMP-activated protein kinase (AMPK) pathway in EGFR (del19) lung tumors. Tumor cells undergo metabolic crisis and cell death, resulting in rapid tumor regression in vivo in mouse NSCLC xenografts. Consistently, positron emission tomography (PET) imaging with 18 F-fluoro-2-deoxyglucose ( 18 F-FDG) and 11 C-glutamine ( 11 C-Gln) of xenografts indicated reduced glucose and glutamine uptake in tumors following treatment with CB-839 + erlotinib. Therefore, PET imaging with 18 F-FDG and 11 C-Gln tracers can be used to non-invasively measure metabolic response to CB-839 and erlotinib combination therapy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Targeted Inhibition of EGFR and Glutaminase Induces Metabolic Crisis in EGFR Mutant Lung Cancer

    Directory of Open Access Journals (Sweden)

    Milica Momcilovic

    2017-01-01

    Full Text Available Cancer cells exhibit increased use of nutrients, including glucose and glutamine, to support the bioenergetic and biosynthetic demands of proliferation. We tested the small-molecule inhibitor of glutaminase CB-839 in combination with erlotinib on epidermal growth factor receptor (EGFR mutant non-small cell lung cancer (NSCLC as a therapeutic strategy to simultaneously impair cancer glucose and glutamine utilization and thereby suppress tumor growth. Here, we show that CB-839 cooperates with erlotinib to drive energetic stress and activate the AMP-activated protein kinase (AMPK pathway in EGFR (del19 lung tumors. Tumor cells undergo metabolic crisis and cell death, resulting in rapid tumor regression in vivo in mouse NSCLC xenografts. Consistently, positron emission tomography (PET imaging with 18F-fluoro-2-deoxyglucose (18F-FDG and 11C-glutamine (11C-Gln of xenografts indicated reduced glucose and glutamine uptake in tumors following treatment with CB-839 + erlotinib. Therefore, PET imaging with 18F-FDG and 11C-Gln tracers can be used to non-invasively measure metabolic response to CB-839 and erlotinib combination therapy.

  18. Icotinib in Patients with Pretreated Advanced Esophageal Squamous Cell Carcinoma with EGFR Overexpression or EGFR Gene Amplification: A Single-Arm, Multicenter Phase 2 Study.

    NARCIS (Netherlands)

    Huang, J.; Fan, Q.; Lu, P.; Ying, J.; Ma, C.; Liu, W.; Liu, Y.; Tan, F.; Sun, Y

    2016-01-01

    INTRODUCTION: Epidermal growth factor receptor (EGFR) has been reported to be overexpressed and amplified in a high percentage of patients with esophageal squamous cell carcinoma (ESCC). The activity of icotinib, an EGFR tyrosine kinase inhibitor, was assessed in previously treated ESCC with EGFR

  19. FDG-PET/CT response evaluation during EGFR-TKI treatment in patients with NSCLC

    Institute of Scientific and Technical Information of China (English)

    Matthijs; H; van; Gool; Tjeerd; S; Aukema; Koen; J; Hartemink; Renato; A; Valdés; Olmos; Houke; M; Klomp; Harm; van; Tinteren

    2014-01-01

    Over recent years,[18F]-fluorodeoxyglucose positron emission tomography acquired together with low dose computed tomography(FDG-PET/CT)has proven its role as a staging modality in patients with non-small cell lung cancer(NSCLC).The purpose of this review was to present the evidence to use FDG-PET/CT for response evaluation in patients with NSCLC,treated with epidermal growth factor receptor(EGFR)-tyrosine kinase inhibitors(TKI).All published articles from 1November 2003 to 1 November 2013 reporting on 18FFDG-PET response evaluation during EGFR-TKI treatment in patients with NSCLC were collected.In total 7studies,including data of 210 patients were eligible for analyses.Our report shows that FDG-PET/CT responseduring EGFR-TKI therapy has potential in targeted treatment for NSCLC.FDG-PET/CT response is associated with clinical and radiologic response and with survival.Furthermore FDG-PET/CT response monitoring can be performed as early as 1-2 wk after initiation of EGFR-TKI treatment.Patients with substantial decrease of metabolic activity during EGFR-TKI treatment will probably benefit from continued treatment.If metabolic response does not occur within the first weeks of EGFR-TKI treatment,patients may be spared(further)unnecessary toxicity of ineffective treatment.Refining FDG-PET response criteria may help the clinician to decide on continuation or discontinuation of targeted treatment.

  20. In vivo imaging of the dynamics of different variants of EGFR in glioblastomas.

    Science.gov (United States)

    Shah, Khalid

    2011-01-01

    A number of altered pathways in cancer cells depend on growth factor receptors. The amplification/alteration of the epidermal growth factor receptor (EGFR) has been shown to play a significant role in enhancing tumor burden in a number of tumors, including malignant glioblastomas (GBM). To dissect the role of EGFR expression in tumor progression in mouse models of cancer and ultimately evaluate targeted therapies, it is necessary to visualize the dynamics of EGFR in real time in vivo. Non-invasive imaging based on quantitative and qualitative changes in light emission by fluorescent and bioluminescent markers offers a huge potential to facilitate drug development. Multiple approaches could be used to follow a molecular target or pathway with the fusion of a bioluminescent-fluorescent marker. This unit describes a protocol for simultaneously imaging EGFR activity and progression of GBM in a mouse model. Human glioma cells transduced with lentiviral vectors bearing different combinations of fluorescent and bioluminescent proteins either fused to EGFR or expressed alone can be grown as monolayers and maintained over several passages. The unit begins with a method for transducing glioma cells with lentiviral vectors for stable expression of these fluorescent and bioluminescent markers in vitro, followed by transplantation of engineered glioma cells in mice, and, finally, sequential bioluminescent imaging of EGFR expression and GBM progression in mice. The protocol details characterization of engineered glioma cells in culture, surgical preparation, craniotomy, cell implantation, animal recovery, and imaging procedures to study kinetics of EGFR expression and GBM progression.

  1. MITF Modulates Therapeutic Resistance through EGFR Signaling.

    Science.gov (United States)

    Ji, Zhenyu; Erin Chen, Yiyin; Kumar, Raj; Taylor, Michael; Jenny Njauw, Ching-Ni; Miao, Benchun; Frederick, Dennie T; Wargo, Jennifer A; Flaherty, Keith T; Jönsson, Göran; Tsao, Hensin

    2015-07-01

    Response to targeted therapies varies significantly despite shared oncogenic mutations. Nowhere is this more apparent than in BRAF (V600E)-mutated melanomas where initial drug response can be striking and yet relapse is commonplace. Resistance to BRAF inhibitors have been attributed to the activation of various receptor tyrosine kinases (RTKs), although the underlying mechanisms have been largely uncharacterized. Here, we found that EGFR-induced vemurafenib resistance is ligand dependent. We employed whole-genome expression analysis and discovered that vemurafenib resistance correlated with the loss of microphthalmia-associated transcription factor (MITF), along with its melanocyte lineage program, and with the activation of EGFR signaling. An inverse relationship between MITF, vemurafenib resistance, and EGFR was then observed in patient samples of recurrent melanoma and was conserved across melanoma cell lines and patients' tumor specimens. Functional studies revealed that MITF depletion activated EGFR signaling and consequently recapitulated the resistance phenotype. In contrast, forced expression of MITF in melanoma and colon cancer cells inhibited EGFR and conferred sensitivity to BRAF/MEK inhibitors. These findings indicate that an "autocrine drug resistance loop" is suppressed by melanocyte lineage signal(s), such as MITF. This resistance loop modulates drug response and could explain the unique sensitivity of melanomas to BRAF inhibition.

  2. Epidermal growth factor receptor (EGFR) mutations and expression in squamous cell carcinoma of the esophagus in central Asia

    International Nuclear Information System (INIS)

    Abedi-Ardekani, Behnoush; Malekzadeh, Reza; Hainaut, Pierre; Dar, Nazir Ahmad; Mir, Mohammad Muzaffar; Zargar, Showkat Ahmad; Lone, M Muqbool; Martel-Planche, Ghyslaine; Villar, Stéphanie; Mounawar, Mounia; Saidi, Farrokh

    2012-01-01

    Esophageal squamous cell carcinoma (ESCC) shows geographic variations in incidence, with high incidences (>50/10 5 person-years) in central Asia, including North Eastern Iran (Golestan) and Northern India (Kashmir). In contrast to Western countries, smoking does not appear to be a significant risk factor for ESCC in central Asia. In lung adenocarcinoma, activating mutations in the gene encoding epidermal growth factor receptor (EGFR) are frequent in tumors of never smokers of Asian origin, predicting therapeutic sensitivity to Egfr-targeting drugs. In this study 152 cases of histologically confirmed ESCC from Iran (Tehran and Golestan Province) and North India (Kashmir Valley) have been analyzed for EGFR mutation by direct sequencing of exons 18–21. Egfr protein expression was evaluated by immunohistochemistry in 34 samples from Tehran and HER2 mutations were analyzed in 54 cases from Kashmir. A total of 14 (9.2%) EGFR variations were detected, including seven variations in exons. Among those, four (2.6%) were already documented in lung cancers, two were reported as polymorphisms and one was a potentially new activating mutation. All but one variation in introns were previously identified as polymorphisms. Over-expression of Egfr was detected in 22/34 (65%) of tested cases whereas no HER2 mutation was found in 54 cases from Kashmir. Overall, EGFR mutations appear to be a rare event in ESCC in high incidence areas of central Asia, although a very small proportion of cases may harbor mutations predicting sensitivity to anti-Egfr drugs

  3. EGFR/Ras Signaling Controls Drosophila Intestinal Stem Cell Proliferation via Capicua-Regulated Genes.

    Directory of Open Access Journals (Sweden)

    Yinhua Jin

    2015-12-01

    Full Text Available Epithelial renewal in the Drosophila intestine is orchestrated by Intestinal Stem Cells (ISCs. Following damage or stress the intestinal epithelium produces ligands that activate the epidermal growth factor receptor (EGFR in ISCs. This promotes their growth and division and, thereby, epithelial regeneration. Here we demonstrate that the HMG-box transcriptional repressor, Capicua (Cic, mediates these functions of EGFR signaling. Depleting Cic in ISCs activated them for division, whereas overexpressed Cic inhibited ISC proliferation and midgut regeneration. Epistasis tests showed that Cic acted as an essential downstream effector of EGFR/Ras signaling, and immunofluorescence showed that Cic's nuclear localization was regulated by EGFR signaling. ISC-specific mRNA expression profiling and DNA binding mapping using DamID indicated that Cic represses cell proliferation via direct targets including string (Cdc25, Cyclin E, and the ETS domain transcription factors Ets21C and Pointed (pnt. pnt was required for ISC over-proliferation following Cic depletion, and ectopic pnt restored ISC proliferation even in the presence of overexpressed dominant-active Cic. These studies identify Cic, Pnt, and Ets21C as critical downstream effectors of EGFR signaling in Drosophila ISCs.

  4. Cationic Polyamidoamine Dendrimers as Modulators of EGFR Signaling In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Saghir Akhtar

    Full Text Available Cationic polyamidoamine (PAMAM dendrimers are branch-like spherical polymers being investigated for a variety of applications in nanomedicine including nucleic acid drug delivery. Emerging evidence suggests they exhibit intrinsic biological and toxicological effects but little is known of their interactions with signal transduction pathways. We previously showed that the activated (fragmented generation (G 6 PAMAM dendrimer, Superfect (SF, stimulated epidermal growth factor receptor (EGFR tyrosine kinase signaling-an important signaling cascade that regulates cell growth, survival and apoptosis- in cultured human embryonic kidney (HEK 293 cells. Here, we firstly studied the in vitro effects of Polyfect (PF, a non-activated (intact G6 PAMAM dendrimer, on EGFR tyrosine kinase signaling via extracellular-regulated kinase 1/2 (ERK1/2 and p38 mitogen-activated protein kinase (MAPK in cultured HEK 293 cells and then compared the in vivo effects of a single administration (10mg/kg i.p of PF or SF on EGFR signaling in the kidneys of normal and diabetic male Wistar rats. Polyfect exhibited a dose- and time-dependent inhibition of EGFR, ERK1/2 and p38 MAPK phosphorylation in HEK-293 cells similar to AG1478, a selective EGFR inhibitor. Administration of dendrimers to non-diabetic or diabetic animals for 24h showed that PF inhibited whereas SF stimulated EGFR phosphorylation in the kidneys of both sets of animals. PF-mediated inhibition of EGFR phosphorylation as well as SF or PF-mediated apoptosis in HEK 293 cells could be significantly reversed by co-treatment with antioxidants such as tempol implying that both these effects involved an oxidative stress-dependent mechanism. These results show for the first time that SF and PF PAMAM dendrimers can differentially modulate the important EGFR signal transduction pathway in vivo and may represent a novel class of EGFR modulators. These findings could have important clinical implications for the use of PAMAM

  5. Macro Dark Matter

    CERN Document Server

    Jacobs, David M; Lynn, Bryan W.

    2015-01-01

    Dark matter is a vital component of the current best model of our universe, $\\Lambda$CDM. There are leading candidates for what the dark matter could be (e.g. weakly-interacting massive particles, or axions), but no compelling observational or experimental evidence exists to support these particular candidates, nor any beyond-the-Standard-Model physics that might produce such candidates. This suggests that other dark matter candidates, including ones that might arise in the Standard Model, should receive increased attention. Here we consider a general class of dark matter candidates with characteristic masses and interaction cross-sections characterized in units of grams and cm$^2$, respectively -- we therefore dub these macroscopic objects as Macros. Such dark matter candidates could potentially be assembled out of Standard Model particles (quarks and leptons) in the early universe. A combination of earth-based, astrophysical, and cosmological observations constrain a portion of the Macro parameter space; ho...

  6. [Regulation on EGFR function via its interacting proteins and its potential application].

    Science.gov (United States)

    Zheng, Jun-Fang; Chen, Hui-Min; He, Jun-Qi

    2013-12-01

    Epidermal growth factor receptor (EGFR) is imptortant for cell activities, oncogenesis and cell migration, and EGFR inhibitor can treat cancer efficiently, but its side effects, for example, in skin, limited its usage. On the other hand, EGFR interacting proteins may also lead to oncogenesis and its interacting protein as drug targets can avoid cutaneous side effect, which implies possibly a better outcome and life quality of cancer patients. For the multiple EGFR interaction proteins, B1R enhances Erk/MAPK signaling, while PTPN12, Kek1, CEACAM1 and NHERF repress Erk/MAPK signaling. CaM may alter charge of EGFR juxamembrane domain and regulate activation of PI3K/Akt and PLC-gamma/PKC. STAT1, STAT5b are widely thought to be activated by EGFR, while there is unexpectedly inhibiting sequence within EGFR to repress the activity of STATs. LRIG1 and ACK1 enhance the internalization and degration of EGFR, while NHERF and HIP1 repress it. In this article, proteins interacting with EGFR, their interacting sites and their regulation on EGFR signal transduction will be reviewed.

  7. PAI-1 and EGFR expression in adult glioma tumors: toward a molecular prognostic classification

    International Nuclear Information System (INIS)

    Muracciole, Xavier; Romain, Sylvie; Dufour, Henri; Palmari, Jacqueline; Chinot, Olivier; Ouafik, L'Houcine; Grisoli, Francois; Figarella-Branger, Dominique; Martin, Pierre-Marie

    2002-01-01

    Purpose: Molecular classification of gliomas is a major challenge in the effort to improve therapeutic decisions. The plasminogen activator system, including plasminogen activator inhibitor type 1 (PAI-1), plays a key role in tumor invasion and neoangiogenesis. Epidermal growth factor receptor (EGFR) is involved in the control of proliferation. The contribution of PAI-1 and EGFR to the survival of gliomas was retrospectively investigated. Methods and Materials: Fifty-nine adult gliomas treated by neurosurgery and conventional irradiation were analyzed, including 9 low-grade (2) and 50 high-grade (3-4) tumors (WHO classification). PAI-1 was measured on cytosols and EGFR on solubilized membranes using ELISA methods. Results: High PAI-1 levels were strongly associated with high histologic grade (p<0.001) and histologic necrosis (p<0.001). PAI-1 also correlated positively with patient age (p=0.05) and negatively with Karnofsky index (p=0.01). By univariate analysis of the high-grade population, higher PAI-1 (p<0.0001) and EGFR values (p=0.02) were associated with shorter overall survival. Only PAI-1 was an independent factor in multivariate analysis. Grade 3 tumors with low PAI-1 (100% 3-year overall survival rate) presented the same clinical outcome as the low-grade tumors. Conclusions: In this prognostic study, PAI-1 and EGFR expression revealed similarities and differences between high-grade gliomas that were not apparent by traditional clinical criteria. These data strongly support that biologic factors should be included in glioma classification and the design of clinical trials to treat more homogeneous populations

  8. 99mTc labeled anti EGFR Nanobody pentamer for tumor radioimmunoimaging

    International Nuclear Information System (INIS)

    Ding Zhiling; Lan Xiaoli; Li Chongjiao; Pei Zhijun; Zhang Yongxue; Wang Lifei; Gao Bin

    2014-01-01

    Novel Nanobody has small molecular weight and lower affinity. Appropriate polymer would be more suitable for radioimmunoimaging. In this study, we labeled anti EGFR Nanobody pentamer with 99m Tc to prepare tumor targeting imaging agent and to investigate its binding characteristics of tumor cells and tissues in vitro and in vivo, and to explore the feasibility of 99m Tc-EGFR Nanobody pentamer for tumor radioimmunoimaging compared with anti EGFR Nanobody monomer. EGFR Nanobody labeled with 99m Tc through tricarbonyl intermediate. The labeled compounds were purified by an ultra centrifugal filter; The labeling efficiency was determined by thin layer chromatography (TLC), and the radiochemical purity more than 95%. In vitro, 99m Tc-EGFR Nanobody monomer and pentamer have the specific binding capability with EGFR overexpression A431 tumor cell. the binding rate of 99m Tc-EGFR Nanobody monomer higher than that of pentamer (11.32% ± 2.73% vs 5.80% ± 0.92%, P < O.05). In A431 xenografted tumor was clearly displayed after intravenous injection of 99m Tc-EGFR Nanobody pentamer at l.5 h, T/NT maximum was 2.9 (1.5 h), whereas, the tumor tissues was not obviously found using 99m Tc-EGFR Nanobody monomer. The negative EGFR expression OCM-I xenografted tumor was not showed in both monomer and pentamer tracer. The experiment indicated that 99m Tc-EGFR Nanobody pentamer are appropriate for tumor radioimmunoimaging and has the potential value for the further study. (authors)

  9. A view on EGFR-targeted therapies from the oncogene-addiction perspective.

    Science.gov (United States)

    Perez, Rolando; Crombet, Tania; de Leon, Joel; Moreno, Ernesto

    2013-01-01

    Tumor cell growth and survival can often be impaired by inactivating a single oncogen- a phenomenon that has been called as "oncogene addiction." It is in such scenarios that molecular targeted therapies may succeed. among known oncogenes, the epidermal growth factor receptor (EGFR) has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. a critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the "EGFR addiction" phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies.

  10. A view on EGFR-targeted therapies from the oncogene-addiction perspective

    Directory of Open Access Journals (Sweden)

    Rolando ePerez

    2013-04-01

    Full Text Available Tumor cell growth and survival can often be impaired by inactivating a single oncogen – a phenomenon that has been called as 'oncogene addiction'. It is in such scenarios that molecular targeted therapies may succeed. Among known oncogenes, the epidermal growth factor receptor (EGFR has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. A critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the 'EGFR addiction' phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies.

  11. Preliminary Evidence on the Diagnostic and Molecular Role of Circulating Soluble EGFR in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Filippo Lococo

    2015-08-01

    Full Text Available Assessment of biological diagnostic factors providing clinically-relevant information to guide physician decision-making are still needed for diseases with poor outcomes, such as non-small cell lung cancer (NSCLC. Epidermal growth factor receptor (EGFR is a promising molecule in the clinical management of NSCLC. While the EGFR transmembrane form has been extensively investigated in large clinical trials, the soluble, circulating EGFR isoform (sEGFR, which may have a potential clinical use, has rarely been considered. This study investigates the use of sEGFR as a potential diagnostic biomarker for NSCLC and also characterizes the biological function of sEGFR to clarify the molecular mechanisms involved in the course of action of this protein. Plasma sEGFR levels from a heterogeneous cohort of 37 non-advanced NSCLC patients and 54 healthy subjects were analyzed by using an enzyme-linked immunosorbent assay. The biological function of sEGFR was analyzed in vitro using NSCLC cell lines, investigating effects on cell proliferation and migration. We found that plasma sEGFR was significantly decreased in the NSCLC patient group as compared to the control group (median value: 48.6 vs. 55.6 ng/mL respectively; p = 0.0002. Moreover, we demonstrated that sEGFR inhibits growth and migration of NSCLC cells in vitro through molecular mechanisms that included perturbation of EGF/EGFR cell signaling and holoreceptor internalization. These data show that sEGFR is a potential circulating biomarker with a physiological protective role, providing a first approach to the functional role of the soluble isoform of EGFR. However, the impact of these data on daily clinical practice needs to be further investigated in larger prospective studies.

  12. Preliminary Evidence on the Diagnostic and Molecular Role of Circulating Soluble EGFR in Non-Small Cell Lung Cancer

    Science.gov (United States)

    Lococo, Filippo; Paci, Massimiliano; Rapicetta, Cristian; Rossi, Teresa; Sancisi, Valentina; Braglia, Luca; Cavuto, Silvio; Bisagni, Alessandra; Bongarzone, Italia; Noonan, Douglas M.; Albini, Adriana; Maramotti, Sally

    2015-01-01

    Assessment of biological diagnostic factors providing clinically-relevant information to guide physician decision-making are still needed for diseases with poor outcomes, such as non-small cell lung cancer (NSCLC). Epidermal growth factor receptor (EGFR) is a promising molecule in the clinical management of NSCLC. While the EGFR transmembrane form has been extensively investigated in large clinical trials, the soluble, circulating EGFR isoform (sEGFR), which may have a potential clinical use, has rarely been considered. This study investigates the use of sEGFR as a potential diagnostic biomarker for NSCLC and also characterizes the biological function of sEGFR to clarify the molecular mechanisms involved in the course of action of this protein. Plasma sEGFR levels from a heterogeneous cohort of 37 non-advanced NSCLC patients and 54 healthy subjects were analyzed by using an enzyme-linked immunosorbent assay. The biological function of sEGFR was analyzed in vitro using NSCLC cell lines, investigating effects on cell proliferation and migration. We found that plasma sEGFR was significantly decreased in the NSCLC patient group as compared to the control group (median value: 48.6 vs. 55.6 ng/mL respectively; p = 0.0002). Moreover, we demonstrated that sEGFR inhibits growth and migration of NSCLC cells in vitro through molecular mechanisms that included perturbation of EGF/EGFR cell signaling and holoreceptor internalization. These data show that sEGFR is a potential circulating biomarker with a physiological protective role, providing a first approach to the functional role of the soluble isoform of EGFR. However, the impact of these data on daily clinical practice needs to be further investigated in larger prospective studies. PMID:26295387

  13. Ibrutinib targets mutant-EGFR kinase with a distinct binding conformation.

    Science.gov (United States)

    Wang, Aoli; Yan, Xiao-E; Wu, Hong; Wang, Wenchao; Hu, Chen; Chen, Cheng; Zhao, Zheng; Zhao, Peng; Li, Xixiang; Wang, Li; Wang, Beilei; Ye, Zi; Wang, Jinhua; Wang, Chu; Zhang, Wei; Gray, Nathanael S; Weisberg, Ellen L; Chen, Liang; Liu, Jing; Yun, Cai-Hong; Liu, Qingsong

    2016-10-25

    Ibrutinib, a clinically approved irreversible BTK kinase inhibitor for Mantle Cell Lymphoma (MCL) and Chronic Lymphocytic Leukemia (CLL) etc, has been reported to be potent against EGFR mutant kinase and currently being evaluated in clinic for Non Small Cell Lung Cancer (NSCLC). Through EGFR wt/mutant engineered isogenic BaF3 cell lines we confirmed the irreversible binding mode of Ibrutinib with EGFR wt/mutant kinase via Cys797. However, comparing to typical irreversible EGFR inhibitor, such as WZ4002, the washing-out experiments revealed a much less efficient covalent binding for Ibrutinib. The biochemical binding affinity examination in the EGFR L858R/T790M kinase revealed that, comparing to more efficient irreversible inhibitor WZ4002 (Kd: 0.074 μM), Ibrutinib exhibited less efficient binding (Kd: 0.18 μM). An X-ray crystal structure of EGFR (T790M) in complex with Ibrutinib exhibited a unique DFG-in/c-Helix-out inactive binding conformation, which partially explained the less efficiency of covalent binding and provided insight for further development of highly efficient irreversible binding inhibitor for the EGFR mutant kinase. These results also imply that, unlike the canonical irreversible inhibitor, sustained effective concentration might be required for Ibrutinib in order to achieve the maximal efficacy in the clinic application against EGFR driven NSCLC.

  14. Epidermal growth factor receptor (EGFR mutations and expression in squamous cell carcinoma of the esophagus in central Asia

    Directory of Open Access Journals (Sweden)

    Abedi-Ardekani Behnoush

    2012-12-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC shows geographic variations in incidence, with high incidences (>50/105 person-years in central Asia, including North Eastern Iran (Golestan and Northern India (Kashmir. In contrast to Western countries, smoking does not appear to be a significant risk factor for ESCC in central Asia. In lung adenocarcinoma, activating mutations in the gene encoding epidermal growth factor receptor (EGFR are frequent in tumors of never smokers of Asian origin, predicting therapeutic sensitivity to Egfr-targeting drugs. Methods In this study 152 cases of histologically confirmed ESCC from Iran (Tehran and Golestan Province and North India (Kashmir Valley have been analyzed for EGFR mutation by direct sequencing of exons 18–21. Egfr protein expression was evaluated by immunohistochemistry in 34 samples from Tehran and HER2 mutations were analyzed in 54 cases from Kashmir. Results A total of 14 (9.2% EGFR variations were detected, including seven variations in exons. Among those, four (2.6% were already documented in lung cancers, two were reported as polymorphisms and one was a potentially new activating mutation. All but one variation in introns were previously identified as polymorphisms. Over-expression of Egfr was detected in 22/34 (65% of tested cases whereas no HER2 mutation was found in 54 cases from Kashmir. Conclusion Overall, EGFR mutations appear to be a rare event in ESCC in high incidence areas of central Asia, although a very small proportion of cases may harbor mutations predicting sensitivity to anti-Egfr drugs.

  15. Past Decline Versus Current eGFR and Subsequent Mortality Risk

    NARCIS (Netherlands)

    Naimark, David M. J.; Grams, Morgan E.; Matsushita, Kunihiro; Black, Corri; Drion, Iefke; Fox, Caroline S.; Inker, Lesley A.; Ishani, Areef; Jee, Sun Ha; Kitamura, Akihiko; Lea, Janice P.; Nally, Joseph; Peralta, Carmen Alicia; Rothenbacher, Dietrich; Ryu, Seungho; Tonelli, Marcello; Yatsuya, Hiroshi; Coresh, Josef; Gansevoort, Ron T.; Warnock, David G.; Woodward, Mark; de Jong, Paul E.

    A single determination of eGFR associates with subsequent mortality risk. Prior decline in eGFR indicates loss of kidney function, but the relationship to mortality risk is uncertain. We conducted an individual-level meta-analysis of the risk of mortality associated with antecedent eGFR slope,

  16. EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma.

    Science.gov (United States)

    Cossu-Rocca, Paolo; Muroni, Maria R; Sanges, Francesca; Sotgiu, Giovanni; Asunis, Anna; Tanca, Luciana; Onnis, Daniela; Pira, Giovanna; Manca, Alessandra; Dore, Simone; Uras, Maria G; Ena, Sara; De Miglio, Maria R

    2016-01-01

    Epidermal growth factor receptor (EGFR) is associated with progression of many epithelial malignancies and represents a significant therapeutic target. Although clear cell renal cell carcinoma (CCRCC) has been widely investigated for EGFR molecular alterations, genetic evidences of EGFR gene activating mutations and/or gene amplification have been rarely confirmed in the literature. Therefore, until now EGFR-targeted therapies in clinical trials have been demonstrated unsuccessful. New evidence has been given about the interactions between EGFR and the sodium glucose co-transporter-1 (SGLT1) in maintaining the glucose basal intracellular level to favour cancer cell growth and survival; thus a new functional role may be attributed to EGFR, regardless of its kinase activity. To define the role of EGFR in CCRCC an extensive investigation of genetic changes and functional kinase activities was performed in a series of tumors by analyzing the EGFR mutational status and expression profile, together with the protein expression of downstream signaling pathways members. Furthermore, we investigated the co-expression of EGFR and SGLT1 proteins and their relationships with clinic-pathological features in CCRCC. EGFR protein expression was identified in 98.4% of CCRCC. Furthermore, it was described for the first time that SGLT1 is overexpressed in CCRCC (80.9%), and that co-expression with EGFR is appreciable in 79.4% of the tumours. Moreover, the activation of downstream EGFR pathways was found in about 79.4% of SGLT1-positive CCRCCs. The mutational status analysis of EGFR failed to demonstrate mutations on exons 18 to 24 and the presence of EGFR-variantIII (EGFRvIII) in all CCRCCs analyzed. FISH analysis revealed absence of EGFR amplification, and high polysomy of chromosome 7. Finally, the EGFR gene expression profile showed gene overexpression in 38.2% of CCRCCs. Our study contributes to define the complexity of EGFR role in CCRCC, identifying its bivalent kinase

  17. Mutational status of EGFR and KIT in thymoma and thymic carcinoma.

    Science.gov (United States)

    Yoh, Kiyotaka; Nishiwaki, Yutaka; Ishii, Genichiro; Goto, Koichi; Kubota, Kaoru; Ohmatsu, Hironobu; Niho, Seiji; Nagai, Kanji; Saijo, Nagahiro

    2008-12-01

    This study was conducted to evaluate the prevalence of EGFR and KIT mutations in thymomas and thymic carcinomas as a means of exploring the potential for molecularly targeted therapy with tyrosine kinase inhibitors. Genomic DNA was isolated from 41 paraffin-embedded tumor samples obtained from 24 thymomas and 17 thymic carcinomas. EGFR exons 18, 19, and 21, and KIT exons 9, 11, 13, and 17, were analyzed for mutations by PCR and direct sequencing. Protein expression of EGFR and KIT was evaluated immunohistochemically. EGFR mutations were detected in 2 of 20 thymomas, but not in any of the thymic carcinomas. All of the EGFR mutations detected were missense mutations (L858R and G863D) in exon 21. EGFR protein was expressed in 71% of the thymomas and 53% of the thymic carcinomas. The mutational analysis of KIT revealed only a missense mutation (L576P) in exon 11 of one thymic carcinoma. KIT protein was expressed in 88% of the thymic carcinomas and 0% of the thymomas. The results of this study indicate that EGFR and KIT mutations in thymomas and thymic carcinomas are rare, but that many of the tumors express EGFR or KIT protein.

  18. Estimating Dynamic Equilibrium Models using Macro and Financial Data

    DEFF Research Database (Denmark)

    Christensen, Bent Jesper; Posch, Olaf; van der Wel, Michel

    We show that including financial market data at daily frequency, along with macro series at standard lower frequency, facilitates statistical inference on structural parameters in dynamic equilibrium models. Our continuous-time formulation conveniently accounts for the difference in observation...... of the estimators and estimate the model using 20 years of U.S. macro and financial data....

  19. Cetuximab insufficiently inhibits glioma cell growth due to persistent EGFR downstream signaling

    DEFF Research Database (Denmark)

    Hasselbalch, Benedikte; Lassen, Ulrik; Poulsen, Hans S

    2010-01-01

    Overexpression and/or amplification of the epidermal growth factor receptor (EGFR) is present in 35-45% of primary glioblastoma multiforme tumors and has been correlated with a poor prognosis. In this study, we investigated the effect of cetuximab and intracellular signaling pathways downstream...... of EGFR, important for cell survival and proliferation. We show insufficient EGFR downregulation and competition with endogenous EGFR ligands upon cetuximab treatment. Dose-response experiments showed inhibition of EGFR phosphorylation without affecting two of the prominent downstream signaling pathways....... Our results indicate that amplification and/or overexpression of EGFR is an unsatisfactory predictor for response to cetuximab....

  20. Egfr Amplification Specific Gene Expression in Phyllodes Tumours of the Breast

    Directory of Open Access Journals (Sweden)

    Konstantin Agelopoulos

    2007-01-01

    Full Text Available Background: Recently, we were able to show that amplifications of the epidermal growth factor receptor (egfr gene and the overexpression of EGFR were associated with the initiation and progression of phyllodes tumours. Methods: In order to gain further insights into regulation mechanisms associated with egfr amplifications and EGFR expression in phyllodes tumours, we performed global gene expression analysis (Affymetrix A133.2 on a series of 10 phyllodes tumours, of these three with and seven without amplifications of an important regulatory repeat in intron 1 of egfr (CA-SSR I. The results were verified and extended by means of immunohistochemistry using the tissue microarray method on an extensively characterized series of 58 phyllodes tumours with antibodies against caveolin-1, eps15, EGF, TGF-α, pErk, pAkt and mdm2. Results: We were able to show that the presence of egfr CA-SSR I amplifications in phyllodes tumours was associated with 230 differentially expressed genes. Caveolin-1 and eps15, involved in EGFR turnover and signalling, were regulated differentially on the RNA and protein level proportionally to egfr gene dosage. Further immunohistochemical analysis revealed that the expression of caveolin-1 and eps15 were also significantly correlated with the expression of pAkt (p < 0.05, pERK (p < 0.05, mdm2 (p < 0.01 and EGF (p < 0.001 for caveolin-1. Eps15 and pERK were further associated with tumour grade (p < 0.01 and p < 0.001, respectively. Conclusion: Our results show that amplifications within regulatory sequences of egfr are associated with the expression of eps15 and caveolin-1, indicating an increased turnover of EGFR. The interplay between EGFR and caveolin-1, eps15, pAkt, mdm2 and pERK therefore seems to present a major molecular pathway in carcinogenesis and progression of breast phyllodes tumours.

  1. Recording blood pressure and eGFR in primary care after the Belgrade screening study.

    Science.gov (United States)

    Lezaic, Visnja; Marinkovic, Jelena; Milutinovic, Zoran; Jovanovic-Vasiljevic, Nada; Vujicic, Vesna; Pejovic, Branka; Kalabic, Snezana; Djukanovic, Ljubica

    2018-11-01

    In 2009, Belgrade nephrologists and general practitioners from thirteen health centers carried out screening for chronic kidney disease (CKD). Three years later, medical records of patients from four health centers participating in the screening study were retrospectively analyzed in order to check whether general practitioners had continued to control patients at risk for CKD in accordance with the recommendations provided. The study included 460 patients who visited their doctor at least once in the three-year period. Data on blood pressure, ACEI use, estimated glomerular filtration rate (eGFR) and comorbidities were taken from patients' medical records. Blood pressure was not recorded in any of the three years in 42.8% and eGFR in 36.7% of the patients, but blood pressure was registered every year in 7.8% and eGFR in 4.3% of them. Over the three years, the relative number of patients with recorded blood pressure decreased from 41.7% to 17.8%, and with recorded eGFR from 41.7% to 21.5%. Multivariate linear regression found that Health Center, systolic and diastolic blood pressure and presence of hypertension were negatively associated with number of years with recorded blood pressure. Health Center, systolic blood pressure and sum of years with recorded eGFR below 60 ml/min/1.73m 2 were associated with number of years with recorded eGFR. Under-recording of blood pressure and eGFR in primary care health centers suggests lack of adherence to current guidelines and insufficient care of CKD patients. This implies the necessity for continuous education of physicians.

  2. Frequent EGFR Positivity and Overexpression in High-Grade Areas of Human MPNSTs

    Directory of Open Access Journals (Sweden)

    Séverine Tabone-Eglinger

    2008-01-01

    Full Text Available Malignant peripheral nerve sheath tumours (MPNSTs are highly malignant and resistant. Transformation might implicate up regulation of epidermal growth factor receptor (EGFR. Fifty-two MPNST samples were studied for EGFR, Ki-67, p53, and survivin expression by immunohistochemistry and for EGFR amplification by in situ hybridization. Results were correlated with clinical data. EGFR RNA was also quantified by RT-PCR in 20 other MPNSTs and 14 dermal neurofibromas. Half of the patients had a neurofibromatosis type 1 (NF1. EGFR expression, detected in 86% of MPNSTs, was more frequent in NF1 specimens and closely associated with high-grade and p53-positive areas. MPNSTs expressed more EGFR transcripts than neurofibromas. No amplification of EGFR locus was observed. NF1 status was the only prognostic factor in multivariate analysis, with median survivals of 18 and 43 months for patients with or without NF1. Finally, EGFR might become a new target for MPNSTs treatment, especially in NF1-associated MPNSTs.

  3. The Drosophila Arf GEF Steppke controls MAPK activation in EGFR signaling.

    Science.gov (United States)

    Hahn, Ines; Fuss, Bernhard; Peters, Annika; Werner, Tamara; Sieberg, Andrea; Gosejacob, Dominic; Hoch, Michael

    2013-06-01

    Guanine nucleotide exchange factors (GEFs) of the cytohesin protein family are regulators of GDP/GTP exchange for members of the ADP ribosylation factor (Arf) of small GTPases. They have been identified as modulators of various receptor tyrosine kinase signaling pathways including the insulin, the vascular epidermal growth factor (VEGF) and the epidermal growth factor (EGF) pathways. These pathways control many cellular functions, including cell proliferation and differentiation, and their misregulation is often associated with cancerogenesis. In vivo studies on cytohesins using genetic loss of function alleles are lacking, however, since knockout mouse models are not available yet. We have recently identified mutants for the single cytohesin Steppke (Step) in Drosophila and we could demonstrate an essential role of Step in the insulin signaling cascade. In the present study, we provide in vivo evidence for a role of Step in EGFR signaling during wing and eye development. By analyzing step mutants, transgenic RNA interference (RNAi) and overexpression lines for tissue specific as well as clonal analysis, we found that Step acts downstream of the EGFR and is required for the activation of mitogen-activated protein kinase (MAPK) and the induction of EGFR target genes. We further demonstrate that step transcription is induced by EGFR signaling whereas it is negatively regulated by insulin signaling. Furthermore, genetic studies and biochemical analysis show that Step interacts with the Connector Enhancer of KSR (CNK). We propose that Step may be part of a larger signaling scaffold coordinating receptor tyrosine kinase-dependent MAPK activation.

  4. Expression of EGFR Under Tumor Hypoxia: Identification of a Subpopulation of Tumor Cells Responsible for Aggressiveness and Treatment Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Hoogsteen, Ilse J., E-mail: i.hoogsteen@rther.umcn.nl [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Marres, Henri A.M.; Hoogen, Franciscus J.A. van den [Department of Otorhinolaryngology/Head-Neck Surgery, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands); Rijken, Paul F.J.W.; Lok, Jasper; Bussink, Johan; Kaanders, Johannes H.A.M. [Department of Radiation Oncology, Radboud University Nijmegen Medical Centre, Nijmegen (Netherlands)

    2012-11-01

    Purpose: Overexpression of epidermal growth factor receptor (EGFR) and tumor hypoxia have been shown to correlate with worse outcome in several types of cancer including head-and-neck squamous cell carcinoma. Little is known about the combination and possible interactions between the two phenomena. Methods and Materials: In this study, 45 cases of histologically confirmed squamous cell carcinomas of the head and neck were analyzed. All patients received intravenous infusions of the exogenous hypoxia marker pimonidazole prior to biopsy. Presence of EGFR, pimonidazole binding, and colocalization between EGFR and tumor hypoxia were examined using immunohistochemistry. Results: Of all biopsies examined, respectively, 91% and 60% demonstrated EGFR- and pimonidazole-positive areas. A weak but significant association was found between the hypoxic fractions of pimonidazole (HFpimo) and EGFR fractions (F-EGFR) and between F-EGFR and relative vascular area. Various degrees of colocalization between hypoxia and EGFR were found, increasing with distance from the vasculature. A high fraction of EGFR was correlated with better disease-free and metastasis-free survival, whereas a high degree of colocalization correlated with poor outcome. Conclusions: Colocalization of hypoxia and EGFR was demonstrated in head-and-neck squamous cell carcinomas, predominantly at longer distances from vessels. A large amount of colocalization was associated with poor outcome, which points to a survival advantage of hypoxic cells that are also able to express EGFR. This subpopulation of tumor cells might be indicative of tumor aggressiveness and be partly responsible for treatment resistance.

  5. A generalized macro-assembler

    International Nuclear Information System (INIS)

    Kaul, Mohan Lai

    1970-01-01

    The objective of this research is to study existing macro assemblers, and to create a generalized macro assembler, MAG-I, which is a system independent of a source language, and provides the following possibilities: development of any existing language, translation from a language to another, and creation of a new language. The user can choose his own notations to define macros. The system is implemented on an IBM 360/91 computer. Programs are written in symbolic language and the input/output software is written in Fortran [fr

  6. Anti-tumor activity of high-dose EGFR tyrosine kinase inhibitor and sequential docetaxel in wild type EGFR non-small cell lung cancer cell nude mouse xenografts

    OpenAIRE

    Tang, Ning; Zhang, Qianqian; Fang, Shu; Han, Xiao; Wang, Zhehai

    2016-01-01

    Treatment of non-small-cell lung cancer (NSCLC) with wild-type epidermal growth factor receptor (EGFR) is still a challenge. This study explored antitumor activity of high-dose icotinib (an EGFR tyrosine kinase inhibitor) plus sequential docetaxel against wild-type EGFR NSCLC cells-generated nude mouse xenografts. Nude mice were subcutaneously injected with wild-type EGFR NSCLC A549 cells and divided into different groups for 3-week treatment. Tumor xenograft volumes were monitored and record...

  7. Network meta-analysis of erlotinib, gefitinib, afatinib and icotinib in patients with advanced non-small-cell lung cancer harboring EGFR mutations.

    Science.gov (United States)

    Liang, Wenhua; Wu, Xuan; Fang, Wenfeng; Zhao, Yuanyuan; Yang, Yunpeng; Hu, Zhihuang; Xue, Cong; Zhang, Jing; Zhang, Jianwei; Ma, Yuxiang; Zhou, Ting; Yan, Yue; Hou, Xue; Qin, Tao; Dinglin, Xiaoxiao; Tian, Ying; Huang, Peiyu; Huang, Yan; Zhao, Hongyun; Zhang, Li

    2014-01-01

    Several EGFR-tyrosine kinase inhibitors (EGFR-TKIs) including erlotinib, gefitinib, afatinib and icotinib are currently available as treatment for patients with advanced non-small-cell lung cancer (NSCLC) who harbor EGFR mutations. However, no head to head trials between these TKIs in mutated populations have been reported, which provides room for indirect and integrated comparisons. We searched electronic databases for eligible literatures. Pooled data on objective response rate (ORR), progression free survival (PFS), overall survival (OS) were calculated. Appropriate networks for different outcomes were established to incorporate all evidences. Multiple-treatments comparisons (MTCs) based on Bayesian network integrated the efficacy and specific toxicities of all included treatments. Twelve phase III RCTs that investigated EGFR-TKIs involving 1821 participants with EGFR mutation were included. For mutant patients, the weighted pooled ORR and 1-year PFS of EGFR-TKIs were significant superior to that of standard chemotherapy (ORR: 66.6% vs. 30.9%, OR 5.46, 95%CI 3.59 to 8.30, Picotinib (19%, 29%, NA, NA), respectively. However, afatinib and erlotinib showed significant severer rash and diarrhea compared with gefitinib and icotinib. The current study indicated that erlotinib, gefitinib, afatinib and icotinib shared equivalent efficacy but presented different efficacy-toxicity pattern for EGFR-mutated patients. Erlotinib and afatinib revealed potentially better efficacy but significant higher toxicities compared with gefitinib and icotinib.

  8. EGFR signaling in colorectal cancer: a clinical perspective

    Directory of Open Access Journals (Sweden)

    Saletti P

    2015-01-01

    Full Text Available Piercarlo Saletti,1 Francesca Molinari,2 Sara De Dosso,1 Milo Frattini2 1Oncology Institute of Southern Switzerland, Bellinzona, 2Laboratory of Molecular Pathology, Institute of Pathology, Locarno, Switzerland Abstract: Colorectal cancer (CRC remains a formidable health burden worldwide, with up to 50% of patients developing metastases during the course of their disease. This group of CRC patients, characterized by the worst prognosis, has been extensively investigated to improve their life expectancy. Main efforts, focused on the epidermal growth-factor receptor (EGFR, which plays a pivotal role in CRC pathogenesis, have led to the development and introduction in clinical practice of specific targeted therapies (ie, monoclonal antibodies. Subsequently, the scientific community has tried to identify molecular predictors of the efficacy of such therapies. However, it has become clear that EGFR alterations occurring in CRC are difficult to investigate, and therefore their predictive role is unclear. In contrast, the clinical role of two downstream members (KRAS and NRAS has been clearly demonstrated. Currently, EGFR-targeted therapies can be administered only to patients with wild-type KRAS and NRAS genes. Our review addresses the medical management of metastatic CRC. Specifically, we describe in detail the molecular biology of metastatic CRC, focusing on the EGFR signaling pathway, and we discuss the role of current and emerging related biomarkers and therapies in this field. We also summarize the clinical evidence regarding anti-EGFR monoclonal antibodies and examine potential future perspectives. Keywords: colorectal cancer, EGFR, gene mutations, cetuximab, panitumumab

  9. Neural cell adhesion molecule-180-mediated homophilic binding induces epidermal growth factor receptor (EGFR) down-regulation and uncouples the inhibitory function of EGFR in neurite outgrowth

    DEFF Research Database (Denmark)

    Povlsen, Gro Klitgaard; Berezin, Vladimir; Bock, Elisabeth

    2008-01-01

    The neural cell adhesion molecule (NCAM) plays important roles in neuronal development, regeneration, and synaptic plasticity. NCAM homophilic binding mediates cell adhesion and induces intracellular signals, in which the fibroblast growth factor receptor plays a prominent role. Recent studies...... this NCAM-180-induced EGFR down-regulation involves increased EGFR ubiquitination and lysosomal EGFR degradation. Furthermore, NCAM-180-mediated EGFR down-regulation requires NCAM homophilic binding and interactions of the cytoplasmic domain of NCAM-180 with intracellular interaction partners, but does...

  10. Convergent Akt activation drives acquired EGFR inhibitor resistance in lung cancer

    DEFF Research Database (Denmark)

    Jacobsen, Kirstine; Bertran-Alamillo, Jordi; Molina, Miguel Angel

    2017-01-01

    Non-small-cell lung cancer patients with activating epidermal growth factor receptor (EGFR) mutations typically benefit from EGFR tyrosine kinase inhibitor treatment. However, virtually all patients succumb to acquired EGFR tyrosine kinase inhibitor resistance that occurs via diverse mechanisms....

  11. Statistical Analysis of EGFR Structures’ Performance in Virtual Screening

    Science.gov (United States)

    Li, Yan; Li, Xiang; Dong, Zigang

    2015-01-01

    In this work the ability of EGFR structures to distinguish true inhibitors from decoys in docking and MM-PBSA is assessed by statistical procedures. The docking performance depends critically on the receptor conformation and bound state. The enrichment of known inhibitors is well correlated with the difference between EGFR structures rather than the bound-ligand property. The optimal structures for virtual screening can be selected based purely on the complex information. And the mixed combination of distinct EGFR conformations is recommended for ensemble docking. In MM-PBSA, a variety of EGFR structures have identically good performance in the scoring and ranking of known inhibitors, indicating that the choice of the receptor structure has little effect on the screening. PMID:26476847

  12. Effects of icotinib on advanced non-small cell lung cancer with different EGFR phenotypes.

    Science.gov (United States)

    Pan, Huiyun; Liu, Rong; Li, Shengjie; Fang, Hui; Wang, Ziwei; Huang, Sheng; Zhou, Jianying

    2014-09-01

    Icotinib is the first oral epidermal growth factor receptor (EGFR) tyrosine kinase receptor inhibitor, which has been proven to exert significant inhibitory effects on non-small cell lung cancer in vitro. Clinical evidence has showed that the efficacy of Icotinib on retreating advanced non-small cell lung cancer is comparable to Gefitinib. However, different phenotypes of EGFR can affect the therapeutic outcomes of EGFR tyrosine kinase receptor inhibitor. Therefore, our study focused on efficacy and safety of Icotinib in patients with advanced non-small cell lung cancer of different EGPR phenotypes. Clinical data of patients with advanced non-small cell lung cancer who received Icotinib treatment from August, 2011 to May, 2013 were retrospectively analyzed. Kaplan-Meier analysis was used for survival analysis and comparison. 18 wild-type EGFR and 51 mutant type were found in a total of 69 patients. Objective response rate of patients with mutant type EGFR was 54.9 % and disease control rate was 86.3 %. Objective response rate of wild-type patients was 11.1 % (P = 0.0013 vs mutant type), disease control rate was 50.0 % (P = 0.0017). Median progression-free survival (PFS) of mutant type and wild-type patients were 9.7 and 2.6 months, respectively (P Icotinib included rash, diarrhea, itching skin with occurrence rates of 24.6 % (17/69), 13.0 % (9/69), and 11.6 % (8/69), respectively. Most adverse reactions were grade I-II. Icotinib has great efficacy in EGFR mutated patients, making it an optimal regimen to treat EGFR mutated patients. Furthermore, most of adverse reactions associated with Icotinib treatment were tolerable.

  13. Spectrum of EGFR gene mutations in Vietnamese patients with non-small cell lung cancer.

    Science.gov (United States)

    Vu, Hoang Anh; Xinh, Phan Thi; Ha, Hua Thi Ngoc; Hanh, Ngo Thi Tuyet; Bach, Nguyen Duc; Thao, Doan Thi Phuong; Dat, Ngo Quoc; Trung, Nguyen Sao

    2016-03-01

    Epidermal growth factor receptor (EGFR) mutational status is a crucial biomarker for prediction of response to tyrosine kinase inhibitors in patients with non-small cell lung cancer (NSCLC). Although these mutations have been well characterized in other countries, little is known about the frequency or spectrum of EGFR mutations in Vietnamese NSCLC patients. Using Sanger DNA sequencing, we investigated mutations in EGFR exons 18-21 from 332 patients diagnosed with NSCLC at University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam. DNA was extracted from formalin-fixed, paraffin-embedded tissues, followed by PCR amplification and sequencing. EGFR mutations were detected in 135 samples (40.7%), of which eight samples carried double mutations. In total, 46 different types of EGFR mutations were found, including six novel mutations (p.K713E, p.K714R, p.P794S, p.R803W, p.P848S, and p.K867E). Among the four exons investigated, exon 19 was most frequently mutated (63 out of 332 patients, 19%), with the p.E746_A750del appearing in 43 samples. Exon 21 was mutated in 56 samples (16.9%), of which 47 were p.L858R. Each of exons 18 and 20 was mutated in 12 samples (3.6%). The frequency of EGFR mutations was higher in females than in males (48.9% vs 35%, P = 0.012), but not statistically different between adenocarcinomas and other histological types of NSCLC (41.3% vs 34.5%, P = 0.478). DNA sequencing detected EGFR mutations with high frequency and revealed a broad spectrum of mutation type in Vietnamese patients with NSCLC. © 2015 Wiley Publishing Asia Pty Ltd.

  14. Coexpression of EGFR and CXCR4 predicts poor prognosis in resected pancreatic ductal adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Huanwen Wu

    Full Text Available Epidermal growth factor receptor (EGFR is highly expressed in pancreatic ductal adenocarcinoma (PDAC and is involved in tumorigenesis and development. However, EGFR expression alone has limited clinical and prognostic significance. Recently, the cross-talk between EGFR and G-protein-coupled chemokine receptor CXCR4 has become increasingly recognized.In the present study, immunohistochemical staining of EGFR and CXCR4 was performed on paraffin-embedded specimens from 131 patients with surgically resected PDAC. Subsequently, the associations between EGFR expression, CXCR4 expression, EGFR/CXCR4 coexpression and clinicopathologic factors were assessed, and survival analyses were performed.In total, 64 (48.9% patients expressed EGFR, 68 (51.9% expressed CXCR4, and 33 (25.2% coexpressed EGFR and CXCR4. No significant association between EGFR and CXCR4 expression was observed (P = 0.938. EGFR expression significantly correlated with tumor differentiation (P = 0.031, whereas CXCR4 expression significantly correlated with lymph node metastasis (P = 0.001. EGFR/CXCR4 coexpression was significantly associated with lymph node metastasis (P = 0.026, TNM stage (P = 0.048, and poor tumor differentiation (P = 0.004. By univariate survival analysis, both CXCR4 expression and EGFR/CXCR4 coexpression were significant prognostic factors for poor disease-free survival (DFS and overall survival (OS. Moreover, EGFR/CXCR4 coexpression significantly increased the hazard ratio for both recurrence and death compared with EGFR or CXCR4 protein expression alone. Multivariate survival analysis demonstrated that EGFR/CXCR4 coexpression was an independent prognostic factor for DFS (HR = 2.33, P<0.001 and OS (HR = 2.48, P = 0.001.In conclusion, our data indicate that although EGFR expression alone has limited clinical and prognostic significance, EGFR/CXCR4 coexpression identified a subset of PDAC patients with more aggressive tumor characteristics and a significantly worse

  15. MRI features can predict EGFR expression in lower grade gliomas. A voxel-based radiomic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yiming; Liu, Xing; Qian, Zenghui; Fan, Xing; Li, Shaowu; Jiang, Tao [Capital Medical University, Beijing Neurosurgical Institute, Beijing (China); Xu, Kaibin [Chinese Academy of Sciences, Institute of Automation, Beijing (China); Wang, Kai [Beijing Tiantan Hospital, Department of Neuroradiology, Beijing (China); Wang, Yinyan [Beijing Tiantan Hospital, Department of Neuroradiology, Beijing (China); Beijing Tiantan Hospital, Capital Medical University, Department of Neurosurgery, Beijing (China)

    2018-01-15

    To identify the magnetic resonance imaging (MRI) features associated with epidermal growth factor (EGFR) expression level in lower grade gliomas using radiomic analysis. 270 lower grade glioma patients with known EGFR expression status were randomly assigned into training (n=200) and validation (n=70) sets, and were subjected to feature extraction. Using a logistic regression model, a signature of MRI features was identified to be predictive of the EGFR expression level in lower grade gliomas in the training set, and the accuracy of prediction was assessed in the validation set. A signature of 41 MRI features achieved accuracies of 82.5% (area under the curve [AUC] = 0.90) in the training set and 90.0% (AUC = 0.95) in the validation set. This radiomic signature consisted of 25 first-order statistics or related wavelet features (including range, standard deviation, uniformity, variance), one shape and size-based feature (spherical disproportion), and 15 textural features or related wavelet features (including sum variance, sum entropy, run percentage). A radiomic signature allowing for the prediction of the EGFR expression level in patients with lower grade glioma was identified, suggesting that using tumour-derived radiological features for predicting genomic information is feasible. (orig.)

  16. MLH1 V384D polymorphism associates with poor response to EGFR tyrosine kinase inhibitors in patients with EGFR L858R-positive lung adenocarcinoma.

    Science.gov (United States)

    Chiu, Chao-Hua; Ho, Hsiang-Ling; Doong, Howard; Yeh, Yi-Chen; Chen, Mei-Yu; Chou, Teh-Ying; Tsai, Chun-Ming

    2015-04-10

    A significant fraction of patients with lung adenocarcinomas harboring activating epidermal growth factor receptor (EGFR) mutations do not experience clinical benefits from EGFR tyrosine kinase inhibitor (TKI) therapy. Using next-generation sequencing, we screened 739 mutation hotspots in 46 cancer-related genes in EGFR L858R-mutant lung adenocarcinomas from 29 patients who received EGFR-TKI therapy; 13 had short ( 1 year) progression-free survival (PFS). We discovered MLH1 V384D as a genetic variant enriched in the group of patients with short PFS. Next, we investigated this genetic variation in 158 lung adenocarcinomas with the EGFR L858R mutation and found 14 (8.9%) patients had MLH1 V384D; available blood or non-tumor tissues from patients were also tested positive for MLH1 V384D. Patients with MLH1 V384D had a significantly shorter median PFS than those without (5.1 vs. 10.6 months; P= 0.001). Multivariate analysis showed that MLH1 V384D polymorphism was an independent predictor for a reduced PFS time (hazard ratio, 3.5; 95% confidence interval, 1.7 to 7.2; P= 0.001). In conclusion, MLH1 V384D polymorphism is associated with primary resistance to EGFR-TKIs in patients with EGFR L858R-positive lung adenocarcinoma and may potentially be a novel biomarker to guide treatment decisions.

  17. Macro-economic environmental models

    International Nuclear Information System (INIS)

    Wier, M.

    1993-01-01

    In the present report, an introduction to macro-economic environmental models is given. The role of the models as a tool for policy analysis is discussed. Future applications, as well as the limitations given by the data, are brought into focus. The economic-ecological system is described. A set of guidelines for implementation of the system in a traditional economic macro-model is proposed. The characteristics of empirical national and international environmental macro-economic models so far are highlighted. Special attention is paid to main economic causalities and their consequences for the environmental policy recommendations sat by the models. (au) (41 refs.)

  18. Multi-scale-nonlinear interactions among macro-MHD mode, micro-turbulence, and zonal flow

    International Nuclear Information System (INIS)

    Ishizawa, Akihiro; Nakajima, Noriyoshi

    2007-01-01

    This is the first numerical simulation demonstrating that macro-magnetohydrodynamic (macro-MHD) mode is exited as a result of multi-scale interaction in a quasi-steady equilibrium formed by a balance between zonal flow and micro-turbulence via reduced-two-fluid simulation. Only after obtaining the equilibrium which includes zonal flow and the turbulence caused by kinetic ballooning mode is this simulation of macro-MHD mode, double tearing mode, accomplished. In the quasi-steady equilibrium a macro-fluctuation which has the same helicity as that of double tearing mode is a part of the turbulence until it grows as a macro-MHD mode finally. When the macro-MHD grows it effectively utilize free energy of equilibrium current density gradient because of positive feedback loop between suppression of zonal flow and growth of the macro-fluctuation causing magnetic reconnection. Thus once the macro-MHD grows from the quasi-equilibrium, it does not go back. This simulation is more comparable with experimental observation of growing macro-fluctuation than traditional MHD simulation of linear instabilities in a static equilibrium. (author)

  19. The prevalence of EGFR mutations in non-small cell lung cancer in an unselected Caucasian population

    DEFF Research Database (Denmark)

    Skov, Birgit G; Høgdall, Estrid; Clementsen, Paul

    2015-01-01

    in a well-defined Danish population were included. The type of the diagnostic material, and data on smoking were registered. The mutation analyses were investigated by Therascreen EGFR RGQ-PCR Kit or Sanger sequencing. A total of 658 men and 598 women were included. 6.2% were never smokers, 38.9% were ex-smokers.......0% of adenocarcinomas, and 1.9% of squamous cell carcinomas were mutated. 29.4%, 4.4% and 2.9% of never, ex- and current smokers were mutated (p ... EGFR mutation. Adenocarcinomas were mutated more often (8.0%) than squamous cell carcinomas (1.9%). Mutations were found in never smokers as well as in former and current smokers. No difference in gender and age regarding mutation status was observed. EGFR mutations analysis was possible in almost all...

  20. ZEUS - standardized macros for the TPA computer

    International Nuclear Information System (INIS)

    Winde, M.

    1976-01-01

    An existing cross-assembler with macro-option was modified to allow the usage of the ZEUS macros. The ZEUS macros are understood by the assembler without prior definition by the user. ZEUS macros allow the programmer, who is obliged to code his TPA (PDP-8) programs on the assembler level to formulate his program logic as in a higher level language. ZEUS macros offer all basic elements necessary for structured programming. (author)

  1. Intake of macro- and micronutrients in Danish vegans.

    Science.gov (United States)

    Kristensen, Nadja B; Madsen, Mia L; Hansen, Tue H; Allin, Kristine H; Hoppe, Camilla; Fagt, Sisse; Lausten, Mia S; Gøbel, Rikke J; Vestergaard, Henrik; Hansen, Torben; Pedersen, Oluf

    2015-10-30

    Since information about macro- and micronutrient intake among vegans is limited we aimed to determine and evaluate their dietary and supplementary intake. Seventy 18-61 years old Danish vegans completed a four-day weighed food record from which their daily intake of macro- and micronutrients was assessed and subsequently compared to an age-range-matched group of 1,257 omnivorous individuals from the general Danish population. Moreover, the vegan dietary and supplementary intake was compared to the 2012 Nordic Nutrition Recommendations (NNR). Dietary intake differed significantly between vegans and the general Danish population in all measured macro- and micronutrients (p vegans the intake of macro- and micronutrients (including supplements) did not reach the NNR for protein, vitamin D, iodine and selenium. Among vegan women vitamin A intake also failed to reach the recommendations. With reference to the NNR, the dietary content of added sugar, sodium and fatty acids, including the ratio of PUFA to SFA, was more favorable among vegans. At the macronutrient level, the diet of Danish vegans is in better accordance with the NNR than the diet of the general Danish population. At the micronutrient level, considering both diet and supplements, the vegan diet falls short in certain nutrients, suggesting a need for greater attention toward ensuring recommended daily intake of specific vitamins and minerals.

  2. Targeting TORC1/2 Enhances Sensitivity to EGFR Inhibitors in Head and Neck Cancer Preclinical Models

    Directory of Open Access Journals (Sweden)

    Andre Cassell

    2012-11-01

    Full Text Available Head and neck squamous cell carcinoma (HNSCC is characterized by overexpression of the epidermal growth factor receptor (EGFR where treatments targeting EGFR have met with limited clinical success. Elucidation of the key downstream-pathways that remain activated in the setting of EGFR blockade may reveal new therapeutic targets. The present study was undertaken to test the hypothesis that inhibition of the mammalian target of rapamycin (mTOR complex would enhance the effects of EGFR blockade in HNSCC preclinical models. Treatment of HNSCC cell lines with the newly developed TORC1/TORC2 inhibitor OSI-027/ASP4876 resulted in dose-dependent inhibition of proliferation with abrogation of phosphorylation of known downstream targets including phospho-AKT (Ser473, phospho-4E-BP1, phospho-p70s6K, and phospho-PRAS40. Furthermore, combined treatment with OSI-027 and erlotinib resulted in enhanced biochemical effects and synergistic growth inhibition in vitro. Treatment of mice bearing HNSCC xenografts with a combination of the Food and Drug Administration (FDA-approved EGFR inhibitor cetuximab and OSI-027 demonstrated a significant reduction of tumor volumes compared with either treatment alone. These findings suggest that TORC1/TORC2 inhibition in conjunction with EGFR blockade represents a plausible therapeutic strategy for HNSCC.

  3. Targeting TORC1/2 enhances sensitivity to EGFR inhibitors in head and neck cancer preclinical models.

    Science.gov (United States)

    Cassell, Andre; Freilino, Maria L; Lee, Jessica; Barr, Sharon; Wang, Lin; Panahandeh, Mary C; Thomas, Sufi M; Grandis, Jennifer R

    2012-11-01

    Head and neck squamous cell carcinoma (HNSCC) is characterized by overexpression of the epidermal growth factor receptor (EGFR) where treatments targeting EGFR have met with limited clinical success. Elucidation of the key downstream-pathways that remain activated in the setting of EGFR blockade may reveal new therapeutic targets. The present study was undertaken to test the hypothesis that inhibition of the mammalian target of rapamycin (mTOR) complex would enhance the effects of EGFR blockade in HNSCC preclinical models. Treatment of HNSCC cell lines with the newly developed TORC1/TORC2 inhibitor OSI-027/ASP4876 resulted in dose-dependent inhibition of proliferation with abrogation of phosphorylation of known downstream targets including phospho-AKT (Ser473), phospho-4E-BP1, phospho-p70s6K, and phospho-PRAS40. Furthermore, combined treatment with OSI-027 and erlotinib resulted in enhanced biochemical effects and synergistic growth inhibition in vitro. Treatment of mice bearing HNSCC xenografts with a combination of the Food and Drug Administration (FDA)-approved EGFR inhibitor cetuximab and OSI-027 demonstrated a significant reduction of tumor volumes compared with either treatment alone. These findings suggest that TORC1/TORC2 inhibition in conjunction with EGFR blockade represents a plausible therapeutic strategy for HNSCC.

  4. Determination of EGFR and KRAS mutational status in Greek non-small-cell lung cancer patients.

    Science.gov (United States)

    Papadopoulou, Eirini; Tsoulos, Nikolaos; Tsirigoti, Angeliki; Apessos, Angela; Agiannitopoulos, Konstantinos; Metaxa-Mariatou, Vasiliki; Zarogoulidis, Konstantinos; Zarogoulidis, Pavlos; Kasarakis, Dimitrios; Kakolyris, Stylianos; Dahabreh, Jubrail; Vlastos, Fotis; Zoublios, Charalampos; Rapti, Aggeliki; Papageorgiou, Niki Georgatou; Veldekis, Dimitrios; Gaga, Mina; Aravantinos, Gerasimos; Karavasilis, Vasileios; Karagiannidis, Napoleon; Nasioulas, George

    2015-10-01

    It has been reported that certain patients with non-small-cell lung cancer (NSCLC) that harbor activating somatic mutations within the tyrosine kinase domain of the epidermal growth factor receptor ( EGFR ) gene may be effectively treated using targeted therapy. The use of EGFR inhibitors in patient therapy has been demonstrated to improve response and survival rates; therefore, it was suggested that clinical screening for EGFR mutations should be performed for all patients. Numerous clinicopathological factors have been associated with EGFR and Kirsten-rat sarcoma oncogene homolog (KRAS) mutational status including gender, smoking history and histology. In addition, it was reported that EGFR mutation frequency in NSCLC patients was ethnicity-dependent, with an incidence rate of ~30% in Asian populations and ~15% in Caucasian populations. However, limited data has been reported on intra-ethnic differences throughout Europe. The present study aimed to investigate the frequency and spectrum of EGFR mutations in 1,472 Greek NSCLC patients. In addition, KRAS mutation analysis was performed in patients with known smoking history in order to determine the correlation of type and mutation frequency with smoking. High-resolution melting curve (HRM) analysis followed by Sanger sequencing was used to identify mutations in exons 18-21 of the EGFR gene and in exon 2 of the KRAS gene. A sensitive next-generation sequencing (NGS) technology was also employed to classify samples with equivocal results. The use of sensitive mutation detection techniques in a large study population of Greek NSCLC patients in routine diagnostic practice revealed an overall EGFR mutation frequency of 15.83%. This mutation frequency was comparable to that previously reported in other European populations. Of note, there was a 99.8% concordance between the HRM method and Sanger sequencing. NGS was found to be the most sensitive method. In addition, female non-smokers demonstrated a high prevalence of

  5. Tyrosine kinase domain mutations of EGFR gene in head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Vatte C

    2017-03-01

    Full Text Available Chittibabu Vatte,1 Ali M Al Amri,2 Cyril Cyrus,1 Shahanas Chathoth,1 Sadananda Acharya,3 Tariq Mohammad Hashim,4 Zhara Al Ali,2 Saleh Tawfeeq Alshreadah,2 Ahmed Alsayyah,4 Amein K Al-Ali5 1Department of Genetic Research, Institute for Research and Medical Consultation, University of Dammam, Dammam, 2Department of Internal Medicine, King Fahd Hospital of the University, University of Dammam, Al-Khobar, 3Department of Stemcell Research, Institute for Research and Medical Consultation, 4Department of Pathology, King Fahd Hospital of the University, University of Dammam, Al-Khobar, 5Department of Biochemistry, College of Medicine, University of Dammam, Dammam, Kingdom of Saudi Arabia Background: Epidermal growth factor receptor (EGFR is a commonly altered gene that is identified in various cancers, including head and neck squamous cell carcinoma (HNSCC. Therefore, EGFR is a promising molecular marker targeted by monoclonal antibodies and small molecule inhibitors targeting the tyrosine kinase (TK domain. Objective: The objective of this study was to investigate the spectrum of mutations in exons 18, 19, 20, and 21 of the EGFR gene in HNSCC patients. Materials and methods: This retrospective study included 47 confirmed HNSCC cases. Mutations in the TK domain, exons 18, 19, 20, and 21 of the EGFR gene, were detected by Scorpion® chemistry and ARMS® technologies on Rotor-Gene Q real-time polymerase chain reaction.Results: The tumors exhibited EGFR-TK domain mutations in 57% of cases. Four cases of T790M mutations were reported for the first time among HNSCC patients. Out of the total mutations, L861Q (exon 21, exon 20 insertions and deletions of exon 19 accounted for the majority of mutations (21%, 19%, and 17%, respectively. EGFR mutation status was correlated with the higher grade (P=0.026 and advanced stage (P=0.034 of HNSCC tumors.Conclusion: Higher frequency of EGFR-TK domain mutations together with the presence of the T790M mutation suggests

  6. The importance of immunohistochemical expression of EGFr in squamous cell carcinoma of the oral cavity treated with surgery and postoperative radiotherapy

    International Nuclear Information System (INIS)

    Smid, Ernst J.; Stoter, T. Rianne; Bloemena, Elisabeth; Lafleur, M. Vincent M.; Leemans, C. Rene; Waal, Isaac van der; Slotman, Ben J.; Langendijk, Johannes A.

    2006-01-01

    Purpose: The aim of this study was to investigate the prognostic significance of epidermal growth factor (EGFr) expression in oral cavity squamous cell carcinoma (OCSCC) treated with curative surgery and postoperative radiotherapy. Methods and Materials: This retrospective study included 165 OCSCC patients. The expression of EGFr was assessed on paraffin-embedded tissue of the primary tumor by immunohistochemistry using a monoclonal antibody directed against EGFr. Intensity of the EGFr expression was scored by two authors blinded for the clinical outcome. Results: In the univariate analysis, locoregional control at 3 years (LRC) in the EGFr-negative cases was 69% compared with 77% in the EGFr-positive cases (p 0.22). In the multivariate analysis for local control, a significant interaction was found between EGFr and overall treatment time of radiation (OTT). After stratification for EGFr expression, the OTT was of no importance in the EGFr-negative cases, whereas a significant difference in LRC was found in the EGFr-positive cases, in which the LRC after 3 years was 69% and 94% in case of an OTT of 0-42 days and >42 days, respectively (p = 0.009; hazard ratio = 3.42; 95% confidence interval, 1.28-8.96). No significant association was found between EGFr expression and overall survival. Conclusions: In the present study, no association was found between EGFr expression and outcome regarding locoregional control and overall survival. However, the results of the present study suggest that patients with squamous cell carcinoma of the oral cavity with high EGFr expression benefit more from a reduction of the overall treatment time of postoperative radiation than those with low EGFr expression

  7. Development of Cu-64 labeled EGF for In Vivo PET Imaging of EGFR Expression

    Energy Technology Data Exchange (ETDEWEB)

    Backer, Joseph M.

    2009-07-12

    In this project we proposed to establish feasibility of the development of targeted tracers for radionuclide imaging of epidermal growth factor receptors (EGFR) in cancer patients. The significance and impact of the proposed radiotracers are determined by the crucial role that EGFR plays in many cancers and by the rapid entrance of EGFR-inhibiting drugs into clinic. Clinical experience, however, revealed that only 10-25% of patients that are defined as EGFR-positive by immunohistochemical analysis respond to EGFR-directed therapeutics and there is poor correlation between EGFR immunohistochemistry and treatment. Therefore, for more efficacious use of EGFR-targeting therapeutics, there is a need for information about EGFR activity in patients. We hypothesized that radionuclide imaging of functionally active EGFR will provide such information and would allow for 1) rational patient stratification, 2) rapid monitoring of responses to therapy, and 3) development of personalized treatment regimens. We hypothesized that tracers based epidermal growth factor (EGF), a natural EGFR ligand, as a targeting vector would be particularly advantageous. First, only functionally active and therefore critical for disease progression EGFRs will bind and internalize an EGF-based tracer. Second, continuous internalization of EGF-based tracers by recyclable EGFR would lead to intracellular accumulation of radionuclide and improved signal-to-background ratio. Third, small size of EGF relative to antibodies would facilitate tumor penetration with vastly better non-specific soft tissue and blood clearance rates. Fourth, as a human protein, EGF is not expected to be immunogenic. Finally, at the beginning of this project, we have already engineered and expressed functionally active EGF with an N-terminal Cys-tag for site-specific conjugation of various payloads, including radionuclide chelators. In the Phase I of this project, in collaboration with Dr. Blankenberg’s group at Stanford

  8. Development of Cu-64 labeled EGF for In Vivo PET Imaging of EGFR Expression

    International Nuclear Information System (INIS)

    Backer, Joseph M.

    2009-01-01

    In this project we proposed to establish feasibility of the development of targeted tracers for radionuclide imaging of epidermal growth factor receptors (EGFR) in cancer patients. The significance and impact of the proposed radiotracers are determined by the crucial role that EGFR plays in many cancers and by the rapid entrance of EGFR-inhibiting drugs into clinic. Clinical experience, however, revealed that only 10-25% of patients that are defined as EGFR-positive by immunohistochemical analysis respond to EGFR-directed therapeutics and there is poor correlation between EGFR immunohistochemistry and treatment. Therefore, for more efficacious use of EGFR-targeting therapeutics, there is a need for information about EGFR activity in patients. We hypothesized that radionuclide imaging of functionally active EGFR will provide such information and would allow for (1) rational patient stratification, (2) rapid monitoring of responses to therapy, and (3) development of personalized treatment regimens. We hypothesized that tracers based epidermal growth factor (EGF), a natural EGFR ligand, as a targeting vector would be particularly advantageous. First, only functionally active and therefore critical for disease progression EGFRs will bind and internalize an EGF-based tracer. Second, continuous internalization of EGF-based tracers by recyclable EGFR would lead to intracellular accumulation of radionuclide and improved signal-to-background ratio. Third, small size of EGF relative to antibodies would facilitate tumor penetration with vastly better non-specific soft tissue and blood clearance rates. Fourth, as a human protein, EGF is not expected to be immunogenic. Finally, at the beginning of this project, we have already engineered and expressed functionally active EGF with an N-terminal Cys-tag for site-specific conjugation of various payloads, including radionuclide chelators. In the Phase I of this project, in collaboration with Dr. Blankenberg's group at Stanford

  9. Correlation between egfr expression and accelerated proliferation during radiotherapy of head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Pedicini, Piernicola; Fiorentino, Alba; Improta, Giuseppina; Storto, Giovanni; Benassi, Marcello; Orecchia, Roberto; Salvatore, Marco; Nappi, Antonio; Strigari, Lidia; Alicia Jereczek-Fossa, Barbara; Alterio, Daniela; Cremonesi, Marta; Botta, Francesca; Vischioni, Barbara; Caivano, Rocchina

    2012-01-01

    To investigate the correlation between the expression of Epidermal Growth Factor receptor (EGFr) and the reduction of the effective doubling time (T D ) during radiotherapy treatment and also to determine the dose per fraction to be taken into account when the overall treatment time (OTT) is reduced in accelerated radiotherapy of head and neck squamous cell carcinoma (HNSCC). A survey of the published papers comparing 3-years of local regional control rate (LCR) for a total of 2162 patients treated with conventional and accelerated radiotherapy and with a pretreatment assessment of EGFr expression, was made. Different values of T D were obtained by a model incorporating the overall time corrected biologically effective dose (BED) and a 3-year clinical LCR for high and low EGFr groups of patients (H EGFr and L EGFr ), respectively. By obtaining the T D from the above analysis and the sub-sites’ potential doubling time (T pot ) from flow cytometry and immunohistochemical methods, we were able to estimate the average T D for each sub-site included in the analysis. Moreover, the dose that would be required to offset the modified proliferation occurring in one day (D prolif ), was estimated. The averages of T D were 77 (27-90) 95% days in L EGFr and 8.8 (7.3-11.0) 95% days in H EGFr , if an onset of accelerated proliferation T K at day 21 was assumed. The correspondent H EGFr sub-sites’ T D were 5.9 (6.6), 5.9 (6.6), 4.6 (6.1), 14.3 (12.9) days, with respect to literature immunohistochemical (flow cytometry) data of T pot for Oral-Cavity, Oro-pharynx, Hypo-pharynx, and Larynx respectively. The D prolif for the H EGFr groups were 0.33 (0.29), 0.33 (0.29), 0.42 (0.31), 0.14 (0.15) Gy/day if α = 0.3 Gy -1 and α/β = 10 Gy were assumed. A higher expression of the EGFr leads to enhanced proliferation. This study allowed to quantify the extent of the effect which EGFr expression has in terms of reduced T D and D prolif for each head and neck sub-site

  10. EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival

    International Nuclear Information System (INIS)

    Jutten, Barry; Keulers, Tom G.; Schaaf, Marco B.E.; Savelkouls, Kim; Theys, Jan; Span, Paul N.; Vooijs, Marc A.; Bussink, Johan; Rouschop, Kasper M.A.

    2013-01-01

    Background and purpose: The epidermal growth factor receptor (EGFR) is overexpressed, amplified or mutated in various human epithelial tumors, and is associated with tumor aggressiveness and therapy resistance. Autophagy activation provides a survival advantage for cells in the tumor microenvironment. In the current study, we assessed the potential of autophagy inhibition (using chloroquine (CQ)) in treatment of EGFR expressing tumors. Material and methods: Quantitative PCR, immunohistochemistry, clonogenic survival, proliferation assays and in vivo tumor growth were used to assess this potential. Results: We show that EGFR overexpressing xenografts are sensitive to CQ treatment and are sensitized to irradiation by autophagy inhibition. In HNSSC xenografts, a correlation between EGFR and expression of the autophagy marker LC3b is observed, suggesting a role for autophagy in EGFR expressing tumors. This observation was substantiated in cell lines, showing high EGFR expressing cells to be more sensitive to CQ addition as reflected by decreased proliferation and survival. Surprisingly high EGFR expressing cells display a lower autophagic flux. Conclusions: The EGFR high expressing cells and tumors investigated in this study are highly dependent on autophagy for growth and survival. Inhibition of autophagy may therefore provide a novel treatment opportunity for EGFR overexpressing tumors

  11. An in vivo C. elegans model system for screening EGFR-inhibiting anti-cancer drugs.

    Directory of Open Access Journals (Sweden)

    Young-Ki Bae

    Full Text Available The epidermal growth factor receptor (EGFR is a well-established target for cancer treatment. EGFR tyrosine kinase (TK inhibitors, such as gefinitib and erlotinib, have been developed as anti-cancer drugs. Although non-small cell lung carcinoma with an activating EGFR mutation, L858R, responds well to gefinitib and erlotinib, tumors with a doubly mutated EGFR, T790M-L858R, acquire resistance to these drugs. The C. elegans EGFR homolog LET-23 and its downstream signaling pathway have been studied extensively to provide insight into regulatory mechanisms conserved from C. elegans to humans. To develop an in vivo screening system for potential cancer drugs targeting specific EGFR mutants, we expressed three LET-23 chimeras in which the TK domain was replaced with either the human wild-type TK domain (LET-23::hEGFR-TK, a TK domain with the L858R mutation (LET-23::hEGFR-TK[L858R], or a TK domain with the T790M-L858R mutations (LET-23::hEGFR-TK[T790M-L858R] in C. elegans vulval cells using the let-23 promoter. The wild-type hEGFR-TK chimeric protein rescued the let-23 mutant phenotype, and the activating mutant hEGFR-TK chimeras induced a multivulva (Muv phenotype in a wild-type C. elegans background. The anti-cancer drugs gefitinib and erlotinib suppressed the Muv phenotype in LET-23::hEGFR-TK[L858R]-expressing transgenic animals, but not in LET-23::hEGFR-TK[T790M-L858R] transgenic animals. As a pilot screen, 8,960 small chemicals were tested for Muv suppression, and AG1478 (an EGFR-TK inhibitor and U0126 (a MEK inhibitor were identified as potential inhibitors of EGFR-mediated biological function. In conclusion, transgenic C. elegans expressing chimeric LET-23::hEGFR-TK proteins are a model system that can be used in mutation-specific screens for new anti-cancer drugs.

  12. Construction of a high-EGFR expression cell line and its biological ...

    African Journals Online (AJOL)

    Targeted screening of EGFR compounds has become one of the medical research focuses for tumor therapy. A431, which naturally expresses high levels of EGFR, was compared with the stably high expressing EGFR cell line HEK293. Flow cytometry was used to analyze cell growth and Western blot was used to ...

  13. EGFR is not a major driver for osteosarcoma cell growth in vitro but contributes to starvation and chemotherapy resistance.

    Science.gov (United States)

    Sevelda, Florian; Mayr, Lisa; Kubista, Bernd; Lötsch, Daniela; van Schoonhoven, Sushilla; Windhager, Reinhard; Pirker, Christine; Micksche, Michael; Berger, Walter

    2015-11-02

    Enhanced signalling via the epidermal growth factor receptor (EGFR) is a hallmark of multiple human carcinomas. However, in recent years data have accumulated that EGFR might also be hyperactivated in human sarcomas. Aim of this study was to investigate the influence of EGFR inhibition on cell viability and its interaction with chemotherapy response in osteosarcoma cell lines. We have investigated a panel of human osteosarcoma cell lines regarding EGFR expression and downstream signalling. To test its potential applicability as therapeutic target, inhibition of EGFR by gefitinib was combined with osteosarcoma chemotherapeutics and cell viability, migration, and cell death assays were performed. Osteosarcoma cells expressed distinctly differing levels of functional EGFR reaching in some cases high amounts. Functionality of EGFR in osteosarcoma cells was proven by EGF-mediated activation of both MAPK and PI3K/AKT pathway (determined by phosphorylation of ERK1/2, AKT, S6, and GSK3β). The EGFR-specific inhibitor gefitinib blocked EGF-mediated downstream signal activation. At standard in vitro culture conditions, clinically achievable gefitinib doses demonstrated only limited cytotoxic activity, however, significantly reduced long-term colony formation and cell migration. In contrast, under serum-starvation conditions active gefitinib doses were distinctly reduced while EGF promoted starvation survival. Importantly, gefitinib significantly supported the anti-osteosarcoma activities of doxorubicin and methotrexate regarding cell survival and migratory potential. Our data suggest that EGFR is not a major driver for osteosarcoma cell growth but contributes to starvation- and chemotherapy-induced stress survival. Consequently, combination approaches including EGFR inhibitors should be evaluated for treatment of high-grade osteosarcoma patients.

  14. Including the monetary part in macro accounting: A ‘modern’ approach to the macroeconomic accounting

    Directory of Open Access Journals (Sweden)

    Onur TUTULMAZ

    2014-12-01

    Full Text Available Economic output is placed at the heart of the macroeconomics. To calculate the output one needs to achieve simplifying a high level complexity of economic relationships to form a system. On the flip side, the model should be enough elaborated to be able to reflect the important relationships. In this manner, the classical macroeconomic identity as Keynes suggested is simple enough to understand the main elements but it does not show the financial parts of transactions. Not having the monetary part of the economy it lacks the coherence. With the financial and economic crises getting more frequent, more endeavour to build a more inclusive and coherent macroeconomic system has been observed. However, there are large variety in different options of simplifying and simulating complex relationships among the real and monetary part of the modern economies.  Our paper tries to set an analysis comparing some of the recent prominent ideas in building balance sheet and transaction flow matrix in regard to macroeconomic accounting system. We can conclude the new achievement of including the monetary transactions in the frame causes a compromise from the simplicity for a coherent and more complete picture of macro economy.

  15. Guanylate binding protein 1 is a novel effector of EGFR-driven invasion in glioblastoma.

    Science.gov (United States)

    Li, Ming; Mukasa, Akitake; Inda, Maria del-Mar; Zhang, Jianhua; Chin, Lynda; Cavenee, Webster; Furnari, Frank

    2011-12-19

    Although GBP1 (guanylate binding protein 1) was among the first interferon-inducible proteins identified, its function is still largely unknown. Epidermal growth factor receptor (EGFR) activation by amplification or mutation is one of the most frequent genetic lesions in a variety of human tumors. These include glioblastoma multiforme (GBM), which is characterized by independent but interrelated features of extensive invasion into normal brain parenchyma, rapid growth, necrosis, and angiogenesis. In this study, we show that EGFR activation promoted GBP1 expression in GBM cell lines through a signaling pathway involving Src and p38 mitogen-activated protein kinase. Moreover, we identified YY1 (Yin Yang 1) as the downstream transcriptional regulator regulating EGFR-driven GBP1 expression. GBP1 was required for EGFR-mediated MMP1 (matrix metalloproteinase 1) expression and glioma cell invasion in vitro. Although deregulation of GBP1 expression did not affect glioma cell proliferation, overexpression of GBP1 enhanced glioma cell invasion through MMP1 induction, which required its C-terminal helical domain and was independent of its GTPase activity. Reducing GBP1 levels by RNA interference in invasive GBM cells also markedly inhibited their ability to infiltrate the brain parenchyma of mice. GBP1 expression was high and positively correlated with EGFR expression in human GBM tumors and cell lines, particularly those of the neural subtype. Together, these findings establish GBP1 as a previously unknown link between EGFR activity and MMP1 expression and nominate it as a novel potential therapeutic target for inhibiting GBM invasion.

  16. EGFR mutation frequency and effectiveness of erlotinib

    DEFF Research Database (Denmark)

    Weber, Britta; Hager, Henrik; Sorensen, Boe S

    2014-01-01

    mutation (S768I), and two complex mutations. Seven percent of the patients were never smokers. The differences in median progression-free survival and overall survival between the mutated group and the wild-type group were 8.0 vs. 2.5 months, p...-1 vs. 2-3) and line of treatment (1st vs. 2nd and 3rd) had no influence on outcome in EGFR-mutated patients. CONCLUSION: We found a higher frequency of EGFR mutations than expected in a cohort with less than 10% never smokers. The outcome after treatment with erlotinib was much better in patients......OBJECTIVES: In 2008, we initiated a prospective study to explore the frequency and predictive value of epidermal growth factor receptor (EGFR) mutations in an unselected population of Danish patients with non-small cell lung cancer offered treatment with erlotinib, mainly in second-line. MATERIALS...

  17. Negative regulation of EGFR/MAPK pathway by Pumilio in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Sung Yun Kim

    Full Text Available In Drosophila melanogaster, specification of wing vein cells and sensory organ precursor (SOP cells, which later give rise to a bristle, requires EGFR signaling. Here, we show that Pumilio (Pum, an RNA-binding translational repressor, negatively regulates EGFR signaling in wing vein and bristle development. We observed that loss of Pum function yielded extra wing veins and additional bristles. Conversely, overexpression of Pum eliminated wing veins and bristles. Heterozygotes for Pum produced no phenotype on their own, but greatly enhanced phenotypes caused by the enhancement of EGFR signaling. Conversely, over-expression of Pum suppressed the effects of ectopic EGFR signaling. Components of the EGFR signaling pathway are encoded by mRNAs that have Nanos Response Element (NRE-like sequences in their 3'UTRs; NREs are known to bind Pum to confer regulation in other mRNAs. We show that these NRE-like sequences bind Pum and confer repression on a luciferase reporter in heterologous cells. Taken together, our evidence suggests that Pum functions as a negative regulator of EGFR signaling by directly targeting components of the pathway in Drosophila.

  18. Why Macro Practice Matters

    Science.gov (United States)

    Reisch, Michael

    2016-01-01

    This article asserts that macro practice is increasingly important in today's rapidly changing and complex practice environment. It briefly explores the history of macro practice in U.S. social work, summarizes its major contributions to the profession and to U.S. society, and provides some suggestions for how social work programs can expand…

  19. Spreadsheet macros for coloring sequence alignments.

    Science.gov (United States)

    Haygood, M G

    1993-12-01

    This article describes a set of Microsoft Excel macros designed to color amino acid and nucleotide sequence alignments for review and preparation of visual aids. The colored alignments can then be modified to emphasize features of interest. Procedures for importing and coloring sequences are described. The macro file adds a new menu to the menu bar containing sequence-related commands to enable users unfamiliar with Excel to use the macros more readily. The macros were designed for use with Macintosh computers but will also run with the DOS version of Excel.

  20. Clinical and CT characteristics of surgically resected lung adenocarcinomas harboring ALK rearrangements or EGFR mutations

    International Nuclear Information System (INIS)

    Wang, Hua; Schabath, Matthew B.; Liu, Ying; Han, Ying; Li, Qi; Gillies, Robert J.; Ye, Zhaoxiang

    2016-01-01

    Purpose: To determine if clinical and CT characteristics of surgically resected lung adenocarcinomas can distinguish those harboring ALK rearrangements from EGFR mutations. Materials and methods: Patients who had surgical resection and histologically confirmed lung adenocarcinoma were enrolled, including 41 patients with ALK rearrangements and 66 patients with EGFR mutations. Eighteen categorical and six quantitative CT characteristics were used to evaluate the tumors. Differences in clinical and CT characteristics between the two groups were investigated. Results: Age (P = 0.003), histological subtypes (P < 0.001), pathological stage (P = 0.007), and five CT characteristics, including size (P < 0.001), GGO (P = 0.001), bubble-like lucency (P = 0.048), lymphadenopathy (P = 0.001), and tumor shadow disappearance rate (P = 0.005) were significantly different between patients harboring ALK rearrangements compared to patients with EGFR mutations. When we compared histologic components, a solid pattern was more common (P = 0.009) in tumors with ALK rearrangements, and lepidic and acinar patterns were more common (P < 0.001 and P = 0.040, respectively) in those with EGFR mutations. Backward elimination analyses revealed that age (OR = 0.93; 95% CI 0.89–0.98), GGO (OR = 0.14; 95% CI 0.03–0.67), and lymphadenopathy (OR = 4.15; 95% CI 1.49–11.60) were significantly associated with ALK rearrangement status. Conclusion: Our analyses revealed that clinical and CT characteristics of lung adenocarcinomas harboring ALK rearrangements were significantly different, compared with those with EGFR mutations. These differences may be related to the molecular pathology of these diseases.

  1. Clinical and CT characteristics of surgically resected lung adenocarcinomas harboring ALK rearrangements or EGFR mutations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hua [Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin (China); Schabath, Matthew B. [Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States); Liu, Ying [Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin (China); Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States); Han, Ying [Department of Biotherapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin (China); Li, Qi [Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin (China); Gillies, Robert J. [Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States); Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States); Ye, Zhaoxiang, E-mail: yezhaoxiang@163.com [Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin (China)

    2016-11-15

    Purpose: To determine if clinical and CT characteristics of surgically resected lung adenocarcinomas can distinguish those harboring ALK rearrangements from EGFR mutations. Materials and methods: Patients who had surgical resection and histologically confirmed lung adenocarcinoma were enrolled, including 41 patients with ALK rearrangements and 66 patients with EGFR mutations. Eighteen categorical and six quantitative CT characteristics were used to evaluate the tumors. Differences in clinical and CT characteristics between the two groups were investigated. Results: Age (P = 0.003), histological subtypes (P < 0.001), pathological stage (P = 0.007), and five CT characteristics, including size (P < 0.001), GGO (P = 0.001), bubble-like lucency (P = 0.048), lymphadenopathy (P = 0.001), and tumor shadow disappearance rate (P = 0.005) were significantly different between patients harboring ALK rearrangements compared to patients with EGFR mutations. When we compared histologic components, a solid pattern was more common (P = 0.009) in tumors with ALK rearrangements, and lepidic and acinar patterns were more common (P < 0.001 and P = 0.040, respectively) in those with EGFR mutations. Backward elimination analyses revealed that age (OR = 0.93; 95% CI 0.89–0.98), GGO (OR = 0.14; 95% CI 0.03–0.67), and lymphadenopathy (OR = 4.15; 95% CI 1.49–11.60) were significantly associated with ALK rearrangement status. Conclusion: Our analyses revealed that clinical and CT characteristics of lung adenocarcinomas harboring ALK rearrangements were significantly different, compared with those with EGFR mutations. These differences may be related to the molecular pathology of these diseases.

  2. Epidermal Growth Factor Receptor (EGFR) and its Cross-Talks with Topoisomerases: Challenges and Opportunities for Multi-Target Anticancer Drugs.

    Science.gov (United States)

    Chauhan, Monika; Sharma, Gourav; Joshi, Gaurav; Kumar, Raj

    2016-01-01

    The interactions of Epidermal Growth Factor Receptor (EGFR) and topoisomerases have been seen in various cancer including brain, breast, ovarian, colorectal, gastric, etc. The studies in adenocarcinoma patients, chromogenic in situ hybridization, western blotting, receptor binding assay and electromobility shift assays, etc. threw light on the biophysical and biochemical features of EGFR and Topoisomerase cross-talks. It has been revealed that both the isomers of topoisomerase (Topo I and Topo II) interact via different mechanisms with EGFR. Topo II and HER2 share the same location i.e. 17q12-21 regions which could be a possible cause of predominant interactions seen between them. Topo I and EGFR interactions are mechanically related to the nucleolar translocation of heparenase by EGF and c-Jun. We compiled literature findings including the mechanistic interventions, signaling pathways, patents, in vitro and in vivo data of tested inhibitors and combinations in clinical trials, which provide convincing confirmations for the interactions of EGFR and topoisomerases. These interactions may be used for deriving a consistent route of mechanism, design and development of standard drug combinations and dual or multi inhibitors.

  3. Differential effects of EGFR ligands on endocytic sorting of the receptor

    DEFF Research Database (Denmark)

    Roepstorff, Kirstine; Grandal, Michael Vibo; Henriksen, Lasse

    2009-01-01

    signalling and is a more potent mitogen than EGF. In addition to EGF and TGF-alpha, five EGFR ligands have been identified. Although many of these ligands are upregulated in cancers, very little is known about their effect on EGFR trafficking. We have compared the effect of six different ligands on endocytic...... trafficking of EGFR. We find that, whereas they all stimulate receptor internalization, they have very diverse effects on endocytic sorting. Heparin-binding EGF-like growth factor and Betacellulin target all EGFRs for lysosomal degradation. In contrast, TGF-alpha and epiregulin lead to complete receptor...

  4. antiEGFR conjugated gold nanoparticles for increasing radiosensitivity in lung cancer cells

    International Nuclear Information System (INIS)

    Pujari, Geetanjali; Sarma, Asitikantha; Avasthi, Devesh K.

    2014-01-01

    One of the set back that lies in lung cancer treatment is the over expression of Epidermal Growth Factor Receptor (EGFR). EGFR is a transmembrane receptor that is highly expressed in lung cancer that leads to cell survival, proliferation and spread of the disease. Over the years, EGFR inhibitors, monoclonal antibodies, are being used in combination with radiotherapy in lung cancer patients so as to achieve better results. In the recent time, application of Au nanoparticles (AuNPs) in diagnosis and treatment of cancer has been extensively used in biomedical research. Among various applications, there is considerable use of AuNPs seen on the dose enhancement effect (radiosensitization) in radiation therapy of cancer. The conjugation of AuNP with monoclonal antibody antiEGFR (antiEGFR-AuNP) may provide excellent agent to sensitize the cells to heavy ion radiation. We synthesized AuNPs by citrate reduction method. Most of AuNPs were in the size range of 6-8 nm as studies by Transmission Electron Microscope (TEM). These AuNPs were found to be non toxic in A549 cells and thus biocompatible. Further, we conjugated AuNPs with antiEGFR (antiEGFR-AuNP). The conjugation was confirmed by UV-Vis spectroscopy. A549 cells were treated with antiEGFR-AuNP. TEM was carried out of ultrathin cross sections of antiEGFR-AuNP treated A549 cells to check the attachment internalization of AuNPs. We observed that the AuNPs are attached on the cell membrane as well as internalized in cytoplasm. Upon exposure of antiEGFR-AuNP treated cells to heavy ion 12 C beam, showed increase in radiosensitization as studied by survival assay and MTT assay. We will also explain the EGFR expression and cell cycle proliferation in A549 cells upon heavy ion beam irradiation of these. The study aims to overcome the current limitations of cancer-targeted therapies and improve the treatment modality of lung cancer. (author)

  5. The MARKAL-MACRO model and the climate change

    International Nuclear Information System (INIS)

    Kypreos, S.

    1996-07-01

    MARKAL-MACRO and its extensions is a model appropriate to study partial and general equilibrium in the energy markets and the implications of the carbon dioxide mitigation policy. The main advantage of MM is the explicit treatment of energy demand, supply and conversion technologies, including emission control and conservation options, within a general equilibrium framework. The famous gap between top-down and bottom-up models is resolved and the economic implications of environmental and supply policy constraints can be captured either in an aggregated (Macro) or in a sectorial (Micro) level. The multi-regional trade version of the model allows to study questions related to efficient and equitable allocation of cost and benefits associated with the climate change issue. Finally, the stochastic version of the model allows to assess policies related to uncertain and even catastrophic effects and define appropriate hedging strategies. The report is divided in three parts: - the first part gives an overview of the new model structure. It describes its macro economic part and explains its calibration, - the second part refers to the model applications for Switzerland when analyzing the economic implications of curbing CO 2 emissions or policies related to the introduction of a carbon tax, including a hedging strategy, - the last part is organized in form of Appendices and gives a mathematical description and some potential extensions of the model. It describes also a sensitivity analysis done with MARKAL-MACRO in 1992. (author) figs., tabs., refs

  6. Joint Macro and Femto Field Performance and Interference Measurements

    DEFF Research Database (Denmark)

    Jørgensen, Niels T.K.; Isotalo, Tero; Pedersen, Klaus

    2012-01-01

    In this paper macro performance in a co-channel macro and femto setup is studied. Measurements are performed in a live Universal Mobile Telecommunication System (UMTS) network. It is concluded that femto interference does not affect macro downlink (DL) performance as long as the macro Received Si...... radius smaller than 5 meter – with realistic power settings. This makes co-channel femto deployment less promising in dense macro environments with good macro RSCP coverage.......In this paper macro performance in a co-channel macro and femto setup is studied. Measurements are performed in a live Universal Mobile Telecommunication System (UMTS) network. It is concluded that femto interference does not affect macro downlink (DL) performance as long as the macro Received...... Signal Code Power (RSCP) is stronger than femto RSCP. We also conclude that a macro escape carrier is a robust DL interference management solution. In uplink (UL) direction it is shown that a single femto UE close to macro cell potentially can cause a noise rise of 6 dB in the surrounding macro cell...

  7. Effects of the EGFR Inhibitor Erlotinib on Magnesium Handling

    NARCIS (Netherlands)

    Dimke, Henrik; van der Wijst, Jenny; Alexander, Todd R.; Meijer, Inez M. J.; Mulder, Gemma M.; van Goor, Harry; Tejpar, Sabine; Hoenderop, Joost G.; Bindels, Rene J.

    A mutation in pro-EGF causes isolated hypomagnesemia, and monoclonal antibodies targeting the extracellular domain of the EGF receptor (EGFR) affect epithelial Mg2+ transport. The effect of the EGFR tyrosine kinase inhibitor erlotinib on Mg2+ homeostasis, however, remains unknown. Here, we injected

  8. TableMaker: An Excel Macro for Publication-Quality Tables

    Directory of Open Access Journals (Sweden)

    Marek Hlavac

    2016-04-01

    Full Text Available This article introduces TableMaker, a Microsoft Excel macro that produces publicationquality tables and includes them as new sheets in workbooks. The macro provides an intuitive graphical user interface that allows for the full customization of all table features. It also allows users to save and load table templates, and thus allows layouts to be both reproducible and transferable. It is distributed in a single computer file. As such, the macro is easy to share, as well as accessible to even beginning and casual users of Excel. Since it allows for the quick creation of reproducible and fully customizable tables, TableMaker can be very useful to academics, policy-makers and businesses by making the presentation and formatting of results faster and more efficient.

  9. Targeting TORC1/2 Enhances Sensitivity to EGFR Inhibitors in Head and Neck Cancer Preclinical Models1

    Science.gov (United States)

    Cassell, Andre; Freilino, Maria L; Lee, Jessica; Barr, Sharon; Wang, Lin; Panahandeh, Mary C; Thomas, Sufi M; Grandis, Jennifer R

    2012-01-01

    Head and neck squamous cell carcinoma (HNSCC) is characterized by overexpression of the epidermal growth factor receptor (EGFR) where treatments targeting EGFR have met with limited clinical success. Elucidation of the key downstream-pathways that remain activated in the setting of EGFR blockade may reveal new therapeutic targets. The present study was undertaken to test the hypothesis that inhibition of the mammalian target of rapamycin (mTOR) complex would enhance the effects of EGFR blockade in HNSCC preclinical models. Treatment of HNSCC cell lines with the newly developed TORC1/TORC2 inhibitor OSI-027/ASP4876 resulted in dose-dependent inhibition of proliferation with abrogation of phosphorylation of known downstream targets including phospho-AKT (Ser473), phospho-4E-BP1, phospho-p70s6K, and phospho-PRAS40. Furthermore, combined treatment with OSI-027 and erlotinib resulted in enhanced biochemical effects and synergistic growth inhibition in vitro. Treatment of mice bearing HNSCC xenografts with a combination of the Food and Drug Administration (FDA)-approved EGFR inhibitor cetuximab and OSI-027 demonstrated a significant reduction of tumor volumes compared with either treatment alone. These findings suggest that TORC1/TORC2 inhibition in conjunction with EGFR blockade represents a plausible therapeutic strategy for HNSCC. PMID:23226094

  10. Benzo[g]quinazolin-based scaffold derivatives as dual EGFR/HER2 inhibitors.

    Science.gov (United States)

    Ghorab, Mostafa M; Alsaid, Mansour S; Soliman, Aiten M; Al-Mishari, Abdullah A

    2018-12-01

    Targeting EGFR has proven to be beneficial in the treatment of several types of solid tumours. So, a series of novel 2-(4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydrobenzo[g]quinazolin-2-ylthio)-N-substituted acetamide 5-19 were synthesised from the starting material 4-(2-mercapto-4-oxobenzo[g]quinazolin-3(4H)-yl) benzenesulfonamide 4, to be evaluated as dual EGFR/HER2 inhibitors. The target compounds 5-19, were screened for their cytotoxic activity against A549 lung cancer cell line. The percentage inhibition of EGFR enzyme was measured and compared with erlotinib as the reference drug. Compounds 6, 8, 10, and 16 showed excellent EGFR inhibitory activity and were further selected for screening as dual EGFR/HER2 inhibitors. The four selected compounds showed IC 50 ranging from 0.009 to 0.026 µM for EGFR and 0.021 to 0.069 µM for the HER2 enzyme. Compound 8 was found to be the most potent in this study with IC 50 0.009 and 0.021 µM for EGFR and HER2, respectively.

  11. Epidermal Growth Factor Receptor (EGFR) Crosstalks in Liver Cancer

    International Nuclear Information System (INIS)

    Berasain, Carmen; Latasa, María Ujue; Urtasun, Raquel; Goñi, Saioa; Elizalde, María; Garcia-Irigoyen, Oihane; Azcona, María; Prieto, Jesús; Ávila, Matías A.

    2011-01-01

    Hepatocarcinogenesis is a complex multistep process in which many different molecular pathways have been implicated. Hepatocellular carcinoma (HCC) is refractory to conventional chemotherapeutic agents, and the new targeted therapies are meeting with limited success. Interreceptor crosstalk and the positive feedback between different signaling systems are emerging as mechanisms of targeted therapy resistance. The identification of such interactions is therefore of particular relevance to improve therapeutic efficacy. Among the different signaling pathways activated in hepatocarcinogenesis the epidermal growth factor receptor (EGFR) system plays a prominent role, being recognized as a “signaling hub” where different extracellular growth and survival signals converge. EGFR can be transactivated in response to multiple heterologous ligands through the physical interaction with multiple receptors, the activity of intracellular kinases or the shedding of EGFR-ligands. In this article we review the crosstalk between the EGFR and other signaling pathways that could be relevant to liver cancer development and treatment

  12. Decreased EGFR mRNA expression in response to antipsoriatic ...

    African Journals Online (AJOL)

    Dithranol is enormously effective in the treatment of psoriasis; however its molecular mode of action should be further elucidated. Since epidermal growth factor receptor (EGFR) is involved in the pathogenesis of psoriasis, the objective of this study was to investigate the transcriptional effect of dithranol on EGFR gene ...

  13. Nanobiopolymer for direct targeting and inhibition of EGFR expression in triple negative breast cancer.

    Directory of Open Access Journals (Sweden)

    Satoshi Inoue

    Full Text Available Treatment options for triple negative breast cancer (TNBC are generally limited to cytotoxic chemotherapy. Recently, anti-epidermal growth factor receptor (EGFR therapy has been introduced for TNBC patients. We engineered a novel nanobioconjugate based on a poly(β-L-malic acid (PMLA nanoplatform for TNBC treatment. The nanobioconjugate carries anti-tumor nucleosome-specific monoclonal antibody (mAb 2C5 to target breast cancer cells, anti-mouse transferrin receptor (TfR antibody for drug delivery through the host endothelial system, and Morpholino antisense oligonucleotide (AON to inhibit EGFR synthesis. The nanobioconjugates variants were: (1 P (BioPolymer with AON, 2C5 and anti-TfR for tumor endothelial and cancer cell targeting, and EGFR suppression (P/AON/2C5/TfR, and (2 P with AON and 2C5 (P/AON/2C5. Controls included (3 P with 2C5 but without AON (P/2C5, (4 PBS, and (5 P with PEG and leucine ester (LOEt for endosomal escape (P/mPEG/LOEt. Drugs were injected intravenously to MDA-MB-468 TNBC bearing mice. Tissue accumulation of injected nanobioconjugates labeled with Alexa Fluor 680 was examined by Xenogen IVIS 200 (live imaging and confocal microscopy of tissue sections. Levels of EGFR, phosphorylated and total Akt in tumor samples were detected by western blotting. In vitro western blot showed that the leading nanobioconjugate P/AON/2C5/TfR inhibited EGFR synthesis significantly better than naked AON. In vivo imaging revealed that 2C5 increased drug-tumor accumulation. Significant tumor growth inhibition was observed in mice treated with the lead nanobioconjugate (1 [P = 0.03 vs. controls; P<0.05 vs. nanobioconjugate variant (2]. Lead nanobioconjugate (1 also showed stronger inhibition of EGFR expression and Akt phosphorylation than other treatments. Treatment of TNBC with the new nanobioconjugate results in tumor growth arrest by inhibiting EGFR and its downstream signaling intermediate, phosphorylated Akt. The nanobioconjugate

  14. Assessment of Epidermal Growth Factor Receptor (EGFR expression in human meningioma

    Directory of Open Access Journals (Sweden)

    Perry Arie

    2010-05-01

    Full Text Available Abstract Purpose This study explores whether meningioma expresses epidermal growth factor receptor (EGFR and determines if there is a correlation between the WHO grade of this tumor and the degree of EGFR expression. Methods Following institutional review board approval, 113 meningioma specimens from 89 patients were chosen. Of these, 85 were used for final analysis. After a blinded review, immunohistochemical stains for EGFR were performed. Staining intensity (SI was scored on a scale 0-3 (from no staining to strong staining. Staining percentage of immunoreactive cells (SP was scored 1-5 (from the least to the maximum percent of the specimen staining. Immunohistochemical score (IHS was calculated as the product of SI and SP. Results Eighty-five samples of meningioma were classified in accordance with World Health Organization (WHO criteria: benign 57/85 (67%, atypical 23/85 (27%, and malignant 5/85 (6%. The majority of samples demonstrated a moderate SI for EGFR. IHS for EGFR demonstrated a significant association between SI and histopathologic subtype. Also, there was a correlation between the SP and histopathologic subtype (p = 0.029. A significant association was determined when the benign and the atypical samples were compared to the malignant with respect to the SP (p = 0.009. While there was a range of the IHS for the benign and the atypical histologic subtypes, malignant tumors exhibited the lowest score and were statistically different from the benign and the atypical specimens (p Conclusions To our knowledge, this represents the largest series of meningioma samples analyzed for EGFR expression reported in the literature. EGFR expression is greatest in benign meningiomas and may serve a potential target for therapeutic intervention with selective EGFR inhibitors.

  15. Cost-effectiveness analysis of EGFR mutation testing in patients with non-small cell lung cancer (NSCLC) with gefitinib or carboplatin-paclitaxel.

    Science.gov (United States)

    Arrieta, Oscar; Anaya, Pablo; Morales-Oyarvide, Vicente; Ramírez-Tirado, Laura Alejandra; Polanco, Ana C

    2016-09-01

    Assess the cost-effectiveness of an EGFR-mutation testing strategy for advanced NSCLC in first-line therapy with either gefitinib or carboplatin-paclitaxel in Mexican institutions. Cost-effectiveness analysis using a discrete event simulation (DES) model to simulate two therapeutic strategies in patients with advanced NSCLC. Strategy one included patients tested for EGFR-mutation and therapy given accordingly. Strategy two included chemotherapy for all patients without testing. All results are presented in 2014 US dollars. The analysis was made with data from the Mexican frequency of EGFR-mutation. A univariate sensitivity analysis was conducted on EGFR prevalence. Progression-free survival (PFS) transition probabilities were estimated on data from the IPASS and simulated with a Weibull distribution, run with parallel trials to calculate a probabilistic sensitivity analysis. PFS of patients in the testing strategy was 6.76 months (95 % CI 6.10-7.44) vs 5.85 months (95 % CI 5.43-6.29) in the non-testing group. The one-way sensitivity analysis showed that PFS has a direct relationship with EGFR-mutation prevalence, while the ICER and testing cost have an inverse relationship with EGFR-mutation prevalence. The probabilistic sensitivity analysis showed that all iterations had incremental costs and incremental PFS for strategy 1 in comparison with strategy 2. There is a direct relationship between the ICER and the cost of EGFR testing, with an inverse relationship with the prevalence of EGFR-mutation. When prevalence is >10 % ICER remains constant. This study could impact Mexican and Latin American health policies regarding mutation detection testing and treatment for advanced NSCLC.

  16. Protein Kinase G facilitates EGFR-mediated cell death in MDA-MB-468 cells

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Nicole M.; Ceresa, Brian P., E-mail: brian.ceresa@louisville.edu

    2016-08-15

    The Epidermal Growth Factor Receptor (EGFR) is a transmembrane receptor tyrosine kinase with critical implications in cell proliferation, migration, wound healing and the regulation of apoptosis. However, the EGFR has been shown to be hyper-expressed in a number of human malignancies. The MDA-MB-468 metastatic breast cell line is one example of this. This particular cell line hyper-expresses the EGFR and undergoes EGFR-mediated apoptosis in response to EGF ligand. The goal of this study was to identify the kinases that could be potential intermediates for the EGFR-mediated induction of apoptosis intracellularly. After identifying Cyclic GMP-dependent Protein Kinase G (PKG) as a plausible intermediate, we wanted to determine the temporal relationship of these two proteins in the induction of apoptosis. We observed a dose-dependent decrease in MDA-MB-468 cell viability, which was co-incident with increased PKG activity as measured by VASPSer239 phosphorylation. In addition, we observed a dose dependent decrease in cell viability, as well as an increase in apoptosis, in response to two different PKG agonists, 8-Bromo-cGMP and 8-pCPT-cGMP. MDA-MB-468 cells with reduced PKG activity had attenuated EGFR-mediated apoptosis. These findings indicate that PKG does not induce cell death via transphosphorylation of the EGFR. Instead, PKG activity occurs following EGFR activation. Together, these data indicate PKG as an intermediary in EGFR-mediated cell death, likely via apoptotic pathway.

  17. Recursive macro generator for the TAS-86 language. First part: the macro generator language. Second part: system internal logics

    International Nuclear Information System (INIS)

    Zraick, Samir

    1970-01-01

    A macro-generator is a translator which is able to interpret and translate a programme written in a macro-language. After a first part presenting the main notions and proposing a brief description of the TAS-86 language, the second part of this research thesis reports the development of the macro-generator language, and notably presents the additional functionalities provided by the macro generator. The development is illustrated by logical flowcharts and programming listings

  18. CT radiogenomic characterization of EGFR, K-RAS, and ALK mutations in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Stefania; Rampinelli, Cristiano [European Institute of Oncology, Department of Radiology, Milan (Italy); Petrella, Francesco; Spaggiari, Lorenzo [European Institute of Oncology, Department of Thoracic Surgery, Milan (Italy); Buscarino, Valentina; De Maria, Federica [University of Milan, Department of Health Sciences, Milan (Italy); Raimondi, Sara [European Institute of Oncology, Department of Epidemiology and Biostatistics, Milan (Italy); Barberis, Massimo; Fumagalli, Caterina [European Institute of Oncology, Department of Pathology, Milan (Italy); Spitaleri, Gianluca; De Marinis, Filippo [European Institute of Oncology, Department of Thoracic Oncology, Milan (Italy); Bellomi, Massimo [European Institute of Oncology, Department of Radiology, Milan (Italy); University of Milan, Department of Health Sciences, Milan (Italy)

    2016-01-15

    To assess the association between CT features and EGFR, ALK, KRAS mutations in non-small cell lung cancer. Patients undergoing chest CT and testing for the above gene mutations were included. Qualitative evaluation of CTs included: lobe; lesion diameter; shape; margins; ground-glass opacity; density; cavitation; air bronchogram; pleural thickening; intratumoral necrosis; nodules in tumour lobe; nodules in non-tumour lobes; pleural retraction; location; calcifications; emphysema; fibrosis; pleural contact; pleural effusion. Statistical analysis was performed to assess association of features with each gene mutation. ROC curves for gene mutations were drawn; the corresponding area under the curve was calculated. P-values <0.05 were considered significant. Of 285 patients, 60/280 (21.43 %) were positive for EGFR mutation; 31/270 (11.48 %) for ALK rearrangement; 64/240 (26.67 %) for KRAS mutation. EGFR mutation was associated with air bronchogram, pleural retraction, females, non-smokers, small lesion size, and absence of fibrosis. ALK rearrangements were associated with age and pleural effusion. KRAS mutation was associated with round shape, nodules in non-tumour lobes, and smoking. This study disclosed associations between CT features and alterations of EGFR (air bronchogram, pleural retraction, small lesion size, absence of fibrosis), ALK (pleural effusion) and KRAS (round lesion shape, nodules in non-tumour lobes). (orig.)

  19. Exosome production and its regulation of EGFR during wound healing in renal tubular cells.

    Science.gov (United States)

    Zhou, Xiangjun; Zhang, Wei; Yao, Qisheng; Zhang, Hao; Dong, Guie; Zhang, Ming; Liu, Yutao; Chen, Jian-Kang; Dong, Zheng

    2017-06-01

    Kidney repair following injury involves the reconstitution of a structurally and functionally intact tubular epithelium. Growth factors and their receptors, such as EGFR, are important in the repair of renal tubules. Exosomes are cell-produced small (~100 nm in diameter) vesicles that contain and transfer proteins, lipids, RNAs, and DNAs between cells. In this study, we examined the relationship between exosome production and EGFR activation and the potential role of exosome in wound healing. EGFR activation occurred shortly after scratch wounding in renal tubular cells. Wound repair after scratching was significantly promoted by EGF and suppressed by EGFR inhibitor gefitinib. Interestingly, scratch wounding induced a significant increase of exosome production. The exosome production was decreased by EGF and increased by gefitinib, suggesting a suppressive role of EGFR signaling in exosome production. Conversely, inhibition of exosome release by GW4869 and manumycin A markedly increased EGFR activation and promoted wound healing. Moreover, exosomes derived from scratch-wounding cells could inhibit wound healing. Collectively, the results indicate that wound healing in renal tubular cells is associated with EGFR activation and exosome production. Although EGFR activation promotes wound healing, released exosomes may antagonize EGFR activation and wound healing. Copyright © 2017 the American Physiological Society.

  20. EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR AND HUMAN PAPILLOMAVIRUS (HPV L1 CAPSID PROTEIN IN CERVICAL SQUAMOUS INTRAEPITHELIAL LESIONS

    Directory of Open Access Journals (Sweden)

    Balan Raluca

    2010-09-01

    Full Text Available We analyzed the immunohistochemical pattern of epidermal growth factor receptor (EGFR in cervical squamous intraepithelial lesions (SILs in correlation with L1 HPV capsid protein, in order to determine the relationship between EGFR expression and the infection status of human papillomavirus (HPV. The study included 40 cases, 24 LSIL (low grade SIL (CIN1, cervical intraepithelial neoplasia and 16 HSIL (high grade SIL (6 cases of CIN2 and 10 cases of CIN3. The immunoexpression of L1 HPV protein was assessed on conventional cervico-vaginal smears and EGFR was immunohistochemically evaluated on the corresponding cervical biopsies. The HPV L1 capsid protein was expressed in 45.83% of LSIL and 25% of HSIL. EGFR was overexpressed in 62,4% of HSIL (58,4% CIN2 and 41,6% CIN3 and 37,6% LSIL. The immunoexpression of L1 HPV has clinical application in the progression assessment of the cervical precancerous lesions without a correlation to the grade of the cervical SIL. EGFR is expressed by all proliferating squamous epithelial cells, thus corresponding with the grade of SIL. The evaluation of EGFR status, correlated with L1 HPV protein expression, can provide useful data of progression risk of cervical squamous intraepithelial lesions

  1. NF-κB-Activating Complex Engaged in Response to EGFR Oncogene Inhibition Drives Tumor Cell Survival and Residual Disease in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Collin M. Blakely

    2015-04-01

    Full Text Available Although oncogene-targeted therapy often elicits profound initial tumor responses in patients, responses are generally incomplete because some tumor cells survive initial therapy as residual disease that enables eventual acquired resistance. The mechanisms underlying tumor cell adaptation and survival during initial therapy are incompletely understood. Here, through the study of EGFR mutant lung adenocarcinoma, we show that NF-κB signaling is rapidly engaged upon initial EGFR inhibitor treatment to promote tumor cell survival and residual disease. EGFR oncogene inhibition induced an EGFR-TRAF2-RIP1-IKK complex that stimulated an NF-κB-mediated transcriptional survival program. The direct NF-κB inhibitor PBS-1086 suppressed this adaptive survival program and increased the magnitude and duration of initial EGFR inhibitor response in multiple NSCLC models, including a patient-derived xenograft. These findings unveil NF-κB activation as a critical adaptive survival mechanism engaged by EGFR oncogene inhibition and provide rationale for EGFR and NF-κB co-inhibition to eliminate residual disease and enhance patient responses.

  2. Should EGFR mutations be tested in advanced lung squamous cell carcinomas to guide frontline treatment?

    Science.gov (United States)

    Chiu, Chao-Hua; Chou, Teh-Ying; Chiang, Chi-Lu; Tsai, Chun-Ming

    2014-10-01

    There is no argument over using epidermal growth factor receptor (EGFR) mutation status to guide the frontline treatment for advanced lung adenocarcinoma (LADC); however, the role of the testing in lung squamous cell carcinoma (LSQC) remains controversial. Currently, the guidelines/consensus statements regarding EGFR mutation testing in LSQC are not consistent among different oncology societies. American Society of Clinical Oncology recommends performing EGFR mutation testing in all patients; European Society for Medical Oncology, College of American Pathologists/International Association for the Study of Lung Cancer/Association for Molecular Pathology, and National Comprehensive Cancer Network suggest for some selected group. EGFR mutation is rarely found in LSQC; however, more importantly, it is not a valid predictive biomarker for EGFR tyrosine kinase inhibitors (EGFR-TKI) in LSQC as it has been shown in LADC. Available data showed that the response rate and progression-free survival in EGFR mutant LSQC patients treated with EGFR-TKI are not better than that observed in patients treated with platinum-doublet chemotherapy in the first-line setting. Therefore, in contrast to advanced LADC, EGFR mutation testing may not be necessarily performed upfront in advanced LSQC because not only the mutation rate is low, but also the predictive value is insufficient. For LSQC patients with known sensitizing-EGFR mutations, both conventional chemotherapy and EGFR-TKI are acceptable frontline treatment options.

  3. Peptide ligands for targeting the extracellular domain of EGFR: Comparison between linear and cyclic peptides.

    Science.gov (United States)

    Williams, Tyrslai M; Sable, Rushikesh; Singh, Sitanshu; Vicente, Maria Graca H; Jois, Seetharama D

    2018-02-01

    Colorectal cancer (CRC) is the third most common solid internal malignancy among cancers. Early detection of cancer is key to increasing the survival rate of colorectal cancer patients. Overexpression of the EGFR protein is associated with CRC. We have designed a series of peptides that are highly specific for the extracellular domain of EGFR, based on our earlier studies on linear peptides. The previously reported linear peptide LARLLT, known to bind to EGFR, was modified with the goals of increasing its stability and its specificity toward EGFR. Peptide modifications, including D-amino acid substitution, cyclization, and chain reversal, were investigated. In addition, to facilitate labeling of the peptide with a fluorescent dye, an additional lysine residue was introduced onto the linear (KLARLLT) and cyclic peptides cyclo(KLARLLT) (Cyclo.L1). The lysine residue was also converted into an azide group in both a linear and reversed cyclic peptide sequences cyclo(K(N3)larllt) (Cyclo.L1.1) to allow for subsequent "click" conjugation. The cyclic peptides showed enhanced binding to EGFR by SPR. NMR and molecular modeling studies suggest that the peptides acquire a β-turn structure in solution. In vitro stability studies in human serum show that the cyclic peptide is more stable than the linear peptide. © 2017 John Wiley & Sons A/S.

  4. Molecular Modeling, Docking, Dynamics and simulation of Gefitinib and its derivatives with EGFR in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Reddy, Pulakuntla Swetha; Lokhande, Kiran Bharat; Nagar, Shuchi; Reddy, Vaddi Damodara; Murthy, P Sushma; Swamy, K Venkateswara

    2018-02-27

    Gefitinib (lressa) is the most prescribed drug, highly effective to treat of non-small cell lung cancer; primarily it was considered targeted therapy is a kinase inhibitor. The non-small cell lung cancer caused by the mutation in the Epithelial Growth Factor Receptor (EGFR) gene, Iressa works by blocking the EGFR protein that helps the cancer cell growth. EGFR protein has lead to the development of anticancer therapeutics directed against EGFR inhibitor including Gefitinib for non-small cell lung cancer. To explore research on Gefitinib and its derivatives interaction with crystal structure EGFR to understand the better molecular insights interaction strategies. Molecular modeling of ligands (Gefitinib and its derivatives) was carried out by Avogadro software till atomic angle stable confirmation obtained. The partial charges for the ligands were assigned as per standard protocol for molecular docking. All docking simulations were performed with AutoDockVina. Virtual screening carried out based on binding energy and hydrogen bonding affinity. Molecular dynamics (MD) and Simulation EGFR was done using GROMACS 5.1.1 software to explore the interaction stability in a cell. The stable conformation for EGFR protein trajectories were captured at various time intervals 0-20ns. Few compounds screen based on high affinity as the inhibitor for EGFR may inhibit the cell cycle signalling in non-small cell lung cancer. These result suggested that a computer aided screening approach of a Gefitinib derivatives compounds with regard to their binding to EGFR for identifying novel drugs for the treatment of non-small cell lung cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. High specificity but low sensitivity of mutation-specific antibodies against EGFR mutations in non-small-cell lung cancer

    DEFF Research Database (Denmark)

    Bondgaard, Anna-Louise; Høgdall, Estrid; Mellemgaard, Anders

    2014-01-01

    of more sensitive methods including real-time PCR (RT-PCR). Immunohistochemistry with mutation-specific antibodies might be a promising detection method. We evaluated 210 samples with NSCLC from an unselected Caucasian population. Extracted DNA was analyzed for EGFR mutations by RT-PCR (Therascreen EGFR......, and staining score (multipum of intensity (graded 0-3) and percentages (0-100%) of stained tumor cells) was calculated. Positivity was defined as staining score >0. Specificity of exon19 antibody was 98.8% (95% confidence interval=95.9-99.9%) and of exon21 antibody 97.8% (95% confidence interval=94...... was demonstrated. However, sensitivity was low, especially for exon19 deletions, and thus these antibodies cannot yet be used as screening method for EGFR mutations in NSCLC. Refinement of sensitivity for the mutation-specific antibodies is warranted to improve molecular diagnosis using EGFR immunohistochemistry....

  6. The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated Affibody molecule.

    Science.gov (United States)

    Garousi, Javad; Andersson, Ken G; Dam, Johan H; Olsen, Birgitte B; Mitran, Bogdan; Orlova, Anna; Buijs, Jos; Ståhl, Stefan; Löfblom, John; Thisgaard, Helge; Tolmachev, Vladimir

    2017-07-20

    Several anti-cancer therapies target the epidermal growth factor receptor (EGFR). Radionuclide imaging of EGFR expression in tumours may aid in selection of optimal cancer therapy. The 111 In-labelled DOTA-conjugated Z EGFR:2377 Affibody molecule was successfully used for imaging of EGFR-expressing xenografts in mice. An optimal combination of radionuclide, chelator and targeting protein may further improve the contrast of radionuclide imaging. The aim of this study was to evaluate the targeting properties of radiocobalt-labelled DOTA-Z EGFR:2377 . DOTA-Z EGFR:2377 was labelled with 57 Co (T 1/2  = 271.8 d), 55 Co (T 1/2  = 17.5 h), and, for comparison, with the positron-emitting radionuclide 68 Ga (T 1/2  = 67.6 min) with preserved specificity of binding to EGFR-expressing A431 cells. The long-lived cobalt radioisotope 57 Co was used in animal studies. Both 57 Co-DOTA-Z EGFR:2377 and 68 Ga-DOTA-Z EGFR:2377 demonstrated EGFR-specific accumulation in A431 xenografts and EGFR-expressing tissues in mice. Tumour-to-organ ratios for the radiocobalt-labelled DOTA-Z EGFR:2377 were significantly higher than for the gallium-labelled counterpart already at 3 h after injection. Importantly, 57 Co-DOTA-Z EGFR:2377 demonstrated a tumour-to-liver ratio of 3, which is 7-fold higher than the tumour-to-liver ratio for 68 Ga-DOTA-Z EGFR:2377 . The results of this study suggest that the positron-emitting cobalt isotope 55 Co would be an optimal label for DOTA-Z EGFR:2377 and further development should concentrate on this radionuclide as a label.

  7. EGFR-dependent signalling reduced and p38 dependent apoptosis required by Gallic acid in Malignant Mesothelioma cells.

    Science.gov (United States)

    Demiroglu-Zergeroglu, Asuman; Candemir, Gulsife; Turhanlar, Ebru; Sagir, Fatma; Ayvali, Nurettin

    2016-12-01

    The unrestrained EGFR signalling contributes to malignant phenotype in a number of cancers including Malignant Mesotheliomas. Present study was designed to evaluate EGFR-dependent anti-proliferative and apoptotic effects of Gallic acid in transformed Mesothelial (MeT-5A) and Malignant Mesothelioma (SPC212) cells. Gallic acid reduced the viability of Malignant Mesothelioma cells in a concentration and time-dependent manner. However, viability of mesothelial cells reduced only at high concentration and longer time periods. Gallic acid restrained the activation of EGFR, ERK1/2 and AKT proteins and down regulated expression of Cyclin D and Bcl-2 genes, but upregulated the expression of p21 gene in EGF-induced SPC212 cells. GA-induced transitory G1 arrest and triggered mitochondrial and death receptor mediated apoptosis, which requires p38MAPK activation. The data provided here indicate that GA is able to inhibit EGFR dependent proliferation and survival signals and induces p38 pathway dependent apoptosis in Malignant Mesothelioma cells. On the basis of these experimental findings it is worthwhile to investigate further the biological activity of Gallic acid on other Mesothelioma cell lines harbouring aberrant EGFR signals. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. Epidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: An Evidence-Based Analysis.

    Science.gov (United States)

    2010-01-01

    In February 2010, the Medical Advisory Secretariat (MAS) began work on evidence-based reviews of the literature surrounding three pharmacogenomic tests. This project came about when Cancer Care Ontario (CCO) asked MAS to provide evidence-based analyses on the effectiveness and cost-effectiveness of three oncology pharmacogenomic tests currently in use in Ontario.Evidence-based analyses have been prepared for each of these technologies. These have been completed in conjunction with internal and external stakeholders, including a Provincial Expert Panel on Pharmacogenetics (PEPP). Within the PEPP, subgroup committees were developed for each disease area. For each technology, an economic analysis was also completed by the Toronto Health Economics and Technology Assessment Collaborative (THETA) and is summarized within the reports.THE FOLLOWING REPORTS CAN BE PUBLICLY ACCESSED AT THE MAS WEBSITE AT: http://www.health.gov.on.ca/mas or at www.health.gov.on.ca/english/providers/program/mas/mas_about.htmlGENE EXPRESSION PROFILING FOR GUIDING ADJUVANT CHEMOTHERAPY DECISIONS IN WOMEN WITH EARLY BREAST CANCER: An Evidence-Based AnalysisEpidermal Growth Factor Receptor Mutation (EGFR) Testing for Prediction of Response to EGFR-Targeting Tyrosine Kinase Inhibitor (TKI) Drugs in Patients with Advanced Non-Small-Cell Lung Cancer: an Evidence-Based AnalysisK-RAS testing in Treatment Decisions for Advanced Colorectal Cancer: an Evidence-Based Analysis The Medical Advisory Secretariat undertook a systematic review of the evidence on the clinical effectiveness and cost-effectiveness of epidermal growth factor receptor (EGFR) mutation testing compared with no EGFR mutation testing to predict response to tyrosine kinase inhibitors (TKIs), gefitinib (Iressa(®)) or erlotinib (Tarceva(®)) in patients with advanced non-small cell lung cancer (NSCLC). TARGET POPULATION AND CONDITION With an estimated 7,800 new cases and 7,000 deaths last year, lung cancer is the leading cause of cancer

  9. Identification of potent EGFR inhibitors from TCM Database@Taiwan.

    Directory of Open Access Journals (Sweden)

    Shun-Chieh Yang

    2011-10-01

    Full Text Available Overexpression of epidermal growth factor receptor (EGFR has been associated with cancer. Targeted inhibition of the EGFR pathway has been shown to limit proliferation of cancerous cells. Hence, we employed Traditional Chinese Medicine Database (TCM Database@Taiwan (http://tcm.cmu.edu.tw to identify potential EGFR inhibitor. Multiple Linear Regression (MLR, Support Vector Machine (SVM, Comparative Molecular Field Analysis (CoMFA, and Comparative Molecular Similarities Indices Analysis (CoMSIA models were generated using a training set of EGFR ligands of known inhibitory activities. The top four TCM candidates based on DockScore were 2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-feruloyl tartaric acid, and all had higher binding affinities than the control Iressa®. The TCM candidates had interactions with Asp855, Lys716, and Lys728, all which are residues of the protein kinase binding site. Validated MLR (r² = 0.7858 and SVM (r² = 0.8754 models predicted good bioactivity for the TCM candidates. In addition, the TCM candidates contoured well to the 3D-Quantitative Structure-Activity Relationship (3D-QSAR map derived from the CoMFA (q² = 0.721, r² = 0.986 and CoMSIA (q² = 0.662, r² = 0.988 models. The steric field, hydrophobic field, and H-bond of the 3D-QSAR map were well matched by each TCM candidate. Molecular docking indicated that all TCM candidates formed H-bonds within the EGFR protein kinase domain. Based on the different structures, H-bonds were formed at either Asp855 or Lys716/Lys728. The compounds remained stable throughout molecular dynamics (MD simulation. Based on the results of this study, 2-O-caffeoyl tartaric acid, Emitine, Rosmaricine, and 2-O-feruloyl tartaric acid are suggested to be potential EGFR inhibitors.

  10. Growth/differentiation factor 15 promotes EGFR signalling, and regulates proliferation and migration in the hippocampus of neonatal and young adult mice.

    Science.gov (United States)

    Carrillo-García, Carmen; Prochnow, Sebastian; Simeonova, Ina K; Strelau, Jens; Hölzl-Wenig, Gabriele; Mandl, Claudia; Unsicker, Klaus; von Bohlen Und Halbach, Oliver; Ciccolini, Francesca

    2014-02-01

    The activation of epidermal growth factor receptor (EGFR) affects multiple aspects of neural precursor behaviour, including proliferation and migration. Telencephalic precursors acquire EGF responsiveness and upregulate EGFR expression at late stages of development. The events regulating this process and its significance are still unclear. We here show that in the developing and postnatal hippocampus (HP), growth/differentiation factor (GDF) 15 and EGFR are co-expressed in primitive precursors as well as in more differentiated cells. We also provide evidence that GDF15 promotes responsiveness to EGF and EGFR expression in hippocampal precursors through a mechanism that requires active CXC chemokine receptor (CXCR) 4. Besides EGFR expression, GDF15 ablation also leads to decreased proliferation and migration. In particular, lack of GDF15 impairs both processes in the cornu ammonis (CA) 1 and only proliferation in the dentate gyrus (DG). Importantly, migration and proliferation in the mutant HP were altered only perinatally, when EGFR expression was also affected. These data suggest that GDF15 regulates migration and proliferation by promoting EGFR signalling in the perinatal HP and represent a first description of a functional role for GDF15 in the developing telencephalon.

  11. EGFR Mutation Testing in Patients with Advanced Non-Small Cell Lung Cancer: A Comprehensive Evaluation of Real-World Practice in an East Asian Tertiary Hospital

    Science.gov (United States)

    Cho, Juhee; Rampal, Sanjay; Han, Joungho; Parasuraman, Bhash; Guallar, Eliseo; Lee, Genehee; Lee, Jeeyun; Shim, Young Mog

    2013-01-01

    Introduction Guidelines for management of non-small cell lung cancer (NSCLC) strongly recommend EGFR mutation testing. These recommendations are particularly relevant in Asians that have higher EGFR mutation prevalence. This study aims to explore current testing practices, logistics of testing, types of EGFR mutation, and prevalence of EGFR mutations in patients with advanced NSCLC in a large comprehensive cancer center in Korea. Methods Our retrospective cohort included 1,503 NSCLC patients aged ≥18 years, with stage IIIB/IV disease, who attended the Samsung Medical Center in Seoul, Korea, from January 2007 through July 2010. Trained oncology nurses reviewed and abstracted data from electronic medical records. Results This cohort had a mean age (SD) of 59.6 (11.1) years, 62.7% were males, and 52.9% never-smokers. The most common NSCLC histological types were adenocarcinoma (70.5%) and squamous cell carcinoma (18.0%). Overall, 39.5% of patients were tested for EGFR mutations. The proportion of patients undergoing EGFR testing during January 2007 through July 2008, August 2008 through September 2009, and October 2009 through July 2010 were 23.3%, 38.3%, and 63.5%, respectively (P<0.001). The median time elapsed between cancer diagnoses and receiving EGFR testing results was 21 days. EGFR testing was most frequently ordered by oncologists (57.7%), pulmonologists (31.9%), and thoracic surgeons (6.6%). EGFR testing was more commonly requested for women, younger patients, stage IV disease, non-smokers, and adenocarcinoma histology. Of 586 cases successfully tested for EGFR mutations, 209 (35.7%) were positive, including 118 cases with exon 19 deletions and 62 with L858R mutations. EGFR mutation positive patients were more likely to be female, never-smokers, never-drinkers and to have adenocarcinoma. Conclusions In a large cancer center in Korea, the proportion of EGFR testing increased from 2007 through 2010. The high frequency of EGFR mutation positive cases warrants

  12. EGFR mutation testing in patients with advanced non-small cell lung cancer: a comprehensive evaluation of real-world practice in an East Asian tertiary hospital.

    Directory of Open Access Journals (Sweden)

    Yoon-La Choi

    Full Text Available INTRODUCTION: Guidelines for management of non-small cell lung cancer (NSCLC strongly recommend EGFR mutation testing. These recommendations are particularly relevant in Asians that have higher EGFR mutation prevalence. This study aims to explore current testing practices, logistics of testing, types of EGFR mutation, and prevalence of EGFR mutations in patients with advanced NSCLC in a large comprehensive cancer center in Korea. METHODS: Our retrospective cohort included 1,503 NSCLC patients aged ≥18 years, with stage IIIB/IV disease, who attended the Samsung Medical Center in Seoul, Korea, from January 2007 through July 2010. Trained oncology nurses reviewed and abstracted data from electronic medical records. RESULTS: This cohort had a mean age (SD of 59.6 (11.1 years, 62.7% were males, and 52.9% never-smokers. The most common NSCLC histological types were adenocarcinoma (70.5% and squamous cell carcinoma (18.0%. Overall, 39.5% of patients were tested for EGFR mutations. The proportion of patients undergoing EGFR testing during January 2007 through July 2008, August 2008 through September 2009, and October 2009 through July 2010 were 23.3%, 38.3%, and 63.5%, respectively (P<0.001. The median time elapsed between cancer diagnoses and receiving EGFR testing results was 21 days. EGFR testing was most frequently ordered by oncologists (57.7%, pulmonologists (31.9%, and thoracic surgeons (6.6%. EGFR testing was more commonly requested for women, younger patients, stage IV disease, non-smokers, and adenocarcinoma histology. Of 586 cases successfully tested for EGFR mutations, 209 (35.7% were positive, including 118 cases with exon 19 deletions and 62 with L858R mutations. EGFR mutation positive patients were more likely to be female, never-smokers, never-drinkers and to have adenocarcinoma. CONCLUSIONS: In a large cancer center in Korea, the proportion of EGFR testing increased from 2007 through 2010. The high frequency of EGFR mutation positive

  13. Computational design of binding proteins to EGFR domain II.

    Directory of Open Access Journals (Sweden)

    Yoon Sup Choi

    Full Text Available We developed a process to produce novel interactions between two previously unrelated proteins. This process selects protein scaffolds and designs protein interfaces that bind to a surface patch of interest on a target protein. Scaffolds with shapes complementary to the target surface patch were screened using an exhaustive computational search of the human proteome and optimized by directed evolution using phage display. This method was applied to successfully design scaffolds that bind to epidermal growth factor receptor (EGFR domain II, the interface of EGFR dimerization, with high reactivity toward the target surface patch of EGFR domain II. One potential application of these tailor-made protein interactions is the development of therapeutic agents against specific protein targets.

  14. Antitumor efficacy of triple monoclonal antibody inhibition of epidermal growth factor receptor (EGFR) with MM151 in EGFR-dependent and in cetuximab-resistant human colorectal cancer cells

    Science.gov (United States)

    Napolitano, Stefania; Martini, Giulia; Martinelli, Erika; Della Corte, Carminia Maria; Morgillo, Floriana; Belli, Valentina; Cardone, Claudia; Matrone, Nunzia; Ciardiello, Fortunato; Troiani, Teresa

    2017-01-01

    Purpose We investigated the effect of triple monoclonal antibody inhibition of EGFR to overcome acquired resistance to first generation of anti-EGFR inhibitors. Experimental design MM151 is a mixture of three different monoclonal IgG1 antibodies directed toward three different, non-overlapping, epitopes of the EGFR. We performed an in vivo study by using human CRC cell lines (SW48, LIM 1215 and CACO2) which are sensitive to EGFR inhibitors, in order to evaluate the activity of MM151 as compared to standard anti-EGFR mAbs, such as cetuximab, as single agent or in a sequential strategy of combination MM151 with irinotecan (induction therapy) followed by MM151 with a selective MEK1/2 inhibitor (MEKi) (maintenance therapy). Furthermore, the ability of MM151 to overcome acquired resistance to cetuximab has been also evaluated in cetuximab-refractory CRC models. Results MM151 shown stronger antitumor activity as compared to cetuximab. The maintenance treatment with MM151 plus MEKi resulted the most effective therapeutic modality. In fact, this combination caused an almost complete suppression of tumor growth in SW48, LIM 1215 and CACO2 xenografts model at 30 week. Moreover, in this treatment group, mice with no evidence of tumor were more than double as compared to single agent treated mice. Its superior activity has also been demonstrated, in cetuximab-refractory CRC models. Conclusions These results provide experimental evidence that more efficient and complete EGFR blockade may determine better antitumor activity and could contribute to prevent and/or overcome acquired resistance to EGFR inhibitors. PMID:29137301

  15. Distinct effects of EGFR inhibitors on epithelial- and mesenchymal-like esophageal squamous cell carcinoma cells.

    Science.gov (United States)

    Yoshioka, Masahiro; Ohashi, Shinya; Ida, Tomomi; Nakai, Yukie; Kikuchi, Osamu; Amanuma, Yusuke; Matsubara, Junichi; Yamada, Atsushi; Miyamoto, Shin'ichi; Natsuizaka, Mitsuteru; Nakagawa, Hiroshi; Chiba, Tsutomu; Seno, Hiroshi; Muto, Manabu

    2017-08-01

    Epidermal growth factor receptor (EGFR) plays a pivotal role in the pathophysiology of esophageal squamous cell carcinoma (ESCC). However, the clinical effects of EGFR inhibitors on ESCC are controversial. This study sought to identify the factors determining the therapeutic efficacy of EGFR inhibitors in ESCC cells. Immortalized-human esophageal epithelial cells (EPC2-hTERT), transformed-human esophageal epithelial cells (T-Epi and T-Mes), and ESCC cells (TE-1, TE-5, TE-8, TE-11, TE-11R, and HCE4) were treated with the EGFR inhibitors erlotinib or cetuximab. Inhibitory effects on cell growth were assessed by cell counting or cell-cycle analysis. The expression levels of genes and proteins such as involucrin and cytokeratin13 (a squamous differentiation marker), E-cadherin, and vimentin were evaluated by real-time polymerase chain reaction or western blotting. To examine whether mesenchymal phenotype influenced the effects of EGFR inhibitors, we treated T-Epi cells with TGF-β1 to establish a mesenchymal phenotype (mesenchymal T-Epi cells). We then compared the effects of EGFR inhibitors on parental T-Epi cells and mesenchymal T-Epi cells. TE-8 (mesenchymal-like ESCC cells)- or TE-11R (epithelial-like ESCC cells)-derived xenograft tumors in mice were treated with cetuximab, and the antitumor effects of EGFR inhibitors were evaluated. Cells were classified as epithelial-like or mesenchymal-like phenotypes, determined by the expression levels of E-cadherin and vimentin. Both erlotinib and cetuximab reduced cell growth and the ratio of cells in cell-cycle S phase in epithelial-like but not mesenchymal-like cells. Additionally, EGFR inhibitors induced squamous cell differentiation (defined as increased expression of involucrin and cytokeratin13) in epithelial-like but not mesenchymal-like cells. We found that EGFR inhibitors did not suppress the phosphorylation of EGFR in mesenchymal-like cells, while EGFR dephosphorylation was observed after treatment with EGFR

  16. Design, Synthesis and Evaluation of Ribose-modified Anilinopyrimidine Derivatives as EGFR Tyrosine Kinase Inhibitors

    Science.gov (United States)

    Hu, Xiuqin; Wang, Disha; Tong, Yi; Tong, Linjiang; Wang, Xia; Zhu, Lili; Xie, Hua; Li, Shiliang; Yang, You; Xu, Yufang

    2017-11-01

    The synthesis of a series of ribose-modified anilinopyrimidine derivatives was efficiently achieved by utilizing DBU or tBuOLi-promoted coupling of ribosyl alcohols with 2,4,5-trichloropyrimidine as key step. Preliminary biological evaluation of this type of compounds as new EGFR tyrosine kinase inhibitors for combating EGFR L858R/T790M mutant associated with drug resistance in the treatment of non-small cell lung cancer revealed that 3-N-acryloyl-5-O-anilinopyrimidine ribose derivative 1a possessed potent and specific inhibitory activity against EGFR L858R/T790M over WT EGFR. Based upon molecular docking studies of the binding mode between compound 1a and EGFR, the distance between the Michael receptor and the pyrimidine scaffold is considered as an important factor for the inhibitory potency and future design of selective EGFR tyrosine kinase inhibitors against EGFR L858R/T790M mutants.

  17. EGFR-TKI therapy for patients with brain metastases from non-small-cell lung cancer: a pooled analysis of published data

    Directory of Open Access Journals (Sweden)

    Fan Y

    2014-11-01

    Full Text Available Yun Fan,1,2 Xiaoling Xu,3 Conghua Xie4 1Zhongnan Hospital of Wuhan University, Department of Radiation Oncology, Wuhan, People's Republic of China; 2Department of Chemotherapy, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China; 3Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China; 4Zhongnan Hospital of Wuhan University, Department of Radiation Oncology, Wuhan, People’s Republic of China Introduction: Brain metastases are one of the leading causes of death from non-small-cell lung cancer (NSCLC. The use of epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKIs to treat brain metastases remains controversial. Thus, we performed a pooled analysis of published data to evaluate the efficacy of EGFR-TKIs in NSCLC patients with brain metastases, particularly for tumors with activating EGFR mutations. Methods: Several data sources were searched, including PubMed, Web of Science, and ASCO Annual Meetings databases. The end points were intracranial overall response rate (ORR, disease control rate (DCR, progression-free survival (PFS, overall survival (OS, and adverse events. The pooled ORR, DCR, PFS, and OS with 95% confidence intervals (CIs were calculated employing fixed- or random-effect models, depending on the heterogeneity of the included studies. Results: Sixteen published studies were included in this analysis, with a total of 464 enrolled patients. The EGFR mutational status was unknown for 362 (unselected group, and 102 had activating EGFR mutations. The pooled intracranial ORR and DCR were 51.8% (95% CI: 45.8%–57.8% and 75.7% (95% CI: 70.3%–80.5%, respectively. A higher ORR was observed in the EGFR mutation group than in the unselected group (85.0% vs 45.1%; a similar trend was observed for the DCR (94.6% vs 71.3%. The pooled median PFS and OS were 7.4 months (95% CI, 4.9–9.9 and 11.9 months (95% CI, 7.7–16.2, respectively, with longer PFS (12.3 months vs 5.9 months and OS (16.2 months vs

  18. A case of lung adenocarcinoma harboring EGFR mutation and EML4-ALK fusion gene

    International Nuclear Information System (INIS)

    Tanaka, Hisashi; Hayashi, Akihito; Morimoto, Takeshi; Taima, Kageaki; Tanaka, Yoshihito; Shimada, Michiko; Kurose, Akira; Takanashi, Shingo; Okumura, Ken

    2012-01-01

    Lung cancer is the leading cause of cancer-related death worldwide. Epidermal growth factor receptor (EGFR) - tyrosine kinase inhibitor (TKI) is used for the patients with EGFR-mutant lung cancer. Recently, phase III studies in the patients with EGFR-mutant demonstrated that EGFR-TKI monotherapy improved progression-free survival compared with platinum-doublet chemotherapy. The echinoderm microtubule-associated protein-like 4 (EML4) - anaplastic lymphoma kinase (ALK) fusion oncogene represents one of the newest molecular targets in non-small cell lung cancer (NSCLC). Patients who harbor EML4-ALK fusions have been associated with a lack of EGFR or KRAS mutations. We report a 39-year-old patient diagnosed as adenocarcinoma harboring EGFR mutation and EML4-ALK fusion gene. We treated this patient with erlotinib as the third line therapy, but no clinical benefit was obtained. We experienced a rare case with EGFR mutation and EML4-ALK. Any clinical benefit using EGFR-TKI was not obtained in our case. The therapeutic choice for the patients with more than one driver mutations is unclear. We needs further understanding of the lung cancer molecular biology and the biomarker infomation

  19. Anti-EGFR immunonanoparticles containing IL12 and salmosin genes for targeted cancer gene therapy.

    Science.gov (United States)

    Kim, Jung Seok; Kang, Seong Jae; Jeong, Hwa Yeon; Kim, Min Woo; Park, Sang Il; Lee, Yeon Kyung; Kim, Hong Sung; Kim, Keun Sik; Park, Yong Serk

    2016-09-01

    Tumor-directed gene delivery is of major interest in the field of cancer gene therapy. Varied functionalizations of non-viral vectors have been suggested to enhance tumor targetability. In the present study, we prepared two different types of anti-EGF receptor (EGFR) immunonanoparticles containing pDNA, neutrally charged liposomes and cationic lipoplexes, for tumor-directed transfection of cancer therapeutic genes. Even though both anti-EGFR immunonanoparticles had a high binding affinity to the EGFR-positive cancer cells, the anti-EGFR immunolipoplex formulation exhibited approximately 100-fold higher transfection to the target cells than anti-EGFR immunoliposomes. The lipoplex formulation also showed a higher transfection to SK-OV-3 tumor xenografts in mice. Thus, IL12 and/or salmosin genes were loaded in the anti-EGFR immunolipoplexes and intravenously administered to mice carrying SK-OV-3 tumors. Co-transfection of IL12 and salmosin genes using anti-EGFR immunolipoplexes significantly reduced tumor growth and pulmonary metastasis. Furthermore, combinatorial treatment with doxorubicin synergistically inhibited tumor growth. These results suggest that anti-EGFR immunolipoplexes containing pDNA encoding therapeutic genes could be utilized as a gene-transfer modality for cancer gene therapy.

  20. Mechanism of c-Src Synergy with the EGFR in Breast Cancer

    National Research Council Canada - National Science Library

    Tice, David

    1997-01-01

    .... To gain further insights into the mechanism of c-Src synergy with the EGFR, stable cell lines containing various c-Src mutants and overexpressed wt EGFR were generated and examined for tumorigenic...

  1. COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport

    International Nuclear Information System (INIS)

    Wang, Ying-Nai; Wang, Hongmei; Yamaguchi, Hirohito; Lee, Hong-Jen; Lee, Heng-Huan; Hung, Mien-Chie

    2010-01-01

    Research highlights: → ARF1 activation is involved in the EGFR transport to the ER and the nucleus. → Assembly of γ-COP coatomer mediates EGFR transport to the ER and the nucleus. → Golgi-to-ER retrograde trafficking regulates nuclear transport of EGFR. -- Abstract: Emerging evidence indicates that cell surface receptors, such as the entire epidermal growth factor receptor (EGFR) family, have been shown to localize in the nucleus. A retrograde route from the Golgi to the endoplasmic reticulum (ER) is postulated to be involved in the EGFR trafficking to the nucleus; however, the molecular mechanism in this proposed model remains unexplored. Here, we demonstrate that membrane-embedded vesicular trafficking is involved in the nuclear transport of EGFR. Confocal immunofluorescence reveals that in response to EGF, a portion of EGFR redistributes to the Golgi and the ER, where its NH 2 -terminus resides within the lumen of Golgi/ER and COOH-terminus is exposed to the cytoplasm. Blockage of the Golgi-to-ER retrograde trafficking by brefeldin A or dominant mutants of the small GTPase ADP-ribosylation factor, which both resulted in the disassembly of the coat protein complex I (COPI) coat to the Golgi, inhibit EGFR transport to the ER and the nucleus. We further find that EGF-dependent nuclear transport of EGFR is regulated by retrograde trafficking from the Golgi to the ER involving an association of EGFR with γ-COP, one of the subunits of the COPI coatomer. Our findings experimentally provide a comprehensive pathway that nuclear transport of EGFR is regulated by COPI-mediated vesicular trafficking from the Golgi to the ER, and may serve as a general mechanism in regulating the nuclear transport of other cell surface receptors.

  2. EGFR mutation testing in patients with advanced non-small cell lung cancer: a comprehensive evaluation of real-world practice in an East Asian tertiary hospital.

    Science.gov (United States)

    Choi, Yoon-La; Sun, Jong-Mu; Cho, Juhee; Rampal, Sanjay; Han, Joungho; Parasuraman, Bhash; Guallar, Eliseo; Lee, Genehee; Lee, Jeeyun; Shim, Young Mog

    2013-01-01

    Guidelines for management of non-small cell lung cancer (NSCLC) strongly recommend EGFR mutation testing. These recommendations are particularly relevant in Asians that have higher EGFR mutation prevalence. This study aims to explore current testing practices, logistics of testing, types of EGFR mutation, and prevalence of EGFR mutations in patients with advanced NSCLC in a large comprehensive cancer center in Korea. Our retrospective cohort included 1,503 NSCLC patients aged ≥18 years, with stage IIIB/IV disease, who attended the Samsung Medical Center in Seoul, Korea, from January 2007 through July 2010. Trained oncology nurses reviewed and abstracted data from electronic medical records. This cohort had a mean age (SD) of 59.6 (11.1) years, 62.7% were males, and 52.9% never-smokers. The most common NSCLC histological types were adenocarcinoma (70.5%) and squamous cell carcinoma (18.0%). Overall, 39.5% of patients were tested for EGFR mutations. The proportion of patients undergoing EGFR testing during January 2007 through July 2008, August 2008 through September 2009, and October 2009 through July 2010 were 23.3%, 38.3%, and 63.5%, respectively (Pwomen, younger patients, stage IV disease, non-smokers, and adenocarcinoma histology. Of 586 cases successfully tested for EGFR mutations, 209 (35.7%) were positive, including 118 cases with exon 19 deletions and 62 with L858R mutations. EGFR mutation positive patients were more likely to be female, never-smokers, never-drinkers and to have adenocarcinoma. In a large cancer center in Korea, the proportion of EGFR testing increased from 2007 through 2010. The high frequency of EGFR mutation positive cases warrants the need for generalized testing in Asian NSCLC patients.

  3. Molecular Basis for Necitumumab Inhibition of EGFR Variants Associated with Acquired Cetuximab Resistance.

    Science.gov (United States)

    Bagchi, Atrish; Haidar, Jaafar N; Eastman, Scott W; Vieth, Michal; Topper, Michael; Iacolina, Michelle D; Walker, Jason M; Forest, Amelie; Shen, Yang; Novosiadly, Ruslan D; Ferguson, Kathryn M

    2018-02-01

    Acquired resistance to cetuximab, an antibody that targets the EGFR, impacts clinical benefit in head and neck, and colorectal cancers. One of the mechanisms of resistance to cetuximab is the acquisition of mutations that map to the cetuximab epitope on EGFR and prevent drug binding. We find that necitumumab, another FDA-approved EGFR antibody, can bind to EGFR that harbors the most common cetuximab-resistant substitution, S468R (or S492R, depending on the amino acid numbering system). We determined an X-ray crystal structure to 2.8 Å resolution of the necitumumab Fab bound to an S468R variant of EGFR domain III. The arginine is accommodated in a large, preexisting cavity in the necitumumab paratope. We predict that this paratope shape will be permissive to other epitope substitutions, and show that necitumumab binds to most cetuximab- and panitumumab-resistant EGFR variants. We find that a simple computational approach can predict with high success which EGFR epitope substitutions abrogate antibody binding. This computational method will be valuable to determine whether necitumumab will bind to EGFR as new epitope resistance variants are identified. This method could also be useful for rapid evaluation of the effect on binding of alterations in other antibody/antigen interfaces. Together, these data suggest that necitumumab may be active in patients who are resistant to cetuximab or panitumumab through EGFR epitope mutation. Furthermore, our analysis leads us to speculate that antibodies with large paratope cavities may be less susceptible to resistance due to mutations mapping to the antigen epitope. Mol Cancer Ther; 17(2); 521-31. ©2017 AACR . ©2017 American Association for Cancer Research.

  4. Detecting and treating breast cancer resistance to EGFR inhibitors

    Science.gov (United States)

    Moonlee, Sun-Young; Bissell, Mina J.; Furuta, Saori; Meier, Roland; Kenny, Paraic A.

    2016-04-05

    The application describes therapeutic compositions and methods for treating cancer. For example, therapeutic compositions and methods related to inhibition of FAM83A (family with sequence similarity 83) are provided. The application also describes methods for diagnosing cancer resistance to EGFR inhibitors. For example, a method of diagnosing cancer resistance to EGFR inhibitors by detecting increased FAM83A levels is described.

  5. EGFR and its mutant EGFRvIII as modulators of tumor cell radiosensitivity

    International Nuclear Information System (INIS)

    Lammering, G.; Hewit, T.H.; Contessa, J.N.; Hawkins, W.; Lin, P.S.; Valerie, K.; Mikkelsen, R.; Dent, P.; Schmidt-Ullrich, R.K.

    2001-01-01

    Purpose: Exposure of human carcinoma and malignant glioma cells to ionizing radiation (IR)activates EGFR,which as a consequence mediates a cytoprotective response. We have demonstrated that expression of a dominant negative mutant, EGFR-CD533 disrupts this cytoprotective response, resulting in significant radiosensitization. During studies of in vivo radiosensitization with intratumoral delivery of the Adenovirus (Ad) vector, Ad-EGFR-CD533, it became apparent that xenografts from human carcinoma and malignant glioma cells invariably expressed the constitutively active EGFR mutant, EGFRvIII. This mutant EGFRvIII is frequently found in vivo in glioblastoma, breast, prostate, lung and ovarian carcinoma, but does not appear to be expressed in tumor cells under in vitro conditions. The functional consequences of EGFRvIII expression on tumor cell radiation responses are currently unknown. We have therefore investigated in a transient transfection cell system the responses of EGFRvIII and downstream signal transduction pathways to IR. In addition, the capacity of EGFR-CD533 to disrupt the function of EGFRvIII was tested. Materials and Methods: The MDA-MB-231, U-87 MG and U-373 MG cell lines were established as tumors and then intratumorally transduced with Ad-EGFR-CD533 or Ad-LacZ (control vector). The transduction efficiency was > 40% in MDA-MB-231 tumors and reached > 70% in the glioma xenografts. Radiosensitivity was measured by ex vivo colony formation and growth delay assays. The functional consequences of EGFRvIII expression on cellular IR responses were studied in transiently transfected Chinese hamster ovary (CHO) cells because tumor cells do not express EGFRvIII in vitro. Transfection with null vectors and vectors encoding either EGFRvIII or EGFR were performed and similar protein expression levels were verified by Western blot analyses. Results: The radiosensitivity of Ad-EGFR-CD533 transduced tumors was significantly increased compared with Ad-LacZ transduced

  6. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Clouse, Katherine N; Goodrich, Jennifer S

    2006-01-01

    ...) activity has been associated with an increased prognosis of breast cancer. During cogenesis in Drosophila melanogaster local Egfr activation by the spatially-restricted TGFalpha-like ligand Gurken (Grk...

  7. ADEME energy transition scenarios. Summary including a macro-economic evaluation 2030 2050

    International Nuclear Information System (INIS)

    2014-05-01

    ADEME, the French Environment and Energy Management Agency, is a public agency reporting to the Ministry of Ecology, Sustainable Development and Energy and the Ministry of Higher Education and Research. In 2012 the agency drew up a long-term scenario entitled 'ADEME Energy Transition Scenarios 2030-2050'. This document presents a summary of the report. The full version can be viewed online on the ADEME web site. With this work ADEME offers a proactive energy vision for all stakeholders - experts, the general public, decision-makers, etc. - focusing on two main areas of expertise: managing energy conservation and developing renewable energy production using proven or demonstration-phase technologies. These scenarios identify a possible pathway for the energy transition in France. They are based on two time horizons and two separate methodologies. One projection, applicable from the present day, seeks to maximise potential energy savings and renewable energy production in an ambitious but realistic manner, up to 2030. The second exercise is a normative scenario that targets a fourfold reduction in greenhouse gas emissions generated in France by 2050, compared to 1990 levels. The analysis presented in this document is primarily based on an exploration of different scenarios that allow for the achievement of ambitious energy and environmental targets under technically, economically and socially feasible conditions. This analysis is supplemented by a macro-economic analysis. These projections, particularly for 2030, do not rely on radical changes in lifestyle, lower comfort levels or hypothetical major technological breakthroughs. They show that by using technologies and organisational changes that are currently within our reach, we have the means to achieve these long-term goals. The scenarios are based on assumptions of significant growth, both economic (1.8% per year) and demographic (0.4% a year). The 2050 scenario shows that with sustained growth, a

  8. Prognostic significance of epidermal growth factor receptor (EGFR) over expression in urothelial carcinoma of urinary bladder.

    Science.gov (United States)

    Hashmi, Atif Ali; Hussain, Zubaida Fida; Irfan, Muhammad; Khan, Erum Yousuf; Faridi, Naveen; Naqvi, Hanna; Khan, Amir; Edhi, Muhammad Muzzammil

    2018-06-07

    Epidermal growth factor receptor (EGFR) has been shown to have abnormal expression in many human cancers and is considered as a marker of poor prognosis. Frequency of over expression in bladder cancer has not been studied in our population; therefore we aimed to evaluate the frequency and prognostic significance of EGFR immunohistochemical expression in locoregional population. We performed EGFR immunohistochemistry on 126 cases of bladder cancer and association of EGFR expression with tumor grade, lamina propria invasion, deep muscle invasion and recurrence of disease was evaluated. High EGFR expression was noted in 26.2% (33 cases), 15.1% (19 cases) and 58.7% (74 cases) revealed low and no EGFR expression respectively. Significant association of EGFR expression was noted with tumor grade, lamina propria invasion, deep muscle invasion and recurrence status while no significant association was seen with age, gender and overall survival. Kaplan- Meier curves revealed significant association of EGFR expression with recurrence while no significant association was seen with overall survival. Significant association of EGFR overexpression with tumor grade, muscularis propria invasion and recurrence signifies its prognostic value; therefore EGFR can be used as a prognostic biomarker in Urothelial bladder carcinoma.

  9. Sex-specific incidence of EGFR mutation and its association with age and obesity in lung adenocarcinomas: a retrospective analysis.

    Science.gov (United States)

    Kim, Hye-Ryoun; Kim, Seo Yun; Kim, Cheol Hyeon; Yang, Sung Hyun; Lee, Jae Cheol; Choi, Chang-Min; Na, Im Il

    2017-11-01

    Age and obesity are well-known risk factors for various cancers, but the potential roles of age and obesity in lung cancer, especially in those with activating EGFR mutations, have not been thoroughly evaluated. The aim of this retrospective study is to evaluate the associations between the sex-specific incidence of EGFR mutations and age and obesity. We conducted a retrospective study based on the data from 1378 lung adenocarcinoma cases. The degree of obesity was categorized by body mass index (BMI). The associations between EGFR mutational status and clinical factors, including stage, smoking history, age group (≤45 years, 46-55, 56-65 and >65), and BMI group (obesity (adjusted OR for BMI group = 1.23, p-trend = 0.04). In contrast, in women, the incidence of EGFR mutation was positively associated with age (adjusted OR for age group = 1.19, p-trend = 0.02). However, the incidence of EGFR mutation was not statistically associated with obesity (adjusted OR for BMI group = 1.03, p-trend = 0.76). Our data suggests that age and obesity may contribute to the sex-specific incidence of EGFR mutation in lung adenocarcinoma in different manners.

  10. A comparison between MARKAL-MACRO and MARKAL

    International Nuclear Information System (INIS)

    Schepers, E.

    1995-11-01

    Differences between CO 2 -reduction scenarios of the MARKAL-MACRO model and the MARKAL model are studied. Also attention is paid to the rebound effect, i.e. the effect on a price decrease leads to an increase of the energy demand, and energy savings will result in a redistribution of saved income over other goods and services. MARKAL is an energy supply model and MACRO is a macro-economic model. The combination of the two is an example of a hard-linked model between a top-down model (MACRO) and a bottom-up model (MARKAL). 15 figs., 5 tabs., 18 refs., 2 appendices

  11. Macro-prudentiality and financial stability

    Directory of Open Access Journals (Sweden)

    Cristian Ionescu

    2012-12-01

    Full Text Available Taking into consideration the fact that financial crises, as a manifestation form of the financial instability, are becoming more and more frequent, complex and severe, it is important to discuss about the macroeconomic prudentiality, in order to protect and save the economy of a country or of a region by the inherent fragility of a very developed financial system. Therefore, the paper aims to analyze the following aspects: the macro-prudential regulation (in order to a better understanding of the financial instability process, the development of the macro-prudential vision and instruments (but emphasizing the existing limits and economic policies (in order to implement an operational macro-prudential regulation.

  12. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Goodrich, Jennifer S

    2005-01-01

    ...) activity has been associated with an increased prognosis of breast cancer. During oogenesis in Drosophila melanogaster, local EGFR activation by the spatially restricted TGF alpha-like ligand, Gurken (Grk...

  13. Wild-type EGFR Is Stabilized by Direct Interaction with HSP90 in Cancer Cells and Tumors

    Directory of Open Access Journals (Sweden)

    Aarif Ahsan

    2012-08-01

    Full Text Available The epidermal growth factor receptor (EGFR has been targeted for inhibition using tyrosine kinase inhibitors and monoclonal antibodies, with improvement in outcome in subsets of patients with head and neck, lung, and colorectal carcinomas. We have previously found that EGFR stability plays a key role in cell survival after chemotherapy and radiotherapy. Heat shock protein 90 (HSP90 is known to stabilize mutant EGFR and ErbB2, but its role in cancers with wild-type (WT WT-EGFR is unclear. In this report, we demonstrate that fully mature, membrane-bound WT-EGFR interacts with HSP90 independent of ErbB2. Further, the HSP90 inhibitors geldanamycin (GA and AT13387 cause a decrease in WT-EGFR in cultured head and neck cancer cells. This decrease results from a significantly reduced half-life of WT-EGFR. WT-EGFR was also lost in head and neck xenograft specimens after treatment with AT13387 under conditions that inhibited tumor growth and prolonged survival of the mice. Our findings demonstrate that WT-EGFR is a client protein of HSP90 and that their interaction is critical for maintaining both the stability of the receptor as well as the growth of EGFR-dependent cancers. Furthermore, these findings support the search for specific agents that disrupt HSP90's ability to act as an EGFR chaperone.

  14. MORTRAN-2, FORTRAN Language Extension with User-Supplied Macros

    International Nuclear Information System (INIS)

    Cook, A. James; Shustek, L.J.

    1980-01-01

    1 - Description of problem or function: MORTRAN2 is a FORTRAN language extension that permits a relatively easy transition from FORTRAN to a more convenient and structured language. Its features include free-field format; alphanumeric statement labels; flexible comment convention; nested block structure; for-by-to, do, while, until, loop, if-then-else, if-else, exit, and next statements; multiple assignment statements; conditional compilation; and automatic listing indentation. The language is implemented by a macro-based pre-processor and is further extensible by user-defined macros. 2 - Method of solution: The MORTRAN2 pre-processor may be regarded as a compiler whose object code is ANSI Standard FORTRAN. The MORTRAN2 language is dynamically defined by macros which are input at each use of the pre-processor. 3 - Restrictions on the complexity of the problem: The pre-processor output must be accepted by a FORTRAN compiler

  15. Bio markers and Anti-EGFR therapies for Krads wild-type tumors in metastatic colorectal cancer patients; Biomarcadores y terapeutica ANTI-EGFR en el cancer colorrectal metastasico en pacientes con K-Ras no mutado

    Energy Technology Data Exchange (ETDEWEB)

    Diaz Rubio Garcia, E

    2009-07-01

    The natural history of metastasis colorectal cancer has being clearly modified in terms of response rate, time to progression and overall survival, once the anti-EGFR monoclonal antibodies (cetuximab and panitumumab) have emerged in combination with the standard cytotoxic chemotherapy (FOLFOX and FOLFIRI). However, the benefit from cetuximab and panitumumab is only confined to KRAS-wild type (KRAS-wt) colorectal tumors, while KRAS mutated tumors do not respond to these drugs. The 65 % of colorectal tumors are KRAS-wt tumors, but efficacy of antiEGFR therapies is detected only in 60-70 % of these KRAS-wt tumors. Other biomarkers and molecular pathways must be involved in the response of the antiEGFR therapies for the KRAS-wt colorectal tumors, such as the EGFR ligands, the EGFR-phosphorilated levels, the number of EGFR copies, the status of the KRAS effected B-RAF and the alternative intracellular signaling pathways PIK3CA/PTEN/AKT and JAK/STAT. A battery of these biomarkers is needed to select the most sensitive patients to the antiEGFR therapies. This pattern may represent a novel favorable cost-effectiveness tool to develop tailored treatments. A review of these biomarkers and molecular pathways, involved in the antiEGFR therapies response, is performed. (Author) 68 refs.

  16. Mutational Profiling of Malignant Mesothelioma Revealed Potential Therapeutic Targets in EGFR and NRAS

    Directory of Open Access Journals (Sweden)

    Jeong Eun Kim

    2018-04-01

    Full Text Available Pemetrexed and platinum (PP combination chemotherapy is the current standard first-line therapy for treatment of malignant mesothelioma (MM. However, a useful predictive biomarker for PP therapy is yet to be found. Here, we performed targeted exome sequencing to profile somatic mutations and copy number variations in 12 MM patients treated with PP therapy. We identified 187 somatic mutations in 12 patients (65 synonymous, 102 missense, 2 nonsense, 5 splice site, and 13 small coding insertions/deletions. We identified somatic mutations in 23 genes including BAP1, TP53, NRAS, and EGFR. Interestingly, rare NRAS p.Q61K and EGFR exon 19 deletions were observed in 2 patients. We also found somatic chromosomal copy number deletions in CDKN2A and CDKN2B genes. Genetic alteration related to response after PP therapy was not found. Somatic mutation profiling in MM patients receiving PP therapy revealed genetic alterations in potential therapeutic targets such as NRAS and EGFR. No alterations in genes with potential predictive role for PP therapy were found.

  17. Mutational Profiling of Malignant Mesothelioma Revealed Potential Therapeutic Targets in EGFR and NRAS.

    Science.gov (United States)

    Kim, Jeong Eun; Kim, Deokhoon; Hong, Yong Sang; Kim, Kyu-Pyo; Yoon, Young Kwang; Lee, Dae Ho; Kim, Sang-We; Chun, Sung-Min; Jang, Se Jin; Kim, Tae Won

    2018-04-01

    Pemetrexed and platinum (PP) combination chemotherapy is the current standard first-line therapy for treatment of malignant mesothelioma (MM). However, a useful predictive biomarker for PP therapy is yet to be found. Here, we performed targeted exome sequencing to profile somatic mutations and copy number variations in 12 MM patients treated with PP therapy. We identified 187 somatic mutations in 12 patients (65 synonymous, 102 missense, 2 nonsense, 5 splice site, and 13 small coding insertions/deletions). We identified somatic mutations in 23 genes including BAP1, TP53, NRAS, and EGFR. Interestingly, rare NRAS p.Q61K and EGFR exon 19 deletions were observed in 2 patients. We also found somatic chromosomal copy number deletions in CDKN2A and CDKN2B genes. Genetic alteration related to response after PP therapy was not found. Somatic mutation profiling in MM patients receiving PP therapy revealed genetic alterations in potential therapeutic targets such as NRAS and EGFR. No alterations in genes with potential predictive role for PP therapy were found. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Icotinib inhibits EGFR signaling and alleviates psoriasis-like symptoms in animal models.

    Science.gov (United States)

    Tan, Fenlai; Yang, Guiqun; Wang, Yanping; Chen, Haibo; Yu, Bo; Li, He; Guo, Jing; Huang, Xiaoling; Deng, Yifang; Yu, Pengxia; Ding, Lieming

    2018-02-01

    To investigate the effects of icotinib hydrochloride and a derivative cream on epidermal growth factor receptor (EGFR) signaling and within animal psoriasis models, respectively. The effect of icotinib on EGFR signaling was examined in HaCaT cells, while its effect on angiogenesis was tested in chick embryo chorioallantoic membranes (CAM). The effectiveness of icotinib in treating psoriasis was tested in three psoriasis models, including diethylstilbestrol-treated mouse vaginal epithelial cells, mouse tail granular cell layer formation, and propranolol-induced psoriasis-like features in guinea pig ear skin. Icotinib treatment blocked EGFR signaling and reduced HaCaT cell viability as well as suppressed CAM angiogenesis. Topical application of icotinib ameliorated psoriasis-like histological characteristics in mouse and guinea pig psoriasis models. Icotinib also significantly inhibited mouse vaginal epithelium mitosis, promoted mouse tail squamous epidermal granular layer formation, and reduced the thickness of the horny layer in propranolol treated auricular dorsal surface of guinea pig. We conclude that icotinib can effectively inhibit psoriasis in animal models. Future clinical studies should be conducted to explore the therapeutic effects of icotinb in humans. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. The International Macro-Environment of an Organization

    OpenAIRE

    Ileana (Badulescu) Anastase; Cornel Grigorut

    2016-01-01

    The international macro-environment (supranational macro-environment) brings together allthe uncontrollable factors with a global impact, and it is related to the organization’s indirectrelationships on international markets. Romania’s globalization and the EU integration increasedthe importance of the macro-environment for all organizations, regardless of their degree ofinternationalization. In marketing, we must master the main agreements between countries and theregulations emanating from ...

  20. EGFR Signaling in the Brain Is Necessary for Olfactory Learning in "Drosophila" Larvae

    Science.gov (United States)

    Rahn, Tasja; Leippe, Matthias; Roeder, Thomas; Fedders, Henning

    2013-01-01

    Signaling via the epidermal growth factor receptor (EGFR) pathway has emerged as one of the key mechanisms in the development of the central nervous system in "Drosophila melanogaster." By contrast, little is known about the functions of EGFR signaling in the differentiated larval brain. Here, promoter-reporter lines of EGFR and its most prominent…

  1. MACRO-PUBLIC RELATIONS: CRISIS COMMUNICATION IN THE AGE OF INTERNET

    OpenAIRE

    Zhongxuan Lin; Yujuan Guo; Yingying Chen

    2013-01-01

    In order to study the crisis communication in the age of Internet, the study takes the battle between two Internet companies, Tencent and Qihoo, as a case study, but focuses more on their huge public audiences, which may be defined as a “macro-public” crowd. The study employs multiple research methods including survey, focus groups interviews and content analysis to explore their “macro-public relations” which may be driven by the spiral of silence and crowd psychology. This dynamic undergrou...

  2. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Clouse, Katherine N; Goodrich, Jennifer S

    2006-01-01

    ...) functions in the localization and translational regulation of grk mRNA. The purpose of this project is to identify factors that function with Sqd to produce spatially-restricted Egfr activation...

  3. EGFR Activation by Spatially Restricted Ligands

    National Research Council Canada - National Science Library

    Goodrich, Jennifer S

    2005-01-01

    ...) functions in the localization and translational regulation of grk mRNA. The purpose of this project is to identify factors that function with Squid to produce spatially-restricted EGFR activation...

  4. Effect of Genetic African Ancestry on eGFR and Kidney Disease

    Science.gov (United States)

    Nadkarni, Girish N.; Belbin, Gillian; Lotay, Vaneet; Wyatt, Christina; Gottesman, Omri; Bottinger, Erwin P.; Kenny, Eimear E.; Peter, Inga

    2015-01-01

    Self-reported ancestry, genetically determined ancestry, and APOL1 polymorphisms are associated with variation in kidney function and related disease risk, but the relative importance of these factors remains unclear. We estimated the global proportion of African ancestry for 9048 individuals at Mount Sinai Medical Center in Manhattan (3189 African Americans, 1721 European Americans, and 4138 Hispanic/Latino Americans by self-report) using genome-wide genotype data. CKD-EPI eGFR and genotypes of three APOL1 coding variants were available. In admixed African Americans and Hispanic/Latino Americans, serum creatinine values increased as African ancestry increased (per 10% increase in African ancestry, creatinine values increased 1% in African Americans and 0.9% in Hispanic/Latino Americans; P≤1x10−7). eGFR was likewise significantly associated with African genetic ancestry in both populations. In contrast, APOL1 risk haplotypes were significantly associated with CKD, eGFRblack on the basis of ≥50% African ancestry resulted in higher eGFR for 14.7% of Hispanic/Latino Americans and lower eGFR for 4.1% of African Americans, affecting CKD staging in 4.3% and 1% of participants, respectively. Reclassified individuals had electrolyte values consistent with their newly assigned CKD stage. In summary, proportion of African ancestry was significantly associated with normal-range creatinine and eGFR, whereas APOL1 risk haplotypes drove the associations with CKD. Recalculation of eGFR on the basis of genetic ancestry affected CKD staging and warrants additional investigation. PMID:25349204

  5. Experimental Treatment of Bladder Cancer with Bi-213-anti-EGFR MAb

    International Nuclear Information System (INIS)

    Seidl, Christof; Pfost, Birgit; Müller, Felix

    2013-01-01

    Therapy of non-muscle-invasive bladder cancer (carcinoma in situ) comprises transurethral resection of the tumour and subsequent instillation of the chemotherapeutic drug mitomycin C in order to eradicate remaining tumour cells. Yet 15 – 40% of treated patients relapse within 5 years. Therefore, new therapeutic strategies to combat tumour recurrence are needed. Alpha-particle emitting radionuclides efficiently kill single tumour cells or small tumour cell clusters. Because the epidermal growth factor receptor (EGFR) is overexpressed on bladder cancer cells, conjugates composed of the alpha-emitter Bi-213 and the anti-EGFR antibody matuzumab should provide a powerful drug to eliminate disseminated bladder cancer cells. Therefore, the aims of our study were (i) to analyse the cytotoxic effects of Bi-213-anti-EGFR radioimmunoconjugates at the cellular level, (ii) to evaluate therapeutic efficacy of intravesically applied Bi-213- anti-EGFR-Mab in a nude mouse model with intravesical human bladder cancer xenografts, (iii) to compare Bi- 213-anti-EGFR-Mab efficacy with chemotherapy using mitomycin C and (iv) to demonstrate that radioimmunotherapy is not toxic to cells of the bladder wall and of the kidneys

  6. Assessment and prognostic analysis of EGFR mutations or/and HER2 overexpression in Uygur's Non-small Cell Lung Cancer.

    Science.gov (United States)

    Shen, Hongli; Du, Guoli; Liu, Zhonghua; Bao, Jianling; Yu, Qin; Jia, Chunli; Liang, Xuelin; Shan, Li

    2015-01-01

    The epidermal growth factor receptor (EGFR) mutations and human epidermal growth factor receptor HER-2/neu (HER2) have been established roles in the signal transduction pathways leading to cell growth and differentiation. The present study focus on the significance of EGFR mutations combined with HER2 overexpression on survival outcomes in Non-small Cell Lung Cancer patients in Uygur population. A total of 111 consecutive Uygurods: A total of 111 consecutive Cell Lung Cancer under went lung Cell Lung biopsy or surgery at the Affiliated Tumor Hospital of Xin Jiang Medical University between March 2009 and January 2013 were included in this retrospective study. All the patients included had received gefitinib 250 mg once daily. The HER2 expression were evaluated by immunohistochemical staining with score of membranous staining being 0 = none, 1 = weak, 2 = 10-30% cells, 3≥30% cells stained, and Real-time PCR techniques were conducted to detect mutations of EGFR through 21 kinds of human EGFR gene mutation detection kits. A retrospective review of the medical records was analyzed to determine the correlation between the presence of EGFR mutations combined with HER2 overexpression and clinicopathological factors. The overall rate of EGFR mutation was 10.81% (n = 12), which mainly involved exons 19 (83.33%, n = 10), 21 (16.67%, n = 2). The overall rate of HER2 overexpression was 21.62% (n = 24). EGFR mutation combined with HER2 overexpression analysis was performed in 111 patients, with an overall rate of 5.41% (n = 6). Median progression-free survival and overall survival were significantly longer in the EGFR mutations group than in the wild type group (PFS: 10.0±1.5 versus 3.8±1.4 months, P = 0.000; OS: 27.3±2.9 versus 19.1±4.7 months, P = 0.000). The ORR in patients with HER2 overexpression was 29.17%, and 13.80% in those patients with HER2 negative, but no significant difference (P = 0.121). The median PFS and OS in HER2 positive group showed no significant

  7. [A global view of population health in Colombia: role of social macro-determinants].

    Science.gov (United States)

    Idrovo, Alvaro J; Ruiz-Rodríguez, Myriam

    2007-09-01

    The social environment is an important determinant of population and individual health. However, its impact is often not considered in national health policies and generally its attributes are considered as constants. For this reason, contemporary health policies place greater emphasis on individual risk factors. Colombias position in the world ranking is described with respect to several social macro-determinants of health, previously characterized as components of class/welfare regime model. The exploratory study included all countries with comparable data including the following: (1) economic development [gross domestic product per capita adjusted for purchasing power parity], (2) income inequality [Gini coefficient], (3) social capital corruption perceptions index and generalized trust, and (4) political regime index of freedom. First, correlations between these macro-determinants were estimated, and second, the relationship between them and life expectancy at birth was explored. Finally, the position of Colombia in global context was determined. Important correlations occurred among the macro-determinants. Colombia tended to have intermediate to low positions in the global context in all macro-determinants, with the exception of gross domestic product per capita adjusted for purchasing power parity. The macro-determinant of population health with the highest potential of effecting improvement in health conditions is to modify income inequality.

  8. Resistance to EGFR inhibitors in non-small cell lung cancer: Clinical management and future perspectives.

    Science.gov (United States)

    Tomasello, Chiara; Baldessari, Cinzia; Napolitano, Martina; Orsi, Giulia; Grizzi, Giulia; Bertolini, Federica; Barbieri, Fausto; Cascinu, Stefano

    2018-03-01

    In the last few years, the development of targeted therapies for non-small cell lung cancer (NSCLC) expressing oncogenic driver mutations (e.g. EGFR) has changed the clinical management and the survival outcomes of this specific minority of patients. Several phase III trials demonstrated the superiority of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) over chemotherapy in EGFR-mutant NSCLC patients. However, in the vast majority of cases EGFR TKIs lose their clinical activity within 8-12 months. Many genetic aberrations have been described as possible mechanisms of EGFR TKIs acquired resistance and can be clustered in four main sub-groups: 1. Development of secondary EGFR mutations; 2. Activation of parallel signaling pathways; 3. Histological transformation; 4. Activation of downstream signaling pathways. In this review we will describe the molecular alterations underlying each of these EGFR TKIs resistance mechanisms, focusing on the currently available and future therapeutic strategies to overcome these phenomena. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. EGFR gene amplification is relatively common and associates with outcome in intestinal adenocarcinoma of the stomach, gastro-oesophageal junction and distal oesophagus

    International Nuclear Information System (INIS)

    Birkman, Eva-Maria; Ålgars, Annika; Lintunen, Minnamaija; Ristamäki, Raija; Sundström, Jari; Carpén, Olli

    2016-01-01

    Approximately 50 % of gastric adenocarcinomas belong to a molecular subgroup characterised by chromosomal instability and a strong association with the intestinal histological subtype. This subgroup typically contains alterations in the receptor tyrosine kinase–RAS pathway, for example EGFR or HER2 gene amplifications leading to protein overexpression. In clinical practice, HER2 overexpressing metastatic gastric cancer is known to respond to treatment with anti-HER2 antibodies. By contrast, anti-EGFR antibodies have not been able to provide survival benefit in clinical trials, which, however, have not included patient selection based on the histological subtype or EGFR gene copy number analysis of the tumours. To examine the role of EGFR as a potential biomarker, we studied the prevalence, clinicopathological associations as well as prognostic role of EGFR and HER2 expression and gene amplification in intestinal adenocarcinomas of the stomach, gastro-oesophageal junction and distal oesophagus. Tissue samples from 220 patients were analysed with EGFR and HER2 immunohistochemistry. Those samples with moderate/strong staining intensity were further analysed with silver in situ hybridization to quantify gene copy numbers. The results were associated with clinical patient characteristics and survival. Moderate/strong EGFR protein expression was found in 72/220 (32.7 %) and EGFR gene amplification in 31/220 (14.1 %) of the tumours, while moderate/strong HER2 protein expression was detected in 31/220 (14.1 %) and HER2 gene amplification in 29/220 (13.2 %) of the tumours. EGFR and HER2 genes were co-amplified in eight tumours (3.6 %). EGFR gene amplification was more common in tumours of distal oesophagus/gastro-oesophageal junction/cardia than in those of gastric corpus (p = 0.013). It was associated with shortened time to cancer recurrence (p = 0.026) and cancer specific survival (p = 0.033). EGFR gene amplification is relatively common in intestinal adenocarcinomas

  10. Network meta-analysis of erlotinib, gefitinib, afatinib and icotinib in patients with advanced non-small-cell lung cancer harboring EGFR mutations.

    Directory of Open Access Journals (Sweden)

    Wenhua Liang

    Full Text Available Several EGFR-tyrosine kinase inhibitors (EGFR-TKIs including erlotinib, gefitinib, afatinib and icotinib are currently available as treatment for patients with advanced non-small-cell lung cancer (NSCLC who harbor EGFR mutations. However, no head to head trials between these TKIs in mutated populations have been reported, which provides room for indirect and integrated comparisons.We searched electronic databases for eligible literatures. Pooled data on objective response rate (ORR, progression free survival (PFS, overall survival (OS were calculated. Appropriate networks for different outcomes were established to incorporate all evidences. Multiple-treatments comparisons (MTCs based on Bayesian network integrated the efficacy and specific toxicities of all included treatments.Twelve phase III RCTs that investigated EGFR-TKIs involving 1821 participants with EGFR mutation were included. For mutant patients, the weighted pooled ORR and 1-year PFS of EGFR-TKIs were significant superior to that of standard chemotherapy (ORR: 66.6% vs. 30.9%, OR 5.46, 95%CI 3.59 to 8.30, P<0.00001; 1-year PFS: 42.9% vs. 9.7%, OR 7.83, 95%CI 4.50 to 13.61; P<0.00001 through direct meta-analysis. In the network meta-analyses, no statistically significant differences in efficacy were found between these four TKIs with respect to all outcome measures. Trend analyses of rank probabilities revealed that the cumulative probabilities of being the most efficacious treatments were (ORR, 1-year PFS, 1-year OS, 2-year OS: erlotinib (51%, 38%, 14%, 19%, gefitinib (1%, 6%, 5%, 16%, afatinib (29%, 27%, 30%, 27% and icotinib (19%, 29%, NA, NA, respectively. However, afatinib and erlotinib showed significant severer rash and diarrhea compared with gefitinib and icotinib.The current study indicated that erlotinib, gefitinib, afatinib and icotinib shared equivalent efficacy but presented different efficacy-toxicity pattern for EGFR-mutated patients. Erlotinib and afatinib revealed

  11. Combination of EGFR-TKIs and chemotherapy as first-line therapy for advanced NSCLC: a meta-analysis.

    Science.gov (United States)

    OuYang, Pu-Yun; Su, Zhen; Mao, Yan-Ping; Deng, Wuguo; Xie, Fang-Yun

    2013-01-01

    The impact of combining epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) and chemotherapy as first-line therapy for patients with advanced non-small-cell lung cancer (NSCLC) remains controversial. Therefore, randomized trials that compared this combined regimen with chemotherapy or EGFR-TKIs monotherapy were included for this meta-analysis. We used published hazard ratios (HRs), if available, or derived treatment estimates from other survival data. Pooled estimates of treatment efficacy of the combined regimen in the entire unselected population and selected patients by EGFR-mutation status and smoking history were calculated. Eight trials eventually entered into this meta-analysis, including 4585 patients. Overall, the combined regimen significantly delayed disease progression (HR = 0.81, 95% CI 0.69-0.95, P = 0.01); subgroup analysis showed significantly higher progression free survival advantages in Asian patients (Pchemotherapy (P = 0.02). In selected patients by EGFR-mutation, both mutation positive (HR = 0.48, 95% CI 0.28-0.83, P = 0.009) and negative (HR = 0.84, 95% CI 0.72-0.98, P = 0.02) patients gained progression free survival benefit from the combined regimen, albeit the magnitude of benefit was marginally larger in mutation positive patients (P = 0.05). In selected patients by smoking history, never/light smokers achieved a great progression free survival benefit from the combined regimen (HR = 0.51, 95% CI 0.35-0.74, P = 0.0004). Unfortunately, the combined regimen had no significant impact on overall survival, irrespective of ethnicity, dose schedules or EGFR-mutation status. Severe anorexia (RR = 2.01, 95% CI 1.11-3.63; P = 0.02) and diarrhea (RR = 2.70, 95% CI 1.94-3.76; Pchemotherapy deserved to be considered in the future, although it is not approved for advanced NSCLC at the moment.

  12. Genetic variations of the A13/A14 repeat located within the EGFR 3′ untranslated region have no oncogenic effect in patients with colorectal cancer

    International Nuclear Information System (INIS)

    Sarafan-Vasseur, Nasrin; Latouche, Jean-Baptiste; Frebourg, Thierry; Sesboüé, Richard; Sefrioui, David; Tougeron, David; Lamy, Aude; Blanchard, France; Le Pessot, Florence; Di Fiore, Frédéric; Michel, Pierre; Bézieau, Stéphane

    2013-01-01

    The EGFR 3′ untranslated region (UTR) harbors a polyadenine repeat which is polymorphic (A13/A14) and undergoes somatic deletions in microsatellite instability (MSI) colorectal cancer (CRC). These mutations could be oncogenic in colorectal tissue since they were shown to result into increased EGFR mRNA stability in CRC cell lines. First, we determined in a case control study including 429 CRC patients corresponding to different groups selected or not on age of tumor onset and/or familial history and/or MSI, whether or not, the germline EGFR A13/A14 polymorphism constitutes a genetic risk factor for CRC; second, we investigated the frequency of somatic mutations of this repeat in 179 CRC and their impact on EGFR expression. No statistically significant difference in allelic frequencies of the EGFR polyA repeat polymorphism was observed between CRC patients and controls. Somatic mutations affecting the EGFR 3′UTR polyA tract were detected in 47/80 (58.8%) MSI CRC versus 0/99 microsatellite stable (MSS) tumors. Comparative analysis in 21 CRC samples of EGFR expression, between tumor and non malignant tissues, using two independent methods showed that somatic mutations of the EGFR polyA repeat did not result into an EGFR mRNA increase. Germline and somatic genetic variations occurring within the EGFR 3′ UTR polyA tract have no impact on CRC genetic risk and EGFR expression, respectively. Genotyping of the EGFR polyA tract has no clinical utility to identify patients with a high risk for CRC or patients who could benefit from anti-EGFR antibodies

  13. Targeted sequencing identifies genetic alterations that confer primary resistance to EGFR tyrosine kinase inhibitor (Korean Lung Cancer Consortium).

    Science.gov (United States)

    Lim, Sun Min; Kim, Hye Ryun; Cho, Eun Kyung; Min, Young Joo; Ahn, Jin Seok; Ahn, Myung-Ju; Park, Keunchil; Cho, Byoung Chul; Lee, Ji-Hyun; Jeong, Hye Cheol; Kim, Eun Kyung; Kim, Joo-Hang

    2016-06-14

    Non-small-cell lung cancer (NSCLC) patients with activating epidermal growth factor receptor (EGFR) mutations may exhibit primary resistance to EGFR tyrosine kinase inhibitor (TKI). We aimed to examine genomic alterations associated with de novo resistance to gefitinib in a prospective study of NSCLC patients. One-hundred and fifty two patients with activating EGFR mutations were included in this study and 136 patients' tumor sample were available for targeted sequencing of genomic alterations in 22 genes using the Colon and Lung Cancer panel (Ampliseq, Life Technologies). All 132 patients with EGFR mutation were treated with gefitinib for their treatment of advanced NSCLC. Twenty patients showed primary resistance to EGFR TKI, and were classified as non-responders. A total of 543 somatic single-nucleotide variants (498 missense, 13 nonsense) and 32 frameshift insertions/deletions, with a median of 3 mutations per sample. TP53 was most commonly mutated (47%) and mutations in SMAD4 was also common (19%), as well as DDR2 (16%), PIK3CA (15%), STK11 (14%), and BRAF (7%). Genomic mutations in the PI3K/Akt/mTOR pathway were commonly found in non-responders (45%) compared to responders (27%), and they had significantly shorter progression-free survival and overall survival compared to patients without mutations (2.1 vs. 12.8 months, P=0.04, 15.7 vs. not reached, PAkt/mTOR pathway were commonly identified in non-responders and may confer resistance to EGFR TKI. Screening lung adenocarcinoma patients with clinical cancer gene test may aid in selecting out those who show primary resistance to EGFR TKI (NCT01697163).

  14. Quantitative Tyrosine Phosphoproteomics of Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinase Inhibitor-treated Lung Adenocarcinoma Cells Reveals Potential Novel Biomarkers of Therapeutic Response.

    Science.gov (United States)

    Zhang, Xu; Maity, Tapan; Kashyap, Manoj K; Bansal, Mukesh; Venugopalan, Abhilash; Singh, Sahib; Awasthi, Shivangi; Marimuthu, Arivusudar; Charles Jacob, Harrys Kishore; Belkina, Natalya; Pitts, Stephanie; Cultraro, Constance M; Gao, Shaojian; Kirkali, Guldal; Biswas, Romi; Chaerkady, Raghothama; Califano, Andrea; Pandey, Akhilesh; Guha, Udayan

    2017-05-01

    Mutations in the Epidermal growth factor receptor (EGFR) kinase domain, such as the L858R missense mutation and deletions spanning the conserved sequence 747 LREA 750 , are sensitive to tyrosine kinase inhibitors (TKIs). The gatekeeper site residue mutation, T790M accounts for around 60% of acquired resistance to EGFR TKIs. The first generation EGFR TKIs, erlotinib and gefitinib, and the second generation inhibitor, afatinib are FDA approved for initial treatment of EGFR mutated lung adenocarcinoma. The predominant biomarker of EGFR TKI responsiveness is the presence of EGFR TKI-sensitizing mutations. However, 30-40% of patients with EGFR mutations exhibit primary resistance to these TKIs, underscoring the unmet need of identifying additional biomarkers of treatment response. Here, we sought to characterize the dynamics of tyrosine phosphorylation upon EGFR TKI treatment of mutant EGFR-driven human lung adenocarcinoma cell lines with varying sensitivity to EGFR TKIs, erlotinib and afatinib. We employed stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative mass spectrometry to identify and quantify tyrosine phosphorylated peptides. The proportion of tyrosine phosphorylated sites that had reduced phosphorylation upon erlotinib or afatinib treatment correlated with the degree of TKI-sensitivity. Afatinib, an irreversible EGFR TKI, more effectively inhibited tyrosine phosphorylation of a majority of the substrates. The phosphosites with phosphorylation SILAC ratios that correlated with the TKI-sensitivity of the cell lines include sites on kinases, such as EGFR-Y1197 and MAPK7-Y221, and adaptor proteins, such as SHC1-Y349/350, ERRFI1-Y394, GAB1-Y689, STAT5A-Y694, DLG3-Y705, and DAPP1-Y139, suggesting these are potential biomarkers of TKI sensitivity. DAPP1, is a novel target of mutant EGFR signaling and Y-139 is the major site of DAPP1 tyrosine phosphorylation. We also uncovered several off-target effects of these TKIs, such as MST1R-Y1238

  15. Multilayered proteomics reveals molecular switches dictating ligand-dependent EGFR trafficking

    DEFF Research Database (Denmark)

    Francavilla, Chiara; Papetti, Moreno; Rigbolt, Kristoffer T G

    2016-01-01

    , we devised an integrated multilayered proteomics approach (IMPA). We analyzed dynamic changes in the receptor interactome, ubiquitinome, phosphoproteome, and late proteome in response to both ligands in human cells by quantitative MS and identified 67 proteins regulated at multiple levels. We...... identified RAB7 phosphorylation and RCP recruitment to EGFR as switches for EGF and TGF-α outputs, controlling receptor trafficking, signaling duration, proliferation, and migration. By manipulating RCP levels or phosphorylation of RAB7 in EGFR-positive cancer cells, we were able to switch a TGF......-α-mediated response to an EGF-like response or vice versa as EGFR trafficking was rerouted. We propose IMPA as an approach to uncover fine-tuned regulatory mechanisms in cell signaling....

  16. Drug Resistance to EGFR Inhibitors in Lung Cancer | Office of Cancer Genomics

    Science.gov (United States)

    The discovery of mutations in epidermal growth factor receptor (EGFR) has dramatically changed the treatment of patients with non-small-cell lung cancer (NSCLC), the leading cause of cancer deaths worldwide. EGFR-targeted therapies show considerable promise, but drug resistance has become a substantial issue. We reviewed the literature to provide an overview of the drug resistance to EGFR tyrosine kinase inhibitors (TKIs) in NSCLC. The mechanisms causing primary, acquired and persistent drug resistance to TKIs vary.

  17. Mig6 Puts the Brakes on Mutant EGFR-Driven Lung Cancer | Center for Cancer Research

    Science.gov (United States)

    Lung cancer is the most common cause of cancer-related death worldwide. These cancers are often induced by mutations in the epidermal growth factor receptor (EGFR), resulting in constitutive activation of the protein’s tyrosine kinase domain. Lung cancers expressing these EGFR mutants are initially sensitive to tyrosine kinase inhibitors (TKIs), such as erlotinib, but often become resistant by developing compensatory mutations in EGFR or other growth-promoting pathways. To better understand how mutant EGFR initiates and maintains tumor growth in the hopes of identifying novel targets for drug development, Udayan Guha, M.D., Ph.D., of CCR’s Thoracic and Gastrointestinal Oncology Branch, and his colleagues examined the landscape of proteins phosphorylated in EGFR wild type and mutant cells. One protein hyper-phosphorylated in mutant EGFR cells was Mig6, a putative tumor suppressor.

  18. [Lung adenocarcinoma with concomitant EGFR mutation and ALK rearrangement].

    Science.gov (United States)

    Caliez, J; Monnet, I; Pujals, A; Rousseau-Bussac, G; Jabot, L; Boudjemaa, A; Leroy, K; Chouaid, C

    2017-05-01

    Among patients with non-small-cell lung cancer, coexistence of EGFR mutation and ALK rearrangement is rare. We describe the clinical features of two patients with this double anomaly. A 62-year-old Caucasian non-smoking woman was diagnosed with cT4N0M0 lung adenocarcinoma. Initial biopsy showed EGFR mutation and ALK rearrangement. She received cisplatin-gemcitabine, followed by 17 months of gemcitabine. Owing to progression, she received erlotinib for 14 months, then paclitaxel for 6 months and finally crizotinib. A partial response was achieved and maintained for 24 months. A 45-year-old Caucasian woman, light smoker, was diagnosed with cT2N3M0 lung adenocarcinoma. Only EGFR mutation was found on initial analysis. She underwent treatment with cisplatin-gemcitabine and thoracic radiotherapy. Progression occurred after 8 months and afatinbib was started. Eight months later, progression was observed with a neoplasic pleural effusion in which tumor cells expressing ALK rearrangement were found. A new FISH analysis was performed on the initial tumor but did not find this rearrangement. Despite a third line of crizotinib, the patient died one month later. The literature shows 45 other cases of these two abnormalities, observed either from the start or during follow-up. EGFR's TKI were almost always given before ALK's TKI. Therapeutic strategy needs to be clarified in cases of double alteration. With regard to the second patient, appearance of ALK rearrangement may constitute a resistance mechanism to EGFR's TKI. Copyright © 2016 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  19. Cellular and Tumor Radiosensitivity is Correlated to Epidermal Growth Factor Receptor Protein Expression Level in Tumors Without EGFR Amplification

    International Nuclear Information System (INIS)

    Kasten-Pisula, Ulla; Saker, Jarob; Eicheler, Wolfgang; Krause, Mechthild; Yaromina, Ala; Meyer-Staeckling, Soenke; Scherkl, Benjamin; Kriegs, Malte; Brandt, Burkhard; Grenman, Reidar; Petersen, Cordula; Baumann, Michael; Dikomey, Ekkehard

    2011-01-01

    Purpose: There is conflicting evidence for whether the expression of epidermal growth factor receptor in human tumors can be used as a marker of radioresponse. Therefore, this association was studied in a systematic manner using squamous cell carcinoma (SCC) cell lines grown as cell cultures and xenografts. Methods and Materials: The study was performed with 24 tumor cell lines of different tumor types, including 10 SCC lines, which were also investigated as xenografts on nude mice. Egfr gene dose and the length of CA-repeats in intron 1 were determined by polymerase chain reaction, protein expression in vitro by Western blot and in vivo by enzyme-linked immunosorbent assay, and radiosensitivity in vitro by colony formation. Data were correlated with previously published tumor control dose 50% data after fractionated irradiation of xenografts of the 10 SCC. Results: EGFR protein expression varies considerably, with most tumor cell lines showing moderate and only few showing pronounced upregulation. EGFR upregulation could only be attributed to massive gene amplification in the latter. In the case of little or no amplification, in vitro EGFR expression correlated with both cellular and tumor radioresponse. In vivo EGFR expression did not show this correlation. Conclusions: Local tumor control after the fractionated irradiation of tumors with little or no gene amplification seems to be dependent on in vitro EGFR via its effect on cellular radiosensitivity.

  20. Histogram analysis of ADC in rectal cancer: associations with different histopathological findings including expression of EGFR, Hif1-alpha, VEGF, p53, PD1, and KI 67. A preliminary study.

    Science.gov (United States)

    Meyer, Hans Jonas; Höhn, Annekathrin; Surov, Alexey

    2018-04-06

    Functional imaging modalities like Diffusion-weighted imaging are increasingly used to predict tumor behavior like cellularity and vascularity in different tumors. Histogram analysis is an emergent imaging analysis, in which every voxel is used to obtain a histogram and therefore statistically information about tumors can be provided. The purpose of this study was to elucidate possible associations between ADC histogram parameters and several immunhistochemical features in rectal cancer. Overall, 11 patients with histologically proven rectal cancer were included into the study. There were 2 (18.18%) females and 9 males with a mean age of 67.1 years. KI 67-index, expression of p53, EGFR, VEGF, and Hif1-alpha were semiautomatically estimated. The tumors were divided into PD1-positive and PD1-negative lesions. ADC histogram analysis was performed as a whole lesion measurement using an in-house matlab application. Spearman's correlation analysis revealed a strong correlation between EGFR expression and ADCmax (p=0.72, P=0.02). None of the vascular parameters (VEGF, Hif1-alpha) correlated with ADC parameters. Kurtosis and skewness correlated inversely with p53 expression (p=-0.64, P=0.03 and p=-0.81, P=0.002, respectively). ADCmedian and ADCmode correlated with Ki67 (p=-0.62, P=0.04 and p=-0.65, P=0.03, respectively). PD1-positive tumors showed statistically significant lower ADCmax values in comparison to PD1-negative tumors, 1.93 ± 0.36 vs 2.32 ± 0.47×10 -3 mm 2 /s, p=0.04. Several associations were identified between histogram parameter derived from ADC maps and EGFR, KI 67 and p53 expression in rectal cancer. Furthermore, ADCmax was different between PD1 positive and PD1 negative tumors indicating an important role of ADC parameters for possible future treatment prediction.

  1. Pyrosequencing, a method approved to detect the two major EGFR mutations for anti EGFR therapy in NSCLC

    Directory of Open Access Journals (Sweden)

    Richard Marie-Jeanne

    2011-05-01

    Full Text Available Abstract Background Epidermal Growth Factor Receptor (EGFR mutations, especially in-frame deletions in exon 19 (ΔLRE and a point mutation in exon 21 (L858R predict gefitinib sensitivity in patients with non-small cell lung cancer. Several methods are currently described for their detection but the gold standard for tissue samples remains direct DNA sequencing, which requires samples containing at least 50% of tumor cells. Methods We designed a pyrosequencing assay based on nested PCR for the characterization of theses mutations on formalin-fixed and paraffin-embedded tumor tissue. Results This method is highly specific and permits precise characterization of all the exon 19 deletions. Its sensitivity is higher than that of "BigDye terminator" sequencing and enabled detection of 3 additional mutations in the 58 NSCLC tested. The concordance between the two methods was very good (97.4%. In the prospective analysis of 213 samples, 7 (3.3% samples were not analyzed and EGFR mutations were detected in 18 (8.7% patients. However, we observed a deficit of mutation detection when the samples were very poor in tumor cells. Conclusions pyrosequencing is then a highly accurate method for detecting ΔLRE and L858R EGFR mutations in patients with NSCLC when the samples contain at least 20% of tumor cells.

  2. Substance-specific importance of EGFR for vascular smooth muscle cells motility in primary culture.

    Science.gov (United States)

    Schreier, Barbara; Schwerdt, Gerald; Heise, Christian; Bethmann, Daniel; Rabe, Sindy; Mildenberger, Sigrid; Gekle, Michael

    2016-07-01

    Besides their importance for the vascular tone, vascular smooth muscle cells (VSMC) also contribute to pathophysiological vessel alterations. Various G-protein coupled receptor ligands involved in vascular dysfunction and remodeling can transactivate the epidermal growth factor receptor (EGFR) of VSMC, yet the importance of EGFR transactivation for the VSMC phenotype is incompletely understood. The aims of this study were (i) to characterize further the importance of the VSMC-EGFR for proliferation, migration and marker gene expression for inflammation, fibrosis and reactive oxygen species (ROS) homeostasis and (ii) to test the hypothesis that vasoactive substances (endothelin-1, phenylephrine, thrombin, vasopressin and ATP) rely differentially on the EGFR with respect to the abovementioned phenotypic alterations. In primary, aortic VSMC from mice without conditional deletion of the EGFR, proliferation, migration, marker gene expression (inflammation, fibrosis and ROS homeostasis) and cell signaling (ERK 1/2, intracellular calcium) were analyzed. VSMC-EGFR loss reduced collective cell migration and single cell migration probability, while no difference between the genotypes in single cell velocity, chemotaxis or marker gene expression could be observed under control conditions. EGF promoted proliferation, collective cell migration, chemokinesis and chemotaxis and leads to a proinflammatory gene expression profile in wildtype but not in knockout VSMC. Comparing the impact of five vasoactive substances (all reported to transactivate EGFR and all leading to an EGFR dependent increase in ERK1/2 phosphorylation), we demonstrate that the importance of EGFR for their action is substance-dependent and most apparent for crowd migration but plays a minor role for gene expression regulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Risk of fatigue in cancer patients receiving anti-EGFR monoclonal antibodies: results from a systematic review and meta-analysis of randomized controlled trial.

    Science.gov (United States)

    Zhu, Jianhong; Zhao, Wenxia; Liang, Dan; Li, Guocheng; Qiu, Kaifeng; Wu, Junyan; Li, Jianfang

    2018-04-01

    To evaluate the association between fatigue and anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR MAbs), we conducted the first meta-analysis to access the incidence and risk of fatigue associated with anti-EGFR MAbs. Electronic databases were searched for randomized controlled trials (RCTs) published up to February 2017. Eligible studies were selected according to PRISMA statement. Incidence rates, risk ratio (RRs), and 95% confidence intervals (CIs) were calculated using fixed-effects or random-effects models. Outcomes of quality were summarized in accordance with the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) methodology. Thirty-five RCTs (including 15,622 patients) were included; median follow-up ranged from 8.1 to 71.4 months, and the fatigue events were recorded and graded according to the Common Toxicity Criteria for Adverse Events version 2.0 or 3.0 in most of the included trials. For patients receiving anti-EGFR MAbs, the overall incidence of all-grade and high-grade fatigue was 54.1% and 10.5%, respectively. Compared with control, anti-EGFR MAbs significantly increased the risk of all-grade fatigue (RR 1.10, 95% CI, 1.05-1.14, moderate-quality evidence) and high-grade fatigue (RR 1.31, 95% CI, 1.19-1.45, moderate-quality evidence). No significant differences among subgroup analyses (anti-EGFR MAbs, tumor type, and median follow-up) on high-grade fatigue were observed. No evidence of publication bias was observed. The present study suggested that anti-EGFR MAbs may increase the risk of fatigue in cancer patients.

  4. MACRO-PUBLIC RELATIONS: CRISIS COMMUNICATION IN THE AGE OF INTERNET

    Directory of Open Access Journals (Sweden)

    Zhongxuan Lin

    2013-12-01

    Full Text Available In order to study the crisis communication in the age of Internet, the study takes the battle between two Internet companies, Tencent and Qihoo, as a case study, but focuses more on their huge public audiences, which may be defined as a “macro-public” crowd. The study employs multiple research methods including survey, focus groups interviews and content analysis to explore their “macro-public relations” which may be driven by the spiral of silence and crowd psychology. This dynamic underground power is the reason that two companies employed similar public relations strategies in crisis communication but the results of the crisis were different. The study attempts to contribute to the knowledge base by defining and highlighting the power and function of “macro-public relations” for crisis communication in the age of Internet.

  5. 3A.05: HYPERTENSION AND RISK OF EVENTS ASSOCIATED TO REDUCED EGFR. THE ESCARVAL-RISK STUDY.

    Science.gov (United States)

    Tellez-Plaza, M; Orozco-Beltran, D; Gil-Guillen, V; Navarro-Pérez, J; Pallares, V; Valls, F; Fernandez, A; Martin-Moreno, J M; Sanchis, C; Dominguez-Lucas, A; Redon, J

    2015-06-01

    The objective of the present study was to evaluate the potential impact of hypertension in the increased CVD risk associated with CKD in a population with at least one main CV risk factor (CVRF), hypertension, dyslipidemia or diabetes.(Figure is included in full-text article.) : 54,620 men and women aged 30 years or older with at least one of main CVRF (hypertension, diabetes mellitus and/or dyslipidemia), who attended for routine health maintenance have been selected. Patients with a history of a previous CVD event were excluded. At the time of inclusion information about CVRF and their active treatments as well as smoking habit and biochemistry lab values were collected from the EHR. Estimated glomerular filtration rate (eGFR) was calculated using the CKD-EPI. Participants were followed-up for the first episode of hospitalization for myocardial infarction or stroke and all cause of death were collected. Interaction terms for dichotomous eGFR (>=60, dislipidemia 86%, diabetes in 35.5% and obesity in 41,8%. A total of 7884 (14.4%) patients had eGFR below 60 ml/min/1.73 m2 and among them 1807 (3.3%) 45 ml/min/1.73 m2 or lower. During a time follow-up of 3.2 years, patients years exposure, 960 death were recorded. A significant increment in the risk for total mortality was observed in subjects with eGFR 45 ml/min/1.73 m2 or below adjusted for multiple potential confounders (HR 1.83, 1.28-2.62; CI 95th). In normotensive subjects the risk did not increase below 60 ml/min/1.73 m2 in contrast with the increment in hypertensives. (Figure 1 on the previous page). eGFR is a prevalent condition in patients with the main CV risk factors. eGFR below <45 ml/min/1.73 m2 increases mortality risk. Hypertension by itself had an important role in the risk of mortality in patients with low eGFR on top of other CV risk factors.

  6. Inhibition of EGFR nuclear shuttling decreases irradiation resistance in HeLa cells.

    Science.gov (United States)

    Wei, Hong; Zhu, Zijie; Lu, Longtao

    2017-01-01

    Cervical cancer is a leading cause of mortality in women worldwide. The resistance to irradiation at the advanced stage is the main reason for the poor prognosis and high mortality. This work aims to elucidate the molecular mechanism underlying the radio-resistance. In this study, we determined the pEGFR-T654 and pDNA-PK-T2609 expression level changes in irradiated HeLa cells treated with T654 peptide, a nuclear localization signal (NLS) inhibitor, to inhibit EGFR nuclear transport. Cell viability, cell cycle and migratory capacity were analyzed. Xenograft animal model was used to evaluate the effect of EGFR nuclear transport inhibition on the tumor growth in vivo. The enhanced translocation of nuclear EGFR in the irradiated HeLa cells correlated with the increasing level of pEGFR-T654 and pDNA-PK-T2609. Inhibition of EGFR nuclear translocation by NLS peptide inhibitor attenuated DNA damage repair in the irradiated HeLa cells, decreased cell viability and promoted cell death through arrest at G0 phase. NLS peptide inhibitor impaired the migratory capacity of irradiated HeLa cells, and negatively affected tumorigenesis in xenograft mice. This work puts forward a potential molecular mechanism of the irradiation resistance in cervical cancer cells, providing a promising direction towards an efficient therapy of cervical cancer.

  7. Anti-tumor activity of high-dose EGFR tyrosine kinase inhibitor and sequential docetaxel in wild type EGFR non-small cell lung cancer cell nude mouse xenografts

    Science.gov (United States)

    Tang, Ning; Zhang, Qianqian; Fang, Shu; Han, Xiao; Wang, Zhehai

    2017-01-01

    Treatment of non-small-cell lung cancer (NSCLC) with wild-type epidermal growth factor receptor (EGFR) is still a challenge. This study explored antitumor activity of high-dose icotinib (an EGFR tyrosine kinase inhibitor) plus sequential docetaxel against wild-type EGFR NSCLC cells-generated nude mouse xenografts. Nude mice were subcutaneously injected with wild-type EGFR NSCLC A549 cells and divided into different groups for 3-week treatment. Tumor xenograft volumes were monitored and recorded, and at the end of experiments, tumor xenografts were removed for Western blot and immunohistochemical analyses. Compared to control groups (negative control, regular-dose icotinib [IcoR], high-dose icotinib [IcoH], and docetaxel [DTX]) and regular icotinib dose (60 mg/kg) with docetaxel, treatment of mice with a high-dose (1200 mg/kg) of icotinib plus sequential docetaxel for 3 weeks (IcoH-DTX) had an additive effect on suppression of tumor xenograft size and volume (P Icotinib-containing treatments markedly reduced phosphorylation of EGFR, mitogen activated protein kinase (MAPK), and protein kinase B (Akt), but only the high-dose icotinib-containing treatments showed an additive effect on CD34 inhibition (P icotinib plus docetaxel had a similar effect on mouse weight loss (a common way to measure adverse reactions in mice), compared to the other treatment combinations. The study indicate that the high dose of icotinib plus sequential docetaxel (IcoH-DTX) have an additive effect on suppressing the growth of wild-type EGFR NSCLC cell nude mouse xenografts, possibly through microvessel density reduction. Future clinical trials are needed to confirm the findings of this study. PMID:27852073

  8. Erkitinib, a novel EGFR tyrosine kinase inhibitor screened using a ProteoChip system from a phytochemical library

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eung-Yoon; Choi, Young-Jin [Biochip Research Center, Hoseo University, Asan 336-795 (Korea, Republic of); Innopharmascreen, Inc., Asan 336-795 (Korea, Republic of); Park, Chan-Won [Biochip Research Center, Hoseo University, Asan 336-795 (Korea, Republic of); Dept. of Biological Science, Hoseo University, Asan 336-795 (Korea, Republic of); Kang, In-Cheol, E-mail: ickang@hoseo.edu [Biochip Research Center, Hoseo University, Asan 336-795 (Korea, Republic of); Dept. of Biological Science, Hoseo University, Asan 336-795 (Korea, Republic of); Innopharmascreen, Inc., Asan 336-795 (Korea, Republic of)

    2009-11-20

    Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer. Therefore PTK inhibitors are currently under intensive investigation as potential drug candidates. Herein, we report on a ProteoChip-based screening of an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, Erkitinibs, from phytochemical libraries. PLC-{gamma}-1 was used as a substrate immobilized on a ProteoChip and incubated with an EGFR kinase to phosphorylate tyrosine residues of the substrate, followed by a fluorescence detection of the substrate recognized by a phospho-specific monoclonal antibody. Erkitinibs inhibited HeLa cell proliferation in a dose-dependent manner. In conclusion, these data suggest that Erkitinibs can be a specific inhibitor of an EGFR kinase and can be further developed as a potent anti-tumor agent.

  9. Erkitinib, a novel EGFR tyrosine kinase inhibitor screened using a ProteoChip system from a phytochemical library

    International Nuclear Information System (INIS)

    Kim, Eung-Yoon; Choi, Young-Jin; Park, Chan-Won; Kang, In-Cheol

    2009-01-01

    Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer. Therefore PTK inhibitors are currently under intensive investigation as potential drug candidates. Herein, we report on a ProteoChip-based screening of an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, Erkitinibs, from phytochemical libraries. PLC-γ-1 was used as a substrate immobilized on a ProteoChip and incubated with an EGFR kinase to phosphorylate tyrosine residues of the substrate, followed by a fluorescence detection of the substrate recognized by a phospho-specific monoclonal antibody. Erkitinibs inhibited HeLa cell proliferation in a dose-dependent manner. In conclusion, these data suggest that Erkitinibs can be a specific inhibitor of an EGFR kinase and can be further developed as a potent anti-tumor agent.

  10. De novo activating epidermal growth factor mutations (EGFR) in small-cell lung cancer.

    Science.gov (United States)

    Thai, Alesha; Chia, Puey L; Russell, Prudence A; Do, Hongdo; Dobrovic, Alex; Mitchell, Paul; John, Thomas

    2017-09-01

    In Australia, mutations in epidermal growth factor mutations (EGFR) occur in 15% of patients diagnosed with non-small-cell lung cancer and are found with higher frequency in female, non-smokers of Asian ethnicity. Activating mutations in the EGFR gene are rarely described in SCLC. We present two cases of de novo EGFR mutations in patients with SCLC detected in tissue and in plasma cell free DNA, both of whom were of Asian ethnicity and never-smokers. These two cases add to the growing body of evidence suggesting that screening for EGFR mutations in SCLC should be considered in patients with specific clinical features. © 2017 Royal Australasian College of Physicians.

  11. Mucinous Colorectal Adenocarcinoma: Influence of EGFR and E-Cadherin Expression on Clinicopathologic Features and Prognosis.

    Science.gov (United States)

    Foda, Abd AlRahman M; AbdelAziz, Azza; El-Hawary, Amira K; Hosni, Ali; Zalata, Khalid R; Gado, Asmaa I

    2015-08-01

    Previous studies have shown conflicting results on epidermal growth factor receptor (EGFR) and E-cadherin expression in colorectal carcinoma and their prognostic significance. To the best of our knowledge, this study is the first to investigate EGFR and E-cadherin expression, interrelation and relation to clinicopathologic, histologic parameters, and survival in rare colorectal mucinous adenocarcinoma (MA). In this study, we studied tumor tissue specimens from 150 patients with colorectal MA and nonmucinous adenocarcinoma (NMA). High-density manual tissue microarrays were constructed using modified mechanical pencil tips technique, and immunohistochemistry for EGFR and E-cadherin was performed. All relations were analyzed using established statistical methodologies. NMA expressed EGFR and E-cadherin in significantly higher rates with significant heterogenous pattern than MA. EGFR and E-cadherin positivity rates were significantly interrelated in both NMA and MA groups. In the NMA group, high EGFR expression was associated with old age, male sex, multiplicity of tumors, lack of mucinous component, and association with schistosomiasis. However, in the MA group, high EGFR expression was associated only with old age and MA subtype rather than signet ring carcinoma subtype. Conversely, high E-cadherin expression in MA cases was associated with old age, fungating tumor configuration, MA subtype, and negative intratumoral lymphocytic response. However, in the NMA cases, none of these factors was statistically significant. In a univariate analysis, neither EGFR nor E-cadherin expression showed a significant impact on disease-free or overall survival. Targeted therapy against EGFR and E-cadherin may not be useful in patients with MA. Neither EGFR nor E-cadherin is an independent prognostic factor in NMA or MA.

  12. Acquired MET expression confers resistance to EGFR inhibition in a mouse model of glioblastoma multiforme.

    Science.gov (United States)

    Jun, H J; Acquaviva, J; Chi, D; Lessard, J; Zhu, H; Woolfenden, S; Bronson, R T; Pfannl, R; White, F; Housman, D E; Iyer, L; Whittaker, C A; Boskovitz, A; Raval, A; Charest, A

    2012-06-21

    Glioblastoma multiforme (GBM) is an aggressive brain tumor for which there is no cure. Overexpression of wild-type epidermal growth factor receptor (EGFR) and loss of the tumor suppressor genes Ink4a/Arf and PTEN are salient features of this deadly cancer. Surprisingly, targeted inhibition of EGFR has been clinically disappointing, demonstrating an innate ability for GBM to develop resistance. Efforts at modeling GBM in mice using wild-type EGFR have proven unsuccessful to date, hampering endeavors at understanding molecular mechanisms of therapeutic resistance. Here, we describe a unique genetically engineered mouse model of EGFR-driven gliomagenesis that uses a somatic conditional overexpression and chronic activation of wild-type EGFR in cooperation with deletions in the Ink4a/Arf and PTEN genes in adult brains. Using this model, we establish that chronic activation of wild-type EGFR with a ligand is necessary for generating tumors with histopathological and molecular characteristics of GBMs. We show that these GBMs are resistant to EGFR kinase inhibition and we define this resistance molecularly. Inhibition of EGFR kinase activity using tyrosine kinase inhibitors in GBM tumor cells generates a cytostatic response characterized by a cell cycle arrest, which is accompanied by a substantial change in global gene expression levels. We demonstrate that an important component of this pattern is the transcriptional activation of the MET receptor tyrosine kinase and that pharmacological inhibition of MET overcomes the resistance to EGFR inhibition in these cells. These findings provide important new insights into mechanisms of resistance to EGFR inhibition and suggest that inhibition of multiple targets will be necessary to provide therapeutic benefit for GBM patients.

  13. Diverse effects of combined radiotherapy and EGFR inhibition with antibodies or TK inhibitors on local tumour control and correlation with EGFR gene expression

    International Nuclear Information System (INIS)

    Gurtner, Kristin; Deuse, Yvonne; Buetof, Rebecca; Schaal, Katja; Eicheler, Wolfgang; Oertel, Reinhard; Grenman, Reidar; Thames, Howard; Yaromina, Ala; Baumann, Michael; Krause, Mechthild

    2011-01-01

    Purpose: To compare functional effects of combined irradiation and EGFR inhibition in different HNSCC tumour models in vivo with the results of molecular evaluations, aiming to set a basis for the development of potential biomarkers for local tumour control. Material and methods: In five HNSCC tumour models, all wild-type for EGFR and KRAS, the effect of radiotherapy alone (30 fractions/6 weeks) and with simultaneous cetuximab or erlotinib treatment on local tumour control were evaluated and compared with molecular data on western blot, immunohistochemistry and fluorescence-in situ-hybridisation (FISH). Results: Erlotinib and cetuximab alone significantly prolonged tumour growth time in 4/5 tumour models. Combined irradiation and cetuximab treatment significantly improved local tumour control in 3/5 tumour models, whereas erlotinib did not alter local tumour control in any of the tumour models. The amount of the cetuximab-effect on local tumour control significantly correlated with the EGFR/CEP-7 ratios obtained by FISH. Conclusion: Both drugs prolonged growth time in most tumour models, but only application of cetuximab during irradiation significantly improved local tumour control in 3/5 tumour models. The significant correlation of this curative effect with the genetic EGFR expression measured by FISH will be further validated in preclinical and clinical studies.

  14. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer.

    Science.gov (United States)

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; Castro Junior, Gilberto de

    2015-01-01

    Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC.

  15. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer *

    Science.gov (United States)

    Lopes, Gabriel Lima; Vattimo, Edoardo Filippo de Queiroz; de Castro, Gilberto

    2015-01-01

    Abstract Lung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21), first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC) patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs). Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC. PMID:26398757

  16. Uncommon EGFR mutations in cytological specimens of 1,874 newly diagnosed Indonesian lung cancer patients

    Science.gov (United States)

    Syahruddin, Elisna; Wulandari, Laksmi; Sri Muktiati, Nunuk; Rima, Ana; Soeroso, Noni; Ermayanti, Sabrina; Levi, Michael; Hidajat, Heriawaty; Widjajahakim, Grace; Utomo, Ahmad Rusdan Handoyo

    2018-01-01

    Purpose We aimed to evaluate the distribution of individual epidermal growth factor receptor (EGFR) mutation subtypes found in routine cytological specimens. Patients and methods A retrospective audit was performed on EGFR testing results of 1,874 consecutive cytological samples of newly diagnosed or treatment-naïve Indonesian lung cancer patients (years 2015–2016). Testing was performed by ISO15189 accredited central laboratory. Results Overall test failure rate was 5.1%, with the highest failure (7.1%) observed in pleural effusion and lowest (1.6%) in needle aspiration samples. EGFR mutation frequency was 44.4%. Tyrosine kinase inhibitor (TKI)-sensitive common EGFR mutations (ins/dels exon 19, L858R) and uncommon mutations (G719X, T790M, L861Q) contributed 57.1% and 29%, respectively. Approximately 13.9% of mutation-positive patients carried a mixture of common and uncommon mutations. Women had higher EGFR mutation rate (52.9%) vs men (39.1%; pcytological techniques yielded similar success rate to detect EGFR mutations. Uncommon EGFR mutations were frequent events in Indonesian lung cancer patients. PMID:29615847

  17. Writing Excel Macros with VBA

    CERN Document Server

    Roman, Steven

    2008-01-01

    To achieve the maximum control and flexibility from Microsoft® Excel often requires careful custom programming using the VBA (Visual Basic for Applications) language. Writing Excel Macros with VBA, 2nd Edition offers a solid introduction to writing VBA macros and programs, and will show you how to get more power at the programming level: focusing on programming languages, the Visual Basic Editor, handling code, and the Excel object model.

  18. Elucidation of the critical epitope of an anti-EGFR monoclonal antibody EMab-134.

    Science.gov (United States)

    Kaneko, Mika K; Yamada, Shinji; Itai, Shunsuke; Chang, Yao-Wen; Nakamura, Takuro; Yanaka, Miyuki; Kato, Yukinari

    2018-07-01

    The epidermal growth factor receptor (EGFR) is a type-1 transmembrane receptor tyrosine kinase, which activates the downstream signaling cascades in many tumors, such as oral and lung cancers. We previously developed EMab-134, a novel anti-EGFR monoclonal antibody (mAb), which reacts with endogenous EGFR-expressing cancer cell lines and normal cells independent of glycosylation in Western blotting, flow cytometry, and immunohistochemical analysis. EMab-134 showed very high sensitivity (94.7%) to oral squamous cell carcinomas in immunohistochemical analysis. In this study, we performed enzyme-linked immunosorbent assay (ELISA), flow cytometry, and immunohistochemical analysis to determine the epitope of EMab-134. A blocking peptide (375-394 amino acids of EGFR) neutralized the EMab-134 reaction against oral cancer cells in flow cytometry and immunohistochemistry. The minimum epitope of EMab-134 was found to be the 377- RGDSFTHTPP -386 sequence. Our findings can be applied for the production of more functional anti-EGFR mAbs that in turn can be used for antitumor treatments.

  19. Frequent activation of EGFR in advanced chordomas

    Directory of Open Access Journals (Sweden)

    Dewaele Barbara

    2011-07-01

    Full Text Available Abstract Background Chordomas are rare neoplasms, arising from notochordal remnants in the midline skeletal axis, for which the current treatment is limited to surgery and radiotherapy. Recent reports suggest that receptor tyrosine kinases (RTK might be essential for the survival or proliferation of chordoma cells, providing a rationale for RTK targeted therapy. Nevertheless, the reported data are conflicting, most likely due to the assorted tumor specimens used for the studies and the heterogeneous methodological approaches. In the present study, we performed a comprehensive characterization of this rare entity using a wide range of assays in search for relevant therapeutic targets. Methods Histopathological features of 42 chordoma specimens, 21 primary and 21 advanced, were assessed by immunohistochemistry and fluorescent in situ hybridization (FISH using PDGFRB, CSF1R, and EGFR probes. Twenty-two of these cases, for which frozen material was available (nine primary and 13 advanced tumors, were selectively analyzed using the whole-genome 4.3 K TK-CGH-array, phospho-kinase antibody array or Western immunoblotting. The study was supplemented by direct sequencing of KIT, PDGFRB, CSF1R and EGFR. Results We demonstrated that EGFR is frequently and the most significantly activated RTK in chordomas. Furthermore, concurrent to EGFR activation, the tumors commonly reveal co-activation of alternative RTK. The consistent activation of AKT, the frequent loss of the tumor suppressor PTEN allele, the recurrent activation of upstream RTK and of downstream effectors like p70S6K and mTOR, all indicate the PI3K/AKT pathway as an important mediator of transformation in chordomas. Conclusions Given the complexity of the signaling in chordomas, combined treatment regimens targeting multiple RTK and downstream effectors are likely to be the most effective in these tumors. Personalized therapy with careful selection of the patients, based on the molecular profile of

  20. Identification of the zinc finger 216 (ZNF216) in human carcinoma cells: a potential regulator of EGFR activity

    Science.gov (United States)

    Mincione, Gabriella; Di Marcantonio, Maria Carmela; Tarantelli, Chiara; Savino, Luca; Ponti, Donatella; Marchisio, Marco; Lanuti, Paola; Sancilio, Silvia; Calogero, Antonella; Di Pietro, Roberta; Muraro, Raffaella

    2016-01-01

    Epidermal Growth Factor Receptor (EGFR), a member of the ErbB family of receptor tyrosine kinase (RTK) proteins, is aberrantly expressed or deregulated in tumors and plays pivotal roles in cancer onset and metastatic progression. ZNF216 gene has been identified as one of Immediate Early Genes (IEGs) induced by RTKs. Overexpression of ZNF216 protein sensitizes 293 cell line to TNF-α induced apoptosis. However, ZNF216 overexpression has been reported in medulloblastomas and metastatic nasopharyngeal carcinomas. Thus, the role of this protein is still not clearly understood. In this study, the inverse correlation between EGFR and ZNF216 expression was confirmed in various human cancer cell lines differently expressing EGFR. EGF treatment of NIH3T3 cells overexpressing both EGFR and ZNF216 (NIH3T3-EGFR/ZNF216), induced a long lasting activation of EGFR in the cytosolic fraction and an accumulation of phosphorylated EGFR (pEGFR) more in the nuclear than in the cytosolic fraction compared to NIH3T3-EGFR cells. Moreover, EGF was able to stimulate an increased expression of ZNF216 in the cytosolic compartment and its nuclear translocation in a time-dependent manner in NIH3T3-EGFR/ZNF216. A similar trend was observed in A431 cells endogenously expressing the EGFR and transfected with Znf216. The increased levels of pEGFR and ZNF216 in the nuclear fraction of NIH3T3-EGFR/ZNF216 cells were paralleled by increased levels of phospho-MAPK and phospho-Akt. Surprisingly, EGF treatment of NIH3T3-EGFR/ZNF216 cells induced a significant increase of apoptosis thus indicating that ZNF216 could sensitize cells to EGF-induced apoptosis and suggesting that it may be involved in the regulation and effects of EGFR signaling. PMID:27732953

  1. A bi-paratopic anti-EGFR nanobody efficiently inhibits solid tumour growth

    Science.gov (United States)

    Roovers, Rob C.; Vosjan, Maria J.W.D.; Laeremans, Toon; el Khoulati, Rachid; de Bruin, Renée C.G.; Ferguson, Kathryn M.; Verkleij, Arie J.; van Dongen, Guus A.M.S.; van Bergen en Henegouwen, Paul M. P.

    2014-01-01

    The epidermal growth factor receptor (EGFR) has been shown to be a valid cancer target for antibody-based therapy. At present, several anti-EGFR monoclonal antibodies (mAbs) have been successfully used, among which cetuximab and matuzumab. X-ray crystallography data show that these antibodies bind to different epitopes on the ecto-domain of EGFR, providing a rationale for the combined use of these two antibody specificities. We have previously reported on the successful isolation of antagonistic anti-EGFR nanobodies. In the present study, we aimed to improve on these molecules by combining nanobodies with specificities similar to both cetuximab and matuzumab into a single bi-paratopic molecule. Carefully designed phage nanobody selections resulted in two sets of nanobodies that specifically blocked the binding of either matuzumab or of cetuximab to EGFR and that did not compete for each others binding. A combination of nanobodies from both epitope groups into the bi-paratopic nanobody CONAN-1 was shown to block EGFR activation more efficiently than monovalent or bivalent (monospecific) nanobodies. In addition, this bi-paratopic nanobody potently inhibited EGF-dependent cell proliferation. Importantly, in an in vivo model of athymic mice bearing A431 xenografts, CONAN-1 inhibited tumour outgrowth with an almost similar potency as the whole mAb cetuximab, despite the fact that CONAN-1 is devoid of an Fc portion that could mediate immune effector functions. Compared to therapy using bivalent, mono-specific nanobodies, CONAN-1 was clearly more potent in tumour growth inhibition. These results show that the rational design of bi-paratopic nanobody-based anti-cancer therapeutics may yield potent lead molecules for further development. PMID:21520037

  2. Identifying activating mutations in the EGFR gene: prognostic and therapeutic implications in non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Gabriel Lima Lopes

    2015-08-01

    Full Text Available AbstractLung cancer is the leading cause of cancer-related deaths worldwide. Promising new therapies have recently emerged from the development of molecular targeted drugs; particularly promising are those blocking the signal transduction machinery of cancer cells. One of the most widely studied cell signaling pathways is that of EGFR, which leads to uncontrolled cell proliferation, increased cell angiogenesis, and greater cell invasiveness. Activating mutations in the EGFR gene (deletions in exon 19 and mutation L858R in exon 21, first described in 2004, have been detected in approximately 10% of all non-squamous non-small cell lung cancer (NSCLC patients in Western countries and are the most important predictors of a response to EGFR tyrosine-kinase inhibitors (EGFR-TKIs. Studies of the EGFR-TKIs gefitinib, erlotinib, and afatinib, in comparison with platinum-based regimens, as first-line treatments in chemotherapy-naïve patients have shown that the EGFR-TKIs produce gains in progression-free survival and overall response rates, although only in patients whose tumors harbor activating mutations in the EGFR gene. Clinical trials have also shown EGFR-TKIs to be effective as second- and third-line therapies in advanced NSCLC. Here, we review the main aspects of EGFR pathway activation in NSCLC, underscore the importance of correctly identifying activating mutations in the EGFR gene, and discuss the main outcomes of EGFR-TKI treatment in NSCLC.

  3. HER2 induced EMT and tumorigenicity in breast epithelial progenitor cells is inhibited by coexpression of EGFR.

    Science.gov (United States)

    Ingthorsson, S; Andersen, K; Hilmarsdottir, B; Maelandsmo, G M; Magnusson, M K; Gudjonsson, T

    2016-08-11

    The members of the epidermal growth factor receptor (EGFR) kinase family are important players in breast morphogenesis and cancer. EGFR2/HER2 and EGFR expression have a prognostic value in certain subtypes of breast cancer such as HER2-amplified, basal-like and luminal type B. Many clinically approved small molecular inhibitors and monoclonal antibodies have been designed to target HER2, EGFR or both. There is, however, still limited knowledge on how the two receptors are expressed in normal breast epithelium, what effects they have on cellular differentiation and how they participate in neoplastic transformation. D492 is a breast epithelial cell line with stem cell properties that can undergo epithelial to mesenchyme transition (EMT), generate luminal- and myoepithelial cells and form complex branching structures in three-dimensional (3D) culture. Here, we show that overexpression of HER2 in D492 (D492(HER2)) resulted in EMT, loss of contact growth inhibition and increased oncogenic potential in vivo. HER2 overexpression, furthermore, inhibited endogenous EGFR expression. Re-introducing EGFR in D492(HER2) (D492(HER2/EGFR)) partially reversed the mesenchymal state of the cells, as an epithelial phenotype reappeared both in 3D cultures and in vivo. The D492(HER2/EGFR) xenografts grow slower than the D492(HER2) tumors, while overexpression of EGFR alone (D492(EGFR)) was not oncogenic in vivo. Consistent with the EGFR-mediated epithelial phenotype, overexpression of EGFR drove the cells toward a myoepithelial phenotype in 3D culture. The effect of two clinically approved anti-HER2 and EGFR therapies, trastuzumab and cetuximab, was tested alone and in combination on D492(HER2) xenografts. While trastuzumab had a growth inhibitory effect compared with untreated control, the effect of cetuximab was limited. When administered in combination, the growth inhibitory effect of trastuzumab was less pronounced. Collectively, our data indicate that in HER2-overexpressing D492

  4. MAXIMIZATION OF DNA DAMAGE TO MGMT(+ EGFR(+ GBM CELLS USING OPTIMAL COMBINATION OF TEMOZOLOMIDE-ANTI EGFR MONOCLONAL ANTIBODY NIMOTUZUMAB

    Directory of Open Access Journals (Sweden)

    M. A. M. Inggas

    2015-09-01

    Full Text Available Background: Glioblastoma multiforme (GBM is the most aggressive primary brain tumor in adultswith dismal prognosis due to the unavailability of an effective therapy. Up to now, there had been no definitive studies published on EGFR inhibition therapy as a chemosensitizer for GBM therapy using Temozolomide (TMZ. This study aims to reveal the most effective method and timing to administer TMZ-anti EGFR targeted therapy which causes maximal DNA damage on GBM cells.Methods: Various regimens of anti EGFR monoclonal antibody Nimotuzumab (NMZ was administered in different combinations with TMZ, performed on U87MG MGMT(+ EGFR(+ cells. The effectiveness of the combinations were evaluated by measuring yH2AX levels which reflects the degree of DNA damage. One-way Anova and LSD tests were performed to determine the effects of each treatment with p<0.05. Results and discussion: the mean SD of yH2AX of each treatment was: 11,90±1,25 for the control group; 29.33±1.91 for NMZ alone; 28.13±1.58 for TMZ alone; 41.53±3.51 for concurrent use; 35.67 ±2.65 for NMZ after 24 hours TMZ; 31.87±2.94 for NMZ after 48 hours TMZ; 39.57±4.2 for TMZ after 24 hours NMZ; and 35.93 ±3.56 for TMZ after 48 hours NMZ. The administration of TMZ concurrent with or after 24 hours NMZ gives the highest amount of DNA damage to GBM cells. Conclusion: The administration of Nimotuzumab targeted therapy up to 24 hours before Temozolomide chemotherapy has been proven to be effective in maximizing the amount of DNA damage done to GBM cells in vitro. 

  5. Predictive value of EGFR overexpression and gene amplification on icotinib efficacy in patients with advanced esophageal squamous cell carcinoma.

    Science.gov (United States)

    Wang, Xi; Niu, Haitao; Fan, Qingxia; Lu, Ping; Ma, Changwu; Liu, Wei; Liu, Ying; Li, Weiwei; Hu, Shaoxuan; Ling, Yun; Guo, Lei; Ying, Jianming; Huang, Jing

    2016-04-26

    This study aimed to search for a molecular marker for targeted epithelial growth factor receptor (EGFR) inhibitor Icotinib by analyzing protein expression and amplification of EGFR proto-oncogene in esophageal squamous cell carcinoma (ESCC) patients.Immunohistochemistry and fluorescence in situ hybridization (FISH) was used to assess EGFR expression and gene amplification status in 193 patients with ESCC. We also examined the association between EGFR overexpression and the efficacy of a novel EGFR TKI, icotinib, in 62 ESCC patients.Of the 193 patients, 95 (49.2%) patients showed EGFR overexpression (3+), and 47(24.4%) patients harbored EGFR FISH positivity. EGFR overexpression was significantly correlated with clinical stage and lymph node metastasis (picotinib, the response rate was 17.6% for patients with high EGFR-expressing tumors, which was markedly higher than the rate (0%) for patients with low to moderate EGFR-expressing tumors (p=0.341). Furthermore, all cases responded to icotinib showed EGFR overexpression.In conclusion, our study suggests that EGFR overexpression might potentially be used in predicting the efficacy in patients treated with Icotinib. These data have implications for both clinical trial design and therapeutic strategies.

  6. Activation of a Neospora caninum EGFR-Like Kinase Facilitates Intracellular Parasite Proliferation

    Directory of Open Access Journals (Sweden)

    Xiaoxia Jin

    2017-10-01

    Full Text Available The Apicomplexan parasite Neospora caninum, an obligate intracellular protozoan, causes serious diseases in a number of mammalian species, especially in cattle. Infection with N. caninum is associated with abortions in both dairy and beef cattle worldwide which have a major economic impact on the cattle industry. However, the mechanism by which N. caninum proliferates within host cells is poorly understood. Epidermal growth factor receptor (EGFR is a protein kinase ubiquitously expressed, present on cell surfaces in numerous species, which has been confirmed to be essential in signal transduction involved in cell growth, proliferation, survival, and many other intracellular processes. However, the presence of EGFR in N. caninum and its role in N. caninum proliferation remain unclear. In the present study, we identified a putative EGFR-like kinase in N. caninum, which could be activated in tachyzoites by infection or treatment with rNcMIC3 [containing four epidermal growth factor (EGF domains] or human EGF. Blockade of EGFR-like in tachyzoites by AG1478 significantly reduced parasite proliferation in host cells. Our data suggested that the activation of tachyzoite EGFR-like might facilitate the intracellular proliferation of N. caninum.

  7. The phosphatase inhibitor menadione (vitamin K3) protects cells from EGFR inhibition by erlotinib and cetuximab.

    Science.gov (United States)

    Perez-Soler, Roman; Zou, Yiyu; Li, Tianhong; Ling, Yi He

    2011-11-01

    Skin toxicity is the main side effect of epidermal growth factor receptor (EGFR) inhibitors, often leading to dose reduction or discontinuation. We hypothesized that phosphatase inhibition in the skin keratinocytes may prevent receptor dephosphorylation caused by EGFR inhibitors and be used as a new potential strategy for the prevention or treatment of this side effect. Menadione (Vitamin K3) was used as the prototype compound to test our hypothesis. HaCat human skin keratinocyte cells and A431 human squamous carcinoma cells were used. EGFR inhibition was measured by Western blotting and immunofluorescence. Phosphatase inhibition and reactive oxygen species (ROS) generation were measured by standard ELISA and fluorescence assays. Menadione caused significant and reversible EGFR activation in a dose-dependent manner starting at nontoxic concentrations. EGFR activation by menadione was associated with reversible protein tyrosine phosphatase inhibition, which seemed to be mediated by ROS generation as exposure to antioxidants prevented both menadione-induced ROS generation and phosphatase inhibition. Short-term coincubation of cells with nontoxic concentrations of menadione and the EGFR inhibitors erlotinib or cetuximab prevented EGFR dephosphorylation. Seventy-two-hour coincubation of cells with the highest nontoxic concentration of menadione and erlotinib provided for a fourfold cell growth inhibitory protection in HaCat human keratinocyte cells. Menadione at nontoxic concentrations causes EGFR activation and prevents EGFR dephosphorylation by erlotinib and cetuximab. This effect seems to be mediated by ROS generation and secondary phosphatase inhibition. Mild oxidative stress in skin keratinocytes by topical menadione may protect the skin from the toxicity secondary to EGFR inhibitors without causing cytotoxicity. ©2011 AACR

  8. Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma.

    Science.gov (United States)

    Inda, Maria-del-Mar; Bonavia, Rudy; Mukasa, Akitake; Narita, Yoshitaka; Sah, Dinah W Y; Vandenberg, Scott; Brennan, Cameron; Johns, Terrance G; Bachoo, Robert; Hadwiger, Philipp; Tan, Pamela; Depinho, Ronald A; Cavenee, Webster; Furnari, Frank

    2010-08-15

    Human solid tumors frequently have pronounced heterogeneity of both neoplastic and normal cells on the histological, genetic, and gene expression levels. While current efforts are focused on understanding heterotypic interactions between tumor cells and surrounding normal cells, much less is known about the interactions between and among heterogeneous tumor cells within a neoplasm. In glioblastoma multiforme (GBM), epidermal growth factor receptor gene (EGFR) amplification and mutation (EGFRvIII/DeltaEGFR) are signature pathogenetic events that are invariably expressed in a heterogeneous manner. Strikingly, despite its greater biological activity than wild-type EGFR (wtEGFR), individual GBM tumors expressing both amplified receptors typically express wtEGFR in far greater abundance than the DeltaEGFR lesion. We hypothesized that the minor DeltaEGFR-expressing subpopulation enhances tumorigenicity of the entire tumor cell population, and thereby maintains heterogeneity of expression of the two receptor forms in different cells. Using mixtures of glioma cells as well as immortalized murine astrocytes, we demonstrate that a paracrine mechanism driven by DeltaEGFR is the primary means for recruiting wtEGFR-expressing cells into accelerated proliferation in vivo. We determined that human glioma tissues, glioma cell lines, glioma stem cells, and immortalized mouse Ink4a/Arf(-/-) astrocytes that express DeltaEGFR each also express IL-6 and/or leukemia inhibitory factor (LIF) cytokines. These cytokines activate gp130, which in turn activates wtEGFR in neighboring cells, leading to enhanced rates of tumor growth. Ablating IL-6, LIF, or gp130 uncouples this cellular cross-talk, and potently attenuates tumor growth enhancement. These findings support the view that a minor tumor cell population can potently drive accelerated growth of the entire tumor mass, and thereby actively maintain tumor cell heterogeneity within a tumor mass. Such interactions between genetically

  9. Dexamethasone-(C21-phosphoramide)-[anti-EGFR]: molecular design, synthetic organic chemistry reactions, and antineoplastic cytotoxic potency against pulmonary adenocarcinoma (A549).

    Science.gov (United States)

    Coyne, Cody P; Narayanan, Lakshmi

    2016-01-01

    antineoplastic cytotoxicity were observed at and between the dexamethasone equivalent concentrations of 10(-9) M and 10(-7) M where cancer cell death increased from 7.7% to a maximum of 64.9% (92.3%-35.1% residual survival), respectively, which closely paralleled values for "free" noncovalently bound dexamethasone. Organic chemistry reaction regimens were optimized to develop a multiphase synthesis regimen for dexamethasone-(C21-phosphoramide)-[anti-EGFR]. Attributes of dexamethasone-(C21-phosphoramide)-[anti-EGFR] include a high dexamethasone molar incorporation-index, lack of extraneous chemical group introduction, retained EGFR-binding avidity ("targeted" delivery properties), and potential to enhance long-term pharmaceutical moiety effectiveness.

  10. Efficacy of EGFR-TKI therapy in patients with brain metastases from ...

    African Journals Online (AJOL)

    of epidermal growth factor receptor (EGFR-TKIs) for patients with brain metastases (BM) from non- small-cell lung ... [9,10]. Many studies have shown the responses of. NSCLC patients with BM to EGFR-TKIs [11-14], but most of ... The ORR was defined as the percentage of ..... d), which permit unrestricted use, distribution,.

  11. Linking ground motion measurements and macro-seismic observations in France: A case study based on the RAP (accelerometric) and BCSF (macro-seismic) databases

    International Nuclear Information System (INIS)

    Lesueur, Ch.

    2011-01-01

    Comparison between accelerometric and macro-seismic observations is made for three mw∼4.5 earthquakes of eastern France between 2003 and 2005. Scalar and spectral instrumental parameters are processed from the accelerometric data recorded by nine accelerometric stations located between 29 km and 180 km from the epicentres. Macro-seismic data are based on the French internet reports. In addition to the individual macro-seismic intensity, analysis of the internal correlation between the encoded answers highlights four predominant fields of questions, bearing different physical meanings: 1) 'vibratory motions of small objects', 2) 'displacement and fall of objects', 3) 'acoustic noise', and 4) 'personal feelings'. Best correlations between macro-seismic and instrumental observations are obtained when the macro-seismic parameters are averaged over 10 km radius circles around each station. macro-seismic intensities predicted by published pgv-intensity relationships quite agree with the observed intensities, contrary to those based on pga. The correlations between the macro-seismic and instrumental data, for intensities between ii and v (ems-98), show that pgv is the instrumental parameter presenting the best correlation with all macro-seismic parameters. The correlation with response spectra, exhibits clear frequency dependence over a limited frequency range [0.5-33 hz]. Horizontal and vertical components are significantly correlated with macro-seismic parameters between 1 and 10 hz, a range corresponding to both natural frequencies of most buildings and high energy content in the seismic ground motion. Between 10 and 25 hz, a clear lack of correlation between macro-seismic and instrumental data is observed, while beyond 25 hz the correlation coefficient increases, approaching that of the PGA correlation level. (author)

  12. EGFR, HER-2 and KRAS in canine gastric epithelial tumors: a potential human model?

    Directory of Open Access Journals (Sweden)

    Rossella Terragni

    Full Text Available Epidermal growth factor receptor (EGFR or HER-1 and its analog c-erbB-2 (HER-2 are protein tyrosine kinases correlated with prognosis and response to therapy in a variety of human cancers. KRAS mediates the transduction of signals between EGFR and the nucleus, and its mutation has been identified as a predictor of resistance to anti-EGFR drugs. In human oncology, the importance of the EGFR/HER-2/KRAS signalling pathway in gastric cancer is well established, and HER-2 testing is required before initiating therapy. Conversely, this pathway has never been investigated in canine gastric tumours. A total of 19 canine gastric epithelial neoplasms (5 adenomas and 14 carcinomas were retrospectively evaluated for EGFR/HER-2 immunohistochemical expression and KRAS mutational status. Five (35.7% carcinomas were classified as intestinal-type and 9 (64.3% as diffuse-type. EGFR was overexpressed (≥ 1+ in 8 (42.1% cases and HER-2 (3+ in 11 (57.9% cases, regardless of tumour location or biological behaviour. The percentage of EGFR-positive tumours was significantly higher in the intestinal-type (80% than in the diffuse-type (11.1%, p = 0.023. KRAS gene was wild type in 18 cases, whereas one mucinous carcinoma harboured a point mutation at codon 12 (G12R. EGFR and HER-2 may be promising prognostic and therapeutic targets in canine gastric epithelial neoplasms. The potential presence of KRAS mutation should be taken into account as a possible mechanism of drug resistance. Further studies are necessary to evaluate the role of dog as a model for human gastric cancer.

  13. Analysis of EGFR, HER2, and TOP2A gene status and chromosomal polysomy in gastric adenocarcinoma from Chinese patients

    International Nuclear Information System (INIS)

    Liang, Zhiyong; Zeng, Xuan; Gao, Jie; Wu, Shafei; Wang, Peng; Shi, Xiaohua; Zhang, Jing; Liu, Tonghua

    2008-01-01

    The EGFR and HER2 genes are located on chromosomes 7 and 17, respectively. They are therapeutic targets in some tumors. The TOP2A gene, which is located near HER2 on chromosome 17, is the target of many chemotherapeutic agents, and co-amplification of HER2 and TOP2A has been described in several tumor types. Herein, we investigated the gene status of EGFR, HER2, and TOP2A in Chinese gastric carcinoma patients. We determined the rate of polysomy for chromosomes 7 and 17, and we attempted to clarify the relationship between EGFR, HER2, and TOP2A gene copy number and increased expression of their encoded proteins. Furthermore, we tried to address the relationship between alterations in EGFR, HER2, and TOP2A and chromosome polysomy. One hundred cases of formalin fixed and paraffin embedded tumor tissues from Chinese gastric carcinoma patients were investigated by immunohistochemistry and fluorescence in situ hybridization (FISH) methods. Forty-two percent of the cases showed EGFR overexpression; 16% showed EGFR FISH positive; 6% showed HER2 overexpression; and 11% showed HER2 gene amplification, including all six HER2 overexpression cases. TOP2A nuclear staining (nuclear index, NI) was determined in all 100 tumors: NI values ranged from 0.5 – 90%. Three percent of the tumors showed TOP2A gene amplification, which were all accompanied by HER2 gene amplification. Nineteen percent of the tumors showed chromosome 7 polysomy, and 16% showed chromosome 17 polysomy. Chromosome 7 polysomy correlated significantly with EGFR FISH-positivity, but was not associated with EGFR overexpression. HER2 overexpression associated significantly with HER2 gene amplification. TOP2A gene amplification was significantly associated with HER2 gene amplification. No relationship was found between alterations in the EGFR, HER2, and TOP2A genes and clinicopathologic variables of gastric carcinoma. The data from our study suggest that chromosome 7 polysomy may be responsible for increased EGFR

  14. Structural insights into drug development strategy targeting EGFR T790M/C797S.

    Science.gov (United States)

    Zhu, Su-Jie; Zhao, Peng; Yang, Jiao; Ma, Rui; Yan, Xiao-E; Yang, Sheng-Yong; Yang, Jing-Wen; Yun, Cai-Hong

    2018-03-02

    Treatment of non-small-cell lung cancers (NSCLCs) harboring primary EGFR oncogenic mutations such as L858R and exon 19 deletion delE746_A750 (Del-19) using gefitinib/erlotinib ultimately fails due to the emergence of T790M mutation. Though WZ4002/CO-1686/AZD9291 are effective in overcoming EGFR T790M by targeting Cys797 via covalent bonding, their efficacy is again limited due to the emergence of C797S mutation. New agents effectively inhibiting EGFR T790M without covalent linkage through Cys 797 may solve this problem. We presented here crystal structures of EGFR activating/drug-resistant mutants in complex with a panel of reversible inhibitors along with mutagenesis and enzyme kinetic data. These data revealed a previously un-described hydrophobic clamp structure in the EGFR kinase which may be exploited to facilitate development of next generation drugs targeting EGFR T790M with or without concomitant C797S. Interestingly, mutations in the hydrophobic clamp that hinder drug binding often also weaken ATP binding and/or abolish kinase activity, thus do not readily result in resistance to the drugs.

  15. [Heavy metal pollution ecology of macro-fungi: research advances and expectation].

    Science.gov (United States)

    Zhou, Qi-xing; An, Xin-long; Wei, Shu-he

    2008-08-01

    Macro-fungi are the main component of biosphere and one of the ecological resources, and play very important roles in matter cycling and in maintaining ecological balances. This paper summarized and reviewed the research advances in the eco-toxicological effects of heavy metals on macro-fungi, the bioaccumulation function of macro-fungi on heavy metals, the ecological adaptation mechanisms of macro-fungi to heavy metal pollution, the role of macro-fungi as a bio-indicator of heavy metal pollution, and the potential of macro-fungi in the ecological remediation of contaminated environment. To strengthen the researches on the heavy metal pollution ecology of macro-fungi would be of practical significance in the reasonable utilization of macro-fungi resources and in the ecological remediation of contaminated environment.

  16. Elucidation of the critical epitope of an anti-EGFR monoclonal antibody EMab-134

    Directory of Open Access Journals (Sweden)

    Mika K. Kaneko

    2018-07-01

    Full Text Available The epidermal growth factor receptor (EGFR is a type-1 transmembrane receptor tyrosine kinase, which activates the downstream signaling cascades in many tumors, such as oral and lung cancers. We previously developed EMab-134, a novel anti-EGFR monoclonal antibody (mAb, which reacts with endogenous EGFR-expressing cancer cell lines and normal cells independent of glycosylation in Western blotting, flow cytometry, and immunohistochemical analysis. EMab-134 showed very high sensitivity (94.7% to oral squamous cell carcinomas in immunohistochemical analysis. In this study, we performed enzyme-linked immunosorbent assay (ELISA, flow cytometry, and immunohistochemical analysis to determine the epitope of EMab-134. A blocking peptide (375–394 amino acids of EGFR neutralized the EMab-134 reaction against oral cancer cells in flow cytometry and immunohistochemistry. The minimum epitope of EMab-134 was found to be the 377-RGDSFTHTPP−386 sequence. Our findings can be applied for the production of more functional anti-EGFR mAbs that in turn can be used for antitumor treatments.

  17. MicroRNA-122a Regulates Zonulin by Targeting EGFR in Intestinal Epithelial Dysfunction.

    Science.gov (United States)

    Zhang, Bin; Tian, Yinghai; Jiang, Ping; Jiang, Yanqiong; Li, Chao; Liu, Ting; Zhou, Rujian; Yang, Ning; Zhou, Xinke; Liu, Zhihua

    2017-01-01

    This study aimed to investigate the role of microRNA (miR)-122a in regulating zonulin during the modulation of intestinal barrier. Zonulin proteins and their target gene expression were analyzed in miR-122a-overexpressing cell lines and in the target gene of epidermal growth factor receptor (EGFR). An mmu-miR-122a intestinal epithelial conditional transgenic (miR-122a-TG) mouse model was established to investigate EGFR and zonulin expression. MiR-122a was also detected in the clinical specimens of inflammatory bowel disease. EGFR was identified as a target gene of miR-122a. The expression level of miR-122a was positively correlated with that of zonulin. The expression level of zonulin was significantly increased, whereas the expression level of EGFR was significantly decreased in the miR-122a-TG mice and in the corresponding primary epithelial culture (P zonulin by targeting EGFR, which increased the intestinal epithelial permeability in vivo and in vitro. © 2017 The Author(s). Published by S. Karger AG, Basel.

  18. Detection of EGFR mutations with mutation-specific antibodies in stage IV non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Viteri Santiago

    2010-12-01

    Full Text Available Abstract Background Immunohistochemistry (IHC with mutation-specific antibodies may be an ancillary method of detecting EGFR mutations in lung cancer patients. Methods EGFR mutation status was analyzed by DNA assays, and compared with IHC results in five non-small-cell lung cancer (NSCLC cell lines and tumor samples from 78 stage IV NSCLC patients. Results IHC correctly identified del 19 in the H1650 and PC9 cell lines, L858R in H1975, and wild-type EGFR in H460 and A549, as well as wild-type EGFR in tumor samples from 22 patients. IHC with the mAb against EGFR with del 19 was highly positive for the protein in all 17 patients with a 15-bp (ELREA deletion in exon 19, whereas in patients with other deletions, IHC was weakly positive in 3 cases and negative in 9 cases. IHC with the mAb against the L858R mutation showed high positivity for the protein in 25/27 (93% patients with exon 21 EGFR mutations (all with L858R but did not identify the L861Q mutation in the remaining two patients. Conclusions IHC with mutation-specific mAbs against EGFR is a promising method for detecting EGFR mutations in NSCLC patients. However these mAbs should be validated with additional studies to clarify their possible role in routine clinical practice for screening EGFR mutations in NSCLC patients.

  19. Bio markers and Anti-EGFR therapies for Krads wild-type tumors in metastatic colorectal cancer patients

    International Nuclear Information System (INIS)

    Diaz Rubio Garcia, E.

    2009-01-01

    The natural history of metastasis colorectal cancer has being clearly modified in terms of response rate, time to progression and overall survival, once the antiEGFR monoclonal antibodies (cetuximab and panitumumab) have emerged in combination with the standard cytotoxic chemotherapy (FOLFOX and FOLFIRI). However, the benefit from cetuximab and panitumumab is only confined to KRAS-wild type (KRAS-wt) colorectal tumors, while KRAS mutated tumors do not respond to these drugs. The 65 % of colorectal tumors are KRAS-wt tumors, but efficacy of antiEGFR therapies is detected only in 60-70 % of these KRAS-wt tumors. Other biomarkers and molecular pathways must be involved in the response of the antiEGFR therapies for the KRAS-wt colorectal tumors, such as the EGFR ligands, the EGFR-phosphorilated levels, the number of EGFR copies, the status of the KRAS effected B-RAF and the alternative intracellular signaling pathways PIK3CA/PTEN/AKT and JAK/STAT. A battery of these biomarkers is needed to select the most sensitive patients to the antiEGFR therapies. This pattern may represent a novel favorable cost-effectiveness tool to develop tailored treatments. A review of these biomarkers and molecular pathways, involved in the antiEGFR therapies response, is performed. (Author) 68 refs.

  20. Distribution of estimated glomerular filtration rate (eGFR) values in patients receiving contrast-enhanced magnetic resonance imaging

    International Nuclear Information System (INIS)

    Shimoji, Keigo; Aoki, Shigeki; Nakanishi, Atsushi

    2012-01-01

    The aim of this study was to elucidate the distribution of estimated glomerular filtration rate (eGFR) values in patients who underwent gadolinium-based contrast agent (GBCA)-enhanced magnetic resonance imaging (MRI) at different types of hospitals. We retrospectively studied 2,550 patients who underwent MRI at five institutions. We recorded the date and value of each patient's eGFR test. The distribution of eGFR values was compared with that in the general Japanese population. A total of 84.3% of patients had their eGFRs evaluated before GBCA-enhanced MRI. Of these, 84.7% were evaluated within 3 months before the GBCA-enhanced MRI, and 1.3% were evaluated on the day of the GBCA-enhanced MRI. A total of 87.2% of patients tested had an eGFR of ≥60 ml/min/1.73 m 2 ; 12.8% had an eGFR of 2 , and no patients had an eGFR of 2 . The rate of renal function evaluation differed among hospitals. The prevalence of low eGFR values was greater in Juntendo Tokyo Koto Geriatric Medical Center than in the other hospitals, and the prevalence of low eGFR values was greater in patients who underwent GBCA-enhanced MRI than in the general Japanese population. (author)

  1. The International Macro-Environment of an Organization

    Directory of Open Access Journals (Sweden)

    Ileana (Badulescu Anastase

    2016-01-01

    Full Text Available The international macro-environment (supranational macro-environment brings together allthe uncontrollable factors with a global impact, and it is related to the organization’s indirectrelationships on international markets. Romania’s globalization and the EU integration increasedthe importance of the macro-environment for all organizations, regardless of their degree ofinternationalization. In marketing, we must master the main agreements between countries and theregulations emanating from general international bodies, reflecting on their business, on differentforeign markets. Knowledge of the international environment is possible only through an analysisof its components (Anastase, I., 2012, p.41.

  2. Lipidomic Profiling of Lung Pleural Effusion Identifies Unique Metabotype for EGFR Mutants in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Ho, Ying Swan; Yip, Lian Yee; Basri, Nurhidayah; Chong, Vivian Su Hui; Teo, Chin Chye; Tan, Eddy; Lim, Kah Ling; Tan, Gek San; Yang, Xulei; Yeo, Si Yong; Koh, Mariko Si Yue; Devanand, Anantham; Takano, Angela; Tan, Eng Huat; Tan, Daniel Shao Weng; Lim, Tony Kiat Hon

    2016-10-14

    Cytology and histology forms the cornerstone for the diagnosis of non-small cell lung cancer (NSCLC) but obtaining sufficient tumour cells or tissue biopsies for these tests remains a challenge. We investigate the lipidome of lung pleural effusion (PE) for unique metabolic signatures to discriminate benign versus malignant PE and EGFR versus non-EGFR malignant subgroups to identify novel diagnostic markers that is independent of tumour cell availability. Using liquid chromatography mass spectrometry, we profiled the lipidomes of the PE of 30 benign and 41 malignant cases with or without EGFR mutation. Unsupervised principal component analysis revealed distinctive differences between the lipidomes of benign and malignant PE as well as between EGFR mutants and non-EGFR mutants. Docosapentaenoic acid and Docosahexaenoic acid gave superior sensitivity and specificity for detecting NSCLC when used singly. Additionally, several 20- and 22- carbon polyunsaturated fatty acids and phospholipid species were significantly elevated in the EGFR mutants compared to non-EGFR mutants. A 7-lipid panel showed great promise in the stratification of EGFR from non-EGFR malignant PE. Our data revealed novel lipid candidate markers in the non-cellular fraction of PE that holds potential to aid the diagnosis of benign, EGFR mutation positive and negative NSCLC.

  3. Role of EGFR transactivation in preventing apoptosis in Pseudomonas aeruginosa-infected human corneal epithelial cells.

    Science.gov (United States)

    Zhang, Jing; Li, Hui; Wang, Jinzhao; Dong, Zheng; Mian, Shahzad; Yu, Fu-Shin X

    2004-08-01

    To determine the role of epidermal growth factor (EGF) receptor (EGFR)-mediated signaling pathways in preventing infection-induced apoptosis in human corneal epithelial cells (HCECs). Epithelial monolayers of a telomerase-immortalized HCEC line, HUCL, and primary culture of HCECs were infected with Pseudomonas aeruginosa in the presence of the EGFR inhibitor tyrphostin AG1478, the extracellular signal-regulated kinase (ERK) inhibitor U0126, the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, the heparin-binding EGF-like growth factor (HB-EGF) antagonist CRM197, the HB-EGF neutralizing antibody, or the matrix metalloproteinase inhibitor GM6001. The activation of EGFR was analyzed by immunoprecipitation using EGFR antibodies, followed by Western blot analysis with phosphotyrosine antibody. Phosphorylation of ERK and Akt, a major substrate of PI3K, and generation of cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) were determined by Western blot analysis. Apoptotic cells were characterized by positive staining of active caspase-3, loss of mitochondrial cytochrome c, and condensation of chromosomes. Apoptosis was also confirmed by measuring caspase-3 activity and assessing the generation of cleaved caspase-3 and PARP. P. aeruginosa infection of HUCL cells resulted in EGFR activation and EGFR-dependent ERK1/2 and PI3K phosphorylation. Inhibition of EGFR, ERK1/2, and PI3K activities with kinase-specific inhibitors (AG1478, U0126, and LY294002, respectively) resulted in an increase in the number of apoptotic cells, in elevated cellular caspase-3 activity, and/or in increased cleaved PARP in P. aeruginosa-infected HUCL cells or primary culture of HCECs. Blocking HB-EGF ectodomain shedding by inhibition of matrix metalloproteinase-mediated proteolysis, downregulation of HB-EGF, or neutralization of its activity retarded infection-induced EGFR transactivation and, as a consequence, increased infection-induced HUCL apoptosis. Bacterial infection of HCECs induces

  4. Role of EGFR Transactivation in Preventing Apoptosis in Pseudomonas aeruginosa–Infected Human Corneal Epithelial Cells

    Science.gov (United States)

    Zhang, Jing; Li, Hui; Wang, Jinzhao; Dong, Zheng; Mian, Shahzad; Yu, Fu-Shin X.

    2009-01-01

    PURPOSE To determine the role of epidermal growth factor (EGF) receptor (EGFR)–mediated signaling pathways in preventing infection-induced apoptosis in human corneal epithelial cells (HCECs). METHODS Epithelial monolayers of a telomerase-immortalized HCEC line, HUCL, and primary culture of HCECs were infected with Pseudomonas aeruginosa in the presence of the EGFR inhibitor tyrphostin AG1478, the extracellular signal-regulated kinase (ERK) inhibitor U0126, the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, the heparin-binding EGF-like growth factor (HB-EGF) antagonist CRM197, the HB-EGF neutralizing antibody, or the matrix metalloproteinase inhibitor GM6001. The activation of EGFR was analyzed by immunoprecipitation using EGFR antibodies, followed by Western blot analysis with phosphotyrosine antibody. Phosphorylation of ERK and Akt, a major substrate of PI3K, and generation of cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) were determined by Western blot analysis. Apoptotic cells were characterized by positive staining of active caspase-3, loss of mitochondrial cytochrome c, and condensation of chromosomes. Apoptosis was also confirmed by measuring caspase-3 activity and assessing the generation of cleaved caspase-3 and PARP. RESULTS P. aeruginosa infection of HUCL cells resulted in EGFR activation and EGFR-dependent ERK1/2 and PI3K phosphorylation. Inhibition of EGFR, ERK1/2, and PI3K activities with kinase-specific inhibitors (AG1478, U0126, and LY294002, respectively) resulted in an increase in the number of apoptotic cells, in elevated cellular caspase-3 activity, and/or in increased cleaved PARP in P. aeruginosa–infected HUCL cells or primary culture of HCECs. Blocking HB-EGF ectodomain shedding by inhibition of matrix metalloproteinase–mediated proteolysis, downregulation of HB-EGF, or neutralization of its activity retarded infection-induced EGFR transactivation and, as a consequence, increased infection-induced HUCL apoptosis

  5. Cost-effectiveness analysis of EGFR mutation testing and gefitinib as first-line therapy for non-small cell lung cancer.

    Science.gov (United States)

    Narita, Yusuke; Matsushima, Yukiko; Shiroiwa, Takeru; Chiba, Koji; Nakanishi, Yoichi; Kurokawa, Tatsuo; Urushihara, Hisashi

    2015-10-01

    The combination use of gefitinib and epidermal growth factor receptor (EGFR) testing is a standard first-line therapy for patients with non-small cell lung cancer (NSCLC). Here, we examined the cost-effectiveness of this approach in Japan. Our analysis compared the 'EGFR testing strategy', in which EGFR mutation testing was performed before treatment and patients with EGFR mutations received gefitinib while those without mutations received standard chemotherapy, to the 'no-testing strategy,' in which genetic testing was not conducted and all patients were treated with standard chemotherapy. A three-state Markov model was constructed to predict expected costs and outcomes for each strategy. We included only direct medical costs from the healthcare payer's perspective. Outcomes in the model were based on those reported in the Iressa Pan-Asia Study (IPASS). The incremental cost-effectiveness ratio (ICER) was calculated using quality-adjusted life-years (QALYs) gained. Sensitivity and scenario analyses were conducted. The incremental cost and effectiveness per patient of the 'EGFR testing strategy' compared to the 'no-testing strategy' was estimated to be approximately JP¥122,000 (US$1180; US$1=JP¥104 as of February 2014) and 0.036 QALYs. The ICER was then calculated to be around JP¥3.38 million (US$32,500) per QALY gained. These results suggest that the 'EGFR testing strategy' is cost-effective compared with the 'no-testing strategy' when JP¥5.0 million to 6.0 million per QALY gained is considered an acceptable threshold. These results were supported by the sensitivity and scenario analyses. The combination use of gefitinib and EGFR testing can be considered a cost-effective first-line therapy compared to chemotherapy such as carboplatin-paclitaxel for the treatment for NSCLC in Japan. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  6. Association of BIM Deletion Polymorphism and BIM-γ RNA Expression in NSCLC with EGFR Mutation.

    Science.gov (United States)

    Isobe, Kazutoshi; Kakimoto, Atsushi; Mikami, Tetsuo; Kaburaki, Kyohei; Kobayashi, Hiroshi; Yoshizawa, Takahiro; Makino, Takashi; Otsuka, Hajime; Sano, G O; Sugino, Keishi; Sakamoto, Susumu; Takai, Yujiro; Tochigi, Naobumi; Iyoda, Akira; Homma, Sakae

    This pilot study assessed the association of BIM deletion polymorphism and BIM RNA isoform in patients with EGFR-positive non-small cell lung cancer (NSCLC). The study included 33 patients with EGFR-positive NSCLC treated with gefitinib. BIM deletion polymorphism and BIM RNA isoform (EL/L/S/γ) were determined by polymerase chain reaction (PCR). BIM-γ expression was significantly higher in patients with BIM deletion polymorphism than among those without BIM deletion polymorphism inside tumors (p=0.038) and around tumors (p=0.0024). Relative BIM-γ expression was significantly higher in patients with BIM deletion polymorphism than among those without BIM deletion polymorphism (p=0.0017). Patients with BIM-γ had significantly shorter progression-free survival than those without BIM-γ (median: 304 vs. 732 days; p=0.023). Expression of BIM-γ mRNA and BIM deletion polymorphism were strongly associated. BIM-γ overexpression may have a role in apoptosis related to EGFR-tyrosine kinase inhibitor. Copyright© 2016, International Institute of Anticancer Research (Dr. John G. Delinasios), All rights reserved.

  7. Kinetics of EGFR expression during fractionated irradiation varies between different human squamous cell carcinoma lines in nude mice

    International Nuclear Information System (INIS)

    Eicheler, Wolfgang; Krause, Mechthild; Hessel, Franziska; Zips, Daniel; Baumann, Michael

    2005-01-01

    Background and purpose: Preclinical and clinical data indicate that high pretherapeutic EGFR expression is associated with poor local tumour control, possibly caused by a high repopulation rate of clonogenic cells during radiotherapy in these tumours. Previous data reported from our laboratory showed a correlation between EGFR expression and acceleration of repopulation in poorly differentiated FaDu human squamous cell carcinoma (SCC) during fractionated irradiation. To test whether this is a general phenomenon, two further SCC were investigated in the present study. Patients and methods: GL and UT-SCC-14, two moderately well differentiated and keratinising hSCC, were grown as xenografts in nude mice. Functional data on the repopulation kinetics during fractionated irradiation for these tumour models have been previously determined. The expression of EGFR during fractionation was analysed by immunohistochemistry. Endpoints were the membrane-staining score and the proportion of EGFR-positive cells (EGFR labelling index). Results: Different kinetics of EGFR expression during fractionated RT were found. In UT-SCC-14, EGFR staining score and labelling index increased significantly during radiotherapy. In GL SCC, the EGFR expression was unchanged. Both tumours are characterized by a small but significant repopulation rate during radiotherapy. Conclusions: The expression of EGFR may change significantly during fractionated irradiation. No clear correlation between EGFR expression and the repopulation kinetics of clonogenic tumour cells during fractionated irradiation was found. The changes in EGFR expression during irradiation warrant further investigation on their prognostic implications and on their importance for therapeutic interventions

  8. Gene expression profiles of lung adenocarcinoma linked to histopathological grading and survival but not to EGF-R status: a microarray study

    Directory of Open Access Journals (Sweden)

    Passlick Bernward

    2010-03-01

    Full Text Available Abstract Background Several different gene expression signatures have been proposed to predict response to therapy and clinical outcome in lung adenocarcinoma. Herein, we investigate if elements of published gene sets can be reproduced in a small dataset, and how gene expression profiles based on limited sample size relate to clinical parameters including histopathological grade and EGFR protein expression. Methods Affymetrix Human Genome U133A platform was used to obtain gene expression profiles of 28 pathologically and clinically annotated adenocarcinomas of the lung. EGFR status was determined by fluorescent in situ hybridization and immunohistochemistry. Results Using unsupervised clustering algorithms, the predominant gene expression signatures correlated with the histopathological grade but not with EGFR protein expression as detected by immunohistochemistry. In a supervised analysis, the signature of high grade tumors but not of EGFR overexpressing cases showed significant enrichment of gene sets reflecting MAPK activation and other potential signaling cascades downstream of EGFR. Out of four different previously published gene sets that had been linked to prognosis, three showed enrichment in the gene expression signature associated with favorable prognosis. Conclusions In this dataset, histopathological tumor grades but not EGFR status were associated with dominant gene expression signatures and gene set enrichment reflecting oncogenic pathway activation, suggesting that high immunohistochemistry EGFR scores may not necessarily be linked to downstream effects that cause major changes in gene expression patterns. Published gene sets showed association with patient survival; however, the small sample size of this study limited the options for a comprehensive validation of previously reported prognostic gene expression signatures.

  9. Therapeutic value of EGFR inhibition in CRC and NSCLC: 15 years of clinical evidence.

    Science.gov (United States)

    Troiani, Teresa; Napolitano, Stefania; Della Corte, Carminia Maria; Martini, Giulia; Martinelli, Erika; Morgillo, Floriana; Ciardiello, Fortunato

    2016-01-01

    Epidermal growth factor receptor (EGFR) plays a key role in tumour evolution, proliferation and immune evasion, and is one of the most important targets for biological therapy, especially for non-small-cell lung cancer (NSCLC) and colorectal cancer (CRC). In the past 15 years, several EGFR antagonists have been approved for the treatment of NSCLC and metastatic CRC (mCRC). To optimise the use of anti-EGFR agents in clinical practice, various clinical and molecular biomarkers have been investigated, thus moving their indication from unselected to selected populations. Nowadays, anti-EGFR drugs represent a gold-standard therapy for metastatic NSCLC harbouring EGFR activating mutation and for RAS wild-type mCRC. Their clinical efficacy is limited by the presence of intrinsic resistance or the onset of acquired resistance. In this review, we provide an overview of the antitumour activity of EGFR inhibitors in NSCLC and CRC and of mechanisms of resistance, focusing on the development of a personalised approach through 15 years of preclinical and clinical research.

  10. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors.

    Science.gov (United States)

    Regales, Lucia; Balak, Marissa N; Gong, Yixuan; Politi, Katerina; Sawai, Ayana; Le, Carl; Koutcher, Jason A; Solit, David B; Rosen, Neal; Zakowski, Maureen F; Pao, William

    2007-08-29

    The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer. To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFR(T790M) alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFR(L858R+T790M)-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFR(T790M)-expressing animals develop tumors with longer latency than EGFR(L858R+T790M)-bearing mice and in the absence of additional kinase domain mutations. These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFR(T790M) alone or in conjunction with drug-sensitive EGFR kinase domain mutations.

  11. Development of new mouse lung tumor models expressing EGFR T790M mutants associated with clinical resistance to kinase inhibitors.

    Directory of Open Access Journals (Sweden)

    Lucia Regales

    2007-08-01

    Full Text Available The EGFR T790M mutation confers acquired resistance to kinase inhibitors in human EGFR mutant lung adenocarcinoma, is occasionally detected before treatment, and may confer genetic susceptibility to lung cancer.To study further its role in lung tumorigenesis, we developed mice with inducible expression in type II pneumocytes of EGFR(T790M alone or together with a drug-sensitive L858R mutation. Both transgenic lines develop lung adenocarcinomas that require mutant EGFR for tumor maintenance but are resistant to an EGFR kinase inhibitor. EGFR(L858R+T790M-driven tumors are transiently targeted by hsp90 inhibition. Notably, EGFR(T790M-expressing animals develop tumors with longer latency than EGFR(L858R+T790M-bearing mice and in the absence of additional kinase domain mutations.These new mouse models of mutant EGFR-dependent lung adenocarcinomas provide insight into clinical observations. The models should also be useful for developing improved therapies for patients with lung cancers harboring EGFR(T790M alone or in conjunction with drug-sensitive EGFR kinase domain mutations.

  12. Combined effects of EGFR tyrosine kinase inhibitors and vATPase inhibitors in NSCLC cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Hyeon-Ok [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Hong, Sung-Eun [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Kim, Chang Soon [Department of Microbiological Engineering, Kon-Kuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 143–701 (Korea, Republic of); Park, Jin-Ah; Kim, Jin-Hee; Kim, Ji-Young; Kim, Bora [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Chang, Yoon Hwan; Hong, Seok-Il; Hong, Young Jun [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Park, In-Chul, E-mail: parkic@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Lee, Jin Kyung, E-mail: jklee@kirams.re.kr [KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of); Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 139–706 (Korea, Republic of)

    2015-08-15

    Despite excellent initial clinical responses of non-small cell lung cancer (NSCLC) patients to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs), many patients eventually develop resistance. According to a recent report, vacuolar H + ATPase (vATPase) is overexpressed and is associated with chemotherapy drug resistance in NSCLC. We investigated the combined effects of EGFR TKIs and vATPase inhibitors and their underlying mechanisms in the regulation of NSCLC cell death. We found that combined treatment with EGFR TKIs (erlotinib, gefitinib, or lapatinib) and vATPase inhibitors (bafilomycin A1 or concanamycin A) enhanced synergistic cell death compared to treatments with each drug alone. Treatment with bafilomycin A1 or concanamycin A led to the induction of Bnip3 expression in an Hif-1α dependent manner. Knock-down of Hif-1α or Bnip3 by siRNA further enhanced cell death induced by bafilomycin A1, suggesting that Hif-1α/Bnip3 induction promoted resistance to cell death induced by the vATPase inhibitors. EGFR TKIs suppressed Hif-1α and Bnip3 expression induced by the vATPase inhibitors, suggesting that they enhanced the sensitivity of the cells to these inhibitors by decreasing Hif-1α/Bnip3 expression. Taken together, we conclude that EGFR TKIs enhance the sensitivity of NSCLC cells to vATPase inhibitors by decreasing Hif-1α/Bnip3 expression. We suggest that combined treatment with EGFR TKIs and vATPase inhibitors is potentially effective for the treatment of NSCLC. - Highlights: • Co-treatment with EGFR TKIs and vATPase inhibitors induces synergistic cell death • EGFR TKIs enhance cell sensitivity to vATPase inhibitors via Hif-1α downregulation • Co-treatment of these inhibitors is potentially effective for the treatment of NSCLC.

  13. Sym004, a Novel EGFR Antibody Mixture, Can Overcome Acquired Resistance to Cetuximab1

    Science.gov (United States)

    Iida, Mari; Brand, Toni M; Starr, Megan M; Li, Chunrong; Huppert, Evan J; Luthar, Neha; Pedersen, Mikkel W; Horak, Ivan D; Kragh, Michael; Wheeler, Deric L

    2013-01-01

    The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in a variety of human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for head and neck and colorectal cancer treatment, but many patients treated with cetuximab don't respond or eventually acquire resistance. To determine how tumor cells acquire resistance to cetuximab, we previously developed a model of acquired resistance using the non-small cell lung cancer line NCI-H226. These cetuximab-resistant (CtxR) cells exhibit increased steady-state EGFR expression secondary to alterations in EGFR trafficking and degradation and, further, retained dependence on EGFR signaling for enhanced growth potential. Here, we examined Sym004, a novel mixture of antibodies directed against distinct epitopes on the extracellular domain of EGFR, as an alternative therapy for CtxR tumor cells. Sym004 treatment of CtxR clones resulted in rapid EGFR degradation, followed by robust inhibition of cell proliferation and down-regulation of several mitogen-activated protein kinase pathways. To determine whether Sym004 could have therapeutic benefit in vivo, we established de novo CtxR NCI-H226 mouse xenografts and subsequently treated CtxR tumors with Sym004. Sym004 treatment of mice harboring CtxR tumors resulted in growth delay compared to mice continued on cetuximab. Levels of total and phospho-EGFR were robustly decreased in CtxR tumors treated with Sym004. Immunohistochemical analysis of these Sym004-treated xenograft tumors further demonstrated decreased expression of Ki67, and phospho-rpS6, as well as a modest increase in cleaved caspase-3. These results indicate that Sym004 may be an effective targeted therapy for CtxR tumors. PMID:24204198

  14. EGFR-Dependent Regulation of Matrix-Independent Epithelial Cell Survival. Addendum

    Science.gov (United States)

    2007-04-01

    of the original proposal. The results obtained have identified key players that coordinate keratinocyte survival dependent on soluble growth factors...2004;6:203–8. 4. Duffey DC, Chen Z, Dong G, et al. Expression of a dominant-negative mutant inhibitor- nBa of nuclear fac- tor-nB in human head and neck...Attempts to treat such tumors with EGFR antagonists have met with remarkable initial successes , particularly when EGFR antagonists were used in

  15. Automation of the Weighting and its Register Using Macros; Automatizacion de la Pesada y su Registro mediante el Uso de Macro-Instrucciones

    Energy Technology Data Exchange (ETDEWEB)

    Gasco, C.; Ampudia, J.

    2005-07-01

    Macros automate a repetitive or complex task that oneself otherwise would have to execute manually. Macros have been implemented (based on Visual Basic Applications) on the laboratory calculation sheets to obtain automatically the weight-registers from the Balances. The combined utilization of the programme Balint (trademark Precisa) and macros has allowed us to transfer in real time the weight data to the sheets and later information storage. The method for using these macros has been summarised in this report. This way of working permits: to register the data of all the laboratory samples and to be available for auditory purposes. (Author) 4 refs.

  16. Tumor-targeted Nanobullets: Anti-EGFR nanobody-liposomes loaded with anti-IGF-1R kinase inhibitor for cancer treatment.

    Science.gov (United States)

    van der Meel, Roy; Oliveira, Sabrina; Altintas, Isil; Haselberg, Rob; van der Veeken, Joris; Roovers, Rob C; van Bergen en Henegouwen, Paul M P; Storm, Gert; Hennink, Wim E; Schiffelers, Raymond M; Kok, Robbert J

    2012-04-30

    The epidermal growth factor receptor (EGFR) is a validated target for anti-cancer therapy and several EGFR inhibitors are used in the clinic. Over the years, an increasing number of studies have reported on the crosstalk between EGFR and other receptors that can contribute to accelerated cancer development or even acquisition of resistance to anti-EGFR therapies. Combined targeting of EGFR and insulin-like growth factor 1 receptor (IGF-1R) is a rational strategy to potentiate anti-cancer treatment and possibly retard resistance development. In the present study, we have pursued this by encapsulating the kinase inhibitor AG538 in anti-EGFR nanobody-liposomes. The thus developed dual-active nanobody-liposomes associated with EGFR-(over)expressing cells in an EGFR-specific manner and blocked both EGFR and IGF-1R activation, due to the presence of the EGFR-blocking nanobody EGa1 and the anti-IGF-1R kinase inhibitor AG538 respectively. AG538-loaded nanobody-liposomes induced a strong inhibition of tumor cell proliferation even upon short-term exposure followed by a drug-free wash-out period. Therefore, AG538-loaded nanobody-liposomes are a promising anti-cancer formulation due to efficient intracellular delivery of AG538 in combination with antagonistic and downregulating properties of the EGa1 nanobody-liposomes. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. MicroRNA-122a Regulates Zonulin by Targeting EGFR in Intestinal Epithelial Dysfunction

    Directory of Open Access Journals (Sweden)

    Bin Zhang

    2017-06-01

    Full Text Available Background/Aims: This study aimed to investigate the role of microRNA (miR-122a in regulating zonulin during the modulation of intestinal barrier. Methods: Zonulin proteins and their target gene expression were analyzed in miR-122a-overexpressing cell lines and in the target gene of epidermal growth factor receptor (EGFR. An mmu-miR-122a intestinal epithelial conditional transgenic (miR-122a-TG mouse model was established to investigate EGFR and zonulin expression. MiR-122a was also detected in the clinical specimens of inflammatory bowel disease. Results: EGFR was identified as a target gene of miR-122a. The expression level of miR-122a was positively correlated with that of zonulin. The expression level of zonulin was significantly increased, whereas the expression level of EGFR was significantly decreased in the miR-122a-TG mice and in the corresponding primary epithelial culture (P < 0.05. These results were consistent with the data of the clinical specimens. Conclusions: miR-122a could be a positive factor of zonulin by targeting EGFR, which increased the intestinal epithelial permeability in vivo and in vitro.

  18. Examination of Inequalities in Hungary by Microsimulation in Consistency with Macro Data

    OpenAIRE

    Cserháti, Ilona; Keresztély, Tibor; Takács, Tibor

    2016-01-01

    Effective decision making uses various databases including both micro and macro level datasets. In many cases it is a big challenge to ensure the consistency of the two levels. Different types of problems can occur and several methods can be used to solve them. The paper concentrates on the input alignment of the households’ income for microsimulation, which means refers to improving the elements of a micro data survey (EU-SILC) by using macro data from administrative sources. We use a combin...

  19. Immunohistochemical expression of the epidermal growth factor receptor (EGFR in colorectal carcinoma: relation with clinicopathological parameters

    Directory of Open Access Journals (Sweden)

    Maurício Andrade Azevedo

    2011-09-01

    Full Text Available Introduction: The study of tissue immunostaining of the epidermal growth factor receptor (EGFR may contribute with the understanding of its role in the prognosis of colorectal carcinoma. Objective: To analyze the immunohistochemical expression of EGFR in colorectal carcinoma tissues and transitional tumor-mucosa and mucosa adjacent to neoplasia, and its relation with cancer. Method: The study was conducted with 40 patients with colorectal carcinoma who had surgery with curative intent in order to analyze the immunoexpression of EGFR with anti-EGFR. We used parametric and nonparametric tests. Results: The immunohistochemical expression of EGFR in tumor samples showed a significant difference as to the level of immunostaining in tissue specimens of transitional tumor-mucosa (p=0.01 and the level of immunoreactivity in tissues of the adjacent mucosa (p=0, 04. The immunoexpression of EGFR showed no significant relation with the size of the tumor, angiolymphatic invasion, neural invasion, cellular differentiation, level of carcinoma infiltration in the intestinal wall, lymph node metastases and liver metastases. Conclusions: The EGFR showed a more intense expression in the mucosa of colorectal carcinoma than in the transitional epithelium and adjacent non-neoplastic mucosa. The immunoexpression of EGFR did not correlate with pathological parameters of colorectal carcinoma and liver metastases.Introdução: O estudo da imunoexpressão tecidual do receptor do fator de crescimento epitelial (EGFR pode contribuir para o entendimento de seu papel no prognóstico do carcinoma colorretal. Objetivo: Analisar a expressão imuno-histoquímica do EGFR no carcinoma colorretal e nos tecidos da transição tumor-mucosa e da mucosa adjacente à neoplasia, e avaliar a relação com os aspectos anatomopatológicos da neoplasia. Método: Em 40 doentes com carcinoma colorretal operados com intenção curativa, estudou-se a imunoexpressão do EGFR com anticorpo anti-EGFR

  20. Nimotuzumab enhances temozolomide-induced growth suppression of glioma cells expressing mutant EGFR in vivo

    International Nuclear Information System (INIS)

    Nitta, Yusuke; Shimizu, Saki; Shishido-Hara, Yukiko; Suzuki, Kaori; Shiokawa, Yoshiaki; Nagane, Motoo

    2016-01-01

    A mutant form of epidermal growth factor receptor (EGFR), EGFRvIII, is common in glioblastoma (GBM) and confers enhanced tumorigenic activity and drug resistance. Nimotuzumab, an anti-EGFR antibody, has shown preclinical and clinical activity to GBM, but its specific activity against EGFRvIII has not been fully investigated. Human glioma U87MG or LNZ308 cells overexpressing either wild-type (wt) EGFR or EGFRvIII were treated with nimotuzumab, temozolomide, or both. Expression and phosphorylation status of molecules were determined by Western blot analysis. Methylation status of promoter region of O 6 -methylguanine-DNA methyltransferase (MGMT) was detected by methylation-specific PCR. Antitumor activity was tested using nude mice bearing either subcutaneous or intracerebral xenografts along with analyses of EGFR phosphorylation status, proliferation, apoptosis, and vessel density. Nimotuzumab treatment resulted in reduction of EGFRvIII tyrosine phosphorylation with a decrease in Akt phosphorylation that was greater than that of wtEGFR. Correspondingly, antitumor effects, growth suppression and survival elongation, were more significant in mice bearing either subcutaneous or intracerebral tumor expressing EGFRvIII than in those expressing wtEGFR. These effects were markedly increased when temozolomide was combined with nimotuzumab. The post-treatment recurrent brain tumors exhibited a decrease in expression of the mismatch repair (MMR) proteins, MSH6 and MLH1, but their methylated MGMT status did not changed. Nimotuzumab has in vivo antitumor activity against GBM, especially those expressing EGFRvIII, when combined with temozolomide. This could provide a basis for preselection of patients with GBM by EGFR status who might benefit from the nimotuzumab and temozolomide combination therapy

  1. Antitumor Efficacy of Dual Blockade of EGFR Signaling by Osimertinib in Combination With Selumetinib or Cetuximab in Activated EGFR Human NCLC Tumor Models.

    Science.gov (United States)

    Della Corte, Carminia Maria; Ciaramella, Vincenza; Cardone, Claudia; La Monica, Silvia; Alfieri, Roberta; Petronini, Pier Giorgio; Malapelle, Umberto; Vigliar, Elena; Pepe, Francesco; Troncone, Giancarlo; Castellone, Maria Domenica; Troiani, Teresa; Martinelli, Erika; Ciardiello, Fortunato; Morgillo, Floriana

    2018-03-08

    Osimertinib showed great clinical efficacy for activated-EGFR NCLC patient treatment. The aim of this work was to test the efficacy of a complete EGFR-inhibition by osimertinib plus the monoclonal antibody cetuximab or the MEK1/2-inhibitor selumetinib in EGFR-mutated NCLC in vivo models. We evaluated combinations of osimertinib plus selumetinib/cetuximab in HCC827 (E746-A759del/T790M-), H1975 (L858R/T790M+), and PC9-T790M (E746-A759del /T790M+) xenografts in second-line therapy after the development of resistance to osimertinib, and in first-line therapy, and we explored mechanisms of resistance to these treatments. The addition of selumetinib or cetuximab to osimertinib in second-line therapy reverted the sensibility to osimertinib in the majority of mice, with a response rate (RR) of 50% to 80%, and a median progression-free survival (mPFS) of first- plus second-line of therapy of 28 weeks. The early use of combinations in first-line therapy increased the RR to 90%, with an mPFS not reached in all combination arms in the three xenografts models, with a statistically significant superiority (p < 0.005) as compared to osimertinib, achieving in first-line therapy an mPFS time of 17 to 18 weeks. Moreover, in ex vivo primary cell cultures obtained from osimertinib plus selumetinib-resistant tumors, we found Hedgehog pathway activation and we showed that therapy with an SMO inhibitor plus osimertinib and selumetinib inhibited proliferation and migratory and invasive properties of resistant cells. We showed that a dual vertical EGFR blockade with osimertinib plus selumetinib/cetuximab is a novel effective therapeutic option in EGFR-mutated NCLC and that hedgehog pathway activation and its interplay with MAPK is involved in resistance to these combination treatments. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  2. Brief report: Afatinib and cetuximab in four patients with EGFR exon 20 insertion positive advanced non-small-cell lung cancer.

    Science.gov (United States)

    van Veggel, Bianca; de Langen, Adrianus J; Hashemi, Sayed; Monkhorst, Kim; Heideman, Daniëlle A M; Thunnissen, Erik; Smit, Egbert F

    2018-04-24

    Epidermal growth factor receptor (EGFR) exon 20 insertions comprise 4-9% of EGFR mutated non-small-cell lung cancer (NSCLC). Despite being an oncogenic driver, they are associated with primary resistance to EGFR tyrosine kinase inhibitors (TKIs). We hypothesized that dual EGFR blockade with afatinib, an irreversible EGFR TKI, and cetuximab, a monoclonal antibody against EGFR, could induce tumor responses. Four patients with EGFR exon 20 insertion positive NSCLC were treated with afatinib 40 mg once daily and cetuximab 250-500 mg/m 2 every two weeks. All patients had stage IV adenocarcinoma of the lung harboring an EGFR exon 20 insertion mutation. Previous lines of treatment consisted of platinum doublet chemotherapy (n=4) and EGFR TKI (n=2). Three out of four patients showed a partial response according to RECIST 1.1. Median progression-free survival was 5.4 months (95% confidence interval 0.0 - 14.2 months; range 2.7 - 17.6 months). Toxicity was manageable with appropriate skin management and dose reduction being required in two patients. Dual EGFR blockade with afatinib and cetuximab may induce tumor responses in patients with EGFR exon 20 insertion positive NSCLC. Copyright © 2018. Published by Elsevier Inc.

  3. THE CULTURE AND ARTS ORGANIZATION: MACRO-SOCIOLOGICAL ASPECT

    Directory of Open Access Journals (Sweden)

    Margarita Rasimovna Pashaeva

    2013-11-01

    Full Text Available In this study we analyze the macro-sociological aspect of culture and arts organization. The subject of research is reputation policy and communication technologies in  macro-sociological aspect of culture and arts organization. The target is the research the effects of macro-sociological aspect in the activities of such organization. In the study were used such methods of research: theoretical study and  synthesis; quantative method of elicitation: questionnaire; information processing methods of primary analysis; interpretation. The results of research can be applied in the activities of different culture and arts organization. The research identified the negative and positive tendencies in the context of the macro-sociological aspect.DOI: http://dx.doi.org/10.12731/2218-7405-2013-8-49

  4. Dexamethasone-(C21-phosphoramide-[anti-EGFR]: molecular design, synthetic organic chemistry reactions, and antineoplastic cytotoxic potency against pulmonary adenocarcinoma (A549

    Directory of Open Access Journals (Sweden)

    Coyne CP

    2016-08-01

    did not significantly modify the ex vivo antineoplastic cytotoxicity of dexamethasone against pulmonary adenocarcinoma at and between the standardized dexamethasone equivalent concentrations of 10-9 M and 10-5 M. Rapid increases in antineoplastic cytotoxicity were observed at and between the dexamethasone equivalent concentrations of 10-9 M and 10-7 M where cancer cell death increased from 7.7% to a maximum of 64.9% (92.3%–35.1% residual survival, respectively, which closely paralleled values for “free” noncovalently bound dexamethasone. Discussion: Organic chemistry reaction regimens were optimized to develop a multiphase synthesis regimen for dexamethasone-(C21-phosphoramide-[anti-EGFR]. Attributes of dexamethasone-(C21-phosphoramide-[anti-EGFR] include a high dexamethasone molar incorporation-index, lack of extraneous chemical group introduction, retained EGFR-binding avidity (“targeted” delivery properties, and potential to enhance long-term pharmaceutical moiety effectiveness. Keywords: dexamethasone, anti-EGFR, organic chemistry reactions, synthesis, selective “targeted” delivery, covalent immunopharmaceuticals, EGFR 

  5. Gefitinib-induced killing of NSCLC cell lines expressing mutant EGFR requires BIM and can be enhanced by BH3 mimetics.

    Directory of Open Access Journals (Sweden)

    Mark S Cragg

    2007-10-01

    Full Text Available The epidermal growth factor receptor (EGFR plays a critical role in the control of cellular proliferation, differentiation, and survival. Abnormalities in EGF-EGFR signaling, such as mutations that render the EGFR hyperactive or cause overexpression of the wild-type receptor, have been found in a broad range of cancers, including carcinomas of the lung, breast, and colon. EGFR inhibitors such as gefitinib have proven successful in the treatment of certain cancers, particularly non-small cell lung cancers (NSCLCs harboring activating mutations within the EGFR gene, but the molecular mechanisms leading to tumor regression remain unknown. Therefore, we wished to delineate these mechanisms.We performed biochemical and genetic studies to investigate the mechanisms by which inhibitors of EGFR tyrosine kinase activity, such as gefitinib, inhibit the growth of human NSCLCs. We found that gefitinib triggered intrinsic (also called "mitochondrial" apoptosis signaling, involving the activation of BAX and mitochondrial release of cytochrome c, ultimately unleashing the caspase cascade. Gefitinib caused a rapid increase in the level of the proapoptotic BH3-only protein BIM (also called BCL2-like 11 through both transcriptional and post-translational mechanisms. Experiments with pharmacological inhibitors indicated that blockade of MEK-ERK1/2 (mitogen-activated protein kinase kinase-extracellular signal-regulated protein kinase 1/2 signaling, but not blockade of PI3K (phosphatidylinositol 3-kinase, JNK (c-Jun N-terminal kinase or mitogen-activated protein kinase 8, or AKT (protein kinase B, was critical for BIM activation. Using RNA interference, we demonstrated that BIM is essential for gefitinib-induced killing of NSCLC cells. Moreover, we found that gefitinib-induced apoptosis is enhanced by addition of the BH3 mimetic ABT-737.Inhibitors of the EGFR tyrosine kinase have proven useful in the therapy of certain cancers, in particular NSCLCs possessing

  6. The Efficacy of Synchronous Combination of Chemotherapy and EGFR TKIs for the First-Line Treatment of NSCLC: A Systematic Analysis.

    Directory of Open Access Journals (Sweden)

    Han Yan

    Full Text Available The combination of chemotherapy and epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKIs currently has become the hotspot issue in the treatment of non-small lung cancer (NSCLC. This systematic review was conducted to compare the efficacy and safety of the synchronous combination of these two treatments with EGFR TKIs or chemotherapy alone in advanced NSCLC.EMBASE, PubMed, the Central Registry of Controlled Trials in the Cochrane Library (CENTRAL, Chinese biomedical literature database (CNKI and meeting summaries were searched. The Phase II/III randomized controlled trials were selected by which patients with advanced NSCLC were randomized to receive a combination of EGFR TKIs and chemotherapy by synchronous mode vs. EGFR TKIs or chemotherapy alone.A total of six randomized controlled trials (RCTs including 4675 patients were enrolled in the systematic review. The meta-analysis demonstrated that the synchronous combination group of chemotherapy and EGFR TKIs did not reach satisfactory results; there was no significant difference in overall survival (OS, time to progression (TTP and objective response rate (ORR, compared with monotherapy (OS: HR = 1.05, 95%CI = 0.98-1.12; TTP: HR = 0.94, 95%CI = 0.89-1.00; ORR: RR = 1.07, 95%CI = 0.98-1.17, and no significant difference in OS and progression-free survival (PFS, compared with EGFR TKIs alone (OS: HR = 1.10, 95% CI = 0.83-1.46; PFS: HR = 0.86, 95% CI = 0.67-1.10. The patients who received synchronous combined therapy presented with increased incidences of grade 3/4 anemia (RR = 1.40, 95% CI = 1.10-1.79 and rash (RR = 7.43, 95% CI = 4.56-12.09, compared with chemotherapy, grade 3/4 anemia (RR = 6.71, 95% CI = 1.25-35.93 and fatigue (RR = 9.60, 95% CI = 2.28-40.86 compared with EGFR TKI monotherapy.The synchronous combination of chemotherapy and TKIs is not superior to chemotherapy or EGFR TKIs alone for the first-line treatment of NSCLC.

  7. NF-κB signaling is activated and confers resistance to apoptosis in three-dimensionally cultured EGFR-mutant lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Sakuma, Yuji; Yamazaki, Yukiko; Nakamura, Yoshiyasu; Yoshihara, Mitsuyo; Matsukuma, Shoichi; Koizume, Shiro; Miyagi, Yohei

    2012-01-01

    Highlights: ► EGFR-mutant cells in 3D culture resist EGFR inhibition compared with suspended cells. ► Degradation of IκB and activation of NF-κB are observed in 3D-cultured cells. ► Inhibiting NF-κB enhances the efficacy of the EGFR inhibitor in 3D-cultured cells. -- Abstract: Epidermal growth factor receptor (EGFR)-mutant lung adenocarcinoma cells in suspension undergo apoptosis to a greater extent than adherent cells in a monolayer when EGFR autophosphorylation is inhibited by EGFR tyrosine kinase inhibitors (TKIs). This suggests that cell adhesion to a culture dish may activate an anti-apoptotic signaling pathway other than the EGFR pathway. Since the microenvironment of cells cultured in a monolayer are substantially different to that of cells existing in three-dimension (3D) in vivo, we assessed whether two EGFR-mutant lung adenocarcinoma cell lines, HCC827 and H1975, were more resistant to EGFR TKI-induced apoptosis when cultured in a 3D extracellular matrix (ECM) as compared with in suspension. The ECM-adherent EGFR-mutant cells in 3D were significantly less sensitive to treatment with WZ4002, an EGFR TKI, than the suspended cells. Further, a marked degradation of IκBα, the inhibitor of nuclear factor (NF)-κB, was observed only in the 3D-cultured cells, leading to an increase in the activation of NF-κB. Moreover, the inhibition of NF-κB with pharmacological inhibitors enhanced EGFR TKI-induced apoptosis in 3D-cultured EGFR-mutant cells. These results suggest that inhibition of NF-κB signaling would render ECM-adherent EGFR-mutant lung adenocarcinoma cells in vivo more susceptible to EGFR TKI-induced cell death.

  8. Three hitherto unreported macro-fungi from Kashmir Himalaya

    International Nuclear Information System (INIS)

    Pala, S.A.; Wana, A.H.; Boda, R.H.

    2012-01-01

    The Himalayan state, Jammu and Kashmir due to its climate ranging from tropical deciduous forests to temperate and coniferous forests provides congenial habitat for the growth of diverse macro fungal species which in turn gives it the status of 'hub' of macro-fungal species. The macro fungal species richness of the state is directly related to its expansive forest communities and diverse weather patterns, but all the regions of the state have not been extensively surveyed till now. In this backdrop, a systematic survey for exploration and inventorization of macro fungal species of Western Kashmir Himalaya was undertaken during the year 2009 and 2010, which in turn resulted identification of the three species viz., Thelephora caryophyllea (Schaeff.) Pers., Coltricia cinnamomea (Pers.) Murr., and Guepinia helvelloides Fr. as new reports from the Kashmir. These species were identified on the basis of macro and microscopic characters and also the aid of taxonomic keys, field manuals, mushroom herbaria and help from expert taxonomists in the related field was taken into account. (author)

  9. Sequential treatment of icotinib after first-line pemetrexed in advanced lung adenocarcinoma with unknown EGFR gene status.

    Science.gov (United States)

    Zheng, Yulong; Fang, Weijia; Deng, Jing; Zhao, Peng; Xu, Nong; Zhou, Jianying

    2014-07-01

    In non-small cell lung cancer (NSCLC), the well-developed epidermal growth factor receptor (EGFR) is an important therapeutic target. EGFR activating gene mutations have been proved strongly predictive of response to EGFR-tyrosine kinase inhibitors (TKI) in NSCLC. However, both in daily clinical practice and clinical trials, patients with unknown EGFR gene status (UN-EGFR-GS) are very common. In this study, we assessed efficacy and tolerability of sequential treatment of first-line pemetrexed followed by icotinib in Chinese advanced lung adenocarcinoma with UN-EGFR-GS. We analyzed 38 patients with advanced lung adenocarcinoma with UN-EGFR-GS treated with first-line pemetrexed-based chemotherapy followed by icotinib as maintenance or second-line therapy. The response rates to pemetrexed and icotinib were 21.1% and 42.1%, respectively. The median overall survival was 27.0 months (95% CI, 19.7-34.2 months). The 12-month overall survival probability was 68.4%. The most common toxicities observed in icotinib phase were rashes, diarrheas, and elevated aminotransferase. Subgroup analysis indicated that the overall survival is correlated with response to icotinib. The sequence of first-line pemetrexed-based chemotherapy followed by icotinib treatment is a promising option for advanced lung adenocarcinoma with UN-EGFR-GS in China.

  10. Macro-economic Impact Study for Bio-based Malaysia

    NARCIS (Netherlands)

    Meijl, van H.; Smeets, E.M.W.; Dijk, van M.; Powell, J.P.; Tabeau, A.A.

    2012-01-01

    This Macro-economic Impact Study (MES) provides quantitative insights into the macro-economic effects of introducing green, palmbased alternatives for electricity, fuels, chemicals and materials industries in Malaysia between now and 2030.

  11. TWIST1 a new determinant of epithelial to mesenchymal transition in EGFR mutated lung adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Karine Pallier

    Full Text Available Metastasis is a multistep process and the main cause of mortality in lung cancer patients. We previously showed that EGFR mutations were associated with a copy number gain at a locus encompassing the TWIST1 gene on chromosome 7. TWIST1 is a highly conserved developmental gene involved in embryogenesis that may be reactivated in cancers promoting both malignant conversion and cancer progression through an epithelial to mesenchymal transition (EMT. The aim of this study was to investigate the possible implication of TWIST1 reactivation on the acquisition of a mesenchymal phenotype in EGFR mutated lung cancer. We studied a series of consecutive lung adenocarcinoma from Caucasian non-smokers for which surgical frozen samples were available (n = 33 and showed that TWIST1 expression was linked to EGFR mutations (P<0.001, to low CDH1 expression (P<0.05 and low disease free survival (P = 0.044. To validate that TWIST1 is a driver of EMT in EGFR mutated lung cancer, we used five human lung cancer cell lines and demonstrated that EMT and the associated cell mobility were dependent upon TWIST1 expression in cells with EGFR mutation. Moreover a decrease of EGFR pathway stimulation through EGF retrieval or an inhibition of TWIST1 expression by small RNA technology reversed the phenomenon. Collectively, our in vivo and in vitro findings support that TWIST1 collaborates with the EGF pathway in promoting EMT in EGFR mutated lung adenocarcinoma and that large series of EGFR mutated lung cancer patients are needed to further define the prognostic role of TWIST1 reactivation in this subgroup.

  12. Clinimetrics and clinical psychometrics: macro- and micro-analysis.

    Science.gov (United States)

    Tomba, Elena; Bech, Per

    2012-01-01

    Clinimetrics was introduced three decades ago to specify the domain of clinical markers in clinical medicine (indexes or rating scales). In this perspective, clinical validity is the platform for selecting the various indexes or rating scales (macro-analysis). Psychometric validation of these indexes or rating scales is the measuring aspect (micro-analysis). Clinical judgment analysis by experienced psychiatrists is included in the macro-analysis and the item response theory models are especially preferred in the micro-analysis when using the total score as a sufficient statistic. Clinical assessment tools covering severity of illness scales, prognostic measures, issues of co-morbidity, longitudinal assessments, recovery, stressors, lifestyle, psychological well-being, and illness behavior have been identified. The constructive dialogue in clinimetrics between clinical judgment and psychometric validation procedures is outlined for generating developments of clinical practice in psychiatry. Copyright © 2012 S. Karger AG, Basel.

  13. Nimotuzumab enhances temozolomide?induced growth suppression of glioma cells expressing mutant EGFR in vivo

    OpenAIRE

    Nitta, Yusuke; Shimizu, Saki; Shishido?Hara, Yukiko; Suzuki, Kaori; Shiokawa, Yoshiaki; Nagane, Motoo

    2016-01-01

    Abstract A mutant form of epidermal growth factor receptor (EGFR), EGFRvIII, is common in glioblastoma (GBM) and confers enhanced tumorigenic activity and drug resistance. Nimotuzumab, an anti?EGFR antibody, has shown preclinical and clinical activity to GBM, but its specific activity against EGFRvIII has not been fully investigated. Human glioma U87MG or LNZ308 cells overexpressing either wild?type (wt) EGFR or EGFRvIII were treated with nimotuzumab, temozolomide, or both. Expression and pho...

  14. SMOC Binds to Pro-EGF, but Does Not Induce Erk Phosphorylation via the EGFR.

    Science.gov (United States)

    Thomas, J Terrig; Chhuy-Hy, Lina; Andrykovich, Kristin R; Moos, Malcolm

    2016-01-01

    In an attempt to identify the cell-associated protein(s) through which SMOC (Secreted Modular Calcium binding protein) induces mitogen-activated protein kinase (MAPK) signaling, the epidermal growth factor receptor (EGFR) became a candidate. However, although in 32D/EGFR cells, the EGFR was phosphorylated in the presence of a commercially available human SMOC-1 (hSMOC-1), only minimal phosphorylation was observed in the presence of Xenopus SMOC-1 (XSMOC-1) or human SMOC-2. Analysis of the commercial hSMOC-1 product demonstrated the presence of pro-EGF as an impurity. When the pro-EGF was removed, only minimal EGFR activation was observed, indicating that SMOC does not signal primarily through EGFR and its receptor remains unidentified. Investigation of SMOC/pro-EGF binding affinity revealed a strong interaction that does not require the C-terminal extracellular calcium-binding (EC) domain of SMOC or the EGF domain of pro-EGF. SMOC does not appear to potentiate or inhibit MAPK signaling in response to pro-EGF, but the interaction could provide a mechanism for retaining soluble pro-EGF at the cell surface.

  15. Macro-economic impact of loss of health; Macro-economische impact van gezondheidsverlies

    Energy Technology Data Exchange (ETDEWEB)

    Franchimon, F. [BAM Techniek, Capelle a/d IJssel (Netherlands); Ament, H.J.A. [Universiteit Maastricht, Maastricht (Netherlands); Knies, J.; Pernot, C.E.E. [Pernot Consulting, Heeze (Netherlands); Van Bronswijk, J.M.H. [Technische Universiteit Eindhoven TUE, Eindhoven (Netherlands)

    2010-11-15

    More healthy life years are achievable by dwelling improvements. This article computes the healthy life years that may be gained by increased ventilation rates. It concerns the diseases Asthma, COPD en lung cancer. Increased ventilation removes house dust mites and their allergens, as well as tobacco smoke, which are associated with these diseases. Costs and savings are computes and compared in order to test the macro-economical feasibility of increased ventilation in dwellings. [Dutch] Door verbetering van woningen zijn veel gezonde levensjaren te behalen. In dit artikel worden de gewonnen gezonde levensjaren uitgerekend door meer ventileren voor de ziekten astma, COPD en longkanker. Zowel huisstofmijtallergeen als tabaksrook zijn geassocieerd met astma, COPD en longkanker. De kosten en de opbrengsten van meer ventileren worden met elkaar vergeleken om de macro-economische haalbaarheid te toetsen.

  16. Role of [18F]FDG PET in prediction of KRAS and EGFR mutation status in patients with advanced non-small-cell lung cancer

    International Nuclear Information System (INIS)

    Caicedo, Carlos; Garcia-Velloso, Maria Jose; Vigil Diaz, Carmen; Richter Echevarria, Jose Angel; Lozano, Maria Dolores; Labiano, Tania; Lopez-Picazo, Jose Maria; Gurpide, Alfonso; Perez Gracia, Jose Luis; Zulueta, Javier

    2014-01-01

    The tumour molecular profile predicts the activity of epidermal growth factor receptor (EGFR) inhibitors in non-small-cell lung cancer (NSCLC). However, tissue availability and tumour heterogeneity limit its assessment. We evaluated whether [ 18 F]FDG PET might help predict KRAS and EFGR mutation status in NSCLC. Between January 2005 and October 2011, 340 NSCLC patients were tested for KRAS and EGFR mutation status. We identified patients with stage III and IV disease who had undergone [ 18 F]FDG PET/CT scanning for initial staging. SUVpeak, SUVmax and SUVmean of the single hottest tumour lesions were calculated, and their association with KRAS and EGFR mutation status was assessed. A receiver operator characteristic (ROC) curve analysis and a multivariate analysis (including SUVmean, gender, age and AJCC stage) were performed to identify the potential value of [ 18 F]FDG PET/CT for predicting KRAS mutation. From 102 patients staged using [ 18 F]FDG PET/CT, 28 (27 %) had KRAS mutation (KRAS+), 22 (22 %) had EGFR mutation (EGFR+) and 52 (51 %) had wild-type KRAS and EGFR profiles (WT). KRAS+ patients showed significantly higher [ 18 F]FDG uptake than EGFR+ and WT patients (SUVmean 9.5, 5.7 and 6.6, respectively; p 18 F]FDG uptake between EGFR+ patients and WT patients. ROC curve analysis for KRAS mutation status discrimination yielded an area under the curve of 0.740 for SUVmean (p 18 F]FDG uptake than WT patients, as assessed in terms of SUVpeak, SUVmax and SUVmean. A multivariate model based on age, gender, AJCC stage and SUVmean might be used as a predictive marker of KRAS mutation status in patients with stage III or IV NSCLC. (orig.)

  17. Fluctuations in eGFR in relation to unenhanced and enhanced MRI and CT outpatients

    Energy Technology Data Exchange (ETDEWEB)

    Azzouz, Manal, E-mail: manalazzouz@gmail.com [Department of Diagnostic Radiology, Copenhagen University Hospital Herlev, Herlev Ringvej 75, DK 2730 Herlev (Denmark); Rømsing, Janne [Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø (Denmark); Thomsen, Henrik S. [Department of Diagnostic Radiology, Copenhagen University Hospital Herlev, Herlev Ringvej 75, DK 2730 Herlev (Denmark)

    2014-06-15

    Objective: To study fluctuations in estimated glomerular filtration rate (eGFR) in relation to contrast medium (CM) enhanced magnetic resonance imaging (MRI) and computed tomography (CT) compared to control groups in outpatients. Materials and methods: eGFR was determined right before the imaging procedure and three days later at the department or at the patient's home. The iodine-based and gadolinium-based contrast media were the same as used for all other examinations at the department. Results: A total of 716 patients completed the study. There was a statistically significant, but not clinically relevant rise in eGFR after three days in all four groups. The average eGFR variation was 4.8 ml/min/1.73 m{sup 2}. There were large variations in eGFR between the two measurements in 45.8% of the patients as they had a change greater than ±10 ml/min/1.73 m{sup 2}. Only three patients fulfilled the contrast-induced nephropathy (CIN) requirement when the definition s-creatinine ≥44 μmol/l (0.5 mg/dl) was used. Conclusions: eGFR in outpatients undergoing MRI or CT did vary independently of whether the patient received contrast or not. The findings probably reflect the natural variations in s-creatinine levels. This should be taken into consideration when CIN is studied.

  18. BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition

    International Nuclear Information System (INIS)

    Brunetto de Farias, Caroline; Heinen, Tiago Elias; Pereira dos Santos, Rafael; Abujamra, Ana Lucia; Schwartsmann, Gilberto

    2012-01-01

    Highlights: ► BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. ► TrkB inhibition potentiated the antitumor effect of cetuximab. ► BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling can protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.

  19. Fluctuations in eGFR in relation to unenhanced and enhanced MRI and CT outpatients

    International Nuclear Information System (INIS)

    Azzouz, Manal; Rømsing, Janne; Thomsen, Henrik S.

    2014-01-01

    Objective: To study fluctuations in estimated glomerular filtration rate (eGFR) in relation to contrast medium (CM) enhanced magnetic resonance imaging (MRI) and computed tomography (CT) compared to control groups in outpatients. Materials and methods: eGFR was determined right before the imaging procedure and three days later at the department or at the patient's home. The iodine-based and gadolinium-based contrast media were the same as used for all other examinations at the department. Results: A total of 716 patients completed the study. There was a statistically significant, but not clinically relevant rise in eGFR after three days in all four groups. The average eGFR variation was 4.8 ml/min/1.73 m 2 . There were large variations in eGFR between the two measurements in 45.8% of the patients as they had a change greater than ±10 ml/min/1.73 m 2 . Only three patients fulfilled the contrast-induced nephropathy (CIN) requirement when the definition s-creatinine ≥44 μmol/l (0.5 mg/dl) was used. Conclusions: eGFR in outpatients undergoing MRI or CT did vary independently of whether the patient received contrast or not. The findings probably reflect the natural variations in s-creatinine levels. This should be taken into consideration when CIN is studied

  20. Vorinostat and metformin sensitize EGFR-TKI resistant NSCLC cells via BIM-dependent apoptosis induction.

    Science.gov (United States)

    Chen, Hengyi; Wang, Yubo; Lin, Caiyu; Lu, Conghua; Han, Rui; Jiao, Lin; Li, Li; He, Yong

    2017-11-07

    There is a close relationship between low expression of BIM and resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). Vorinostat is a pan-histone deacetylase inhibitor (HDACi) that augments BIM expression in various types of tumor cells, however, this effect is attenuated by the high expression of anti-apoptotic proteins in EGFR-TKI resistant non-small cell lung cancer (NSCLC) cells. Vorinostat in combination with metformin - a compound that can inhibit anti-apoptotic proteins expression, might cooperate to activate apoptotic signaling and overcome EGFR-TKI resistance. This study aimed to investigate the cooperative effect and evaluate possible molecular mechanisms. The results showed that vorinostat combined with gefitinib augmented BIM expression and increased the sensitivity of EGFR-TKI resistant NSCLC cells to gefitinib, adding metformin simultaneously could obviously inhibit the expression of anti-apoptotic proteins, and further increased expression levels of BIM and BAX, and as a result, further improved the sensitivity of gefitinib both on the NSCLC cells with intrinsic and acquired resistance to EGFR-TKI. In addition, autophagy induced by gefitinib and vorinostat could be significantly suppressed by metformin, which might also contribute to enhance apoptosis and improve sensitivity of gefitinib. These results suggested that the combination of vorinostat and metformin might represent a novel strategy to overcome EGFR-TKI resistance associated with BIM-dependent apoptosis in larger heterogeneous populations.

  1. A genome-wide search for linkage of estimated glomerular filtration rate (eGFR) in the Family Investigation of Nephropathy and Diabetes (FIND).

    Science.gov (United States)

    Thameem, Farook; Igo, Robert P; Freedman, Barry I; Langefeld, Carl; Hanson, Robert L; Schelling, Jeffrey R; Elston, Robert C; Duggirala, Ravindranath; Nicholas, Susanne B; Goddard, Katrina A B; Divers, Jasmin; Guo, Xiuqing; Ipp, Eli; Kimmel, Paul L; Meoni, Lucy A; Shah, Vallabh O; Smith, Michael W; Winkler, Cheryl A; Zager, Philip G; Knowler, William C; Nelson, Robert G; Pahl, Madeline V; Parekh, Rulan S; Kao, W H Linda; Rasooly, Rebekah S; Adler, Sharon G; Abboud, Hanna E; Iyengar, Sudha K; Sedor, John R

    2013-01-01

    Estimated glomerular filtration rate (eGFR), a measure of kidney function, is heritable, suggesting that genes influence renal function. Genes that influence eGFR have been identified through genome-wide association studies. However, family-based linkage approaches may identify loci that explain a larger proportion of the heritability. This study used genome-wide linkage and association scans to identify quantitative trait loci (QTL) that influence eGFR. Genome-wide linkage and sparse association scans of eGFR were performed in families ascertained by probands with advanced diabetic nephropathy (DN) from the multi-ethnic Family Investigation of Nephropathy and Diabetes (FIND) study. This study included 954 African Americans (AA), 781 American Indians (AI), 614 European Americans (EA) and 1,611 Mexican Americans (MA). A total of 3,960 FIND participants were genotyped for 6,000 single nucleotide polymorphisms (SNPs) using the Illumina Linkage IVb panel. GFR was estimated by the Modification of Diet in Renal Disease (MDRD) formula. The non-parametric linkage analysis, accounting for the effects of diabetes duration and BMI, identified the strongest evidence for linkage of eGFR on chromosome 20q11 (log of the odds [LOD] = 3.34; P = 4.4 × 10(-5)) in MA and chromosome 15q12 (LOD = 2.84; P = 1.5 × 10(-4)) in EA. In all subjects, the strongest linkage signal for eGFR was detected on chromosome 10p12 (P = 5.5 × 10(-4)) at 44 cM near marker rs1339048. A subsequent association scan in both ancestry-specific groups and the entire population identified several SNPs significantly associated with eGFR across the genome. The present study describes the localization of QTL influencing eGFR on 20q11 in MA, 15q21 in EA and 10p12 in the combined ethnic groups participating in the FIND study. Identification of causal genes/variants influencing eGFR, within these linkage and association loci, will open new avenues for functional analyses and development of novel diagnostic markers

  2. Clinical Characteristics and Outcomes of Lung Cancer Patients 
with EGFR Mutations in Exons 19 and 21

    Directory of Open Access Journals (Sweden)

    Renwang LIU

    2014-11-01

    Full Text Available Background and objective Studies on the epidermal growth factor receptor (EGFR signaling pathways and the therapeutic effects of EGFR-tyrosine kinase inhibitors (EGFR-TKIs have recently proven that targeted therapy has a major role in the treatment of lung cancer. However, the therapeutic effects of EGFR-TKIs on lung cancers with different EGFR mutation subtypes remain unclear. And if there is a significant difference in the effects of EGFR-TKIs, the mechanisms for the difference remain unclear. The aim of this study was to investigate the clinical importance of EGFR mutations in exons 19 and 21 of lung cancer patients and to compare the outcomes of these patients. Methods The study recruited 113 patients who had non-small cell lung cancer (NSCLC with EGFR mutations. EGFR mutations were detected for 47 patients using Real-time PCR or DNA sequencinag. The mutations of the remaining patients were determined using xTag-EGFR liquid chip technology. All stages I-III patients underwent radical resection followed by 4 cycles of postoperative chemotherapy. Patients with pleural metastases underwent pleural biopsy, pleurodesis, and chemotherapy only. Patients with distant metastases underwent biopsy and chemotherapy only. Collected clinical data were analyzed using SPSS 19.0 software. Results EGFR exon mutations 19 and 21 were found in 56 and 57 patients, respectively. The mean age of patients with exon 19 mutations was lower than the age of the patients with exon 21 mutations (57.02±11.31 years vs 62.25±7.76 years, respectively; P0.05 between the patients with exon 19 and 21 mutations; and survival analysis of 91 (80.5% patients with complete clinical data found no differences in overall survival. Stratification analysis found out that patients with exon 19 mutations had longer overall survival associated with age>61 years, male gender, ever smoking, and stage IV disease; although the differences were not significant. Conclusion Compared to the lung

  3. Inhibition of radiation-induced EGFR nuclear import by C225 (Cetuximab) suppresses DNA-PK activity

    International Nuclear Information System (INIS)

    Dittmann, Klaus; Mayer, Claus; Rodemann, Hans-Peter

    2005-01-01

    Background and purpose: Inhibition of EGFR-function can induce radiosensitization in tumor cells. Purpose of our investigation was to identify the possible molecular mechanism of radiosensitization following treatment with anti-EGFR-antibody C225 (Cetuximab). Materials and methods: The effect of C225 on radiation response was determined in human cell lines of bronchial carcinoma (A549) and breast adenoma cells (MDA MB 231). The molecular effects of C225 on EGFR-function after irradiation were analyzed applying western blotting, immune-precipitation and kinase assays. Effects on DNA-repair were detected by quantification of γ-H2AX positive foci 24 h after irradiation. Results: The EGFR specific antibody C225 induced radiosensitization in A549 and also in MDA MB 231 cells. Radiosensitization in A549 was associated with blockage of radiation-induced EGFR transport into the nucleus, and immobilized the complex of EGFR with DNA-dependent protein kinase (DNA-PK) in the cytoplasm. As a consequence radiation-induced DNA-PK activation was abolished, a process that is essential for DNA-repair after radiation exposure. Likewise C225 treatment increased the residual amount of γ-H2AX-positive foci 24 h after irradiation in A549 and in MDA MB 231 cells. Conclusions: Our results suggest that irradiation induced DNA-PK activation-essential for DNA repair-may be hampered specifically by use of the anti-EGFR-antibody C225. This process is associated with radiosensitization

  4. Discovery of novel EGFR tyrosine kinase inhibitors by structure-based virtual screening.

    Science.gov (United States)

    Li, Siyuan; Sun, Xianqiang; Zhao, Hongli; Tang, Yun; Lan, Minbo

    2012-06-15

    By using of structure-based virtual screening, 13 novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors were discovered from 197,116 compounds in the SPECS database here. Among them, 8 compounds significantly inhibited EGFR kinase activity with IC(50) values lower than 10 μM. 3-{[1-(3-Chloro-4-fluorophenyl)-3,5-dioxo-4-pyrazolidinylidene]methyl}phenyl 2-thiophenecarboxylate (13), particularly, was the most potent inhibitor possessing the IC(50) value of 3.5 μM. The docking studies also provide some useful information that the docking models of the 13 compounds are beneficial to find a new path for designing novel EGFR inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Histone Deacetylase 3 Inhibition Overcomes BIM Deletion Polymorphism-Mediated Osimertinib Resistance in EGFR-Mutant Lung Cancer.

    Science.gov (United States)

    Tanimoto, Azusa; Takeuchi, Shinji; Arai, Sachiko; Fukuda, Koji; Yamada, Tadaaki; Roca, Xavier; Ong, S Tiong; Yano, Seiji

    2017-06-15

    Purpose: The BIM deletion polymorphism is associated with apoptosis resistance to EGFR tyrosine kinase inhibitors (EGFR-TKI), such as gefitinib and erlotinib, in non-small cell lung cancer (NSCLC) harboring EGFR mutations. Here, we investigated whether the BIM deletion polymorphism contributes to resistance against osimertinib, a third-generation EGFR-TKI. In addition, we determined the efficacy of a histone deacetylase (HDAC) inhibitor, vorinostat, against this form of resistance and elucidated the underlying mechanism. Experimental Design: We used EGFR -mutated NSCLC cell lines, which were either heterozygous or homozygous for the BIM deletion polymorphism, to evaluate the effect of osimertinib in vitro and in vivo Protein expression was examined by Western blotting. Alternative splicing of BIM mRNA was analyzed by RT-PCR. Results: EGFR -mutated NSCLC cell lines with the BIM deletion polymorphism exhibited apoptosis resistance to osimertinib in a polymorphism dosage-dependent manner, and this resistance was overcome by combined use with vorinostat. Experiments with homozygous BIM deletion-positive cells revealed that vorinostat affected the alternative splicing of BIM mRNA in the deletion allele, increased the expression of active BIM protein, and thereby induced apoptosis in osimertinib-treated cells. These effects were mediated predominantly by HDAC3 inhibition. In xenograft models, combined use of vorinostat with osimertinib could regress tumors in EGFR -mutated NSCLC cells homozygous for the BIM deletion polymorphism. Moreover, this combination could induce apoptosis even when tumor cells acquired EGFR -T790M mutations. Conclusions: These findings indicate the importance of developing HDAC3-selective inhibitors, and their combined use with osimertinib, for treating EGFR -mutated lung cancers carrying the BIM deletion polymorphism. Clin Cancer Res; 23(12); 3139-49. ©2016 AACR . ©2016 American Association for Cancer Research.

  6. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans

    Science.gov (United States)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang

    2005-10-01

    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  7. Small cell lung cancer transformation from EGFR-mutated lung adenocarcinoma: A case report and literatures review.

    Science.gov (United States)

    Liu, Yangyang

    2018-06-03

    Epithelial growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have markedly improved the response of non-small cell lung cancer (NSCLC) with EGFR-mutant patients. However, these patients inevitably come cross acquired resistance to EGFR-TKIs. The transformation of lung adenocarcinoma to small cell lung cancer (SCLC) following treatment with EGFR-TKIs is rare, which leads to resistance to EGFR-TKIs. The present case concerns a case of a 38-year-old man presenting with cough and dyspnea. Radical resection was performed and confirmed an EGFR exon 21 L858R lung adenocarcinoma. However, the patient suffered pleural metastasis after successful treatment with surgery and adjuvant treatment. So, erlotinib was administered with 18 months. Because of enlarged pleural nodule, repeat biopsy identified an SCLC and chemotherapy was started. However, despite the brief success of chemotherapy, our patient suffered brain metastasis. Our case emaphsizes both the profile of transformation from NSCLC to SCLC and the importance of repeat biopsy dealing with drug resistance. We also summarize the clinical characteristics, mechanisms, predictors of SCLC transformation, treatment after transformation and other types of transformation to SCLC.

  8. Efficacy of Icotinib for Advanced Non-small Cell Lung Cancer Patients with EGFR Status Identified

    Directory of Open Access Journals (Sweden)

    Yiping ZHANG

    2013-03-01

    Full Text Available Background and objective As the first epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI in China, icotinib shows promising anticancer activity in vitro and vivo. The phase III clinical study (ICOGEN showed that icotinib has a good efficacy and tolerability in Chinese patients with advanced non-small cell lung cancer (NSCLC compared with gefitinib. This retrospective study aims to evaluate the efficacy and tolerability of icotinib monotherapy for advanced NSCLC patients with EGFR mutation and wild-type patients in our hospital. Methods Patients with advanced NSCLC who were treated with icotinib in Zhejiang Cancer Hospital were retrospectively analyzed from August, 2011 to August, 2012. Survival was estimated using Kaplan-Meier analysis and Log-rank tests. Results The clinical data of 49 patients (13 with wild-type and 36 with EGFR mutation with NSCLC were enrolled in the current study. The patients’ overall objective response rate (ORR was 58.3% and the disease control rate (DCR in 36 EGFR mutation patients was 88.9%. The ORR was 7.7% and DCR was 53.8% in the wild-type patients. Median progression-free survival (PFS with icotinib treatment in EGFR mutation patients was 9.5 months and 2.2 months in wild-type patients (P<0.001. Nineteen patients with EGFR mutation received icotinib as first-line and 17 in further-line treatment. The PFS was 9.5 months in the first-line and 8.5 months for second-line or further-line patients (P=0.41. Median overall survival (OS in EGFR mutation patients was not reached, but was 12.6 months in wild-type patients. Most of the drug-related adverse events were mild (grade I or II and reversible with no grade IV toxicity. Conclusion Icotinib monotherapy showed significant antitumor activity in advanced NSCLC EGFR mutation patients. The toxicity was well tolerated and acceptable.

  9. Can baseline serum creatinine and e-GFR predict renal function outcome after augmentation cystoplasty in children?

    Science.gov (United States)

    Singh, Prempal; Bansal, Ankur; Sekhon, Virender; Nunia, Sandeep; Ansari, M S

    2018-01-01

    To assess cut-off value of creatinine and glomerular filtration rate for augmentation cystoplasty (AC) in paediatric age-group. Data of all paediatric-patients (Creatinine and e-GFR were assessed at the time of surgery, at 6 months and at last follow-up. Renal function deterioration was defined as increase in creatinine by ≥25% from baseline value or new-onset stage-3 CKD or worsening of CKD stage with pre-operative-CKD stage-3. ROCs were plotted using creatinine and e-GFR for AC. A total of 94 patients with mean-age 8.9 years were included. The mean creatinine and e-GFR were 1.33mg/dL and 57.68mL/min respectively. Out of 94 patients, AC was performed in 45 patients and in the remaining 49 patients AC was not done (control-group), as they were not willing for the same. Baseline patient's characteristics were comparable in both Groups. 22 underwent gastro-cystoplasty (GC) and 25 underwent ileo-cystoplasty (IC). Decline in renal function was observed in 15 (33.3%) patients of AC-group and in 31 (63.3%) patients of control-group. Patients having creatinine ≥1.54mg/dL (P=0.004, sensitivity (S) 63.6% and specificity (s) 90.5%) at baseline and e-GFR ≤46mL/min (P=0.000, S=100% and s=85.7%) at the time of surgery had significantly increased probability of renal function deterioration on follow-up after AC. e-GFR ≤46mL/min and creatinine ≥1.54mg/dL at time of surgery could serve as a predictor of renal function deterioration in AC in paediatric patients. Copyright® by the International Brazilian Journal of Urology.

  10. A 4-kbit low-cost antifuse one-time programmable memory macro for embedded applications

    International Nuclear Information System (INIS)

    Li Xian; Zhong Huicai; Jia Cheng; Li Xin

    2014-01-01

    A 4-kbit low-cost one-time programmable (OTP) memory macro for embedded applications is designed and implemented in a 0.18-μm standard CMOS process. The area of the proposed 1.5 transistor (1.5T) OTP cell is 2.13 μm 2 , which is a 49.3% size reduction compared to the previously reported cells. The 1.5T cell is fabricated and measured and shows a large programming window without any disturbance. A novel high voltage switch (HVSW) circuit is also proposed to make sure the OTP macro, implemented in a standard CMOS process, works reliably with the high program voltage. The OTP macro is embedded in negative radio frequency identification (RFID) tags. The full chip size, including the analog front-end, digital controller and the 4-kbit OTP macro, is 600 × 600 μm 2 . The 4-kbit OTP macro only consumes 200 × 260 μm 2 . The measurement shows a 100% program yield by adjusting the program time and has obvious advantages in the core area and power consumption compared to the reported 3T and 2T OTP cores. (semiconductor integrated circuits)

  11. Utility of chromogenic in situ hybridization (CISH) for detection of EGFR amplification in glioblastoma: comparison with fluorescence in situ hybridization (FISH).

    Science.gov (United States)

    Fischer, Ingeborg; de la Cruz, Clarissa; Rivera, Andreana L; Aldape, Kenneth

    2008-12-01

    In this study, we test the reliability of chromogenic in situ hybridization (CISH) for the detection of epidermal growth factor receptor (EGFR) gene amplification in glioblastoma. Earlier reports have described EGFR CISH in glioblastoma multiforme, but a comparison of CISH with a "gold standard" testing method, such as fluorescence in situ hybridization (FISH), has not been described. Therapies targeting the EGFR-signaling pathway might increase the importance of assessment of EGFR-amplification status. CISH is a potential alternative to FISH as a testing method. To test its reliability, EGFR-amplification status by CISH was assessed in 89 cases of glioblastoma and compared with FISH results, and correlated with the protein expression using immunohistochemistry (IHC) for EGFR. FISH was scored as being EGFR-amplified in 47/89 tumors, CISH as being amplified in 43/89 tumors. The CISH and FISH results were in agreement in 83/89 cases (93%). Four glioblastomas were scored as being amplified by FISH, but not by CISH; whereas amplification was detected in 2 tumors by CISH that were not amplified using FISH. Forty-eight of the 89 cases were positive for EGFR expression by IHC. EGFR amplification was highly correlated with protein expression by IHC, as 40/48 (83%) EGFR IHC-positive cases were found to be EGFR-amplified. The high concordance of CISH and FISH for the assessment of EGFR gene-amplification status indicates that CISH is a viable alternative to FISH for the detection of EGFR gene amplification in glioblastoma. Detectable EGFR expression by IHC can occur in the absence of gene amplification, but is uncommon.

  12. Adaptor protein containing PH domain, PTB domain and leucine zipper (APPL1) regulates the protein level of EGFR by modulating its trafficking

    International Nuclear Information System (INIS)

    Lee, Jae-Rin; Hahn, Hwa-Sun; Kim, Young-Hoon; Nguyen, Hong-Hoa; Yang, Jun-Mo; Kang, Jong-Sun; Hahn, Myong-Joon

    2011-01-01

    Highlights: ► APPL1 regulates the protein level of EGFR in response to EGF stimulation. ► Depletion of APPL1 accelerates the movement of EGF/EGFR from the cell surface to the perinuclear region in response to EGF. ► Knockdown of APPL1 enhances the activity of Rab5. -- Abstract: The EGFR-mediated signaling pathway regulates multiple biological processes such as cell proliferation, survival and differentiation. Previously APPL1 (adaptor protein containing PH domain, PTB domain and leucine zipper 1) has been reported to function as a downstream effector of EGF-initiated signaling. Here we demonstrate that APPL1 regulates EGFR protein levels in response to EGF stimulation. Overexpression of APPL1 enhances EGFR stabilization while APPL1 depletion by siRNA reduces EGFR protein levels. APPL1 depletion accelerates EGFR internalization and movement of EGF/EGFR from cell surface to the perinuclear region in response to EGF treatment. Conversely, overexpression of APPL1 decelerates EGFR internalization and translocation of EGF/EGFR to the perinuclear region. Furthermore, APPL1 depletion enhances the activity of Rab5 which is involved in internalization and trafficking of EGFR and inhibition of Rab5 in APPL1-depleted cells restored EGFR levels. Consistently, APPL1 depletion reduced activation of Akt, the downstream signaling effector of EGFR and this is restored by inhibition of Rab5. These findings suggest that APPL1 is required for EGFR signaling by regulation of EGFR stabilities through inhibition of Rab5.

  13. Maintenance of EGFR and EGFRvIII expressions in an in vivo and in vitro model of human glioblastoma multiforme

    DEFF Research Database (Denmark)

    Stockhausen, Marie-Thérése; Broholm, Helle; Villingshøj, Mette

    2011-01-01

    Glioblastoma multiforme (GBM) is the most common, and most aggressive primary brain tumor among adults. A vast majority of the tumors express high levels of the epidermal growth factor receptor (EGFR) as a consequence of gene amplification. Furthermore, gene amplification is often associated...... with mutation of EGFR, and the constitutive activated deletion variant EGFRvIII is the most common EGFR mutation found in GBM. Activated EGFR signaling, through overexpression and/or mutation, is involved in increased tumorigenic potential. As such, EGFR is an attractive target for GBM therapy. However......, clinical studies with EGFR inhibitors have shown inconsistent results, and as such, further knowledge regarding the role of EGFR and EGFRvIII in GBM is needed. For this, an appropriate in vivo/in vitro tumor model is required. Here, we report the establishment of an experimental GBM model in which...

  14. Epidermal to Mesenchymal Transition and Failure of EGFR-Targeted Therapy in Glioblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Pala, Andrej; Karpel-Massler, Georg [Department of Neurosurgery, University of Ulm School of Medicine, Steinhövelstrasse 9, Ulm D-89077 (Germany); Kast, Richard Eric [Department of Psychiatry, University of Vermont, 22 Church Street, Burlington, VT 05401 (United States); Wirtz, Christian Rainer; Halatsch, Marc-Eric, E-mail: marc-eric.halatsch@uniklinik-ulm.de [Department of Neurosurgery, University of Ulm School of Medicine, Steinhövelstrasse 9, Ulm D-89077 (Germany)

    2012-05-08

    Glioblastoma multiforme (GBM), the most common primary brain tumor in adults, is almost never curable with the current standard treatment consisting of surgical resection, irradiation and temozolomide. The prognosis remains poor despite undisputable advances in the understanding of this tumor’s molecular biology and pathophysiology, which unfortunately has so far failed to translate into a meaningful clinical benefit. Dysregulation and a resulting prominent pathophysiological role of the epidermal growth factor receptor (EGFR) have been identified in several different malignant tumor entities, GBM among them. The EGFR is overexpressed in about 40% of GBM cases, and half of these coexpress a mutant, constitutively activated subtype, EGFRvIII. Unfortunately, recent trials studying with therapeutic approaches targeted against the EGFR and EGFRvIII have failed to meet expectations, with only a minority of patients responding despite evidence of good in vitro and rodent model activity. Having potentially high relevance within this context, epithelial to mesenchymal transition (EMT) is a phenomenon associated with early stages of carcinogenesis, cancer invasion and recurrence. During EMT, epithelial cells lose many of their epithelial characteristics, prominently E-cadherin expression, and acquire properties that are typical for mesenchymal cells such as the expression of vimentin. Epithelial to mesenchymal transition has been specifically demonstrated in GBM. In this review, we summarize the evidence that EMT may precipitate GBM resistance to EGFR-targeted therapy, and may thus be among the principal factors contributing to the clinical failure of targeted therapy against EGFR and EGFRvIII.

  15. HER2 induced EMT and tumorigenicity in breast epithelial progenitor cells is inhibited by coexpression of EGFR

    OpenAIRE

    Ingthorsson, Saevar; Andersen, K; Hilmarsdóttir, Bylgja; Mælandsmo, Gunhild M; Magnusson, Magnus Karl; Gudjonsson, Thorarinn

    2015-01-01

    The members of the epidermal growth factor receptor (EGFR) kinase family are important players in breast morphogenesis and cancer. EGFR2/HER2 and EGFR expression have a prognostic value in certain subtypes of breast cancer such as HER2-amplified, basal-like and luminal type B. Many clinically approved small molecular inhibitors and monoclonal antibodies have been designed to target HER2, EGFR or both. There is, however, still limited knowledge on how the two receptors are expressed in normal ...

  16. CD147, CD44, and the epidermal growth factor receptor (EGFR) signaling pathway cooperate to regulate breast epithelial cell invasiveness.

    Science.gov (United States)

    Grass, G Daniel; Tolliver, Lauren B; Bratoeva, Momka; Toole, Bryan P

    2013-09-06

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777-788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer.

  17. CD147, CD44, and the Epidermal Growth Factor Receptor (EGFR) Signaling Pathway Cooperate to Regulate Breast Epithelial Cell Invasiveness*

    Science.gov (United States)

    Grass, G. Daniel; Tolliver, Lauren B.; Bratoeva, Momka; Toole, Bryan P.

    2013-01-01

    The immunoglobulin superfamily glycoprotein CD147 (emmprin; basigin) is associated with an invasive phenotype in various types of cancers, including malignant breast cancer. We showed recently that up-regulation of CD147 in non-transformed, non-invasive breast epithelial cells is sufficient to induce an invasive phenotype characterized by membrane type-1 matrix metalloproteinase (MT1-MMP)-dependent invadopodia activity (Grass, G. D., Bratoeva, M., and Toole, B. P. (2012) Regulation of invadopodia formation and activity by CD147. J. Cell Sci. 125, 777–788). Here we found that CD147 induces breast epithelial cell invasiveness by promoting epidermal growth factor receptor (EGFR)-Ras-ERK signaling in a manner dependent on hyaluronan-CD44 interaction. Furthermore, CD147 promotes assembly of signaling complexes containing CD147, CD44, and EGFR in lipid raftlike domains. We also found that oncogenic Ras regulates CD147 expression, hyaluronan synthesis, and formation of CD147-CD44-EGFR complexes, thus forming a positive feedback loop that may amplify invasiveness. Last, we showed that malignant breast cancer cells are heterogeneous in their expression of surface-associated CD147 and that high levels of membrane CD147 correlate with cell surface EGFR and CD44 levels, activated EGFR and ERK1, and activated invadopodia. Future studies should evaluate CD147 as a potential therapeutic target and disease stratification marker in breast cancer. PMID:23888049

  18. Meta-analysis of the impact of de novo and acquired EGFR T790M mutations on the prognosis of patients with non-small cell lung cancer receiving EGFR-TKIs

    Directory of Open Access Journals (Sweden)

    Liu Y

    2017-04-01

    Full Text Available Yang Liu, Li Sun, Zhi-Cheng Xiong, Xin Sun, Shu-Ling Zhang, Jie-Tao Ma, Cheng-Bo Han Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China Purpose: The purpose of this meta-analysis was to explore the influences of pretreatment de novo and posttreatment-acquired epidermal growth factor receptor (EGFR T790M mutations in patients with advanced non-small cell lung cancer (NSCLC who had received tyrosine kinase inhibitors (TKIs.Methods: We searched PubMed, Embase, and the China National Knowledge Infrastructure database for eligible literature. Data were extracted to assess the hazard ratios (HRs for progression-free survival (PFS, overall survival (OS, and post-progression survival (PPS and the relative ratios (RRs for objective response rate (ORR.Results: This meta-analysis included 22 studies comprising 1,462 patients with NSCLC who harbored activating EGFR mutations and were treated with EGFR-TKIs. Compared to pretreatment T790M mutation-negative NSCLC, pretreatment T790M mutation-positive NSCLC was associated with decreased PFS (HR 2.23, P<0.001 and OS (HR 1.55, P=0.003. A trend toward significance of worsening ORR (RR 0.86, P=0.051 was evident. The acquired T790M mutation was correlated with improved PFS (HR 0.75, P=0.006 and PPS (HR 0.57, P<0.001, compared to patients without the T790M mutation who progressed after EGFR-TKI treatment. There were no significant differences in OS or ORR between patients with acquired T790M mutation-positive and T790M mutation-negative NSCLC. However, in the tumor tissue rebiopsy subgroup, patients with acquired T790M mutation had improved OS (HR 0.60, P<0.001 compared to T790M mutation-negative patients. In the plasma ctDNA subgroup, acquired T790M mutation decreased the OS (HR 1.87, P<0.001.Conclusion: Pretreatment T790M mutation was associated with worse PFS and OS in patients with advanced NSCLC treated with EGFR-TKIs, while acquired T790M mutation was

  19. Potential of dynamic spectrum allocation in LTE macro networks

    Science.gov (United States)

    Hoffmann, H.; Ramachandra, P.; Kovács, I. Z.; Jorguseski, L.; Gunnarsson, F.; Kürner, T.

    2015-11-01

    In recent years Mobile Network Operators (MNOs) worldwide are extensively deploying LTE networks in different spectrum bands and utilising different bandwidth configurations. Initially, the deployment is coverage oriented with macro cells using the lower LTE spectrum bands. As the offered traffic (i.e. the requested traffic from the users) increases the LTE deployment evolves with macro cells expanded with additional capacity boosting LTE carriers in higher frequency bands complemented with micro or small cells in traffic hotspot areas. For MNOs it is crucial to use the LTE spectrum assets, as well as the installed network infrastructure, in the most cost efficient way. The dynamic spectrum allocation (DSA) aims at (de)activating the available LTE frequency carriers according to the temporal and spatial traffic variations in order to increase the overall LTE system performance in terms of total network capacity by reducing the interference. This paper evaluates the DSA potential of achieving the envisaged performance improvement and identifying in which system and traffic conditions the DSA should be deployed. A self-optimised network (SON) DSA algorithm is also proposed and evaluated. The evaluations have been carried out in a hexagonal and a realistic site-specific urban macro layout assuming a central traffic hotspot area surrounded with an area of lower traffic with a total size of approximately 8 × 8 km2. The results show that up to 47 % and up to 40 % possible DSA gains are achievable with regards to the carried system load (i.e. used resources) for homogenous traffic distribution with hexagonal layout and for realistic site-specific urban macro layout, respectively. The SON DSA algorithm evaluation in a realistic site-specific urban macro cell deployment scenario including realistic non-uniform spatial traffic distribution shows insignificant cell throughput (i.e. served traffic) performance gains. Nevertheless, in the SON DSA investigations, a gain of up

  20. Radioresistance of human glioma spheroids and expression of HSP70, p53 and EGFr

    International Nuclear Information System (INIS)

    Fedrigo, Carlos A; Rocha, Adriana B da; Grivicich, Ivana; Schunemann, Daniel P; Chemale, Ivan M; Santos, Daiane dos; Jacovas, Thais; Boschetti, Patryck S; Jotz, Geraldo P; Filho, Aroldo Braga

    2011-01-01

    Radiation therapy is routinely prescribed for high-grade malignant gliomas. However, the efficacy of this therapeutic modality is often limited by the occurrence of radioresistance, reflected as a diminished susceptibility of the irradiated cells to undergo cell death. Thus, cells have evolved an elegant system in response to ionizing radiation induced DNA damage, where p53, Hsp70 and/or EGFr may play an important role in the process. In the present study, we investigated whether the content of p53, Hsp70 and EGFr are associated to glioblastoma (GBM) cell radioresistance. Spheroids from U-87MG and MO59J cell lines as well as spheroids derived from primary culture of tumor tissue of one GBM patient (UGBM1) were irradiated (5, 10 and 20 Gy), their relative radioresistance were established and the p53, Hsp70 and EGFr contents were immunohistochemically determined. Moreover, we investigated whether EGFr-phospho-Akt and EGFr-MEK-ERK pathways can induce GBM radioresistance using inhibitors of activation of ERK (PD098059) and Akt (wortmannin). At 5 Gy irradiation UGBM1 and U-87MG spheroids showed growth inhibition whereas the MO59J spheroid was relatively radioresistant. Overall, no significant changes in p53 and Hsp70 expression were found following 5 Gy irradiation treatment in all spheroids studied. The only difference observed in Hsp70 content was the periphery distribution in MO59J spheroids. However, 5 Gy treatment induced a significant increase on the EGFr levels in MO59J spheroids. Furthermore, treatment with inhibitors of activation of ERK (PD098059) and Akt (wortmannin) leads to radiosensitization of MO59J spheroids. These results indicate that the PI3K-Akt and MEK-ERK pathways triggered by EGFr confer GBM radioresistance

  1. SKLB188 inhibits the growth of head and neck squamous cell carcinoma by suppressing EGFR signalling.

    Science.gov (United States)

    Barzegar, Mansoureh; Ma, Shuang; Zhang, Chao; Chen, Xin; Gu, Ying; Shang, Chaowei; Jiang, Xiaojuan; Yang, Jiao; Nathan, Cherie-Ann; Yang, Shengyong; Huang, Shile

    2017-10-10

    Overexpression of epidermal growth factor receptor (EGFR) occurs in approximately 90% of head and neck squamous cell carcinoma (HNSCC), and is correlated with poor prognosis. Thus, targeting EGFR is a promising strategy for treatment of HNSCC. Several small molecule EGFR inhibitors have been tested in clinical trials for treatment of HNSCC, but none of them are more effective than the current chemotherapeutic drugs. Thus, it is urgently needed to develop novel EGFR inhibitors for HNSCC treatment. By screening an in-house focused library containing approximately 650 000 known kinase inhibitors and kinase inhibitor-like compounds containing common kinase inhibitor core scaffolds, we identified SKLB188 as a lead compound for inhibition of EGFR. The anticancer effects of SKLB188 on HNSCC cells were investigated by in vitro cell growth, cell cycle and apoptosis assays, as well as in vivo FaDu xenograft mouse model. Molecular docking, in vitro kinase profiling and western blotting were performed to characterise EGFR as the molecular target. SKLB188 inhibited HNSCC cell proliferation by inducing G 1 cell cycle arrest, which was associated with downregulating the expression of Cdc25A, cyclins D1/A and cyclin-dependent kinases (CDK2/4), and upregulating the expression of cyclin-dependent kinase (CDK) inhibitors (p21 Cip1 and p27 Kip1 ), leading to decreased phosphorylation of Rb. SKLB188 also induced caspase-dependent apoptosis of HNSCC cells by downregulating the expression of Mcl-1 and survivin. Molecular docking revealed that SKLB188 could bind to the kinase domain of EGFR through hydrogen bonds and hydrophobic interactions. In vitro kinase assay showed that SKLB188 inhibited the activity of a recombinant human EGFR very potently (IC 50 =5 nM). Western blot analysis demonstrated that SKLB188 inhibited the phosphorylation of EGFR and its downstream targets, extracellular signal-regulated protein kinases 1 and 2 (Erk1/2) and Akt in the cells. In addition, SKLB188 dose

  2. Droplet digital PCR-based EGFR mutation detection with an internal quality control index to determine the quality of DNA.

    Science.gov (United States)

    Kim, Sung-Su; Choi, Hyun-Jeung; Kim, Jin Ju; Kim, M Sun; Lee, In-Seon; Byun, Bohyun; Jia, Lina; Oh, Myung Ryurl; Moon, Youngho; Park, Sarah; Choi, Joon-Seok; Chae, Seoung Wan; Nam, Byung-Ho; Kim, Jin-Soo; Kim, Jihun; Min, Byung Soh; Lee, Jae Seok; Won, Jae-Kyung; Cho, Soo Youn; Choi, Yoon-La; Shin, Young Kee

    2018-01-11

    In clinical translational research and molecular in vitro diagnostics, a major challenge in the detection of genetic mutations is overcoming artefactual results caused by the low-quality of formalin-fixed paraffin-embedded tissue (FFPET)-derived DNA (FFPET-DNA). Here, we propose the use of an 'internal quality control (iQC) index' as a criterion for judging the minimum quality of DNA for PCR-based analyses. In a pre-clinical study comparing the results from droplet digital PCR-based EGFR mutation test (ddEGFR test) and qPCR-based EGFR mutation test (cobas EGFR test), iQC index ≥ 0.5 (iQC copies ≥ 500, using 3.3 ng of FFPET-DNA [1,000 genome equivalents]) was established, indicating that more than half of the input DNA was amplifiable. Using this criterion, we conducted a retrospective comparative clinical study of the ddEGFR and cobas EGFR tests for the detection of EGFR mutations in non-small cell lung cancer (NSCLC) FFPET-DNA samples. Compared with the cobas EGFR test, the ddEGFR test exhibited superior analytical performance and equivalent or higher clinical performance. Furthermore, iQC index is a reliable indicator of the quality of FFPET-DNA and could be used to prevent incorrect diagnoses arising from low-quality samples.

  3. BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Brunetto de Farias, Caroline [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Children' s Cancer Institute, 90420-140 Porto Alegre, RS (Brazil); Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Heinen, Tiago Elias; Pereira dos Santos, Rafael [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Abujamra, Ana Lucia [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); Children' s Cancer Institute, 90420-140 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Schwartsmann, Gilberto [Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); National Institute for Translational Medicine (INCT-TM), 90035-003 Porto Alegre, RS (Brazil); Department of Internal Medicine, School of Medicine, Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS (Brazil); and others

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. Black-Right-Pointing-Pointer TrkB inhibition potentiated the antitumor effect of cetuximab. Black-Right-Pointing-Pointer BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling can protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.

  4. Comparative analysis of clinicoradiologic characteristics of lung adenocarcinomas with ALK rearrangements or EGFR mutations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.Y.; Zheng, J.; Chen, X.; Zhou, J.Y. [Zhejiang University, Department of Respiratory Disease, Thoracic Disease Center, First Affiliated Hospital, College of Medicine, Hangzhou (China); Yu, Z.F.; Xiao, W.B.; Jiang, L.N. [Zhejiang University, Department of Radiology, First Affiliated Hospital, College of Medicine, Hangzhou (China); Zhao, J.; Sun, K.; Wang, B.; Ding, W. [Zhejiang University, Department of Pathology, First Affiliated Hospital, College of Medicine, Hangzhou (China)

    2015-05-01

    To compare the clinicoradiologic features of tumours with echinoderm anaplastic lymphoma kinase (ALK) rearrangements, epidermal growth factor receptor (EGFR) mutations, or wild type (WT) for both genes in a cohort of patients with lung adenocarcinoma to identify useful characteristics of different gene statuses. In 346 lung adenocarcinoma patients, ALK rearrangements were confirmed with fluorescence in situ hybridisation, and EGFR mutations were determined by pyrosequencing assay. Patients were divided into three groups: ALK rearrangement (ALK+ group, n = 48), EGFR mutation (EGFR+ group, n = 166), and WT for both genes (WT group, n = 132). Chest computed tomography (CT) examinations were performed in all patients. The percentages of ground-glass opacity volume (pGGO) and tumour shadow disappearance rate (TDR) were measured using semi-automated nodule assessment software. The pGGO was significantly lower in the ALK+ group (25.1 % ± 24.3) than in the EGFR+ group (37.2 % ± 25.7, p < 0.001) and the WT group (36.1 % ± 24.6, p = 0.001). The TDR in the ALK+ group (17.3 % ± 25.1) was significantly lower than in the EGFR+ group (26.8 % ± 24.9, p = 0.002) and the WT group (25.7 % ± 24.6, p = 0.003). Solid pattern with lower incidence of lobulated border, finely spiculated margins, pleural retraction, and bubble-like lucency on CT imaging are the main characteristics of ALK rearrangement tumours. (orig.)

  5. Nimotuzumab promotes radiosensitivity of EGFR-overexpression esophageal squamous cell carcinoma cells by upregulating IGFBP-3

    Directory of Open Access Journals (Sweden)

    Zhao Lei

    2012-12-01

    Full Text Available Abstract Background Epidermal growth factor receptor (EGFR is suggested to predict the radiosensitivity and/or prognosis of human esophageal squamous cell carcinoma (ESCC. The objective of this study was to investigate the efficacy of Nimotuzumab (an anti-EGFR monoclonal antibody on ESCC radiotherapy (RT and underlying mechanisms. Methods Nimotuzumab was administrated to 2 ESCC cell lines KYSE30 and TE-1 treated with RT. Cell growth, colony formation and apoptosis were used to measure anti-proliferation effects. The method of RNA interference was used to investigate the role of insulin-like growth factor binding protein-3 (IGFBP-3 in ESCC cells radiosensitivity treated with Nimotuzumab. In vivo effect of Nimotuzumab on ESCC radiotherapy was done using a mouse xenograft model. Results Nimotuzumab enhanced radiation response of KYSE30 cells (with high EGFR expression in vitro, as evidenced by increased radiation-inhibited cell growth and colony formation and radiation-mediated apoptosis. Mechanism study revealed that Nimotuzumab inhibited phosphorylated EGFR (p-EGFR induced by EGF in KYSE30 cells. In addition, knockdown of IGFBP-3 by short hairpin RNA significantly reduced KYSE30 cells radiosensitivity (PP>0.05. In KYSE30 cell xenografts, Nimotuzumab combined with radiation led to significant tumor growth delay, compared with that of radiation alone (P=0.029, and also with IGFBP-3 up-regulation in tumor tissue. Conclusions Nimotuzumab could enhance the RT effect of ESCC cells with a functional active EGFR pathway. In particular, the increased ESCC radiosensitivity by Nimotuzumab might be dependent on the up-regulation of IGFBP-3 through EGFR-dependent pathway.

  6. Cellular Response to Titanium Dioxide Nanoparticles in Intestinal Epithelial Caco-2 Cells is Dependent on Endocytosis-Associated Structures and Mediated by EGFR

    Science.gov (United States)

    Krüger, Kristin; Schrader, Katrin; Klempt, Martin

    2017-01-01

    Titanium dioxide (TiO2) is one of the most applied nanomaterials and widely used in food and non-food industries as an additive or coating material (E171). It has been shown that E171 contains up to 37% particles which are smaller than 100 nm and that TiO2 nanoparticles (NPs) induce cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells (NF-κB) reporter cell line (Caco-2nfkb-RE), Real time polymerase chain reaction (PCR), and inhibition of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO2 NPs (nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the uptake of TiO2 NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to TiO2 NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO2 NPs enter the cell via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway, which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells exposed to 32 nm and 490 nm TiO2 particles. PMID:28387727

  7. Cellular Response to Titanium Dioxide Nanoparticles in Intestinal Epithelial Caco-2 Cells is Dependent on Endocytosis-Associated Structures and Mediated by EGFR.

    Science.gov (United States)

    Krüger, Kristin; Schrader, Katrin; Klempt, Martin

    2017-04-07

    Titanium dioxide (TiO₂) is one of the most applied nanomaterials and widely used in food and non-food industries as an additive or coating material (E171). It has been shown that E171 contains up to 37% particles which are smaller than 100 nm and that TiO₂ nanoparticles (NPs) induce cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells (NF-κB) reporter cell line (Caco-2 nfkb-RE ), Real time polymerase chain reaction (PCR), and inhibition of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO₂ NPs (nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the uptake of TiO₂ NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to TiO₂ NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO₂ NPs enter the cell via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway, which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells exposed to 32 nm and 490 nm TiO₂ particles.

  8. EGFR testing and clinical management of advanced NSCLC: a Galician Lung Cancer Group study (GGCP 048-10

    Directory of Open Access Journals (Sweden)

    Vázquez S

    2016-02-01

    Full Text Available Sergio Vázquez,1 Joaquín Casal,2 Francisco Javier Afonso Afonso,3 José Luis Fírvida,4 Lucía Santomé,5 Francisco Barón,6 Martín Lázaro,7 Carolina Pena,7 Margarita Amenedo,8 Ihab Abdulkader,9 Carmen González-Arenas,10 Laura Fachal,11 Ana Vega11 On behalf of the Galician Lung Cancer Group (GGCP1Medical Oncology Department, Lucus Augusti University Hospital, Lugo, 2Medical Oncology Department, University Hospital Complex of Vigo, Pontevedra, 3Medical Oncology Department, University Hospital Complex of Ferrol, Ferrol, 4Medical Oncology Department, University Hospital Complex of Ourense, Ourense, 5Medical Oncology Department Povisa Hospital, Vigo, 6Medical Oncology Department, University Hospital Complex of Santiago de Compostela, Santiago de Compostela, 7Medical Oncology Department, Hospital Complex of Pontevedra, Pontevedra, 8Medical Oncology Department, Oncology Center of Galicia, A Coruña, 9Anatomical Pathology Department, University Hospital Complex of Santiago de Compostela, Santiago de Compostela, 10AstraZeneca, Madrid, 11Galician Public Foundation of Genomic Medicine-SERGAS, Santiago de Compostela Clinic Hospital, Santiago de Compostela, Spain Purpose: This study aimed to assess the incidence of mutations in the epidermal growth factor receptor (EGFR gene in non-small-cell lung cancer (NSCLC patients in the Galician region of Spain and the clinical management and outcome of patients carrying EGFR mutations. Patients and methods: All newly diagnosed advanced or metastatic NSCLC patients were screened for EGFR mutations in matched tumor samples (tissue or cytology specimens and serum samples. Results: Of 198 patients screened for EGFR mutations in tumor samples, 184 had evaluable data and, of these, 25 (13.6% had EGFR mutations (84% sensitizing mutations. EGFR mutation was found in serum in 14 (8.1% patients (of 174 evaluable. Compared to matched tumor tissue, serum EGFR mutation testing specificity and sensitivity were 99% and 52

  9. Impact of heavy metals on macro-invertebrate fauna of the thaddo stream

    International Nuclear Information System (INIS)

    Nazneen, S.; Begum, F.; Sharmeen, R.; Ahmed, Z.

    2003-01-01

    Impact of some heavy metals like zinc, lead, copper, chromium and cadmium were studied at four spots on the macro-invertebrate fauna of the Thaddo stream, a tributary of Malir River. This was in correlation with an earlier study on the physico-chemical aspects of water which showed a severe pollution in this stream. Present data for the qualitative and quantitative analyses of macro-invertebrates and the ranges of heavy metals (Zn 0.5-3.5, Pb 0.90-1.42, Cu 0.35-0.93, Cr 0.0-0.08 and Cd 0.003-0.01 ppm) in the water samples also indicate high level of pollution in the stream. Macro-invertebrate fauna comprises only of aquatic insects which include larvae of Chironomus spp., adults of the Notonectus sp., and nymphs of Gomphus sp. (dragon fly) belonging to the order Diptera , Hemiptera and Odonata, respectively. Quantitatively Notonectus sp. predominated and followed by Chironomus larvae. The maximum concentrations of all heavy metals were recorded at spot 3. A general trend of increase was observed from up stream to down stream regions particularly in the level of zinc. However, a reverse trend was observed in the abundance of macro-invertebrates with a great reduction at spot 4. The statistical analysis of the data generally indicates a negative correlation between the values of the studied heavy metals and the abundance of macro-invertebrates throughout this study. (author)

  10. Selective regain of egfr gene copies in CD44+/CD24-/low breast cancer cellular model MDA-MB-468

    International Nuclear Information System (INIS)

    Agelopoulos, Konstantin; Buerger, Horst; Brandt, Burkhard; Greve, Burkhard; Schmidt, Hartmut; Pospisil, Heike; Kurtz, Stefan; Bartkowiak, Kai; Andreas, Antje; Wieczorek, Marek; Korsching, Eberhard

    2010-01-01

    Increased transcription of oncogenes like the epidermal growth factor receptor (EGFR) is frequently caused by amplification of the whole gene or at least of regulatory sequences. Aim of this study was to pinpoint mechanistic parameters occurring during egfr copy number gains leading to a stable EGFR overexpression and high sensitivity to extracellular signalling. A deeper understanding of those marker events might improve early diagnosis of cancer in suspect lesions, early detection of cancer progression and the prediction of egfr targeted therapies. The basal-like/stemness type breast cancer cell line subpopulation MDA-MB-468 CD44 high /CD24 -/low , carrying high egfr amplifications, was chosen as a model system in this study. Subclones of the heterogeneous cell line expressing low and high EGF receptor densities were isolated by cell sorting. Genomic profiling was carried out for these by means of SNP array profiling, qPCR and FISH. Cell cycle analysis was performed using the BrdU quenching technique. Low and high EGFR expressing MDA-MB-468 CD44 + /CD24 -/low subpopulations separated by cell sorting showed intermediate and high copy numbers of egfr, respectively. However, during cell culture an increase solely for egfr gene copy numbers in the intermediate subpopulation occurred. This shift was based on the formation of new cells which regained egfr gene copies. By two parametric cell cycle analysis clonal effects mediated through growth advantage of cells bearing higher egfr gene copy numbers could most likely be excluded for being the driving force. Subsequently, the detection of a fragile site distal to the egfr gene, sustaining uncapped telomere-less chromosomal ends, the ladder-like structure of the intrachromosomal egfr amplification and a broader range of egfr copy numbers support the assumption that dynamic chromosomal rearrangements, like breakage-fusion-bridge-cycles other than proliferation drive the gain of egfr copies. Progressive genome modulation

  11. The E3 ubiquitin ligase NEDD4 mediates cell migration signaling of EGFR in lung cancer cells.

    Science.gov (United States)

    Shao, Genbao; Wang, Ranran; Sun, Aiqin; Wei, Jing; Peng, Ke; Dai, Qian; Yang, Wannian; Lin, Qiong

    2018-02-19

    EGFR-dependent cell migration plays an important role in lung cancer progression. Our previous study observed that the HECT E3 ubiquitin ligase NEDD4 is significantly correlated with tumor metastasis and required for migration and invasion signaling of EGFR in gastric cancer cells. However, how NEDD4 promotes the EGFR-dependent lung cancer cell migration is unknown. This study is to elucidate the mechanism by which NEDD4 mediates the EGFR lung cancer migration signaling. Lentiviral vector-loaded NEDD4 shRNA was used to deplete endogenous NEDD4 in lung cancer cell lines. Effects of the NEDD4 knockdown on the EGFR-dependent or independent lung cancer cell migration were determined using the wound-healing and transwell assays. Association of NEDD4 with activated EGFR was assayed by co-immunoprecipitation. Co-expression of NEDD4 with EGFR or PTEN was determined by immunohistochemical (IHC) staining in 63 lung adenocarcinoma tissue samples. Effects of NEDD4 ectopic expression or knockdown on PTEN ubiquitination and down-regulation, AKT activation and lysosomal secretion were examined using the GST-Uba pulldown assay, immunoblotting, immunofluorescent staining and a human cathepsin B ELISA assay respectively. The specific cathepsin B inhibitor CA-074Me was used for assessing the role of cathepsin B in lung cancer cell migration. Knockdown of NEDD4 significantly reduced EGF-stimulated cell migration in non-small cell lung carcinoma (NSCLC) cells. Co-immunoprecipitation assay found that NEDD4 is associated with EGFR complex upon EGF stimulation, and IHC staining indicates that NEDD4 is co-expressed with EGFR in lung adenocarcinoma tumor tissues, suggesting that NEDD4 might mediate lung cancer cell migration by interaction with the EGFR signaling complex. Interestingly, NEDD4 promotes the EGF-induced cathepsin B secretion, possibly through lysosomal exocytosis, as overexpression of the ligase-dead mutant of NEDD4 impedes lysosomal secretion, and knockdown of NEDD4

  12. SPSS macros to compare any two fitted values from a regression model.

    Science.gov (United States)

    Weaver, Bruce; Dubois, Sacha

    2012-12-01

    In regression models with first-order terms only, the coefficient for a given variable is typically interpreted as the change in the fitted value of Y for a one-unit increase in that variable, with all other variables held constant. Therefore, each regression coefficient represents the difference between two fitted values of Y. But the coefficients represent only a fraction of the possible fitted value comparisons that might be of interest to researchers. For many fitted value comparisons that are not captured by any of the regression coefficients, common statistical software packages do not provide the standard errors needed to compute confidence intervals or carry out statistical tests-particularly in more complex models that include interactions, polynomial terms, or regression splines. We describe two SPSS macros that implement a matrix algebra method for comparing any two fitted values from a regression model. The !OLScomp and !MLEcomp macros are for use with models fitted via ordinary least squares and maximum likelihood estimation, respectively. The output from the macros includes the standard error of the difference between the two fitted values, a 95% confidence interval for the difference, and a corresponding statistical test with its p-value.

  13. Quantum dots immunofluorescence histochemical detection of EGFR gene mutations in the non-small cell lung cancers using mutation-specific antibodies

    Directory of Open Access Journals (Sweden)

    Qu YG

    2014-12-01

    Full Text Available Yan-Gang Qu,1 Qian Zhang,2 Qi Pan,3 Xian-Da Zhao,4 Yan-Hua Huang,2 Fu-Chun Chen,3 Hong-Lei Chen41Department of Pathology, The Central Hospital of Enshi Autonomous Prefecture, Enshi, 2Department of Molecular Pathology, Wuhan Nano Tumor Diagnosis Engineering Research Center, Wuhan, Hubei, People’s Republic of China; 3Department of Thoracosurgery, Traditional Chinese Medical Hospital of Wenling, Wenling, Zhejiang, People’s Republic of China; 4Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, Hubei, People’s Republic of ChinaBackground: Epidermal growth factor receptor (EGFR mutation status plays an important role in therapeutic decision making for non-small cell lung cancer (NSCLC patients. Since EGFR mutation-specific antibodies (E746-A750del and L858R have been developed, EGFR mutation detection by immunohistochemistry (IHC is a suitable screening test. On this basis, we want to establish a new screening test, quantum dots immunofluorescence histochemistry (QDs-IHC, to assess EGFR gene mutation in NSCLC tissues, and we compared it to traditional IHC and amplification refractory mutation system (ARMS.Materials and methods: EGFR gene mutations were detected by QDs-IHC, IHC, and ADx-ARMS in 65 cases of NSCLC composed of 55 formalin-fixed, paraffin-embedded specimens and ten pleural effusion cell blocks, including 13 squamous cell carcinomas, two adenosquamous carcinomas, and 50 adenocarcinomas.Results: Positive rates of EGFR gene mutations detected by QDs-IHC, IHC, and ADx-ARMS were 40.0%, 36.9%, and 46.2%, respectively, in 65 cases of NSCLC patients. The sensitivity of QDs-IHC when detecting EGFR mutations, as compared to ADx-ARMS, was 86.7% (26/30; the specificity for both antibodies was 100.0% (26/26. IHC sensitivity was 80.0% (24/30 and the specificity was 92.31% (24/26. When detecting EGFR mutations, QDs-IHC and ADx-ARMS had perfect consistency (κ=0.882; P<0.01. Excellent agreement was observed

  14. Acquired resistance of EGFR-mutant lung adenocarcinomas to afatinib plus cetuximab is associated with activation of mTORC1

    Science.gov (United States)

    Pirazzoli, Valentina; Nebhan, Caroline; Song, Xiaoling; Wurtz, Anna; Walther, Zenta; Cai, Guoping; Zhao, Zhongming; Jia, Peilin; de Stanchina, Elisa; Shapiro, Erik M.; Gale, Molly; Yin, Ruonan; Horn, Leora; Carbone, David P.; Stephens, Philip J; Miller, Vincent; Gettinger, Scott; Pao, William; Politi, Katerina

    2014-01-01

    SUMMARY Patients with EGFR-mutant lung adenocarcinomas (LUADs) who initially respond to first-generation TKIs develop resistance to these drugs. A combination of the irreversible TKI afatinib and the EGFR antibody cetuximab can be used to overcome resistance to first-generation TKIs; however, resistance to this drug combination eventually emerges. We identified activation of the mTORC1 signaling pathway as a mechanism of resistance to dual inhibition of EGFR in mouse models. Addition of rapamycin reversed resistance in vivo. Analysis of afatinib+cetuximab-resistant biopsy specimens revealed the presence of genomic alterations in genes that modulate mTORC1 signaling including NF2 and TSC1. These findings pinpoint enhanced mTORC1 activation as a mechanism of resistance to afatinib+cetuximab and identify genomic mechanisms that lead to activation of this pathway, revealing a potential therapeutic strategy for treating patients with resistance to these drugs. PMID:24813888

  15. Epidermal Growth Factor Receptor Variant III (EGFRvIII) Positivity in EGFR-Amplified Glioblastomas: Prognostic Role and Comparison between Primary and Recurrent Tumors.

    Science.gov (United States)

    Felsberg, Jörg; Hentschel, Bettina; Kaulich, Kerstin; Gramatzki, Dorothee; Zacher, Angela; Malzkorn, Bastian; Kamp, Marcel; Sabel, Michael; Simon, Matthias; Westphal, Manfred; Schackert, Gabriele; Tonn, Jörg C; Pietsch, Torsten; von Deimling, Andreas; Loeffler, Markus; Reifenberger, Guido; Weller, Michael

    2017-11-15

    Purpose: Approximately 40% of all glioblastomas have amplified the EGFR gene, and about half of these tumors express the EGFRvIII variant. The prognostic role of EGFRvIII in EGFR -amplified glioblastoma patients and changes in EGFRvIII expression in recurrent versus primary glioblastomas remain controversial, but such data are highly relevant for EGFRvIII-targeted therapies. Experimental Design: EGFR -amplified glioblastomas from 106 patients were assessed for EGFRvIII positivity. Changes in EGFR amplification and EGFRvIII status from primary to recurrent glioblastomas were evaluated in 40 patients with EGFR -amplified tumors and 33 patients with EGFR -nonamplified tumors. EGFR single-nucleotide variants (SNV) were assessed in 27 patients. Data were correlated with outcome and validated in 150 glioblastoma patients from The Cancer Genome Atlas (TCGA) consortium. Results: Sixty of 106 EGFR -amplified glioblastomas were EGFRvIII-positive (56.6%). EGFRvIII positivity was not associated with different progression-free or overall survival. EGFRvIII status was unchanged at recurrence in 35 of 40 patients with EGFR -amplified primary tumors (87.5%). Four patients lost and one patient gained EGFRvIII positivity at recurrence. None of 33 EGFR- nonamplified glioblastomas acquired EGFR amplification or EGFRvIII at recurrence. EGFR SNVs were frequent in EGFR -amplified tumors, but were not linked to survival. Conclusions: EGFRvIII and EGFR SNVs are not prognostic in EGFR -amplified glioblastoma patients. EGFR amplification is retained in recurrent glioblastomas. Most EGFRvIII-positive glioblastomas maintain EGFRvIII positivity at recurrence. However, EGFRvIII expression may change in a subset of patients at recurrence, thus repeated biopsy with reassessment of EGFRvIII status is recommended for patients with recurrent glioblastoma to receive EGFRvIII-targeting agents. Clin Cancer Res; 23(22); 6846-55. ©2017 AACR . ©2017 American Association for Cancer Research.

  16. Effects of EGFR Inhibitor on Helicobacter pylori Induced Gastric Epithelial Pathology in Vivo

    Directory of Open Access Journals (Sweden)

    Philip A. Robinson

    2013-10-01

    Full Text Available Helicobacter pylori transactivates the Epidermal Growth Factor Receptor (EGFR and predisposes to gastric cancer development in humans and animal models. To examine the importance of EGFR signalling to gastric pathology, this study investigated whether treatment of Mongolian gerbils with a selective EGFR tyrosine kinase inhibitor, EKB-569, altered gastric pathology in chronic H. pylori infection. Gerbils were infected with H. pylori and six weeks later received either EKB-569-supplemented, or control diet, for 32 weeks prior to sacrifice. EKB-569-treated H. pylori-infected gerbils had no difference in H. pylori colonisation or inflammation scores compared to infected animals on control diet, but showed significantly less corpus atrophy, mucous metaplasia and submucosal glandular herniations along with markedly reduced antral and corpus epithelial proliferation to apoptosis ratios. EKB-569-treated infected gerbils had significantly decreased abundance of Cox-2, Adam17 and Egfr gastric transcripts relative to infected animals on control diet. EGFR inhibition by EKB-569 therefore reduced the severity of pre-neoplastic gastric pathology in chronically H. pylori-infected gerbils. EKB-569 increased gastric epithelial apoptosis in H. pylori-infected gerbils which counteracted some of the consequences of increased gastric epithelial cell proliferation. Similar chemopreventative strategies may be useful in humans who are at high risk of developing H.pylori-induced gastric adenocarcinoma.

  17. Individualized therapies in colorectal cancer: KRAS as a marker for response to EGFR-targeted therapy

    Directory of Open Access Journals (Sweden)

    Li Kuiyuan

    2009-04-01

    Full Text Available Abstract Individualized therapies that are tailored to a patient's genetic composition will be of tremendous value for treatment of cancer. Recently, Kirsten ras (KRAS status has emerged as a predictor of response to epidermal growth factor receptor (EGFR targeted therapies. In this article, we will discuss targeted therapies for colorectal cancers (CRC based on EGFR signaling pathway and review published data about the potential usefulness of KRAS as a biological marker for response to these therapies. Results from relevant studies published since 2005 and unpublished results presented at national meetings were retrieved and summarized. These studies reflected response (or lack of response to EGFR-targeted therapies in patients with metastatic CRC as a function of KRAS status. It has become clear that patients with colorectal cancer whose tumor has an activating mutation in KRAS do not respond to monoclonal antibody therapies targeting EGFR. It should now become a standard practice that any patients being considered for EGFR targeted therapies have their tumors tested for KRAS status and only those with wild-type KRAS being offered such therapies.

  18. Two approaches for the analysis of masonry structures : Micro and macro-modeling

    NARCIS (Netherlands)

    Laurenco, P.B.; Rots, J.G.; Blaauwendraad, J.

    1995-01-01

    Two models for the micro- and macro-analysis of masonry structures are presented. For the micromodeling of masonry, an interface failure criterion that includes a straight tension cut-off, the Coulomb friction law and an elliptical cap is proposed. The inelastic behavior includes tensile strength

  19. PGE2 mediates EGFR internalization and nuclear translocation via caveolin endocytosis promoting its transcriptional activity and proliferation in human NSCLC cells.

    Science.gov (United States)

    Bazzani, Lorenzo; Donnini, Sandra; Giachetti, Antonio; Christofori, Gerhard; Ziche, Marina

    2018-03-13

    Prostaglandin E 2 (PGE 2 ) contributes to tumor progression by promoting cancer cell growth, invasion and by creating a favorable pro-tumor microenvironment. PGE 2 has been reported to transactivate and internalize into the nucleus receptor tyrosine kinases such as Epidermal growth factor receptor (EGFR), thereby supporting tumor progression. Here we demonstrate that in non-small cell lung carcinoma (NSCLC) cells, PGE 2 induces EGFR nuclear translocation via different dynamin-dependent endocytic pathways, promotes the formation of an EGFR-STAT3 complex, affects nuclear EGFR target gene expression and mediates tumor cell proliferation. Indeed, we find that PGE 2 induces EGFR internalization and consequent nuclear import through Clathrin- and Caveolin-mediated endocytosis and through the interaction of EGFR with Importin β1. Within the nucleus, EGFR forms a complex with STAT3, an event blocked by ablation of Clathrin Heavy Chain or Caveolin-1. The combination of EGF and PGE 2 prolongs nuclear EGFR transcriptional activity manifested by the upregulation of CCND1 , PTGS2 , MYC and NOS2 mRNA levels and potentiates nuclear EGFR-induced NSCLC cell proliferation. Additionally, NSCLC patients with high expression of a nuclear EGFR gene signature display shorter survival times than those with low expression, thus showing a putative correlation between nuclear EGFR and poor prognosis in NSCLC. Together, our findings indicate a complex mechanism underlying PGE 2 -induced EGF/EGFR signaling and transcriptional control, which plays a key role in cancer progression.

  20. Prognostic and predictive value of p-Akt, EGFR, and p-mTOR in early breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, Georgios; Lambaki, Sofia [Hospital, Department of Pathology, Thessaloniki (Greece); Karayannopoulou, Georgia [Aristotle Univ. of Thessaloniki School of Medicine, Thessaloniki (Greece). Dept. of Pathology; Eleftheraki, Anastasia G. [Data Office, Athens (Greece). Section of Biostatistics; Papaspirou, Irene [Alexandra Hospital, Athens (Greece). Dept. of Pathology; Bobos, Mattheos [Aristotle Univ. of Thessaloniki School of Medicine, Thessaloniki (Greece). Lab. of Molecular Oncology; Efstratiou, Ioannis [Papageorgiou Hospital, Thessaloniki (Greece). Dept. of Pathology; Pentheroudakis, George [Ioannina Univ. Hospital, Ioannina (Greece). Dept. of Medical Oncology; Zamboglou, Nikolaos [Klinikum Offenbach (Germany). Dept. of Radiation Oncology; Fountzilas, George [Hospital, Department of Pathology, Thessaloniki (Greece); Aristotle Univ. of Thessaloniki School of Medicine, Thessaloniki (Greece). Lab. of Molecular Oncology

    2014-07-15

    There are scarce data available on the prognostic/predictive value of p-Akt and p-mTOR protein expression in patients with high-risk early breast cancer. Formalin-fixed paraffin-embedded (FFPE) tumor tissue samples from 997 patients participating in two adjuvant phase III trials were assessed for EGFR, PTEN, p-Akt, p-mTOR protein expression, and PIK3CA mutational status. These markers were evaluated for associations with each other and with selected patient and tumor characteristics, immunohistochemical subtypes, disease-free survival (DFS), and overall survival (OS). p-mTOR protein expression was negatively associated with EGFR and positively associated with PTEN, with p-Akt473, and with the presence of PIK3CA mutations. EGFR expression was positively associated with p-Akt473, p-Akt308, and PIK3CA wild-type tumors. Finally, p-Akt308 was positively associated with p-Akt473 expression. In univariate analysis, EGFR (p = 0.016) and the coexpression of EGFR and p-mTOR (p = 0.015) were associated with poor OS. Among patients with p-Akt308-negative or low-expressing tumors, those treated with hormonal therapy were associated with decreased risk for both relapse and death (p = 0.013 and p < 0.001, respectively). In the subgroup of patients with locoregional relapse, positive EGFR and mTOR protein expression was found to be associated with increased (p = 0.034) and decreased (p < 0.001) risk for earlier relapse, respectively. In multivariate analysis, low levels of p-Akt308 and the coexpression of EGFR and p-mTOR retained their prognostic value. Low protein expression of p-Akt308 was associated with improved DFS and OS among patients treated with hormonal therapy following adjuvant chemotherapy. Coexpression of EGFR and p-mTOR was associated with worse OS. (orig.) [German] Geringe Daten existieren ueber den prognostischen/praediktiven Wert der p-Akt- und p-mTOR-Proteinexpression bei Patienten mit ''High-risk''-Mammakarzinom im Fruehstadium

  1. EGFR signaling promotes β-cell proliferation and survivin expression during pregnancy.

    Directory of Open Access Journals (Sweden)

    Elina Hakonen

    Full Text Available Placental lactogen (PL induced serotonergic signaling is essential for gestational β-cell mass expansion. We have previously shown that intact Epidermal growth factor -receptor (EGFR function is a crucial component of this pathway. We now explored more specifically the link between EGFR and pregnancy-induced β-cell mass compensation. Islets were isolated from wild-type and β-cell-specific EGFR-dominant negative mice (E1-DN, stimulated with PL and analyzed for β-cell proliferation and expression of genes involved in gestational β-cell growth. β-cell mass dynamics were analyzed both with traditional morphometrical methods and three-dimensional optical projection tomography (OPT of whole-mount insulin-stained pancreata. Insulin-positive volume analyzed with OPT increased 1.4-fold at gestational day 18.5 (GD18.5 when compared to non-pregnant mice. Number of islets peaked by GD13.5 (680 vs 1134 islets per pancreas, non-pregnant vs. GD13.5. PL stimulated beta cell proliferation in the wild-type islets, whereas the proliferative response was absent in the E1-DN mouse islets. Serotonin synthesizing enzymes were upregulated similarly in both the wild-type and E1-DN mice. However, while survivin (Birc5 mRNA was upregulated 5.5-fold during pregnancy in the wild-type islets, no change was seen in the E1-DN pregnant islets. PL induced survivin expression also in isolated islets and this was blocked by EGFR inhibitor gefitinib, mTOR inhibitor rapamycin and MEK inhibitor PD0325901. Our 3D-volumetric analysis of β-cell mass expansion during murine pregnancy revealed that islet number increases during pregnancy. In addition, our results suggest that EGFR signaling is required for lactogen-induced survivin expression via MAPK and mTOR pathways.

  2. Epidermal to Mesenchymal Transition and Failure of EGFR-Targeted Therapy in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Marc-Eric Halatsch

    2012-05-01

    Full Text Available Glioblastoma multiforme (GBM, the most common primary brain tumor in adults, is almost never curable with the current standard treatment consisting of surgical resection, irradiation and temozolomide. The prognosis remains poor despite undisputable advances in the understanding of this tumor’s molecular biology and pathophysiology, which unfortunately has so far failed to translate into a meaningful clinical benefit. Dysregulation and a resulting prominent pathophysiological role of the epidermal growth factor receptor (EGFR have been identified in several different malignant tumor entities, GBM among them. The EGFR is overexpressed in about 40% of GBM cases, and half of these coexpress a mutant, constitutively activated subtype, EGFRvIII. Unfortunately, recent trials studying with therapeutic approaches targeted against the EGFR and EGFRvIII have failed to meet expectations, with only a minority of patients responding despite evidence of good in vitro and rodent model activity. Having potentially high relevance within this context, epithelial to mesenchymal transition (EMT is a phenomenon associated with early stages of carcinogenesis, cancer invasion and recurrence. During EMT, epithelial cells lose many of their epithelial characteristics, prominently E-cadherin expression, and acquire properties that are typical for mesenchymal cells such as the expression of vimentin. Epithelial to mesenchymal transition has been specifically demonstrated in GBM. In this review, we summarize the evidence that EMT may precipitate GBM resistance to EGFR-targeted therapy, and may thus be among the principal factors contributing to the clinical failure of targeted therapy against EGFR and EGFRvIII.

  3. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    International Nuclear Information System (INIS)

    Chen, Zhi-Dong; Xu, Liang; Tang, Kan-Kai; Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong; Sun, Ren-Hua; Mo, Shi-Jing

    2016-01-01

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF

  4. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi-Dong [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Xu, Liang [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Tang, Kan-Kai [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Sun, Ren-Hua, E-mail: jqin168@hotmail.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Mo, Shi-Jing, E-mail: msj860307@163.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China)

    2016-09-10

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF

  5. Hubungan BRAF V600E dan EGFR dengan Metastasis ke Kelenjar Getah Bening pada Adenokarsinoma Kolorektal

    Directory of Open Access Journals (Sweden)

    Fenny Ariyanni

    2015-09-01

    Full Text Available Colorectal adenocarcinoma is an epithelial malignant tumor with glandular differentiation. Lymph node metastasis affects the prognosis and management of colorectal carcinoma patients. In this study, association of BRAF V600E and EGFR with metastasis of the lymph nodes was investigated. This was a cross sectional study with unpaired categorical analysis of colorectal adenocarcinoma obtained from archival paraffin blocks from consecutively selected samples. The blocks were stained by BRAF V600E and EGFR antibodies at the Department of Anatomical Pathology, Faculty of Medicine, Universitas Padjadjaran/Dr. Hasan Sadikin General Hospital during the period of February to June 2014. There was no association between positive BRAF V600E immunoexpression and lymph node metastasis, p=0.269 (p>0.05, chi-square test. Similarly, there was no association between positive EGFR immunoexpression and lymph node metastasis, p=0.713 (p>0.05, chi-square test. Positive BRAF V600E immunoexpresion and positive EGFR immunoexpression also had no association with lymph node metastasis, p=0.427 (Fisher Exact test. BRAF and EGFR may play a role in the epithelial mesenchymal transition to increase cell migration and invasion. However, in colorectal adenocarcinoma, BRAF V600E and EGFR were not associated with lymph node metastasis. In conclusions, positive BRAF V600E immunoexpression and positive EGFR immunoexpression in colorectal adenocarcinoma should not be used as markers for the metastazing potentials of colorectal adenocarcinoma tumors.

  6. Detection and Analysis of EGFR and KRAS Mutations 
in the Patients with Lung Squamous Cell Carcinomas

    Directory of Open Access Journals (Sweden)

    Hui ZHANG

    2015-10-01

    Full Text Available Background and objective Activating mutations in epidermal growth factor receptor (EGFR and KRAS are important markers in non-small cell lung cancer. However, EGFR and KRAS gene mutations in lung squamous cell carcinoma are rarely reported. The aim of this study was to analyze EGFR and KRAS gene mutation rate and their relationship with clinical features in patients with lung squamous cell carcinomas. Methods A total of 139 patients undergoing treatment for naïve lung squamous cell carcinomas with tumor tissue samples available for testing were recruited. EGFR and KRAS mutation statuses of the tumor samples were detected using a mutant enriched liquid chip. Results Of the 139 cases of lung squamous cell carcinoma, EGFR mutations were detected in 25 cases (18%, KRAS mutations were detected in 7 cases (5%, and the presence of both EGFR and KRAS mutations was detected in 1 case (0.7%. EGFR mutations occurred more often in females than in males (33.3% vs 16.5% and in patients that never smoked than in those who smoke (29.6% vs 16.1%. However, the difference did not reach statistical significance (P>0.05. No significant differences were observed in age, stage, and different biopsy type. KRAS mutations occurred more often in males than in females (5.5% vs 0%, but the difference did not reach statistical significance (P>0.05. No significant differences were observed in age, stage, different biopsy type, and smoking status (P>0.05. Conclusion EGFR and KRAS mutations were low in lung squamous cell carcinomas, and had no significant correlation with clinical features. Before using tyrosine kinase inhibitor targeted therapy, EGFR and KRAS mutations should be detected in patients with lung squamous cell carcinomas.

  7. Evaluation of EGFR, KRAS and BRAF gene mutations in renal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Omer Bayrak

    2014-08-01

    Full Text Available A subset of renal cell carcinoma (RCC patients has been shown to respond to anti-EGFR therapy. As KRAS and BRAF mutations are associated with poor response to anti-EGFR therapy in some cancers, it has been suggested that screening for KRAS and BRAF mutations in RCC may be a promising strategy to identify patients who might respond to EGFR-targeted therapy. The aim of this study was to investigate the mutation status of EGFR, KRAS and BRAF in RCC patients. Renal tumors and normal renal samples from forty-eight patients who underwent radical or partial nephrectomy for kidney cancer were used in this study. Histological classification of the tumors was performed according to International Union against Cancer (UICC / American Joint Committee on Cancer (AJCC classification. Seventeen patients (48% had clear-cell RCC, 7 (20% had chromophobe RCC, and 11 patients (32% had papillary RCC. DNA isolated from the samples was subjected to melting curve mutation analysis for EGFR, BRAF and KRAS using ABI-3130 DNA sequencer. DNA sequencing analysis of RCC samples, when compared with morphologically normal matched regions, did not show any exon mutations. Our results do not support the notion that EGFR, KRAS and BRAF might be mutated in RCC. Normal 0 false false false TR X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:8.0pt; mso-para-margin-left:0cm; line-height:107%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-ansi-language:TR; mso-fareast-language:EN-US;}

  8. Dual gain of HER2 and EGFR gene copy numbers impacts the prognosis of carcinoma ex pleomorphic adenoma.

    Science.gov (United States)

    Nishijima, Toshimitsu; Yamamoto, Hidetaka; Nakano, Takafumi; Nakashima, Torahiko; Taguchi, Ken-ichi; Masuda, Muneyuki; Motoshita, Jun-ichi; Komune, Shizuo; Oda, Yoshinao

    2015-11-01

    We investigated the potential roles of HER2 and EGFR and evaluated their prognostic significance in carcinoma ex pleomorphic adenoma (CXPA). We analyzed HER2 and EGFR overexpression status using immunohistochemistry (IHC) and gene copy number gain by chromogenic in situ hybridization (CISH) in 50 cases of CXPA (40 ductal-type and 10 myoepithelial-type CXPAs). Salivary duct carcinoma was the most common histologic subtype of malignant component (n = 21). Immunohistochemistry positivity and chromogenic in situ hybridization positivity were closely correlated in both HER2 and EGFR. HER2 CISH positivity (mostly gene amplification) and EGFR CISH positivity (mostly gene high polysomy) were present in 19 (40%) and 21 (44%) cases, respectively, and were each significantly correlated with poor outcome (P = .0009 and P = .0032, respectively). Dual gain of HER2 and EGFR gene copy numbers was present in 11 cases (23%) and was the most aggressive genotype. HER2 CISH positivity was more frequently present in ductal-type CXPAs (47%) than in myoepithelial-type CXPAs (10%), whereas the prevalence of EGFR CISH positivity was similar in both histologic subtypes (42% and 50%, respectively). Our results suggest that HER2 and EGFR gene copy number gains may play an important role in the progression of CXPA, in particular ductal-type CXPAs. HER2 CISH-positive/EGFR CISH-positive tumors may be the most aggressive subgroup in CXPA. The molecular subclassification of CXPA based on the HER2 and EGFR status may be helpful for prognostic prediction and decisions regarding the choice of therapeutic strategy. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Dynamic Resource Partitioning for Downlink Femto-to-Macro-Cell Interference Avoidance

    Directory of Open Access Journals (Sweden)

    Zubin Bharucha

    2010-01-01

    Full Text Available Femto-cells consist of user-deployed Home Evolved NodeBs (HeNBs that promise substantial gains in system spectral efficiency, coverage, and data rates due to an enhanced reuse of radio resources. However, reusing radio resources in an uncoordinated, random fashion introduces potentially destructive interference to the system, both, in the femto and macro layers. An especially critical scenario is a closed-access femto-cell, cochannel deployed with a macro-cell, which imposes strong downlink interference to nearby macro user equipments (UEs that are not permitted to hand over to the femto-cell. In order to maintain reliable service of macro-cells, it is imperative to mitigate the destructive femto-cell to macro-cell interference. The contribution in this paper focuses on mitigating downlink femto-cell to macro-cell interference through dynamic resource partitioning, in the way that HeNBs are denied access to downlink resources that are assigned to macro UEs in their vicinity. By doing so, interference to the most vulnerable macro UEs is effectively controlled at the expense of a modest degradation in femto-cell capacity. The necessary signaling is conveyed through downlink high interference indicator (DL-HII messages over the wired backbone. Extensive system level simulations demonstrate that by using resource partitioning, for a sacrifice of 4% of overall femto downlink capacity, macro UEs exposed to high HeNB interference experience a tenfold boost in capacity.

  10. Feasibility Study of Sequentially Alternating EGFR-TKIs and Chemotherapy for Patients with Non-small Cell Lung Cancer.

    Science.gov (United States)

    Takemura, Yoshizumi; Chihara, Yusuke; Morimoto, Yoshie; Tanimura, Keiko; Imabayashi, Tatsuya; Seko, Yurie; Kaneko, Yoshiko; Date, Koji; Ueda, Mikio; Arimoto, Taichiro; Iwasaki, Yoshinobu; Takayama, Koichi

    2018-04-01

    The purpose of this trial was to evaluate the feasibility and efficacy of alternating platinum-based doublet chemotherapy with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) in patients with EGFR-mutant non-small cell lung cancer (NSCLC). Chemotherapy-naive patients with advanced NSCLC harboring an EGFR mutation were enrolled. All patients underwent induction chemotherapy by sequentially alternating pemetrexed/cisplatin/bevacizumab and EGFR-TKIs followed by maintenance therapy with pemetrexed/bevacizumab and EGFR-TKIs. The primary outcome was the completion rate of the induction therapy. Eighteen eligible patients were enrolled between May 2011 and March 2016. The completion rate of induction therapy was 72.2% (13/18). Unfortunately, one patient developed grade 4 acute renal injury, but no other serious complications concerning this protocol were observed. Furthermore, diarrhea, rashes, and hematological adverse effects were mild. The completion rate of induction therapy was promising. Alternating chemotherapy and EGFR-TKIs should be further investigated regarding feasibility and efficacy. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. Research on Mechanisms and Controlling Methods of Macro Defects in TC4 Alloy Fabricated by Wire Additive Manufacturing.

    Science.gov (United States)

    Ji, Lei; Lu, Jiping; Tang, Shuiyuan; Wu, Qianru; Wang, Jiachen; Ma, Shuyuan; Fan, Hongli; Liu, Changmeng

    2018-06-28

    Wire feeding additive manufacturing (WFAM) has broad application prospects because of its advantages of low cost and high efficiency. However, with the mode of lateral wire feeding, including wire and laser additive manufacturing, gas tungsten arc additive manufacturing etc., it is easy to generate macro defects on the surface of the components because of the anisotropy of melted wire, which limits the promotion and application of WFAM. In this work, gas tungsten arc additive manufacturing with lateral wire feeding is proposed to investigate the mechanisms of macro defects. The results illustrate that the defect forms mainly include side spatters, collapse, poor flatness, and unmelted wire. It was found that the heat input, layer thickness, tool path, and wire curvature can have an impact on the macro defects. Side spatters are the most serious defects, mainly because the droplets cannot be transferred to the center of the molten pool in the lateral wire feeding mode. This research indicates that the macro defects can be controlled by optimizing the process parameters. Finally, block parts without macro defects were fabricated, which is meaningful for the further application of WFAM.

  12. Intake of macro- and micronutrients in Danish vegans

    DEFF Research Database (Denmark)

    Kristensen, Nadja B; Madsen, Mia L; H Hansen, Tue

    2015-01-01

    Since information about macro- and micronutrient intake among vegans is limited we aimed to determine and evaluate their dietary and supplementary intake. Seventy 18-61 years old Danish vegans completed a four-day weighed food record from which their daily intake of macro- and micronutrients was ...

  13. Effects of icotinib with and without radiation therapy on patients with EGFR mutant non-small cell lung cancer and brain metastases

    OpenAIRE

    Yun Fan; Yanjun Xu; Lei Gong; luo Fang; Hongyang Lu; Jing Qin; Na Han; Fajun Xie; Guoqin Qiu; Zhiyu Huang

    2017-01-01

    EGFR-TKIs and radiation therapy (RT) are the principal treatment for patients with brain metastases (BM) and EGFR mutant NSCLC. However, the optimal use of brain RT for patients with asymptomatic BM remains undefined. A total of 152 patients were identified. 58 patients were excluded. Of the remaining 97 patients, 56 patients received upfront RT followed by icotinib, including WBRT or SRS. 41 patients received icotinib therapy alone. The mOS from diagnosis of BM was 27.0 months for the whole ...

  14. SAS-macros for estimation and prediction in an model of the electricity consumption

    DEFF Research Database (Denmark)

    1998-01-01

    SAS-macros for estimation and prediction in an model of the electricity consumption'' is a large collection of SAS-macros for handling a model of the electricity consumption in the Eastern Denmark. The macros are installed at Elkraft, Ballerup.......SAS-macros for estimation and prediction in an model of the electricity consumption'' is a large collection of SAS-macros for handling a model of the electricity consumption in the Eastern Denmark. The macros are installed at Elkraft, Ballerup....

  15. Scaling up: Assessing social impacts at the macro-scale

    International Nuclear Information System (INIS)

    Schirmer, Jacki

    2011-01-01

    Social impacts occur at various scales, from the micro-scale of the individual to the macro-scale of the community. Identifying the macro-scale social changes that results from an impacting event is a common goal of social impact assessment (SIA), but is challenging as multiple factors simultaneously influence social trends at any given time, and there are usually only a small number of cases available for examination. While some methods have been proposed for establishing the contribution of an impacting event to macro-scale social change, they remain relatively untested. This paper critically reviews methods recommended to assess macro-scale social impacts, and proposes and demonstrates a new approach. The 'scaling up' method involves developing a chain of logic linking change at the individual/site scale to the community scale. It enables a more problematised assessment of the likely contribution of an impacting event to macro-scale social change than previous approaches. The use of this approach in a recent study of change in dairy farming in south east Australia is described.

  16. A genome-wide search for linkage of estimated glomerular filtration rate (eGFR in the Family Investigation of Nephropathy and Diabetes (FIND.

    Directory of Open Access Journals (Sweden)

    Farook Thameem

    Full Text Available Estimated glomerular filtration rate (eGFR, a measure of kidney function, is heritable, suggesting that genes influence renal function. Genes that influence eGFR have been identified through genome-wide association studies. However, family-based linkage approaches may identify loci that explain a larger proportion of the heritability. This study used genome-wide linkage and association scans to identify quantitative trait loci (QTL that influence eGFR.Genome-wide linkage and sparse association scans of eGFR were performed in families ascertained by probands with advanced diabetic nephropathy (DN from the multi-ethnic Family Investigation of Nephropathy and Diabetes (FIND study. This study included 954 African Americans (AA, 781 American Indians (AI, 614 European Americans (EA and 1,611 Mexican Americans (MA. A total of 3,960 FIND participants were genotyped for 6,000 single nucleotide polymorphisms (SNPs using the Illumina Linkage IVb panel. GFR was estimated by the Modification of Diet in Renal Disease (MDRD formula.The non-parametric linkage analysis, accounting for the effects of diabetes duration and BMI, identified the strongest evidence for linkage of eGFR on chromosome 20q11 (log of the odds [LOD] = 3.34; P = 4.4 × 10(-5 in MA and chromosome 15q12 (LOD = 2.84; P = 1.5 × 10(-4 in EA. In all subjects, the strongest linkage signal for eGFR was detected on chromosome 10p12 (P = 5.5 × 10(-4 at 44 cM near marker rs1339048. A subsequent association scan in both ancestry-specific groups and the entire population identified several SNPs significantly associated with eGFR across the genome.The present study describes the localization of QTL influencing eGFR on 20q11 in MA, 15q21 in EA and 10p12 in the combined ethnic groups participating in the FIND study. Identification of causal genes/variants influencing eGFR, within these linkage and association loci, will open new avenues for functional analyses and development of novel diagnostic markers

  17. Circulating microRNAs in relation to EGFR status and survival of lung adenocarcinoma in female non-smokers.

    Directory of Open Access Journals (Sweden)

    Huan Zhang

    Full Text Available OBJECTIVES: Lung adenocarcinoma is considered a unique disease for Asian female non-smokers. We investigated whether plasma microRNA (miRNA expression profiles are different by the EGFR status and are associated with survival outcomes of the patients. METHODS: Using real-time RT-PCR, we analyzed the expression of 20 miRNAs in the plasma of 105 female patients with lung adenocarcinoma. Kaplan-Meier survival analysis and Cox proportional hazards regression were performed to determine the association between miRNA expression and overall survival. Time dependent receiver operating characteristic (ROC analysis was also performed. RESULTS: In the 20 miRNAs, miR-122 were found differently expressed between wild and mutant EGFR carriers (P=0.018. Advanced disease stage and tumor metastasis were independently associated with poor prognosis of patients with lung adenocarcinoma (P=0.010 and 1.0×10(-4. Plasma levels of miR-195 and miR-122 expression were also associated with overall survival in the patients, especially in those with advanced stage (HR=0.23, 95%CI:0.07-0.84; and HR=0.22, 95%CI:0.06-0.77 and EGFR mutation (HR=0.27, 95%CI:0.08-0.96; and HR=0.23, 95%CI=0.06-0.81. Moreover, a model including miR-195, miR-122 may predict survival outcomes of female patients with lung adenocarcinoma (AUC=0.707. CONCLUSIONS: Circulating miR-195 and miR-122 may have prognostic values in predicting the overall survival as well as predicting EGFR mutation status in non-smoking female patients with lung adenocarcinoma. Measuring plasma levels of miR-195 and miR-122 may especially be useful in EGFR mutant patients with lung adenocarcinoma.

  18. BAG3 promotes tumour cell proliferation by regulating EGFR signal transduction pathways in triple negative breast cancer.

    Science.gov (United States)

    Shields, Sarah; Conroy, Emer; O'Grady, Tony; McGoldrick, Alo; Connor, Kate; Ward, Mark P; Useckaite, Zivile; Dempsey, Eugene; Reilly, Rebecca; Fan, Yue; Chubb, Anthony; Matallanas, David Gomez; Kay, Elaine W; O'Connor, Darran; McCann, Amanda; Gallagher, William M; Coppinger, Judith A

    2018-03-20

    Triple-negative breast cancer (TNBC), is a heterogeneous disease characterised by absence of expression of the estrogen receptor (ER), progesterone receptor (PR) and lack of amplification of human epidermal growth factor receptor 2 (HER2). TNBC patients can exhibit poor prognosis and high recurrence stages despite early response to chemotherapy treatment. In this study, we identified a pro-survival signalling protein BCL2- associated athanogene 3 (BAG3) to be highly expressed in a subset of TNBC cell lines and tumour tissues. High mRNA expression of BAG3 in TNBC patient cohorts significantly associated with a lower recurrence free survival. The epidermal growth factor receptor (EGFR) is amplified in TNBC and EGFR signalling dynamics impinge on cancer cell survival and disease recurrence. We found a correlation between BAG3 and EGFR expression in TNBC cell lines and determined that BAG3 can regulate tumour cell proliferation, migration and invasion in EGFR expressing TNBC cells lines. We identified an interaction between BAG3 and components of the EGFR signalling networks using mass spectrometry. Furthermore, BAG3 contributed to regulation of proliferation in TNBC cell lines by reducing the activation of components of the PI3K/AKT and FAK/Src signalling subnetworks. Finally, we found that combined targeting of BAG3 and EGFR was more effective than inhibition of EGFR with Cetuximab alone in TNBC cell lines. This study demonstrates a role for BAG3 in regulation of distinct EGFR modules and highlights the potential of BAG3 as a therapeutic target in TNBC.

  19. RYBP Inhibits Progression and Metastasis of Lung Cancer by Suppressing EGFR Signaling and Epithelial-Mesenchymal Transition

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Dinglin

    2017-04-01

    Full Text Available Lung cancer (LC is a common lethal malignancy with rapid progression and metastasis, and Ring1 and YY1 binding protein (RYBP has been shown to suppress cell growth in human cancers. This study aimed to investigate the role of RYBP in LC progression and metastasis. In this study, a total of 149 LC patients were recruited, and the clinical stage of their tumors, metastasis status, survival time, presence of epidermal growth factor receptor (EGFR mutation, and RYBP expression levels were measured. RYBP silencing and overexpression were experimentally performed in LC cell lines and in nude mice, and the expressions of genes in EGFR-related signaling pathways and epithelial-mesenchymal transition (EMT were detected. The results showed that RYBP was downregulated in LC compared with adjacent normal tissues, and low RYBP expression was associated with a more severe clinical stage, high mortality, high metastasis risk, and poor survival. Cell proliferation and xenograft growth were inhibited by RYBP overexpression, whereas proliferation and xenograft growth were accelerated by RYBP silencing. EGFR and phosphorylated-EGFR levels were upregulated when RYBP was silenced, whereas EGFR, p-EGFR, p-AKT, and p-ERK were downregulated when RYBP was overexpressed. Low RYBP expression was related to a high metastasis risk, and metastasized tumors showed low RYBP levels. Cell migration and invasion were promoted by silencing RYBP but were inhibited by overexpressed RYBP. In addition, the EMT marker vimentin showed diminished expression, and E-cadherin was promoted by the overexpression of RYBP. In conclusion, our data suggest that RYBP suppresses cell proliferation and LC progression by impeding the EGFR-ERK and EGFR-AKT signaling pathways and thereby inhibiting cell migration and invasion and LC metastasis through the suppression of EMT.

  20. Fluctuations in eGFR in relation to unenhanced and enhanced MRI and CT outpatients

    DEFF Research Database (Denmark)

    Azzouz, Manal; Rømsing, Janne; Thomsen, Henrik S

    2014-01-01

    OBJECTIVE: To study fluctuations in estimated glomerular filtration rate (eGFR) in relation to contrast medium (CM) enhanced magnetic resonance imaging (MRI) and computed tomography (CT) compared to control groups in outpatients. MATERIALS AND METHODS: eGFR was determined right before the imaging......-induced nephropathy (CIN) requirement when the definition s-creatinine ≥44μmol/l (0.5mg/dl) was used. CONCLUSIONS: eGFR in outpatients undergoing MRI or CT did vary independently of whether the patient received contrast or not. The findings probably reflect the natural variations in s-creatinine levels. This should...

  1. Efficacy of Gefitinib for Young Patients with Unknown EGFR Gene Mutation 
in Advanced Lung Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Yutao LIU

    2014-05-01

    Full Text Available Background and objective Lung cancer in young patients (less or equal to 45 years is relatively rare. We explored the efficacy and survival of Gefitinib for young patients with unknown epidermal growth factor receptor (EGFR gene mutation of advanced lung adenocarcinoma. Methods The clinical data of 55 young patients with unknown EGFR gene mutation in advanced lung adenocarcinoma referred to the Cancer Hospital & Institute, Chinese Academy of Medical Sciences from Jan 2006 through Dec 2010 were analyzed retrospectively. Results Of 55 young patients enrolled, the median age was 41 years. The objective response rate and disease control rate were 43.6% and 90.9%, respectively.. The median progression-free survival (PFS was 9.0 months. Among the factors analyzed, brain metastasis had significant effect on PFS (P=0.017. The median overall survival (OS was 24.0 months. The independent prognostic factors to significantly improve OS included non-smoking history (P=0.028 and receiving other anti-cancer treatment after Gefitinib therapy (P<0.001. Conclusion The median PFS and OS of the young patients with Unknown EGFR gene mutation in advanced lung adenocarcinoma were similar with general population.

  2. Symptom clusters in cancer patients and their relation to EGFR ligand modulation of the circadian axis.

    Science.gov (United States)

    Rich, Tyvin A

    2007-04-01

    Recent studies in chronobiology and the neurosciences have led to rapid growth in our understanding of the molecular biology of the human timekeeping apparatus and the neuroanatomic sites involved in signaling between the "master clock" in the hypothalamus and other parts of the brain. The circadian axis comprises a central clock mechanism and a downstream network of hypothalamic relay stations that modulate arousal, feeding, and sleeping behavior. Communication between the clock and these hypothalamic signaling centers is mediated, in part, by diffusible substances that include ligands of the epidermal growth factor receptor (EGFR). Preclinical studies reveal that EGFR ligands such as transforming growth factor-alpha (TGF-alpha) inhibit hypothalamic signaling of rhythmic behavior; clinical observations show that elevated levels of TGF-alpha are associated with fatigue, flattened circadian rhythms, and loss of appetite in patients with metastatic colorectal cancer. These data support the hypothesis that a symptom cluster of fatigue, appetite loss, and sleep disruption commonly seen in cancer patients may be related to EGFR ligands, released either by the cancer itself or by the host in response to the stress of cancer, and suggest that further examination of their role in the production of symptom clustering is warranted.

  3. P2Y2 Receptor and EGFR Cooperate to Promote Prostate Cancer Cell Invasion via ERK1/2 Pathway.

    Science.gov (United States)

    Li, Wei-Hua; Qiu, Ying; Zhang, Hong-Quan; Tian, Xin-Xia; Fang, Wei-Gang

    2015-01-01

    As one member of G protein-coupled P2Y receptors, P2Y2 receptor can be equally activated by extracellular ATP and UTP. Our previous studies have proved that activation of P2Y2 receptor by extracellular ATP could promote prostate cancer cell invasion and metastasis in vitro and in vivo via regulating the expressions of some epithelial-mesenchymal transition/invasion-related genes (including IL-8, E-cadherin, Snail and Claudin-1), and the most significant change in expression of IL-8 was observed after P2Y2 receptor activation. However, the signaling pathway downstream of P2Y2 receptor and the role of IL-8 in P2Y2-mediated prostate cancer cell invasion remain unclear. Here, we found that extracellular ATP/UTP induced activation of EGFR and ERK1/2. After knockdown of P2Y2 receptor, the ATP -stimulated phosphorylation of EGFR and ERK1/2 was significantly suppressed. Further experiments showed that inactivation of EGFR and ERK1/2 attenuated ATP-induced invasion and migration, and suppressed ATP-mediated IL-8 production. In addition, knockdown of IL-8 inhibited ATP-mediated invasion and migration of prostate cancer cells. These findings suggest that P2Y2 receptor and EGFR cooperate to upregulate IL-8 production via ERK1/2 pathway, thereby promoting prostate cancer cell invasion and migration. Thus blocking of the P2Y2-EGFR-ERK1/2 pathway may provide effective therapeutic interventions for prostate cancer.

  4. Small tyrosine kinase inhibitors interrupt EGFR signaling by interacting with erbB3 and erbB4 in glioblastoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-Garcia, Estefania; Saceda, Miguel [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Grasso, Silvina; Rocamora-Reverte, Lourdes; Conde, Mariano; Gomez-Martinez, Angeles [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Garcia-Morales, Pilar [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche (Alicante) (Spain); Ferragut, Jose A. [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Martinez-Lacaci, Isabel, E-mail: imlacaci@umh.es [Instituto de Biologia Molecular y Celular, Universidad Miguel Hernandez, 03202 Elche (Alicante) (Spain); Unidad AECC de Investigacion Traslacional en Cancer, Hospital Universitario Virgen de la Arrixaca, 30120 Murcia (Spain)

    2011-06-10

    Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cell lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.

  5. Predictive value of K-ras and PIK3CA in non-small cell lung cancer patients treated with EGFR-TKIs: a systemic review and meta-analysis

    International Nuclear Information System (INIS)

    Chen, Jie-Ying; Cheng, Ya-Nan; Han, Lei; Wei, Feng; Yu, Wen-Wen; Zhang, Xin-Wei; Cao, Shui; Yu, Jin-Pu

    2015-01-01

    A meta-analysis was performed to augment the insufficient data on the impact of mutative EGFR downstream phosphatidylinositol-3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways on the clinical efficiency of epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) treatment of non-small cell lung cancer (NSCLC) patients. Network databases were explored in April, 2015. Papers that investigated the clinical outcomes of NSCLC patients treated with EGFR-TKIs according to the status of K-ras and/or PIK3CA gene mutation were included. A quantitative meta-analysis was conducted using standard statistical methods. Odds ratios (ORs) for objective response rate (ORR) and hazard ratios (HRs) for progression-free survival (PFS) and overall survival (OS) were calculated. Mutation in K-ras significantly predicted poor ORR [OR =0.22; 95% confidence interval (CI), 0.13-0.35], shorter PFS (HR =1.56; 95% CI, 1.27-1.92), and shorter OS (HR =1.59; 95% CI, 1.33-1.91) in NSCLC patients treated with EGFR-TKIs. Mutant PIK3CA significantly predicted shorter OS (HR =1.83; 95% CI, 1.05-3.20), showed poor ORR (OR =0.70; 95% CI, 0.22-2.18), and shorter PFS (HR =1.79; 95% CI, 0.91-3.53) in NSCLC patients treated with EGFR-TKIs. K-ras mutation adversely affected the clinical response and survival of NSCLC patients treated with EGFR-TKIs. PIK3CA mutation showed similar trends. In addition to EGFR, adding K-ras and PIK3CA as routine gene biomarkers in clinical genetic analysis is valuable to optimize the effectiveness of EGFR-TKI regimens and identify optimal patients who will benefit from EGFR-TKI treatment

  6. Evaluation of vitrification factors from DWPF's macro-batch 1

    International Nuclear Information System (INIS)

    Edwards, T.B.

    2000-01-01

    The Defense Waste Processing Facility (DWPF) is evaluating new sampling and analytical methods that may be used to support future Slurry Mix Evaporator (SME) batch acceptability decisions. This report uses data acquired during DWPF's processing of macro-batch 1 to determine a set of vitrification factors covering several SME and Melter Feed Tank (MFT) batches. Such values are needed for converting the cation measurements derived from the new methods to a ''glass'' basis. The available data from macro-batch 1 were used to examine the stability of these vitrification factors, to estimate their uncertainty over the course of a macro-batch, and to provide a recommendation on the use of a single factor for an entire macro-batch. The report is in response to Technical Task Request HLW/DWPF/TTR-980015

  7. Acquired Resistance of EGFR-Mutant Lung Adenocarcinomas to Afatinib plus Cetuximab Is Associated with Activation of mTORC1

    Directory of Open Access Journals (Sweden)

    Valentina Pirazzoli

    2014-05-01

    Full Text Available Patients with EGFR-mutant lung adenocarcinomas (LUADs who initially respond to first-generation tyrosine kinase inhibitors (TKIs develop resistance to these drugs. A combination of the irreversible TKI afatinib and the EGFR antibody cetuximab can be used to overcome resistance to first-generation TKIs; however, resistance to this drug combination eventually emerges. We identified activation of the mTORC1 signaling pathway as a mechanism of resistance to dual inhibition of EGFR in mouse models. The addition of rapamycin reversed resistance in vivo. Analysis of afatinib-plus-cetuximab-resistant biopsy specimens revealed the presence of genomic alterations in genes that modulate mTORC1 signaling, including NF2 and TSC1. These findings pinpoint enhanced mTORC1 activation as a mechanism of resistance to afatinib plus cetuximab and identify genomic mechanisms that lead to activation of this pathway, revealing a potential therapeutic strategy for treating patients with resistance to these drugs.

  8. Time to death and the forecasting of macro-level health care expenditures: some further considerations.

    Science.gov (United States)

    van Baal, Pieter H; Wong, Albert

    2012-12-01

    Although the effect of time to death (TTD) on health care expenditures (HCE) has been investigated using individual level data, the most profound implications of TTD have been for the forecasting of macro-level HCE. Here we estimate the TTD model using macro-level data from the Netherlands consisting of mortality rates and age- and gender-specific per capita health expenditures for the years 1981-2007. Forecasts for the years 2008-2020 of this macro-level TTD model were compared to forecasts that excluded TTD. Results revealed that the effect of TTD on HCE in our macro model was similar to those found in micro-econometric studies. As the inclusion of TTD pushed growth rate estimates from unidentified causes upwards, however, the two models' forecasts of HCE for the 2008-2020 were similar. We argue that including TTD, if modeled correctly, does not lower forecasts of HCE. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Sustaining anti-littering behavior within coastal and marine environments: Through the macro-micro level lenses.

    Science.gov (United States)

    Beeharry, Yashna Devi; Bekaroo, Girish; Bokhoree, Chandradeo; Phillips, Michael Robert; Jory, Neelakshi

    2017-06-30

    Being regarded as a problem of global dimensions, marine litter has been a growing concern that affects human beings, wildlife and the economic health of coastal communities to varying degrees. Due to its involvement with human behavior, marine littering has been regarded as a cultural matter encompassing macro and micro level aspects. At the micro or individual level, behavior and behavioral motivation of an individual are driven by perception of that person while at the macro or societal level, aspects including policies and legislations influence behavior. This paper investigates marine littering through the macro-micro level lenses in order to analyze and recommend how anti-littering behavior can be improved and sustained. Using Coleman's model of micro-macro relations, research questions are formulated and investigated through a social survey. Results showed important differences in perceptions among participating groups and to address key issues, potential actions are proposed along with a framework to sustain anti-littering behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Technology strategy as macro-actor

    DEFF Research Database (Denmark)

    Tryggestad, Kjell

    2003-01-01

    -human entities to the explanatory repertoire of strategy research, another line of inquiry is pursued. The performative perspective thus proposed, is inspired by the classical work of Von Clausewitz and the recent anthropology of science, technology and organizational identities. In the proposed perspective...... case account for how the strategic technology and the strategic collective emerge and co-produce each other as a macro-actor, only to become transformed in unexpected ways - as common technology and reflective human subjects.In the concluding section, it is argued that the humanity of the reflective...... outcomes, as providers of explanations and observations. The expression `technological strategy as macro-actor' summarizes these findings and the associated implications for research and practice....

  11. Macro-institutional Complexity in Logistics

    DEFF Research Database (Denmark)

    Wessel, Frederic; Kinra, Aseem; Kotzab, Herbert

    2016-01-01

    structure and transactional costs, the concept of environmental complexity is applied to the logistics management perspective. Thereby, the impacts which a given framework on a macro-institutional level might have on the situation and leeway in decision-making at the firm (micro) or the supply chain (meso......In this paper, the interlink between the concept of macro-institutional complexity in logistics and the dynamics in the logistics practice of Eastern Europe will be examined. Referring to the importance of different authors having ascribed to the external environmental uncertainty on organizational......) levels will be analysed. Furthermore, a quantitative modelling approach will be presented and exemplified by using the case of logistics infrastructure in Eastern Europe....

  12. Impact of active smoking on survival of patients with metastatic lung adenocarcinoma harboring an epidermal growth factor receptor (EGFR) mutation.

    Science.gov (United States)

    Erdogan, Bulent; Kodaz, Hilmi; Karabulut, Senem; Cinkaya, Ahmet; Tozkir, Hilmi; Tanriverdi, Ozgur; Cabuk, Devrim; Hacioglu, Muhammed Bekir; Turkmen, Esma; Hacibekiroglu, Ilhan; Uzunoglu, Sernaz; Cicin, Irfan

    2016-11-10

    Lung cancer in smokers and non-smokers demonstrates distinct genetic profiles, and cigarette smoking affects epidermal growth factor receptor (EGFR) function and causes secondary EGFR tyrosine kinase resistance. We evaluated the effect of active smoking in patients with metastatic lung adenocarcinoma. A total of 132 metastatic lung adenocarcinoma patients, diagnosed between 2008 and 2013, with known EGFR mutation status, were evaluated retrospectively. Among these patients, 40 had an activating EGFR mutation. Patients who continued smoking during the treatment were defined as active smokers. Former smokers and never smokers were together defined as non-smokers. The outcomes of the treatment in relation to the EGFR mutation and smoking status were evaluated. The median follow-up time was 10.5 months. The overall response rate for the first-line therapy was significantly higher among the EGFR-mutant patients (p = 0.01), however, smoking status had no impact on the response rate (p = 0.1). The EGFR-mutant active smokers progressed earlier than the non-smokers (p non-smokers and patients treated with erlotinib was significantly longer (p = 0.02 and p = 0.01, respectively). Smoking status did not affect the OS in EGFR wild type tumors (p = 0.49) but EGFR-mutant non-smokers had a longer OS than the active smokers (p = 0.01).The active smokers treated with erlotinib had poorer survival than the non-smokers (p = 0.03). Multivariate analysis of EGFR-mutant patients showed that erlotinib treatment at any line and non-smoking were independent prognostic factors for the OS (p = 0.04 and p = 0.01, respectively). Smoking during treatment is a negative prognostic factor in metastatic lung adenocarcinoma with an EGFR mutation.

  13. Genomic Profiling on an Unselected Solid Tumor Population Reveals a Highly Mutated Wnt/β-Catenin Pathway Associated with Oncogenic EGFR Mutations

    Directory of Open Access Journals (Sweden)

    Jingrui Jiang

    2018-04-01

    Full Text Available Oncogenic epidermal growth factor receptors (EGFRs can recruit key effectors in diverse cellular processes to propagate oncogenic signals. Targeted and combinational therapeutic strategies have been successfully applied for treating EGFR-driven cancers. However, a main challenge in EGFR therapies is drug resistance due to mutations, oncogenic shift, alternative signaling, and other potential mechanisms. To further understand the genetic alterations associated with oncogenic EGFRs and to provide further insight into optimal and personalized therapeutic strategies, we applied a proprietary comprehensive next-generation sequencing (NGS-based assay of 435 genes to systematically study the genomic profiles of 1565 unselected solid cancer patient samples. We found that activating EGFR mutations were predominantly detected in lung cancer, particularly in non-small cell lung cancer (NSCLC. The mutational landscape of EGFR-driven tumors covered most key signaling pathways and biological processes. Strikingly, the Wnt/β-catenin pathway was highly mutated (48 variants detected in 46% of the EGFR-driven tumors, and its variant number topped that in the TP53/apoptosis and PI3K-AKT-mTOR pathways. Furthermore, an analysis of mutation distribution revealed a differential association pattern of gene mutations between EGFR exon 19del and EGFR L858R. Our results confirm the aggressive nature of the oncogenic EGFR-driven tumors and reassure that a combinational strategy should have advantages over an EGFR-targeted monotherapy and holds great promise for overcoming drug resistance.

  14. Acquired EGFR L718V mutation mediates resistance to osimertinib in non-small cell lung cancer but retains sensitivity to afatinib.

    Science.gov (United States)

    Liu, Yutao; Li, Yan; Ou, Qiuxiang; Wu, Xue; Wang, Xiaonan; Shao, Yang W; Ying, Jianming

    2018-04-01

    Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) are promising targeted therapies for EGFR-mutated non-small-cell lung cancer (NSCLC) patients. However, acquired resistance inevitably develops. Comprehensive and dynamic companion genomic diagnosis can gain insights into underlying resistance mechanisms, thereby help oncologists and patients to make informed decision on the potential benefit of the treatment. A 67-year-old male who was initially diagnosed of EGFR L858R-mediated NSCLC received multiple lines of chemotherapy and EGFR TKI therapies after surgery. The EGFR mutational status of individual metastatic lesion was determined by genetic testing of the tumor tissue biopsies using next generation sequencing (NGS) throughout the patient's clinical course. An acquired potentially drug-resistant EGFR mutation was functionally validated in vitro and its sensitivity to different EGFR TKIs was assessed simultaneously. We have identified distinct resistance mechanisms to EGFR blockade in different metastatic lung lesions. Acquired EGFR T790M was first detected that leads to the resistance to the gefitinib treatment. Consequently, osimertinib was administrated and the response lasted until disease progressed. We identified a newly acquired EGFR L718V mutation in one lesion in conjunction with L858R, but not T790M, which showed stable disease on the following erlotinib treatment, while EGFR C797S together with L858R/T790M was detected in the other lesion that continuously progressed. In vitro functional studies demonstrated that EGFR-L858R/L718V confers resistance to osimertinib, but retains sensitivity to the second generation TKI afatinib. We reported that distinct resistance mechanisms could arise in different metastases within the same patient in response to EGFR blockade. We also demonstrated in vitro that EGFR L718V mutation mediates resistance to osimertinib, but retains sensitivity to afatinib. We evidenced that dynamic companion genomic

  15. Evolution and clinical impact of co-occurring genetic alterations in advanced-stage EGFR-mutant lung cancers. | Office of Cancer Genomics

    Science.gov (United States)

    A widespread approach to modern cancer therapy is to identify a single oncogenic driver gene and target its mutant-protein product (for example, EGFR-inhibitor treatment in EGFR-mutant lung cancers). However, genetically driven resistance to targeted therapy limits patient survival. Through genomic analysis of 1,122 EGFR-mutant lung cancer cell-free DNA samples and whole-exome analysis of seven longitudinally collected tumor samples from a patient with EGFR-mutant lung cancer, we identified critical co-occurring oncogenic events present in most advanced-stage EGFR-mutant lung cancers.

  16. Improvement of aquaponic performance through micro- and macro-nutrient addition.

    Science.gov (United States)

    Ru, Dongyun; Liu, Jikai; Hu, Zhen; Zou, Yina; Jiang, Liping; Cheng, Xiaodian; Lv, Zhenting

    2017-07-01

    Aquaponics is one of the "zero waste" industry in the twenty-first century, and is considered to be one of the major trends for the future development of agriculture. However, the low nitrogen utilization efficiency (NUE) restricted its widely application. To date, many attempts have been conducted to improve its NUE. In the present study, effect of micro- and macro-nutrient addition on performance of tilapia-pak choi aquaponics was investigated. Results showed that the addition of micro- and macro-nutrients improved the growth of plant directly and facilitated fish physiology indirectly, which subsequently increased NUE of aquaponics from 40.42 to 50.64%. In addition, remarkable lower total phosphorus concentration was obtained in aquaponics with micro- and macro-nutrient addition, which was attributed to the formation of struvite. Most of the added micro-nutrients were enriched in plant root, while macro-nutrients mainly existed in water. Moreover, no enrichment of micro- and macro-nutrients in aquaponic products (i.e., fish and plant leaves) was observed, indicating that it had no influence on food safety. The findings here reported manifest that appropriate addition of micro- and macro-nutrients to aquaponics is necessary, and would improve its economic feasibility.

  17. Hierarchical modeling of activation mechanisms in the ABL and EGFR kinase domains: thermodynamic and mechanistic catalysts of kinase activation by cancer mutations.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    2009-08-01

    Full Text Available Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition

  18. [Efficacy of icotinib for advanced non-small cell lung cancer patients with EGFR status identified].

    Science.gov (United States)

    Song, Zhengbo; Yu, Xinmin; Cai, Jufen; Shao, Lan; Lin, Baochai; He, Chunxiao; Zhang, Beibei; Zhang, Yiping

    2013-03-01

    As the first epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) in China, icotinib shows promising anticancer activity in vitro and vivo. The phase III clinical study (ICOGEN) showed that icotinib has a good efficacy and tolerability in Chinese patients with advanced non-small cell lung cancer (NSCLC) compared with gefitinib. This retrospective study aims to evaluate the efficacy and tolerability of icotinib monotherapy for advanced NSCLC patients with EGFR mutation and wild-type patients in our hospital. Patients with advanced NSCLC who were treated with icotinib in Zhejiang Cancer Hospital were retrospectively analyzed from August, 2011 to August, 2012. Survival was estimated using Kaplan-Meier analysis and Log-rank tests. The clinical data of 49 patients (13 with wild-type and 36 with EGFR mutation) with NSCLC were enrolled in the current study. The patients' overall objective response rate (ORR) was 58.3% and the disease control rate (DCR) in 36 EGFR mutation patients was 88.9%. The ORR was 7.7% and DCR was 53.8% in the wild-type patients. Median progression-free survival (PFS) with icotinib treatment in EGFR mutation patients was 9.5 months and 2.2 months in wild-type patients (Picotinib as first-line and 17 in further-line treatment. The PFS was 9.5 months in the first-line and 8.5 months for second-line or further-line patients (P=0.41). Median overall survival (OS) in EGFR mutation patients was not reached, but was 12.6 months in wild-type patients. Most of the drug-related adverse events were mild (grade I or II) and reversible with no grade IV toxicity. Icotinib monotherapy showed significant antitumor activity in advanced NSCLC EGFR mutation patients. The toxicity was well tolerated and acceptable.

  19. Protein shedding in urothelial bladder cancer: prognostic implications of soluble urinary EGFR and EpCAM.

    Science.gov (United States)

    Bryan, R T; Regan, H L; Pirrie, S J; Devall, A J; Cheng, K K; Zeegers, M P; James, N D; Knowles, M A; Ward, D G

    2015-03-17

    Better biomarkers must be found to develop clinically useful urine tests for bladder cancer. Proteomics can be used to identify the proteins released by cancer cell lines and generate candidate markers for developing such tests. We used shotgun proteomics to identify proteins released into culture media by eight bladder cancer cell lines. These data were compared with protein expression data from the Human Protein Atlas. Epidermal growth factor receptor (EGFR) was identified as a candidate biomarker and measured by ELISA in urine from 60 noncancer control subjects and from 436 patients with bladder cancer and long-term clinical follow-up. Bladder cancer cell lines shed soluble EGFR ectodomain. Soluble EGFR is also detectable in urine and is highly elevated in some patients with high-grade bladder cancer. Urinary EGFR is an independent indicator of poor bladder cancer-specific survival with a hazard ratio of 2.89 (95% CI 1.81-4.62, Pbladder cancer-specific survival and have prognostic value over and above that provided by standard clinical observations. Measuring urinary EGFR and EpCAM may represent a simple and useful approach for fast-tracking the investigation and treatment of patients with the most aggressive bladder cancers.

  20. EGFR and KRAS quality assurance schemes in pathology : generating normative data for molecular predictive marker analysis in targeted therapy

    NARCIS (Netherlands)

    Thunnissen, Erik; Bovée, Judith V M G; Bruinsma, Hans; van den Brule, Adriaan J C; Dinjens, Winand; Heideman, Daniëlle A M; Meulemans, Els; Nederlof, Petra; van Noesel, Carel; Prinsen, Clemens F M; Scheidel, Karen; van de Ven, Peter M; de Weger, Roel; Schuuring, Ed; Ligtenberg, Marjolijn

    2011-01-01

    Introduction The aim of this study was to compare the reproducibility of epidermal growth factor receptor (EGFR) immunohistochemistry (IHC), EGFR gene amplification analysis, and EGFR and KRAS mutation analysis among different laboratories performing routine diagnostic analyses in pathology in The

  1. The combi-targeting concept: synthesis of stable nitrosoureas designed to inhibit the epidermal growth factor receptor (EGFR).

    Science.gov (United States)

    Domarkas, Juozas; Dudouit, Fabienne; Williams, Christopher; Qiyu, Qiu; Banerjee, Ranjita; Brahimi, Fouad; Jean-Claude, Bertrand Jacques

    2006-06-15

    According to the "combi-targeting" concept, the EGFR tyrosine kinase (TK) inhibitory potency of compounds termed "combi-molecules" is critical for selective growth inhibition of tumor cells with disordered expression of EGFR or its closest family member erbB2. Here we report on the optimization of the EGFR TK inhibitory potency of the combi-molecules of the nitrosourea class by comparison with their aminoquinazoline and ureidoquinazoline precursors. This led to the discovery of a new structural parameter that influences their EGFR TK inhibitory potency, i.e., the torsion angle between the plane of the quinazoline ring and the ureido or the nitrosoureido moiety of the synthesized drugs. Compounds (3'-Cl and Br series) with small angles (0.5-3 degrees ) were generally stronger EGFR TK inhibitors than those with large angles (18-21 degrees ). This was further corroborated by ligand-receptor van der Waals interaction calculations that showed significant binding hindrance imposed by large torsion angles in the narrow ATP cleft of EGFR. Selective antiproliferative studies in a pair of mouse fibroblast NIH3T3 cells, one of which NIH3T3/neu being transfected with the erbB2 oncogene, showed that IC(50) values for inhibition of EGFR TK could be good predictors of their selective potency against the serum-stimulated growth of the erbB2-tranfected cell line (Pearson r = 0.8). On the basis of stability (t(1/2)), EGFR TK inhibitory potency (IC(50)), and selective erbB2 targeting, compound 23, a stable nitrosourea, was considered to have the structural requirements for further development.

  2. Comparison of creatinine and cystatin C based eGFR in the estimation of glomerular filtration rate in Indigenous Australians: The eGFR Study.

    Science.gov (United States)

    Barr, Elizabeth Lm; Maple-Brown, Louise J; Barzi, Federica; Hughes, Jaquelyne T; Jerums, George; Ekinci, Elif I; Ellis, Andrew G; Jones, Graham Rd; Lawton, Paul D; Sajiv, Cherian; Majoni, Sandawana W; Brown, Alex Dh; Hoy, Wendy E; O'Dea, Kerin; Cass, Alan; MacIsaac, Richard J

    2017-04-01

    The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation that combines creatinine and cystatin C is superior to equations that include either measure alone in estimating glomerular filtration rate (GFR). However, whether cystatin C can provide any additional benefits in estimating GFR for Indigenous Australians, a population at high risk of end-stage kidney disease (ESKD) is unknown. Using a cross-sectional analysis from the eGFR Study of 654 Indigenous Australians at high risk of ESKD, eGFR was calculated using the CKD-EPI equations for serum creatinine (eGFRcr), cystatin C (eGFRcysC) and combined creatinine and cystatin C (eGFRcysC+cr). Reference GFR (mGFR) was determined using a non-isotopic iohexol plasma disappearance technique over 4h. Performance of each equation to mGFR was assessed by calculating bias, % bias, precision and accuracy for the total population, and according to age, sex, kidney disease, diabetes, obesity and c-reactive protein. Data were available for 542 participants (38% men, mean [sd] age 45 [14] years). Bias was significantly greater for eGFRcysC (15.0mL/min/1.73m 2 ; 95% CI 13.3-16.4, pcreatinine remains the preferred equation in Indigenous Australians. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  3. Sucralfate modulates uPAR and EGFR expression in an experimental rat model of cervicitis.

    Science.gov (United States)

    Mannari, C; Santi, S; Migliori, M; Filippi, C; Origlia, N; Sansò, M; Boldrini, E; Giovannini, L

    2008-01-01

    Sucralfate is a drug used in the treatment of gastric and duodenal ulcer; it is cytoprotective and able to increase the bioavailability of several growth factors, modulating the wound healing process. In this study we tested the possible therapeutic effect of Sucralfate in the treatment of ulcerative lesions occurring in uterine cervix; to investigate such effect we used an experimental rat model of cervicitis in which the uPAR and EGFR expression were evaluated. Cervicitis was induced in wild and ovariectomized Wistar female rats by an acetic acid-soaked tampon. The animals were divided into two main groups (4 and 7 days) and Sucralfate was administered topically until the day they were sacrificed. In order to distinguish physiological and drug-induced healing, quantitative and qualitative uPAR and EGFR expression were evaluated by using Western blot and Immunohistochemistry techniques. Western blot analysis demonstrated an increased expression of both receptors after 4 days from wounding in wild and ovariectomized animals. In particular in ovariectomized animals the expression of uPAR and EGFR increased after 4 days while it reduced following the administration of Sucralfate. In wild rats the same was observed for uPAR expression, while EGFR was different; in fact, its expression increased significantly at day 4 in the animals treated with the drug and only at day 7 in those untreated. Immunohistochemistry highlighted a noteworthy epithelial colocalization of EGFR and uPAR after 4 days in the animals treated with Sucralfate. We conclude that Sucralfate can promote the healing of ulcerative cervicitis and moreover, it reduces the normal healing time because of its modulatory property on uPAR and EGFR expression.

  4. Evaluation of epidermal growth factor receptor (EGFR) by chromogenic in situ hybridization (CISH) and immunohistochemistry (IHC) in archival gliomas using bright-field microscopy.

    Science.gov (United States)

    Marquez, Abbey; Wu, Rina; Zhao, Jianxin; Tao, Jianhua; Shi, Zuorong

    2004-03-01

    Overexpression of EGFR secondary to EGFR gene amplification is a common feature in primary malignant gliomas. To correctly assess EGFR protein and gene level as possible prognostic and predictive markers in gliomas, straightforward assays, which can be used routinely in the pathology laboratory to evaluate EGFR status, becomes critical. EGFR gene amplification and chromosome 7 aneuploidy was detected in 34 formalin-fixed, paraffin-embedded benign and malignant gliomas by chromogenic in situ hybridization (CISH) using digoxigenin-labeled EGFR and biotin-labeled chromosome 7 centromeric probes. The results were evaluated by bright-field microscopy under a 40x objective lens. EGFR protein level was detected by immunohistochemistry (IHC) using monoclonal antibody 31G7. Five cases, 3 astrocytoma grade III (33%) and 2 glioblastoma multiforme (GBM) (33%), had EGFR amplification displayed as diaminobenzidine-stained multiple dots suggesting the pattern of double-minute chromosomes. Chromosome 7 polysomy was found in 68% gliomas, 100% GBM, 67% astrocytoma grade III, 42% astrocytoma grade II, 50% astrocytoma grade I, 100% ependymoma, and the 1 case of mixed glioma III. High expression of EGFR protein was present in 62% gliomas and displayed membrane and cytoplasmic staining. All tumors with EGFR gene amplification showed EGFR high expression. High expression of EGFR without gene amplification was observed in all grades of gliomas. Simultaneous detection of EGFR gene copies or chromosome 7 centromere signals along with tissue morphology allows us to compare CISH results easily with IHC results. Our results show that CISH is an objective, practical, and accurate assay to screen for EGFR gene status in gliomas.

  5. Diagnostic of tumours of epithelial origin with the monoclonal antibody IOR EGF/R3 murino

    International Nuclear Information System (INIS)

    Ramos, M.

    1997-01-01

    Despite of the advantages on anti tumoral therapy, the cancer of epithelial origin constitutes one of the first causes of death worldwide. That kind of tumors have a 10-30-fold overexpression of the epidermal growth factor receptor (EGFr). Monoclonal antibody ior egf/r3 is a lgG2a, which recognizes the epidermal growth factor receptor. The aim of the present work was the evaluate the diagnostic efficacy of the 99m Tc-labelled ior egf/r3 for the detection of epithelial derived tumors, its metastasis and its recurrences

  6. BRCA2, EGFR, and NTRK mutations in mismatch repair-deficient colorectal cancers with MSH2 or MLH1 mutations.

    Science.gov (United States)

    Deihimi, Safoora; Lev, Avital; Slifker, Michael; Shagisultanova, Elena; Xu, Qifang; Jung, Kyungsuk; Vijayvergia, Namrata; Ross, Eric A; Xiu, Joanne; Swensen, Jeffrey; Gatalica, Zoran; Andrake, Mark; Dunbrack, Roland L; El-Deiry, Wafik S

    2017-06-20

    Deficient mismatch repair (MMR) and microsatellite instability (MSI) contribute to ~15% of colorectal cancer (CRCs). We hypothesized MSI leads to mutations in DNA repair proteins including BRCA2 and cancer drivers including EGFR. We analyzed mutations among a discovery cohort of 26 MSI-High (MSI-H) and 558 non-MSI-H CRCs profiled at Caris Life Sciences. Caris-profiled MSI-H CRCs had high mutation rates (50% vs 14% in non-MSI-H, P MLH1-mutant CRCs showed higher mutation rates in BRCA2 compared to non-MSH2/MLH1-mutant tumors (38% vs 6%, P MLH1-mutant CRCs included 75 unique mutations not known to occur in breast or pancreatic cancer per COSMIC v73. Only 5 deleterious BRCA2 mutations in CRC were previously reported in the BIC database as germ-line mutations in breast cancer. Some BRCA2 mutations were predicted to disrupt interactions with partner proteins DSS1 and RAD51. Some CRCs harbored multiple BRCA2 mutations. EGFR was mutated in 45.5% of MSH2/MLH1-mutant and 6.5% of non-MSH2/MLH1-mutant tumors (P MLH1-mutant CRC including NTRK1 I699V, NTRK2 P716S, and NTRK3 R745L. Our findings have clinical relevance regarding therapeutic targeting of BRCA2 vulnerabilities, EGFR mutations or other identified oncogenic drivers such as NTRK in MSH2/MLH1-mutant CRCs or other tumors with mismatch repair deficiency.

  7. Study on coal mine macro, meso and micro safety management system

    Directory of Open Access Journals (Sweden)

    Longkang Wang

    2016-03-01

    Full Text Available In recent years, the coal mine safety production situation in our country improved year by year, but severe accidents still occurred; the accidents caused great economic loss to the national economy. According to statistical analysis, almost all of the coal mine accidents will expose the hidden danger in before, most of the accidents caused due to safety management not reaching the designated position and the hidden danger management does not take any decision in time. Based on the coal mine safety management holes in our country, the coal mine macro, meso and micro safety management system was established in this paper, which includes meaning and conception of the theories of the macro, meso and micro safety management, and also includes the matching hardware equipment, in order to achieve the hidden danger's closed-loop control and dynamic early warning in the process of coal mine production.

  8. TGFβ induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    International Nuclear Information System (INIS)

    Ebi, Masahide; Kataoka, Hiromi; Shimura, Takaya; Kubota, Eiji; Hirata, Yoshikazu; Mizushima, Takashi; Mizoshita, Tsutomu; Tanaka, Mamoru; Mabuchi, Motoshi; Tsukamoto, Hironobu; Tanida, Satoshi; Kamiya, Takeshi; Higashiyama, Shigeki; Joh, Takashi

    2010-01-01

    Research highlights: → TGFβ induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. → TGFβ induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. → TGFβ enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. → Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGFβ. → ADAM17 may play a crucial role in this TGFβ-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGFβ) is known to potently inhibit cell growth. Loss of responsiveness to TGFβ inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGFβ and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGFβ. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGFβ was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGFβ was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGFβ-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGFβ induced shedding of proHB-EGF allowing HB-EGF-CTF to translocate to the nucleus. ADAM inhibitors blocked this nuclear translocation. TGF

  9. Macro-Micro Simulation for Polymer Crystallization in Couette Flow

    Directory of Open Access Journals (Sweden)

    Chunlei Ruan

    2017-12-01

    Full Text Available Polymer crystallization in manufacturing is a process where quiescent crystallization and flow-induced crystallization coexists, and heat/mass transfer on a macroscopic level interacts with crystal morphology evolution on a microscopic level. Previous numerical studies on polymer crystallization are mostly concentrated at a single scale; they only calculate macroscale parameters, e.g., temperature and relative crystallinity, or they only predict microstructure details, e.g., crystal morphology and mean size of crystals. The multi-scale numerical works that overcome these disadvantages are unfortunately based on quiescent crystallization, in which flow effects are neglected. The objective of this work is to build up a macro-micro model and a macro-micro algorithm to consider both the thermal and flow effects on the crystallization. Our macro-micro model couples two parts: mass and heat transfer of polymeric flow at the macroscopic level, and nucleation and growth of spherulites and shish-kebabs at the microscopic level. Our macro-micro algorithm is a hybrid finite volume/Monte Carlo method, in which the finite volume method is used at the macroscopic level to calculate the flow and temperature fields, while the Monte Carlo method is used at the microscopic level to capture the development of spherulites and shish-kebabs. The macro-micro model and the macro-micro algorithm are applied to simulate polymer crystallization in Couette flow. The effects of shear rate, shear time, and wall temperature on the crystal morphology and crystallization kinetics are also discussed.

  10. Fluorescent Affibody Molecule Administered In Vivo at a Microdose Level Labels EGFR Expressing Glioma Tumor Regions.

    Science.gov (United States)

    de Souza, Ana Luiza Ribeiro; Marra, Kayla; Gunn, Jason; Samkoe, Kimberley S; Hoopes, P Jack; Feldwisch, Joachim; Paulsen, Keith D; Pogue, Brian W

    2017-02-01

    Fluorescence guidance in surgical oncology provides the potential to realize enhanced molecular tumor contrast with dedicated targeted tracers, potentially with a microdose injection level. For most glioma tumors, the blood brain barrier is compromised allowing some exogenous drug/molecule delivery and accumulation for imaging. The aberrant overexpression and/or activation of epidermal growth factor receptor (EGFR) is associated with many types of cancers, including glioblastoma, and so the use of a near-infrared (NIR) fluorescent molecule targeted to the EGFR receptor provides the potential for improving tumor contrast during surgery. Fluorescently labeled affibody molecule (ABY-029) has high EGFR affinity and high potential specificity with reasonably fast plasma clearance. In this study, ABY-29 was evaluated in glioma versus normal brain uptake from intravenous injection at a range of doses, down to a microdose injection level. Nude rats were inoculated with the U251 human glioma cell line in the brain. Tumors were allowed to grow for 3-4 weeks. ABY-029 fluorescence ex vivo imaging of brain slices was acquired at different time points (1-48 h) and varying injection doses from 25 to 122 μg/kg (from human protein microdose equivalent to five times microdose levels). The tumor was most clearly visualized at 1-h post-injection with 8- to 16-fold average contrast relative to normal brain. However, the tumor still could be identified after 48 h. In all cases, the ABY-029 fluorescence appeared to localize preferentially in EGFR-positive regions. Increasing the injected dose from a microdose level to five times, a microdose level increased the signal by 10-fold, and the contrast was from 8 to 16, showing that there was value in doses slightly higher than the microdose restriction. Normal tissue uptake was found to be affected by the tumor size, indicating that edema was a likely factor affecting the expected tumor to normal tissue contrast. These results suggest

  11. Anterior Gradient 2 (AGR2) Induced Epidermal Growth Factor Receptor (EGFR) Signaling Is Essential for Murine Pancreatitis-Associated Tissue Regeneration

    Science.gov (United States)

    Wodziak, Dariusz; Dong, Aiwen; Basin, Michael F.; Lowe, Anson W.

    2016-01-01

    A recently published study identified Anterior Gradient 2 (AGR2) as a regulator of EGFR signaling by promoting receptor presentation from the endoplasmic reticulum to the cell surface. AGR2 also promotes tissue regeneration in amphibians and fish. Whether AGR2-induced EGFR signaling is essential for tissue regeneration in higher vertebrates was evaluated using a well-characterized murine model for pancreatitis. The impact of AGR2 expression and EGFR signaling on tissue regeneration was evaluated using the caerulein-induced pancreatitis mouse model. EGFR signaling and cell proliferation were examined in the context of the AGR2-/- null mouse or with the EGFR-specific tyrosine kinase inhibitor, AG1478. In addition, the Hippo signaling coactivator YAP1 was evaluated in the context of AGR2 expression during pancreatitis. Pancreatitis-induced AGR2 expression enabled EGFR translocation to the plasma membrane, the initiation of cell signaling, and cell proliferation. EGFR signaling and tissue regeneration were partially inhibited by the tyrosine kinase inhibitor AG1478, but absent in the AGR2-/- null mouse. AG1478-treated and AGR2-/- null mice with pancreatitis died whereas all wild-type controls recovered. YAP1 activation was also dependent on pancreatitis-induced AGR2 expression. AGR2-induced EGFR signaling was essential for tissue regeneration and recovery from pancreatitis. The results establish tissue regeneration as a major function of AGR2-induced EGFR signaling in adult higher vertebrates. Enhanced AGR2 expression and EGFR signaling are also universally present in human pancreatic cancer, which support a linkage between tissue injury, regeneration, and cancer pathogenesis. PMID:27764193

  12. Macro and micro challenges for talent retention in South Africa

    Directory of Open Access Journals (Sweden)

    Berenice Kerr-Phillips

    2009-08-01

    Full Text Available The aim of the study was to explore the challenges presented in retaining South Africa’s talent at both macro (country and micro (organisational levels. Using a web-based survey placed on eight New Zealand sites, the reasons for emigration of South African talent during the period 1994–2006 were explored with 84 respondents. Utilising a purposive sampling technique, 20 semi-structured interviews were undertaken with identified ‘top talent’ in two financial services companies. Content analysis of the responses from both samples was employed. Reasons for emigration (macro issues included uncertainty about the future of the country, job insecurity and fears regarding both corruption and violent crime. Reasons for talent loss amongst identified top talent (micro issues were found to be linked to leadership, organisational culture and employment equity.

  13. Impact of active smoking on survival of patients with metastatic lung adenocarcinoma harboring an epidermal growth factor receptor (EGFR mutation

    Directory of Open Access Journals (Sweden)

    Bulent Erdogan

    2016-11-01

    Full Text Available Lung cancer in smokers and non-smokers demonstrates distinct genetic profiles, and cigarette smoking affects epidermal growth factor receptor (EGFR function and causes secondary EGFR tyrosine kinase resistance. We evaluated the effect of active smoking in patients with metastatic lung adenocarcinoma. A total of 132 metastatic lung adenocarcinoma patients, diagnosed between 2008 and 2013, with known EGFR mutation status, were evaluated retrospectively. Among these patients, 40 had an activating EGFR mutation. Patients who continued smoking during the treatment were defined as active smokers. Former smokers and never smokers were together defined as non-smokers. The outcomes of the treatment in relation to the EGFR mutation and smoking status were evaluated. The median follow-up time was 10.5 months. The overall response rate for the first-line therapy was significantly higher among the EGFR-mutant patients (p = 0.01, however, smoking status had no impact on the response rate (p = 0.1. The EGFR-mutant active smokers progressed earlier than the non-smokers (p < 0.01. The overall survival (OS of the non-smokers and patients treated with erlotinib was significantly longer (p = 0.02 and p = 0.01, respectively. Smoking status did not affect the OS in EGFR wild type tumors (p = 0.49 but EGFR-mutant non-smokers had a longer OS than the active smokers (p = 0.01.The active smokers treated with erlotinib had poorer survival than the non-smokers (p = 0.03. Multivariate analysis of EGFR-mutant patients showed that erlotinib treatment at any line and non-smoking were independent prognostic factors for the OS (p = 0.04 and p = 0.01, respectively. Smoking during treatment is a negative prognostic factor in metastatic lung adenocarcinoma with an EGFR mutation.

  14. Italian Nivolumab Expanded Access Program in Nonsquamous Non-Small Cell Lung Cancer Patients: Results in Never-Smokers and EGFR-Mutant Patients.

    Science.gov (United States)

    Garassino, Marina Chiara; Gelibter, Alain Jonathan; Grossi, Francesco; Chiari, Rita; Soto Parra, Hector; Cascinu, Stefano; Cognetti, Francesco; Turci, Daniele; Blasi, Livio; Bengala, Carmelo; Mini, Enrico; Baldini, Editta; Quadrini, Silvia; Ceresoli, Giovanni Luca; Antonelli, Paola; Vasile, Enrico; Pinto, Carmine; Fasola, Gianpiero; Galetta, Domenico; Macerelli, Marianna; Giannarelli, Diana; Lo Russo, Giuseppe; de Marinis, Filippo

    2018-05-03

    Nivolumab is the first checkpoint inhibitor approved for the treatment of nonsquamous NSCLC. We report results from the nivolumab Italian expanded access program focusing on never-smokers and patients with EGFR-mutant nonsqamous NSCLC. Nivolumab (3 mg/kg intravenously every 2 weeks) was administered upon physicians' request to patients who had relapsed after one or more prior systemic treatments for stage IIIB/IV nonsquamous NSCLC. Efficacy and safety were evaluated in patients who received at least one dose of nivolumab. Of 1588 patients with nonsquamous NSCLC, 305 (19.2%) were never-smokers. EGFR status was available for 1395 patients. Of the 102 patients (6.4%) with EGFR mutation-positive tumors, 51 (50%) were never-smokers. The objective response rate was significantly higher in patients with wild-type EGFR than patients with EGFR-mutant tumors (19.6% versus 8.8% [p = 0.007]), in former and current smokers than in never-smokers (21.5% versus 9.2% [p = 0.0001]), and in never-smokers with wild-type EGFR than in never-smokers with mutant EGFR (11.0% versus 1.9% [p = 0.04]). There was no significant difference in objective response rate between smokers with wild-type EGFR and smokers with mutant EGFR (22.0% versus 20.6%). There was no statistically significant difference in median progression-free survival or in median overall survival. The median overall survival times were 11 months in patients with EGFR wild-type tumors versus 8.3 months in patients with EGFR-mutant tumors, 11.6 months in smokers versus 10.0 months in never-smokers, 11.0 months in never-smokers with EGFR wild-type tumors versus 5.6 months in never-smokers with EGFR-mutant tumors, and 14.1 months in smokers with EGFR-mutant tumors versus 11.3 months in smokers with EGFR wild-type tumors. The data on the Italian expanded access program in populations with nonsquamous NSCLC suggest that subgroups of patients could benefit differently from nivolumab according to their EGFR mutational status and

  15. Molecular biomarkers of resistance to anti-EGFR treatment in metastatic colorectal cancer, from classical to innovation.

    Science.gov (United States)

    Giampieri, Riccardo; Scartozzi, Mario; Del Prete, Michela; Maccaroni, Elena; Bittoni, Alessandro; Faloppi, Luca; Bianconi, Maristella; Cecchini, Luca; Cascinu, Stefano

    2013-11-01

    Systematic dissection of the EGFR pathway was considered as the best way to identify putative markers of resistance to anti-EGFR therapies. This kind of approach leaves other, less known but by no means less important, putative mechanisms of resistance. We tried to shed some light on these mechanisms of resistance. We performed a research through Pubmed database of all published articles highlighting mechanisms of resistance to Cetuximab and Panitumumab based therapies, published in 2000-2012 period. We reviewed the "classical" molecular factors, extensively analyzed as predictive factors for efficacy to anti-EGFR therapy, such as K-ras, B-raf, and PI3K-mTOR-Akt, focusing on their predictive or prognostic value and on the controversial aspects of the biomarker analysis for clinical practice. On the second part we will then move on to other less known molecular markers, for the future understanding of biological mechanisms underlying anti-EGFR therapy resistance, such as non-canonical heterodimer candidates, microRNA, IGF1-IGF1R, HGF-cMET and secondary mutations of EGFR. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Novel recombinant immunotoxin of EGFR specific nanobody fused with cucurmosin, construction and antitumor efficiency in vitro.

    Science.gov (United States)

    Deng, Cuimin; Xiong, Jiani; Gu, Xiaofan; Chen, Xiaoying; Wu, Shuifa; Wang, Zhe; Wang, Duanduan; Tu, Jinjin; Xie, Jieming

    2017-06-13

    Epidermal growth factor receptor (EGFR) overexpression is related to the increased aggressiveness, metastases, and poor prognosis in various cancers. In this study, we successfully constructed a new EGFR nanobody-based immunotoxin rE/CUS containing cucurmosin (CUS), The immunotoxin was expressed by prokaryotic system and we obtained a yield of 5 mg protein per liter expression medium. The percentage of it's binding ability totumor cell lines A549, HepG2, SW116, which highly expressed EGFR was 55.6%, 79.6% and 97.1%, respectively, but SW620 was only 4.45%. rE/CUS has the ability to bind A549, HepG2, SW116 cells specifically, and the antigen binding capability was not affected because of extra part of CUS component. The rE/CUS significantly inhibited the cell viability against EGFR over expression tumor cell lines in a dose-and time-dependent manner. Moreover, rE/CUS also induced apoptosis of HepG2 and A549 mightily. Our results demonstrate that rE/CUS is a potential therapeutic strategy for treating EGFR-positive solid tumors.

  17. Gefitinib: a pharmacoeconomic profile of its use in patients with Non Small Cell Lung Cancer EGFR+

    Directory of Open Access Journals (Sweden)

    Viola Sacchi

    2011-06-01

    Full Text Available Lung cancer is the most common form of cancer with the highest incidence worldwide. The mortality rates are highest in males and second highest in females, after breast cancer. The genetic predisposition to Non Small Cell Lung Cancer (NSCLC is still under investigation, however, studies have shown that the Epidermal Growth Factor Receptor (EGFR, a receptor tyrosine kinase is frequently over-expressed and activated to a phosphorylated state in NSCLC. The activity of EGFR in cancer cells results in the phosphorylation of downstream proteins that promote cell proliferation, invasion, metastasis, and inhibition of apoptosis. Targeting the EGFR pathway therefore constitutes a relevant strategy for cancer therapy. Gefitinib is a selective inhibitor of the EGFR tyrosine kinase and is indicated for the treatment of adult patients with locally advanced or metastatic NSCLC with activating mutations of EGFR-TK. From the pharmacoeconomic point of view gefitinib is dominant (more effective and less expensive compared to the alternatives. In conclusion, gefitinib is a treatment option for NSCLC tumors with a high clinical and economic value in the Italian setting.

  18. The integrated evaluation of the macro environment of companies providing transport services

    Directory of Open Access Journals (Sweden)

    A. Žvirblis

    2008-09-01

    Full Text Available The article presents the main principles of the integrated evaluation of macro environment components and factors influencing the performance of transport companies as well as providing the validated quantitative evaluation models and results obtained in evaluating the macro environment of Lithuanian companies providing transport services. Since quantitative evaluation is growing in importance, the process of developing the principles and methods of business macro environment quantitative evaluation is becoming relevant from both theoretical and practical perspectives. The created methodology is based on the concept of macro environment as an integrated whole of components, formalization and the principle of three-stage quantitative evaluation. The methodology suggested involves the quantitative evaluation of primary factors and macro environment components as an integral dimension (expressed in points. On the basis of this principle, an integrated macro environment evaluation parameter is established as its level index. The methodology integrates the identification of significant factors, building scenarios, a primary analysis of factors, expert evaluation, the quantitative evaluation of macro environment components and their whole. The application of the multi-criteria Simple Additive Weighting (SAW method is validated. The integrated evaluation of the macro environment of Lithuanian freight transportation companies was conducted. As a result, the level indices of all components as well as the level index of macro environment considered as a whole of components were identified. The latter reflects the extent of deviation from an average level of a favourable macro environment. This is important for developing strategic marketing decisions and expanding a strategic area.

  19. Genetic Polymorphisms in the EGFR (R521K and Estrogen Receptor (T594T Genes, EGFR and ErbB-2 Protein Expression, and Breast Cancer Risk in Tunisia

    Directory of Open Access Journals (Sweden)

    Imen Kallel

    2009-01-01

    Full Text Available We evaluated the association of epidermal growth factor receptor (EGFR 142285G>A (R521K and estrogen receptor alpha (ESR1 2014G>A (T594T single nucleotide polymorphisms with breast cancer risk and prognosis in Tunisian patients. EGFR 142285G>A and ESR1 2014G>A were genotyped in a sample of 148 Tunisian breast cancer patients and 303 controls using PCR-RFLP method. Immunohistochemitsry was used to evaluate the expression levels of EGFR, HER2, ESR1, progesterone receptor and BCL2 in tumors. We found no evidence for an association between EGFR R521K polymorphism and breast cancer risk. However, we found that the homozygous GG (Arg genotype was more prevalent in patients with lymph node metastasis (=.03 and high grade tumors (=.011. The ESR1 2014G allele showed significant association with breast cancer risk (=.025. The GG genotype was associated with HER2 overexpression and this association withstood univariate and multivariate analyses (=.009; =.021, resp.. These data suggest that the R521K might be a prognostic factor, because it correlates with both tumor grade and nodule status. The higher expression of HER2 in ESR1 T594T GG patients suggests the possibility that ESR1 gene polymorphisms accompanied by HER2 expression might influence the pathogenesis of breast cancers.

  20. Pemetrexed-carboplatin with intercalated icotinib in the treatment of patient with advanced EGFR wild-type lung adenocarcinoma

    Science.gov (United States)

    Xu, Tongpeng; Wu, Hao; Jin, Shidai; Min, Huang; Zhang, Zhihong; Shu, Yongqian; Wen, Wei; Guo, Renhua

    2017-01-01

    Abstract Rationale: Tyrosine kinase inhibitors (TKIs) are known to have greater efficacy in epidermal growth factor receptor (EGFR) mutation nonsmall cell lung cancer (NSCLC). However, about 10% of EGFR wild-type (wt) patients respond to TKIs. Patient concerns: Several strategies to increase the efficacy of TKIs in wt NSCLC are the subjects of ongoing investigations. One of them is combining EGFR TKI with intercalated chemotherapy. Diagnoses: We describe a patient with EGFR wt NSCLC, who was found with ovarian and lung metastasis, was treated with pemetrexed and intercalated icotinib. Interventions: In this case, we reported the successful long-term maintenance treatment of a patient with EGFR wt NSCLC with pemetrexed and Icotinib. The patient (40-year-old female) was found with ovarian masses and lung masses. Pathological, immunohistochemical, and amplification refractory mutation system (ARMS) assay examinations of ovarian specimen suggested the expression of metastatic lung adenocarcinoma with wt EGFR. After failure treatment with paclitaxel-carboplatin, the patient received 4 cycles of pemetrexed plus platinum with intercalated icotinib and then remained on pemetrexed and icotinib. Outcomes: A partial response was achieved after the treatment. The patient's condition had remained stable on pemetrexed and icotinib for more than 20 months, with no evidence of progression. Lessons: To our knowledge, this is the first report using the long-term maintenance treatment with pemetrexed and intercalated icotinib in EGFR wt patient. The therapeutic strategies warrant further exploration in selected populations of NSCLC. PMID:28816950

  1. Navigating into the binding pockets of the HER family protein kinases: discovery of novel EGFR inhibitor as antitumor agent.

    Science.gov (United States)

    Liu, Wei; Ning, Jin-Feng; Meng, Qing-Wei; Hu, Jing; Zhao, Yan-Bin; Liu, Chao; Cai, Li

    2015-01-01

    The epidermal growth factor receptor (EGFR) family has been validated as a successful antitumor drug target for decades. Known EGFR inhibitors were exposed to distinct drug resistance against the various EGFR mutants within non-small-cell lung cancer (NSCLC), particularly the T790M mutation. Although so far a number of studies have been reported on the development of third-generation EGFR inhibitors for overcoming the resistance issue, the design procedure largely depends on the intuition of medicinal chemists. Here we retrospectively make a detailed analysis of the 42 EGFR family protein crystal complexes deposited in the Protein Data Bank (PDB). Based on the analysis of inhibitor binding modes in the kinase catalytic cleft, we identified a potent EGFR inhibitor (compound A-10) against drug-resistant EGFR through fragment-based drug design. This compound showed at least 30-fold more potency against EGFR T790M than the two control molecules erlotinib and gefitinib in vitro. Moreover, it could exhibit potent HER2 inhibitory activities as well as tumor growth inhibitory activity. Molecular docking studies revealed a structural basis for the increased potency and mutant selectivity of this compound. Compound A-10 may be selected as a promising candidate in further preclinical studies. In addition, our findings could provide a powerful strategy to identify novel selective kinase inhibitors on the basis of detailed kinase-ligand interaction space in the PDB.

  2. Radiotherapy of non-small-cell lung cancer in the era of EGFR gene mutations and EGF receptor tyrosine kinase inhibitors.

    Science.gov (United States)

    Moschini, Ilaria; Dell'Anna, Cristina; Losardo, Pier Luigi; Bordi, Paola; D'Abbiero, Nunziata; Tiseo, Marcello

    2015-01-01

    Non-small-cell lung cancer (NSCLC) occurs, approximately, in 80-85% of all cases of lung cancer. The majority of patients present locally advanced or metastatic disease when diagnosed, with poor prognosis. The discovery of activating mutations in the EGFR gene has started a new era of personalized treatment for NSCLC patients. To improve the treatment outcome in patients with unresectable NSCLC and, in particular, EGFR mutated, a combined strategy of radiotherapy and medical treatment can be undertaken. In this review we will discuss preclinical data regarding EGF receptor (EGFR) tyrosine kinase inhibitors (TKIs) and radiotherapy, available clinical trials investigating efficacy and toxicity of combined treatment (thoracic or whole brain radiotherapy and EGFR-TKIs) and, also, the role of local radiation in mutated EGFR patients who developed EGFR-TKI resistance.

  3. Prediction of sensitivity to gefitinib/erlotinib for EGFR mutations in NSCLC based on structural interaction fingerprints and multilinear principal component analysis.

    Science.gov (United States)

    Zou, Bin; Lee, Victor H F; Yan, Hong

    2018-03-07

    Non-small cell lung cancer (NSCLC) with activating EGFR mutations, especially exon 19 deletions and the L858R point mutation, is particularly responsive to gefitinib and erlotinib. However, the sensitivity varies for less common and rare EGFR mutations. There are various explanations for the low sensitivity of EGFR exon 20 insertions and the exon 20 T790 M point mutation to gefitinib/erlotinib. However, few studies discuss, from a structural perspective, why less common mutations, like G719X and L861Q, have moderate sensitivity to gefitinib/erlotinib. To decode the drug sensitivity/selectivity of EGFR mutants, it is important to analyze the interaction between EGFR mutants and EGFR inhibitors. In this paper, the 30 most common EGFR mutants were selected and the technique of protein-ligand interaction fingerprint (IFP) was applied to analyze and compare the binding modes of EGFR mutant-gefitinib/erlotinib complexes. Molecular dynamics simulations were employed to obtain the dynamic trajectory and a matrix of IFPs for each EGFR mutant-inhibitor complex. Multilinear Principal Component Analysis (MPCA) was applied for dimensionality reduction and feature selection. The selected features were further analyzed for use as a drug sensitivity predictor. The results showed that the accuracy of prediction of drug sensitivity was very high for both gefitinib and erlotinib. Targeted Projection Pursuit (TPP) was used to show that the data points can be easily separated based on their sensitivities to gefetinib/erlotinib. We can conclude that the IFP features of EGFR mutant-TKI complexes and the MPCA-based tensor object feature extraction are useful to predict the drug sensitivity of EGFR mutants. The findings provide new insights for studying and predicting drug resistance/sensitivity of EGFR mutations in NSCLC and can be beneficial to the design of future targeted therapies and innovative drug discovery.

  4. 2-Triazenoazaindoles: α novel class of triazenes inducing transcriptional down-regulation of EGFR and HER-2 in human pancreatic cancer cells.

    Science.gov (United States)

    Kreutzer, Jan N; Salvador, Alessia; Diana, Patrizia; Cirrincione, Girolamo; Vedaldi, Daniela; Litchfield, David W; Issinger, Olaf-Georg; Guerra, Barbara

    2012-04-01

    Pancreatic cancer is a complex malignancy arising from the accumulation of genetic and epigenetic defects in the affected cells. Standard chemotherapy for patients with advanced disease shows only modest effects and is associated with considerable toxicity. Overexpression or aberrant activation of members of the epidermal growth factor receptor tyrosine kinase family, which includes EGFR and HER-2, occurs frequently and is associated with multiple drug resistance and decreased patient survival. In this study, we have investigated the therapeutic potential of AS104, a novel compound of the triazene class, with potential inhibitory effects on EGFR. We found that treatment of cells with AS104 causes significant reduction of cell growth and metabolic activity in four human pancreatic cancer cell lines. Furthermore, we show that the AS104-mediated induction of apoptotic cell death is associated with stimulation of autophagy in a dose-dependent manner. Treatment of cells with AS104 results in significant down-regulation of EGFR and HER-2 expression and activity and subsequent inhibition of downstream signaling proteins. Quantitative RT-PCR analysis and assays with proteasome inhibitors revealed that AS104 regulates the expression of EGFR and HER-2 at the transcriptional level. These findings provide for the first time experimental evidence for efficacy of AS104 in the simultaneous transcriptional repression of EGFR and HER-2 genes and suggest that AS104 may have therapeutic potential in the treatment of pancreatic cancers that express high levels of the aforementioned receptor tyrosine kinases.

  5. 2-Triazenoazaindoles: A novel class of triazenes inducing transcriptional down-regulation of EGFR and HER-2 in human pancreatic cancer cells

    Science.gov (United States)

    KREUTZER, JAN N.; SALVADOR, ALESSIA; DIANA, PATRIZIA; CIRRINCIONE, GIROLAMO; VEDALDI, DANIELA; LITCHFIELD, DAVID W.; ISSINGER, OLAF-GEORG; GUERRA, BARBARA

    2012-01-01

    Pancreatic cancer is a complex malignancy arising from the accumulation of genetic and epigenetic defects in the affected cells. Standard chemotherapy for patients with advanced disease shows only modest effects and is associated with considerable toxicity. Overexpression or aberrant activation of members of the epidermal growth factor receptor tyrosine kinase family, which includes EGFR and HER-2, occurs frequently and is associated with multiple drug resistance and decreased patient survival. In this study, we have investigated the therapeutic potential of AS104, a novel compound of the triazene class, with potential inhibitory effects on EGFR. We found that treatment of cells with AS104 causes significant reduction of cell growth and metabolic activity in four human pancreatic cancer cell lines. Furthermore, we show that the AS104-mediated induction of apoptotic cell death is associated with stimulation of autophagy in a dose-dependent manner. Treatment of cells with AS104 results in significant down-regulation of EGFR and HER-2 expression and activity and subsequent inhibition of downstream signaling proteins. Quantitative RT-PCR analysis and assays with proteasome inhibitors revealed that AS104 regulates the expression of EGFR and HER-2 at the transcriptional level. These findings provide for the first time experimental evidence for efficacy of AS104 in the simultaneous transcriptional repression of EGFR and HER-2 genes and suggest that AS104 may have therapeutic potential in the treatment of pancreatic cancers that express high levels of the aforementioned receptor tyrosine kinases. PMID:22134789

  6. The Generalist Model: Where do the Micro and Macro Converge?

    Directory of Open Access Journals (Sweden)

    Shari E. Miller

    2008-12-01

    Full Text Available Although macro issues are integral to social work, students continue to struggle with the acquisition of knowledge and skills pertaining to larger systems. Educators have developed innovative methods to integrate learning across systems of various sizes however it appears an imbalance persists. This challenge is supported by baccalaureate student responses to a social work program evaluation. Four years of data from 295 undergraduate students revealed that they felt less prepared to practice with larger, macro systems. Changes in curriculum to reflect collaboration and holism, and more research are needed to adequately provide macro learning and macro practice opportunities within the generalist model and in the context of the current socio-economic-political environment.

  7. Data driven polypharmacological drug design for lung cancer: analyses for targeting ALK, MET, and EGFR

    DEFF Research Database (Denmark)

    Narayanan, Dilip; Gani, Osman ABSM; Gruber, Franz XE

    2017-01-01

    encoded into molecular mechanics force fields. Cheminformatics analyses of binding data show EGFR to be dissimilar to ALK and MET, but its structure shows how it may be co-targeted with the addition of a covalent trap. This suggests a strategy for the design of a focussed chemical library based on a pan......Drug design of protein kinase inhibitors is now greatly enabled by thousands of publicly available X-ray structures, extensive ligand binding data, and optimized scaffolds coming off patent. The extensive data begin to enable design against a spectrum of targets (polypharmacology); however...... consider polypharmacological targeting of protein kinases ALK, MET, and EGFR (and its drug resistant mutant T790M) in non small cell lung cancer as an example. Both EGFR and ALK represent sources of primary oncogenic lesions, while drug resistance arises from MET amplification and EGFR mutation. A drug...

  8. Quantum-Dot-Based Theranostic Micelles Conjugated with an Anti-EGFR Nanobody for Triple-Negative Breast Cancer Therapy.

    Science.gov (United States)

    Wang, Yuyuan; Wang, Yidan; Chen, Guojun; Li, Yitong; Xu, Wei; Gong, Shaoqin

    2017-09-13

    A quantum-dot (QD)-based micelle conjugated with an anti-epidermal growth factor receptor (EGFR) nanobody (Nb) and loaded with an anticancer drug, aminoflavone (AF), has been engineered for EGFR-overexpressing cancer theranostics. The near-infrared (NIR) fluorescence of the indium phosphate core/zinc sulfide shell QDs (InP/ZnS QDs) allowed for in vivo nanoparticle biodistribution studies. The anti-EGFR nanobody 7D12 conjugation improved the cellular uptake and cytotoxicity of the QD-based micelles in EGFR-overexpressing MDA-MB-468 triple-negative breast cancer (TNBC) cells. In comparison with the AF-encapsulated nontargeted (i.e., without Nb conjugation) micelles, the AF-encapsulated Nb-conjugated (i.e., targeted) micelles accumulated in tumors at higher concentrations, leading to more effective tumor regression in an orthotopic triple-negative breast cancer xenograft mouse model. Furthermore, there was no systemic toxicity observed with the treatments. Thus, this QD-based Nb-conjugated micelle may serve as an effective theranostic nanoplatform for EGFR-overexpressing cancers such as TNBCs.

  9. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER).

    Science.gov (United States)

    Ma, Shao; Yin, Ning; Qi, Xiaomei; Pfister, Sandra L; Zhang, Mei-Jie; Ma, Rong; Chen, Guan

    2015-05-30

    Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.

  10. Radiotherapy modulates expression of EGFR, ERCC1 and p53 in cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, V.H. de; Melo, A.C. de; Nogueira-Rodrigues, A.; Pimenta-Inada, H.K.; Alves, F.G.; Moralez, G.; Thiago, L.S.; Ferreira, C.G.; Sternberg, C., E-mail: diretoriaexecutiva@sboc.org.br [Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ (Brazil); Meira, D.D. [Universidade Federal do Espírito Santo (UFES), Vitória, ES (Brazil); Pires, A.C. [Fonte Medicina Diagnóstica, Niterói, RJ (Brazil)

    2018-02-01

    Cervical cancer is a public health problem and the molecular mechanisms underlying radioresistance are still poorly understood. Here, we evaluated the modulation of key molecules involved in cell proliferation, cell cycle and DNA repair in cervical cancer cell lines (CASKI and C33A) and in malignant tissues biopsied from 10 patients before and after radiotherapy. The expression patterns of epidermal growth factor receptor (EGFR), excision repair cross-complementation group 1 (ERCC1) and p53 were evaluated in cancer cell lines by quantitative PCR and western blotting, and in human malignant tissues by immunohistochemistry. The mutation status of TP53 gene was evaluated by direct sequencing. Among cell lines, absent or weak modulations of EGFR, ERCC1 and p53 were observed after exposure to 1.8 Gy. Conversely, increased expressions of p53 (5/10 patients; P=0.0239), ERCC1 (5/10 patients; P=0.0294) and EGFR (4/10 patients; P=0.1773) were observed in malignant tissues after radiotherapy with the same radiation dose. TP53 mutations were found only in one patient. Here we show that a single dose of radiotherapy induced EGFR, ERCC1 and p53 expression in malignant tissues from cervical cancer patients but not in cancer cell lines, highlighting the gap between in vitro and in vivo experimental models. Studies on larger patient cohorts are needed to allow an interpretation that an up regulation of p53, EGFR and ERCC1 may be part of a radioresistance mechanism. (author)

  11. Can EGFR mutation status be reliably determined in pre-operative needle biopsies from adenocarcinomas of the lung?

    DEFF Research Database (Denmark)

    Lindahl, Kim Hein; Sørensen, Flemming Brandt; Jonstrup, Søren Peter

    2015-01-01

    The identification of EGFR mutations in non-small-cell lung cancer is important for selecting patients, who may benefit from treatment with EGFR tyrosine kinase inhibitors. The analysis is usually performed on cytological aspirates and/or histological needle biopsies, representing a small fraction....... Moreover, several inconclusive results in the diagnostic biopsies reveal that attention must be paid on the suitability of pre-operative biopsies for EGFR mutation analysis....

  12. Co-expression of periostin and EGFR in patients with esophageal squamous cell carcinoma and their prognostic significance

    Directory of Open Access Journals (Sweden)

    Jia W

    2016-08-01

    Full Text Available Wei Jia,1 Wei Wang,1 Chu-shu Ji,1 Jun-yang Niu,2 Ya-jing Lv,1 Hang-cheng Zhou,2 Bing Hu1 1Department of Medical Oncology, 2Department of Pathology, Anhui Provincial Hospital, Anhui Medical University, Hefei, People’s Republic of China Background: Both periostin (PN and epidermal growth factor receptor (EGFR can predict the prognosis of several carcinomas alone. However, coexpression of PN and EGFR in esophageal squamous cell carcinoma (ESCC still remains unknown. We aimed to clarify their relationship with clinicopathological factors and prognostic significance of their coexpression in ESCC. Patients and methods: In this single-center retrospective study, immunohistochemistry was performed to evaluate the expression of PN and EGFR in ESCC and paracarcinomatous tissues of 83 patients. The quantitative expression levels of PN and EGFR were examined in two ESCC and tumor-adjacent tissues. The levels of PN and EGFR expression were correlated with clinicopathological parameters by the χ2 or Kruskal–Wallis method. Spearman’s rank correlation test was performed to determine the relationship between PN and EGFR expression levels. Kaplan–Meier and Cox regression analyses were used to detect the prognostic factors of disease-free survival (DFS and overall survival (OS. Results: The high expression of PN protein in ESCC tissues was significantly associated with tumor length (P=0.044, differentiation grade (P=0.003, venous invasion (P=0.010, invasion depth (P=0.007, lymphatic metastasis (P=0.000, and tumor stage (P=0.000. The high expression of EGFR protein in ESCC tissues was only significantly related to lymphatic metastasis (P=0.000, invasion depth (P=0.022, and tumor stage (P=0.000. Kaplan–Meier analysis showed that high expression of PN was closely correlated to reduced OS (P=0.000 and DFS (P=0.000, which was consistent with EGFR expression. Cox regression analysis identified PN and EGFR as independent poor prognostic factors of OS and DFS

  13. Cell adhesion and EGFR activation regulate EphA2 expression in cancer

    DEFF Research Database (Denmark)

    Larsen, Alice Bjerregaard; Stockhausen, Marie-Thérése; Poulsen, Hans Skovgaard

    2010-01-01

    largely unknown. Here we show that the expression of EphA2 in in vitro cultured cells, is restricted to cells growing adherently and that adhesion-induced EphA2 expression is dependent upon activation of the epidermal growth factor receptor (EGFR), mitogen activated protein kinase kinase (MEK) and Src...... family kinases (SRC). Moreover, the results show that adhesion-induced EGFR activation and EphA2 expression is affected by interactions with extracellular matrix (ECM) proteins working as integrin ligands. Stimulation with the EphA2 ligand, ephrinA1 inhibited ERK phosphorylation and cancer cell viability....... These effects were however abolished by activation of the EGF-receptor ligand system favoring Ras/MAPK signaling and cell proliferation. Based on our results, we propose a regulatory mechanism where cell adhesion induces EGFR kinase activation and EphA2 expression; and where the effect of ephrinA1 mediated...

  14. Macro-elementwise preconditioning methods

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe

    2012-01-01

    Roč. 82, č. 10 (2012), s. 1952-1963 ISSN 0378-4754 Institutional research plan: CEZ:AV0Z30860518 Keywords : heterogeniety * elementwise preconditioning * block matrix partitioning * macro-elements Subject RIV: BA - General Mathematics Impact factor: 0.836, year: 2012 http://www.sciencedirect.com/science/journal/03784754

  15. A polymorphism of EGFR extracellular domain is associated with progression free-survival in metastatic colorectal cancer patients receiving cetuximab-based treatment

    International Nuclear Information System (INIS)

    Gonçalves, Anthony; Turrini, Olivier; Lelong, Bernard; Viens, Patrice; Borg, Jean-Paul; Birnbaum, Daniel; Olschwang, Sylviane; Viret, Frédéric; Esteyries, Séverine; Taylor-Smedra, Brynn; Lagarde, Arnaud; Ayadi, Mounay; Monges, Geneviève; Bertucci, François; Esterni, Benjamin; Delpero, Jean-Robert

    2008-01-01

    Cetuximab, a monoclonal antibody targeting Epidermal Growth Factor Receptor (EGFR), is currently used in metastatic colorectal cancer (mCRC), but predictive factors for therapeutic response are lacking. Mutational status of KRAS and EGFR, and EGFR copy number are potential determinants of cetuximab activity. We analyzed tumor tissues from 32 EGFR-positive mCRC patients receiving cetuximab/irinotecan combination and evaluable for treatment response. EGFR copy number was quantified by fluorescence in situ hybridization (FISH). KRAS exon 1 and EGFR exons coding for extracellular regions were sequenced. Nine patients experienced an objective response (partial response) and 23 were considered as nonresponders (12 with stable disease and 11 with progressive disease). There was no EGFR amplification found, but high polysomy was noted in 2 patients, both of which were cetuximab responders. No EGFR mutations were found but a variant of exon 13 (R521K) was observed in 12 patients, 11 of which achieved objective response or stable disease. Progression-free and overall survivals were significantly better in patients with this EGFR exon 13 variant. KRAS mutations were found in 14 cases. While there was a trend for an increased KRAS mutation frequency in nonresponder patients (12 mutations out of 23, 52%) as compared to responder patients (2 out of 9, 22%), authentic tumor response or long-term disease stabilization was found in KRAS mutated patients. This preliminary study suggests that: an increase in EGFR copy number may be associated with cetuximab response but is a rare event in CRC, KRAS mutations are associated with low response rate but do not preclude any cetuximab-based combination efficacy and EGFR exon 13 variant (R521K) may predict for cetuximab benefit

  16. Radiosensitivity and TP 53, EGFR amplification and LOH10 analysis of primary glioma cell cultures

    International Nuclear Information System (INIS)

    Gerlach, B.; Harder, A.H.; Slotman, B.J.; Sminia, P.; Hulsebos, T.J.M.; Leenstra, S.; Peter Vandertop, W.; Hartmann, K.A.

    2002-01-01

    Aim: Determination of in-vitro radiosensitivity and genetic alterations of cell cultures derived from human glioma biopsy tissue and established glioma cell lines. Material and Methods: Fresh brain tumor specimens of six patients were processed to early passage cell cultures. In addition the cell lines D 384 and Gli 6 were used. Cell cultures were irradiated with doses from 2 to 10 Gy. Following irradiation, cell survival was determined by clonogenic assay and survival curves were generated. The surviving fractions after 2 Gy (SF2) and 4 Gy (SF4) were used as radiosensitivity parameters. Genetic analysis included determination of the mutational and loss of heterozygosity (LOH) status of TP 53 (exons 5-8), the LOH 10- and epidermal growth factor receptor gene (EGFR) amplification status. Results: The SF2 and SF4 values ranged from 0.54 to 0.88 (mean: 0.70) and from 0.13 to 0.52 (mean: 0.32), respectively. Genetic alterations were found in the Gli 6 cell line and in two primary cell cultures. The genetic profile of Gli 6 showed LOH but no TP 53 mutation, complete LOH 10 and no EGFR amplification. The VU 15 cell culture showed TP 53 mutation but no LOH 10 or EGFR amplification, while VU 24 showed incomplete LOH 10, EGFR amplification and no TP 53 mutation. In the other four cell cultures and D 384 cell line no genetic alterations were diagnosed. Histopathological classification of glioblastoma multiforme and/or genetic alterations resulted in lower radiosensitivity. Conclusion: In this small series of early passage glioma cell cultures low radiosensitivity and alterations in cell regulatory genes were seen. Further testing of biological behavior in larger series of patient-derived material is ongoing. (orig.)

  17. Effects of icotinib, a novel epidermal growth factor receptor tyrosine kinase inhibitor, in EGFR-mutated non-small cell lung cancer.

    Science.gov (United States)

    Yang, Guangdie; Yao, Yinan; Zhou, Jianya; Zhao, Qiong

    2012-06-01

    Epidermal growth factor receptor (EGFR) is one of the most promising targets for non-small cell lung cancer (NSCLC). Our study demonstrated the antitumor effects of icotinib hydrochloride, a highly selective epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI), in two EGFR-mutated lung cancer cell lines compared to A549, a cell line without EGFR mutations. We incubated PC-9 and HCC827 human lung cancer cell lines both with (E746-A750) mutations with various concentrations of icotinib and gefitinib for 48 h. Cell proliferation and migration were determined using a real-time cell invasion and migration assay and cytotoxicity assay. Apoptosis was assessed by measuring Annexin V staining using flow cytometry. The antitumor effects of icotinib compared to gefitinib were similar and were most effective in reducing the proliferation of EGFR-mutated cells compared to non-mutated controls. Our results suggest the possibility of icotinib as a new therapeutic agent of EGFR-mutated cancer cells, which has the potential to be used in the first-line treatment of EGFR-mutated NSCLC.

  18. Nicotine enhances proliferation, migration, and radioresistance of human malignant glioma cells through EGFR activation

    International Nuclear Information System (INIS)

    Khalil, A.A.; Jameson, M.J.; Broaddus, W.C.; Lin, P.S.; Chung, T.D.

    2013-01-01

    It has been suggested that continued tobacco use during radiation therapy contributes to maintenance of neoplastic growth despite treatment with radiation. Nicotine is a cigarette component that is an established risk factor for many diseases, neoplastic and otherwise. The hypothesis of this work is that nicotine promotes the proliferation, migration, and radioresistance of human malignant glioma cells. The effect of nicotine on cellular proliferation, migration, signaling, and radiation sensitivity were evaluated for malignant glioma U87 and GBM12 cells by use of the AlamarBlue, scratch healing, and clonogenic survival assays. Signal transduction was assessed by immunoblotting for activated EGFR, extracellular regulated kinase (ERK), and AKT. At concentrations comparable with those found in chronic smokers, nicotine induced malignant glioma cell migration, growth, colony formation, and radioresistance. Nicotine increased phosphorylation of EGFR tyr992 , AKT ser473 , and ERK. These molecular effects were reduced by pharmacological inhibitors of EGFR, PI3K, and MEK. It was therefore concluded that nicotine stimulates the malignant behavior of glioma cells in vitro by activation of the EGFR and downstream AKT and ERK pathways. (author)

  19. iRhom2 promotes lupus nephritis through TNF-α and EGFR signaling.

    Science.gov (United States)

    Qing, Xiaoping; Chinenov, Yurii; Redecha, Patricia; Madaio, Michael; Roelofs, Joris Jth; Farber, Gregory; Issuree, Priya D; Donlin, Laura; Mcllwain, David R; Mak, Tak W; Blobel, Carl P; Salmon, Jane E

    2018-04-02

    Lupus nephritis (LN) often results in progressive renal dysfunction. The inactive rhomboid 2 (iRhom2) is a newly identified key regulator of A disintegrin and metalloprotease 17 (ADAM17), whose substrates, such as TNF-α and heparin-binding EGF (HB-EGF), have been implicated in the pathogenesis of chronic kidney diseases. Here, we demonstrate that deficiency of iRhom2 protects the lupus-prone Fcgr2b-/- mice from developing severe kidney damage without altering anti-double-stranded DNA (anti-dsDNA) Ab production by simultaneously blocking HB-EGF/EGFR and TNF-α signaling in the kidney tissues. Unbiased transcriptome profiling of kidneys and kidney macrophages revealed that TNF-α and HB-EGF/EGFR signaling pathways are highly upregulated in Fcgr2b-/- mice, alterations that were diminished in the absence of iRhom2. Pharmacological blockade of either TNF-α or EGFR signaling protected Fcgr2b-/- mice from severe renal damage. Finally, kidneys from LN patients showed increased iRhom2 and HB-EGF expression, with interstitial HB-EGF expression significantly associated with chronicity indices. Our data suggest that activation of iRhom2/ADAM17-dependent TNF-α and EGFR signaling plays a crucial role in mediating irreversible kidney damage in LN, thereby uncovering a target for selective and simultaneous dual inhibition of 2 major pathological pathways in the effector arm of the disease.

  20. Ordered macro-microporous metal-organic framework single crystals

    KAUST Repository

    Shen, Kui

    2018-01-16

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional-ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent-induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  1. Ordered macro-microporous metal-organic framework single crystals

    Science.gov (United States)

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional–ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent–induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  2. Ordered macro-microporous metal-organic framework single crystals

    KAUST Repository

    Shen, Kui; Zhang, Lei; Chen, Xiaodong; Liu, Lingmei; Zhang, Daliang; Han, Yu; Chen, Junying; Long, Jilan; Luque, Rafael; Li, Yingwei; Chen, Banglin

    2018-01-01

    We constructed highly oriented and ordered macropores within metal-organic framework (MOF) single crystals, opening up the area of three-dimensional-ordered macro-microporous materials (that is, materials containing both macro- and micropores) in single-crystalline form. Our methodology relies on the strong shaping effects of a polystyrene nanosphere monolith template and a double-solvent-induced heterogeneous nucleation approach. This process synergistically enabled the in situ growth of MOFs within ordered voids, rendering a single crystal with oriented and ordered macro-microporous structure. The improved mass diffusion properties of such hierarchical frameworks, together with their robust single-crystalline nature, endow them with superior catalytic activity and recyclability for bulky-molecule reactions, as compared with conventional, polycrystalline hollow, and disordered macroporous ZIF-8.

  3. Affinity enhancement of nanobody binding to EGFR: in silico site-directed mutagenesis and molecular dynamics simulation approaches.

    Science.gov (United States)

    Farasat, Alireza; Rahbarizadeh, Fatemeh; Hosseinzadeh, Ghader; Sajjadi, Sharareh; Kamali, Mehdi; Keihan, Amir Homayoun

    2017-06-01

    Epidermal growth factor receptor (EGFR), a transmembrane glycoprotein, is overexpressed in many cancers such as head-neck, breast, prostate, and skin cancers for this reason it is a good target in cancer therapy and diagnosis. In nanobody-based cancer diagnosis and treatment, nanobodies with high affinity toward receptor (e.g. EGFR) results in effective treatment or diagnosis of cancer. In this regard, the main aim of this study is to develop a method based on molecular dynamic (MD) simulations for designing of 7D12 based nanobody with high affinity compared with wild-type nanobody. By surveying electrostatic and desolvation interactions between different residues of 7D12 and EGFR, the critical residues of 7D12 that play the main role in the binding of 7D12 to EGFR were elucidated and based on these residues, five logical variants were designed. Following the 50 ns MD simulations, pull and umbrella sampling simulation were performed for 7D12 and all its variants in complex with EGFR. Binding free energy of 7D12 (and all its variants) with EGFR was obtained by weighted histogram analysis method. According to binding free energy results, GLY101 to GLU mutation showed the highest binding affinity but this variant is unstable after 50 ns MD simulations. ALA100 to GLU mutation shows suitable binding enhancement with acceptable structural stability. Suitable position and orientation of GLU in residue 100 of 7D12 against related amino acids of EGFR formed some extra hydrogen and electrostatic interactions which resulted in binding enhancement.

  4. A camelid nanobody against EGFR was easily obtained through refolding of inclusion body expressed in Escherichia coli.

    Science.gov (United States)

    Xu, Li; Song, Xiaoyu; Jia, Lingyun

    2017-11-01

    Using anti-EGFR (epidermal growth factor receptor) nanobody is a good choice for diagnoses and therapeutics for high EGFR expression diseases. In the present study, the percentage composition of anti-EGFR nanobody attained 25% of the total cell protein expressed in Escherichia coli BL21 (DE3). However, almost all nanobodies were expressed as inclusion bodies. To acquire active nanobodies, a series of dilution refolding procedures were optimized after inclusion bodies were dissolved into 6 M urea and purified with immobilized metal affinity chromatography. The results showed the refolding rate of the anti-EGFR nanobodies attained to 73%, and about 100 mg nanobodies were refolded from 1 L cells under the conditions that the initial nanobody concentration was 0.3 mg/mL, the dilution speed was 2.5 mL/Min, the dilution buffer was Tris-HCl at pH 8.0, the additives were 0.2 M Arg, 5 mM reduced glutathione (GSH), and 1 mM oxidized glutathione (GSSG). Then the activity of the refolded nanobodies was confirmed. The results showed that the refolded anti-EGFR nanobodies, in a dose-dependent manner, bounded to the tumor cell surface of A431 and MCF-7 and significantly inhibited the proliferation of A431 caused by the epidermal growth factor. Our study provides a facile method to rapidly, efficiently, and massively prepare anti-EGFR antibodies and promotes anti-EGFR-based recognition in cancer diagnoses and therapeutics. © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  5. An new MHD/kinetic model for exploring energetic particle production in macro-scale systems

    Science.gov (United States)

    Drake, J. F.; Swisdak, M.; Dahlin, J. T.

    2017-12-01

    A novel MHD/kinetic model is being developed to explore magneticreconnection and particle energization in macro-scale systems such asthe solar corona and the outer heliosphere. The model blends the MHDdescription with a macro-particle description. The rationale for thismodel is based on the recent discovery that energetic particleproduction during magnetic reconnection is controlled by Fermireflection and Betatron acceleration and not parallel electricfields. Since the former mechanisms are not dependent on kineticscales such as the Debye length and the electron and ion inertialscales, a model that sheds these scales is sufficient for describingparticle acceleration in macro-systems. Our MHD/kinetic model includesmacroparticles laid out on an MHD grid that are evolved with the MHDfields. Crucially, the feedback of the energetic component on the MHDfluid is included in the dynamics. Thus, energy of the total system,the MHD fluid plus the energetic component, is conserved. The systemhas no kinetic scales and therefore can be implemented to modelenergetic particle production in macro-systems with none of theconstraints associated with a PIC model. Tests of the new model insimple geometries will be presented and potential applications will bediscussed.

  6. Role of [{sup 18}F]FDG PET in prediction of KRAS and EGFR mutation status in patients with advanced non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Caicedo, Carlos; Garcia-Velloso, Maria Jose; Vigil Diaz, Carmen; Richter Echevarria, Jose Angel [University of Navarra, Nuclear Medicine Department, University Clinic of Navarra, Pamplona (Spain); Lozano, Maria Dolores; Labiano, Tania [University of Navarra, Pathology Department, University Clinic of Navarra, Pamplona (Spain); Lopez-Picazo, Jose Maria; Gurpide, Alfonso; Perez Gracia, Jose Luis [University of Navarra, Oncology Department, University Clinic of Navarra, Pamplona (Spain); Zulueta, Javier [University of Navarra, Pulmonology Department, University Clinic of Navarra, Pamplona (Spain)

    2014-11-15

    The tumour molecular profile predicts the activity of epidermal growth factor receptor (EGFR) inhibitors in non-small-cell lung cancer (NSCLC). However, tissue availability and tumour heterogeneity limit its assessment. We evaluated whether [{sup 18}F]FDG PET might help predict KRAS and EFGR mutation status in NSCLC. Between January 2005 and October 2011, 340 NSCLC patients were tested for KRAS and EGFR mutation status. We identified patients with stage III and IV disease who had undergone [{sup 18}F]FDG PET/CT scanning for initial staging. SUVpeak, SUVmax and SUVmean of the single hottest tumour lesions were calculated, and their association with KRAS and EGFR mutation status was assessed. A receiver operator characteristic (ROC) curve analysis and a multivariate analysis (including SUVmean, gender, age and AJCC stage) were performed to identify the potential value of [{sup 18}F]FDG PET/CT for predicting KRAS mutation. From 102 patients staged using [{sup 18}F]FDG PET/CT, 28 (27 %) had KRAS mutation (KRAS+), 22 (22 %) had EGFR mutation (EGFR+) and 52 (51 %) had wild-type KRAS and EGFR profiles (WT). KRAS+ patients showed significantly higher [{sup 18}F]FDG uptake than EGFR+ and WT patients (SUVmean 9.5, 5.7 and 6.6, respectively; p < 0.001). No significant differences were observed in [{sup 18}F]FDG uptake between EGFR+ patients and WT patients. ROC curve analysis for KRAS mutation status discrimination yielded an area under the curve of 0.740 for SUVmean (p < 0.001). The multivariate analysis showed a sensitivity and specificity of 78.6 % and 62.2 %, respectively, and the AUC was 0.773. NSCLC patients with tumours harbouring KRAS mutations showed significantly higher [{sup 18}F]FDG uptake than WT patients, as assessed in terms of SUVpeak, SUVmax and SUVmean. A multivariate model based on age, gender, AJCC stage and SUVmean might be used as a predictive marker of KRAS mutation status in patients with stage III or IV NSCLC. (orig.)

  7. Macro-Micro Interlocked Simulator

    International Nuclear Information System (INIS)

    Sato, Tetsuya

    2005-01-01

    Simulation Science is now standing on a turning point. After the appearance of the Earth Simulator, HEC is struggling with several severe difficulties due to the physical limit of LSI technologies and the so-called latency problem. In this paper I would like to propose one clever way to overcome these difficulties from the simulation algorithm viewpoint. Nature and artificial products are usually organized with several nearly autonomously working internal systems (organizations, or layers). The Earth Simulator has gifted us with a really useful scientific tool that can deal with the entire evolution of one internal system with a sufficient soundness. In order to make a leap jump of Simulation Science, therefore, it is desired to design an innovative simulator that enables us to deal with simultaneously and as consistently as possible a real system that evolves cooperatively with several internal autonomous systems. Three years experience of the Earth Simulator Project has stimulated to come up with one innovative simulation algorithm to get rid of the technological barrier standing in front of us, which I would like to call 'Macro-Micro Interlocked Algorithm', or 'Macro-Micro Multiplying Algorithm', and present a couple of such examples to validate the proposed algorithm. The first example is an aurora-arc formation as a result of the mutual interaction between the macroscopic magnetosphere-ionosphere system and the microscopic field-aligned electron and ion system. The second example is the local heavy rain fall resulting from the interaction between the global climate evolution and the microscopic raindrop growth process. Based on this innovative feasible algorithm, I came up with a Macro-Micro Multiplying Simulator

  8. Clinical significance of altered nm23-H1, EGFR, RB and p53 expression in bilharzial bladder cancer

    International Nuclear Information System (INIS)

    Khaled, Hussein M; Bahnassy, Abeer A; Raafat, Amira A; Zekri, Abdel-Rahman N; Madboul, Maha S; Mokhtar, Nadia M

    2009-01-01

    Clinical characterization of bladder carcinomas is still inadequate using the standard clinico-pathological prognostic markers. We assessed the correlation between nm23-H1, Rb, EGFR and p53 in relation to the clinical outcome of patients with muscle invasive bilharzial bladder cancer (MI-BBC). nm23-H1, Rb, EGFR and p53 expression was assessed in 59 MI-BBC patients using immunohistochemistry and reverse transcription (RT-PCR) and was correlated to the standard clinico-pathological prognostic factors, patient's outcome and the overall survival (OS) rate. Overexpression of EGFR and p53 proteins was detected in 66.1% and 35.6%; respectively. Loss of nm23-H1and Rb proteins was detected in 42.4% and 57.6%; respectively. Increased EGFR and loss of nm23-H1 RNA were detected in 61.5% and 36.5%; respectively. There was a statistically significant correlation between p53 and EGFR overexpression (p < 0.0001), nm23 loss (protein and RNA), lymph node status (p < 0.0001); between the incidence of local recurrence and EGFR RNA overexpression (p= 0.003) as well as between the incidence of metastasis and altered Rb expression (p = 0.026), p53 overexpression (p < 0.0001) and mutation (p = 0.04). Advanced disease stage correlated significantly with increased EGFR (protein and RNA) (p = 0.003 & 0.01), reduced nm23-H1 RNA (p = 0.02), altered Rb (p = 0.023), and p53 overexpression (p = 0.004). OS rates correlated significantly, in univariate analysis, with p53 overexpression (p = 0.011), increased EGFR (protein and RNA, p = 0.034&0.031), nm23-H1 RNA loss (p = 0.021) and aberrations of ≥ 2 genes. However, multivariate analysis showed that only high EGFR overexpression, metastatic recurrence, high tumor grade and the combination of ≥ 2 affected markers were independent prognostic factors. nm23-H1, EGFR and p53 could be used as prognostic biomarkers in MI-BBC patients. In addition to the standard pathological prognostic factors, a combination of these markers (≥ 2) has

  9. The prognostic values of EGFR expression and KRAS mutation in patients with synchronous or metachronous metastatic colorectal cancer

    International Nuclear Information System (INIS)

    Huang, Ching-Wen; Wang, Jaw-Yuan; Tsai, Hsiang-Lin; Chen, Yi-Ting; Huang, Chun-Ming; Ma, Cheng-Jen; Lu, Chien-Yu; Kuo, Chao-Hung; Wu, Deng-Chyang; Chai, Chee-Yin

    2013-01-01

    The epidermal growth factor receptor (EGFR)/RAS/RAF/MEK/MAPK pathway is an important pathway in the carcinogenesis, invasion and metastasis of colorectal cancers (CRCs). We conducted a retrospective study to determine the prognostic values of EGFR expression and KRAS mutation in patients with metastatic CRC (mCRC) based on synchronous or metachronous status. From October 2002 to March 2012, 205 patients with mCRC were retrospectively analyzed; 98 were found to have metachronous mCRC while 107 were found to have synchronous mCRC. The EGFR expressions were determinate by IHC (immunohistochemistry) analysis and categorized 1+ (weak intensity), 2+ (moderate intensity), and 3+ (strong intensity). Genomic DNA was isolated from frozen primary CRC tissues and direct sequencing of KRAS was performed. The clinicopathological features of these mCRC patients were retrospectively investigated according to EGFR expression and KRAS mutation status. Moreover, we analyzed the prognostic values of EGFR expression and KRAS mutation among these patients. Of the 205 patients with mCRC, EGFR expression was analyzed in 167 patients, and positive EGFR expression was noted in 140 of those patients (83.8%). KRAS mutation was investigated in 205 patients and mutations were noted in 88 of those patients (42.9%). In patients with metachronous mCRC, positive EGFR expression was significantly correlated with well-and moderately-differentiated tumors (P = 0.028), poorer disease-free survival (DFS) (P < 0.001), and overall survival (OS) (P < 0.001). Furthermore, positive EGFR expression was a significant independent prognostic factor of DFS (P = 0.006, HR: 4.012, 95% CI: 1.130–8.445) and OS (P = 0.028, HR: 3.090, 95% CI: 1.477–10.900) in metachronous mCRC patients. KRAS mutation status was not significantly related to DFS and OS of patients with metachronous mCRC; likewise, KRAS mutation status was not significantly different in the progression-free survival (PFS) and OS of patients with

  10. Healthy public policy in poor countries: tackling macro-economic policies.

    Science.gov (United States)

    Mohindra, K S

    2007-06-01

    Large segments of the population in poor countries continue to suffer from a high level of unmet health needs, requiring macro-level, broad-based interventions. Healthy public policy, a key health promotion strategy, aims to put health on the agenda of policy makers across sectors and levels of government. Macro-economic policy in developing countries has thus far not adequately captured the attention of health promotion researchers. This paper argues that healthy public policy should not only be an objective in rich countries, but also in poor countries. This paper takes up this issue by reviewing the main macro-economic aid programs offered by international financial institutions as a response to economic crises and unmanageable debt burdens. Although health promotion researchers were largely absent during a key debate on structural adjustment programs and health during the 1980s and 1990s, the international macro-economic policy tool currently in play offers a new opportunity to participate in assessing these policies, ensuring new forms of macro-economic policy interventions do not simply reproduce patterns of (neoliberal) economics-dominated development policy.

  11. Mutational profiling of non-small-cell lung cancer patients resistant to first-generation EGFR tyrosine kinase inhibitors using next generation sequencing

    Science.gov (United States)

    Jin, Ying; Shao, Yang; Shi, Xun; Lou, Guangyuan; Zhang, Yiping; Wu, Xue; Tong, Xiaoling; Yu, Xinmin

    2016-01-01

    Patients with advanced non-small-cell lung cancer (NSCLC) harboring sensitive epithelial growth factor receptor (EGFR) mutations invariably develop acquired resistance to EGFR tyrosine kinase inhibitors (TKIs). Identification of actionable genetic alterations conferring drug-resistance can be helpful for guiding the subsequent treatment decision. One of the major resistant mechanisms is secondary EGFR-T790M mutation. Other mechanisms, such as HER2 and MET amplifications, and PIK3CA mutations, were also reported. However, the mechanisms in the remaining patients are still unknown. In this study, we performed mutational profiling in a cohort of 83 NSCLC patients with TKI-sensitizing EGFR mutations at diagnosis and acquired resistance to three different first-generation EGFR TKIs using targeted next generation sequencing (NGS) of 416 cancer-related genes. In total, we identified 322 genetic alterations with a median of 3 mutations per patient. 61% of patients still exhibit TKI-sensitizing EGFR mutations, and 36% of patients acquired EGFR-T790M. Besides other known resistance mechanisms, we identified TET2 mutations in 12% of patients. Interestingly, we also observed SOX2 amplification in EGFR-T790M negative patients, which are restricted to Icotinib treatment resistance, a drug widely used in Chinese NSCLC patients. Our study uncovered mutational profiles of NSCLC patients with first-generation EGFR TKIs resistance with potential therapeutic implications. PMID:27528220

  12. Imaging Characteristics of Driver Mutations in EGFR, KRAS, and ALK among Treatment-Naïve Patients with Advanced Lung Adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Jangchul Park

    Full Text Available This study aimed to identify the computed tomography characteristics of treatment-naïve patients with lung adenocarcinoma and known driver mutations in EGFR, KRAS, or ALK. Patients with advanced lung adenocarcinoma (stage IIIB-IV and known mutations in EGFR, KRAS, or ALK were assessed. The radiological findings for the main tumor and intra-thoracic status were retrospectively analyzed in each group, and the groups' characteristics were compared. We identified 265 treatment-naïve patients with non-small-cell carcinoma, who had EGFR mutations (n = 159, KRAS mutations (n = 55, or ALK rearrangements (n = 51. Among the three groups, we evaluated only patients with stage IIIB-IV lung adenocarcinoma who had EGFR mutations (n = 126, KRAS mutations (n = 35, or ALK rearrangements (n = 47. We found that ground-glass opacity at the main tumor was significantly more common among EGFR-positive patients, compared to ALK-positive patients (p = 0.009. Lymphadenopathy was significantly more common among ALK-positive patients, compared to EGFR-positive patients (p = 0.003. Extranodal invasion was significantly more common among ALK-positive patients, compared to EGFR-positive patients and KRAS-positive patients (p = 0.001 and p = 0.049, respectively. Lymphangitis was significantly more common among ALK-positive patients, compared to EGFR-positive patients (p = 0.049. Pleural effusion was significantly less common among KRAS-positive patients, compared to EGFR-positive patients and ALK-positive patients (p = 0.046 and p = 0.026, respectively. Lung metastases were significantly more common among EGFR-positive patients, compared to KRAS-positive patients and ALK-positive patients (p = 0.007 and p = 0.04, respectively. In conclusion, EGFR mutations were associated with ground-glass opacity, KRAS-positive tumors were generally solid and less likely to metastasize to the lung and pleura, and ALK-positive tumors tended to present with lymphadenopathy, extranodal

  13. Activation of EGFR and ERBB2 by Helicobacter pylori Results in Survival of Gastric Epithelial Cells with DNA Damage

    Science.gov (United States)

    Chaturvedi, Rupesh; Asim, Mohammad; Piazuelo, M. Blanca; Yan, Fang; Barry, Daniel P.; Sierra, Johanna Carolina; Delgado, Alberto G.; Hill, Salisha; Casero, Robert A.; Bravo, Luis E.; Dominguez, Ricardo L.; Correa, Pelayo; Polk, D. Brent; Washington, M. Kay; Rose, Kristie L.; Schey, Kevin L.; Morgan, Douglas R.; Peek, Richard M.; Wilson, Keith T.

    2014-01-01

    BACKGROUND & AIMS The gastric cancer-causing pathogen Helicobacter pylori upregulates spermine oxidase (SMOX) in gastric epithelial cells, causing oxidative stress-induced apoptosis and DNA damage. A subpopulation of SMOXhigh cells are resistant to apoptosis, despite their high levels of DNA damage. Because epidermal growth factor receptor (EGFR) activation can regulate apoptosis, we determined its role in SMOX-mediated effects. METHODS SMOX, apoptosis, and DNA damage were measured in gastric epithelial cells from H pylori-infected Egfrwa5 mice (which have attenuated EGFR activity), Egfr wild-type mice, or in infected cells incubated with EGFR inhibitors or deficient in EGFR. Phosphoproteomic analysis was performed. Two independent tissue microarrays containing each stage of disease, from gastritis to carcinoma, and gastric biopsies from Colombian and Honduran cohorts were analyzed by immunohistochemistry. RESULTS SMOX expression and DNA damage were decreased, and apoptosis increased in H pylori-infected Egfrwa5 mice. H pylori-infected cells with deletion or inhibition of EGFR had reduced levels of SMOX, DNA damage, and DNA damagehigh apoptosislow cells. Phosphoproteomic analysis revealed increased EGFR and ERBB2 signaling. Immunoblot analysis demonstrated the presence of a phosphorylated (p)EGFR–ERBB2 heterodimer and pERBB2; knockdown of ErbB2 facilitated apoptosis of DNA damagehigh apoptosislow cells. SMOX was increased in all stages of gastric disease, peaking in tissues with intestinal metaplasia, whereas pEGFR, pEGFR–ERBB2, and pERBB2 were increased predominantly in tissues demonstrating gastritis or atrophic gastritis. Principal component analysis separated gastritis tissues from patients with cancer vs those without cancer. pEGFR, pEGFR–ERBB2, pERBB2, and SMOX were increased in gastric samples from patients whose disease progressed to intestinal metaplasia or dysplasia, compared with patients whose disease did not progress. CONCLUSIONS In an analysis

  14. EGFR Mutations in Surgically Resected Fresh Specimens from 697 Consecutive Chinese Patients with Non-Small Cell Lung Cancer and Their Relationships with Clinical Features

    Directory of Open Access Journals (Sweden)

    Yuanyang Lai

    2013-12-01

    Full Text Available We aimed to reveal the true status of epidermal growth factor receptor (EGFR mutations in Chinese patients with non-small cell lung cancer (NSCLC after lung resections. EGFR mutations of surgically resected fresh tumor samples from 697 Chinese NSCLC patients were analyzed by Amplification Refractory Mutation System (ARMS. Correlations between EGFR mutation hotspots and clinical features were also explored. Of the 697 NSCLC patients, 235 (33.7% patients had tyrosine kinase inhibitor (TKIs sensitive EGFR mutations in 41 (14.5% of the 282 squamous carcinomas, 155 (52.9% of the 293 adenocarcinomas, 34 (39.5% of the 86 adenosquamous carcinomas, one (9.1% of the 11 large-cell carcinomas, 2 (11.1% of the 18 sarcomatoid carcinomas, and 2 (28.6% of the 7 mucoepidermoid carcinomas. TKIs sensitive EGFR mutations were more frequently found in female patients (p < 0.001, non-smokers (p = 0.047 and adenocarcinomas (p < 0.001. The rates of exon 19 deletion mutation (19-del, exon 21 L858R point mutation (L858R, exon 21 L861Q point mutation (L861Q, exon 18 G719X point mutations (G719X, including G719C, G719S, G719A were 43.4%, 48.1%, 1.7% and 6.8%, respectively. Exon 20 T790M point mutation (T790M was detected in 3 squamous carcinomas and 3 adenocarcinomas and exon 20 insertion mutation (20-ins was detected in 2 patients with adenocarcinoma. Our results show the rates of EGFR mutations are higher in all types of NSCLC in Chinese patients. 19-del and L858R are two of the more frequent mutations. EGFR mutation detection should be performed as a routine postoperative examination in Chinese NSCLC patients.

  15. DISTRIBUTIONAND DIVERSITY OF MACRO ALGAE COMMUNITIES IN THE AMBON BAY

    Directory of Open Access Journals (Sweden)

    Christina Litaay

    2014-11-01

    Full Text Available Water conditions affected by natural and anthropogenic parameters such as sedimentation and solid waste disposal can influence the growth and distribution of macro algae. Sustainable management efforts can reduce damage on the Gulf coast of Ambon due to human activities and land clearing. This study was conducted in October 2008 using the transect method with 3 replicates in five locations i.e., Tantui, Air Salobar, Hative Besar, Halong, and Lateri. The interior and exterior waters of Ambon Bay contained different habitat conditions due to  sedimentation processes. The purpose of this study was to determine the distribution and diversity of macro algae communities in the Ambon Bay. The results found 21 species of macro- algae consisting of 10 species of Rhodhophyceae, 6 species of Chlorophyceae, and 5 species of Phaeophyceae. The highest density value of seaweed in Tantui was 389.0 g/m² of Chlorophyceae of Halimeda genus. In Air Salobar and Halong, the highest density value was Rhodophyceae of Gracilaria genus of 172.0 g/m² and 155.0 g/m², respectively. For the other genus in the Tantui and Lateri regions were dominated by Ulva at 92.10 gr/m2 and Padina of 20.0 gr/m2, respectively. The highest dominance of macro algae in the Hative Besar was found Chlorophyceae of Halimeda genus of 2.93 %, in the Air Salobar of Phaeophyceae of Turbinaria genus of 1.43 %. The difference values in density and the dominance of macro algae indicated an influence of habitat and environment due to seasons, sediment, and solid waste disposal to the diversity of macro algae. Keywords: Diversity, macro algae, Ambon Bay.

  16. Sphingosine 1-Phosphate Activation of EGFR As a Novel Target for Meningitic Escherichia coli Penetration of the Blood-Brain Barrier

    Science.gov (United States)

    Wang, Xiangru; Maruvada, Ravi; Morris, Andrew J.; Liu, Jun O.; Baek, Dong Jae; Kim, Kwang Sik

    2016-01-01

    Central nervous system (CNS) infection continues to be an important cause of mortality and morbidity, necessitating new approaches for investigating its pathogenesis, prevention and therapy. Escherichia coli is the most common Gram-negative bacillary organism causing meningitis, which develops following penetration of the blood–brain barrier (BBB). By chemical library screening, we identified epidermal growth factor receptor (EGFR) as a contributor to E. coli invasion of the BBB in vitro. Here, we obtained the direct evidence that CNS-infecting E. coli exploited sphingosine 1-phosphate (S1P) for EGFR activation in penetration of the BBB in vitro and in vivo. We found that S1P was upstream of EGFR and participated in EGFR activation through S1P receptor as well as through S1P-mediated up-regulation of EGFR-related ligand HB-EGF, and blockade of S1P function through targeting sphingosine kinase and S1P receptor inhibited EGFR activation, and also E. coli invasion of the BBB. We further found that both S1P and EGFR activations occurred in response to the same E. coli proteins (OmpA, FimH, NlpI), and that S1P and EGFR promoted E. coli invasion of the BBB by activating the downstream c-Src. These findings indicate that S1P and EGFR represent the novel host targets for meningitic E. coli penetration of the BBB, and counteracting such targets provide a novel approach for controlling E. coli meningitis in the era of increasing resistance to conventional antibiotics. PMID:27711202

  17. Upregulation of HLA Class I Expression on Tumor Cells by the Anti-EGFR Antibody Nimotuzumab

    Directory of Open Access Journals (Sweden)

    Greta Garrido

    2017-10-01

    Full Text Available Defining how epidermal growth factor receptor (EGFR-targeting therapies influence the immune response is essential to increase their clinical efficacy. A growing emphasis is being placed on immune regulator genes that govern tumor – T cell interactions. Previous studies showed an increase in HLA class I cell surface expression in tumor cell lines treated with anti-EGFR agents. In particular, earlier studies of the anti-EGFR blocking antibody cetuximab, have suggested that increased tumor expression of HLA class I is associated with positive clinical response. We investigated the effect of another commercially available anti-EGFR antibody nimotuzumab on HLA class I expression in tumor cell lines. We observed, for the first time, that nimotuzumab increases HLA class I expression and its effect is associated with a coordinated increase in mRNA levels of the principal antigen processing and presentation components. Moreover, using 7A7 (a specific surrogate antibody against murine EGFR, we obtained results suggesting the importance of the increased MHC-I expression induced by EGFR-targeted therapies display higher in antitumor immune response. 7A7 therapy induced upregulation of tumor MHC-I expression in vivo and tumors treated with this antibody display higher susceptibility to CD8+ T cells-mediated lysis. Our results represent the first evidence suggesting the importance of the adaptive immunity in nimotuzumab-mediated antitumor activity. More experiments should be conducted in order to elucidate the relevance of this mechanism in cancer patients. This novel immune-related antitumor mechanism mediated by nimotuzumab opens new perspectives for its combination with various immunotherapeutic agents and cancer vaccines.

  18. Activation of the epidermal growth factor receptor (EGFR) by a novel metalloprotease pathway.

    LENUS (Irish Health Repository)

    Bergin, David A

    2008-11-14

    Neutrophil Elastase (NE) is a pro-inflammatory protease present at higher than normal levels in the lung during inflammatory disease. NE regulates IL-8 production from airway epithelial cells and can activate both EGFR and TLR4. TACE\\/ADAM17 has been reported to trans-activate EGFR in response to NE. Here, using 16HBE14o-human bronchial epithelial cells we demonstrate a new mechanism by which NE regulates both of these events. A high molecular weight soluble metalloprotease activity detectable only in supernatants from NE-treated cells by gelatin and casein zymography was confirmed to be meprin alpha by Western immunoblotting. In vitro studies demonstrated the ability of NE to activate meprin alpha, which in turn could release soluble TGFalpha and induce IL-8 production from 16HBE14o- cells. These effects were abrogated by actinonin, a specific meprin inhibitor. NE-induced IL-8 expression was also inhibited by meprin alpha siRNA. Immunoprecipitation studies detected EGFR\\/TLR4 complexes in NE-stimulated cells overexpressing these receptors. Confocal studies confirmed colocalization of EGFR and TLR4 in 16HBE14o- cells stimulated with meprin alpha. NFkappaB was also activated via MyD88 in these cells by meprin alpha. In bronchoalveolar lavage fluid from NE knock-out mice infected intra-tracheally with Pseudomonas aeruginosa meprin alpha was significantly decreased compared with control mice, and was significantly increased and correlated with NE activity, in bronchoalveolar lavage fluid from individuals with cystic fibrosis but not healthy controls. The data describe a previously unidentified lung metalloprotease meprin alpha, and its role in NE-induced EGFR and TLR4 activation and IL-8 production.

  19. Comparison of EGFR and KRAS Status between Primary Non-small Cell Lung Cancer and Corresponding Metastases: A Systematic Review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Chengbo HAN

    2010-09-01

    Full Text Available Background and objective Epidermal growth factor receptor (EGFR and KRAS status were particularly critical for the choice of first-line targeted therapy of non-small cell lung cancer (NSCLC, while the primary tumor and metastases might be different in the EGFR and KRAS gene status. The aim of this pooled analysis is to compare EGFR and KRAS status in matching primary NSCLC and metastases and further to guide clinical practice. Methods Systematic computerized searches of the Pubmed and Medline databases (up to May 10, 2010 meeting specified search criteria were performed, followed by a further screening according to inclusive and exclusive criteria. Results Fourteen articles were selected into the final meta-analysis with paired primary and metastatic cases of 598. Expression level of EGFR protein and mutation frequency of KRAS gene in primary tumors were higher than that in metastases, relative risk (RR=1.13 (95%CI: 0.98-1.31, P=0.09 and RR=1.39 (95%CI: 0.95-2.03, P=0.09, respectively. EGFR gene copy number in metastases was higher than that in primary tumor, RR=0.74 (95%CI: 0.53-1.02, P=0.06. There was no statistically significant difference of EGFR mutation frequency in primary tumors and metastases (P=0.31. The discordant rate in primary and metastases was 17.09% for EGFR mutation, 27.07% for EGFR amplification, 27.84% for EGFR protein expression and 25.91% for KRAS mutation. Conclusion The systematic analysis showed that the EGFR mutation status in primary lung cancer and corresponding metastases was more stable than KRAS gene. KRAS mutation in primary lung cancerous foci seems to better reflect systemically cancerous genetic characteristics of KRAS gene. Determination of KRAS gene status based merely on metastatic foci might lead to more resistant selections of EGFR tyrosine kinase inhibitor (TKI therapy. Combined detection of EGFR and KRAS mutation from primary NSCLC foci might serve as a better predictive biomarker for anti-EGFR targeted

  20. Development of freeze-dried kit for direct 99mTc -labeling of nimotuzumab to diagnose human EGFR positive tumors

    International Nuclear Information System (INIS)

    Toledo, Darien; Figueiras, Jenneby; Rojas, Gertrudis; León, Kalet; Gongora Bravo, Magdiel; Miguel Martínez, Antonio; Michel Alonso, Luis; Hernández, Ignacio; León, Mariela; Leyva, René; Hernández, Gerardo Ramses

    2016-01-01

    Epidermal growth factor receptor (EGFR), a 170 kDa transmembrane tyrosine kinase receptor which specifically binds epidermal growth factor (EGF) and transforming growth factor-a (TGFa) that are crucial in signaling cell proliferation, differentiation, and survival1. Overexpression of EGFR has been observed in breast cancer2, colorectal cancer, ovarian cancer, squamous cell lung carcinoma3 head and neck cancer4 and bladder cancer. Molecular imaging using radiopharmaceuticals directed towards EGFR could characterize the receptor status of tumors and thereby predict response to anti-EGFR agents for the treatment of cancer. Nimotuzumab is a humanized anti-EGFR monoclonal antibody5 designed to reduce immunogenicity and rate of clearance from the body6. Radiolabelled formulations of nimotuzumab would have applications for non-invasive imaging in order to characterize EGFR-positive tumors and thus to select patient populations that could benefit from therapy7, 8. The studies described in this work were designed to develop and evaluate the in vitro and in vivo the properties of a radiolabeled freeze dried kit of nimotuzumab and to determine its potential for radio immunodiagnostic applications. (author)

  1. [Study on the correlation between EGFR-STAT3 signal pathway and laryngeal papilloma].

    Science.gov (United States)

    Wang, Xinhua; Sun, Jingwu

    2009-09-01

    To explore the relationship between the expression of EGFR and STAT3 in human laryngeal papilloma and its biological behavior. Reverse transcription polymerase chain reaction(RT-PCR), immunohistochemical staining and Western blot were used to evaluate the mRNA and protein expression of EGFR and STAT3 (p-STAT3) in 42 laryngeal papilloma tissues and 15 samples of normal laryngeal tissue, and the relationship between the protein expression of them and clinic pathological parameters was also analyzed. The mRNA expression levels of EGFR and STAT3 in laryngeal papilloma tissue were significantly higher than that in normal laryngeal tissue (P papilloma than normal laryngeal tissue by immunohistochemistry and western blot (P papilloma (P papilloma (P papilloma,, and the persistent activation of STAT3 gene plays an important role in the recurrence and canceration of laryngeal papilloma.

  2. SOX2 plays a critical role in EGFR-mediated self-renewal of human prostate cancer stem-like cells.

    Science.gov (United States)

    Rybak, Adrian P; Tang, Damu

    2013-12-01

    SOX2 is an essential transcription factor for stem cells and plays a role in tumorigenesis, however its role in prostate cancer stem cells (PCSCs) remains unclear. We report here a significant upregulation of SOX2 at both mRNA and protein levels in DU145 PCSCs propagated as suspension spheres in vitro. The expression of SOX2 in DU145 PCSCs is positively regulated by epidermal growth factor receptor (EGFR) signaling. Activation of EGFR signaling, following the addition of epidermal growth factor (EGF) or ectopic expression of a constitutively-active EGFR mutant (EGFRvIII), increased SOX2 expression and the self-renewal of DU145 PCSCs. Conversely, a small molecule EGFR inhibitor (AG1478) blocked EGFR activation, reduced SOX2 expression and inhibited PCSC self-renewal activity, implicating SOX2 in mediating EGFR-dependent self-renewal of PCSCs. In line with this notion, ectopic SOX2 expression enhanced EGF-induced self-renewal of DU145 PCSCs, while SOX2 knockdown reduced PCSC self-renewal with EGF treatment no longer capable of enhancing their propagation. Furthermore, SOX2 knockdown reduced the capacity of DU145 PCSCs to grow under anchorage-independent conditions. Finally, DU145 PCSCs generated xenograft tumors more aggressively with elevated levels of SOX2 expression compared to xenograft tumors derived from non-PCSCs. Collectively, we provide evidence that SOX2 plays a critical role in EGFR-mediated self-renewal of DU145 PCSCs. © 2013.

  3. A marked response to icotinib in a patient with large cell neuroendocrine carcinoma harboring an EGFR mutation: A case report.

    Science.gov (United States)

    Wang, Yuehong; Shen, Yi Hong; Ma, Shanni; Zhou, Jianying

    2015-09-01

    The present study reports the case of an 84-year-old male with primary pulmonary large cell neuroendocrine carcinoma (LCNEC) harboring an epidermal growth factor receptor (EGFR) gene mutation that exhibited a long-lasting response to the EGFR-tyrosine kinase inhibitor (EGFR-TKI) icotinib. The patient had an extensive smoking history, a poor performance status, and presented with an irregular mass in the middle lobe of the right lung on computed tomography (CT) and an enlarged left supraclavicular lymph node on physical examination. Right middle lobe bronchial brushing during fiberoptic bronchoscopy identified poorly-differentiated cancer cells. The left supraclavicular lymph node was biopsied and a diagnosis of metastatic LCNEC was determined. Furthermore, an EGFR exon 19 deletion was identified by DNA sequencing. Following diagnosis, icotinib was administered at a dose of 125 mg three times a day. Chest CT scans were performed after 1 month of treatment, which indicated that the tumor was in partial remission. This marked response to icotinib lasted for 8 months. Thus, the present case illustrates the possibility of identifying EGFR mutations in LCNEC and indicates that EGFR-tyrosine kinase inhibitors may be an alternative treatment strategy for patients with LCNEC harboring activating EGFR mutations.

  4. El debate micro-macro: dilemas y contextos

    Directory of Open Access Journals (Sweden)

    Vania Salles

    2001-06-01

    Full Text Available This paper discusses the general terms of the sociological debate on the micro macro question. Not only the main trends organizing the debate are examined, but also some ways to solve the dichotomies present in some proposals. It is held that contemporary theoretical practice produces —after the classics and with different focuses— a reflexivecorpus and research practices rooted in the blurring of the micro macro as polar questions, by the way of offering integrating proposals and overcoming reducing positions.

  5. Gender, renal function, and outcomes on the liver transplant waiting list: assessment of revised MELD including estimated glomerular filtration rate.

    Science.gov (United States)

    Myers, Robert P; Shaheen, Abdel Aziz M; Aspinall, Alexander I; Quinn, Robert R; Burak, Kelly W

    2011-03-01

    The Model for End-Stage Liver Disease (MELD) allocation system for liver transplantation (LT) may present a disadvantage for women by including serum creatinine, which is typically lower in females. Our objectives were to investigate gender disparities in outcomes among LT candidates and to assess a revised MELD, including estimated glomerular filtration rate (eGFR), for predicting waiting list mortality. Adults registered for LT between 2002 and 2007 were identified using the UNOS database. We compared components of MELD, MDRD-derived eGFR, and the 3-month probability of LT and death between genders. Discrimination of MELD, MELDNa, and revised models including eGFR for mortality were compared using c-statistics. A total of 40,393 patients (36% female) met the inclusion criteria; 9% died and 24% underwent LT within 3 months of listing. Compared with men, women had lower median serum creatinine (0.9 vs. 1.0 mg/dl), eGFR (72 vs. 83 ml/min/1.73 m(2)), and mean MELD (16.5 vs. 17.2; all p discrimination for 3-month mortality (c-statistics: MELD 0.896, MELD-eGFR 0.894, MELDNa 0.911, MELDNa-eGFR 0.905). Women are disadvantaged under MELD potentially due to its inclusion of creatinine. However, since including eGFR in MELD does not improve mortality prediction, alternative refinements are necessary. Copyright © 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  6. Erlotinib Versus Radiation Therapy for Brain Metastases in Patients With EGFR-Mutant Lung Adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Naamit K.; Yamada, Yoshiya; Rimner, Andreas [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Shi, Weiji [Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Riely, Gregory J. [Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Beal, Kathryn [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Yu, Helena A. [Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Chan, Timothy A. [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Zhang, Zhigang [Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Wu, Abraham J., E-mail: wua@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2014-06-01

    Purpose/Objectives: Radiation therapy (RT) is the principal modality in the treatment of patients with brain metastases (BM). However, given the activity of EGFR tyrosine kinase inhibitors in the central nervous system, it is uncertain whether upfront brain RT is necessary for patients with EGFR-mutant lung adenocarcinoma with BM. Methods and Materials: Patients with EGFR-mutant lung adenocarcinoma and newly diagnosed BM were identified. Results: 222 patients were identified. Exclusion criteria included prior erlotinib use, presence of a de novo erlotinib resistance mutation, or incomplete data. Of the remaining 110 patients, 63 were treated with erlotinib, 32 with whole brain RT (WBRT), and 15 with stereotactic radiosurgery (SRS). The median overall survival (OS) for the whole cohort was 33 months. There was no significant difference in OS between the WBRT and erlotinib groups (median, 35 vs 26 months; P=.62), whereas patients treated with SRS had a longer OS than did those in the erlotinib group (median, 64 months; P=.004). The median time to intracranial progression was 17 months. There was a longer time to intracranial progression in patients who received WBRT than in those who received erlotinib upfront (median, 24 vs 16 months, P=.04). Patients in the erlotinib or SRS group were more likely to experience intracranial failure as a component of first failure, whereas WBRT patients were more likely to experience failure outside the brain (P=.004). Conclusions: The survival of patients with EGFR-mutant adenocarcinoma with BM is notably long, whether they receive upfront erlotinib or brain RT. We observed longer intracranial control with WBRT, even though the WBRT patients had a higher burden of intracranial disease. Despite the equivalent survival between the WBRT and erlotinib group, this study underscores the role of WBRT in producing durable intracranial control in comparison with a targeted biologic agent with known central nervous system activity.

  7. [Clinical Observation of Icotinib Hydrochloride for Advanced Non-small Cell Lung Cancer Patients with EGFR Status Identified].

    Science.gov (United States)

    Li, Xi; Qin, Na; Wang, Jinghui; Yang, Xinjie; Zhang, Xinyong; Lv, Jialin; Wu, Yuhua; Zhang, Hui; Nong, Jingying; Zhang, Quan; Zhang, Shucai

    2015-12-01

    Icotinib is the first self-developed small molecular drug in China for targeted therapy of lung cancer. Compared to the other two commercially available epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors, gefitinib and erlotinib, icotinib is similar to them in chemical structure, mechanism of activity and therapeutic effects. To explore the efficacy and side effects of icotinib hydrochloride in the treatment of the advanced non-small cell lung cancer (NSCLC) patients with EGFR mutation and wild-type. Patients with advanced NSCLC who were treated with icotinib hydrochloride in Beijing Chest Hospital were retrospective analyzed from March 2009 to December 2014. The clinical data of 124 patients (99 with EGFR mutation and 25 with wild type) with advanced NSCLC were enrolled in this study. The patients' overall objective response rate (ORR) was 51.6 % and the disease control rate (DCR) was 79.8%; The patients with EGFR mutation, ORR was 63.6%, DCR was 93.9%. The ORR was 4.0% and the DCR was 24.0% in the wild-type patients. Median progression-free survival (PFS) with icotinib treatment in EGFR mutation patients was 10.5 months and 1.0 month in wild-type patients. The major adverse events were mild skin rash (30.6%) and diarrhea (16.1%). Monotherapy with icotinib hydrochloride is effective and tolerable for the advanced NSCLC EGFR mutation patients.


  8. Reciprocal regulation of annexin A2 and EGFR with Her-2 in Her-2 negative and herceptin-resistant breast cancer.

    Directory of Open Access Journals (Sweden)

    Praveenkumar K Shetty

    Full Text Available Alternative survival pathways are commonly seen to be upregulated upon inhibition of receptor tyrosine kinases (RTK, including Her-2. It is established that treatment with Herceptin leads to selective overexpression and activation of epidermal growth factor receptor (EGFR and Src which further contributes to oncogenesis in Herceptin resistant and triple negative breast cancer (TNBC patients. Here, we show a co-regulated upregulation in the expression of Annexin A2 (AnxA2, a known substrate of Src and one of the regulators of EGFR receptor endocytosis, in Herceptin resistant and Her-2 negative breast cancer. Immunohistochemical expression analysis revealed a reciprocal regulation between Her-2 and AnxA2 in breast cancer clinical samples as well as in cell lines as confirmed by protein and RNA analysis. The siRNA and Herceptin mediated downregulation/inhibition of Her-2 in Her-2 amplified cells induced AnxA2 expression and membrane translocation. In this study we report a possible involvement of AnxA2 in maintaining constitutively activated EGFR downstream signaling intermediates and hence in cell proliferation, migration and viability. This effect was consistent in Herceptin resistant JIMT-1 cells as well as in Her-2 negative breast cancer. The siRNA mediated AnxA2 downregulation leads to increased apoptosis, decreased cell viability and migration. Our studies further indicate the role of AnxA2 in EGFR-Src membrane bound signaling complex and ligand induced activation of downstream signaling pathways. Targeting this AnxA2 dependent positive regulation of EGFR signaling cascade may be of therapeutic value in Her-2 negative breast cancer.

  9. Long-term treatment with EGFR inhibitor erlotinib attenuates renal inflammatory cytokines but not nephropathy in Alport syndrome mouse model.

    Science.gov (United States)

    Omachi, Kohei; Miyakita, Rui; Fukuda, Ryosuke; Kai, Yukari; Suico, Mary Ann; Yokota, Tsubasa; Kamura, Misato; Shuto, Tsuyoshi; Kai, Hirofumi

    2017-12-01

    Alport syndrome (AS) is a hereditary kidney disease caused by mutation of type IV collagen. Loss of collagen network induces collapse of glomerular basement membrane (GBM) structure. The previous studies showed that upregulation of some tyrosine kinase receptors signaling accompanied GBM disorder in AS mouse model. EGFR signaling is one of the well-known receptor kinase signaling that is involved in glomerular diseases. However, whether EGFR signaling is relevant to AS progression is still uninvestigated. Here, we determined the involvement of EGFR in AS and the effect of suppressing EGFR signaling by erlotinib treatment on AS progression. Phosphorylated EGFR expression was investigated by Western blotting analysis and immunostaining of kidney tissues of Col4a5 mutant mice (a mouse model of X-linked AS). To check the effect of blocking EGFR signaling in AS, we administered erlotinib to AS mice once a day (10 mg/kg/day) orally for 18 weeks. Renal function parameters (proteinuria, serum creatinine, and BUN) and renal histology were assessed, and the gene expressions of inflammatory cytokines were analyzed in renal tissues. Phosphorylated EGFR expression was upregulated in AS mice kidney tissues. Erlotinib slightly reduced the urinary protein and suppressed the expression of renal injury markers (Lcn2, Lysozyme) and inflammatory cytokines (Il-6, Il-1β and KC). Erlotinib did not improve renal pathology, such as glomerular sclerosis and fibrosis. These findings suggest that EGFR signaling is upregulated in kidney, but although inhibiting this signaling pathway suppressed renal inflammatory cytokines, it did not ameliorate renal dysfunction in AS mouse model.

  10. A zwitterionic macro-crosslinker for durable non-fouling coatings.

    Science.gov (United States)

    Wang, Wei; Lu, Yang; Xie, Jinbing; Zhu, Hui; Cao, Zhiqiang

    2016-03-28

    A novel zwitterionic macro-crosslinker was developed and applied to fabricate durable non-fouling coatings on a polyurethane substrate. The zwitterionic macro-crosslinker coating exhibited superior durability over the traditional brush polymer coating and was able to retain its non-fouling property even after weeks of shearing in flowing liquid.

  11. Detection of EGFR mutations in plasma and biopsies from non-small cell lung cancer patients by allele-specific PCR assays

    DEFF Research Database (Denmark)

    Weber, Britta; Meldgaard, Peter; Hager, Henrik

    2014-01-01

    samples with allele-specific PCR assays. METHODS: Pairs of the diagnostic biopsy and plasma obtained just prior to start of erlotinib treatment were collected from 199 patients with adenocarcinoma of non-small-cell lung cancer. DNA from both sample types was isolated and examined for the presence...... of mutations in exons 18-21 of the EGFR gene, employing the cobas(®) EGFR Tissue Test and cobas(®) EGFR Blood Test (in development, Roche Molecular Systems, Inc., CA, USA). RESULTS: Test results were obtained in all 199 (100%) plasma samples and 196/199 (98%) of the biopsies. EGFR-activating mutations were...... identified in 24/199 (12%) plasma samples and 28/196 (14%) biopsy samples, and 17/196 (9%) matched pairs contained the same mutation. Six EGFR mutations were present only in plasma samples but not in the biopsy samples. The overall concordance of the EGFR gene mutations detected in plasma and biopsy tissue...

  12. Increased Epidermal Growth Factor Receptor (EGFR Associated with Hepatocyte Growth Factor (HGF and Symptom Severity in Children with Autism Spectrum Disorders (ASDs

    Directory of Open Access Journals (Sweden)

    Anthony J. Russo

    2014-01-01

    Full Text Available Background One in 88 children in the US is thought to have one of the autism spectrum disorders (ASDs. ASDs are characterized by social impairments and communication problems. Growth factors and their receptors may play a role in the etiology of ASDs. Research has shown that epidermal growth factor receptor (EGFR activation is associated with nerve cell development and repair. This study was designed to measure plasma levels of EGFR in autistic children and correlate these levels with its ligand, epidermal growth factor, other related putative biomarkers such as hepatocyte growth factor (HGF, the ligand for MET (MNNG HOS transforming gene receptor, as well as the symptom severity of 19 different behavioral symptoms. Subjects and Methods Plasma EGFR concentration was measured in 33 autistic children and 34 age- and gender-similar neurotypical controls, using an enzyme-linked immunosorbent assay. Plasma EGFR levels were compared to putative biomarkers known to be associated with EGFR and MET and severity levels of 19 autism-related symptoms. Results We found plasma EGFR levels significantly higher in autistic children, when compared to neurotypical controls. EGFR levels correlated with HGF and high-mobility group protein B1 (HMGB1 levels, but not other tested putative biomarkers, and EGFR levels correlated significantly with severity of expressive language, conversational language, focus/attention, hyperactivity, eye contact, and sound sensitivity deficiencies. Conclusions These results suggest a relationship between increased plasma EGFR levels and designated symptom severity in autistic children. A strong correlation between plasma EGFR and HGF and HMGB1 suggests that increased EGFR levels may be associated with the HGF/Met signaling pathway, as well as inflammation.

  13. The combi-targeting concept: a novel 3,3-disubstituted nitrosourea with EGFR tyrosine kinase inhibitory properties.

    Science.gov (United States)

    Qiu, Qiyu; Dudouit, Fabienne; Matheson, Stephanie L; Brahimi, Fouad; Banerjee, Ranjita; McNamee, James P; Jean-Claude, Bertrand J

    2003-01-01

    To study the dual mechanism of action of FD137, a 3,3-disubstituted nitrosourea designed to block signaling mediated by the epidermal growth factor receptor (EGFR) on its own and to be hydrolyzed to an inhibitor of EGFR plus a DNA-damaging species. HPLC was used to determine the half-life (t(1/2)) of FD137 and to characterize its derived metabolite FD110. The dual mechanisms of DNA damaging and EGFR tyrosine kinase (TK) targeting were ascertained by the comet assay for DNA damage and by inmunodetection of phosphotyrosine in an ELISA and a whole-cell assay for EGFR-mediated signaling. The antiproliferative effects of the different drugs and their combinations were determined by the sulforhodamine B (SRB) assay. In contrast to BCNU, FD137 significantly blocked EGF-induced EGFR autophosphorylation (IC(50) 4 micro M) in the human solid tumor cell line A431. DNA damage induced by FD137 could only be observed after 24 h exposure, but the level of DNA damage remained 3.6-fold lower than that induced by BCNU. This difference was rationalized by the 160-fold greater stability of FD137 when compared with BCNU in serum-containing medium. Further, degradation of FD137 was accompanied by the slow release of FD110, an extremely potent inhibitor of EGFR TK [IC(50) (EGFR autophosphorylation) <0.3 micro M]. The complex properties of FD137 translated into a 55-fold greater antiproliferative activity than BCNU against the EGFR-overexpressing A431 cells that coexpresses the O(6)-alkylguanine transferase (AGT). Depletion of AGT in these cells by the use of O(6)-benzylguanine (O(6)-BG) enhanced their sensitivity to BCNU by 8-fold, but only by 3-fold to FD137. The results overall suggest that the superior antiproliferative activity of FD137 when compared with BCNU may be associated with its ability to behave as a combination of many species with different mechanisms of action. However, the enhancement of its potency by O(6)-BG suggests that its antiproliferative effect was at least

  14. Macro-Finance Determinants of the Long-Run Stock-Bond Correlation

    DEFF Research Database (Denmark)

    Asgharian, Hossein; Christiansen, Charlotte; Hou, Ai Jun

    itself. Macro-finance variables and the lagged realized correlation are simultaneously significant in forecasting the long-run stock-bond correlation. The behavior of the long-run stock-bond correlation is very different when estimated taking the macro-finance variables into account. Supporting......We investigate the long-run stock-bond correlation using a novel model that combines the dynamic conditional correlation model with the mixed-data sampling approach. The long-run correlation is affected by both macro-finance variables (historical and forecasts) and the lagged realized correlation...

  15. Clinical significance of BRAF non-V600E mutations on the therapeutic effects of anti-EGFR monoclonal antibody treatment in patients with pretreated metastatic colorectal cancer: the Biomarker Research for anti-EGFR monoclonal Antibodies by Comprehensive Cancer genomics (BREAC) study.

    Science.gov (United States)

    Shinozaki, Eiji; Yoshino, Takayuki; Yamazaki, Kentaro; Muro, Kei; Yamaguchi, Kensei; Nishina, Tomohiro; Yuki, Satoshi; Shitara, Kohei; Bando, Hideaki; Mimaki, Sachiyo; Nakai, Chikako; Matsushima, Koutatsu; Suzuki, Yutaka; Akagi, Kiwamu; Yamanaka, Takeharu; Nomura, Shogo; Fujii, Satoshi; Esumi, Hiroyasu; Sugiyama, Masaya; Nishida, Nao; Mizokami, Masashi; Koh, Yasuhiro; Abe, Yukiko; Ohtsu, Atsushi; Tsuchihara, Katsuya

    2017-11-07

    Patients with BRAF V600E -mutated metastatic colorectal cancer (mCRC) have a poorer prognosis as well as resistance to anti-EGFR antibodies. However, it is unclear whether BRAF mutations other than BRAF V600E (BRAF non-V600E mutations) contribute to anti-EGFR antibody resistance. This study was composed of exploratory and inference cohorts. Candidate biomarkers identified by whole exome sequencing from super-responders and nonresponders in the exploratory cohort were validated by targeted resequencing for patients who received anti-EGFR antibody in the inference cohort. In the exploratory cohort, 31 candidate biomarkers, including KRAS/NRAS/BRAF mutations, were identified. Targeted resequencing of 150 patients in the inference cohort revealed 40 patients with RAS (26.7%), 9 patients with BRAF V600E (6.0%), and 7 patients with BRAF non-V600E mutations (4.7%), respectively. The response rates in RAS, BRAF V600E , and BRAF non-V600E were lower than those in RAS/BRAF wild-type (2.5%, 0%, and 0% vs 31.9%). The median PFS in BRAF non-V600E mutations was 2.4 months, similar to that in RAS or BRAF V600E mutations (2.1 and 1.6 months) but significantly worse than that in wild-type RAS/BRAF (5.9 months). Although BRAF non-V600E mutations identified were a rare and unestablished molecular subtype, certain BRAF non-V600E mutations might contribute to a lesser benefit of anti-EGFR monoclonal antibody treatment.

  16. EGFR and HER2 expression in primary cervical cancers and corresponding lymph node metastases: Implications for targeted radiotherapy

    International Nuclear Information System (INIS)

    Shen, Li; Shui, Yongjie; Wang, Xiaojia; Sheng, Liming; Yang, Zhengyan; Xue, Danfeng; Wei, Qichun

    2008-01-01

    Proteins overexpressed on the surface of tumor cells can be selectively targeted. Epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) are among the most often targeted proteins. The level and stability of expression in both primary tumors and corresponding metastases is crucial in the assessment of a receptor as target for imaging in nuclear medicine and for various forms of therapy. So far, the expression of EGFR and HER2 has only been determined in primary cervical cancers, and we have not found published data regarding the receptor status in corresponding metastatic lesions. The goal of this study was to evaluate whether any of these receptors are suitable as target for clinical diagnosis and therapy. Expression of EGFR and HER2 was investigated immunohistochemically in both lymph node metastases and corresponding primary cervical cancers (n = 53). HER2 and EGFR expression was scored using HercepTest criteria (0, 1+, 2+ or 3+). EGFR overexpression (2+ or 3+) was found in 64% (35/53) of the primary cervical tumors and 60% (32/53) of the corresponding lymph node metastases. There was a good concordance between the primary tumors and the paired metastases regarding EGFR expression. Only four patients who had 2+ or 3+ in the primary tumors changed to 0 or 1+ in lymph node metastases, and another two cases changed the other way around. None of the primary tumors or the lymph node metastases expressed HER2 protein. The EGFR expression seems to be common and stable during cervical cancer metastasis, which is encouraging for testing of EGFR targeted radiotherapy. HER2 appears to be of poor interest as a potential target in the treatment of cervical cancer

  17. EMT-induced stemness and tumorigenicity are fueled by the EGFR/Ras pathway.

    Directory of Open Access Journals (Sweden)

    Dominic Chih-Cheng Voon

    Full Text Available Recent studies have revealed that differentiated epithelial cells would acquire stem cell-like and tumorigenic properties following an Epithelial-Mesenchymal Transition (EMT. However, the signaling pathways that participate in this novel mechanism of tumorigenesis have not been fully characterized. In Runx3 (-/- p53 (-/- murine gastric epithelial (GIF-14 cells, EMT-induced plasticity is reflected in the expression of the embryonal proto-oncogene Hmga2 and Lgr5, an exclusive gastrointestinal stem cell marker. Here, we report the concurrent activation of an EGFR/Ras gene expression signature during TGF-β1-induced EMT in GIF-14 cells. Amongst the altered genes was the induction of Egfr, which corresponded with a delayed sensitization to EGF treatment in GIF-14. Co-treatment with TGF-β1 and EGF or the expression of exogenous KRas led to increased Hmga2 or Lgr5 expression, sphere initiation and colony formation in soft agar assay. Interestingly, the gain in cellular plasticity/tumorigenicity was not accompanied by increased EMT. This uncoupling of EMT and the induction of plasticity reveals an involvement of distinct signaling cues, whereby the EGFR/Ras pathway specifically promotes stemness and tumorigenicity in EMT-altered GIF-14 cells. These data show that the EGFR/Ras pathway requisite for the sustenance of gastric stem cells in vivo and in vitro is involved in the genesis and promotion of EMT-induced tumor-initiating cells.

  18. Nuclear FABP7 immunoreactivity is preferentially expressed in infiltrative glioma and is associated with poor prognosis in EGFR-overexpressing glioblastoma

    International Nuclear Information System (INIS)

    Liang, Yu; Bollen, Andrew W; Aldape, Ken D; Gupta, Nalin

    2006-01-01

    We previously identified brain type fatty acid-binding protein (FABP7) as a prognostic marker for patients with glioblastoma (GBM). Increased expression of FABP7 is associated with reduced survival. To investigate possible molecular mechanisms underlying this association, we compared the expression and subcellular localization of FABP7 in non-tumor brain tissues with different types of glioma, and examined the expression of FABP7 and epidermal growth factor receptor (EGFR) in GBM tumors. Expression of FABP7 in non-tumor brain and glioma specimens was examined using immunohistochemistry, and its correlation to the clinical behavior of the tumors was analyzed. We also analyzed the association between FABP7 and EGFR expression in different sets of GBM specimens using published DNA microarray datasets and semi-quantitative immunohistochemistry. In vitro migration was examined using SF763 glioma cell line. FABP7 was present in a unique population of glia in normal human brain, and its expression was increased in a subset of reactive astrocytes. FABP7 immunoreactivity in grade I pilocytic astrocytoma was predominantly cytoplasmic, whereas nuclear FABP7 was detected in other types of infiltrative glioma. Nuclear, not cytoplasmic, FABP7 immunoreactivity was associated with EGFR overexpression in GBM (N = 61, p = 0.008). Expression of the FABP7 gene in GBM also correlated with the abundance of EGFR mRNA in our previous microarray analyses (N = 34, p = 0.016) and an independent public microarray dataset (N = 28, p = 0.03). Compared to those negative for both markers, nuclear FABP7-positive/EGFR-positive and nuclear FABP7-positive/EGFR-negative GBM tumors demonstrated shortest survival, whereas those only positive for EGFR had intermediate survival. EGFR activation increased nuclear FABP7 immunoreactivity in a glioma cell line in vitro, and inhibition of FABP7 expression suppressed EGF-induced glioma-cell migration. Our data suggested that in EGFR-positive GBM the presence of

  19. Production of a germline-humanized cetuximab scFv and evaluation of its activity in recognizing EGFR- overexpressing cancer cells.

    Science.gov (United States)

    Banisadr, Arsham; Safdari, Yaghoub; Kianmehr, Anvarsadat; Pourafshar, Mahdieh

    2018-04-03

    The aim of this study was to produce a humanized single chain antibody (scFv) as a potential improved product design to target EGFR (Epidermal Growth Factor Receptor) overexpressing cancer cells. To this end, CDR loops of cetuximab (an FDA-approved anti-EGFR antibody) were grafted on framework regions derived from type 3 (VH3 and VL3 kappa) human germline sequences to obtain recombinant VH and VL domainslinked together with a flexible linker [(Gly 4 Ser) 3 ] to form a scFv. Codon optimized synthetic gene encoding the scFv (with NH2-VH-linker-VL-COOH orientation) was expressed in E. coli Origami™ 2(DE3) cells and the resultant scFv purified by using Ni-NTA affinity chromatography. The scFv, called cet.Hum scFv, was evaluated in ELISA and immunoblot to determine whether it can recognize EGFR. The scFv was able to recognize EGFR over-expressing cancer cells (A-431) but failed to detect cancer cells with low levels of EGFR (MCF-7 cells). Although the affinity of the scFv forA-431 cells was 9 fold lower than that of cetuximab, it was strong enough to recognize these cells. Considering its ability to bind EGFR molecules, the scFv may exhibit a potential application for the detection of EGFR-overexpressing cancer cells.

  20. Thermal-Conductivity Studies of Macro-porous Polymer-Derived SiOC Ceramics

    Science.gov (United States)

    Qiu, L.; Li, Y. M.; Zheng, X. H.; Zhu, J.; Tang, D. W.; Wu, J. Q.; Xu, C. H.

    2014-01-01

    A three-dimensional reticular macro-porous SiOC ceramics structure, made of spherical agglomerates, has been thermally characterized using a freestanding sensor-based method. The effective thermal conductivity of the macro-porous SiOC ceramics, including the effects of voids, is found to be to at room temperature, comparable with that of alumina aerogel or carbon aerogel. These results suggest that SiOC ceramics hold great promise as a thermal insulation material for use at high temperatures. The measured results further reveal that the effective thermal conductivity is limited by the low solid-phase volume fraction for the SiOC series processed at the same conditions. For SiOC ceramics processed under different pyrolysis temperatures, the contact condition between neighboring particles in the SiOC networks is another key factor influencing the effective thermal conductivity.

  1. Food and Health Safety: a Macro-policy Approach in the EU

    Directory of Open Access Journals (Sweden)

    Francesco Losurdo

    2012-08-01

    Full Text Available Food safety could be considered as a representative case of „market failure”. This would justify State regulatory intervention. Unfortunately, the lack of an organically policy framework is causing large loopholes specially in the quality control system which normally developed on the whole production process of value, including supply chain. The Common Agriculture Policy for 2014-2020 looks to be once again based on a partial and micro-economic approach while the growing interdependences between agriculture, industry and services are suggesting a different „macro-policy” method in theoretical, technical and political settings. An industrial macro-policy is more „holistic” than micro and sectoral one able to intervene on market in order to contribute to a stronger governance and control system of food safety and consumers choices.

  2. Genetic risk variants in the CDKN2A/B, RTEL1 and EGFR genes are associated with somatic biomarkers in glioma.

    Science.gov (United States)

    Ghasimi, Soma; Wibom, Carl; Dahlin, Anna M; Brännström, Thomas; Golovleva, Irina; Andersson, Ulrika; Melin, Beatrice

    2016-05-01

    During the last years, genome wide association studies have discovered common germline genetic variants associated with specific glioma subtypes. We aimed to study the association between these germline risk variants and tumor phenotypes, including copy number aberrations and protein expression. A total of 91 glioma patients were included. Thirteen well known genetic risk variants in TERT, EGFR, CCDC26, CDKN2A, CDKN2B, PHLDB1, TP53, and RTEL1 were selected for investigation of possible correlations with the glioma somatic markers: EGFR amplification, 1p/19q codeletion and protein expression of p53, Ki-67, and mutated IDH1. The CDKN2A/B risk variant, rs4977756, and the CDKN2B risk variant, rs1412829 were inversely associated (p = 0.049 and p = 0.002, respectively) with absence of a mutated IDH1, i.e., the majority of patients homozygous for the risk allele showed no or low expression of mutated IDH1. The RTEL1 risk variant, rs6010620 was associated (p = 0.013) with not having 1p/19q codeletion, i.e., the majority of patients homozygous for the risk allele did not show 1p/19q codeletion. In addition, the EGFR risk variant rs17172430 and the CDKN2B risk variant rs1412829, both showed a trend for association (p = 0.055 and p = 0.051, respectively) with increased EGFR copy number, i.e., the majority of patients homozygote for the risk alleles showed chromosomal gain or amplification of EGFR. Our findings indicate that CDKN2A/B risk genotypes are associated with primary glioblastoma without IDH mutation, and that there is an inverse association between RTEL1 risk genotypes and 1p/19q codeletion, suggesting that these genetic variants have a molecular impact on the genesis of high graded brain tumors. Further experimental studies are needed to delineate the functional mechanism of the association between genotype and somatic genetic aberrations.

  3. Correlation between egfr expression and accelerated proliferation during radiotherapy of head and neck squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Pedicini Piernicola

    2012-08-01

    Full Text Available Abstract Purpose To investigate the correlation between the expression of Epidermal Growth Factor receptor (EGFr and the reduction of the effective doubling time (TD during radiotherapy treatment and also to determine the dose per fraction to be taken into account when the overall treatment time (OTT is reduced in accelerated radiotherapy of head and neck squamous cell carcinoma (HNSCC. Methods A survey of the published papers comparing 3-years of local regional control rate (LCR for a total of 2162 patients treated with conventional and accelerated radiotherapy and with a pretreatment assessment of EGFr expression, was made. Different values of TD were obtained by a model incorporating the overall time corrected biologically effective dose (BED and a 3-year clinical LCR for high and low EGFr groups of patients (HEGFr and LEGFr, respectively. By obtaining the TD from the above analysis and the sub-sites’ potential doubling time (Tpot from flow cytometry and immunohistochemical methods, we were able to estimate the average TD for each sub-site included in the analysis. Moreover, the dose that would be required to offset the modified proliferation occurring in one day (Dprolif, was estimated. Results The averages of TD were 77 (27-9095% days in LEGFr and 8.8 (7.3-11.095% days in HEGFr, if an onset of accelerated proliferation TK at day 21 was assumed. The correspondent HEGFr sub-sites’ TD were 5.9 (6.6, 5.9 (6.6, 4.6 (6.1, 14.3 (12.9 days, with respect to literature immunohistochemical (flow cytometry data of Tpot for Oral-Cavity, Oro-pharynx, Hypo-pharynx, and Larynx respectively. The Dprolif for the HEGFr groups were 0.33 (0.29, 0.33 (0.29, 0.42 (0.31, 0.14 (0.15 Gy/day if α = 0.3 Gy-1 and α/β = 10 Gy were assumed. Conclusions A higher expression of the EGFr leads to enhanced proliferation. This study allowed to quantify the extent of the effect which EGFr expression has in terms of reduced TD and Dprolif for each head and neck

  4. Nano/macro porous bioactive glass scaffold

    Science.gov (United States)

    Wang, Shaojie

    Bioactive glass (BG) and ceramics have been widely studied and developed as implants to replace hard tissues of the musculo-skeletal system, such as bones and teeth. Recently, instead of using bulk materials, which usually do not degrade rapidly enough and may remain in the human body for a long time, the idea of bioscaffold for tissue regeneration has generated much interest. An ideal bioscaffold is a porous material that would not only provide a three-dimensional structure for the regeneration of natural tissue, but also degrade gradually and, eventually be replaced by the natural tissue completely. Among various material choices the nano-macro dual porous BG appears as the most promising candidate for bioscaffold applications. Here macropores facilitate tissue growth while nanopores control degradation and enhance cell response. The surface area, which controls the degradation of scaffold can also be tuned by changing the nanopore size. However, fabrication of such 3D structure with desirable nano and macro pores has remained challenging. In this dissertation, sol-gel process combined with spinodal decomposition or polymer sponge replication method has been developed to fabricate the nano-macro porous BG scaffolds. Macropores up to 100microm are created by freezing polymer induced spinodal structure through sol-gel transition, while larger macropores (>200um) of predetermined size are obtained by the polymer sponge replication technique. The size of nanopores, which are inherent to the sol-gel method of glass fabrication, has been tailored using several approaches: Before gel point, small nanopores are generated using acid catalyst that leads to weakly-branched polymer-like network. On the other hand, larger nanopores are created with the base-catalyzed gel with highly-branched cluster-like structure. After the gel point, the nanostructure can be further modified by manipulating the sintering temperature and/or the ammonia concentration used in the solvent

  5. Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop

    DEFF Research Database (Denmark)

    Pirker, Robert; Herth, Felix J F; Kerr, Keith M

    2010-01-01

    Activating somatic mutations of the tyrosine kinase domain of epidermal growth factor receptor (EGFR) have recently been characterized in a subset of patients with advanced non-small cell lung cancer (NSCLC). Patients harboring these mutations in their tumors show excellent response to EGFR tyros...

  6. Macro-Finance Determinants of the Long-Run Stock-Bond Correlation

    DEFF Research Database (Denmark)

    Asgharian, Hossein; Christiansen, Charlotte; Hou, Ai Jun

    2016-01-01

    We investigate long-run stock–bond correlation using a model that combines the dynamic conditional correlation model with the mixed-data sampling approach and allows long-run correlation to be affected by macro-finance factors (historical and forecasts). We use macro-finance factors related...... to inflation and interest rates, illiquidity, state of the economy, and market uncertainty. Macro-finance factors, particularly their forecasts, are good at forecasting long-run stock–bond correlation. Supporting the flight-to-quality phenomenon, long-run correlation tends to be small and negative when...

  7. Macro- to microscale heat transfer the lagging behavior

    CERN Document Server

    Tzou, D Y

    2014-01-01

    Physical processes taking place in micro/nanoscale strongly depend on the material types and can be very complicated. Known approaches include kinetic theory and quantum mechanics, non-equilibrium and irreversible thermodynamics, molecular dynamics, and/or fractal theory and fraction model. Due to innately different physical bases employed, different approaches may involve different physical properties in describing micro/nanoscale heat transport. In addition, the parameters involved in different approaches, may not be mutually inclusive. Macro- to Microscale Heat Transfer: The Lagging Behav

  8. Mechanisms of acquired resistance to EGFR-tyrosine kinase inhibitor in Korean patients with lung cancer

    International Nuclear Information System (INIS)

    Ji, Wonjun; Lee, Dae Ho; Lee, Jae Cheol; Choi, Chang-Min; Rho, Jin Kyung; Jang, Se Jin; Park, Young Soo; Chun, Sung-Min; Kim, Woo Sung; Lee, Jung-Shin; Kim, Sang-We

    2013-01-01

    Despite an initial good response to epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI), resistance to treatment eventually develops. Although several resistance mechanisms have been discovered, little data exist regarding Asian patient populations. Among patients at a tertiary referral hospital in Korea who initially responded well to gefitinib and later acquired resistance to treatment, we selected those with enough tissues obtained before EGFR-TKI treatment and after the onset of resistance to examine mutations by mass spectrometric genotyping technology (Asan-Panel), MET amplification by fluorescence in situ hybridization (FISH), and analysis of AXL status, epithelial-to-mesenchymal transition (EMT) and neuroendocrine markers by immunohistochemistry. Twenty-six patients were enrolled, all of whom were diagnosed with adenocarcinoma with EGFR mutations (19del: 16, L858R: 10) except one (squamous cell carcinoma with 19del). Secondary T790M mutation was detected in 11 subjects (42.3%) and four of these patients had other co-existing resistance mechanisms; increased AXL expression was observed in 5/26 patients (19.2%), MET gene amplification was noted in 3/26 (11.5%), and one patient acquired a mutation in the phosphatidylinositol-4, 5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA) gene. None of the patients exhibited EMT; however, increased CD56 expression suggesting neuroendocrine differentiation was observed in two patients. Interestingly, conversion from L858R-mutant to wild-type EGFR occurred in one patient. Seven patients (26.9%) did not exhibit any known resistance mechanisms. Patients with a T790M mutation showed a more favorable prognosis. The mechanisms and frequency of acquired EGFR-TKI resistance in Koreans are comparable to those observed in Western populations; however, more data regarding the mechanisms that drive EGFR-TKI resistance are necessary

  9. Prognostic and predictive value of p-Akt, EGFR, and p-mTOR in early breast cancer

    International Nuclear Information System (INIS)

    Lazaridis, Georgios; Lambaki, Sofia; Karayannopoulou, Georgia; Eleftheraki, Anastasia G.; Papaspirou, Irene; Bobos, Mattheos; Efstratiou, Ioannis; Pentheroudakis, George; Zamboglou, Nikolaos; Fountzilas, George; Aristotle Univ. of Thessaloniki School of Medicine, Thessaloniki

    2014-01-01

    There are scarce data available on the prognostic/predictive value of p-Akt and p-mTOR protein expression in patients with high-risk early breast cancer. Formalin-fixed paraffin-embedded (FFPE) tumor tissue samples from 997 patients participating in two adjuvant phase III trials were assessed for EGFR, PTEN, p-Akt, p-mTOR protein expression, and PIK3CA mutational status. These markers were evaluated for associations with each other and with selected patient and tumor characteristics, immunohistochemical subtypes, disease-free survival (DFS), and overall survival (OS). p-mTOR protein expression was negatively associated with EGFR and positively associated with PTEN, with p-Akt473, and with the presence of PIK3CA mutations. EGFR expression was positively associated with p-Akt473, p-Akt308, and PIK3CA wild-type tumors. Finally, p-Akt308 was positively associated with p-Akt473 expression. In univariate analysis, EGFR (p = 0.016) and the coexpression of EGFR and p-mTOR (p = 0.015) were associated with poor OS. Among patients with p-Akt308-negative or low-expressing tumors, those treated with hormonal therapy were associated with decreased risk for both relapse and death (p = 0.013 and p [de

  10. Time and Space Complexity of Inside-Out Macro Grammars

    NARCIS (Netherlands)

    Asveld, P.R.J.

    1980-01-01

    Starting form Fischer's IO Standard Form Theorem we show that for each inside-out (or IO-) macro language $L$ there exists a $\\lambda$-free IO macro grammar with the following property: for each $x$ in $L$ there is a derivation of $x$ of length at most linear in the length of $x$. Then we construct

  11. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    International Nuclear Information System (INIS)

    Xu, Ling; Hausmann, Martin; Dietmaier, Wolfgang; Kellermeier, Silvia; Pesch, Theresa; Stieber-Gunckel, Manuela; Lippert, Elisabeth; Klebl, Frank; Rogler, Gerhard

    2010-01-01

    Cholangiocarcinoma (CC) is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Expression of EGFR (epithelial growth factor receptor), HGFR (hepatocyte growth factor receptor) IGF1R (insulin-like growth factor 1 receptor), IGF2R (insulin-like growth factor 2 receptor) and VEGFR1-3 (vascular endothelial growth factor receptor 1-3) were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1). The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml), with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D). HuH28, OZ and TFK-1 lacked KRAS mutation. CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab

  12. Expression of growth factor receptors and targeting of EGFR in cholangiocarcinoma cell lines

    Directory of Open Access Journals (Sweden)

    Kellermeier Silvia

    2010-06-01

    Full Text Available Abstract Background Cholangiocarcinoma (CC is a malignant neoplasm of the bile ducts or the gallbladder. Targeting of growth factor receptors showed therapeutic potential in palliative settings for many solid tumors. The aim of this study was to determine the expression of seven growth factor receptors in CC cell lines and to assess the effect of blocking the EGFR receptor in vitro. Methods Expression of EGFR (epithelial growth factor receptor, HGFR (hepatocyte growth factor receptor IGF1R (insulin-like growth factor 1 receptor, IGF2R (insulin-like growth factor 2 receptor and VEGFR1-3 (vascular endothelial growth factor receptor 1-3 were examined in four human CC cell lines (EGI-1, HuH28, OZ and TFK-1. The effect of the anti-EGFR-antibody cetuximab on cell growth and apoptosis was studied and cell lines were examined for KRAS mutations. Results EGFR, HGFR and IGFR1 were present in all four cell lines tested. IGFR2 expression was confirmed in EGI-1 and TFK-1. No growth-inhibitory effect was found in EGI-1 cells after incubation with cetuximab. Cetuximab dose-dependently inhibited growth in TFK-1. Increased apoptosis was only seen in TFK-1 cells at the highest cetuximab dose tested (1 mg/ml, with no dose-response-relationship at lower concentrations. In EGI-1 a heterozygous KRAS mutation was found in codon 12 (c.35G>A; p.G12D. HuH28, OZ and TFK-1 lacked KRAS mutation. Conclusion CC cell lines express a pattern of different growth receptors in vitro. Growth factor inhibitor treatment could be affected from the KRAS genotype in CC. The expression of EGFR itself does not allow prognoses on growth inhibition by cetuximab.

  13. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Yong, E-mail: drbiany@126.com [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China); Yu, Yun [College of Pharmacy, Nanjing University of Chinese Medicine, 210023 (China); Wang, Shanshan; Li, Lin [Department of Science and Technology, Nanjing University of Chinese Medicine, 210023 (China)

    2015-08-07

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression.

  14. Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer

    International Nuclear Information System (INIS)

    Bian, Yong; Yu, Yun; Wang, Shanshan; Li, Lin

    2015-01-01

    Lipid metabolism is dysregulated in many human diseases including atherosclerosis, type 2 diabetes and cancers. Fatty acid synthase (FASN), a key lipogenic enzyme involved in de novo lipid biosynthesis, is significantly upregulated in multiple types of human cancers and associates with tumor progression. However, limited data is available to understand underlying biological functions and clinical significance of overexpressed FASN in pancreatic ductal adenocarcinoma (PDAC). Here, upregulated FASN was more frequently observed in PDAC tissues compared with normal pancreas in a tissue microarray. Kaplan–Meier survival analysis revealed that high expression level of FASN resulted in a significantly poor prognosis of PDAC patients. Knockdown or inhibition of endogenous FASN decreased cell proliferation and increased cell apoptosis in HPAC and AsPC-1 cells. Furthermore, we demonstrated that EGFR/ERK signaling accounts for elevated FASN expression in PDAC as ascertained by performing siRNA assays and using specific pharmacological inhibitors. Collectively, our results indicate that FASN exhibits important roles in tumor growth and EGFR/ERK pathway is responsible for upregulated expression of FASN in PDAC. - Highlights: • Increased expression of FASN indicates a poor prognosis in PDAC. • Elevated FASN favors tumor growth in PDAC in vitro. • Activation of EGFR signaling contributes to elevated FASN expression

  15. Inequality in Participation in Adult Learning and Education (ALE): Effects of Micro- and Macro-Level Factors through a Comparative Study

    Science.gov (United States)

    Lee, Jeongwoo

    2017-01-01

    The objectives of this dissertation include describing and analyzing the patterns of inequality in ALE participation at both the micro and macro levels. Special attention is paid to social origins of individual adults and their association with two groups of macro-level factors, social inequality (income, education, and skill inequality) and…

  16. Characterization of 7A7, an anti-mouse EGFR monoclonal antibody proposed to be the mouse equivalent of cetuximab.

    Science.gov (United States)

    He, Xuzhi; Cruz, Jazmina L; Joseph, Shannon; Pett, Nicola; Chew, Hui Yi; Tuong, Zewen K; Okano, Satomi; Kelly, Gabrielle; Veitch, Margaret; Simpson, Fiona; Wells, James W

    2018-02-23

    The Epidermal Growth Factor Receptor (EGFR) is selectively expressed on the surface of numerous tumours, such as non-small cell lung, ovarian, colorectal and head and neck carcinomas. EGFR has therefore become a target for cancer therapy. Cetuximab is a chimeric human/mouse monoclonal antibody (mAb) that binds to EGFR, where it both inhibits signaling and induces cell death by antibody-dependent cell mediated cytotoxicity (ADCC). Cetuximab has been approved for clinical use in patients with head and neck squamous cell carcinoma (HNSCC) and colorectal cancer. However, only 15-20% patients benefit from this drug, thus new strategies to improve cetuximab efficiency are required. We aimed to develop a reliable and easy preclinical mouse model to evaluate the efficacy of EGFR-targeted antibodies and examine the immune mechanisms involved in tumour regression. We selected an anti-mouse EGFR mAb, 7A7, which has been reported to be "mouse cetuximab" and to exhibit similar properties to its human counterpart. Unfortunately, we were unable to reproduce previous results obtained with the 7A7 mAb. In our hands, 7A7 failed to recognize mouse EGFR, both in native and reducing conditions. Moreover, in vivo administration of 7A7 in an EGFR-expressing HPV38 tumour model did not have any impact on tumour regression or animal survival. We conclude that 7A7 does not recognize mouse EGFR and therefore cannot be used as the mouse equivalent of cetuximab use in humans. As a number of groups have spent effort and resources with similar issues we feel that publication is a responsible approach.

  17. TGF{beta} induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ebi, Masahide [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Kataoka, Hiromi, E-mail: hkataoka@med.nagoya-cu.ac.jp [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Shimura, Takaya; Kubota, Eiji; Hirata, Yoshikazu; Mizushima, Takashi; Mizoshita, Tsutomu; Tanaka, Mamoru; Mabuchi, Motoshi; Tsukamoto, Hironobu; Tanida, Satoshi; Kamiya, Takeshi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan); Higashiyama, Shigeki [Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Ehime (Japan); Joh, Takashi [Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya (Japan)

    2010-11-19

    Research highlights: {yields} TGF{beta} induces EGFR transactivation through proHB-EGF shedding by activated ADAM members in gastric cancer cells. {yields} TGF{beta} induces nuclear translocation of HB-EGF-CTF cleaved by ADAM members. {yields} TGF{beta} enhances cell growth by EGFR transactivation and HB-EGF-CTF nuclear translocation and ADAM inhibitors block these effects. {yields} Silencing of ADAM17 also blocks EGFR transactivation, HB-EGF-CTF nuclear translocation and cancer cell growth by TGF{beta}. {yields} ADAM17 may play a crucial role in this TGF{beta}-HB-EGF signal transduction. -- Abstract: Background and aims: Transforming growth factor-beta (TGF{beta}) is known to potently inhibit cell growth. Loss of responsiveness to TGF{beta} inhibition on cell growth is a hallmark of many types of cancer, yet its mechanism is not fully understood. Membrane-anchored heparin-binding EGF-like growth factor (proHB-EGF) ectodomain is cleaved by a disintegrin and metalloproteinase (ADAM) members and is implicated in epidermal growth factor receptor (EGFR) transactivation. Recently, nuclear translocation of the C-terminal fragment (CTF) of pro-HB-EGF was found to induce cell growth. We investigated the association between TGF{beta} and HB-EGF signal transduction via ADAM activation. Materials and methods: The CCK-8 assay in two gastric cancer cell lines was used to determine the effect for cell growth by TGF{beta}. The effect of two ADAM inhibitors was also evaluated. Induction of EGFR phosphorylation by TGF{beta} was analyzed and the effect of the ADAM inhibitors was also examined. Nuclear translocation of HB-EGF-CTF by shedding through ADAM activated by TGF{beta} was also analyzed. EGFR transactivation, HB-EGF-CTF nuclear translocation, and cell growth were examined under the condition of ADAM17 knockdown. Result: TGF{beta}-induced EGFR phosphorylation of which ADAM inhibitors were able to inhibit. TGF{beta} induced shedding of proHB-EGF allowing HB-EGF-CTF to

  18. The use of radiocobalt as a label improves imaging of EGFR using DOTA-conjugated Affibody molecule

    DEFF Research Database (Denmark)

    Garousi, Javad; Andersson, Ken G; Dam, Johan H

    2017-01-01

    -expressing xenografts in mice. An optimal combination of radionuclide, chelator and targeting protein may further improve the contrast of radionuclide imaging. The aim of this study was to evaluate the targeting properties of radiocobalt-labelled DOTA-ZEGFR:2377. DOTA-ZEGFR:2377 was labelled with (57)Co (T1/2 = 271.8 d......), (55)Co (T1/2 = 17.5 h), and, for comparison, with the positron-emitting radionuclide (68)Ga (T1/2 = 67.6 min) with preserved specificity of binding to EGFR-expressing A431 cells. The long-lived cobalt radioisotope (57)Co was used in animal studies. Both (57)Co-DOTA-ZEGFR:2377 and (68)Ga-DOTA......Several anti-cancer therapies target the epidermal growth factor receptor (EGFR). Radionuclide imaging of EGFR expression in tumours may aid in selection of optimal cancer therapy. The (111)In-labelled DOTA-conjugated ZEGFR:2377 Affibody molecule was successfully used for imaging of EGFR...

  19. A comparison of EGFR mutation testing methods in lung carcinoma: direct sequencing, real-time PCR and immunohistochemistry.

    Directory of Open Access Journals (Sweden)

    Bárbara Angulo

    Full Text Available The objective of this study is to compare two EGFR testing methodologies (a commercial real-time PCR kit and a specific EGFR mutant immunohistochemistry, with direct sequencing and to investigate the limit of detection (LOD of both PCR-based methods. We identified EGFR mutations in 21 (16% of the 136 tumours analyzed by direct sequencing. Interestingly, the Therascreen EGFR Mutation Test kit was able to characterize as wild-type one tumour that could not be analyzed by direct sequencing of the PCR product. We then compared the LOD of the kit and that of direct sequencing using the available mutant tumours. The kit was able to detect the presence of a mutation in a 1% dilution of the total DNA in nine of the 18 tumours (50%, which tested positive with the real-time quantitative PCR method. In all cases, EGFR mutation was identified at a dilution of 5%. Where the mutant DNA represented 30% of the total DNA, sequencing was able to detect mutations in 12 out of 19 cases (63%. Additional experiments with genetically defined standards (EGFR ΔE746-A750/+ and EGFR L858R/+ yielded similar results. Immunohistochemistry (IHC staining with exon 19-specific antibody was seen in eight out of nine cases with E746-A750del detected by direct sequencing. Neither of the two tumours with complex deletions were positive. Of the five L858R-mutated tumours detected by the PCR methods, only two were positive for the exon 21-specific antibody. The specificity was 100% for both antibodies. The LOD of the real-time PCR method was lower than that of direct sequencing. The mutation specific IHC produced excellent specificity.

  20. Clinical Observation of Icotinib Hydrochloride for Advanced Non-small Cell Lung Cancer Patients with EGFR Status Identified

    Directory of Open Access Journals (Sweden)

    Xi LI

    2015-12-01

    Full Text Available Background and objective Icotinib is the first self-developed small molecular drug in China for targeted therapy of lung cancer. Compared to the other two commercially available epidermal growth factor receptor (EGFR tyrosine kinase inhibitors, gefitinib and erlotinib, icotinib is similar to them in chemical structure, mechanism of activity and therapeutic effects. To explore the efficacy and side effects of icotinib hydrochloride in the treatment of the advanced non-small cell lung cancer (NSCLC patients with EGFR mutation and wild-type. Methods Patients with advanced NSCLC who were treated with icotinib hydrochloride in Beijing Chest Hospital were retrospective analyzed from March 2009 to December 2014. Results The clinical data of 124 patients (99 with EGFR mutation and 25 with wild type with advanced NSCLC were enrolled in this study. The patients’ overall objective response rate (ORR was 51.6 % and the disease control rate (DCR was 79.8%; The patients with EGFR mutation, ORR was 63.6%, DCR was 93.9%. The ORR was 4.0% and the DCR was 24.0% in the wild-type patients. Median progression-free survival (PFS with icotinib treatment in EGFR mutation patients was 10.5 months and 1.0 month in wild-type patients. The major adverse events were mild skin rash (30.6% and diarrhea (16.1%. Conclusion Monotherapy with icotinib hydrochloride is effective and tolerable for the advanced NSCLC EGFR mutation patients.

  1. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, Alexander, E-mail: alexander.berndt@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Büttner, Robert, E-mail: Robert-Buettner@gmx.net [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany); Gühne, Stefanie, E-mail: stefanie_guehne@gmx.net [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Gleinig, Anna, E-mail: annagleinig@yahoo.com [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Richter, Petra, E-mail: P.Richter@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Chen, Yuan, E-mail: Yuan.Chen@med.uni-jena.de [Center for Molecular Biomedicine, Institute of Pathology, Jena University Hospital, 07740 Jena (Germany); Franz, Marcus, E-mail: Marcus.Franz@med.uni-jena.de [Clinic of Internal Medicine I, Jena University Hospital, 07740 Jena (Germany); Liebmann, Claus, E-mail: Claus.Liebmann@uni-jena.de [Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07740 Jena (Germany)

    2014-04-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM{sub TGF}, FCM{sub PDGF}) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCM{sub B}). FCM{sub TGF} stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM{sub TGF}≫FCM{sub PDGF} induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM{sub TGF}>FCM{sub PDGF}) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin

  2. Effects of activated fibroblasts on phenotype modulation, EGFR signalling and cell cycle regulation in OSCC cells

    International Nuclear Information System (INIS)

    Berndt, Alexander; Büttner, Robert; Gühne, Stefanie; Gleinig, Anna; Richter, Petra; Chen, Yuan; Franz, Marcus; Liebmann, Claus

    2014-01-01

    Crosstalk between carcinoma associated fibroblasts (CAFs) and oral squamous cell carcinoma (OSCC) cells is suggested to mediate phenotype transition of cancer cells as a prerequisite for tumour progression, to predict patients’ outcome, and to influence the efficacy of EGFR inhibitor therapies. Here we investigate the influence of activated fibroblasts as a model for CAFs on phenotype and EGFR signalling in OSCC cells in vitro. For this, immortalised hTERT-BJ1 fibroblasts were activated with TGFβ1 and PDGFAB to generate a myofibroblast or proliferative phenotype, respectively. Conditioned media (FCM TGF , FCM PDGF ) were used to stimulate PE/CA-PJ15 OSCC cells. Results were compared to the effect of conditioned media of non-stimulated fibroblasts (FCM B ). FCM TGF stimulation leads to an up-regulation of vimentin in the OSCC cells and an enhancement of invasive behaviour, indicating EMT-like effects. Similarly, FCM TGF ≫FCM PDGF induced up-regulation of EGFR, but not of ErbB2/ErbB3. In addition, we detected an increase in basal activities of ERK, PI3K/Akt and Stat3 (FCM TGF >FCM PDGF ) accompanied by protein interaction of vimentin with pERK. These effects are correlated with an increased proliferation. In summary, our results suggest that the activated myofibroblast phenotype provides soluble factors which are able to induce EMT-like phenomena and to increase EGFR signalling as well as cell proliferation in OSCC cells. Our results indicate a possible influence of activated myofibroblasts on EGFR-inhibitor therapy. Therefore, CAFs may serve as promising novel targets for combined therapy strategies. - Highlights: • A cell culture model for cancer associated fibroblasts is described. • The mutual interaction with OSCC cells leads to up-regulation of EGFR in tumour cells. • mCAF induces EGFR downstream signalling with increased proliferation in OSCC. • Erk activation is associated with protein interaction with vimentin as sign of EMT. • Results qualify

  3. The non-small cell lung cancer EGFR extracellular domain mutation, M277E, is oncogenic and drug-sensitive

    Directory of Open Access Journals (Sweden)

    Yu S

    2017-09-01

    Full Text Available Su Yu,1,2 Yang Zhang,1 Yunjian Pan,1 Chao Cheng,1,3 Yihua Sun,1,3 Haiquan Chen1–4 1Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; 2Cancer Research Center, Fudan University Shanghai Cancer Center, Shanghai, China; 3Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; 4Institutes of Biomedical Sciences, Fudan University, Shanghai, China Purpose: To identify novel oncogenic mutations in non-small cell lung cancer patient specimens that lack mutations in known targetable genes (“pan-negative” patients.Methods: Comprehensive mutational analyses were performed on 1,356 lung adenocarcinoma specimens. In this cohort of patients, common lung cancer oncogenic driver mutations were detected in the epidermal growth factor receptor (EGFR kinase domain, the human epidermal growth factor receptor 2 kinase domain, as well as the KRAS, BRAF, ALK, ROS1 and RET genes. A sub-cohort of pan-negative patient specimens was assayed for mutations in the EGFR extracellular domain (ECD. Additionally, EGFR mutant NIH-3T3 stable cell lines were constructed and assessed for protein content, anchorage-independent growth, and tumor formation in xenograft models to identify oncogenic mutations. BaF3 lymphocytes were also used to test sensitivities of the mutations to tyrosine kinase inhibitors.Results: In pan-negative lung adenocarcinoma cases, a novel oncogenic EGFR ECD mutation was identified (M277E. EGFR M277E mutations encoded oncoproteins that transformed NIH-3T3 cells to grow in the absence of exogenous epidermal growth factor. Transformation was further evidenced by anchorage-independent growth and tumor formation in immunocompromised xenograft mouse models. Finally, as seen in the canonical EGFR L858R mutation, the M277E mutation conferred sensitivity to both erlotinib and cetuximab in BaF3 cell lines and to erlotinib in xenograft models.Conclusion: Here, a new EGFR driver mutation, M277E

  4. Evaluation of radiolabeled ML04, a putative irreversible inhibitor of epidermal growth factor receptor, as a bioprobe for PET imaging of EGFR-overexpressing tumors

    International Nuclear Information System (INIS)

    Abourbeh, Galith; Dissoki, Samar; Jacobson, Orit; Litchi, Amir; Daniel, Revital Ben; Laki, Desirediu; Levitzki, Alexander; Mishani, Eyal

    2007-01-01

    Overexpression of epidermal growth factor receptor (EGFR) has been implicated in tumor development and malignancy. Evaluating the degree of EGFR expression in tumors could aid in identifying patients for EGFR-targeted therapies and in monitoring treatment. Nevertheless, no currently available assay can reliably quantify receptor content in tumors. Radiolabeled inhibitors of EGFR-TK could be developed as bioprobes for positron emission tomography imaging. Such imaging agents would not only provide a noninvasive quantitative measurement of EGFR content in tumors but also serve as radionuclide carriers for targeted radiotherapy. The potency, reversibility, selectivity and specific binding characteristics of ML04, an alleged irreversible inhibitor of EGFR, were established in vitro. The distribution of the F-18-labeled compound and the extent of EGFR-specific tumor uptake were evaluated in tumor-bearing mice. ML04 demonstrated potent, irreversible and selective inhibition of EGFR, combined with specific binding to the receptor in intact cells. In vivo distribution of the radiolabeled compound revealed tumor/blood and tumor/muscle activity uptake ratios of about 7 and 5, respectively, 3 h following administration of a radiotracer. Nevertheless, only minor EGFR-specific uptake of the compound was detected in these studies, using either EGFR-negative tumors or blocking studies as controls. To improve the in vivo performance of ML04, administration via prolonged intravenous infusion is proposed. Detailed pharmacokinetic characterization of this bioprobe could assist in the development of a kinetic model that would afford accurate measurement of EGFR content in tumors

  5. Periodic mechanical stress activates EGFR-dependent Rac1 mitogenic signals in rat nucleus pulpous cells via ERK1/2

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Gongming [Department of Orthopedics, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou 213003 (China); Shen, Nan [Department of Clinical Pharmacy, The Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin 214400 (China); Jiang, Xuefeng; Sun, Huiqing [Department of Orthopedics, The Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin 214400 (China); Xu, Nanwei; Zhou, Dong [Department of Orthopedics, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou 213003 (China); Nong, Luming, E-mail: lumingnong@hotmail.com [Department of Orthopedics, The Affiliated Changzhou No. 2 Hospital of Nanjing Medical University, Changzhou 213003 (China); Ren, Kewei, E-mail: keweiren@hotmail.com [Department of Orthopedics, The Affiliated Jiangyin Hospital of Southeast University Medical School, Jiangyin 214400 (China)

    2016-01-15

    The mitogenic effects of periodic mechanical stress on nucleus pulpous cells have been studied extensively but the mechanisms whereby nucleus pulpous cells sense and respond to mechanical stimulation remain a matter of debate. We explored this question by performing cell culture experiments in our self-developed periodic stress field and perfusion culture system. Under periodic mechanical stress, rat nucleus pulpous cell proliferation was significantly increased (p < 0.05 for each) and was associated with increases in the phosphorylation and activation of EGFR, Rac1, and ERK1/2 (p < 0.05 for each). Pretreatment with the ERK1/2 selective inhibitor PD98059 reduced periodic mechanical stress-induced nucleus pulpous cell proliferation (p < 0.05 for each), while the activation levels of EGFR and Rac1 were not inhibited. Proliferation and phosphorylation of ERK1/2 were inhibited after pretreatment with the Rac1 inhibitor NSC23766 in nucleus pulpous cells in response to periodic mechanical stress (p < 0.05 for each), while the phosphorylation site of EGFR was not affected. Inhibition of EGFR activity with AG1478 abrogated nucleus pulpous cell proliferation (p < 0.05 for each) and attenuated Rac1 and ERK1/2 activation in nucleus pulpous cells subjected to periodic mechanical stress (p < 0.05 for each). These findings suggest that periodic mechanical stress promotes nucleus pulpous cell proliferation in part through the EGFR-Rac1-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade. - Highlights: • The mechanism involved in nucleus pulpous cells to respond to mechanical stimuli. • Periodic mechanical stress can stimulate the phosphorylation of EGFR. • EGFR activates Rac1 and leads to rat nucleus pulpous cell proliferation. • EGFR and Rac1 activate ERK1/2 mitogenic signals in nucleus pulpous cells. • EGFR-Rac1-ERK1/2 is constitutes at least one critical signal transduction pathway.

  6. Periodic mechanical stress activates EGFR-dependent Rac1 mitogenic signals in rat nucleus pulpous cells via ERK1/2

    International Nuclear Information System (INIS)

    Gao, Gongming; Shen, Nan; Jiang, Xuefeng; Sun, Huiqing; Xu, Nanwei; Zhou, Dong; Nong, Luming; Ren, Kewei

    2016-01-01

    The mitogenic effects of periodic mechanical stress on nucleus pulpous cells have been studied extensively but the mechanisms whereby nucleus pulpous cells sense and respond to mechanical stimulation remain a matter of debate. We explored this question by performing cell culture experiments in our self-developed periodic stress field and perfusion culture system. Under periodic mechanical stress, rat nucleus pulpous cell proliferation was significantly increased (p < 0.05 for each) and was associated with increases in the phosphorylation and activation of EGFR, Rac1, and ERK1/2 (p < 0.05 for each). Pretreatment with the ERK1/2 selective inhibitor PD98059 reduced periodic mechanical stress-induced nucleus pulpous cell proliferation (p < 0.05 for each), while the activation levels of EGFR and Rac1 were not inhibited. Proliferation and phosphorylation of ERK1/2 were inhibited after pretreatment with the Rac1 inhibitor NSC23766 in nucleus pulpous cells in response to periodic mechanical stress (p < 0.05 for each), while the phosphorylation site of EGFR was not affected. Inhibition of EGFR activity with AG1478 abrogated nucleus pulpous cell proliferation (p < 0.05 for each) and attenuated Rac1 and ERK1/2 activation in nucleus pulpous cells subjected to periodic mechanical stress (p < 0.05 for each). These findings suggest that periodic mechanical stress promotes nucleus pulpous cell proliferation in part through the EGFR-Rac1-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade. - Highlights: • The mechanism involved in nucleus pulpous cells to respond to mechanical stimuli. • Periodic mechanical stress can stimulate the phosphorylation of EGFR. • EGFR activates Rac1 and leads to rat nucleus pulpous cell proliferation. • EGFR and Rac1 activate ERK1/2 mitogenic signals in nucleus pulpous cells. • EGFR-Rac1-ERK1/2 is constitutes at least one critical signal transduction pathway.

  7. Navigating into the binding pockets of the HER family protein kinases: discovery of novel EGFR inhibitor as antitumor agent

    Directory of Open Access Journals (Sweden)

    Liu W

    2015-07-01

    Full Text Available Wei Liu,1,* Jin-Feng Ning,2,* Qing-Wei Meng,1 Jing Hu,1 Yan-Bin Zhao,1 Chao Liu,3 Li Cai11The Fourth Department of Medical Oncology, Harbin Medical University Cancer Hospital, 2The Thoracic Surgery Department, Harbin Medical University Cancer Hospital, Harbin, People’s Republic of China; 3General Surgery Department, Mudanjiang Guanliju Central Hospital, Mishan, Heilongjiang Province, People’s Republic of China*These authors contributed equally to this workAbstract: The epidermal growth factor receptor (EGFR family has been validated as a successful antitumor drug target for decades. Known EGFR inhibitors were exposed to distinct drug resistance against the various EGFR mutants within non-small-cell lung cancer (NSCLC, particularly the T790M mutation. Although so far a number of studies have been reported on the development of third-generation EGFR inhibitors for overcoming the resistance issue, the design procedure largely depends on the intuition of medicinal chemists. Here we retrospectively make a detailed analysis of the 42 EGFR family protein crystal complexes deposited in the Protein Data Bank (PDB. Based on the analysis of inhibitor binding modes in the kinase catalytic cleft, we identified a potent EGFR inhibitor (compound A-10 against drug-resistant EGFR through fragment-based drug design. This compound showed at least 30-fold more potency against EGFR T790M than the two control molecules erlotinib and gefitinib in vitro. Moreover, it could exhibit potent HER2 inhibitory activities as well as tumor growth inhibitory activity. Molecular docking studies revealed a structural basis for the increased potency and mutant selectivity of this compound. Compound A-10 may be selected as a promising candidate in further preclinical studies. In addition, our findings could provide a powerful strategy to identify novel selective kinase inhibitors on the basis of detailed kinase–ligand interaction space in the PDB.Keywords: EGFR, kinase

  8. Characteristics of soil water retention curve at macro-scale

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Scale adaptable hydrological models have attracted more and more attentions in the hydrological modeling research community, and the constitutive relationship at the macro-scale is one of the most important issues, upon which there are not enough research activities yet. Taking the constitutive relationships of soil water movement--soil water retention curve (SWRC) as an example, this study extends the definition of SWRC at the micro-scale to that at the macro-scale, and aided by Monte Carlo method we demonstrate that soil property and the spatial distribution of soil moisture will affect the features of SWRC greatly. Furthermore, we assume that the spatial distribution of soil moisture is the result of self-organization of climate, soil, ground water and soil water movement under the specific boundary conditions, and we also carry out numerical experiments of soil water movement at the vertical direction in order to explore the relationship between SWRC at the macro-scale and the combinations of climate, soil, and groundwater. The results show that SWRCs at the macro-scale and micro-scale presents totally different features, e.g., the essential hysteresis phenomenon which is exaggerated with increasing aridity index and rising groundwater table. Soil property plays an important role in the shape of SWRC which will even lead to a rectangular shape under drier conditions, and power function form of SWRC widely adopted in hydrological model might be revised for most situations at the macro-scale.

  9. Targeting EGFR with photodynamic therapy in combination with Erbitux enhances in vivo bladder tumor response

    Directory of Open Access Journals (Sweden)

    Soo Khee

    2009-11-01

    Full Text Available Abstract Background Photodynamic therapy (PDT is a promising cancer treatment modality that involves the interaction of the photosensitizer, molecular oxygen and light of specific wavelength to destroy tumor cells. Treatment induced hypoxia is one of the main side effects of PDT and efforts are underway to optimize PDT protocols for improved efficacy. The aim of this study was to investigate the anti-tumor effects of PDT plus Erbitux, an angiogenesis inhibitor that targets epidermal growth factor receptor (EGFR, on human bladder cancer model. Tumor-bearing nude mice were assigned to four groups that included control, PDT, Erbitux and PDT plus Erbitux and tumor volume was charted over 90-day period. Results Our results demonstrate that combination of Erbitux with PDT strongly inhibits tumor growth in the bladder tumor xenograft model when compared to the other groups. Downregulation of EGFR was detected using immunohistochemistry, immunofluorescence and western blotting. Increased apoptosis was associated with tumor inhibition in the combination therapy group. In addition, we identified the dephosphorylation of ErbB4 at tyrosine 1284 site to play a major role in tumor inhibition. Also, at the RNA level downregulation of EGFR target genes cyclin D1 and c-myc was observed in tumors treated with PDT plus Erbitux. Conclusion The combination therapy of PDT and Erbitux effectively inhibits tumor growth and is a promising therapeutic approach in the treatment of bladder tumors.

  10. Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations.

    LENUS (Irish Health Repository)

    Sequist, Lecia V

    2013-09-20

    The LUX-Lung 3 study investigated the efficacy of chemotherapy compared with afatinib, a selective, orally bioavailable ErbB family blocker that irreversibly blocks signaling from epidermal growth factor receptor (EGFR\\/ErbB1), human epidermal growth factor receptor 2 (HER2\\/ErbB2), and ErbB4 and has wide-spectrum preclinical activity against EGFR mutations. A phase II study of afatinib in EGFR mutation-positive lung adenocarcinoma demonstrated high response rates and progression-free survival (PFS).

  11. Colorectal cancer patients with low abundance of KRAS mutation may benefit from EGFR antibody therapy.

    Directory of Open Access Journals (Sweden)

    Shaorong Yu

    Full Text Available Epidermal growth factor receptor monoclonal antibody was approved for treatment of metastatic colorectal cancer patients carrying KRAS wild type DNA. However, recent studies showed that patients with KRAS G13D mutation may benefit from EGFR antibody therapy. In this study we tried to explore whether the abundance of KRAS mutation could affect the efficacy of EGFR antibody therapy. We firstly established a PNA-PCR method which could calculate the percentage of KRAS mutation in total DNA and proved its ability on 47 colorectal cancer samples bearing KRAS mutations. Then we analyzed the correlation between the abundance of KRAS mutations and efficacy of EGFR antibody therapy in another 35 metastatic colorectal cancer patients. We proved that PNA-PCR assay could calculate the abundance of KRAS mutation and the percentage of mutant DNA in tumor cells varied a lot (10.8%∼98.3% on the 47 colorectal cancer patients. The efficacy of EGFR antibody correlated with the abundance of KRAS mutations: in the KRAS mutation less than 30% group, the disease control rate was 44.4% (4/9; the disease control rate of 30∼80% group was 5.6% (1/18 and the >80% group was 12.5% (1/8 (P = 0.038. In summary, our study showed that PNA-PCR method could easily detect the percentage of KRAS mutation in tumor cells and colorectal cancer patients with low abundance of KRAS mutation might benefit from EGFR antibody therapy.

  12. Micro and Macro Segregation in Alloys Solidifying with Equiaxed Morphology

    Science.gov (United States)

    Stefanescu, Doru M.; Curreri, Peter A.; Leon-Torres, Jose; Sen, Subhayu

    1996-01-01

    To understand macro segregation formation in Al-Cu alloys, experiments were run under terrestrial gravity (1g) and under low gravity during parabolic flights (10(exp -2) g). Alloys of two different compositions (2% and 5% Cu) were solidified at two different cooling rates. Systematic microscopic and SEM observations produced microstructural and segregation maps for all samples. These maps may be used as benchmark experiments for validation of microstructure evolution and segregation models. As expected, the macro segregation maps are very complex. When segregation was measured along the central axis of the sample, the highest macro segregation for samples solidified at 1g was obtained for the lowest cooling rate. This behavior is attributed to the longer time available for natural convection and shrinkage flow to affect solute redistribution. In samples solidified under low-g, the highest macro-segregation was obtained at the highest cooling rate. In general, low-gravity solidification resulted in less segregation. To explain the experimental findings, an analytical (Flemings-Nereo) and a numerical model were used. For the numerical model, the continuum formulation was employed to describe the macroscopic transports of mass, energy, and momentum, associated with the microscopic transport phenomena, for a two-phase system. The model proposed considers that liquid flow is driven by thermal and solutal buoyancy, and by solidification shrinkage. The Flemings-Nereo model explains well macro segregation in the initial stages of low-gravity segregation. The numerical model can describe the complex macro segregation pattern and the differences between low- and high-gravity solidification.

  13. A SAS-macro for estimation of the cumulative incidence using Poisson regression

    DEFF Research Database (Denmark)

    Waltoft, Berit Lindum

    2009-01-01

    the hazard rates, and the hazard rates are often estimated by the Cox regression. This procedure may not be suitable for large studies due to limited computer resources. Instead one uses Poisson regression, which approximates the Cox regression. Rosthøj et al. presented a SAS-macro for the estimation...... of the cumulative incidences based on the Cox regression. I present the functional form of the probabilities and variances when using piecewise constant hazard rates and a SAS-macro for the estimation using Poisson regression. The use of the macro is demonstrated through examples and compared to the macro presented...

  14. Radiosensitization of NSCLC cells by EGFR inhibition is the result of an enhanced p53-dependent G1 arrest

    International Nuclear Information System (INIS)

    Kriegs, Malte; Gurtner, Kristin; Can, Yildiz; Brammer, Ingo; Rieckmann, Thorsten; Oertel, Reinhard; Wysocki, Marek; Dorniok, Franziska; Gal, Andreas; Grob, Tobias J.; Laban, Simon; Kasten-Pisula, Ulla; Petersen, Cordula; Baumann, Michael; Krause, Mechthild; Dikomey, Ekkehard

    2015-01-01

    Purpose: How EGF receptor (EGFR) inhibition induces cellular radiosensitization and with that increase in tumor control is still a matter of discussion. Since EGFR predominantly regulates cell cycle and proliferation, we studied whether a G1-arrest caused by EGFR inhibition may contribute to these effects. Materials and methods: We analyzed human non-small cell lung cancer (NSCLC) cell lines either wild type (wt) or mutated in p53 (A549, H460, vs. H1299, H3122) and HCT116 cells (p21 wt and negative). EGFR was inhibited by BIBX1382BS, erlotinib or cetuximab; p21 was knocked down by siRNA. Functional endpoints analyzed were cell signaling, proliferation, G1-arrest, cell survival as well as tumor control using an A549 tumor model. Results: When combined with IR, EGFR inhibition enhances the radiation-induced permanent G1 arrest, though solely in cells with intact p53/p21 signaling. This increase in G1-arrest was always associated with enhanced cellular radiosensitivity. Strikingly, this effect was abrogated when cells were re-stimulated, suggesting the initiation of dormancy. In line with this, only a small non-significant increase in tumor control was observed for A549 tumors treated with fractionated RT and EGFR inhibition. Conclusion: For NSCLC cells increase in radiosensitivity by EGFR inhibition results from enhanced G1-arrest. However, this effect does not lead to improved tumor control because cells can be released from this arrest by re-stimulation

  15. Lipopolysaccharide induces VCAM-1 expression and neutrophil adhesion to human tracheal smooth muscle cells: Involvement of Src/EGFR/PI3-K/Akt pathway

    International Nuclear Information System (INIS)

    Lin, W.-N.; Luo, S.-F.; Wu, C.-B.; Lin, C.-C.; Yang, C.-M.

    2008-01-01

    In our previous study, LPS has been shown to induce vascular cell adhesion molecule-1(VCAM-1) expression through MAPKs and NF-κB in human tracheal smooth muscle cells (HTSMCs). In addition to these pathways, the non-receptor tyrosine kinases (Src), EGF receptor (EGFR), and phosphatidylinositol 3-kinase (PI3K) have been shown to be implicated in the expression of several inflammatory target proteins. Here, we reported that LPS-induced up-regulation of VCAM-1 enhanced the adhesion of neutrophils onto HTSMC monolayer, which was inhibited by LY294002 and wortmannin. LPS stimulated phosphorylation of protein tyrosine kinases including Src, PYK2, and EGFR, which were further confirmed using specific anti-phospho-Src, PYK2, or EGFR Ab, respectively, revealed by Western blotting. LPS-stimulated Src, PYK2, EGFR, and Akt phosphorylation and VCAM-1 expression were attenuated by the inhibitors of Src (PP1), EGFR (AG1478), PI3-K (LY294002 and wortmannin), and Akt (SH-5), respectively, or transfection with siRNAs of Src or Akt and shRNA of p110. LPS-induced VCAM-1 expression was also blocked by pretreatment with curcumin (a p300 inhibitor) or transfection with p300 siRNA. LPS-stimulated Akt activation translocated into nucleus and associated with p300 and VCAM-1 promoter region was further confirmed by immunofluorescence, immunoprecipitation, and chromatin immunoprecipitation assays. This association of Akt and p300 to VCAM-1 promoter was inhibited by pretreatment with PP1, AG1478, wortmannin, and SH-5. LPS-induced p300 activation enhanced VCAM-1 promoter activity and VCAM-1 mRNA expression. These results suggested that in HTSMCs, Akt phosphorylation mediated through transactivation of Src/PYK2/EGFR promoted the transcriptional p300 activity and eventually led to VCAM-1 expression induced by LPS

  16. Impact of urine concentration adjustment method on associations between urine metals and estimated glomerular filtration rates (eGFR) in adolescents

    International Nuclear Information System (INIS)

    Weaver, Virginia M.; Vargas, Gonzalo García; Silbergeld, Ellen K.; Rothenberg, Stephen J.; Fadrowski, Jeffrey J.; Rubio-Andrade, Marisela; Parsons, Patrick J.; Steuerwald, Amy J.

    2014-01-01

    Positive associations between urine toxicant levels and measures of glomerular filtration rate (GFR) have been reported recently in a range of populations. The explanation for these associations, in a direction opposite that of traditional nephrotoxicity, is uncertain. Variation in associations by urine concentration adjustment approach has also been observed. Associations of urine cadmium, thallium and uranium in models of serum creatinine- and cystatin-C-based estimated GFR (eGFR) were examined using multiple linear regression in a cross-sectional study of adolescents residing near a lead smelter complex. Urine concentration adjustment approaches compared included urine creatinine, urine osmolality and no adjustment. Median age, blood lead and urine cadmium, thallium and uranium were 13.9 years, 4.0 μg/dL, 0.22, 0.27 and 0.04 g/g creatinine, respectively, in 512 adolescents. Urine cadmium and thallium were positively associated with serum creatinine-based eGFR only when urine creatinine was used to adjust for urine concentration (β coefficient=3.1 mL/min/1.73 m 2 ; 95% confidence interval=1.4, 4.8 per each doubling of urine cadmium). Weaker positive associations, also only with urine creatinine adjustment, were observed between these metals and serum cystatin-C-based eGFR and between urine uranium and serum creatinine-based eGFR. Additional research using non-creatinine-based methods of adjustment for urine concentration is necessary. - Highlights: • Positive associations between urine metals and creatinine-based eGFR are unexpected. • Optimal approach to urine concentration adjustment for urine biomarkers uncertain. • We compared urine concentration adjustment methods. • Positive associations observed only with urine creatinine adjustment. • Additional research using non-creatinine-based methods of adjustment needed

  17. Impact of urine concentration adjustment method on associations between urine metals and estimated glomerular filtration rates (eGFR) in adolescents

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Virginia M., E-mail: vweaver@jhsph.edu [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD (United States); Johns Hopkins University School of Medicine, Baltimore, MD (United States); Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD (United States); Vargas, Gonzalo García [Faculty of Medicine, University of Juárez of Durango State, Durango (Mexico); Secretaría de Salud del Estado de Coahuila, Coahuila, México (Mexico); Silbergeld, Ellen K. [Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD (United States); Rothenberg, Stephen J. [Instituto Nacional de Salud Publica, Centro de Investigacion en Salud Poblacional, Cuernavaca, Morelos (Mexico); Fadrowski, Jeffrey J. [Johns Hopkins University School of Medicine, Baltimore, MD (United States); Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD (United States); Rubio-Andrade, Marisela [Faculty of Medicine, University of Juárez of Durango State, Durango (Mexico); Parsons, Patrick J. [Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Albany, NY (United States); Department of Environmental Health Sciences, School of Public Health, University at Albany, Albany, NY (United States); Steuerwald, Amy J. [Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Albany, NY (United States); and others

    2014-07-15

    Positive associations between urine toxicant levels and measures of glomerular filtration rate (GFR) have been reported recently in a range of populations. The explanation for these associations, in a direction opposite that of traditional nephrotoxicity, is uncertain. Variation in associations by urine concentration adjustment approach has also been observed. Associations of urine cadmium, thallium and uranium in models of serum creatinine- and cystatin-C-based estimated GFR (eGFR) were examined using multiple linear regression in a cross-sectional study of adolescents residing near a lead smelter complex. Urine concentration adjustment approaches compared included urine creatinine, urine osmolality and no adjustment. Median age, blood lead and urine cadmium, thallium and uranium were 13.9 years, 4.0 μg/dL, 0.22, 0.27 and 0.04 g/g creatinine, respectively, in 512 adolescents. Urine cadmium and thallium were positively associated with serum creatinine-based eGFR only when urine creatinine was used to adjust for urine concentration (β coefficient=3.1 mL/min/1.73 m{sup 2}; 95% confidence interval=1.4, 4.8 per each doubling of urine cadmium). Weaker positive associations, also only with urine creatinine adjustment, were observed between these metals and serum cystatin-C-based eGFR and between urine uranium and serum creatinine-based eGFR. Additional research using non-creatinine-based methods of adjustment for urine concentration is necessary. - Highlights: • Positive associations between urine metals and creatinine-based eGFR are unexpected. • Optimal approach to urine concentration adjustment for urine biomarkers uncertain. • We compared urine concentration adjustment methods. • Positive associations observed only with urine creatinine adjustment. • Additional research using non-creatinine-based methods of adjustment needed.

  18. Research progress on criteria for discontinuation of EGFR inhibitor therapy

    Directory of Open Access Journals (Sweden)

    Zhuang HQ

    2012-10-01

    Full Text Available Hong-qing Zhuang, Zhi-yong Yuan, Jun Wang, Ping Wang, Lu-jun Zhao, Bai-lin ZhangDepartment of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Lung Cancer Center, Tianjin, People's Republic of ChinaAbstract: The clinical success of the epidermal growth factor receptor (EGFR tyrosine kinase inhibitors (TKI as therapeutic agents has prompted great interest in their further development and clinical testing for a wide variety of malignancies. However, most studies have focused on the efficacy of TKI, and few studies have been done on the criteria for their discontinuation. The current standard for drug discontinuation is “until progression”, based on change in tumor size. However, tumor size is not related to the gene expression which determines the efficacy of TKI in the final analysis, and it is also difficult to make a thorough and correct prediction based on tumor size when the TKI is discontinued. Nevertheless, clinical evaluation of the criteria for TKI discontinuation is still in its early days. Some promising findings have started to emerge. With the improving knowledge of EGFR and its inhibitors, it is expected that the criteria for discontinuation of EGFR inhibitor therapy will become clearer.Keywords: epidermal growth factor receptor, drug discontinuation, acquired drug-resistance

  19. Single molecule force spectroscopy for in-situ probing oridonin inhibited ROS-mediated EGF-EGFR interactions in living KYSE-150 cells.

    Science.gov (United States)

    Pi, Jiang; Jin, Hua; Jiang, Jinhuan; Yang, Fen; Cai, Huaihong; Yang, Peihui; Cai, Jiye; Chen, Zheng W

    2017-05-01

    As the active anticancer component of Rabdosia Rubescens, oridonin has been proved to show strong anticancer activity in cancer cells, which is also found to be closely related to its specific inhibition effects on the EGFR tyrosine kinase activity. In this study, atomic force microscopy based single molecule force spectroscopy (AFM-SMFS) was used for real-time and in-situ detection of EGF-EGFR interactions in living esophageal cancer KYSE-150 cells to evaluate the anticancer activity of oridonin for the first time. Oridonin was found to induce apoptosis and also reduce EGFR expression in KYSE-150 cells. AFM-SMFS results demonstrated that oridonin could inhibit the binding between EGF and EGFR in KYSE-150 cells by decreasing the unbinding force and binding probability for EGF-EGFR complexes, which was further proved to be closely associated with the intracellular ROS level. More precise mechanism studies based on AFM-SMFS demonstrated that oridonin treatment could decrease the energy barrier width, increase the dissociation off rate constant and decrease the activation energy of EGF-EGFR complexes in ROS dependent way, suggesting oridonin as a strong anticancer agent targeting EGF-EGFR interactions in cancer cells through ROS dependent mechanism. Our results not only suggested oridonin as a strong anticancer agent targeting EGF-EGFR interactions in ROS dependent mechanism, but also highlighted AFM-SMFS as a powerful technique for pharmacodynamic studies by detecting ligand-receptor interactions, which was also expected to be developed into a promising tool for the screening and mechanism studies of drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Investigation of porous concrete through macro and meso-scale testing

    NARCIS (Netherlands)

    Agar Ozbek, A.S.; Weerheijm, J.; Schlangen, H.E.J.G.

    2010-01-01

    In designing a porous concrete, containing a high volume of air pores, the effects of its mesoscale phases on its macro level properties have to be known. For this purpose, porous concretes having different aggregate gradings and cement paste compositions were investigated through macro-scale