WorldWideScience

Sample records for macrophages mrna expression

  1. Effect of conjugated linoleic acids on the activity and mRNA expression of 5- and 15-lipoxygenases in human macrophages.

    Science.gov (United States)

    Stachowska, Ewa; Dziedziejko, Violetta; Safranow, Krzysztof; Jakubowska, Katarzyna; Olszewska, Maria; Machaliñski, Bogusław; Chlubek, Dariusz

    2007-06-27

    Lipoxygenases are a family of non-heme enzyme dioxygenases. The role of lipoxygenases is synthesis of hydroperoxides of fatty acids, which perform signaling functions in the body. Studies on conjugated linoleic acids (CLAs) as fatty acids with a potential anti-atherosclerotic function have recently been initiated. The aim of the study was to test the effect of CLAs and linoleic acid on 5- and 15-lipoxygenase (5-LO, 15-LO-1) enzyme activity, their mRNA expression, and concentration in the cells. It was also desired to determine whether the CLAs are substrates for the enzymes. For the experiments monocytic cell line (THP-1) and monocytes obtained from human venous blood were used. Monocytes were differentiated to macrophages: THP-1 (CD14+) by PMA administration (100 nM for 24 h) and monocytes from blood (CD14+) by 7-day cultivation with the autologous serum (10%). After differentiation, macrophages were cultured with 30 microM CLAs or linoleic acid for 48 h. The 15- and 5-lipoxygenase products were measured by HPLC method. mRNA expression and protein content were analyzed by real-time PCR and Western blot analysis. The in vitro studies proved that both CLA isomers are not substrates for 15-LO-1; in ex vivo studies hydroxydecadienoic acid (HODE) concentration was significantly reduced (p = 0.019). The trans-10,cis-12 CLA isomer reduced HODE concentration by 28% (p = 0.046) and the cis-9,trans-11 CLA isomer by 35% (p = 0.028). In macrophages obtained from THP-1 fatty acids did not change significantly mRNA expression of the majority of the investigated genes. CLAs did not change the content of 5-LO and 15-LO-1 proteins in macrophages obtained from peripheral blood. Linoleic acid induced 15-LO-1 expression (2.6 times, p < 0.05). CLAs may perform the function of an inhibitor of lipoxygenase 15-LO-1 activity in macrophages.

  2. Artesunate Reduces Serum Lipopolysaccharide in Cecal Ligation/Puncture Mice via Enhanced LPS Internalization by Macrophages through Increased mRNA Expression of Scavenger Receptors

    Directory of Open Access Journals (Sweden)

    Bin Li

    2014-01-01

    Full Text Available Innate immunity is the first line of defense in human beings against pathogen infection; monocytes/macrophages are the primary cells of the innate immune system. Recently, macrophages/monocytes have been discovered to participate in LPS clearance, and the clearance efficiency determines the magnitude of the inflammatory response and subsequent organ injury. Previously, we reported that artesunate (AS protected sepsis mice against heat-killed E. coli challenge. Herein, we further confirmed that AS protected cecal ligation/puncture (CLP sepsis mice. Its protection on sepsis mice was related to not only reduction of pro-inflammatory cytokines and serum LPS levels but also improvement of liver function. Based on the fact that AS did not directly bind and neutralize LPS, we hypothesized that the reduction of serum LPS level might be related to enhancement of LPS internalization and subsequent detoxification. Our results showed that AS increased FITC-LPS internalization by peritoneal macrophage and liver Kupffer cell, but enhancement of LPS internalization by AS was not related to the clathrin-dependent pathway. However, AS induced mRNA expression of important scavenger receptors (SRs; SR-A and MARCO mRNA expression was upregulated, suggesting that AS enhancement of LPS internalization and inhibition of pro-inflammatory cytokines was related to changes in mRNA expression of SRs.

  3. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    Science.gov (United States)

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Adenosine A1, A2a, A2B, and A3 receptors in hematopoiesis. 2. Expression of receptor mRNA in resting and lipopolysaccharide-activated mouse RAW 264.7 macrophages

    Czech Academy of Sciences Publication Activity Database

    Štreitová, Denisa; Hofer, Michal; Holá, Jiřina; Vacek, Antonín; Pospíšil, Milan

    2010-01-01

    Roč. 59, č. 1 (2010), s. 139-144 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GA305/06/0015; GA ČR(CZ) GA305/08/0158 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : adenosine receptors * macrophage * mRNA expression Subject RIV: BO - Biophysics Impact factor: 1.646, year: 2010

  5. Expression analysis of G Protein-Coupled Receptors in mouse macrophages.

    Science.gov (United States)

    Lattin, Jane E; Schroder, Kate; Su, Andrew I; Walker, John R; Zhang, Jie; Wiltshire, Tim; Saijo, Kaoru; Glass, Christopher K; Hume, David A; Kellie, Stuart; Sweet, Matthew J

    2008-04-29

    Monocytes and macrophages express an extensive repertoire of G Protein-Coupled Receptors (GPCRs) that regulate inflammation and immunity. In this study we performed a systematic micro-array analysis of GPCR expression in primary mouse macrophages to identify family members that are either enriched in macrophages compared to a panel of other cell types, or are regulated by an inflammatory stimulus, the bacterial product lipopolysaccharide (LPS). Several members of the P2RY family had striking expression patterns in macrophages; P2ry6 mRNA was essentially expressed in a macrophage-specific fashion, whilst P2ry1 and P2ry5 mRNA levels were strongly down-regulated by LPS. Expression of several other GPCRs was either restricted to macrophages (e.g. Gpr84) or to both macrophages and neural tissues (e.g. P2ry12, Gpr85). The GPCR repertoire expressed by bone marrow-derived macrophages and thioglycollate-elicited peritoneal macrophages had some commonality, but there were also several GPCRs preferentially expressed by either cell population. The constitutive or regulated expression in macrophages of several GPCRs identified in this study has not previously been described. Future studies on such GPCRs and their agonists are likely to provide important insights into macrophage biology, as well as novel inflammatory pathways that could be future targets for drug discovery.

  6. Macrophage Migration Inhibitory Factor Promoter Polymorphisms (−794 CATT5–8 and −173 G>C: Relationship with mRNA Expression and Soluble MIF Levels in Young Obese Subjects

    Directory of Open Access Journals (Sweden)

    Inés Matia-García

    2015-01-01

    Full Text Available We analyzed the relationship of −794 CATT5–8 and −173 G>C MIF polymorphisms with mRNA and soluble MIF in young obese subjects. A total of 250 young subjects, 150 normal-weight and 100 obese subjects, were recruited in the study. Genotyping of −794 CATT5–8 and −173 G>C MIF polymorphisms was performed by PCR and PCR-RFLP, respectively. MIF mRNA expression was determined by real-time PCR and serum MIF levels were measured using an ELISA kit. For both MIF promoter polymorphisms, no significant differences in the genotype and allele frequencies between groups were observed. MIF mRNA expression was slightly higher in obese subjects than in normal-weight subjects (1.38-fold, while soluble MIF levels did not show differences between groups. In addition, we found an increase in MIF mRNA expression in carriers of the 6,6 and C/C genotypes and the 6G haplotype of the −794 CATT5–8 and −173 G>C MIF polymorphisms, although it was not significant. In conclusion, this study found no relationship between obesity and MIF gene promoter polymorphisms with MIF mRNA expression in young obese subjects.

  7. CpG-ODNs induces up-regulated expression of chemokine CCL9 in mouse macrophages and microglia

    Digital Repository Service at National Institute of Oceanography (India)

    Ravindran, C.; Cheng, Y.-C.; Liang, S.-M.

    G-ODNs on macrophage/microglial cells are investigated. CpG-ODNs enhanced the expression of TLR9 mRNA of RAW264.7 macrophage and BV2 microglia cells time dependently. The expression of CCL9 of macrophages/microglia showed different responsiveness upon stimulation...

  8. M1 Macrophages but Not M2 Macrophages Are Characterized by Upregulation of CRP Expression via Activation of NFκB: a Possible Role for Ox-LDL in Macrophage Polarization.

    Science.gov (United States)

    Kaplan, Marielle; Shur, Anna; Tendler, Yvgeny

    2018-04-23

    Arterial macrophages comprise a heterogeneous population: pro-inflammatory (M1) and anti-inflammatory (M2). Since C-reactive protein (CRP) is produced by macrophages in atherosclerotic lesions, understanding of CRP regulation in macrophages could be crucial to decipher inflammatory patterns in atherogenesis. We aimed to analyze CRP expression in M1/M2 macrophages and to question whether it involves NFκB signaling pathway. Furthermore, we questioned whether oxidative stress affect macrophage phenotype and modulate macrophage CRP expression. M1/M2 macrophage polarization was validated using THP-1 macrophages. CRP mRNA and protein expression were determined using real-time PCR and immunohistochemistry. Involvement of NFκB was determined by nuclear translocation of p50 subunit and the use of NFκB inhibitor. Involvement of oxidative stress in macrophage phenotypes induction was studied using oxidized-LDL (Ox-LDL) and antioxidants. M1 macrophages were characterized by elevated CRP mRNA expression (by 67%), CRP protein levels (by 108%), and upregulation of NFκB activation compared to control, but these features were not shared by M2 macrophages. Macrophages incubation with Ox-LDL led to a moderate M1 phenotype combined with a M2 phenotype, correlated with increased CRP mRNA expression. Antioxidants inhibited by up to 86% IL6 expression but did not significantly affect IL10 secretion. Antioxidants significantly inhibited CRP expression in M1 macrophages, but not in M2 macrophages. Elevated expression of CRP was characteristic of M1 macrophages rather than M2 through NFκB activation. Oxidative stress could be one of the endogenous triggers for macrophage activation to a mixed M1 and M2 phenotype, in association with increased expression of CRP.

  9. Decreased inducibility of TNF expression in lipid-loaded macrophages

    Directory of Open Access Journals (Sweden)

    Kallin Bengt

    2002-10-01

    Full Text Available Abstract Background Inflammation and immune responses are considered to be very important in the pathogenesis of atherosclerosis. Lipid accumulation in macrophages of the arterial intima is a characteristic feature of atherosclerosis which can influence the inflammatory potential of macrophages. We studied the effects of lipid loading on the regulation of TNF expression in human monocyte-derived macrophages. Results In macrophages incubated with acetylated low density lipoprotein (ac-LDL for 2 days, mRNA expression of TNF in cells stimulated with TNF decreased by 75%. In cell cultures stimulated over night with IL-1β, lipid loading decreased secretion of TNF into culture medium by 48%. These results suggest that lipid accumulation in macrophages makes them less responsive to inflammatory stimuli. Decreased basal activity and inducibility of transcription factor AP-1 was observed in lipid-loaded cells, suggesting a mechanism for the suppression of cytokine expression. NF-κB binding activity and inducibility were only marginally affected by ac-LDL. LDL and ac-LDL did not activate PPARγ. In contrast, oxidized LDL stimulated AP-1 and PPARγ but inhibited NF-κB, indicating that the effects of lipid loading with ac-LDL were not due to oxidation of lipids. Conclusions Accumulation of lipid, mainly cholesterol, results in down-regulation of TNF expression in macrophages. Since monocytes are known to be activated by cell adhesion, these results suggest that foam cells in atherosclerotic plaques may contribute less potently to an inflammatory reaction than newly arrived monocytes/macrophages.

  10. Mitogen-activated protein kinase phosphatase-1 expression in macrophages is controlled by lymphocytes during macrophage activation.

    Science.gov (United States)

    Luo, Chong; Yang, Xiqiang; Yao, Lan; Jiang, Liping; Liu, Wei; Li, Xin; Wang, Lijia

    2012-01-01

    The viewpoints on the control of innate immune cells by the adaptive immune system during sepsis remain controversial. Mitogen-activated protein kinase phosphatase-1 (MKP-1) is essential to the negative control of innate immunity and suppresses the activation of macrophages by inhibiting activated mitogen-activated protein kinase (MAPK). The purpose of the current study was to observe inflammatory response and macrophage activation in mice with severe combined immunodeficiency (SCID) with endotoxemia and to determine the role of MKP-1 in the control of macrophage activation by the adaptive immune system. Endotoxemia was induced in wild-type and SCID mice by an intraperitoneal injection of lipopolysaccharide (LPS), and all of the SCID mice died. SCID mice produced more inflammatory cytokines than BALB/c mice systemically and locally. TNF-α mRNA expression was higher and MKP-1 mRNA expression was lower in peritoneal macrophages (PMa) from SCID mice compared to PMa from wild-type mice after and even before LPS injection. Thioglycollate-stimulated PMa from wild-type mice were stimulated with LPS in vitro in the presence or absence of pan-T cells. The levels of TNF-α and IL-6 were higher in the supernatants from PMa cultured alone compared to PMa co-cultured with pan-T cells, and PMa MKP-1 mRNA and protein expression were higher when PMa were co-cultured with pan-T cells. Therefore, pan-T cells can up-regulate MKP-1 expression in macrophages and inhibit the secretion of inflammatory cytokines secretion by macrophages. In SCID mice, lymphocyte deficiency, especially T cell deficiency, causes insufficient MKP-1 expression in macrophages, which can be responsible for the severe inflammation and bad prognosis of septic SCID mice. MKP-1 plays an important role in the control of macrophage activation by the adaptive immune system.

  11. Cigarette smoking decreases global microRNA expression in human alveolar macrophages.

    Directory of Open Access Journals (Sweden)

    Joel W Graff

    Full Text Available Human alveolar macrophages are critical components of the innate immune system. Cigarette smoking-induced changes in alveolar macrophage gene expression are linked to reduced resistance to pulmonary infections and to the development of emphysema/COPD. We hypothesized that microRNAs (miRNAs could control, in part, the unique messenger RNA (mRNA expression profiles found in alveolar macrophages of cigarette smokers. Activation of macrophages with different stimuli in vitro leads to a diverse range of M1 (inflammatory and M2 (anti-inflammatory polarized phenotypes that are thought to mimic activated macrophages in distinct tissue environments. Microarray mRNA data indicated that smoking promoted an "inverse" M1 mRNA expression program, defined by decreased expression of M1-induced transcripts and increased expression of M1-repressed transcripts with few changes in M2-regulated transcripts. RT-PCR arrays identified altered expression of many miRNAs in alveolar macrophages of smokers and a decrease in global miRNA abundance. Stratification of human subjects suggested that the magnitude of the global decrease in miRNA abundance was associated with smoking history. We found that many of the miRNAs with reduced expression in alveolar macrophages of smokers were predicted to target mRNAs upregulated in alveolar macrophages of smokers. For example, miR-452 is predicted to target the transcript encoding MMP12, an important effector of smoking-related diseases. Experimental antagonism of miR-452 in differentiated monocytic cells resulted in increased expression of MMP12. The comprehensive mRNA and miRNA expression profiles described here provide insight into gene expression regulation that may underlie the adverse effects cigarette smoking has on alveolar macrophages.

  12. Viral infection of human lung macrophages increases PDL1 expression via IFNβ.

    Directory of Open Access Journals (Sweden)

    Karl J Staples

    Full Text Available Lung macrophages are an important defence against respiratory viral infection and recent work has demonstrated that influenza-induced macrophage PDL1 expression in the murine lung leads to rapid modulation of CD8+ T cell responses via the PD1 receptor. This PD1/PDL1 pathway may downregulate acute inflammatory responses to prevent tissue damage. The aim of this study was to investigate the mechanisms of PDL1 regulation by human macrophages in response to viral infection. Ex-vivo viral infection models using influenza and RSV were established in human lung explants, isolated lung macrophages and monocyte-derived macrophages (MDM and analysed by flow cytometry and RT-PCR. Incubation of lung explants, lung macrophages and MDM with X31 resulted in mean cellular infection rates of 18%, 18% and 29% respectively. Viral infection significantly increased cell surface expression of PDL1 on explant macrophages, lung macrophages and MDM but not explant epithelial cells. Infected MDM induced IFNγ release from autologous CD8+ T cells, an effect enhanced by PDL1 blockade. We observed increases in PDL1 mRNA and IFNβ mRNA and protein release by MDM in response to influenza infection. Knockdown of IFNβ by siRNA, resulted in a 37.5% reduction in IFNβ gene expression in response to infection, and a significant decrease in PDL1 mRNA. Furthermore, when MDM were incubated with IFNβ, this cytokine caused increased expression of PDL1 mRNA. These data indicate that human macrophage PDL1 expression modulates CD8+ cell IFNγ release in response to virus and that this expression is regulated by autologous IFNβ production.

  13. Glucose transporter expression differs between bovine monocyte and macrophage subsets and is influenced by milk production.

    Science.gov (United States)

    Eger, M; Hussen, J; Koy, M; Dänicke, S; Schuberth, H-J; Breves, G

    2016-03-01

    The peripartal period of dairy cows is characterized by negative energy balance and higher incidences of infectious diseases such as mastitis or metritis. With the onset of lactation, milk production is prioritized and large amounts of glucose are transported into the mammary gland. Decreased overall energy availability might impair the function of monocytes acting as key innate immune cells, which give rise to macrophages and dendritic cells and link innate and adaptive immunity. Information on glucose requirements of bovine immune cells is rare. Therefore, this study aims to evaluate glucose transporter expression of the 3 bovine monocyte subsets (classical, intermediate, and nonclassical monocytes) and monocyte-derived macrophages and to identify influences of the peripartal period. Blood samples were either collected from nonpregnant healthy cows or from 16 peripartal German Holstein cows at d -14, +7, and +21 relative to parturition. Quantitative real-time PCR was applied to determine mRNA expression of glucose transporters (GLUT) 1, GLUT3, and GLUT4 in monocyte subsets and monocyte-derived macrophages. The low GLUT1 and GLUT3 expression in nonclassical monocytes was unaltered during differentiation into macrophages, whereas in classical and intermediate monocytes GLUT expression was downregulated. Alternatively activated M2 macrophages consumed more glucose compared with classically activated M1 macrophages. The GLUT4 mRNA was only detectable in unstimulated macrophages. Neither monocytes nor macrophages were insulin responsive. In the peripartum period, monocyte GLUT1 and GLUT3 expression and the GLUT3/GLUT1 ratio were negatively correlated with lactose production. The high-affinity GLUT3 transporter appears to be the predominant glucose transporter on bovine monocytes and macrophages, especially in the peripartal period when blood glucose levels decline. Glucose transporter expression in monocytes is downregulated as a function of lactose production, which

  14. Liver X Receptor (LXR) activation negatively regulates visfatin expression in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Mayi, Therese Hervee; Rigamonti, Elena [Univ Lille Nord de France, F-59000 Lille (France); INSERM UR1011, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Pattou, Francois [Univ Lille Nord de France, F-59000 Lille (France); Department of Endocrine Surgery, University Hospital, Lille (France); U859 Biotherapies for Diabetes, INSERM, Lille (France); Staels, Bart, E-mail: bart.staels@pasteur-lille.fr [Univ Lille Nord de France, F-59000 Lille (France); INSERM UR1011, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France); Chinetti-Gbaguidi, Giulia [Univ Lille Nord de France, F-59000 Lille (France); INSERM UR1011, F-59000 Lille (France); UDSL, F-59000 Lille (France); Institut Pasteur de Lille, F-59019 Lille (France)

    2011-01-07

    Research highlights: {yields} Synthetic LXR ligands decreased visfatin expression in human macrophages. {yields} LXR activation leads to a modest and transient decrease of NAD{sup +} concentration. {yields} LXR activation decreased PPAR{gamma}-induced visfatin in human macrophages. -- Abstract: Adipose tissue macrophages (ATM) are the major source of visfatin, a visceral fat adipokine upregulated during obesity. Also known to play a role in B cell differentiation (pre-B cell colony-enhancing factor (PBEF)) and NAD biosynthesis (nicotinamide phosphoribosyl transferase (NAMPT)), visfatin has been suggested to play a role in inflammation. Liver X Receptor (LXR) and Peroxisome Proliferator-Activated Receptor (PPAR){gamma} are nuclear receptors expressed in macrophages controlling the inflammatory response. Recently, we reported visfatin as a PPAR{gamma} target gene in human macrophages. In this study, we examined whether LXR regulates macrophage visfatin expression. Synthetic LXR ligands decreased visfatin gene expression in a LXR-dependent manner in human and murine macrophages. The decrease of visfatin mRNA was paralleled by a decrease of protein secretion. Consequently, a modest and transient decrease of NAD{sup +} concentration was observed. Interestingly, LXR activation decreased the PPAR{gamma}-induced visfatin gene and protein secretion in human macrophages. Our results identify visfatin as a gene oppositely regulated by the LXR and PPAR{gamma} pathways in human macrophages.

  15. DMPD: Iron regulation of hepatic macrophage TNFalpha expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11841920 Iron regulation of hepatic macrophage TNFalpha expression. Tsukamoto H. Fr...ee Radic Biol Med. 2002 Feb 15;32(4):309-13. (.png) (.svg) (.html) (.csml) Show Iron regulation of hepatic macrophage... TNFalpha expression. PubmedID 11841920 Title Iron regulation of hepatic macrophage TNFalpha expres

  16. Caprine arthritis encephalitis virus dysregulates the expression of cytokines in macrophages.

    Science.gov (United States)

    Lechner, F; Machado, J; Bertoni, G; Seow, H F; Dobbelaere, D A; Peterhans, E

    1997-01-01

    Caprine arthritis encephalitis virus (CAEV) is a lentivirus of goats that leads to chronic mononuclear infiltration of various tissues, in particular, the radiocarpal joints. Cells of the monocyte/macrophage lineage are the major host cells of CAEV in vivo. We have shown that infection of cultured goat macrophages with CAEV results in an alteration of cytokine expression in vitro. Constitutive expression of interleukin 8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) was increased in infected macrophages, whereas transforming growth factor beta1 (TGF-beta1) mRNA was down-regulated. When macrophages were infected with a CAEV clone lacking the trans-acting nuclear regulatory gene tat, IL-8 and MCP-1 were also increased. No significant differences from cells infected with the wild-type clone were observed, suggesting that Tat is not required for the increased expression of IL-8 and MCP-1 in infected macrophages. Furthermore, infection with CAEV led to an altered pattern of cytokine expression in response to lipopolysaccharide (LPS), heat-killed Listeria monocytogenes plus gamma interferon, or fixed cells of Staphylococcus aureus Cowan I. In infected macrophages, tumor necrosis factor alpha, IL-1beta, IL-6, and IL-12 p40 mRNA expression was reduced in response to all stimuli tested whereas changes in expression of granulocyte-macrophage colony-stimulating factor depended on the stimulating agent. Electrophoretic mobility shift assays demonstrated that, in contrast to effects of human immunodeficiency virus infection of macrophages, CAEV infection had no effect on the level of constitutive nuclear factor-kappaB (NF-kappaB) activity or on the level of LPS-stimulated NF-kappaB activity, suggesting that NF-kappaB is not involved in altered regulation of cytokine expression in CAEV-infected cells. In contrast, activator protein 1 (AP-1) binding activity was decreased in infected macrophages. These data show that CAEV infection may result in a dysregulation of

  17. Expression of calmodulin mRNA in rat olfactory neuroepithelium.

    Science.gov (United States)

    Biffo, S; Goren, T; Khew-Goodall, Y S; Miara, J; Margolis, F L

    1991-04-01

    A calmodulin (CaM) cDNA was isolated by differential hybridization screening of a lambda gt10 library prepared from rat olfactory mucosa. This cDNA fragment, containing most of the open reading frame of the rat CaMI gene, was subcloned and used to characterize steady-state expression of CaM mRNA in rat olfactory neuroepithelium and bulb. Within the bulb mitral cells are the primary neuronal population expressing CaM mRNA. The major CaM mRNA expressed in the olfactory mucosa is 1.7 kb with smaller contributions from mRNAs of 4.0 and 1.4 kb. CaM mRNA was primarily associated with the olfactory neurons and, despite the cellular complexity of the tissue and the known involvement of CaM in diverse cellular processes, was only minimally evident in sustentacular cells, gland cells or respiratory epithelium. Following bulbectomy CaM mRNA declines in the olfactory neuroepithelium as does olfactory marker protein (OMP) mRNA. In contrast to the latter, CaM mRNA makes a partial recovery by one month after surgery. These results, coupled with those from in situ hybridization, indicate that CaM mRNA is expressed in both mature and immature olfactory neurons. The program regulating CaM gene expression in olfactory neurons is distinct from those controlling expression of B50/GAP43 in immature, or OMP in mature, neurons respectively.

  18. Mechanisms of Hypoxic Up-Regulation of Versican Gene Expression in Macrophages.

    Directory of Open Access Journals (Sweden)

    Fattah Sotoodehnejadnematalahi

    Full Text Available Hypoxia is a hallmark of many pathological tissues. Macrophages accumulate in hypoxic sites and up-regulate a range of hypoxia-inducible genes. The matrix proteoglycan versican has been identified as one such gene, but the mechanisms responsible for hypoxic induction are not fully characterised. Here we investigate the up-regulation of versican by hypoxia in primary human monocyte-derived macrophages (HMDM, and, intriguingly, show that versican mRNA is up-regulated much more highly (>600 fold by long term hypoxia (5 days than by 1 day of hypoxia (48 fold. We report that versican mRNA decay rates are not affected by hypoxia, demonstrating that hypoxic induction of versican mRNA is mediated by increased transcription. Deletion analysis of the promoter identified two regions required for high level promoter activity of luciferase reporter constructs in human macrophages. The hypoxia-inducible transcription factor HIF-1 has previously been implicated as a key potential regulator of versican expression in hypoxia, however our data suggest that HIF-1 up-regulation is unlikely to be principally responsible for the high levels of induction observed in HMDM. Treatment of HMDM with two distinct specific inhibitors of Phosphoinositide 3-kinase (PI3K, LY290042 and wortmannin, significantly reduced induction of versican mRNA by hypoxia and provides evidence of a role for PI3K in hypoxic up-regulation of versican expression.

  19. An Anacardiaceae preparation reduces the expression of inflammation-related genes in murine macrophages.

    Science.gov (United States)

    Leiro, J; García, D; Arranz, J A; Delgado, R; Sanmartín, M L; Orallo, F

    2004-08-01

    This study investigated the effects of an aqueous extract of the stem bark of Mangifera indica L. (Anacardiaceae; Vimang), which contains a defined mixture of components including polyphenols (principally mangiferin, MA), triterpenes, phytosteroids, fatty acids and microelements, on expression of inflammation mediators in inflammatory murine macrophages after stimulation in vitro with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma). In vitro treatment with Vimang at 4 microg/ml reduced levels of NOS-2 mRNA and NOS-2, while treatment at 40 microg/ml also reduced levels of COX-2 mRNA, COX-2, and prostaglandin E2 (PGE2). Results suggested that MA is involved in these effects. In vitro treatment with Vimang at 40 microg/ml also inhibited mRNA levels of the proinflammatory cytokines interleukin 1beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha) and colony-stimulating factor (GM-CSF), but did not affect mRNA levels of IL-6 or tumor growth factor-beta (TGF-beta). Extracellular release of TNF-alpha by inflammatory macrophages was inhibited by in vitro treatment with Vimang at the same concentrations that showed inhibition of TNF-alpha mRNA levels. The inhibition of TNF-alpha production appears to be at least partially attributable to MA. Vimang at 4 microg/ml decreased mRNA levels of nuclear factor-kappaB (NF-kappaB) but did not affect expression of the NF-kappaB inhibitor (IkappaB). These data indicate that the potent anti-inflammatory effects of Vimang are due to selective modulation of the expression of inflammation-related genes, leading to attenuation of macrophage activation.

  20. Cholesteryl ester hydroperoxides increase macrophage CD36 gene expression via PPARα

    International Nuclear Information System (INIS)

    Jedidi, Iness; Couturier, Martine; Therond, Patrice; Gardes-Albert, Monique; Legrand, Alain; Barouki, Robert; Bonnefont-Rousselot, Dominique; Aggerbeck, Martine

    2006-01-01

    The uptake of oxidized LDL by macrophages is a key event in the development of atherosclerosis. The scavenger receptor CD36 is one major receptor that internalizes oxidized LDL. In differentiated human macrophages, we compared the regulation of CD36 expression by copper-oxidized LDL or their products. Only oxidized derivatives of cholesteryl ester (CEOOH) increased the amount of CD36 mRNA (2.5-fold). Both oxidized LDL and CEOOH treatment increased two to fourfold the transcription of promoters containing peroxisome-proliferator-activated-receptor responsive elements (PPRE) in the presence of PPARα or γ. Electrophoretic-mobility-shift-assays with nuclear extracts prepared from macrophages treated by either oxidized LDL or CEOOH showed increased binding of PPARα to the CD36 gene promoter PPRE. In conclusion, CEOOH present in oxidized LDL increase CD36 gene expression in a pathway involving PPARα

  1. Clinical significance of LUNX mRNA, CK19 mRNA, CEA mRNA expression in detecting micrometastasis from lung cancer

    International Nuclear Information System (INIS)

    Zhu Guangying; Liu Delin; Chen Jie

    2003-01-01

    Objective: To evaluate the sensitivity, specificity and clinical significance of CK19 mRNA, CEA mRNA and LUNX mRNA for detecting micrometastasis by sampling the peripheral blood and regional lymph nodes of lung cancer patients. Methods: Reverse transcriptase chain reaction (RT-PCR) was used to detect LUNX mRNA, CK19 mRNA, CEA mRNA for micrometastasis by sampling the peripheral blood of 48 lung cancer patients and 44 regional lymph nodes of such patients treated by curative resection. Peripheral blood of 30 patients with pulmonary benign lesions and 10 normal healthy volunteers and lymph nodes of 6 patients with benign pulmonary diseases served as control. Results: 1) LUNX mRNA, CK19 mRNA, CEA mRNA were expressed in all (35/35) lung cancer tissues. 2) In the peripheral blood from 48 lung cancer patients, 30 (62.5%) were positive for LUNX mRNA, 24 (50.0%) positive for CK19 mRNA and 32(66.7%) positive for CEA mRNA. The positive detection rates of micrometastasis in 44 lymph nodes from lung cancer patients were 36.4% (16 out of 44) for LUNX mRNA, 27.3% (12 out of 44) for CK19 mRNA and 40.9% (18 out of 44) for CEA mRNA. 3) In the 30 blood samples from patients with pulmonary benign diseases, 2 (6.7%) expressed CK19 mRNA, but none expressed LUNX mRNA or CEA mRNA. All the 3 molecular markers were negative in the 10 blood samples from healthy volunteers. In 11 lymph nodes from patients with pulmonary benign lesions, none was positive for any of the three markers. 4) In 44 regional lymph nodes from lung cancer patients, 6 (13.6%) were positive for metastasis by histopathological examination, with a positive rate significantly lower than that of the RT-PCR (P<0.05). 5) The micrometastatic positive rate in the peripheral blood of 40 non-small cell lung cancer (NSCLC) patients was significantly related to TNM stage (P=0.01). Conclusions: LUNX mRNA, CK19 MRNA, CEA mRNA are all appropriate target genes for the detection of micrometastasis from lung cancer. LUNX mRNA and CEA mRNA

  2. Cloning and mRNA expression pattern analysis under low ...

    African Journals Online (AJOL)

    This research cloned endochitinase-antifreeze protein precursor (EAPP) gene of Dong-mu 70 rye (Secale cereale) by designing special primers according to Genbank's EAPP gene sequence, and analyzing the influence of low temperature stress on the expression of mRNA with RT-PCR. The results indicated that the ...

  3. Cigarette smoke regulates the expression of TLR4 and IL-8 production by human macrophages

    Directory of Open Access Journals (Sweden)

    Rahman Irfan

    2009-05-01

    Full Text Available Abstract Background Toll-like receptors (TLRs are present on monocytes and alveolar macrophages that form the first line of defense against inhaled particles. The importance of those cells in the pathophysiology of chronic obstructive pulmonary disease (COPD has well been documented. Cigarette smoke contains high concentration of oxidants which can stimulate immune cells to produce reactive oxygen species, cytokines and chemokines. Methods In this study, we evaluated the effects of cigarette smoke medium (CSM on TLR4 expression and interleukin (IL-8 production by human macrophages investigating the involvement of ROS. Results and Discussion TLR4 surface expression was downregulated on short term exposure (1 h of CSM. The downregulation could be explained by internalization of the TLR4 and the upregulation by an increase in TLR4 mRNA. IL-8 mRNA and protein were also increased by CSM. CSM stimulation increased intracellular ROS-production and decreased glutathione (GSH levels. The modulation of TLR4 mRNA and surface receptors expression, IRAK activation, IκB-α degradation, IL-8 mRNA and protein, GSH depletion and ROS production were all prevented by antioxidants such as N-acetyl-L-cysteine (NAC. Conclusion TLR4 may be involved in the pathogenesis of lung emphysema and oxidative stress and seems to be a crucial contributor in lung inflammation.

  4. Cloning the human lysozyme cDNA: Inverted Alu repeat in the mRNA and in situ hybridization for macrophages and Paneth cells

    International Nuclear Information System (INIS)

    Chung, L.P.; Keshav, S.; Gordon, S.

    1988-01-01

    Lysozyme is a major secretory product of human and rodent macrophages and a useful marker for myelomonocytic cells. Based on the known human lysozyme amino acid sequence, oligonucleotides were synthesized and used as probes to screen a phorbol 12-myristate 13-acetate-treated U937 cDNA library. A full-length human lysozyme cDNA clone, pHL-2, was obtained and characterized. Sequence analysis shows that human lysozyme, like chicken lysozyme, has in 18-amino-acid-long signal peptide, but unlike the chicken lysozyme cDNA, the human lysozyme cDNA has a >1-kilobase-long 3' nontranslated sequence. Interestingly, within this 3' region, an inverted repeat of the Alu family of repetitive sequences was discovered. In RNA blot analyses, DNA probes prepared from pHL-2 can be used to detect lysozyme mRNA not only from human but also from mouse and rat. Moreover, by in situ hybridization, complementary RNA transcripts have been used as probes to detect lysozyme mRNA in mouse macrophages and Paneth cells. This human lysozyme cDNA clone is therefore likely to be a useful molecular probe for studying macrophage distribution and gene expression

  5. Relationship of calcitonin mRNA expression to the differentiation state of HL 60 cells.

    Science.gov (United States)

    Kiefer, P; Bacher, M; Pflüger, K H

    1994-05-01

    Raised plasma levels of immunoreactive human calcitonin (ihCT) can be found in patients with myeloid leukemia and seem to indicate a poor prognosis. High levels were found in acute undifferentiated and acute myeloblastic leukemia. To test whether CT expression could be a marker of myeloid differentiation, we used the promyelocytic leukemia cell line HL 60 which also expresses ihCT as a model system for myeloid differentiation. Exponentially growing HL 60 cells as well as differentiation induced HL 60 cells expressed a single 1.0 Kb CT transcript. The induction of HL 60 cell differentiation along the granulocytic lineage by DMSO or HMBA had no effect on the level of CT transcripts. Induction of monocytic/macrophagic differentiation by TPA resulted in a transient, about 10-fold elevated expression of CT steady state mRNA after 24 h. In contrast to TPA, induction of HL 60 cell differentiation along the monocytic pathway by Vit D3 had no detectable effect on the level of the CT in RNA expression at corresponding time points. These findings suggest that the transient induction of CT steady state mRNA expression by TPA is rather a direct effect of the phorbol ester than commitment along the monocytic line of differentiation.

  6. Macrophage activation and differentiation signals regulate schlafen-4 gene expression: evidence for Schlafen-4 as a modulator of myelopoiesis.

    Directory of Open Access Journals (Sweden)

    Wendy J van Zuylen

    Full Text Available BACKGROUND: The ten mouse and six human members of the Schlafen (Slfn gene family all contain an AAA domain. Little is known of their function, but previous studies suggest roles in immune cell development. In this report, we assessed Slfn regulation and function in macrophages, which are key cellular regulators of innate immunity. METHODOLOGY/PRINCIPAL FINDINGS: Multiple members of the Slfn family were up-regulated in mouse bone marrow-derived macrophages (BMM by the Toll-like Receptor (TLR4 agonist lipopolysaccharide (LPS, the TLR3 agonist Poly(I∶C, and in disease-affected joints in the collagen-induced model of rheumatoid arthritis. Of these, the most inducible was Slfn4. TLR agonists that signal exclusively through the MyD88 adaptor protein had more modest effects on Slfn4 mRNA levels, thus implicating MyD88-independent signalling and autocrine interferon (IFN-β in inducible expression. This was supported by the substantial reduction in basal and LPS-induced Slfn4 mRNA expression in IFNAR-1⁻/⁻ BMM. LPS causes growth arrest in macrophages, and other Slfn family genes have been implicated in growth control. Slfn4 mRNA levels were repressed during macrophage colony-stimulating factor (CSF-1-mediated differentiation of bone marrow progenitors into BMM. To determine the role of Slfn4 in vivo, we over-expressed the gene specifically in macrophages in mice using a csf1r promoter-driven binary expression system. Transgenic over-expression of Slfn4 in myeloid cells did not alter macrophage colony formation or proliferation in vitro. Monocyte numbers, as well as inflammatory macrophages recruited to the peritoneal cavity, were reduced in transgenic mice that specifically over-expressed Slfn4, while macrophage numbers and hematopoietic activity were increased in the livers and spleens. CONCLUSIONS: Slfn4 mRNA levels were up-regulated during macrophage activation but down-regulated during differentiation. Constitutive Slfn4 expression in the

  7. Evaluation of a nanotechnology-based approach to induce gene-expression in human THP-1 macrophages under inflammatory conditions.

    Science.gov (United States)

    Bernal, Laura; Alvarado-Vázquez, Abigail; Ferreira, David Wilson; Paige, Candler A; Ulecia-Morón, Cristina; Hill, Bailey; Caesar, Marina; Romero-Sandoval, E Alfonso

    2017-02-01

    Macrophages orchestrate the initiation and resolution of inflammation by producing pro- and anti-inflammatory products. An imbalance in these mediators may originate from a deficient or excessive immune response. Therefore, macrophages are valid therapeutic targets to restore homeostasis under inflammatory conditions. We hypothesize that a specific mannosylated nanoparticle effectively induces gene expression in human macrophages under inflammatory conditions without undesirable immunogenic responses. THP-1 macrophages were challenged with lipopolysaccharide (LPS, 5μg/mL). Polyethylenimine (PEI) nanoparticles grafted with a mannose receptor ligand (Man-PEI) were used as a gene delivery method. Nanoparticle toxicity, Man-PEI cellular uptake rate and gene induction efficiency (GFP, CD14 or CD68) were studied. Potential immunogenic responses were evaluated by measuring the production of tumor necrosis factor-alpha (TNF-α), Interleukin (IL)-6 and IL-10. Man-PEI did not produce cytotoxicity, and it was effectively up-taken by THP-1 macrophages (69%). This approach produced a significant expression of GFP (mRNA and protein), CD14 and CD68 (mRNA), and transiently and mildly reduced IL-6 and IL-10 levels in LPS-challenged macrophages. Our results indicate that Man-PEI is suitable for inducing an efficient gene overexpression in human macrophages under inflammatory conditions with limited immunogenic responses. Our promising results set the foundation to test this technology to induce functional anti-inflammatory genes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Triglyceride-rich lipoprotein regulates APOB48 receptor gene expression in human THP-1 monocytes and macrophages.

    Science.gov (United States)

    Bermudez, Beatriz; Lopez, Sergio; Varela, Lourdes M; Ortega, Almudena; Pacheco, Yolanda M; Moreda, Wenceslao; Moreno-Luna, Rafael; Abia, Rocio; Muriana, Francisco J G

    2012-02-01

    The postprandial metabolism of dietary fats implies that the production of TG-rich lipoproteins (TRL) contributes to the progression of plaque development. TRL and their remnants cause rapid receptor-mediated monocyte/macrophage lipid engorgement via the cell surface apoB48 receptor (apoB48R). However, the mechanistic basis for apoB48 receptor (APOB48R) regulation by postprandial TRL in monocytes and macrophages is not well established. In this study, we investigated the effects of postprandial TRL from healthy volunteers on the expression of APOB48R mRNA and lipid uptake in human THP-1 monocytes and THP-1-derived macrophages. The expression of APOB48R mRNA was upregulated in THP-1 monocytes, but downregulated in THP-1-derived macrophages when treated with postprandial TRL (P < 0.05), in a dose- and time-dependent manner. TG and free cholesterol were dramatically increased in THP-1-derived macrophages (140 and 50%, respectively; P < 0.05) and in THP-1 monocytes (160 and 95%, respectively; P < 0.05). This lipid accumulation was severely decreased (~50%; P < 0.05) in THP-1-derived macrophages by small interfering RNA (siRNA) targeting of APOB48R. Using PPAR and retinoid X receptor (RXR) agonists, antagonists, and siRNA, our data indicate that PPARα, PPARγ, and RXRα are involved in postprandial TRL-induced APOB48R transcriptional regulation. Co-incubation with acyl-CoA synthetase or acyl-CoA:cholesterol acyltransferase inhibitors potentiated the effects of postprandial TRL on the expression of APOB48R mRNA in THP-1 monocytes and THP-1-derived macrophages. Our findings collectively suggest that APOB48R represents a molecular target of postprandial TRL via PPAR-dependent pathways in human THP-1 monocytes and macrophages and advance a potentially important link between postprandial metabolism of dietary fats and atherogenesis.

  9. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis: interferon-beta treatment increases IL-10 mRNA expression while reducing IL-23 mRNA expression

    DEFF Research Database (Denmark)

    Krakauer, M.; Sorensen, P.; Khademi, M.

    2008-01-01

    volunteers served to confirm initial findings. mRNA was analyzed by real-time reverse transcriptase polymerase chain reaction (PCR). RESULTS: We found elevated expression of interleukin (IL)-23 and IL-10 in untreated MS patients. IFN-beta therapy increased IL-10 and decreased IL-23 expression independently...... of the regulatory cytokine IL-10. The elevated IL-23 mRNA levels in MS patients are noteworthy in view of the newly discovered IL-23-driven Th17 T-cell subset, which is crucial in animal models of MS. Since IFN-beta therapy resulted in decreased IL-23 mRNA levels, the Th17 axis could be another target of IFN...

  10. Gene expression in IFN-g-activated murine macrophages

    Directory of Open Access Journals (Sweden)

    Pereira C.A.

    2004-01-01

    Full Text Available Macrophages are critical for natural immunity and play a central role in specific acquired immunity. The IFN-gamma activation of macrophages derived from A/J or BALB/c mice yielded two different patterns of antiviral state in murine hepatitis virus 3 infection, which were related to a down-regulation of the main virus receptor. Using cDNA hybridization to evaluate mRNA accumulation in the cells, we were able to identify several genes that are differently up- or down-regulated by IFN-gamma in A/J (267 and 266 genes, respectively, up- and down-regulated or BALB/c (297 and 58 genes, respectively, up- and down-regulated mouse macrophages. Macrophages from mice with different genetic backgrounds behave differently at the molecular level and comparison of the patterns of non-activated and IFN-gamma-activated A/J or BALB/c mouse macrophages revealed, for instance, an up-regulation and a down-regulation of genes coding for biological functions such as enzymatic reactions, nucleic acid synthesis and transport, protein synthesis, transport and metabolism, cytoskeleton arrangement and extracellular matrix, phagocytosis, resistance and susceptibility to infection and tumors, inflammation, and cell differentiation or activation. The present data are reported in order to facilitate future correlation of proteomic/transcriptomic findings as well as of results obtained from a classical approach for the understanding of biological phenomena. The possible implication of the role of some of the gene products relevant to macrophage biology can now be further scrutinized. In this respect, a down-regulation of the main murine hepatitis virus 3 receptor gene was detected only in IFN-gamma-activated macrophages of resistant mice.

  11. Effects of propofol on lipopolysaccharide-induced expression and release of HMGB1 in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.; Wei, X.Y.; Liu, B.; Wang, L.J.; Jiang, L.H. [Department of Anesthesiology, the Third Affiliated Hospital, Zhengzhou University, Zhengzhou (China)

    2015-02-24

    This study aimed to determine the effects of different concentrations of propofol (2,6-diisopropylphenol) on lipopolysaccharide (LPS)-induced expression and release of high-mobility group box 1 protein (HMGB1) in mouse macrophages. Mouse macrophage cell line RAW264.7 cells were randomly divided into 5 treatment groups. Expression levels of HMGB1 mRNA were detected using RT-PCR, and cell culture supernatant HMGB1 protein levels were detected using enzyme-linked immunosorbent assay (ELISA). Translocation of HMGB1 from the nucleus to the cytoplasm in macrophages was observed by Western blotting and activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus was detected using ELISA. HMGB1 mRNA expression levels increased significantly in the cell culture supernatant and in cells after 24 h of stimulating RAW264.7 cells with LPS (500 ng/mL). However, HMGB1 mRNA expression levels in the P2 and P3 groups, which received 500 ng/mL LPS with 25 or 50 μmol/mL propofol, respectively, were significantly lower than those in the group receiving LPS stimulation (P<0.05). After stimulation by LPS, HMGB1 protein levels were reduced significantly in the nucleus but were increased in the cytoplasm (P<0.05). Simultaneously, the activity of NF-κB was enhanced significantly (P<0.05). After propofol intervention, HMGB1 translocation from the nucleus to the cytoplasm and NF-κB activity were inhibited significantly (each P<0.05). Thus, propofol can inhibit the LPS-induced expression and release of HMGB1 by inhibiting HMGB1 translocation and NF-κB activity in RAW264.7 cells, suggesting propofol may be protective in patients with sepsis.

  12. Regulation of endothelial cell adhesion molecule expression by mast cells, macrophages, and neutrophils.

    Directory of Open Access Journals (Sweden)

    Jie Zhang

    2011-01-01

    Full Text Available Leukocyte adhesion to the vascular endothelium and subsequent transendothelial migration play essential roles in the pathogenesis of cardiovascular diseases such as atherosclerosis. The leukocyte adhesion is mediated by localized activation of the endothelium through the action of inflammatory cytokines. The exact proinflammatory factors, however, that activate the endothelium and their cellular sources remain incompletely defined.Using bone marrow-derived mast cells from wild-type, Tnf(-/-, Ifng(-/-, Il6(-/- mice, we demonstrated that all three of these pro-inflammatory cytokines from mast cells induced the expression of vascular cell adhesion molecule-1 (VCAM-1, intercellular adhesion molecule-1 (ICAM-1, P-selectin, and E-selectin in murine heart endothelial cells (MHEC at both mRNA and protein levels. Compared with TNF-α and IL6, IFN-γ appeared weaker in the induction of the mRNA levels, but at protein levels, both IL6 and IFN-γ were weaker inducers than TNF-α. Under physiological shear flow conditions, mast cell-derived TNF-α and IL6 were more potent than IFN-γ in activating MHEC and in promoting neutrophil adhesion. Similar observations were made when neutrophils or macrophages were used. Neutrophils and macrophages produced the same sets of pro-inflammatory cytokines as did mast cells to induce MHEC adhesion molecule expression, with the exception that macrophage-derived IFN-γ showed negligible effect in inducing VCAM-1 expression in MHEC.Mast cells, neutrophils, and macrophages release pro-inflammatory cytokines such as TNF-α, IFN-γ, and IL6 that induce expression of adhesion molecules in endothelium and recruit of leukocytes, which is essential to the pathogenesis of vascular inflammatory diseases.

  13. Macrophage colony-stimulating factor induces prolactin expression in rat pituitary gland.

    Science.gov (United States)

    Hoshino, Satoya; Kurotani, Reiko; Miyano, Yuki; Sakahara, Satoshi; Koike, Kanako; Maruyama, Minoru; Ishikawa, Fumio; Sakatai, Ichiro; Abe, Hiroyuki; Sakai, Takafumi

    2014-06-01

    We investigated the role of macrophage colony-stimulating factor (M-CSF) in the pituitary gland to understand the effect of M-CSF on pituitary hormones and the relationship between the endocrine and immune systems. When we attempted to establish pituitary cell lines from a thyrotropic pituitary tumor (TtT), a macrophage cell line, TtT/M-87, was established. We evaluated M-CSF-like activity in conditioned media (CM) from seven pituitary cell lines using TtT/M-87 cells. TtT/M-87 proliferation significantly increased in the presence of CM from TtT/GF cells, a pituitary folliculostellate (FS) cell line. M-CSF mRNA was detected in TtT/GF and MtT/E cells by reverse transcriptase-polymerase chain reaction (RT-PCR), and its expression in TtT/GF cells was increased in a lipopolysaccharide (LPS) dose-dependent manner. M-CSF mRNA expression was also increased in rat anterior pituitary glands by LPS. M-CSF receptor (M-CSFR) mRNA was only detected in TtT/ M-87 cells and increased in the LPS-stimulated rat pituitary glands. In rat pituitary glands, M-CSF and M-CSFR were found to be localized in FS cells and prolactin (PRL)-secreting cells, respectively, by immunohistochemistry. The PRL concentration in rat sera was significantly increased at 24 h after M-CSF administration, and mRNA levels significantly increased in primary culture cells of rat anterior pituitary glands. In addition, TNF-α mRNA was increased in the primary culture cells by M-CSF. These results revealed that M-CSF was secreted from FS cells and M-CSF regulated PRL expression in rat pituitary glands.

  14. Macrophage polarization alters the expression and sulfation pattern of glycosaminoglycans.

    Science.gov (United States)

    Martinez, Pierre; Denys, Agnès; Delos, Maxime; Sikora, Anne-Sophie; Carpentier, Mathieu; Julien, Sylvain; Pestel, Joël; Allain, Fabrice

    2015-05-01

    Macrophages are major cells of inflammatory process and take part in a large number of physiological and pathological processes. According to tissue environment, they can polarize into pro-inflammatory (M1) or alternative (M2) cells. Although many evidences have hinted to a potential role of cell-surface glycosaminoglycans (GAGs) in the functions of macrophages, the effect of M1 or M2 polarization on the biosynthesis of these polysaccharides has not been investigated so far. GAGs are composed of repeat sulfated disaccharide units. Heparan (HS) and chondroitin/dermatan sulfates (CS/DS) are the major GAGs expressed at the cell membrane. They are involved in numerous biological processes, which rely on their ability to selectively interact with a large panel of proteins. More than 20 genes encoding sulfotransferases have been implicated in HS and CS/DS biosynthesis, and the functional repertoire of HS and CS/DS has been related to the expression of these isoenzymes. In this study, we analyzed the expression of sulfotransferases as a response to macrophage polarization. We found that M1 and M2 activation drastically modified the profiles of expression of numerous HS and CS/DS sulfotransferases. This was accompanied by the expression of GAGs with distinct structural features. We then demonstrated that GAGs of M2 macrophages were efficient to present fibroblast growth factor-2 in an assay of tumor cell proliferation, thus indicating that changes in GAG structure may contribute to the functions of polarized macrophages. Altogether, our findings suggest a regulatory mechanism in which fine modifications in GAG biosynthesis may participate to the plasticity of macrophage functions. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Expression of IL-1β mRNA in mice after whole body X-irradiation

    International Nuclear Information System (INIS)

    Nemoto, Kumie; Ishihara, Hiroshi; Tanaka, Izumi; Suzuki, Gen; Tsuneoka, Kazuko; Yoshida, Kazuko; Ohtsu, Hiroshi

    1995-01-01

    IL-1β is a stimulator of hematopoietic and inflammatory systems, and also acts as a radioprotector. After whole-body exposure to sublethal doses of ionizing radiation, the IL-1β mRNA level in spleen cells increases for a short time prior to regeneration of the spleen. We analyzed spleen cells of C3H/He mice after whole-body irradiation with 3 Gy x-rays to determine the cause of this short-term increase in the transcription level. An increase in the level of the message in spleen cells, found by Northern blot hybridization, reached its peak 5 to 7 days after irradiation. There was a low correlation between the curves of the mRNA level and the ratio of monocyte/macrophage lineage cells; a typical source of the message. Spleen macrophages that produce a large amount of the message were found 7 days after irradiation in an in situ hybridization experiment in which heterogeneous spleen cell populations were used. In contrast, spleen cells had no detectable levels of macrophages rich in IL-1β mRNA before and 17 days after irradiation. Additionally, the population of message-rich cells was 9.4% of the total number of monocytes/macrophages in the spleen. These results suggest that the short-term increase in IL-1β mRNA is a result of the heterogeneous differentiation of a subpopulation of spleen macrophages before regeneration of the spleen. (author)

  16. Myocardial Expression of Macrophage Migration Inhibitory Factor in Patients with Heart Failure

    Directory of Open Access Journals (Sweden)

    Julia Pohl

    2017-10-01

    Full Text Available Macrophage migration inhibitory factor (MIF is a pleiotropic inflammatory protein and contributes to several different inflammatory and ischemic/hypoxic diseases. MIF was shown to be cardioprotective in experimental myocardial ischemia/reperfusion injury and its expression is regulated by the transcription factor hypoxia-inducible factor (HIF-1α. We here report on MIF expression in the failing human heart and assess myocardial MIF in different types of cardiomyopathy. Myocardial tissue samples from n = 30 patients were analyzed by quantitative Real-Time PCR. MIF and HIF-1α mRNA expression was analyzed in myocardial samples from patients with ischemic (ICM and non-ischemic cardiomyopathy (NICM and from patients after heart transplantation (HTX. MIF expression was elevated in myocardial samples from patients with ICM compared to NICM. Transplanted hearts showed lower MIF levels compared to hearts from patients with ICM. Expression of HIF-1α was analyzed and was shown to be significantly increased in ICM patients compared to patients with NICM. MIF and HIF-1α mRNA is expressed in the human heart. MIF and HIF-1α expression depends on the underlying type of cardiomyopathy. Patients with ICM show increased myocardial MIF and HIF-1α expression.

  17. Activated human mast cells induce LOX-1-specific scavenger receptor expression in human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Mervi Alanne-Kinnunen

    Full Text Available Activated mast cells in atherosclerotic lesions degranulate and release bioactive compounds capable of regulating atherogenesis. Here we examined the ability of activated human primary mast cells to regulate the expression of the major scavenger receptors in cultured human primary monocyte-derived macrophages (HMDMs.Components released by immunologically activated human primary mast cells induced a transient expression of lectin-like oxidized LDL receptor (LOX-1 mRNA in HMDMs, while the expression of two other scavenger receptors, MSR1 and CD36, remained unaffected. The LOX-1-inducing secretory components were identified as histamine, tumor necrosis factor alpha (TNF-α, and transforming growth factor beta (TGF-β1, which exhibited a synergistic effect on LOX-1 mRNA expression. Histamine induced a transient expression of LOX-1 protein. Mast cell -induced increase in LOX-1 expression was not associated with increased uptake of oxidized LDL by the macrophages.Mast cell-derived histamine, TNF-α, and TGF-β1 act in concert to induce a transient increase in LOX-1 expression in human primary monocyte-derived macrophages. The LOX-1-inducing activity potentially endows mast cells a hitherto unrecognized role in the regulation of innate immune reactions in atherogenesis.

  18. Mechanism of inhibitory effect of atorvastatin on resistin expression induced by tumor necrosis factor-α in macrophages

    Directory of Open Access Journals (Sweden)

    Chua Su-Kiat

    2009-05-01

    Full Text Available Abstract Atorvastatin has been shown to reduce resistin expression in macrophages after pro-inflammatory stimulation. However, the mechanism of reducing resistin expression by atorvastatin is not known. Therefore, we sought to investigate the molecular mechanisms of atorvastatin for reducing resistin expression after proinflammatory cytokine, tumor necrosis factor-α (TNF-α stimulation in cultured macrophages. Cultured macrophages were obtained from human peripheral blood mononuclear cells. TNF-α stimulation increased resistin protein and mRNA expression and atorvastatin inhibited the induction of resistin by TNF-α. Addition of mevalonate induced resistin protein expression similar to TNF-α stimulation. However, atorvastatin did not have effect on resistin protein expression induced by mevalonate. SP600125 and JNK small interfering RNA (siRNA completely attenuated the resistin protein expression induced by TNF-α and mevalonate. TNF-α induced phosphorylation of Rac, while atorvastatin and Rac-1 inhibitor inhibited the phosphorylation of Rac induced by TNF-α. The gel shift and promoter activity assay showed that TNF-α increased AP-1-binding activity and resistin promoter activity, while SP600125 and atorvastatin inhibited the AP-1-binding activity and resistin promoter activity induced by TNF-α. Recombinant resistin and TNF-α significantly reduced glucose uptake in cultured macrophages, while atorvastatin reversed the reduced glucose uptake by TNF-α. In conclusion, JNK and Rac pathway mediates the inhibitory effect of atorvastatin on resistin expression induced by TNF-α.

  19. IER5 gene's mRNA expression after irradiation

    International Nuclear Information System (INIS)

    Ding Kuke; Shen Jingjing; Xu Lili; Li Yanling; Zhou Ping; Ma Binrong; Zhao Zengqiang; Sui Jianli; Zhou Pingkun

    2008-01-01

    Objective: To explore the effect of irradiation on IER5 gene expression. Methods: Two kinds of cells (AHH-1 and HeLa) and the BALB/c-nu mice inoculated with tumor cells were exposed to 60 Co γ- rays and analyzed by real-time PCR. The above-mentioned irradiated objects were firstly divided into groups by different doses and post-radiation time, then mRNA were extracted and reverse-transcripted to DNA before real-time PCR test. Results: Under the same condition, AHH-1 was more sensitive to radiation than HeLa. The dose level corresponding to the expression peak of AHH-1 was less than that of HeLa. For AHH-1 cells, the response to 2 Gy irradiation was earlier than that to 10 Gy. But there was not remarkable difference for HeLa response between 2 and 10 Gy, and the top transcriptional levels for both cells nearly simultaneously appeared at 2 h after irradiation. In addition, the IER5 gene of human liver tumor was more sensitive than that of lung cancer and brain tumor. Conclusions: IER5 might be a candidate biomarker of radiation injury, and had the potential value in radiation-therapy for liver tumor. (authors)

  20. Clofazimine modulates the expression of lipid metabolism proteins in Mycobacterium leprae-infected macrophages.

    Science.gov (United States)

    Degang, Yang; Akama, Takeshi; Hara, Takeshi; Tanigawa, Kazunari; Ishido, Yuko; Gidoh, Masaichi; Makino, Masahiko; Ishii, Norihisa; Suzuki, Koichi

    2012-01-01

    Mycobacterium leprae (M. leprae) lives and replicates within macrophages in a foamy, lipid-laden phagosome. The lipids provide essential nutrition for the mycobacteria, and M. leprae infection modulates expression of important host proteins related to lipid metabolism. Thus, M. leprae infection increases the expression of adipophilin/adipose differentiation-related protein (ADRP) and decreases hormone-sensitive lipase (HSL), facilitating the accumulation and maintenance of lipid-rich environments suitable for the intracellular survival of M. leprae. HSL levels are not detectable in skin smear specimens taken from leprosy patients, but re-appear shortly after multidrug therapy (MDT). This study examined the effect of MDT components on host lipid metabolism in vitro, and the outcome of rifampicin, dapsone and clofazimine treatment on ADRP and HSL expression in THP-1 cells. Clofazimine attenuated the mRNA and protein levels of ADRP in M. leprae-infected cells, while those of HSL were increased. Rifampicin and dapsone did not show any significant effects on ADRP and HSL expression levels. A transient increase of interferon (IFN)-β and IFN-γ mRNA was also observed in cells infected with M. leprae and treated with clofazimine. Lipid droplets accumulated by M. leprae-infection were significantly decreased 48 h after clofazimine treatment. Such effects were not evident in cells without M. leprae infection. In clinical samples, ADRP expression was decreased and HSL expression was increased after treatment. These results suggest that clofazimine modulates lipid metabolism in M. leprae-infected macrophages by modulating the expression of ADRP and HSL. It also induces IFN production in M. leprae-infected cells. The resultant decrease in lipid accumulation, increase in lipolysis, and activation of innate immunity may be some of the key actions of clofazimine.

  1. Macrophage expression in acute radiation colitis in rats

    International Nuclear Information System (INIS)

    Tadami, Tokuma; Shichijo, Kazuko; Matsuu, Mutsumi; Niino, Daisuke; Nakayama, Toshiyuki; Nakashima, Masahiro; Sekine, Ichiro

    2003-01-01

    Although radiation therapy is important in the treatment of tumors in pelvic and abdominal region, it may cause radiation injury as a side effect. But there is no effective way of preventing or curing the damages. The mechanism of acute radiation colitis has not been elucidated yet. Our previous reports have revealed that X-ray irradiation induce apoptosis of epithelial stem cells in colon. Then a hypothesis of the radiation colitis can be put forward, DNA damage by irradiation, apoptosis of mucosal epithelial stem cells and degeneration of epithelial gland structure, macrophages phagocyte the debris, being activated and secreting various inflammatory cytokines, infiltration of inflammatory cells. Several recent reports show that macrophages may play an important role in the process of inflammatory bowel diseases such ulcerative colitis or Crohn's disease. We studied radiation colitis using rat animal models. Male Wister rats were irradiated by a single fraction dose of 22.5 Gy X-ray at laparotomy, shielding except for an approximately 2.5 cm length of rectum. Histological changes and macrophage accumulation in the rectum mucosa were evaluated by immunohistochemistry and western blot method with the specimens which were taken on the 1, 2, 3, 4, 5, 6, 7, 10, and 14th day after irradiation. Severe macrophage accumulation in the lamina propria of the rectum was observed on the 5th day. At the same time, severe destruction of mucosal structure and inflammatory cells infiltration were also observed. Based on the potent pro-inflammatory cytokine producing effects of macrophage in rat and the increased expression in inflammatory bowel disease patients, speculate that intervention in the macrophage-cytokine network could form a future target for the treatment of acute radiation colitis. (author)

  2. Increased expression of interleukin-1β in triglyceride-induced macrophage cell death is mediated by p38 MAP kinase.

    Science.gov (United States)

    Sung, Ho Joong; Son, Sin Jee; Yang, Seung-ju; Rhee, Ki-Jong; Kim, Yoon Suk

    2012-07-01

    Triglycerides (TG) are implicated in the development of atherosclerosis through formation of foam cells and induction of macrophage cell death. In this study, we report that addition of exogenous TG induced cell death in phorbol 12-myristate 13-acetate-differentiated THP-1 human macrophages. TG treatment induced a dramatic decrease in interleukin-1β (IL-1β) mRNA expression in a dose- and time-dependent manner. The expression of granulocyte macrophage colony-stimulating factor and platelet endothelial cell adhesion molecule remained unchanged. To identify signaling pathways involved in TG-induced downregulation of IL-1β, we added p38 MAPK, protein kinase C (PKC) or c-Raf1 specific inhibitors. We found that inhibition of p38 MAPK alleviated the TG-induced downregulation of IL-1β, whereas inhibition of PKC and c-Raf1 had no effect. This is the first report showing decreased IL-1β expression during TG-induced cell death in a human macrophage line. Our results suggest that downregulation of IL-1β expression by TG-treated macrophages may play a role during atherogenesis.

  3. Effects of heat stress on respiratory burst, oxidative damage and SERPINH1 (HSP47) mRNA expression in rainbow trout Oncorhynchus mykiss.

    Science.gov (United States)

    Wang, Yanni; Liu, Zhe; Li, Zhen; Shi, Haina; Kang, Yujun; Wang, Jianfu; Huang, Jinqiang; Jiang, Li

    2016-04-01

    For rainbow trout Oncorhynchus mykiss, high temperature is a major abiotic stress that limits its growth and productivity. In this study, spleen macrophage respiratory burst (RB), serum superoxide dismutase (SOD), serum malondialdehyde (MDA) and mRNA expression of the SERPINH1 (HSP47) gene in different tissues (liver, spleen, head kidney and heart) were measured in unstressed (18 °C) and heat-stressed (25 °C) fish. Spleen macrophage RB activity, serum SOD activity and MDA content all increased significantly (P mykiss. In practice, close attention should be given to temperature changes in O. mykiss production to reduce the effects of high temperature.

  4. Expression of hsa Let-7a MicroRNA of Macrophages Infected by Leishmania Major

    Directory of Open Access Journals (Sweden)

    Nooshin Hashemi

    2016-10-01

    Full Text Available Leishmaniasis is a vector-born disease caused by species of the genus Leishmania and is transmitted from host to host through the bite of an infected sandfly. MicroRNAs (miRNAs are non-coding small RNAs with 22-nucleotide length. They are involved in some biological and cellular processes. We aimed to evaluate the expression of let-7a in human macrophages miRNA when are infected by Leishmania major. We also evaluated the impact of Leishmania major infection on the expression of let-7a at two different times, 24 and 48 hours, after infection. Blood samples were collected from ten healthy volunteers with no history of leishmaniasis. Development of macrophages from peripheral monocytes and infection with stationary phase of Leishmania major promastigotes were done through serial cultures under 5% CO2 environment and 37C. To measure the expression levels of let-7a real-time PCR was performed with specific related primers using the SYBR® Green master mix Kit™. The real-time PCR showed let-7a was expressed in cells infected with parasites after 24 and 48h post-infection. Comparison of let-7a miRNA expression after 24 and 48 h revealed that let-7a miRNAs were down-regulated at 48 h post-infection more than 24h after infection. The results of this study suggest that according to the main function of miRNA in repression of mRNA translation it could be possible to manipulate host cells in order to alter miRNA levels and regulate macrophage functions after establishment of intracellular parasites such as Leishmania.

  5. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    Science.gov (United States)

    Pomari, Elena; Stefanon, Bruno; Colitti, Monica

    2014-01-01

    Background Arctium lappa (AL), Camellia sinensis (CS), Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG), and Vaccinium myrtillus (VM) are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (m)RNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results A noncytotoxic dose (200 μM) of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001) regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in vitro and in vivo investigation into molecular mechanisms modulated by herbal extracts should be undertaken to shed light on the development of novel

  6. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    Directory of Open Access Journals (Sweden)

    Pomari E

    2014-06-01

    Full Text Available Elena Pomari, Bruno Stefanon, Monica Colitti Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy Background: Arctium lappa (AL, Camellia sinensis (CS, Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG, and Vaccinium myrtillus (VM are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods: Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (mRNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results: A noncytotoxic dose (200 µM of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001 regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion: The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in

  7. The cellular prion protein negatively regulates phagocytosis and cytokine expression in murine bone marrow-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available The cellular prion protein (PrP(C is a glycosylphosphatidylinositol (GPI-anchored glycoprotein on the cell surface. Previous studies have demonstrated contradictory roles for PrP(C in connection with the phagocytic ability of macrophages. In the present work, we investigated the function of PrP(C in phagocytosis and cytokine expression in bone marrow-derived macrophages infected with Escherichia coli. E. coli infection induced an increase in the PRNP mRNA level. Knockout of PrP(C promoted bacterial uptake; upregulated Rab5, Rab7, and Eea1 mRNA expression; and increased the recruitment of lysosomal-associated membrane protein-2 to phagosomes, suggesting enhanced microbicidal activity. Remarkably, knockout of PrP(C suppressed the proliferation of internalized bacteria and increased the expression of cytokines such as interleukin-1β. Collectively, our data reveal an important role of PrP(C as a negative regulator for phagocytosis, phagosome maturation, cytokine expression, and macrophage microbicidal activity.

  8. Increased IL-10 mRNA and IL-23 mRNA expression in multiple sclerosis

    DEFF Research Database (Denmark)

    Krakauer, Martin; Sorensen, P; Khademi, M

    2008-01-01

    BACKGROUND: Interferon (IFN)-beta therapy in multiple sclerosis (MS) has been suggested to promote a deviation from T lymphocyte production of pathogenic Th1 cytokines to less detrimental Th2 cytokines, but this is still controversial. We studied patterns of in vivo blood mononuclear cell (MNC...... of any Th1 or Th2 cytokines. The largest changes in cytokine mRNA levels occurred early (~9-12 h) after an IFN-beta injection. CONCLUSION: We found no evidence of a Th1- or Th2-mRNA-promoting effect of IFN-beta therapy. The therapeutic effect of IFN-beta is more likely attributable to the induction...

  9. Responses of mRNA expression of PepT1 in small intestine to ...

    African Journals Online (AJOL)

    To study the effect of circulation small peptides concentration on mRNA expression in small intestine, graded amount of soybean small peptides (SSP) were infused into lactating goats through duodenal fistulas. Peptide-bound amino acid (PBAA) concentration in arterial plasma and the mRNA expression of PepT1 was ...

  10. Exogenous mRNA encoding tetanus or botulinum neurotoxins expressed in Aplysia neurons

    NARCIS (Netherlands)

    Mochida, Sumiko; Poulain, Bernard; Eisel, Ulrich; Binz, Thomas; Kurazono, Hisao; Niemann, Heiner; Tauc, Ladislav; Bullock, Theodore H.

    1990-01-01

    Injection of exogenous mRNA purified from various tissue preparations into cellular translation systems such as Xenopus oocytes has allowed expression of complex proteins (e.g., receptors for neurotransmitters). No evidence for expression of injected exogenous mRNA, however, has been reported in

  11. Epigenetic Regulation of Inflammatory Gene Expression in Macrophages by Selenium

    Science.gov (United States)

    Narayan, Vivek; Ravindra, Kodihalli C.; Liao, Chang; Kaushal, Naveen; Carlson, Bradley A.; Prabhu, K. Sandeep

    2014-01-01

    Acetylation of histone and non-histone proteins by histone acetyltransferases plays a pivotal role in the expression of pro-inflammatory genes. Given the importance of dietary selenium in mitigating inflammation, we hypothesized that selenium supplementation may regulate inflammatory gene expression at the epigenetic level. The effect of selenium towards histone acetylation was examined in both in vitro and in vivo models of inflammation by chromatin immunoprecipitation (ChIP) assays and immunoblotting. Our results indicated that selenium supplementation, as selenite, decreased acetylation of histone H4 at K12 and K16 in COX-2 and TNF promoters, and of the p65 subunit of the redox sensitive transcription factor NFκB in primary and immortalized macrophages. On the other hand, selenomethionine had a much weaker effect. Selenite treatment of HIV-1 infected human monocytes also significantly decreased the acetylation of H4 at K12 and K16 on the HIV-1 promoter, supporting the downregulation of proviral expression by selenium. A similar decrease in histone acetylation was also seen in the colonic extracts of mice treated with dextran sodium sulfate that correlated well with the levels of selenium in the diet. Bone marrow-derived macrophages from Trspfl/flCreLysM mice that lack expression of selenoproteins in macrophages confirmed the important role of selenoproteins in the inhibition of histone H4 acetylation. Our studies suggest that the ability of selenoproteins to skew the metabolism of arachidonic acid to contribute, in part, to their ability to inhibit histone acetylation. In summary, our studies suggest a new role for selenoproteins in the epigenetic modulation of pro-inflammatory genes. PMID:25458528

  12. DMPD: G-protein-coupled receptor expression, function, and signaling in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17456803 G-protein-coupled receptor expression, function, and signaling in macropha...2007 Apr 24. (.png) (.svg) (.html) (.csml) Show G-protein-coupled receptor expression, function, and signali...ng in macrophages. PubmedID 17456803 Title G-protein-coupled receptor expression, function

  13. Negative regulation of neuromedin U mRNA expression in the rat pars tuberalis by melatonin.

    Directory of Open Access Journals (Sweden)

    Sayaka Aizawa

    Full Text Available The pars tuberalis (PT is part of the anterior pituitary gland surrounding the median eminence as a thin cell layer. The characteristics of PT differ from those of the pars distalis (PD, such as cell composition and gene expression, suggesting that the PT has a unique physiological function compared to the PD. Because the PT highly expresses melatonin receptor type 1, it is considered a mediator of seasonal and/or circadian signals of melatonin. Expression of neuromedin U (NMU that is known to regulate energy balance has been previously reported in the rat PT; however, the regulatory mechanism of NMU mRNA expression and secretion in the PT are still obscure. In this study, we examined both the diurnal change of NMU mRNA expression in the rat PT and the effects of melatonin on NMU in vivo. In situ hybridization and quantitative PCR analysis of laser microdissected PT samples revealed that NMU mRNA expression in the PT has diurnal variation that is high during the light phase and low during the dark phase. Furthermore, melatonin administration significantly suppressed NMU mRNA expression in the PT in vivo. On the other hand, 48 h fasting did not have an effect on PT-NMU mRNA expression, and the diurnal change of NMU mRNA expression was maintained. We also found the highest expression of neuromedin U receptor type 2 (NMUR2 mRNA in the third ventricle ependymal cell layer, followed by the arcuate nucleus and the spinal cord. These results suggest that NMU mRNA expression in the PT is downregulated by melatonin during the dark phase and shows diurnal change. Considering that NMU mRNA in the PT showed the highest expression level in the brain, PT-NMU may act on NMUR2 in the brain, especially in the third ventricle ependymal cell layer, with a circadian rhythm.

  14. Bioinspired nanocomplex for spatiotemporal imaging of sequential mRNA expression in differentiating neural stem cells.

    Science.gov (United States)

    Wang, Zhe; Zhang, Ruili; Wang, Zhongliang; Wang, He-Fang; Wang, Yu; Zhao, Jun; Wang, Fu; Li, Weitao; Niu, Gang; Kiesewetter, Dale O; Chen, Xiaoyuan

    2014-12-23

    Messenger RNA plays a pivotal role in regulating cellular activities. The expression dynamics of specific mRNA contains substantial information on the intracellular milieu. Unlike the imaging of stationary mRNAs, real-time intracellular imaging of the dynamics of mRNA expression is of great value for investigating mRNA biology and exploring specific cellular cascades. In addition to advanced imaging methods, timely extracellular stimulation is another key factor in regulating the mRNA expression repertoire. The integration of effective stimulation and imaging into a single robust system would significantly improve stimulation efficiency and imaging accuracy, producing fewer unwanted artifacts. In this study, we developed a multifunctional nanocomplex to enable self-activating and spatiotemporal imaging of the dynamics of mRNA sequential expression during the neural stem cell differentiation process. This nanocomplex showed improved enzymatic stability, fast recognition kinetics, and high specificity. With a mechanism regulated by endogenous cell machinery, this nanocomplex realized the successive stimulating motif release and the dynamic imaging of chronological mRNA expression during neural stem cell differentiation without the use of transgenetic manipulation. The dynamic imaging montage of mRNA expression ultimately facilitated genetic heterogeneity analysis. In vivo lateral ventricle injection of this nanocomplex enabled endogenous neural stem cell activation and labeling at their specific differentiation stages. This nanocomplex is highly amenable as an alternative tool to explore the dynamics of intricate mRNA activities in various physiological and pathological conditions.

  15. NONOates regulate KCl cotransporter-1 and -3 mRNA expression in vascular smooth muscle cells.

    Science.gov (United States)

    Di Fulvio, Mauricio; Lauf, Peter K; Shah, Shalin; Adragna, Norma C

    2003-05-01

    Nitric oxide (NO) donors regulate KCl cotransport (KCC) activity and cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in sheep erythrocytes and in primary cultures of rat vascular smooth muscle cells (VSMCs), respectively. In this study, we used NONOates as rapid and slow NO releasers to provide direct evidence implicating NO as a regulator of KCC3 gene expression at the mRNA level. In addition, we used the expression of KCC3 mRNA to further investigate the mechanism of action of these NO donors at the cellular level. Treatment of VSMCs with rapid NO releasers, like NOC-5 and NOC-9, as well as with the direct NO-independent soluble guanylyl cyclase (sGC) stimulator YC-1, acutely increased KCC3 mRNA expression in a concentration- and time-dependent manner. The slow NO releaser NOC-18 had no effect on KCC3 gene expression. A specific NO scavenger completely prevented the NONOate-induced KCC3 mRNA expression. Inhibition of sGC with LY-83583 blocked the NONOate- and YC-1-induced KCC3 mRNA expression. This study shows that in primary cultures of rat VSMCs, the fast NO releasers NOC-9 and NOC-5, but not the slow NO releaser NOC-18, acutely upregulate KCC3 mRNA expression in a NO/sGC-dependent manner.

  16. Mycobacterium leprae upregulates IRGM expression in monocytes and monocyte-derived macrophages.

    Science.gov (United States)

    Yang, Degang; Chen, Jia; Zhang, Linglin; Cha, Zhanshan; Han, Song; Shi, Weiwei; Ding, Ru; Ma, Lan; Xiao, Hong; Shi, Chao; Jing, Zhichun; Song, Ningjing

    2014-08-01

    Leprosy is caused by the infection of Mycobacterium leprae, which evokes a strong inflammatory response and leads to nerve damage. Immunity-related GTPase family M protein (IRGM) plays critical roles in controlling inflammation. The objective of the study was to investigate whether IRGM is involved in the infection of M. leprae. Levels of IRGM were assessed in M. leprae-infected CD4(+) T cells, monocytes, and monocyte-derived macrophages. Data revealed that both protein and mRNA levels of IRGM were increased in monocytes after M. leprae infection. Interestingly, monocyte-derived macrophages showed more prominent IRGM expression with M. leprae infection, whereas the bacteria did not affect IRGM in CD4(+) T cells. Furthermore, we assessed levels of IRGM in CD4(+) T cells and monocytes from 78 leprosy patients and 40 healthy controls, and observed upregulated protein level of IRGM in the monocytes from leprosy patients. Also, IRGM expression was inversely correlated with the severity of the disease. These findings suggested a close involvement of IRGM in M. leprae infection and indicated a potential mechanism of defending M. leprae infection.

  17. High ALK mRNA expression has a negative prognostic significance in rhabdomyosarcoma

    Science.gov (United States)

    Bonvini, P; Zin, A; Alaggio, R; Pawel, B; Bisogno, G; Rosolen, A

    2013-01-01

    Background: Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in cancer, but its clinical and functional importance remain controversial. Mutation or amplification of ALK, as well as its expression levels assessed by conventional immunohistochemistry methods, has been linked to prognosis in cancer, although with potential bias because of the semi-quantitative approaches. Herein, we measured ALK mRNA expression in rhabdomyosarcoma (RMS) and determined its clinical impact on patients' stratification and outcome. Methods: Specimens were obtained from RMS patients and cell lines, and ALK expression was analysed by quantitative RT–PCR, western blotting, IHC, and copy number analysis. Results: High ALK mRNA expression was detected in the vast majority of PAX3/7-FOXO1-positive tumours, whereas PAX3/7-FOXO1-negative RMS displayed considerably lower amounts of both mRNA and protein. Notably, ALK mRNA distinguished unfavourable PAX3/7-FOXO1-positive tumours from PAX3/7-FOXO1-negative RMS (Ptumour size (PALK mRNA levels were of prognostic relevance by Cox univariate regression analysis and correlated with increased risk of relapse (P=0.001) and survival (P=0.01), whereas by multivariate analysis elevated ALK mRNA expression resulted a negative prognostic marker when clinical stage was not included. Conclusion: Quantitative assessment of ALK mRNA expression helps to improve risk stratification of RMS patients and identifies tumours with adverse biological characteristics and aggressive behaviour. PMID:24149177

  18. The mRNA expression of XRCC repair genes in mice after γ-ray radiation

    International Nuclear Information System (INIS)

    Wang Qin; Yue Jingyin; Li Jin; Mu Chuanjie; Fan Feiyue

    2006-01-01

    Objective: To investigate the role of XRCC repair genes in radioresistance of IRM-2 inbred mice. Methods: Northern hybridization was used to measure mRNA expression of XRCC1 and XRCC5 genes in IRM-2 inbred mice. ICR/JCL and 615 after exposure to different doses of γ-ray radiation at different postirradiation time. Results: The levels of XRCC1 and XRCC5 mRNA expression in control IRM-2 mice were higher significantly than those in their control parental mice (P<0.01 and P<0.05). The mRNA expression of XRCC genes in ICR/JCL and 615 mice all increased to some extent after exposure 1, 2 and 4 Gy radiation. But the levels were significantly higher at 2h postirradiation (P<0.05) . The levels of XRCC mRNA expression in IRM-2 mice did not increase significnatly compared with the control mice after exposure 1 and 2 Gy radiation. But the levels of XRCC1 and XRCC5 mRNA expression increased markedly at 4Gy 1h postirradiation (P<0.05 and P<0.01). Conclusion: The basal levels of XRCC1 and XRCC5 mRNA expression in IRM-2 mice were high. The high level of XRCC5 mRNA expression was involved in the repair of DNA double strand breaks induced by higher dose radiation, which perhaps was one of radioresistance causes of IRM-2 mice. (authors)

  19. Interleukin-21 mRNA expression during virus infections

    DEFF Research Database (Denmark)

    Holm, Christian; Nyvold, Charlotte Guldborg; Paludan, Søren Riis

    2006-01-01

    and activational effects of IL-21 on different leukocytes come into play in vivo in an immune response has so far not been fully investigated. We show here for the first time in vivo, that IL-21 mRNA is produced in the spleen when mice are challenged with herpes simplex virus type 2 (HSV-2) or lymphocytic...... choriomeningitis virus (LCMV). We show in HSV-2 challenged mice that this production takes place in CD4+ T cell fractions and is absent in CD4+ T cell-depleted fractions. We also show that the peak of IL-21 mRNA production in both the HSV-2 and LCMV-challenged mice coincides with the onset of the adaptive immune...

  20. Ebola virion attachment and entry into human macrophages profoundly effects early cellular gene expression.

    Directory of Open Access Journals (Sweden)

    Victoria Wahl-Jensen

    2011-10-01

    Full Text Available Zaire ebolavirus (ZEBOV infections are associated with high lethality in primates. ZEBOV primarily targets mononuclear phagocytes, which are activated upon infection and secrete mediators believed to trigger initial stages of pathogenesis. The characterization of the responses of target cells to ZEBOV infection may therefore not only further understanding of pathogenesis but also suggest possible points of therapeutic intervention. Gene expression profiles of primary human macrophages exposed to ZEBOV were determined using DNA microarrays and quantitative PCR to gain insight into the cellular response immediately after cell entry. Significant changes in mRNA concentrations encoding for 88 cellular proteins were observed. Most of these proteins have not yet been implicated in ZEBOV infection. Some, however, are inflammatory mediators known to be elevated during the acute phase of disease in the blood of ZEBOV-infected humans. Interestingly, the cellular response occurred within the first hour of Ebola virion exposure, i.e. prior to virus gene expression. This observation supports the hypothesis that virion binding or entry mediated by the spike glycoprotein (GP(1,2 is the primary stimulus for an initial response. Indeed, ZEBOV virions, LPS, and virus-like particles consisting of only the ZEBOV matrix protein VP40 and GP(1,2 (VLP(VP40-GP triggered comparable responses in macrophages, including pro-inflammatory and pro-apoptotic signals. In contrast, VLP(VP40 (particles lacking GP(1,2 caused an aberrant response. This suggests that GP(1,2 binding to macrophages plays an important role in the immediate cellular response.

  1. The effect of Alcoholic garlic (Allium sativum extract on ABCA1 expression in human THP-1 macrophages

    Directory of Open Access Journals (Sweden)

    Malekpour-Dehkordi Z

    2011-06-01

    increased the ABCA1 mRNA (20-23% and protein expression (18-37% in THP-1 macrophage cells compared with the controls (untreated cells."n"nConclusion: The results of this study are suggestive of the potential effects of alcoholic garlic extract in increasing ABCA1 expression in macrophages, the possibility of promoting reverse cholesterol efflux in macrophages and preventing atherosclerosis.

  2. HIV-1 infection induces changes in expression of cellular splicing factors that regulate alternative viral splicing and virus production in macrophages

    Directory of Open Access Journals (Sweden)

    Purcell Damian FJ

    2008-02-01

    Full Text Available Abstract Background Macrophages are important targets and long-lived reservoirs of HIV-1, which are not cleared of infection by currently available treatments. In the primary monocyte-derived macrophage model of infection, replication is initially productive followed by a decline in virion output over ensuing weeks, coincident with a decrease in the levels of the essential viral transactivator protein Tat. We investigated two possible mechanisms in macrophages for regulation of viral replication, which appears to be primarily regulated at the level of tat mRNA: 1 differential mRNA stability, used by cells and some viruses for the rapid regulation of gene expression and 2 control of HIV-1 alternative splicing, which is essential for optimal viral replication. Results Following termination of transcription at increasing times after infection in macrophages, we found that tat mRNA did indeed decay more rapidly than rev or nef mRNA, but with similar kinetics throughout infection. In addition, tat mRNA decayed at least as rapidly in peripheral blood lymphocytes. Expression of cellular splicing factors in uninfected and infected macrophage cultures from the same donor showed an inverse pattern over time between enhancing factors (members of the SR family of RNA binding proteins and inhibitory factors (members of the hnRNP family. While levels of the SR protein SC35 were greatly up-regulated in the first week or two after infection, hnRNPs of the A/B and H groups were down-regulated. Around the peak of virus production in each culture, SC35 expression declined to levels in uninfected cells or lower, while the hnRNPs increased to control levels or above. We also found evidence for increased cytoplasmic expression of SC35 following long-term infection. Conclusion While no evidence of differential regulation of tat mRNA decay was found in macrophages following HIV-1 infection, changes in the balance of cellular splicing factors which regulate alternative

  3. 60Co γ-irradiation enhances expression of GAP-43 mRNA in rat brain

    International Nuclear Information System (INIS)

    Su Bingyin; Cai Wenqin; Zhang Chenggang

    2001-01-01

    Objective: To study the relationship between the expression of GAP-43 mRNA and nerve regeneration in rat brain after 60 Co γ-irradiation. Methods: Wistar rats were subjected to whole-body irradiation with 8 Gy 60 Co γ-rays. The expression of GAP-43 was detected by in situ hybridization histochemistry using Dig-cRNA probe. Results: It was found that the expression of GAP-43 mRNA increased in the cerebral cortex, caudate, putamen, globus pallidum, thalamus and hypothalamus one week after 8 Gy 60 Co γ-irradiation. The peak of GAP-43 mRNA expression was observed in the fourth week and then began to decrease but still remained at a higher than normal level. However, it decreased to a low level after 7 weeks. Conclusion: Enhanced expression of GAP-43 mRNA after 60 Co γ-irradiation in rat brain is associated with nerve regeneration and reconstruction of synapse

  4. Nonparametric testing for DNA copy number induced differential mRNA gene expression

    NARCIS (Netherlands)

    van Wieringen, W.N.; van de Wiel, M.A.

    2009-01-01

    The central dogma of molecular biology relates DNA with mRNA. Array CGH measures DNA copy number and gene expression microarrays measure the amount of mRNA. Methods that integrate data from these two platforms may uncover meaningful biological relationships that further our understanding of cancer.

  5. Macrophage colony stimulating factor (M-CSF) induces Fc receptor expression on macrophages

    International Nuclear Information System (INIS)

    Magee, D.M.; Wing, E.J.; Waheed, A.; Shadduck, R.K.

    1986-01-01

    M-CSF is a glycoprotein that stimulates bone marrow progenitor cells to proliferate and differentiate into macrophages (M theta). In addition, M-CSF can modulate the function of mature M theta. In this study, the authors determined the effect of M-CSF on expression of receptors for IgG (Fc receptors). Murine resident peritoneal M theta monolayers were incubated with either M-CSF, recombinant gamma interferon (IFN), or left untreated for 48 hrs. Expression of Fc receptors was assessed by microscopy using an antibody coated sheet erythrocytes (EA) rosette assay. The results indicated that M-CSF treated M theta had significantly higher numbers of bound EA (7.1 erythrocytes/M theta), than IFN M theta (4.4), or untreated M theta (2.5) (p 51 Cr labelled EA assay, CSF M theta (16,411 cpm), IFN M theta (10,887), untreated M theta (6897) (p < 0.001). Additionally, the maximal response was noted between 10 and 500 units M-CSF. Purified anti-M-CSF IgG, when included in the cultures, ablated the enhancement of EA binding, whereas normal rabbit IgG did not. These findings indicate that M-CSF is a potent inducer of Fc receptor expression on M theta and supports other data concerning the role of M-CSF as a biological response modifier

  6. [Effects of lipopolysaccharides extracted from Porphyromonas endodontalis on the expression of IL-1beta mRNA and IL-6 mRNA in osteoblasts].

    Science.gov (United States)

    Yang, Di; Li, Ren; Qiu, Li-Hong; Li, Chen

    2009-04-01

    To quantify the IL-1 beta mRNA and IL-6 mRNA expression induced by lipopolysaccharides (LPS)extracted from Porphyromonas endodontalis(P.e) in osteoblasts, and to relate P.e-LPS to bone absorption pathogenesis in lesions of chronical apical periodontitis. MG63 was treated with different concentrations of P.e-LPS(0-50 microg/mL) for different hours(0-24h). The expression of IL-1 beta mRNA and IL-6 mRNA was detected by reverse transcription polymerase chain reaction (RT-PCR).Statistical analysis was performed using one- way ANOVA and Dunnett t test with SPSS11.0 software package. The level of IL-1 beta mRNA and IL-6 mRNA increased significantly after treatment with P.e-LPS at more than 5 microg/mL (P<0.01)and for more than 1 hour (P<0.01), which indicated that P.e-LPS induced osteoblasts to express IL-1 beta mRNA and IL-6 mRNA in dose and time dependent manners. P.e-LPS may promote bone resorption in lesions of chronical apical periodontitis by inducing IL-1 beta mRNA and IL-6 mRNA expression in osteoblasts.

  7. Differential expression of PARP1 mRNA in leucocytes of patients ...

    Indian Academy of Sciences (India)

    P. 2011 Differential expression of PARP1 mRNA in leucocytes of patients with Down's syndrome. J. Genet. ... of Alzheimer disease at an earlier age than subjects with- ... family and personal informed consent. .... In effect, they report that.

  8. Astrocyte cultures derived from human brain tissue express angiotensinogen mRNA

    International Nuclear Information System (INIS)

    Milsted, A.; Barna, B.P.; Ransohoff, R.M.; Brosnihan, K.B.; Ferrario, C.M.

    1990-01-01

    The authors have identified human cultured cell lines that are useful for studying angiotensinogen gene expression and its regulation in the central nervous system. A model cell system of human central nervous system origin expressing angiotensinogen has not previously been available. Expression of angiotensinogen mRNA appears to be a basal property of noninduced human astrocytes, since astrocytic cell lines derived from human glioblastomas or nonneoplastic human brain tissue invariably produced angiotensinogen mRNA. In situ hybridization histochemistry revealed that angiotensinogen mRNA production was not limited to a subpopulation of astrocytes because >99% of cells in these cultures contained angiotensinogen mRNA. These cell lines will be useful in studies of the molecular mechanisms controlling angiotensin synthesis and the role of biologically active angiotensin in the human brain by allowing the authors to examine regulation of expression of the renin-angiotensin system in human astrocyte cultures

  9. T-lymphocyte cytokine mRNA expression in cystic echinococcosis.

    Science.gov (United States)

    Fauser, S; Kern, P

    1997-04-01

    In the present study we investigated cytokine mRNA expression by peripheral blood mononuclear cells (PBMC) from patients with cystic echinococcosis (CE) after stimulation with different antigens. By using reverse transcriptase polymerase chain reaction (RT-PCR) we could demonstrate that restimulation with crude Echinococcus granulosus antigen (Eg-Ag) induced or enhanced Th2 cytokine mRNA expression, especially IL-5 (by using antigen from sheep cyst fluid) in 23 out of 26 investigated CE patients and IL-10 (by using antigen from camel cyst fluid) in 10 out of 10 investigated CE patients. In contrast, IL-5 mRNA expression was absent in PBMC of healthy controls after Eg-Ag stimulation. To determine the specificity of this reaction we stimulated PBMC from 11 CE patients with crude Echinococcus multilocularis antigen (Em-Ag) and PBMC from 8 CE patients with Toxocara canis antigen (Tc-Ag). We found that the PBMC of patients showed a similar mRNA cytokine pattern on stimulation with Em-Ag when compared with Eg-Ag stimulation. The cytokine mRNA pattern on stimulation with Tc-Ag, however, resembled the cytokine mRNA pattern of unstimulated PBMC. Furthermore, the stimulation of PBMC with crude Mycobacterium tuberculosis antigen (H37Ra) and purified protein derivative (PPD) of M. tuberculosis revealed distinct IL-5 mRNA expression in all investigated CE patients, whereas in healthy controls IL-5 mRNA expression was very weak or totally absent. Thus, our results indicate an induction of Th2 cytokine mRNA expression in CE patients, which is frequently observed in parasite infections. Interestingly, this response persists after stimulation with tuberculosis antigens, which normally induce Th1 response.

  10. Expression and clinicopathological significance of Mel-18 and Bmi-1 mRNA in gastric carcinoma.

    Science.gov (United States)

    Lu, You-Wei; Li, Jin; Guo, Wei-Jian

    2010-11-08

    The Polycomb group (PcG) genes are a class of regulators responsible for maintaining homeotic gene expression throughout cell division. PcG expression is deregulated in some types of human cancer. Both Bmi-1 and Mel-18 are of the key PcG proteins. We investigate the expression and clinicopathological roles of Mel-18 and Bmi-1 mRNA in gastric cancer. The expression of Mel-18 and Bmi-1 in a series of 71 gastric cancer tissues and paired normal mucosal tissues distant from the tumorous lesion was assayed by quantitative real time RT-PCR. The correlation between Mel-18 and Bmi-1 mRNA expression, and between Mel-18 or Bmi-1 mRNA level and clinicopathological characteristics were analyzed. Expression of Mel-18 and Bmi-1 genes was variably detected, but overexpression of Bmi-1 mRNA and decreased expression of Mel-18 mRNA were the most frequent alteration. In addition, the expression of Bmi-1 and Mel-18 mRNA inversely correlates in gastric tumors. Moreover, a significant positive correlation between Bmi-1 overexpression and tumor size, depth of invasion, or lymph node metastasis, and a significant negative correlation between Mel-18 low-expression with lymph node metastasis or the clinical stage were observed. Our data suggest that Mel-18 and Bmi-1 may play crucial but opposite roles in gastric cancer. Decreased Mel-18 and increased Bmi-1 mRNA expression was associated with the carcinogenesis and progression of gastric cancer. It is possible to list Bmi-1 and Mel-18 as biomarkers for predicting the prognosis of gastric cancer.

  11. Expression of Fgf23 in activated dendritic cells and macrophages in response to immunological stimuli in mice.

    Science.gov (United States)

    Masuda, Yuki; Ohta, Hiroya; Morita, Yumiko; Nakayama, Yoshiaki; Miyake, Ayumi; Itoh, Nobuyuki; Konishi, Morichika

    2015-01-01

    Fibroblast growth factors (Fgfs) are polypeptide growth factors with diverse biological activities. While several studies have revealed that Fgf23 plays important roles in the regulation of phosphate and vitamin D metabolism, the additional physiological roles of Fgf23 remain unclear. Although it is believed that osteoblasts/osteocytes are the main sources of Fgf23, we previously found that Fgf23 mRNA is also expressed in the mouse thymus, suggesting that it might be involved in the immune system. In this study we examined the potential roles of Fgf23 in immunological responses. Mouse serum Fgf23 levels were significantly increased following inoculation with Escherichia coli or Staphylococcus aureus or intraperitoneal injection of lipopolysaccharide. We also identified activated dendritic cells and macrophages that potentially contributed to increased serum Fgf23 levels. Nuclear factor-kappa B (NF-κB) signaling was essential for the induction of Fgf23 expression in dendritic cells in response to immunological stimuli. Moreover, we examined the effects of recombinant Fgf23 protein on immune cells in vitro. Fgfr1c, a potential receptor for Fgf23, was abundantly expressed in macrophages, suggesting that Fgf23 might be involved in signal transduction in these cells. Our data suggest that Fgf23 potentially increases the number in macrophages and induces expression of tumor necrosis factor-α (TNF-α), a proinflammatory cytokine. Collectively, these data suggest that Fgf23 might be intimately involved in inflammatory processes.

  12. Lower FOXO3 mRNA expression in granulosa cells is involved in unexplained infertility.

    Science.gov (United States)

    Yamamoto, Hikaru; Yamashita, Yoshiki; Saito, Natsuho; Hayashi, Atsushi; Hayashi, Masami; Terai, Yoshito; Ohmichi, Masahide

    2017-06-01

    The aim of this study was to investigate whether FOXO1 and FOXO3 mRNA expression in granulosa cells is the cause of unexplained infertility. Thirty-one patients aged infertility and 18 with male partner infertility as a control group) whose serum anti-Müllerian hormone level was >0.5 ng/μL were enrolled in the study. All patients underwent oocyte retrieval under a short protocol from June 2012 to October 2013. Real-time PCR was carried out using mRNA extracted from granulosa cells retrieved from mature follicles. We compared FOXO1 and FOXO3 mRNA expression ratios in granulosa cells between the unexplained infertility group and the male infertility group. The relation between FOXO1 and FOXO3 mRNA expression ratios in granulosa cells and assisted reproduction technology clinical outcome was also examined. FOXO3 mRNA expression ratio was significantly lower in the unexplained infertility group than in the male infertility group. Moreover, FOXO3 mRNA expression ratio showed a positive correlation with both the number of retrieved oocytes and serum anti-Müllerian hormone level. A positive correlation was also identified between FOXO1 mRNA expression and total dose of hMG. As well, the number of retrieved oocytes in the unexplained infertility group was statistically lower than that in the male infertility group. A lower FOXO3 mRNA expression in granulosa cells leads to poor oocyte development in patients with unexplained infertility undergoing controlled ovarian stimulation for in vitro fertilization-embryo transfer. © 2017 Japan Society of Obstetrics and Gynecology.

  13. Hypoxia-Inducible Factor-1α Expression in Macrophages Promotes Development of Atherosclerosis

    DEFF Research Database (Denmark)

    Pedersen, Annemarie Aarup; Pedersen, Tanja X; Junker, Nanna

    2016-01-01

    transplanted with bone marrow from mice with HIF-1α deficiency in the myeloid cells or control bone marrow. The HIF-1α deficiency in myeloid cells reduced atherosclerosis in aorta of the Ldlr(-/-) recipient mice by ≈72% (P=0.006).In vitro, HIF-1α-deficient macrophages displayed decreased differentiation...... to proinflammatory M1 macrophages and reduced expression of inflammatory genes. HIF-1α deficiency also affected glucose uptake, apoptosis, and migratory abilities of the macrophages. CONCLUSIONS: HIF-1α expression in macrophages affects their intrinsic inflammatory profile and promotes development of atherosclerosis....

  14. Decreased EGFR mRNA expression in response to antipsoriatic ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-20

    Jul 20, 2009 ... pathogenesis of psoriasis, the objective of this study was to investigate the transcriptional effect of dithranol .... N.E. Fusenig, German Cancer Research Centre, Heidelberg, ... RT-PCR analysis of EGFR expression in HaCaT cells treated with ... reliability. ... relationship to cancer risk and therapy response.

  15. Phytochrome B mRNA expression enhances biomass yield and ...

    African Journals Online (AJOL)

    A wide variety of physiological responses, including most light responses, also are modulated by photoreceptor gene such as PHYB. Phytochrome B (PHYB) expression patterns may be significant in the daily regulation of plant physiology and indicate an unexpectedly intimate relationship between the components of the ...

  16. Expression and function of macrophage migration inhibitory factor (MIF in melioidosis.

    Directory of Open Access Journals (Sweden)

    W Joost Wiersinga

    2010-02-01

    Full Text Available Macrophage migration inhibitory factor (MIF has emerged as a pivotal mediator of innate immunity and has been shown to be an important effector molecule in severe sepsis. Melioidosis, caused by Burkholderia pseudomallei, is an important cause of community-acquired sepsis in Southeast-Asia. We aimed to characterize the expression and function of MIF in melioidosis.MIF expression was determined in leukocytes and plasma from 34 melioidosis patients and 32 controls, and in mice infected with B. pseudomallei. MIF function was investigated in experimental murine melioidosis using anti-MIF antibodies and recombinant MIF. Patients demonstrated markedly increased MIF mRNA leukocyte and MIF plasma concentrations. Elevated MIF concentrations were associated with mortality. Mice inoculated intranasally with B. pseudomallei displayed a robust increase in pulmonary and systemic MIF expression. Anti-MIF treated mice showed lower bacterial loads in their lungs upon infection with a low inoculum. Conversely, mice treated with recombinant MIF displayed a modestly impaired clearance of B. pseudomallei. MIF exerted no direct effects on bacterial outgrowth or phagocytosis of B. pseudomallei.MIF concentrations are markedly elevated during clinical melioidosis and correlate with patients' outcomes. In experimental melioidosis MIF impaired antibacterial defense.

  17. TNF-alpha, produced by feline infectious peritonitis virus (FIPV)-infected macrophages, upregulates expression of type II FIPV receptor feline aminopeptidase N in feline macrophages.

    Science.gov (United States)

    Takano, Tomomi; Hohdatsu, Tsutomu; Toda, Ayako; Tanabe, Maki; Koyama, Hiroyuki

    2007-07-20

    The pathogenicity of feline infectious peritonitis virus (FIPV) is known to depend on macrophage tropism, and this macrophage infection is enhanced by mediation via anti-S antibody (antibody-dependent enhancement, ADE). In this study, we found that TNF-alpha production was increased with viral replication in macrophages inoculated with a mixture of FIPV and anti-S antibody, and demonstrated that this culture supernatant had feline PBMC apoptosis-inducing activity. We also demonstrated that the expression level of the FIPV virus receptor, feline aminopeptidase N (fAPN), was increased in macrophages of FIP cats. For upregulation of TNF-alpha and fAPN in macrophages, viral replication in macrophages is necessary, and their expressions were increased by ADE of FIPV infection. It was demonstrated that a heat-resistant fAPN-inducing factor was present in the culture supernatant of FIPV-infected macrophages, and this factor was TNF-alpha: fAPN expression was upregulated in recombinant feline TNF-alpha-treated macrophages, and FIPV infectivity was increased in these macrophages. These findings suggested that FIPV replication in macrophages increases TNF-alpha production in macrophages, and the produced TNF-alpha acts and upregulates fAPN expression, increasing FIPV sensitivity.

  18. Expression of connexin 37, 40, and 43 mRNA and protein in renal preglomerular arterioles

    DEFF Research Database (Denmark)

    Arensbak, B; Mikkelsen, Hanne Birte; Gustafsson, F

    2001-01-01

    arterioles in frozen sections was evaluated. SMC were isolated from kidneys using an iron oxide sieve method and explant technique. Total RNA from these cultures was tested by RT-PCR analysis for the expression of the three connexins mRNA. Using immunofluorescence we examined whether the expression pattern...

  19. Cytokine expression of macrophages in HIV-1-associated vacuolar myelopathy.

    Science.gov (United States)

    Tyor, W R; Glass, J D; Baumrind, N; McArthur, J C; Griffin, J W; Becker, P S; Griffin, D E

    1993-05-01

    Macrophages are frequently present within the periaxonal and intramyelinic vacuoles that are located primarily in the posterior and lateral funiculi of the thoracic spinal cord in HIV-associated vacuolar myelopathy. But the role of these macrophages in the formation of the vacuoles is unclear. One hypothesis is that cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor (TNF)-alpha, are produced locally by macrophages and have toxic effects on myelin or oligodendrocytes. The resulting myelin damage eventually culminates in the removal of myelin by macrophages and vacuole formation. We studied thoracic spinal cord specimens taken at autopsy from HIV-positive (+) and HIV-negative individuals. The predominant mononuclear cells present in HIV+ spinal cords are macrophages. They are located primarily in the posterior and lateral funiculi regardless of the presence or absence of vacuolar myelopathy. Macrophages and microglia are more frequent in HIV+ than HIV-negative individuals and these cells frequently stain for class I and class II antigens, IL-1, and TNF-alpha. Activated macrophages positive for IL-1 and TNF-alpha are great increased in the posterior and lateral funiculi of HIV+ individuals with and without vacuolar myelopathy, suggesting they are present prior to the development of vacuoles. Cytokines, such as TNF-alpha, may be toxic for myelin or oligodendrocytes, leading to myelin damage and removal by macrophages and vacuole formation.

  20. Fcγ receptor expression on splenic macrophages in adult immune thrombocytopenia

    NARCIS (Netherlands)

    Audia, S; Santegoets, K; Laarhoven, A G; Vidarsson, G; Facy, O; Ortega-Deballon, P; Samson, M; Janikashvili, N; Saas, P; Bonnotte, B; Radstake, T R

    2017-01-01

    Splenic macrophages play a key role in immune thrombocytopenia (ITP) pathogenesis by clearing opsonized platelets. Fcγ receptors (FcγR) participate in this phenomenon, but their expression on splenic macrophages and their modulation by treatment have scarcely been studied in human ITP. We aimed to

  1. Inflammation and ER Stress Downregulate BDH2 Expression and Dysregulate Intracellular Iron in Macrophages

    Directory of Open Access Journals (Sweden)

    Susu M. Zughaier

    2014-01-01

    Full Text Available Macrophages play a very important role in host defense and in iron homeostasis by engulfing senescent red blood cells and recycling iron. Hepcidin is the master iron regulating hormone that limits dietary iron absorption from the gut and limits iron egress from macrophages. Upon infection macrophages retain iron to limit its bioavailability which limits bacterial growth. Recently, a short chain butyrate dehydrogenase type 2 (BDH2 protein was reported to contain an iron responsive element and to mediate cellular iron trafficking by catalyzing the synthesis of the mammalian siderophore that binds labile iron; therefore, BDH2 plays a crucial role in intracellular iron homeostasis. However, BDH2 expression and regulation in macrophages have not yet been described. Here we show that LPS-induced inflammation combined with ER stress led to massive BDH2 downregulation, increased the expression of ER stress markers, upregulated hepcidin expression, downregulated ferroportin expression, caused iron retention in macrophages, and dysregulated cytokine release from macrophages. We also show that ER stress combined with inflammation synergistically upregulated the expression of the iron carrier protein NGAL and the stress-inducible heme degrading enzyme heme oxygenase-1 (HO-1 leading to iron liberation. This is the first report to show that inflammation and ER stress downregulate the expression of BDH2 in human THP-1 macrophages.

  2. Microarray mRNA expression analysis of Fanconi anemia fibroblasts.

    Science.gov (United States)

    Galetzka, D; Weis, E; Rittner, G; Schindler, D; Haaf, T

    2008-01-01

    Fanconi anemia (FA) cells are generally hypersensitive to DNA cross-linking agents, implying that mutations in the different FANC genes cause a similar DNA repair defect(s). By using a customized cDNA microarray chip for DNA repair- and cell cycle-associated genes, we identified three genes, cathepsin B (CTSB), glutaredoxin (GLRX), and polo-like kinase 2 (PLK2), that were misregulated in untreated primary fibroblasts from three unrelated FA-D2 patients, compared to six controls. Quantitative real-time RT PCR was used to validate these results and to study possible molecular links between FA-D2 and other FA subtypes. GLRX was misregulated to opposite directions in a variety of different FA subtypes. Increased CTSB and decreased PLK2 expression was found in all or almost all of the analyzed complementation groups and, therefore, may be related to the defective FA pathway. Transcriptional upregulation of the CTSB proteinase appears to be a secondary phenomenon due to proliferation differences between FA and normal fibroblast cultures. In contrast, PLK2 is known to play a pivotal role in processes that are linked to FA defects and may contribute in multiple ways to the FA phenotype: PLK2 is a target gene for TP53, is likely to function as a tumor suppressor gene in hematologic neoplasia, and Plk2(-/-) mice are small because of defective embryonal development. (c) 2008 S. Karger AG, Basel.

  3. Visfatin mRNA expression in human subcutaneous adipose tissue is regulated by exercise

    DEFF Research Database (Denmark)

    Frydelund-Larsen, Lone; Åkerström, Thorbjörn; Nielsen, Søren

    2006-01-01

    in abdominal subcutaneous adipose tissue and skeletal muscle biopsies obtained from healthy young men at time points 0, 3, 4.5, 6, 9, and 24 h in relation to either 3 h of ergometer cycle exercise at 60% of Vo(2 max) or rest. Adipose tissue visfatin mRNA expression increased threefold at the time points 3, 4......Visfatin [pre-beta-cell colony-enhancing factor (PBEF)] is a novel adipokine that is produced by adipose tissue, skeletal muscle, and liver and has insulin-mimetic actions. Regular exercise enhances insulin sensitivity. In the present study, we therefore examined visfatin mRNA expression.......5, and 6 h in response to exercise (n = 8) compared with preexercise samples and compared with the resting control group (n = 7, P = 0.001). Visfatin mRNA expression in skeletal muscle was not influenced by exercise. The exercise-induced increase in adipose tissue visfatin was, however, not accompanied...

  4. Association of chemerin mRNA expression in human epicardial adipose tissue with coronary atherosclerosis

    Directory of Open Access Journals (Sweden)

    Wang Linjie

    2011-10-01

    Full Text Available Abstract Background Growing evidence suggests that epicardial adipose tissue (EAT may play a key role in the pathogenesis and development of coronary artery disease (CAD by producing several inflammatory adipokines. Chemerin, a novel adipokine, has been reported to be involved in regulating immune responses and glucolipid metabolism. Given these properties, chemerin may provide an interesting link between obesity, inflammation and atherosclerosis. In this study, we sought to determine the relationship of chemerin expression in EAT and the severity of coronary atherosclerosis in Han Chinese patients. Methods Serums and adipose tissue biopsies (epicardial and thoracic subcutaneous were obtained from CAD (n = 37 and NCAD (n = 16 patients undergoing elective cardiac surgery. Gensini score was used to assess the severity of CAD. Serum levels of chemerin, adiponectin and insulin were measured by ELISA. Chemerin protein expression in adipose tissue was detected by immunohistochemistry. The mRNA levels of chemerin, chemR23, adiponectin and TNF-alpha in adipose tissue were detected by RT-PCR. Results We found that EAT of CAD group showed significantly higher levels of chemerin and TNF-alpha mRNA, and significantly lower level of adiponectin mRNA than that of NCAD patients. In CAD group, significantly higher levels of chemerin mRNA and protein were observed in EAT than in paired subcutaneous adipose tissue (SAT, whereas such significant difference was not found in NCAD group. Chemerin mRNA expression in EAT was positively correlated with Gensini score (r = 0.365, P P P P P P P > 0.05. Conclusions The expressions of chemerin mRNA and protein are significantly higher in EAT from patients with CAD in Han Chinese patients. Furthermore, the severity of coronary atherosclerosis is positive correlated with the level of chemerin mRNA in EAT rather than its circulating level.

  5. Sonicated Protein Fractions of Mycoplasma hyopneumoniae Induce Inflammatory Responses and Differential Gene Expression in a Murine Alveolar Macrophage Cell Line.

    Science.gov (United States)

    Damte, Dereje; Lee, Seung-Jin; Birhanu, Biruk Tesfaye; Suh, Joo-Won; Park, Seung-Chun

    2015-12-28

    Mycoplasma hyopneumoniae is known to cause porcine enzootic pneumonia (EP), an important disease in swine production. The objective of this study was to examine the effects of sonicated protein fractions of M. hyopneumoniae on inflammatory response and gene expression in the murine alveolar macrophage MH-S cell line. The effects of sonicated protein fractions and intact M. hyopneumoniae on the gene expression of cytokines and iNOS were assessed using RT-PCR. The Annealing Control Primer (ACP)-based PCR method was used to screen differentially expressed genes. Increased transcription of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, COX-2, and iNOS mRNA was observed after exposure to the supernatant (SPT), precipitant (PPT), and intact M. hyopneumoniae protein. A time-dependent analysis of the mRNA expression revealed an upregulation after 4 h for IL-6 and iNOS and after 12 h for IL-1β and TNF-α, for both SPT and PPT; the fold change in COX-2 expression was less. A dose- and time-dependent correlation was observed in nitrite (NO) production for both protein fractions; however, there was no significant difference between the effects of the two protein fractions. In a differential gene analysis, PCR revealed differential expression for nine gene bands after 3 h of stimulation - only one gene was downregulated, while the remaining eight were upregulated. The results of this study provide insights that help improve our understanding of the mechanisms underlying the pathogenesis of and macrophage defenses against M. hyopneumoniae assault, and suggest targets for future studies on therapeutic interventions for M. hyopneumoniae infections.

  6. High ALK mRNA expression has a negative prognostic significance in rhabdomyosarcoma

    OpenAIRE

    Bonvini, P; Zin, A; Alaggio, R; Pawel, B; Bisogno, G; Rosolen, A

    2013-01-01

    Background: Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase aberrantly expressed in cancer, but its clinical and functional importance remain controversial. Mutation or amplification of ALK, as well as its expression levels assessed by conventional immunohistochemistry methods, has been linked to prognosis in cancer, although with potential bias because of the semi-quantitative approaches. Herein, we measured ALK mRNA expression in rhabdomyosarcoma (RMS) and determined its clin...

  7. Adrenomedullin Regulates IL-1β Gene Expression in F4/80+ Macrophages during Synovial Inflammation

    Science.gov (United States)

    Takano, Shotaro; Miyagi, Masayuki; Inoue, Gen; Aikawa, Jun; Iwabuchi, Kazuya; Takaso, Masashi

    2017-01-01

    Adrenomedullin (AM) plays an important role in the regulation of inflammatory processes; however, the role and expression of AM in synovial inflammation have not been determined. To investigate the expression and role of AM in inflamed synovial tissue (ST), the gene expression profiles of AM in the ST, including synovial macrophages and fibroblasts, of a murine patellar surgical dislocation model were characterized. In addition, the effects of interleukin- (IL-) 1β and AM in cultured synovial cells were also examined. CD11c+ macrophages were found to be elevated in ST of the surgically dislocated patella. Higher gene expression of CD11c, IL-1β, AM, receptor activity-modifying proteins 2 (RAMP2), and 3 (RAMP3) was also observed in ST obtained from the dislocated side. AM expression was also significantly increased in synovial fibroblasts and macrophages in response to IL-1β treatment. Synovial macrophages also highly expressed RAMP3 compared to fibroblasts and this expression was further stimulated by exogenously added IL-1β. Further, the treatment of the F4/80-positive cell fraction obtained from ST with AM inhibited IL-1β expression. Taken together, these findings demonstrated that AM was produced by synovial fibroblasts and macrophages in inflamed ST and that increased levels of AM may exert anti-inflammatory effects on synovial macrophages. PMID:28299347

  8. Tissue-specific mRNA expression profiling in grape berry tissues

    Science.gov (United States)

    Grimplet, Jerome; Deluc, Laurent G; Tillett, Richard L; Wheatley, Matthew D; Schlauch, Karen A; Cramer, Grant R; Cushman, John C

    2007-01-01

    Background Berries of grape (Vitis vinifera) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and

  9. Tissue-specific mRNA expression profiling in grape berry tissues

    Directory of Open Access Journals (Sweden)

    Cramer Grant R

    2007-06-01

    Full Text Available Abstract Background Berries of grape (Vitis vinifera contain three major tissue types (skin, pulp and seed all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin and mesocarp (pulp, not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of V. vinifera Cabernet Sauvignon using the Affymetrix GeneChip® Vitis oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions. Results Overall, berry tissues were found to express approximately 76% of genes represented on the Vitis microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell

  10. PPARγ regulates the expression of cholesterol metabolism genes in alveolar macrophages

    International Nuclear Information System (INIS)

    Baker, Anna D.; Malur, Anagha; Barna, Barbara P.; Kavuru, Mani S.; Malur, Achut G.; Thomassen, Mary Jane

    2010-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear transcription factor involved in lipid metabolism that is constitutively expressed in the alveolar macrophages of healthy individuals. PPARγ has recently been implicated in the catabolism of surfactant by alveolar macrophages, specifically the cholesterol component of surfactant while the mechanism remains unclear. Studies from other tissue macrophages have shown that PPARγ regulates cholesterol influx, efflux, and metabolism. PPARγ promotes cholesterol efflux through the liver X receptor-alpha (LXRα) and ATP-binding cassette G1 (ABCG1). We have recently shown that macrophage-specific PPARγ knockout (PPARγ KO) mice accumulate cholesterol-laden alveolar macrophages that exhibit decreased expression of LXRα and ABCG1 and reduced cholesterol efflux. We hypothesized that in addition to the dysregulation of these cholesterol efflux genes, the expression of genes involved in cholesterol synthesis and influx was also dysregulated and that replacement of PPARγ would restore regulation of these genes. To investigate this hypothesis, we have utilized a Lentivirus expression system (Lenti-PPARγ) to restore PPARγ expression in the alveolar macrophages of PPARγ KO mice. Our results show that the alveolar macrophages of PPARγ KO mice have decreased expression of key cholesterol synthesis genes and increased expression of cholesterol receptors CD36 and scavenger receptor A-I (SRA-I). The replacement of PPARγ (1) induced transcription of LXRα and ABCG1; (2) corrected suppressed expression of cholesterol synthesis genes; and (3) enhanced the expression of scavenger receptors CD36. These results suggest that PPARγ regulates cholesterol metabolism in alveolar macrophages.

  11. PPAR{gamma} regulates the expression of cholesterol metabolism genes in alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Anna D.; Malur, Anagha; Barna, Barbara P.; Kavuru, Mani S. [Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, East Carolina University (United States); Malur, Achut G. [Department of Microbiology and Immunology, East Carolina University (United States); Thomassen, Mary Jane, E-mail: thomassenm@ecu.edu [Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, East Carolina University (United States); Department of Microbiology and Immunology, East Carolina University (United States)

    2010-03-19

    Peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) is a nuclear transcription factor involved in lipid metabolism that is constitutively expressed in the alveolar macrophages of healthy individuals. PPAR{gamma} has recently been implicated in the catabolism of surfactant by alveolar macrophages, specifically the cholesterol component of surfactant while the mechanism remains unclear. Studies from other tissue macrophages have shown that PPAR{gamma} regulates cholesterol influx, efflux, and metabolism. PPAR{gamma} promotes cholesterol efflux through the liver X receptor-alpha (LXR{alpha}) and ATP-binding cassette G1 (ABCG1). We have recently shown that macrophage-specific PPAR{gamma} knockout (PPAR{gamma} KO) mice accumulate cholesterol-laden alveolar macrophages that exhibit decreased expression of LXR{alpha} and ABCG1 and reduced cholesterol efflux. We hypothesized that in addition to the dysregulation of these cholesterol efflux genes, the expression of genes involved in cholesterol synthesis and influx was also dysregulated and that replacement of PPAR{gamma} would restore regulation of these genes. To investigate this hypothesis, we have utilized a Lentivirus expression system (Lenti-PPAR{gamma}) to restore PPAR{gamma} expression in the alveolar macrophages of PPAR{gamma} KO mice. Our results show that the alveolar macrophages of PPAR{gamma} KO mice have decreased expression of key cholesterol synthesis genes and increased expression of cholesterol receptors CD36 and scavenger receptor A-I (SRA-I). The replacement of PPAR{gamma} (1) induced transcription of LXR{alpha} and ABCG1; (2) corrected suppressed expression of cholesterol synthesis genes; and (3) enhanced the expression of scavenger receptors CD36. These results suggest that PPAR{gamma} regulates cholesterol metabolism in alveolar macrophages.

  12. Mining microarray datasets in nutrition: expression of the GPR120 (n-3 fatty acid receptor/sensor) gene is down-regulated in human adipocytes by macrophage secretions.

    Science.gov (United States)

    Trayhurn, Paul; Denyer, Gareth

    2012-01-01

    Microarray datasets are a rich source of information in nutritional investigation. Targeted mining of microarray data following initial, non-biased bioinformatic analysis can provide key insight into specific genes and metabolic processes of interest. Microarrays from human adipocytes were examined to explore the effects of macrophage secretions on the expression of the G-protein-coupled receptor (GPR) genes that encode fatty acid receptors/sensors. Exposure of the adipocytes to macrophage-conditioned medium for 4 or 24 h had no effect on GPR40 and GPR43 expression, but there was a marked stimulation of GPR84 expression (receptor for medium-chain fatty acids), the mRNA level increasing 13·5-fold at 24 h relative to unconditioned medium. Importantly, expression of GPR120, which encodes an n-3 PUFA receptor/sensor, was strongly inhibited by the conditioned medium (15-fold decrease in mRNA at 24 h). Macrophage secretions have major effects on the expression of fatty acid receptor/sensor genes in human adipocytes, which may lead to an augmentation of the inflammatory response in adipose tissue in obesity.

  13. Neopterin negatively regulates expression of ABCA1 and ABCG1 by the LXRα signaling pathway in THP-1 macrophage-derived foam cells.

    Science.gov (United States)

    Yan, Jin-quan; Tan, Chun-zhi; Wu, Jin-hua; Zhang, Dong-cui; Chen, Ji-ling; Zeng, Bin-yuan; Jiang, Yu-ping; Nie, Jin; Liu, Wei; Liu, Qin; Dai, Hao

    2013-07-01

    To investigate the effects of neopterin on ABCA1 expression and cholesterol efflux in human THP-1 macrophage-derived foam cells, and to explore the role of the liver X receptor alpha (LXRα) involved. In the present study, THP-1 cells were pre-incubated with ox-LDL to become foam cells. The protein and mRNA expression were examined by Western blot assays and real-time quantitative PCR, respectively. Liquid scintillation counting and high performance liquid chromatography assays were used to test cellular cholesterol efflux and cholesterol content. Neopterin decreased ABCA1 expression and cholesterol efflux in a time- and concentration-dependent manner in THP-1 macrophage-derived foam cells, and the LXRα siRNA can reverse the inhibitory effects induced by neopterin. Neoterin has a negative regulation on ABCA1 expression via the LXRα signaling pathway, which suggests the aggravated effects of neopterin on atherosclerosis.

  14. mRNA Expression of Ovine Angiopoietin-like Protein 4 Gene in Adipose Tissues

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2016-05-01

    Full Text Available Angiopoietin-like protein 4 (ANGPTL4 is involved in a variety of functions, including lipoprotein metabolism and angiogenesis. To reveal the role of ANGPTL4 in fat metabolism of sheep, ovine ANGPTL4 mRNA expression was analyzed in seven adipose tissues from two breeds with distinct tail types. Forty-eight animals with the gender ratio of 1:1 for both Guangling Large Tailed (GLT and Small Tailed Han (STH sheep were slaughtered at 2, 4, 6, 8, 10, and 12 months of age, respectively. Adipose tissues were collected from greater and lesser omental, subcutaneous, retroperitoneal, perirenal, mesenteric, and tail fats. Ontogenetic mRNA expression of ANGPTL4 in these adipose tissues from GTL and STH was studied by quantitative real time polymerase chain reaction. The results showed that ANGPTL4 mRNA expressed in all adipose tissues studied with the highest in subcutaneous and the lowest in mesenteric fat depots. Months of age, tissue and breed are the main factors that significantly influence the mRNA expression. These results provide new insights into ovine ANGPTL4 gene expression and clues for its function mechanism.

  15. Connecting protein and mRNA burst distributions for stochastic models of gene expression

    International Nuclear Information System (INIS)

    Elgart, Vlad; Jia, Tao; Fenley, Andrew T; Kulkarni, Rahul

    2011-01-01

    The intrinsic stochasticity of gene expression can lead to large variability in protein levels for genetically identical cells. Such variability in protein levels can arise from infrequent synthesis of mRNAs which in turn give rise to bursts of protein expression. Protein expression occurring in bursts has indeed been observed experimentally and recent studies have also found evidence for transcriptional bursting, i.e. production of mRNAs in bursts. Given that there are distinct experimental techniques for quantifying the noise at different stages of gene expression, it is of interest to derive analytical results connecting experimental observations at different levels. In this work, we consider stochastic models of gene expression for which mRNA and protein production occurs in independent bursts. For such models, we derive analytical expressions connecting protein and mRNA burst distributions which show how the functional form of the mRNA burst distribution can be inferred from the protein burst distribution. Additionally, if gene expression is repressed such that observed protein bursts arise only from single mRNAs, we show how observations of protein burst distributions (repressed and unrepressed) can be used to completely determine the mRNA burst distribution. Assuming independent contributions from individual bursts, we derive analytical expressions connecting means and variances for burst and steady-state protein distributions. Finally, we validate our general analytical results by considering a specific reaction scheme involving regulation of protein bursts by small RNAs. For a range of parameters, we derive analytical expressions for regulated protein distributions that are validated using stochastic simulations. The analytical results obtained in this work can thus serve as useful inputs for a broad range of studies focusing on stochasticity in gene expression

  16. Inhibition of HIV Expression and Integration in Macrophages by Methylglyoxal-Bis-Guanylhydrazone.

    Science.gov (United States)

    Jin, Xia; McGrath, Michael S; Xu, Hua

    2015-11-01

    Macrophages are a target for infection with HIV and represent one of the viral reservoirs that are relatively resistant to current antiretroviral drugs. Here we demonstrate that methylglyoxal-bis-guanylhydrazone (MGBG), a polyamine analog and potent S-adenosylmethionine decarboxylase inhibitor, decreases HIV expression in monocytes and macrophages. MGBG is selectively concentrated by these cells through a mechanism consistent with active transport by the polyamine transporter. Using a macrophage-tropic reporter virus tagged with the enhanced green fluorescent protein, we demonstrate that MGBG decreases the frequency of HIV-infected cells. The effect is dose dependent and correlates with the production of HIV p24 in culture supernatants. This anti-HIV effect was further confirmed using three macrophage-tropic primary HIV isolates. Viral life cycle mapping studies show that MGBG inhibits HIV DNA integration into the cellular DNA in both monocytes and macrophages. Our work demonstrates for the first time the selective concentration of MGBG by monocytes/macrophages, leading to the inhibition of HIV-1 expression and a reduction in proviral load within macrophage cultures. These results suggest that MGBG may be useful in adjunctive macrophage-targeted therapy for HIV infection. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Probiotic Bacteria Alter Pattern-Recognition Receptor Expression and Cytokine Profile in a Human Macrophage Model Challenged with Candida albicans and Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Victor H. Matsubara

    2017-11-01

    Full Text Available Probiotics are live microorganisms that confer benefits to the host health. The infection rate of potentially pathogenic organisms such as Candida albicans, the most common agent associated with mucosal candidiasis, can be reduced by probiotics. However, the mechanisms by which the probiotics interfere with the immune system are largely unknown. We evaluated the effect of probiotic bacteria on C. albicans challenged human macrophages. Macrophages were pretreated with lactobacilli alone (Lactobacillus rhamnosus LR32, Lactobacillus casei L324m, or Lactobacillus acidophilus NCFM or associated with Escherichia coli lipopolysaccharide (LPS, followed by the challenge with C. albicans or LPS in a co-culture assay. The expression of pattern-recognition receptors genes (CLE7A, TLR2, and TLR4 was determined by RT-qPCR, and dectin-1 reduced levels were confirmed by flow cytometry. The cytokine profile was determined by ELISA using the macrophage cell supernatant. Overall probiotic lactobacilli down-regulated the transcription of CLEC7A (p < 0.05, resulting in the decreased expression of dectin-1 on probiotic pretreated macrophages. The tested Lactobacillus species down-regulated TLR4, and increased TLR2 mRNA levels in macrophages challenged with C. albicans. The cytokines profile of macrophages challenged with C. albicans or LPS were altered by the probiotics, which generally led to increased levels of IL-10 and IL-1β, and reduction of IL-12 production by macrophages (p < 0.05. Our data suggest that probiotic lactobacilli impair the recognition of PAMPs by macrophages, and alter the production of pro/anti-inflammatory cytokines, thus modulating inflammation.

  18. Sheep oocyte expresses leptin and functional leptin receptor mRNA

    Directory of Open Access Journals (Sweden)

    Seyyed Jalil Taheri

    2016-09-01

    Conclusions: The result of present study reveals that leptin and its functional receptor (Ob-Rb mRNA are expressed in sheep oocyte and further studies should investigate the role(s of leptin on sheep oocyte physiology and embryo development.

  19. PAX5α and PAX5β mRNA expression in breast Cancer: Relation to ...

    African Journals Online (AJOL)

    Background: Many studies evaluated the role of paired box gene 5 (PAX5) in breast cancer. However, few investigated PAX5α and PAX5β isoforms individually. Objective: The aim of the present study is to evaluate mRNA expression of PAX5α and PAX5β in breast cancer and assessing their underlying pathological roles ...

  20. The potential lipolysis function of musclin and its mRNA expression ...

    African Journals Online (AJOL)

    Musclin is a newly discovered factor and its functions remain to be defined. This study investigated the tissue expression pattern of musclin gene and its potential effect on lipid metabolism. Musclin mRNA levels in adipose, muscle tissues and primary adipocytes were examined by quantitative PCR. The musclin gene ...

  1. The effects of valproic acid on the mRNA expression of Natriuretic ...

    African Journals Online (AJOL)

    Mona Hajikazemi

    2017-04-28

    Apr 28, 2017 ... Real Time RT-PCR was used to quantify differential mRNA expression of NPR-A and KCNQ1 genes. Two-way ANOVA and bonferroni post-tests were used to analyze data statistically. Results: We showed that VPA treatment inhibits the growth of SW-480 cells more efficiently compared to. HT-29. NPR-A ...

  2. Lipoprotein Lipase mRNA expression in different tissues of farm ...

    African Journals Online (AJOL)

    Lipoprotein lipase (LPL) controls triacylglycerol partitioning between adipose tissues and muscles, so it is important enzyme for fattening of animals .The present work was planned to clarify the use of polymerase chain reaction (PCR) for detection of LPL mRNA expression in different tissues representing internal organs of ...

  3. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    International Nuclear Information System (INIS)

    Dalgaard, Louise T.

    2012-01-01

    Highlights: ► UCP2 mRNA levels are decreased in islets of Langerhans from glucokinase deficient mice. ► UCP2 mRNA up-regulation by glucose is dependent on glucokinase. ► Absence of UCP2 increases GSIS of glucokinase heterozygous pancreatic islets. ► This may protect glucokinase deficient mice from hyperglycemic damages. -- Abstract: Uncoupling Protein 2 (UCP2) is expressed in the pancreatic β-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism for UCP2 up-regulation in response to increased glucose is unknown. The aim was to examine the effects of glucokinase (GK) deficiency on UCP2 mRNA levels and to characterize the interaction between UCP2 and GK with regard to glucose-stimulated insulin secretion in pancreatic islets. UCP2 mRNA expression was reduced in GK+/− islets and GK heterozygosity prevented glucose-induced up-regulation of islet UCP2 mRNA. In contrast to UCP2 protein function UCP2 mRNA regulation was not dependent on superoxide generation, but rather on products of glucose metabolism, because MnTBAP, a superoxide dismutase mimetic, did not prevent the glucose-induced up-regulation of UCP2. Glucose-stimulated insulin secretion was increased in UCP2−/− and GK+/− islets compared with GK+/− islets and UCP2 deficiency improved glucose tolerance of GK+/− mice. Accordingly, UCP2 deficiency increased ATP-levels of GK+/− mice. Thus, the compensatory down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients.

  4. Applying the breaks on gene expression - mRNA deadenylation by Pop2p

    DEFF Research Database (Denmark)

    Andersen, Kasper Røjkjær; Jonstrup, Anette Thyssen; Van, Lan Bich

    When driving a car, control of the brakes is just as important as control of the accelerator pedal. Likewise, in gene expression, regulation of mRNA degradation is as important as regulation of its synthesis (Mühlemann, 2005). The rate-determining step of mRNA decay in eukaryotes seems to be the ......When driving a car, control of the brakes is just as important as control of the accelerator pedal. Likewise, in gene expression, regulation of mRNA degradation is as important as regulation of its synthesis (Mühlemann, 2005). The rate-determining step of mRNA decay in eukaryotes seems...... to be the shortening of the poly(A) tail (deadenylation), as this step is slower than the subsequent decapping and degradation of the mRNA body. The Mega-Dalton Ccr4-Not complex contains two exonucleases, Ccr4p and Pop2p, responsible for this process. It is not known at present why two conserved nucleases are needed...

  5. Macrophages and Adipocytes in Human Obesity Adipose Tissue Gene Expression and Insulin Sensitivity During Calorie Restriction and Weight Stabilization

    DEFF Research Database (Denmark)

    Capel, F.; Klimcakova, E.; Viguerie, N.

    2009-01-01

    OBJECTIVE-We investigated the regulation of adipose tissue gene expression during different phases of a dietary weight loss program and its relation with insulin sensitivity. RESEARCH DESIGN AND METHODS-Twenty-two obese women followed a dietary intervention program composed of an energy restriction...... expression profiling was performed using a DNA microarray in a subgroup of eight women. RT-quantitative PCR was used for determination of mRNA levels of 31 adipose tissue macrophage markers (n = 22). RESULTS-Body weight, fat mass, and C-reactive protein level decreased and glucose disposal rate increased...... during the dietary intervention program. Transcriptome profiling revealed two main patterns of variations. The first involved 464 mostly adipocyte genes involved in metabolism that were downregulated during energy restriction, upregulated during weight stabilization, and unchanged during the dietary...

  6. Keratinocyte growth factor mRNA expression in periodontal ligament fibroblasts

    DEFF Research Database (Denmark)

    Dabelsteen, S; Wandall, H H; Grøn, B

    1997-01-01

    Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF mRNA is expres......Keratinocyte growth factor (KGF) is a fibroblast growth factor which mediates epithelial growth and differentiation. KGF is expressed in subepithelial fibroblasts, but generally not in fibroblasts of deep connective tissue, such as fascia and ligaments. Here we demonstrate that KGF m......RNA is expressed in periodontal ligament fibroblasts, and that the expression is increased upon serum stimulation. Fibroblasts from human periodontal ligament, from buccal mucosa, from gingiva, and from skin were established from explants. Alkaline phosphatase activity was used as an indicator of the periodontal...

  7. Microarray expression analysis of genes involved in innate immune memory in peritoneal macrophages

    Directory of Open Access Journals (Sweden)

    Keisuke Yoshida

    2016-03-01

    Full Text Available Immunological memory has been believed to be a feature of the adaptive immune system for long period, but recent reports suggest that the innate immune system also exhibits memory-like reaction. Although evidence of innate immune memory is accumulating, no in vivo experimental data has clearly implicated a molecular mechanism, or even a cell-type, for this phenomenon. In this study of data deposited into Gene Expression Omnibus (GEO under GSE71111, we analyzed the expression profile of peritoneal macrophages isolated from mice pre-administrated with toll-like receptor (TLR ligands, mimicking pathogen infection. In these macrophages, increased expression of a group of innate immunity-related genes was sustained over a long period of time, and these genes overlapped with ATF7-regulated genes. We conclude that ATF7 plays an important role in innate immune memory in macrophages. Keywords: Macrophage, ATF7, Innate immune memory, Microarray

  8. BAY11 enhances OCT4 synthetic mRNA expression in adult human skin cells.

    Science.gov (United States)

    Awe, Jason P; Crespo, Agustin Vega; Li, You; Kiledjian, Megerditch; Byrne, James A

    2013-02-06

    The OCT4 transcription factor is involved in many cellular processes, including development, reprogramming, maintaining pluripotency and differentiation. Synthetic OCT4 mRNA was recently used (in conjunction with other reprogramming factors) to generate human induced pluripotent stem cells. Here, we discovered that BAY 11-7082 (BAY11), at least partially through an NF-κB-inhibition based mechanism, could significantly increase the expression of OCT4 following transfection of synthetic mRNA (synRNA) into adult human skin cells. We tested various chemical and molecular small molecules on their ability to suppress the innate immune response seen upon synthetic mRNA transfection. Three molecules - B18R, BX795, and BAY11 - were used in immunocytochemical and proliferation-based assays. We also utilized global transcriptional meta-analysis coupled with quantitative PCR to identify relative gene expression downstream of OCT4. We found that human skin cells cultured in the presence of BAY11 resulted in reproducible increased expression of OCT4 that did not inhibit normal cell proliferation. The increased levels of OCT4 resulted in significantly increased expression of genes downstream of OCT4, including the previously identified SPP1, DUSP4 and GADD45G, suggesting the expressed OCT4 was functional. We also discovered a novel OCT4 putative downstream target gene SLC16A9 which demonstrated significantly increased expression following elevation of OCT4 levels. For the first time we have shown that small molecule-based stabilization of synthetic mRNA expression can be achieved with use of BAY11. This small molecule-based inhibition of innate immune responses and subsequent robust expression of transfected synthetic mRNAs may have multiple applications for future cell-based research and therapeutics.

  9. Expression of galectin-9 mRNA in obese children with polymorphism of the lactase gene

    Directory of Open Access Journals (Sweden)

    A.E. Abaturov

    2018-02-01

    Full Text Available Background. The aim of the study is to investigate the association of expression of galectin-9 (Gal-9 mRNA and lactose malabsorption in obese children with polymorphism (SNP of the lactase gene (LCT and to study the efficacy of lactase deficiency therapy using exogenous lactase preparations. Materials and methods. Seventy obese children (BMI > 95th percentile and 16 children without obesity aged 6–18 years were examined. There was studied SNP LCT (material for investigation venous blood by real-time PCR, expression of Gal-9 mRNA (study material buccal epithelium by real-time PCR with reverse transcription, malabsorption of lactose by hydrogen breath test (HBT. Among obese children, 38 children with genotype C/C 13910 presented the first observation group, 32 children with phenotype identical genotypes C/T 13910 and T/T 13910, p > 0.05, presented the second group. Children from the first observation group also determined the level of expression of Gal-9 mRNA and lactose malabsorption after using exogenous lactase preparations. Results. The genotype C/C 13910 was determined in 38 (54.3 %, genotype C/T 13910 in 22 (31.4 % and genotype T/T in 10 (14.3 % patients. Malabsorption of lactose in children with genotype C/C 13910 averaged 32.7 ± 10.4 pmm, in children with genotypes C/T 13910 — 26.3 ± 4.9 pmm (p > 0.05 and with genotype T/T 13910 and was absent in children without obesity (p < 0.05. The average level of expression of Gal-9 mRNA in children with genotype C/C 13910 was 564.3 ± 32.8 RU DmRNA Gal-9/mRNA actin, in children with genotypes C/T and T/T 13910 — 61.04 ± 15.30 RU DmRNA Gal-9/mRNA actin, p < 0.01. It is of great importance that the children with genotype C/C 13910 and lactose malabsorption (n = 20 had the lowest average level of expression of Gal-9 mRNA (42.47 ± 13.30 RU DmRNA Gal-9/mRNA actin whereas the children with genotype C/C 13910 and without lactose malabsorption (n =18 had the largest level (1086

  10. Endoplasmic reticulum stress increases AT1R mRNA expression via TIA-1-dependent mechanism.

    Science.gov (United States)

    Backlund, Michael; Paukku, Kirsi; Kontula, Kimmo K; Lehtonen, Jukka Y A

    2016-04-20

    As the formation of ribonucleoprotein complexes is a major mechanism of angiotensin II type 1 receptor (AT1R) regulation, we sought to identify novel AT1R mRNA binding proteins. By affinity purification and mass spectroscopy, we identified TIA-1. This interaction was confirmed by colocalization of AT1R mRNA and TIA-1 by FISH and immunofluorescence microscopy. In immunoprecipitates of endogenous TIA- 1, reverse transcription-PCR amplified AT1R mRNA. TIA-1 has two binding sites within AT1R 3'-UTR. The binding site proximal to the coding region is glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-dependent whereas the distal binding site is not. TIA-1 functions as a part of endoplasmic reticulum (ER) stress response leading to stress granule (SG) formation and translational silencing. We and others have shown that AT1R expression is increased by ER stress-inducing factors. In unstressed cells, TIA-1 binds to AT1R mRNA and decreases AT1R protein expression. Fluorescence microscopy shows that ER stress induced by thapsigargin leads to the transfer of TIA-1 to SGs. In FISH analysis AT1R mRNA remains in the cytoplasm and no longer colocalizes with TIA-1. Thus, release of TIA-1-mediated suppression by ER stress increases AT1R protein expression. In conclusion, AT1R mRNA is regulated by TIA-1 in a ER stress-dependent manner. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Cyclic-AMP mediated regulation of ABCB mRNA expression in mussel haemocytes.

    Directory of Open Access Journals (Sweden)

    Silvia Franzellitti

    Full Text Available BACKGROUND: The multixenobiotic resistance system (MXR allows aquatic organisms to cope with their habitat despite high pollution levels by over-expressing membrane and intracellular transporters, including the P-glycoprotein (Pgp. In mammals transcription of the ABCB1 gene encoding Pgp is under cAMP/PKA-mediated regulation; whether this is true in mollusks is not fully clarified. METHODOLOGY/PRINCIPAL FINDINGS: cAMP/PKA regulation and ABCB mRNA expression were assessed in haemocytes from Mediterranean mussels (Mytilus galloprovincialis exposed in vivo for 1 week to 0.3 ng/L fluoxetine (FX alone or in combination with 0.3 ng/L propranolol (PROP. FX significantly decreased cAMP levels and PKA activity, and induced ABCB mRNA down-regulation. FX effects were abolished in the presence of PROP. In vitro experiments using haemocytes treated with physiological agonists (noradrenaline and serotonin and pharmacological modulators (PROP, forskolin, dbcAMP, and H89 of the cAMP/PKA system were performed to obtain clear evidence about the involvement of the signaling pathway in the transcriptional regulation of ABCB. Serotonin (5-HT decreased cAMP levels, PKA activity and ABCB mRNA expression but increased the mRNA levels for a putative 5-HT1 receptor. Interestingly, 5-HT1 was also over-expressed after in vivo exposures to FX. 5-HT effects were counteracted by PROP. Forskolin and dbcAMP increased PKA activity as well as ABCB mRNA expression; the latter effect was abolished in the presence of the PKA inhibitor H89. CONCLUSIONS: This study provides the first direct evidence for the cAMP/PKA-mediated regulation of ABCB transcription in mussels.

  12. [Effect of lipopolysaccharides from Porphyromonas endodontalis on the expression of macrophage colony stimulating factor in mouse osteoblasts].

    Science.gov (United States)

    Yu, Yaqiong; Qiu, Lihong; Guo, Jiajie; Qu, Liu; Xu, Liya; Zhong, Ming

    2014-09-01

    To investigate the effects of lipopolysaccharides (LPS) extracted from Porphyromonas endodontalis (Pe) on the expression of macrophage colony stimulating factor (M-CSF) mRNA and protein in MC3T3-E1 cells and the role of nucler factor-κB (NF-κB) in the process. MC3T3-E1 cells were treated with different concentrations of Pe-LPS (0-50 mg/L) and 10 mg/L Pe-LPS for different hours (0-24 h). The expression of M-CSF mRNA and protein was detected by reverse transcription polymerase chain reaction (RT-PCR) and enzyme-linked immunoadsordent assay (ELISA). The cells untreated by Pe-LPS served as control. The expression of M- CSF mRNA and protein was also detected in 10 mg/L Pe- LPS treated MC3T3-E1 cells after pretreated with BAY 11-7082 for 1 h, a special NF-κB inhibitor. The groups were divided as follows, control group, BAY group (10 µmol/L BAY 11-7082 treated alone MC3T3-E1 cells), Pe-LPS group (10 mg/L Pe-LPS stimulated MC3T3-E1 cells for 6 h), BAY combine with Pe-LPS group (10 µmol/L BAY 11-7082 pretreated cells for 1 h and 10 mg/L of Pe-LPS stimulated MC3T3-E1 cells for 6 h). The level of M- CSF mRNA and protein increased significantly after treatment with different concentrations of Pe-LPS (0-50 mg/L), which indicated that Pe-LPS induced osteoblasts to express M-CSF mRNA and protein in dose dependent manners. The expression of M-CSF protein increased from (35 ± 2) ng/L (control group) to (170 ± 8) ng/L (50 mg/L group). Maximal induction of M-CSF mRNA expression was found in the MC3T3- E1 cells treated with 10 mg/L Pe-LPS for 6 h. After 6 h, the expression of M-CSF mRNA decreased gradually. The expression of M-CSF protein also increased with the treatment of 10 mg/L Pe-LPS for 10 h [(122 ± 4) ng/L]. After 10 h, the expression of M-CSF protein decreased gradually. The mRNA and proteins of M-CSF decreased significantly after pretreatment with 10 µmol/L BAY 11-7082 for 1 h. There was no significant difference between BAY group and the control. Pe-LPS may induce

  13. Further evidence for increased macrophage migration inhibitory factor expression in prostate cancer

    International Nuclear Information System (INIS)

    Meyer-Siegler, Katherine L; Iczkowski, Kenneth A; Vera, Pedro L

    2005-01-01

    Macrophage migration inhibitory factor (MIF) is a cytokine associated with prostate cancer, based on histologic evidence and circulating (serum) levels. Recent studies from another laboratory failed to document these results. This study's aims were to extend and confirm our previous data, as well as to define possible mechanisms for the discrepant results. Additional aims were to examine MIF expression, as well as the location of MIF's receptor, CD74, in human prostatic adenocarcinoma compared to matched benign prostate. MIF amounts were determined in random serum samples remaining following routine PSA screening by ELISA. Native, denaturing and reducing polyacrylamide gels and Western blot analyses determined the MIF form in serum. Prostate tissue arrays were processed for MIF in situ hybridization and immunohistochemistry for MIF and CD74. MIF released into culture medium from normal epithelial, LNCaP and PC-3 cells was detected by Western blot analysis. Median serum MIF amounts were significantly elevated in prostate cancer patients (5.87 ± 3.91 ng/ml; ± interquartile range; n = 115) compared with patients with no documented diagnosis of prostate cancer (2.19 ± 2.65 ng/ml; n = 158). ELISA diluent reagents that included bovine serum albumin (BSA) significantly reduced MIF serum detection (p < 0.01). MIF mRNA was localized to prostatic epithelium in all samples, but cancer showed statistically greater MIF expression. MIF and its receptor (CD74) were localized to prostatic epithelium. Increased secreted MIF was detected in culture medium from prostate cancer cell lines (LNCaP and PC-3). Increased serum MIF was associated with prostate cancer. Diluent reagents that included BSA resulted in MIF serum immunoassay interference. In addition, significant amounts of complexed MIF (180 kDa under denaturing conditions by Western blot) found in the serum do not bind to the MIF capture antibody. Increased MIF mRNA expression was observed in prostatic

  14. Expression and significance of cyclooxygenase-2 mRNA in benign and malignant ascites

    Science.gov (United States)

    Lu, Jing; Li, Xiao-Feng; Kong, Li-Xia; Ma, Lin; Liao, Su-Huan; Jiang, Chang-You

    2013-01-01

    AIM: To investigate the mRNA expression of cyclooxygensae-2 (COX-2) in benign and malignant ascites, and to explore the difference in COX-2 mRNA expression among different diseases. METHODS: A total of 36 samples were collected from the Fifth Affiliated Hospital of Sun Yat-Sen University and divided into two experimental groups: benign ascites (n = 21) and malignant ascites (n = 15). Benign ascites included cirrhotic ascites (n = 10) and tuberculous ascites (n = 5). Malignant ascites included oophoroma (n = 7), cancer of colon (n = 5), cancer of the liver (n = 6), gastric cancer (n = 2), and bladder carcinoma (n = 1). The mRNA expression of COX-2 in ascites was examined with reverse transcriptase polymerase chain reaction (RT-PCR) technology, and the positive rate of COX-2 mRNA was compared between different diseases. RESULTS: The positive rate of COX-2 mRNA in malignant ascites was 42.9% (9/21), which was significantly higher than in benign ascites, 6.7% (1/15), difference being significant between these two groups (χ2 = 4.051, P = 0.044). The proportion of the positive rate in the malignant ascites was as follows: ovarian cancers 57.1% (4/7), colon cancer 40.0% (2/5), liver cancer 33.3% (2/6), gastric cancer 50.0% (1/2), and bladder cancer 0.00% (0/1). However, there was no significant difference in COX-2 mRNA expression among various tumors with malignant ascites (χ2 = 1.614, P = 0.806). Among the benign ascites, COX-2 mRNA levels were different between the tuberculous ascites (0/5) and cirrhotic ascites (1/10), but there was no significant difference (P = 1.000). CONCLUSION: COX-2 mRNA, detected by RT-PCR, is useful in the differential diagnosis of benign and malignant ascites, which also has potential value in the clinical diagnosis of tumors. PMID:24187465

  15. Peripheral mononuclear cell resistin mRNA expression is increased in type 2 diabetic women.

    Science.gov (United States)

    Tsiotra, Panayoula C; Tsigos, Constantine; Anastasiou, Eleni; Yfanti, Eleni; Boutati, Eleni; Souvatzoglou, Emmanouil; Kyrou, Ioannis; Raptis, Sotirios A

    2008-01-01

    Resistin has been shown to cause insulin resistance and to impair glucose tolerance in rodents, but in humans its physiological role still remains elusive. The aim of this study was to examine whether resistin mRNA expression in human peripheral mononuclear cells (PBMCs) and its corresponding plasma levels are altered in type 2 diabetes. Resistin mRNA levels were easily detectable in human PBMC, and found to be higher in DM2 compared to healthy women (P = .05). Similarly, mononuclear mRNA levels of the proinflammatory cytokines IL-1beta, TNF-alpha, and IL-6 were all significantly higher in DM2 compared to control women (P DM2 women (P = .051), and overall, they correlated significantly with BMI (r = 0.406, P = .010) and waist circumference (r = 0.516, P = .003), but not with fasting insulin levels or HOMA-IR. Resistin mRNA expression is increased in PBMC from DM2 women, together with increased expression of the inflammatory cytokines IL-1beta, TNF-alpha, and IL-6, independent of obesity. These results suggest that resistin and cytokines might contribute to the low-grade inflammation and the increased atherogenic risk observed in these patients.

  16. Peripheral Mononuclear Cell Resistin mRNA Expression Is Increased in Type 2 Diabetic Women

    Directory of Open Access Journals (Sweden)

    Panayoula C. Tsiotra

    2008-01-01

    Full Text Available Resistin has been shown to cause insulin resistance and to impair glucose tolerance in rodents, but in humans its physiological role still remains elusive. The aim of this study was to examine whether resistin mRNA expression in human peripheral mononuclear cells (PBMCs and its corresponding plasma levels are altered in type 2 diabetes. Resistin mRNA levels were easily detectable in human PBMC, and found to be higher in DM2 compared to healthy women (P=.05. Similarly, mononuclear mRNA levels of the proinflammatory cytokines IL-1β, TNF-α, and IL-6 were all significantly higher in DM2 compared to control women (P<.001. The corresponding plasma resistin levels were slightly, but not significantly, increased in DM2 women (P=.051, and overall, they correlated significantly with BMI (r=0.406, P=.010 and waist circumference (r=0.516, P=.003, but not with fasting insulin levels or HOMA-IR. Resistin mRNA expression is increased in PBMC from DM2 women, together with increased expression of the inflammatory cytokines IL-1β, TNF-α, and IL-6, independent of obesity. These results suggest that resistin and cytokines might contribute to the low-grade inflammation and the increased atherogenic risk observed in these patients.

  17. CD1 molecule expression on human monocytes induced by granulocyte-macrophage colony-stimulating factor.

    Science.gov (United States)

    Kasinrerk, W; Baumruker, T; Majdic, O; Knapp, W; Stockinger, H

    1993-01-15

    In this paper we demonstrate that granulocyte-macrophage CSF (GM-CSF) specifically induces the expression of CD1 molecules, CD1a, CD1b and CD1c, upon human monocytes. CD1 molecules appeared upon monocytes on day 1 of stimulation with rGM-CSF, and expression was up-regulated until day 3. Monocytes cultured in the presence of LPS, FMLP, PMA, recombinant granulocyte-CSF, rIFN-gamma, rTNF-alpha, rIL-1 alpha, rIL-1 beta, and rIL-6 remained negative. The induction of CD1 molecules by rGM-CSF was restricted to monocytes, since no such effect was observed upon peripheral blood granulocytes, PBL, and the myeloid cell lines Monomac1, Monomac6, MV4/11, HL60, U937, THP1, KG1, and KG1A. CD1a mRNA was detectable in rGM-CSF-induced monocytes but not in those freshly isolated. SDS-PAGE and immunoblotting analyses of CD1a mAb VIT6 immunoprecipitate from lysate of rGM-CSF-activated monocytes revealed an appropriate CD1a polypeptide band of 49 kDa associated with beta 2-microglobulin. Expression of CD1 molecules on monocytes complements the distribution of these structures on accessory cells, and their specific induction by GM-CSF strengthens the suggestion that CD1 is a family of crucial structures required for interaction between accessory cells and T cells.

  18. Further evidence for increased macrophage migration inhibitory factor expression in prostate cancer

    Directory of Open Access Journals (Sweden)

    Iczkowski Kenneth A

    2005-07-01

    Full Text Available Abstract Background Macrophage migration inhibitory factor (MIF is a cytokine associated with prostate cancer, based on histologic evidence and circulating (serum levels. Recent studies from another laboratory failed to document these results. This study's aims were to extend and confirm our previous data, as well as to define possible mechanisms for the discrepant results. Additional aims were to examine MIF expression, as well as the location of MIF's receptor, CD74, in human prostatic adenocarcinoma compared to matched benign prostate. Methods MIF amounts were determined in random serum samples remaining following routine PSA screening by ELISA. Native, denaturing and reducing polyacrylamide gels and Western blot analyses determined the MIF form in serum. Prostate tissue arrays were processed for MIF in situ hybridization and immunohistochemistry for MIF and CD74. MIF released into culture medium from normal epithelial, LNCaP and PC-3 cells was detected by Western blot analysis. Results Median serum MIF amounts were significantly elevated in prostate cancer patients (5.87 ± 3.91 ng/ml; ± interquartile range; n = 115 compared with patients with no documented diagnosis of prostate cancer (2.19 ± 2.65 ng/ml; n = 158. ELISA diluent reagents that included bovine serum albumin (BSA significantly reduced MIF serum detection (p Conclusion Increased serum MIF was associated with prostate cancer. Diluent reagents that included BSA resulted in MIF serum immunoassay interference. In addition, significant amounts of complexed MIF (180 kDa under denaturing conditions by Western blot found in the serum do not bind to the MIF capture antibody. Increased MIF mRNA expression was observed in prostatic adenocarcinoma compared to benign tissue from matched samples, supporting our earlier finding of increased MIF gene expression in prostate cancer.

  19. Inhibition of EMMPRIN and MMP-9 Expression by Epigallocatechin-3-Gallate through 67-kDa Laminin Receptor in PMA-Induced Macrophages.

    Science.gov (United States)

    Wang, Qi-Ming; Wang, Hao; Li, Ya-Fei; Xie, Zhi-Yong; Ma, Yao; Yan, Jian-Jun; Gao, Yi Fan Wei; Wang, Ze-Mu; Wang, Lian-Sheng

    2016-01-01

    It is well documented that overexpression of EMMPRIN (extracellular matrix metalloproteinase inducer) and MMPs (matrix metalloproteinases) by monocytes/macrophages plays an important role in atherosclerotic plaque rupture. Green tea polyphenol epigallocatechin-3-gallate (EGCG) has a variety of pharmacological properties and exerts cardiovascular protective effects. Recently, the 67-kD laminin receptor (67LR) has been identified as a cell surface receptor of EGCG. The aim of the present study was to evaluate the effects of EGCG on the expression of EMMPRIN and MMP-9 in PMA-induced macrophages, and the potential mechanisms underlying its effects. Human monocytic THP-1 cells were induced to differentiate into macrophages with phorbol 12-myristate 13-acetate (PMA). Protein expression and MMP-9 activity were assayed by Western blot and Gelatin zymography, respectively. Real-time PCR was used to examine EMMPRIN and MMP-9 mRNA expression. We showed that EGCG (10-50µmol/L) significantly inhibited the expression of EMMPRIN and MMP-9 and activation of extracellular signal-regulated kinase 1/2 (ERK1/2), p38 and c-Jun N-terminal kinase (JNK) in PMA-induced macrophages. Downregulation of EMMPRIN by gene silencing hindered PMA-induced MMP-9 secretion and expression, indicating an important role of EMMPRIN in the inhibition of MMP-9 by EGCG. Moreover, 67LR was involved in EGCG-mediated suppression of EMMPRIN and MMP-9 expression. Anti-67LR antibody treatment led to abrogation of the inhibitory action of EGCG on the expression of EMMPRIN and MMP-9 and activation of ERK1/2, p38, and JNK. Our results indicate that EGCG restrains EMMPRIN and MMP-9 expression via 67LR in PMA-induced macrophages, which also suggests that EGCG may be a possible therapeutic agent for stabilizing atherosclerotic plaque. © 2016 The Author(s) Published by S. Karger AG, Basel.

  20. Inhibition of EMMPRIN and MMP-9 Expression by Epigallocatechin-3-Gallate through 67-kDa Laminin Receptor in PMA-Induced Macrophages

    Directory of Open Access Journals (Sweden)

    Qi-Ming Wang

    2016-11-01

    Full Text Available Background/Aims: It is well documented that overexpression of EMMPRIN (extracellular matrix metalloproteinase inducer and MMPs (matrix metalloproteinases by monocytes/macrophages plays an important role in atherosclerotic plaque rupture. Green tea polyphenol epigallocatechin-3-gallate (EGCG has a variety of pharmacological properties and exerts cardiovascular protective effects. Recently, the 67-kD laminin receptor (67LR has been identified as a cell surface receptor of EGCG. The aim of the present study was to evaluate the effects of EGCG on the expression of EMMPRIN and MMP-9 in PMA-induced macrophages, and the potential mechanisms underlying its effects. Methods: Human monocytic THP-1 cells were induced to differentiate into macrophages with phorbol 12-myristate 13-acetate (PMA. Protein expression and MMP-9 activity were assayed by Western blot and Gelatin zymography, respectively. Real-time PCR was used to examine EMMPRIN and MMP-9 mRNA expression. Results: We showed that EGCG (10-50µmol/L significantly inhibited the expression of EMMPRIN and MMP-9 and activation of extracellular signal-regulated kinase 1/2 (ERK1/2, p38 and c-Jun N-terminal kinase (JNK in PMA-induced macrophages. Downregulation of EMMPRIN by gene silencing hindered PMA-induced MMP-9 secretion and expression, indicating an important role of EMMPRIN in the inhibition of MMP-9 by EGCG. Moreover, 67LR was involved in EGCG-mediated suppression of EMMPRIN and MMP-9 expression. Anti-67LR antibody treatment led to abrogation of the inhibitory action of EGCG on the expression of EMMPRIN and MMP-9 and activation of ERK1/2, p38, and JNK. Conclusion: Our results indicate that EGCG restrains EMMPRIN and MMP-9 expression via 67LR in PMA-induced macrophages, which also suggests that EGCG may be a possible therapeutic agent for stabilizing atherosclerotic plaque.

  1. Elevated COX2 expression and PGE2 production by downregulation of RXRα in senescent macrophages

    International Nuclear Information System (INIS)

    Chen, Huimin; Ma, Feng; Hu, Xiaona; Jin, Ting; Xiong, Chuhui; Teng, Xiaochun

    2013-01-01

    Highlights: •Downregulation of RXRα in senescent macrophage. •RXRα suppresses NF-κB activity and COX2 expression. •Increased PGE2 production due to downregulation of RXRα. -- Abstract: Increased systemic level of inflammatory cytokines leads to numerous age-related diseases. In senescent macrophages, elevated prostaglandin E2 (PGE2) production contributes to the suppression of T cell function with aging, which increases the susceptibility to infections. However, the regulation of these inflammatory cytokines and PGE2 with aging still remains unclear. We have verified that cyclooxygenase (COX)-2 expression and PGE2 production are higher in LPS-stimulated macrophages from old mice than that from young mice. Downregulation of RXRα, a nuclear receptor that can suppress NF-κB activity, mediates the elevation of COX2 expression and PGE2 production in senescent macrophages. We also have found less induction of ABCA1 and ABCG1 by RXRα agonist in senescent macrophages, which partially accounts for high risk of atherosclerosis in aged population. Systemic treatment with RXRα antagonist HX531 in young mice increases COX2, TNF-α, and IL-6 expression in splenocytes. Our study not only has outlined a mechanism of elevated NF-κB activity and PGE2 production in senescent macrophages, but also provides RXRα as a potential therapeutic target for treating the age-related diseases

  2. Localization of macrophage inflammatory protein : Macrophage inflammatory PROTEIN-1 expression in rat brain after peripheral administration of lipopolysaccharide and focal cerebral ischemia

    NARCIS (Netherlands)

    Gourmala, NG; Limonta, S; Bochelen, D; Sauter, A; Boddeke, HWGM

    Macrophage inflammatory protein is a member of the C-C subfamily of chemokines, which exhibits, in addition to proinflammatory activities, a potent endogenous pyrogen activity. In this study, we analysed the time-course of expression and cellular source of macrophage inflammatory protein-1 alpha and

  3. Quantitative Evaluation of Macrophage Expression Using CD68 in ...

    African Journals Online (AJOL)

    Statistical analysis was carried out using the Statistical Package for Social Sciences (SPSS) 17.0 version (SPSS Inc., Chicago, IL, USA). Results: OSMF was observed in male patients of a younger age group. The macrophage number in the patients of intermediate and advanced stage of OSMF was higher than that of the ...

  4. Rhythmic expression of Nocturnin mRNA in multiple tissues of the mouse

    Directory of Open Access Journals (Sweden)

    Green Carla B

    2001-05-01

    Full Text Available Abstract Background Nocturnin was originally identified by differential display as a circadian clock regulated gene with high expression at night in photoreceptors of the African clawed frog, Xenopus laevis. Although encoding a novel protein, the nocturnin cDNA had strong sequence similarity with a C-terminal domain of the yeast transcription factor CCR4, and with mouse and human ESTs. Since its original identification others have cloned mouse and human homologues of nocturnin/CCR4, and we have cloned a full-length cDNA from mouse retina, along with partial cDNAs from human, cow and chicken. The goal of this study was to determine the temporal pattern of nocturnin mRNA expression in multiple tissues of the mouse. Results cDNA sequence analysis revealed a high degree of conservation among vertebrate nocturnin/CCR4 homologues along with a possible homologue in Drosophila. Northern analysis of mRNA in C3H/He and C57/Bl6 mice revealed that the mNoc gene is expressed in a broad range of tissues, with greatest abundance in liver, kidney and testis. mNoc is also expressed in multiple brain regions including suprachiasmatic nucleus and pineal gland. Furthermore, mNoc exhibits circadian rhythmicity of mRNA abundance with peak levels at the time of light offset in the retina, spleen, heart, kidney and liver. Conclusion The widespread expression and rhythmicity of mNoc mRNA parallels the widespread expression of other circadian clock genes in mammalian tissues, and suggests that nocturnin plays an important role in clock function or as a circadian clock effector.

  5. Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A

    International Nuclear Information System (INIS)

    Liu, Yanzhen; Mei, Chenfang; Liu, Hao; Wang, Hongsheng; Zeng, Guoqu; Lin, Jianhui; Xu, Meiying

    2014-01-01

    Highlights: • Effects of BPA on the cytokines expression of human macrophages were investigated. • BPA increased pro-inflammation cytokines TNF-α and IL-6 production. • BPA decreased anti-inflammation IL-10 and TGF-β production. • ERα/β/ERK/NF-κB signaling involved in BPA-mediated cytokines expression. - Abstract: Exposure to environmental endocrine-disrupting chemical Bisphenol-A (BPA) is often associated with dysregulated immune homeostasis, but the mechanisms remain unclear. In the present study, the effects of BPA on the cytokines responses of human macrophages were investigated. Treatment with BPA increased pro-inflammation cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production, but decreased anti-inflammation cytokines interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) production in THP1 macrophages, as well as in primary human macrophages. BPA effected cytokines expression through estrogen receptor α/β (ERα/β)-dependent mechanism with the evidence of ERα/β antagonist reversed the expression of cytokines. We also identified that activation of extracellular regulated protein kinases (ERK)/nuclear factor κB (NF-κB) signal cascade marked the effects of BPA on cytokines expression. Our results indicated that BPA effected inflammatory responses of macrophages via modulating of cytokines expression, and provided a new insight into the link between exposure to BPA and human health

  6. Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanzhen; Mei, Chenfang [State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070 (China); Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070 (China); Liu, Hao [Affiliated Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou 510095 (China); Wang, Hongsheng [Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Zeng, Guoqu; Lin, Jianhui [State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070 (China); Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070 (China); Xu, Meiying, E-mail: xumy@gdim.cn [State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070 (China); Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070 (China)

    2014-09-05

    Highlights: • Effects of BPA on the cytokines expression of human macrophages were investigated. • BPA increased pro-inflammation cytokines TNF-α and IL-6 production. • BPA decreased anti-inflammation IL-10 and TGF-β production. • ERα/β/ERK/NF-κB signaling involved in BPA-mediated cytokines expression. - Abstract: Exposure to environmental endocrine-disrupting chemical Bisphenol-A (BPA) is often associated with dysregulated immune homeostasis, but the mechanisms remain unclear. In the present study, the effects of BPA on the cytokines responses of human macrophages were investigated. Treatment with BPA increased pro-inflammation cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production, but decreased anti-inflammation cytokines interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) production in THP1 macrophages, as well as in primary human macrophages. BPA effected cytokines expression through estrogen receptor α/β (ERα/β)-dependent mechanism with the evidence of ERα/β antagonist reversed the expression of cytokines. We also identified that activation of extracellular regulated protein kinases (ERK)/nuclear factor κB (NF-κB) signal cascade marked the effects of BPA on cytokines expression. Our results indicated that BPA effected inflammatory responses of macrophages via modulating of cytokines expression, and provided a new insight into the link between exposure to BPA and human health.

  7. Group II intron inhibits conjugative relaxase expression in bacteria by mRNA targeting

    Science.gov (United States)

    Piazza, Carol Lyn; Smith, Dorie

    2018-01-01

    Group II introns are mobile ribozymes that are rare in bacterial genomes, often cohabiting with various mobile elements, and seldom interrupting housekeeping genes. What accounts for this distribution has not been well understood. Here, we demonstrate that Ll.LtrB, the group II intron residing in a relaxase gene on a conjugative plasmid from Lactococcus lactis, inhibits its host gene expression and restrains the naturally cohabiting mobile element from conjugative horizontal transfer. We show that reduction in gene expression is mainly at the mRNA level, and results from the interaction between exon-binding sequences (EBSs) in the intron and intron-binding sequences (IBSs) in the mRNA. The spliced intron targets the relaxase mRNA and reopens ligated exons, causing major mRNA loss. Taken together, this study provides an explanation for the distribution and paucity of group II introns in bacteria, and suggests a potential force for those introns to evolve into spliceosomal introns. PMID:29905149

  8. Aging alters mRNA expression of amyloid transporter genes at the blood-brain barrier.

    Science.gov (United States)

    Osgood, Doreen; Miller, Miles C; Messier, Arthur A; Gonzalez, Liliana; Silverberg, Gerald D

    2017-09-01

    Decreased clearance of potentially toxic metabolites, due to aging changes, likely plays a significant role in the accumulation of amyloid-beta (Aβ) peptides and other macromolecules in the brain of the elderly and in the patients with Alzheimer's disease (AD). Aging is the single most important risk factor for AD development. Aβ transport receptor proteins expressed at the blood-brain barrier are significantly altered with age: the efflux transporters lipoprotein receptor-related protein 1 and P-glycoprotein are reduced, whereas the influx transporter receptor for advanced glycation end products is increased. These receptors play an important role in maintaining brain biochemical homeostasis. We now report that, in a rat model of aging, gene transcription is altered in aging, as measured by Aβ receptor gene messenger RNA (mRNA) at 3, 6, 9, 12, 15, 20, 30, and 36 months. Gene mRNA expression from isolated cerebral microvessels was measured by quantitative polymerase chain reaction. Lipoprotein receptor-related protein 1 and P-glycoprotein mRNA were significantly reduced in aging, and receptor for advanced glycation end products was increased, in parallel with the changes seen in receptor protein expression. Transcriptional changes appear to play a role in aging alterations in blood-brain barrier receptor expression and Aβ accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Local IGFBP-3 mRNA expression, apoptosis and risk of colorectal adenomas

    Directory of Open Access Journals (Sweden)

    Omofoye Oluwaseun

    2008-05-01

    Full Text Available Abstract Background IGF binding protein-3 (IGFBP-3 regulates the bioavailability of insulin-like growth factors I and II, and has both anti-proliferative and pro-apoptotic properties. Elevated plasma IGFBP-3 has been associated with reduced risk of colorectal cancer (CRC, but the role of tissue IGFBP-3 is not well defined. We evaluated the association between tissue or plasma IGFBP-3 and risk of colorectal adenomas or low apoptosis. Methods Subjects were consenting patients who underwent a clinically indicated colonoscopy at UNC Hospitals and provided information on diet and lifestyle. IGFBP-3 mRNA in normal colon was assessed by real time RT-PCR. Plasma IGFBP-3 was measured by ELISA and apoptosis was determined by morphology on H & E slides. Logistic regression was used to compute odds ratio (OR and 95% confidence intervals. Results We observed a modest correlation between plasma IGFBP-3 and tissue IGFBP-3 expression (p = 0.007. There was no significant association between plasma IGFBP-3 and adenomas or apoptosis. Tissue IGFBP-3 mRNA expression was significantly lower in cases than controls. Subjects in the lowest three quartiles of tissue IGFBP-3 gene expression were more likely to have adenomas. Consistent with previous reports, low apoptosis was significantly associated with increased risk of adenomas (p = 0.003. Surprisingly, local IGFBP-3 mRNA expression was inversely associated with apoptosis. Conclusion Low expression of IGFBP-3 mRNA in normal colonic mucosa predicts increased risk of adenomas. Our findings suggest that local IGFBP-3 in the colon may directly increase adenoma risk but IGFBP-3 may act through a pathway other than apoptosis to influence adenoma risk.

  10. Combining miRNA and mRNA Expression Profiles in Wilms Tumor Subtypes

    Directory of Open Access Journals (Sweden)

    Nicole Ludwig

    2016-03-01

    Full Text Available Wilms tumor (WT is the most common childhood renal cancer. Recent findings of mutations in microRNA (miRNA processing proteins suggest a pivotal role of miRNAs in WT genesis. We performed miRNA expression profiling of 36 WTs of different subtypes and four normal kidney tissues using microarrays. Additionally, we determined the gene expression profile of 28 of these tumors to identify potentially correlated target genes and affected pathways. We identified 85 miRNAs and 2107 messenger RNAs (mRNA differentially expressed in blastemal WT, and 266 miRNAs and 1267 mRNAs differentially expressed in regressive subtype. The hierarchical clustering of the samples, using either the miRNA or mRNA profile, showed the clear separation of WT from normal kidney samples, but the miRNA pattern yielded better separation of WT subtypes. A correlation analysis of the deregulated miRNA and mRNAs identified 13,026 miRNA/mRNA pairs with inversely correlated expression, of which 2844 are potential interactions of miRNA and their predicted mRNA targets. We found significant upregulation of miRNAs-183, -301a/b and -335 for the blastemal subtype, and miRNAs-181b, -223 and -630 for the regressive subtype. We found marked deregulation of miRNAs regulating epithelial to mesenchymal transition, especially in the blastemal subtype, and miRNAs influencing chemosensitivity, especially in regressive subtypes. Further research is needed to assess the influence of preoperative chemotherapy and tumor infiltrating lymphocytes on the miRNA and mRNA patterns in WT.

  11. Local IGFBP-3 mRNA expression, apoptosis and risk of colorectal adenomas

    International Nuclear Information System (INIS)

    Keku, Temitope O; Sandler, Robert S; Simmons, James G; Galanko, Joseph; Woosley, John T; Proffitt, Michelle; Omofoye, Oluwaseun; McDoom, Maya; Lund, Pauline K

    2008-01-01

    IGF binding protein-3 (IGFBP-3) regulates the bioavailability of insulin-like growth factors I and II, and has both anti-proliferative and pro-apoptotic properties. Elevated plasma IGFBP-3 has been associated with reduced risk of colorectal cancer (CRC), but the role of tissue IGFBP-3 is not well defined. We evaluated the association between tissue or plasma IGFBP-3 and risk of colorectal adenomas or low apoptosis. Subjects were consenting patients who underwent a clinically indicated colonoscopy at UNC Hospitals and provided information on diet and lifestyle. IGFBP-3 mRNA in normal colon was assessed by real time RT-PCR. Plasma IGFBP-3 was measured by ELISA and apoptosis was determined by morphology on H & E slides. Logistic regression was used to compute odds ratio (OR) and 95% confidence intervals. We observed a modest correlation between plasma IGFBP-3 and tissue IGFBP-3 expression (p = 0.007). There was no significant association between plasma IGFBP-3 and adenomas or apoptosis. Tissue IGFBP-3 mRNA expression was significantly lower in cases than controls. Subjects in the lowest three quartiles of tissue IGFBP-3 gene expression were more likely to have adenomas. Consistent with previous reports, low apoptosis was significantly associated with increased risk of adenomas (p = 0.003). Surprisingly, local IGFBP-3 mRNA expression was inversely associated with apoptosis. Low expression of IGFBP-3 mRNA in normal colonic mucosa predicts increased risk of adenomas. Our findings suggest that local IGFBP-3 in the colon may directly increase adenoma risk but IGFBP-3 may act through a pathway other than apoptosis to influence adenoma risk

  12. Changes in Macrophage Gene Expression Associated with Leishmania (Viannia braziliensis Infection.

    Directory of Open Access Journals (Sweden)

    Clemencia Ovalle-Bracho

    Full Text Available Different Leishmania species cause distinct clinical manifestations of the infectious disease leishmaniasis. It is fundamentally important to understand the mechanisms governing the interaction between Leishmania and its host cell. Little is known about this interaction between Leishmania (Viannia braziliensis and human macrophages. In this study, we aimed to identify differential gene expression between non-infected and L. (V braziliensis-infected U937-derived macrophages. We deployed a whole human transcriptome microarray analysis using 72 hours post-infection samples and compared those samples with their non-infected counterparts. We found that 218 genes were differentially expressed between infected and non-infected macrophages. A total of 71.6% of these genes were down-regulated in the infected macrophages. Functional enrichment analyses identified the steroid and sterol/cholesterol biosynthetic processes between regulatory networks down-regulated in infected macrophages. RT-qPCR further confirmed this down-regulation in genes belonging to these pathways. These findings contrast with those from studies involving other Leishmania species at earlier infection stages, where gene up-regulation for this metabolic pathway has been reported. Sterol biosynthesis could be an important biological process associated with the expression profile of macrophages infected by L. (V. braziliensis. Differential transcriptional results suggest a negative regulation of the genetic regulatory network involved in cholesterol biosynthesis.

  13. Rift Valley fever virus NSS gene expression correlates with a defect in nuclear mRNA export.

    Science.gov (United States)

    Copeland, Anna Maria; Van Deusen, Nicole M; Schmaljohn, Connie S

    2015-12-01

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NSS gene, but not the N, GN or NSM genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NSS, confirming that expression of NSS is likely responsible for this phenomenon. Published by Elsevier Inc.

  14. Correlation of mRNA Expression and Signal Variability in Chronic Intracortical Electrodes.

    Science.gov (United States)

    Falcone, Jessica D; Carroll, Sheridan L; Saxena, Tarun; Mandavia, Dev; Clark, Alexus; Yarabarla, Varun; Bellamkonda, Ravi V

    2018-01-01

    The goal for this research was to identify molecular mechanisms that explain animal-to-animal variability in chronic intracortical recordings. Microwire electrodes were implanted into Sprague Dawley rats at an acute (1 week) and a chronic (14 weeks) time point. Weekly recordings were conducted, and action potentials were evoked in the barrel cortex by deflecting the rat's whiskers. At 1 and 14 weeks, tissue was collected, and mRNA was extracted. mRNA expression was compared between 1 and 14 weeks using a high throughput multiplexed qRT-PCR. Pearson correlation coefficients were calculated between mRNA expression and signal-to-noise ratios at 14 weeks. At 14 weeks, a positive correlation between signal-to-noise ratio (SNR) and NeuN and GFAP mRNA expression was observed, indicating a relationship between recording strength and neuronal population, as well as reactive astrocyte activity. The inflammatory state around the electrode interface was evaluated using M1-like and M2-like markers. Expression for both M1-like and M2-like mRNA markers remained steady from 1 to 14 weeks. Anti-inflammatory markers, CD206 and CD163, however, demonstrated a significant positive correlation with SNR quality at 14 weeks. VE-cadherin, a marker for adherens junctions, and PDGFR-β, a marker for pericytes, both partial representatives of blood-brain barrier health, had a positive correlation with SNR at 14 weeks. Endothelial adhesion markers revealed a significant increase in expression at 14 weeks, while CD45, a pan-leukocyte marker, significantly decreased at 14 weeks. No significant correlation was found for either the endothelial adhesion or pan-leukocyte markers. A positive correlation between anti-inflammatory and blood-brain barrier health mRNA markers with electrophysiological efficacy of implanted intracortical electrodes has been demonstrated. These data reveal potential mechanisms for further evaluation to determine potential target mechanisms to improve

  15. Autocrine HBEGF expression promotes breast cancer intravasation, metastasis and macrophage-independent invasion in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Z. N.; Sharma, V. P.; Beaty, B. T.; Roh-Johnson, M.; Peterson, E. A.; Van Rooijen, N.; Kenny, P. A.; Wiley, H. S.; Condeelis, J. S.; Segall, J. E.

    2014-10-13

    Increased expression of HBEGF in estrogen receptor-negative breast tumors is correlated with enhanced metastasis to distant organ sites and more rapid disease recurrence upon removal of the primary tumor. Our previous work has demonstrated a paracrine loop between breast cancer cells and macrophages in which the tumor cells are capable of stimulating macrophages through the secretion of colony-stimulating factor-1 while the tumor-associated macrophages (TAMs), in turn, aid in tumor cell invasion by secreting epidermal growth factor. To determine how the autocrine expression of epidermal growth factor receptor (EGFR) ligands by carcinoma cells would affect this paracrine loop mechanism, and in particular whether tumor cell invasion depends on spatial ligand gradients generated by TAMs, we generated cell lines with increased HBEGF expression. We found that autocrine HBEGF expression enhanced in vivo intravasation and metastasis and resulted in a novel phenomenon in which macrophages were no longer required for in vivo invasion of breast cancer cells. In vitro studies revealed that expression of HBEGF enhanced invadopodium formation, thus providing a mechanism for cell autonomous invasion. The increased invadopodium formation was directly dependent on EGFR signaling, as demonstrated by a rapid decrease in invadopodia upon inhibition of autocrine HBEGF/EGFR signaling as well as inhibition of signaling downstream of EGFR activation. HBEGF expression also resulted in enhanced invadopodium function via upregulation of matrix metalloprotease 2 (MMP2) and MMP9 expression levels. We conclude that high levels of HBEGF expression can short-circuit the tumor cell/macrophage paracrine invasion loop, resulting in enhanced tumor invasion that is independent of macrophage signaling.

  16. Anesthesia for euthanasia influences mRNA expression in healthy mice and after traumatic brain injury.

    Science.gov (United States)

    Staib-Lasarzik, Irina; Kriege, Oliver; Timaru-Kast, Ralph; Pieter, Dana; Werner, Christian; Engelhard, Kristin; Thal, Serge C

    2014-10-01

    Tissue sampling for gene expression analysis is usually performed under general anesthesia. Anesthetics are known to modulate hemodynamics, receptor-mediated signaling cascades, and outcome parameters. The present study determined the influence of anesthetic paradigms typically used for euthanization and tissue sampling on cerebral mRNA expression in mice. Naïve mice and animals with acute traumatic brain injury induced by controlled cortical impact (CCI) were randomized to the following euthanasia protocols (n=10-11/group): no anesthesia (NA), 1 min of 4 vol% isoflurane in room air (ISO), 3 min of a combination of 5 mg/kg midazolam, 0.05 mg/kg fentanyl, and 0.5 mg/kg medetomidine intraperitoneally (COMB), or 3 min of 360 mg/kg chloral hydrate intraperitoneally (CH). mRNA expression of actin-1-related gene (Act1), FBJ murine osteosarcoma viral oncogene homolog B (FosB), tumor necrosis factor alpha (TNFα), heat shock protein beta-1 (HspB1), interleukin (IL)-6, tight junction protein 1 (ZO-1), IL-1ß, cyclophilin A, micro RNA 497 (miR497), and small cajal body-specific RNA 17 were determined by real-time polymerase chain reaction (PCR) in hippocampus samples. In naïve animals, Act1 expression was downregulated in the CH group compared with NA. FosB expression was downregulated in COMB and CH groups compared with NA. CCI reduced Act1 and FosB expression, whereas HspB1 and TNFα expression increased. After CCI, HspB1 expression was significantly higher in ISO, COMB, and CH groups, and TNFα expression was elevated in ISO and COMB groups. MiR497, IL-6, and IL-1ß were upregulated after CCI but not affected by anesthetics. Effects were independent of absolute mRNA copy numbers. The data demonstrate that a few minutes of anesthesia before tissue sampling are sufficient to induce immediate mRNA changes, which seem to predominate in the early-regulated gene cluster. Anesthesia-related effects on gene expression might explain limited reproduciblity of real

  17. TLR Stimulation Dynamically Regulates Heme and Iron Export Gene Expression in Macrophages

    Directory of Open Access Journals (Sweden)

    Mary Philip

    2016-01-01

    Full Text Available Pathogenic bacteria have evolved multiple mechanisms to capture iron or iron-containing heme from host tissues or blood. In response, organisms have developed defense mechanisms to keep iron from pathogens. Very little of the body’s iron store is available as free heme; rather nearly all body iron is complexed with heme or other proteins. The feline leukemia virus, subgroup C (FeLV-C receptor, FLVCR, exports heme from cells. It was unknown whether FLVCR regulates heme-iron availability after infection, but given that other heme regulatory proteins are upregulated in macrophages in response to bacterial infection, we hypothesized that macrophages dynamically regulate FLVCR. We stimulated murine primary macrophages or macrophage cell lines with LPS and found that Flvcr is rapidly downregulated in a TLR4/MD2-dependent manner; TLR1/2 and TLR3 stimulation also decreased Flvcr expression. We identified several candidate TLR-activated transcription factors that can bind to the Flvcr promoter. Macrophages must balance the need to sequester iron from systemic circulating or intracellular pathogens with the macrophage requirement for heme and iron to produce reactive oxygen species. Our findings underscore the complexity of this regulation and point to a new role for FLVCR and heme export in macrophages responses to infection and inflammation.

  18. Extratumoral Heme Oxygenase-1 (HO-1 Expressing Macrophages Likely Promote Primary and Metastatic Prostate Tumor Growth.

    Directory of Open Access Journals (Sweden)

    Sofia Halin Bergström

    Full Text Available Aggressive tumors induce tumor-supporting changes in the benign parts of the prostate. One factor that has increased expression outside prostate tumors is hemoxygenase-1 (HO-1. To investigate HO-1 expression in more detail, we analyzed samples of tumor tissue and peritumoral normal prostate tissue from rats carrying cancers with different metastatic capacity, and human prostate cancer tissue samples from primary tumors and bone metastases. In rat prostate tumor samples, immunohistochemistry and quantitative RT-PCR showed that the main site of HO-1 synthesis was HO-1+ macrophages that accumulated in the tumor-bearing organ, and at the tumor-invasive front. Small metastatic tumors were considerably more effective in attracting HO-1+ macrophages than larger non-metastatic ones. In clinical samples, accumulation of HO-1+ macrophages was seen at the tumor invasive front, almost exclusively in high-grade tumors, and it correlated with the presence of bone metastases. HO-1+ macrophages, located at the tumor invasive front, were more abundant in bone metastases than in primary tumors. HO-1 expression in bone metastases was variable, and positively correlated with the expression of macrophage markers but negatively correlated with androgen receptor expression, suggesting that elevated HO-1 could be a marker for a subgroup of bone metastases. Together with another recent observation showing that selective knockout of HO-1 in macrophages reduced prostate tumor growth and metastatic capacity in animals, the results of this study suggest that extratumoral HO-1+ macrophages may have an important role in prostate cancer.

  19. UCP2 mRNA expression is dependent on glucose metabolism in pancreatic islets

    DEFF Research Database (Denmark)

    Dalgaard, Louise Torp

    2012-01-01

    Uncoupling Protein 2 (UCP2) is expressed in the pancreatic β-cell, where it partially uncouples the mitochondrial proton gradient, decreasing both ATP-production and glucose-stimulated insulin secretion (GSIS). Increased glucose levels up-regulate UCP2 mRNA and protein levels, but the mechanism f...... down-regulation of UCP2 is involved in preserving the insulin secretory capacity of GK mutant mice and might also be implicated in limiting disease progression in MODY2 patients....

  20. Promoter Methylation and mRNA Expression of Response Gene to Complement 32 in Breast Carcinoma

    International Nuclear Information System (INIS)

    Nasab, E. E.; Nasab, E. E.; Hashemi, M.; Rafighdoost, F.

    2016-01-01

    Response gene to complement 32 (RGC32), induced by activation of complements, has been characterized as a cell cycle regulator; however, its role in carcinogenesis is still controversial. In the present study we compared RGC32 promoter methylation patterns and mRNA expression in breast cancerous tissues and adjacent normal tissues. Materials and Methods. Sixty-three breast cancer tissues and 63 adjacent non neoplastic tissues were included in our study. Design. Nested methylation-specific polymerase chain reaction (Nested-MSP) and quantitative PCR (qPCR) were used to determine RGC32 promoter methylation status and its mRNA expression levels, respectively. Results. RGC32 methylation pattern was not different between breast cancerous tissue and adjacent non neoplastic tissue (OR=2.30, 95% CI=0.95-5.54). However, qPCR analysis displayed higher levels of RGC32 mRNA in breast cancerous tissues than in noncancerous tissues (1.073 versus 0.959; P=0.001), irrespective of the promoter methylation status. The expression levels and promoter methylation of RGC32 were not correlated with any of patients’ clinical characteristics (P>0.05).

  1. Impact of gastro-esophageal reflux on mucin mRNA expression in the esophageal mucosa.

    Science.gov (United States)

    van Roon, Aafke H C; Mayne, George C; Wijnhoven, Bas P L; Watson, David I; Leong, Mary P; Neijman, Gabriëlle E; Michael, Michael Z; McKay, Andrew R; Astill, David; Hussey, Damian J

    2008-08-01

    Changes in the expression of mucin genes in the esophageal mucosa associated with uncomplicated gastro-esophageal reflux disease have not been evaluated even though such changes could be associated with reflux-induced mucosal damage. We therefore sought to identify reflux-induced changes in mucin gene expression using a cell line and biopsies from the esophageal mucosa in patients with and without reflux. MUC-1, MUC-3, MUC-4, and MUC-5AC gene expressions were investigated in the HET-1A cell line following exposure to acid (pH 4) and/or bile (120 muM of a bile salt milieu), and in esophageal mucosal biopsies from controls, subjects with non-erosive gastro-esophageal reflux, and subjects with reflux associated with ulcerative esophagitis (erosive). The mucosal biopsies were also evaluated for IL-6 mRNA expression (inflammatory marker) and CK-14 mRNA expression (mucosal basal cell layer marker). Gene expression was determined using real-time reverse transcriptase-polymerase chain reaction analysis. In the cell line studies, there were differences in mRNA levels for all of the evaluated mucins following treatment with either acid or the acid and bile combination. In the studies which evaluated tissue specimens, IL-6 and CK-14 mRNA levels increased according to degree of reflux pathology. The expression of MUC-1 and MUC-4 in mucosa from patients with erosive reflux was lower than in subjects without reflux and in patients with non-erosive reflux, whereas the expression of MUC-3 and MUC-5AC was increased (although these differences did not reach significance at p reflux groups. The correlation between IL-6 and MUC-3 was significant within the control and erosive reflux groups, and the correlation between MUC-1 and MUC-5AC was significant within the erosive reflux group. The results of this study suggest that the profile of mucin expression in the esophageal mucosa is influenced by the pH and composition of the gastro-esophageal reflux. Further work should explore the

  2. HFE mRNA expression is responsive to intracellular and extracellular iron loading: short communication.

    Science.gov (United States)

    Mehta, Kosha J; Farnaud, Sebastien; Patel, Vinood B

    2017-10-01

    In liver hepatocytes, the HFE gene regulates cellular and systemic iron homeostasis by modulating cellular iron-uptake and producing the iron-hormone hepcidin in response to systemic iron elevation. However, the mechanism of iron-sensing in hepatocytes remain enigmatic. Therefore, to study the effect of iron on HFE and hepcidin (HAMP) expressions under distinct extracellular and intracellular iron-loading, we examined the effect of holotransferrin treatment (1, 2, 5 and 8 g/L for 6 h) on intracellular iron levels, and mRNA expressions of HFE and HAMP in wild-type HepG2 and previously characterized iron-loaded recombinant-TfR1 HepG2 cells. Gene expression was analyzed by real-time PCR and intracellular iron was measured by ferrozine assay. Data showed that in the wild-type cells, where intracellular iron content remained unchanged, HFE expression remained unaltered at low holotransferrin treatments but was upregulated upon 5 g/L (p HFE and HAMP expressions were elevated only at low 1 g/L treatment (p HFE (p HFE mRNA was independently elevated by extracellular and intracellular iron-excess. Thus, it may be involved in sensing both, extracellular and intracellular iron. Repression of HAMP expression under simultaneous intracellular and extracellular iron-loading resembles non-hereditary iron-excess pathologies.

  3. Induced expression of mRNA for IL-5, IL-6, TNF-alpha, MIP-2 and IFN-gamma in immunologically activated rat peritoneal mast cells: inhibition by dexamethasone and cyclosporin A.

    Science.gov (United States)

    Williams, C M; Coleman, J W

    1995-10-01

    We examined the capacity of purified rat peritoneal connective tissue-type mast cells (PMC) to express mRNA for several cytokines. Stimulation of PMC with anti-IgE for 4 hr induced the expression of mRNA encoding interleukin-5 (IL-5), IL-6, tumour necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Unstimulated PMC expressed detectable mRNA for TNF-alpha but not for the other four cytokines. Incubation of PMC with cyclosporin A (CsA) or dexamethasone (DEX), each at 10(-6) M for 24 hr, significantly inhibited the induced expression of mRNA for each of the five cytokines, and also inhibited release of biologically active TNF-alpha. Throughout these experiments mRNA levels of the housekeeping gene G3PDH were not altered by stimulation with anti-IgE or incubation with CsA or DEX. We conclude that immunological activation of rat PMC induces gene expression of several cytokines and that expression of these genes can be inhibited by immunosuppressive drugs.

  4. Telomerase Activation in Atherosclerosis and Induction of Telomerase Reverse Transcriptase Expression by Inflammatory Stimuli in Macrophages

    Science.gov (United States)

    Gizard, Florence; Heywood, Elizabeth B.; Findeisen, Hannes M.; Zhao, Yue; Jones, Karrie L.; Cudejko, Cèline; Post, Ginell R.; Staels, Bart; Bruemmer, Dennis

    2010-01-01

    Objective Telomerase serves as a critical regulator of tissue renewal. Although telomerase activity is inducible in response to various environmental cues, it remains unknown whether telomerase is activated during the inflammatory remodeling underlying atherosclerosis formation. To address this question, we investigated in the present study the regulation of telomerase in macrophages and during atherosclerosis development in LDL-receptor-deficient mice. Methods and Results We demonstrate that inflammatory stimuli activate telomerase in macrophages by inducing the expression of the catalytic subunit telomerase reverse transcriptase (TERT). Reporter and chromatin immunoprecipitation assays identified a previously unrecognized NF-κB response element in the TERT promoter, to which NF-κB is recruited during inflammation. Inhibition of NF-κB signaling completely abolished the induction of TERT expression, characterizing TERT as a bona fide NF-κB target gene. Furthermore, functional experiments revealed that TERT-deficiency results in a senescent cell phenotype. Finally, we demonstrate high levels of TERT expression in macrophages of human atherosclerotic lesions and establish that telomerase is activated during atherosclerosis development in LDL-receptor-deficient mice. Conclusion These results characterize TERT as a previously unrecognized NF-κB target gene in macrophages and demonstrate that telomerase is activated during atherosclerosis. This induction of TERT expression prevents macrophage senescence and may have important implications for the development of atherosclerosis. PMID:21106948

  5. Seasonal relationship between gonadotropin, growth hormone, and estrogen receptor mRNA expression in the pituitary gland of largemouth bass.

    Science.gov (United States)

    Martyniuk, Christopher J; Kroll, Kevin J; Porak, Wesley F; Steward, Cheree; Grier, Harry J; Denslow, Nancy D

    2009-09-15

    The objectives of this study were to investigate the seasonal changes in pituitary gonadotropins, growth hormone (GH), and estrogen receptor (ER) isoform mRNA in wild female and male largemouth bass (LMB) (Micropterus salmoides) from an unpolluted habitat to better understand reproductive physiology in this ecologically important species. Female pituitary luteinizing hormone (LH) beta subunit and follicle stimulating hormone (FSH) beta subunit mRNA showed significant seasonal variation with levels peaking from January to April and were lowest from May to August. Male LMB showed more variation in gonadotropin subunit expression from month to month. Females had approximately 2-3 times higher gonadotropin mRNA levels in the pituitary when compared to males. All three gonadotropin mRNAs in females were positively correlated to gonadosomatic index (GSI), but only LHbeta mRNA was correlated to GSI in males. Gonadotropin mRNA expression also increased with increasing oocyte and sperm maturation. Gonadotropin beta subunit mRNA expression was positively correlated to GH mRNA in both sexes. The expression of all three ER isoforms was significantly correlated to each other in both sexes. The concurrent increase in all three ER mRNA isoforms with increasing gonadotropin mRNA in females and males suggests a prominent role for E2 feedback on pituitary gonadotropin synthesis in both sexes and that each of the three ER isoforms are likely to play a role in the pituitary during teleost reproduction.

  6. Regulation of mouse hepatic CYP2D9 mRNA expression by growth and adrenal hormones.

    Science.gov (United States)

    Jarukamjorn, Kanokwan; Sakuma, Tsutomu; Jaruchotikamol, Atika; Oguro, Miki; Nemoto, Nobuo

    2006-02-01

    The constitutive expression of CYP2D9 is sexually dimorphic, namely, strong in males, but diminutive in females. Repetition of mimic growth hormone (GH) secretion pattern impressively returned the mRNA expression level to that in intact mice: the GH secretion pattern's regulation of CYP2D9 mRNA expression has been predominantly disrupted by exogenous GH-administration. The extensive decline of CYP2D9 mRNA expression becoming a sexually non-specific P450 in 9-week-old male mice exposed as neonates to monosodium L-glutamate (MSG) suggested that the male GH secretion pattern is a key to the regulation of male-specific CYP2D9 mRNA expression in adult mice. Dexamethasone (Dex) showed possibility to induce CYP2D9 mRNA expression in adult MSG-neonatally treated mice of either sex. However, the antagonism was observed by co-administration of Dex and GH in the males. Dex-administration in adrenalectomized mice significantly elevated CYP2D9 mRNA expression levels. These findings suggest that an adrenal hormone participates in the regulatory mechanism of CYP2D9 mRNA expression in association with GH.

  7. Notch signaling regulates expression of Mcl-1 and apoptosis in PPD-treated macrophages.

    Science.gov (United States)

    Palaga, Tanapat; Ratanabunyong, Siriluk; Pattarakankul, Thitiporn; Sangphech, Naunpun; Wongchana, Wipawee; Hadae, Yukihiro; Kueanjinda, Patipark

    2013-09-01

    Macrophages are cellular targets for infection by bacteria and viruses. The fate of infected macrophages plays a key role in determining the outcome of the host immune response. Apoptotic cell death of macrophages is considered to be a protective host defense that eliminates pathogens and infected cells. In this study, we investigated the involvement of Notch signaling in regulating apoptosis in macrophages treated with tuberculin purified protein derivative (PPD). Murine bone marrow-derived macrophages (BMMs) treated with PPD or infected with Mycobacterium bovis Bacillus Calmette-Guérin (BCG) induced upregulation of Notch1. This upregulation correlated well with the upregulation of the anti-apoptotic gene mcl-1 both at the transcriptional and translational levels. Decreased levels of Notch1 and Mcl-1 were observed in BMM treated with PPD when a gamma secretase inhibitor (GSI), which inhibits the processing of Notch receptors, was used. Moreover, silencing Notch1 in the macrophage-like cell line RAW264.7 decreased Mcl-1 protein expression, suggesting that Notch1 is critical for Mcl-1 expression in macrophages. A significant increase in apoptotic cells was observed upon treatment of BMM with PPD in the presence of GSI compared to the vehicle-control treated cells. Finally, analysis of the mcl-1 promoter in humans and mice revealed a conserved potential CSL/RBP-Jκ binding site. The association of Notch1 with the mcl-1 promoter was confirmed by chromatin immunoprecipitation. Taken together, these results indicate that Notch1 inhibits apoptosis of macrophages stimulated with PPD by directly controlling the mcl-1 promoter.

  8. Cyclophilin B attenuates the expression of TNF-α in lipopolysaccharide-stimulated macrophages through the induction of B cell lymphoma-3.

    Science.gov (United States)

    Marcant, Adeline; Denys, Agnès; Melchior, Aurélie; Martinez, Pierre; Deligny, Audrey; Carpentier, Mathieu; Allain, Fabrice

    2012-08-15

    Extracellular cyclophilin A (CyPA) and CyPB have been well described as chemotactic factors for various leukocyte subsets, suggesting their contribution to inflammatory responses. Unlike CyPA, CyPB accumulates in extracellular matrixes, from which it is released by inflammatory proteases. Hence, we hypothesized that it could participate in tissue inflammation by regulating the activity of macrophages. In the current study, we confirmed that CyPB initiated in vitro migration of macrophages, but it did not induce production of proinflammatory cytokines. In contrast, pretreatment of macrophages with CyPB attenuated the expression of inflammatory mediators induced by LPS stimulation. The expression of TNF-α mRNA was strongly reduced after exposure to CyPB, but it was not accompanied by significant modification in LPS-induced activation of MAPK and NF-κB pathways. LPS activation of a reporter gene under the control of TNF-α gene promoter was also markedly decreased in cells treated with CyPB, suggesting a transcriptional mechanism of inhibition. Consistent with this hypothesis, we found that CyPB induced the expression of B cell lymphoma-3 (Bcl-3), which was accompanied by a decrease in the binding of NF-κB p65 to the TNF-α promoter. As expected, interfering with the expression of Bcl-3 restored cell responsiveness to LPS, thus confirming that CyPB acted by inhibiting initiation of TNF-α gene transcription. Finally, we found that CyPA was not efficient in attenuating the production of TNF-α from LPS-stimulated macrophages, which seemed to be due to a modest induction of Bcl-3 expression. Collectively, these findings suggest an unexpected role for CyPB in attenuation of the responses of proinflammatory macrophages.

  9. Tumor associated CD70 expression is involved in promoting tumor migration and macrophage infiltration in GBM.

    Science.gov (United States)

    Ge, Haitao; Mu, Luyan; Jin, Linchun; Yang, Changlin; Chang, Yifan Emily; Long, Yu; DeLeon, Gabriel; Deleyrolle, Loic; Mitchell, Duane A; Kubilis, Paul S; Lu, Dunyue; Qi, Jiping; Gu, Yunhe; Lin, Zhiguo; Huang, Jianping

    2017-10-01

    Tumor migration/metastasis and immunosuppression are major obstacles in effective cancer therapy. Incidentally, these 2 hurdles usually coexist inside tumors, therefore making therapy significantly more complicated, as both oncogenic mechanisms must be addressed for successful therapeutic intervention. Our recent report highlights that the tumor expression of a TNF family member, CD70, is correlated with poor survival for primary gliomas. In this study, we investigated how CD70 expression by GBM affects the characteristics of tumor cells and the tumor microenvironment. We found that the ablation of CD70 in primary GBM decreased CD44 and SOX2 gene expression, and inhibited tumor migration, growth and the ability to attract monocyte-derived M2 macrophages in vitro. In the tumor microenvironment, CD70 was associated with immune cell infiltrates, such as T cells; myeloid-derived suppressor cells; and monocytes/macrophages based on the RNA-sequencing profile. The CD163+ macrophages were far more abundant than T cells were. This overwhelming level of macrophages was identified only in GBM and not in low-grade gliomas and normal brain specimens, implying their tumor association. CD70 was detected only on tumor cells, not on macrophages, and was highly correlated with CD163 gene expression in primary GBM. Additionally, the co-expression of the CD70 and CD163 genes was found to correlate with decreased survival for patients with primary GBM. Together, these data suggest that CD70 expression is involved in promoting tumor aggressiveness and immunosuppression via tumor-associated macrophage recruitment/activation. Our current efforts to target this molecule using chimeric antigen receptor T cells hold great potential for treating patients with GBM. © 2017 UICC.

  10. A Study of the Differential Effects of Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid (DHA) on Gene Expression Profiles of Stimulated Thp-1 Macrophages.

    Science.gov (United States)

    Allam-Ndoul, Bénédicte; Guénard, Frédéric; Barbier, Olivier; Vohl, Marie-Claude

    2017-04-25

    Background: An appropriate intake of omega-3 ( n -3) fatty acids (FAs) such as eicosapentaenoic and docosahexaenoic acid (EPA/DHA) from marine sources is known to have anti-inflammatory effects. However, molecular mechanisms underlying their beneficial effects on health are not fully understood. The aim of the present study was to characterize gene expression profiles of THP-1 macrophages, incubated in either EPA or DHA and stimulated with lipopolysaccharide (LPS), a pro-inflammatory agent. Methods: THP-1 macrophages were incubated into 10, 50 and 75 µM of EPA or DHA for 24 h, and 100 nM of LPS was added to the culture media for 18 h. Total mRNA was extracted and gene expression examined by microarray analysis using Illumina Human HT-12 expression beadchips (Illumina). Results: Pathway analysis revealed that EPA and DHA regulate genes involved in cell cycle regulation, apoptosis, immune response and inflammation, oxidative stress and cancer pathways in a differential and dose-dependent manner. Conclusions: EPA and DHA appear to exert differential effects on gene expression in THP-1 macrophages. Specific effects of n -3 FAs on gene expression levels are also dose-dependent.

  11. Voluntary exercise attenuates obesity-associated inflammation through ghrelin expressed in macrophages.

    Science.gov (United States)

    Kizaki, Takako; Maegawa, Taketeru; Sakurai, Takuya; Ogasawara, Jun-etsu; Ookawara, Tomomi; Oh-ishi, Shuji; Izawa, Tetsuya; Haga, Shukoh; Ohno, Hideki

    2011-09-30

    Chronic low-level inflammation is associated with obesity and a sedentary lifestyle, causing metabolic disturbances such as insulin resistance. Exercise training has been shown to decrease chronic low-level systemic inflammation in high-fat diet (HFD)-induced obesity. However, the molecular mechanisms mediating its beneficial effects are not fully understood. Ghrelin is a peptide hormone predominantly produced in the stomach that stimulates appetite and induces growth hormone release. In addition to these well-known functions, recent studies suggest that ghrelin localizes to immune cells and exerts an anti-inflammatory effect. The purpose of the current study was to investigate the role of ghrelin expressed in macrophages in the anti-inflammatory effects of voluntary exercise training. Expression of tumor necrosis factor-α (TNF-α), monocyte chemotactic protein (MCP)-1 and F4/80 was increased in adipose tissue from mice fed a HFD (HFD mice) compared with mice fed a standard diet (SD mice), whereas the expression of these inflammatory cytokines was markedly decreased in mice performing voluntary wheel running during the feeding of a HFD (HFEx mice). The expression of TNF-α was also increased in peritoneal macrophages by a HFD and exercise training inhibited the increase of TNF-α expression. Interestingly, expression of ghrelin in peritoneal macrophages was decreased by a HFD and recovered by exercise training. Suppression of ghrelin expression by siRNA increased TNF-α expression and LPS-stimulated NF-κB activation in RAW264 cells, which is a macrophage cell line. TNF-α expression by stimulation with LPS was significantly suppressed in RAW264 cells cultured in the presence of ghrelin. These results suggest that ghrelin exerts potent anti-inflammatory effects in macrophages and functions as a mediator of the beneficial effects of exercise training. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. HemaExplorer: a database of mRNA expression profiles in normal and malignant haematopoiesis

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen; Rapin, Nicolas; Theilgaard-Mönch, Kim

    2013-01-01

    lead to full integrity of the data in the database. The HemaExplorer has comprehensive visualization interface that can make it useful as a daily tool for biologists and cancer researchers to assess the expression patterns of genes encountered in research or literature. HemaExplorer is relevant for all......The HemaExplorer (http://servers.binf.ku.dk/hemaexplorer) is a curated database of processed mRNA Gene expression profiles (GEPs) that provides an easy display of gene expression in haematopoietic cells. HemaExplorer contains GEPs derived from mouse/human haematopoietic stem and progenitor cells...... as well as from more differentiated cell types. Moreover, data from distinct subtypes of human acute myeloid leukemia is included in the database allowing researchers to directly compare gene expression of leukemic cells with those of their closest normal counterpart. Normalization and batch correction...

  13. Region specific regulation of glutamic acid decarboxylase mRNA expression by dopamine neurons in rat brain.

    Science.gov (United States)

    Lindefors, N; Brene, S; Herrera-Marschitz, M; Persson, H

    1989-01-01

    In situ hybridization histochemistry and RNA blots were used to study the expression of glutamic acid decarboxylase (GAD) mRNA in rats with or without a unilateral lesion of midbrain dopamine neurons. Two populations of GAD mRNA positive neurons were found in the intact caudate-putamen, substantia nigra and fronto-parietal cortex. In caudate-putamen, only one out of ten of the GAD mRNA positive neurons expressed high levels, while in substantia nigra every second of the positive neurons expressed high levels of GAD mRNA. Relatively few, but intensively labelled neurons were found in the intact fronto-parietal cerebral cortex. In addition, one out of six of the GAD mRNA positive neurons in the fronto-parietal cortex showed a low labeling. On the ipsilateral side, the forebrain dopamine deafferentation induced an increase in the number of neurons expressing high levels of GAD mRNA in caudate-putamen, and a decrease in fronto-parietal cortex. A smaller decrease was also seen in substantia nigra. However, the total number of GAD mRNA positive neurons were not significantly changed in any of these brain regions. The changes in the levels of GAD mRNA after the dopamine lesion were confirmed by RNA blot analysis. Hence, midbrain dopamine neurons appear to control neuronal expression of GAD mRNA by a tonic down-regulation in a fraction of GAD mRNA positive neurons in caudate-putamen, and a tonic up-regulation in a fraction of GAD mRNA positive neurons in fronto-parietal cortex and substantia nigra.

  14. Downregulation of TIM-3 mRNA expression in peripheral blood mononuclear cells from patients with systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Cai, X.Z. [Central Laboratory, First Affiliated Hospital, China Medical University, Shenyang (China); Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang (China); Huang, W.Y.; Qiao, Y.; Chen, Y.; Du, S.Y.; Chen, D.; Yu, S. [Central Laboratory, First Affiliated Hospital, China Medical University, Shenyang (China); Liu, N. [Department of Nephrology, First Affiliated Hospital, China Medical University, Shenyang (China); Dou, L.Y. [Central Laboratory, First Affiliated Hospital, China Medical University, Shenyang (China); Jiang, Y. [Central Laboratory, First Affiliated Hospital, China Medical University, Shenyang (China); Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang (China); Department of Dermatology, First Affiliated Hospital, China Medical University, Shenyang (China)

    2014-10-17

    The T-cell immunoglobulin and mucin domain (TIM) family is associated with autoimmune diseases, but its expression level in the immune cells of systemic lupus erythematosus (SLE) patients is not known. The aim of this study was to investigate whether the expression of TIM-3 mRNA is associated with pathogenesis of SLE. Quantitative real-time reverse transcription-polymerase chain reaction analysis (qRT-PCR) was used to determine TIM-1, TIM-3, and TIM-4 mRNA expression in peripheral blood mononuclear cells (PBMCs) from 132 patients with SLE and 62 healthy controls. The PBMC surface protein expression of TIMs in PBMCs from 20 SLE patients and 15 healthy controls was assayed by flow cytometry. Only TIM-3 mRNA expression decreased significantly in SLE patients compared with healthy controls (P<0.001). No significant differences in TIM family protein expression were observed in leukocytes from SLE patients and healthy controls (P>0.05). SLE patients with lupus nephritis (LN) had a significantly lower expression of TIM-3 mRNA than those without LN (P=0.001). There was no significant difference in the expression of TIM-3 mRNA within different classes of LN (P>0.05). Correlation of TIM-3 mRNA expression with serum IgA was highly significant (r=0.425, P=0.004), but was weakly correlated with total serum protein (r{sub s}=0.283, P=0.049) and serum albumin (r{sub s}=0.297, P=0.047). TIM-3 mRNA expression was weakly correlated with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI; r{sub s}=-0.272, P=0.032). Our results suggest that below-normal expression of TIM-3 mRNA in PBMC may be involved in the pathogenesis of SLE.

  15. Downregulation of TIM-3 mRNA expression in peripheral blood mononuclear cells from patients with systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Cai, X.Z.; Huang, W.Y.; Qiao, Y.; Chen, Y.; Du, S.Y.; Chen, D.; Yu, S.; Liu, N.; Dou, L.Y.; Jiang, Y.

    2014-01-01

    The T-cell immunoglobulin and mucin domain (TIM) family is associated with autoimmune diseases, but its expression level in the immune cells of systemic lupus erythematosus (SLE) patients is not known. The aim of this study was to investigate whether the expression of TIM-3 mRNA is associated with pathogenesis of SLE. Quantitative real-time reverse transcription-polymerase chain reaction analysis (qRT-PCR) was used to determine TIM-1, TIM-3, and TIM-4 mRNA expression in peripheral blood mononuclear cells (PBMCs) from 132 patients with SLE and 62 healthy controls. The PBMC surface protein expression of TIMs in PBMCs from 20 SLE patients and 15 healthy controls was assayed by flow cytometry. Only TIM-3 mRNA expression decreased significantly in SLE patients compared with healthy controls (P<0.001). No significant differences in TIM family protein expression were observed in leukocytes from SLE patients and healthy controls (P>0.05). SLE patients with lupus nephritis (LN) had a significantly lower expression of TIM-3 mRNA than those without LN (P=0.001). There was no significant difference in the expression of TIM-3 mRNA within different classes of LN (P>0.05). Correlation of TIM-3 mRNA expression with serum IgA was highly significant (r=0.425, P=0.004), but was weakly correlated with total serum protein (r s =0.283, P=0.049) and serum albumin (r s =0.297, P=0.047). TIM-3 mRNA expression was weakly correlated with the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI; r s =-0.272, P=0.032). Our results suggest that below-normal expression of TIM-3 mRNA in PBMC may be involved in the pathogenesis of SLE

  16. Whole Blood mRNA Expression-Based Prognosis of Metastatic Renal Cell Carcinoma.

    Science.gov (United States)

    Giridhar, Karthik V; Sosa, Carlos P; Hillman, David W; Sanhueza, Cristobal; Dalpiaz, Candace L; Costello, Brian A; Quevedo, Fernando J; Pitot, Henry C; Dronca, Roxana S; Ertz, Donna; Cheville, John C; Donkena, Krishna Vanaja; Kohli, Manish

    2017-11-03

    The Memorial Sloan Kettering Cancer Center (MSKCC) prognostic score is based on clinical parameters. We analyzed whole blood mRNA expression in metastatic clear cell renal cell carcinoma (mCCRCC) patients and compared it to the MSKCC score for predicting overall survival. In a discovery set of 19 patients with mRCC, we performed whole transcriptome RNA sequencing and selected eighteen candidate genes for further evaluation based on associations with overall survival and statistical significance. In an independent validation of set of 47 patients with mCCRCC, transcript expression of the 18 candidate genes were quantified using a customized NanoString probeset. Cox regression multivariate analysis confirmed that two of the candidate genes were significantly associated with overall survival. Higher expression of BAG1 [hazard ratio (HR) of 0.14, p < 0.0001, 95% confidence interval (CI) 0.04-0.36] and NOP56 (HR 0.13, p < 0.0001, 95% CI 0.05-0.34) were associated with better prognosis. A prognostic model incorporating expression of BAG1 and NOP56 into the MSKCC score improved prognostication significantly over a model using the MSKCC prognostic score only ( p < 0.0001). Prognostic value of using whole blood mRNA gene profiling in mCCRCC is feasible and should be prospectively confirmed in larger studies.

  17. Whole Blood mRNA Expression-Based Prognosis of Metastatic Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Karthik V. Giridhar

    2017-11-01

    Full Text Available The Memorial Sloan Kettering Cancer Center (MSKCC prognostic score is based on clinical parameters. We analyzed whole blood mRNA expression in metastatic clear cell renal cell carcinoma (mCCRCC patients and compared it to the MSKCC score for predicting overall survival. In a discovery set of 19 patients with mRCC, we performed whole transcriptome RNA sequencing and selected eighteen candidate genes for further evaluation based on associations with overall survival and statistical significance. In an independent validation of set of 47 patients with mCCRCC, transcript expression of the 18 candidate genes were quantified using a customized NanoString probeset. Cox regression multivariate analysis confirmed that two of the candidate genes were significantly associated with overall survival. Higher expression of BAG1 [hazard ratio (HR of 0.14, p < 0.0001, 95% confidence interval (CI 0.04–0.36] and NOP56 (HR 0.13, p < 0.0001, 95% CI 0.05–0.34 were associated with better prognosis. A prognostic model incorporating expression of BAG1 and NOP56 into the MSKCC score improved prognostication significantly over a model using the MSKCC prognostic score only (p < 0.0001. Prognostic value of using whole blood mRNA gene profiling in mCCRCC is feasible and should be prospectively confirmed in larger studies.

  18. Expression and clinicopathological significance of Mel-18 mRNA in colorectal cancer.

    Science.gov (United States)

    Tao, Ji; Liu, Yan-Long; Zhang, Gan; Ma, Yu-Yan; Cui, Bin-Bin; Yang, Yan-Mei

    2014-10-01

    Mel-18 is a member of the polycomb group (PcG) of proteins, which are chromatin regulatory factors that play an important role in oncogenesis. This study was designed to investigate the clinical and prognostic significance of Mel-18 in colorectal cancer (CRC) patients. For this purpose, expression of Mel-18 mRNA was evaluated in 82 primary CRC and paired noncancerous mucosa samples by qRT-PCR and Western blotting. We found that overall Mel-18 mRNA expression in the CRC tissue was significantly lower than in the noncancerous mucosal tissue (p = 0.007, Wilcoxon matched-pairs signed-ranks test). Mel-18 was conversely correlated with the pathological classifications (p = 0.003 for T, p Mel-18 showed prolonged disease-free survivals (DFS) (p Mel-18 expression may be a risk factor for the patients' 3-year DFS (HR = 1.895; 95 % CI 1.032, 3.477; p = 0.039). It was therefore concluded that the lower Mel-18 expression might contribute to the CRC development/progression.

  19. [Impacts of the formula of Suoquanwan(SQW) on expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency].

    Science.gov (United States)

    Cao, Hong-Ying; Wu, Qing-He; Huang, Ping; He, Jin-Yang

    2009-06-01

    To observe the impacts of the formula of Suoquanwan (SQW) on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency. The model rats were induced by adenine (250 mg/kg) for 4 weeks, then treated respectively with SQW or dDAVP. The expression of AQP-2 mRNA and AVPR-V2 mRNA in kidney of Yang-deficiency model by realtime fluorescence quantitative PCR method were investigated. In model rats, the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney decreased, dDAVP and SQW high dose could increased the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. The others had no influence on the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney. SQW can increase the expression of AQP-2 mRNA and AVPR-V2 mRNA in the kidney of rat polyuria model of Yang-deficiency.

  20. Nitric oxide signaling pathway regulates potassium chloride cotransporter-1 mRNA expression in vascular smooth muscle cells.

    Science.gov (United States)

    Di Fulvio, M; Lauf, P K; Adragna, N C

    2001-11-30

    Rat vascular smooth muscle cells (VSMCs) express at least two mRNAs for K-Cl cotransporters (KCC): KCC1 and KCC3. cGMP-dependent protein kinase I regulates KCC3 mRNA expression in these cells. Here, we show evidence implicating the nitric oxide (NO)/cGMP signaling pathway in the expression of KCC1 mRNA, considered to be the major cell volume regulator. VSMCs, expressing soluble guanylyl cyclase (sGC) and PKG-I isoforms showed a time- and concentration-dependent increase in KCC1 mRNA levels after treatment with sodium nitroprusside as demonstrated by semiquantitative RT-PCR. sGC-dependent regulation of KCC1 mRNA expression was confirmed using YC-1, a NO-independent sGC stimulator. The sGC inhibitor LY83583 blocked the effects of sodium nitroprusside and YC-1. Moreover, 8-Br-cGMP increased KCC1 mRNA expression in a concentration- and time-dependent fashion. The 8-Br-cGMP effect was partially blocked by KT5823 but not by actinomycin D. However, actinomycin D and cycloheximide increased basal KCC1 mRNA in an additive manner, suggesting different mechanisms of action for both drugs. These findings suggest that in VSMCs, the NO/cGMP-signaling pathway participates in KCC1 mRNA regulation at the post-transcriptional level.

  1. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress

    International Nuclear Information System (INIS)

    Kim, So Young; Jeong, Eunshil; Joung, Sun Myung; Lee, Joo Young

    2012-01-01

    Highlights: ► Hypoxic stress-induced TLR4 expression is mediated by PI3K/Akt in macrophages. ► PI3K/Akt regulated HIF-1 activation leading to TLR4 expression. ► p38 mitogen-activated protein kinase was not involved in TLR4 expression by hypoxic stress. ► Sulforaphane suppressed hypoxia-mediated TLR4 expression by inhibiting PI3K/Akt. -- Abstract: Toll-like receptors (TLRs) play critical roles in triggering immune and inflammatory responses by detecting invading microbial pathogens and endogenous danger signals. Increased expression of TLR4 is implicated in aggravated inflammatory symptoms in ischemic tissue injury and chronic diseases. Results from our previous study showed that TLR4 expression was upregulated by hypoxic stress mediated by hypoxia-inducible factor-1 (HIF-1) at a transcriptional level in macrophages. In this study, we further investigated the upstream signaling pathway that contributed to the increase of TLR4 expression by hypoxic stress. Either treatment with pharmacological inhibitors of PI3K and Akt or knockdown of Akt expression by siRNA blocked the increase of TLR4 mRNA and protein levels in macrophages exposed to hypoxia and CoCl 2 . Phosphorylation of Akt by hypoxic stress preceded nuclear accumulation of HIF-1α. A PI3K inhibitor (LY294002) attenuated CoCl 2 -induced nuclear accumulation and transcriptional activation of HIF-1α. In addition, HIF-1α-mediated upregulation of TLR4 expression was blocked by LY294002. Furthermore, sulforaphane suppressed hypoxia- and CoCl 2 -induced upregulation of TLR4 mRNA and protein by inhibiting PI3K/Akt activation and the subsequent nuclear accumulation and transcriptional activation of HIF-1α. However, p38 was not involved in HIF-1α activation and TLR4 expression induced by hypoxic stress in macrophages. Collectively, our results demonstrate that PI3K/Akt contributes to hypoxic stress-induced TLR4 expression at least partly through the regulation of HIF-1 activation. These reveal a novel

  2. PI3K/Akt contributes to increased expression of Toll-like receptor 4 in macrophages exposed to hypoxic stress

    Energy Technology Data Exchange (ETDEWEB)

    Kim, So Young; Jeong, Eunshil; Joung, Sun Myung [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Lee, Joo Young, E-mail: joolee@catholic.ac.kr [School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); College of Pharmacy, The Catholic University of Korea, Bucheon 420-743 (Korea, Republic of)

    2012-03-16

    Highlights: Black-Right-Pointing-Pointer Hypoxic stress-induced TLR4 expression is mediated by PI3K/Akt in macrophages. Black-Right-Pointing-Pointer PI3K/Akt regulated HIF-1 activation leading to TLR4 expression. Black-Right-Pointing-Pointer p38 mitogen-activated protein kinase was not involved in TLR4 expression by hypoxic stress. Black-Right-Pointing-Pointer Sulforaphane suppressed hypoxia-mediated TLR4 expression by inhibiting PI3K/Akt. -- Abstract: Toll-like receptors (TLRs) play critical roles in triggering immune and inflammatory responses by detecting invading microbial pathogens and endogenous danger signals. Increased expression of TLR4 is implicated in aggravated inflammatory symptoms in ischemic tissue injury and chronic diseases. Results from our previous study showed that TLR4 expression was upregulated by hypoxic stress mediated by hypoxia-inducible factor-1 (HIF-1) at a transcriptional level in macrophages. In this study, we further investigated the upstream signaling pathway that contributed to the increase of TLR4 expression by hypoxic stress. Either treatment with pharmacological inhibitors of PI3K and Akt or knockdown of Akt expression by siRNA blocked the increase of TLR4 mRNA and protein levels in macrophages exposed to hypoxia and CoCl{sub 2}. Phosphorylation of Akt by hypoxic stress preceded nuclear accumulation of HIF-1{alpha}. A PI3K inhibitor (LY294002) attenuated CoCl{sub 2}-induced nuclear accumulation and transcriptional activation of HIF-1{alpha}. In addition, HIF-1{alpha}-mediated upregulation of TLR4 expression was blocked by LY294002. Furthermore, sulforaphane suppressed hypoxia- and CoCl{sub 2}-induced upregulation of TLR4 mRNA and protein by inhibiting PI3K/Akt activation and the subsequent nuclear accumulation and transcriptional activation of HIF-1{alpha}. However, p38 was not involved in HIF-1{alpha} activation and TLR4 expression induced by hypoxic stress in macrophages. Collectively, our results demonstrate that PI3K

  3. Effects of fasting, temperature, and photoperiod on preproghrelin mRNA expression in Chinese perch.

    Science.gov (United States)

    Song, Yi; Zhao, Cheng; Liang, Xu-Fang; He, Shan; Tian, Changxu; Cheng, Xiaoyan; Yuan, Xiaochen; Lv, Liyuan; Guo, Wenjie; Xue, Min; Tao, Ya-Xiong

    2017-06-01

    Preproghrelin, a gut/brain peptide, plays an important role in the regulation of food intake and energy homeostasis in teleost and mammals. In the present study, we obtained the full-length preproghrelin cDNA in Chinese perch. The preproghrelin messenger RNA (mRNA) tissue expression showed that level was much higher in stomach and pituitary than in other tissues. The fasting study showed, after gastric emptying (3-6 h), short-term fasting (6-12 h) increased preproghrelin expression in the stomach. While in the pituitary, fasting reduced preproghrelin expression at 1, 3, 12, and 48 h, presenting state fluctuation of self-adjustment. The temperature study showed that the mRNA expression of preproghrelin was the highest in the brain at 26 °C and highest in the stomach at 32 °C, respectively, with different optimum temperature in these two tissues, reflecting spatiotemporal differences of regulation by central nervous system and peripheral organs. The photoperiod study showed that normal light (11 h of lightness and 13 h of darkness) led to highest preproghrelin expression, both in the brain and in the stomach, than continuous light or continuous dark, proving food intake is adapted to natural photoperiod or normal light in this study. These results all indicated that tissue-specific preproghrelin expression of Chinese perch could be significantly affected by environmental factors. Short-term fasting of 6 h after gastric emptying, 26 °C, and normal light led to higher preproghrelin expression, which indicated potential appetite increase in Chinese perch.

  4. Synthesis of pro-inflammatory cytokines and adhesion molecules expression by the irradiated human monocyte/macrophage

    International Nuclear Information System (INIS)

    Pons, I.

    1997-09-01

    As lesions induced by ionizing radiations are essentially noticed in organs the functional and structural organisation of which depend on the highly proliferative stem cell pool, the author reports an in-vivo investigation of the effect of a gamma irradiation on the expression and secretion of pro-inflammatory cytokines par human monocytes/macrophages. In order to study the role of the cell environment in the radiation-induced inflammation, the author studied whether a co-stimulation of monocytes/macrophages by gamma irradiation, or the exposure of co-cultures of monocytes/macrophages and lymphocytes, could modulate the regulation of inflammatory cytokines. The author also studied the modulation of the expression of adhesion molecules mainly expressed by the monocyte/macrophage, and the membrane density of the CD14 receptor after irradiation of monocytes/macrophages during 24 hours, and of totally differentiated macrophages after seven days of culture

  5. Studies on mRNA expression of the somatostatin receptor family in lung cancer

    International Nuclear Information System (INIS)

    Wang Jing; Deng Jinglan; Wu Shengxi; Qiao Hongqing

    2000-01-01

    Objective: To investigate the characteristics of expression and distribution of 5 subtypes of somatostatin receptors (SSTR1∼5) in lung cancer. Methods: With [α- 35 S]dATP labelled oligonucleotides of the 5 SSTR subtypes as probes, using in situ hybridization, patterns of mRNA expression were detected in lung cancer tissue sections of 21 cases which fell in varied pathologic types. Additionally, Leica Q-500 image analyzing device was employed to semi-quantitatively analyze density of the expression. Results: Patterns of SSTR1∼5 expression in lung cancer were as follows: SSTR2 expression was dominant in small cell lung cancer (SCLC) while in non-small cell lung cancer (NSCLC) such as adenous and squamous, SSTR1 expression was stronger than that of the other 4 subtypes, In density of SSTR1∼5 expression in lung cancer, NSCLC was higher than SCLC (P<0.01). Conclusions: even though patterns and density of expression of SSTR subtypes in the lung cancer showed heterogeneity in different histopathologic types, as in SCLC and in NSCLC. Therefore, it has positive prospects for somatostatin analog-oriented agents to be used in treatment of both types of the lung cancers

  6. Robust Transgene Expression from Bicistronic mRNA in the Green Alga Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Masayuki Onishi

    2016-12-01

    Full Text Available The unicellular green alga Chlamydomonas reinhardtii is a model organism that provides an opportunity to understand the evolution and functional biology of the lineage that includes the land plants, as well as aspects of the fundamental core biology conserved throughout the eukaryotic phylogeny. Although many tools are available to facilitate genetic, molecular biological, biochemical, and cell biological studies in Chlamydomonas, expression of unselected transgenes of interest (GOIs has been challenging. In most methods used previously, the GOI and a selectable marker are expressed from two separate mRNAs, so that their concomitant expression is not guaranteed. In this study, we developed constructs that allow expression of an upstream GOI and downstream selectable marker from a single bicistronic mRNA. Although this approach in other systems has typically required a translation-enhancing element such as an internal ribosome entry site for the downstream marker, we found that a short stretch of unstructured junction sequence was sufficient to obtain adequate expression of the downstream gene, presumably through post-termination reinitiation. With this system, we obtained robust expression of both endogenous and heterologous GOIs, including fluorescent proteins and tagged fusion proteins, in the vast majority of transformants, thus eliminating the need for tedious secondary screening for GOI-expressing transformants. This improved efficiency should greatly facilitate a variety of genetic and cell-biological studies in Chlamydomonas and also enable new applications such as expression-based screens and large-scale production of foreign proteins.

  7. [Expression of heat shock protein 70 and its mRNA in career exposure to manganese].

    Science.gov (United States)

    Chen, Wenwen; Shao, Hua; Chi, Mingfeng; Zhang, Zhihu; Shan, Yongle; Zou, Wei

    2015-10-01

    To analyze the expression levels of heat shock protein70 (HSPs70) and HSPs70 mRNA in different exposure to manganese, and research the neuroprotective effect on the career exposure to manganese. From 2008 to 2009, with cross-sectional study design, and in a locomotive and rolling stock works, by stratified random sampling method, the exposed sample consisted of 180 welders from different welding shops and 100 unexposed in the last three years, non-welder controls with age-matched workers of similar socioeconomic status from the same industry. The control workers had not been exposed to neurotoxic chemicals. The mRNA expressions of four different metabolic enzyme were detected by SYBR Green I quantitative real-time polymerase chain reaction. The expression levels of the two enzymes mRNA in different exposure to manganese were analyzed. The expressions of HSPs70 were detected by Western blot. The concentration of air manganese was determined by GFAAS. The average concentration of 8 h time (8h-TWA) was used to express the level of individual exposure to manganese, according to the air manganese workplace occupational exposure limit (8h-TWA=0.15 mg/m3), the exposed group is divided into high exposed group (>0.15 mg/m3) and low exposure group (<0.15 mg/m3). The individuals exposed to manganese dose of exposed group ((0.25±0.31) mg/m3) was higher than the control group ((0.06±0.02) mg/m3) (t=6.15, P=0.001); individuals exposed to manganese dose of high exposure group for (0.42±0.34) mg/m3, which was higher than low exposure group (0.09±0.07) mg/m3 (t=9.80, P=0.001). HSPs70 mRNA and protein of exposure group (5.65±0.21, 3.26±0.15) were higher than the reference group (0.41±0.03, 1.32±0.12) (t=18.91, t=8.68, P=0.001). HSP70 mRNA and protein of high exposure group (6.48±0.37, 3.67±0.26) were higher than the low exposure group (5.15±0.23, 3.02±0.19) (t=3.24, t=2.01, P=0.003, P=0.043). The expression of peripheral blood lymphocytes HSPs70 level and HSPs70 mRNA

  8. G-cimp status prediction of glioblastoma samples using mRNA expression data.

    Directory of Open Access Journals (Sweden)

    Mehmet Baysan

    Full Text Available Glioblastoma Multiforme (GBM is a tumor with high mortality and no known cure. The dramatic molecular and clinical heterogeneity seen in this tumor has led to attempts to define genetically similar subgroups of GBM with the hope of developing tumor specific therapies targeted to the unique biology within each of these subgroups. Recently, a subset of relatively favorable prognosis GBMs has been identified. These glioma CpG island methylator phenotype, or G-CIMP tumors, have distinct genomic copy number aberrations, DNA methylation patterns, and (mRNA expression profiles compared to other GBMs. While the standard method for identifying G-CIMP tumors is based on genome-wide DNA methylation data, such data is often not available compared to the more widely available gene expression data. In this study, we have developed and evaluated a method to predict the G-CIMP status of GBM samples based solely on gene expression data.

  9. G-cimp status prediction of glioblastoma samples using mRNA expression data.

    Science.gov (United States)

    Baysan, Mehmet; Bozdag, Serdar; Cam, Margaret C; Kotliarova, Svetlana; Ahn, Susie; Walling, Jennifer; Killian, Jonathan K; Stevenson, Holly; Meltzer, Paul; Fine, Howard A

    2012-01-01

    Glioblastoma Multiforme (GBM) is a tumor with high mortality and no known cure. The dramatic molecular and clinical heterogeneity seen in this tumor has led to attempts to define genetically similar subgroups of GBM with the hope of developing tumor specific therapies targeted to the unique biology within each of these subgroups. Recently, a subset of relatively favorable prognosis GBMs has been identified. These glioma CpG island methylator phenotype, or G-CIMP tumors, have distinct genomic copy number aberrations, DNA methylation patterns, and (mRNA) expression profiles compared to other GBMs. While the standard method for identifying G-CIMP tumors is based on genome-wide DNA methylation data, such data is often not available compared to the more widely available gene expression data. In this study, we have developed and evaluated a method to predict the G-CIMP status of GBM samples based solely on gene expression data.

  10. Altered expression of asparagine synthetase mRNA in human leukemic and carcinoma cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, L.O.; Guzowski, D.E.; Millan, C.A. [North Shore Univ. Hospital/Cornell Univ. Medical College, Manhasset, NY (United States)] [and others

    1994-09-01

    Asparagine synthetase (AS) is the enzyme responsible for the ATP-dependant conversion of aspartic acid to asparagine. The AS gene is expressed constitutively in most mammalian cells, including cells of the lymphoid lineage, as a 2 kb mRNA. In some leukemic phenotypes, AS expression is abrogated, resulting in no detectable enzyme activity. These cells are rendered sensitive to killing by L-asparaginase, which destroys extracellular asparagine. Prolonged treatment of leukemic cells with this agent can lead to resistance and the reappearance of AS activity, suggesting derepression of the AS gene, which has been shown to be regulated by intracellular levels of asparagine. Modulation of AS expression by asparagine employs cis and trans-acting elements involved in transcriptional and translational regulation. We have cloned and sequenced the human AS gene and surrounding sequence elements as well as the full-length cDNA. Using probes specific to the third and fourth exons of AS, we have identified an additional higher molecular weight mRNA (2.7 kb) in Northern blots derived from a chronic myelogenous leukemia and a colon carcinoma but not in normal lymphocytic or other human cell lines. We speculate that elements present in the cancer-derived mRNAs may be involved in the derepression of AS activity. This hypothesis is being evaluated by RNase protection assays using RNA isolated from a variety of human cell lines to characterize and elucidate the nature of this additional AS encoded message.

  11. Keratin14 mRNA expression in human pneumocytes during quiescence, repair and disease.

    Directory of Open Access Journals (Sweden)

    Marco Confalonieri

    Full Text Available The lung alveoli slowly self-renew pneumocytes, but their facultative regeneration capacity is rapidly efficient after an injury, so fibrosis infrequently occurs. We recently observed Keratin 14 (KRT14 expression during diffuse alveolar damage (DAD, but not in controls. We wonder if KRT14 may be a marker of pneumocyte transition from quiescence to regeneration. Quantitative PCR and Western blot analyses highlighted the presence of KRT14 (mRNA and protein only in human lung samples with DAD or interstitial lung disease (ILD. In the exponentially growing cell lines A549 and H441, the mRNA and protein levels of KRT14 peaked at day one after cell seeding and decreased at day two, opposite to what observed for the proliferation marker E2F1. The inverse relation of KRT14 versus E2F1 expression holds true also for other proliferative markers, such as cyclin E1 and cyclin D1. Of interest, we also found that E2F1 silencing caused cell cycle arrest and increased KRT14 expression, whilst E2F1 stimulation induced cell cycle progression and decreased KRT14. KRT14 also increased in proliferative pneumocytes (HPAEpiC just before transdifferentiation. Overall, our results suggest that KRT14 is a viable biomarker of pneumocyte activation, and repair/regeneration. The involvement of KRT14 in regenerative process may suggest a novel pharmaceutical target to accelerate lung repair.

  12. Effects of active acromegaly on bone mRNA and microRNA expression patterns.

    Science.gov (United States)

    Belaya, Zhanna; Grebennikova, Tatiana; Melnichenko, Galina; Nikitin, Alexey; Solodovnikov, Alexander; Brovkina, Olga; Grigoriev, Andrey; Rozhinskaya, Liudmila; Lutsenko, Alexander; Dedov, Ivan

    2018-04-01

    To evaluate the response of bone to chronic long-term growth hormone (GH) and insulin-like growth factor-1 (IGF1) excess by measuring the expression of selected mRNA and microRNA (miR) in bone tissue samples of patients with active acromegaly. Case-control study. Bone tissue samples were obtained during transsphenoidal adenomectomy from the sphenoid bone (sella turcica) from 14 patients with clinically and biochemically confirmed acromegaly and 10 patients with clinically non-functioning pituitary adenoma (NFPA) matched by sex and age. Expression of genes involved in the regulation of bone remodeling was studied using quantitative polymerase chain reaction (qPCR). Of the genes involved in osteoblast and osteoclast activity, only alkaline phosphatase (ALP) mRNA was 50% downregulated in patients with acromegaly. GH excess caused increased expression of the Wnt signaling antagonists ( DKK1) and agonists ( WNT10B) and changes in the levels of miR involved in mesenchymal stem cell commitment to chondrocytes (miR-199a-5p) or adipocytes (miR-27-5p, miR-125b-5p, miR-34a-5p, miR-188-3p) P  Acromegaly had minimal effects on tested mRNAs specific to osteoblast or osteoclast function except for downregulated ALP expression. The expressions of miR known to be involved in mesenchymal stem cell commitment and downregulated TWIST1 expression suggest acromegaly has a negative effect on osteoblastogenesis. © 2018 European Society of Endocrinology.

  13. Alterations in Lipoxygenase and Cyclooxygenase-2 Catalytic Activity and mRNA Expression in Prostate Carcinoma

    Directory of Open Access Journals (Sweden)

    Scott B. Shappell

    2001-01-01

    Full Text Available Recent studies in prostate tissues and especially cell lines have suggested roles for arachidonic acid (AA metabolizing enzymes in prostate adenocarcinoma (Pca development or progression. The goal of this study was to more fully characterize lipoxygenase (LOX and cyclooxygenase-2 (COX-2 gene expression and AA metabolism in benign and malignant prostate using snap-frozen tissues obtained intraoperatively and mRNA analyses and enzyme assays. Formation of 15-hydroxyeicosatetraenoic acid (15-HETE was detected in 23/29 benign samples and 15-LOX-2 mRNA was detected in 21/25 benign samples. In pairs of pure benign and Pca from the same patients, 15-HETE production and 15-LOX-2 mRNA were reduced in Pca versus benign in 9/14 (P=.04 and 14/17 (P=.002, respectively. Under the same conditions, neither 5HETE nor 12-HETE formation was detectable in 29 benign and 24 tumor samples; with a more sensitive assay, traces were detected in some samples, but there was no clear association with tumor tissue. COX-2 mRNA was detected by nuclease protection assay in 7/16 benign samples and 5/16 tumors. In benign and tumor pairs from 10 patients, COX-2 was higher in tumor versus benign in only 2, with similar results by in situ hybridization. Paraffin immunoperoxidase for COX2 was performed in whole mount sections from 87 additional radical prostatectomy specimens, with strong expression in ejaculatory duct as a positive control and corroboration with in situ hybridization. No immunostaining was detected in benign prostate or tumor in 45% of cases. Greater immunostaining in tumor versus benign was present in only 17% of cases, and correlated with high tumor grade (Gleason score 8 and 9 vs. 5 to 7. In conclusion, reduced 15-LOX-2 expression and 15-HETE formation is the most characteristic alteration of AA metabolism in Pca. Increased 12-HETE and 5-HETE formation in Pca were not discernible. Increased COX-2 expression is not a typical abnormality in Pca in general, but

  14. The RNA uridyltransferase Zcchc6 is expressed in macrophages and impacts innate immune responses.

    Directory of Open Access Journals (Sweden)

    Elyse Kozlowski

    Full Text Available Alveolar macrophages orchestrate pulmonary innate immunity and are essential for early immune surveillance and clearance of microorganisms in the airways. Inflammatory signaling must be sufficiently robust to promote host defense but limited enough to prevent excessive tissue injury. Macrophages in the lungs utilize multiple transcriptional and post-transcriptional mechanisms of inflammatory gene expression to delicately balance the elaboration of immune mediators. RNA terminal uridyltransferases (TUTs, including the closely homologous family members Zcchc6 (TUT7 and Zcchc11 (TUT4, have been implicated in the post-transcriptional regulation of inflammation from studies conducted in vitro. In vivo, we observed that Zcchc6 is expressed in mouse and human primary macrophages. Zcchc6-deficient mice are viable and born in Mendelian ratios and do not exhibit an observable spontaneous phenotype under basal conditions. Following an intratracheal challenge with S. pneumoniae, Zcchc6 deficiency led to a modest but significant increase in the expression of select cytokines including IL-6, CXCL1, and CXCL5. These findings were recapitulated in vitro whereby Zcchc6-deficient macrophages exhibited similar increases in cytokine expression due to bacterial stimulation. Although loss of Zcchc6 also led to increased neutrophil emigration to the airways during pneumonia, these responses were not sufficient to impact host defense against infection.

  15. Toll- like receptors expressed on embryonic macrophages couple inflammatory signals to iron metabolism during early ontogenesis

    Czech Academy of Sciences Publication Activity Database

    Balounová, Jana; Vavrochová, Tereza; Benešová, Martina; Ballek, Ondřej; Kolář, Michal; Filipp, Dominik

    2014-01-01

    Roč. 44, č. 5 (2014), s. 1491-1502 ISSN 0014-2980 R&D Projects: GA AV ČR IAA500520707 Institutional support: RVO:68378050 Keywords : Embryo nic macrophages * Ferroportin * Gene expression microarray * Iron metabolism * TLR stimulation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.034, year: 2014

  16. Toll- like receptors expressed on embryonic macrophages couple inflammatory signals to iron metabolism during early ontogenesis

    Czech Academy of Sciences Publication Activity Database

    Balounová, Jana; Vavrochová, Tereza; Benešová, Martina; Ballek, Ondřej; Kolář, Michal; Filipp, Dominik

    2014-01-01

    Roč. 44, č. 5 (2014), s. 1491-1502 ISSN 0014-2980 R&D Projects: GA AV ČR IAA500520707 Institutional support: RVO:68378050 Keywords : Embryonic macrophages * Ferroportin * Gene expression microarray * Iron metabolism * TLR stimulation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.034, year: 2014

  17. mRNA expression profile in DLD-1 and MOLT-4 cancer cell lines cultured under Microgravity

    Data.gov (United States)

    National Aeronautics and Space Administration — DLD-1 and MOLT-4 cell lines were cultured in a Rotating cell culture system to simulate microgravity and mRNA expression profile was observed in comparison to Static...

  18. RNA interference targeting carbohydrate sulfotransferase 3 diminishes macrophage accumulation, inhibits MMP-9 expression and promotes lung recovery in murine pulmonary emphysema.

    Science.gov (United States)

    Kai, Yoshiro; Tomoda, Koichi; Yoneyama, Hiroyuki; Yoshikawa, Masanori; Kimura, Hiroshi

    2015-12-09

    Chondroitin sulfate proteoglycans are an important mediators in inflammation and leukocyte trafficking. However, their roles in pulmonary emphysema have not been explored. In a murine model of elastase-induced pulmonary emphysema, we found increased carbohydrate sulfotransferase 3 (CHST3), a specific enzyme that synthesizes chondroitin 6-sulfate proteoglycan (C6SPG). To elucidate the role of C6SPG, we investigated the effect of small interfering RNA (siRNA) targeting CHST3 that inhibits C6SPG-synthesis on the pathogenesis of pulmonary emphysema. Mice were intraperitoneally injected with CHST3 siRNA or negative control siRNA on day0 and 7 after intratracheal instillation of elastase. Histology, respiratory function, glycosaminoglycans (GAGs) content, bronchoalveolar lavage (BAL), elastin staining and gene expressions of tumor necrosis factor (TNF)-α and matrix metalloproteinase (MMP)-9 mRNA were evaluated on day7 and/or day21. CHST3 mRNA increased at day 7 and decreased thereafter in lung. CHST3 siRNA successfully inhibited the expression of CHST3 mRNA throughout the study and this was associated with significant reduction of GAGs and C6SPG. Airway destruction and respiratory function were improved by the treatment with CHST3 siRNA. CHST3 siRNA reduced the number of macrophages both in BAL and lung parenchyma and also suppressed the increased expressions of TNF-α and MMP-9 mRNA. Futhermore, CHST3 siRNA improved the reduction of the elastin in the alveolar walls. CHST3 siRNA diminishes accumulation of excessive macrophages and the mediators, leading to accelerate the functional recovery from airway damage by repair of the elastin network associated with pulmonary emphysema.

  19. Time-course of 5-HT(6) receptor mRNA expression during memory consolidation and amnesia.

    Science.gov (United States)

    Huerta-Rivas, A; Pérez-García, G; González-Espinosa, C; Meneses, A

    2010-01-01

    Growing evidence indicates that antagonists of the 5-hydroxytryptamine (serotonin) receptor(6) (5-HT(6)) improve memory and reverse amnesia although the mechanisms involved are poorly understood. Hence, in this paper RT-PCR was used to evaluate changes in mRNA expression of 5-HT(6) receptor in trained and untrained rats treated with the 5-HT(6) receptor antagonist SB-399885 and amnesic drugs scopolamine or dizocilpine. Changes in mRNA expression of 5-HT(6) receptor were investigated at different times in prefrontal cortex, hippocampus and striatum. Data indicated that memory in the Pavlovian/instrumental autoshaping task was a progressive process associated to reduced mRNA expression of 5-HT(6) receptor in the three structures examined. SB-399885 improved long-term memory at 48h, while the muscarinic receptor antagonist scopolamine or the non-competitive NMDA receptor antagonist dizocilpine impaired it at 24h. Autoshaping training and treatment with SB-399885 increased 5-HT(6) receptor mRNA expression in (maximum increase) prefrontal cortex and striatum, 24 or 48h. The scopolamine-induced amnesia suppressed 5-HT(6) receptor mRNA expression while the dizocilpine-induced amnesia did not modify 5-HT(6) receptor mRNA expression. SB-399885 and scopolamine or dizocilpine were able to reestablish memory and 5-HT(6) receptor mRNA expression. These data confirmed previous memory evidence and of more interest is the observation that training, SB-399885 and amnesic drugs modulated 5-HT(6) receptor mRNA expression in prefrontal cortex, hippocampus and striatum. Further investigation in different memory tasks, times and amnesia models together with more complex control groups might provide further clues. Copyright 2009 Elsevier Inc. All rights reserved.

  20. Profiles of mRNA expression of genes related to sex differentiation of the gonads in the chicken embryo.

    Science.gov (United States)

    Yamamoto, I; Tsukada, A; Saito, N; Shimada, K

    2003-09-01

    Sex is determined genetically in birds. The homogametic sex is male (ZZ), whereas the heterogametic sex is female (ZW). According to the genetic sex, gonads develop into testes or ovary. In this study, we performed experiments to reveal mRNA expression patterns in the gonad between d 5.5 and 8.5 of incubation and examined a possible role of Dss-Ahc critical region on the X chromosome 1 (Dax1), Steroidogenic factor 1 (Sf1), P450aromatase (P450arom), Estrogen receptor alpha (ER alpha), doublesex and mab3 related transcription factor 1 (Dmrt1), Sry-related HMG box gene 9 (Sox9), Gata binding protein 4 (Gata4), and anti-müllerian hormone (Amh) in sex differentiation in chicken embryonic gonads using RNase protection assay. In embryonic chicken gonads, Dax1 mRNA was expressed in both sexes but was higher in females than in males at d 6.5 and 7.5 of incubation. The Sf1 mRNA was expressed in both sexes, but it was expressed more in males at d 5.5 than in females but more in females than in males at d 7.5 and 8.5 of incubation. The P450arom mRNA was expressed only in female gonads from d 5.5 of incubation. The ER alpha mRNA was expressed in both sexes, but it did not show a sex difference. On the other hand, the Dmrt1 mRNA was expressed in both sexes, but it showed a male-specific expression pattern. The male-specific expression pattern was observed in Sox9 mRNA, but it was not expressed in female gonads. The Gata4 mRNA was expressed in both sexes, and sex differences were not revealed throughout the observational period. Amh mRNA was expressed in both sexes, but it had male-specific mRNA expression pattern at d 6.5 to 8.5 of incubation. These results indicate that Dax1, Sf1, and P450arom have possible roles in ovary formation, whereas Dmrt1, Sox9, and Amh are related to testis formation in differentiating chicken gonads at d 5.5 to 8.5 of incubation.

  1. Endothelial lipase is highly expressed in macrophages in advanced human atherosclerotic lesions

    DEFF Research Database (Denmark)

    Bartels, Emil D; Nielsen, John E; Lindegaard, Marie Louise Skakkebæk

    2007-01-01

    Endothelial lipase (EL) is expressed in endothelial cells, and affects plasma lipoprotein metabolism by hydrolyzing phospholipids in HDL. To determine the cellular expression of EL mRNA and protein in human atherosclerotic lesions, we performed in situ hybridization and immunohistochemical studies...

  2. Over-expression of the mycobacterial trehalose-phosphate phosphatase OtsB2 results in a defect in macrophage phagocytosis associated with increased mycobacterial-macrophage adhesion

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-11-01

    Full Text Available Trehalose-6-phosphate phosphatase (OtsB2 is involved in the OtsAB trehalose synthesis pathway to produce free trehalose and is strictly essential for mycobacterial growth. We wished to determine the effects of OtsB2 expression on mycobacterial phenotypes such as growth, phagocytosis and survival in macrophages. Mycobacterium bovis-BCG (BCG over-expressing OtsB2 were able to better survive in stationary phase. Over-expression of OtsB2 led to a decrease in phagocytosis but not survival in THP-1 macrophage-like cells, and this was not due to a decrease in general macrophage phagocytic activity. Surprisingly, when we investigated macrophage-mycobacterial interactions by flow cytometry and atomic force microscopy, we discovered that BCG over-expressing OtsB2 have stronger binding to THP-1 cells than wild-type BCG. These results suggest that altering OtsB2 expression has implications for mycobacterial host-pathogen interactions. Macrophage-mycobacteria phagocytic interactions are complex and merit further study.

  3. TP53 and ATM mRNA expression in skin and skeletal muscle after low-level laser exposure.

    Science.gov (United States)

    Guedes de Almeida, Luciana; Sergio, Luiz Philippe da Silva; de Paoli, Flavia; Mencalha, Andre Luiz; da Fonseca, Adenilson de Souza

    2017-08-01

    Low-level lasers are widespread in regenerative medicine, but the molecular mechanisms involved in their biological effects are not fully understood, particularly those on DNA stability. Therefore, this study aimed to investigate mRNA expression of genes related to DNA genomic stability in skin and skeletal muscle tissue from Wistar rats exposed to low-level red and infrared lasers. For this, TP53 (Tumor Protein 53) and ATM (Ataxia Telangiectasia Mutated gene) mRNA expressions were evaluated by real-time quantitative PCR (RT-qPCR) technique 24 hours after low-level red and infrared laser exposure. Our data showed that relative TP53 mRNA expression was not significantly altered in both tissues exposed to lasers. For ATM, relative mRNA expression in skin tissue was not significantly altered, but in muscle tissue, laser exposure increased relative ATM mRNA expression. Low-level red and infrared laser radiations alter ATM mRNA expression related to DNA stability in skeletal muscle tissue.

  4. Molecular evolution of adiponectin in Carnivora and its mRNA expression in relation to hepatic lipidosis.

    Science.gov (United States)

    Nieminen, Petteri; Rouvinen-Watt, Kirsti; Kapiainen, Suvi; Harris, Lora; Mustonen, Anne-Mari

    2010-09-15

    Adiponectin is a novel adipocyte-derived hormone with low circulating concentrations and/or mRNA expression in obesity and non-alcoholic fatty liver disease (NAFLD). The adiponectin mRNA of several Carnivora species was sequenced to enable further gene expression studies in this clade with potential experimental species to examine the connections of hypoadiponectinemia to hepatic lipidosis. In addition, adiponectin mRNA expression was studied in the retroperitoneal fat of the American mink (Neovison vison), as hepatic lipidosis with close similarities to NAFLD can be rapidly induced to the species by fasting. The mRNA expression was determined after overnight-7d of food deprivation and 28d of re-feeding and correlated to the liver fat %. The homologies between the determined carnivoran mRNA sequences and that of the domestic dog were 92.2-99.1%. As the mRNA expression was not affected by short-term fasting and did not correlate with the liver fat %, there seems to be no clear connection between adiponectin and the development of lipidosis in the American mink. In the future, the obtained sequences can be utilized in further studies of adiponectin expression in comparative endocrinology. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  5. Distribution and mRNA Expression of BAMBI in Non-small-cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Shen MIAO

    2009-03-01

    Full Text Available Background and objective BAMBI structure is similar with that of the receptor Ⅰof TGF-β, it broadly participates in the control of TGF-β signaling. The aim of this study is to investigate the expression and its significance of BAMBI in non-small cell lung cancer (NSCLC and explore the relation between BAMBI and clinical and pathological factors of NSCLC. Methods Sixty-three cases with NSCLC and adjacent normal tissue specimens were used for immunohistochemical assay. Thirty-one fresh lung cancer tissue specimens and surrounding normal lung tissue specimens was preserved for RT-PCR in -70 ℃ after quick-frozen in liquid nitrogen immediately. Results The level of BAMBI mRNA in cancer tissues was higher than that in the corresponding adjacent tissues (0.358±0.135 vs 0.249±0.129, with the difference being statistically significant (P =0.003. BAMBI protein expressed mainly in the membrane and the cytoplasm close to the membrane, its expression in the cancer tissue was higher than that in the adjacent tissues, the difference was significant (P <0.01. Expression of BAMBI in the cancer tissue was higher than that in the adjacent tissues, and the expression of BAMBI in adenocarcinoma of lung is higher than that in squamous carcinoma. Conclusion The expressions of BAMBI significantly increase in NSCLC. It might be a common affair in carcinogenesis of NSCLC.

  6. Imbalanced expression of RANKL and osteoprotegerin mRNA in pannus tissue of rheumatoid arthritis.

    Science.gov (United States)

    Ainola, M; Mandelin, J; Liljeström, M; Konttinen, Y T; Salo, J

    2008-01-01

    To test if the pannus tissue is characterized by a high receptor activator of nuclear factor kappaB ligand to osteoprotegerin (RANKL:OPG) ratio, which could explain local osteoclastogenesis and formation of bony erosions. Messenger RNA and protein expressions of RANKL and OPG in rheumatoid and osteoarthritic tissue samples were measured using quantitative real-time RT-PCR and Western blot/densitometry. Pannus and synovitis fibroblasts explanted from tissue samples were cultured in vitro without and with TNF-alpha, IL-1Beta or IL-17 and analyzed quantitatively for RANKL expression. The ability of pannus fibroblasts to induce formation of multinuclear osteoclast-like cells from human monocytes, with macrophage-colony stimulating factor (M-CSF) but without RANKL added, was tested. Histochemical staining was used to assess the eventual presence of RANKL and tartrate resistant acid phosphatase positive osteoclast-like cells at the pannus-bone interface. RANKL:OPG ratios of messenger RNA (ppannus (2.06+/-0.73 and 2.2+/-0.65) compared to rheumatoid (0.62+/-0.13 and 1.31+/-0.69) and osteoarthritis (0.62+/-0.32 and 0.52+/-0.16) synovial membranes. Resting and stimulated (p dependent on the cytokine used) pannus fibroblasts produced RANKL in excess (p=0.0005) and unstimulated pannus fibroblasts also effectively induced osteoclast-like cell formation from monocytes in vitro without any exogenous RANKL added. Compatible with these findings, multinuclear osteoclasts-like cells were frequent in the fibroblast- and macrophage-rich pannus tissue at the soft tissue-to-bone interface. The high RANKL:OPG ratio, together with close fibroblast-to-monocyte contacts in pannus tissue, probably favor local generation of bone resorbing osteoclasts at the site of erosion in rheumatoid arthritis.

  7. Complex p63 mRNA isoform expression patterns in squamous cell carcinoma of the head and neck

    DEFF Research Database (Denmark)

    Thurfjell, N.; Coates, P.J.; Uusitalo, T.

    2004-01-01

    on the role of p63 expression in human tumours, we used quantitative real-time RT-PCR to study individual p63 isoforms in squamous cell carcinomas of the head and neck (SCCHN). In keeping with previous reports, expression of the deltaN- and p63alpha-isoforms predominated and deltaNp63 mRNA was expressed...

  8. Contribution of Hfe expression in macrophages to the regulation of hepatic hepcidin levels and iron loading

    OpenAIRE

    Makui, Hortence; Soares, Ricardo J.; Jiang, Wenlei; Constante, Marco; Santos, Manuela M.

    2005-01-01

    Hereditary hemochromatosis (HH), an iron overload disease associated with mutations in the HFE gene, is characterized by increased intestinal iron absorption and consequent deposition of excess iron, primarily in the liver. Patients with HH and Hfe-deficient (Hfe−/−) mice manifest inappropriate expression of the iron absorption regulator hepcidin, a peptide hormone produced by the liver in response to iron loading. In this study, we investigated the contribution of Hfe expression in macrophag...

  9. The AP-1 Transcription Factor c-Jun Promotes Arthritis by Regulating Cyclooxygenase-2 and Arginase-1 Expression in Macrophages.

    Science.gov (United States)

    Hannemann, Nicole; Jordan, Jutta; Paul, Sushmita; Reid, Stephen; Baenkler, Hanns-Wolf; Sonnewald, Sophia; Bäuerle, Tobias; Vera, Julio; Schett, Georg; Bozec, Aline

    2017-05-01

    Activation of proinflammatory macrophages is associated with the inflammatory state of rheumatoid arthritis. Their polarization and activation are controlled by transcription factors such as NF-κB and the AP-1 transcription factor member c-Fos. Surprisingly, little is known about the role of the AP-1 transcription factor c-Jun in macrophage activation. In this study, we show that mRNA and protein levels of c-Jun are increased in macrophages following pro- or anti-inflammatory stimulations. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment cluster analyses of microarray data using wild-type and c-Jun-deleted macrophages highlight the central function of c-Jun in macrophages, in particular for immune responses, IL production, and hypoxia pathways. Mice deficient for c-Jun in macrophages show an amelioration of inflammation and bone destruction in the serum-induced arthritis model. In vivo and in vitro gene profiling, together with chromatin immunoprecipitation analysis of macrophages, revealed direct activation of the proinflammatory factor cyclooxygenase-2 and indirect inhibition of the anti-inflammatory factor arginase-1 by c-Jun. Thus, c-Jun regulates the activation state of macrophages and promotes arthritis via differentially regulating cyclooxygenase-2 and arginase-1 levels. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. ACAT1 deletion in murine macrophages associated with cytotoxicity and decreased expression of collagen type 3A1

    International Nuclear Information System (INIS)

    Rodriguez, Annabelle; Ashen, M. Dominique; Chen, Edward S.

    2005-01-01

    In contrast to some published studies of murine macrophages, we previously showed that ACAT inhibitors appeared to be anti-atherogenic in primary human macrophages in that they decreased foam cell formation without inducing cytotoxicity. Herein, we examined foam cell formation and cytotoxicity in murine ACAT1 knockout (KO) macrophages in an attempt to resolve the discrepancies. Elicited peritoneal macrophages from normal C57BL6 and ACAT1 KO mice were incubated with DMEM containing acetylated LDL (acLDL, 100 μg protein/ml) for 48 h. Cells became cholesterol enriched and there were no differences in the total cholesterol mass. Esterified cholesterol mass was lower in ACAT1 KO foam cells compared to normal macrophages (p 14 C]adenine from macrophages, was approximately 2-fold greater in ACAT1 KO macrophages as compared to normal macrophages (p < 0.0001), and this was independent of cholesterol enrichment. cDNA microarray analysis showed that ACAT1 KO macrophages expressed substantially less collagen type 3A1 (26-fold), which was confirmed by RT-PCR. Total collagen content was also significantly reduced (57%) in lung homogenates isolated from ACAT1 KO mice (p < 0.02). Thus, ACAT1 KO macrophages show biochemical changes consistent with increased cytotoxicity and also a novel association with decreased expression of collagen type 3A1

  11. Phytosterols Differentially Influence ABC transporter Expression, Cholesterol Efflux and Inflammatory Cytokine Secretion in Macrophage Foam Cells

    Science.gov (United States)

    Sabeva, Nadezhda S; McPhaul, Christopher M; Li, Xiangan; Cory, Theodore J.; Feola, David J.; Graf, Gregory A

    2010-01-01

    Phytosterol supplements lower low density lipoprotein (LDL) cholesterol, but accumulate in vascular lesions of patients and limit the anti-atherosclerotic effects of LDL lowering in apolipoprotein E deficient mice, suggesting that the cholesterol lowering benefit of phytosterol supplementation may not be fully realized. Individual phytosterols have cell-type specific effects that may either be beneficial or deleterious with respect to atherosclerosis, but little is known concerning their effects on macrophage function. The effects of phytosterols on ABCA1 and ABCG1 abundance, cholesterol efflux, and inflammatory cytokine secretion were determined in cultured macrophage foam cells. Among the commonly consumed phytosterols, stigmasterol increased expression of ABCA1 and ABCG1 and increased efflux of cholesterol to apolipoprotein (Apo) AI and high density lipoprotein (HDL). Campesterol and sitosterol had no effect on ABCA1 or ABCG1 levels. Sitosterol had no effect of cholesterol efflux to Apo AI or HDL, whereas campesterol had a modest, but significant reduction in cholesterol efflux to HDL in THP-1 macrophages. Whereas stigmasterol blunted aggregated LDL-induced increases in tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β secretion, sitosterol exacerbated these effects. The presence of campesterol had no effect on agLDL-induced inflammatory cytokine secretion from THP-1 macrophages. In conclusion, the presence of stigmasterol in modified lipoproteins promoted cholesterol efflux and suppressed inflammatory cytokine secretion in response to lipid loading in macrophage foam cells. While campesterol was largely inert, the presence of sitosterol increased the proinflammatory cytokine secretion. PMID:21111593

  12. Modulation of inducible nitric oxide synthase gene expression in RAW 264.7 murine macrophages by Pacific ciguatoxin.

    Science.gov (United States)

    Kumar-Roiné, Shilpa; Matsui, Mariko; Chinain, Mireille; Laurent, Dominique; Pauillac, Serge

    2008-08-01

    To investigate the possible involvement of the nitric oxide radical (NO) in ciguatera fish poisoning (CFP), the in vitro effects of the main Pacific ciguatoxin (P-CTX-1B) and bacterial lipopolysaccharide (LPS) were comparatively studied on neuroblastoma Neuro-2a and on macrophage RAW 264.7 cell lines. NO accumulation was quantified by measuring nitrite levels in cellular supernatant using Griess reagent while the up-regulation of inducible nitric oxide synthase (iNOS) at the mRNA level was quantified via Real-Time Reverse-Transcription Polymerase Chain Reaction (RT-PCR). P-CTX-1B caused a concentration- and time-dependent induction of iNOS in RAW 264.7 cells but not in Neuro-2a cells. NO production was evidenced by increased nitrite levels in the 10 microM range after 48 h of RAW 264.7 cells exposure to LPS and P-CTX-1B (0.05 microg/ml and 6 nM, respectively). The expression of iNOS mRNA peaked at 8h for LPS then gradually decreased to low level at 48 h. In contrast, a sustained level was recorded with P-CTX-1B in the 8-48 h time interval. The addition of N(omega)-nitro-L-arginine methyl ester (L-NAME), a stereoselective NOS inhibitor, strongly diminished NO formation but had no effect on iNOS mRNA synthesis. The implication of NO in CFP paves the way for new therapies for both western and traditional medicines.

  13. Histone Deacetylase 7 Promotes Toll-like Receptor 4-dependent Proinflammatory Gene Expression in Macrophages*

    Science.gov (United States)

    Shakespear, Melanie R.; Hohenhaus, Daniel M.; Kelly, Greg M.; Kamal, Nabilah A.; Gupta, Praveer; Labzin, Larisa I.; Schroder, Kate; Garceau, Valerie; Barbero, Sheila; Iyer, Abishek; Hume, David A.; Reid, Robert C.; Irvine, Katharine M.; Fairlie, David P.; Sweet, Matthew J.

    2013-01-01

    Broad-spectrum inhibitors of histone deacetylases (HDACs) constrain Toll-like receptor (TLR)-inducible production of key proinflammatory mediators. Here we investigated HDAC-dependent inflammatory responses in mouse macrophages. Of the classical Hdacs, Hdac7 was expressed at elevated levels in inflammatory macrophages (thioglycollate-elicited peritoneal macrophages) as compared with bone marrow-derived macrophages and the RAW264 cell line. Overexpression of a specific, alternatively spliced isoform of Hdac7 lacking the N-terminal 22 amino acids (Hdac7-u), but not the Refseq Hdac7 (Hdac7-s), promoted LPS-inducible expression of Hdac-dependent genes (Edn1, Il-12p40, and Il-6) in RAW264 cells. A novel class IIa-selective HDAC inhibitor reduced recombinant human HDAC7 enzyme activity as well as TLR-induced production of inflammatory mediators in thioglycollate-elicited peritoneal macrophages. Both LPS and Hdac7-u up-regulated the activity of the Edn1 promoter in an HDAC-dependent fashion in RAW264 cells. A hypoxia-inducible factor (HIF) 1 binding site in this promoter was required for HDAC-dependent TLR-inducible promoter activity and for Hdac7- and HIF-1α-mediated trans-activation. Coimmunoprecipitation assays showed that both Hdac7-u and Hdac7-s interacted with HIF-1α, whereas only Hdac7-s interacted with the transcriptional repressor CtBP1. Thus, Hdac7-u positively regulates HIF-1α-dependent TLR signaling in macrophages, whereas an interaction with CtBP1 likely prevents Hdac7-s from exerting this effect. Hdac7 may represent a potential inflammatory disease target. PMID:23853092

  14. Histone deacetylase 7 promotes Toll-like receptor 4-dependent proinflammatory gene expression in macrophages.

    Science.gov (United States)

    Shakespear, Melanie R; Hohenhaus, Daniel M; Kelly, Greg M; Kamal, Nabilah A; Gupta, Praveer; Labzin, Larisa I; Schroder, Kate; Garceau, Valerie; Barbero, Sheila; Iyer, Abishek; Hume, David A; Reid, Robert C; Irvine, Katharine M; Fairlie, David P; Sweet, Matthew J

    2013-08-30

    Broad-spectrum inhibitors of histone deacetylases (HDACs) constrain Toll-like receptor (TLR)-inducible production of key proinflammatory mediators. Here we investigated HDAC-dependent inflammatory responses in mouse macrophages. Of the classical Hdacs, Hdac7 was expressed at elevated levels in inflammatory macrophages (thioglycollate-elicited peritoneal macrophages) as compared with bone marrow-derived macrophages and the RAW264 cell line. Overexpression of a specific, alternatively spliced isoform of Hdac7 lacking the N-terminal 22 amino acids (Hdac7-u), but not the Refseq Hdac7 (Hdac7-s), promoted LPS-inducible expression of Hdac-dependent genes (Edn1, Il-12p40, and Il-6) in RAW264 cells. A novel class IIa-selective HDAC inhibitor reduced recombinant human HDAC7 enzyme activity as well as TLR-induced production of inflammatory mediators in thioglycollate-elicited peritoneal macrophages. Both LPS and Hdac7-u up-regulated the activity of the Edn1 promoter in an HDAC-dependent fashion in RAW264 cells. A hypoxia-inducible factor (HIF) 1 binding site in this promoter was required for HDAC-dependent TLR-inducible promoter activity and for Hdac7- and HIF-1α-mediated trans-activation. Coimmunoprecipitation assays showed that both Hdac7-u and Hdac7-s interacted with HIF-1α, whereas only Hdac7-s interacted with the transcriptional repressor CtBP1. Thus, Hdac7-u positively regulates HIF-1α-dependent TLR signaling in macrophages, whereas an interaction with CtBP1 likely prevents Hdac7-s from exerting this effect. Hdac7 may represent a potential inflammatory disease target.

  15. Bilirubin Decreases Macrophage Cholesterol Efflux and ATP-Binding Cassette Transporter A1 Protein Expression.

    Science.gov (United States)

    Wang, Dongdong; Tosevska, Anela; Heiß, Elke H; Ladurner, Angela; Mölzer, Christine; Wallner, Marlies; Bulmer, Andrew; Wagner, Karl-Heinz; Dirsch, Verena M; Atanasov, Atanas G

    2017-04-28

    Mild but chronically elevated circulating unconjugated bilirubin is associated with reduced total and low-density lipoprotein cholesterol concentration, which is associated with reduced cardiovascular disease risk. We aimed to investigate whether unconjugated bilirubin influences macrophage cholesterol efflux, as a potential mechanism for the altered circulating lipoprotein concentrations observed in hyperbilirubinemic individuals. Cholesterol efflux from THP-1 macrophages was assessed using plasma obtained from normo- and hyperbilirubinemic (Gilbert syndrome) humans (n=60 per group) or (heterozygote/homozygote Gunn) rats (n=20 per group) as an acceptor. Hyperbilirubinemic plasma from patients with Gilbert syndrome and Gunn rats induced significantly reduced cholesterol efflux compared with normobilirubinemic plasma. Unconjugated bilirubin (3-17.1 μmol/L) exogenously added to plasma- or apolipoprotein A1-supplemented media also decreased macrophage cholesterol efflux in a concentration- and time-dependent manner. We also showed reduced protein expression of the ATP-binding cassette transporter A1 (ABCA1), a transmembrane cholesterol transporter involved in apolipoprotein A1-mediated cholesterol efflux, in THP-1 macrophages treated with unconjugated bilirubin and in peripheral blood mononuclear cells obtained from hyperbilirubinemic individuals. Furthermore, we demonstrated that bilirubin accelerates the degradation rate of the ABCA1 protein in THP-1 macrophages. Cholesterol efflux from THP-1 macrophages is decreased in the presence of plasma obtained from humans and rats with mild hyperbilirubinemia. A direct effect of unconjugated bilirubin on cholesterol efflux was demonstrated and is associated with decreased ABCA1 protein expression. These data improve our knowledge concerning bilirubin's impact on cholesterol transport and represent an important advancement in our understanding of bilirubin's role in cardiovascular disease. © 2017 The Authors. Published on

  16. GAD1 mRNA expression and DNA methylation in prefrontal cortex of subjects with schizophrenia.

    Directory of Open Access Journals (Sweden)

    Hsien-Sung Huang

    2007-08-01

    Full Text Available Dysfunction of prefrontal cortex in schizophrenia includes changes in GABAergic mRNAs, including decreased expression of GAD1, encoding the 67 kDa glutamate decarboxylase (GAD67 GABA synthesis enzyme. The underlying molecular mechanisms remain unclear. Alterations in DNA methylation as an epigenetic regulator of gene expression are thought to play a role but this hypothesis is difficult to test because no techniques are available to extract DNA from GAD1 expressing neurons efficiently from human postmortem brain. Here, we present an alternative approach that is based on immunoprecipitation of mononucleosomes with anti-methyl-histone antibodies differentiating between sites of potential gene expression as opposed to repressive or silenced chromatin. Methylation patterns of CpG dinucleotides at the GAD1 proximal promoter and intron 2 were determined for each of the two chromatin fractions separately, using a case-control design for 14 schizophrenia subjects affected by a decrease in prefrontal GAD1 mRNA levels. In controls, the methylation frequencies at CpG dinucleotides, while overall higher in repressive as compared to open chromatin, did not exceed 5% at the proximal GAD1 promoter and 30% within intron 2. Subjects with schizophrenia showed a significant, on average 8-fold deficit in repressive chromatin-associated DNA methylation at the promoter. These results suggest that chromatin remodeling mechanisms are involved in dysregulated GABAergic gene expression in schizophrenia.

  17. IGF-1R mRNA expression is increased in obese children.

    Science.gov (United States)

    Ricco, Rafaela Cristina; Ricco, Rubens Garcia; Queluz, Mariangela Carletti; de Paula, Mariana Teresa Sarti; Atique, Patricia Volpon; Custódio, Rodrigo José; Tourinho Filho, Hugo; Del Roio Liberatori, Raphael; Martinelli, Carlos Eduardo

    2018-04-01

    Obese children are often taller than age-matched subjects. Reports on GH and IGF-I levels in obese individuals are controversial, with normal and reduced GH-IGF-I levels having been reported in this group of patients. Thus, the aim of this study was to analyse insulin-like growth factor type 1 receptor (IGF-IR) mRNA expression in obese children. Forty-seven pre-pubertal children were included in this study: 29 were obese and taller than their target height, and 18 were normal eutrophic controls. Fasting blood samples were collected for IGF-IR mRNA expression in isolated lymphocytes and serum IGF-I, ALS, IGFBP-3, and IGFBP-1 concentration analysis. Relative IGF-IR gene expression (2 -ΔΔCT ) was significantly (P=0.025) higher in obese children (median 1.87) than in controls (1.15). Fourteen of the 29 obese subjects showed 2 -ΔΔCT values greater than or equal to 2, while only 2 individuals in the control group showed values above 2 (P=0.01). Obese children showed significantly (P=0.01) higher IGF-I concentrations than the control group (237ng/ml and 144ng/ml, respectively). Among obese patients, 65.5% had IGF-I values above the 75 percentile of the control group (P=0.02). ALS concentration was significantly (P=0.04) higher in the obese group, while IGFBP-3 levels were similar in obese and control children. IGFBP-1 concentration was lower in obese children, while insulin levels and HOMA-IR index were higher than in controls. The higher IGF-IR mRNA expression observed in obese children, associated with the higher IGF-I and ALS and the lower IGFBP-1 levels, suggest that the higher stature observed in these children may be due to increased IGF-I bioactivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Performance comparison of two microarray platforms to assess differential gene expression in human monocyte and macrophage cells

    Directory of Open Access Journals (Sweden)

    Montalescot Gilles

    2008-06-01

    Full Text Available Abstract Background In this study we assessed the respective ability of Affymetrix and Illumina microarray methodologies to answer a relevant biological question, namely the change in gene expression between resting monocytes and macrophages derived from these monocytes. Five RNA samples for each type of cell were hybridized to the two platforms in parallel. In addition, a reference list of differentially expressed genes (DEG was generated from a larger number of hybridizations (mRNA from 86 individuals using the RNG/MRC two-color platform. Results Our results show an important overlap of the Illumina and Affymetrix DEG lists. In addition, more than 70% of the genes in these lists were also present in the reference list. Overall the two platforms had very similar performance in terms of biological significance, evaluated by the presence in the DEG lists of an excess of genes belonging to Gene Ontology (GO categories relevant for the biology of monocytes and macrophages. Our results support the conclusion of the MicroArray Quality Control (MAQC project that the criteria used to constitute the DEG lists strongly influence the degree of concordance among platforms. However the importance of prioritizing genes by magnitude of effect (fold change rather than statistical significance (p-value to enhance cross-platform reproducibility recommended by the MAQC authors was not supported by our data. Conclusion Functional analysis based on GO enrichment demonstrates that the 2 compared technologies delivered very similar results and identified most of the relevant GO categories enriched in the reference list.

  19. Dragon (repulsive guidance molecule b) inhibits IL-6 expression in macrophages.

    Science.gov (United States)

    Xia, Yin; Cortez-Retamozo, Virna; Niederkofler, Vera; Salie, Rishard; Chen, Shanzhuo; Samad, Tarek A; Hong, Charles C; Arber, Silvia; Vyas, Jatin M; Weissleder, Ralph; Pittet, Mikael J; Lin, Herbert Y

    2011-02-01

    Repulsive guidance molecule (RGM) family members RGMa, RGMb/Dragon, and RGMc/hemojuvelin were found recently to act as bone morphogenetic protein (BMP) coreceptors that enhance BMP signaling activity. Although our previous studies have shown that hemojuvelin regulates hepcidin expression and iron metabolism through the BMP pathway, the role of the BMP signaling mediated by Dragon remains largely unknown. We have shown previously that Dragon is expressed in neural cells, germ cells, and renal epithelial cells. In this study, we demonstrate that Dragon is highly expressed in macrophages. Studies with RAW264.7 and J774 macrophage cell lines reveal that Dragon negatively regulates IL-6 expression in a BMP ligand-dependent manner via the p38 MAPK and Erk1/2 pathways but not the Smad1/5/8 pathway. We also generated Dragon knockout mice and found that IL-6 is upregulated in macrophages and dendritic cells derived from whole lung tissue of these mice compared with that in respective cells derived from wild-type littermates. These results indicate that Dragon is an important negative regulator of IL-6 expression in immune cells and that Dragon-deficient mice may be a useful model for studying immune and inflammatory disorders.

  20. Macrophage Expression of Inflammatory Genes in Response to EMCV Infection

    Directory of Open Access Journals (Sweden)

    Zachary R. Shaheen

    2015-08-01

    Full Text Available The expression and production of type 1 interferon is the classic cellular response to virus infection. In addition to this antiviral response, virus infection also stimulates the production of proinflammatory mediators. In this review, the pathways controlling the induction of inflammatory genes and the roles that these inflammatory mediators contribute to host defense against viral pathogens will be discussed. Specific focus will be on the role of the chemokine receptor CCR5, as a signaling receptor controlling the activation of pathways leading to virus-induced inflammatory gene expression.

  1. Distribution of mast cells and macrophages and expression of interleukin-6 in periapical cysts.

    Science.gov (United States)

    Bracks, Igor Vieira; Armada, Luciana; Gonçalves, Lúcio Souza; Pires, Fábio Ramôa

    2014-01-01

    Mast cells and macrophages are important components of the inflammatory infiltrate found in inflammatory periapical diseases. Several cytokines participate in the mechanisms of inflammation, tissue repair, and bone resorption associated with periapical cysts. The aim of the present study was to evaluate the distribution of mast cells and macrophages and the expression of interleukin-6 (IL-6) in periapical cysts. Thirty periapical cysts were selected for the study, and clinical, demographic, and gross information from the cases was obtained from the laboratory records. Five-micrometer sections stained with hematoxylin-eosin were reviewed for analysis of the microscopic features of the cysts, and 3-μm sections on silanized slides were used for immunohistochemical reactions with anti-tryptase, anti-CD68, and anti-IL-6. There was no statistically significant difference in the mean number of mast cells and macrophages when comparing superficial and deep regions of the fibrous capsule of the cysts. Mean number of mast cells on the superficial region of the fibrous capsule was higher in cysts showing intense superficial inflammation and exocytosis. Macrophages were more commonly found in areas showing IL-6 expression, and IL-6 was less expressed in deep regions of the fibrous capsule in cysts showing greater gross volume. The results reinforced the participation of mast cells and macrophages in the pathogenesis of periapical cysts and suggested that IL-6 is not the major bone resorption mediator in larger periapical cysts. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. BORIS/CTCFL mRNA isoform expression and epigenetic regulation in epithelial ovarian cancer

    Science.gov (United States)

    Link, Petra A.; Zhang, Wa; Odunsi, Kunle; Karpf, Adam R.

    2013-01-01

    Cancer germline (CG) genes are normally expressed in germ cells and aberrantly expressed in a variety of cancers; their immunogenicity has led to the widespread development of cancer vaccines targeting these antigens. BORIS/CTCFL is an autosomal CG antigen and promising cancer vaccine target. BORIS is the only known paralog of CTCF, a gene intimately involved in genomic imprinting, chromatin insulation, and nuclear regulation. We have previously shown that BORIS is expressed in epithelial ovarian cancer (EOC) and that its expression coincides with promoter and global DNA hypomethylation. Recently, 23 different BORIS mRNA variants have been described, and have been functionally grouped into six BORIS isoform families (sf1–sf6). In the present study, we have characterized the expression of BORIS isoform families in normal ovary (NO) and EOC, the latter of which were selected to include two groups with widely varying global DNA methylation status. We find selective expression of BORIS isoform families in NO, which becomes altered in EOC, primarily by the activation of BORIS sf1 in EOC. When comparing EOC samples based on methylation status, we find that BORIS sf1 and sf2 isoform families are selectively activated in globally hypomethylated tumors. In contrast, CTCF is downregulated in EOC, and the ratio of BORIS sf1, sf2, and sf6 isoform families as a function of CTCF is elevated in hypomethylated tumors. Finally, the expression of all BORIS isoform families was induced to varying extents by epigenetic modulatory drugs in EOC cell lines, particularly when DNMT and HDAC inhibitors were used in combination. PMID:23390377

  3. Increased mRNA expression of cytochrome oxidase in dorsal raphe nucleus of depressive suicide victims

    Directory of Open Access Journals (Sweden)

    A Sanchez-Bahillo

    2008-04-01

    Full Text Available A Sanchez-Bahillo1, V Bautista-Hernandez1, Carlos Barcia Gonzalez1, R Bañon2, A Luna2, EC Hirsch3, Maria-Trinidad Herrero11Clinical and Experimental Neuroscience, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED; 2Department of Legal Medicine, Department of Human Anatomy, School of Medicine, University of Murcia, Campus de Espinardo, Murcia 30100, Spain; 3INSERM U679 Hôpital de la Salpêtrière, Boulevard de l’Hôpital, Paris, FranceAbstract: Suicidal behavior is a problem with important social repercussions. Some groups of the population show a higher risk of suicide; for example, depression, alcoholism, psychosis or drug abuse frequently precedes suicidal behavior. However, the relationship between metabolic alterations in the brain and premorbid clinical symptoms of suicide remains uncertain. The serotonergic and noradrenergic systems have frequently been, implicated in suicidal behavior and the amount of serotonin in the brain and CSF of suicide victims has been found to be low compared with normal subjects. However, there are contradictory results regarding the role of noradrenergic neurons in the mediation of suicide attempts, possibly reflecting the heterogeneity of conditions that lead to a common outcome. In the present work we focus on the subgroup of suicide victims that share a common diagnosis of major depression. Based on post-mortem studies analyzing mRNA expression by in situ hybridization, serotonergic neurons from the dorsal raphe nucleus (DRN from depressive suicide victims are seen to over-express cytochrome oxidase mRNA. However, no corresponding changes were found in the expression of tyrosine hydroxylase (TH mRNA in the noradrenergic neurons of the Locus Coeruleus (LC. These results suggest that, despite of the low levels of serotonin described in suicide victims, the activity of DRN neurons could increase in the suicidally depressed, probably due to the over activation of

  4. Dopamine transporter polymorphism modulates oculomotor function and DAT1 mRNA expression in schizophrenia.

    Science.gov (United States)

    Wonodi, Ikwunga; Hong, L Elliot; Stine, O Colin; Mitchell, Braxton D; Elliott, Amie; Roberts, Rosalinda C; Conley, Robert R; McMahon, Robert P; Thaker, Gunvant K

    2009-03-05

    Smooth pursuit eye movement (SPEM) deficit is an established schizophrenia endophenotype with a similar neurocognitive construct to working memory. Frontal eye field (FEF) neurons controlling SPEM maintain firing when visual sensory information is removed, and their firing rates directly correlate with SPEM velocity. We previously demonstrated a paradoxical association between a functional polymorphism of dopamine signaling (COMT gene) and SPEM. Recent evidence implicates the dopamine transporter gene (DAT1) in modulating cortical dopamine and associated neurocognitive functions. We hypothesized that DAT1 10/10 genotype, which reduces dopamine transporter expression and increases extracellular dopamine, would affect SPEM. We examined the effects of DAT1 genotype on: Clinical diagnosis in the study sample (n = 418; 190 with schizophrenia), SPEM measures in a subgroup with completed oculomotor measures (n = 200; 87 schizophrenia), and DAT1 gene expression in FEF tissue obtained from postmortem brain samples (n = 32; 16 schizophrenia). DAT1 genotype was not associated with schizophrenia. DAT1 10/10 genotype was associated with better SPEM in healthy controls, intermediate SPEM in unaffected first-degree relatives of schizophrenia subjects, and worse SPEM in schizophrenia subjects. In the gene expression study, DAT1 10/10 genotype was associated with significantly reduced DAT1 mRNA transcript in FEF tissue from healthy control donors (P < 0.05), but higher expression in schizophrenia donors. Findings suggest regulatory effects of another gene(s) or etiological factor in schizophrenia, which modulate DAT1 gene function. 2008 Wiley-Liss, Inc.

  5. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines

    DEFF Research Database (Denmark)

    Nørgaard, P; Spang-Thomsen, M; Poulsen, H S

    1996-01-01

    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII...... and beta-glycan (RIII) was examined. The results showed that loss of RII mRNA correlated with TGF-beta 1 resistance. In contrast, RI-and beta-glycan mRNA was expressed by all cell lines, including those lacking expression of these proteins. According to Southern blot analysis, the loss of type II m......RNA was not due to gross structural changes in the gene. The effect of TGF-beta 1 on expression of TGF-beta receptor mRNA (receptor autoregulation) was examined by quantitative Northern blotting in four cell lines with different expression of TGF-beta receptor proteins. In two cell lines expressing all three TGF...

  6. Expression of Panton-Valentine leukocidin mRNA among Staphylococcus aureus isolates associates with specific clinical presentations.

    Directory of Open Access Journals (Sweden)

    Fangyou Yu

    Full Text Available Panton-Valentine leukocidin (PVL; gene designation lukF/S-PV is likely an important virulence factor for Staphylococcus aureus (S. aureus, as qualitative expression of the protein correlates with severity for specific clinical presentations, including skin and soft tissue infections (SSTIs. Development of genetic approaches for risk-assessment of patients with S. aureus infections may prove clinically useful, and whether lukF/S-PV gene expression correlates with specific clinical presentations for S. aureus has been largely unexplored. In the present study, we quantified lukS-PV mRNA among 96 S. aureus isolates to determine whether expression levels correlated with specific clinical presentations in adults and children. Expression level of lukS-PV mRNA among isolates from skin and soft tissue infections (SSTIs was significantly greater than among isolates from blood stream infection (BSIs, and expression level of lukS-PV mRNA among BSI isolates from children was significantly greater than for BSI isolates among adults. Moreover, expression level of lukS-PV mRNA among community-acquired (CA isolates was significantly greater than for hospital-acquired (HA isolates. These data justify additional studies to determine the potential clinical utility for lukS-PV mRNA quantification as a predictive tool for severity of S. aureus infection.

  7. Classical and alternative activation and metalloproteinase expression occurs in foam cell macrophages in male and female ApoE null mice in the absence of T- and B-lymphocytes

    Directory of Open Access Journals (Sweden)

    Elaine Mo Hayes

    2014-10-01

    Full Text Available Background: Rupture of advanced atherosclerotic plaques accounts for most life-threatening myocardial infarctions. Classical (M1 and alternative (M2 macrophage activation could promote atherosclerotic plaque progression and rupture by increasing production of proteases, including matrix metalloproteinases (MMPs. Lymphocyte-derived cytokines may be essential for generating M1 and M2 phenotypes in plaques, although this has not been rigorously tested until now.Methods and Results: We validated the expression of M1 markers (iNOS and COX-2 and M2 markers (arginase-1, Ym-1 and CD206 and then measured MMP mRNA levels in mouse macrophages during classical and alternative activation in vitro. We then compared mRNA expression of these genes ex vivo in foam cells from subcutaneous granulomas in fat-fed immune-competent ApoE knockout and immune-compromised ApoE/Rag-1 double knockout mice, which lack all T and B cells. Furthermore, we performed immunohistochemistry in subcutaneous granulomas and in aortic root and brachiocephalic artery atherosclerotic plaques to measure the extent of M1/M2 marker and MMP protein expression in vivo. Classical activation of mouse macrophages with bacterial lipopolysaccharide in vitro increased MMPs-13, -14 and -25 but decreased MMP-19 and TIMP-2 mRNA expressions. Alternative activation with IL-4 increased MMP-19 expression. Foam cells in subcutaneous granulomas expressed all M1/M2 markers and MMPs at ex vivo mRNA and in vivo protein levels, irrespective of Rag-1 genotype. There were also similar percentages of foam cell macrophages carrying M1/M2 markers and MMPs in atherosclerotic plaques from ApoE knockout and ApoE/Rag-1 double knockout mice. Conclusions: Classical and alternative activation leads to distinct MMP expression patterns in mouse macrophages in vitro. M1 and M2 polarization in vivo occurs in the absence of T and B lymphocytes in either granuloma or plaque foam cell macrophages.

  8. Differential between Protein and mRNA Expression of CCR7 and SSTR5 Receptors in Crohn's Disease Patients

    Directory of Open Access Journals (Sweden)

    Nathalie Taquet

    2009-01-01

    Full Text Available Crohn's disease (CD is a multifactorial chronic inflammatory bowel disease of unknown cause. The aim of the present study was to explore if mRNA over-expression of SSTR5 and CCR7 found in CD patients could be correlated to respective protein expression. When compared to healthy donors, SSTR5 was over-expressed 417 ± 71 times in CD peripheral blood mononuclear cells (PBMCs. Flow cytometry experiments showed no correlation between mRNA and protein expression for SSTR5 in PBMCs. In an attempt to find a reason of such a high mRNA expression, SSTR5 present on CD PBMCs were tested and found as biologically active as on healthy cells. In biopsies of CD intestinal tissue, SSTR5 was not over-expressed but CCR7, unchanged in PBMCs, was over-expressed by 10 ± 3 times in the lamina propria. Confocal microscopy showed a good correlation of CCR7 mRNA and protein expression in CD intestinal biopsies. Our data emphasize flow and image cytometry as impossible to circumvent in complement to molecular biology so to avoid false interpretation on receptor expressions. Once confirmed by further large-scale studies, our preliminary results suggest a role for SSTR5 and CCR7 in CD pathogenesis.

  9. Rift Valley fever virus NS{sub S} gene expression correlates with a defect in nuclear mRNA export

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Anna Maria; Van Deusen, Nicole M.; Schmaljohn, Connie S., E-mail: Connie.s.schmaljohn.civ@mail.mil

    2015-12-15

    We investigated the localization of host mRNA during Rift Valley fever virus (RVFV) infection. Fluorescence in situ hybridization revealed that infection with RVFV altered the localization of host mRNA. mRNA accumulated in the nuclei of RVFV-infected but not mock-infected cells. Further, overexpression of the NS{sub S} gene, but not the N, G{sub N} or NS{sub M} genes correlated with mRNA nuclear accumulation. Nuclear accumulation of host mRNA was not observed in cells infected with a strain of RVFV lacking the gene encoding NS{sub S}, confirming that expression of NS{sub S} is likely responsible for this phenomenon. - Highlights: • Rift Valley fever virus (RVFV) infection alters the localization of host mRNA. • mRNA accumulates in the nuclei of RVFV-infected but not mock-infected cells. • NS{sub S} is likely responsible for mRNA relocalization to the nucleus.

  10. Increase of CTGF mRNA expression by respiratory syncytial virus infection is abrogated by caffeine in lung epithelial cells.

    Science.gov (United States)

    Kunzmann, Steffen; Krempl, Christine; Seidenspinner, Silvia; Glaser, Kirsten; Speer, Christian P; Fehrholz, Markus

    2018-04-16

    Respiratory syncytial virus (RSV) is a leading cause of severe lower respiratory tract infection in early childhood. Underlying pathomechanisms of elevated pulmonary morbidity in later infancy are largely unknown. We found that RSV-infected H441 cells showed increased mRNA expression of connective tissue growth factor (CTGF), a key factor in airway remodeling. Additional dexamethasone treatment led to further elevated mRNA levels, indicating additive effects. Caffeine treatment prevented RSV-mediated increase of CTGF mRNA. RSV may be involved in airway remodeling processes by increasing CTGF mRNA expression. Caffeine might abrogate these negative effects and thereby help to restore lung homeostasis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  11. Selective Inhibitors of Kv11.1 Regulate IL-6 Expression by Macrophages in Response to TLR/IL-1R Ligands

    Directory of Open Access Journals (Sweden)

    Cheryl Hunter

    2010-01-01

    Full Text Available The mechanism by which the platelet-endothelial cell adhesion molecule PECAM-1 regulates leukodiapedesis, vascular endothelial integrity, and proinflammatory cytokine expression in vivo is not known. We recently identified PECAM-1 as a negative regulator of Kv11.1, a specific voltage-gated potassium channel that functioned in human macrophages to reset a resting membrane potential following depolarization. We demonstrate here that dofetilide (DOF, a selective inhibitor of the Kv11.1 current, had a profound inhibitory effect on neutrophil recruitment in mice following TLR/IL-1R–elicited peritonitis or intrascrotal injection of IL-1β, but had no effect on responses seen with TNFα. Furthermore, inhibitors of Kv11.1 (DOF, E4031, and astemizole, but not Kv1.3 (margatoxin, suppressed the expression of IL-6 and MCP-1 cytokines by murine resident peritoneal macrophages, while again having no effect on TNFα. In contrast, IL-6 expression by peritoneal mesothelial cells was unaffected. Using murine P388 cells, which lack endogenous C/EBPβexpression and are unresponsive to LPS for the expression of both IL-6 and MCP-1, we observed that DOF inhibited LPS-induced expression of IL-6 mRNA following ectopic expression of wild-type C/EBPβ, but not a serine-64 point mutant. Finally, DOF inhibited the constitutive activation of cdk2 in murine peritoneal macrophages; cdk2 is known to phosphorylate C/EBPβ at serine-64. Taken together, our results implicate a potential role for Kv11.1 in regulating cdk2 and C/EBPβ activity, where robust transactivation of both IL-6 and MCP-1 transcription is known to be dependent on serine-64 of C/EBPβ. Our data might also explain the altered phenotypes displayed by PECAM-1 knockout mice in several disease models.

  12. Multiple correlation analyses revealed complex relationship between DNA methylation and mRNA expression in human peripheral blood mononuclear cells.

    Science.gov (United States)

    Xie, Fang-Fei; Deng, Fei-Yan; Wu, Long-Fei; Mo, Xing-Bo; Zhu, Hong; Wu, Jian; Guo, Yu-Fan; Zeng, Ke-Qin; Wang, Ming-Jun; Zhu, Xiao-Wei; Xia, Wei; Wang, Lan; He, Pei; Bing, Peng-Fei; Lu, Xin; Zhang, Yong-Hong; Lei, Shu-Feng

    2018-01-01

    DNA methylation is an important regulator on the mRNA expression. However, a genome-wide correlation pattern between DNA methylation and mRNA expression in human peripheral blood mononuclear cells (PBMCs) is largely unknown. The comprehensive relationship between mRNA and DNA methylation was explored by using four types of correlation analyses and a genome-wide methylation-mRNA expression quantitative trait locus (eQTL) analysis in PBMCs in 46 unrelated female subjects. An enrichment analysis was performed to detect biological function for the detected genes. Single pair correlation coefficient (r T1 ) between methylation level and mRNA is moderate (-0.63-0.62) in intensity, and the negative and positive correlations are nearly equal in quantity. Correlation analysis on each gene (T4) found 60.1% genes showed correlations between mRNA and gene-based methylation at P correlation (R T4  > 0.8). Methylation sites have regulation effects on mRNA expression in eQTL analysis, with more often observations in region of transcription start site (TSS). The genes under significant methylation regulation both in correlation analysis and eQTL analysis tend to cluster to the categories (e.g., transcription, translation, regulation of transcription) that are essential for maintaining the basic life activities of cells. Our findings indicated that DNA methylation has predictive regulation effect on mRNA with a very complex pattern in PBMCs. The results increased our understanding on correlation of methylation and mRNA and also provided useful clues for future epigenetic studies in exploring biological and disease-related regulatory mechanisms in PBMC.

  13. Expression profiles of mRNA after exposure yeast and rice to heavy-ion radiation

    International Nuclear Information System (INIS)

    Iwahashi, Hitoshi; Mizukami, Satomi; Nojima, Kumie

    2005-01-01

    We have studied expression profiles of mRNA after exposure yeast cells to heavy-ion radiation. Yeast cells was exposed by heavy-ion radiation with the levels of 6, 12, 25, 50, and 100 Gy. We could confirm the reproducibility of physiological state of yeast cells under the experimental conditions by DNA microarray. We could also confirm the reproducibility of viability of yeast cells after exposure to heavy-ion radiation. We thus applied yeast cells exposed with 25 Gy was applied to DNA microarray analysis. The strongly induced genes were HUG1 RAR4 RNR2 for DNA repairing genes and GLC3 GSY1 for energy metabolism genes. (author)

  14. Salinity Regulates Claudin mRNA and Protein Expression in the Teleost Gill

    DEFF Research Database (Denmark)

    Tipsmark, Christian K; Baltzegar, David A; Ozden, Ozkan

    2008-01-01

    The teleost gill carries out NaCl uptake in fresh water (FW) and NaCl excretion in seawater (SW). This transformation with salinity requires close regulation of ion transporter capacity and epithelial permeability. This study investigates the regulation of tight junctional claudins during salinity...... was localized deep in the FW gill filament, whereas staining was found apically in SW gill. Claudin 4-like proteins are localized predominantly in the filament outer epithelial layer and staining appears more intense in gill of FW versus SW fish. Additionally, tilapia claudin 28a and 30 genes were characterized......, and mRNA expression was found to increase during FW acclimation. These studies are the first to detect putative claudin proteins in teleosts and show their localization and regulation with salinity in gill epithelium. The data indicate that claudins may be important in permeability changes associated...

  15. Effects of corticosteroid on the expressions of neuropeptide and cytokine mRNA and on tenocyte viability in lateral epicondylitis

    Directory of Open Access Journals (Sweden)

    Han Soo

    2012-10-01

    Full Text Available Abstract Background The purpose of this study was to determine the reaction mechanism of corticosteroid by analyzing the expression patterns of neuropeptides (substance P (SP, calcitonin gene related peptide (CGRP and of cytokines (interleukin (IL-1α, tumor growth factor (TGF-β after corticosteroid treatment in lateral epicondylitis. In addition, we also investigated whether corticosteroid influenced tenocyte viability. Methods The corticosteroid triamcinolone acetonide (TAA was applied to cultured tenocytes of lateral epicondylitis, and the changes in the mRNA expressions of neuropeptides and cytokines and tenocyte viabilities were analyzed at seven time points. Quantitative real-time polymerase chain reaction and an MTT assay were used. Results The expression of SP mRNA was maximally inhibited by TAA at 24 hours but recovered at 72 hours, and the expressions of CGRP mRNA and IL-1α mRNA were inhibited at 24 and 3 hours, respectively. The expression of TGF-β mRNA was not significant. Tenocyte viability was significantly reduced by TAA at 24 hours. Conclusions We postulate that the reaction mechanism predominantly responsible for symptomatic relief after a corticosteroid injection involves the inhibitions of neuropeptides and cytokines, such as, CGRP and IL-1α. However the tenocyte viability was compromised by a corticosteroid.

  16. Altered organization of GABAA receptor mRNA expression in the depressed suicide brain

    Directory of Open Access Journals (Sweden)

    Michael O Poulter

    2010-03-01

    Full Text Available Inter-relationships ordinarily exist between mRNA expression of GABA-A subunits in the frontopolar cortex (FPC of individuals that had died suddenly from causes other than suicide. However, these correlations were largely absent in persons that had died by suicide. In the present investigation, these findings were extended by examining GABA-A receptor expression patterns (of controls and depressed individuals that died by suicide in the orbital frontal cortex (OFC, hippocampus, amygdala. locus coeruleus (LC,and paraventricular nucleus (PVN, all of which have been implicated in either depression, anxiety or stress responsivity. Results Using QPCR analysis, we found that in controls the inter-relations between GABA-A subunits varied across brain regions, being high in the hippocampus and amygdala, intermediate in the LC, and low in the OFC and PVN. The GABA-A subunit inter-relations were markedly different in persons that died by suicide, being reduced in hippocampus and amygdala, stable in the LC, but more coordinated in the OFC and to some extent in the PVN. Conclusions It seems that altered brain region-specific inhibitory signaling, stemming from altered GABA-A subunit coordination, are associated with depression/suicide. Although, it is unknown whether GABA-A subunit re-organization was specifically tied to depression, suicide, or the accompanying distress, these data show that the co-ordinate expression of this transcriptome does vary depending on brain region and is plastic.

  17. Carbon monoxide induced PPARγ SUMOylation and UCP2 block inflammatory gene expression in macrophages.

    Directory of Open Access Journals (Sweden)

    Arvand Haschemi

    Full Text Available Carbon monoxide (CO dampens pro-inflammatory responses in a peroxisome proliferator-activated receptor-γ (PPARγ and p38 mitogen-activated protein kinase (MAPK dependent manner. Previously, we demonstrated that CO inhibits lipopolysaccharide (LPS-induced expression of the proinflammatory early growth response-1 (Egr-1 transcription factor in macrophages via activation of PPARγ. Here, we further characterize the molecular mechanisms by which CO modulates the activity of PPARγ and Egr-1 repression. We demonstrate that CO enhances SUMOylation of PPARγ which we find was attributed to mitochondrial ROS generation. Ectopic expression of a SUMOylation-defective PPARγ-K365R mutant partially abolished CO-mediated suppression of LPS-induced Egr-1 promoter activity. Expression of a PPARγ-K77R mutant did not impair the effect of CO. In addition to PPARγ SUMOylation, CO-activated p38 MAPK was responsible for Egr-1 repression. Blocking both CO-induced PPARγ SUMOylation and p38 activation, completely reversed the effects of CO on inflammatory gene expression. In primary macrophages isolated form C57/BL6 male mice, we identify mitochondrial ROS formation by CO as the upstream trigger for the observed effects on Egr-1 in part through uncoupling protein 2 (UCP2. Macrophages derived from bone marrow isolated from Ucp2 gene Knock-Out C57/BL6 mice (Ucp2(-/-, produced significantly less ROS with CO exposure versus wild-type macrophages. Moreover, absence of UCP2 resulted in a complete loss of CO mediated Egr-1 repression. Collectively, these results indentify p38 activation, PPARγ-SUMOylation and ROS formation via UCP2 as a cooperative system by which CO impacts the inflammatory response.

  18. Quercetin-3-O-glucuronide induces ABCA1 expression by LXRα activation in murine macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Ohara, Kazuaki, E-mail: Kazuaki_Ohara@kirin.co.jp [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Wakabayashi, Hideyuki [Laboratory for New Product Development, Kirin Beverage Company Limited, 1-17-1 Namamugi, Tsurumi-ku, Yokohama 230-8628 (Japan); Taniguchi, Yoshimasa [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Shindo, Kazutoshi [Department of Food and Nutrition, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681 (Japan); Yajima, Hiroaki [Research Laboratories for Health Science and Food Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan); Yoshida, Aruto [Central Laboratories for Key Technologies, Kirin Company Limited, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004 (Japan)

    2013-11-29

    Highlights: •The major circulating quercetin metabolite (Q3GA) activated LXRα. •Q3GA induced ABCA1 via LXRα activation in macrophages. •Nelumbo nucifera leaf extracts contained quercetin glycosides. •N. nucifera leaf extract feeding elevated HDLC in mice. -- Abstract: Reverse cholesterol transport (RCT) removes excess cholesterol from macrophages to prevent atherosclerosis. ATP-binding cassette, subfamily A, member 1 (ABCA1) is a crucial cholesterol transporter involved in RCT to produce high density lipoprotein-cholesterol (HDLC), and is transcriptionally regulated by liver X receptor alpha (LXRα), a nuclear receptor. Quercetin is a widely distributed flavonoid in edible plants which prevented atherosclerosis in an animal model. We found that quercetin-3-O-glucuronide (Q3GA), a major quercetin metabolite after absorption from the digestive tract, enhanced ABCA1 expression, in vitro, via LXRα in macrophages. In addition, leaf extracts of a traditional Asian edible plant, Nelumbo nucifera (NNE), which contained abundant amounts of quercetin glycosides, significantly elevated plasma HDLC in mice. We are the first to present experimental evidence that Q3GA induced ABCA1 in macrophages, and to provide an alternative explanation to previous studies on arteriosclerosis prevention by quercetin.

  19. Selenium Deficiency Influences the mRNA Expression of Selenoproteins and Cytokines in Chicken Erythrocytes.

    Science.gov (United States)

    Luan, Yilin; Zhao, Jinxin; Yao, Haidong; Zhao, Xia; Fan, Ruifeng; Zhao, Wenchao; Zhang, Ziwei; Xu, Shiwen

    2016-06-01

    Selenium (Se) deficiency induces hemolysis in chickens, but the molecular mechanism for this effect remains unclear. Se primarily elicits its function through the activity of selenoproteins, which contain the unique amino acid selenocysteine (Sec). In this study, we aimed to investigate the effect of Se deficiency on the expression of 24 selenoproteins and 10 cytokines. One hundred eighty chickens were randomly divided into 2 groups (90 chickens per group). During the entire experimental period, chickens were allowed ad libitum consumption of feed and water. The chickens were fed either a Se-deficient diet (0.008 mg Se/kg; produced in the Se-deficient area of Heilongjiang, China) or a Se-supplemented diet (as sodium selenite) at 0.2 mg/kg for 35 days. At the 35th day, the messenger RNA (mRNA) levels of 24 selenoproteins and 10 cytokines were examined in erythrocytes of 5 chickens per group, and the correlation was analyzed. The results showed that the expression of 24 selenoproteins and 7 cytokines (IL-2, IL-4, IL-8, IL-10, IL-12β, TGF-β4, and IFN-γ) decreased (P chicken erythrocytes (P chickens was damaged by the Se deficiency. Correlation analysis suggested that although the expression of 24 selenoproteins and 7 cytokines decreased and that of 3 cytokines increased, there was a close correlation between their expression levels and a Se diet. These results suggested that Se deficiency influenced the expressions of 24 selenoproteins and 10 cytokines in chicken erythrocytes, revealing a relationship between Se and the chicken immune system. This study offers information regarding the mechanism of Se deficiency-induced hemolysis.

  20. Rev-erb beta regulates the Srebp-1c promoter and mRNA expression in skeletal muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Ramakrishnan, Sathiya N.; Lau, Patrick; Crowther, Lisa M. [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia); Cleasby, Mark E. [Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St. Vincent' s Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010 (Australia); Millard, Susan; Leong, Gary M. [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia); Cooney, Gregory J. [Diabetes and Obesity Research Program, Garvan Institute of Medical Research, St. Vincent' s Hospital, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010 (Australia); Muscat, George E.O., E-mail: g.muscat@imb.uq.edu.au [The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Qld 4072 (Australia)

    2009-10-30

    The nuclear hormone receptor, Rev-erb beta operates as a transcriptional silencer. We previously demonstrated that exogenous expression of Rev-erb{beta}{Delta}E in skeletal muscle cells increased Srebp-1c mRNA expression. We validated these in vitro observations by injection of an expression vector driving Rev-erb{beta}{Delta}E expression into mouse tibialis muscle that resulted in increased Srebp-1c mRNA expression. Paradoxically, Rev-erb{beta} siRNA expression in skeletal muscle cells repressed Srebp-1c expression, and indicated that Rev-erb{beta} expression was necessary for Srebp-1c expression. ChIP analysis demonstrated that Rev-erb{beta} was recruited to the Srebp-1c promoter. Moreover, Rev-erb{beta} trans-activated the Srebp-1c promoter, in contrast, Rev-erb{beta} efficiently repressed the Rev-erb{alpha} promoter, a previously characterized target gene. Finally, treatment with the Rev-erb agonist (hemin) (i) increased the trans-activation of the Srebp-1c promoter by Rev-erb{beta}; and (ii) increased Rev-erb{beta} and Srebp-1c mRNA expression. These data suggest that Rev-erb{beta} has the potential to activate gene expression, and is a positive regulator of Srebp-1c, a regulator of lipogenesis.

  1. Differential expression of the human thymosin-β4 gene in lymphocytes, macrophages, and granulocytes

    International Nuclear Information System (INIS)

    Gondo, H.; Kudo, J.; White, J.W.; Barr, C.; Selvanayagam, P.; Saunders, G.F.

    1987-01-01

    A cDNA clone encoding human thymosin-β 4 was isolated from a cDNA library prepared from peripheral blood leukocytes of a patient with acute lymphocytic leukemia. This clone contained the entire coding sequence of 43 amino acid residues of thymosin-β 4 and had an initiation codon and two termination codons. The amino acid and nucleotide sequences in the coding region were well conserved between rat and human. No signal peptide was found in the deduced protein sequence. Human thymosin-β 4 mRNA, approximately 830 nucleotides in length, was about 30 nucleotides larger than rat thymosin-β 4 mRNA. Expression of the human thymosin-β 4 gene in various primary myeloid and lymphoid malignant cells and in a few human hemopoietic cell lines was studied. Northern blot analyses of different neoplastic B lymphocytes revealed that steady state levels of thymosin-β 4 mRNA varied as a function of differentiation stage. Thymosin-β 4 mRNA levels were decreased in myeloma cells as are class II human leukocyte antigen, Fc receptor, and complement receptor, suggesting a relationship between thymosin-β 4 and the immune response. Treatment of THP-1 cells, a human monocytic cell line, with recombinant human interferon-γ reduced the levels of thymosin-β 4 mRNA. The pattern of thymosin-β 4 gene expression suggests that it may play a fundamental role in the host defense mechanism

  2. Differential expression of miRNAs by macrophages infected with virulent and avirulent Mycobacterium tuberculosis.

    Science.gov (United States)

    Das, Kishore; Saikolappan, Sankaralingam; Dhandayuthapani, Subramanian

    2013-12-01

    MicroRNAs (miRNAs) are small non-coding RNAs which post-transcriptionally regulate a wide range of biological processes that include cellular differentiation, development, immunity and apoptosis. There is a growing body of evidences that bacteria modulate immune responses by altering the expression of host miRNAs. Since macrophages are immune cells associated with innate and adaptive immunity, we investigated whether Mycobacterium tuberculosis infection affects miRNAs of macrophages. THP-1 macrophages infected with virulent (H37Rv) and avirulent (H37Ra) strains of M. tuberculosis were analyzed for changes in miRNAs' expression using microarray. This revealed that nine miRNA genes (miR-30a, miR-30e, miR-155, miR-1275, miR-3665, miR-3178, miR-4484, miR-4668-5p and miR-4497) were differentially expressed between THP-1cells infected with M. tuberculosis H37Rv and M. tuberculosis H37Ra strains. Additional characterization of these genes is likely to provide insights into their role in the pathogenesis of tuberculosis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Identification of genes preferentially expressed by highly virulent piscine Streptococcus agalactiae upon interaction with macrophages.

    Directory of Open Access Journals (Sweden)

    Chang-Ming Guo

    Full Text Available Streptococcus agalactiae, long recognized as a mammalian pathogen, is an emerging concern with regard to fish. In this study, we used a mouse model and in vitro cell infection to evaluate the pathogenetic characteristics of S. agalactiae GD201008-001, isolated from tilapia in China. This bacterium was found to be highly virulent and capable of inducing brain damage by migrating into the brain by crossing the blood-brain barrier (BBB. The phagocytosis assays indicated that this bacterium could be internalized by murine macrophages and survive intracellularly for more than 24 h, inducing injury to macrophages. Further, selective capture of transcribed sequences (SCOTS was used to investigate microbial gene expression associated with intracellular survival. This positive cDNA selection technique identified 60 distinct genes that could be characterized into 6 functional categories. More than 50% of the differentially expressed genes were involved in metabolic adaptation. Some genes have previously been described as associated with virulence in other bacteria, and four showed no significant similarities to any other previously described genes. This study constitutes the first step in further gene expression analyses that will lead to a better understanding of the molecular mechanisms used by S. agalactiae to survive in macrophages and to cross the BBB.

  4. Identification of Genes Preferentially Expressed by Highly Virulent Piscine Streptococcus agalactiae upon Interaction with Macrophages

    Science.gov (United States)

    Guo, Chang-Ming; Chen, Rong-Rong; Kalhoro, Dildar Hussain; Wang, Zhao-Fei; Liu, Guang-Jin; Lu, Cheng-Ping; Liu, Yong-Jie

    2014-01-01

    Streptococcus agalactiae, long recognized as a mammalian pathogen, is an emerging concern with regard to fish. In this study, we used a mouse model and in vitro cell infection to evaluate the pathogenetic characteristics of S. agalactiae GD201008-001, isolated from tilapia in China. This bacterium was found to be highly virulent and capable of inducing brain damage by migrating into the brain by crossing the blood–brain barrier (BBB). The phagocytosis assays indicated that this bacterium could be internalized by murine macrophages and survive intracellularly for more than 24 h, inducing injury to macrophages. Further, selective capture of transcribed sequences (SCOTS) was used to investigate microbial gene expression associated with intracellular survival. This positive cDNA selection technique identified 60 distinct genes that could be characterized into 6 functional categories. More than 50% of the differentially expressed genes were involved in metabolic adaptation. Some genes have previously been described as associated with virulence in other bacteria, and four showed no significant similarities to any other previously described genes. This study constitutes the first step in further gene expression analyses that will lead to a better understanding of the molecular mechanisms used by S. agalactiae to survive in macrophages and to cross the BBB. PMID:24498419

  5. mRNA expression of genes regulating lipid metabolism in ringed seals (Pusa hispida) from differently polluted areas

    International Nuclear Information System (INIS)

    Castelli, Martina Galatea; Rusten, Marte; Goksøyr, Anders; Routti, Heli

    2014-01-01

    Highlights: •Genes regulating lipid metabolism were studied in ringed seals. •We compared highly contaminated Baltic seals and less contaminated Svalbard seals. •mRNA expression of hepatic PPARγ was higher in the Baltic seals. •mRNA expression of adipose PPARγ target genes was higher in the Baltic seals. •Contaminant exposure may affect lipid metabolism in the Baltic ringed seals. -- Abstract: There is a growing concern about the ability of persistent organic pollutants (POPs) to influence lipid metabolism. Although POPs are found at high concentrations in some populations of marine mammals, for example in the ringed seal (Pusa hispida) from the Baltic Sea, little is known about the effects of POPs on their lipid metabolism. An optimal regulation of lipid metabolism is crucial for ringed seals during the fasting/molting season. This is a physiologically stressful period, during which they rely on the energy stored in their fat reserves. The mRNA expression levels for seven genes involved in lipid metabolism were analyzed in liver and/or blubber tissue from molting ringed seals from the polluted Baltic Sea and a less polluted reference location, Svalbard (Norway). mRNA expression of genes encoding peroxisome proliferator-activated receptors (PPAR) α and γ and their target genes acyl-coenzyme A oxidase 1 (ACOX1) and cluster of differentiation 36 (CD36) were analyzed in liver. mRNA expression level of genes encoding PPARβ, PPARγ and their target genes encoding fatty acid binding protein 4 (FABP4) and adiponectin (ADIPOQ) were measured in inner and middle blubber layers. In addition, we evaluated the influence of molting status on hepatic mRNA expression of genes encoding PPARs and their target genes in ringed seals from Svalbard. Our results show higher mRNA expression of genes encoding hepatic PPARγ and adipose PPARβ, FABP4, and ADIPOQ in the Baltic seals compared to the Svalbard seals. A positive relationship between mRNA expressions of genes

  6. Integrating microRNA and mRNA expression profiles in response to radiation-induced injury in rat lung

    International Nuclear Information System (INIS)

    Xie, Ling; Zhou, Jundong; Zhang, Shuyu; Chen, Qing; Lai, Rensheng; Ding, Weiqun; Song, ChuanJun; Meng, XingJun; Wu, Jinchang

    2014-01-01

    Exposure to radiation provokes cellular responses, which are likely regulated by gene expression networks. MicroRNAs are small non-coding RNAs, which regulate gene expression by promoting mRNA degradation or inhibiting protein translation. The expression patterns of both mRNA and miRNA during the radiation-induced lung injury (RILI) remain less characterized and the role of miRNAs in the regulation of this process has not been studied. The present study sought to evaluate miRNA and mRNA expression profiles in the rat lung after irradiation. Male Wistar rats were subjected to single dose irradiation with 20 Gy using 6 MV x-rays to the right lung. (A dose rate of 5 Gy/min was applied). Rats were sacrificed at 3, 12 and 26 weeks after irradiation, and morphological changes in the lung were examined by haematoxylin and eosin. The miRNA and mRNA expression profiles were evaluated by microarrays and followed by quantitative RT-PCR analysis. A cDNA microarray analysis found 2183 transcripts being up-regulated and 2917 transcripts down-regulated (P ≤ 0.05, ≥2.0 fold change) in the lung tissues after irradiation. Likewise, a miRNAs microarray analysis indicated 15 miRNA species being up-regulated and 8 down-regulated (P ≤ 0.05). Subsequent bioinformatics anal -yses of the differentially expressed mRNA and miRNAs revealed that alterations in mRNA expression following irradiation were negatively correlated with miRNAs expression. Our results provide evidence indicating that irradiation induces alterations of mRNA and miRNA expression in rat lung and that there is a negative correlation of mRNA and miRNA expression levels after irradiation. These findings significantly advance our understanding of the regulatory mechanisms underlying the pathophysiology of radiation-induced lung injury. In summary, RILI does not develop gradually in a linear process. In fact, different cell types interact via cytokines in a very complex network. Furthermore, this study suggests that

  7. mRNA expression of genes regulating lipid metabolism in ringed seals (Pusa hispida) from differently polluted areas

    Energy Technology Data Exchange (ETDEWEB)

    Castelli, Martina Galatea [Norwegian Polar Institute, Fram Centre, 9296 Tromsø (Norway); University of Bergen, Department of Biology, 5020 Bergen (Norway); Rusten, Marte; Goksøyr, Anders [University of Bergen, Department of Biology, 5020 Bergen (Norway); Routti, Heli, E-mail: heli.routti@npolar.no [Norwegian Polar Institute, Fram Centre, 9296 Tromsø (Norway)

    2014-01-15

    Highlights: •Genes regulating lipid metabolism were studied in ringed seals. •We compared highly contaminated Baltic seals and less contaminated Svalbard seals. •mRNA expression of hepatic PPARγ was higher in the Baltic seals. •mRNA expression of adipose PPARγ target genes was higher in the Baltic seals. •Contaminant exposure may affect lipid metabolism in the Baltic ringed seals. -- Abstract: There is a growing concern about the ability of persistent organic pollutants (POPs) to influence lipid metabolism. Although POPs are found at high concentrations in some populations of marine mammals, for example in the ringed seal (Pusa hispida) from the Baltic Sea, little is known about the effects of POPs on their lipid metabolism. An optimal regulation of lipid metabolism is crucial for ringed seals during the fasting/molting season. This is a physiologically stressful period, during which they rely on the energy stored in their fat reserves. The mRNA expression levels for seven genes involved in lipid metabolism were analyzed in liver and/or blubber tissue from molting ringed seals from the polluted Baltic Sea and a less polluted reference location, Svalbard (Norway). mRNA expression of genes encoding peroxisome proliferator-activated receptors (PPAR) α and γ and their target genes acyl-coenzyme A oxidase 1 (ACOX1) and cluster of differentiation 36 (CD36) were analyzed in liver. mRNA expression level of genes encoding PPARβ, PPARγ and their target genes encoding fatty acid binding protein 4 (FABP4) and adiponectin (ADIPOQ) were measured in inner and middle blubber layers. In addition, we evaluated the influence of molting status on hepatic mRNA expression of genes encoding PPARs and their target genes in ringed seals from Svalbard. Our results show higher mRNA expression of genes encoding hepatic PPARγ and adipose PPARβ, FABP4, and ADIPOQ in the Baltic seals compared to the Svalbard seals. A positive relationship between mRNA expressions of genes

  8. The effect of very-low-calorie diet on mRNA expression of inflammation-related genes in subcutaneous adipose tissue and peripheral monocytes of obese patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Mraz, M; Lacinova, Z; Drapalova, J; Haluzikova, D; Horinek, A; Matoulek, M; Trachta, P; Kavalkova, P; Svacina, S; Haluzik, M

    2011-04-01

    Low-grade inflammation links obesity, type 2 diabetes mellitus (T2DM), and cardiovascular diseases. To explore the expression profile of genes involved in inflammatory pathways in adipose tissue and peripheral monocytes (PM) of obese patients with and without T2DM at baseline and after dietary intervention. Two-week intervention study with very-low-calorie diet (VLCD). University hospital. Twelve obese females with T2DM, 8 obese nondiabetic females (OB) and 15 healthy age-matched females. Two weeks of VLCD (2500 kJ/d). Metabolic parameters, circulating cytokines, hormones, and mRNA expression of 39 genes in sc adipose tissue (SCAT) and PM. Both T2DM and OB group had significantly increased serum concentrations of circulating proinflammatory factors (C-reactive protein, TNFα, IL-6, IL-8), mRNA expression of macrophage antigen CD68 and proinflammatory chemokines (CCL-2, -3, -7, -8, -17, -22) in SCAT and complementary chemokine receptors (CCR-1, -2, -3, -5) and other proinflammatory receptors (toll-like receptor 2 and 4, TNF receptor superfamily 1A and 1B, IL-6R) in PM, with OB group showing less pronounced chemoattracting and proinflammatory profile compared to T2DM group. In T2DM patients VLCD decreased body weight, improved metabolic profile, and decreased mRNA expression of up-regulated CCRs in PM and chemokines [CCL 8, chemokine (C-X-C motif) ligand 10] in SCAT. VLCD markedly increased mRNA expression of T-lymphocyte attracting chemokine CCL-17 in SCAT. Obese patients with and without T2DM have increased mRNA expression of chemotactic and proinflammatory factors in SCAT and expression of corresponding receptors in PM. Two weeks of VLCD significantly improved this profile in T2DM patients.

  9. Quantitative tissue-specific dynamics of in vivo GILZ mRNA expression and regulation by endogenous and exogenous glucocorticoids.

    Science.gov (United States)

    Ayyar, Vivaswath S; Almon, Richard R; Jusko, William J; DuBois, Debra C

    2015-06-01

    Glucocorticoids (GC) are steroid hormones, which regulate metabolism and immune function. Synthetic GCs, or corticosteroids (CS), have appreciable clinical utility via their ability to suppress inflammation in immune-mediated diseases like asthma and rheumatoid arthritis. Recent work has provided insight to novel GC-induced genes that mediate their anti-inflammatory effects, including glucocorticoid-induced leucine zipper (GILZ). Since GILZ comprises an important part of GC action, its regulation by both drug and hormone will influence CS therapy. In addition, GILZ expression is often employed as a biomarker of GC action, which requires judicious selection of sampling time. Understanding the in vivo regulation of GILZ mRNA expression over time will provide insight into both the physiological regulation of GILZ by endogenous GC and the dynamics of its enhancement by CS. A highly quantitative qRT-PCR assay was developed for measuring GILZ mRNA expression in tissues obtained from normal and CS-treated rats. This assay was applied to measure GILZ mRNA expression in eight tissues; to determine its endogenous regulation over time; and to characterize its dynamics in adipose tissue, muscle, and liver following treatment with CS. We demonstrate that GILZ mRNA is expressed in several tissues. GILZ mRNA expression in adipose tissue displayed a robust circadian rhythm that was entrained with the circadian oscillation of endogenous corticosterone; and is strongly enhanced by acute and chronic dosing. Single dosing also enhanced GILZ mRNA in muscle and liver, but the dynamics varied. In conclusion, GILZ is widely expressed in the rat and highly regulated by endogenous and exogenous GCs. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  10. Regulation and function of FTO mRNA expression in human skeletal muscle and subcutaneous adipose tissue

    DEFF Research Database (Denmark)

    Grunnet, Louise G; Nilsson, Emma; Ling, Charlotte

    2009-01-01

    Objective. Common variants in FTO (the fat-mass and obesity-associated gene) associate with obesity and type 2 diabetes. The regulation and biological function of FTO mRNA expression in target tissue is unknown. We investigated the genetic and non-genetic regulation of FTO mRNA in skeletal muscle...... and adipose tissue, and their influence on in vivo glucose and fat metabolism. Research Design and Methods. The FTO rs9939609 polymorphism was genotyped in two twin cohorts: 1) 298 elderly twins aged 62-83 years with glucose tolerance ranging from normal to type 2 diabetes and 2) 196 young (25-32 years......) and elderly (58-66 years) non-diabetic twins examined by a hyperinsulinemic euglycemic clamp including indirect calorimetry. FTO mRNA expression was determined in subcutaneous adipose tissue (n=226) and skeletal muscle biopsies (n=158). Results. Heritability of FTO expression in both tissues was low, and FTO...

  11. Gene expression profiling of macrophages: implications for an immunosuppressive effect of dissolucytotic gold ions

    Directory of Open Access Journals (Sweden)

    Seifert Oliver

    2012-11-01

    Full Text Available Abstract Background Gold salts has previously been used in the treatment of rheumatoid arthritis but have been replaced by biologicals such as TNF-α inhibitors. The mechanisms behind the anti-inflammatory effect of metallic gold ions are still unknown, however, recent data showed that charged gold atoms are released from pure metallic gold implants by macrophages via a dissolucytosis membrane, and that gold ions are taken up by local macrophages, mast cells and to some extent fibroblasts. These findings open the question of possible immunomodulatory effects of metallic gold and motivate efforts on a deeper understanding of the effect of metallic gold on key inflammatory cells as macrophages. Methods Human macrophage cells (cell line THP-1 were grown on gold foils and intracellular uptake was analysed by autometallography. The impact of phagocytised gold ions on viability of THP-1 cells was investigated by trypan blue staining and TUNEL assay. The global gene expression profile of THP-1 cells after incorporation of gold ions was studied using microarray analysis comprising approximately 20,000 genes. The gene expression data was confirmed by measurement of secreted proteins. Results Autometallography showed intracellular uptake of gold ions into THP-1 cells. No significant effect on viability of THP-1 cells was demonstrated. Our data revealed a unique gene expression signature of dissolucytotic THP-1 cells that had taken up gold ions. A large number of regulated genes were functionally related to immunomodulation. Gold ion uptake induced downregulation of genes involved in rheumatoid arthritis such as hepatocyte growth factor, tenascin-C, inhibitor of DNA binding 1 and 3 and matrix metalloproteinase 13. Conclusion The data obtained in this study offer new insights into the mode of action of gold ions and suggest for the investigation of effects on other key cells and a possible future role of metallic gold as implants in rheumatoid arthritis or

  12. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages.

    Science.gov (United States)

    Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto; Becker, María Inés

    2016-06-01

    Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5 Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages. Copyright © 2016 by The American Association of

  13. GABAergic Neurons in the Rat Medial Septal Complex Express Relaxin-3 Receptor (RXFP3 mRNA

    Directory of Open Access Journals (Sweden)

    Hector Albert-Gascó

    2018-01-01

    Full Text Available The medial septum (MS complex modulates hippocampal function and related behaviors. Septohippocampal projections promote and control different forms of hippocampal synchronization. Specifically, GABAergic and cholinergic projections targeting the hippocampal formation from the MS provide bursting discharges to promote theta rhythm, or tonic activity to promote gamma oscillations. In turn, the MS is targeted by ascending projections from the hypothalamus and brainstem. One of these projections arises from the nucleus incertus in the pontine tegmentum, which contains GABA neurons that co-express the neuropeptide relaxin-3 (Rln3. Both stimulation of the nucleus incertus and septal infusion of Rln3 receptor agonist peptides promotes hippocampal theta rhythm. The Gi/o-protein-coupled receptor, relaxin-family peptide receptor 3 (RXFP3, is the cognate receptor for Rln3 and identification of the transmitter phenotype of neurons expressing RXFP3 in the septohippocampal system can provide further insights into the role of Rln3 transmission in the promotion of septohippocampal theta rhythm. Therefore, we used RNAscope multiplex in situ hybridization to characterize the septal neurons expressing Rxfp3 mRNA in the rat. Our results demonstrate that Rxfp3 mRNA is abundantly expressed in vesicular GABA transporter (vGAT mRNA- and parvalbumin (PV mRNA-positive GABA neurons in MS, whereas ChAT mRNA-positive acetylcholine neurons lack Rxfp3 mRNA. Approximately 75% of Rxfp3 mRNA-positive neurons expressed vGAT mRNA (and 22% were PV mRNA-positive, while the remaining 25% expressed Rxfp3 mRNA only, consistent with a potential glutamatergic phenotype. Similar proportions were observed in the posterior septum. The occurrence of RXFP3 in PV-positive GABAergic neurons gives support to a role for the Rln3-RXFP3 system in septohippocampal theta rhythm.

  14. Sulindac, a nonsteroidal anti-inflammatory drug, selectively inhibits interferon-γ-induced expression of the chemokine CXCL9 gene in mouse macrophages

    International Nuclear Information System (INIS)

    Sakaeda, Yoshiichi; Hiroi, Miki; Shimojima, Takahiro; Iguchi, Mayumi; Kanegae, Haruhide; Ohmori, Yoshihiro

    2006-01-01

    Sulindac, a non-steroidal anti-inflammatory drug, has been shown to exert an anti-tumor effect on several types of cancer. To determine the effect of sulindac on intracellular signaling pathways in host immune cells such as macrophages, we investigated the effect of the drug on interferon gamma (IFNγ)-induced expression of signal transducer and activator of transcription 1 (STAT1) and other genes in mouse macrophage-like cell line RAW264.7 cells. Sulindac, but not aspirin or sodium salicylate, inhibited IFNγ-induced expression of the CXC ligand 9 (CXCL9) mRNA, a chemokine for activated T cells, whereas the interferon-induced expression of CXCL10 or IFN regulatory factor-1 was not affected by sulindac. Luciferase reporter assay demonstrated that sulindac inhibited IFNγ-induced promoter activity of the CXCL9 gene. Surprisingly, sulindac had no inhibitory effect on IFNγ-induced STAT1 activation; however, constitutive nuclear factor κB activity was suppressed by the drug. These results indicate that sulindac selectively inhibited IFNγ-inducible gene expression without inhibiting STAT1 activation

  15. Macrophage migration inhibitory factor counter-regulates dexamethasone-induced annexin 1 expression and influences the release of eicosanoids in murine macrophages.

    Science.gov (United States)

    Sun, Yu; Wang, Yu; Li, Jia-Hui; Zhu, Shi-Hui; Tang, Hong-Tai; Xia, Zhao-Fan

    2013-10-01

    Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine and glucocorticoid (GC) counter-regulator, has emerged as an important modulator of inflammatory responses. However, the molecular mechanisms of MIF counter-regulation of GC still remain incomplete. In the present study, we investigated whether MIF mediated the counter-regulation of the anti-inflammatory effect of GC by affecting annexin 1 in RAW 264.7 macrophages. We found that stimulation of RAW 264.7 macrophages with lipopolysaccharide (LPS) resulted in down-regulation of annexin 1, while GC dexamethasone (Dex) or Dex plus LPS led to significant up-regulation of annexin 1 expression. RNA interference-mediated knockdown of intracellular MIF increased annexin 1 expression with or without incubation of Dex, whereas Dex-induced annexin 1 expression was counter-regulated by the exogenous application of recombinant MIF. Moreover, recombinant MIF counter-regulated, in a dose-dependent manner, inhibition of cytosolic phospholipase A2α (cPLA2α) activation and prostaglandin E2 (PGE2 ) and leukotriene B4 (LTB4 ) release by Dex in RAW 264.7 macrophages stimulated with LPS. Endogenous depletion of MIF enhanced the effects of Dex, reflected by further decease of cPLA2α expression and lower PGE2 and LTB4 release in RAW 264.7 macrophages. Based on these data, we suggest that MIF counter-regulates Dex-induced annexin 1 expression, further influencing the activation of cPLA2α and the release of eicosanoids. These findings will add new insights into the mechanisms of MIF counter-regulation of GC. © 2013 John Wiley & Sons Ltd.

  16. Macrophages From Irradiated Tumors Express Higher Levels of iNOS, Arginase-I and COX-2, and Promote Tumor Growth

    International Nuclear Information System (INIS)

    Tsai, C.-S.; Chen, F.-H.; Wang, C.-C.; Huang, H.-L.; Jung, Shih-Ming; Wu, C.-J.; Lee, C.-C.; McBride, William H.; Chiang, C.-S.; Hong, J.-H.

    2007-01-01

    Purpose: To investigate the effects of single and fractionated doses of radiation on tumors and tumor-associated macrophages (TAMs), and to elucidate the potential of TAMs to influence tumor growth. Methods and Materials: A murine prostate cell line, TRAMP-C1, was grown in C57Bl/6J mice to 4-mm tumor diameter and irradiated with either 25 Gy in a single dose, or 60 Gy in 15 fractions. The tumors were removed at the indicated times and assessed for a variety of markers related to TAM content, activation status, and function. Results: In tumors receiving a single radiation dose, arginase (Arg-I), and cycloxygenase-2 (COX-2) mRNA expression increased as a small transient wave within 24 h and a larger persistent wave starting after 3 days. Inducible nitric oxide synthase (iNOS) mRNA was elevated only after 3 days and continued to increase up to 3 weeks. After fractionated irradiation, Arg-1 and COX-2 mRNA levels increased within 5 days, whereas iNOS was increased only after 10 fractions of irradiation had been given. Increased levels of Arg-I, COX-2, and, to a lesser extent, iNOS protein were found to associate with TAMs 1-2 weeks after tumor irradiation. Function of TAMs were compared by mixing them with TRAMP-C1 cells and injecting them into mice; TRAMP-C1 cells mixed with TAMs from irradiated tumors appeared earlier and grew significantly faster than those mixed with TAMs from unirradiated tumors or TRAMP-C1 alone. Conclusions: Tumor-associated macrophages in the postirradiated tumor microenvironment express higher levels of Arg-1, COX-2, and iNOS, and promote early tumor growth in vivo

  17. Heat Stress and Lipopolysaccharide Stimulation of Chicken Macrophage-Like Cell Line Activates Expression of Distinct Sets of Genes.

    Directory of Open Access Journals (Sweden)

    Anna Slawinska

    Full Text Available Acute heat stress requires immediate adjustment of the stressed individual to sudden changes of ambient temperatures. Chickens are particularly sensitive to heat stress due to development of insufficient physiological mechanisms to mitigate its effects. One of the symptoms of heat stress is endotoxemia that results from release of the lipopolysaccharide (LPS from the guts. Heat-related cytotoxicity is mitigated by the innate immune system, which is comprised mostly of phagocytic cells such as monocytes and macrophages. The objective of this study was to analyze the molecular responses of the chicken macrophage-like HD11 cell line to combined heat stress and lipopolysaccharide treatment in vitro. The cells were heat-stressed and then allowed a temperature-recovery period, during which the gene expression was investigated. LPS was added to the cells to mimic the heat-stress-related endotoxemia. Semi high-throughput gene expression analysis was used to study a gene panel comprised of heat shock proteins, stress-related genes, signaling molecules and immune response genes. HD11 cell line responded to heat stress with increased mRNA abundance of the HSP25, HSPA2 and HSPH1 chaperones as well as DNAJA4 and DNAJB6 co-chaperones. The anti-apoptotic gene BAG3 was also highly up-regulated, providing evidence that the cells expressed pro-survival processes. The immune response of the HD11 cell line to LPS in the heat stress environment (up-regulation of CCL4, CCL5, IL1B, IL8 and iNOS was higher than in thermoneutral conditions. However, the peak in the transcriptional regulation of the immune genes was after two hours of temperature-recovery. Therefore, we propose the potential influence of the extracellular heat shock proteins not only in mitigating effects of abiotic stress but also in triggering the higher level of the immune responses. Finally, use of correlation networks for the data analysis aided in discovering subtle differences in the gene

  18. Modulation of microRNA Expression in Subjects with Metabolic Syndrome and Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Chen

    Full Text Available Metabolic syndrome (MetS is a complicated health problem that encompasses a variety of metabolic disorders. In this study, we analyzed the relationship between the major biochemical parameters associated with MetS and circulating levels of microRNA (miR-33, miR-103, and miR-155. We found that miRNA-33 levels were positively correlated with levels of fasting blood glucose, glycosylated hemoglobin A1c, total cholesterol, LDL-cholesterol, and triacylglycerol, but negatively correlated with HDL-cholesterol levels. In the cellular study, miR-33 levels were increased in macrophages treated with high glucose and cholesterol-lowering drugs atorvastatin and pitavastatin. miR-33 has been reported to play an essential role in cholesterol homeostasis through ATP-binding cassette transporter A1 (ABCA1 regulation and reverse cholesterol transport. However, the molecular mechanism underlying the linkage between miR-33 and statin treatment remains unclear. In the present study, we investigated whether atorvastatin and pitavastatin exert their functions through the modulation of miR-33 and ABCA1-mediated cholesterol efflux from macrophages. The results showed that treatment of the statins up-regulated miR-33 expression, but down-regulated ABCA1 mRNA levels in RAW264.7 cells and bone marrow-derived macrophages. Statin-mediated ABCA1 regulation occurs at the post-transcriptional level through targeting of the 3'-UTR of the ABCA1 transcript by miR-33. Additionally, we found significant down-regulation of ABCA1 protein expression in macrophages treated with statins. Finally, we showed that high glucose and statin treatment significantly suppressed cholesterol efflux from macrophages. These findings have highlighted the complexity of statins, which may exert detrimental effects on metabolic abnormalities through regulation of miR-33 target genes.

  19. Modulation of microRNA Expression in Subjects with Metabolic Syndrome and Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins.

    Science.gov (United States)

    Chen, Wei-Ming; Sheu, Wayne H-H; Tseng, Pei-Chi; Lee, Tzong-Shyuan; Lee, Wen-Jane; Chang, Pey-Jium; Chiang, An-Na

    2016-01-01

    Metabolic syndrome (MetS) is a complicated health problem that encompasses a variety of metabolic disorders. In this study, we analyzed the relationship between the major biochemical parameters associated with MetS and circulating levels of microRNA (miR)-33, miR-103, and miR-155. We found that miRNA-33 levels were positively correlated with levels of fasting blood glucose, glycosylated hemoglobin A1c, total cholesterol, LDL-cholesterol, and triacylglycerol, but negatively correlated with HDL-cholesterol levels. In the cellular study, miR-33 levels were increased in macrophages treated with high glucose and cholesterol-lowering drugs atorvastatin and pitavastatin. miR-33 has been reported to play an essential role in cholesterol homeostasis through ATP-binding cassette transporter A1 (ABCA1) regulation and reverse cholesterol transport. However, the molecular mechanism underlying the linkage between miR-33 and statin treatment remains unclear. In the present study, we investigated whether atorvastatin and pitavastatin exert their functions through the modulation of miR-33 and ABCA1-mediated cholesterol efflux from macrophages. The results showed that treatment of the statins up-regulated miR-33 expression, but down-regulated ABCA1 mRNA levels in RAW264.7 cells and bone marrow-derived macrophages. Statin-mediated ABCA1 regulation occurs at the post-transcriptional level through targeting of the 3'-UTR of the ABCA1 transcript by miR-33. Additionally, we found significant down-regulation of ABCA1 protein expression in macrophages treated with statins. Finally, we showed that high glucose and statin treatment significantly suppressed cholesterol efflux from macrophages. These findings have highlighted the complexity of statins, which may exert detrimental effects on metabolic abnormalities through regulation of miR-33 target genes.

  20. Assessment of potential biomarkers, metallothionein and vitellogenin mRNA expressions in various chemically exposed benthic Chironomus riparius larvae

    Science.gov (United States)

    Park, Kiyun; Kwak, Inn-Sil

    2012-12-01

    The objective of this study was conducted to identify the possibility of using Chironomus metallothionein (MT) and vitellogenin (VTG) as biomarkers of stress caused by endocrinedisrupting chemicals (EDCs), heavy metals, herbicides and veterinary antibiotics. We characterized the MT and VTG cDNA in Chironomus riparius and evaluated their mRNA expression profiles following exposure to different environmental pollutants. The gene expression analysis showed that the MT mRNA levels increased significantly after long-term exposure to cadmium (Cd), copper (Cu), Lead (Pb), di(2-ethylhexyl) phthalate (DEHP), and 2,4-dichlorophenoxyacetic acid (2,4-D). Moreover, the VTG mRNA expression increased significantly in C. riparius larvae exposed to BPA, NP, DEHP, Cd, 2,4-D and fenbendazole. Evaluation of the long-term effects of environmental pollutants revealed up regulation of Chironomus MT mRNA in response to DEHP exposure among EDCs, and the level of the VTG mRNA was increased significantly following treatment with Cd and herbicide 2,4-D at all concentrations in a dose-dependent manner. These results indicate that VTG could be used as a potential biomarker of herbicide and Cd as well as EDCs, while MT was a potential biomarker of heavy metals such as Cd, Cu, and Pb in aquatic environments.

  1. Uncoupling protein-2 mRNA expression in mice subjected to intermittent hypoxia

    Directory of Open Access Journals (Sweden)

    Luciana Rodrigues Vieira

    2015-04-01

    Full Text Available Objective: To investigate the effect of intermittent hypoxia-a model of obstructive sleep apnea (OSA-on pancreatic expression of uncoupling protein-2 (UCP2, as well as on glycemic and lipid profiles, in C57BL mice. Methods: For 8 h/day over a 35-day period, male C57BL mice were exposed to intermittent hypoxia (hypoxia group or to a sham procedure (normoxia group. The intermittent hypoxia condition involved exposing mice to an atmosphere of 92% N and 8% CO2 for 30 s, progressively reducing the fraction of inspired oxygen to 8 ± 1%, after which they were exposed to room air for 30 s and the cycle was repeated (480 cycles over the 8-h experimental period. Pancreases were dissected to isolate the islets. Real-time PCR was performed with TaqMan assays. Results: Expression of UCP2 mRNA in pancreatic islets was 20% higher in the normoxia group than in the hypoxia group (p = 0.11. Fasting serum insulin was higher in the hypoxia group than in the normoxia group (p = 0.01. The homeostasis model assessment of insulin resistance indicated that, in comparison with the control mice, the mice exposed to intermittent hypoxia showed 15% lower insulin resistance (p = 0.09 and 21% higher pancreatic β-cell function (p = 0.01. Immunohistochemical staining of the islets showed no significant differences between the two groups in terms of the area or intensity of α- and β-cell staining for insulin and glucagon. Conclusions: To our knowledge, this is the first report of the effect of intermittent hypoxia on UCP2 expression. Our findings suggest that UCP2 regulates insulin production in OSA. Further study of the role that UCP2 plays in the glycemic control of OSA patients is warranted.

  2. DDAH2 mRNA expression is inversely associated with some cardiovascular risk-related features in healthy young adults.

    Science.gov (United States)

    Puchau, Blanca; Hermsdorff, Helen Hermana M; Zulet, M Angeles; Martínez, J Alfredo

    2009-01-01

    The purpose of this study was to evaluate whether the mRNA expression profiles of three genes (PRMT1, DDAH2 and NOS3) are related to ADMA metabolism and signalling, and the potential relationships with anthropometrical, biochemical, lifestyle and inflammatory indicators in healthy young adults. An emphasis on the putative effect of different mRNA expression on cardiovascular risk-related features was paid. Anthropometrical measurements as well as lifestyle features were analyzed in 120 healthy young adults. Fasting blood samples were collected for the measurement of glucose and lipid profiles as well as the concentrations of selected inflammatory markers. Profiles of mRNA expression were assessed for PRMT1, DDAH2 and NOS3 genes from peripheral blood mononuclear cells. Regarding inflammatory biomarkers, DDAH2 was inversely associated with IL-6 and TNF-alpha. Moreover, subjects in the highest quintile of DDAH2 mRNA expression showed a reduced risk to have higher values of waist circumference, and to be more prone to show higher values of HDL-c. Interestingly, DDAH2 gene expression seemed to be related with some anthropometrical, biochemical, lifestyle and inflammatory indicators linked to cardiovascular risk in apparently healthy young adults, emerging as a potential disease marker.

  3. DDAH2 mRNA Expression Is Inversely Associated with Some Cardiovascular Risk-Related Features in Healthy Young Adults

    Directory of Open Access Journals (Sweden)

    Blanca Puchau

    2009-01-01

    Full Text Available The purpose of this study was to evaluate whether the mRNA expression profiles of three genes (PRMT1, DDAH2 and NOS3 are related to ADMA metabolism and signalling, and the potential relationships with anthropometrical, biochemical, lifestyle and inflammatory indicators in healthy young adults. An emphasis on the putative effect of different mRNA expression on cardiovascular risk-related features was paid. Anthropometrical measurements as well as lifestyle features were analyzed in 120 healthy young adults. Fasting blood samples were collected for the measurement of glucose and lipid profiles as well as the concentrations of selected inflammatory markers. Profiles of mRNA expression were assessed for PRMT1, DDAH2 and NOS3 genes from peripheral blood mononuclear cells. Regarding inflammatory biomarkers, DDAH2 was inversely associated with IL-6 and TNF-α. Moreover, subjects in the highest quintile of DDAH2 mRNA expression showed a reduced risk to have higher values of waist circumference, and to be more prone to show higher values of HDL-c. Interestingly, DDAH2 gene expression seemed to be related with some anthropometrical, biochemical, lifestyle and inflammatory indicators linked to cardiovascular risk in apparently healthy young adults, emerging as a potential disease marker.

  4. A pilot trial assessing urinary gene expression profiling with an mRNA array for diabetic nephropathy.

    Directory of Open Access Journals (Sweden)

    Min Zheng

    Full Text Available BACKGROUND: The initiation and progression of diabetic nephropathy (DN is complex. Quantification of mRNA expression in urinary sediment has emerged as a novel strategy for studying renal diseases. Considering the numerous molecules involved in DN development, a high-throughput platform with parallel detection of multiple mRNAs is needed. In this study, we constructed a self-assembling mRNA array to analyze urinary mRNAs in DN patients with aims to reveal its potential in searching novel biomarkers. METHODS: mRNA array containing 88 genes were fabricated and its performance was evaluated. A pilot study with 9 subjects including 6 DN patients and 3 normal controls were studied with the array. DN patients were assigned into two groups according to their estimate glomerular rate (eGFR: DNI group (eGFR>60 ml/min/1.73 m(2, n = 3 and DNII group (eGFR<60 ml/min/1.73 m(2, n = 3. Urinary cell pellet was collected from each study participant. Relative abundance of these target mRNAs from urinary pellet was quantified with the array. RESULTS: The array we fabricated displayed high sensitivity and specificity. Moreover, the Cts of Positive PCR Controls in our experiments were 24±0.5 which indicated high repeatability of the array. A total of 29 mRNAs were significantly increased in DN patients compared with controls (p<0.05. Among these genes, α-actinin4, CDH2, ACE, FAT1, synaptopodin, COL4α, twist, NOTCH3 mRNA expression were 15-fold higher than those in normal controls. In contrast, urinary TIMP-1 mRNA was significantly decreased in DN patients (p<0.05. It was shown that CTGF, MCP-1, PAI-1, ACE, CDH1, CDH2 mRNA varied significantly among the 3 study groups, and their mRNA levels increased with DN progression (p<0.05. CONCLUSION: Our pilot study demonstrated that mRNA array might serve as a high-throughput and sensitive tool for detecting mRNA expression in urinary sediment. Thus, this primary study indicated that mRNA array probably could be a

  5. Differential regulation of amyloid-β-protein mRNA expression within hippocampal neuronal subpopulations in Alzheimer disease

    International Nuclear Information System (INIS)

    Higgins, G.A.; Lewis, D.A.; Bahmanyar, S.; Goldgaber, D.; Gajdusek, D.C.; Young, W.G.; Morrison, J.H.; Wilson, M.C.

    1988-01-01

    The authors have mapped the neuroanatomical distribution of amyloid-β-protein mRNA within neuronal subpopulations of the hippocampal formation in the cynomolgus monkey (Macaca fascicularis), normal aged human, and patients with Alzheimer disease. Amyloid-β-protein mRNA appears to be expressed in all hippocampal neurons, but at different levels of abundance. In the central nervous system of monkey and normal aged human, image analysis shows that neurons of the dentate gyrus and cornu Ammonis fields contain a 2.5-times-greater hybridization signal than is present in neurons of the subiculum and entorhinal cortex. In contrast, in the Alzheimer disease hippocampal formation, the levels of amyloid-β-protein mRNA in the cornu Ammonis field 3 and parasubiculum are equivalent. These findings suggest that within certain neuronal subpopulations cell type-specific regulation of amyloid-β-protein gene expression may be altered in Alzheimer disease

  6. Metformin reduces the endotoxin-induced down-regulation of apolipoprotein E gene expression in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Stavri, Simona; Trusca, Violeta G.; Simionescu, Maya; Gafencu, Anca V., E-mail: anca.gafencu@icbp.ro

    2015-05-29

    The atheroprotective role of macrophage-derived apolipoprotein E (apoE) is well known. Our previous reports demonstrated that inflammatory stress down-regulates apoE expression in macrophages, aggravating atherogenesis. Metformin, extensively used as an anti-diabetic drug, has also anti-inflammatory properties, and thus confers vascular protection. In this study, we questioned whether metformin could have an effect on apoE expression in macrophages in normal conditions or under lipopolysaccharide (LPS)-induced stress. The results showed that metformin slightly increases the apoE expression only at high doses (5–10 mM). Low doses of metformin (1–3 mM) significantly reduce the LPS down-regulatory effect on apoE expression in macrophages. Our experiments demonstrated that LPS-induced NF-κB binds to the macrophage-specific distal regulatory element of apoE gene, namely to the multienhancer 2 (ME.2) and its 5′-deletion fragments. The NF-κB binding on ME.2 and apoE promoter has a down-regulatory effect. In addition, data revealed that metformin impairs NF-κB nuclear translocation, and thus, improves the apoE levels in macrophages under inflammatory stress. The positive effect of metformin in the inflammatory states, its clinical safety and low cost, make this drug a potential adjuvant in the therapeutic strategies for atherosclerosis. - Highlights: • High doses of metformin slightly increase apoE expression in macrophages. • Low doses of metformin up-regulate apoE gene in endotoxin-stressed macrophages. • Metformin reduces the negative effect of LPS on apoE expression by NF-κB inhibition.

  7. Metformin reduces the endotoxin-induced down-regulation of apolipoprotein E gene expression in macrophages

    International Nuclear Information System (INIS)

    Stavri, Simona; Trusca, Violeta G.; Simionescu, Maya; Gafencu, Anca V.

    2015-01-01

    The atheroprotective role of macrophage-derived apolipoprotein E (apoE) is well known. Our previous reports demonstrated that inflammatory stress down-regulates apoE expression in macrophages, aggravating atherogenesis. Metformin, extensively used as an anti-diabetic drug, has also anti-inflammatory properties, and thus confers vascular protection. In this study, we questioned whether metformin could have an effect on apoE expression in macrophages in normal conditions or under lipopolysaccharide (LPS)-induced stress. The results showed that metformin slightly increases the apoE expression only at high doses (5–10 mM). Low doses of metformin (1–3 mM) significantly reduce the LPS down-regulatory effect on apoE expression in macrophages. Our experiments demonstrated that LPS-induced NF-κB binds to the macrophage-specific distal regulatory element of apoE gene, namely to the multienhancer 2 (ME.2) and its 5′-deletion fragments. The NF-κB binding on ME.2 and apoE promoter has a down-regulatory effect. In addition, data revealed that metformin impairs NF-κB nuclear translocation, and thus, improves the apoE levels in macrophages under inflammatory stress. The positive effect of metformin in the inflammatory states, its clinical safety and low cost, make this drug a potential adjuvant in the therapeutic strategies for atherosclerosis. - Highlights: • High doses of metformin slightly increase apoE expression in macrophages. • Low doses of metformin up-regulate apoE gene in endotoxin-stressed macrophages. • Metformin reduces the negative effect of LPS on apoE expression by NF-κB inhibition

  8. Obesity, expression of adipocytokines, and macrophage infiltration in canine mammary tumors.

    Science.gov (United States)

    Lim, H Y; Im, K S; Kim, N H; Kim, H W; Shin, J I; Sur, J H

    2015-03-01

    Obesity influences the development, progression and prognosis of human breast cancer and canine mammary cancer (MC) but the precise underlying mechanism is not well-documented in the fields of either human or veterinary oncology. In the present study, the expression of major adipocytokines, including leptin, adiponectin, and leptin receptor (ObR) in benign (n = 28) and malignant (n = 70) canine mammary tumors was investigated by immunohistochemistry and on the basis of the subject's body condition score (BCS). To evaluate the relationship between obesity and chronic inflammation of the mammary gland, macrophages infiltrating within and around tumoral areas were counted. The mean age of MC development was lower in overweight or obese dogs (9.0 ± 1.8 years) than in lean dogs or optimal bodyweight (10.2 ± 2.9 years), and the evidence of lymphatic invasion of carcinoma cells was found more frequently in overweight or obese group than in lean or optimal groups. Decreased adiponectin expression and increased macrophage numbers in overweight or obese subjects were significantly correlated with factors related to a poor prognosis, such as high histological grade and lymphatic invasion. Leptin expression was correlated with progesterone receptor status, and ObR expression was correlated with estrogen receptor status of MCs, regardless of BCS. Macrophage infiltration within and around the tumor may play an important role in tumor progression and metastasis in obese female dogs and may represent a prognostic factor for canine MCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Sorting live stem cells based on Sox2 mRNA expression.

    Directory of Open Access Journals (Sweden)

    Hans M Larsson

    Full Text Available While cell sorting usually relies on cell-surface protein markers, molecular beacons (MBs offer the potential to sort cells based on the presence of any expressed mRNA and in principle could be extremely useful to sort rare cell populations from primary isolates. We show here how stem cells can be purified from mixed cell populations by sorting based on MBs. Specifically, we designed molecular beacons targeting Sox2, a well-known stem cell marker for murine embryonic (mES and neural stem cells (NSC. One of our designed molecular beacons displayed an increase in fluorescence compared to a nonspecific molecular beacon both in vitro and in vivo when tested in mES and NSCs. We sorted Sox2-MB(+SSEA1(+ cells from a mixed population of 4-day retinoic acid-treated mES cells and effectively isolated live undifferentiated stem cells. Additionally, Sox2-MB(+ cells isolated from primary mouse brains were sorted and generated neurospheres with higher efficiency than Sox2-MB(- cells. These results demonstrate the utility of MBs for stem cell sorting in an mRNA-specific manner.

  10. PAX5О± and PAX5ОІ mRNA expression in breast Cancer: Relation ...

    African Journals Online (AJOL)

    Manal Basyouni Ahmed

    mRNA expression of PAX5a and PAX5b in breast cancer and assessing their underlying pathological roles through ... the molecular alterations that contribute to disease initiation and ... ring growth and survival of cancer cells [3]. PAX5 is ..... and CA15-3 are prognostic parameters for different molecular subtypes of · breast ...

  11. Expression of a serine protease (motopsin PRSS12) mRNA in the mouse brain: in situ hybridization histochemical study.

    Science.gov (United States)

    Iijima, N; Tanaka, M; Mitsui, S; Yamamura, Y; Yamaguchi, N; Ibata, Y

    1999-03-20

    Serine proteases are considered to play several important roles in the brain. In an attempt to find novel brain-specific serine proteases (BSSPs), motopsin (PRSS-12) was cloned from a mouse brain cDNA library by polymerase chain reaction (PCR). Northern blot analysis demonstrated that the postnatal 10-day mouse brain contained the most amount of motopsin mRNA. At this developmental stage, in situ hybridization histochemistry showed that motopsin mRNA was specifically expressed in the following regions: cerebral cortical layers II/III, V and VIb, endopiriform cortex and the limbic system, particularly in the CA1 region of the hippocampal formation. In addition, in the brainstem, the oculomotor nucleus, trochlear nucleus, mecencephalic and motor nuclei of trigeminal nerve (N), abducens nucleus, facial nucleus, nucleus of the raphe pontis, dorsoral motor nucleus of vagal N, hypoglossal nucleus and ambiguus nucleus showed motopsin mRNA expression. Expression was also found in the anterior horn of the spinal cord. The above findings strongly suggest that neurons in almost all motor nuclei, particularly in the brainstem and spinal cord, express motopsin mRNA, and that motopsin seems to have a close relation to the functional role of efferent neurons. Copyright 1999 Elsevier Science B.V.

  12. Aberrant Expression of TNF-α and TGF-β1 mRNA in Spontaneous Abortion

    Institute of Scientific and Technical Information of China (English)

    Ji-fen HU; Hong-chu BAO; Feng-chuan ZHU; Cai-ling YOU

    2004-01-01

    Objective To investigate the aberrant expressions of TNF-α and TGF-β1 in peripheral blood mononuclear cells (PBMCs) and placental tissues in patients with early spontaneous abortionMethods Using the technique of semi-quantitative reverse transcript-polymerase chain reaction (RT-PCR), TNF-α mRNA and TGF-β1 mRNA in PBMCs were measured in spontaneous abortion group (30 cases), normal pregnancy group (25 cases) and nonpregnant group (25 cases). The expressive intension of TNF-α protein and TGF-β1 protein in placental tissues was also identified by immunohistochemistry.Results Both levels of TNF-α mRNA and TGF-β1 mRNA expressed in PBMCs were significantly different between the three groups respectively (P<0. 05). Levels of TNF-α in syncytiotrophoblastic and cytotrophoblastic cells of the two aborted groups were substantially higher than those of the non-pregnant group (P<0. 01), but the levels of TGF-β1 in syncytiotrophoblastic cells of the two aborted groups were markedly lower than those of the non-pregnant group (P<0. 01).Conclusion There is potential relation between TGF-β1 at the fetomaternal interface and spontaneous abortion. TGF-β1 may contribute to the maintenance of pregnancy,and low-level expression of TGF-β1 may be associated with pregnancy failure.

  13. Intragraft interleukin 2 mRNA expression during acute cellular rejection and left ventricular total wall thickness after heart transplantation

    NARCIS (Netherlands)

    de Groot-Kruseman, H A; Baan, C C; Hagman, E M; Mol, W M; Niesters, H G; Maat, A P; Zondervan, P E; Weimar, W; Balk, A H

    OBJECTIVE: To assess whether diastolic graft function is influenced by intragraft interleukin 2 (IL-2) messenger RNA (mRNA) expression in rejecting cardiac allografts. DESIGN: 16 recipients of cardiac allografts were monitored during the first three months after transplantation. The presence of IL-2

  14. Myogenic, matrix and growth factor mRNA expression in human skeletal muscle: effect of contraction intensity and feeding

    DEFF Research Database (Denmark)

    Agergaard, Jakob; Reitelseder, Søren; Pedersen, T.G.

    2013-01-01

    . RESULTS: Relative muscle activity differed between HL and LL resistance exercise, whereas median power frequency was even, suggesting an equal muscle-fiber-type recruitment distribution. mRNA expression of Myf6, myogenin, and p21 was mostly increased, and myostatin was mostly depressed by HL resistance...

  15. Hsp27 promotes ABCA1 expression and cholesterol efflux through the PI3K/PKCζ/Sp1 pathway in THP-1 macrophages.

    Science.gov (United States)

    Kuang, Hai-Jun; Zhao, Guo-Jun; Chen, Wu-Jun; Zhang, Min; Zeng, Gao-Feng; Zheng, Xi-Long; Tang, Chao-Ke

    2017-09-05

    Heat shock protein 27 (Hsp27) is a putative biomarker and therapeutic target in atherosclerosis. This study was to explore the potential mechanisms underlying Hsp27 effects on ATP-binding cassette transporter A1 (ABCA1) expression and cellular cholesterol efflux. THP-1 macrophage-derived foam cells were infected with adenovirus to express wild-type Hsp27, hyper-phosphorylated Hsp27 mimic (3D Hsp27), antisense Hsp27 or hypo-phosphorylated Hsp27 mimic (3A Hsp27). Wild-type and 3D Hsp27 were found to up-regulate ABCA1 mRNA and protein expression and increase cholesterol efflux from cells. Expression of antisense or 3A Hsp27 suppressed the expression of ABCA1 and cholesterol efflux. Furthermore, over-expression of wild-type and 3D Hsp27 significantly increased the levels of phosphorylated specificity protein 1 (Sp1), protein kinase C ζ (PKCζ) and phosphatidylinositol 3-kinase (PI3K). In addition, the up-regulation of ABCA1 expression and cholesterol efflux induced by 3D Hsp27 was suppressed by inhibition of Sp1, PKCζ and PI3K with specific kinase inhibitors. Taken together, our results revealed that Hsp27 may up-regulate the expression of ABCA1 and promotes cholesterol efflux through activation of the PI3K/PKCζ/Sp1 signal pathway in THP-1 macrophage-derived foam cells. Our findings may partly explain the mechanisms underlying the anti-atherogenic effect of Hsp27. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Effects of low dose radiation on expressions of ICAM-1 mRNA and protein in kidney of diabetic mice

    International Nuclear Information System (INIS)

    Zhang Chi; Li Xiaokun; Gong Shouliang; Liu Xiaoju; Zhao Xue; Liu Xiaoju; Zhao Xue; Shen Wenjie; Li Cai; Cai Lu

    2010-01-01

    Objective: To study the effects of low dose radiation (LDR) on the expressions of intercellular adhesion molecule-1 (ICAM-1) mRNA and protein in kidney of diabetes mellitus (DM) mice and illuminate that anti-inflammation of LDR is a main mechanism for diabetic therapy. Methods: The healthy and right age C57BL/6J mice were divided into 4 groups including control, DM, LDR and DM/LDR. The mice in DM and DM/LDR groups were injected intraperitoneally with streptozocin (STZ) to set up DM models. The mice in DM/LDR and LDR groups were irradiated with 25 mGy every other day for 4 weeks. The expressions of ICAM-1 mRNA and protein in kidney were detected with RT-PCR and Western blotting 2, 4, 8, 12 and 16 weeks after irradiation. Results: The expressions of ICAM-1 mRNA and protein in kidney had no significant difference among 4 groups before LDR (P>0.05). The expressions of ICAM-1 mRNA and protein 2 weeks after irradiation with LDR were higher than those in the other 3 groups (P<0.05). The expressions of ICAM-1 mRNA and protein in the DM/LDR group 4 weeks after irradiation were also significantly higher than those in non-DM groups (P<0.05), but still significantly lower than those in DM group (P<0.05), and the significant differences were kept to 16 weeks after irradiation. But the expressions of ICAM-1 mRNA and protein in LDR group were significantly higher than those in control group (P<0.05). IHC assay showed that the glomerular and tubular in DM and DM/LDR groups were abnormal and the quantities of the positive staining cells were significantly increased compared with non-DM groups. However the damage of glomerular and tubular in DM/LDR was significantly supressed compared with DM group and the positive staining cells were also decreased. Conclusion: Under the circumstance of DM, LDR can significantly decrease the expressions of ICAM-1 mRNA and protein in mouse kidney to relief the inflammation reaction in kidney; but in normal condition, LDR can improve the immunity and

  17. Oxidized LDL Induces Alternative Macrophage Phenotype through Activation of CD36 and PAFR

    Directory of Open Access Journals (Sweden)

    Francisco J. Rios

    2013-01-01

    Full Text Available OxLDL is recognized by macrophage scavenger receptors, including CD36; we have recently found that Platelet-Activating Factor Receptor (PAFR is also involved. Since PAFR in macrophages is associated with suppressor function, we examined the effect of oxLDL on macrophage phenotype. It was found that the presence of oxLDL during macrophage differentiation induced high mRNA levels to IL-10, mannose receptor, PPARγ and arginase-1 and low levels of IL-12 and iNOS. When human THP-1 macrophages were pre-treated with oxLDL then stimulated with LPS, the production of IL-10 and TGF-β significantly increased, whereas that of IL-6 and IL-8 decreased. In murine TG-elicited macrophages, this protocol significantly reduced NO, iNOS and COX2 expression. Thus, oxLDL induced macrophage differentiation and activation towards the alternatively activated M2-phenotype. In murine macrophages, oxLDL induced TGF-β, arginase-1 and IL-10 mRNA expression, which were significantly reduced by pre-treatment with PAFR antagonists (WEB and CV or with antibodies to CD36. The mRNA expression of IL-12, RANTES and CXCL2 were not affected. We showed that this profile of macrophage activation is dependent on the engagement of both CD36 and PAFR. We conclude that oxLDL induces alternative macrophage activation by mechanisms involving CD36 and PAFR.

  18. Expression of Nocardia brasiliensis superoxide dismutase during the early infection of murine peritoneal macrophages.

    Science.gov (United States)

    Revol, Agnès; Espinoza-Ruiz, Marisol; Medina-Villanueva, Igor; Salinas-Carmona, Mario Cesar

    2006-12-01

    Nocardia brasiliensis is the main agent of actinomycetoma in Mexico, but little is known about its virulence and molecular pathogenic pathways. These facultative intracellular bacteria are able to survive and divide within the host phagocytic cells, in part by neutralizing the reactive oxygen intermediates. Superoxide dismutase (SOD) participates in the intracellular survival of several bacterial species and, in particular, constitutes one of Nocardia asteroides virulence factors. To clarify SOD participation in the N. brasiliensis early infective process, we report its isolation and the consequent comparison of its transcript level. A 630 bp polymerase chain reaction fragment that included most of the coding sequence of N. brasiliensis sodA was cloned. A competitive assay was developed, allowing comparison of bacterial sod expression in exponential culture and 1 h after infecting peritoneal macrophages from BALB/c mice. At that time, there were viable bacteria in the macrophages. The intracellular bacteria presented a clear decrease in their sod transcript amount, although their 16S rRNA (used as an internal control) and hsp levels were maintained or slightly increased, respectively. These results indicate that sodA transcription is not maintained within the SOS bacterial response induced by phagosomal conditions. Further kinetics will be necessary to precisely define sod transcriptional regulation during N. brasiliensis intra-macrophage growth.

  19. Bone marrow-derived and peritoneal macrophages have different inflammatory response to oxLDL and M1/M2 marker expression

    DEFF Research Database (Denmark)

    Bisgaard, Line S; Mogensen, Christina K; Rosendahl, Alexander

    2016-01-01

    Macrophages are heterogeneous and can polarize into specific subsets, e.g. pro-inflammatory M1-like and re-modelling M2-like macrophages. To determine if peritoneal macrophages (PEMs) or bone marrow derived macrophages (BMDMs) resembled aortic macrophages from ApoE-/- mice, their M1/M2 phenotype,......, ACSL1, SRB1, DGAT1, and cpt1a) was decreased in advanced versus early lesions. In conclusion, PEMs and BMDMs are phenotypically distinct and differ from macrophages in lesions with respect to expression of M1/M2 markers and lipid metabolism genes....

  20. The Impact of Ramadan Fasting on SIRT1 mRNA Expression in Peripheral Blood Mononuclear Cells

    OpenAIRE

    Mostafa Haji Molahoseini; kanaan Gorjipour; Farshid Yeganeh

    2016-01-01

    Background:The aim of this study was to evaluate the effect of Ramadan fasting on SIRT1 mRNA expression in healthy men.Islamic Ramadan fasting is a holy religious ceremony that has many spiritual benefits. Additionally, it can be considered as the equivalent of calorie restriction that may affect physical health. The results of previous studies revealed that calorie restriction increases the lifespan in laboratory rodents via increasing the expression of a histone deacetylase named SIRT1. Add...

  1. Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading

    Science.gov (United States)

    Carlson, C. J.; Booth, F. W.; Gordon, S. E.

    1999-01-01

    Transgenic mice lacking a functional myostatin (MSTN) gene demonstrate greater skeletal muscle mass resulting from muscle fiber hypertrophy and hyperplasia (McPherron, A. C., A. M. Lawler, and S. -J. Lee. Nature 387: 83-90, 1997). Therefore, we hypothesized that, in normal mice, MSTN may act as a negative regulator of muscle mass. Specifically, we hypothesized that the predominately slow (type I) soleus muscle, which demonstrates greater atrophy than the fast (type II) gastrocnemius-plantaris complex (Gast/PLT), would show more elevation in MSTN mRNA abundance during hindlimb unloading (HU). Surprisingly, MSTN mRNA was not detectable in weight-bearing or HU soleus muscle, which atrophied 42% by the 7th day of HU in female ICR mice. In contrast, MSTN mRNA was present in weight-bearing Gast/PLT muscle and was significantly elevated (67%) at 1 day but not at 3 or 7 days of HU. However, the Gast/PLT muscle had only atrophied 17% by the 7th day of HU. Because the soleus is composed only of type I and IIa fibers, whereas the Gast/PLT expresses type IId/x and IIb in addition to type I and IIa, it was necessary to perform a more careful analysis of the relationship between MSTN mRNA levels and myosin heavy-chain (MHC) isoform expression (as a marker of fiber type). A significant correlation (r = 0.725, P < 0. 0005) was noted between the percentage of MHC isoform IIb expression and MSTN mRNA abundance in several muscles of the mouse hindlimb. These results indicate that MSTN expression is not strongly associated with muscle atrophy induced by HU; however, it is strongly associated with MHC isoform IIb expression in normal muscle.

  2. Endurance exercise induces mRNA expression of oxidative enzymes in human skeletal muscle late in recovery

    DEFF Research Database (Denmark)

    Leick, Lotte; Plomgaard, Peter S.; Grønløkke, L.

    2010-01-01

    exercise. To test the hypothesis that mRNA expression of many oxidative enzymes is up-regulated late in recovery (10-24 h) after exercise, male subjects (n=8) performed a 90-min cycling exercise (70% VO(2-max)), with muscle biopsies obtained before exercise (pre), and after 10, 18 and 24 h of recovery....... The mRNA expression of carnitine-palmitoyltransferase (CPT)I, CD36, 3-hydroxyacyl-CoA-dehydrogenase (HAD), cytochrome (Cyt)c, aminolevulinate-delta-synthase (ALAS)1 and GLUT4 was 100-200% higher at 10-24 h of recovery from exercise than in a control trial. Exercise induced a 100-300% increase...... in peroxisome proliferator-activated receptor gamma co-activator (PGC)-1alpha, citrate synthase (CS), CPTI, CD36, HAD and ALAS1 mRNA contents at 10-24 h of recovery relative to before exercise. No protein changes were detected in Cytc, ALAS1 or GLUT4. This shows that mRNA expression of several training...

  3. Analysis of mRNA expression of genes related to fatty acids synthesis in goose fatty liver

    Directory of Open Access Journals (Sweden)

    Shuxia Xiang

    2010-11-01

    Full Text Available The aim of our study was to evaluate the effect of overfeeding on mRNA expression levels of genes involved in lipogenesis, in order to understand the mechanism of hepatic stea - tosis in the goose. Using Landes geese (Anser anser and Sichuan White geese (Anser cygnoides as experimental animals, we quantified the mRNA expression of lipogenic genes, acetyl-CoA carboxylase-α (ACCα and fatty acid synthase (FAS, and of two transcription factors, sterol regulatory element-binding proteins- 1 (SREBP-1 and carbohydrate responsive element-binding protein (ChREBP by real-time polymerase chain reaction (RTPCR, and measured the lipid and triglyceride (TG content in the liver and the plasma level of glucose, insulin and TG. Our results indicated that compared to the control group, the overfeeding induced an increase of the lipid and TG content in the liver and also of the plasma insulin and TG concentration in both breeds. However, the plasma glucose level decreased after overfeeding in the Sichuan White goose, and there was no evident change in the Landes goose. Lastly, the mRNA expression of ACCα, FAS, SREBP-1 and ChREBP in the overfed group was lower than in the control group in both breeds. We concluded that the lipogenesis pathway plays a role in overfeeding- induced hepatic steatosis and that the decreased mRNA level of related genes may be the indicator of hepatic steatosis.

  4. Sex differences in spatiotemporal expression of AR, ERα, and ERβ mRNA in the perinatal mouse brain.

    Science.gov (United States)

    Mogi, Kazutaka; Takanashi, Haruka; Nagasawa, Miho; Kikusui, Takefumi

    2015-01-01

    It has been shown that every masculinized function might be organized by a particular contribution of androgens vs. estrogens in a critical time window. Here, we aimed to investigate the sex differences in brain testosterone levels and in the spatiotemporal dynamics of steroid receptor mRNA expression in perinatal mice, by using enzyme immunoassay and real-time PCR, respectively. We found that testosterone levels in the forebrain transiently increased around birth in male mice. During the perinatal period, levels of androgen receptor mRNA in the hypothalamus (hypo) and prefrontal cortex (PFC) were higher in male mice than in female mice. Estrogen receptor α (ERα) mRNA levels in the hypo and hippocampus were higher in male mice than in female mice before birth. In contrast, ERβ mRNA expression in the PFC was higher in female mice immediately after birth. These spatiotemporal sex differences in steroid receptor expression might contribute to organizing sex differences of not only reproductive function, but also anxiety, stress responses, and cognition in mice. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Mesenchymal stem cells cannot affect mRNA expression of toll-like receptors in different tissues during sepsis.

    Science.gov (United States)

    Pedrazza, Leonardo; Pereira, Talita Carneiro Brandão; Abujamra, Ana Lucia; Nunes, Fernanda Bordignon; Bogo, Maurício Reis; de Oliveira, Jarbas Rodrigues

    2017-07-01

    Experimental animal models and human clinical studies support a crucial role for TLRs in infectious diseases. The aim of this study was to test the ability of MSCs, which have immunomodulatory effects, of altering the mRNA expression of toll-like receptors during a experimental model of sepsis in different tissues. Three experimental groups (male C57BL/6 mice) were formed for the test: control group, untreated septic group and septic group treated with MSCs (1 × 10 6 cells/animal). Lungs, cortex, kidney, liver and colon tissue were dissected after 12 h of sepsis induction and TLR2/3/4/9 mRNA were evaluated by RT-qPCR. We observed a decrease of TLR2 and 9 mRNA expression in the liver of the sepsis group, while TLR3 was decreased in the lung and liver. No change was found between the sepsis group and the sepsis + MSC group. In this model of experimental sepsis the MSCs were unable to modify the mRNA expression of the different toll-like receptors evaluated.

  6. Clonorchis sinensis lysophospholipase A upregulates IL-25 expression in macrophages as a potential pathway to liver fibrosis.

    Science.gov (United States)

    Zhou, Lina; Shi, Mengchen; Zhao, Lu; Lin, Zhipeng; Tang, Zeli; Sun, Hengchang; Chen, Tingjin; Lv, Zhiyue; Xu, Jin; Huang, Yan; Yu, Xinbing

    2017-06-17

    Liver fibrosis is an excessive wound-healing reaction that requires the participation of inflammatory cells and hepatic stellate cells (HSCs). The pathogenesis of liver fibrosis caused by viruses and alcohol has been well characterized, but the molecular mechanisms underlying liver fibrosis induced by the liver fluke Clonorchis sinensis are poorly understood. Lysophospholipase A (LysoPLA), which deacylates lysophospholipids, plays a critical role in mediating the virulence and pathogenesis of parasites and fungi; however, the roles of C. sinensis lysophospholipase A (CsLysoPLA) in C. sinensis-induced liver fibrosis remain unknown. A mouse macrophage cell line (RAW264.7) was cultured and treated with CsLysoPLA. IL-25 and members of its associated signaling pathway were detected by performing quantitative real-time PCR, Western blotting and immunofluorescent staining. A human hepatic stellate cell line (LX-2) was cultured and exposed to IL-25. LX-2 cell activation markers were examined via quantitative real-time PCR, Western blotting and immunofluorescent staining. Migration was analyzed in transwell plates. Treating RAW264.7 cells with CsLysoPLA significantly induced IL-25 expression. Elevated PKA, B-Raf, and ERK1/2 mRNA levels and phosphorylated B-Raf and ERK1/2 were detected in CsLysoPLA-stimulated RAW264.7 cells. The PKA inhibitor H-89 weakened B-Raf and ERK1/2 phosphorylation whereas the AKT activator SC79 attenuated ERK1/2 phosphorylation in RAW264.7 cells. Both H-89 and SC79 inhibited CsLysoPLA-induced IL-25 upregulation. In addition, stimulation of LX-2 cells with IL-25 upregulated the expression of mesenchymal cell markers, including α-smooth muscle actin (α-SMA) and collagen type I (Collagen-I), and promoted cell migration. CsLysoPLA activates HSCs by upregulating IL-25 in macrophages through the PKA-dependent B-Raf/ERK1/2 pathway and potentially promotes hepatic fibrosis during C. sinensis infection.

  7. FATHEAD MINNOW VITELLOGENIN: CDNA SEQUENCE AND MRNA AND PROTEIN EXPRESSION AFTER 17 BETA-ESTRADIOL TREATMENT

    Science.gov (United States)

    In the present study, a sensitive ribonuclease protection assay (RPA) for VTG mRNA was developed for the fathead minnow (Pimephales promelas), a species proposed for routine endocrine-disrupting chemical (EDC) screening.

  8. Granulocyte-macrophage colony-stimulating factor primes interleukin-13 production by macrophages via protease-activated receptor-2.

    Science.gov (United States)

    Aoki, Manabu; Yamaguchi, Rui; Yamamoto, Takatoshi; Ishimaru, Yasuji; Ono, Tomomichi; Sakamoto, Arisa; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-04-01

    Chronic inflammation is often linked to the presence of type 2-polarized macrophages, which are induced by the T helper type 2 cytokines interleukin-4 and interleukin-13 (IL-13). IL-13 is a key mediator of tissue fibrosis caused by T helper type 2-based inflammation. Human neutrophil elastase (HNE) plays a pivotal role in the pathogenesis of pulmonary fibrosis. This study investigated the priming effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on IL-13 expression by macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. Expression of IL-13 mRNA and protein by GM-CSF-dependent macrophages was investigated after stimulation with HNE, using the polymerase chain reaction and enzyme-linked immunosorbent assay. GM-CSF had a priming effect on IL-13 mRNA and protein expression by macrophages stimulated with HNE, while this effect was not observed for various other cytokines. GM-CSF-dependent macrophages showed a significant increase in the expression of protease activated receptor-2 (PAR-2) mRNA and protein. The response of IL-13 mRNA to HNE was significantly decreased by pretreatment with alpha1-antitrypsin, a PAR-2 antibody (SAM11), or a PAR-2 antagonist (ENMD-1068). These findings suggest that stimulation with HNE can induce IL-13 production by macrophages, especially GM-CSF-dependent macrophages. Accordingly, neutrophil elastase may have a key role in fibrosis associated with chronic inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Macrophage heterogeneity and cholesterol homeostasis: classically-activated macrophages are associated with reduced cholesterol accumulation following treatment with oxidized LDL.

    Science.gov (United States)

    Chu, Eugene M; Tai, Daven C; Beer, Jennifer L; Hill, John S

    2013-02-01

    Macrophages are centrally involved during atherosclerosis development and are the predominant cell type that accumulates cholesterol in the plaque. Macrophages however, are heterogeneous in nature reflecting a variety of microenvironments and different phenotypes may be more prone to contribute towards atherosclerosis progression. Using primary human monocyte-derived macrophages, we sought to evaluate one aspect of atherogenic potential of different macrophage phenotypes by determining their propensity to associate with and accumulate oxidized low density lipoprotein (oxLDL). Classically-activated macrophages treated simultaneously with interferon γ (IFNγ) and tumor necrosis factor α (TNFα) associated with less oxLDL and accumulated less cholesterol compared to untreated controls. The combined treatment of IFNγ and TNFα reduced the mRNA expression of CD36 and the expression of both cell surface CD36 and macrophage scavenger receptor 1 (MSR1) protein. Under oxLDL loaded conditions, IFNγ and TNFα did not reduce macrophage protein expression of the transcription factor peroxisome proliferator-actived receptor γ (PPARγ) which is known to positively regulate CD36 expression. However, macrophages treated with IFNγ attenuated the ability of the PPARγ-specific agonist rosiglitazone from upregulating cell surface CD36 protein expression. Our results demonstrate that the observed reduction of cholesterol accumulation in macrophages treated with IFNγ and TNFα following oxLDL treatment was due at least in part to reduced cell surface CD36 and MSR1 protein expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Enrofloxacin and Probiotic Lactobacilli Influence PepT1 and LEAP-2 mRNA Expression in Poultry.

    Science.gov (United States)

    Pavlova, Ivelina; Milanova, Aneliya; Danova, Svetla; Fink-Gremmels, Johanna

    2016-12-01

    Expression of peptide transporter 1 (PepT1) and liver-expressed antimicrobial peptide 2 (LEAP-2) in chickens can be influenced by food deprivation, pathological conditions and drug administration. Effect of three putative probiotic Lactobacillus strains and enrofloxacin on the expression of PepT1 and LEAP-2 mRNA was investigated in Ross 308 chickens. One-day-old chicks (n = 24) were allocated to following groups: control (without treatment); group treated with probiotics via feed; group treated with a combination of probiotics and enrofloxacin; and a group given enrofloxacin only. The drug was administered at a dose of 10 mg kg -1 , via drinking water for 5 days. Samples from liver, duodenum and jejunum were collected 126 h after the start of the treatment. Expression levels of PepT1 and LEAP-2 were determined by real-time polymerase chain reaction and were statistically evaluated by Mann-Whitney test. Enrofloxacin administered alone or in combination with probiotics provoked a statistically significant up-regulation of PepT1 mRNA levels in the measured organ sites. These changes can be attributed to a tendency of improvement in utilization of dietary peptide and in body weight gain. LEAP-2 mRNA expression levels did not change significantly in enrofloxacin-treated chickens in comparison with control group.

  11. The Impact of Ramadan Fasting on SIRT1 mRNA Expression in Peripheral Blood Mononuclear Cells

    Directory of Open Access Journals (Sweden)

    Mostafa Haji Molahoseini

    2016-11-01

    Full Text Available Background:The aim of this study was to evaluate the effect of Ramadan fasting on SIRT1 mRNA expression in healthy men.Islamic Ramadan fasting is a holy religious ceremony that has many spiritual benefits. Additionally, it can be considered as the equivalent of calorie restriction that may affect physical health. The results of previous studies revealed that calorie restriction increases the lifespan in laboratory rodents via increasing the expression of a histone deacetylase named SIRT1. Additionally, SIRT1 is known for its anti-inflammatory properties. Materials and Methods: Overall, 43 men volunteered for participating in this one-group before and after (self-controlled study. Two mL blood samples were taken prior to fasting and at the end of the 30th day of fasting. Routine biochemical tests and SIRT1 mRNA expression analysis were performed. Results: Cholesterol and low-density lipoproteins increase, however, high-density lipoproteins level decreased after Ramadan fasting. The analysis of real-time PCR results revealed that SIRT1 mRNA expression in human peripheral blood mononuclear cells increased 4.63 fold in fasting state in comparison with non-fasting state. Conclusion: Ramadan fasting has a significant effect on SIRT1 gene expression. Considering the immunosuppressive and anti-inflammatory properties of SIRT1, further studies are needed to evaluate the effects of SIRT1 up-regulation on the autoimmune and inflammatory diseases during Ramadan fasting.

  12. Decreased expression of liver X receptor-α in macrophages infected with Chlamydia pneumoniae in human atherosclerotic arteries in situ.

    Science.gov (United States)

    Bobryshev, Yuri V; Orekhov, Alexander N; Killingsworth, Murray C; Lu, Jinhua

    2011-01-01

    In in vitro experiments, Chlamydia pneumoniae has been shown to infect macrophages and to accelerate foam cell formation. It has been hypothesized that the C. pneumoniae infection affects foam cell formation by suppressing the expression of liver X receptors (LXR), but whether such an event occurs in human atherosclerosis is not known. In this study we examined carotid artery segments, obtained by endarterectomy, in which the presence of C. pneumoniae was confirmed by both polymerase chain reaction and immunohistochemistry. The expression of LXR-α in macrophages infected with C. pneumoniae and macrophages that were not infected was compared using a quantitative immunohistochemical analysis. The analysis revealed a 2.2-fold reduction in the expression of LXR-α in C. pneumoniae-infected cells around the lipid cores in atherosclerotic plaques. In the cytoplasm of laser-capture microdissected cells that were immunopositive for C. pneumoniae, electron microscopy demonstrated the presence of structures with the appearance of elementary, reticulate and aberrant bodies of C. pneumoniae. We conclude that LXR-α expression is reduced in C. pneumoniae-infected macrophages in human atherosclerotic lesions which supports the hypothesis that C. pneumoniae infection might suppress LXR expression in macrophages transforming into foam cells. Copyright © 2011 S. Karger AG, Basel.

  13. Effects of vitamin D supplementation on alveolar macrophage gene expression: preliminary results of a randomized, controlled trial.

    Science.gov (United States)

    Gerke, Alicia K; Pezzulo, Alejandro A; Tang, Fan; Cavanaugh, Joseph E; Bair, Thomas B; Phillips, Emily; Powers, Linda S; Monick, Martha M

    2014-03-26

    Vitamin D deficiency has been implicated as a factor in a number of infectious and inflammatory lung diseases. In the lung, alveolar macrophages play a key role in inflammation and defense of infection, but there are little data exploring the immunomodulatory effects of vitamin D on innate lung immunity in humans. The objective of this study was to determine the effects of vitamin D supplementation on gene expression of alveolar macrophages. We performed a parallel, double-blind, placebo-controlled, randomized trial to determine the effects of vitamin D on alveolar macrophage gene expression. Vitamin D3 (1000 international units/day) or placebo was administered to adults for three months. Bronchoscopy was performed pre- and post-intervention to obtain alveolar macrophages. Messenger RNA was isolated from the macrophages and subjected to whole genome exon array analysis. The primary outcome was differential gene expression of the alveolar macrophage in response to vitamin D supplementation. Specific genes underwent validation by polymerase chain reaction methods. Fifty-eight subjects were randomized to vitamin D (n = 28) or placebo (n = 30). There was a marginal overall difference between treatment group and placebo group in the change of 25-hydroxyvitaminD levels (4.43 ng/ml vs. 0.2 ng/ml, p = 0.10). Whole genome exon array analysis revealed differential gene expression associated with change in serum vitamin D levels in the treated group. CCL8/MCP-2 was the top-regulated cytokine gene and was further validated. Although only a non-significant increased trend was seen in serum vitamin D levels, subjects treated with vitamin D supplementation had immune-related differential gene expression in alveolar macrophages. ClinicalTrials.org: NCT01967628.

  14. Dioscorin isolated from Dioscorea alata activates TLR4-signaling pathways and induces cytokine expression in macrophages.

    Science.gov (United States)

    Fu, Shu-Ling; Hsu, Ya-Hui; Lee, Pei-Yeh; Hou, Wen-Chi; Hung, Ling-Chien; Lin, Chao-Hsiung; Chen, Chiu-Ming; Huang, Yu-Jing

    2006-01-06

    The Toll-like receptor 4 (TLR4)-signaling pathway is crucial for activating both innate and adaptive immunity. TLR4 is a promising molecular target for immune-modulating drugs, and TLR4 agonists are of therapeutic potential for treating immune diseases and cancers. Several medicinal herb-derived components have recently been reported to act via TLR4-dependent pathways, suggesting that medicinal plants are potential resources for identifying TLR4 activators. We have applied a screening procedure to systematically identify herbal constituents that activate TLR4. To exclude possible LPS contamination in these plant-derived components, a LPS inhibitor, polymyxin B, was added during screening. One of the plant components we identified from the screening was dioscorin, the glycoprotein isolated from Dioscorea alata. It induced TLR4-downstream cytokine expression in bone marrow cells isolated from TLR4-functional C3H/HeN mice but not from TLR4-defective C3H/HeJ mice. Dioscorin also stimulated multiple signaling molecules (NF-kappaB, ERK, JNK, and p38) and induced the expression of cytokines (TNF-alpha, IL-1beta, and IL-6) in murine RAW 264.7 macrophages. Furthermore, the ERK, p38, JNK, and NF-kappaB-mediated pathways are all involved in dioscorin-mediated TNF-alpha production. In summary, our results demonstrate that dioscorin is a novel TLR4 activator and induces macrophage activation via typical TLR4-signaling pathways.

  15. Hypoxic stress up-regulates the expression of Toll-like receptor 4 in macrophages via hypoxia-inducible factor.

    Science.gov (United States)

    Kim, So Young; Choi, Yong Jun; Joung, Sun Myung; Lee, Byung Ho; Jung, Yi-Sook; Lee, Joo Young

    2010-04-01

    Toll-like receptors (TLRs) are germline-encoded innate immune receptors that recognize invading micro-organisms and induce immune and inflammatory responses. Deregulation of TLRs is known to be closely linked to various immune disorders and inflammatory diseases. Cells at sites of inflammation are exposed to hypoxic stress, which further aggravates inflammatory processes. We have examined if hypoxic stress modulates the TLR activity of macrophages. Hypoxia and CoCl(2) (a hypoxia mimetic) enhanced the expression of TLR4 messenger RNA and protein in macrophages (RAW264.7 cells), whereas the messenger RNA of other TLRs was not increased. To determine the underlying mechanism, we investigated the role of hypoxia-inducible factor 1 (HIF-1) in the regulation of TLR4 expression. Knockdown of HIF-1alpha expression by small interfering RNA inhibited hypoxia-induced and CoCl(2)-induced TLR4 expression in macrophages, while over-expression of HIF-1alpha potentiated TLR4 expression. Chromatin immunoprecipitation assays revealed that HIF-1alpha binds to the TLR4 promoter region under hypoxic conditions. In addition, deletion or mutation of a putative HIF-1-binding motif in the TLR4 promoter greatly attenuated HIF-1alpha-induced TLR4 promoter reporter expression. Up-regulation of TLR4 expression by hypoxic stress enhanced the response of macrophages to lipopolysaccharide, resulting in increased expression of cyclooxygenase-2, interleukin-6, regulated on activation normal T cell expressed and secreted, and interferon-inducible protein-10. These results demonstrate that TLR4 expression in macrophages is up-regulated via HIF-1 in response to hypoxic stress, suggesting that hypoxic stress at sites of inflammation enhances susceptibility to subsequent infection and inflammatory signals by up-regulating TLR4.

  16. Statins Activate Human PPAR Promoter and Increase PPAR mRNA Expression and Activation in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Makoto Seo

    2008-01-01

    Full Text Available Statins increase peroxisome proliferator-activated receptor (PPAR mRNA expression, but the mechanism of this increased PPAR production remains elusive. To examine the regulation of PPAR production, we examined the effect of 7 statins (atorvastatin, cerivastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin on human PPAR promoter activity, mRNA expression, nuclear protein levels, and transcriptional activity. The main results are as follows. (1 Majority of statins enhanced PPAR promoter activity in a dose-dependent manner in HepG2 cells transfected with the human PPAR promoter. This enhancement may be mediated by statin-induced HNF-4. (2 PPAR mRNA expression was increased by statin treatment. (3 The PPAR levels in nuclear fractions were increased by statin treatment. (4 Simvastatin, pravastatin, and cerivastatin markedly enhanced transcriptional activity in 293T cells cotransfected with acyl-coenzyme A oxidase promoter and PPAR/RXR expression vectors. In summary, these data demonstrate that PPAR production and activation are upregulated through the PPAR promoter activity by statin treatment.

  17. The NO signaling pathway differentially regulates KCC3a and KCC3b mRNA expression.

    Science.gov (United States)

    Di Fulvio, Mauricio; Lauf, Peter K; Adragna, Norma C

    2003-11-01

    Nitric oxide (NO) donors and protein kinase G (PKG) acutely up-regulate K-Cl cotransporter-1 and -3 (KCC1 and KCC3) mRNA expression in vascular smooth muscle cells (VSMCs). Here, we report the presence, relative abundance, and regulation by sodium nitroprusside (SNP) of the novel KCC3a and KCC3b mRNAs, in primary cultures of rat VSMCs. KCC3a and KCC3b mRNAs were expressed in an approximate 3:1 ratio, as determined by semiquantitative RT-PCR analysis. SNP as well as YC-1 and 8-Br-cGMP, a NO-independent stimulator of soluble guanylyl cyclase (sGC) and PKG, respectively, increased KCC3a and KCC3b mRNA expression by 2.5-fold and 8.1-fold in a time-dependent manner, following a differential kinetics. Stimulation of the NO/sGC/PKG signaling pathway with either SNP, YC-1, or 8-Br-cGMP decreased the KCC3a/KCC3b ratio from 3.0+/-0.4 to 0.9+/-0.1. This is the first report on a differential regulation by the NO/sGC/PKG signaling pathway of a cotransporter and of KCC3a and KCC3b mRNA expression.

  18. Freund's adjuvant-induced inflammation: clinical findings and its effect on hepcidin mRNA expression in horses

    Directory of Open Access Journals (Sweden)

    José P. Oliveira-Filho

    2014-01-01

    Full Text Available Hypoferremia observed during systemic inflammatory disorders is regulated by hepcidin. Hepcidin up-regulation is particularly important during acute inflammation, as it restricts the availability of iron, which is necessary for pathogenic microorganism growth before adaptive immunity occurs. The aim of this study was to evaluate the clinical findings and hepatic hepcidin mRNA expression in horses using a Freund's complete adjuvant (FCA model of inflammation. The expression of hepcidin mRNA in the liver was determined in healthy horses following two intramuscular injections of FCA at 0 h and 12 h. Plasma iron and fibrinogen concentrations were measured at multiple time points between 0 h and 240 h post-FCA injection (PI. Hepcidin mRNA expression was determined by RT-qPCR using liver biopsy samples performed at 0 h (control, 6 h and 18 h PI. The mean plasma fibrinogen level was significantly different from the control values only between 120 and 216 h PI. The mean plasma iron level was significantly lower than the control between 16 and 72 h PI, reaching the lowest levels at 30 h PI (33 % of the initial value, and returned to the reference value from 96 h PI to the end of the experiment. Hepcidin mRNA expression increased at 6 h PI and remained high at 18 h PI. The iron plasma concentration was an earlier indicator of inflammatory processes in horses when compared with fibrinogen and might be useful for the early detection of inflammation in the horse. FCA administration caused the rapid onset of hypoferremia, and this effect was likely the result of up-regulated hepatic hepcidin gene expression. This study emphasizes the importance of hepcidin and iron metabolism during inflammation in horses.

  19. Activating transcription factor 6 mediates oxidized LDL-induced cholesterol accumulation and apoptosis in macrophages by up-regulating CHOP expression.

    Science.gov (United States)

    Yao, Shutong; Zong, Chuanlong; Zhang, Ying; Sang, Hui; Yang, Mingfeng; Jiao, Peng; Fang, Yongqi; Yang, Nana; Song, Guohua; Qin, Shucun

    2013-01-01

    This study was to explore whether activating transcription factor 6 (ATF6), an important sensor to endoplasmic reticulum (ER) stress, would mediate oxidized low-density lipoprotein (ox-LDL)- induced cholesterol accumulation and apoptosis in cultured macrophages and the underlying molecular mechanisms. Intracellular lipid droplets and total cholesterol levels were assayed by oil red O staining and enzymatic colorimetry, respectively. Cell viability and apoptosis were determined using MTT assay and AnnexinV-FITC apoptosis detection kit, respectively. The nuclear translocation of ATF6 in cells was detected by immunofluorescence analysis. Protein and mRNA levels were examined by Western blot analysis and real time-PCR, respectively. ATF6 siRNA was transfected to RAW264.7 cells by lipofectamin. Exposure of cells to ox-LDL induced glucose-regulated protein 78 (GRP78). C/EBP homologous protein (CHOP), a key-signaling component of ER stress-induced apoptosis, was up-regulated in ox-LDL-treated cells. ATF6, a factor that positively regulates CHOP expression, was activated by ox-LDL in a concentration- and time- dependent manner. The role of the ATF6-mediated ER stress pathway was further confirmed through the siRNA-mediated knockdown of ATF6, which attenuated ox-LDL-induced upregulation of CHOP, cholesterol accumulation and apoptosis in macrophages. In addition, the phosphorylation of double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK), another factor that positively regulates CHOP expression, was induced in the presence of ox-LDL, and PERK-specific siRNA also inhibited the ox-LDL-induced upregulation of CHOP and apoptosis in RAW264.7 cells. These results demonstrate that ER stress-related proteins, particularly ATF6 and its downstream molecule CHOP, are involved in ox-LDL-induced cholesterol accumulation and apoptosis in macrophages.

  20. Changes in apoptotic microRNA and mRNA expression profiling in Caenorhabditis elegans during the Shenzhou-8 mission

    International Nuclear Information System (INIS)

    Gao Ying; Li Shuai; Xu Dan; Wang Junjun; Sun Yeqing

    2015-01-01

    Radiation and microgravity exposure have been proven to induce abnormal apoptosis in microRNA (miRNA) and mRNA expression, but whether space conditions, including radiation and microgravity, activate miRNAs to regulate the apoptosis is undetermined. For that purpose, we investigated miRNome and mRNA expression in the ced-1 Caenorhabditis elegans mutant vs the wild-type, both of which underwent spaceflight, spaceflight 1g-centrifuge control and ground control conditions during the Shenzhou-8 mission. Results showed that no morphological changes in the worms were detected, but differential miRNA expression increased from 43 (ground control condition) to 57 and 91 in spaceflight and spaceflight control conditions, respectively. Microgravity altered miRNA expression profiling by decreasing the number and significance of differentially expressed miRNA compared with 1 g incubation during spaceflight. Alterations in the miRNAs were involved in alterations in apoptosis, neurogenesis larval development, ATP metabolism and GTPase-mediated signal transduction. Among these, 17 altered miRNAs potentially involved in apoptosis were screened and showed obviously different expression signatures between space conditions. By integrated analysis of miRNA and mRNA, miR-797 and miR-81 may be involved in apoptosis by targeting the genes ced-10 and both drp-1 and hsp-1, respectively. Compared with ground condition, space conditions regulated apoptosis though a different manner on transcription, by altering expression of seven core apoptotic genes in spaceflight condition, and eight in spaceflight control condition. Results indicate that, miRNA of Caenorhabditis elegans probably regulates apoptotic gene expression in response to space environmental stress, and shows different behavior under microgravity condition compared with 1 g condition in the presence of space radiation. (author)

  1. [Expression and significance of P-gp/mdr1 mRNA, MRP and LRP in non-Hodgkin's lymphoma].

    Science.gov (United States)

    Li, Le; Su, Li-ping; Ma, Li; Zhao, Jin; Zhu, Lei; Zhou, Yong-an

    2009-03-01

    To explore the expression and clinical significance of P-glycoprotein (P-gp)/mdr1mRNA, multidrug resistance-associated protein (MRP) and lung resistance protein (LRP) in newly diagnosed non-Hodgkin's lymphoma. mdr1 mRNA of in 41 patients with non-Hodgkin's lymphoma was assayed by semi-quantitative RT-PCR. The expressions of P-gp, MRP and LRP proteins in lymph node viable blasts were identified by flow cytometry. The results were compared with those obtained from control cases, and the correlation of the changes with clinical outcomes was analyzed. (1) Among the 41 cases, the positive expression of P-gp protein was detected in 8 cases, MRP in 7 cases, LRP in 15 cases, and mdr 1 mRNA in 11 cases. (2) The P-gp and LRP levels in NHL were significantly higher than those in control group, but MRP wasn't. The P-gp over-expression was significantly associated with mdr1mRNA (r = 0.396, P = 0.01). No correlation was showed among the expressions of P-gp, MRP and LRP. (3) Patients with P-gp expression had a poorer outcome of chemotherapy than those with P-gp-negative (P = 0.005). P-gp expression was significantly associated with higher clinical stage (P = 0.046) and elevated serum lactate dehydrogenase level (P = 0.032), but not associated with malignant degree (P = 0.298). MRP had no impact on the outcome of chemotherapy (P = 0.212), and wasn't significantly associated with higher clinical stage (P = 0.369), elevated LDH (P = 0.762) and higher malignant degree (P = 0.451). Patients with LRP expression had a poorer outcome of chemotherapy than those LRP-negative (P = 0.012). LRP expression was significantly associated with higher clinical stage (P = 0.0019), elevated LDH (P = 0.02) and higher malignant degree (P = 0.01). The data of this study indicate that P-gp and LRP expressions but not MRP expression are important in the mechanism of drug resistance associated with a poor clinical outcome in previously untreated NHL.

  2. Increased Tim-3 expression alleviates liver injury by regulating macrophage activation in MCD-induced NASH mice.

    Science.gov (United States)

    Du, Xianhong; Wu, Zhuanchang; Xu, Yong; Liu, Yuan; Liu, Wen; Wang, Tixiao; Li, Chunyang; Zhang, Cuijuan; Yi, Fan; Gao, Lifen; Liang, Xiaohong; Ma, Chunhong

    2018-05-07

    As an immune checkpoint, Tim-3 plays roles in the regulation of both adaptive and innate immune cells including macrophages and is greatly involved in chronic liver diseases. However, the precise roles of Tim-3 in nonalcoholic steatohepatitis (NASH) remain unstated. In the current study, we analyzed Tim-3 expression on different subpopulations of liver macrophages and further investigated the potential roles of Tim-3 on hepatic macrophages in methionine and choline-deficient diet (MCD)-induced NASH mice. The results of flow cytometry demonstrated the significantly increased expression of Tim-3 on all detected liver macrophage subsets in MCD mice, including F4/80 + CD11b + , F4/80 + CD68 + , and F4/80 + CD169 + macrophages. Remarkably, Tim-3 knockout (KO) significantly accelerated MCD-induced liver steatosis, displaying higher serum ALT, larger hepatic vacuolation, more liver lipid deposition, and more severe liver fibrosis. Moreover, compared with wild-type C57BL/6 mice, Tim-3 KO MCD mice demonstrated an enhanced expression of NOX2, NLRP3, and caspase-1 p20 together with increased generation of IL-1β and IL-18 in livers. In vitro studies demonstrated that Tim-3 negatively regulated the production of reactive oxygen species (ROS) and related downstream pro-inflammatory cytokine secretion of IL-1β and IL-18 in macrophages. Exogenous administration of N-Acetyl-L-cysteine (NAC), a small molecular inhibitor of ROS, remarkably suppressed caspase-1 p20 expression and IL-1β and IL-18 production in livers of Tim-3 KO mice, thus significantly reducing the severity of steatohepatitis induced by MCD. In conclusion, Tim-3 is a promising protector in MCD-induced steatohepatitis by controlling ROS and the associated pro-inflammatory cytokine production in macrophages.

  3. Regulation of macrophage accessory cell activity by mycobacteria. I. Ia expression in normal and irradiated mice infected with Mycobacterium mycroti

    International Nuclear Information System (INIS)

    Kaye, P.M.; Feldmann, M.

    1986-01-01

    CBA/Ca mice were infected by either the intravenous or intraperitoneal route with Mycobacterium microti and the subsequent changes in local macrophage populations examined. Following infection, the number of macrophages increased and they showed greater expression of both MHC Class II molecules. This response was not dependent on viability of the mycobacteria, in contrast to reports with other microorganisms such as Listeria. Studies in sublethally irradiated mice indicated that persistent antigen could give rise to a response after a period of host recovery which was radiation dose dependent. This procedure also highlighted differences in the regulation of different murine class II antigens in vivo, as seen by delayed re-expression of I-E antigens. Macrophage accessory cell function, as assessed by an in vitro T cell proliferation assay, correlated with Ia expression after fixation, but not after indomethacin treatment; this highlights the diverse nature of regulatory molecules produced by these cells. (author)

  4. The quantification of COMT mRNA in post mortem cerebellum tissue: diagnosis, genotype, methylation and expression

    Directory of Open Access Journals (Sweden)

    Craig Ian W

    2006-02-01

    Full Text Available Abstract Background The COMT gene is located on chromosome 22q11, a region strongly implicated in the aetiology of several psychiatric disorders, in particular schizophrenia. Previous research has suggested that activity and expression of COMT is altered in schizophrenia, and is mediated by one or more polymorphisms within the gene, including the functional Val158Met polymorphism. Method In this study we examined the expression levels of COMT mRNA using quantitative RT-PCR in 60 post mortem cerebellum samples derived from individuals with schizophrenia, bipolar disorder, depression, and no history of psychopathology. Furthermore, we have examined the methylation status of two CpG sites in the promoter region of the gene. Results We found no evidence of altered COMT expression or methylation in any of the psychiatric diagnoses examined. We did, however, find evidence to suggest that genotype is related to COMT gene expression, replicating the findings of two previous studies. Specifically, val158met (rs165688; Val allele rs737865 (G allele and rs165599 (G allele all showed reduced expression (P COMT expression, with females exhibiting significantly greater levels of COMT mRNA. Conclusion The expression of COMT does not appear to be altered in the cerebellum of individuals suffering from schizophrenia, bipolar disorder or depression, but does appear to be influenced by single nucleotide polymorphisms within the gene.

  5. Curcumin Modulates Macrophage Polarization Through the Inhibition of the Toll-Like Receptor 4 Expression and its Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Yaoyao Zhou

    2015-05-01

    Full Text Available Background: Curcumin, the active ingredient in curcuma rhizomes, has a wide range of therapeutic effects. However, its atheroprotective activity in human acute monocytic leukemia THP-1 cells remains unclear. We investigated the activity and molecular mechanism of action of curcumin in polarized macrophages. Methods: Phorbol myristate acetate (PMA-treated THP-1 cells were differentiated to macrophages, which were further polarized to M1 cells by lipopolysaccharide (LPS; 1 µg/ml and interferon (IFN-γ (20 ng/ml and treated with varying curcumin concentrations. [3H]thymidine (3H-TdR incorporation assays were utilized to measure curcumin-induced growth inhibition. The expression of tumor necrosis factor-a (TNF-a, interleukin (IL-6, and IL-12B (p40 were measured by quantitative real-time polymerase chain reaction (PCR and enzyme-linked immunosorbent assay (ELISA. Macrophage polarization and its mechanism were evaluated by flow cytometry and western blot. Additionally, toll-like receptor 4 (TLR4 small interfering RNA and mitogen-activated protein kinase (MAPK inhibitors were used to further confirm the molecular mechanism of curcumin on macrophage polarization. Results: Curcumin dose-dependently inhibited M1 macrophage polarization and the production of TNF-a, IL-6, and IL-12B (p40. It also decreased TLR4 expression, which regulates M1 macrophage polarization. Furthermore, curcumin significantly inhibited the phosphorylation of ERK, JNK, p38, and nuclear factor (NF-γB. In contrast, SiTLR4 in combination with p-JNK, p-ERK, and p-p38 inhibition reduced the effect of curcumin on polarization. Conclusions: Curcumin can modulate macrophage polarization through TLR4-mediated signaling pathway inhibition, indicating that its effect on macrophage polarization is related to its anti-inflammatory and atheroprotective effects. Our data suggest that curcumin could be used as a therapeutic agent in atherosclerosis.

  6. Effect of acute resistance exercise and sex on human patellar tendon structural and regulatory mRNA expression

    DEFF Research Database (Denmark)

    Sullivan, B.E.; Carroll, C.C.; Jemiolo, B.

    2009-01-01

    Sullivan BE, Carroll CC, Jemiolo B, Trappe SW, Magnusson SP, Dossing S, Kjaer M, Trappe TA. Effect of acute resistance exercise and sex on human patellar tendon structural and regulatory mRNA expression. J Appl Physiol 106: 468-475, 2009. First published November 20, 2008; doi: 10.1152/japplphysiol.......91341.2008.-Tendon is mainly composed of collagen and an aqueous matrix of proteoglycans that are regulated by enzymes called matrix metalloproteinases ( MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Although it is known that resistance exercise (RE) and sex influence tendon metabolism...... and mechanical properties, it is uncertain what structural and regulatory components contribute to these responses. We measured the mRNA expression of tendon's main fibrillar collagens (type I and type III) and the main proteoglycans (decorin, biglycan, fibromodulin, and versican) and the regulatory enzymes MMP...

  7. Effects of exogenous ATM gene on mRNA expression of human telomerase reverse transcriptase in AT cells induced by irradiation

    International Nuclear Information System (INIS)

    Sheng Fangjun; Cao Jianping; Luo Jialin; Zhu Wei; Liu Fenju; Feng Shuang; Song Jianyuan; Li Chong

    2005-01-01

    The study is to observe effects of exogenous ATM gene on mRNA expression of hTERT (human telomerase reverse transcriptase) in fibroblast cells (AT5BIVA cells) from skin of Ataxia-telangiectasia (AT) patients and to study the regulation of ATM to hTERT. Using reverse transcription polymerase chain reaction (RT-PCR), mRNA expression of hTERT in AT, PEBS7-AT, ATM + -AT and GM cells irradiated with 0 and 3 Gy of 60 Co γ-rays were examined respectively. The difference of the mRNA expression of hTERT among AT, PEBS7-AT, ATM + -AT and GM cells were analyzed. Difference of the mRNA expression of hTERT between 0 Gy and 3 Gy groups was analyzed, too. The results showed that the mRNA expression of hTERT in GM cells was negative, but positive mRNA expression of hTERT in AT cells. The mRNA expression of hTERT in ATM + -AT cells decreased significantly (p 60 Co γ-rays, the mRNA expression of hTERT in GM cells was positive, and that in AT, PEBS7-AT, ATM + -AT cells was increased (p + -AT cells was lower than that in AT and PEBS7-AT cells respectively (p<0.05). It is postulated that exogenous ATM is able to downregulate the mRNA expression of hTERT in AT cells, ionizing radiation can induce the mRNA expression of hTERT in cells and telomerase anticipates the repair of damaged DNA. (authors)

  8. Analysis of p130 protein and mRNA expression in ten patients with uterine papillary serous carcinoma

    Directory of Open Access Journals (Sweden)

    Shao-ting XU

    2011-11-01

    Full Text Available Objective To examine p130 protein and mRNA expression in uterine papillary serous carcinoma(UPSC and their clinical and pathologic significance.Methods A total of 10 UPSC patients(Stage I were included,with 10 cases of high-level endometrial carcinoma of the same stage taken as the control group and 10 cases of normal proliferative stage endometrium(EM taken as the disease control group.The level of p130 protein expression was determined by hematoxylin and eosin staining,microscopic observation,and immunohistochemistry,whereas the p130 mRNA levels were examined through real-time quantitative reverse transcriptase polymerase chain reaction.The clinicopathologic analysis was carried out in combination with clinical data.Results The p130 protein and p130 mRNA expression levels in the UPSC group(0.46±0.01 and 0.56±0.06,respectively were apparently less than that of the normal proliferative stage endometrium group(0.91±0.04 and 2.81±0.40,respectively;P < 0.01 and also less than those in high-level endometrial carcinoma(P < 0.05.Clinicopathologic analysis shows that all patients are post-menopausal women with symptoms of irregular vaginal bleeding and the average tumor size was 7.5cm(range: 1.2-14.8cm.The pathologic features are same as that of high-level ovarian papillary serous carcinoma.Conclusion Reduced p130 protein and p130 mRNA expression in UPSC might correlate with poor prognosis in UPSC patients.

  9. Effect of Heat Stress on the Expression of GABA Receptor mRNA in the HPG Axis of Wenchang Chickens

    Directory of Open Access Journals (Sweden)

    LJ Xie

    Full Text Available ABSTRACT We investigated the effect of heat stress (HS on the expression of the GABA receptor in the hypothalamic-pituitary-gonadal (HPG axis of Wenchang chickens. Real-time quantitative RT-PCR (qRT-PCR was used to quantify the GABA receptor mRNA levels along the HPG axis of chickens under HS (40±0.5 °C for 1-6 weeks. Our results showed that the expression of GABAA and GABAB receptor at the mRNAs levels in the tissues of HPG axis exhibited fluctuation and variability. After HS, the mRNA level of GABAA receptor was significantly reduced in the hypothalamus of 1-week-old and in the pituitary of 3-week-old chickens, but significantly increased in the pituitary of 1-, 4-, and 5-week-old chickens. The GABAB receptor mRNA level significantly declined in the hypothalamus of 1-week-old and in the pituitary of 3-week-old chickens, but was significantly upregulated in the pituitary and testis of 1- and 2-week-old chickens. At other time points, the expressions of GABAA receptor and GABAB receptor showed no significant differences compared with control group. These results indicated that the levels of GABAA receptor and GABAB receptor mRNAs varied in different tissues of the HPG axis in chickens of different ages, displaying temporal and spatial variations. GABA receptor behaved as a positively-regulated gene by HS, i.e., its mRNA was increased by HS; similarly, it was a negatively-regulated gene by HS, when its expression was reduced by HS.

  10. ESTRADIOL IN FEMALES MAY NEGATE SKELETAL MUSCLE MYOSTATIN MRNA EXPRESSION AND SERUM MYOSTATIN PROPEPTIDE LEVELS AFTER ECCENTRIC MUSCLE CONTRACTIONS

    Directory of Open Access Journals (Sweden)

    Darryn S. Willoughby

    2006-12-01

    Full Text Available Eccentric contractions produce a significant degree of inflammation and muscle injury that may increase the expression of myostatin. Due to its anti- oxidant and anti-flammatory effects, circulating 17-β estradiol (E2 may attenuate myostatin expression. Eight males and eight females performed 7 sets of 10 reps of eccentric contractions of the knee extensors at 150% 1-RM. Each female performed the eccentric exercise bout on a day that fell within her mid-luteal phase (d 21-23 of her 28-d cycle. Blood and muscle samples were obtained before and 6 and 24 h after exercise, while additional blood samples were obtained at 48 and 72 h after exercise. Serum E2 and myostatin LAP/propeptide (LAP/pro levels were determined with ELISA, and myostatin mRNA expression determined using RT-PCR. Data were analyzed with two-way ANOVA and bivariate correlations (p 0.05. Compared to pre-exercise, males had significant increases (p < 0.05 in LAP/propetide and mRNA of 78% and 28%, respectively, at 24 h post-exercise, whereas females underwent respective decreases of 10% and 21%. E2 and LAP/propeptide were correlated at 6 h (r = -0.804, p = 0.016 and 24 h post- exercise (r = -0.841, p = 0.009 in males, whereas in females E2 levels were correlated to myostatin mRNA at 6 h (r =0.739, p = 0.036 and 24 h (r = 0.813, p = 0.014 post-exercise and LAP/propeptide at 6 h (r = 0.713, p = 0.047 and 24 h (r = 0.735, p = 0.038. In females, myostatin mRNA expression and serum LAP/propeptide levels do not appear to be significantly up-regulated following eccentric exercise, and may be due to higher levels of circulating E2

  11. FLT3-ITD and MLL-PTD influence the expression of MDR-1, MRP-1, and BCRP mRNA but not LRP mRNA assessed with RQ-PCR method in adult acute myeloid leukemia.

    Science.gov (United States)

    Nasilowska-Adamska, Barbara; Solarska, Iwona; Paluszewska, Monika; Malinowska, Iwona; Jedrzejczak, Wieslaw W; Warzocha, Krzysztof

    2014-04-01

    Fms-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) and mixed-lineage leukemia gene-partial tandem duplication (MLL-PTD) are aberrations associated with leukemia which indicate unsatisfactory prognosis. Downstream regulatory targets of FLT3-ITD and MLL-PTD are not well defined. We have analyzed the expression of MDR-1, multidrug resistant protein-1 (MRP-1), breast cancer resistance protein (BCRP), and lung resistance protein (LRP) messenger RNA (mRNA) in relation to the mutational status of FLT3-ITD and MLL-PTD in 185 acute myeloid leukemia (AML) adult patients. The real-time quantitative polymerase chain reaction method was performed to assess the expression of the MDR-1, MRP-1, BCRP, and LRP mRNA, and the results were presented as coefficients calculated using an intermediate method according to Pfaffl's rule. Significantly higher expressions of MDR-1 mRNA were found in patients who did not harbor FLT3-ITD (0.20 vs. 0.05; p = 0.0001) and MRP-1 mRNA in patients with this mutation (0.96 vs. 0.70; p = 0.002) and of BCRP mRNA in patients with MLL-PTD (0.61 vs. 0.38; p = 0.03). In univariate analysis, the high expression of MDR-1 mRNA (≥0.1317) negatively influenced the outcome of induction therapy (p = 0.05), whereas the high expression of BCRP mRNA (≥1.1487) was associated with a high relapse rate (RR) (p = 0.013). We found that the high expression of MDR-1 (≥0.1317), MRP-1 (≥0.8409), and BCRP mRNA (≥1.1487) significantly influenced disease-free survival (DFS; p = 0.059, 0.032, and 0.009, respectively) and overall survival (0.048, 0.014, and 0.059, respectively). Moreover, a high expression of BCRP mRNA (≥1.1487) proved to be an independent prognostic factor for RR (p = 0.01) and DFS (p = 0.002) in multivariate analysis. The significant correlation between the expression of MDR-1, MRP-1, and BCRP mRNA and FLT3-ITD or MLL-PTD in AML patients requires further investigation.

  12. Arabidopsis mRNA polyadenylation machinery: comprehensive analysis of protein-protein interactions and gene expression profiling

    Directory of Open Access Journals (Sweden)

    Mo Min

    2008-05-01

    Full Text Available Abstract Background The polyadenylation of mRNA is one of the critical processing steps during expression of almost all eukaryotic genes. It is tightly integrated with transcription, particularly its termination, as well as other RNA processing events, i.e. capping and splicing. The poly(A tail protects the mRNA from unregulated degradation, and it is required for nuclear export and translation initiation. In recent years, it has been demonstrated that the polyadenylation process is also involved in the regulation of gene expression. The polyadenylation process requires two components, the cis-elements on the mRNA and a group of protein factors that recognize the cis-elements and produce the poly(A tail. Here we report a comprehensive pairwise protein-protein interaction mapping and gene expression profiling of the mRNA polyadenylation protein machinery in Arabidopsis. Results By protein sequence homology search using human and yeast polyadenylation factors, we identified 28 proteins that may be components of Arabidopsis polyadenylation machinery. To elucidate the protein network and their functions, we first tested their protein-protein interaction profiles. Out of 320 pair-wise protein-protein interaction assays done using the yeast two-hybrid system, 56 (~17% showed positive interactions. 15 of these interactions were further tested, and all were confirmed by co-immunoprecipitation and/or in vitro co-purification. These interactions organize into three distinct hubs involving the Arabidopsis polyadenylation factors. These hubs are centered around AtCPSF100, AtCLPS, and AtFIPS. The first two are similar to complexes seen in mammals, while the third one stands out as unique to plants. When comparing the gene expression profiles extracted from publicly available microarray datasets, some of the polyadenylation related genes showed tissue-specific expression, suggestive of potential different polyadenylation complex configurations. Conclusion An

  13. Developmental changes in hypothalamic oxytocin and oxytocin receptor mRNA expression and their sensitivity to fasting in male and female rats.

    Science.gov (United States)

    Matsuzaki, Toshiya; Iwasa, Takeshi; Munkhzaya, Munkhsaikhan; Tungalagsuvd, Altankhuu; Kawami, Takako; Murakami, Masahiro; Yamasaki, Mikio; Yamamoto, Yuri; Kato, Takeshi; Kuwahara, Akira; Yasui, Toshiyuki; Irahara, Minoru

    2015-04-01

    Oxytocin (OT) affects the central nervous system and is involved in a variety of social and non-social behaviors. Recently, the role played by OT in energy metabolism and its organizational effects on estrogen receptor alpha (ER-α) during the neonatal period have gained attention. In this study, the developmental changes in the hypothalamic mRNA levels of OT, the OT receptor (OTR), and ER-α were evaluated in male and female rats. In addition, the fasting-induced changes in the hypothalamic mRNA levels of OT and the OTR were evaluated. Hypothalamic explants were taken from postnatal day (PND) 10, 20, and 30 rats, and the mRNA level of each molecule was measured. Hypothalamic OT mRNA expression increased throughout the developmental period in both sexes. The rats' hypothalamic OTR mRNA levels were highest on PND 10 and decreased throughout the developmental period. In the male rats, the hypothalamic mRNA levels of ER-α were higher on PND 30 than on PND 10. On the other hand, no significant differences in hypothalamic ER-α mRNA expression were detected among the examined time points in the female rats, although hypothalamic ER-α mRNA expression tended to be higher on PND 30 than on PND 10. Significant positive correlations were detected between hypothalamic OT and ER-α mRNA expression in both the male and female rats. Hypothalamic OT mRNA expression was not affected by fasting at any of the examined time points in either sex. These results indicate that hypothalamic OT expression is not sensitive to fasting during the developmental period. In addition, as a positive correlation was detected between hypothalamic OT and ER-α mRNA expression, these two molecules might interact with each other to induce appropriate neuronal development. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Quantitation of the mRNA expression of the epidermal growth factor system

    DEFF Research Database (Denmark)

    Sørensen, B S; Tørring, N; Bor, M V

    2000-01-01

    ) and for the quantitation of mRNA for the receptors HER-1 and its preferred dimerization partner, HER-2. The method is based on the generation of specific RNA standards, which are amplified by reverse transcriptase-polymerase chain reaction (RT-PCR) with the sample RNA and a set of calibrators. The resulting calibration...

  15. Interleukin-6 modifies mRNA expression in mouse skeletal muscle

    DEFF Research Database (Denmark)

    Hassing, Helle Adser; Wojtaszewski, Jørgen; Jakobsen, Anne Hviid

    2011-01-01

    Aim: The aim of the present study was to test the hypothesis that interleukin-6 plays a role in exercise-induced PGC-1a and TNFa mRNA responses in skeletal muscle and to examine the potential IL-6 mediated AMPK regulation in these responses. Methods: Whole body IL-6 knockout and wildtype (WT) mal...

  16. Lysophosphatidic acid directly induces macrophage-derived foam cell formation by blocking the expression of SRBI.

    Science.gov (United States)

    Chen, Linmu; Zhang, Jun; Deng, Xiao; Liu, Yan; Yang, Xi; Wu, Qiong; Yu, Chao

    2017-09-23

    The leading cause of morbidity and mortality is the result of cardiovascular disease, mainly atherosclerosis. The formation of macrophage foam cells by ingesting ox-LDL and focal retention in the subendothelial space are the hallmarks of the early atherosclerotic lesion. Lysophosphatidic acid (LPA), which is a low-molecular weight lysophospholipid enriched in oxidized LDL, exerts a range of effects on the cardiovascular system. Previous reports show that LPA increases the uptake of ox-LDL to promote the formation of foam cells. However, as the most active component of ox-LDL, there is no report showing whether LPA directly affects foam cell formation. The aim of this study was to investigate the effects of LPA on foam cell formation, as well as to elucidate the underlying mechanism. Oil red O staining and a Cholesterol/cholesteryl ester quantitation assay were used to evaluate foam cell formation in Raw264.7 macrophage cells. We utilized a Western blot and RT-PCR to investigate the relationship between LPA receptors and lipid transport related proteins. We found that LPA promoted foam cell formation, using 200 μM for 24 h. Meanwhile, the expression of the Scavenger receptor BI (SRBI), which promotes the efflux of free cholesterol, was decreased. Furthermore, the LPA 1/3 receptor antagonist Ki16425 significantly abolished the LPA effects, indicating that LPA 1/3 was involved in the foam cell formation and SRBI expression induced by LPA. Additionally, the LPA-induced foam cell formation was blocked with an AKT inhibitor. Our results suggest that LPA-enhanced foam cell formation is mediated by LPA 1/3 -AKT activation and subsequent SRBI expression. Copyright © 2017. Published by Elsevier Inc.

  17. Human macrophage scavenger receptors: Primary structure, expression, and localization in atherosclerotic lesions

    International Nuclear Information System (INIS)

    Matsumoto, Akiyo; Itakura, Hiroshige; Kodama, Tatsuhiko; Naito, Makoto; Takahashi, Kiyoshi; Ikemoto, Shinji; Asaoka, Hitoshi; Hayakawa, Ikuho; Kanamori, Hiroshi; Takaku, Fumimaro; Aburatani, Hiroyuki; Suzuki, Hiroshi; Kobari, Yukage; Miyai, Tatsuya; Cohen, E.H.; Wydro, R.; Housman, D.E.

    1990-01-01

    Two types of cDNAs for human macrophage scavenger receptors were cloned from a cDNA library derived from the phorbol ester-treated human monocytic cell line THP-1. The type I and type II human scavenger receptors encoded by these cDNAs are homologous (73% and 71% amino acid identity) to their previously characterized bovine counterparts and consist of six domains: cytoplasmic (I), membrane-spanning (II), spacer (III), α-helical coiled-coil (IV), collagen-like (V), and a type-specific C-terminal (VI). The receptor gene is located on human chromosome 8. The human receptors expressed in CHO-K1 cells mediated endocytosis of modified low density lipoproteins. Two mRNAs, 4.0 and 3.2 kilobases, have been detected in human liver, placenta, and brain. Immunohistochemical studies using an anti-peptide antibody which recognizes human scavenger receptors indicated the presence of the scavenger receptors in the macrophages of lipid-rich atherosclerotic lesions, suggesting the involvement of scavenger receptors in atherogenesis

  18. TIE2-expressing monocytes/macrophages regulate revascularization of the ischemic limb.

    Science.gov (United States)

    Patel, Ashish S; Smith, Alberto; Nucera, Silvia; Biziato, Daniela; Saha, Prakash; Attia, Rizwan Q; Humphries, Julia; Mattock, Katherine; Grover, Steven P; Lyons, Oliver T; Guidotti, Luca G; Siow, Richard; Ivetic, Aleksandar; Egginton, Stuart; Waltham, Matthew; Naldini, Luigi; De Palma, Michele; Modarai, Bijan

    2013-06-01

    A third of patients with critical limb ischemia (CLI) will eventually require limb amputation. Therapeutic neovascularization using unselected mononuclear cells to salvage ischemic limbs has produced modest results. The TIE2-expressing monocytes/macrophages (TEMs) are a myeloid cell subset known to be highly angiogenic in tumours. This study aimed to examine the kinetics of TEMs in patients with CLI and whether these cells promote neovascularization of the ischemic limb. Here we show that there are 10-fold more circulating TEMs in CLI patients, and removal of ischemia reduces their numbers to normal levels. TEM numbers in ischemic muscle are two-fold greater than normoxic muscle from the same patient. TEMs from patients with CLI display greater proangiogenic activity than TIE2-negative monocytes in vitro. Using a mouse model of hindlimb ischemia, lentiviral-based Tie2 knockdown in TEMs impaired recovery from ischemia, whereas delivery of mouse macrophages overexpressing TIE2, or human TEMs isolated from CLI patients, rescued limb ischemia. These data suggest that enhancing TEM recruitment to the ischemic muscle may have the potential to improve limb neovascularization in CLI patients. Copyright © 2013 The Authors. Published by John Wiley and Sons, Ltd on behalf of EMBO.

  19. 27-Oxygenated cholesterol induces expression of CXCL8 in macrophages via NF-κB and CD88

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun-Mi, E-mail: lala1647@hanmail.net [Department of Pharmacology, Pusan National University, School of Medicine, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Lee, Chung Won, E-mail: vasculardoctorlee@gmail.com [Department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital, Pusan 602-739 (Korea, Republic of); Kim, Bo-Young, E-mail: kimboyoung@pusan.ac.kr [Department of Pharmacology, Pusan National University, School of Medicine, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Jung, Young-Suk, E-mail: youngjung@pusan.ac.kr [College of Pharmacy, Pusan National University, Busan 609-735 (Korea, Republic of); Eo, Seong-Kug, E-mail: vetvirus@chonbuk.ac.kr [College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Jeonbuk 570-752 (Korea, Republic of); Park, Young Chul, E-mail: ycpark@pusan.ac.kr [Department of Microbiology & Immunology, Pusan National University, School of Medicine, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Kim, Koanhoi, E-mail: koanhoi@pusan.ac.kr [Department of Pharmacology, Pusan National University, School of Medicine, Yangsan, Gyeongnam 626-870 (Korea, Republic of)

    2015-08-07

    We attempted to determine the effects of a milieu rich in cholesterol molecules on expression of chemokine CXCL8. A high-cholesterol diet led to an increased transcription of the IL-8 gene in the arteries and elevated levels of CXCL8 in sera of ApoE{sup −/−} mice, compared with those of wild-type C57BL/6 mice. Treatment of THP-1 monocyte/macrophage cells with 27-hydroxycholesterol (27OHChol) resulted in transcription of the IL-8 gene and increased secretion of its corresponding gene product whereas cholesterol did not induce expression of CXCL8 in THP-1 cells. 27OHChol-induced transcription of the IL-8 gene was blocked by cycloheximide, but not by polymyxin B. Treatment of THP-1 cells with 27OHChol caused translocation of p65 NF-κB subunit into the nucleus and up-regulation of CD88. Inhibition of NF-κB and CD88 using SN50 and W-54011, respectively, resulted in reduced transcription of the IL-8 gene and attenuated secretion of CXCL8 induced by 27OHChol. We propose that oxidatively modified cholesterol like 27OHChol, rather than cholesterol, is responsible for sustained expression of CXCL8 in monocytes/macrophages in atherosclerotic arteries. - Highlights: • Consumption of a high-cholesterol diet leads to increased CXCL8 expression in ApoE{sup −/−} mice. • 27OHChol, but not cholesterol, up-regulates expression of CXCL8 in macrophages. • 27OHChol enhances nuclear translocation of NF-κB and expression of CD88 in macrophages. • Inhibition of NF-κB or CD88 results in decreased CXCL8 expression induced by 27OHChol. • 27OHChol up-regulates CXCL8 expression via NF-κB and CD88 in macrophages.

  20. High BMI levels associate with reduced mRNA expression of IL10 and increased mRNA expression of iNOS (NOS2) in human frontal cortex

    DEFF Research Database (Denmark)

    Lauridsen, J K; Olesen, R H; Vendelbo, J

    2017-01-01

    unknown. Therefore we aim to examine the relationship between BMI and gene expression of central inflammatory markers in the human frontal cortex. Microarray data of 141 neurologically and psychiatrically healthy individuals were obtained through the BrainCloud database. A simple linear regression...... correlated (Plinear regression analyses with BMI, age, sex and race as variables were performed in order to identify potential confounders. In conclusion, increasing BMI could affect the IL10-mediated anti...... analysis was performed with BMI as variable on data on IL10, IL1β, IL6, PTGS2 (COX2) and NOS2 (iNOS). Increasing BMI is associated with a decrease in the mRNA expression of IL10 (P=0.014) and an increase in the expression of NOS2 (iNOS; P=0.040). Expressions of IL10 and NOS2 (iNOS) were negatively...

  1. PET Imaging of Macrophage Mannose Receptor-Expressing Macrophages in Tumor Stroma Using 18F-Radiolabeled Camelid Single-Domain Antibody Fragments.

    Science.gov (United States)

    Blykers, Anneleen; Schoonooghe, Steve; Xavier, Catarina; D'hoe, Kevin; Laoui, Damya; D'Huyvetter, Matthias; Vaneycken, Ilse; Cleeren, Frederik; Bormans, Guy; Heemskerk, Johannes; Raes, Geert; De Baetselier, Patrick; Lahoutte, Tony; Devoogdt, Nick; Van Ginderachter, Jo A; Caveliers, Vicky

    2015-08-01

    Tumor-associated macrophages constitute a major component of the stroma of solid tumors, encompassing distinct subpopulations with different characteristics and functions. We aimed to identify M2-oriented tumor-supporting macrophages within the tumor microenvironment as indicators of cancer progression and prognosis, using PET imaging. This can be realized by designing (18)F-labeled camelid single-domain antibody fragments (sdAbs) specifically targeting the macrophage mannose receptor (MMR), which has been identified as an important biomarker on this cell population. Cross-reactive anti-MMR sdAbs were generated after immunization of an alpaca with the extracellular domains of both human and mouse MMR. The lead binder was chosen on the basis of comparisons of binding affinity and in vivo pharmacokinetics. The PET tracer (18)F-fluorobenzoate (FB)-anti-MMR sdAb was developed using the prosthetic group N-succinimidyl-4-(18)F-fluorobenzoate ((18)F-SFB), and its biodistribution, tumor-targeting potential, and specificity in terms of macrophage and MMR targeting were evaluated in mouse tumor models. Four sdAbs were selected after affinity screening, but only 2 were found to be cross-reactive for human and mouse MMR. The lead anti-MMR 3.49 sdAb, bearing an affinity of 12 and 1.8 nM for mouse and human MMR, respectively, was chosen for its favorable in vivo biodistribution profile and tumor-targeting capacity. (18)F-FB-anti-MMR 3.49 sdAb was synthesized with a 5%-10% radiochemical yield using an automated and optimized protocol. In vivo biodistribution analyses showed fast clearance via the kidneys and retention in MMR-expressing organs and tumor. The kidney retention of the fluorinated sdAb was 20-fold lower than a (99m)Tc-labeled counterpart. Compared with MMR- and C-C chemokine receptor 2-deficient mice, significantly higher uptake was observed in tumors grown in wild-type mice, demonstrating the specificity of the (18)F tracer for MMR and macrophages, respectively. Anti

  2. RANKL/RANK/OPG cytokine receptor system: mRNA expression pattern in BPH, primary and metastatic prostate cancer disease.

    Science.gov (United States)

    Christoph, Frank; König, Frank; Lebentrau, Steffen; Jandrig, Burkhard; Krause, Hans; Strenziok, Romy; Schostak, Martin

    2018-02-01

    The cytokine system RANKL (receptor activator of NF-κB ligand), its receptor RANK and the antagonist OPG (osteoprotegerin) play a critical role in bone turnover. Our investigation was conducted to describe the gene expression at primary tumour site in prostate cancer patients and correlate the results with Gleason Score and PSA level. Seventy-one samples were obtained from prostate cancer patients at the time of radical prostatectomy and palliative prostate resection (n = 71). Patients with benign prostate hyperplasia served as controls (n = 60). We performed real-time RT-PCR after microdissection of the samples. The mRNA expression of RANK was highest in tumour tissue from patients with bone metastases (p BPH or locally confined tumours, also shown in clinical subgroups distinguished by Gleason Score (BPH tissue but did not exceed as much as in the tumour tissue. We demonstrated that RANK, RANKL and OPG are directly expressed by prostate cancer cells at the primary tumour site and showed a clear correlation with Gleason Score, serum PSA level and advanced disease. In BPH, mRNA expression is also detectable, but RANK expression does not exceed as much as compared to tumour tissue.

  3. Modulation of macrophage Ia expression by lipopolysaccharide: Stem cell requirements, accessory lymphocyte involvement, and IA-inducing factor production

    International Nuclear Information System (INIS)

    Wentworth, P.A.; Ziegler, H.K.

    1989-01-01

    The mechanism of induction of murine macrophage Ia expression by lipopolysaccharide (LPS) was studied. Intraperitoneal injection of 1 microgram of LPS resulted in a 3- to 10-fold increase in the number of IA-positive peritoneal macrophages (flow cytometry and immunofluorescence) and a 6-to 16-fold increase by radioimmunoassay. The isolated lipid A moiety of LPS was a potent inducer of macrophage Ia expression. Ia induction required a functional myelopoietic system as indicated by the finding that the response to LPS was eliminated in irradiated (900 rads) mice and reinstated by reconstitution with bone marrow cells. Comparison of LPS-induced Ia expression in normal and LPS-primed mice revealed a faster secondary response to LPS. The memory response could be adoptively transferred to normal mice with nonadherent spleen cells prepared 60 days after LPS injection. Spleen cells prepared 5 days after LPS injection caused Ia induction in LPS-nonresponder mice; such induction was not observed in irradiated (900 rads) recipients. The cell responsible for this phenomenon was identified as a Thy-1+, immunoglobulin-negative nonadherent cell. The biosynthesis and expression of Ia were not increased by direct exposure of macrophages to LPS in vitro. Small amounts of LPS inhibited Ia induction by gamma interferon. LPS showed positive regulatory effects on Ia expression by delaying the loss of Ia expression on cultured macrophages and by stimulating the production of Ia-inducing factors. Supernatants from cultured spleen cells stimulated with LPS in vitro contained antiviral and Ia-inducing activity that was acid labile, indicating that the active factor is gamma interferon. We conclude that induction of Ia expression by LPS in vivo is a bone-marrow-dependent, radiation-sensitive process which involves the stimulation of a gamma interferon-producing accessory lymphocyte and a delay in Ia turnover

  4. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway.

    Science.gov (United States)

    Kim, Chae E; Lee, Seung J; Seo, Kyo W; Park, Hye M; Yun, Jung W; Bae, Jin U; Bae, Sun S; Kim, Chi D

    2010-05-15

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B(4) (LTB(4)) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB(4) production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB(4). Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB(4), subsequent MMP-9 production and plaque rupture.

  5. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    International Nuclear Information System (INIS)

    Kim, Chae E.; Lee, Seung J.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Bae, Jin U.; Bae, Sun S.; Kim, Chi D.

    2010-01-01

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B 4 (LTB 4 ) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB 4 production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB 4 . Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB 4 , subsequent MMP-9 production and plaque rupture.

  6. Inhibition of macrophage migration inhibitory factor decreases proliferation and cytokine expression in bladder cancer cells

    Directory of Open Access Journals (Sweden)

    Leifheit Erica C

    2004-07-01

    Full Text Available Abstract Background The importance of various inflammatory cytokines in maintaining tumor cell growth and viability is well established. Increased expression of the proinflammatory cytokine macrophage migration inhibitory factor (MIF has previously been associated with various types of adenocarcinoma. Methods MIF IHC was used to localize MIF in human bladder tissue. ELISA and Western blot analysis determined the synthesis and secretion of MIF by human bladder transitional cell carcinoma cells. The effects of MIF inhibitors (high molecular weight hyaluronate (HA, anti-MIF antibody or MIF anti-sense on cell growth and cytokine expression were analyzed. Results Human bladder cancer cells (HT-1376 secrete detectable amounts of MIF protein. Treatment with HA, anti-MIF antibody and MIF anti-sense reduced HT-1376 cell proliferation, MIF protein secretion, MIF gene expression and secreted inflammatory cytokines. Our evidence suggests MIF interacts with the invariant chain, CD74 and the major cell surface receptor for HA, CD44. Conclusions This study is the first to report MIF expression in the human bladder and these findings support a role for MIF in tumor cell proliferation. Since MIF participates in the inflammatory response and bladder cancer is associated with chronic inflammatory conditions, these new findings suggest that neutralizing bladder tumor MIF may serve as a novel therapeutic treatment for bladder carcinoma.

  7. Inhibition of macrophage migration inhibitory factor decreases proliferation and cytokine expression in bladder cancer cells

    International Nuclear Information System (INIS)

    Meyer-Siegler, Katherine L; Leifheit, Erica C; Vera, Pedro L

    2004-01-01

    The importance of various inflammatory cytokines in maintaining tumor cell growth and viability is well established. Increased expression of the proinflammatory cytokine macrophage migration inhibitory factor (MIF) has previously been associated with various types of adenocarcinoma. MIF IHC was used to localize MIF in human bladder tissue. ELISA and Western blot analysis determined the synthesis and secretion of MIF by human bladder transitional cell carcinoma cells. The effects of MIF inhibitors (high molecular weight hyaluronate (HA), anti-MIF antibody or MIF anti-sense) on cell growth and cytokine expression were analyzed. Human bladder cancer cells (HT-1376) secrete detectable amounts of MIF protein. Treatment with HA, anti-MIF antibody and MIF anti-sense reduced HT-1376 cell proliferation, MIF protein secretion, MIF gene expression and secreted inflammatory cytokines. Our evidence suggests MIF interacts with the invariant chain, CD74 and the major cell surface receptor for HA, CD44. This study is the first to report MIF expression in the human bladder and these findings support a role for MIF in tumor cell proliferation. Since MIF participates in the inflammatory response and bladder cancer is associated with chronic inflammatory conditions, these new findings suggest that neutralizing bladder tumor MIF may serve as a novel therapeutic treatment for bladder carcinoma

  8. Apolipoprotein E mRNA expression in mononuclear cells from normolipidemic and hypercholesterolemic individuals treated with atorvastatin

    Directory of Open Access Journals (Sweden)

    Cerda Alvaro

    2011-11-01

    Full Text Available Abstract Background Apolipoprotein E (apoE is a key component of the lipid metabolism. Polymorphisms at the apoE gene (APOE have been associated with cardiovascular disease, lipid levels and lipid-lowering response to statins. We evaluated the effects on APOE expression of hypercholesterolemia, APOE ε2/ε3/ε4 genotypes and atorvastatin treatment in Brazilian individuals. The relationship of APOE genotypes and plasma lipids and atorvastatin response was also tested in this population. Methods APOE ε2/ε3/ε4 and plasma lipids were evaluated in 181 normolipidemic (NL and 181 hypercholesterolemic (HC subjects. HC individuals with indication for lowering-cholesterol treatment (n = 141 were treated with atorvastatin (10 mg/day/4-weeks. APOE genotypes and APOE mRNA in peripheral blood mononuclear cells (PBMC were analyzed by TaqMan real time PCR. Results HC had lower APOE expression than NL group (p APOE expression showed higher plasma total and LDL cholesterol and apoB, as well as higher apoAI (p APOE genotypes did not affect APOE expression and atorvastatin response. Atorvastatin treatment do not modify APOE expression, however those individuals without LDL cholesterol goal achievement after atorvastatin treatment according to the IV Brazilian Guidelines for Dyslipidemia and Atherosclerosis Prevention had lower APOE expression than patients with desirable response after the treatment (p Conclusions APOE expression in PBMC is modulated by hypercholesterolemia and the APOE mRNA level regulates the plasma lipid profile. Moreover the expression profile is not modulated neither by atorvastatin nor APOE genotypes. In our population, APOE ε2 allele confers protection against hypercholesterolemia and a less atherogenic lipid profile. Moreover, low APOE expression after treatment of patients with poor response suggests a possible role of APOE level in atorvastatin response.

  9. Integrated analysis of miRNA and mRNA expression in childhood medulloblastoma compared with neural stem cells.

    Directory of Open Access Journals (Sweden)

    Laura A Genovesi

    Full Text Available Medulloblastoma (MB is the most common malignant brain tumor in children and a leading cause of cancer-related mortality and morbidity. Several molecular sub-types of MB have been identified, suggesting they may arise from distinct cells of origin. Data from animal models indicate that some MB sub-types arise from multipotent cerebellar neural stem cells (NSCs. Hence, microRNA (miRNA expression profiles of primary MB samples were compared to CD133+ NSCs, aiming to identify deregulated miRNAs involved in MB pathogenesis. Expression profiling of 662 miRNAs in primary MB specimens, MB cell lines, and human CD133+ NSCs and CD133- neural progenitor cells was performed by qRT-PCR. Clustering analysis identified two distinct sub-types of MB primary specimens, reminiscent of sub-types obtained from their mRNA profiles. 21 significantly up-regulated and 12 significantly down-regulated miRNAs were identified in MB primary specimens relative to CD133+ NSCs (p<0.01. The majority of up-regulated miRNAs mapped to chromosomal regions 14q32 and 17q. Integration of the predicted targets of deregulated miRNAs with mRNA expression data from the same specimens revealed enrichment of pathways regulating neuronal migration, nervous system development and cell proliferation. Transient over-expression of a down-regulated miRNA, miR-935, resulted in significant down-regulation of three of the seven predicted miR-935 target genes at the mRNA level in a MB cell line, confirming the validity of this approach. This study represents the first integrated analysis of MB miRNA and mRNA expression profiles and is the first to compare MB miRNA expression profiles to those of CD133+ NSCs. We identified several differentially expressed miRNAs that potentially target networks of genes and signaling pathways that may be involved in the transformation of normal NSCs to brain tumor stem cells. Based on this integrative approach, our data provide an important platform for future

  10. Differential regulation of proopiomelanocortin (POMC mRNA expression in hypothalamus and anterior pituitary following repeated cyanamide with ethanol administration

    Directory of Open Access Journals (Sweden)

    Kinoshita Hiroshi

    2005-01-01

    Full Text Available Background/Aim. We have investigated proopiomelanocortin (POMC mRNA expression in the arcuate nucleus of the hypothalamus (ARC and the anterior lobe of the pituitary (AL following repeated cyanamide-ethanol reaction (CER. Methods. Adult male Sprague -Dawley rats (250 −290 gr were housed in a temperature and humidity controlled environment with free access to food and water. Four experimental groups were used as follows: saline (as control, cyanamide alone, ethanol alone and ethanol with cyanamide. The animals received daily intraperitoneal injections (i.p. of cyanamide (10mg/kg, 60 min before ethanol dosing with or without ethanol (1g/kg for 5 consecutive days, and were sacrificed 60 min after the last dosing of ethanol. The results were presented as the mean ± SEM for each group. All groups within each data set were compared by one-way ANOVA followed by Fisher PLSD test for multiple comparisons. A value of p<0.05 was considered significant. Results. The POMC mRNA levels in ARC were significantly decreased with cyanamide compared to the control and ethanol alone (p<0.05 and p<0.05 respectively, but increased in AL following repeated CER. Conclusion. We speculate that this differential regulation of POMC mRNA expression may be partially involved in the preventive effects on alcohol intake in response to CER.

  11. [Influence of FPS on the expression of LDL-R mRNA in the liver tissues of hyperlipidemic rats].

    Science.gov (United States)

    Wu, Qing-he; Xing, Yan-hong; Rong, Xiang-lu; Huang, Ping

    2007-08-01

    To explore the effect of FPS on low-density lipoprotein acceptor (LDL-R) mRNA in the liver tissues of hyperlipidemic rats. Sixty healthy male SD rats were randomly divided into six groups: normal control, model control, Gynostemma pentaphyllum, FPS low dosage, FPS moderate dosage, and FPS high dosage group. Excepting the rats in the normal control group, the ones in other groups were all made rats' hyperlipidemic model by irrigating hyperlipidemic emulsion into the stomach and observed the expression of LDL-R mRNA in the liver tissues of rats of each group. Relative content of LDL-RmRNA in low and moderate dosage groups was notably higher than that inmodel group. The contents's difference was not remarkable between FPS moderate dosage group and Gynostemma pentaphyllum group. FPS can appreciably increase the expression of LDL-R mRNA in the liver tissues of hyperlipidemic rats and promote the elimination ofLDL-C to reduce serum cholesterol notably.

  12. Differences in correlation of mRNA gene expression in mice sensitive and resistant to radiation-induced pulmonary fibrosis

    International Nuclear Information System (INIS)

    Johnston, C.J.; Piedboeuf, B.; Finkelstein, J.N.; Baggs, R.; Rubin, P.

    1995-01-01

    Fibrosis, characterized by the accumulation of collagen, is a late result of thoracic irradiation. The purpose of this study was to determine if extracellular matrix protein and transforming growth factor β mRNA expression are altered late in the course of pulmonary fibrosis after irradiation, and then to determine if these changes differ between two strains of mice which vary in their sensitivity to radiation. Radiation-sensitive (C57BL/6) and radiation-resistant (C3H/HeJ) mice were irradiated with a single dose of 5 or 12.5 Gy to the thorax. Total lung RNA was prepared and immobilized by Northern and slot blotting and hybridized with radiolabeled cDNA probes for collagens I, III and IV, fibronectin, and transforming growth factor β 1 and β 3 . Autoradiographic data were quantified by video densitometry and results normalized to a control probe encoding for glyceralde-hyde-3-phosphate dehydrogenase. Alterations in mRNA abundance were observed in the sensitive mice at all times, while levels in the resistant mice were unaffected until 26 weeks after irradiation. The relationship between extracellular matrix protein per se and increased mRNA abundance suggests that late matrix protein accumulation may be a function of gene expression. Differences in levels of transforming growth factor βmRNA may lead to strain-dependent variation in fibrotic response and may also contribute to the radiation-induced component of pulmonary fibrosis. 32 refs., 5 figs

  13. The Csr system regulates genome-wide mRNA stability and transcription and thus gene expression in Escherichia coli.

    Science.gov (United States)

    Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel

    2016-04-26

    Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.

  14. Molecular Cloning, mRNA Expression, and Localization of the G-protein Subunit Galphaq in Sheep Testis and Epididymis

    Directory of Open Access Journals (Sweden)

    Zhen Li

    2016-12-01

    Full Text Available The reproductive function of G-protein subunit Galphaq (GNAQ, a member of the G protein alpha subunit family, has been extensively studied in humans and rats. However, no data is available on its status in ruminants. The objectives of this study were to evaluate the expression pattern of the GNAQ in the testis and epididymis of sheep by polymerase chain reaction (PCR. The mRNA expression levels were detected by real-time fluorescent quantitative PCR, and cellular localization of GNAQ in the testis and epididymis was examined by immunohistochemistry. Additionally, GNAQ protein was qualitatively evaluated via western blot, with the results indicating that similarities between GNAQ mRNA levels from sheep was highly conserved with those observed in Bos taurus and Sus scrofa. Our results also indicated that GNAQ exists in the caput and cauda epididymis of sheep, while GNAQ in the testis and epididymis was localized to Leydig cells, spermatogonial stem cells, spermatocytes, Sertoli cells, spermatid, principal cells, and epididymis interstitial cells. The concentrations of GNAQ mRNA and protein in the caput and cauda epididymis were significantly greater than those observed in the corpus epididymis (p<0.01 and testis (p<0.05. Our results indicated that GNAQ exists at high concentrations in the caput and cauda epididymis of sheep, suggesting that GNAQ may play an important role in gonad development and sperm maturation.

  15. Occupational Toluene Exposure Induces Cytochrome P450 2E1 mRNA Expression in Peripheral Lymphocytes

    Science.gov (United States)

    Mendoza-Cantú, Ania; Castorena-Torres, Fabiola; de León, Mario Bermúdez; Cisneros, Bulmaro; López-Carrillo, Lizbeth; Rojas-García, Aurora E.; Aguilar-Salinas, Alberto; Manno, Maurizio; Albores, Arnulfo

    2006-01-01

    Print workers are exposed to organic solvents, of which the systemic toxicant toluene is a main component. Toluene induces expression of cytochrome P450 2E1 (CYP2E1), an enzyme involved in its own metabolism and that of other protoxicants, including some procarcinogens. Therefore, we investigated the association between toluene exposure and the CYP2E1 response, as assessed by mRNA content in peripheral lymphocytes or the 6-hydroxychlorzoxazone (6OH-CHZ)/chlorzoxazone (CHZ) quotient (known as CHZ metabolic ratio) in plasma, and the role of genotype (5′-flanking region RsaI/PstI polymorphic sites) in 97 male print workers. The geometric mean (GM) of toluene concentration in the air was 52.80 ppm (10–760 ppm); 54% of the study participants were exposed to toluene concentrations that exceeded the maximum permissible exposure level (MPEL). The GM of urinary hippuric acid at the end of a work shift (0.041 g/g creatinine) was elevated relative to that before the shift (0.027 g/g creatinine; p < 0.05). The GM of the CHZ metabolic ratio was 0.33 (0–9.3), with 40% of the subjects having ratios below the GM. However, the average CYP2E1 mRNA level in peripheral lymphocytes was 1.07 (0.30–3.08), and CYP2E1 mRNA levels within subjects correlated with the toluene exposure ratio (environmental toluene concentration:urinary hippuric acid concentration) (p = 0.014). Genotype did not alter the association between the toluene exposure ratio and mRNA content. In summary, with further validation, CYP2E1 mRNA content in peripheral lymphocytes could be a sensitive and noninvasive biomarker for the continuous monitoring of toluene effects in exposed persons. PMID:16581535

  16. Population density approach for discrete mRNA distributions in generalized switching models for stochastic gene expression.

    Science.gov (United States)

    Stinchcombe, Adam R; Peskin, Charles S; Tranchina, Daniel

    2012-06-01

    We present a generalization of a population density approach for modeling and analysis of stochastic gene expression. In the model, the gene of interest fluctuates stochastically between an inactive state, in which transcription cannot occur, and an active state, in which discrete transcription events occur; and the individual mRNA molecules are degraded stochastically in an independent manner. This sort of model in simplest form with exponential dwell times has been used to explain experimental estimates of the discrete distribution of random mRNA copy number. In our generalization, the random dwell times in the inactive and active states, T_{0} and T_{1}, respectively, are independent random variables drawn from any specified distributions. Consequently, the probability per unit time of switching out of a state depends on the time since entering that state. Our method exploits a connection between the fully discrete random process and a related continuous process. We present numerical methods for computing steady-state mRNA distributions and an analytical derivation of the mRNA autocovariance function. We find that empirical estimates of the steady-state mRNA probability mass function from Monte Carlo simulations of laboratory data do not allow one to distinguish between underlying models with exponential and nonexponential dwell times in some relevant parameter regimes. However, in these parameter regimes and where the autocovariance function has negative lobes, the autocovariance function disambiguates the two types of models. Our results strongly suggest that temporal data beyond the autocovariance function is required in general to characterize gene switching.

  17. Improved gene expression in resting macrophages using an oligopeptide derived from Vpr of human immunodeficiency virus type-1

    International Nuclear Information System (INIS)

    Mizoguchi, Izuru; Ooe, Yoshihiro; Hoshino, Shigeki; Shimura, Mari; Kasahara, Tadashi; Kano, Shigeyuki; Ohta, Toshiko; Takaku, Fumimaro; Nakayama, Yasuhide; Ishizaka, Yukihito

    2005-01-01

    Vpr, an accessory gene product of human immunodeficiency virus type-1, is thought to transport a viral DNA from the cytoplasm to the nucleus in resting macrophages. Previously, we reported that a peptide encompassing amino acids 52-78 of Vpr (C45D18) promotes the nuclear trafficking of recombinant proteins that are conjugated with C45D18. Here, we present evidence that C45D18, when conjugated with a six-branched cationic polymer of poly(N,N-dimethylaminopropylacrylamide)-block-oligo(4-aminostyrene) (SV: star vector), facilitates gene expression in resting macrophages. Although there was no difference between SV alone and C45D18-SV with respect to gene transduction into growing cells, C45D18-SV resulted in more than 40-fold greater expression of the exogenous gene upon transduction into chemically differentiated macrophages and human quiescent monocyte-derived macrophages. The data suggest that C45D18 contributes to improving the ability of a non-viral vector to transduce macrophages with exogenous genes and we discuss its further application

  18. Amitriptyline induces brain-derived neurotrophic factor (BDNF) mRNA expression through ERK-dependent modulation of multiple BDNF mRNA variants in primary cultured rat cortical astrocytes and microglia.

    Science.gov (United States)

    Hisaoka-Nakashima, Kazue; Kajitani, Naoto; Kaneko, Masahiro; Shigetou, Takahiro; Kasai, Miho; Matsumoto, Chie; Yokoe, Toshiki; Azuma, Honami; Takebayashi, Minoru; Morioka, Norimitsu; Nakata, Yoshihiro

    2016-03-01

    A significant role of brain-derived neurotrophic factor (BDNF) has been previously implicated in the therapeutic effect of antidepressants. To ascertain the contribution of specific cell types in the brain that produce BDNF following antidepressant treatment, the effects of the tricyclic antidepressant amitriptyline on rat primary neuronal, astrocytic and microglial cortical cultures were examined. Amitriptyline increased the expression of BDNF mRNA in astrocytic and microglial cultures but not neuronal cultures. Antidepressants with distinct mechanisms of action, such as clomipramine, duloxetine and fluvoxamine, also increased BDNF mRNA expression in astrocytic and microglial cultures. There are multiple BDNF mRNA variants (exon I, IIA, IV and VI) expressed in astrocytes and microglia and the variant induced by antidepressants has yet to be elaborated. Treatment with antidepressants increased the expression of exon I, IV and VI in astrocyte and microglia. Clomipramine alone significantly upregulated expression of exon IIA. The amitriptyline-induced expression of both total and individual BDNF mRNA variants (exon I, IV and VI) were blocked by MEK inhibitor U0126, indicating MEK/ERK signaling is required in the expression of BDNF. These findings indicate that non-neural cells are a significant target of antidepressants and further support the contention that glial production of BDNF is crucial role in the therapeutic effect of antidepressants. The current data suggest that targeting of glial function could lead to the development of antidepressants with a truly novel mechanism of action. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Integrated Analysis of Long Noncoding RNA and mRNA Expression Profile in Advanced Laryngeal Squamous Cell Carcinoma.

    Directory of Open Access Journals (Sweden)

    Ling Feng

    Full Text Available Long non-coding RNA (lncRNA plays an important role in tumorigenesis. However, the expression pattern and function of lncRNAs in laryngeal squamous cell carcinoma (LSCC are still unclear. To investigate the aberrantly expressed lncRNAs and mRNAs in advanced LSCC, we screened lncRNA and mRNA expression profiles in 9 pairs of primary Stage IVA LSCC tissues and adjacent non-neoplastic tissues by lncRNA and mRNA integrated microarrays. Gene Ontology and pathway analysis were performed to find out the significant function and pathway of the differentially expressed mRNAs, gene-gene functional interaction network and ceRNA network were constructed to select core mRNAs, and lncRNA-mRNA expression correlation network was built to identify the interactions between lncRNA and mRNA. qRT-PCR was performed to further validate the expressions of selected lncRNAs and mRNAs in advanced LSCC. We found 1459 differentially expressed lncRNAs and 2381 differentially expressed mRNAs, including 846 up-regulated lncRNAs and 613 down-regulated lncRNAs, 1542 up-regulated mRNAs and 839 down-regulated mRNAs. The mRNAs ITGB1, HIF1A, and DDIT4 were selected as core mRNAs, which are mainly involved in biological processes, such as matrix organization, cell cycle, adhesion, and metabolic pathway. LncRNA-mRNA expression correlation network showed LncRNA NR_027340, MIR31HG were positively correlated with ITGB1, HIF1A respectively. LncRNA SOX2-OT was negatively correlated with DDIT4. qRT-PCR further validated the expression of these lncRNAs and mRNAs. The work provides convincing evidence that the identified lncRNAs and mRNAs are potential biomarkers in advanced LSCC for further future studies.

  20. The mRNA expression profile of metabolic genes relative to MHC isoform pattern in human skeletal muscles

    DEFF Research Database (Denmark)

    Plomgaard, Peter; Penkowa, Milena; Leick, Lotte

    2006-01-01

    The metabolic profile of rodent muscle is generally reflected in the myosin heavy chain (MHC) fiber-type composition. The present study was conducted to test the hypothesis that metabolic gene expression is not tightly coupled with MHC fiber-type composition for all genes in human skeletal muscle....... Triceps brachii, vastus lateralis quadriceps, and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers, because these muscles are characterized by different fiber-type compositions. As expected, citrate synthase and 3-hydroxyacyl dehydrogenase activity...... of a broad range of metabolic genes. The triceps muscle had two- to fivefold higher MHC IIa, phosphofructokinase, and LDH A mRNA content and two- to fourfold lower MHC I, lipoprotein lipase, CD36, hormone-sensitive lipase, and LDH B and hexokinase II mRNA than vastus lateralis or soleus. Interestingly...

  1. Quantification of low-expressed mRNA using 5' LNA-containing real-time PCR primers

    International Nuclear Information System (INIS)

    Malgoyre, A.; Banzet, S.; Mouret, C.; Bigard, A.X.; Peinnequin, A.

    2007-01-01

    Real-time RT-PCR is the most sensitive and accurate method for mRNA quantification. Using specific recombinant DNA as a template, real-time PCR allows accurate quantification within a 7-log range and increased sensitivity below 10 copies. However, when using RT-PCR to quantify mRNA in biological samples, a stochastic off-targeted amplification can occur. Classical adjustments of assay parameters have minimal effects on such amplification. This undesirable amplification appears mostly to be dependent on specific to non-specific target ratio rather than on the absolute quantity of the specific target. This drawback, which decreases assay reliability, mostly appears when quantifying low-expressed transcript in a whole organ. An original primer design using properties of LNA allows to block off-target amplification. 5'-LNA substitution strengthens 5'-hybridization. Consequently on-target hybridization is stabilized and the probability for the off-target to lead to amplification is decreased

  2. Profiling microRNA expression in bovine alveolar macrophages using RNA-seq.

    Science.gov (United States)

    Vegh, Peter; Foroushani, Amir B K; Magee, David A; McCabe, Matthew S; Browne, John A; Nalpas, Nicolas C; Conlon, Kevin M; Gordon, Stephen V; Bradley, Daniel G; MacHugh, David E; Lynn, David J

    2013-10-01

    MicroRNAs (miRNAs) are important regulators of gene expression and are known to play a key role in regulating both adaptive and innate immunity. Bovine alveolar macrophages (BAMs) help maintain lung homeostasis and constitute the front line of host defense against several infectious respiratory diseases, such as bovine tuberculosis. Little is known, however, about the role miRNAs play in these cells. In this study, we used a high-throughput sequencing approach, RNA-seq, to determine the expression levels of known and novel miRNAs in unchallenged BAMs isolated from lung lavages of eight different healthy Holstein-Friesian male calves. Approximately 80 million sequence reads were generated from eight BAM miRNA Illumina sequencing libraries, and 80 miRNAs were identified as being expressed in BAMs at a threshold of at least 100 reads per million (RPM). The expression levels of miRNAs varied over a large dynamic range, with a few miRNAs expressed at very high levels (up to 800,000RPM), and the majority lowly expressed. Notably, many of the most highly expressed miRNAs in BAMs have known roles in regulating immunity in other species (e.g. bta-let-7i, bta-miR-21, bta-miR-27, bta-miR-99b, bta-miR-146, bta-miR-147, bta-miR-155 and bta-miR-223). The most highly expressed miRNA in BAMs was miR-21, which has been shown to regulate the expression of antimicrobial peptides in Mycobacterium leprae-infected human monocytes. Furthermore, the predicted target genes of BAM-expressed miRNAs were found to be statistically enriched for roles in innate immunity. In addition to profiling the expression of known miRNAs, the RNA-seq data was also analysed to identify potentially novel bovine miRNAs. One putatively novel bovine miRNA was identified. To the best of our knowledge, this is the first RNA-seq study to profile miRNA expression in BAMs and provides an important reference dataset for investigating the regulatory roles miRNAs play in this important immune cell type. Copyright

  3. Fish oil-derived long-chain n-3 polyunsaturated fatty acids reduce expression of M1-associated macrophage markers in an ex vivo adipose tissue culture model, in part through adiponectin

    Directory of Open Access Journals (Sweden)

    Anna A. De Boer

    2015-10-01

    Full Text Available Adipose tissue (AT macrophages (ATM play a key role in obesity-associated pathologies, and their phenotype can be influenced by the local tissue microenvironment. Interestingly, long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA and the LC n-3 PUFA-upregulated adipokine, adiponectin (Ad, may mitigate excessive ATM inflammatory M1-polarization responses. However, to what extent LC n-3 PUFA and Ad work in concert to affect macrophage phenotype has not been examined. Thus, we used an established ex vivo AT organ culture model using visceral AT from mice fed a control (CON; 10% w/w safflower oil n-6 PUFA-rich diet or an isocaloric fish-oil (FO; 3% w/w menhaden oil + 7% w/w safflower oil-derived LC n-3 PUFA-rich diet to generate AT conditioned media (ACM. We then evaluated if CON or FO ACM affected macrophage polarization markers in a model designed to mimic acute (18 h ACM plus LPS for the last 6 h or chronic (macrophages treated with LPS-challenged CON or FO ACM for 24 h inflammation ± Ad-neutralizing antibody and the LPS-neutralizing agent, polymyxin B. In the acute inflammation model, macrophages treated with FO ACM had decreased lipid uptake and mRNA expression of M1 markers (Nos2, Nfκb, Il6, Il18, Ccl2 and Ccl5 compared with CON ACM (p≤0.05; however, these effects were largely attenuated when Ad was neutralized (p>0.05. Further, in the chronic inflammation model, macrophages treated with FO ACM had decreased mRNA expression of M1 markers (Nos2, Tnfα, Ccl2 and Il1β and IL-6 and CCL2 secretion (p≤0.05; however, some of these effects were lost when Ad was neutralized, and were further exacerbated when both Ad and LPS were neutralized. Taken together, this work shows that LC n-3 PUFA and Ad work in concert to suppress certain M1 macrophage responses. Thus, future strategies to modulate the ATM phenotype should consider the role of both LC n-3 PUFA and Ad in mitigating obese AT inflammation.

  4. Fish Oil-Derived Long-Chain n-3 Polyunsaturated Fatty Acids Reduce Expression of M1-Associated Macrophage Markers in an ex vivo Adipose Tissue Culture Model, in Part through Adiponectin.

    Science.gov (United States)

    De Boer, Anna A; Monk, Jennifer M; Liddle, Danyelle M; Power, Krista A; Ma, David W L; Robinson, Lindsay E

    2015-01-01

    Adipose tissue (AT) macrophages (ATM) play a key role in obesity-associated pathologies, and their phenotype can be influenced by the local tissue microenvironment. Interestingly, long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) and the LC n-3 PUFA-upregulated adipokine, adiponectin (Ad), may mitigate excessive ATM inflammatory M1-polarization responses. However, to what extent LC n-3 PUFA and Ad work in concert to affect macrophage phenotype has not been examined. Thus, we used an established ex vivo AT organ culture model using visceral AT from mice fed a control (CON; 10% w/w safflower oil) n-6 PUFA-rich diet or an isocaloric fish oil (FO; 3% w/w menhaden oil + 7% w/w safflower oil)-derived LC n-3 PUFA-rich diet to generate AT conditioned media (ACM). We then evaluated if CON or FO ACM affected macrophage polarization markers in a model designed to mimic acute [18 h ACM plus lipopolysaccharide (LPS) for the last 6 h] or chronic (macrophages treated with LPS-challenged CON or FO ACM for 24 h) inflammation ± Ad-neutralizing antibody and the LPS-neutralizing agent, polymyxin B. In the acute inflammation model, macrophages treated with FO ACM had decreased lipid uptake and mRNA expression of M1 markers (Nos2, Nfκb, Il6, Il18, Ccl2, and Ccl5) compared with CON ACM (p ≤ 0.05); however, these effects were largely attenuated when Ad was neutralized (p > 0.05). Furthermore, in the chronic inflammation model, macrophages treated with FO ACM had decreased mRNA expression of M1 markers (Nos2, Tnfα, Ccl2, and Il1β) and IL-6 and CCL2 secretion (p ≤ 0.05); however, some of these effects were lost when Ad was neutralized, and were further exacerbated when both Ad and LPS were neutralized. Taken together, this work shows that LC n-3 PUFA and Ad work in concert to suppress certain M1 macrophage responses. Thus, future strategies to modulate the ATM phenotype should consider the role of both LC n-3 PUFA and Ad in mitigating obese AT

  5. Integrated Analysis of Dysregulated ncRNA and mRNA Expression Profiles in Humans Exposed to Carbon Nanotubes.

    Directory of Open Access Journals (Sweden)

    Anna A Shvedova

    Full Text Available As the application of carbon nanotubes (CNT in consumer products continues to rise, studies have expanded to determine the associated risks of exposure on human and environmental health. In particular, several lines of evidence indicate that exposure to multi-walled carbon nanotubes (MWCNT could pose a carcinogenic risk similar to asbestos fibers. However, to date the potential markers of MWCNT exposure are not yet explored in humans.In the present study, global mRNA and ncRNA expression profiles in the blood of exposed workers, having direct contact with MWCNT aerosol for at least 6 months (n = 8, were compared with expression profiles of non-exposed (n = 7 workers (e.g., professional and/or technical staff from the same manufacturing facility.Significant changes in the ncRNA and mRNA expression profiles were observed between exposed and non-exposed worker groups. An integrative analysis of ncRNA-mRNA correlations was performed to identify target genes, functional relationships, and regulatory networks in MWCNT-exposed workers. The coordinated changes in ncRNA and mRNA expression profiles revealed a set of miRNAs and their target genes with roles in cell cycle regulation/progression/control, apoptosis and proliferation. Further, the identified pathways and signaling networks also revealed MWCNT potential to trigger pulmonary and cardiovascular effects as well as carcinogenic outcomes in humans, similar to those previously described in rodents exposed to MWCNTs.This study is the first to investigate aberrant changes in mRNA and ncRNA expression profiles in the blood of humans exposed to MWCNT. The significant changes in several miRNAs and mRNAs expression as well as their regulatory networks are important for getting molecular insights into the MWCNT-induced toxicity and pathogenesis in humans. Further large-scale prospective studies are necessary to validate the potential applicability of such changes in mRNAs and miRNAs as prognostic markers

  6. Increased IL-17 and 22 mRNA expression in pediatric patients with otitis media with effusion.

    Science.gov (United States)

    Kwon, Oh Eun; Park, Sang Hyun; Kim, Sung Su; Shim, Haeng Seon; Kim, Min Gyeong; Kim, Young Il; Kim, Sang Hoon; Yeo, Seung Geun

    2016-11-01

    Middle ear effusion has been reported to be associated with immune responses in patients with otitis media with effusion (OME). Although various cytokines are involved in immunologic responses in patients with OME, no study to date has assessed the involvement of the pro-inflammatory cytokines interleukin (IL)-17 and IL-22. This study analyzed the levels of expression of IL-17 and IL-22 in the middle ear effusion of patients with OME. Patients aged Effusion fluid samples were obtained during surgery and levels of IL-17 and IL-22 mRNAs assessed by real-time PCR. IL-17 and IL-22 mRNA levels were compared in patients with effusion fluid positive and negative for bacteria; in patients with and without accompanying diseases, recurrent disease, and re-operation; and relative to fluid characteristics. The study cohort included 70 pediatric patients, 46 boys and 24 girls, of mean age 4.31 ± 2.11 years. The levels of IL-17 and IL-22 mRNA were higher in patients with than without sinusitis, but only IL-22 mRNA levels differed significantly (p < 0.05). The level of IL-17 mRNA was significantly higher in patients who did than did not undergo T&A (p < 0.05). The level of IL-22 expression was significantly higher in mucoid and purulent middle ear fluid samples than in serous fluid samples (p < 0.05). IL-17 and IL-22 mRNAs are involved in the pathophysiology of OME and are significantly higher in subjects with than without accompanying diseases. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Peroxisome Proliferator-Activated Receptor γ Induces the Expression of Tissue Factor Pathway Inhibitor-1 (TFPI-1 in Human Macrophages

    Directory of Open Access Journals (Sweden)

    G. Chinetti-Gbaguidi

    2016-01-01

    Full Text Available Tissue factor (TF is the initiator of the blood coagulation cascade after interaction with the activated factor VII (FVIIa. Moreover, the TF/FVIIa complex also activates intracellular signalling pathways leading to the production of inflammatory cytokines. The TF/FVIIa complex is inhibited by the tissue factor pathway inhibitor-1 (TFPI-1. Peroxisome proliferator-activated receptor gamma (PPARγ is a transcription factor that, together with PPARα and PPARβ/δ, controls macrophage functions. However, whether PPARγ activation modulates the expression of TFP1-1 in human macrophages is not known. Here we report that PPARγ activation increases the expression of TFPI-1 in human macrophages in vitro as well as in vivo in circulating peripheral blood mononuclear cells. The induction of TFPI-1 expression by PPARγ ligands, an effect shared by the activation of PPARα and PPARβ/δ, occurs also in proinflammatory M1 and in anti-inflammatory M2 polarized macrophages. As a functional consequence, treatment with PPARγ ligands significantly reduces the inflammatory response induced by FVIIa, as measured by variations in the IL-8, MMP-2, and MCP-1 expression. These data identify a novel role for PPARγ in the control of TF the pathway.

  8. Microglia and macrophages express tumor necrosis factor receptor p75 following middle cerebral artery occlusion in mice

    DEFF Research Database (Denmark)

    Lambertsen, Kate Lykke; Clausen, Bettina Hjelm; Fenger, Claus

    2007-01-01

    The proinflammatory and potential neurotoxic cytokine tumor necrosis factor (TNF) is produced by activated CNS resident microglia and infiltrating blood-borne macrophages in infarct and peri-infarct areas following induction of focal cerebral ischemia. Here, we investigated the expression of the ...

  9. Neurocognitive and neuroinflammatory correlates of PDYN and OPRK1 mRNA expression in the anterior cingulate in postmortem brain of HIV-infected subjects.

    Science.gov (United States)

    Yuferov, Vadim; Butelman, Eduardo R; Ho, Ann; Morgello, Susan; Kreek, Mary Jeanne

    2014-01-09

    Chronic inflammation may contribute to neuropsychological impairments in individuals with HIV, and modulation of this inflammatory response by opiate receptor ligands is important in light of the prevalence of drug use in HIV populations. Exogenous MOR and KOR agonists have differential effects on central nervous system (CNS) immunity and, while some data suggest KOR agonists are immunosuppressive, the KOR agonist dynorphin has been shown to stimulate human monocyte chemotaxis. In this study, we examined mRNA levels of endogenous opioid receptors OPRK1 and OPRM1, prodynorphin (PDYN), macrophage scavenger receptor CD163, and microglia/macrophage marker CD68 in the caudate and anterior cingulate of postmortem brains from HIV-positive and HIV-negative subjects. Brain tissues of HIV-infected (n = 24) and control subjects (n = 15) were obtained from the Manhattan HIV Brain Bank. Quantification of the gene mRNA was performed using SYBR Green RT-PCR. CD68 and CD163 were increased in HIV-positive (HIV+) compared to HIV-negative (HIV-) individuals in both brain regions. There were higher OPRK1 (P <0.005), and lower PDYN mRNA (P <0.005) levels in the anterior cingulate of HIV+ compared to HIV- subjects. This difference between the clinical groups was not found in the caudate. There was no difference in the levels of OPRM1 mRNA between HIV+ and HIV- subjects. Using linear regression analysis, we examined the relationship of OPRK1 and PDYN mRNA levels in the HIV+ subjects with seven cognitive domain T scores of a neuropsychological test battery. Within the HIV+ subjects, there was a positive correlation between anterior cingulate PDYN mRNA levels and better T-scores in the motor domain. Within the HIV+ subjects there were also positive correlations of both OPRK1 and PDYN mRNA levels with the anti-inflammatory marker CD163, but not with proinflammatory CD68 levels. In this setting, decreased PDYN mRNA may reflect a homeostatic mechanism to reduce monocyte

  10. High BMI levels associate with reduced mRNA expression of IL10 and increased mRNA expression of iNOS (NOS2) in human frontal cortex

    DEFF Research Database (Denmark)

    Lauridsen, J K; Olesen, R H; Vendelbo, J

    2017-01-01

    analysis was performed with BMI as variable on data on IL10, IL1β, IL6, PTGS2 (COX2) and NOS2 (iNOS). Increasing BMI is associated with a decrease in the mRNA expression of IL10 (P=0.014) and an increase in the expression of NOS2 (iNOS; P=0.040). Expressions of IL10 and NOS2 (iNOS) were negatively...... correlated (PIL10 was mostly affected by individuals with BMI ⩾40. Multiple linear regression analyses with BMI, age, sex and race as variables were performed in order to identify potential confounders. In conclusion, increasing BMI could affect the IL10-mediated anti...

  11. Expressions of interferon-inducible genes IFIT1 and IFIT4 mRNA in PBMCs of patients with systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Liu Chunyan; Chen Xingguo; Wang Zizheng

    2009-01-01

    To investigate the expression levels of interferon-inducible genes (IFIT1, IFIT4) in the peripheral blood mononuclear cells (PBMCs) of patients with systemic lupus erythematosus (SLE), and the relations between these genes expression levels and disease activity, the expression levels of IFIT1 and IFIT4 mRNA in the 95 patients with SLE and 48 normal controls were detected by Sybr green dye based real-time quantitative PCR method, and these genes expression levels were compared with anti-double strand DNA antibody. The associations between the expression levels of IFIT1, IFIT4 mRNA, anti-double strand DNA antibody and SLEDAI scores in patients with SLE were analyzed. The results showed that the expression levels of IFIT1, IFIT4 mRNA in the SLE patients were significantly higher than those of the normal controls (P<0.01). The expression levels of IFIT1, IFIT4 mRNA in the active SLE patients were higher than those of the inactive SLE patients (P<0.05). The real time expression levels of IFIT1 and IFIT4 mRNA showed positive correlations with each other (P<0.05) in patients with SLE. There was positively correlation between the expression levels of IFIT1, IFIT4 mRNA and the anti-double strand DNA antibody (P<0.05). The expression levels of IFIT1, IFIT4 mRNA in patients with SLE were significantly higher than those of the normal controls, and positively associated with SLEDAI scores, so they were helpful in evaluating SLE disease activity and severity. To inhibit the expressions of IFIT1, IFIT4 mRNA may provide a novel target for SLE treatment. (authors)

  12. Rifampin modulation of xeno- and endobiotic conjugating enzyme mRNA expression and associated microRNAs in human hepatocytes.

    Science.gov (United States)

    Gufford, Brandon T; Robarge, Jason D; Eadon, Michael T; Gao, Hongyu; Lin, Hai; Liu, Yunlong; Desta, Zeruesenay; Skaar, Todd C

    2018-04-01

    Rifampin is a pleiotropic inducer of multiple drug metabolizing enzymes and transporters. This work utilized a global approach to evaluate rifampin effects on conjugating enzyme gene expression with relevance to human xeno- and endo-biotic metabolism. Primary human hepatocytes from 7 subjects were treated with rifampin (10 μmol/L, 24 hours). Standard methods for RNA-seq library construction, EZBead preparation, and NextGen sequencing were used to measure UDP-glucuronosyl transferase UGT, sulfonyltransferase SULT, N acetyltransferase NAT, and glutathione-S-transferase GST mRNA expression compared to vehicle control (0.01% MeOH). Rifampin-induced (>1.25-fold) mRNA expression of 13 clinically important phase II drug metabolizing genes and repressed (>1.25-fold) the expression of 3 genes ( P  accounting for simultaneous induction of both CYP3A4 and UGT1A4 predicted a ~10-fold decrease in parent midazolam exposure with only a ~2-fold decrease in midazolam N-glucuronide metabolite exposure. These data reveal differential effects of rifampin on the human conjugating enzyme transcriptome and potential associations with miRNAs that form the basis for future mechanistic studies to elucidate the interplay of conjugating enzyme regulatory elements.

  13. Differential Expression of Sox11 and Bdnf mRNA Isoforms in the Injured and Regenerating Nervous Systems

    Directory of Open Access Journals (Sweden)

    Felix L. Struebing

    2017-11-01

    Full Text Available In both the central nervous system (CNS and the peripheral nervous system (PNS, axonal injury induces changes in neuronal gene expression. In the PNS, a relatively well-characterized alteration in transcriptional activation is known to promote axonal regeneration. This transcriptional cascade includes the neurotrophin Bdnf and the transcription factor Sox11. Although both molecules act to facilitate successful axon regeneration in the PNS, this process does not occur in the CNS. The present study examines the differential expression of Sox11 and Bdnf mRNA isoforms in the PNS and CNS using three experimental paradigms at different time points: (i the acutely injured CNS (retina after optic nerve crush and PNS (dorsal root ganglion after sciatic nerve crush, (ii a CNS regeneration model (retina after optic nerve crush and induced regeneration; and (iii the retina during a chronic form of central neurodegeneration (the DBA/2J glaucoma model. We find an initial increase of Sox11 in both PNS and CNS after injury; however, the expression of Bdnf isoforms is higher in the PNS relative to the CNS. Sustained upregulation of Sox11 is seen in the injured retina following regeneration treatment, while the expression of two Bdnf mRNA isoforms is suppressed. Furthermore, two isoforms of Sox11 with different 3′UTR lengths are present in the retina, and the long isoform is specifically upregulated in later stages of glaucoma. These results provide insight into the molecular cascades active during axonal injury and regeneration in mammalian neurons.

  14. Edema toxin impairs anthracidal phospholipase A2 expression by alveolar macrophages.

    Directory of Open Access Journals (Sweden)

    Benoit Raymond

    2007-12-01

    Full Text Available Bacillus anthracis, the etiological agent of anthrax, is a spore-forming gram-positive bacterium. Infection with this pathogen results in multisystem dysfunction and death. The pathogenicity of B. anthracis is due to the production of virulence factors, including edema toxin (ET. Recently, we established the protective role of type-IIA secreted phospholipase A2 (sPLA2-IIA against B. anthracis. A component of innate immunity produced by alveolar macrophages (AMs, sPLA2-IIA is found in human and animal bronchoalveolar lavages at sufficient levels to kill B. anthracis. However, pulmonary anthrax is almost always fatal, suggesting the potential impairment of sPLA2-IIA synthesis and/or action by B. anthracis factors. We investigated the effect of purified ET and ET-deficient B. anthracis strains on sPLA2-IIA expression in primary guinea pig AMs. We report that ET inhibits sPLA2-IIA expression in AMs at the transcriptional level via a cAMP/protein kinase A-dependent process. Moreover, we show that live B. anthracis strains expressing functional ET inhibit sPLA2-IIA expression, whereas ET-deficient strains induced this expression. This stimulatory effect, mediated partly by the cell wall peptidoglycan, can be counterbalanced by ET. We conclude that B. anthracis down-regulates sPLA2-IIA expression in AMs through a process involving ET. Our study, therefore, describes a new molecular mechanism implemented by B. anthracis to escape innate host defense. These pioneering data will provide new molecular targets for future intervention against this deadly pathogen.

  15. PPAR γ is highly expressed in F4/80hi adipose tissue macrophages and dampens adipose-tissue inflammation

    Science.gov (United States)

    Bassaganya-Riera, Josep; Misyak, Sarah; Guri, Amir J.; Hontecillas, Raquel

    2009-01-01

    Macrophage infiltration into adipose tissue is a hallmark of obesity. We recently reported two phenotypically distinct subsets of adipose tissue macrophages (ATM) based on the surface expression of the glycoprotein F4/80 and responsiveness to treatment with a peroxisome proliferator-activated receptor (PPAR) γ agonist. Hence, we hypothesized that F4/80hi and F4/80lo ATM differentially express PPAR γ. This study phenotypically and functionally characterizes F4/80hi and F4/80lo ATM subsets during obesity. Changes in gene expression were also examined on sorted F4/80lo and F4/80hi ATM by quantitative real-time RT-PCR. We show that while F4/80lo macrophages predominate in adipose tissue of lean mice, obesity causes accumulation of both F4/80lo and F4/80hi ATM. Moreover, accumulation of F4/80hi ATM in adipose tissue is associated with impaired glucose tolerance. Phenotypically, F4/80hi ATM express greater amounts of CD11c, MHC II, CD49b, and CX3CR1 and produce more TNF-α, MCP-1, and IL-10 than F4/80lo ATM. Gene expression analyses of the sorted populations revealed that only the F4/80lo population produced IL-4, whereas the F4/80hi ATM expressed greater amounts of PPAR γ, δ, CD36 and toll-like receptor-4. In addition, the deficiency of PPAR γ in immune cells favors expression of M1 and impairs M2 macrophage marker expression in adipose tissue. Thus, PPAR γ is differentially expressed in F4/80hi versus F4/80low ATM subsets and its deficiency favors a predominance of M1 markers in WAT. PMID:19423085

  16. PPAR gamma is highly expressed in F4/80(hi) adipose tissue macrophages and dampens adipose-tissue inflammation.

    Science.gov (United States)

    Bassaganya-Riera, Josep; Misyak, Sarah; Guri, Amir J; Hontecillas, Raquel

    2009-01-01

    Macrophage infiltration into adipose tissue is a hallmark of obesity. We recently reported two phenotypically distinct subsets of adipose tissue macrophages (ATM) based on the surface expression of the glycoprotein F4/80 and responsiveness to treatment with a peroxisome proliferator-activated receptor (PPAR) gamma agonist. Hence, we hypothesized that F4/80(hi) and F4/80(lo) ATM differentially express PPAR gamma. This study phenotypically and functionally characterizes F4/80(hi) and F4/80(lo) ATM subsets during obesity. Changes in gene expression were also examined on sorted F4/80(lo) and F4/80(hi) ATM by quantitative real-time RT-PCR. We show that while F4/80(lo) macrophages predominate in adipose tissue of lean mice, obesity causes accumulation of both F4/80(lo) and F4/80(hi) ATM. Moreover, accumulation of F4/80(hi) ATM in adipose tissue is associated with impaired glucose tolerance. Phenotypically, F4/80(hi) ATM express greater amounts of CD11c, MHC II, CD49b, and CX3CR1 and produce more TNF-alpha, MCP-1, and IL-10 than F4/80(lo) ATM. Gene expression analyses of the sorted populations revealed that only the F4/80(lo) population produced IL-4, whereas the F4/80(hi) ATM expressed greater amounts of PPAR gamma, delta, CD36 and toll-like receptor-4. In addition, the deficiency of PPAR gamma in immune cells favors expression of M1 and impairs M2 macrophage marker expression in adipose tissue. Thus, PPAR gamma is differentially expressed in F4/80(hi) versus F4/80(low) ATM subsets and its deficiency favors a predominance of M1 markers in WAT.

  17. Triglyceride-induced macrophage cell death is triggered by caspase-1.

    Science.gov (United States)

    Son, Sin Jee; Rhee, Ki-Jong; Lim, Jaewon; Kim, Tae Ue; Kim, Tack-Joong; Kim, Yoon Suk

    2013-01-01

    Triglyceride (TG) induces macrophage cell death which contributes to the development of atherosclerosis. We confirmed that exogenous TG accumulates in human THP-1 macrophages and causes cell death. TG treated THP-1 macrophages exhibited no change in tumor necrosis factor (TNF)-α, interleukin (IL)-18, macrophage inflammatory protein (MIP)-1α, and IL-1R1 receptor mRNA expression. However, there was a marked decrease in IL-1β mRNA expression but an increase in IL-1β protein secretion. Decreased expression of IL-1β mRNA and increased secretion of IL-1β protein was not the direct cause of cell death. Until now, TG was assumed to induce necrotic cell death in macrophages. Since caspase-1 is known to be involved in activation and secretion of IL-1β protein and pyroptotic cell death, next we determined whether caspase-1 is associated with TG-induced macrophage cell death. We found an increase in caspase-1 activity in TG-treated THP-1 macrophages and inhibition of caspase-1 activity using a specific inhibitor partially rescued cell death. These results suggest activation of the pyroptotic pathway by TG. This is the first report implicating the activation of caspase-1 and the triggering of the pyroptosis pathway in TG-induced macrophage cell death.

  18. The effects of pilates exercise on lipid metabolism and inflammatory cytokines mRNA expression in female undergraduates.

    Science.gov (United States)

    Kim, Hyo-Jin; Kim, Jiyeon; Kim, Chang-Sun

    2014-09-01

    The purpose of the study was to verify the effects of Pilates exercise by observing the impact of 8 weeks of Pilates exercise on lipid metabolism and inflammatory cytokine mRNA expression in female undergraduates in their 20s who had no prior experience in Pilates exercise and had not exercised in the previous 6 months. There were 18 subjects with no prior experience in Pilates exercise. The subjects were separated into the Pilates exercise group (n = 9) and the non-exercise control group (n = 9). The former performed Pilates exercise for 60-70 minutes over 8 weeks with a gradual strength increase of 9-16 in the Rating of Perceived Exercise (RPE). The body composition, creatine kinase in the bloodstream and lipid metabolism (TC, LDL-C, HDL-C, TG) were measured before and after the experiment and Real-Time PCR was used to investigate the mRNA expression of the inflammatory cytokines IL-6 and TNF-⍺. The creatine kinase (CK) in the blood had significant differences between the groups. The test group showed significant increase compared to the control group after 8 weeks of Pilates exercise (p = 0.007). Lipid analysis showed that the level of high-density lipoprotein cholesterol (HDL-C) was significantly different in the two groups (p = 0.049), with the Pilates exercise group exhibiting significantly higher levels compared to the control group. No significant differences were observed in the levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglyceride (TG). IL-6 mRNA expression did not show significant differences between the groups either. Timing and TNF-α mRNA expression showed significant effect in both the exercise and the control groups (p = 0.013) but no correlation. It was found from the study that Pilates exercise for 8 weeks affected CK expression (the muscle damage marker) and induced positive changes in the levels of high-density lipoprotein.

  19. Characterization of renin mRNA expression and enzyme activity in rat and mouse mesangial cells

    Directory of Open Access Journals (Sweden)

    Andrade A.Q.

    2002-01-01

    Full Text Available Renin is an enzyme involved in the stepwise generation of angiotensin II. Juxtaglomerular cells are the main source of plasma renin, but renin activity has been detected in other cell types. In the present study we evaluated the presence of renin mRNA in adult male Wistar rat and mouse (C-57 Black/6 mesangial cells (MC and their ability to process, store and release both the active and inactive forms of the enzyme. Active renin and total renin content obtained after trypsin treatment were estimated by angiotensinogen consumption analyzed by SDS-PAGE electrophoresis and quantified by angiotensin I generation by HPLC. Renin mRNA, detected by RT-PCR, was present in both rat and mouse MC under basal conditions. Active renin was significantly higher (P<0.05 in the cell lysate (43.5 ± 5.7 ng h-1 10(6 cells than in the culture medium (12.5 ± 2.5 ng h-1 10(6 cells. Inactive prorenin content was similar for the intra- and extracellular compartments (9.7 ± 3.1 and 3.9 ± 0.9 ng h-1 10(6 cells. Free active renin was the predominant form found in both cell compartments. These results indicate that MC in culture are able to synthesize and translate renin mRNA probably as inactive prorenin which is mostly processed to active renin inside the cell. MC secrete both forms of the enzyme but at a lower level compared with intracellular content, suggesting that the main role of renin synthesized by MC may be the intracellular generation of angiotensin II.

  20. Expression of LDOC1 mRNA in leucocytes of patients with Down's ...

    Indian Academy of Sciences (India)

    can develop premature ageing and some traits of Alzheimer disease at an ... expression in brain and thyroid and low expression in pla- centa, liver, and .... Age (years) Sex. (LDOC1 gene) ... cytes in children with Down syndrome. Immun.

  1. Macrophage Gene Expression Associated with Remodeling of the Prepartum Rat Cervix: Microarray and Pathway Analyses

    Science.gov (United States)

    Dobyns, Abigail E.; Goyal, Ravi; Carpenter, Lauren Grisham; Freeman, Tom C.; Longo, Lawrence D.; Yellon, Steven M.

    2015-01-01

    As the critical gatekeeper for birth, prepartum remodeling of the cervix is associated with increased resident macrophages (Mφ), proinflammatory processes, and extracellular matrix degradation. This study tested the hypothesis that expression of genes unique to Mφs characterizes the prepartum from unremodeled nonpregnant cervix. Perfused cervix from prepartum day 21 postbreeding (D21) or nonpregnant (NP) rats, with or without Mφs, had RNA extracted and whole genome microarray analysis performed. By subtractive analyses, expression of 194 and 120 genes related to Mφs in the cervix from D21 rats were increased and decreased, respectively. In both D21 and NP groups, 158 and 57 Mφ genes were also more or less up- or down-regulated, respectively. Mφ gene expression patterns were most strongly correlated within groups and in 5 major clustering patterns. In the cervix from D21 rats, functional categories and canonical pathways of increased expression by Mφ gene related to extracellular matrix, cell proliferation, differentiation, as well as cell signaling. Pathways were characteristic of inflammation and wound healing, e.g., CD163, CD206, and CCR2. Signatures of only inflammation pathways, e.g., CSF1R, EMR1, and MMP12 were common to both D21 and NP groups. Thus, a novel and complex balance of Mφ genes and clusters differentiated the degraded extracellular matrix and cellular genomic activities in the cervix before birth from the unremodeled state. Predicted Mφ activities, pathways, and networks raise the possibility that expression patterns of specific genes characterize and promote prepartum remodeling of the cervix for parturition at term and with preterm labor. PMID:25811906

  2. Ketamine inhibits tumor necrosis factor-α and interleukin-6 gene expressions in lipopolysaccharide-stimulated macrophages through suppression of toll-like receptor 4-mediated c-Jun N-terminal kinase phosphorylation and activator protein-1 activation

    International Nuclear Information System (INIS)

    Wu, G.-J.; Chen, T.-L.; Ueng, Y.-F.; Chen, R.-M.

    2008-01-01

    Our previous study showed that ketamine, an intravenous anesthetic agent, has anti-inflammatory effects. In this study, we further evaluated the effects of ketamine on the regulation of tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) gene expressions and its possible signal-transducing mechanisms in lipopolysaccharide (LPS)-activated macrophages. Exposure of macrophages to 1, 10, and 100 μM ketamine, 100 ng/ml LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. A concentration of 1000 μM of ketamine alone or in combined treatment with LPS caused significant cell death. Administration of LPS increased cellular TNF-α and IL-6 protein levels in concentration- and time-dependent manners. Meanwhile, treatment with ketamine concentration- and time-dependently alleviated the enhanced effects. LPS induced TNF-α and IL-6 mRNA syntheses. Administration of ketamine at a therapeutic concentration (100 μM) significantly inhibited LPS-induced TNF-α and IL-6 mRNA expressions. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA into macrophages decreased cellular TLR4 levels. Co-treatment of macrophages with ketamine and TLR4 siRNA decreased the LPS-induced TNF-α and IL-6 productions more than alone administration of TLR4 siRNA. LPS stimulated phosphorylation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos from the cytoplasm to nuclei. However, administration of ketamine significantly decreased LPS-induced activation of c-Jun N-terminal kinase and translocation of c-Jun and c-Fos. LPS increased the binding of nuclear extracts to activator protein-1 consensus DNA oligonucleotides. Administration of ketamine significantly ameliorated LPS-induced DNA binding activity of activator protein-1. Therefore, a clinically relevant concentration of ketamine can inhibit TNF-α and IL-6 gene expressions in LPS-activated macrophages. The suppressive mechanisms occur through suppression of TLR4-mediated

  3. Definition of the complete Schistosoma mansoni hemoglobinase mRNA sequence and gene expression in developing parasites.

    Science.gov (United States)

    el Meanawy, M A; Aji, T; Phillips, N F; Davis, R E; Salata, R A; Malhotra, I; McClain, D; Aikawa, M; Davis, A H

    1990-07-01

    Schistosoma mansoni uses a variety of proteases termed hemoglobinases to obtain nutrition from host globin. Previous reports have characterized cDNAs encoding 1 of these enzymes. However, these sequences did not define the primary structures of the mRNA and protein. The complete sequence of the 1390 base mRNA has now been determined. It encodes a 50 kDa primary translation product. In vitro translations coupled with immunoprecipitations and Western blots of parasite lysates allowed visualization of the 50 kDa form. Production of the 31 kDa mature hemoglobinase from the 50 kDa species involves removal of both NH2 and COOH terminal residues from the primary translation product. Expression of hemoglobinase mRNA and protein was examined during larval parasite development. Low levels were observed in young schistosomula. After 6-9 days in culture, high hemoglobinase levels were seen which correlated with the onset of red blood cell feeding. Immunoelectron microscopy was employed to examine hemoglobinase location and function. In adult worms the enzyme was associated with the gut lumen and gut epithelium. In cercariae, the protease was observed in the head gland, suggesting new roles for the protease.

  4. Analysis of MDM2 and MDM4 single nucleotide polymorphisms, mRNA splicing and protein expression in retinoblastoma.

    Directory of Open Access Journals (Sweden)

    Justina McEvoy

    Full Text Available Retinoblastoma is a childhood cancer of the developing retina that begins in utero and is diagnosed in the first years of life. Biallelic RB1 gene inactivation is the initiating genetic lesion in retinoblastoma. The p53 gene is intact in human retinoblastoma but the pathway is believed to be suppressed by increased expression of MDM4 (MDMX and MDM2. Here we quantify the expression of MDM4 and MDM2 mRNA and protein in human fetal retinae, primary retinoblastomas, retinoblastoma cell lines and several independent orthotopic retinoblastoma xenografts. We found that MDM4 is the major p53 antagonist expressed in retinoblastoma and in the developing human retina. We also discovered that MDM4 protein steady state levels are much higher in retinoblastoma than in human fetal retinae. This increase would not have been predicted based on the mRNA levels. We explored several possible post-transcriptional mechanisms that may contribute to the elevated levels of MDM4 protein. A proportion of MDM4 transcripts are alternatively spliced to produce protein products that are reported to be more stable and oncogenic. We also discovered that a microRNA predicted to target MDM4 (miR191 was downregulated in retinoblastoma relative to human fetal retinae and a subset of samples had somatic mutations that eliminated the miR-191 binding site in the MDM4 mRNA. Taken together, these data suggest that post-transcriptional mechanisms may contribute to stabilization of the MDM4 protein in retinoblastoma.

  5. Relationship between expression of leptin receptors mRNA in breast tissue, plasma leptin level in breast cancer patients with obesity and clinical pathologic data

    International Nuclear Information System (INIS)

    Li Chunrui; Liu Wenli; Sun Hanying; Zhou Jianfeng

    2007-01-01

    In order to investigate the expression of leptin receptors mRNA in breast tissue and plasma leptin levels in breast cancer patients with obesity and their relationship with clinical pathologic data, 124 subjects who were either obesity or had suffered from breast benign disease with obesity, or breast cancer with obesity were entered into this study. The levels of plasma leptin in all subjects were determined and leptin receptors mRNA expression levels were measured by RT-PCR in breast tissue of breast cancer patients with obesity and breast benign disease with obesity. The results showed that plasma leptin levels in breast cancer patients with obesity were significantly higher than those in breast benign disease with obesity and obesity patients alone (P<0.05). The expression of the leptin receptor long form [-Lep-R(L)-] mRNA and the leptin receptor short form [-Lep-R(S)-] mRNA in breast tissue of breast cancer patients with obesity were significantly higher than that in breast tissue of breast benign disease patients with obesity (P<0.05). The plasma leptin level had remarkable positive correlation with the expressions of the Lep-R(L) mRNA and the Lep-R(S) mRNA. The plasma leptin level and leptin receptors mRNA expression levels in patients were not correlated with the axillary node metastasis, menopause, the TNM stage or pathological type. Therefore, leptin may have a promoting effect on the carcinogenesis of breast cancer. (authors)

  6. Lentiviral vectors containing mouse Csf1r control elements direct macrophage-restricted expression in multiple species of birds and mammals

    Directory of Open Access Journals (Sweden)

    Clare Pridans

    2014-01-01

    Full Text Available The development of macrophages requires signaling through the lineage-restricted receptor Csf1r. Macrophage-restricted expression of transgenic reporters based upon Csf1r requires the highly conserved Fms-intronic regulatory element (FIRE. We have created a lentiviral construct containing mouse FIRE and promoter. The lentivirus is capable of directing macrophage-restricted reporter gene expression in mouse, rat, human, pig, cow, sheep, and even chicken. Rat bone marrow cells transduced with the lentivirus were capable of differentiating into macrophages expressing the reporter gene in vitro. Macrophage-restricted expression may be desirable for immunization or immune response modulation, and for gene therapy for lysosomal storage diseases and some immunodeficiencies. The small size of the Csf1r transcription control elements will allow the insertion of large “cargo” for applications in gene therapy and vaccine delivery.

  7. m-RNA mammaglobin expression in metastatic breast cancer patient at Medan city, Indonesia

    Science.gov (United States)

    Rimbun, S.; Siregar, Y.

    2018-03-01

    Breast cancer is the most common causes of women’s death in the world. Metastatic spread presents a major clinical problem in about 30% of the patients. The study aims to investigate the clinical reliability of mammaglobin mRNA as a marker of circulating cancer cells in breast cancer patients. The positivity of blood was analyzed in relation to clinical and pathological characteristics. This study was on 29 breast cancer patients (13 metastatic, 16 non- metastatic patients), where28 were invasive intraductal carcinoma type and 1 was invasive lobular carcinoma type. Breast cancer patients were according to the histologic grade into grade I (7 patients),grade II (6 patients) and grade III (15 patients). All individuals included in this study were subjected to detection of mammaglobin m-RNA of circulating tumor cells in peripheral blood using RT-PCR technique. Positivity for mammaglobin in blood samples was in 38% of patients with metastatic but not in the non-metastatic patients. The presence of mammaglobin correlated with metastatic tumor (P = 0.011). Mammaglobin overexpression in breast tissue was significantly positive in low-grade tumors (I and II).

  8. Lycopene Inhibits NF-kB-Mediated IL-8 Expression and Changes Redox and PPARγ Signalling in Cigarette Smoke–Stimulated Macrophages

    Science.gov (United States)

    Simone, Rossella E.; Russo, Marco; Catalano, Assunta; Monego, Giovanni; Froehlich, Kati; Boehm, Volker; Palozza, Paola

    2011-01-01

    Increasing evidence suggests that lycopene, the major carotenoid present in tomato, may be preventive against smoke-induced cell damage. However, the mechanisms of such a prevention are still unclear. The aim of this study was to investigate the role of lycopene on the production of the pro-inflammatory cytokine IL-8 induced by cigarette smoke and the possible mechanisms implicated. Therefore, human THP-1 macrophages were exposed to cigarette smoke extract (CSE), alone and following a 6-h pre-treatment with lycopene (0.5–2 µM). CSE enhanced IL-8 production in a time- and a dose-dependent manner. Lycopene pre-treatment resulted in a significant inhibition of CSE-induced IL-8 expression at both mRNA and protein levels. NF-kB controlled the transcription of IL-8 induced by CSE, since PDTC prevented such a production. Lycopene suppressed CSE-induced NF-kB DNA binding, NF-kB/p65 nuclear translocation and phosphorylation of IKKα and IkBα. Such an inhibition was accompanied by a decrease in CSE-induced ROS production and NOX-4 expression. Lycopene further inhibited CSE-induced phosphorylation of the redox-sensitive ERK1/2, JNK and p38 MAPKs. Moreover, the carotenoid increased PPARγ levels which, in turn, enhanced PTEN expression and decreased pAKT levels in CSE-exposed cells. Such effects were abolished by the PPARγ inhibitor GW9662. Taken together, our data indicate that lycopene prevented CSE-induced IL-8 production through a mechanism involving an inactivation of NF-kB. NF-kB inactivation was accompanied by an inhibition of redox signalling and an activation of PPARγ signalling. The ability of lycopene in inhibiting IL-8 production, NF-kB/p65 nuclear translocation, and redox signalling and in increasing PPARγ expression was also found in isolated rat alveolar macrophages exposed to CSE. These findings provide novel data on new molecular mechanisms by which lycopene regulates cigarette smoke-driven inflammation in human macrophages. PMID:21625550

  9. The Andes hantavirus NSs protein is expressed from the viral small mRNA by a leaky scanning mechanism.

    Science.gov (United States)

    Vera-Otarola, Jorge; Solis, Loretto; Soto-Rifo, Ricardo; Ricci, Emiliano P; Pino, Karla; Tischler, Nicole D; Ohlmann, Théophile; Darlix, Jean-Luc; López-Lastra, Marcelo

    2012-02-01

    The small mRNA (SmRNA) of all Bunyaviridae encodes the nucleocapsid (N) protein. In 4 out of 5 genera in the Bunyaviridae, the smRNA encodes an additional nonstructural protein denominated NSs. In this study, we show that Andes hantavirus (ANDV) SmRNA encodes an NSs protein. Data show that the NSs protein is expressed in the context of an ANDV infection. Additionally, our results suggest that translation initiation from the NSs initiation codon is mediated by ribosomal subunits that have bypassed the upstream N protein initiation codon through a leaky scanning mechanism.

  10. Transforming growth factor beta-1 expression in macrophages of human chronic periapical diseases.

    Science.gov (United States)

    Liang, Z-Z; Li, J; Huang, S-G

    2017-03-30

    The objective of this study was to observe the distribution of macrophages (MPs) expressing transforming growth factor beta-1 (TGF-β1) in tissue samples from patients with different human chronic periapical diseases. In this study, samples were collected from 75 volunteers, who were divided into three groups according to classified standards, namely, healthy control (N = 25), periapical granuloma (N = 25), and periapical cyst (N = 25). The samples were fixed in 10% buffered formalin for more than 48 h, dehydrated, embedded, and stained with hematoxylin and eosin for histopathology. Double immunofluorescence was conducted to analyze the expression of TGF-β-CD14 double-positive MPs in periapical tissues. The number of double-positive cells (cells/mm 2 ) were significantly higher in the chronic periapical disease tissues (P periapical cyst group than in the periapical granuloma group (P periapical diseases. The TGF-β1-CD14 double-positive cells might play an important role in the pathology of human chronic periapical diseases.

  11. Altered PIWI-LIKE 1 and PIWI-LIKE 2 mRNA expression in ejaculated spermatozoa of men with impaired sperm characteristics.

    Science.gov (United States)

    Giebler, Maria; Greither, Thomas; Müller, Lisa; Mösinger, Carina; Behre, Hermann M

    2018-01-01

    In about half the cases of involuntary childlessness, a male infertility factor is involved. The PIWI-LIKE genes, a subclade of the Argonaute protein family, are involved in RNA silencing and transposon control in the germline. Knockout of murine Piwi-like 1 and 2 homologs results in complete infertility in males. The aim of this study was to analyze whether the mRNA expression of human PIWI-LIKE 1-4 genes is altered in ejaculated spermatozoa of men with impaired sperm characteristics. Ninety male participants were included in the study, among which 47 were with normozoospermia, 36 with impaired semen characteristics according to the World Health Organization (WHO) manual, 5 th edition, and 7 with azoospermia serving as negative control for the PIWI-LIKE 1-4 mRNA expression in somatic cells in the ejaculate. PIWI-LIKE 1-4 mRNA expression in the ejaculated spermatozoa of the participants was measured by quantitative real-time PCR. In nonazoospermic men, PIWI-LIKE 1-4 mRNA was measurable in ejaculated spermatozoa in different proportions. PIWI-LIKE 1 (100.0%) and PIWI-LIKE 2 (49.4%) were more frequently expressed than PIWI-LIKE 3 (9.6%) and PIWI-LIKE 4 (15.7%). Furthermore, a decreased PIWI-LIKE 2 mRNA expression showed a significant correlation with a decreased sperm count (P = 0.022) and an increased PIWI-LIKE 1 mRNA expression with a decreased progressive motility (P = 0.048). PIWI-LIKE 1 and PIWI-LIKE 2 mRNA expression exhibited a significant association with impaired sperm characteristics and may be a useful candidate for the evaluation of the impact of PIWI-LIKE 1-4 mRNA expression on male infertility.

  12. Associations of ACE Gene Insertion/Deletion Polymorphism, ACE Activity, and ACE mRNA Expression with Hypertension in a Chinese Population

    OpenAIRE

    He, Qingfang; Fan, Chunhong; Yu, Min; Wallar, Gina; Zhang, Zuo-Feng; Wang, Lixin; Zhang, Xinwei; Hu, Ruying

    2013-01-01

    Background The present study was designed to explore the association of angiotensin converting enzyme (ACE) gene insertion/deletion (I/D, rs4646994) polymorphism, plasma ACE activity, and circulating ACE mRNA expression with essential hypertension (EH) in a Chinese population. In addition, a new detection method for circulating ACE mRNA expression was explored. Methods The research was approved by the ethics committee of Zhejiang Provincial Center for Disease Prevention and Control. Written i...

  13. Influence of clonidine and ketamine on m-RNA expression in a model of opioid-induced hyperalgesia in mice.

    Directory of Open Access Journals (Sweden)

    Henning Ohnesorge

    Full Text Available We investigated the influence of morphine and ketamine or clonidine in mice on the expression of genes that may mediate pronociceptive opioid effects.C57BL/6 mice received morphine injections thrice daily using increasing doses (5-20 mg∙kg(-1 for 3 days (sub-acute, n=6 or 14 days (chronic, n=6 and additionally either s-ketamine (5 mg∙kg(-1, n=6 or clonidine (0.1 mg∙kg(-1, n=6. Tail flick test and the assessment of the mechanical withdrawal threshold of the hindpaw was performed during and 4 days after cessation of opioid treatment. Upon completion of the behavioural testing the mRNA-concentration of the NMDA receptor (NMDAR1 and β-arrestin 2 (Arrb2 were measured by PCR.Chronic opioid treatment resulted in a delay of the tail flick latency with a rapid on- and offset. Simultaneously the mice developed a static mechanical hyperalgesia with a delayed onset that that outlasted the morphine treatment. Sub-acute morphine administration resulted in a decrease of NMDAR1 and Arrb2 whereas during longer opioid treatment the expression NMDAR1 and Arrb2 mRNA increased again to baseline values. Coadministration of s-ketamine or clonidine resulted in a reversal of the mechanical hyperalgesia and inhibited the normalization of NMDAR1 mRNA expression but had no effect on the expression of Arrb2 mRNA.In the model of chronic morphine therapy the antinociceptive effects of morphine are represented by the thermal analgesia while the proniceptive effects are represented by the mechanical hyperalgesia. The results indicate that the regulation of the expression of NMDAR1 and Arrb2 may be associated to the development of OIH in mice.The results indicate that co-administration of clonidine or ketamine may influence the underlying mechanisms of OIH.

  14. LARP6 Meets Collagen mRNA: Specific Regulation of Type I Collagen Expression

    Directory of Open Access Journals (Sweden)

    Yujie Zhang

    2016-03-01

    Full Text Available Type I collagen is the most abundant structural protein in all vertebrates, but its constitutive rate of synthesis is low due to long half-life of the protein (60–70 days. However, several hundred fold increased production of type I collagen is often seen in reparative or reactive fibrosis. The mechanism which is responsible for this dramatic upregulation is complex, including multiple levels of regulation. However, posttranscriptional regulation evidently plays a predominant role. Posttranscriptional regulation comprises processing, transport, stabilization and translation of mRNAs and is executed by RNA binding proteins. There are about 800 RNA binding proteins, but only one, La ribonucleoprotein domain family member 6 (LARP6, is specifically involved in type I collagen regulation. In the 5′untranslated region (5’UTR of mRNAs encoding for type I and type III collagens there is an evolutionally conserved stem-loop (SL structure; this structure is not found in any other mRNA, including any other collagen mRNA. LARP6 binds to the 5′SL in sequence specific manner to regulate stability of collagen mRNAs and their translatability. Here, we will review current understanding of how is LARP6 involved in posttranscriptional regulation of collagen mRNAs. We will also discuss how other proteins recruited by LARP6, including nonmuscle myosin, vimentin, serine threonine kinase receptor associated protein (STRAP, 25 kD FK506 binding protein (FKBP25 and RNA helicase A (RHA, contribute to this process.

  15. [mRNA expression of dopamine receptor D2 and dopamine transporter in peripheral blood lymphocytes before and after treatment in children with tic disorder].

    Science.gov (United States)

    Ji, Xiao-Yi; Wu, Min

    2016-04-01

    To investigate the mRNA expression of dopamine receptor D2 (DRD2) and dopamine transporter (DAT) in peripheral blood lymphocytes before and after treatment in children with tic disorder (TD). RT-PCR was used to measure the mRNA expression of DRD2 and DAT in peripheral blood lymphocytes before and after treatment in 60 children with TD. The correlations between mRNA expression of DRD2 and DAT and the severity of TD were analyzed. Sixty healthy children served as the control group. Before treatment, the children with TD had a significant increase in the mRNA expression of DRD2 and DAT compared with the control group (PTic Severity Scale (YGTSS) score (P<0.05). In the children with moderate TD, the mRNA expression of DAT was positively correlated with YGTSS score (P<0.05). In children with TD, the mRNA expression of DRD2 in peripheral blood lymphocytes can be used as one of the indicators for diagnosing TD, assessing the severity of TD, and evaluating clinical outcomes.

  16. SIRT1 and FOXO1 mRNA expression in PBMC correlates to physical activity in COPD patients

    Directory of Open Access Journals (Sweden)

    Taka C

    2017-11-01

    Full Text Available Chihiro Taka, Ryuji Hayashi, Kazuki Shimokawa, Kotaro Tokui, Seisuke Okazawa, Kenta Kambara, Minehiko Inomata, Toru Yamada, Shoko Matsui, Kazuyuki Tobe First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Toyama, Japan Background: Physical activity (PA is considered as one of the most important prognostic predictors in chronic obstructive pulmonary disease (COPD patients. Longevity gene, SIRT1, is reported to be involved in the pathogenesis of COPD by regulating the signaling pathways of oxidative stress, inflammation, and aging. We hypothesize that SIRT1 and related genes are also associated with the benefits of PA in COPD patients.Methods: Eighteen COPD outpatients were enrolled in this study, and their PA level was assessed with an accelerometer. We assessed the SIRT1 and related genes mRNA expression levels in the peripheral blood mononuclear cells (PBMCs of the subjects. We carried out respiratory function testing, blood gas analysis, the 6-minute walk test, and measurement of the cross-sectional area of the erector spinae muscles (ESMCSA by chest computed tomography. We analyzed the association of PA with the results of each of the examinations.Results: The mean age was 72±9 years, and the mean forced expiratory volume in 1 second was 1.4±0.56 L (52%±19% predicted. Our findings revealed a correlation between the daily PA and ESMCSA. The SIRT1 and Forkhead box O (FOXO1 mRNA expression levels in PBMCs were positively correlated with moderate-PA time (r=0.60, p=0.008 for SIRT1 and r=0.59, p=0.01 for FOXO1. Keywords: COPD, accelerometer, mRNA, walking, sedentary, moderate

  17. Tuning protein expression using synonymous codon libraries targeted to the 5' mRNA coding region

    DEFF Research Database (Denmark)

    Goltermann, Lise; Borch Jensen, Martin; Bentin, Thomas

    2011-01-01

    intermediate expression levels of green fluorescent protein in Escherichia coli. At least in one case, no apparent effect on protein stability was observed, pointing to RNA level effects as the principal reason for the observed expression differences. Targeting a synonymous codon library to the 5' coding...

  18. Deficit of Kcnma1 mRNA expression in the dentate gyrus of epileptic rats

    Science.gov (United States)

    Ermolinsky, Boris; Arshadmansab, Massoud F.; Pacheco Otalora, Luis F.; Zarei, Masoud M.; Garrido-Sanabria, Emilio R.

    2008-01-01

    Epileptogenesis in mesial temporal lobe epilepsy is determined by several factors including abnormalities in the expression and function of ion channels. Here, we report a long-lasting deficit in gene expression of Kcnma1 coding for the large-conductance calcium-activated potassium (BK, MaxiK) channel α-subunits after pilocarpine-induced status epilepticus. By using comparative real-time PCR, Taqman gene expression assays, and the delta-delta comparative threshold method we detected a significant reduction in Kcnma1 expression in microdissected dentate gyrus at different intervals after status epilepticus (24 h, 10 days, 1 month, and more than 2 months). BK channels are key regulators of neuronal excitability and transmitter release. Hence, defective Kcnma1 expression may play a critical role in the pathogenesis of mesial temporal lobe epilepsy. PMID:18695509

  19. Changes in the topology of gene expression networks by human immunodeficiency virus type 1 (HIV-1) integration in macrophages.

    Science.gov (United States)

    Soto-Girón, María Juliana; García-Vallejo, Felipe

    2012-01-01

    One key step of human immunodeficiency virus type 1 (HIV-1) infection is the integration of its viral cDNA. This process is mediated through complex networks of host-virus interactions that alter several normal cell functions of the host. To study the complexity of disturbances in cell gene expression networks by HIV-1 integration, we constructed a network of human macrophage genes located close to chromatin regions rich in proviruses. To perform the network analysis, we selected 28 genes previously identified as the target of cDNA integration and their transcriptional profiles were obtained from GEO Profiles (NCBI). A total of 2770 interactions among the 28 genes located around the HIV-1 proviruses in human macrophages formed a highly dense main network connected to five sub-networks. The overall network was significantly enriched by genes associated with signal transduction, cellular communication and regulatory processes. To simulate the effects of HIV-1 integration in infected macrophages, five genes with the most number of interaction in the normal network were turned off by putting in zero the correspondent expression values. The HIV-1 infected network showed changes in its topology and alteration in the macrophage functions reflected in a re-programming of biosynthetic and general metabolic process. Understanding the complex virus-host interactions that occur during HIV-1 integration, may provided valuable genomic information to develop new antiviral treatments focusing on the management of some specific gene expression networks associated with viral integration. This is the first gene network which describes the human macrophages genes interactions related with HIV-1 integration. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Expression of tomato prosystemin gene in Arabidopsis reveals systemic translocation of its mRNA and confers necrotrophic fungal resistance.

    Science.gov (United States)

    Zhang, Haiyan; Yu, Pengli; Zhao, Jiuhai; Jiang, Hongling; Wang, Haiyang; Zhu, Yingfang; Botella, Miguel A; Šamaj, Jozef; Li, Chuanyou; Lin, Jinxing

    2018-01-01

    Systemin (SYS), an octadecapeptide hormone processed from a 200-amino-acid precursor (prosystemin, PS), plays a central role in the systemic activation of defense genes in tomato in response to herbivore and pathogen attacks. However, whether PS mRNA is transferable and its role in systemic defense responses remain unknown. We created the transgenic tomato PS gene tagged with the green fluorescent protein (PS-GFP) using a shoot- or root-specific promoter, and the constitutive 35S promoter in Arabidopsis. Subcellular localization of PS-/SYS-GFP was observed using confocal laser scanning microscopy and gene transcripts were determined using quantitative real-time PCR. In Arabidopsis, PS protein can be processed and SYS is secreted. Shoot-/root-specific expression of PS-GFP in Arabidopsis, and grafting experiments, revealed that the PS mRNA moves in a bi-directional manner. We also found that ectopic expression of PS improves Arabidopsis resistance to the necrotrophic fungus Botrytis cinerea, consistent with substantial upregulation of the transcript levels of specific pathogen-responsive genes. Our results provide novel insights into the multifaceted mechanism of SYS signaling transport and its potential application in genetic engineering for increasing pathogen resistance across diverse plant families. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. The effects of a single bout pilates exercise on mRNA expression of bone metabolic cytokines in osteopenia women.

    Science.gov (United States)

    Kim, Chang Sun; Kim, Ji Yeon; Kim, Hyo Jin

    2014-03-01

    The purpose of this study was to examine the effect of a single bout pilates exercise on mRNA expression of bone metabolic cytokines in elderly osteopenia women. We selected 11 people of elderly osteopenia women and loaded a single bout pilates exercise about RPE 10-14 level. The blood samples were collected before, immediately after and 60 minute after pilates exercise, then examined calcium metabolic markers in serum and extracted peripheral blood mononuclear cell (PBMC) from whole blood and confirmed mRNA expression of bone metabolic cytokines from PBMC. To clarify the changes during exercise, we designed repeated measure ANOVA as the control group to perform blood sampling without exercise. As a result, serum P showed significant interaction effect between group and time (ppilates exercise group decreased about 9% at immediately after exercise and 13% during recovery after exercise (ppilates group significantly increased at immediately after exercise and during recovery after exercise (ppilates group (ppilates group (NS). These results suggested that a single bout pilates exercise of elderly osteopenia women cause hypophosphatemia with temporary muscle damage, and it leading high turnover bone metabolic state with to activate both of bone formation and bone resorption.

  2. Myostatin mRNA expression and its association with body weight and carcass traits in Yunnan Wuding chicken.

    Science.gov (United States)

    Liu, L X; Dou, T F; Li, Q H; Rong, H; Tong, H Q; Xu, Z Q; Huang, Y; Gu, D H; Chen, X B; Ge, C R; Jia, J J

    2016-12-02

    Myostatin (MSTN) is expressed in the myotome and developing skeletal muscles, and acts to regulate the number of muscle fibers. Wuding chicken large body, developed muscle, high disease resistance, and tender, delicious meat, and are not selected for fast growth. Broiler chickens (Avian broiler) are selected for fast growth and have a large body size and high muscle mass. Here, 240 one-day-old chickens (120 Wuding chickens and 120 broilers) were examined. Twenty chickens from each breed were sacrificed at days 1, 30, 60, 90, 120, and 150. Breast and leg muscle samples were collected within 20 min of sacrifice to investigate the effects of MSTN gene expression on growth performance and carcass traits. Body weight, carcass traits, and skeletal muscle mass in Wuding chickens were significantly (P chickens at all time points. Breast muscle MSTN mRNA was lower in Wuding chickens than in broilers before day 30 (P chicken than in broilers (P chicken than in broilers at all ages except for day 60 (P chickens than in the fast growing broilers. In contract, leg muscle MSTN mRNA level has a greater effect in broilers than in Wuding chickens. MSTN regulates growth performance and carcass traits in chickens.

  3. UV-laser microdissection and mRNA expression analysis of individual neurons from postmortem Parkinson's disease brains.

    Science.gov (United States)

    Gründemann, Jan; Schlaudraff, Falk; Liss, Birgit

    2011-01-01

    Cell specificity of gene expression analysis is essential to avoid tissue sample related artifacts, in particular when the relative number of target cells present in the compared tissues varies dramatically, e.g., when comparing dopamine neurons in midbrain tissues from control subjects with those from Parkinson's disease (PD) cases. Here, we describe a detailed protocol that combines contact-free UV-laser microdissection and quantitative PCR of reverse-transcribed RNA of individual neurons from postmortem human midbrain tissue from PD patients and unaffected controls. Among expression changes in a variety of dopamine neuron marker, maintenance, and cell-metabolism genes, we found that α-synuclein mRNA levels were significantly elevated in individual neuromelanin-positive dopamine midbrain neurons from PD brains when compared to those from matched controls.

  4. Apoptosis induction and attenuation of inflammatory gene expression in murine macrophages via multitherapeutic nanomembranes

    International Nuclear Information System (INIS)

    Pierstorff, Erik; Krucoff, Max; Ho, Dean

    2008-01-01

    The realization of optimized therapeutic delivery is impaired by the challenge of localized drug activity and by the dangers of systemic cytotoxicity which often contribute to patient treatment complications. Here we demonstrate the block copolymer-mediated deposition and release of multiple therapeutics which include an LXRα/β agonist 3-((4-methoxyphenyl)amino)-4-phenyl-1-(phenylmethyl)-1H-pyrrole-2,5-dione (LXRa) and doxorubicin hydrochloride (Dox) at the air-water interface via Langmuir-Blodgett deposition, as well as copolymer-mediated potent drug elution toward the Raw 264.7 murine macrophage cell line. The resultant copolymer-therapeutic hybrid serves as a localized platform that can be functionalized with virtually any drug due to the integrated hydrophilic and hydrophobic components of the polymer structure. In addition, the sequestering function of the copolymer to anchor the drugs to implant surfaces can enhance delivery specificity when compared to systemic drug administration. Confirmation of drug functionality was confirmed via suppression of the interleukin 6 (Il-6) and tumor necrosis factor alpha (TNFα) inflammatory cytokines (LXRa), as well as DNA fragmentation analysis (Dox). Furthermore, the fragmentation assays and gene expression analysis demonstrated the innate biocompatibility of the copolymeric material at the gene expression level via the confirmed absence of material-induced apoptosis and a lack of inflammatory gene expression. This modality enables layer-by-layer control of agonist and chemotherapeutic functionalization at the nanoscale for the localization of drug dosage, while simultaneously utilizing the copolymer platform as an anchoring mechanism for drug sequestering, all with an innate material thickness of 4 nm per layer, which is orders of magnitude thinner than existing commercial technologies. Furthermore, these studies comprehensively confirmed the potential translational applicability of copolymeric nanomaterials as

  5. TNF Counterbalances the Emergence of M2 Tumor Macrophages

    Directory of Open Access Journals (Sweden)

    Franz Kratochvill

    2015-09-01

    Full Text Available Cancer can involve non-resolving, persistent inflammation where varying numbers of tumor-associated macrophages (TAMs infiltrate and adopt different activation states between anti-tumor M1 and pro-tumor M2 phenotypes. Here, we resolve a cascade causing differential macrophage phenotypes in the tumor microenvironment. Reduction in TNF mRNA production or loss of type I TNF receptor signaling resulted in a striking pattern of enhanced M2 mRNA expression. M2 gene expression was driven in part by IL-13 from eosinophils co-recruited with inflammatory monocytes, a pathway that was suppressed by TNF. Our data define regulatory nodes within the tumor microenvironment that balance M1 and M2 populations. Our results show macrophage polarization in cancer is dynamic and dependent on the balance between TNF and IL-13, thus providing a strategy for manipulating TAMs.

  6. Parallel mRNA, proteomics and miRNA expression analysis in cell line models of the intestine.

    Science.gov (United States)

    O'Sullivan, Finbarr; Keenan, Joanne; Aherne, Sinead; O'Neill, Fiona; Clarke, Colin; Henry, Michael; Meleady, Paula; Breen, Laura; Barron, Niall; Clynes, Martin; Horgan, Karina; Doolan, Padraig; Murphy, Richard

    2017-11-07

    To identify miRNA-regulated proteins differentially expressed between Caco2 and HT-29: two principal cell line models of the intestine. Exponentially growing Caco-2 and HT-29 cells were harvested and prepared for mRNA, miRNA and proteomic profiling. mRNA microarray profiling analysis was carried out using the Affymetrix GeneChip Human Gene 1.0 ST array. miRNA microarray profiling analysis was carried out using the Affymetrix Genechip miRNA 3.0 array. Quantitative Label-free LC-MS/MS proteomic analysis was performed using a Dionex Ultimate 3000 RSLCnano system coupled to a hybrid linear ion trap/Orbitrap mass spectrometer. Peptide identities were validated in Proteome Discoverer 2.1 and were subsequently imported into Progenesis QI software for further analysis. Hierarchical cluster analysis for all three parallel datasets (miRNA, proteomics, mRNA) was conducted in the R software environment using the Euclidean distance measure and Ward's clustering algorithm. The prediction of miRNA and oppositely correlated protein/mRNA interactions was performed using TargetScan 6.1. GO biological process, molecular function and cellular component enrichment analysis was carried out for the DE miRNA, protein and mRNA lists via the Pathway Studio 11.3 Web interface using their Mammalian database. Differential expression (DE) profiling comparing the intestinal cell lines HT-29 and Caco-2 identified 1795 Genes, 168 Proteins and 160 miRNAs as DE between the two cell lines. At the gene level, 1084 genes were upregulated and 711 were downregulated in the Caco-2 cell line relative to the HT-29 cell line. At the protein level, 57 proteins were found to be upregulated and 111 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Finally, at the miRNAs level, 104 were upregulated and 56 downregulated in the Caco-2 cell line relative to the HT-29 cell line. Gene ontology (GO) analysis of the DE mRNA identified cell adhesion, migration and ECM organization, cellular lipid

  7. Kaempferol attenuates COX-2 expression in IL-6-induced macrophages and carrageenan-induced mouse paw edema by targeting STAT3 and NF-kB

    Directory of Open Access Journals (Sweden)

    Anandita Basu

    2017-10-01

    Full Text Available Dietary polyphenols are reported to possess varied pharmacological activities, viz. antioxidant, anti-inflammatory, anti-cancer, anti-allergic actions. Here, we report the efficacy of Kaempferol (kae to attenuate expression of IL-6 induced cycloxygenase-2 (COX-2, an inducible isoform of cycloxygenase enzyme family that catalyzes synthesis of inflammatory mediators, prostanoids and prostaglandins. IL-6 is a pleiotropic cytokine involved in both acute and chronic inflammation. Our results showed that kae attenuated COX-2 expression at both mRNA and protein level in IL-6-induced THP1 macrophages. This attenuation of COX-2 expression by kae involved dose-dependent inhibition of phosphorylation of STAT3 (Tyr 705 and NF-kB p65 (Ser 536 leading to their deactivation and reduced nuclear localization in THP-1 macrophages. Moreover, kae modulates COX-2 expression as well as STAT3 and NF-kB activation in carrageenan-induced mouse paw edema model. RT-PCR and western blot analysis from paw tissues were harvested after kae injection (i.p followed by carrageenan-treatment in sub-plantar region of right hind paw. Results showed that kae attenuated COX-2 expression and STAT3 and NF-kB activation in carrageenan-induced mouse paw edema, suggesting that inhibition of both IL-6-STAT3-COX-2 and IL-6-NFkB-COX-2 axes by kae might be stimulus-independent. To understand binding affinity of kae with NF-kB and STAT3, docking analysis was performed using Patchdock server. From our findings, we observed strong binding affinity and transient interaction in both NF-kB/kae and STAT3/kae complexes. We noticed negative atomic contact energy and greater interface area for both the complexes. Selected complexes obtained from Patchdock were refined using Firedock online server which also suggested similar negative binding energy profile. It is plausible that kae attenuates COX-2 expression by directly binding to both STAT3 and NF-kB proteins and inhibiting their activation and

  8. Long Noncoding RNA HOXC-AS1 Suppresses Ox-LDL-Induced Cholesterol Accumulation Through Promoting HOXC6 Expression in THP-1 Macrophages.

    Science.gov (United States)

    Huang, Chuan; Hu, Yan-Wei; Zhao, Jing-Jing; Ma, Xin; Zhang, Yuan; Guo, Feng-Xia; Kang, Chun-Min; Lu, Jing-Bo; Xiu, Jian-Cheng; Sha, Yan-Hua; Gao, Ji-Juan; Wang, Yan-Chao; Li, Pan; Xu, Bang-Ming; Zheng, Lei; Wang, Qian

    2016-11-01

    Atherosclerosis is a common pathological basis of cardiovascular disease, which remains the leading cause of mortality. Long noncoding RNAs (lncRNAs) are newly studied non-protein-coding RNAs involved in gene regulation, but how lncRNAs exert regulatory effect on atherosclerosis remains unclear. In this study, we found that lncRNA HOXC cluster antisense RNA 1 (HOXC-AS1) and homeobox C6 (HOXC6) were downregulated in carotid atherosclerosis by performing microarray analysis. The results were verified in atherosclerotic plaques and normal arterial intima tissues by quantitative reverse transcription PCR and western blot analysis. Lentivirus-mediated overexpression of HOXC-AS1 induced HOXC6 expression at mRNA and protein levels in THP-1 macrophages. Besides, oxidized low-density lipoprotein (Ox-LDL) decreased expression of HOXC-AS1 and HOXC6 in a time-dependent manner. Induction of cholesterol accumulation by Ox-LDL could be partly suppressed by overexpression of HOXC-AS1.

  9. The Expression of mRNA LMP1 Epstein-Barr Virus from FFPE Tumour Biopsy: a Potential Biomarker of Nasopharyngeal Carcinoma Diagnosis

    Directory of Open Access Journals (Sweden)

    Daniel Joko Wahyono

    2017-07-01

    Full Text Available Nasopharyngeal carcinoma (NPC is a multifactorial disease that is endemic geographically in the world. Indonesian population has a highly incidence rate that is 6.2/100,000 people year. The pathogenesis of NPC is more directly reflected by carcinoma-specific viral transcriptional activity at the site of primary tumour. Epstein-Barr virus (EBV infection in NPC is reflected by the expression of EBV latent and lytic gene. In fact, mRNA Latent Membrane Protein 1 (LMP1 EBV expression was an important latent infection biomarker. The aim of this study was to determine a potential use of relative expression of mRNA LMP1 EBV from formalin-fixed paraffin embedded (FFPE tumour biopsy in NPC as a tumour biomarker. This reseach design was a cross sectional study. The samples were the archived specimens of FFPE tumour biopsy from NPC WHO-3 patient which were collected from untreated patients from 2014 in the Department of Pathology Anatomy, Prof. dr. Margono Soekarjo Hospital, Purwokerto. The expression of mRNA LMP1 EBV expression was determined by RT-PCR technique. The positivity of mRNA LMP1 EBV expression was 51.9%, indicating a moderate positivity. The result proved that the expression of mRNA LMP1 EBV from FFPE NPC WHO-3 tumour biopsy was a potential biomarker of NPC diagnosis. The molecular methods would improved the management of NPC, particularly in the histopathological diagnosis of NPC.

  10. High interleukin-6 mRNA expression is a predictor of relapse in colon cancer

    DEFF Research Database (Denmark)

    Olsen, Jesper; Kirkeby, Lene T; Olsen, Jørgen

    2015-01-01

    AIM: To investigate the expression of interleukin-6 (IL6) in colon cancer tissue, and to examine if the risk of relapse is influenced by IL6 expression. MATERIALS AND METHODS: Fresh-frozen biopsies from tumor and normal adjacent tissues were taken from patients with colon cancer during surgery...... for clinicopathological characteristics (Hazard Ratio=2.16, 95% CI=1.07-4.40; pcolon cancer tissue at the transcriptional level and is significantly associated with increased risk of relapse....... to normal adjacent tissue (pcancer stage. We found a significant association between high IL6 expression and risk of relapse (Hazard Ratio=2.23, 95% CI=1.10-4.53; p

  11. HemaExplorer: a database of mRNA expression profiles in normal and malignant haematopoiesis

    DEFF Research Database (Denmark)

    Bagger, Frederik Otzen; Rapin, Nicolas; Theilgaard-Mönch, Kim

    2013-01-01

    as well as from more differentiated cell types. Moreover, data from distinct subtypes of human acute myeloid leukemia is included in the database allowing researchers to directly compare gene expression of leukemic cells with those of their closest normal counterpart. Normalization and batch correction...... lead to full integrity of the data in the database. The HemaExplorer has comprehensive visualization interface that can make it useful as a daily tool for biologists and cancer researchers to assess the expression patterns of genes encountered in research or literature. HemaExplorer is relevant for all...... research within the fields of leukemia, immunology, cell differentiation and the biology of the haematopoietic system....

  12. Effect of strychnine hydrochloride on liver cytochrome P450 mRNA expression and monooxygenase activities in rat

    Directory of Open Access Journals (Sweden)

    Qian Gao

    2011-08-01

    Full Text Available Strychnos nux-vomica L. has been frequently used in traditional Chinese medicine but has high acute toxicity. It is commonly taken with Glycyrrhizae radix to decrease its toxicity but the mechanism of this interaction is unknown. In this work, the mRNA expression and the activity of four cytochrome P450 (CYP enzymes representative of four subfamilies (CYP1A, CYP3A, CYP2C and CYP2E were determined ex vivo in rat livers from groups of Wistar rats orally administered strychnine hydrochloride (SH at three doses (0.1, 0.3 and 0.9 mg/kg/day alone and, at the highest dose, in combination with glycyrrhetinic acid (GA, 25 mg/kg/day or liquiritin (LQ, 20 mg/kg/day once a day for 7 consecutive days. Compared to control, the mRNA expressions of CYP3A1, 1A2 and 2E1 were higher in rats receiving the highest dose of SH but lower for CYP3A1 and CYP2E1 in rats receiving the SH+GA and SH+LQ combinations. CYP2E1 activity was higher and CYP2C, CYP3A and CYP1A2 activities were lower in rats receiving the highest dose of SH. In contrast CYP1A2 and CYP2C activities were higher and CYP2E1 and CYP3A activities lower in rats receiving the SH+GA combination. CYP2E1 and CYP3A activities were also lower in rats receiving the SH+LQ combination. The results show that treatment with SH for 7 days affects the expression and the activity of CYP enzymes and that coadministration of GA and LQ modulates these effects. This modulation may explain the role of Glycyrrhizae radix in reducing the acute toxicity of Strychnos nux-vomica L.CYPs enzymes.

  13. Curcumin inhibits EMMPRIN and MMP-9 expression through AMPK-MAPK and PKC signaling in PMA induced macrophages.

    Science.gov (United States)

    Cao, Jiatian; Han, Zhihua; Tian, Lei; Chen, Kan; Fan, Yuqi; Ye, Bozhi; Huang, Weijian; Wang, Changqian; Huang, Zhouqing

    2014-09-21

    In coronary arteries, plaque disruption, the major acute clinical manifestations of atherosclerosis, leads to a subsequent cardiac event, such as acute myocardial infarction (AMI) and unstable angina pectoris (UA). Numerous reports have shown that high expression of MMP-9 (matrix metalloproteinase-9), MMP-13 (matrix metalloproteinase-13) and EMMPRIN (extracellular matrix metalloproteinase induce) in monocyte/macrophage results in the plaque progression and destabilization. Curcumin exerts well-known anti-inflammatory and antioxidant effects and probably has a protective role in the atherosclerosis. The purpose of our study was to investigate the molecular mechanisms by which curcumin affects MMP-9, MMP13 and EMMPRIN in PMA (phorbol 12-myristate 13-acetate) induced macrophages. Human monocytic cells (THP-1 cells) were pretreated with curcumin or compound C for 1 h, and then induced by PMA for 48 h. Total RNA and proteins were collected for real-time PCR and Western blot analysis, respectively. In the present study, the exposure to curcumin resulted in attenuated JNK, p38, and ERK activation and decreased expression of MMP-9, MMP-13 and EMMPRIN in PMA induced macrophages. Moreover, we demonstrated that AMPK (AMP-activated protein kinase) and PKC (Protein Kinase C) was activated by PMA during monocyte/macrophage differentiation. Furthermore, curcumin reversed PMA stimulated PKC activation and suppressed the chronic activation of AMPK, which in turn reduced the expression of MMP-9, MMP-13 and EMMPRIN. Therefore, it is suggested that curcumin by inhibiting AMPK-MAPK (mitogen activated protein kinase) and PKC pathway may led to down-regulated EMMPRIN, MMP-9 and MMP-13 expression in PMA-induced THP-1 cells.

  14. TIE2-expressing macrophages limit the therapeutic efficacy of the vascular disrupting agent, combretastatin A4 phosphate in mice.

    OpenAIRE

    Welford, Abigail F.; Biziato, Daniela; Coffelt, Seth B.; Nucera, Silvia; Fisher, Matthew; Pucci, Ferdinando; Di Serio, Clelia; Naldini, Luigi; De Palma, Michele; Tozer, Gillian M.; Lewis, Claire E.

    2011-01-01

    Vascular-disrupting agents (VDAs) such as combretastatin A4 phosphate (CA4P) selectively disrupt blood vessels in tumors and induce tumor necrosis. However, tumors rapidly repopulate after treatment with such compounds. Here, we show that CA4P-induced vessel narrowing, hypoxia, and hemorrhagic necrosis in murine mammary tumors were accompanied by elevated tumor levels of the chemokine CXCL12 and infiltration by proangiogenic TIE2-expressing macrophages (TEMs). Inhibiting TEM recruitment to CA...

  15. Expression of cell cycle regulating factor mRNA in small cell lung cancer xenografts

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1998-01-01

    and CDK6 when in vitro and in vivo data were compared. Two of the cell lines that express the retinoblastoma (Rb) protein had no sign of a deregulated Rb pathway but further studies at the protein level are necessary to demonstrate whether these two cell lines should have a normal Rb pathway or whether...

  16. Improving the expression of recombinant pullulanase by increasing mRNA stability in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Tao Li

    2017-09-01

    Conclusion: The addition of the 5′ SD sequence at the 5′ UTR and a 3′ stem-loop structure at the 3′ UTR of the pulA gene is an effective approach to increase pulA gene expression and fermentation enzyme activity.

  17. Differential expression of melanopsin mRNA and protein in the Brown Norwegian rats

    DEFF Research Database (Denmark)

    Hannibal, Jens; Georg, Birgitte; Fahrenkrug, Jan

    2012-01-01

    and negative masking behaviour. Previous studies have demonstrated that melanopsin expression in albino rats is regulated by light and darkness. The present study was undertaken to study the influence of light and darkness during the circadian day and after extended periods of constant light and darkness...

  18. The effects of valproic acid on the mRNA expression of Natriuretic ...

    African Journals Online (AJOL)

    Conclusion: The alteration of NPR-A and KCNQ1 genes were more ordered among SW-480 cancer cells. The expressional changes of KCNQ1 and NPR-A among VPA treated human colon cancer cells follow the same pattern in similar combinations. VPA could regulate the expression of KCNQ1 through altering the mRNA ...

  19. Small suitability of the DLEC1, MLH1 and TUSC4 mRNA expression ...

    Indian Academy of Sciences (India)

    JACEK KORDIAK

    2017-06-18

    Jun 18, 2017 ... The DLEC1, TUSC4 and MLH1 expression was analysed in lung tumour tissue samples obtained from ... among men, however, the incidence is also rising in women ... rate of lung cancer patients is still poor, mainly because .... Up to 30 PYs. 18 ..... study performed by our group, high percentage (78%).

  20. Associations of ACE Gene Insertion/Deletion Polymorphism, ACE Activity, and ACE mRNA Expression with Hypertension in a Chinese Population

    Science.gov (United States)

    He, Qingfang; Fan, Chunhong; Yu, Min; Wallar, Gina; Zhang, Zuo-Feng; Wang, Lixin; Zhang, Xinwei; Hu, Ruying

    2013-01-01

    Background The present study was designed to explore the association of angiotensin converting enzyme (ACE) gene insertion/deletion (I/D, rs4646994) polymorphism, plasma ACE activity, and circulating ACE mRNA expression with essential hypertension (EH) in a Chinese population. In addition, a new detection method for circulating ACE mRNA expression was explored. Methods The research was approved by the ethics committee of Zhejiang Provincial Center for Disease Prevention and Control. Written informed consent was obtained prior to the investigation. 221 hypertensives (cases) and 221 normotensives (controls) were interviewed, subjected to a physical examination, and provided blood for biochemical and genetic tests. The ACE mRNA expression was analyzed by real time fluorescent quantitative Reverse Transcription PCR (FQ-RT-PCR). We performed logistic regression to assess associations of ACE I/D genotypes, ACE activity, and ACE mRNA expression levels with hypertension. Results The results of the multivariate logistic regression analysis showed that the additive model (ID, DD versus II) of the ACE genotype revealed an association with hypertension with adjusted OR of 1.43(95% CI: 1.04-1.97), and ACE ID genotype with adjusted OR of 1.72(95% CI: 1.01-2.92), DD genotype with adjusted OR of 1.94(95% CI: 1.01-3.73), respectively. In addition, our data also indicate that plasma ACE activity (adjusted OR was 1.13(95% CI: 1.08-1.18)) was significantly related to hypertension. However, the plasma ACE mRNA expressions were not different between the cases and controls. Conclusion ACE I/D polymorphism and ACE activity revealed significant influence on hypertension, while circulating ACE mRNA expression was not important factors associated with hypertension in this Chinese population. The detection of circulating ACE mRNA expression by FQ-RT-PCR might be a useful method for early screening and monitoring of EH. PMID:24098401

  1. Cytochrome P450-2C11 mRNA is not expressed in endothelial cells dissected from rat renal arterioles.

    Science.gov (United States)

    Heil, Sandra G; De Vriese, An S; Kluijtmans, Leo A J; Dijkman, Henry; van Strien, Denise; Akkers, Robert; Blom, Henk J

    2005-01-01

    Cytochrome P450 (CYP) isoenzymes (CYP2C and CYP2J) are involved in the production of epoxyeicosatrienoic acids, which are postulated as endothelium-derived hyperpolarizing factors (EDHFs). We hypothesized that if CYP2C11 is involved in the EDHF-mediated responses, its mRNA should be expressed in endothelial cells. We, therefore, examined the mRNA expression of CYP2C11 in endothelial cells of renal arterioles. Laser microdissection was applied to isolate endothelial cells from the renal arterioles of 4 male and 4 female Wistar rats. As a positive control of CYP2C11 expression, hepatocytes were also dissected from these rats. RNA was isolated and real-time quantitative polymerase chain reaction (Q-PCR) analysis was applied. Q-PCR analysis showed that CYP2C11 mRNA was not expressed in laser microdissected endothelial cells of renal arterioles of male and female rats. CYP2C11 mRNA expression was highly abundant in hepatocytes dissected from male livers, but in female livers hardly any CYP2C11 mRNA was detected. We have shown that endothelial cells can be dissected from small renal arterioles by laser microdissection to study the mRNA expression of specific genes by Q-PCR. Using this novel tool, we demonstrated that the CYP2C11 mRNA was not expressed in the endothelial cells of renal arterioles. Therefore, we speculate that CYP2C11 does not contribute to the EDHF-mediated responses in renal arterioles. Copyright (c) 2005 S. Karger AG, Basel.

  2. The Effects of Exercise on Expression of CYP19 and StAR mRNA in Steroid-Induced Polycystic Ovaries of Female Rats.

    Science.gov (United States)

    Aghaie, Fatemeh; Khazali, Homayoun; Hedayati, Mehdi; Akbarnejad, Ali

    2018-01-01

    Polycystic ovarian syndrome (PCOS) is the most frequent female endocrine disorder that affects 5-10% of women. PCOS is characterized by hyperandrogenism, oligo-/anovulation, and polycystic ovaries. The aim of the present research is to evaluate the expression of steroidogenic acute regulatory protein (StAR) and aromatase (CYP19) mRNA in the ovaries of an estradiol valerate (EV)-induced PCOS rat model, and the effect of treadmill and running wheel (voluntary) exercise on these parameters. In this experimental study, we divided adult female Wistar rats that weighed approximately 220 ± 20 g initially into control (n=10) and PCOS (n=30). Subsequently, PCOS group were divided to PCOS, PCOS with treadmill exercise (P-ExT), and PCOS with running wheel exercise (P-ExR) groups (n=10 per group). The expressions of StAR and CYP19 mRNA in the ovaries were determined by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). Data were analyzed by one-way ANOVA using SPSS software, version 16. The data were assessed at α=0.05. There was significantly lower mRNA expression of CYP19 in the EV-induced PCOS, running wheel and treadmill exercise rats compared to the control group (PStAR in the ovaries of the PCOS group indicated an increasing trend compared to the control group, however this was not statistically significant (P=0.810). We observed that 8 weeks of running wheel and treadmill exercises could not statistically decrease StAR mRNA expression compared to the PCOS group (P=0.632). EV-induced PCOS in rats decreased CYP19 mRNA expression, but had no effect on StAR mRNA expression. We demonstrated that running wheel and moderate treadmill exercise could not modify CYP19 and StAR mRNA expressions. Copyright© by Royan Institute. All rights reserved.

  3. Customized treatment in non-small-cell lung cancer based on EGFR mutations and BRCA1 mRNA expression.

    Directory of Open Access Journals (Sweden)

    Rafael Rosell

    Full Text Available BACKGROUND: Median survival is 10 months and 2-year survival is 20% in metastatic non-small-cell lung cancer (NSCLC treated with platinum-based chemotherapy. A small fraction of non-squamous cell lung cancers harbor EGFR mutations, with improved outcome to gefitinib and erlotinib. Experimental evidence suggests that BRCA1 overexpression enhances sensitivity to docetaxel and resistance to cisplatin. RAP80 and Abraxas are interacting proteins that form complexes with BRCA1 and could modulate the effect of BRCA1. In order to further examine the effect of EGFR mutations and BRCA1 mRNA levels on outcome in advanced NSCLC, we performed a prospective non-randomized phase II clinical trial, testing the hypothesis that customized therapy would confer improved outcome over non-customized therapy. In an exploratory analysis, we also examined the effect of RAP80 and Abraxas mRNA levels. METHODOLOGY/PRINCIPAL FINDINGS: We treated 123 metastatic non-squamous cell lung carcinoma patients using a customized approach. RNA and DNA were isolated from microdissected specimens from paraffin-embedded tumor tissue. Patients with EGFR mutations received erlotinib, and those without EGFR mutations received chemotherapy with or without cisplatin based on their BRCA1 mRNA levels: low, cisplatin plus gemcitabine; intermediate, cisplatin plus docetaxel; high, docetaxel alone. An exploratory analysis examined RAP80 and Abraxas expression. Median survival exceeded 28 months for 12 patients with EGFR mutations, and was 11 months for 38 patients with low BRCA1, 9 months for 40 patients with intermediate BRCA1, and 11 months for 33 patients with high BRCA1. Two-year survival was 73.3%, 41.2%, 15.6% and 0%, respectively. Median survival was influenced by RAP80 expression in the three BRCA1 groups. For example, for patients with both low BRCA1 and low RAP80, median survival exceeded 26 months. RAP80 was a significant factor for survival in patients treated according to BRCA1

  4. A Systematic Analysis on mRNA and MicroRNA Expression in Runting and Stunting Chickens

    Science.gov (United States)

    Xu, Haiping; Xu, Zhenqiang; Ma, Jinge; Li, Bixiao; Lin, Shudai; Nie, Qinghua; Luo, Qingbin; Zhang, Xiquan

    2015-01-01

    Runting and stunting syndrome (RSS), which is characterized by lower body weight, widely occurs in broilers. Some RSS chickens simply exhibit slow growth without pathological changes. An increasing number of studies indicate that broiler strains differ in susceptibility to infectious diseases, most likely due to their genetic differences. The objective of this study was to detect the differentially expressed miRNAs and mRNAs in RSS and normal chickens. By integrating miRNA with mRNA expression profiling, potential molecular mechanisms involved in RSS could be further explored. Twenty-two known miRNAs and 1,159 genes were differentially expressed in RSS chickens compared with normal chickens (P chicken liver albeit with reduced abundance. Dual-luciferase reporter assay indicated that gga-miR-30b/c directly target CARS through binding to its 3′UTR. The miR-30b/c: CARS regulation mainly occurred in liver. In thigh muscle and the hypothalamus, miR-30b/c are expressed at higher levels in RSS chickens compared with normal chickens from 2 to 6 w of age, and notably significant differences are observed at 4 w of age. PMID:26010155

  5. Differential expression of viral PAMP receptors mRNA in peripheral blood of patients with chronic hepatitis C infection

    Directory of Open Access Journals (Sweden)

    Riñón Marta

    2007-11-01

    Full Text Available Abstract Background Pathogen-associated molecular patterns (PAMP receptors play a key role in the early host response to viruses. In this work, we determined mRNA levels of two members of the Toll-like Receptors family, (TLR3 and TLR7 and the helicase RIG-I, all of three recognizing viral RNA products, in peripheral blood of healthy donors and hepatitis C virus (HCV patients, to observe if their transcripts are altered in this disease. Methods IFN-α, TLR3, TLR7 and RIG-I levels in peripheral blood from healthy controls (n = 18 and chronic HCV patients (n = 18 were quantified by real-time polymerase chain reaction. Results Our results show that IFN-α, TLR3, TLR7 and RIG-I mRNA levels are significantly down-regulated in patients with chronic HCV infection when compared with healthy controls. We also found that the measured levels of TLR3 and TLR7, but not RIG-I, correlated significantly with those of IFN-α Conclusion Monitoring the expression of RNA-sensing receptors like TLR3, TLR7 and RIG-I during the different clinical stages of infection could bring a new source of data about the prognosis of disease.

  6. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung [Department of Anesthesiology, Health Sciences Center L4 Rm 081, Stony Brook University, Stony Brook, NY 11794 (United States); Rebecchi, Mario, E-mail: Mario.rebecchi@SBUmed.org [Department of Anesthesiology, Health Sciences Center L4 Rm 081, Stony Brook University, Stony Brook, NY 11794 (United States)

    2012-10-01

    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1} knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is a

  7. Expression of macrophage migration inhibitory factor in footpad skin lesions with diabetic neuropathy.

    Science.gov (United States)

    Up Noh, Sun; Lee, Won-Young; Kim, Won-Serk; Lee, Yong-Taek; Jae Yoon, Kyung

    2018-01-01

    Background Diabetic neuropathy originating in distal lower extremities is associated with pain early in the disease course, overwhelming in the feet. However, the pathogenesis of diabetic neuropathy remains unclear. Macrophage migration inhibitory factor has been implicated in the onset of neuropathic pain and the development of diabetes. Objective of this study was to observe pain syndromes elicited in the footpad of diabetic neuropathy rat model and to assess the contributory role of migration inhibitory factor in the pathogenesis of diabetic neuropathy. Methods Diabetic neuropathy was made in Sprague Dawley rats by streptozotocin. Pain threshold was evaluated using von Frey monofilaments for 24 weeks. On comparable experiment time after streptozotocin injection, all footpads were prepared for following procedures; glutathione assay, terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling staining, immunohistochemistry staining, real-time reverse transcription polymerase chain reaction, and Western blot. Additionally, human HaCaT skin keratinocytes were treated with methylglyoxal, transfected with migration inhibitory factor/control small interfering RNA, and prepared for real-time reverse transcription polymerase chain reaction and Western blot. Results As compared to sham group, pain threshold was significantly reduced in diabetic neuropathy group, and glutathione was decreased in footpad skin, simultaneously, cell death was increased. Over-expression of migration inhibitory factor, accompanied by low expression of glyoxalase-I and intraepidermal nerve fibers, was shown on the footpad skin lesions of diabetic neuropathy. But, there was no significance in expression of neurotransmitters and inflammatory mediators such as transient receptor potential vanilloid 1, mas-related G protein coupled receptor D, nuclear factor kappa B, tumor necrosis factor-alpha, and interleukin-6 between diabetic neuropathy group and sham group. Intriguingly

  8. The classification of mRNA expression levels by the phosphorylation state of RNAPII CTD based on a combined genome-wide approach

    Directory of Open Access Journals (Sweden)

    Tachibana Taro

    2011-10-01

    Full Text Available Abstract Background Cellular function is regulated by the balance of stringently regulated amounts of mRNA. Previous reports revealed that RNA polymerase II (RNAPII, which transcribes mRNA, can be classified into the pausing state and the active transcription state according to the phosphorylation state of RPB1, the catalytic subunit of RNAPII. However, genome-wide association between mRNA expression level and the phosphorylation state of RNAPII is unclear. While the functional importance of pausing genes is clear, such as in mouse Embryonic Stem cells for differentiation, understanding this association is critical for distinguishing pausing genes from active transcribing genes in expression profiling data, such as microarrays and RNAseq. Therefore, we examined the correlation between the phosphorylation of RNAPII and mRNA expression levels using a combined analysis by ChIPseq and RNAseq. Results We first performed a precise quantitative measurement of mRNA by performing an optimized calculation in RNAseq. We then visualized the recruitment of various phosphorylated RNAPIIs, such as Ser2P and Ser5P. A combined analysis using optimized RNAseq and ChIPseq for phosphorylated RNAPII revealed that mRNA levels correlate with the various phosphorylation states of RNAPII. Conclusions We demonstrated that the amount of mRNA is precisely reflected by the phased phosphorylation of Ser2 and Ser5. In particular, even the most "pausing" genes, for which only Ser5 is phosphorylated, were detectable at a certain level of mRNA. Our analysis indicated that the complexity of quantitative regulation of mRNA levels could be classified into three categories according to the phosphorylation state of RNAPII.

  9. Alteration of human macrophages microRNA expression profile upon infection with Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Lucinda Furci

    2013-01-01

    Conclusions: This study signifies the miRNA host response upon intracellular mycobacterial infection in macrophages, providing new aspects of regulation in host-pathogen interactions, at post-transcriptional levels.

  10. Expression of C-type lectin receptor mRNA in chronic otitis media with cholesteatoma.

    Science.gov (United States)

    Kim, Sang Hoon; Han, Seung-Ho; Byun, Jae Yong; Park, Moon Suh; Kim, Young Il; Yeo, Seung Geun

    2017-06-01

    The levels of expression of various C-type lectin receptors (CLRs) messenger ribo nucleic acids (mRNAs) were significantly higher in cholesteatomas than in normal skin, suggesting that these CLRs may be involved in the pathogenesis of cholesteatoma. Altered expression of pattern recognition receptors may be associated with immune responses in patients with cholesteatoma. This study assessed the levels of expression of CLR mRNAs in normal skin and in cholesteatoma. Cholesteatoma specimens were obtained from 38 patients with acquired cholesteatoma. The levels of expression of various CLR mRNAs were assessed quantitatively using real-time RT-PCR (Reverse transcription polymerase chain reaction) and correlated with age, sex, the presence of bacteria, hearing level, frequency of surgery, and degree of ossicle destruction. The levels of CD206 (cluster of differentiation 206), DEC-205 (Dendritic and epithelial cell-205), MGL (monoacylglycerol lipase), CLEC5A (C-type lectin domain family 5 member A), Dectin-2 (dendrite cell-associated C-type lectin-2), BDCA2 (Blood dendritic cell antigen 2), Mincle, DCIR (dendritic cell immunoreceptor), Dectin-1, MICL (Myeloid inhibitory C type-like lectin), and CLEC12B (C-type lectin domain family 12, member B) mRNAs were significantly higher in cholesteatoma than in control skin samples (p C-type lectin domain family 5 member) and Dectin-1 mRNAs were significantly higher in cholesteatomas with ≥2 than ≤1 destroyed ossicles (p < 0.05), and the levels of MGL, Mincle, Dectin-1, and CLEC12B mRNAs were significantly higher in recurrent than initial cholesteatoma specimens (p < 0.05). The level of CLEC5A mRNAs was significantly higher in patients with severe than mild-to-moderate hearing loss (p < 0.05).

  11. Effect of dietary lead on intestinal nutrient transporters mRNA expression in broiler chickens.

    Science.gov (United States)

    Ebrahimi, Roohollah; Faseleh Jahromi, Mohammad; Liang, Juan Boo; Soleimani Farjam, Abdoreza; Shokryazdan, Parisa; Idrus, Zulkifli

    2015-01-01

    Lead- (Pb-) induced oxidative stress is known to suppress growth performance and feed efficiency in broiler chickens. In an attempt to describe the specific underlying mechanisms of such phenomenon we carried out the current study. Ninety-six one-day-old broiler chicks were randomly assigned to 2 dietary treatment groups of 6 pen replicates, namely, (i) basal diet containing no lead supplement (control) and (ii) basal diet containing 200 mg lead acetate/kg of diet. Following 3 weeks of experimental period, jejunum samples were collected to examine the changes in gene expression of several nutrient transporters, antioxidant enzymes, and heat shock protein 70 (Hsp70) using quantitative real-time PCR. The results showed that addition of lead significantly decreased feed intake, body weight gain, and feed efficiency. Moreover, with the exception of GLUT5, the expression of all sugar, peptide, and amino acid transporters was significantly downregulated in the birds under Pb induced oxidative stress. Exposure to Pb also upregulated the antioxidant enzymes gene expression together with the downregulation of glutathione S-transferase and Hsp70. In conclusion, it appears that Pb-induced oxidative stress adversely suppresses feed efficiency and growth performance in chicken and the possible underlying mechanism for such phenomenon is downregulation of major nutrient transporter genes in small intestine.

  12. A protein and mRNA expression-based classification of gastric cancer.

    Science.gov (United States)

    Setia, Namrata; Agoston, Agoston T; Han, Hye S; Mullen, John T; Duda, Dan G; Clark, Jeffrey W; Deshpande, Vikram; Mino-Kenudson, Mari; Srivastava, Amitabh; Lennerz, Jochen K; Hong, Theodore S; Kwak, Eunice L; Lauwers, Gregory Y

    2016-07-01

    The overall survival of gastric carcinoma patients remains poor despite improved control over known risk factors and surveillance. This highlights the need for new classifications, driven towards identification of potential therapeutic targets. Using sophisticated molecular technologies and analysis, three groups recently provided genetic and epigenetic molecular classifications of gastric cancer (The Cancer Genome Atlas, 'Singapore-Duke' study, and Asian Cancer Research Group). Suggested by these classifications, here, we examined the expression of 14 biomarkers in a cohort of 146 gastric adenocarcinomas and performed unsupervised hierarchical clustering analysis using less expensive and widely available immunohistochemistry and in situ hybridization. Ultimately, we identified five groups of gastric cancers based on Epstein-Barr virus (EBV) positivity, microsatellite instability, aberrant E-cadherin, and p53 expression; the remaining cases constituted a group characterized by normal p53 expression. In addition, the five categories correspond to the reported molecular subgroups by virtue of clinicopathologic features. Furthermore, evaluation between these clusters and survival using the Cox proportional hazards model showed a trend for superior survival in the EBV and microsatellite-instable related adenocarcinomas. In conclusion, we offer as a proposal a simplified algorithm that is able to reproduce the recently proposed molecular subgroups of gastric adenocarcinoma, using immunohistochemical and in situ hybridization techniques.

  13. Tiaozhi Tongmai Granules reduce atherogenesis and promote the expression of ATP-binding cassette transporter A1 in rabbit atherosclerotic plaque macrophages and the liver

    Directory of Open Access Journals (Sweden)

    Qing Sun

    2014-07-01

    Conclusions: Tiaozhi Tongmai Granules appear to have an anti-atherogenic effect that is most likely mediated by simultaneously upregulating the protein expression of ABCA1 in rabbit atherosclerotic plaque macrophages and in the liver.

  14. In vitro and intra-macrophage gene expression by Rhodococcus equi strain 103.

    Science.gov (United States)

    Rahman, Md Tanvir; Parreira, Valeria; Prescott, John F

    2005-09-30

    Rhodococcus equi is a facultative intracellular respiratory pathogen of foals that persists and multiplies within macrophages. In foals, virulence is associated with 80-90 kb plasmids, which include a pathogenicity island (PI) containing the virulence-associated protein (vap) gene family, but detailed understanding of the basis of virulence is still poor. A 60 spot-based DNA microarray was developed containing eight PI genes and 42 chromosomal putative virulence or virulence-associated genes selected from a recent partial genome sequence in order to study transcription of these genes by R. equi grown inside macrophages and under in vitro conditions thought to simulate those of macrophages. In addition to seven PI genes, nine chromosomal genes involved in fatty acid and lipid metabolism (choD, fadD13, fbpB), heme biosynthesis (hemE), iron utilization (mbtF), heat shock resistance and genes encoding chaperones (clpB, groEL), a sigma factor (sigK), and a transcriptional regulator (moxR) were significantly induced in R. equi growing inside macrophages. The pattern of R. equi chromosomal genes significantly transcribed inside macrophages largely differed from those transcribed under in vitro conditions (37 degrees C, pH 5.0 or 50mM H2O2 for 30 min). This study has identified genes, other than those of the virulence plasmid, the transcription of which is enhanced within equine macrophages. These genes should be investigated further to improve understanding of how this organism survives intracellularly.

  15. Heterologous Expression of Membrane and Soluble Proteins Derepresses GCN4 mRNA Translation in the Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Steffensen, L.; Pedersen, P. A.

    2006-01-01

    -ATPase also induced GCN4 translation. Derepression of GCN4 translation required phosphorylation of eIF-2 , the tRNA binding domain of Gcn2p, and the ribosome-associated proteins Gcn1p and Gcn20p. The increase in Gcn4p density in response to heterologous expression did not induce transcription from the HIS4...... promoter, a traditional Gcn4p target.......This paper describes the first physiological response at the translational level towards heterologous protein production in Saccharomyces cerevisiae. In yeast, the phosphorylation of eukaryotic initiation factor 2 (eIF-2 ) by Gcn2p protein kinase mediates derepression of GCN4 mRNA translation. Gcn4...

  16. The mRNA expression of SETD2 in human breast cancer: correlation with clinico-pathological parameters

    Energy Technology Data Exchange (ETDEWEB)

    Al Sarakbi, W; Sasi, W [St George' s University of London, Blackshaw Road, Tooting, London, SW17 OQT (United Kingdom); Jiang, WG [University Department of Surgery, Wales College of Medicine, Cardiff University, CF14 4XN (United Kingdom); Roberts, T; Newbold, RF [Institute of Cancer Genetics and Pharmacogenomics, Brunel University, Uxbridge, Middlesex, UB8 3PH (United Kingdom); Mokbel, K [St George' s University of London, Blackshaw Road, Tooting, London, SW17 OQT (United Kingdom); Institute of Cancer Genetics and Pharmacogenomics, Brunel University, Uxbridge, Middlesex, UB8 3PH (United Kingdom)

    2009-08-21

    SET domain containing protein 2 (SETD2) is a histone methyltransferase that is involved in transcriptional elongation. There is evidence that SETD2 interacts with p53 and selectively regulates its downstream genes. Therefore, it could be implicated in the process of carcinogenesis. Furthermore, this gene is located on the short arm of chromosome 3p and we previously demonstrated that the 3p21.31 region of chromosome 3 was associated with permanent growth arrest of breast cancer cells. This region includes closely related genes namely: MYL3, CCDC12, KIF9, KLHL18 and SETD2. Based on the biological function of these genes, SETD2 is the most likely gene to play a tumour suppressor role and explain our previous findings. Our objective was to determine, using quantitative PCR, whether the mRNA expression levels of SETD2 were consistent with a tumour suppressive function in breast cancer. This is the first study in the literature to examine the direct relationship between SETD2 and breast cancer. A total of 153 samples were analysed. The levels of transcription of SETD2 were determined using quantitative PCR and normalized against (CK19). Transcript levels within breast cancer specimens were compared to normal background tissues and analyzed against conventional pathological parameters and clinical outcome over a 10 year follow-up period. The levels of SETD2 mRNA were significantly lower in malignant samples (p = 0.0345) and decreased with increasing tumour stage. SETD2 expression levels were significantly lower in samples from patients who developed metastasis, local recurrence, or died of breast cancer when compared to those who were disease free for > 10 years (p = 0.041). This study demonstrates a compelling trend for SETD2 transcription levels to be lower in cancerous tissues and in patients who developed progressive disease. These findings are consistent with a possible tumour suppressor function of this gene in breast cancer.

  17. Effects of growth hormone treatment on the pituitary expression of GHRH receptor mRNA in uremic rats.

    Science.gov (United States)

    Ferrando, Susana; Rodríguez, Julián; Santos, Fernando; Weruaga, Ana; Fernández, Marta; Carbajo, Eduardo; García, Enrique

    2002-09-01

    A decreased ability of pituitary cells to secrete growth hormone (GH) in response to growth hormone releasing hormone (GHRH) stimulation has been shown in young uremic rats. The aim of the current study was to examine the effect of uremia and GH treatment on pituitary GHRH receptor expression. Pituitary GHRH receptor mRNA levels were analyzed by RNase protection assay in young female rats made uremic by subtotal nephrectomy, either untreated (UREM) or treated with 10 IU/kg/day of GH (UREM-GH), and normal renal function animals fed ad libitum (SAL) or pair-fed with the UREM group (SPF). Rats were sacrificed 14 days after the second stage nephrectomy. Renal failure was confirmed by concentrations (X +/- SEM) of serum urea nitrogen (mmol/L) and creatinine (micromol/L) in UREM (20 +/- 1 and 89.4 +/- 4.5) and UREM-GH (16 +/- 1 and 91.4 +/- 6.9) that were much higher (P growth retarded as shown by a daily longitudinal tibia growth rate below (P growth rate acceleration (213 +/- 6 microm/day). GHRH receptor mRNA levels were no different among the SAL (0.43 +/- 0.03), SPF (0.43 +/- 0.08) and UREM (0.44 +/- 0.04) groups, whereas UREM-GH rats had significantly higher values (0.72 +/- 0.07). The status of pituitary GHRH receptor is not modified by nutritional deficit or by severe uremia causing growth retardation. By contrast, the growth promoting effect of GH administration is associated with stimulated GHRH receptor gene expression.

  18. Prognostic value of alcohol dehydrogenase mRNA expression in gastric cancer.

    Science.gov (United States)

    Guo, Erna; Wei, Haotang; Liao, Xiwen; Xu, Yang; Li, Shu; Zeng, Xiaoyun

    2018-04-01

    Previous studies have reported that alcohol dehydrogenase (ADH) isoenzymes possess diagnostic value in gastric cancer (GC). However, the prognostic value of ADH isoenzymes in GC remains unclear. The aim of the present study was to identify the prognostic value of ADH genes in patients with GC. The prognostic value of ADH genes was investigated in patients with GC using the Kaplan-Meier plotter tool. Kaplan-Meier plots were used to assess the difference between groups of patients with GC with different prognoses. Hazard ratios (HR) and 95% confidence intervals (CI) were used to assess the relative risk of GC survival. Overall, 593 patients with GC and 7 ADH genes were included in the survival analysis. High expression of ADH 1A (class 1), α polypeptide ( ADH1A; log-rank P=0.043; HR=0.79; 95% CI: 0.64-0.99), ADH 1B (class 1), β polypeptide ( ADH1B ; log-rank P=1.9×10 -05 ; HR=0.65; 95% CI: 0.53-0.79) and ADH 5 (class III), χ polypeptide ( ADH5 ; log-rank P=0.0011; HR=0.73; 95% CI: 0.6-0.88) resulted in a significantly decreased risk of mortality in all patients with GC compared with patients with low expression of those genes. Furthermore, protective effects may additionally be observed in patients with intestinal-type GC with high expression of ADH1B (log-rank P=0.031; HR=0.64; 95% CI: 0.43-0.96) and patients with diffuse-type GC with high expression of ADH1A (log-rank P=0.014; HR=0.51; 95% CI: 0.3-0.88), ADH1B (log-rank P=0.04; HR=0.53; 95% CI: 0.29-0.98), ADH 4 (class II), π polypeptide (log-rank P=0.033; HR=0.58; 95% CI: 0.35-0.96) and ADH 6 (class V) (log-rank P=0.037; HR=0.59; 95% CI: 0.35-0.97) resulting in a significantly decreased risk of mortality compared with patients with low expression of those genes. In contrast, patients with diffuse-type GC with high expression of ADH5 (log-rank P=0.044; HR=1.66; 95% CI: 1.01-2.74) were significantly correlated with a poor prognosis. The results of the present study suggest that ADH1A and ADH1B may be potential

  19. Exercise induced regulation of muscular Na+,K+ pump, FXYD1, and NHE1 mRNA and protein expression: importance of training status, intensity, and muscle type

    DEFF Research Database (Denmark)

    Rasmussen, Martin Krøyer; Juel, Carsten; Nordsborg, Nikolai Baastrup

    2011-01-01

    It is investigated if exercise induced mRNA changes cause similar protein expression changes of Na(+), K(+) pump isoforms (a1, a2, ß1, ß2), FXYD1 and NHE1 in rat skeletal muscle. Expression was evaluated (n=8 per group) in Soleus and EDL after 1 day, 3 days and 3 weeks (5 sessions per week...

  20. Muscarinic receptor subtype mRNA expression in the human prostate: association with age, pathological diagnosis, prostate size, or potentially interfering medications?

    NARCIS (Netherlands)

    Witte, Lambertus P. W.; Teitsma, Christine A.; de La Rosette, Jean J. M. C. H.; Michel, Martin C.

    2014-01-01

    As the prostate abundantly expresses muscarinic receptors and antagonists for such receptors are increasingly used in the treatment of men with voiding function and large prostates, we have explored an association of the mRNA expression of human M1, M2, M3, M4, and M5 receptors in human prostate

  1. IL-2 induction of IL-1 beta mRNA expression in monocytes. Regulation by agents that block second messenger pathways

    DEFF Research Database (Denmark)

    Kovacs, E J; Brock, B; Varesio, L

    1989-01-01

    We have previously shown that in mixed cultures of PBL incubation with human rIL-2 induces the rapid expression of IL-1 alpha and IL-1 beta mRNA. Because studies have demonstrated that IL-2R can be expressed on the surface of human peripheral blood monocytes, we chose to investigate whether IL-1 ...

  2. Enhancement of Bovine oocyte maturation by leptin is accompanied by an upregulation in mRNA expression of leptin receptor isoforms in cumulus cells

    NARCIS (Netherlands)

    van Tol, Helena T A; van Eerdenburg, Frank J C M; Colenbrander, Ben; Roelen, Bernard A J

    In this study, the mechanisms of supposed leptin action on oocyte maturation were examined. Expression of leptin mRNA, as determined with RT-PCR, was present in oocytes but not in cumulus cells. The long isoform of the leptin receptor (ObR-L) was expressed exclusively in cumulus cells after 7 and 23

  3. Fas ligand expression in human and mouse cancer cell lines; a caveat on over-reliance on mRNA data

    Directory of Open Access Journals (Sweden)

    Ryan Aideen E

    2006-02-01

    Full Text Available Abstract Background During carcinogenesis, tumors develop multiple mechanisms for evading the immune response, including upregulation of Fas ligand (FasL/CD95L expression. Expression of FasL may help to maintain tumor cells in a state of immune privilege by inducing apoptosis of anti-tumor immune effector cells. Recently this idea has been challenged by studies reporting that tumor cells of varying origin do not express FasL. In the present study, we aimed to comprehensively characterize FasL expression in tumors of both murine and human origin over a 72 hour time period. Methods RNA and protein was extracted from six human (SW620, HT29, SW480, KM12SM, HCT116, Jurkat and three mouse (CMT93, CT26, B16F10 cancer cell lines at regular time intervals over a 72 hour time period. FasL expression was detected at the mRNA level by RT-PCR, using intron spanning primers, and at the protein level by Western Blotting and immunofluorescence, using a polyclonal FasL- specific antibody. Results Expression of FasL mRNA and protein was observed in all cell lines analysed. However, expression of FasL mRNA varied dramatically over time, with cells negative for FasL mRNA at many time points. In contrast, 8 of the 9 cell lines constitutively expressed FasL protein. Thus, cells can abundantly express FasL protein at times when FasL mRNA is absent. Conclusion These findings demonstrate the importance of complete analysis of FasL expression by tumor cells in order to fully characterize its biological function and may help to resolve the discrepancies present in the literature regarding FasL expression and tumor immune privilege.

  4. cDNA cloning and mRNA expression of cat and dog Cdkal1

    Directory of Open Access Journals (Sweden)

    Sako T

    2012-08-01

    Full Text Available Ichiro Yamamoto, Shingo Ishikawa, Li Gebin, Hiroshi Takemitsu, Megumi Fujiwara, Nobuko Mori, Yutaka Hatano, Tomoko Suzuki, Akihiro Mori, Nobuhiro Nakao, Koh Kawasumi, Toshinori Sako, Toshiro AraiLaboratory of Veterinary Biochemistry, Nippon Veterinary and Life Science University, Tokyo, JapanAbstract: The cyclin-dependent kinase 5 regulatory subunit–associated protein 1–like 1 (CDKAL1 gene encodes methylthiotransferase, and the gene contains risk variants for type 2 diabetes in humans. In this study, we performed complementary DNA cloning for Cdkal1 in the cat and dog and characterized the tissue expression profiles of its messenger RNA. Cat and dog Cdkal1 complementary DNA encoded 576 and 578 amino acids, showing very high sequence homology to mammalian CDKAL1 (>88.4%. Real-time polymerase chain reaction analyses revealed that Cdkal1 messenger RNA is highly expressed in smooth muscle and that tissue distribution of Cdkal1 is similar in cats and dogs. Genotyping analysis of single-nucleotide polymorphism for cat Cdkal1 revealed that obese cats had different tendencies from normal cats. These findings suggest that the cat and dog Cdkal1 gene is highly conserved among mammals and that cat Cdkal1 may be a candidate marker for genetic diagnosis of obesity.Keywords: cat, dog, Cdkal1, obese, cDNA cloning, Q-PCR

  5. Vanillin Suppresses Cell Motility by Inhibiting STAT3-Mediated HIF-1α mRNA Expression in Malignant Melanoma Cells.

    Science.gov (United States)

    Park, Eun-Ji; Lee, Yoon-Mi; Oh, Taek-In; Kim, Byeong Mo; Lim, Beong-Ou; Lim, Ji-Hong

    2017-03-01

    Recent studies have shown that vanillin has anti-cancer, anti-mutagenic, and anti-metastatic activity; however, the precise molecular mechanism whereby vanillin inhibits metastasis and cancer progression is not fully elucidated. In this study, we examined whether vanillin has anti-cancer and anti-metastatic activities via inhibition of hypoxia-inducible factor-1α (HIF-1α) in A2058 and A375 human malignant melanoma cells. Immunoblotting and quantitative real time (RT)-PCR analysis revealed that vanillin down-regulates HIF-1α protein accumulation and the transcripts of HIF-1α target genes related to cancer metastasis including fibronectin 1 ( FN1 ), lysyl oxidase-like 2 ( LOXL2 ), and urokinase plasminogen activator receptor ( uPAR ). It was also found that vanillin significantly suppresses HIF-1α mRNA expression and de novo HIF-1α protein synthesis. To understand the suppressive mechanism of vanillin on HIF-1α expression, chromatin immunoprecipitation was performed. Consequently, it was found that vanillin causes inhibition of promoter occupancy by signal transducer and activator of transcription 3 (STAT3), but not nuclear factor-κB (NF-κB), on HIF1A . Furthermore, an in vitro migration assay revealed that the motility of melanoma cells stimulated by hypoxia was attenuated by vanillin treatment. In conclusion, we demonstrate that vanillin might be a potential anti-metastatic agent that suppresses metastatic gene expression and migration activity under hypoxia via the STAT3-HIF-1α signaling pathway.

  6. 9-cis-retinoic acid increases apolipoprotein AI secretion and mRNA expression in HepG2 cells.

    Science.gov (United States)

    Haghpassand, M; Moberly, J B

    1995-10-01

    HepG2 cells were studied as a model for regulation of hepatic apolipoprotein AI (apo AI) secretion and gene expression by 9-cis-retinoic acid. HepG2 cells cultured on plastic dishes were exposed to 9-cis-retinoic acid (9-cis-RA) for 48 h with a complete media change at 24 h. Apo AI mass in cultured media was determined by ELISA, by quantitative immunoblotting and by steady-state 35S-methionine labeling. Messenger RNA levels were determined by RNase protection using probes for apo AI and the housekeeping gene, glyceraldehyde 3-phosphate dehydrogenase (G3PDH). 9-cis-RA increased secretion of apo AI by 52% at doses of 10 and 1 microM (6.3 +/- 0.6 vs. 4.2 +/- 0.3; P G3PDH mRNA was slightly decreased (14%, P < 0.05). Thus, 9-cis-RA stimulates apo AI expression in HepG2 cells, suggesting a role for retinoids in activating endogenous apo AI gene expression.

  7. miRNA and mRNA Expression Profiles Reveal Insight into Chitosan-Mediated Regulation of Plant Growth.

    Science.gov (United States)

    Zhang, Xiaoqian; Li, Kecheng; Xing, Ronge; Liu, Song; Chen, Xiaolin; Yang, Haoyue; Li, Pengcheng

    2018-04-18

    Chitosan has been numerously studied as a plant growth regulator and stress tolerance inducer. To investigate the roles of chitosan as bioregulator on plant and unravel its possible metabolic responses mechanisms, we simultaneously investigated mRNAs and microRNAs (miRNAs) expression profiles of wheat seedlings in response to chitosan heptamer. We found 400 chitosan-responsive differentially expressed genes, including 268 up-regulated and 132 down-regulated mRNAs, many of which were related to photosynthesis, primary carbon and nitrogen metabolism, defense responses, and transcription factors. Moreover, miRNAs also participate in chitosan-mediated regulation on plant growth. We identified 87 known and 21 novel miRNAs, among which 56 miRNAs were induced or repressed by chitosan heptamer, such as miRNA156, miRNA159a, miRNA164, miRNA171a, miRNA319, and miRNA1127. The integrative analysis of miRNA and mRNA expression profiles in this case provides fundamental information for further investigation of regulation mechanisms of chitosan on plant growth and will facilitate its application in agriculture.

  8. Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice.

    Science.gov (United States)

    Vincent, Jessica; Adura, Carolina; Gao, Pu; Luz, Antonio; Lama, Lodoe; Asano, Yasutomi; Okamoto, Rei; Imaeda, Toshihiro; Aida, Jumpei; Rothamel, Katherine; Gogakos, Tasos; Steinberg, Joshua; Reasoner, Seth; Aso, Kazuyoshi; Tuschl, Thomas; Patel, Dinshaw J; Glickman, J Fraser; Ascano, Manuel

    2017-09-29

    Cyclic GMP-AMP synthase is essential for innate immunity against infection and cellular damage, serving as a sensor of DNA from pathogens or mislocalized self-DNA. Upon binding double-stranded DNA, cyclic GMP-AMP synthase synthesizes a cyclic dinucleotide that initiates an inflammatory cellular response. Mouse studies that recapitulate causative mutations in the autoimmune disease Aicardi-Goutières syndrome demonstrate that ablating the cyclic GMP-AMP synthase gene abolishes the deleterious phenotype. Here, we report the discovery of a class of cyclic GMP-AMP synthase inhibitors identified by a high-throughput screen. These compounds possess defined structure-activity relationships and we present crystal structures of cyclic GMP-AMP synthase, double-stranded DNA, and inhibitors within the enzymatic active site. We find that a chemically improved member, RU.521, is active and selective in cellular assays of cyclic GMP-AMP synthase-mediated signaling and reduces constitutive expression of interferon in macrophages from a mouse model of Aicardi-Goutières syndrome. RU.521 will be useful toward understanding the biological roles of cyclic GMP-AMP synthase and can serve as a molecular scaffold for development of future autoimmune therapies.Upon DNA binding cyclic GMP-AMP synthase (cGAS) produces a cyclic dinucleotide, which leads to the upregulation of inflammatory genes. Here the authors develop small molecule cGAS inhibitors, functionally characterize them and present the inhibitor and DNA bound cGAS crystal structures, which will facilitate drug development.

  9. Brucella melitensis and Mycobacterium tuberculosis depict overlapping gene expression patterns induced in infected THP-1 macrophages.

    Science.gov (United States)

    Masoudian, M; Derakhshandeh, A; Ghahramani Seno, M M

    2015-01-01

    Pathogens infecting mammalian cells have developed various strategies to suppress and evade their hosts' defensive mechanisms. In this line, the intracellular bacteria that are able to survive and propagate within their host cells must have developed strategies to avert their host's killing attitude. Studying the interface of host-pathogen confrontation can provide valuable information for defining therapeutic approaches. Brucellosis, caused by the Brucella strains, is a zoonotic bacterial disease that affects thousands of humans and animals around the world inflicting discomfort and huge economic losses. Similar to many other intracellular dwelling bacteria, infections caused by Brucella are difficult to treat, and hence any attempt at identifying new and common therapeutic targets would prove beneficial for the purpose of curing infections caused by the intracellular bacteria. In THP-1 macrophage infected with Brucella melitensis we studied the expression levels of four host's genes, i.e. EMP2, ST8SIA4, HCP5 and FRMD5 known to be involved in pathogenesis of Mycobacterium tuberculosis. Our data showed that at this molecular level, except for FRMD5 that was downregulated, the other three genes were upregulated by B. melitensis. Brucella melitensis and M. tuberculosis go through similar intracellular processes and interestingly two of the investigated genes, i.e. EMP2 and ST4SIA8 were upregulated in THP-1 cell infected with B. melitensis similar to that reported for THP-1 cells infected with M. tuberculosis. At the host-pathogen interaction interface, this study depicts overlapping changes for different bacteria with common survival strategies; a fact that implies designing therapeutic approaches based on common targets may be possible.

  10. Sodium arsenite-induced inhibition of cell proliferation is related to inhibition of IL-2 mRNA expression in mouse activated T cells

    Energy Technology Data Exchange (ETDEWEB)

    Conde, Patricia; Acosta-Saavedra, Leonor C.; Calderon-Aranda, Emma S. [Centro de Investigacion y de Estudios Avanzados, CINVESTAV, Seccion Toxicologia, P.O. Box 14-740, Mexico, D.F. (Mexico); Goytia-Acevedo, Raquel C. [Universidad Juarez del Estado de Durango, Facultad de Medicina, Gomez Palacio, Durango (Mexico)

    2007-04-15

    A proposed mechanism for the As-induced inhibition of cell proliferation is the inhibition of IL-2 secretion. However, the effects of arsenite on IL-2 mRNA expression or on the ERK pathway in activated-T cells have not yet been described. We examined the effect of arsenite on IL-2 mRNA expression, cell activation and proliferation in PHA-stimulated murine lymphocytes. Arsenite (1 and 10 {mu}M) decreased IL-2 mRNA expression, IL-2 secretion and cell proliferation. Arsenite (10 {mu}M) strongly inhibited ERK-phosphorylation. However, the partial inhibition (50%) of IL-2 mRNA produced by 1 {mu}M, consistent with the effects on IL-2 secretion and cell proliferation, could not be explained by the inhibition of ERK-phosphorylation, which was not affected at this concentration. The inhibition of IL-2 mRNA expression caused by 1 {mu}M could be associated to effects on pathways located downstream or parallel to ERK. Arsenite also decreased early activation (surface CD69{sup +} expression) in both CD4{sup +} and CD8{sup +}, and decreased total CD8{sup +} count without significantly affecting CD4{sup +}, supporting that the cellular immune response mediated by cytotoxic T cells is an arsenic target. Thus, our results suggest that arsenite decreases IL-2 mRNA levels and T-cell activation and proliferation. However, further studies on the effects of arsenite on IL-2 gene transcription and IL-2 mRNA stability are needed. (orig.)

  11. [Correlation between the mRNA expression of tissue inhibitor of metalloproteinase-1 and apparent diffusion coefficient on diffusion-weighted imaging in rats' liver fibrosis].

    Science.gov (United States)

    Zhan, Yuefu; Liang, Xianwen; Han, Xiangjun; Chen, Jianqiang; Zhang, Shufang; Tan, Shun; Li, Qun; Wang, Xiong; Liu, Fan

    2017-02-28

    To explore the correlation between the apparent diffusion coefficient (ADC) and mRNA expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) in different stages of liver fibrosis in rats.
 Methods: A model of liver fibrosis in rats was established by intraperitoneal injection of high-fat diet combined with porcine serum. After drug administration for 4 weeks, 48 rats served as a model group and 12 rats served as a control group, then they underwent diffusion weighted imaging (DWI) scanning. The value of ADC was calculated at b value=800 s/mm2. The rats were sacrificed and carried out pathologic examination after DWI scanning immediately. The mRNA expression of TIMP-1 was detected by real time-polymerase chain reaction (RT-PCR). The rats of hepatic fibrosis were also divided into a S0 group (n=4), a S1 group (n=11), a S2 group (n=12), a S3 group (n=10), and a S4 group (n=9) according to their pathological stage. The value of ADC and the expression of TIMP-1 mRNA among the different stage groups of liver fibrosis were compared, and the correlation between ADC and the TIMP-1 mRNA were analyzed.
 Results: The ADC value and the TIMP-1 mRNA expression were significantly different between the control group and the liver fibrosis group (F=46.54 and 53.87, P0.05). For the comparison of TIMP-1 mRNA, there was no significant difference between the S1 group and the S2 group, the S3 group and the S4 group (both P>0.05). There were significant differences among the rest of the groups (all Pcorrelation analysis showed that there was a negative correlation between the ADC value and the TIMP-1 mRNA expression (r=-0.76, Pcorrelation between them.

  12. Investigation of mRNA expression for secreted frizzled-related protein 2 (sFRP2) in chick embryos.

    Science.gov (United States)

    Lin, Chung-Tien; Lin, Yu-Ting; Kuo, Tzong-Fu

    2007-08-01

    The roles of secreted frizzled-related protein 2 (sFRP2) in organ development of vertebrate animals are not well understood. We investigated expression of sFRP2 during embryogenesis of Arbor Acre broiler chicken eggs. Expression of sFRP2 was detected in the folds and lateral layer of developing brains. The sFRP2 signals in the developing eye were marked as a circle along the orbit. In younger embryos on days 3-6, the sFRP2 signals were consistent with growth of the sclerotome, suggesting that sFRP2 may be associated with somite development. Furthermore, with the exception of bones, sFRP2 mRNA was detectable in the interdigital tissue of embryos older than eight days as the limbs matured. This revealed that sFRP2 might play a role in myogenesis. In situ hybridization was also used to analyze the expression of sFRP2 in day 3-10 chick embryos. Signals were expressed in the gray matter of the developing brain coelom, including the optic lobe, metencephalon, myelencephalon, mesencephalon and diencephalon. The developing eyes contained an intercellular distribution of sFRP2 in the pigmented layer of the retina and photoreceptors. Furthermore, sFRP2 was expressed in the mantle layer of the neural tube and notochord. Based on these findings, it seems reasonable to suggest that sFRP2 may play an active role in embryogenesis, especially in development of the neural system, eyes, muscles and limbs.

  13. Phase I metabolic genes and risk of lung cancer: multiple polymorphisms and mRNA expression.

    Directory of Open Access Journals (Sweden)

    Melissa Rotunno

    2009-05-01

    Full Text Available Polymorphisms in genes coding for enzymes that activate tobacco lung carcinogens may generate inter-individual differences in lung cancer risk. Previous studies had limited sample sizes, poor exposure characterization, and a few single nucleotide polymorphisms (SNPs tested in candidate genes. We analyzed 25 SNPs (some previously untested in 2101 primary lung cancer cases and 2120 population controls from the Environment And Genetics in Lung cancer Etiology (EAGLE study from six phase I metabolic genes, including cytochrome P450s, microsomal epoxide hydrolase, and myeloperoxidase. We evaluated the main genotype effects and genotype-smoking interactions in lung cancer risk overall and in the major histology subtypes. We tested the combined effect of multiple SNPs on lung cancer risk and on gene expression. Findings were prioritized based on significance thresholds and consistency across different analyses, and accounted for multiple testing and prior knowledge. Two haplotypes in EPHX1 were significantly associated with lung cancer risk in the overall population. In addition, CYP1B1 and CYP2A6 polymorphisms were inversely associated with adenocarcinoma and squamous cell carcinoma risk, respectively. Moreover, the association between CYP1A1 rs2606345 genotype and lung cancer was significantly modified by intensity of cigarette smoking, suggesting an underlying dose-response mechanism. Finally, increasing number of variants at CYP1A1/A2 genes revealed significant protection in never smokers and risk in ever smokers. Results were supported by differential gene expression in non-tumor lung tissue samples with down-regulation of CYP1A1 in never smokers and up-regulation in smokers from CYP1A1/A2 SNPs. The significant haplotype associations emphasize that the effect of multiple SNPs may be important despite null single SNP-associations, and warrants consideration in genome-wide association studies (GWAS. Our findings emphasize the necessity of post

  14. Temporal regulation of HTLV-2 expression in infected cell lines and patients: evidence for distinct expression kinetics with nuclear accumulation of APH-2 mRNA

    Directory of Open Access Journals (Sweden)

    Bender Cecilia

    2012-09-01

    Full Text Available Abstract Background Human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2 are delta retroviruses with similar genetic organization. Although both viruses immortalize T-cells in vitro, they exhibit distinct pathogenic potential in vivo. To search for possible differences in its expression strategy with respect to HTLV-1, we investigated the pattern of HTLV-2 expression in infected cell lines and peripheral blood mononuclear cells (PBMCs from infected patients using splice site-specific quantitative RT-PCR. Findings A novel alternative splice acceptor site for exon 2 was identified; its usage in env transcripts was found to be subtype-specific. Time-course analysis revealed a two-phase expression kinetics in an infected cell line and in PBMCs of two of the three patients examined; this pattern was reminiscent of HTLV-1. In addition, the minus-strand APH2 transcript was mainly detected in the nucleus, a feature that was similar to its HTLV-1 orthologue HBZ. In contrast to HTLV-1, expression of the mRNA encoding the main regulatory proteins Tax and Rex and that of the mRNAs encoding the p28 and truncated Rex inhibitors is skewed towards p28/truncated Rex inhibitors in HTLV-2. Conclusion Our data suggest a general converging pattern of expression of HTLV-2 and HTLV-1 and highlight peculiar differences in the expression of regulatory proteins that might influence the pathobiology of these viruses.

  15. Colonization by non-pathogenic bacteria alters mRNA expression of cytochromes P450 in originally germ-free mice.

    Science.gov (United States)

    Jourová, L; Anzenbacher, P; Lišková, B; Matušková, Z; Hermanová, P; Hudcovic, T; Kozáková, H; Hrnčířová, L; Anzenbacherová, E

    2017-11-01

    Gut microbiota provides a wide range of beneficial function for the host and has an immense effect on the host's health state. It has also been shown that gut microbiome is often involved in the biotransformation of xenobiotics; however, the molecular mechanisms of the interaction between the gut bacteria and the metabolism of drugs by the host are still unclear. To investigate the effect of microbial colonization on messenger RNA (mRNA) expression of liver cytochromes P450 (CYPs), the main drug-metabolizing enzymes, we used germ-free (GF) mice, lacking the intestinal flora and mice monocolonized by non-pathogenic bacteria Lactobacillus plantarum NIZO2877 or probiotic bacteria Escherichia coli Nissle 1917 compared to specific pathogen-free (SPF) mice. Our results show that the mRNA expression of Cyp1a2 and Cyp2e1 was significantly increased, while the expression of Cyp3a11 mRNA was decreased under GF conditions compared to the SPF mice. The both bacteria L. plantarum NIZO2877 and E. coli Nissle 1917 given to the GF mice decreased the level of Cyp1a2 mRNA and normalized it to the control level. On the other hand, the colonization by these bacteria had no effect on the expression of Cyp3a11 mRNA in the liver of the GF mice (which remained decreased). Surprisingly, monocolonization with chosen bacterial strains has shown a different effect on the expression of Cyp2e1 mRNA in GF mice. Increased level of Cyp2e1 expression observed in the GF mice was found also in mice colonized by L. plantarum NIZO2877 ; however, the colonization with probiotic E. coli Nissle 1917 caused a decrease in Cyp2e1 expression and partially restored the SPF mice conditions.

  16. Significance of the BRAF mRNA Expression Level in Papillary Thyroid Carcinoma: An Analysis of The Cancer Genome Atlas Data.

    Directory of Open Access Journals (Sweden)

    Young Jun Chai

    Full Text Available BRAFV600E is the most common mutation in papillary thyroid carcinoma (PTC, and it is associated with high-risk prognostic factors. However, the significance of the BRAF mRNA level in PTC remains unknown. We evaluated the significance of BRAF mRNA expression level by analyzing PTC data from The Cancer Genome Atlas (TCGA database.Data from 499 patients were downloaded from the TCGA database. After excluding other PTC variants, we selected 353 cases of classic PTC, including 193 cases with BRAFV600E and 160 cases with the wild-type BRAF. mRNA abundances were measured using RNA-Seq with the Expectation Maximization algorithm.The mean BRAF mRNA level was significantly higher in BRAFV600E patients than in patients with wild-type BRAF (197.6 vs. 179.3, p = 0.031. In wild-type BRAF patients, the mean BRAF mRNA level was higher in cases with a tumor > 2 cm than those with a tumor ≤ 2.0 cm (189.4 vs. 163.8, p = 0.046, and was also higher in cases with lymph node metastasis than in those without lymph node metastasis (188.5 vs. 157.9, p = 0.040. Within BRAFV600E patients, higher BRAF mRNA expression was associated with extrathyroidal extension (186.4 vs. 216.4, p = 0.001 and higher T stage (188.1 vs. 210.2, p = 0.016.A higher BRAF mRNA expression level was associated with tumor aggressiveness in classic PTC regardless of BRAF mutational status. Evaluation of BRAF mRNA level may be helpful in prognostic risk stratification of PTC.

  17. 7-ketocholesteryl-9-carboxynonanoate enhances ATP binding cassette transporter A1 expression mediated by PPARγ in THP-1 macrophages.

    Science.gov (United States)

    Chi, Yan; Wang, Le; Liu, Yuanyuan; Ma, Yanhua; Wang, Renjun; Han, Xiaofei; Qiao, Hui; Lin, Jiabin; Matsuura, Eiji; Liu, Shuqian; Liu, Qingping

    2014-06-01

    ATP binding cassette transporter A1 (ABCA1) is a member of the ATP-binding cassette transporter family. It plays an essential role in mediating the efflux of excess cholesterol. It is known that peroxisome proliferator-activated receptor gamma (PPARγ) promoted ABCA1 expression. We previously found 7-ketocholesteryl-9-carboxynonanoate (oxLig-1) upregulated ABCA1 partially through CD36 mediated signals. In the present study, we intended to test if PPARγ signally is involved in the upregulation mediated by oxLig-1. First, we docked oxLig-1 and the ligand-binding domain (LBD) of PPARγ by using AutoDock 3.05 and subsequently confirmed the binding by ELISA assay. Western blotting analyses showed that oxLig-1 induces liver X receptor alpha (LXRα), PPARγ and consequently ABCA1 expression. Furthermore, oxLig-1 significantly enhanced ApoA-I-mediated cholesterol efflux. Pretreatment with an inhibitor for PPARγ (GW9662) or/and LXRα (GGPP) attenuated oxLig-1-induced ABCA1 expression. Under PPARγ knockdown by using PPARγ-shRNA, oxLig-1-induced ABCA1 expression and cholesterol efflux in THP-1 macrophages was blocked by 62% and 25% respectively. These observations suggest that oxLig-1 is a novel PPARγ agonist, promoting ApoA-I-mediated cholesterol efflux from THP-1 macrophages by increasing ABCA1 expression via induction of PPARγ. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Macrophage and T-cell gene expression in a model of early infection with the protozoan Leishmania chagasi.

    Directory of Open Access Journals (Sweden)

    Nicholas A Ettinger

    2008-06-01

    Full Text Available Visceral leishmaniasis is a potentially fatal infectious disease caused by the protozoan parasite Leishmania infantum/chagasi in the New World, or by L. donovani or L. infantum/chagasi in the Old World. Infection leads to a variety of outcomes ranging from asymptomatic infection to active disease, characterized by fevers, cachexia, hepatosplenomegaly and suppressed immune responses. We reasoned that events occurring during the initial few hours when the parasite encounters cells of the innate and adaptive immune systems are likely to influence the eventual immune response that develops. Therefore, we performed gene expression analysis using Affymetrix U133Plus2 microarray chips to investigate a model of early infection with human monocyte-derived macrophages (MDMs challenged with wild-type L. chagasi parasites, with or without subsequent co-culture with Leishmania-naïve, autologous T-cells. Microarray data generated from total RNA were analyzed with software from the Bioconductor Project and functional clustering and pathway analysis were performed with DAVID and Gene Set Enrichment Analysis (GSEA, respectively. Many transcripts were down-regulated by infection in cultures containing macrophages alone, and the pattern indicated a lack of a classically activated phenotype. By contrast, the addition of autologous Leishmania-naïve T cells to infected macrophages resulted in a pattern of gene expression including many markers of type 1 immune cytokine activation (IFN-gamma, IL-6, IL-1alpha, IL-1beta. There was simultaneous up-regulation of a few markers of immune modulation (IL-10 cytokine accumulation; TGF-beta Signaling Pathway. We suggest that the initial encounter between L. chagasi and cells of the innate and adaptive immune system stimulates primarily type 1 immune cytokine responses, despite a lack of classical macrophage activation. This local microenvironment at the site of parasite inoculation may determine the initial course of immune T

  19. [Differential expression of IGF-I and its mRNA in mandibular condylar cartilage of rat--direct evidence for servosystem theory of facial growth].

    Science.gov (United States)

    Zhou, Z; Luo, S

    1998-05-01

    It was studied the expression of IGF-I and its mRNA in the condylar cartilage of 10 7-week-old SD male rats by using in situ hybridization and immunohisto-chemistry technique. The results showed both IGF-I and its gene expressed in growing rat condyle. IGF-I peptide was abundant in germinal zone, and positive reaction of its mRNA was strongest in transitional and maturational zones. These indicate that condylar cartilage has the capability of local production and secretion of IGF-I, mediating the command effect of STH, and differential expression of IGF-I and its mRNA might establish the local feedback loop, which supply a direct evidence for servosystem theory of facial growth.

  20. Protein phosphatase magnesium-dependent 1δ (PPM1D mRNA expression is a prognosis marker for hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Guang-Bing Li

    Full Text Available Protein phosphatase magnesium-dependent 1δ (PPM1D is an oncogene, overexpressed in many solid tumors, including ovarian cancer and breast cancer. The current study examined the expression and the prognostic value of PPM1D mRNA in human hepatocellular carcinoma (HCC.Total RNA was extracted from 86 HCC and paired non-cancerous liver tissues. PPM1D mRNA expression was determined by real-time quantitative reverse transcriptase-polymerase chain reaction (qPCR. Immunohistochemistry assay was used to verify the expression of ppm1d protein in the HCC and non-cancerous liver tissues. HCC patients were grouped according to PPM1D mRNA expression with the average PPM1D mRNA level in non-cancerous liver tissue samples as the cut-off. Correlations between clinicopathologic variables, overall survival and PPM1D mRNA expression were analyzed.PPM1D mRNA was significantly higher in HCC than in the paired non-cancerous tissue (p<0.01. This was confirmed by ppm1d staining. 56 patients were classified as high expression group and the other 30 patients were categorized as low expression group. There were significant differences between the two groups in term of alpha-fetoprotein (α-FP level (p<0.01, tumor size (p<0.01, TNM stage (p<0.01, recurrence incidence (p<0.01 and family history of liver cancer (p<0.01. The current study failed to find significant differences between the two groups in the following clinical characteristics: age, gender, portal vein invasion, lymphnode metastasis, hepatitis B virus (HBV infection and alcohol intake. Survival time of high expression group was significantly shorter than that of low expression group (median survival, 13 months and 32 months, respectively, p<0.01.Up-regulation of PPM1D mRNA was associated with progressive pathological feature and poor prognosis in HCC patients. PPM1D mRNA may serve as a prognostic marker in HCC.

  1. Low ERCC1 mRNA and protein expression are associated with worse survival in cervical cancer patients treated with radiation alone

    International Nuclear Information System (INIS)

    Doll, Corinne M.; Prystajecky, Michael; Eliasziw, Misha; Klimowicz, Alexander C.; Petrillo, Stephanie K.; Craighead, Peter S.; Hao, Desiree; Diaz, Roman; Lees-Miller, Susan P.; Magliocco, Anthony M.

    2010-01-01

    Purpose: To evaluate the association of excision repair cross-complementation group 1 (ERCC1) expression, using both mRNA and protein expression analysis, with clinical outcome in cervical cancer patients treated with radical radiation therapy (RT). Experimental design: Patients (n = 186) with locally advanced cervical cancer, treated with radical RT alone from a single institution were evaluated. Pre-treatment FFPE biopsy specimens were retrieved from 112 patients. ERCC1 mRNA level was determined by real-time PCR, and ERCC1 protein expression (FL297, 8F1) was measured using quantitative immunohistochemistry (AQUA (registered) ). The association of ERCC1 status with local response, 10-year disease-free (DFS) and overall survival (OS) was analyzed. Results: ERCC1 protein expression levels using both FL297 and 8F1 antibodies were determined for 112 patients; mRNA analysis was additionally performed in 32 patients. Clinical and outcome factors were comparable between the training and validation sets. Low ERCC1 mRNA expression status was associated with worse OS (17.9% vs 50.1%, p = 0.046). ERCC1 protein expression using the FL297 antibody, but not the 8F1 antibody, was significantly associated with both OS (p = 0.002) and DFS (p = 0.010). After adjusting for pre-treatment hemoglobin in a multivariate analysis, ERCC1 FL297 expression status remained statistically significant for OS [HR 1.9 (1.1-3.3), p = 0.031]. Conclusions: Pre-treatment tumoral ERCC1 mRNA and protein expression, using the FL297 antibody, are predictive factors for survival in cervical cancer patients treated with RT, with ERCC1 FL297 expression independently associated with survival. These results identify a subset of patients who may derive the greatest benefit from the addition of cisplatin chemotherapy.

  2. Small, synthetic, GC-rich mRNA stem-loop modules 5' proximal to the AUG start-codon predictably tune gene expression in yeast.

    Science.gov (United States)

    Lamping, Erwin; Niimi, Masakazu; Cannon, Richard D

    2013-07-29

    A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5' UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5' UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = -15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (∆G = -4.4 kcal/mol) inhibited

  3. Small, synthetic, GC-rich mRNA stem-loop modules 5′ proximal to the AUG start-codon predictably tune gene expression in yeast

    Science.gov (United States)

    2013-01-01

    Background A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5′ UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Results Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5′ UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = −15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (

  4. Changes in growth hormone (GH) messenger RNA (GH mRNA) expression in the rat anterior pituitary after single interferon (IFN) alpha administration

    International Nuclear Information System (INIS)

    Romanowski, W.; Braczkowski, R.; Nowakowska-Zajdel, E.; Muc-Wierzgon, M.; Zubelewicz-Szkodzinska, B.; Kosiewicz, J.; Korzonek, I.

    2006-01-01

    Introduction: Interferon a (IFN-a) is a cytokine with pleiotropic effects which, via different pathways, influences the secretion of certain cytokines and hormones. Growth hormone (GH) secreted from the pituitary has physiological effects on various target tissues. The question is how IFN-a administered in various types of disease influences GH secretion. This study investigated the acute effect of IFN-a on GH mRNA expression in the rat anterior pituitary. Objective: The aim of the study was to measure the cellular expression of GH mRNA by in situ hybridisation in the anterior pituitary after a single administration of IFN-a. Material and methods: Rats were administered an intraperitoneal injection of IFN-a or saline. The rat pituitaries were taken 2 and 4 hours after IFN/saline administration and kept frozen until in situ hybridisation histochemistry. A 31 - base 35S -labelled oligonucleotide probe complementary to part of the exonic mRNA sequence coding for GH mRNA was used. All control and experimental sections were hybridised in the same hybridisation reaction. Results: Acute administration of interferon a increased GH mRNA expression in the anterior pituitary in the 4-hour group in comparison with the control group, and there was no difference between the control group and the 2-hour rats. Conclusion: A single IFN-a administration was found to exert an influence on anterior pituitary GH mRNA expression. These observations may pave the way for presenting a possible new action of IFN-a. (author) GH mRNA, anterior pituitary, interferon

  5. L-DOPA decarboxylase mRNA expression is associated with tumor stage and size in head and neck squamous cell carcinoma: a retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Geomela Panagiota-Aikaterini

    2012-10-01

    Full Text Available Abstract Background Head and neck squamous cell carcinoma (HNSCC represents one of the most commonly diagnosed malignancies worldwide. The DDC gene encodes L-DOPA decarboxylase, an enzyme catalyzing the decarboxylation of L-DOPA to dopamine. We have recently shown that DDC mRNA is a significant predictor of patients’ prognosis in colorectal adenocarcinoma and prostate cancer. The aim of the current study was to analyze the DDC mRNA expression in HNSCC patients. Methods 53 malignant tumors were resected from the larynx, pharynx, tongue, buccal mucosa, parotid glands, and nasal cavity, as well as from 34 adjacent non-cancerous tissues of HNSCC patients, and were homogenized. Total RNA was isolated and converted into first-strand cDNA. An ultrasensitive real-time PCR method based on the SYBR Green chemistry was used for DDC mRNA quantification in head and neck tissue specimens. Relative quantification was performed using the comparative Ct (2-ddCt method. Results DDC mRNA levels were lower in squamous cell carcinomas (SCCs of the larynx and tongue than in adjacent non-cancerous tissue specimens. Furthermore, low DDC mRNA expression was noticed in laryngeal and tongue tumors of advanced TNM stage or bigger size, compared to early-stage or smaller tumors, respectively. No statistically significant differences were observed between SCCs resected from pharynx, buccal mucosa, or nasal cavity, and their normal counterparts. Conclusion This is the first study examining the DDC mRNA expression in HNSCC. According to our results, DDC mRNA expression may constitute a potential prognostic biomarker in tongue and/or larynx SCCs, which principally represent the overwhelming majority of HNSCC cases.

  6. L-DOPA decarboxylase mRNA expression is associated with tumor stage and size in head and neck squamous cell carcinoma: a retrospective cohort study

    International Nuclear Information System (INIS)

    Geomela, Panagiota-Aikaterini; Kontos, Christos K; Yiotakis, Ioannis; Fragoulis, Emmanuel G; Scorilas, Andreas

    2012-01-01

    Head and neck squamous cell carcinoma (HNSCC) represents one of the most commonly diagnosed malignancies worldwide. The DDC gene encodes L-DOPA decarboxylase, an enzyme catalyzing the decarboxylation of L-DOPA to dopamine. We have recently shown that DDC mRNA is a significant predictor of patients’ prognosis in colorectal adenocarcinoma and prostate cancer. The aim of the current study was to analyze the DDC mRNA expression in HNSCC patients. 53 malignant tumors were resected from the larynx, pharynx, tongue, buccal mucosa, parotid glands, and nasal cavity, as well as from 34 adjacent non-cancerous tissues of HNSCC patients, and were homogenized. Total RNA was isolated and converted into first-strand cDNA. An ultrasensitive real-time PCR method based on the SYBR Green chemistry was used for DDC mRNA quantification in head and neck tissue specimens. Relative quantification was performed using the comparative Ct (2 -ddCt ) method. DDC mRNA levels were lower in squamous cell carcinomas (SCCs) of the larynx and tongue than in adjacent non-cancerous tissue specimens. Furthermore, low DDC mRNA expression was noticed in laryngeal and tongue tumors of advanced TNM stage or bigger size, compared to early-stage or smaller tumors, respectively. No statistically significant differences were observed between SCCs resected from pharynx, buccal mucosa, or nasal cavity, and their normal counterparts. This is the first study examining the DDC mRNA expression in HNSCC. According to our results, DDC mRNA expression may constitute a potential prognostic biomarker in tongue and/or larynx SCCs, which principally represent the overwhelming majority of HNSCC cases

  7. Patterns of dioxin-altered mRNA expression in livers of dioxin-sensitive versus dioxin-resistant rats

    Energy Technology Data Exchange (ETDEWEB)

    Franc, Monique A. [University of Toronto, Department of Pharmacology and Toxicology, Medical Sciences Building, Toronto, ON (Canada); Johnson and Johnson Pharmaceutical Research and Development, Department of Pharmacogenomics, 1000 Route 202 South, P.O. Box 300, Raritan, NJ (United States); Moffat, Ivy D.; Boutros, Paul C.; Okey, Allan B. [University of Toronto, Department of Pharmacology and Toxicology, Medical Sciences Building, Toronto, ON (Canada); Tuomisto, Jouni T.; Tuomisto, Jouko [National Public Health Institute, Department of Environmental Health, Centre for Environmental Health Risk Analysis, Kuopio (Finland); Pohjanvirta, Raimo [University of Helsinki, Department of Food and Environmental Hygiene, Faculty of Veterinary Medicine, Helsinki (Finland)

    2008-11-15

    Dioxins exert their major toxicologic effects by binding to the aryl hydrocarbon receptor (AHR) and altering gene transcription. Numerous dioxin-responsive genes previously were identified both by conventional biochemical and molecular techniques and by recent mRNA expression microarray studies. However, of the large set of dioxin-responsive genes the specific genes whose dysregulation leads to death remain unknown. To identify specific genes that may be involved in dioxin lethality we compared changes in liver mRNA levels following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in three strains/lines of dioxin-sensitive rats with changes in three dioxin-resistant rat strains/lines. The three dioxin-resistant strains/lines all harbor a large deletion in the transactivation domain of the aryl hydrocarbon receptor (AHR). Despite this deletion, many genes exhibited a ''Type-I'' response - that is, their responses were similar in dioxin-sensitive and dioxin-resistant rats. Several genes that previously were well established as being dioxin-responsive or under AHR regulation emerged as Type-I responses (e.g. CYP1A1, CYP1A2, CYP1B1 and Gsta3). In contrast, a relatively small number of genes exhibited a Type-II response - defined as a difference in responsiveness between dioxin-sensitive and dioxin-resistant rat strains. Type-II genes include: malic enzyme 1, ubiquitin C, cathepsin L, S-adenosylhomocysteine hydrolase and ferritin light chain 1. In silico searches revealed that AH response elements are conserved in the 5'-flanking regions of several genes that respond to TCDD in both the Type-I and Type-II categories. The vast majority of changes in mRNA levels in response to 100 {mu}g/kg TCDD were strain-specific; over 75% of the dioxin-responsive clones were affected in only one of the six strains/lines. Selected genes were assessed by quantitative RT-PCR in dose-response and time-course experiments and responses of some genes were

  8. Gold nanoparticle-based beacon to detect STAT5b mRNA expression in living cells: a case optimized by bioinformatics screen.

    Science.gov (United States)

    Deng, Dawei; Li, Yang; Xue, Jianpeng; Wang, Jie; Ai, Guanhua; Li, Xin; Gu, Yueqing

    2015-01-01

    Messenger RNA (mRNA), a single-strand ribonucleic acid with functional gene information is usually abnormally expressed in cancer cells and has become a promising biomarker for the study of tumor progress. Hairpin DNA-coated gold nanoparticle (hDAuNP) beacon containing a bare gold nanoparticle (AuNP) as fluorescence quencher and thiol-terminated fluorescently labeled stem-loop-stem oligonucleotide sequences attached by Au-S bond is currently a new nanoscale biodiagnostic platform capable of mRNA detection, in which the design of the loop region sequence is crucial for hybridizing with the target mRNA. Hence, in this study, to improve the sensitivity and selectivity of hDAuNP beacon simultaneously, the loop region of hairpin DNA was screened by bioinformatics strategy. Here, signal transducer and activator of transcription 5b (STAT5b) mRNA was selected and used as a practical example. The results from the combined characterizations using optical techniques, flow cytometry assay, and cell microscopic imaging showed that after optimization, the as-prepared hDAuNP beacon had higher selectivity and sensitivity for the detection of STAT5b mRNA in living cells, as compared with our previous beacon. Thus, the bioinformatics method may be a promising new strategy for assisting in the designing of the hDAuNP beacon, extending its application in the detection of mRNA expression and the resultant mRNA-based biological processes and disease pathogenesis.

  9. Functional expression of P2X family receptors in macrophages is affected by microenvironment in mouse T cell acute lymphoblastic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Shayan; Feng, Wenli; Yang, Xiao; Yang, Wanzhu; Ru, Yongxin; Liao, Jinfeng; Wang, Lina; Lin, Yongmin; Ren, Qian [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020 (China); Zheng, Guoguang, E-mail: zhengggtjchn@aliyun.com [State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020 (China); Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Beijing 100730 (China)

    2014-04-18

    Highlights: • We study the impact of leukemic microenvironment on P2X family receptors in Mφs. • Bone marrow and spleen Mφs are studied in Notch1-induced mouse leukemia model. • Increased expression of P2X7R is found in Mφs during the development of leukemia. • Elevated P2X7R-mediated calcium response is found in Mφs at late stage of leukemia. • More apoptotic Mφs are found in bone marrow and spleen at late stage of leukemia. - Abstract: Nucleotides are important players in intercellular signaling communication network. P2X family receptors (P2XRs) are ATP-gated plasma membrane ion channels with diverse biological functions. Macrophages are important components in the microenvironment of hematopoiesis participating in both physiological and pathological processes. However, the role of P2XRs in macrophages in leukemia has not been established. Here we investigated expression pattern and functions of P2XRs in macrophages from bone marrow (BM) and spleen of Notch1-induced T-ALL mice. Real-time PCR showed that P2XRs except P2X5R were expressed in BM and spleen macrophages. Furthermore, with the development of leukemia, the expression of P2X7R increased in both BM and spleen macrophages whereas expression of P2X1R increased in spleen macrophages. Live cell imaging recoding the Ca{sup 2+} response demonstrated that P2X7R expressed in macrophages was functional. TUNEL and electron microscopy analysis found that apoptotic macrophages were frequently observed in BM and spleen at late stage of leukemia, which was partly contributed by the activation of overexpressed P2X7R. Our results suggested that the intercellular communication mediated by nucleotides might orchestrate in the pathological process of leukemia and could be a potential target for the treatment of leukemia.

  10. Functional expression of P2X family receptors in macrophages is affected by microenvironment in mouse T cell acute lymphoblastic leukemia

    International Nuclear Information System (INIS)

    Chen, Shayan; Feng, Wenli; Yang, Xiao; Yang, Wanzhu; Ru, Yongxin; Liao, Jinfeng; Wang, Lina; Lin, Yongmin; Ren, Qian; Zheng, Guoguang

    2014-01-01

    Highlights: • We study the impact of leukemic microenvironment on P2X family receptors in Mφs. • Bone marrow and spleen Mφs are studied in Notch1-induced mouse leukemia model. • Increased expression of P2X7R is found in Mφs during the development of leukemia. • Elevated P2X7R-mediated calcium response is found in Mφs at late stage of leukemia. • More apoptotic Mφs are found in bone marrow and spleen at late stage of leukemia. - Abstract: Nucleotides are important players in intercellular signaling communication network. P2X family receptors (P2XRs) are ATP-gated plasma membrane ion channels with diverse biological functions. Macrophages are important components in the microenvironment of hematopoiesis participating in both physiological and pathological processes. However, the role of P2XRs in macrophages in leukemia has not been established. Here we investigated expression pattern and functions of P2XRs in macrophages from bone marrow (BM) and spleen of Notch1-induced T-ALL mice. Real-time PCR showed that P2XRs except P2X5R were expressed in BM and spleen macrophages. Furthermore, with the development of leukemia, the expression of P2X7R increased in both BM and spleen macrophages whereas expression of P2X1R increased in spleen macrophages. Live cell imaging recoding the Ca 2+ response demonstrated that P2X7R expressed in macrophages was functional. TUNEL and electron microscopy analysis found that apoptotic macrophages were frequently observed in BM and spleen at late stage of leukemia, which was partly contributed by the activation of overexpressed P2X7R. Our results suggested that the intercellular communication mediated by nucleotides might orchestrate in the pathological process of leukemia and could be a potential target for the treatment of leukemia

  11. Correlative mRNA and protein expression of middle and inner ear inflammatory cytokines during mouse acute otitis media.

    Science.gov (United States)

    Trune, Dennis R; Kempton, Beth; Hausman, Frances A; Larrain, Barbara E; MacArthur, Carol J

    2015-08-01

    Although the inner ear has long been reported to be susceptible to middle ear disease, little is known of the inflammatory mechanisms that might cause permanent sensorineural hearing loss. Recent studies have shown inner ear tissues are capable of expressing inflammatory cytokines during otitis media. However, little quantitative information is available concerning cytokine gene expression in the inner ear and the protein products that result. Therefore, this study was conducted of mouse middle and inner ear during acute otitis media to measure the relationship between inflammatory cytokine genes and their protein products with quantitative RT-PCR and ELISA, respectively. Balb/c mice were inoculated transtympanically with heat-killed Haemophilus influenzae and middle and inner ear tissues collected for either quantitative RT-PCR microarrays or ELISA multiplex arrays. mRNA for several cytokine genes was significantly increased in both the middle and inner ear at 6 h. In the inner ear, these included MIP-2 (448 fold), IL-6 (126 fold), IL-1β (7.8 fold), IL-10 (10.7 fold), TNFα (1.8 fold), and IL-1α (1.5 fold). The 24 h samples showed a similar pattern of gene expression, although generally at lower levels. In parallel, the ELISA showed the related cytokines were present in the inner ear at concentrations higher by 2-122 fold higher at 18 h, declining slightly from there at 24 h. Immunohistochemistry with antibodies to a number of these cytokines demonstrated they occurred in greater amounts in the inner ear tissues. These findings demonstrate considerable inflammatory gene expression and gene products in the inner ear following acute otitis media. These higher cytokine levels suggest one potential mechanism for the permanent hearing loss seen in some cases of acute and chronic otitis media. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Early-life stress induces persistent alterationsin 5-HT1Areceptor and serotonin transporter mRNA expression in the adultrat brain.

    Directory of Open Access Journals (Sweden)

    Javier A. Bravo

    2014-04-01

    Full Text Available Early-life experience plays a major role in the stress response throughout life. Neonatal maternal separation (MS is an animal model of depression with an altered serotonergic response. We hypothesize that this alteration may be caused by differences in 5-HT1A receptor and serotonin transporter (SERT mRNA