WorldWideScience

Sample records for macrophages exerts cytoprotective

  1. PRGF exerts a cytoprotective role in zoledronic acid-treated oral cells.

    Science.gov (United States)

    Anitua, Eduardo; Zalduendo, Mar; Troya, María; Orive, Gorka

    2016-04-01

    Bisphosphonates-related osteonecrosis of the jaw (BRONJ) is a common problem in patients undergoing long-term administration of highly potent nitrogen-containing bisphosphonates (N-BPs). This pathology occurs via bone and soft tissue mechanism. Zoledronic acid (ZA) is the most potent intravenous N-BP used to prevent bone loss in patients with bone dysfunction. The objective of this in vitro study was to evaluate the role of different ZA concentrations on the cells from human oral cavity, as well as the potential of plasma rich in growth factors (PRGF) to overcome the negative effects of this BP. Primary human gingival fibroblasts and primary human alveolar osteoblasts were used. Cell proliferation was evaluated by means of a fluorescence-based method. A colorimetric assay to detect DNA fragmentation undergoing apoptosis was used to determine cell death, and the expression of both NF-κB and pNF-κB were quantified by Western blot analysis. ZA had a cytotoxic effect on both human gingival fibroblasts and human alveolar osteoblasts. This BP inhibits cell proliferation, stimulates apoptosis, and induces inflammation. However, the addition of PRGF suppresses all these negative effects of the ZA. PRGF shows a cytoprotective role against the negative effects of ZA on primary oral cells. At present, there is no definitive treatment for bisphosphonates-related osteonecrosis of the jaw (BRONJ), being mainly palliatives. Our results revealed that PRGF has a cytoprotective role in cells exposed to zoledronic acid, thus providing a reliable adjunctive therapy for the treatment of BRONJ pathology.

  2. The chalcone compound isosalipurposide (ISPP) exerts a cytoprotective effect against oxidative injury via Nrf2 activation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jae Yun [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of); Cho, Seung Sik [College of Pharmacy, Mokpo National University, Muan, Jeonnam 535-729 (Korea, Republic of); Yang, Ji Hye; Kim, Kyu Min; Jang, Chang Ho [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of); Park, Da Eon [College of Pharmacy, Mokpo National University, Muan, Jeonnam 535-729 (Korea, Republic of); Bang, Joon Seok [Graduate School of Clinical Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of); Jung, Young Suk [College of Pharmacy, Pusan National University, Busan (Korea, Republic of); Ki, Sung Hwan, E-mail: shki@chosun.ac.kr [College of Pharmacy, Chosun University, Gwangju 501-759 (Korea, Republic of)

    2015-08-15

    The chalcone compound isosalipurposide (ISPP) has been successfully isolated from the native Korean plant species Corylopsis coreana Uyeki (Korean winter hazel). However, the therapeutic efficacy of ISPP remains poorly understood. This study investigated whether ISPP has the capacity to activate NF-E2-related factor (Nrf2)-antioxidant response element (ARE) signaling and induce its target gene expression, and to determined the protective role of ISPP against oxidative injury of hepatocytes. In HepG2 cells, nuclear translocation of Nrf2 is augmented by ISPP treatment. Consistently, ISPP increased ARE reporter gene activity and the protein levels of glutamate cysteine ligase (GCL) and hemeoxygenase (HO-1), resulting in increased intracellular glutathione levels. Cells pretreated with ISPP were rescued from tert-butylhydroperoxide-induced reactive oxygen species (ROS) production and glutathione depletion and consequently, apoptotic cell death. Moreover, ISPP ameliorated the mitochondrial dysfunction and apoptosis induced by rotenone which is an inhibitor of complex 1 of the mitochondrial respiratory chain. The specific role of Nrf2 activation by ISPP was demonstrated using an ARE-deletion mutant plasmid and Nrf2-knockout cells. Finally, we observed that extracellular signal-regulated kinase (ERK) and AMP-activated protein kinase (AMPK), but not protein kinase C (PKC)-δ or other mitogen-activated protein kinases (MAPKs), are involved in the activation of Nrf2 by ISPP. Taken together, our results demonstrate that ISPP has a cytoprotective effect against oxidative damage mediated through Nrf2 activation and induction of its target gene expression in hepatocytes. - Highlights: • We investigated the effect of ISPP on Nrf2 activation. • ISPP increased Nrf2 activity and its target gene expression. • ISPP inhibited the mitochondrial dysfunction and ROS production. • Nrf2 activation by ISPP is dependent on ERK1/2 and AMPK phosphorylation. • ISPP may be a promising

  3. The chalcone compound isosalipurposide (ISPP) exerts a cytoprotective effect against oxidative injury via Nrf2 activation

    International Nuclear Information System (INIS)

    Han, Jae Yun; Cho, Seung Sik; Yang, Ji Hye; Kim, Kyu Min; Jang, Chang Ho; Park, Da Eon; Bang, Joon Seok; Jung, Young Suk; Ki, Sung Hwan

    2015-01-01

    The chalcone compound isosalipurposide (ISPP) has been successfully isolated from the native Korean plant species Corylopsis coreana Uyeki (Korean winter hazel). However, the therapeutic efficacy of ISPP remains poorly understood. This study investigated whether ISPP has the capacity to activate NF-E2-related factor (Nrf2)-antioxidant response element (ARE) signaling and induce its target gene expression, and to determined the protective role of ISPP against oxidative injury of hepatocytes. In HepG2 cells, nuclear translocation of Nrf2 is augmented by ISPP treatment. Consistently, ISPP increased ARE reporter gene activity and the protein levels of glutamate cysteine ligase (GCL) and hemeoxygenase (HO-1), resulting in increased intracellular glutathione levels. Cells pretreated with ISPP were rescued from tert-butylhydroperoxide-induced reactive oxygen species (ROS) production and glutathione depletion and consequently, apoptotic cell death. Moreover, ISPP ameliorated the mitochondrial dysfunction and apoptosis induced by rotenone which is an inhibitor of complex 1 of the mitochondrial respiratory chain. The specific role of Nrf2 activation by ISPP was demonstrated using an ARE-deletion mutant plasmid and Nrf2-knockout cells. Finally, we observed that extracellular signal-regulated kinase (ERK) and AMP-activated protein kinase (AMPK), but not protein kinase C (PKC)-δ or other mitogen-activated protein kinases (MAPKs), are involved in the activation of Nrf2 by ISPP. Taken together, our results demonstrate that ISPP has a cytoprotective effect against oxidative damage mediated through Nrf2 activation and induction of its target gene expression in hepatocytes. - Highlights: • We investigated the effect of ISPP on Nrf2 activation. • ISPP increased Nrf2 activity and its target gene expression. • ISPP inhibited the mitochondrial dysfunction and ROS production. • Nrf2 activation by ISPP is dependent on ERK1/2 and AMPK phosphorylation. • ISPP may be a promising

  4. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    International Nuclear Information System (INIS)

    Chen, Zhi-Dong; Xu, Liang; Tang, Kan-Kai; Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong; Sun, Ren-Hua; Mo, Shi-Jing

    2016-01-01

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF

  5. NF-κB-dependent transcriptional upregulation of cyclin D1 exerts cytoprotection against hypoxic injury upon EGFR activation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhi-Dong [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Xu, Liang [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Tang, Kan-Kai [Department of Critical Care Medicine, The First Affiliated Hospital of Huzhou Normal College, Huzhou 313000, Zhejiang (China); Gong, Fang-Xiao; Liu, Jing-Quan; Ni, Yin; Jiang, Ling-Zhi; Hong, Jun; Han, Fang; Li, Qian; Yang, Xiang-Hong [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Sun, Ren-Hua, E-mail: jqin168@hotmail.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China); Mo, Shi-Jing, E-mail: msj860307@163.com [Department of Critical Care Medicine, Zhejiang Provincial People’s Hospital, Hangzhou 310000, Zhejiang (China)

    2016-09-10

    Apoptosis of neural cells is one of the main pathological features in hypoxic/ischemic brain injury. Nuclear factor-κB (NF-κB) might be a potential therapeutic target for hypoxic/ischemic brain injury since NF-κB has been found to be inactivated after hypoxia exposure, yet the underlying molecular mechanisms of NF-κB inactivation are largely unknown. Here we report that epidermal growth factor receptor (EGFR) activation prevents neuron-like PC12 cells apoptosis in response to hypoxia via restoring NF-κB-dependent transcriptional upregulation of cyclin D1. Functionally, EGFR activation by EGF stimulation mitigates hypoxia-induced PC12 cells apoptosis in both dose- and time-dependent manner. Of note, EGFR activation elevates IKKβ phosphorylation, increases IκBα ubiquitination, promotes P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as upregulates cyclin D1 expression. EGFR activation also abrogates the decrease of IKKβ phosphorylation, reduction of IκBα ubiquitination, blockade of P65 nuclear translocation and recruitment at cyclin D1 gene promoter as well as downregulation of cyclin D1 expression induced by hypoxia. Furthermore, NF-κB-dependent upregulation of cyclin D1 is instrumental for the EGFR-mediated cytoprotection against hypoxic apoptosis. In addition, the dephosphorylation of EGFR induced by either EGF siRNA transfection or anti-HB-EGF neutralization antibody treatment enhances hypoxic cytotoxicity, which are attenuated by EGF administration. Our results highlight the essential role of NF-κB-dependent transcriptional upregulation of cyclin D1 in EGFR-mediated cytoprotective effects under hypoxic preconditioning and support further investigation of EGF in clinical trials of patients with hypoxic/ischemic brain injury. - Highlights: • EGFR activation significantly decreases hypoxia-induced PC12 cells injury. • EGFR activation abrogates the transcriptional repression of cyclin D1 induced by hypoxia in a NF

  6. Cytoprotective and enhanced anti-inflammatory activities of liposomal piroxicam formulation in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Chiong, Hoe Siong; Yong, Yoke Keong; Ahmad, Zuraini; Sulaiman, Mohd Roslan; Zakaria, Zainul Amiruddin; Yuen, Kah Hay; Hakim, Muhammad Nazrul

    2013-01-01

    Liposomal drug delivery systems, a promising lipid-based nanoparticle technology, have been known to play significant roles in improving the safety and efficacy of an encapsulated drug. Liposomes, prepared using an optimized proliposome method, were used in the present work to encapsulate piroxicam, a widely prescribed nonsteroidal anti-inflammatory drug. The cytotoxic effects as well as the in vitro efficacy in regulation of inflammatory responses by free-form piroxicam and liposome-encapsulated piroxicam were evaluated using a lipopolysaccharide-sensitive macrophage cell line, RAW 264.7. Cells treated with liposome-encapsulated piroxicam demonstrated higher cell viabilities than those treated with free-form piroxicam. In addition, the liposomal piroxicam formulation resulted in statistically stronger inhibition of pro-inflammatory mediators (ie, nitric oxide, tumor necrosis factor-α, interleukin-1β, and prostaglandin E2) than piroxicam at an equivalent dose. The liposome-encapsulated piroxicam also caused statistically significant production of interleukin-10, an anti-inflammatory cytokine. This study affirms the potential of a liposomal piroxicam formulation in reducing cytotoxicity and enhancing anti-inflammatory responses in vitro.

  7. Cytoprotective and enhanced anti-inflammatory activities of liposomal piroxicam formulation in lipopolysaccharide-stimulated RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Chiong HS

    2013-03-01

    Full Text Available Hoe Siong Chiong,1 Yoke Keong Yong,1 Zuraini Ahmad,1 Mohd Roslan Sulaiman,1 Zainul Amiruddin Zakaria,1 Kah Hay Yuen,2 Muhammad Nazrul Hakim1,31Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia; 2School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia; 3Sports Academy, Universiti Putra Malaysia, Serdang, MalaysiaBackground: Liposomal drug delivery systems, a promising lipid-based nanoparticle technology, have been known to play significant roles in improving the safety and efficacy of an encapsulated drug.Methods: Liposomes, prepared using an optimized proliposome method, were used in the present work to encapsulate piroxicam, a widely prescribed nonsteroidal anti-inflammatory drug. The cytotoxic effects as well as the in vitro efficacy in regulation of inflammatory responses by free-form piroxicam and liposome-encapsulated piroxicam were evaluated using a lipopolysaccharide-sensitive macrophage cell line, RAW 264.7.Results: Cells treated with liposome-encapsulated piroxicam demonstrated higher cell viabilities than those treated with free-form piroxicam. In addition, the liposomal piroxicam formulation resulted in statistically stronger inhibition of pro-inflammatory mediators (ie, nitric oxide, tumor necrosis factor-α, interleukin-1β, and prostaglandin E2 than piroxicam at an equivalent dose. The liposome-encapsulated piroxicam also caused statistically significant production of interleukin-10, an anti-inflammatory cytokine.Conclusion: This study affirms the potential of a liposomal piroxicam formulation in reducing cytotoxicity and enhancing anti-inflammatory responses in vitro.Keywords: liposomes, nitric oxide, cytokines, prostaglandin E2, interleukin-1β, piroxicam

  8. Lavandula angustifolia Mill. Essential Oil Exerts Antibacterial and Anti-Inflammatory Effect in Macrophage Mediated Immune Response to Staphylococcus aureus.

    Science.gov (United States)

    Giovannini, D; Gismondi, A; Basso, A; Canuti, L; Braglia, R; Canini, A; Mariani, F; Cappelli, G

    2016-01-01

    Different studies described the antibacterial properties of Lavandula angustifolia (Mill.) essential oil and its anti-inflammatory effects. Besides, no data exist on its ability to activate human macrophages during the innate response against Staphylococcus aureus. The discovery of promising regulators of macrophage-mediated inflammatory response, without side effects, could be useful for the prevention of, or as therapeutic remedy for, various inflammation-mediated diseases. This study investigated, by transcriptional analysis, how a L. angustifolia essential oil treatment influences the macrophage response to Staphylococcus aureus infection. The results showed that the treatment increases the phagocytic rate and stimulates the containment of intracellular bacterial replication by macrophages. Our data showed that this stimulation is coupled with expression of genes involved in reactive oxygen species production (i.e., CYBB and NCF4). Moreover, the essential oil treatment balanced the inflammatory signaling induced by S. aureus by repressing the principal pro-inflammatory cytokines and their receptors and inducing the heme oxygenase-1 gene transcription. These data showed that the L. angustifolia essential oil can stimulate the human innate macrophage response to a bacterium which is responsible for one of the most important nosocomial infection and might suggest the potential development of this plant extract as an anti-inflammatory and immune regulatory coadjutant drug.

  9. Semaphorin7A promotes tumor growth and exerts a pro-angiogenic effect in macrophages of mammary tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Ramon eGarcia-Areas

    2014-02-01

    Full Text Available Semaphorins, a large family of molecules involved in the axonal guidance and development of the nervous system, have been recently shown to have both angiogenic and anti-angiogenic properties. Specifically, semaphorin 7A (SEMA7A has been reported to have a chemotactic activity in neurogenesis, and to be an immune modulator via it binding to α1β1integrins. Additionally, SEMA7A has been shown to promote chemotaxis of monocytes, inducing them to produce proinflammatory mediators. In this study we explored the role of SEMA7A in the tumoral context. We show that SEMA7A is highly expressed by DA-3 murine mammary tumor cells in comparison to normal mammary cells (EpH4, and that peritoneal macrophages from mammary tumor-bearing mice also express SEMA7A at higher levels compared to peritoneal macrophages derived from normal control mice. We also show that murine macrophages treated with recombinant murine SEMA7A significantly increased their expression of proangiogenic molecules, such as CXCL2/MIP-2. Gene silencing of SEMA7A in peritoneal elicited macrophages from DA-3 tumor-bearing mice resulted in decreased CXCL2 expression. Mice implanted with SEMA7A silenced tumor cells showed decreased angiogenesis in the tumors compared to the wild type tumors. Furthermore, peritoneal elicited macrophages from mice bearing SEMA7A-silenced tumors produce significantly (p< 0.01 lower levels of angiogenic proteins, such as MIP-2, CXCL1 and MMP-9, compared to macrophages from control DA-3 mammary tumors. We postulate that SEMA7A derived from mammary carcinomas may serve as a monocyte chemoattractant and skew monocytes into a pro-tumorigenic phenotype. A putative relationship between tumor-derived SEMA7A and monocytes could prove valuable in establishing new research avenues towards unraveling important tumor-host immune interactions in breast cancer patients.

  10. The humanized anti-human AMHRII mAb 3C23K exerts an anti-tumor activity against human ovarian cancer through tumor-associated macrophages.

    Science.gov (United States)

    Bougherara, Houcine; Némati, Fariba; Nicolas, André; Massonnet, Gérald; Pugnière, Martine; Ngô, Charlotte; Le Frère-Belda, Marie-Aude; Leary, Alexandra; Alexandre, Jérôme; Meseure, Didier; Barret, Jean-Marc; Navarro-Teulon, Isabelle; Pèlegrin, André; Roman-Roman, Sergio; Prost, Jean-François; Donnadieu, Emmanuel; Decaudin, Didier

    2017-11-21

    Müllerian inhibiting substance, also called anti-Müllerian hormone (AMH), inhibits proliferation and induces apoptosis of AMH type II receptor-positive tumor cells, such as human ovarian cancers (OCs). On this basis, a humanized glyco-engineered monoclonal antibody (3C23K) has been developed. The aim of this study was therefore to experimentally confirm the therapeutic potential of 3C23K in human OCs. We first determined by immunofluorescence, immunohistochemistry and cytofluorometry analyses the expression of AMHRII in patient's tumors and found that a majority (60 to 80% depending on the detection technique) of OCs were positive for this marker. We then provided evidence that the tumor stroma of OC is enriched in tumor-associated macrophages and that these cells are responsible for 3C23K-induced killing of tumor cells through ADCP and ADCC mechanisms. In addition, we showed that 3C23K reduced macrophages induced-T cells immunosuppression. Finally, we evaluated the therapeutic efficacy of 3C23K alone and in combination with a carboplatin-paclitaxel chemotherapy in a panel of OC Patient-Derived Xenografts. In those experiments, we showed that 3C23K significantly increased the proportion and the quality of chemotherapy-based in vivo responses. Altogether, our data support the potential interest of AMHRII targeting in human ovarian cancers and the evaluation of 3C23K in further clinical trials.

  11. Scandoside Exerts Anti-Inflammatory Effect Via Suppressing NF-κB and MAPK Signaling Pathways in LPS-Induced RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Jingyu He

    2018-02-01

    Full Text Available The iridoids of Hedyotis diffusa Willd play an important role in the anti-inflammatory process, but the specific iridoid with anti-inflammatory effect and its mechanism has not be thoroughly studied. An iridoid compound named scandoside (SCA was isolated from H. diffusa and its anti-inflammatory effect was investigated in lipopolysaccharide (LPS-induced RAW 264.7 macrophages. Its anti-inflammatory mechanism was confirmed by in intro experiments and molecular docking analyses. As results, SCA significantly decreased the productions of nitric oxide (NO, prostaglandin E2 (PGE2, tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6 and inhibited the levels of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, TNF-α and IL-6 messenger RNA (mRNA expression in LPS-induced RAW 264.7 macrophages. SCA treatment suppressed the phosphorylation of inhibitor of nuclear transcription factor kappa-B alpaha (IκB-α, p38, extracellular signal-regulated kinase (ERK and c-Jun N-terminal kinase (JNK. The docking data suggested that SCA had great binding abilities to COX-2, iNOS and IκB. Taken together, the results indicated that the anti-inflammatory effect of SCA is due to inhibition of pro-inflammatory cytokines and mediators via suppressing the nuclear transcription factor kappa-B (NF-κB and mitogen-activated protein kinase (MAPK signaling pathways, which provided useful information for its application and development.

  12. Exerting Capacity.

    Science.gov (United States)

    Leger, J Michael; Phillips, Carolyn A

    2017-05-01

    Patient safety has been at the forefront of nursing research since the release of the Institute of Medicine's report estimating the number of preventable adverse events in hospital settings; yet no research to date has incorporated the perspectives of bedside nurses using classical grounded theory (CGT) methodology. This CGT study explored the perceptions of bedside registered nurses regarding patient safety in adult acute care hospitals. Data analysis used three techniques unique to CGT-the constant comparative method, coding, and memoing-to explore the values, realities, and beliefs of bedside nurses about patient safety. The analysis resulted in a substantive theory, Exerting Capacity, which explained how bedside nurses balance the demands of keeping their patients safe. Exerting Capacity has implications for health care organization leaders, nursing leaders, and bedside nurses; it also has indications for future research into the concept of patient safety.

  13. Dextran loading protects macrophages from lipid peroxidation and induces a Keap1/Nrf2/ARE-dependent antioxidant response.

    Science.gov (United States)

    Chechushkov, Anton; Zaitseva, Natalia; Vorontsova, Elena; Kozhin, Petr; Menshchikova, Elena; Shkurupiy, Vyacheslav

    2016-12-01

    Linear dextrans are often proposed as drug delivery systems with milder adverse effects and lower effective drug concentrations. Linear dextrans are polysaccharides that can potentially be used to load macrophages with drugs to transport them to a site of inflammation. Recently, it was reported that dextrans may exert a protective effect vis-à-vis drug cytotoxicity and during wound healing. The aim of the current work was to evaluate molecular mechanisms of action of dextrans that may be relevant to the cytoprotective effects. We determined the effect of treatment with 40- or 70-kDa dextran on production of reactive oxygen species, lipid peroxidation, and lysosomal pH in the J774 macrophage cell line. In addition, induction of Keap1/Nrf2/ARE and autophagic activity were evaluated. Dextrans of both molecular weights protected the cells from oxidative stress induced by cumene hydroperoxide and from lysosomal stress induced by ammonium chloride. The effect was associated with induction of the Keap1/Nrf2/ARE signaling pathway. Furthermore, dextran stimulated autophagy in a dose-dependent manner but inhibited the autophagosome-lysosome fusion in a time-dependent manner. This study shows possible cytoprotective effects of dextran under oxidative stress, and these findings may be used for the development of novel (dextran-based) drug delivery approaches. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Evidence for the gastric cytoprotective effect of centrally injected agmatine.

    Science.gov (United States)

    Zádori, Zoltán S; Tóth, Viktória E; Fehér, Ágnes; Philipp, Kirsch; Németh, József; Gyires, Klára

    2014-09-01

    Agmatine (decarboxylated arginine) exerts cytoprotective action in several tissues, such as in the brain, heart or kidneys, but there is still controversy over the effects of agmatine on the gastric mucosa. The aim of the present study was to reveal the potential gastroprotective action of agmatine by using an acid-independent ulcer model to clarify which receptors and peripheral factors are involved in it. Gastric mucosal damage was induced by acidified ethanol. Mucosal levels of calcitonin gene-related peptide (CGRP) and somatostatin were determined by radioimmunoassay. For analysis of gastric motor activity the rubber balloon method was used. It was found that agmatine given intracerebroventricularly (i.c.v., 0.044-220 nmol/rat) significantly inhibited the development of ethanol-induced mucosal damage, while in the case of intraperitoneal injection (0.001-50mg/kg i.p.) it had only a minor effect. The central gastroprotective action of agmatine was completely antagonized by mixed alpha2-adrenoceptor and imidazoline I1 receptor antagonists (idazoxan, efaroxan), but only partially by yohimbine (selective alpha2-adrenoceptor antagonist) and AGN 192403 (selective I1 receptor ligand, putative antagonist). It was also inhibited by the non-selective opioid-receptor antagonist naloxone and the selective δ-opioid receptor antagonist naltrindole, but not by β-funaltrexamine and nor-Binaltorphimine (selective μ- and κ-opioid receptor antagonists, respectively). Furthermore, the effect of agmatine was antagonized by bilateral cervical vagotomy and by pretreatment with indomethacin and NG-nitro-l-arginine. Agmatine also reversed the ethanol-induced reduction of gastric mucosal CGRP and somatostatin content, but did not have any significant effect on gastric motor activity. These results indicate that agmatine given centrally induces gastric cytoprotection, which is mediated by central imidazoline I1 receptors, alpha2-adrenoceptors and δ-opioid receptors. Activation of

  15. Novel PI3K/Akt Inhibitors Screened by the Cytoprotective Function of Human Immunodeficiency Virus Type 1 Tat

    Science.gov (United States)

    Kim, Dong-Hyun; Kim, Baek

    2011-01-01

    The PI3K/Akt pathway regulates various stress-related cellular responses such as cell survival, cell proliferation, metabolism and protein synthesis. Many cancer cell types display the activation of this pathway, and compounds inhibiting this cell survival pathway have been extensively evaluated as anti-cancer agents. In addition to cancers, several human viruses, such as HTLV, HPV, HCV and HIV-1, also modulate this pathway, presumably in order to extend the life span of the infected target cells for productive viral replication. The expression of HIV-1 Tat protein exhibited the cytoprotective effect in macrophages and a human microglial cell line by inhibiting the negative regulator of this pathway, PTEN. This cytoprotective effect of HIV-1 appears to contribute to the long-term survival and persistent HIV-1 production in human macrophage reservoirs. In this study we exploited the PI3K/Akt dependent cytoprotective effect of Tat-expressing CHME5 cells. We screened a collection of compounds known to modulate inflammation, and identified three novel compounds: Lancemaside A, Compound K and Arctigenin that abolished the cytoprotective phenotype of Tat-expressing CHME5 cells. All three compounds antagonized the kinase activity of Akt. Further detailed signaling studies revealed that each of these three compounds targeted different steps of the PI3K/Akt pathway. Arctigenin regulates the upstream PI3K enzyme from converting PIP2 to PIP3. Lancemaside A1 inhibited the movement of Akt to the plasma membrane, a critical step for Akt activation. Compound K inhibited Akt phosphorylation. This study supports that Tat-expressing CHME5 cells are an effective model system for screening novel PI3K/Akt inhibitors. PMID:21765914

  16. Novel PI3K/Akt inhibitors screened by the cytoprotective function of human immunodeficiency virus type 1 Tat.

    Directory of Open Access Journals (Sweden)

    Yuri Kim

    Full Text Available The PI3K/Akt pathway regulates various stress-related cellular responses such as cell survival, cell proliferation, metabolism and protein synthesis. Many cancer cell types display the activation of this pathway, and compounds inhibiting this cell survival pathway have been extensively evaluated as anti-cancer agents. In addition to cancers, several human viruses, such as HTLV, HPV, HCV and HIV-1, also modulate this pathway, presumably in order to extend the life span of the infected target cells for productive viral replication. The expression of HIV-1 Tat protein exhibited the cytoprotective effect in macrophages and a human microglial cell line by inhibiting the negative regulator of this pathway, PTEN. This cytoprotective effect of HIV-1 appears to contribute to the long-term survival and persistent HIV-1 production in human macrophage reservoirs. In this study we exploited the PI3K/Akt dependent cytoprotective effect of Tat-expressing CHME5 cells. We screened a collection of compounds known to modulate inflammation, and identified three novel compounds: Lancemaside A, Compound K and Arctigenin that abolished the cytoprotective phenotype of Tat-expressing CHME5 cells. All three compounds antagonized the kinase activity of Akt. Further detailed signaling studies revealed that each of these three compounds targeted different steps of the PI3K/Akt pathway. Arctigenin regulates the upstream PI3K enzyme from converting PIP2 to PIP3. Lancemaside A1 inhibited the movement of Akt to the plasma membrane, a critical step for Akt activation. Compound K inhibited Akt phosphorylation. This study supports that Tat-expressing CHME5 cells are an effective model system for screening novel PI3K/Akt inhibitors.

  17. Radioadaptive Cytoprotective Pathways in the Mouse Retina

    Science.gov (United States)

    Zanello, Susana B.; Wotring, V.; Theriot, C.; Ploutz-Snyder, R.; Zhang, Y.; Wu, H.

    2010-01-01

    Exposure to cosmic radiation implies a risk of tissue degeneration. Radiation retinopathy is a complication of radiotherapy and exhibits common features with other retinopathies and neuropathies. Exposure to a low radiation dose elicits protective cellular events (radioadaptive response), reducing the stress of a subsequent higher dose. To assess the risk of radiation-induced retinal changes and the extent to which a small priming dose reduces this risk, we used a mouse model exposed to a source of Cs-137-gamma radiation. Gene expression profiling of retinas from non-irradiated control C57BL/6J mice (C) were compared to retinas from mice treated with a low 50 mGy dose (LD), a high 6 Gy dose (HD), and a combined treatment of 50 mGy (priming) and 6 Gy (challenge) doses (LHD). Whole retina RNA was isolated and expression analysis for selected genes performed by RTqPCR. Relevant target genes associated with cell death/survival, oxidative stress, cellular stress response and inflammation pathways, were analyzed. Cellular stress response genes were upregulated at 4 hr after the challenge dose in LHD retinas (Sirt1: 1.5 fold, Hsf1: 1.7 fold, Hspa1a: 2.5 fold; Hif1a: 1.8 fold, Bag1: 1.7). A similar trend was observed in LD animals. Most antioxidant enzymes (Hmox1, Sod2, Prdx1, Cygb, Cat1) and inflammatory mediators (NF B, Ptgs2 and Tgfb1) were upregulated in LHD and LD retinas. Expression of the pro-survival gene Bcl2 was upregulated in LD (6-fold) and LHD (4-fold) retinas. In conclusion, cytoprotective gene networks activation in the retina suggests a radioadaptive response to a priming irradiation dose, with mitigation of the deleterious effects of a subsequent high dose exposure. The enhancement of these cytoprotective mechanisms has potential value as a countermeasure to ocular alterations caused by radiation alone or in combination with other factors in spaceflight environments.

  18. Bioactive Flavonoids, Antioxidant Behaviour, and Cytoprotective Effects of Dried Grapefruit Peels (Citrus paradisi Macf.)

    Science.gov (United States)

    Castro-Vazquez, Lucia; Alañón, María Elena; Rodríguez-Robledo, Virginia; Pérez-Coello, María Soledad; Hermosín-Gutierrez, Isidro; Díaz-Maroto, María Consuelo; Jordán, Joaquín; Galindo, María Francisca; Arroyo-Jiménez, María del Mar

    2016-01-01

    Grapefruit (Citrus paradisi Macf.) is an important cultivar of the Citrus genus which contains a number of nutrients beneficial to human health. The objective of the present study was to evaluate changes in bioactive flavonoids, antioxidant behaviour, and in vitro cytoprotective effect of processed white and pink peels after oven-drying (45°C–60°C) and freeze-drying treatments. Comparison with fresh grapefruit peels was also assessed. Significant increases in DPPH, FRAPS, and ABTS values were observed in dried grapefruit peel samples in comparison with fresh peels, indicating the suitability of the treatments for use as tools to greatly enhance the antioxidant potential of these natural byproducts. A total of thirteen flavonoids were quantified in grapefruit peel extracts by HPLC-MS/MS. It was found that naringin, followed by isonaringin, was the main flavonoid occurring in fresh, oven-dried, and freeze-dried grapefruit peels. In vivo assay revealed that fresh and oven-dried grapefruit peel extracts (45°C) exerted a strong cytoprotective effect on SH-SY5Y neuroblastoma cell lines at concentrations ranging within 0.1–0.25 mg/mL. Our data suggest that grapefruit (Citrus paradisi Macf.) peel has considerable potential as a source of natural bioactive flavonoids with outstanding antioxidant activity which can be used as agents in several therapeutic strategies. PMID:26904169

  19. Perspectives on Exertional Rhabdomyolysis.

    Science.gov (United States)

    Rawson, Eric S; Clarkson, Priscilla M; Tarnopolsky, Mark A

    2017-03-01

    Exertional (exercise-induced) rhabdomyolysis is a potentially life threatening condition that has been the subject of research, intense discussion, and media attention. The causes of rhabdomyolysis are numerous and can include direct muscle injury, unaccustomed exercise, ischemia, extreme temperatures, electrolyte abnormalities, endocrinologic conditions, genetic disorders, autoimmune disorders, infections, drugs, toxins, and venoms. The objective of this article is to review the literature on exertional rhabdomyolysis, identify precipitating factors, and examine the role of the dietary supplement creatine monohydrate. PubMed and SPORTDiscus databases were searched using the terms rhabdomyolysis, muscle damage, creatine, creatine supplementation, creatine monohydrate, and phosphocreatine. Additionally, the references of papers identified through this search were examined for relevant studies. A meta-analysis was not performed. Although the prevalence of rhabdomyolysis is low, instances still occur where exercise is improperly prescribed or used as punishment, or incomplete medical history is taken, and exertional rhabdomyolysis occurs. Creatine monohydrate does not appear to be a precipitating factor for exertional rhabdomyolysis. Healthcare professionals should be able to recognize the basic signs of exertional rhabdomyolysis so prompt treatment can be administered. For the risk of rhabdomyolysis to remain low, exercise testing and prescription must be properly conducted based on professional standards.

  20. Cytoprotective and antioxidant effects of the methanol extract of ...

    African Journals Online (AJOL)

    Background: Ethno-botanical information shows that Eremomastax speciosa is used in the traditional management of various stomach complaints including gastro-duodenal ulcers. Materials and Methods: In this study, we tested the cytoprotective potential of the whole plant methanol extract (100-200 mg/kg, p.o), against ...

  1. Testicular cytoprotective activities of Curcuma longa in STZ-induced ...

    African Journals Online (AJOL)

    This study was aimed at investigating the cytoprotective activities of Curcuma longa (Turmeric) on the histological structure of the testes in diabetic male rats. Turmeric is commonly called the golden spice, is used as a spice in cooking and also has a long history of medicinal use, dating back nearly 4000 years to the Vedic ...

  2. Exertional dyspnoea in obesity

    Directory of Open Access Journals (Sweden)

    Vipa Bernhardt

    2016-12-01

    Full Text Available The purpose of cardiopulmonary exercise testing (CPET in the obese person, as in any cardiopulmonary exercise test, is to determine the patient's exercise tolerance, and to help identify and/or distinguish between the various physiological factors that could contribute to exercise intolerance. Unexplained dyspnoea on exertion is a common reason for CPET, but it is an extremely complex symptom to explain. Sometimes obesity is the simple answer by elimination of other possibilities. Thus, distinguishing among multiple clinical causes for exertional dyspnoea depends on the ability to eliminate possibilities while recognising response patterns that are unique to the obese patient. This includes the otherwise healthy obese patient, as well as the obese patient with potentially multiple cardiopulmonary limitations. Despite obvious limitations in lung function, metabolic disease and/or cardiovascular dysfunction, obesity may be the most likely reason for exertional dyspnoea. In this article, we will review the more common cardiopulmonary responses to exercise in the otherwise healthy obese adult with special emphasis on dyspnoea on exertion.

  3. Exertional Rhabdomyolysis after Spinning.

    Science.gov (United States)

    Jeong, Youjin; Kweon, Hyuk-Jung; Oh, Eun-Jung; Ahn, Ah-Leum; Choi, Jae-Kyung; Cho, Dong-Yung

    2016-11-01

    Any strenuous muscular exercise may trigger rhabdomyolysis. We report an episode of clinically manifested exertional rhabdomyolysis due to stationary cycling, commonly known as spinning. Reports of spinning-related rhabdomyolysis are rare in the English literature, and the current case appears to be the first such case reported in South Korea. A previously healthy 21-year-old Asian woman presented with severe thigh pain and reddish-brown urinary discoloration 24-48 hours after attending a spinning class at a local gymnasium. Paired with key laboratory findings, her symptoms were suggestive of rhabdomyolysis. She required hospital admission to sustain renal function through fluid resuscitation therapy and fluid balance monitoring. Because exertional rhabdomyolysis may occur in any unfit but otherwise healthy individual who indulges in stationary cycling, the potential health risks of this activity must be considered.

  4. Exertional Rhabdomyolysis after Spinning

    OpenAIRE

    Jeong, Youjin; Kweon, Hyuk-Jung; Oh, Eun-Jung; Ahn, Ah-Leum; Choi, Jae-Kyung; Cho, Dong-Yung

    2016-01-01

    Any strenuous muscular exercise may trigger rhabdomyolysis. We report an episode of clinically manifested exertional rhabdomyolysis due to stationary cycling, commonly known as spinning. Reports of spinning-related rhabdomyolysis are rare in the English literature, and the current case appears to be the first such case reported in South Korea. A previously healthy 21-year-old Asian woman presented with severe thigh pain and reddish-brown urinary discoloration 24?48 hours after attending a spi...

  5. Anti-inflammatory, antiproliferative, and cytoprotective activity of NO chimera nitrates of use in cancer chemoprevention.

    Science.gov (United States)

    Hagos, Ghenet K; Abdul-Hay, Samer O; Sohn, Johann; Edirisinghe, Praneeth D; Chandrasena, R Esala P; Wang, Zhiqiang; Li, Qian; Thatcher, Gregory R J

    2008-11-01

    Nonsteroidal anti-inflammatory drugs (NSAIDs) have shown promise in colorectal cancer (CRC), but they are compromised by gastrotoxicity. NO-NSAIDs are hybrid nitrates conjugated to an NSAID designed to exploit the gastroprotective properties of NO bioactivity. The NO chimera ethyl 2-((2,3-bis(nitrooxy)propyl)disulfanyl)benzoate (GT-094), a novel nitrate containing an NSAID and disulfide pharmacophores, is effective in vivo in rat models of CRC and is a lead compound for design of agents of use in CRC. Preferred chemopreventive agents possess 1) antiproliferative and 2) anti-inflammatory actions and 3) the ability to induce cytoprotective phase 2 enzymes. To determine the contribution of each pharmacophore to the biological activity of GT-094, these three biological activities were studied in vitro in compounds that deconstructed the structural elements of the lead GT-094. The anti-inflammatory and antiproliferative actions of GT-094 in vivo were recapitulated in vitro, and GT-094 was seen to induce phase 2 enzymes via the antioxidant responsive element. In the variety of colon, macrophage-like, and liver cell lines studied, the evidence from structure-activity relationships was that the disulfide structural element of GT-094 is the dominant contributor in vitro to the anti-inflammatory activity, antiproliferation, and enzyme induction. The results provide a direction for lead compound refinement. The evidence for a contribution from the NO mimetic activity of nitrates in vitro was equivocal, and combinations of nitrates with acetylsalicylic acid were inactive.

  6. Cytoprotective Mechanisms Mediated by Polyphenols from Chilean Native Berries against Free Radical-Induced Damage on AGS Cells

    Directory of Open Access Journals (Sweden)

    Felipe Ávila

    2017-01-01

    Full Text Available The prevalence of cytoprotective mechanisms induced by polyphenols such as activation of intracellular antioxidant responses (ICM and direct free radical scavenging was investigated in native Chilean species of strawberries, raspberries, and currants. Human gastric epithelial cells were co- and preincubated with polyphenolic-enriched extracts (PEEs from Chilean raspberries (Rubus geoides, strawberries (Fragaria chiloensis ssp. chiloensis f. chiloensis, and currants (Ribes magellanicum and challenged with peroxyl and hydroxyl radicals. Cellular protection was determined in terms of cell viability, glyoxalase I and glutathione s-transferases activities, and carboxymethyl lysine (CML and malondialdehyde levels. Our results indicate that cytoprotection induced by ICM was the prevalent mechanism for Rubus geoides and F. chiloensis. This agreed with increased levels of glyoxalase I and glutathione S-transferase activities in cells preincubated with PEEs. ORAC index indicated that F. chiloensis was the most efficient peroxyl radical scavenger. Moreover, ICM mediated by F. chiloensis was effective in protecting cells from CML accumulation in contrast to the protective effects induced by free radical scavenging. Our results indicate that although both polyphenol-mediated mechanisms can exert protective effects, ICM was the most prevalent in AGS cells. These results suggest a potential use of these native berries as functional food.

  7. Cytoprotective Mechanisms Mediated by Polyphenols from Chilean Native Berries against Free Radical-Induced Damage on AGS Cells.

    Science.gov (United States)

    Ávila, Felipe; Theoduloz, Cristina; López-Alarcón, Camilo; Dorta, Eva; Schmeda-Hirschmann, Guillermo

    2017-01-01

    The prevalence of cytoprotective mechanisms induced by polyphenols such as activation of intracellular antioxidant responses (ICM) and direct free radical scavenging was investigated in native Chilean species of strawberries, raspberries, and currants. Human gastric epithelial cells were co- and preincubated with polyphenolic-enriched extracts (PEEs) from Chilean raspberries ( Rubus geoides ), strawberries ( Fragaria chiloensis ssp. chiloensis f . chiloensis ), and currants ( Ribes magellanicum ) and challenged with peroxyl and hydroxyl radicals. Cellular protection was determined in terms of cell viability, glyoxalase I and glutathione s-transferases activities, and carboxymethyl lysine (CML) and malondialdehyde levels. Our results indicate that cytoprotection induced by ICM was the prevalent mechanism for Rubus geoides and F. chiloensis . This agreed with increased levels of glyoxalase I and glutathione S-transferase activities in cells preincubated with PEEs. ORAC index indicated that F. chiloensis was the most efficient peroxyl radical scavenger. Moreover, ICM mediated by F. chiloensis was effective in protecting cells from CML accumulation in contrast to the protective effects induced by free radical scavenging. Our results indicate that although both polyphenol-mediated mechanisms can exert protective effects, ICM was the most prevalent in AGS cells. These results suggest a potential use of these native berries as functional food.

  8. Macrophages migrate in an activation-dependent manner to chemokines involved in neuroinflammation

    NARCIS (Netherlands)

    Vogel, D.Y.S.; Heijnen, D.A.M.; Breur, M.; de Vries, H.E.; Tool, A.T.; Amor, S.; Dijkstra, C.D.

    2014-01-01

    Background: In neuroinflammatory diseases, macrophages can play a dual role in the process of tissue damage, depending on their activation status (M1 / M2). M1 macrophages are considered to exert damaging effects to neurons, whereas M2 macrophages are reported to aid regeneration and repair of

  9. Calcium-dependent nitric oxide production is involved in the cytoprotective properties of n-acetylcysteine in glycochenodeoxycholic acid-induced cell death in hepatocytes

    International Nuclear Information System (INIS)

    Gonzalez-Rubio, Sandra; Linares, Clara I.; Bello, Rosario I.; Gonzalez, Raul; Ferrin, Gustavo; Hidalgo, Ana B.; Munoz-Gomariz, Elisa; Rodriguez, Blanca A.; Barrera, Pilar; Ranchal, Isidora; Duran-Prado, Mario; Aguilar-Melero, Patricia; De la Mata, Manuel; Muntane, Jordi

    2010-01-01

    The intracellular oxidative stress has been involved in bile acid-induced cell death in hepatocytes. Nitric oxide (NO) exerts cytoprotective properties in glycochenodeoxycholic acid (GCDCA)-treated hepatocytes. The study evaluated the involvement of Ca 2+ on the regulation of NO synthase (NOS)-3 expression during N-acetylcysteine (NAC) cytoprotection against GCDCA-induced cell death in hepatocytes. The regulation of Ca 2+ pools (EGTA or BAPTA-AM) and NO (L-NAME or NO donor) production was assessed during NAC cytoprotection in GCDCA-treated HepG2 cells. The stimulation of Ca 2+ entrance was induced by A23187 in HepG2. Cell death, Ca 2+ mobilization, NOS-1, -2 and -3 expression, AP-1 activation, and NO production were evaluated. GCDCA reduced intracellular Ca 2+ concentration and NOS-3 expression, and enhanced cell death in HepG2. NO donor prevented, and L-NAME enhanced, GCDCA-induced cell death. The reduction of Ca 2+ entry by EGTA, but not its release from intracellular stores by BAPTA-AM, enhanced cell death in GCDCA-treated cells. The stimulation of Ca 2+ entrance by A23187 reduced cell death and enhanced NOS-3 expression in GCDCA-treated HepG2 cells. The cytoprotective properties of NAC were related to the recovery of intracellular Ca 2+ concentration, NOS-3 expression and NO production induced by GCDCA-treated HepG2 cells. The increase of NO production by Ca 2+ -dependent NOS-3 expression during NAC administration reduces cell death in GCDCA-treated hepatocytes.

  10. Calcium-dependent nitric oxide production is involved in the cytoprotective properties of n-acetylcysteine in glycochenodeoxycholic acid-induced cell death in hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rubio, Sandra; Linares, Clara I; Bello, Rosario I [Liver Research Unit, Reina Sofia University Hospital, Cordoba (Spain); Gonzalez, Raul; Ferrin, Gustavo [Liver Research Unit, Reina Sofia University Hospital, Cordoba (Spain); Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREH o Ciberehd) (Spain); Hidalgo, Ana B [Liver Research Unit, Reina Sofia University Hospital, Cordoba (Spain); Munoz-Gomariz, Elisa [Department of Biostatistics, Reina Sofia University Hospital, Cordoba (Spain); Rodriguez, Blanca A [Liver Research Unit, Reina Sofia University Hospital, Cordoba (Spain); Barrera, Pilar; Ranchal, Isidora [Liver Research Unit, Reina Sofia University Hospital, Cordoba (Spain); Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREH o Ciberehd) (Spain); Duran-Prado, Mario [Instituto de Parasitologia y Biomedicina Lopez Neyra, CSIC, Granada (Spain); CIBER Fisiopatologia de la Obesidad y Nutricion CB06/03, Instituto de Salud Carlos III, Ministerio de Sanidad y Consumo (Spain); Aguilar-Melero, Patricia [Liver Research Unit, Reina Sofia University Hospital, Cordoba (Spain); De la Mata, Manuel [Liver Research Unit, Reina Sofia University Hospital, Cordoba (Spain); Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREH o Ciberehd) (Spain); Muntane, Jordi [Liver Research Unit, Reina Sofia University Hospital, Cordoba (Spain); Centro de Investigacion Biomedica en Red de Enfermedades Hepaticas y Digestivas (CIBEREH o Ciberehd) (Spain)

    2010-01-15

    The intracellular oxidative stress has been involved in bile acid-induced cell death in hepatocytes. Nitric oxide (NO) exerts cytoprotective properties in glycochenodeoxycholic acid (GCDCA)-treated hepatocytes. The study evaluated the involvement of Ca{sup 2+} on the regulation of NO synthase (NOS)-3 expression during N-acetylcysteine (NAC) cytoprotection against GCDCA-induced cell death in hepatocytes. The regulation of Ca{sup 2+} pools (EGTA or BAPTA-AM) and NO (L-NAME or NO donor) production was assessed during NAC cytoprotection in GCDCA-treated HepG2 cells. The stimulation of Ca{sup 2+} entrance was induced by A23187 in HepG2. Cell death, Ca{sup 2+} mobilization, NOS-1, -2 and -3 expression, AP-1 activation, and NO production were evaluated. GCDCA reduced intracellular Ca{sup 2+} concentration and NOS-3 expression, and enhanced cell death in HepG2. NO donor prevented, and L-NAME enhanced, GCDCA-induced cell death. The reduction of Ca{sup 2+} entry by EGTA, but not its release from intracellular stores by BAPTA-AM, enhanced cell death in GCDCA-treated cells. The stimulation of Ca{sup 2+} entrance by A23187 reduced cell death and enhanced NOS-3 expression in GCDCA-treated HepG2 cells. The cytoprotective properties of NAC were related to the recovery of intracellular Ca{sup 2+} concentration, NOS-3 expression and NO production induced by GCDCA-treated HepG2 cells. The increase of NO production by Ca{sup 2+}-dependent NOS-3 expression during NAC administration reduces cell death in GCDCA-treated hepatocytes.

  11. Induction of cytoprotective pathways is central to the extension of lifespan conferred by multiple longevity pathways.

    Directory of Open Access Journals (Sweden)

    David E Shore

    Full Text Available Many genetic and physiological treatments that extend lifespan also confer resistance to a variety of stressors, suggesting that cytoprotective mechanisms underpin the regulation of longevity. It has not been established, however, whether the induction of cytoprotective pathways is essential for lifespan extension or merely correlated. Using a panel of GFP-fused stress response genes, we identified the suites of cytoprotective pathways upregulated by 160 gene inactivations known to increase Caenorhabditis elegans longevity, including the mitochondrial UPR (hsp-6, hsp-60, the ER UPR (hsp-4, ROS response (sod-3, gst-4, and xenobiotic detoxification (gst-4. We then screened for other gene inactivations that disrupt the induction of these responses by xenobiotic or genetic triggers, identifying 29 gene inactivations required for cytoprotective gene expression. If cytoprotective responses contribute directly to lifespan extension, inactivation of these genes would be expected to compromise the extension of lifespan conferred by decreased insulin/IGF-1 signaling, caloric restriction, or the inhibition of mitochondrial function. We find that inactivation of 25 of 29 cytoprotection-regulatory genes shortens the extension of longevity normally induced by decreased insulin/IGF-1 signaling, disruption of mitochondrial function, or caloric restriction, without disrupting normal longevity nearly as dramatically. These data demonstrate that induction of cytoprotective pathways is central to longevity extension and identify a large set of new genetic components of the pathways that detect cellular damage and couple that detection to downstream cytoprotective effectors.

  12. Induction of cytoprotective autophagy in PC-12 cells by cadmium

    International Nuclear Information System (INIS)

    Wang, Qiwen; Zhu, Jiaqiao; Zhang, Kangbao; Jiang, Chenyang; Wang, Yi; Yuan, Yan; Bian, Jianchun; Liu, Xuezhong; Gu, Jianhong; Liu, Zongping

    2013-01-01

    Highlights: •Cadmium can promote early upregulation of autophagy in PC-12 cells. •Autophagy precedes apoptosis in cadmium-treated PC-12 cells. •Cadmium-induced autophagy is cytoprotective in PC-12 cells. •Class III PI3K/beclin-1/Bcl-2 signaling pathway plays a positive role in cadmium-triggered autophagy. -- Abstract: Laboratory data have demonstrated that cadmium (Cd) may induce neuronal apoptosis. However, little is known about the role of autophagy in neurons. In this study, cell viability decreased in a dose- and time-dependent manner after treatment with Cd in PC-12 cells. As cells were exposed to Cd, the levels of LC3-II proteins became elevated, specific punctate distribution of endogenous LC3-II increased, and numerous autophagosomes appeared, which suggest that Cd induced a high level of autophagy. In the late stages of autophagy, an increase in the apoptosis ratio was observed. Likewise, pre-treatment with chloroquine (an autophagic inhibitor) and rapamycin (an autophagic inducer) resulted in an increased and decreased percentage of apoptosis in contrast to other Cd-treated groups, respectively. The results indicate that autophagy delayed apoptosis in Cd-treated PC-12 cells. Furthermore, co-treatment of cells with chloroquine reduced autophagy and cell activity. However, rapamycin had an opposite effect on autophagy and cell activity. Moreover, class III PI3 K/beclin-1/Bcl-2 signaling pathways served a function in Cd-induced autophagy. The findings suggest that Cd can induce cytoprotective autophagy by activating class III PI3 K/beclin-1/Bcl-2 signaling pathways. In sum, this study strongly suggests that autophagy may serve a positive function in the reduction of Cd-induced cytotoxicity

  13. When exercise causes exertional rhabdomyolysis.

    Science.gov (United States)

    Furman, Janet

    2015-04-01

    Exertional rhabdomyolysis is a clinical condition caused by intense, repetitive exercise or a sudden increase in exercise in an untrained person, although rhabdomyolysis can occur in trained athletes. In many cases, the presentation of early, uncomplicated rhabdomyolysis is subtle, but serious complications such as renal failure, compartment syndrome, and dysrhythmias may arise if severe exertional rhabdomyolysis is undiagnosed or untreated. Management is further complicated by the lack of concrete management guidelines for treating rhabdomyolysis and returning patients to activity.

  14. Synthetic Growth Hormone-Releasing Peptides (GHRPs: A Historical Appraisal of the Evidences Supporting Their Cytoprotective Effects

    Directory of Open Access Journals (Sweden)

    Jorge Berlanga-Acosta

    2017-02-01

    Full Text Available Background: Growth hormone-releasing peptides (GHRPs constitute a group of small synthetic peptides that stimulate the growth hormone secretion and the downstream axis activity. Mounting evidences since the early 1980s delineated unexpected pharmacological cardioprotective and cytoprotective properties for the GHRPs. However, despite intense basic pharmacological research, alternatives to prevent cell and tissue demise before lethal insults have remained as an empty niche in the clinical armamentarium. Here, we have rigorously reviewed the investigational development of GHRPs and their clinical niching perspectives. Methodology: PubMed/MEDLINE databases, including original research and review articles, were explored. The search design was date escalated from 1980 and included articles in English only. Results and Conclusions: GHRPs bind to two different receptors (GHS-R1a and CD36, which redundantly or independently exert relevant biological effects. GHRPs’ binding to CD36 activates prosurvival pathways such as PI-3K/AKT1, thus reducing cellular death. Furthermore, GHRPs decrease reactive oxygen species (ROS spillover, enhance the antioxidant defenses, and reduce inflammation. These cytoprotective abilities have been revealed in cardiac, neuronal, gastrointestinal, and hepatic cells, representing a comprehensive spectrum of protection of parenchymal organs. Antifibrotic effects have been attributed to some of the GHRPs by counteracting fibrogenic cytokines. In addition, GHRP family members have shown a potent myotropic effect by promoting anabolia and inhibiting catabolia. Finally, GHRPs exhibit a broad safety profile in preclinical and clinical settings. Despite these fragmented lines incite to envision multiple pharmacological uses for GHRPs, especially as a myocardial reperfusion damage-attenuating candidate, this family of “drugable” peptides awaits for a definitive clinical niche.

  15. Synthetic Growth Hormone-Releasing Peptides (GHRPs): A Historical Appraisal of the Evidences Supporting Their Cytoprotective Effects.

    Science.gov (United States)

    Berlanga-Acosta, Jorge; Abreu-Cruz, Angel; Herrera, Diana García-Del Barco; Mendoza-Marí, Yssel; Rodríguez-Ulloa, Arielis; García-Ojalvo, Ariana; Falcón-Cama, Viviana; Hernández-Bernal, Francisco; Beichen, Qu; Guillén-Nieto, Gerardo

    2017-01-01

    Growth hormone-releasing peptides (GHRPs) constitute a group of small synthetic peptides that stimulate the growth hormone secretion and the downstream axis activity. Mounting evidences since the early 1980s delineated unexpected pharmacological cardioprotective and cytoprotective properties for the GHRPs. However, despite intense basic pharmacological research, alternatives to prevent cell and tissue demise before lethal insults have remained as an empty niche in the clinical armamentarium. Here, we have rigorously reviewed the investigational development of GHRPs and their clinical niching perspectives. PubMed/MEDLINE databases, including original research and review articles, were explored. The search design was date escalated from 1980 and included articles in English only. GHRPs bind to two different receptors (GHS-R1a and CD36), which redundantly or independently exert relevant biological effects. GHRPs' binding to CD36 activates prosurvival pathways such as PI-3K/AKT1, thus reducing cellular death. Furthermore, GHRPs decrease reactive oxygen species (ROS) spillover, enhance the antioxidant defenses, and reduce inflammation. These cytoprotective abilities have been revealed in cardiac, neuronal, gastrointestinal, and hepatic cells, representing a comprehensive spectrum of protection of parenchymal organs. Antifibrotic effects have been attributed to some of the GHRPs by counteracting fibrogenic cytokines. In addition, GHRP family members have shown a potent myotropic effect by promoting anabolia and inhibiting catabolia. Finally, GHRPs exhibit a broad safety profile in preclinical and clinical settings. Despite these fragmented lines incite to envision multiple pharmacological uses for GHRPs, especially as a myocardial reperfusion damage-attenuating candidate, this family of "drugable" peptides awaits for a definitive clinical niche.

  16. Fructose 1,6-Bisphosphate: A Summary of Its Cytoprotective Mechanism.

    Science.gov (United States)

    Alva, Norma; Alva, Ronald; Carbonell, Teresa

    2016-01-01

    In clinical and experimental settings, a great deal of effort is being made to protect cells and tissues against harmful conditions and to facilitate metabolic recovery following these insults. Much of the recent attention has focused on the protective role of a natural form of sugar, fructose 1,6-bisphosphate (F16bP). F16bP is a high-energy glycolytic intermediate that has been shown to exert a protective action in different cell types and tissues (including the brain, kidney, intestine, liver and heart) against various harmful conditions. For example, there is much evidence that it prevents neuronal damage due to hypoxia and ischemia. Furthermore, the cytoprotective effects of F16bP have been documented in lesions caused by chemicals or cold storage, in a decrease in mortality during sepsis shock and even in the prevention of bone loss in experimental osteoporosis. Intriguingly, protection in such a variety of targets and animal models suggests that the mechanisms induced by F16bP are complex and involve different pathways. In this review we will discuss the most recent theories concerning the molecular model of action of F16bP inside cells. These include its incorporation as an energy substrate, the mechanism for the improvement of ATP availability, and for preservation of organelle membrane stability and functionality. In addition we will present new evidences regarding the capacity of F16bP to decrease oxidative stress by limiting free radical production and improving antioxidant systems, including the role of nitric oxide in the protective mechanism induced by F16bP. Finally we will review the proposed mechanisms for explaining its anti-inflammatory, immunomodulatory and neuroprotective properties.

  17. Cytoprotective effect of imatinib mesylate in non-BCR-ABL-expressing cells along with autophagosome formation

    International Nuclear Information System (INIS)

    Ohtomo, Tadashi; Miyazawa, Keisuke; Naito, Munekazu; Moriya, Shota; Kuroda, Masahiko; Itoh, Masahiro; Tomoda, Akio

    2010-01-01

    Treatment with imatinib mesylate (IM) results in an increased viable cell number of non-BCR-ABL-expressing cell lines by inhibiting spontaneous apoptosis. Electron microscopy revealed an increase of autophagosomes in response to IM. IM attenuated the cytotoxic effect of cytosine arabinoside, as well as inhibiting cell death with serum-deprived culture. Cytoprotection with autophagosome formation by IM was observed in various leukemia and cancer cell lines as well as normal murine embryonic fibroblasts (MEFs). Complete inhibition of autophagy by knockdown of atg5 in the Tet-off atg5 -/- MEF system attenuated the cytoprotective effect of IM, indicating that the effect is partially dependent on autophagy. However, cytoprotection by IM was not mediated through suppression of ROS production via mitophagy, ER stress via ribophagy, or proapoptotic function of ABL kinase. Although the target tyrosine kinase(s) of IM remains unclear, our data provide novel therapeutic possibilities of using IM for cytoprotection.

  18. Cytoprotective dibenzoylmethane derivatives protect cells from oxidative stress-induced necrotic cell death.

    Science.gov (United States)

    Hegedűs, Csaba; Lakatos, Petra; Kiss-Szikszai, Attila; Patonay, Tamás; Gergely, Szabolcs; Gregus, Andrea; Bai, Péter; Haskó, György; Szabó, Éva; Virág, László

    2013-06-01

    Screening of a small in-house library of 1863 compounds identified 29 compounds that protected Jurkat cells from hydrogen peroxide-induced cytotoxicity. From the cytoprotective compounds eleven proved to possess antioxidant activity (ABTS radical scavenger effect) and two were found to inhibit poly(ADP-ribosyl)ation (PARylation), a cytotoxic pathway operating in severely injured cells. Four cytoprotective dibenzoylmethane (DBM) derivatives were investigated in more detail as they did not scavenge hydrogen peroxide nor did they inhibit PARylation. These compounds protected cells from necrotic cell death while caspase activation, a parameter of apoptotic cell death was not affected. Hydrogen peroxide activated extracellular signal regulated kinase (ERK1/2) and p38 MAP kinases but not c-Jun N-terminal kinase (JNK). The cytoprotective DBMs suppressed the activation of Erk1/2 but not that of p38. Cytoprotection was confirmed in another cell type (A549 lung epithelial cells), indicating that the cytoprotective effect is not cell type specific. In conclusion we identified DBM analogs as a novel class of cytoprotective compounds inhibiting ERK1/2 kinase and protecting from necrotic cell death by a mechanism independent of poly(ADP-ribose) polymerase inhibition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Cytoprotective effects of dietary flavonoids against cadmium-induced toxicity.

    Science.gov (United States)

    Li, Xia; Jiang, Xinwei; Sun, Jianxia; Zhu, Cuijuan; Li, Xiaoling; Tian, Lingmin; Liu, Liu; Bai, Weibin

    2017-06-01

    Cadmium (Cd) damages the liver, kidney, bones, reproductive system, and other organs. Flavonoids, such as anthocyanins and flavonols, which are commonly found in plant foods, have shown protective effects against Cd-induced damage. The cytoprotective effects of flavonoids against Cd-induced diseases are mainly attributable to three mechanisms. First, flavonoids clear reactive oxygen species, thereby reducing lipid peroxide production and improving the activity of antioxidation enzymes. Second, flavonoids chelate Cd, thus reducing the accumulation of Cd and altering the levels of other essential metal ions in vivo. Third, flavonoids reduce DNA damage and inhibit apoptosis. In addition, flavonoids were found to inhibit inflammation and fibrosis and improve glycometabolism and the secretion of reproductive hormones. We introduce the daily dosage and absorption rate of flavonoids and then focus on their bioactive effects against Cd-induced toxicity and reveal the underlying metabolic pathway, which provides a basis for further study of the nutritional prevention of Cd-induced injury. In particular, a better understanding is needed of the structure-activity relationship of flavonoids against Cd toxicity, which has not yet been reported. © 2017 New York Academy of Sciences.

  20. Cytoprotective effects of Glycyrrhizae radix extract and its active component liquiritigenin against cadmium-induced toxicity (effects on bad translocation and cytochrome c-mediated PARP cleavage)

    International Nuclear Information System (INIS)

    Kim, Sang Chan; Byun, Sung Hui; Yang, Chae Ha; Kim, Chul Young; Kim, Jin Woong; Kim, Sang Geon

    2004-01-01

    Glycyrrhizae radix has been popularly used as one of the oldest and most frequently employed botanicals in herbal medicine in Asian countries, and currently occupies an important place in food products. Cadmium (Cd) induces both apoptotic and non-apoptotic cell death, in which alterations in cellular sulfhydryls participate. In the present study, we determined the effects of G. radix extract (GRE) and its representative active components on cell death induced by Cd and explored the mechanistic basis of cytoprotective effects of G. radix. Incubation of H4IIE cells with GRE inhibited cell death induced by 10 μM Cd. Also, GRE effectively blocked Cd (1 μM)-induced cell death potentiated by buthionine sulfoximine (BSO) without restoration of cellular GSH. GRE prevented both apoptotic and non-apoptotic cell injury induced by Cd (10 μM) or Cd (0.3-1 μM) + BSO. Inhibition of Cd-induced cell injury by pretreatment of cells with GRE suggested that the cytoprotective effect result from alterations in the levels of the protein(s) responsible for cell viability. GRE inhibited mitochondrial Bad translocation by Cd or Cd+BSO, and caused restoration of mitochondrial Bcl xL and cytochrome c levels. Cd-induced poly(ADP-ribose)polymerase cleavage in control cells or in cells deprived of sulfhydryls was prevented by GRE treatment. Among the major components present in GRE, liquiritigenin, but not liquiritin, isoliquiritigenin or glycyrrhizin, exerted cytoprotective effect. These results demonstrated that GRE blocked Cd-induced cell death by inhibiting the apoptotic processes involving translocation of Bad into mitochondria, decreases in mitochondrial Bcl xL and cytochrome c, and poly(ADP-ribose)polymerase cleavage

  1. A novel shogaol analog suppresses cancer cell invasion and inflammation, and displays cytoprotective effects through modulation of NF-κB and Nrf2-Keap1 signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Fei-Fei; Ling, Hui; Ang, Xiaohui; Reddy, Shridhivya A.; Lee, Stephanie S-H.; Yang, Hong; Tan, Sock-Hoon [Department of Pharmacy, Faculty of Science, National University of Singapore (Singapore); Hayes, John D. [Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland (United Kingdom); Chui, Wai-Keung [Department of Pharmacy, Faculty of Science, National University of Singapore (Singapore); Chew, Eng-Hui, E-mail: phaceh@nus.edu.sg [Department of Pharmacy, Faculty of Science, National University of Singapore (Singapore)

    2013-11-01

    Natural compounds containing vanilloid and Michael acceptor moieties appear to possess anti-cancer and chemopreventive properties. The ginger constituent shogaol represents one such compound. In this study, the anti-cancer potential of a synthetic novel shogaol analog 3-phenyl-3-shogaol (3-Ph-3-SG) was assessed by evaluating its effects on signaling pathways. At non-toxic concentrations, 3-Ph-3-SG suppressed cancer cell invasion in MDA-MB-231 and MCF-7 breast carcinoma cells through inhibition of PMA-activated MMP-9 expression. At similar concentrations, 3-Ph-3-SG reduced expression of the inflammatory mediators nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and prostanglandin-E{sub 2} (PGE{sub 2}) in RAW 264.7 macrophage-like cells. Inhibition of cancer cell invasion and inflammation by 3-Ph-3-SG were mediated through suppression of the nuclear factor-kappaB (NF-κB) signaling pathway. The 3-Ph-3-SG also demonstrated cytoprotective effects by inducing the antioxidant response element (ARE)-driven genes NAD(P)H quinone oxidoreductase-1 (NQO1) and heme oxygenase-1 (HO-1). Cytoprotection by 3-Ph-3-SG was achieved at least partly through modification of cysteine residues in the E3 ubiquitin ligase substrate adaptor Kelch-like ECH-associated protein 1 (Keap1), which resulted in accumulation of transcription factor NF-E2 p45-related factor 2 (Nrf2). The activities of 3-Ph-3-SG were comparable to those of 6-shogaol, the most abundant naturally-occurring shogaol, and stronger than those of 4-hydroxyl-null deshydroxy-3-phenyl-3-shogaol, which attested the importance of the 4-hydroxy substituent in the vanilloid moiety for bioactivity. In summary, 3-Ph-3-SG is shown to possess activities that modulate stress-associated pathways relevant to multiple steps in carcinogenesis. Therefore, it warrants further investigation of this compound as a promising candidate for use in chemotherapeutic and chemopreventive strategies. - Highlights:

  2. Nitric oxide protects macrophages from hydrogen peroxide-induced apoptosis by inducing the formation of catalase.

    Science.gov (United States)

    Yoshioka, Yasuhiro; Kitao, Tatsuya; Kishino, Takashi; Yamamuro, Akiko; Maeda, Sadaaki

    2006-04-15

    We investigated the cytoprotective effect of NO on H2O2-induced cell death in mouse macrophage-like cell line RAW264. H2O2-treated cells showed apoptotic features, such as activation of caspase-9 and caspase-3, nuclear fragmentation, and DNA fragmentation. These apoptotic features were significantly inhibited by pretreatment for 24 h with NO donors, sodium nitroprusside and 1-hydroxy-2-oxo-3,3-bis-(2-aminoethyl)-1-triazene, at a low nontoxic concentration. The cytoprotective effect of NO was abrogated by the catalase inhibitor 3-amino-1,2,4-triazole but was not affected by a glutathione synthesis inhibitor, L-buthionine-(S,R)-sulfoximine. NO donors increased the level of catalase and its activity in a concentration-dependent manner. Cycloheximide, a protein synthesis inhibitor, inhibited both the NO-induced increase in the catalase level and the cytoprotective effect of NO. These results indicate that NO at a low concentration protects macrophages from H2O2-induced apoptosis by inducing the production of catalase.

  3. Cytoprotective effect of kaempferol against palmitic acid-induced pancreatic β-cell death through modulation of autophagy via AMPK/mTOR signaling pathway.

    Science.gov (United States)

    Varshney, Ritu; Gupta, Sumeet; Roy, Partha

    2017-06-15

    Lipotoxicity of pancreatic β-cells is the pathological manifestation of obesity-linked type II diabetes. We intended to determine the cytoprotective effect of kaempferol on pancreatic β-cells undergoing apoptosis in palmitic acid (PA)-stressed condition. The data showed that kaempferol treatment increased cell viability and anti-apoptotic activity in PA-stressed RIN-5F cells and murine pancreatic islets. Furthermore, kaempferol's ability to instigate autophagy was illustrated by MDC-LysoTracker red staining and TEM analysis which corroborated well with the observed increase in LC3 puncta and LC3-II protein expressions along with the concomitant decline in p62 expression. Apart from this, the data showed that kaempferol up/down-regulates AMPK/mTOR phosphorylation respectively. Subsequently, upon inhibition of AMPK phosphorylation by AMPK inhibitors, kaempferol-mediated autophagy was abolished which further led to the decline in β-cell survival. Such observations collectively lead to the conclusion that, kaempferol exerts its cytoprotective role against lipotoxicity by activation of autophagy via AMPK/mTOR pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Does mental exertion alter maximal muscle activation?

    Directory of Open Access Journals (Sweden)

    Vianney eRozand

    2014-09-01

    Full Text Available Mental exertion is known to impair endurance performance, but its effects on neuromuscular function remain unclear. The purpose of this study was to test the hypothesis that mental exertion reduces torque and muscle activation during intermittent maximal voluntary contractions of the knee extensors. Ten subjects performed in a randomized order three separate mental exertion conditions lasting 27 minutes each: i high mental exertion (incongruent Stroop task, ii moderate mental exertion (congruent Stroop task, iii low mental exertion (watching a movie. In each condition, mental exertion was combined with ten intermittent maximal voluntary contractions of the knee extensor muscles (one maximal voluntary contraction every 3 minutes. Neuromuscular function was assessed using electrical nerve stimulation. Maximal voluntary torque, maximal muscle activation and other neuromuscular parameters were similar across mental exertion conditions and did not change over time. These findings suggest that mental exertion does not affect neuromuscular function during intermittent maximal voluntary contractions of the knee extensors.

  5. Cytoprotective Effects of Lysophospholipids from Sea Cucumber Holothuria atra.

    Directory of Open Access Journals (Sweden)

    Yoshifumi Nishikawa

    Full Text Available Lysophospholipids are important signaling molecules in animals and metazoan cells. They are widely distributed among marine invertebrates, where their physiological roles are unknown. Sea cucumbers produce unique lysophospholipids. In this study, two lysophospholipids were detected in Holothuria atra for the first time, lyso-platelet activating factor and lysophosphatidylcholine, with nuclear magnetic resonance and liquid chromatography-time-of-flight mass spectrometric analyses. The lipid fraction of H. atra contained lyso-platelet activating factor and lysophosphatidylcholine, and inhibited H2O2-induced apoptosis in the macrophage cell line J774A.1. The antioxidant activity of the lysophospholipid-containing lipid fraction of H. atra was confirmed with the oxygen radical absorbance capacity method. Our results suggest that the lysophospholipids from H. atra are potential therapeutic agents for the inflammation induced by oxidative stress.

  6. Ethyl acetate extract from Asparagus cochinchinensis exerts anti-inflammatory effects in LPS-stimulated RAW264.7 macrophage cells by regulating COX-2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity

    Science.gov (United States)

    Lee, Hyun Ah; Koh, Eun Kyoung; Sung, Ji Eun; Kim, Ji Eun; Song, Sung Hwa; Kim, Dong Seob; Son, Hong Joo; Lee, Chung Yeoul; Lee, Hee Seob; Bae, Chang Joon; Hwang, Dae Youn

    2017-01-01

    Asparagus cochinchinesis (A. cochinchinesis) is a medicine traditionally used to treat fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease in northeast Asian countries. Although numerous studies of the anti-inflammatory effects of A. cochinchinesis have been conducted, the underlying mechanisms of such effects in macrophages remain to be demonstrated. To investigate the mechanism of suppressive effects on the inflammatory response in macrophages, alterations of the nitric oxide (NO) level, the cell viability, inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression levels, inflammatory cytokine expression, the mitogen-activated protein kinase (MAPK) signaling pathway, cell cycle arrest and reactive oxygen species (ROS) levels were measured in lipopolysaccharide (LPS)-activated RAW264.7 cells following treatment with ethyl acetate extract from A. cochinchinesis root (EaEAC). RAW264.7 cells pretreated two different concentrations of EaEAC prior to LPS treatment exhibited no significant toxicity. The concentration of NO was significantly decreased in the EaEAC + LPS treated group compared with the vehicle + LPS treated group. A similar decrease in mRNA transcript level of COX-2, iNOS, pro-inflammatory cytokines [tumor necrosis factor-α and interleukin (IL)-1β] and anti-inflammatory cytokines (IL-6 and IL-10) was detected in the EaEAC + LPS treated group compared with the vehicle + LPS treated group, although the decrease rate varied. Enhancement of the phosphorylation of MAPK family members following LPS treatment was partially rescued in the EaEAC pretreated group, and the cell cycle was arrested at the G2/M phase. Furthermore, the EaEAC pretreated group exhibited a reduced level of ROS generation compared with the vehicle + LPS treated group. Taken together, these results suggest that EaEAC suppresses inflammatory responses through inhibition of NO production, COX-2 expression and ROS production, as well as

  7. Ethyl acetate extract from Asparagus cochinchinensis exerts anti‑inflammatory effects in LPS‑stimulated RAW264.7 macrophage cells by regulating COX‑2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity.

    Science.gov (United States)

    Lee, Hyun Ah; Koh, Eun Kyoung; Sung, Ji Eun; Kim, Ji Eun; Song, Sung Hwa; Kim, Dong Seob; Son, Hong Joo; Lee, Chung Yeoul; Lee, Hee Seob; Bae, Chang Joon; Hwang, Dae Youn

    2017-04-01

    Asparagus cochinchinesis (A. cochinchinesis) is a medicine traditionally used to treat fever, cough, kidney disease, breast cancer, inflammatory disease and brain disease in northeast Asian countries. Although numerous studies of the anti‑inflammatory effects of A. cochinchinesis have been conducted, the underlying mechanisms of such effects in macrophages remain to be demonstrated. To investigate the mechanism of suppressive effects on the inflammatory response in macrophages, alterations of the nitric oxide (NO) level, the cell viability, inducible nitric oxide synthase (iNOS) and cyclooxygenase‑2 (COX‑2) expression levels, inflammatory cytokine expression, the mitogen-activated protein kinase (MAPK) signaling pathway, cell cycle arrest and reactive oxygen species (ROS) levels were measured in lipopolysaccharide (LPS)-activated RAW264.7 cells following treatment with ethyl acetate extract from A. cochinchinesis root (EaEAC). RAW264.7 cells pretreated two different concentrations of EaEAC prior to LPS treatment exhibited no significant toxicity. The concentration of NO was significantly decreased in the EaEAC + LPS treated group compared with the vehicle + LPS treated group. A similar decrease in mRNA transcript level of COX‑2, iNOS, pro-inflammatory cytokines [tumor necrosis factor‑α and interleukin (IL)‑1β] and anti‑inflammatory cytokines (IL‑6 and IL‑10) was detected in the EaEAC + LPS treated group compared with the vehicle + LPS treated group, although the decrease rate varied. Enhancement of the phosphorylation of MAPK family members following LPS treatment was partially rescued in the EaEAC pretreated group, and the cell cycle was arrested at the G2/M phase. Furthermore, the EaEAC pretreated group exhibited a reduced level of ROS generation compared with the vehicle + LPS treated group. Taken together, these results suggest that EaEAC suppresses inflammatory responses through inhibition of NO production, COX‑2 expression

  8. Salivary Cytoprotective Proteins in Inflammation and Resolution during Experimental Gingivitis--A Pilot Study.

    Science.gov (United States)

    Aboodi, Guy M; Sima, Corneliu; Moffa, Eduardo B; Crosara, Karla T B; Xiao, Yizhi; Siqueira, Walter L; Glogauer, Michael

    2015-01-01

    The protective mechanisms that maintain periodontal homeostasis in gingivitis and prevent periodontal tissue destruction are poorly understood. The aim of this study was to identify changes in the salivary proteome during experimental gingivitis. We used oral neutrophil quantification and whole saliva (WS) proteomics to assess changes that occur in the inflammatory and resolution phases of gingivitis in healthy individuals. Oral neutrophils and WS samples were collected and clinical parameters measured on days 0, 7, 14, 21, 28, and 35. Increased oral neutrophil recruitment and salivary cytoprotective proteins increased progressively during inflammation and decreased in resolution. Oral neutrophil numbers in gingival inflammation and resolution correlated moderately with salivary β-globin, thioredoxin, and albumin and strongly with collagen alpha-1 and G-protein coupled receptor 98. Our results indicate that changes in salivary cytoprotective proteins in gingivitis are associated with a similar trend in oral neutrophil recruitment and clinical parameters. We found moderate to strong correlations between oral neutrophil numbers and levels of several salivary cytoprotective proteins both in the development of the inflammation and in the resolution of gingivitis. Our proteomics approach identified and relatively quantified specific cytoprotective proteins in this pilot study of experimental gingivitis; however, future and more comprehensive studies are needed to clearly identify and validate those protein biomarkers when gingivitis is active.

  9. Salivary Cytoprotective Proteins in Inflammation and Resolution during Experimental Gingivitis—A Pilot Study

    Science.gov (United States)

    Aboodi, Guy M.; Sima, Corneliu; Moffa, Eduardo B.; Crosara, Karla T. B.; Xiao, Yizhi; Siqueira, Walter L.; Glogauer, Michael

    2016-01-01

    Objective: The protective mechanisms that maintain periodontal homeostasis in gingivitis and prevent periodontal tissue destruction are poorly understood. The aim of this study was to identify changes in the salivary proteome during experimental gingivitis. Study design: We used oral neutrophil quantification and whole saliva (WS) proteomics to assess changes that occur in the inflammatory and resolution phases of gingivitis in healthy individuals. Oral neutrophils and WS samples were collected and clinical parameters measured on days 0, 7, 14, 21, 28, and 35. Results: Increased oral neutrophil recruitment and salivary cytoprotective proteins increased progressively during inflammation and decreased in resolution. Oral neutrophil numbers in gingival inflammation and resolution correlated moderately with salivary β-globin, thioredoxin, and albumin and strongly with collagen alpha-1 and G-protein coupled receptor 98. Conclusions: Our results indicate that changes in salivary cytoprotective proteins in gingivitis are associated with a similar trend in oral neutrophil recruitment and clinical parameters. Clinical relevance: We found moderate to strong correlations between oral neutrophil numbers and levels of several salivary cytoprotective proteins both in the development of the inflammation and in the resolution of gingivitis. Our proteomics approach identified and relatively quantified specific cytoprotective proteins in this pilot study of experimental gingivitis; however, future and more comprehensive studies are needed to clearly identify and validate those protein biomarkers when gingivitis is active. PMID:26779447

  10. Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions.

    Science.gov (United States)

    Mantovani, Alberto; Locati, Massimo

    2013-07-01

    Macrophages are present in all body compartments, including cancerous tissues, and their functions are profoundly affected by signals from the microenvironment under homeostatic and pathological conditions. Tumor-associated macrophages are a major cellular component of cancer-related inflammation and have served as a paradigm for the plasticity and functional polarization of mononuclear phagocytes. Tumor-associated macrophages can exert dual influence of cancer depending on the activation state, with classically activated (M1) and alternatively activated (M2) cells generally exerting antitumoral and protumoral functions, respectively. These are extremes in a continuum of polarization states in a universe of diversity. Tumor-associated macrophages affect virtually all aspects of tumor tissues, including stem cells, metabolism, angiogenesis, invasion, and metastasis. Progress has been made in defining signaling molecules, transcription factors, epigenetic changes, and repertoire of microRNAs underlying macrophage polarization. Preclinical and early clinical data suggest that macrophages may serve as tools for the development of innovative diagnostic and therapeutic strategies in cancer and chronic nonresolving inflammatory diseases.

  11. Alternatively Activated (M2) Macrophage Phenotype Is Inducible by Endothelin-1 in Cultured Human Macrophages.

    Science.gov (United States)

    Soldano, Stefano; Pizzorni, Carmen; Paolino, Sabrina; Trombetta, Amelia Chiara; Montagna, Paola; Brizzolara, Renata; Ruaro, Barbara; Sulli, Alberto; Cutolo, Maurizio

    2016-01-01

    Alternatively activated (M2) macrophages are phenotypically characterized by the expression of specific markers, mainly macrophage scavenger receptors (CD204 and CD163) and mannose receptor-1 (CD206), and participate in the fibrotic process by over-producing pro-fibrotic molecules, such as transforming growth factor-beta1 (TGFbeta1) and metalloproteinase (MMP)-9. Endothelin-1 (ET-1) is implicated in the fibrotic process, exerting its pro-fibrotic effects through the interaction with its receptors (ETA and ETB). The study investigated the possible role of ET-1 in inducing the transition from cultured human macrophages into M2 cells. Cultured human monocytes (THP-1 cell line) were activated into macrophages (M0 macrophages) with phorbol myristate acetate and subsequently maintained in growth medium (M0-controls) or treated with either ET-1 (100nM) or interleukin-4 (IL-4, 10ng/mL, M2 inducer) for 72 hours. Similarly, primary cultures of human peripheral blood monocyte (PBM)-derived macrophages obtained from healthy subjects, were maintained in growth medium (untreated cells) or treated with ET-1 or IL-4 for 6 days. Both M0 and PBM-derived macrophages were pre-treated with ET receptor antagonist (ETA/BRA, bosentan 10-5M) for 1 hour before ET-1 stimulation. Protein and gene expression of CD204, CD206, CD163, TGFbeta1 were analysed by immunocytochemistry, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Gene expression of interleukin(IL)-10 and macrophage derived chemokine (CCL-22) was evaluated by qRT-PCR. MMP-9 production was investigated by gel zymography. ET-1 significantly increased the expression of M2 phenotype markers CD204, CD206, CD163, IL-10 and CCL-22, and the production of MMP-9 in both cultures of M0 and PBM-derived macrophages compared to M0-controls and untreated cells. In cultured PBM-derived macrophages, ET-1 increased TGFbeta1 protein and gene expression compared to untreated cells. The ET-1-mediated effects were

  12. Cytoprotective effect of recombinant human erythropoietin produced in transgenic tobacco plants.

    Directory of Open Access Journals (Sweden)

    Farooqahmed S Kittur

    Full Text Available Asialo-erythropoietin, a desialylated form of human erythropoietin (EPO lacking hematopoietic activity, is receiving increased attention because of its broader protective effects in preclinical models of tissue injury. However, attempts to translate its protective effects into clinical practice is hampered by unavailability of suitable expression system and its costly and limit production from expensive mammalian cell-made EPO (rhuEPO(M by enzymatic desialylation. In the current study, we took advantage of a plant-based expression system lacking sialylating capacity but possessing an ability to synthesize complex N-glycans to produce cytoprotective recombinant human asialo-rhuEPO. Transgenic tobacco plants expressing asialo-rhuEPO were generated by stably co-expressing human EPO and β1,4-galactosyltransferase (GalT genes under the control of double CaMV 35S and glyceraldehyde-3-phosphate gene (GapC promoters, respectively. Plant-produced asialo-rhuEPO (asialo-rhuEPO(P was purified by immunoaffinity chromatography. Detailed N-glycan analysis using NSI-FTMS and MS/MS revealed that asialo-rhuEPO(P bears paucimannosidic, high mannose-type and complex N-glycans. In vitro cytoprotection assays showed that the asialo-rhuEPO(P (20 U/ml provides 2-fold better cytoprotection (44% to neuronal-like mouse neuroblastoma cells from staurosporine-induced cell death than rhuEPO(M (21%. The cytoprotective effect of the asialo-rhuEPO(P was found to be mediated by receptor-initiated phosphorylation of Janus kinase 2 (JAK2 and suppression of caspase 3 activation. Altogether, these findings demonstrate that plants are a suitable host for producing cytoprotective rhuEPO derivative. In addition, the general advantages of plant-based expression system can be exploited to address the cost and scalability issues related to its production.

  13. Macrophages in synovial inflammation

    Directory of Open Access Journals (Sweden)

    Aisling eKennedy

    2011-10-01

    Full Text Available AbstractSynovial macrophages are one of the resident cell types in synovial tissue and while they remain relatively quiescent in the healthy joint, they become activated in the inflamed joint and, along with infiltrating monocytes/macrophages, regulate secretion of pro-inflammatory cytokines and enzymes involved in driving the inflammatory response and joint destruction. Synovial macrophages are positioned throughout the sub-lining layer and lining layer at the cartilage-pannus junction and mediate articular destruction. Sub-lining macrophages are now also considered as the most reliable biomarker for disease severity and response to therapy in rheumatoid arthritis (RA. There is a growing understanding of the molecular drivers of inflammation and an appreciation that the resolution of inflammation is an active process rather than a passive return to homeostasis, and this has implications for our understanding of the role of macrophages in inflammation. Macrophage phenotype determines the cytokine secretion profile and tissue destruction capabilities of these cells. Whereas inflammatory synovial macrophages have not yet been classified into one phenotype or another it is widely known that TNFα and IL-l, characteristically released by M1 macrophages, are abundant in RA while IL-10 activity, characteristic of M2 macrophages, is somewhat diminished.Here we will briefly review our current understanding of macrophages and macrophage polarisation in RA as well as the elements implicated in controlling polarisation, such as cytokines and transcription factors like NFκB, IRFs and NR4A, and pro-resolving factors, such as LXA4 and other lipid mediators which may promote a non-inflammatory, pro-resolving phenotype and may represent a novel therapeutic paradigm.

  14. [Macrophages in human semen].

    Science.gov (United States)

    Bouvet, Beatriz Reina; Brufman, Adriana Silvia; Paparella, Cecilia Vicenta; Feldman, Rodolfo Nestor; Gatti, Vanda Nora; Solis, Edita Amalia

    2003-11-01

    To investigate the presence of macrophages in human semen samples and the function they carry out in the seminal fluid. Their presence was studied in relation to spermatic morphology, percentage of spermatozoids with native DNA, and presence of antispermatic antibodies. The work was performed with semen samples from 31 unfertile males from 63 couples in which the "female factor" was ruled out as the cause of infertility. Sperm study according to WHO (1992) was carried out in all samples, in addition to: DNA study with acridine orange as fluorocrom, macrophage concentration by neutral red in a Neubauer camera, and detection of antispermatic antibodies with a mixed agglutination test (TAC II) (validated with Mar Screen-Fertility technologies). Sperm morphology was evaluated by Papanicolaou test. 19/31 selected sperm samples (61.3%) showed increased concentration of macrophages, 13 of them (41.9%) with denaturalized DNA, and 8 (25.8%) abnormal morphology. Six samples showed increased macrophage concentration and predominance of native DNA, whereas 11 samples showed increased macrophages and abnormal morphology. Among 18 (58.1%) samples showing antispermatic antibodies 14 (77.7%) had an increased concentration of macrophages. Statistical analysis resulted in a high correlation between macrophage concentration and increased percentage of spermatozoids with denaturalized DNA (p < 0.05). An increased concentration of macrophages is associated with the presence of antispermatic antibodies (p < 0.05). There was not evidence of significant association between concentration of macrophages and percentage of morphologically normal spermatozoids (p < 0.05). We can conclude that macrophages are present in human semen and participate in immunovigilance contributing to improve the seminal quality.

  15. I1 imidazoline receptor: novel potential cytoprotective target of TVP1022, the S-enantiomer of rasagiline.

    Directory of Open Access Journals (Sweden)

    Yaron D Barac

    Full Text Available TVP1022, the S-enantiomer of rasagiline (Azilect® (N-propargyl-1R-aminoindan, exerts cyto/cardio-protective effects in a variety of experimental cardiac and neuronal models. Previous studies have demonstrated that the protective activity of TVP1022 and other propargyl derivatives involve the activation of p42/44 mitogen-activated protein kinase (MAPK signaling pathway. In the current study, we further investigated the molecular mechanism of action and signaling pathways of TVP1022 which may account for the cyto/cardio-protective efficacy of the drug. Using specific receptor binding and enzyme assays, we demonstrated that the imidazoline 1 and 2 binding sites (I(1 & I(2 are potential targets for TVP1022 (IC(50 =9.5E-08 M and IC(50 =1.4E-07 M, respectively. Western blotting analysis showed that TVP1022 (1-20 µM dose-dependently increased the immunoreactivity of phosphorylated p42 and p44 MAPK in rat pheochromocytoma PC12 cells and in neonatal rat ventricular myocytes (NRVM. This effect of TVP1022 was significantly attenuated by efaroxan, a selective I(1 imidazoline receptor antagonist. In addition, the cytoprotective effect of TVP1022 demonstrated in NRVM against serum deprivation-induced toxicity was markedly inhibited by efaroxan, thus suggesting the importance of I(1imidazoline receptor in mediating the cardioprotective activity of the drug. Our findings suggest that the I(1imidazoline receptor represents a novel site of action for the cyto/cardio-protective efficacy of TVP1022.

  16. I1 imidazoline receptor: novel potential cytoprotective target of TVP1022, the S-enantiomer of rasagiline.

    Science.gov (United States)

    Barac, Yaron D; Bar-Am, Orit; Liani, Esti; Amit, Tamar; Frolov, Luba; Ovcharenko, Elena; Angel, Itzchak; Youdim, Moussa B H; Binah, Ofer

    2012-01-01

    TVP1022, the S-enantiomer of rasagiline (Azilect®) (N-propargyl-1R-aminoindan), exerts cyto/cardio-protective effects in a variety of experimental cardiac and neuronal models. Previous studies have demonstrated that the protective activity of TVP1022 and other propargyl derivatives involve the activation of p42/44 mitogen-activated protein kinase (MAPK) signaling pathway. In the current study, we further investigated the molecular mechanism of action and signaling pathways of TVP1022 which may account for the cyto/cardio-protective efficacy of the drug. Using specific receptor binding and enzyme assays, we demonstrated that the imidazoline 1 and 2 binding sites (I(1) & I(2)) are potential targets for TVP1022 (IC(50) =9.5E-08 M and IC(50) =1.4E-07 M, respectively). Western blotting analysis showed that TVP1022 (1-20 µM) dose-dependently increased the immunoreactivity of phosphorylated p42 and p44 MAPK in rat pheochromocytoma PC12 cells and in neonatal rat ventricular myocytes (NRVM). This effect of TVP1022 was significantly attenuated by efaroxan, a selective I(1) imidazoline receptor antagonist. In addition, the cytoprotective effect of TVP1022 demonstrated in NRVM against serum deprivation-induced toxicity was markedly inhibited by efaroxan, thus suggesting the importance of I(1)imidazoline receptor in mediating the cardioprotective activity of the drug. Our findings suggest that the I(1)imidazoline receptor represents a novel site of action for the cyto/cardio-protective efficacy of TVP1022.

  17. Antiradical and cytoprotective activities of several C-geranyl-substituted flavanones from Paulownia tomentosa fruit.

    Science.gov (United States)

    Zima, Ales; Hosek, Jan; Treml, Jakub; Muselík, Jan; Suchý, Pavel; Prazanová, Gabriela; Lopes, Ana; Zemlicka, Milan

    2010-08-31

    Antiradical and cytoprotective activities of several flavanones isolated from Paulownia tomentosa (Thunb.) Steud. (Scrophulariaceae) have been evaluated using different in vitro and in vivo methods. The capacity of flavanones to scavenge radicals was measured in vitro by means of DPPH and ABTS assays, the inhibition of hydroxyl radicals produced in Fenton reactions, FRAP, scavenging superoxide radicals using enzymatic and nonenzymatic assays and the inhibition of peroxynitrite-induced nitration of tyrosine. The in vivo testing involved measuring the cytoprotective effect of chosen flavanones against alloxan-induced diabetes in mice. The activity of tested compounds was expressed either as a Trolox® equivalent or was compared with rutin or morine as known antioxidant compounds. The highest activity in most tests was observed for diplacone and 3´-O-methyl-5´-hydroxydiplacone, and the structure vs. the antioxidant activity relationship of geranyl or prenyl-substituted flavonoids with different substitutions at the B and C ring was discussed.

  18. Anti-inflammatory activity of horseradish (Armoracia rusticana) root extracts in LPS-stimulated macrophages.

    Science.gov (United States)

    Marzocco, Stefania; Calabrone, Luana; Adesso, Simona; Larocca, Marilena; Franceschelli, Silvia; Autore, Giuseppina; Martelli, Giuseppe; Rossano, Rocco

    2015-12-01

    Horseradish (Armoracia rusticana) is a perennial crop belonging to the Brassicaceae family. Horseradish root is used as a condiment due to its extremely pungent flavour, deriving from the high content of glucosinolates and their breakdown products such as isothiocyanates and other sulfur compounds. Horseradish also has a long history in ethnomedicine. In this study the anti-inflammatory potential of three accessions of Armoracia rusticana on lipopolysaccharide from E. coli treated J774A.1 murine macrophages was evaluated. Our results demonstrate that Armoracia rusticana reduced nitric oxide, tumor necrosis factor-α and interleukin-6 release and nitric oxide synthase and cyclooxygenase-2 expression in macrophages, acting on nuclear transcription factor NF-κB p65 activation. Moreover Armoracia rusticana reduced reactive oxygen species release and increased heme-oxygenase-1 expression, thus contributing to the cytoprotective cellular effect during inflammation.

  19. Mipu1, a novel direct target gene, is involved in hypoxia inducible factor 1-mediated cytoprotection.

    Directory of Open Access Journals (Sweden)

    Kangkai Wang

    Full Text Available Mipu1 (myocardial ischemic preconditioning up-regulated protein 1, recently identified in our lab, is a novel zinc-finger transcription factor which is up-regulated during ischemic preconditioning. However, it is not clear what transcription factor contributes to its inducible expression. In the present study, we reported that HIF-1 regulates the inducible expression of Mipu1 which is involved in the cytoprotection of HIF-1α against oxidative stress by inhibiting Bax expression. Our results showed that the inducible expression of Mipu1 was associated with the expression and activation of transcription factor HIF-1 as indicated by cobalt chloride (CoCl2 treatment, HIF-1α overexpression and knockdown assays. EMSA and luciferase reporter gene assays showed that HIF-1α bound to the hypoxia response element (HRE within Mipu1 promoter region and promoted its transcription. Moreover, our results revealed that Mipu1 inhibited the expression of Bax, an important pro-apoptosis protein associated with the intrinsic pathway of apoptosis, elevating the cytoprotection of HIF-1 against hydrogen peroxide (H2O2-mediated injury in H9C2 cells. Our findings implied that Bax may be a potential target gene of transcription factor Mipu1, and provided a novel insight for understanding the cytoprotection of HIF-1 and new clues for further elucidating the mechanisms by which Mipu1 protects cell against pathological stress.

  20. The elusive antifibrotic macrophage

    Directory of Open Access Journals (Sweden)

    Adhyatmika eAdhyatmika

    2015-11-01

    Full Text Available Fibrotic diseases, especially of the liver, the cardiovascular system, the kidneys, and the lungs account for approximately 45% of deaths in Western societies. Fibrosis is a serious complication associated with aging and/or chronic inflammation or injury and cannot be treated effectively yet. It is characterized by excessive deposition of extracellular matrix (ECM proteins by myofibroblasts and impaired degradation by macrophages. This ultimately destroys the normal structure of an organ, which leads to loss of function. Most efforts to develop drugs have focused on inhibiting ECM production by myofibroblasts and have not yielded many effective drugs yet. Another option is to stimulate the cells that are responsible for degradation and uptake of excess ECM, i.e. antifibrotic macrophages. However, macrophages are plastic cells that have many faces in fibrosis, including profibrotic behaviour stimulating ECM production. This can be dependent on their origin, as the different organs have tissue-resident macrophages with different origins and a various influx of incoming monocytes in steady-state conditions and during fibrosis. To be able to pharmacologically stimulate the right kind of behaviour in fibrosis, a thorough characterization of antifibrotic macrophages is necessary, as well as an understanding of the signals they need to degrade ECM. In this review we will summarize the current state of the art regarding the antifibrotic macrophage phenotype and the signals that stimulate its behaviour.

  1. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    International Nuclear Information System (INIS)

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong

    2013-01-01

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC

  2. Conditioned medium from alternatively activated macrophages induce mesangial cell apoptosis via the effect of Fas

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuan; Luo, Fangjun; Li, Hui; Jiang, Tao; Zhang, Nong, E-mail: nzhang@fudan.edu.cn

    2013-11-15

    During inflammation in the glomerulus, the proliferation of myofiroblast-like mesangial cells is commonly associated with the pathological process. Macrophages play an important role in regulating the growth of resident mesangial cells in the glomeruli. Alternatively activated macrophage (M2 macrophage) is a subset of macrophages induced by IL-13/IL-4, which is shown to play a repair role in glomerulonephritis. Prompted by studies of development, we performed bone marrow derived macrophage and rat mesangial cell co-culture study. Conditioned medium from IL-4 primed M2 macrophages induced rat mesangial cell apoptosis. The pro-apoptotic effect of M2 macrophages was demonstrated by condensed nuclei stained with Hoechst 33258, increased apoptosis rates by flow cytometry analysis and enhanced caspase-3 activation by western blot. Fas protein was up-regulated in rat mesangial cells, and its neutralizing antibody ZB4 partly inhibited M2 macrophage-induced apoptosis. The up-regulated arginase-1 expression in M2 macrophage also contributed to this apoptotic effect. These results indicated that the process of apoptosis triggered by conditioned medium from M2 macrophages, at least is partly conducted through Fas in rat mesangial cells. Our findings provide compelling evidence that M2 macrophages control the growth of mesangial cells in renal inflammatory conditions. - Highlights: • Conditioned-medium from M2 macrophages induces rat mesangial cell (MsC) apoptosis. • M2 macrophage conditioned medium exerts its pro-apoptotic effects via Fas ligand. • Arginase-1 activity in M2 macrophages plays a role in inducing apoptosis in rat MsC.

  3. Activation of peritoneal macrophages to cytoxicity against B16 melanoma cells by Serratia marcescens polyribosome fractions

    International Nuclear Information System (INIS)

    Hoover, S.K.

    1985-01-01

    Serratia marcescens polyribosomes (SMPR) have been shown to elicit an anti-tumor response in vivo. The in-vitro effects of SMPR on macrophages as the nonspecific mediators of the anti-tumor response have not previously been examined. The first objective of this research project is to corroborate and analyze the in-vivo results by the development and application of an in-vitro cytotoxicity assay. The second objective is to examine the effect of SMPR upon previously unstimulated peritoneal macrophages as representing the mechanism of cytotoxicity. The third objective is to identify the minimal effective component of SMPR responsible for an effect on macrophages. Results revealed that SMPR preparations exert a number of effects upon macrophages. Morphologic changes included increased spreading and increased perinuclear vacuolization. Macrophages were shown to be metabolically activate by two lines of evidence. SMPR-treated macrophages exhibited increased cellular metabolism by the increased uptake of 3 H-thymidine and by the increased levels of secreted leucine aminopeptidase as compared to control macrophages. Results also showed that SMPR activates macrophages to cytotoxicity against syngeneic tumor target cells. Buoyant-density fractions were isolated and assayed for macrophage activating ability. Results showed 50S ribosomal subunits to be the smallest fraction effective for macrophage activation. Both the RNA and protein were necessary for complete effectiveness

  4. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Jaehong Kim

    2016-01-01

    Full Text Available Distinct tumor microenvironment forms in each progression step of cancer and has diverse capacities to induce both adverse and beneficial consequences for tumorigenesis. It is now known that immune cells can be activated to favor tumor growth and progression, most probably influenced by the tumor microenvironment. Tumor-associated macrophages and tumor-associated neutrophils can exert protumoral functions, enhancing tumor cell invasion and metastasis, angiogenesis, and extracellular matrix remodeling, while inhibiting the antitumoral immune surveillance. Considering that neutrophils in inflammatory environments recruit macrophages and that recruited macrophages affect neutrophil functions, there may be various degrees of interaction between tumor-associated macrophages and tumor-associated neutrophils. Platelets also play an important role in the recruitment and regulation of monocytic and granulocytic cells in the tumor tissues, suggesting that platelet function may be essential for generation of tumor-associated macrophages and tumor-associated neutrophils. In this review, we will explore the biology of tumor-associated macrophages and tumor-associated neutrophils and their possible interactions in the tumor microenvironment. Special attention will be given to the recruitment and activation of these tumor-associated cells and to the roles they play in maintenance of the tumor microenvironment and progression of tumors.

  5. Cytoprotective effect exerted by geraniin in HepG2 cells is through microRNA mediated regulation of BACH-1 and HO-1.

    Science.gov (United States)

    Aayadi, Hoda; Mittal, Smriti P K; Deshpande, Anjali; Gore, Makarand; Ghaskadbi, Saroj S

    2017-11-01

    Geraniin, a hydrolysable tannin, used in traditional medicine in Southeast Asia, is known to exhibit various biological activities. As an antioxidant it is known to up-regulate phase II enzyme Heme oxygenase-1 (HO-1). However its mechanism is not clearly understood. Nuclear factor erythroid-derived 2 related factor 2 (Nrf-2) is transcriptionally up-regulated by Extracellular signal-regulated kinase (ERK) 1/2 and retained in nucleus due to inactivated Glycogen synthase kinase 3 beta (GSK-3β). Geraniin additionally down-regulates expression of microRNA 217 and 377 (miR-217 and miR-377) which target HO-1 mRNA. Expression of BTB and CNC homolog 1 (BACH-1), another regulator of HO-1, is also down-regulated by up-regulating microRNA 98 (miR-98), a negative regulator of BACH-1. Thus, geraniin up-regulates HO-1 expression both through activating its positive regulator Nrf-2 and by down-regulating its negative regulator BACH-1. Up-regulation of HO-1 also confers protection to HepG2 cells from tertiary butyl hydroperoxide (TBH) induced cytotoxicity. [BMB Reports 2017; 50(11): 560-565].

  6. Casein Glycomacropeptide Hydrolysates Exert Cytoprotective Effect against Cellular Oxidative Stress by Up-Regulating HO-1 Expression in HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Tiange Li

    2017-01-01

    Full Text Available Oxidative stress is considered as an important mediator in the progression of metabolic disorders. The objective of this study was to investigate the potential hepatoprotective effects and mechanisms of bovine casein glycomacropeptide hydrolysates (GHP on hydrogen peroxide (H2O2-induced oxidative damage in HepG2 cells. Results showed that GHP significantly blocked H2O2-induced intracellular reactive oxygen species (ROS generation and cell viability reduction in a dose-dependent manner. Further, GHP concentration-dependently induced heme oxygenase-1 (HO-1 expression and increased nuclear factor-erythroid 2-related factor 2 (Nrf2 nuclear translocation. Moreover, pretreatment of GHP increased the activation of p38 mitogen-activated protein kinase (p38 MAPK and extracellular signal-regulated protein kinase 1/2 (ERK1/2, which were shown to contribute to Nrf2-mediated HO-1 expression. Taken together, GHP protected HepG2 cells from oxidative stress by activation of Nrf2 and HO-1 via p38 MAPK and ERK1/2 signaling pathways. Our findings indicate that bovine casein glycomacropeptide hydrolysates might be a potential ingredient in the treatment of oxidative stress-related disorders and further studies are needed to investigate the protective effects in vivo.

  7. Pulmonary antioxidants exert differential protective effects against ...

    Indian Academy of Sciences (India)

    Unknown

    PM collections from both urban and industrial sites caused 50% oxidative degradation of DNA in vitro at concentrations as low ... chemical analysis in order that progress can be made in ... One popular hypothesis is that PM exerts toxic effects.

  8. Sevoflurane improves gaseous exchange and exerts protective ...

    African Journals Online (AJOL)

    Sevoflurane improves gaseous exchange and exerts protective effects in ... Lung water content and cell count were estimated by standard protocols. ... It reversed LPS-induced oxidative stress, as demonstrated by increase in total antioxidant ...

  9. Exertional Heat Illness and Human Gene Expression

    National Research Council Canada - National Science Library

    Sonna, L.A; Sawka, M. N; Lilly, C. M

    2007-01-01

    Microarray analysis of gene expression at the level of RNA has generated new insights into the relationship between cellular responses to acute heat shock in vitro, exercise, and exertional heat illness...

  10. Sevoflurane improves gaseous exchange and exerts protective ...

    African Journals Online (AJOL)

    mice, and exerted protective effects against acute LPS-induced lung injury. ... This is an Open Access article that uses a funding model which does not charge readers .... field microscope [20]. ... by Tukey's test were used for statistical analysis.

  11. Macrophages and depression - a misalliance or well-arranged marriage?

    Science.gov (United States)

    Roman, Adam; Kreiner, Grzegorz; Nalepa, Irena

    2013-01-01

    Depression is a severe medical condition with multiple manifestations and diverse, largely unknown etiologies. The immune system, particularly macrophages, plays an important role in the pathology of the illness. Macrophages represent a heterogeneous population of immune cells that is dispersed throughout the body. The central nervous system is populated by several types of macrophages, including microglia, perivascular cells, meningeal and choroid plexus macrophages and pericytes. These cells occupy different brain compartments and have various functions. Under basal conditions, brain macrophages support the proper function of neural cells, organize and preserve the neuronal network and maintain homeostasis. As cells of the innate immune system, they recognize and react to any disturbances in homeostasis, eliminating pathogens or damaged cells, terminating inflammation and proceeding to initiate tissue reconstruction. Disturbances in these processes result in diverse pathologies. In particular, tissue stress or malfunction, both in the brain and in the periphery, produce sustained inflammatory states, which may cause depression. Excessive release of proinflammatory mediators is responsible for alterations of neurotransmitter systems and the occurrence of depressive symptoms. Almost all antidepressive drugs target monoamine or serotonin neurotransmission and also have anti-inflammatory or immunosuppressive properties. In addition, non-pharmacological treatments, such as electroconvulsive shock, can also exert anti-inflammatory effects. Recent studies have shown that antidepressive therapies can affect the functional properties of peripheral and brain macrophages and skew them toward the anti-inflammatory M2 phenotype. Because macrophages can affect outcome of inflammatory diseases, alleviate sickness behavior and improve cognitive function, it is possible that the effects of antidepressive treatments may be, at least in part, mediated by changes in macrophage

  12. Characterization of the growth-inhibitory and apoptosis-inducing activities of a triterpene saponin, securioside B against BAC1.2F5 macrophages

    Directory of Open Access Journals (Sweden)

    Satoru Yui

    2003-01-01

    Full Text Available Background: Since the growth state of macrophages in local pathological sites is considered a factor that regulates the processes of many disease, such as tumors, inflammation, and atherosclerosis, the substances that regulate macrophage growth or survival may be useful for disease control. We previously reported that securiosides A and B, novel triterpene saponins, exerted macrophage-oriented cytotoxicity in the presence of a L-cell-conditioned medium containing macrophage colony-stimulating factor (M-CSF, while the compounds did not exhibit an effect on macrophages in the absence of the growth-stimulating factors.

  13. Cell Elasticity Determines Macrophage Function

    Science.gov (United States)

    Patel, Naimish R.; Bole, Medhavi; Chen, Cheng; Hardin, Charles C.; Kho, Alvin T.; Mih, Justin; Deng, Linhong; Butler, James; Tschumperlin, Daniel; Fredberg, Jeffrey J.; Krishnan, Ramaswamy; Koziel, Henry

    2012-01-01

    Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function. PMID:23028423

  14. Cell elasticity determines macrophage function.

    Directory of Open Access Journals (Sweden)

    Naimish R Patel

    Full Text Available Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function.

  15. The role of membrane cholesterol in determining bile acid cytotoxicity and cytoprotection of ursodeoxycholic acid

    Science.gov (United States)

    Zhou, Yong; Doyen, Rand; Lichtenberger, Lenard M.

    2013-01-01

    In cholestatic liver diseases, the ability of hydrophobic bile acids to damage membranes of hepatocytes/ductal cells contributes to their cytotoxicity. However, ursodeoxycholic acid (UDC), a hydrophilic bile acid, is used to treat cholestasis because it protects membranes. It has been well established that bile acids associate with and solubilize free cholesterol (CHOL) contained within the lumen of the gallbladder because of their structural similarities. However, there is a lack of understanding of how membrane CHOL, which is a well-established membrane stabilizing agent, is involved in cytotoxicity of hydrophobic bile acids and the cytoprotective effect of UDC. We utilized phospholipid liposomes to examine the ability of membrane CHOL to influence toxicity of individual bile acids, such as UDC and the highly toxic sodium deoxycholate (SDC), as well as the cytoprotective mechanism of UDC against SDC-induced cytotoxicity by measuring membrane permeation and intramembrane dipole potential. The kinetics of bile acid solubilization of phosphatidylcholine liposomes containing various levels of CHOL was also characterized. It was found that the presence of CHOL in membranes significantly reduced the ability of bile acids to damage synthetic membranes. UDC effectively prevented damaging effects of SDC on synthetic membranes only in the presence of membrane CHOL, while UDC enhances the damaging effects of SDC in the absence of CHOL. This further demonstrates that the cytoprotective effects of UDC depend upon the level of CHOL in the lipid membrane. Thus, changes in cell membrane composition, such as CHOL content, potentially influence the efficacy of UDC as the primary drug used to treat cholestasis. PMID:19150330

  16. Cytoprotective effect of tocopherols in hepatocytes cultured with polyunsaturated fatty acids

    DEFF Research Database (Denmark)

    Mikkelsen, L.; Hansen, Harald S.; Grunnet, N.

    1994-01-01

    When highly unsaturated fatty acids are added to cell cultures, it can become important to include antioxidants in the culture medium to prevent cytotoxic peroxidation. To find an optimal antioxidant for this purpose, the effect of 50 µM a-tocopherol, ¿-tocopherol, a-tocopheryl acetate, a...... of thiobarbituric acid reactive substances in the cultures was also measured. a-Tocopheryl acid succinate was found to be the most effective cytoprotective compound, followed by N,N'-diphenyl-1,4-phenylenediamine, a- tocopherol, ¿-tocopherol and a-tocopheryl acetate, and a-tocopheryl phosphate was without effect....

  17. Cytochrome P450 2A5 and bilirubin: Mechanisms of gene regulation and cytoprotection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sangsoo Daniel; Antenos, Monica [Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Squires, E. James [Department of Animal and Poultry Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Kirby, Gordon M., E-mail: gkirby@uoguelph.ca [Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada)

    2013-07-15

    Bilirubin (BR) has recently been identified as the first endogenous substrate for cytochrome P450 2A5 (CYP2A5) and it has been suggested that CYP2A5 plays a major role in BR clearance as an alternative mechanism to BR conjugation by uridine-diphosphate glucuronyltransferase 1A1. This study investigated the mechanisms of Cyp2a5 gene regulation by BR and the cytoprotective role of CYP2A5 in BR hepatotoxicity. BR induced CYP2A5 expression at the mRNA and protein levels in a dose-dependent manner in primary mouse hepatocytes. BR treatment also caused nuclear translocation of Nuclear factor-E2 p45-related factor 2 (Nrf2) in hepatocytes. In reporter assays, BR treatment of primary hepatocytes transfected with a Cyp2a5 promoter-luciferase reporter construct resulted in a 2-fold induction of Cyp2a5 reporter activity. Furthermore, cotransfection of the hepatocytes with a Nrf2 expression vector without BR treatment resulted in an increase in Cyp2a5 reporter activity of approximately 2-fold and BR treatment of Nrf2 cotransfectants further increased reporter activity by 4-fold. In addition, site-directed mutation of the ARE in the reporter construct completely abolished both the BR- and Nrf2-mediated increases in reporter activity. The cytoprotective role of CYP2A5 against BR-mediated apoptosis was also examined in Hepa 1–6 cells that lack endogenous CYP2A5. Transient overexpression of CYP2A5 partially blocked BR-induced caspase-3 cleavage in Hepa 1–6 cells. Furthermore, in vitro degradation of BR was increased by microsomes from Hepa 1–6 cells overexpressing CYP2A5 compared to control cells transfected with an empty vector. Collectively, these results suggest that Nrf2-mediated CYP2A5 transactivation in response to BR may provide an additional mechanism for adaptive cytoprotection against BR hepatotoxicity. - Highlights: • The mechanism of Cyp2a5 gene regulation by BR was investigated. • The cytoprotective role of CYP2A5 in BR hepatotoxicity was determined. • BR

  18. Proliferating macrophages prevail in atherosclerosis.

    Science.gov (United States)

    Randolph, Gwendalyn J

    2013-09-01

    Macrophages accumulate in atherosclerotic lesions during the inflammation that is part of atherosclerosis development and progression. A new study in mice indicates that the accumulation of macrophages in atherosclerotic plaques depends on local macrophage proliferation rather than the recruitment of circulating monocytes.

  19. Design Strategies for Balancing Exertion Games

    DEFF Research Database (Denmark)

    Jensen, Mads Møller; Grønbæk, Kaj

    2016-01-01

    In sports, if players' physical and technical abilities are mismatched, the competition is often uninteresting for them. With the emergence of exertion games, this could be changing. Player balancing, known from video games, allows players with different skill levels to compete, however, it is un......In sports, if players' physical and technical abilities are mismatched, the competition is often uninteresting for them. With the emergence of exertion games, this could be changing. Player balancing, known from video games, allows players with different skill levels to compete, however......, it is unclear how balancing mechanisms should be applied in exertion games, where physical and digital elements are fused. In this paper, we present an exertion game and three approaches for balancing it; a physical, an explicit-digital and an implicit-digital balancing approach. A user study that compares...... these three approaches is used to investigate the qualities and challenges within each approach and explore how the player experience is affected by them. Based on these findings, we suggest four design strategies for balancing exertion games, so that players will stay engaged in the game and contain...

  20. Cytoprotective effects of essential oil of Pinus halepensis L. against aspirin-induced toxicity in IEC-6 cells.

    Science.gov (United States)

    Bouzenna, Hafsia; Hfaiedh, Najla; Bouaziz, Mouhamed; Giroux-Metges, Marie-Agnès; Elfeki, Abdelfattah; Talarmin, Hélène

    2017-12-01

    Essential oils from Pinus species have been reported to have various therapeutic properties. This study was undertaken to identify the chemical composition and cytoprotective effects of the essential oil of Pinus halepensis L. against aspirin-induced damage in cells in vitro. The cytoprotection of the oil against toxicity of aspirin on the small intestine epithelial cells IEC-6 was tested. The obtained results have shown that 35 different compounds were identified. Aspirin induced a decrease in cell viability, and exhibited significant damage to their morphology and an increase in superoxide dismutase (SOD) and catalase (CAT) activities. However, the co-treatment of aspirin with the essential oil of Pinus induced a significant increase in cell viability and a decrease in SOD and CAT activities. Overall, these finding suggest that the essential oil of Pinus halepensis L. has potent cytoprotective effect against aspirin-induced toxicity in IEC-6 cells.

  1. Alanyl-glutamine dipeptide restores the cytoprotective stress proteome of mesothelial cells exposed to peritoneal dialysis fluids.

    Science.gov (United States)

    Kratochwill, Klaus; Boehm, Michael; Herzog, Rebecca; Lichtenauer, Anton Michael; Salzer, Elisabeth; Lechner, Michael; Kuster, Lilian; Bergmeister, Konstantin; Rizzi, Andreas; Mayer, Bernd; Aufricht, Christoph

    2012-03-01

    Exposure of mesothelial cells to peritoneal dialysis fluids (PDF) results in cytoprotective cellular stress responses (CSR) that counteract PDF-induced damage. In this study, we tested the hypothesis that the CSR may be inadequate in relevant models of peritoneal dialysis (PD) due to insufficient levels of glutamine, resulting in increased vulnerability against PDF cytotoxicity. We particularly investigated the role of alanyl-glutamine (Ala-Gln) dipeptide on the cytoprotective PDF stress proteome. Adequacy of CSR was investigated in two human in vitro models (immortalized cell line MeT-5A and mesothelial cells derived from peritoneal effluent of uraemic patients) following exposure to heat-sterilized glucose-based PDF (PD4-Dianeal, Baxter) diluted with medium and, in a comparative proteomics approach, at different levels of glutamine ranging from depletion (0 mM) via physiological (0.7 mM) to pharmacological levels (8 mM administered as Ala-Gln). Despite severe cellular injury, expression of cytoprotective proteins was dampened upon PDF exposure at physiological glutamine levels, indicating an inadequate CSR. Depletion of glutamine aggravated cell injury and further reduced the CSR, whereas addition of Ala-Gln at pharmacological level restored an adequate CSR, decreasing cellular damage in both PDF exposure systems. Ala-Gln specifically stimulated chaperoning activity, and cytoprotective processes were markedly enhanced in the PDF stress proteome. Taken together, this study demonstrates an inadequate CSR of mesothelial cells following PDF exposure associated with low and physiological levels of glutamine, indicating a new and potentially relevant pathomechanism. Supplementation of PDF with pharmacological doses of Ala-Gln restored the cytoprotective stress proteome, resulting in improved resistance of mesothelial cells to exposure to PDF. Future work will study the clinical relevance of CSR-mediated cytoprotection.

  2. Progastrin represses the alternative activation of human macrophages and modulates their influence on colon cancer epithelial cells.

    Directory of Open Access Journals (Sweden)

    Carlos Hernández

    Full Text Available Macrophage infiltration is a negative prognostic factor for most cancers but gastrointestinal tumors seem to be an exception. The effect of macrophages on cancer progression depends on their phenotype, which may vary between M1 (pro-inflammatory, defensive to M2 (tolerogenic, pro-tumoral. Gastrointestinal cancers often become an ectopic source of gastrins and macrophages present receptors for these peptides. The aim of the present study is to analyze whether gastrins can affect the pattern of macrophage infiltration in colorectal tumors. We have evaluated the relationship between gastrin expression and the pattern of macrophage infiltration in samples from colorectal cancer and the influence of these peptides on the phenotype of macrophages differentiated from human peripheral monocytes in vitro. The total number of macrophages (CD68+ cells was similar in tumoral and normal surrounding tissue, but the number of M2 macrophages (CD206+ cells was significantly higher in the tumor. However, the number of these tumor-associated M2 macrophages correlated negatively with the immunoreactivity for gastrin peptides in tumor epithelial cells. Macrophages differentiated from human peripheral monocytes in the presence of progastrin showed lower levels of M2-markers (CD206, IL10 with normal amounts of M1-markers (CD86, IL12. Progastrin induced similar effects in mature macrophages treated with IL4 to obtain a M2-phenotype or with LPS plus IFNγ to generate M1-macrophages. Macrophages differentiated in the presence of progastrin presented a reduced expression of Wnt ligands and decreased the number and increased cell death of co-cultured colorectal cancer epithelial cells. Our results suggest that progastrin inhibits the acquisition of a M2-phenotype in human macrophages. This effect exerted on tumor associated macrophages may modulate cancer progression and should be taken into account when analyzing the therapeutic value of gastrin immunoneutralization.

  3. Assessment of Antioxidant and Cytoprotective Potential of Jatropha (Jatropha curcas) Grown in Southern Italy.

    Science.gov (United States)

    Papalia, Teresa; Barreca, Davide; Panuccio, Maria Rosaria

    2017-03-18

    Jatropha ( Jatropha curcas L.) is a plant native of Central and South America, but widely distributed in the wild or semi-cultivated areas in Africa, India, and South East Asia. Although studies are available in literature on the polyphenolic content and bioactivity of Jatropha curcas L., no information is currently available on plants grown in pedoclimatic and soil conditions different from the autochthon regions. The aim of the present work was to characterize the antioxidant system developed by the plant under a new growing condition and to evaluate the polyphenol amount in a methanolic extract of leaves. Along with these analyses we have also tested the antioxidant and cytoprotective activities on lymphocytes. RP-HPLC-DAD analysis of flavonoids revealed a chromatographic profile dominated by the presence of flavone C -glucosydes. Vitexin is the most abundant identified compound followed by vicenin-2, stellarin-2, rhoifolin, and traces of isovitexin and isorhoifolin. Methanolic extract had high scavenging activity in all antioxidant assays tested and cytoprotective activity on lymphocytes exposed to tertz-buthylhydroperoxide. The results highlighted a well-defined mechanism of adaptation of the plant and a significant content of secondary metabolites with antioxidant properties, which are of interest for their potential uses, especially as a rich source of biologically active products.

  4. Assessment of Antioxidant and Cytoprotective Potential of Jatropha (Jatropha curcas Grown in Southern Italy

    Directory of Open Access Journals (Sweden)

    Teresa Papalia

    2017-03-01

    Full Text Available Jatropha (Jatropha curcas L. is a plant native of Central and South America, but widely distributed in the wild or semi-cultivated areas in Africa, India, and South East Asia. Although studies are available in literature on the polyphenolic content and bioactivity of Jatropha curcas L., no information is currently available on plants grown in pedoclimatic and soil conditions different from the autochthon regions. The aim of the present work was to characterize the antioxidant system developed by the plant under a new growing condition and to evaluate the polyphenol amount in a methanolic extract of leaves. Along with these analyses we have also tested the antioxidant and cytoprotective activities on lymphocytes. RP-HPLC-DAD analysis of flavonoids revealed a chromatographic profile dominated by the presence of flavone C-glucosydes. Vitexin is the most abundant identified compound followed by vicenin-2, stellarin-2, rhoifolin, and traces of isovitexin and isorhoifolin. Methanolic extract had high scavenging activity in all antioxidant assays tested and cytoprotective activity on lymphocytes exposed to tertz-buthylhydroperoxide. The results highlighted a well-defined mechanism of adaptation of the plant and a significant content of secondary metabolites with antioxidant properties, which are of interest for their potential uses, especially as a rich source of biologically active products.

  5. Antiradical and Cytoprotective Activities of Several C-Geranyl-substituted Flavanones from Paulownia tomentosa Fruit

    Directory of Open Access Journals (Sweden)

    Ana Lopes

    2010-08-01

    Full Text Available Antiradical and cytoprotective activities of several flavanones isolated from Paulownia tomentosa (Thunb. Steud. (Scrophulariaceae have been evaluated using different in vitro and in vivo methods. The capacity of flavanones to scavenge radicals was measured in vitro by means of DPPH and ABTS assays, the inhibition of hydroxyl radicals produced in Fenton reactions, FRAP, scavenging superoxide radicals using enzymatic and nonenzymatic assays and the inhibition of peroxynitrite-induced nitration of tyrosine. The in vivo testing involved measuring the cytoprotective effect of chosen flavanones against alloxan-induced diabetes in mice. The activity of tested compounds was expressed either as a Trolox® equivalent or was compared with rutin or morine as known antioxidant compounds. The highest activity in most tests was observed for diplacone and 3´-O-methyl-5´-hydroxydiplacone, and the structure vs. the antioxidant activity relationship of geranyl or prenyl-substituted flavonoids with different substitutions at the B and C ring was discussed.

  6. Does heavy physical exertion trigger myocardial infarction?

    DEFF Research Database (Denmark)

    Hallqvist, J; Möller, J; Ahlbom, A

    2000-01-01

    To study possible triggering of first events of acute myocardial infarction by heavy physical exertion, the authors conducted a case-crossover analysis (1993-1994) within a population-based case-referent study in Stockholm County, Sweden (the Stockholm Heart Epidemiology Program). Interviews were...

  7. T3 Regulates a Human Macrophage-Derived TSH-β Splice Variant: Implications for Human Bone Biology.

    Science.gov (United States)

    Baliram, R; Latif, R; Morshed, S A; Zaidi, M; Davies, T F

    2016-09-01

    TSH and thyroid hormones (T3 and T4) are intimately involved in bone biology. We have previously reported the presence of a murine TSH-β splice variant (TSH-βv) expressed specifically in bone marrow-derived macrophages and that exerted an osteoprotective effect by inducing osteoblastogenesis. To extend this observation and its relevance to human bone biology, we set out to identify and characterize a TSH-β variant in human macrophages. Real-time PCR analyses using human TSH-β-specific primers identified a 364-bp product in macrophages, bone marrow, and peripheral blood mononuclear cells that was sequence verified and was homologous to a human TSH-βv previously reported. We then examined TSH-βv regulation using the THP-1 human monocyte cell line matured into macrophages. After 4 days, 46.1% of the THP-1 cells expressed the macrophage markers CD-14 and macrophage colony-stimulating factor and exhibited typical morphological characteristics of macrophages. Real-time PCR analyses of these cells treated in a dose-dependent manner with T3 showed a 14-fold induction of human TSH-βv mRNA and variant protein. Furthermore, these human TSH-βv-positive cells, induced by T3 exposure, had categorized into both M1 and M2 macrophage phenotypes as evidenced by the expression of macrophage colony-stimulating factor for M1 and CCL-22 for M2. These data indicate that in hyperthyroidism, bone marrow resident macrophages have the potential to exert enhanced osteoprotective effects by oversecreting human TSH-βv, which may exert its local osteoprotective role via osteoblast and osteoclast TSH receptors.

  8. Antioxidant and Cytoprotective Effects of Tibetan Tea and Its Phenolic Components

    Directory of Open Access Journals (Sweden)

    Hong Xie

    2018-01-01

    Full Text Available Tibetan tea (Kangzhuan is an essential beverage of the Tibetan people. In this study, a lyophilized aqueous extract of Tibetan tea (LATT was prepared and analyzed by HPLC. The results suggested that there were at least five phenolic components, including gallic acid, and four catechins (i.e., (+-catechin, (−-catechin gallate (CG, (−-epicatechin gallate (ECG, and (−-epigallocatechin gallate. Gallic acid, the four catechins, and LATT were then comparatively investigated by four antioxidant assays: ferric reducing antioxidant power, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO• scavenging, 1,1-diphenyl-2-picryl-hydrazl radical scavenging, and 2,2′-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid radical scavenging assays. In these assays, LATT, along with the five phenolic components, increased their antioxidant effects in a concentration-dependent manner; however, the half maximal scavenging concentrations of ECG were always lower than those of CG. Gallic acid and the four catechins were also suggested to chelate Fe2+ based on UV-visible spectral analysis. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC−ESI−Q−TOF−MS/MS analysis suggested that, when mixed with PTIO•, the five phenolic components could yield two types of radical adduct formation (RAF products (i.e., tea phenolic dimers and tea phenolic-PTIO• adducts. In a flow cytometry assay, (+-catechin and LATT was observed to have a cytoprotective effect towards oxidative-stressed bone marrow-derived mesenchymal stem cells. Based on this evidence, we concluded that LATT possesses antioxidative or cytoprotective properties. These effects may mainly be attributed to the presence of phenolic components, including gallic acid and the four catechins. These phenolic components may undergo electron transfer, H+-transfer, and Fe2+-chelating pathways to exhibit

  9. Antioxidant and Cytoprotective Effects of Tibetan Tea and Its Phenolic Components.

    Science.gov (United States)

    Xie, Hong; Li, Xican; Ren, Zhenxing; Qiu, Weimin; Chen, Jianlan; Jiang, Qian; Chen, Ban; Chen, Dongfeng

    2018-01-24

    Tibetan tea (Kangzhuan) is an essential beverage of the Tibetan people. In this study, a lyophilized aqueous extract of Tibetan tea ( LATT ) was prepared and analyzed by HPLC. The results suggested that there were at least five phenolic components, including gallic acid, and four catechins (i.e., (+)-catechin, (-)-catechin gallate ( CG ), (-)-epicatechin gallate ( ECG ), and (-)-epigallocatechin gallate). Gallic acid, the four catechins, and LATT were then comparatively investigated by four antioxidant assays: ferric reducing antioxidant power, 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide radical (PTIO•) scavenging, 1,1-diphenyl-2-picryl-hydrazl radical scavenging, and 2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) radical scavenging assays. In these assays, LATT, along with the five phenolic components, increased their antioxidant effects in a concentration-dependent manner; however, the half maximal scavenging concentrations of ECG were always lower than those of CG . Gallic acid and the four catechins were also suggested to chelate Fe 2+ based on UV-visible spectral analysis. Ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UPLC-ESI-Q-TOF-MS/MS) analysis suggested that, when mixed with PTIO•, the five phenolic components could yield two types of radical adduct formation (RAF) products (i.e., tea phenolic dimers and tea phenolic-PTIO• adducts). In a flow cytometry assay, (+)-catechin and LATT was observed to have a cytoprotective effect towards oxidative-stressed bone marrow-derived mesenchymal stem cells. Based on this evidence, we concluded that LATT possesses antioxidative or cytoprotective properties. These effects may mainly be attributed to the presence of phenolic components, including gallic acid and the four catechins. These phenolic components may undergo electron transfer, H⁺-transfer, and Fe 2+ -chelating pathways to exhibit antioxidative or

  10. Cytotoxic and cytoprotective activities of curcumin. Effects on paracetamol-induced cytotoxicity, lipid peroxidation and glutathione depletion in rat hepatocytes

    NARCIS (Netherlands)

    Donatus, I A; Sardjoko,; Vermeulen, N P

    1990-01-01

    The cytoprotective effect of curcumin, a natural constituent of Curcuma longa, on the cytotoxicity of paracetamol in rat hepatocytes was studied. Paracetamol was selected as a model-toxin, since it is known to be bioactivated by 3-methylcholanthrene inducible cytochromes P450 presumably to

  11. Macrophage immunoregulatory pathways in tuberculosis.

    Science.gov (United States)

    Rajaram, Murugesan V S; Ni, Bin; Dodd, Claire E; Schlesinger, Larry S

    2014-12-01

    Macrophages, the major host cells harboring Mycobacterium tuberculosis (M.tb), are a heterogeneous cell type depending on their tissue of origin and host they are derived from. Significant discord in macrophage responses to M.tb exists due to differences in M.tb strains and the various types of macrophages used to study tuberculosis (TB). This review will summarize current concepts regarding macrophage responses to M.tb infection, while pointing out relevant differences in experimental outcomes due to the use of divergent model systems. A brief description of the lung environment is included since there is increasing evidence that the alveolar macrophage (AM) has immunoregulatory properties that can delay optimal protective host immune responses. In this context, this review focuses on selected macrophage immunoregulatory pattern recognition receptors (PRRs), cytokines, negative regulators of inflammation, lipid mediators and microRNAs (miRNAs). Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Antioxidant and cytoprotective activities of Piper betle, Areca catechu, Uncaria gambir and betel quid with and without calcium hydroxide.

    Science.gov (United States)

    Sazwi, Nordin Nur; Nalina, Thurairajah; Abdul Rahim, Zubaidah Haji

    2013-12-11

    Betel quid chewing is a popular habit in Southeast Asia. It is believed that chewing betel quid could reduce stress, strengthen teeth and maintain oral hygiene. The aim of this study was to investigate the antioxidant and cytoprotective activities of each of the ingredients of betel quid and compared with betel quid itself (with and without calcium hydroxide). The correlation of their cytoprotective and antioxidant activities with phenolic content was also determined. Five samples (betel leaf, areca nut, gambir, betel quid and betel quid containing calcium hydroxide) were extracted in deionized distilled water for 12 hours at 37°C. Antioxidant activities were evaluated for radical scavenging activity using DPPH assay, ferric reducing activity using FRAP assay and lipid peroxidation inhibition activity using FTC assay. Total phenolic content (TPC) was determined using Folin-Ciocalteu procedure. Phenolic composition was analyzed using LC-MS/MS. Cytoprotective activity towards human gingival fibroblast cells was examined using MTT assay. Among the ingredients of betel quid, gambir demonstrated the highest antioxidant (DPPH - IC50 = 6.4 ± 0.8 μg/mL, FRAP - 5717.8 ± 537.6 μmol Fe(II)/mg), total phenolic content (TPC - 1142.5 ± 106.8 μg TAE/mg) and cytoprotective (100.1 ± 4.6%) activities. Betel quid when compared with betel quid containing calcium hydroxide has higher antioxidant (DPPH - IC50 =59.4 ± 4.4 μg/mL, FRAP - 1022.2 ± 235.7 μmol Fe(II)/mg), total phenolic content (TPC - 140.0 ± 22.3 μg TAE/mg), and cytoprotective (113.5 ± 15.9%) activities. However, all of the five samples showed good lipid peroxidation inhibition compared to vitamin E. LC-MS/MS analysis revealed the presence of quinic acid as the major compound of gambir and betel quid. A positive correlation was observed between TPC and radical scavenging (r = 0.972), reducing power (r = 0.981) and cytoprotective activity (r = 0.682). The betel quid has higher TPC, and antioxidant and

  13. Amifostine (WR-2721, a cytoprotective agent during high-dose cyclophosphamide treatment of non-Hodgkin's lymphomas: a phase II study

    Directory of Open Access Journals (Sweden)

    C.A. De Souza

    2000-07-01

    Full Text Available Clinical trials indicate that amifostine may confer protection on various normal tissues without attenuating anti-tumor response. When administered prior to chemotherapy or radiotherapy, it may provide a broad spectrum of cytoprotection including against alkylating drugs. The mechanism of protection resides in the metabolism at normal tissue site by membrane-bound alkaline phosphatase. Toxicity of this drug is moderate with hypotension, nausea and vomiting, and hypocalcemia being observed. We report a phase II study using amifostine as a protective drug against high-dose cyclophosphamide (HDCY (7 g/m2, used to mobilize peripheral blood progenitor cells (PBPC and to reduce tumor burden. We enrolled 29 patients, 22 (75.9% affected by aggressive and 7 (24.1% by indolent non-Hodgkin's lymphoma (NHL, who were submitted to 58 infusions of amifostine and compared them with a historical group (33 patients affected by aggressive NHL and treated with VACOP-B followed by HDCY. The most important results in favor of amifostine were the reduction of intensity of cardiac, pulmonary and hepatic toxicity, and a significant reduction of frequency and severity of mucositis (P = 0.04. None of the 29 patients died in the protected group, while in the historical group 2/33 patients died because of cardiac or pulmonary toxicity and 2 patients stopped therapy due to toxicity. Amifostine did not prevent the aplastic phase following HDCY. PBPC collection and hematological recovery were adequate in both groups. The number of CFU-GM (colony-forming units-granulocyte/macrophage colonies and mononuclear cells in the apheresis products was significantly higher in the amifostine group (P = 0.02 and 0.01, respectively. Side effects were mild and easily controlled. We conclude that amifostine protection should be useful in HDCY to protect normal tissues, with acceptable side effects.

  14. Cytoprotective role of the fatty acid binding protein 4 against oxidative and endoplasmic reticulum stress in 3T3-L1 adipocytes

    Directory of Open Access Journals (Sweden)

    Kazuaki Kajimoto

    2014-01-01

    Full Text Available The fatty acid binding protein 4 (FABP4, one of the most abundant proteins in adipocytes, has been reported to have a proinflammatory function in macrophages. However, the physiological role of FABP4, which is constitutively expressed in adipocytes, has not been fully elucidated. Previously, we demonstrated that FABP4 was involved in the regulation of interleukin-6 (IL-6 and vascular endothelial growth factor (VEGF production in 3T3-L1 adipocytes. In this study, we examined the effects of FABP4 silencing on the oxidative and endoplasmic reticulum (ER stress in 3T3-L1 adipocytes. We found that the cellular reactive oxygen species (ROS and 8-nitro-cyclic GMP levels were significantly elevated in the differentiated 3T3-L1 adipocytes transfected with a small interfering RNA (siRNA against Fabp4, although the intracellular levels or enzyme activities of antioxidants including reduced glutathione (GSH, superoxide dismutase (SOD and glutathione S-transferase A4 (GSTA4 were not altered. An in vitro evaluation using the recombinant protein revealed that FABP4 itself functions as a scavenger protein against hydrogen peroxide (H2O2. FABP4-knockdown resulted in a significant lowering of cell viability of 3T3-L1 adipocytes against H2O2 treatment. Moreover, four kinds of markers related to the ER stress response including the endoplasmic reticulum to nucleus signaling 1 (Ern1, the signal sequence receptor α (Ssr1, the ORM1-like 3 (Ormdl3, and the spliced X-box binding protein 1 (Xbp1s, were all elevated as the result of the knockdown of FABP4. Consequently, FABP4 might have a new role as an antioxidant protein against H2O2 and contribute to cytoprotection against oxidative and ER stress in adipocytes.

  15. Biology of Bony Fish Macrophages

    OpenAIRE

    Hodgkinson, Jordan W.; Grayfer, Leon; Belosevic, Miodrag

    2015-01-01

    Macrophages are found across all vertebrate species, reside in virtually all animal tissues, and play critical roles in host protection and homeostasis. Various mechanisms determine and regulate the highly plastic functional phenotypes of macrophages, including antimicrobial host defenses (pro-inflammatory, M1-type), and resolution and repair functions (anti-inflammatory/regulatory, M2-type). The study of inflammatory macrophages in immune defense of teleosts has garnered much attention, and ...

  16. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires

    Science.gov (United States)

    Vernekar, Amit A.; Sinha, Devanjan; Srivastava, Shubhi; Paramasivam, Prasath U.; D'Silva, Patrick; Mugesh, Govindasamy

    2014-11-01

    Nanomaterials with enzyme-like properties has attracted significant interest, although limited information is available on their biological activities in cells. Here we show that V2O5 nanowires (Vn) functionally mimic the antioxidant enzyme glutathione peroxidase by using cellular glutathione. Although bulk V2O5 is known to be toxic to the cells, the property is altered when converted into a nanomaterial form. The Vn nanozymes readily internalize into mammalian cells of multiple origin (kidney, neuronal, prostate, cervical) and exhibit robust enzyme-like activity by scavenging the reactive oxygen species when challenged against intrinsic and extrinsic oxidative stress. The Vn nanozymes fully restore the redox balance without perturbing the cellular antioxidant defense, thus providing an important cytoprotection for biomolecules against harmful oxidative damage. Based on our findings, we envision that biocompatible Vn nanowires can provide future therapeutic potential to prevent ageing, cardiac disorders and several neurological conditions, including Parkinson’s and Alzheimer’s disease.

  17. Health and Cellular Impacts of Air Pollutants: From Cytoprotection to Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Karine Andreau

    2012-01-01

    Full Text Available Air pollution as one of the ravages of our modern societies is primarily linked to urban centers, industrial activities, or road traffic. These atmospheric pollutants have been incriminated in deleterious health effects by numerous epidemiological and in vitro studies. Environmental air pollutants are a heterogeneous mixture of particles suspended into a liquid and gaseous phase which trigger the disruption of redox homeostasis—known under the term of cellular oxidative stress—in relation with the establishment of inflammation and cell death via necrosis, apoptosis, or autophagy. Activation or repression of the apoptotic process as an adaptative response to xenobiotics might lead to either acute or chronic toxicity. The purpose of this paper is to highlight the central role of oxidative stress induced by air pollutants and to focus on the subsequent cellular impacts ranging from cytoprotection to cytotoxicity by decreasing or stimulating apoptosis, respectively.

  18. Yeast as a Tool to Study Signaling Pathways in Mitochondrial Stress Response and Cytoprotection

    Directory of Open Access Journals (Sweden)

    Maša Ždralević

    2012-01-01

    Full Text Available Cell homeostasis results from the balance between cell capability to adapt or succumb to environmental stress. Mitochondria, in addition to supplying cellular energy, are involved in a range of processes deciding about cellular life or death. The crucial role of mitochondria in cell death is well recognized. Mitochondrial dysfunction has been associated with the death process and the onset of numerous diseases. Yet, mitochondrial involvement in cellular adaptation to stress is still largely unexplored. Strong interest exists in pharmacological manipulation of mitochondrial metabolism and signaling. The yeast Saccharomyces cerevisiae has proven a valuable model organism in which several intracellular processes have been characterized in great detail, including the retrograde response to mitochondrial dysfunction and, more recently, programmed cell death. In this paper we review experimental evidences of mitochondrial involvement in cytoprotection and propose yeast as a model system to investigate the role of mitochondria in the cross-talk between prosurvival and prodeath pathways.

  19. Role of submandibular saliva and epidermal growth factor in gastric cytoprotection

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1984-01-01

    without submandibular glands. Exogenous EGF and saliva with a high but still physiological concentration of EGF significantly reduced the median area in the stomach displaying ulcers and ulcerations, whereas saliva without EGF had no effect. Although EGF is a known inhibitor of gastric acid secretion......The role of submandibular epidermal growth factor in protection of the gastric mucosa was investigated in rats. Removal of the submandibular glands and thereby submandibular epidermal growth factor (EGF) caused rats to develop gastric lesions (ulcerations and ulcers) after administration......, the dose used in the present study had no effect on gastric acid secretion in chronic gastric fistula rats; removal of the submandibular glands also did not have any such effect. We conclude that exocrine secretion of submandibular EGF has a cytoprotective function in the stomach, an effect that may...

  20. Targeted Modification of Mitochondrial ROS Production Converts High Glucose-Induced Cytotoxicity to Cytoprotection: Effects on Anesthetic Preconditioning.

    Science.gov (United States)

    Sedlic, Filip; Muravyeva, Maria Y; Sepac, Ana; Sedlic, Marija; Williams, Anna Marie; Yang, Meiying; Bai, Xiaowen; Bosnjak, Zeljko J

    2017-01-01

    Contradictory reports on the effects of diabetes and hyperglycemia on myocardial infarction range from cytotoxicity to cytoprotection. The study was designed to investigate acute effects of high glucose-driven changes in mitochondrial metabolism and osmolarity on adaptive mechanisms and resistance to oxidative stress of isolated rat cardiomyocytes. We examined the effects of high glucose on several parameters of mitochondrial bioenergetics, including changes in oxygen consumption, mitochondrial membrane potential, and NAD(P)H fluorometry. Effects of high glucose on the endogenous cytoprotective mechanisms elicited by anesthetic preconditioning (APC) and the mediators of cell injury were also tested. These experiments included real-time measurements of reactive oxygen species (ROS) production and mitochondrial permeability transition pore (mPTP) opening in single cells by laser scanning fluorescence confocal microscopy, and cell survival assay. High glucose rapidly enhanced mitochondrial energy metabolism, observed by increase in NAD(P)H fluorescence intensity, oxygen consumption, and mitochondrial membrane potential. This substantially elevated production of ROS, accelerated opening of the mPTP, and decreased survival of cells exposed to oxidative stress. Abrogation of high glucose-induced mitochondrial hyperpolarization with 2,4 dinitrophenol (DNP) significantly, but not completely, attenuated ROS production to a level similar to hyperosmotic mannitol control. DNP treatment reversed high glucose-induced cytotoxicity to cytoprotection. Hyperosmotic mannitol treatment also induced cytoprotection. High glucose abrogated APC-induced mitochondrial depolarization, delay in mPTP opening and cytoprotection. In conclusion, high glucose-induced mitochondrial hyperpolarization abolishes APC and augments cell injury. Attenuation of high glucose-induced ROS production by eliminating mitochondrial hyperpolarization protects cardiomyocytes. J. Cell. Physiol. 232: 216-224, 2017

  1. Bioelectric modulation of macrophage polarization

    Science.gov (United States)

    Li, Chunmei; Levin, Michael; Kaplan, David L.

    2016-02-01

    Macrophages play a critical role in regulating wound healing and tissue regeneration by changing their polarization state in response to local microenvironmental stimuli. The native roles of polarized macrophages encompass biomaterials and tissue remodeling needs, yet harnessing or directing the polarization response has been largely absent as a potential strategy to exploit in regenerative medicine to date. Recent data have revealed that specific alteration of cells’ resting potential (Vmem) is a powerful tool to direct proliferation and differentiation in a number of complex tissues, such as limb regeneration, craniofacial patterning and tumorigenesis. In this study, we explored the bioelectric modulation of macrophage polarization by targeting ATP sensitive potassium channels (KATP). Glibenclamide (KATP blocker) and pinacidil (KATP opener) treatment not only affect macrophage polarization, but also influence the phenotype of prepolarized macrophages. Furthermore, modulation of cell membrane electrical properties can fine-tune macrophage plasticity. Glibenclamide decreased the secretion and gene expression of selected M1 markers, while pinacidil augmented M1 markers. More interestingly, glibencalmide promoted macrophage alternative activation by enhancing certain M2 markers during M2 polarization. These findings suggest that control of bioelectric properties of macrophages could offer a promising approach to regulate macrophage phenotype as a useful tool in regenerative medicine.

  2. Cytoprotective effect of glutaraldehyde erythropoietin on HEK293 kidney cells after silver nanoparticle exposure

    Directory of Open Access Journals (Sweden)

    Sooklert K

    2016-02-01

    Full Text Available Kanidta Sooklert,1,2 Supreecha Chattong,3 Krissanapong Manotham,3 Chawikan Boonwong,1 I-yanut Klaharn,1 Depicha Jindatip,4 Amornpun Sereemaspun1,4 1Nanobiomedicine Laboratory, Department of Anatomy, Faculty of Medicine, 2Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, 3Renal Unit, Department of Medicine, Lerdsin General Hospital, 4Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, ThailandAbstract: The toxic effects from exposure to silver nanoparticles (AgNPs, which are broadly present in many consumer products, have long raised concerns. Many studies have focused on the mechanisms of nanosilver, which cause toxicity in human cells, but little is known about prevention of this type of injury. This study investigated the in vitro effects of glutaraldehyde erythropoietin (GEPO, a cytoprotective compound derived from erythropoietin, in terms of cell protection against AgNP-induced injury. HEK293 cells were pretreated with or without GEPO before administration of AgNPs. The protective effects of GEPO in this cell line were assessed by the percentage of viable cells, alterations of cell morphology, and the proliferative capability of the cells. In addition, we assessed the role of GEPO in lowering cellular oxidative stress and regulating expression of the anti-apoptotic protein Bcl2. The results showed rescue effects on the percentage of viable and proliferative cells among GEPO pretreated cells. Pretreatment with GEPO maintained the normal cell shape and ultrastructural morphology. Moreover, GEPO reduced the generation of reactive oxygen species in cells and activated expression of Bcl2, which are the major mechanisms in protection against cellular toxicity induced by AgNPs. In conclusion, our study showed that the cytotoxic effects from exposure to AgNPs can be prevented by GEPO. Keywords: glutaraldehyde erythropoietin, silver nanoparticles, cytoprotection

  3. Antioxidant and cytoprotective properties of D-tagatose in cultured murine hepatocytes.

    Science.gov (United States)

    Paterna, J C; Boess, F; Stäubli, A; Boelsterli, U A

    1998-01-01

    D-Tagatose is a zero-energy producing ketohexose that is a powerful cytoprotective agent against chemically induced cell injury. To further explore the underlying mechanisms of cytoprotection, we investigated the effects of D-tagatose on both the generation of superoxide anion radicals and the consequences of oxidative stress driven by prooxidant compounds in intact cells. Primary cultures of hepatocytes derived from male C57BL/6 mice were exposed to the redox cycling drug nitrofurantoin (NFT). Lethal cell injury induced by 300 microM NFT was completely prevented by high concentrations (20 mM) of D-tagatose, whereas equimolar concentrations of glucose, mannitol, or xylose were ineffective. The extent of NFT-induced intracellular superoxide anion radical formation was not altered by D-tagatose, indicating that the ketohexose did not inhibit the reductive bioactivation of NFT. However, the NFT-induced decline of the intracellular GSH content was largely prevented by D-tagatose. The sugar also afforded complete protection against NFT toxicity in hepatocytes that had been chemically depleted of GSH. Furthermore, the ketohexose fully protected from increases in both membrane lipid peroxidation and protein carbonyl formation. In addition, D-tagatose completely prevented oxidative cell injury inflicted by toxic iron overload with ferric nitrilotriacetate (100 microM). In contrast, D-tagatose did not protect against lethal cell injury induced by tert-butyl hydroperoxide, a prooxidant which acts by hydroxyl radical-independent mechanisms and which is partitioned in the lipid bilayer. These results indicate that D-tagatose, which is a weak iron chelator, can antagonize the iron-dependent toxic consequences of intracellular oxidative stress in hepatocytes. The antioxidant properties of D-tagatose may result from sequestering the redox-active iron, thereby protecting more critical targets from the damaging potential of hydroxyl radical.

  4. Cytoprotective effects of fisetin against hypoxia-induced cell death in PC12 cells.

    Science.gov (United States)

    Chen, Pei-Yi; Ho, Yi-Ru; Wu, Ming-Jiuan; Huang, Shun-Ping; Chen, Po-Kong; Tai, Mi-Hsueh; Ho, Chi-Tang; Yen, Jui-Hung

    2015-01-01

    Fisetin (3,7,3',4'-tetrahydroxyflavone), a flavonol compound of flavonoids, exhibits a broad spectrum of biological activities including anti-oxidant, anti-inflammatory, anti-cancer and neuroprotective effects. The aim of this study is to investigate the cytoprotective effect of fisetin and the underlying molecular mechanism against hypoxia-induced cell death in PC12 cells. The results of this study showed that fisetin significantly restored the cell viability of PC12 cells under both cobalt chloride (CoCl₂)- and low oxygen-induced hypoxic conditions. Treatment with fisetin successfully reduced the CoCl₂-mediated reactive oxygen species (ROS) production, which was accompanied by an increase in the cell viability of PC12 cells. Furthermore, we found that treatment of PC12 cells with fisetin markedly upregulated hypoxia-inducible factor 1α (HIF-1α), its nuclear accumulation and the hypoxia-response element (HRE)-driven transcriptional activation. The fisetin-mediated cytoprotection during CoCl₂ exposure was significantly attenuated through the administration of HIF-1α siRNA. Moreover, we demonstrated that MAPK/ERK kinase 1/2 (MEK1/2), p38 MAPK and phosphatidylinositol 3-kinase (PI3 K) inhibitors significantly blocked the increase in cell survival that was induced by fisetin treatment under hypoxic conditions. Consistently, increased phosphorylation of ERK, p38 and Akt proteins was observed in PC12 cells treated with fisetin. However, the fisetin-induced HRE-driven transcription was not affected by inhibition of these kinase signaling pathways. Current results reveal for the first time that fisetin promotes cell survival and protects against hypoxia-induced cell death through ROS scavenging and the activation of HIF1α-, MAPK/ERK-, p38 MAPK- and PI3 K/Akt-dependent signaling pathways in PC12 cells.

  5. Cytoprotective Effects of Pumpkin (Cucurbita Moschata) Fruit Extract against Oxidative Stress and Carbonyl Stress.

    Science.gov (United States)

    Shayesteh, Reyhaneh; Kamalinejad, Mohammad; Adiban, Hasan; Kardan, Azin; Keyhanfar, Fariborz; Eskandari, Mohammad Reza

    2017-10-01

    Background Diabetes mellitus is a chronic endocrine disorder that is associated with significant mortality and morbidity due to microvascular and macrovascular complications. Diabetes complications accompanied with oxidative stress and carbonyl stress in different organs of human body because of the increased generation of free radicals and impaired antioxidant defense systems. In the meantime, reactive oxygen species (ROS) and reactive carbonyl species (RCS) have key mediatory roles in the development and progression of diabetes complications. Therapeutic strategies have recently focused on preventing such diabetes-related abnormalities using different natural and chemical compounds. Pumpkin ( Cucurbita moschata ) is one of the most important vegetables in the world with a broad-range of pharmacological activities such as antihyperglycemic effect. Methods In the present study, the cytoprotective effects of aqueous extract of C. moschata fruit on hepatocyte cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonylation model) were investigated using freshly isolated rat hepatocytes. Results The extract of C. moschata (50 μg/ml) excellently prevented oxidative and carbonyl stress markers, including hepatocyte lysis, ROS production, lipid peroxidation, glutathione depletion, mitochondrial membrane potential collapse, lysosomal damage, and cellular proteolysis. In addition, protein carbonylation was prevented by C. moschata in glyoxal-induced carbonyl stress. Conclusion It can be concluded that C. moschata has cytoprotective effects in oxidative stress and carbonyl stress models and this valuable vegetable can be considered as a suitable herbal product for the prevention of toxic subsequent of oxidative stress and carbonyl stress seen in chronic hyperglycemia. © Georg Thieme Verlag KG Stuttgart · New York.

  6. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon.

    Science.gov (United States)

    Ward, Joseph B J; Lajczak, Natalia K; Kelly, Orlaith B; O'Dwyer, Aoife M; Giddam, Ashwini K; Ní Gabhann, Joan; Franco, Placido; Tambuwala, Murtaza M; Jefferies, Caroline A; Keely, Simon; Roda, Aldo; Keely, Stephen J

    2017-06-01

    Ward JB, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, Ní Gabhann J, Franco P, Tambuwala MM, Jefferies CA, Keely S, Roda A, Keely SJ. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol Gastrointest Liver Physiol 312: G550-G558, 2017. First published March 30, 2017; doi:10.1152/ajpgi.00256.2016.-Inflammatory bowel diseases (IBD) comprise a group of common and debilitating chronic intestinal disorders for which currently available therapies are often unsatisfactory. The naturally occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-inflammatory and cytoprotective actions and may therefore be effective in treating IBD. We aimed to investigate regulation of colonic inflammatory responses by UDCA and to determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-inflammatory efficacy of UDCA, a nonmetabolizable analog, 6α-methyl-UDCA (6-MUDCA), and its primary colonic metabolite lithocholic acid (LCA) was assessed in the murine dextran sodium sulfate (DSS) model of mucosal injury. The effects of bile acids on cytokine (TNF-α, IL-6, Il-1β, and IFN-γ) release from cultured colonic epithelial cells and mouse colonic tissue in vivo were investigated. Luminal bile acids were measured by gas chromatography-mass spectrometry. UDCA attenuated release of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing inflammation in the DSS model. In UDCA-treated mice, LCA became the most common colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release and protected against DSS-induced mucosal inflammation than did UDCA. These studies identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic

  7. Exercise enhances wound healing and prevents cancer progression during aging by targeting macrophage polarity.

    Science.gov (United States)

    Goh, Jorming; Ladiges, Warren C

    2014-07-01

    Physical activity, which can include regular and repetitive exercise training, has been shown to decrease the incidence of age-related diseases. Aging is characterized by aberrant immune responses, including impaired wound healing and increased cancer risk. The behavior and polarized phenotype of tissue macrophages are distinct between young and old organisms. The balance of M1 and M2 macrophages is altered in the aged tissue microenvironment, with a tilt towards an M2-dominant macrophage population, as well as its associated signaling pathways. These M2-type responses may result in unresolved inflammation and create an environment that impairs wound healing and is favorable for cancer growth. We discuss the concept that exercise training can improve the regulation of macrophage polarization and normalize the inflammatory process, and thereby exert anticancer effects and enhance wound healing in older humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Matrix metalloproteases as maestros for the dual role of LPS- and IL-10-stimulated macrophages in cancer cell behaviour

    International Nuclear Information System (INIS)

    Cardoso, Ana P.; Pinto, Marta L.; Pinto, Ana T.; Pinto, Marta T.; Monteiro, Cátia; Oliveira, Marta I.; Santos, Susana G.; Relvas, João B.; Seruca, Raquel; Mantovani, Alberto; Mareel, Marc; Barbosa, Mário A.; Oliveira, Maria J.

    2015-01-01

    The interactions established between macrophages and cancer cells are largely dependent on instructions from the tumour microenvironment. Macrophages may differentiate into populations with distinct inflammatory profiles, but knowledge on their role on cancer cell activities is still very scarce. In this work, we investigated the influence of pro-inflammatory (LPS-stimulated) and anti-inflammatory (IL-10-stimulated) macrophages on gastric and colorectal cancer cell invasion, motility/migration, angiogenesis and proteolysis, and the associated molecular mechanisms. Following exposure of gastric and colon cancer cell lines to LPS- and IL-10-stimulated human macrophages, either by indirect contact or conditioned media, we analyzed the effect of the different macrophage populations on cancer cell invasion, migration, motility and phosphorylation status of EGFR and several interacting partners. Cancer-cell induced angiogenesis upon the influence of conditioned media from both macrophage populations was assessed using the chick embryo chorioallantoic membrane assay. MMP activities were evaluated by gelatin zymograhy. Our results show that IL-10-stimulated macrophages are more efficient in promoting in vitro cancer cell invasion and migration. In addition, soluble factors produced by these macrophages enhanced in vivo cancer cell-induced angiogenesis, as opposed to their LPS-stimulated counterparts. We further demonstrate that differences in the ability of these macrophage populations to stimulate invasion or angiogenesis cannot be explained by the EGFR-mediated signalling, since both LPS- and IL-10-stimulated macrophages similarly induce the phosphorylation of cancer cell EGFR, c-Src, Akt, ERK1/2, and p38. Interestingly, both populations exert distinct proteolytic activities, being the IL-10-stimulated macrophages the most efficient in inducing matrix metalloprotease (MMP)-2 and MMP-9 activities. Using a broad-spectrum MMP inhibitor, we demonstrated that proteolysis was

  9. Epigenetic regulation of macrophage function

    NARCIS (Netherlands)

    Hoeksema, M.A.

    2016-01-01

    Atherosclerosis is a lipid-driven chronic inflammatory disorder with a key role for macrophages in all disease stages. Macrophages are involved as scavengers of lipids, regulate inflammation, attract other immune cells and contribute to the resolution of inflammation, fibrosis and plaque stability.

  10. Biology of Bony Fish Macrophages

    Directory of Open Access Journals (Sweden)

    Jordan W. Hodgkinson

    2015-11-01

    Full Text Available Macrophages are found across all vertebrate species, reside in virtually all animal tissues, and play critical roles in host protection and homeostasis. Various mechanisms determine and regulate the highly plastic functional phenotypes of macrophages, including antimicrobial host defenses (pro-inflammatory, M1-type, and resolution and repair functions (anti-inflammatory/regulatory, M2-type. The study of inflammatory macrophages in immune defense of teleosts has garnered much attention, and antimicrobial mechanisms of these cells have been extensively studied in various fish models. Intriguingly, both similarities and differences have been documented for the regulation of lower vertebrate macrophage antimicrobial defenses, as compared to what has been described in mammals. Advances in our understanding of the teleost macrophage M2 phenotypes likewise suggest functional conservation through similar and distinct regulatory strategies, compared to their mammalian counterparts. In this review, we discuss the current understanding of the molecular mechanisms governing teleost macrophage functional heterogeneity, including monopoetic development, classical macrophage inflammatory and antimicrobial responses as well as alternative macrophage polarization towards tissues repair and resolution of inflammation.

  11. Biology of Bony Fish Macrophages.

    Science.gov (United States)

    Hodgkinson, Jordan W; Grayfer, Leon; Belosevic, Miodrag

    2015-11-30

    Macrophages are found across all vertebrate species, reside in virtually all animal tissues, and play critical roles in host protection and homeostasis. Various mechanisms determine and regulate the highly plastic functional phenotypes of macrophages, including antimicrobial host defenses (pro-inflammatory, M1-type), and resolution and repair functions (anti-inflammatory/regulatory, M2-type). The study of inflammatory macrophages in immune defense of teleosts has garnered much attention, and antimicrobial mechanisms of these cells have been extensively studied in various fish models. Intriguingly, both similarities and differences have been documented for the regulation of lower vertebrate macrophage antimicrobial defenses, as compared to what has been described in mammals. Advances in our understanding of the teleost macrophage M2 phenotypes likewise suggest functional conservation through similar and distinct regulatory strategies, compared to their mammalian counterparts. In this review, we discuss the current understanding of the molecular mechanisms governing teleost macrophage functional heterogeneity, including monopoetic development, classical macrophage inflammatory and antimicrobial responses as well as alternative macrophage polarization towards tissues repair and resolution of inflammation.

  12. The Cytoprotective Effects of E-α-(4-Methoxyphenyl-2',3,4,4'-Tetramethoxychalcone (E-α-p-OMe-C6H4-TMC--A Novel and Non-Cytotoxic HO-1 Inducer.

    Directory of Open Access Journals (Sweden)

    Kai B Kaufmann

    Full Text Available Cell protection against different noxious stimuli like oxidative stress or chemical toxins plays a central role in the treatment of many diseases. The inducible heme oxygenase isoform, heme oxygenase-1 (HO-1, is known to protect cells against a variety of harmful conditions including apoptosis. Because a number of medium strong electrophiles from a series of α-X-substituted 2',3,4,4'-tetramethoxychalcones (α-X-TMCs, X = H, F, Cl, Br, I, CN, Me, p-NO2-C6H4, Ph, p-OMe-C6H4, NO2, CF3, COOEt, COOH had proven to activate Nrf2 resulting in HO-1 induction and inhibit NF-κB downstream target genes, their protective effect against staurosporine induced apoptosis and reactive oxygen species (ROS production was investigated. RAW264.7 macrophages treated with 19 different chalcones (15 α-X-TMCs, chalcone, 2'-hydroxychalcone, calythropsin and 2'-hydroxy-3,4,4'-trimethoxychalcone prior to staurosporine treatment were analyzed for apoptosis and ROS production, as well as HO-1 protein expression and enzyme activity. Additionally, Nrf2 and NF-κB activity was assessed. We found that amongst all tested chalcones only E-α-(4-methoxyphenyl-2',3,4,4'-tetramethoxychalcone (E-α-p-OMe-C6H4-TMC demonstrated a distinct, statistically significant antiapoptotic effect in a dose dependent manner, showing no toxic effects, while its double bond isomer Z-α-p-OMe-C6H4-TMC displayed no significant activity. Also, E-α-p-OMe-C6H4-TMC induced HO-1 protein expression and increased HO-1 activity, whilst inhibition of HO-1 by SnPP-IX abolished its antiapoptotic effect. The only weakly electrophilic chalcone E-α-p-OMe-C6H4-TMC reduced the staurosporine triggered formation of ROS, while inducing the translocation of Nrf2 into the nucleus. Furthermore, staurosporine induced NF-κB activity was attenuated following E-α-p-OMe-C6H4-TMC treatment. Overall, E-α-p-OMe-C6H4-TMC demonstrated its effective cytoprotective potential via a non-toxic induction of HO-1 in RAW264

  13. Macrophages under pressure: the role of macrophage polarization in hypertension.

    Science.gov (United States)

    Harwani, Sailesh C

    2018-01-01

    Hypertension is a multifactorial disease involving the nervous, renal, and cardiovascular systems. Macrophages are the most abundant and ubiquitous immune cells, placing them in a unique position to serve as key mediators between these components. The polarization of macrophages confers vast phenotypic and functional plasticity, allowing them to act as proinflammatory, homeostatic, and anti-inflammatory agents. Key differences between the M1 and M2 phenotypes, the 2 subsets at the extremes of this polarization spectrum, place macrophages at a juncture to mediate many mechanisms involved in the pathogenesis of hypertension. Neuronal and non-neuronal regulation of the immune system, that is, the "neuroimmuno" axis, plays an integral role in the polarization of macrophages. In hypertension, the neuroimmuno axis results in synchronization of macrophage mobilization from immune cell reservoirs and their chemotaxis, via increased expression of chemoattractants, to end organs critical in the development of hypertension. This complicated system is largely coordinated by the dichotomous actions of the autonomic neuronal and non-neuronal activation of cholinergic, adrenergic, and neurohormonal receptors on macrophages, leading to their ability to "switch" between phenotypes at sites of active inflammation. Data from experimental models and human studies are in concordance with each other and support a central role for macrophage polarization in the pathogenesis of hypertension. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Erythropoietin protects against rhabdomyolysis-induced acute kidney injury by modulating macrophage polarization

    Science.gov (United States)

    Wang, Shuo; Zhang, Chao; Li, Jiawei; Niyazi, Sidikejiang; Zheng, Long; Xu, Ming; Rong, Ruiming; Yang, Cheng; Zhu, Tongyu

    2017-01-01

    Erythropoietin (EPO) is a well-known hormone that is clinically used for the treatment of anemia. Very recently, an increasing body of evidence showed that EPO could still regulate bioactivities of macrophages. However, the details about the immunomodulatory effect of EPO on macrophages are not fully delineated, particularly in the setting of renal damages. Therefore, in the present study, we determined whether EPO could exert an impact on the dynamics of macrophages in a well-established model of rhabdomyolysis-induced acute kidney injury and explored the potential mechanisms. EPO was found to ameliorate kidney injuries by reducing macrophages recruitment and promoting phenotype switch toward M2 macrophages in vivo. It was also confirmed that EPO could directly suppress pro-inflammatory responses of M1 macrophages and promote M2 marker expression in vitro. Data indicated the possible involvement of Jak2/STAT3/STAT6 pathway in the augmentation of EPO on M2 polarization. These results improved the understanding of the immunoregulatory capacity of EPO on macrophages, which might optimize the therapeutic modalities of EPO. PMID:28383559

  15. Differential effects of malignant mesothelioma cells on THP-1 monocytes and macrophages.

    Science.gov (United States)

    Izzi, Valerio; Chiurchiù, Valerio; D'Aquilio, Fabiola; Palumbo, Camilla; Tresoldi, Ilaria; Modesti, Andrea; Baldini, Patrizia M

    2009-02-01

    Malignant mesothelioma (MM) is a highly fatal tumor arising from inner body membranes, whose extensive growth is facilitated by its week immunogenicity and by its ability to blunt the immune response which should arise from the huge mass of leukocytes typically infiltrating this tumor. It has been reported that the inflammatory infiltrate found in MM tissues is characterized by a high prevalence of macrophages. Thus, in this work we evaluated the ability of human MM cells to modulate the inflammatory phenotype of human THP-1 monocytes and macrophages, a widely used in vitro model of monocyte/macrophage differentiation. Furthermore, we tested the hypothesis that the exposure to MM cells could alter the differentiation of THP-1 monocytes favoring the development of alternatively activated, tumor-supporting macrophages. Our data prove for the first time that MM cells can polarize monocytes towards an altered inflammatory phenotype and macrophages towards an immunosuppressive phenotype. Moreover, we demonstrate that monocytes cocultivated with MM cells 'keep a memory' of their encounter with the tumor which influences their differentiation to macrophages. On the whole, we provide evidence that MM cells exert distinct, cell-specific effects on monocytes and macrophages. The thorough characterization of such effects may be of a crucial importance for the rational design of new immunotherapeutic protocols.

  16. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase:...le Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflam

  17. A novel strategy to activate cytoprotective genes in the injured brain

    International Nuclear Information System (INIS)

    Zhao, Jing; Redell, John B.; Moore, Anthony N.; Dash, Pramod K.

    2011-01-01

    Highlights: → A strategy to increase cytoprotective gene expression in injured tissue is outlined. → A peptide containing a DEETGE motif can increase Nrf2 responsive genes in vivo. → Gene expression in injured brains requires a calpain cleavage site. → This peptide decreases BBB compromise when infused pre- or post-brain injury. → Cleavage sites for disease-specific proteases could be used to treat that condition. -- Abstract: The transcription factor nuclear factor E2-related factor 2 (Nrf2) regulates the expression of multiple cytoprotective genes that have been shown to offer protection in response to a number of insults. The present study describes a novel strategy to increase expression of Nrf2-responsive genes in brain injured mice. Under normal conditions, the adapter protein Kelch-like ECH-associated protein 1 (Keap1) binds to Nrf2 and promotes its proteosomal degradation in the cytoplasm. The amino acid sequence DEETGE, located at amino acid 77-82 of Nrf2, is critical for Nrf2-Keap1 interaction, and synthetic peptides containing this sequence can be used to disrupt the complex in vitro. We observed that intracerebroventricular (i.c.v.) infusion of a peptide containing the DEETGE sequence along with the cell transduction domain of the HIV-TAT protein (TAT-DEETGE) into brain-injured mice did not increase the mRNA levels for Nrf2-driven genes. However, when a calpain cleavage sequence was introduced between the TAT sequence and the DEETGE sequence, the new peptide (TAT-CAL-DEETGE) increased the mRNA levels of these genes. Increased gene expression was not observed when the TAT-CAL-DEETGE peptide was injected into uninjured animals. Furthermore, injection of TAT-CAL-DEETGE peptides before or after brain injury reduced blood-brain barrier compromise, a prominent secondary pathology that negatively influences outcome. The present strategy to increase Nrf2-responsive gene expression can be adapted to treat other insults or diseases based on their

  18. Progranulin shows cytoprotective effects on trophoblast cells in vitro but does not antagonize TNF-α-induced apoptosis.

    Science.gov (United States)

    Stubert, Johannes; Waldmann, Kathrin; Dieterich, Max; Richter, Dagmar-Ulrike; Briese, Volker

    2014-11-01

    The glycoprotein progranulin directly binds to TNF-receptors and thereby can antagonize the inflammatory effects of TNF-α. Here we analyzed the impact of both cytokines on cytotoxicity and viability of trophoblast cells. Isolated villous first trimester human trophoblast cells and the human choriocarcinoma cell line BeWo were treated with recombinant human progranulin and TNF-α. Analyses were performed by LDH- and MTT-assay and measurement of caspase-8-activity. Progranulin treatment showed some cytoprotective effects on isolated trophoblast cells. However, TNF-α-induced apoptosis was not antagonized by addition of progranulin. Effects were similar, but more pronounced in BeWo cells. The cytoprotective activity of progranulin on trophoblast cells in vitro was only weak and of doubtful biologic relevance. It was not able to antagonize TNF-α. Future studies should focus on possible paracrine activities of progranulin.

  19. Cytoprotection of Human Endothelial Cells From Menadione Cytotoxicity by Caffeic Acid Phenethyl Ester: The Role of Heme Oxygenase-1

    Science.gov (United States)

    2008-06-08

    cells (HUVEC) to evaluate potential gene expression involvement. CAPE exhibited dose- dependent cytoprotection of HUVEC. A gene screen with...highly induced (8.25-fold) by CAPE compared to DMSO control. To validate this particular microarray screening result, quantitative real-time RT-PCR was...the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. The Journal of Biological Chemistry 279, 8919–8929. Minami, T

  20. Immunomodulatory role for membrane vesicles released by THP-1 macrophages and respiratory pathogens during macrophage infection.

    Science.gov (United States)

    Volgers, Charlotte; Benedikter, Birke J; Grauls, Gert E; Savelkoul, Paul H M; Stassen, Frank R M

    2017-11-13

    During infection, inflammation is partially driven by the release of mediators which facilitate intercellular communication. Amongst these mediators are small membrane vesicles (MVs) that can be released by both host cells and Gram-negative and -positive bacteria. Bacterial membrane vesicles are known to exert immuno-modulatory and -stimulatory actions. Moreover, it has been proposed that host cell-derived vesicles, released during infection, also have immunostimulatory properties. In this study, we assessed the release and activity of host cell-derived and bacterial MVs during the first hours following infection of THP-1 macrophages with the common respiratory pathogens non-typeable Haemophilus influenzae, Moraxella catarrhalis, Streptococcus pneumoniae, and Pseudomonas aeruginosa. Using a combination of flow cytometry, tunable resistive pulse sensing (TRPS)-based analysis and electron microscopy, we demonstrated that the release of MVs occurs by both host cells and bacteria during infection. MVs released during infection and bacterial culture were found to induce a strong pro-inflammatory response by naive THP-1 macrophages. Yet, these MVs were also found to induce tolerance of host cells to secondary immunogenic stimuli and to enhance bacterial adherence and the number of intracellular bacteria. Bacterial MVs may play a dual role during infection, as they can both trigger and dampen immune responses thereby contributing to immune defence and bacterial survival.

  1. Evaluation of the nutraceutical, antioxidant and cytoprotective properties of ripe pistachio (Pistacia vera L., variety Bronte) hulls.

    Science.gov (United States)

    Barreca, Davide; Laganà, Giuseppina; Leuzzi, Ugo; Smeriglio, Antonella; Trombetta, Domenico; Bellocco, Ersilia

    2016-04-01

    Every year tons of pistachio hulls are separated and eliminated, as waste products, from pistachio seeds. In this study the hulls of ripe pistachios were extracted with two organic solvents (ethanol and methanol) and characterized for phenolic composition, antioxidant power and cytoprotective activity. RP-HPLC-DAD-FLU separation enabled us to identify 20 derivatives, including and by far the most abundant gallic acid, 4-hydroxybenzoic acid, protocatechuic acid, naringin, eriodictyol-7-O-glucoside, isorhamnetin-7-O-glucoside, quercetin-3-O-rutinoside, isorhamnetin-3-O-glucoside and catechin. Methanol extraction gave the highest yields for all classes of compounds and presented a higher scavenging activity in all the antioxidant assays performed. The same was found for cytoprotective activity on lymphocytes, lipid peroxidation and protein degradation. These findings highlight the strong antioxidant and cytoprotective activity of the extract components, and illustrate how a waste product can be used as a source of nutraceuticals to employ in manufacturing industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Novel cytoprotective mechanism of anti-parkinsonian drug deprenyl: PI3K and Nrf2-derived induction of antioxidative proteins

    International Nuclear Information System (INIS)

    Nakaso, Kazuhiro; Nakamura, Chiharu; Sato, Hiromi; Imamura, Keiko; Takeshima, Takao; Nakashima, Kenji

    2006-01-01

    Neuroprotection has received considerable attention as a strategy for the treatment of Parkinson's disease (PD). Deprenyl (Selegiline) is a promising candidate for neuroprotection; however, its cytoprotective mechanism has not been fully clarified. Here, we report a novel cytoprotective mechanism of deprenyl involving PI3K and Nrf2-mediated induction of oxidative stress-related proteins. Deprenyl increased the expression of HO-1, PrxI, TrxI, TrxRxI, γGCS, and p62/A170 in SH-SY5Y cells. Deprenyl also induced the nuclear accumulation of Nrf2 and increased the binding activity of Nrf2 to the enhancer region of human genomic HO-1. The Nrf2-mediated induction of antioxidative molecules was controlled by PI3K. Indeed, furthermore, neurotrophin receptor TrkB was identified as an upstream signal for PI3K-Nrf2 activation by deprenyl. These results suggest that the cytoprotective effect of deprenyl is, in part, dependent on Nrf2-mediated induction of antioxidative proteins, suggesting that activation of the PI3K-Nrf2 system may be a useful therapeutic strategy for PD

  3. Traction forces exerted by epithelial cell sheets

    International Nuclear Information System (INIS)

    Saez, A; Anon, E; Ghibaudo, M; Di Meglio, J-M; Hersen, P; Ladoux, B; Du Roure, O; Silberzan, P; Buguin, A

    2010-01-01

    Whereas the adhesion and migration of individual cells have been well described in terms of physical forces, the mechanics of multicellular assemblies is still poorly understood. Here, we study the behavior of epithelial cells cultured on microfabricated substrates designed to measure cell-to-substrate interactions. These substrates are covered by a dense array of flexible micropillars whose deflection enables us to measure traction forces. They are obtained by lithography and soft replica molding. The pillar deflection is measured by video microscopy and images are analyzed with home-made multiple particle tracking software. First, we have characterized the temporal and spatial distributions of traction forces of cellular assemblies of various sizes. The mechanical force balance within epithelial cell sheets shows that the forces exerted by neighboring cells strongly depend on their relative position in the monolayer: the largest deformations are always localized at the edge of the islands of cells in the active areas of cell protrusions. The average traction stress rapidly decreases from its maximum value at the edge but remains much larger than the inherent noise due to the force resolution of our pillar tracking software, indicating an important mechanical activity inside epithelial cell islands. Moreover, these traction forces vary linearly with the rigidity of the substrate over about two decades, suggesting that cells exert a given amount of deformation rather than a force. Finally, we engineer micropatterned substrates supporting pillars with anisotropic stiffness. On such substrates cellular growth is aligned with respect to the stiffest direction in correlation with the magnitude of the applied traction forces.

  4. Cytoprotective effects of atmospheric-pressure plasmas against hypoxia-induced neuronal injuries

    Science.gov (United States)

    Yan, Xu; Meng, Zhaozhong; Ouyang, Jiting; Qiao, Yajun; Li, Jiaxin; Jia, Mei; Yuan, Fang; (Ken Ostrikov, Kostya

    2018-02-01

    Atmospheric pressure plasma jet (APPJ) has recently been the focus of cytoprotective research due to the physiological roles of ROS and RNS. In the current study, we investigated the effect of APPJ treatment on the hypoxia (1% oxygen) induced cell injuries. SH-SY5Y cells were treated by APPJ for different duration and incubated in normoxic condition (20% oxygen) for 5 h followed by 24 h hypoxia treatment. Cell viability was evaluated by lactate dehydrogenase (LDH) release and further monitored using the electric cell-substrate impedance sensing (ECIS) system after APPJ treatment. Results showed that APPJ could reduce cell injuries after 24 h hypoxia, which was consistent with the ECIS results. Furthermore, extracellular NO and H2O2 production was significantly increased with the APPJ treatment. It was also interesting to find that APPJ treatment reduced SH-SY5Y cells proliferation in the hypoxic microenvironment during the first 20 h of hypoxia. Although more work was still need to clarify whether the cell viability maintenance was related to the cell proliferation during hypoxia, our results provide the first evidence of real-time cell viability changes after APPJ treatment under both normoxic and hypoxic conditions, which could provide evidence for the neuroprotective applications of APPJ.

  5. An Organ System Approach to Explore the Antioxidative, Anti-Inflammatory, and Cytoprotective Actions of Resveratrol

    Science.gov (United States)

    Bath, Sundeep

    2015-01-01

    Resveratrol is a phenolic phytochemical, with a stilbene backbone, derived from edible plants such as grape and peanut. It is a bioactive molecule with physiological effects on multiple organ systems. Its effects range from the neuroprotective to the nephroprotective, including cardiovascular, neuronal, and antineoplastic responses as a part of its broad spectrum of action. In this review, we examine the effects of resveratrol on the following organ systems: the central nervous system, including neurological pathology such as Parkinson's and Alzheimer's disease; the cardiovascular system, including disorders such as atherosclerosis, ischemia-reperfusion injury, and cardiomyocyte hypertrophy; the kidneys, including primary and secondary nephropathies and nephrolithiasis; multiple forms of cancer; and metabolic syndromes including diabetes. We emphasize commonalities in extracellular matrix protein alterations and intracellular signal transduction system induction following resveratrol treatment. We summarize the known anti-inflammatory, antioxidative, and cytoprotective effects of resveratrol across disparate organ systems. Additionally, we analyze the available literature regarding the pharmacokinetics of resveratrol formulations used in these studies. Finally, we critically examine select clinical trials documenting a lack of effect following resveratrol treatment. PMID:26180596

  6. Piper betle Induced Cytoprotective Genes and Proteins via the Nrf2/ARE Pathway in Aging Mice.

    Science.gov (United States)

    Aliahmat, Nor Syahida; Abdul Sani, Nur Fathiah; Wan Hasan, Wan Nuraini; Makpol, Suzana; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum

    2016-01-01

    The objective of this study was to elucidate the underlying antioxidant mechanism of aqueous extract of Piper betle (PB) in aging rats. The nuclear factor erythroid 2-related factor 2 (Nrf2)/ARE pathway involving phase II detoxifying and antioxidant enzymes plays an important role in the antioxidant system by reducing electrophiles and reactive oxygen species through induction of phase II enzymes and proteins. Genes and proteins of phase II detoxifying antioxidant enzymes were analyzed by QuantiGenePlex 2.0 Assay and Western blot analysis. PB significantly induced genes and proteins of phase II and antioxidant enzymes, NAD(P)H quinone oxidoreductase 1, and catalase in aging mice (p < 0.05). The expression of these enzymes were stimulated via translocation of Nrf2 into the nucleus, indicating the involvement of ARE, a cis-acting motif located in the promoter region of nearly all phase II genes. PB was testified for the first time to induce cytoprotective genes through the Nrf2/ARE signaling pathway, thus unraveling the antioxidant mechanism of PB during the aging process. © 2016 S. Karger AG, Basel.

  7. Cytoprotective effect of phloroglucinol on oxidative stress induced cell damage via catalase activation.

    Science.gov (United States)

    Kang, Kyoung Ah; Lee, Kyoung Hwa; Chae, Sungwook; Zhang, Rui; Jung, Myung Sun; Ham, Young Min; Baik, Jong Seok; Lee, Nam Ho; Hyun, Jin Won

    2006-02-15

    We investigated the cytoprotective effect of phloroglucinol, which was isolated from Ecklonia cava (brown alga), against oxidative stress induced cell damage in Chinese hamster lung fibroblast (V79-4) cells. Phloroglucinol was found to scavenge 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydrogen peroxide (H(2)O(2)), hydroxy radical, intracellular reactive oxygen species (ROS), and thus prevented lipid peroxidation. As a result, phloroglucinol reduced H(2)O(2) induced apoptotic cells formation in V79-4 cells. In addition, phloroglucinol inhibited cell damage induced by serum starvation and radiation through scavenging ROS. Phloroglucinol increased the catalase activity and its protein expression. In addition, catalase inhibitor abolished the protective effect of phloroglucinol from H(2)O(2) induced cell damage. Furthermore, phloroglucinol increased phosphorylation of extracellular signal regulated kinase (ERK). Taken together, the results suggest that phloroglucinol protects V79-4 cells against oxidative damage by enhancing the cellular catalase activity and modulating ERK signal pathway. (c) 2005 Wiley-Liss, Inc.

  8. Cytoprotective effect of cytoflavinum in the treatment of thermal injuries of various severity levels

    Directory of Open Access Journals (Sweden)

    Alexey J. Bozhedomov

    2012-12-01

    Full Text Available The research aimed to conduct studying of cytoprotective effect of cytoflavinum in thermal traumas of various severity levels. Material and methods – 169 patients were included into the research with thermal burns and with a favorable outcome and the severity of a thermal injury from 30 to 170 points according Frank index. 28 patients received cytoflavinum in a complex therapy in a standard dosage. Results – During the cytoflavinum usage in patients with the severity of a thermal injury more than 60 points by Frank there had been fixed: the decrease of a systemic inflammatory response syndrome (SIRS, reduction of stab neutrophils content, slower decrease of erythrocytes, smaller activation of thrombopoiesis, decrease of concentration of the vascular endothelial growth factor. In the group of patients with thermal injuries less than 60 points who had been receiving cytoflavinum there had not positive effects been fixed. Conclusion – Cytoflavinum is the most effective when the severity of a thermal trauma is more than 60 points by Frank.

  9. The macrophage-histiocytic system

    Energy Technology Data Exchange (ETDEWEB)

    Cross, A

    1971-04-01

    The macrophage-histiocytic system is primarily concerned with the phagocytosis and degradation either of foreign material that enters the organism or of senile and damaged cells belonging to the organism itself. The system includes various kinds of cells with the common ability to process and eventually degrade and digest the ingested material. Two morphological characteristics of these cells are linked to their phagocytic functions: intra-cytoplasmic vacuoles and lysosomes. Although endothelial and fibroblastic cells can ingest particles, it seems that most cells of the macrophage-histiocytic system belong to the monocyte series. The stem cell of the system is still a matter for discussion and the mature cells have attracted a large and confusing array of names. Most of the experimental work with irradiation has involved macrophages of the peritoneal cavity and lymph nodes. It is likely that the other cells of the macrophage-histiocytic system are affected in the same way by irradiation, but this is not certain.

  10. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    International Nuclear Information System (INIS)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-01-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function. (paper)

  11. Modulating macrophage polarization with divalent cations in nanostructured titanium implant surfaces

    Science.gov (United States)

    Lee, Chung-Ho; Kim, Youn-Jeong; Jang, Je-Hee; Park, Jin-Woo

    2016-02-01

    Nanoscale topographical modification and surface chemistry alteration using bioactive ions are centrally important processes in the current design of the surface of titanium (Ti) bone implants with enhanced bone healing capacity. Macrophages play a central role in the early tissue healing stage and their activity in response to the implant surface is known to affect the subsequent healing outcome. Thus, the positive modulation of macrophage phenotype polarization (i.e. towards the regenerative M2 rather than the inflammatory M1 phenotype) with a modified surface is essential for the osteogenesis funtion of Ti bone implants. However, relatively few advances have been made in terms of modulating the macrophage-centered early healing capacity in the surface design of Ti bone implants for the two important surface properties of nanotopography and and bioactive ion chemistry. We investigated whether surface bioactive ion modification exerts a definite beneficial effect on inducing regenerative M2 macrophage polarization when combined with the surface nanotopography of Ti. Our results indicate that nanoscale topographical modification and surface bioactive ion chemistry can positively modulate the macrophage phenotype in a Ti implant surface. To the best of our knowledge, this is the first demonstration that chemical surface modification using divalent cations (Ca and Sr) dramatically induces the regenerative M2 macrophage phenotype of J774.A1 cells in nanostructured Ti surfaces. In this study, divalent cation chemistry regulated the cell shape of adherent macrophages and markedly up-regulated M2 macrophage phenotype expression when combined with the nanostructured Ti surface. These results provide insight into the surface engineering of future Ti bone implants that are harmonized between the macrophage-governed early wound healing process and subsequent mesenchymal stem cell-centered osteogenesis function.

  12. Differential Cytotoxicity of Acetaminophen in Mouse Macrophage J774.2 and Human Hepatoma HepG2 Cells: Protection by Diallyl Sulfide.

    Directory of Open Access Journals (Sweden)

    Haider Raza

    Full Text Available Non-steroidal anti-inflammatory drugs (NSAIDs, including acetaminophen (APAP, have been reported to induce cytotoxicity in cancer and non-cancerous cells. Overdose of acetaminophen (APAP causes liver injury in humans and animals. Hepatic glutathione (GSH depletion followed by oxidative stress and mitochondrial dysfunction are believed to be the main causes of APAP toxicity. The precise molecular mechanism of APAP toxicity in different cellular systems is, however, not clearly understood. Our previous studies on mouse macrophage J774.2 cells treated with APAP strongly suggest induction of apoptosis associated with mitochondrial dysfunction and oxidative stress. In the present study, using human hepatoma HepG2 cells, we have further demonstrated that macrophages are a more sensitive target for APAP-induced toxicity than HepG2 cells. Using similar dose- and time-point studies, a marked increase in apoptosis and DNA fragmentation were seen in macrophages compared to HepG2 cells. Differential effects of APAP on mitochondrial respiratory functions and oxidative stress were observed in the two cell lines which are presumably dependent on the varying degree of drug metabolism by the different cytochrome P450s and detoxification by glutathione S-transferase enzyme systems. Our results demonstrate a marked increase in the activity and expression of glutathione transferase (GST and multidrug resistance (MDR1 proteins in APAP-treated HepG2 cells compared to macrophages. This may explain the apparent resistance of HepG2 cells to APAP toxicity. However, treatment of these cells with diallyl sulfide (DAS, 200 μM, a known chemopreventive agent from garlic extract, 24 h prior to APAP (10 μmol/ml for 18h exhibited comparable cytoprotective effects in the two cell lines. These results may help in better understanding the mechanism of cytotoxicity caused by APAP and cytoprotection by chemopreventive agents in cancer and non-cancerous cellular systems.

  13. Enzyme-treated asparagus extract promotes expression of heat shock protein and exerts antistress effects.

    Science.gov (United States)

    Ito, Tomohiro; Maeda, Takahiro; Goto, Kazunori; Miura, Takehito; Wakame, Koji; Nishioka, Hiroshi; Sato, Atsuya

    2014-03-01

    A novel enzyme-treated asparagus extract (ETAS) has been developed as a functional material produced from asparagus stem. Studies were conducted to determine the effect of ETAS on heat shock protein 70 (HSP70) expression and alleviation of stress. HeLa cells were treated with ETAS, and HSP70 mRNA and protein levels were measured using a reverse transcription-polymerase chain reaction (RT-PCR) assay and an enzyme-linked immunosorbent assay (ELISA), respectively. ETAS showed significant increases in HSP70 mRNA at more than 0.125 mg/mL and the protein at more than 1.0 mg/mL. The antistress effect was evaluated in a murine sleep-deprivation model. A sleep-deprivation stress load resulted in elevation of blood corticosterone and lipid peroxide concentrations, while supplementation with ETAS at 200 and 1000 mg/kg body weight was associated with significantly reduced levels of both stress markers, which were in the normal range. The HSP70 protein expression level in mice subjected to sleep-deprivation stress and supplemented with ETAS was significantly enhanced in stomach, liver, and kidney, compared to ETAS-untreated mice. A preliminary and small-sized human study was conducted among healthy volunteers consuming up to 150 mg/d of ETAS daily for 7 d. The mRNA expression of HSP70 in peripheral leukocytes was significantly elevated at intakes of 100 or 150 mg/d, compared to their baseline levels. Since HSP70 is known to be a stress-related protein and its induction leads to cytoprotection, the present results suggest that ETAS might exert antistress effects under stressful conditions, resulting from enhancement of HSP70 expression. © 2014 Institute of Food Technologists®

  14. DMPD: The actions of bacterial DNA on murine macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10534106 The actions of bacterial DNA on murine macrophages. Sester DP, Stacey KJ, ... Show The actions of bacterial DNA on murine macrophages. PubmedID 10534106 Title The actions of bacterial DNA on murine macrophage

  15. The definition of exertion-related cardiac events.

    Science.gov (United States)

    Rai, M; Thompson, P D

    2011-02-01

    Vigorous physical activity increases the risk of sudden cardiac death (SCD) and acute myocardial infarction (AMI) but there is no standard definition as to what constitutes an exertion-related cardiac event, specifically the time interval between physical exertion and cardiac event. A systematic review of studies related to exertion-related cardiac events was performed and the time interval between exertion and the event or the symptoms leading to the event was looked for in all the articles selected for inclusion. A total of 12 of 26 articles "suggested" or "defined" exertion-related events as those events whose symptoms started during or within 1 h of exertion. Others used definitions of 0.5 h, 2 h, "during exertion", "during or immediately post exertion" and "during or within several hours after exertion". It is suggested, therefore, that the definition of an exertion-related cardiac event be established as a cardiac event in which symptoms started during or within 1 h of physical exertion.

  16. Hydrogen Sulfide Recruits Macrophage Migration by Integrin β1-Src-FAK/Pyk2-Rac Pathway in Myocardial Infarction

    Science.gov (United States)

    Miao, Lei; Xin, Xiaoming; Xin, Hong; Shen, Xiaoyan; Zhu, Yi-Zhun

    2016-03-01

    Myocardial infarction (MI) triggers an inflammatory reaction, in which macrophages are of key importance for tissue repairing. Infiltration and/or migration of macrophages into the infarct area early after MI is critical for infarct healing, vascularization, and cardiac function. Hydrogen sulfide (H2S) has been demonstrated to possess cardioprotective effects post MI and during the progress of cardiac remodeling. However, the specific molecular and cellular mechanisms involved in macrophage recruitment by H2S remain to be identified. In this study, the NaHS (exogenous sources of H2S) treatment exerted an increased infiltration of macrophages into the infarcted myocardium at early stage of MI cardiac tissues in both wild type (WT) and cystathionine-γ-lyase-knockout (CSE-KO) mice. And NaHS accelerated the migration of macrophage cells in vitro. While, the inhibitors not only significantly diminished the migratory ability in response to NaHS, but also blocked the activation of phospho-Src, -Pyk2, -FAK397, and -FAK925. Furthermore, NaHS induced the internalization of integrin β1 on macrophage surface, but, integrin β1 silencing inhibited macrophage migration and Src signaling activation. These results indicate that H2S may have the potential as an anti-infarct of MI by governing macrophage migration, which was achieved by accelerating internalization of integrin β1 and activating downstream Src-FAK/Pyk2-Rac pathway.

  17. Adrenomedullin Regulates IL-1β Gene Expression in F4/80+ Macrophages during Synovial Inflammation

    Science.gov (United States)

    Takano, Shotaro; Miyagi, Masayuki; Inoue, Gen; Aikawa, Jun; Iwabuchi, Kazuya; Takaso, Masashi

    2017-01-01

    Adrenomedullin (AM) plays an important role in the regulation of inflammatory processes; however, the role and expression of AM in synovial inflammation have not been determined. To investigate the expression and role of AM in inflamed synovial tissue (ST), the gene expression profiles of AM in the ST, including synovial macrophages and fibroblasts, of a murine patellar surgical dislocation model were characterized. In addition, the effects of interleukin- (IL-) 1β and AM in cultured synovial cells were also examined. CD11c+ macrophages were found to be elevated in ST of the surgically dislocated patella. Higher gene expression of CD11c, IL-1β, AM, receptor activity-modifying proteins 2 (RAMP2), and 3 (RAMP3) was also observed in ST obtained from the dislocated side. AM expression was also significantly increased in synovial fibroblasts and macrophages in response to IL-1β treatment. Synovial macrophages also highly expressed RAMP3 compared to fibroblasts and this expression was further stimulated by exogenously added IL-1β. Further, the treatment of the F4/80-positive cell fraction obtained from ST with AM inhibited IL-1β expression. Taken together, these findings demonstrated that AM was produced by synovial fibroblasts and macrophages in inflamed ST and that increased levels of AM may exert anti-inflammatory effects on synovial macrophages. PMID:28299347

  18. Evaluation of antioxidant and cytoprotective activities of Arnica montana L. and Artemisia absinthium L. ethanolic extracts

    Directory of Open Access Journals (Sweden)

    Craciunescu Oana

    2012-09-01

    Full Text Available Abstract Background Arnica montana L. and Artemisia absinthium L. (Asteraceae are medicinal plants native to temperate regions of Europe, including Romania, traditionally used for treatment of skin wounds, bruises and contusions. In the present study, A. montana and A. absinthium ethanolic extracts were evaluated for their chemical composition, antioxidant activity and protective effect against H2O2-induced oxidative stress in a mouse fibroblast-like NCTC cell line. Results A. absinthium extract showed a higher antioxidant capacity than A. montana extract as Trolox equivalent antioxidant capacity, Oxygen radical absorbance capacity and 2,2-diphenyl-1-picrylhydrazyl free radical-scavenging activity, in correlation with its flavonoids and phenolic acids content. Both plant extracts had significant effects on the growth of NCTC cells in the range of 10–100 mg/L A. montana and 10–500 mg/L A. absinthium. They also protected fibroblast cells against hydrogen peroxide-induced oxidative damage, at the same doses. The best protection was observed in cell pre-treatment with 10 mg/L A. montana and 10–300 mg/L A. absinthium, respectively, as determined by Neutral red and lactate dehydrogenase assays. In addition, cell pre-treatment with plant extracts, at these concentrations, prevented morphological changes induced by hydrogen peroxide. Flow-cytometry analysis showed that pre-treatment with A. montana and A. absinthium extracts restored the proportion of cells in each phase of the cell cycle. Conclusions A. montana and A. absinthium extracts, rich in flavonoids and phenolic acids, showed a good antioxidant activity and cytoprotective effect against oxidative damage in fibroblast-like cells. These results provide scientific support for the traditional use of A. montana and A. absinthium in treatment of skin disorders.

  19. Orthodontic forces induce the cytoprotective enzyme heme oxygenase-1 in rats

    Directory of Open Access Journals (Sweden)

    Christiaan M. Suttorp

    2016-07-01

    Full Text Available Orthodontic forces disturb the microenvironment of the periodontal ligament (PDL, and induce craniofacial bone remodeling which is necessary for tooth movement. Unfortunately, orthodontic tooth movement is often hampered by ischemic injury and cell death within the PDL (hyalinization and root resorption. Large inter-individual differences in hyalinization and root resorption have been observed, and may be explained by differential protection against hyalization. Heme oxygenase-1 (HO-1 forms an important protective mechanism by breaking down heme into the strong anti-oxidants biliverdin/bilirubin and the signaling molecule carbon monoxide. These versatile HO-products protect against ischemic and inflammatory injury. We postulate that orthodontic forces induce HO-1 expression in the PDL during experimental tooth movement. Twenty-five 6-week-old male Wistar rats were used in this study. The upper three molars at one side were moved mesially using a Ni-Ti 10 cN coil spring. The contralateral side served as control. After 6, 12, 72, 96 and 120 hrs rats were killed. On parasagittal sections immunohistochemical staining was performed for analysis of HO-1 expression and quantification of multinuclear osteoclasts. Orthodontic force induced a significant time-dependent HO-1 expression in the mononuclear cell population within the PDL at both the apposition- and resorption side. Shortly after appliance placement HO-1 expression was highly induced in PDL cells but dropped to control levels within 72 hours. Some osteoclasts were HO-1 positive but this induction was shown to be independent of time- and mechanical stress. It is tempting to speculate that differential induction of cytoprotective enzymes as HO-1 in the PDL determines the level of hyalinization and, subsequently, fast and slow tooth movers during orthodontic treatment.

  20. Cytoprotection mediated antiulcer effect of aqueous fruit pulp extract of Cucumis sativus

    Directory of Open Access Journals (Sweden)

    Swapnil Sharma

    2012-05-01

    Full Text Available Objective: The study was aimed to evaluate the gastroprotective potential of Cucumis Sativus fruit pulp aqueous extract (CSE in gastric ulcerated rats. Methods: Cytoprotective potential was evaluated via oral administration of CSE at the doses of 250, 500 &1000 mg/kg three times in a day, for 5 days before the induction of ulcers in indomethacin and pyloric ligation induced ulcer model. Further, its effects were studied on various parameters volume of gastric juice, pH, free and total acidity, protein concentration, acid output in gastric juice, lipid peroxide (LPO, and activities of enzymic antioxidants-super oxide dismutase (SOD and catalase (CAT in gastric mucosa. The levels of hexose, hexosamine, sialic acid, fucose in gastric mucosa and gastric juice were also examined. The extent of healing was also determined with post administration of CSE at the same doses & dosage schedule in acetic acid induced model. Results: In indomethacin and pyloric ligation model, the pretreatment with CSE and ranitidine significantly reduced the lesion index, in comparison with control treated group (P< 0.05. The percentages of protection of ulcers were 25.8, 65.7, 80.6 & 93.8 for the treated groups of CSE and ranitidine whereas in pyloric ligation it was 31.26, 55.18, 93.26 & 95.51 respectively. In pyloric ligation model, CSE resulted in significant increase in pH, enzymic antioxidants i.e. SOD & CAT, with a significant decrease in volume of gastric juice, free and total acidity, protein & carbohydrate concentration and LPO levels. In acetic acid inducer model, treatment with Cucumis sativus (CSE caused significant reduction in lesion index in when compared to control treated group, providing evidence for ulcer healing capacity of it. The presence of the flavonoids and polyphenols may be responsible for the gastroprotective effect of CSE. Conclusions: The aqueous fruit pulp extract of Cucumis sativus (CSE has a gastroprotective property.

  1. BAG3 Overexpression and Cytoprotective Autophagy Mediate Apoptosis Resistance in Chemoresistant Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Chandan Kanta Das

    2018-03-01

    Full Text Available Target-specific treatment modalities are currently not available for triple-negative breast cancer (TNBC, and acquired chemotherapy resistance is a primary obstacle for the treatment of these tumors. Here we employed derivatives of BT-549 and MDA-MB-468 TNBC cell lines that were adapted to grow in the presence of either 5-Fluorouracil, Doxorubicin or Docetaxel in an aim to identify molecular pathways involved in the adaptation to drug-induced cell killing. All six drug-adapted BT-549 and MDA-MB-468 cell lines displayed cross resistance to chemotherapy and decreased apoptosis sensitivity. Expression of the anti-apoptotic co-chaperone BAG3 was notably enhanced in two thirds (4/6 of the six resistant lines simultaneously with higher expression of HSP70 in comparison to parental controls. Doxorubicin-resistant BT-549 (BT-549rDOX20 and 5-Fluorouracil-resistant MDA-MB-468 (MDA-MB-468r5-FU2000 cells were chosen for further analysis with the autophagy inhibitor Bafilomycin A1 and lentiviral depletion of ATG5, indicating that enhanced cytoprotective autophagy partially contributes to increased drug resistance and cell survival. Stable lentiviral BAG3 depletion was associated with a robust down-regulation of Mcl-1, Bcl-2 and Bcl-xL, restoration of drug-induced apoptosis and reduced cell adhesion in these cells, and these death-sensitizing effects could be mimicked with the BAG3/Hsp70 interaction inhibitor YM-1 and by KRIBB11, a selective transcriptional inhibitor of HSF-1. Furthermore, BAG3 depletion was able to revert the EMT-like transcriptional changes observed in BT-549rDOX20 and MDA-MB-468r5-FU2000 cells. In summary, genetic and pharmacological interference with BAG3 is capable to resensitize TNBC cells to treatment, underscoring its relevance for cell death resistance and as a target to overcome therapy resistance of breast cancer.

  2. Occupational Styrene Exposure Induces Stress-Responsive Genes Involved in Cytoprotective and Cytotoxic Activities

    Science.gov (United States)

    Strafella, Elisabetta; Bracci, Massimo; Staffolani, Sara; Manzella, Nicola; Giantomasi, Daniele; Valentino, Matteo; Amati, Monica; Tomasetti, Marco; Santarelli, Lory

    2013-01-01

    Objective The aim of this study was to evaluate the expression of a panel of genes involved in toxicology in response to styrene exposure at levels below the occupational standard setting. Methods Workers in a fiber glass boat industry were evaluated for a panel of stress- and toxicity-related genes and associated with biochemical parameters related to hepatic injury. Urinary styrene metabolites (MA+PGA) of subjects and environmental sampling data collected for air at workplace were used to estimate styrene exposure. Results Expression array analysis revealed massive upregulation of genes encoding stress-responsive proteins (HSPA1L, EGR1, IL-6, IL-1β, TNSF10 and TNFα) in the styrene-exposed group; the levels of cytokines released were further confirmed in serum. The exposed workers were then stratified by styrene exposure levels. EGR1 gene upregulation paralleled the expression and transcriptional protein levels of IL-6, TNSF10 and TNFα in styrene exposed workers, even at low level. The activation of the EGR1 pathway observed at low-styrene exposure was associated with a slight increase of hepatic markers found in highly exposed subjects, even though they were within normal range. The ALT and AST levels were not affected by alcohol consumption, and positively correlated with urinary styrene metabolites as evaluated by multiple regression analysis. Conclusion The pro-inflammatory cytokines IL-6 and TNFα are the primary mediators of processes involved in the hepatic injury response and regeneration. Here, we show that styrene induced stress responsive genes involved in cytoprotection and cytotoxicity at low-exposure, that proceed to a mild subclinical hepatic toxicity at high-styrene exposure. PMID:24086524

  3. An Odyssey of cytoprotective bisbenzimidazole as therapeutic agent for human well being

    International Nuclear Information System (INIS)

    Tandon, Vibha

    2014-01-01

    Radiotherapy is utilized by 80% patients as a part of their treatment to most prevalent disease like cancer. Ionizing radiation causes radiolysis of water, generation of ROS and has deleterious effect penetrating the living tissues resulting in the-transfer of radiation energy to the biological materials. Radioprotectors protect the normal cells from the unwanted radiation damage. Since the beginning of the nuclear era, despite extensive research on the development of radioprotectors from natural and synthetic compounds, success has been limited. The only clinically acceptable radioprotector, amifostine, has inherent dose-limiting toxicities and has therefore stimulated extensive search for nontoxic, effective, and alternative radioprotectors. We have developed a cytoprotective radioprotector DMA, having a bisbenzimidazole nucleus. Relative quantitation of gene expression of the identified proteins and their interacting partners led to the identification of NFkB inducing kinase (NIK) as one of the plausible target. Subsequently, over expression and knock down of NIK suggested that DMA affects NFkB inducing kinase mediated phosphorylation of IKKα and IKKβ both alone and in the presence of ionizing radiation. We observed 51% radioprotection in untreated cells that attenuated to 17% in siRNA NIK treated U87 cells at 24h. Further studies concluded that the Coactivation of AKT/NFkB triggered by DMA, is a reason behind protection against ionizing radiation-induced apoptosis of normal cells, and this was consistent with the alteration of DNA-PKcs. Pharmacokinetic (PK) evaluations and bioavailability measurements proved superior in vivo efficacy, higher AUCs, greater residence time of DMA. (author)

  4. Lemongrass and citral effect on cytokines production by murine macrophages.

    Science.gov (United States)

    Bachiega, Tatiana Fernanda; Sforcin, José Maurício

    2011-09-01

    Cymbopogon citratus (DC) Stapf (Poaceae-Gramineae), an herb commonly known as lemongrass (LG), is an important source of ethnomedicines as well as citral, the major constituent of Cymbopogon citratus, used in perfumery, cosmetic and pharmaceutical industries for controlling pathogens. Thus, the goal of this work was to analyze the effect of LG and citral on cytokines production (IL-1β, IL-6 and IL-10) in vitro, as well as before or after LPS incubation. Peritoneal macrophages from BALB/c mice were treated with LG or citral in different concentrations for 24h. The concentrations that inhibited cytokines production were tested before or after macrophages challenge with LPS, in order to evaluate a possible anti-inflammatory action. Supernatants of cell cultures were used for cytokines determination by ELISA. As to IL-1β, only citral inhibited its release, exerting an efficient action before LPS challenge. LG and citral inhibited IL-6 release. Cymbopogon citratus showed inhibitory effects only after LPS challenge, whereas citral prevented efficiently LPS effects before and after LPS addition. Citral inhibited IL-10 production and although LG did not inhibit its production, the concentration of 100 μg/well was tested in the LPS-challenge protocol, because it inhibited IL-6 production. LG inhibited LPS action after macrophages incubation with LPS, while citral counteracted LPS action when added before or after LPS incubation. LG exerted an anti-inflammatory action and citral may be involved in its inhibitory effects on cytokines production. We suggest that a possible mechanism involved in such results could be the inhibition of the transcription factor NF-κB. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  5. Imaging of macrophage-related lung diseases

    International Nuclear Information System (INIS)

    Marten, Katharina; Hansell, David M.

    2005-01-01

    Macrophage-related pulmonary diseases are a heterogeneous group of disorders characterized by macrophage accumulation, activation or dysfunction. These conditions include smoking-related interstitial lung diseases, metabolic disorders such as Niemann-Pick or Gaucher disease, and rare primary lung tumors. High-resolution computed tomography abnormalities include pulmonary ground-glass opacification secondary to infiltration by macrophages, centrilobular nodules or interlobular septal thickening reflecting peribronchiolar or septal macrophage accumulation, respectively, emphysema caused by macrophage dysfunction, and honeycombing following macrophage-related lung matrix remodeling. (orig.)

  6. Gasdermin D Exerts Anti-inflammatory Effects by Promoting Neutrophil Death

    Directory of Open Access Journals (Sweden)

    Hiroto Kambara

    2018-03-01

    Full Text Available Summary: Gasdermin D (GSDMD is considered a proinflammatory factor that mediates pyroptosis in macrophages to protect hosts from intracellular bacteria. Here, we reveal that GSDMD deficiency paradoxically augmented host responses to extracellular Escherichia coli, mainly by delaying neutrophil death, which established GSDMD as a negative regulator of innate immunity. In contrast to its activation in macrophages, in which activated inflammatory caspases cleave GSDMD to produce an N-terminal fragment (GSDMD-cNT to trigger pyroptosis, GSDMD cleavage and activation in neutrophils was caspase independent. It was mediated by a neutrophil-specific serine protease, neutrophil elastase (ELANE, released from cytoplasmic granules into the cytosol in aging neutrophils. ELANE-mediated GSDMD cleavage was upstream of the caspase cleavage site and produced a fully active ELANE-derived NT fragment (GSDMD-eNT that induced lytic cell death as efficiently as GSDMD-cNT. Thus, GSDMD is pleiotropic, exerting both pro- and anti-inflammatory effects that make it a potential target for antibacterial and anti-inflammatory therapies. : Kambara et al. find that GSDMD deficiency augments host responses to extracellular Escherichia coli, mainly by delaying neutrophil death, establishing GSDMD as a negative regulator of innate immunity. GSDMD cleavage and activation in neutrophils is mediated by ELANE, released from cytoplasmic granules into the cytosol in aging neutrophils. Keywords: GSDMD, neutrophil death, neutrophil elastase, innate immunity, host defense

  7. Effects of Polysaccharides from Different Species of Dendrobium (Shihu on Macrophage Function

    Directory of Open Access Journals (Sweden)

    Lan-Zhen Meng

    2013-05-01

    Full Text Available Dendrobium spp. are precious medicinal plants, used in China for thousands of years as health foods and nutrients. Polysaccharides are the main effective ingredients in Dendrobium plants. In this study, the chemical characteristics and the effects of crude polysaccharides (CPs from five species of Dendrobium on macrophage function were investigated and compared in vitro for the first time. Chemical characteristic studies showed that CPs from different species of Dendrobium were diverse, displaying widely varied Mw distributions and molar ratios of monosaccharides. Their effects on macrophage functions, such as promoting phagocytosis, release of NO and cytokines IL-1α, IL-6, IL-10 and TNF-α, were also different. Moreover, CPs from D. officinale, especially collected from Yunnan Province, exerted the strongest immunomodulatory activities and could be explored as a novel potential functional food. The diverse chemical characteristics of CPs from different species of Dendrobium might contribute to their varied effects on macrophage functions, which should be further investigated.

  8. Effects of polysaccharides from different species of Dendrobium (Shihu) on macrophage function.

    Science.gov (United States)

    Meng, Lan-Zhen; Lv, Guang-Ping; Hu, De-Jun; Cheong, Kit-Leong; Xie, Jing; Zhao, Jing; Li, Shao-Ping

    2013-05-17

    Dendrobium spp. are precious medicinal plants, used in China for thousands of years as health foods and nutrients. Polysaccharides are the main effective ingredients in Dendrobium plants. In this study, the chemical characteristics and the effects of crude polysaccharides (CPs) from five species of Dendrobium on macrophage function were investigated and compared in vitro for the first time. Chemical characteristic studies showed that CPs from different species of Dendrobium were diverse, displaying widely varied Mw distributions and molar ratios of monosaccharides. Their effects on macrophage functions, such as promoting phagocytosis, release of NO and cytokines IL-1α, IL-6, IL-10 and TNF-α, were also different. Moreover, CPs from D. officinale, especially collected from Yunnan Province, exerted the strongest immunomodulatory activities and could be explored as a novel potential functional food. The diverse chemical characteristics of CPs from different species of Dendrobium might contribute to their varied effects on macrophage functions, which should be further investigated.

  9. Expression and cytoprotective activity of the small GTPase RhoB induced by the Escherichia coli cytotoxic necrotizing factor 1

    DEFF Research Database (Denmark)

    Huelsenbeck, Stefanie C; Roggenkamp, Dennis; May, Martin

    2013-01-01

    B expression, based on the inactivation of Rho/Ras proteins. In this study, we report on a long lasting expression of RhoB in cultured cells upon activation of Rho proteins by the cytotoxic necrotizing factor 1 (CNF1) from Escherichia coli. The observations of this study highlight a new pathway involving Rac1...... without any signs of cell death. In conclusion, the cytoprotective RhoB response is not only evoked by bacterial protein toxins inactivating Rho/Ras proteins but also by the Rac1-activating toxin CNF1....

  10. IAP survivin regulates atherosclerotic macrophage survival

    NARCIS (Netherlands)

    Blanc-Brude, Olivier P.; Teissier, Elisabeth; Castier, Yves; Lesèche, Guy; Bijnens, Ann-Pascal; Daemen, Mat; Staels, Bart; Mallat, Ziad; Tedgui, Alain

    2007-01-01

    Inflammatory macrophage apoptosis is critical to atherosclerotic plaque formation, but its mechanisms remain enigmatic. We hypothesized that inhibitor of apoptosis protein (IAP) survivin regulates macrophage death in atherosclerosis. Western blot analysis revealed discrete survivin expression in

  11. Role of Osteal Macrophages in Bone Metabolism

    Directory of Open Access Journals (Sweden)

    Sun Wook Cho

    2015-03-01

    Full Text Available Macrophages have been shown to have pleiotropic functions in various pathophysiologies, especially in terms of anti-inflammatory and regenerative activity. Recently, the novel functions of bone marrow resident macrophages (called osteal macrophages were intensively studied in bone development, remodeling and tissue repair processes. This review discusses the current evidence for a role of osteal macrophages in bone modeling, remodeling, and fracture healing processes.

  12. Heme oxygenase-1 induction alters chemokine regulation and ameliorates human immunodeficiency virus-type-1 infection in lipopolysaccharide-stimulated macrophages

    International Nuclear Information System (INIS)

    Zhou, Zhao-Hua; Kumari, Namita; Nekhai, Sergei; Clouse, Kathleen A.; Wahl, Larry M.; Yamada, Kenneth M.; Dhawan, Subhash

    2013-01-01

    Highlights: •Lipopolysaccharide stimulation of heme oxygenase-1 (HO-1) ameliorated HIV-1 infection of primary human macrophages. •The partial protection by HO-1 against HIV infection was associated with induction of chemokines such as MIP1α and MIP1β. •This mechanism explains lipopolysaccharide-stimulated HO-1-mediated inhibition of HIV-1 infection of macrophages. -- Abstract: We have elucidated a putative mechanism for the host resistance against HIV-1 infection of primary human monocyte-derived macrophages (MDM) stimulated with lipopolysaccharide (LPS). We show that LPS-activated MDM both inhibited HIV-1 entry into the cells and were refractory to post-entry productive viral replication. LPS-treated cells were virtually negative for mature virions as revealed by transmission electron microscopy. LPS activation of MDM markedly enhanced the expression of heme oxygenase-1 (HO-1), a potent inducible cytoprotective enzyme. Increased HO-1 expression was accompanied by elevated production of macrophage inflammatory chemokines (MIP1α and MIP1β) by LPS-activated MDM, significantly decreased surface chemokine receptor-5 (CCR-5) expression, and substantially reduced virus replication. Treatment of cells with HO-1 inhibitor SnPP IX (tin protoporphyrin IX) attenuated the LPS-mediated responses, HIV-1 replication and secretion of MIP1α, MIP1β, and LD78β chemokines with little change in surface CCR-5 expression. These results identify a novel role for HO-1 in the modulation of host immune response against HIV infection of MDM

  13. BAG3 Overexpression and Cytoprotective Autophagy Mediate Apoptosis Resistance in Chemoresistant Breast Cancer Cells.

    Science.gov (United States)

    Das, Chandan Kanta; Linder, Benedikt; Bonn, Florian; Rothweiler, Florian; Dikic, Ivan; Michaelis, Martin; Cinatl, Jindrich; Mandal, Mahitosh; Kögel, Donat

    2018-03-01

    Target-specific treatment modalities are currently not available for triple-negative breast cancer (TNBC), and acquired chemotherapy resistance is a primary obstacle for the treatment of these tumors. Here we employed derivatives of BT-549 and MDA-MB-468 TNBC cell lines that were adapted to grow in the presence of either 5-Fluorouracil, Doxorubicin or Docetaxel in an aim to identify molecular pathways involved in the adaptation to drug-induced cell killing. All six drug-adapted BT-549 and MDA-MB-468 cell lines displayed cross resistance to chemotherapy and decreased apoptosis sensitivity. Expression of the anti-apoptotic co-chaperone BAG3 was notably enhanced in two thirds (4/6) of the six resistant lines simultaneously with higher expression of HSP70 in comparison to parental controls. Doxorubicin-resistant BT-549 (BT-549 r DOX 20 ) and 5-Fluorouracil-resistant MDA-MB-468 (MDA-MB-468 r 5-FU 2000 ) cells were chosen for further analysis with the autophagy inhibitor Bafilomycin A1 and lentiviral depletion of ATG5, indicating that enhanced cytoprotective autophagy partially contributes to increased drug resistance and cell survival. Stable lentiviral BAG3 depletion was associated with a robust down-regulation of Mcl-1, Bcl-2 and Bcl-xL, restoration of drug-induced apoptosis and reduced cell adhesion in these cells, and these death-sensitizing effects could be mimicked with the BAG3/Hsp70 interaction inhibitor YM-1 and by KRIBB11, a selective transcriptional inhibitor of HSF-1. Furthermore, BAG3 depletion was able to revert the EMT-like transcriptional changes observed in BT-549 r DOX 20 and MDA-MB-468 r 5-FU 2000 cells. In summary, genetic and pharmacological interference with BAG3 is capable to resensitize TNBC cells to treatment, underscoring its relevance for cell death resistance and as a target to overcome therapy resistance of breast cancer. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Macrophage triggering by aggregated immunoglobulins. II. Comparison of IgE and IgG aggregates or immune complexes.

    Science.gov (United States)

    Pestel, J; Dessaint, J P; Joseph, M; Bazin, H; Capron, A

    1984-01-01

    Macrophages incubated with complexed or aggregated IgE released beta-glucuronidase (beta-G) within 30 min. In contrast in the presence of aggregated or complexed IgG, macrophages liberated equivalent amount of beta-G only after 6 h incubation. In addition the rapid macrophage stimulation induced by aggregated IgE was also followed by a faster 3H-glucosamine incorporation when compared to the delayed activation caused by aggregated IgG. However, macrophages stimulated either by IgG or by IgE oligomers produced the same percentage of plasminogen activator at 24 h. In contrast, while the interaction between macrophages and aggregated IgE was only followed by a peak of cyclic GMP and a beta-G release during the first 30 min of incubation, the interaction between macrophages and IgG oligomers was accompanied by a simultaneous increase of cyclic GMP and AMP nucleotides and by an absence of beta-G exocytosis. Moreover, the beta-G release induced by aggregated IgE was increased when macrophages were preincubated with aggregated IgG. This additive effect was not observed in the reverse situation. Finally macrophages activated by IgG oligomers were demonstrated to exert a cytotoxic effect on tumour cells and to kill schistosomula in the presence of a low level of complement. Taken together these results underline the peculiar ability of aggregated or complexed IgE to trigger rapidly the macrophage activation compared to aggregated IgG and can explain the important role of complexed IgE in some macrophage dependent cytotoxicity mechanisms (i.e. in parasitic diseases). PMID:6088135

  15. Phagocytosis-induced 51Cr release from activated macrophages and blood mononuclears. Effect of colchicine and antioxidants

    International Nuclear Information System (INIS)

    McGee, M.P.; Hale, A.H.

    1981-01-01

    The chromium-release test was adapted to the measurement of the cellular injury induced when activated macrophages phagocytose particulates. Macrophages obtained from rabbit lungs undergoing BCG-induced chronic inflammation released more chromium when incubated in the presence of phagocytosable particles than when incubated under resting conditions. Blood mononuclear cells, 40-60% monocytes, procured from the same BCG-injected animals, were less susceptible to phagocytosis-induced injury than the macrophages obtained from the lungs. The amount of chromium released by the activated macrophages was proportional to the number of particles present during incubation. In the presence of catalase, the amounts of chromium released by phagocytosing and resting macrophages were similar; in the presence of superoxide dismutase and cytochrome c, the amount of chromium released by phagocytosing macrophages was 13-35% less than the amount of chromium released by macrophages incubated without the antioxidants. In addition, colchicine, an inhibitor of degranulation also exerted partial inhibition of the chromium release. These results suggest that oxygen radicals and lysosomal contents contribute to the cellular injury that results from phagocytosis

  16. Exertional Rhabdomyolysis: What Is It and Why Should We Care?

    Science.gov (United States)

    Thomas, David Q.; Carlson, Kelli A.; Marzano, Amy; Garrahy, Deborah

    2012-01-01

    Exertional rhabdomyolysis gained increased attention recently when 13 football players from the University of Iowa developed this condition after an especially demanding practice session and were hospitalized. Exertional rhabdomyolysis may lead to severe kidney stress, kidney failure, and even sudden death. Anyone who does physical exercise at a…

  17. 20 CFR 404.1567 - Physical exertion requirements.

    Science.gov (United States)

    2010-04-01

    ... activities. If someone can do light work, we determine that he or she can also do sedentary work, unless... Physical exertion requirements. To determine the physical exertion requirements of work in the national... making disability determinations under this subpart, we use the following definitions: (a) Sedentary work...

  18. 20 CFR 416.967 - Physical exertion requirements.

    Science.gov (United States)

    2010-04-01

    ... activities. If someone can do light work, we determine that he or she can also do sedentary work, unless... Physical exertion requirements. To determine the physical exertion requirments of work in the national... making disability determinations under this subpart, we use the following definitions: (a) Sedentary work...

  19. HIV-1 and the macrophage

    NARCIS (Netherlands)

    Bol, Sebastiaan M.; Cobos-Jimenez, Viviana; Kootstra, Neeltje A.; van 't Wout, Angelique B.

    2011-01-01

    Macrophages and CD4(+) T cells are natural target cells for HIV-1, and both cell types contribute to the establishment of the viral reservoir that is responsible for continuous residual virus replication during antiretroviral therapy and viral load rebound upon treatment interruption. Scientific

  20. Chemical sporulation and germination: cytoprotective nanocoating of individual mammalian cells with a degradable tannic acid-FeIII complex

    Science.gov (United States)

    Lee, Juno; Cho, Hyeoncheol; Choi, Jinsu; Kim, Doyeon; Hong, Daewha; Park, Ji Hun; Yang, Sung Ho; Choi, Insung S.

    2015-11-01

    Individual mammalian cells were coated with cytoprotective and degradable films by cytocompatible processes maintaining the cell viability. Three types of mammalian cells (HeLa, NIH 3T3, and Jurkat cells) were coated with a metal-organic complex of tannic acid (TA) and ferric ion, and the TA-FeIII nanocoat effectively protected the coated mammalian cells against UV-C irradiation and a toxic compound. More importantly, the cell proliferation was controlled by programmed formation and degradation of the TA-FeIII nanocoat, mimicking the sporulation and germination processes found in nature.Individual mammalian cells were coated with cytoprotective and degradable films by cytocompatible processes maintaining the cell viability. Three types of mammalian cells (HeLa, NIH 3T3, and Jurkat cells) were coated with a metal-organic complex of tannic acid (TA) and ferric ion, and the TA-FeIII nanocoat effectively protected the coated mammalian cells against UV-C irradiation and a toxic compound. More importantly, the cell proliferation was controlled by programmed formation and degradation of the TA-FeIII nanocoat, mimicking the sporulation and germination processes found in nature. Electronic supplementary information (ESI) available: Experimental details, LSCM images, and SEM and TEM images. See DOI: 10.1039/c5nr05573c

  1. Traditional Herbal Medicine, Rikkunshito, Induces HSP60 and Enhances Cytoprotection of Small Intestinal Mucosal Cells as a Nontoxic Chaperone Inducer

    Directory of Open Access Journals (Sweden)

    Kumiko Tamaki

    2012-01-01

    Full Text Available Increasing incidence of small intestinal ulcers associated with nonsteroidal anti-inflammatory drugs (NSAIDs has become a topic with recent advances of endoscopic technology. However, the pathogenesis and therapy are not fully understood. The aim of this study is to examine the effect of Rikkunshito (TJ-43, a traditional herbal medicine, on expression of HSP60 and cytoprotective ability in small intestinal cell line (IEC-6. Effect of TJ-43 on HSP60 expression in IEC-6 cells was evaluated by immunoblot analysis. The effect of TJ-43 on cytoprotective abilities of IEC-6 cells against hydrogen peroxide or indomethacin was studied by MTT assay, LDH-release assay, caspase-8 activity, and TUNEL. HSP60 was significantly induced by TJ-43. Cell necrosis and apoptosis were significantly suppressed in IEC-6 cells pretreated by TJ-43 with overexpression of HSP60. Our results suggested that HSP60 induced by TJ-43 might play an important role in protecting small intestinal epithelial cells from apoptosis and necrosis in vitro.

  2. Erythrocytes and cell line-based assays to evaluate the cytoprotective activity of antioxidant components obtained from natural sources.

    Science.gov (United States)

    Botta, Albert; Martínez, Verónica; Mitjans, Montserrat; Balboa, Elena; Conde, Enma; Vinardell, M Pilar

    2014-02-01

    Oxidative stress can damage cellular components including DNA, proteins or lipids, and may cause several skin diseases. To protect from this damage and addressing consumer's appeal to natural products, antioxidants obtained from algal and vegetal extracts are being proposed as antioxidants to be incorporated into formulations. Thus, the development of reliable, quick and economic in vitro methods to study the cytoactivity of these products is a meaningful requirement. A combination of erythrocyte and cell line-based assays was performed on two extracts from Sargassum muticum, one from Ulva lactuca, and one from Castanea sativa. Antioxidant properties were assessed in erythrocytes by the TBARS and AAPH assays, and cytotoxicity and antioxidant cytoprotection were assessed in HaCaT and 3T3 cells by the MTT assay. The extracts showed no antioxidant activity on the TBARS assay, whereas their antioxidant capacity in the AAPH assay was demonstrated. On the cytotoxicity assays, extracts showed low toxicity, with IC50 values higher than 200μg/mL. C. sativa extract showed the most favourable antioxidant properties on the antioxidant cytoprotection assays; while S. muticum and U. lactuca extracts showed a slight antioxidant activity. This battery of methods was useful to characterise the biological antioxidant properties of these natural extracts. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Cytoprotective effect against UV-induced DNA damage and oxidative stress: role of new biological UV filter.

    Science.gov (United States)

    Said, T; Dutot, M; Martin, C; Beaudeux, J-L; Boucher, C; Enee, E; Baudouin, C; Warnet, J-M; Rat, P

    2007-03-01

    The majority of chemical solar filters are cytotoxic, particularly on sensitive ocular cells (corneal and conjunctival cells). Consequently, a non-cytotoxic UV filter would be interesting in dermatology, but more especially in ophthalmology. In fact, light damage to the eye can be avoided thanks to a very efficient ocular antioxidant system; indeed, the chromophores absorb light and dissipate its energy. After middle age, a decrease in the production of antioxidants and antioxidative enzymes appears with accumulation of endogenous molecules that are phototoxic. UV radiations can induce reactive oxygen species formation, leading to various ocular diseases. Because most UV filters are cytotoxic for the eye, we investigated the anti-UV properties of Calophyllum inophyllum oil in order to propose it as a potential vehicle, free of toxicity, with a natural UV filter action in ophthalmic formulation. Calophyllum inophyllum oil, even at low concentration (1/10,000, v/v), exhibited significant UV absorption properties (maximum at 300nm) and was associated with an important sun protection factor (18-22). Oil concentrations up to 1% were not cytotoxic on human conjunctival epithelial cells, and Calophyllum inophyllum oil appeared to act as a cytoprotective agent against oxidative stress and DNA damage (85% of the DNA damage induced by UV radiations were inhibited with 1% Calophyllum oil) and did not induce in vivo ocular irritation (Draize test on New Zealand rabbits). Calophyllum inophyllum oil thus exhibited antioxidant and cytoprotective properties, and therefore might serve, for the first time, as a natural UV filter in ophthalmic preparations.

  4. Cytoprotective and Antioxidant Effects of an Edible Herb, Enhydra fluctuans Lour. (Asteraceae), against Experimentally Induced Lead Acetate Intoxication.

    Science.gov (United States)

    Dua, Tarun K; Dewanjee, Saikat; Khanra, Ritu; Joardar, Swarnalata; Barma, Sujata; Das, Shilpa; Zia-Ul-Haq, M; De Feo, Vincenzo

    2016-01-01

    Enhydra fluctuans Lour. (Asteraceae), an edible aquatic herb, is traditionally employed against toxic effects of heavy metals in India. The present study was planned to discover the protective effect of edible extract of E. fluctuans (AEEF) against Pb toxicity. The cytoprotective role of AEEF was determined on murine hepatocytes employing MTT assay and Hoechst staining. The effects on lipid peroxidation, protein carbonylation, endogenous redox systems and the transcription levels of apoptotic proteins were studied after incubating the hepatocytes with AEEF (400 μg/ml) + Pb-acetate (6.8 μM). The defensive role of AEEF (100 mg/kg) against Pb-acetate (5 mg/kg) intoxication was measured in mice by in vivo assays. Biochemical, haematological and histological parameters, intracellular Pb burden and redox status were measured. AEEF exhibited a concentration dependent cytoprotective effect against Pb-induced cytotoxicity in vitro. Pb-acetate incubation significantly (p intoxicated animals. However, concurrent administration of AEEF (100 mg/kg) could significantly (p < 0.05-0.01) reinstate the Pb-acetate mediated toxicity. Presence of metal chelators and phyto-antioxidants within AEEF would offer overall protection through promoting Pb clearance coupled with restoring redox balance.

  5. Cervical Cancer Cell Supernatants Induce a Phenotypic Switch from U937-Derived Macrophage-Activated M1 State into M2-Like Suppressor Phenotype with Change in Toll-Like Receptor Profile

    Directory of Open Access Journals (Sweden)

    Karina Sánchez-Reyes

    2014-01-01

    Full Text Available Cervical cancer (CC is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated and M2 (alternatively activated. Macrophage polarization exerts profound effects on the Toll-like receptor (TLR profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages. Results. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells. Conclusions. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages.

  6. Piliation of Lactobacillus rhamnosus GG Promotes Adhesion, Phagocytosis, and Cytokine Modulation in Macrophages

    Science.gov (United States)

    Vargas García, Cynthia E.; Petrova, Mariya; Claes, Ingmar J. J.; De Boeck, Ilke; Verhoeven, Tine L. A.; Dilissen, Ellen; von Ossowski, Ingemar; Palva, Airi; Bullens, Dominique M.; Vanderleyden, Jos

    2015-01-01

    Recently, spaCBA-encoded pili on the cell surface of Lactobacillus rhamnosus GG were identified to be key molecules for binding to human intestinal mucus and Caco-2 intestinal epithelial cells. Here, we investigated the role of the SpaCBA pilus of L. rhamnosus GG in the interaction with macrophages in vitro by comparing the wild type with surface mutants. Our results show that SpaCBA pili play a significant role in the capacity for adhesion to macrophages and also promote bacterial uptake by these phagocytic cells. Interestingly, our data suggest that SpaCBA pili also mediate anti-inflammatory effects by induction of interleukin-10 (IL-10) mRNA and reduction of interleukin-6 (IL-6) mRNA in a murine RAW 264.7 macrophage cell line. These pili appear to mediate these effects indirectly by promoting close contact with the macrophages, facilitating the exertion of anti-inflammatory effects by other surface molecules via yet unknown mechanisms. Blockage of complement receptor 3 (CR3), previously identified to be a receptor for streptococcal pili, significantly decreased the uptake of pilus-expressing strains in RAW 264.7 cells, while the expression of IL-10 and IL-6 mRNA by these macrophages was not affected by this blocking. On the other hand, blockage of Toll-like receptor 2 (TLR2) significantly reduced the expression of IL-6 mRNA irrespective of the presence of pili. PMID:25576613

  7. Antibody dependent cellular phagocytosis by macrophages is a novel mechanism of action of elotuzumab.

    Science.gov (United States)

    Kurdi, Ahmed T; Glavey, Siobhan V; Bezman, Natalie A; Jhatakia, Amy; Guerriero, Jennifer L; Manier, Salomon; Moschetta, Michele; Mishima, Yuji; Roccaro, Aldo; Detappe, Alexandre; Liu, Chia-Jen; Sacco, Antonio; Huynh, Daisy; Tai, Yu-Tzu; Robbins, Michael D; Azzi, Jamil; Ghobrial, Irene M

    2018-04-13

    Elotuzumab, a recently approved antibody for the treatment of multiple myeloma (MM), has been shown to stimulate Fcγ receptor (FcγR)-mediated antibody-dependent cellular cytotoxicity (ADCC) by natural killer (NK) cells towards myeloma cells. The modulatory effects of elotuzumab on other effector cells in the tumor microenvironment, however, has not been fully explored. Antibody dependent cellular phagocytosis (ADCP) is a mechanism by which macrophages contribute to anti-tumor potency of monoclonal antibodies. Herein, we studied the NK cell independent effect of elotuzumab on tumor associated macrophages (TAMs) using a xenograft tumor model deficient in NK and adaptive immune cells. We demonstrate significant anti-tumor efficacy of single agent elotuzumab in immunocompromised xenograft models of multiple myeloma, which is in part mediated by Fc-FcγR interaction of elotuzumab with macrophages. Elotuzumab is shown in this study to induce phenotypic activation of macrophages in-vivo and mediates ADCP of myeloma cells though a FcγR dependent manner in-vitro. Together, these findings propose a novel immune mediated mechanism by which elotuzumab exerts anti-myeloma activity and helps to provide rationale for combination therapies that can enhance macrophage activity. Copyright ©2018, American Association for Cancer Research.

  8. The influence of aging and estradiol to progesterone ratio on rat macrophage phenotypic profile and NO and TNF-α production.

    Science.gov (United States)

    Dimitrijević, Mirjana; Stanojević, Stanislava; Kuštrimović, Nataša; Mitić, Katarina; Vujić, Vesna; Aleksić, Iva; Radojević, Katarina; Leposavić, Gordana

    2013-11-01

    The phenotype and function of tissue macrophages substantially depend on the cellular milieu and biological effector molecules, such as steroid hormones, to which they are exposed. Furthermore, in female rats, aging is associated with the altered macrophage functioning and the increased estrogen level is followed by a decrease in that of progesterone. Therefore, the present study aimed to investigate the influence of estradiol/progesterone balance on rat macrophage function and phenotype throughout whole adult lifespan. We ovariectomized rats at the late prepubertal age or at the very end of reproductive lifespan, and examined the expression of ED2 (CD163, a marker of mature resident macrophages related to secretion of inflammatory mediators) on peritoneal macrophages and their ability to produce TNF-α and NO upon LPS-stimulation at different age points. In addition, to delineate direct and indirect effects of estrogen, we assessed the in vitro influence of different concentrations of 17β-estradiol on LPS-induced macrophage TNF-α and NO production. Results showed that: (a) the low frequency of ED2(high) cells amongst peritoneal macrophages of aged rats was accompanied with the reduced TNF-α, but not NO production; (b) estradiol level gradually increased following ovariectomy; (c) macrophage ED2 expression and TNF-α production were dependent on estradiol/progesterone balance and they changed in the same direction; (d) changes in estradiol/progesterone balance differentially affected macrophages TNF-α and NO production; and (e) estradiol exerted pro-inflammatory and anti-inflammatory effects on macrophages in vivo and in vitro, respectively. Overall, our study discloses that estradiol/progesterone balance contributes to the fine-tuning of rat macrophage secretory capacity, and adds to a better understanding of the ovarian steroid hormone role in the regulation of macrophage function, and its significance for the age-associated changes in innate immunity.

  9. Exertional headache and coronary ischemia despite normal electrocardiographic stress testing.

    Science.gov (United States)

    Cutrer, F Michael; Huerter, Karina

    2006-01-01

    Exertional headaches may under certain conditions reflect coronary ischemia. We report the case of a patient seen in a neurology referral practice whose exertional headaches, even in the face of two normal electrocardiographic stress tests and in the absence of underlying chest pain were the sole symptoms of coronary ischemia as detected by Tc-99m Sestamibi testing SPECT stress testing. Stent placement resulted in complete resolution of headaches. Exertional headache in the absence of chest pain may reflect underlying symptomatic coronary artery disease (CAD) even when conventional electrocardiographic stress testing does not indicate ischemia.

  10. [Macrophage activation in atherosclerosis. Message 1: Activation of macrophages normally and in atherosclerotic lesions].

    Science.gov (United States)

    Nikiforov, N G; Kornienko, V Y; Karagodin, V P; Orekhov, A N

    2015-01-01

    Macrophages play important role in initiation and progression of inflammation in atherosclerosis. Plaque macrophages were shown to exhibit a phenotypic range that is intermediate between two extremes, M1 (proinflammatory) and M2 (anti-inflammatory). Indeed, in atherosclerosis, macrophages demonstrate phenotypic plasticity to rapidly adjust to changing microenvironmental conditions. In plaque macrophages demonstrate different phenotypes, and besides macrophage phenotypes could be changed. Phenotypes M1, M2, M4, Mhem, HA-mac, M(Hb) u Mox are described in the article. Ability of macrophages change their phenotype also considered.

  11. Truncated thioredoxin (Trx-80) promotes pro-inflammatory macrophages of the M1 phenotype and enhances atherosclerosis.

    Science.gov (United States)

    Mahmood, Dler Faieeq Darweesh; Abderrazak, Amna; Couchie, Dominique; Lunov, Oleg; Diderot, Vimala; Syrovets, Tatiana; Slimane, Mohamed-Naceur; Gosselet, Fabien; Simmet, Thomas; Rouis, Mustapha; El Hadri, Khadija

    2013-07-01

    Vascular cells are particularly susceptible to oxidative stress that is believed to play a key role in the pathogenesis of cardiovascular disorders. Thioredoxin-1 (Trx-1) is an oxidative stress-limiting protein with anti-inflammatory and anti-apoptotic properties. In contrast, its truncated form (Trx-80) exerts pro-inflammatory effects. Here we analyzed whether Trx-80 might exert atherogenic effects by promoting macrophage differentiation into the M1 pro-inflammatory phenotype. Trx-80 at 1 µg/ml significantly attenuated the polarization of anti-inflammatory M2 macrophages induced by exposure to either IL-4 at 15 ng/ml or IL-4/IL-13 (10 ng/ml each) in vitro, as evidenced by the expression of the characteristic markers, CD206 and IL-10. By contrast, in LPS-challenged macrophages, Trx-80 significantly potentiated the differentiation into inflammatory M1 macrophages as indicated by the expression of the M1 cytokines, TNF-α and MCP-1. When Trx-80 was administered to hyperlipoproteinemic ApoE2.Ki mice at 30 µg/g body weight (b.w.) challenged either with LPS at 30 µg/30 g (b.w.) or IL-4 at 500 ng/30 g (b.w.), it significantly induced the M1 phenotype but inhibited differentiation of M2 macrophages in thymus and liver. When ApoE2.Ki mice were challenged once weekly with LPS for 5 weeks, they showed severe atherosclerotic lesions enriched with macrophages expressing predominantly M1 over M2 markers. Such effect was potentiated when mice received daily, in addition to LPS, the Trx-80. Moreover, the Trx-80 treatment led to a significantly increased aortic lesion area. The ability of Trx-80 to promote differentiation of macrophages into the classical proinflammatory phenotype may explain its atherogenic effects in cardiovascular diseases. Copyright © 2013 Wiley Periodicals, Inc.

  12. Role of the p-Coumaroyl Moiety in the Antioxidant and Cytoprotective Effects of Flavonoid Glycosides: Comparison of Astragalin and Tiliroside

    Directory of Open Access Journals (Sweden)

    Xican Li

    2017-07-01

    Full Text Available The aim of this study was to explore the role of p-coumaroyl in the antioxidant and cytoprotective effects of flavonoid glycosides. The antioxidant effects of astragalin and tiliroside were compared using ferric ion reducing antioxidant power, DPPH• scavenging, ABTS•+ scavenging, •O2– scavenging, and Fe2+-chelating assays. The results of these assays revealed that astragalin and tiliroside both exhibited dose-dependent activities; however, tiliroside exhibited lower IC50 values than astragalin. In the Fe2+-chelating assay, tiliroside gave a larger shoulder-peak at 510 nm than astragalin, and was also found to be darker in color. Both of these compounds were subsequently evaluated in a Fenton-induced mesenchymal stem cell (MSC damaged assay, where tiliroside performed more effectively as a cytoprotective agent than astragalin. Tiliroside bearing a 6′′-O-p-coumaroyl moiety exhibits higher antioxidant and cytoprotective effects than astragalin. The 6′′-O-p-coumaroyl moiety of tiliroside not only enhances the possibility of electron-transfer and hydrogen-atom-transfer-based multi-pathways, but also enhances the likelihood of Fe-chelating. The p-coumaroylation of the 6"-OH position could therefore be regarded as a potential approach for improving the antioxidant and cytoprotective effects of flavonoid glycosides in MSC implantation therapy.

  13. Voluntary exercise attenuates obesity-associated inflammation through ghrelin expressed in macrophages.

    Science.gov (United States)

    Kizaki, Takako; Maegawa, Taketeru; Sakurai, Takuya; Ogasawara, Jun-etsu; Ookawara, Tomomi; Oh-ishi, Shuji; Izawa, Tetsuya; Haga, Shukoh; Ohno, Hideki

    2011-09-30

    Chronic low-level inflammation is associated with obesity and a sedentary lifestyle, causing metabolic disturbances such as insulin resistance. Exercise training has been shown to decrease chronic low-level systemic inflammation in high-fat diet (HFD)-induced obesity. However, the molecular mechanisms mediating its beneficial effects are not fully understood. Ghrelin is a peptide hormone predominantly produced in the stomach that stimulates appetite and induces growth hormone release. In addition to these well-known functions, recent studies suggest that ghrelin localizes to immune cells and exerts an anti-inflammatory effect. The purpose of the current study was to investigate the role of ghrelin expressed in macrophages in the anti-inflammatory effects of voluntary exercise training. Expression of tumor necrosis factor-α (TNF-α), monocyte chemotactic protein (MCP)-1 and F4/80 was increased in adipose tissue from mice fed a HFD (HFD mice) compared with mice fed a standard diet (SD mice), whereas the expression of these inflammatory cytokines was markedly decreased in mice performing voluntary wheel running during the feeding of a HFD (HFEx mice). The expression of TNF-α was also increased in peritoneal macrophages by a HFD and exercise training inhibited the increase of TNF-α expression. Interestingly, expression of ghrelin in peritoneal macrophages was decreased by a HFD and recovered by exercise training. Suppression of ghrelin expression by siRNA increased TNF-α expression and LPS-stimulated NF-κB activation in RAW264 cells, which is a macrophage cell line. TNF-α expression by stimulation with LPS was significantly suppressed in RAW264 cells cultured in the presence of ghrelin. These results suggest that ghrelin exerts potent anti-inflammatory effects in macrophages and functions as a mediator of the beneficial effects of exercise training. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Triamcinolone acetonide activates an anti-inflammatory and folate receptor-positive macrophage that prevents osteophytosis in vivo.

    Science.gov (United States)

    Siebelt, Michiel; Korthagen, Nicoline; Wei, Wu; Groen, Harald; Bastiaansen-Jenniskens, Yvonne; Müller, Christina; Waarsing, Jan Hendrik; de Jong, Marion; Weinans, Harrie

    2015-12-05

    Triamcinolone acetonide (TA) is used for osteoarthritis management to reduce pain, and pre-clinical studies have shown that TA limits osteophyte formation. Osteophyte formation is known to be facilitated by synovial macrophage activation. TA injections might influence macrophage activation and subsequently reduce osteophytosis. Although widely applied in clinical care, the mechanism through which TA exerts this effect remains unknown. In this animal study, we investigated the in vivo effects of TA injections on macrophage activation, osteophyte development and joint degeneration. Furthermore, in vitro macrophage differentiation experiments were conducted to further explain working mechanisms of TA effects found in vivo. Osteoarthritis was induced in rat knees using papain injections and a running protocol. Untreated and TA-treated animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes. Synovial macrophage activation was measured in vivo using folate receptor β (FRβ)-targeted single-photon emission computed tomography/computed tomography. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology. To further explain the outcomes of our in vivo study, TA on macrophages was also studied in vitro. These cultured macrophages were either M1- or M2-activated, and they were analyzed using fluorescence-activated cell sorting for CD163 and FRβ expression as well as for messenger RNA (mRNA) expression of interleukin (IL)-10. Our in vivo study showed that intra-articular injections with TA strongly enhanced FRβ(+) macrophage activation. Despite stimulated macrophage activation, osteophyte formation was fully prevented. There was no beneficial effect of TA against cartilage degradation or subchondral bone sclerosis. In vitro macrophage cultures showed that TA strongly induced monocyte differentiation towards CD163(+) and FRβ(+) macrophages. Furthermore

  15. Exertional rhabdomyolysis: physiological response or manifestation of an underlying myopathy?

    NARCIS (Netherlands)

    Scalco, R.S.; Snoeck, M.; Quinlivan, R.; Treves, S.; Laforet, P.; Jungbluth, H.; Voermans, N.C.

    2016-01-01

    Exertional rhabdomyolysis is characterised by muscle breakdown associated with strenuous exercise or normal exercise under extreme circumstances. Key features are severe muscle pain and sudden transient elevation of serum creatine kinase (CK) levels with or without associated myoglobinuria. Mild

  16. Puerarin exerts antipyretic effect on lipopolysaccharide-induced fever in rats involving inhibition of pyrogen production from macrophages.

    Science.gov (United States)

    Yao, Xiu-Juan; Yin, Ji-Ai; Xia, Yu-Feng; Wei, Zhi-Feng; Luo, Yu-Bin; Liu, Mei; Feleder, Carlos; Dai, Yue

    2012-05-07

    Puerarin is the most abundant isoflavonoid in Radix Puerariae (Gegen), which has been prescribed as a medicinal herb for treating fever in China for a long history. The present study aimed at evaluating the antipyretic effect of puerarin and revealing the related mechanisms. Lipopolysaccharide (LPS)-induced fever in rats was used to assess the antipyretic effect of puerarin. After an intraperitoneal injection of LPS (100μg/kg), body temperature was tested every 30min up to 8h. Different doses of puerarin (25, 50, 100mg/kg) were intraperitoneally administered 30min before LPS injection. In vitro, LPS-stimulated RAW 264.7 cells were treated with various concentrations of puerarin (25-200μM). The pyrogenic mediators, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), prostaglandin E(2) (PGE(2)) and nitric oxide (NO), were examined on both transcription and expression levels. Furthermore, the influences of the activation of nuclear factor-kappa B (NF-κB) and the phosphorylation of mitogen-activated protein kinases (MAPKs) by puerarin were assayed by western blot. The intraperitoneal administration of puerarin at test doses clearly demonstrated apparent antipyretic effect through the declines in body temperature elevated by LPS in rats. The in vitro data showed that puerarin inhibited the production of IL-1β, TNF-α, IL-6, PGE(2) and NO; moreover, the RT-PCR analysis and the western blot analysis indicated that puerarin regulated the transcriptional level via suppression of NF-κB activation and blockade of MAPK signal pathway. In summary, the antipyretic property of puerarin might result, at least in part, from an inhibition of endogenous pyrogen production and expression. Taken in this sense, our findings provide an explanation for puerarin acting as an important constituent in Gegen, thus, provide scientific basis for the wide use of Radix Puerariae in China as a traditional antipyretic. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. The roles of supernatant of macrophage treated by excretory-secretory products from muscle larvae of Trichinella spiralis on the differentiation of C2C12 myoblasts

    Science.gov (United States)

    The excretory-secretory products (ESPs) released by the muscle-larvae (ML) stage of Trichinella spiralis have been suggested to be involved in nurse cell formation. However, the molecular mechanisms by which ML-ESPs modulate nurse cell formation remain unclear. Macrophages exert either beneficial or...

  18. Effect of acetylation on antioxidant and cytoprotective activity of polysaccharides isolated from pumpkin (Cucurbita pepo, lady godiva).

    Science.gov (United States)

    Song, Yi; Yang, Yang; Zhang, Yuyu; Duan, Liusheng; Zhou, Chunli; Ni, Yuanying; Liao, Xiaojun; Li, Quanhong; Hu, Xiaosong

    2013-10-15

    Acetylation of pumpkin (Cucurbita pepo, lady godiva variety) polysaccharide using acetic anhydride with pyridines as catalyst under different conditions was conducted to obtain different degrees of acetylation on a laboratory scale. Furthermore, antioxidant activities and cytoprotective effects of pumpkin polysaccharide and its acetylated derivatives were investigated employing various established in vitro systems. Results showed that addition of pyridine as catalyst could increase the degree of substitution, whereas volume of acetic anhydride had little effect. The acetylated polysaccharides in DPPH scavenging radical activity assay, superoxide anion radical activity assay and reducing power assay exhibited higher antioxidant activity than that of unmodified polysaccharide. H2O2-induced oxidative damages on rat thymic lymphocyte were also prevented by pumpkin polysaccharide and its acetylated derivatives and the derivatives presented higher protective effects. On the whole, acetylated polysaccharide showed relevant antioxidant activity both in vitro and in a cell system. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Irradiation Effect on the antioxidant properties, anti-microbial and cytoprotective of the bark of Punica granatum

    International Nuclear Information System (INIS)

    Sanaa, Chahnez

    2013-01-01

    The bark of pomegranate has been used for some years to treat various health problems . Several studies have focused on specifying these problems, including antibacterial , antioxidant and cytoprotective . The use of pomegranate rind powder is an effective treatment against gastric ulcer and intestines and to strengthen the wall of the gastrointestinal tract. In this work, we studied the effects of gamma irradiation on the type antibacterial, anti-ulcer and bark grenade. This study was conducted on powdered pomegranate bark irradiated by applying decreasing radiation doses from 25kGy to 1.25KGy. All of our results shows that irradiation with a low degree improves the effectiveness of pomegranate bark for the treatment of gastric ulcer , however high degree irradiation enhances the antibacterial activity of bark pomegranate against Staphylococcus aureus.

  20. Do placebo expectations influence perceived exertion during physical exercise?

    Directory of Open Access Journals (Sweden)

    Hendrik Mothes

    Full Text Available This study investigates the role of placebo expectations in individuals' perception of exertion during acute physical exercise. Building upon findings from placebo and marketing research, we examined how perceived exertion is affected by expectations regarding a the effects of exercise and b the effects of the exercise product worn during the exercise. We also investigated whether these effects are moderated by physical self-concept. Seventy-eight participants conducted a moderate 30 min cycling exercise on an ergometer, with perceived exertion (RPE measured every 5 minutes. Beforehand, each participant was randomly assigned to 1 of 4 conditions and watched a corresponding film clip presenting "scientific evidence" that the exercise would or would not result in health benefits and that the exercise product they were wearing (compression garment would additionally enhance exercise benefits or would only be worn for control purposes. Participants' physical self-concept was assessed via questionnaire. Results partially demonstrated that participants with more positive expectations experienced reduced perceived exertion during the exercise. Furthermore, our results indicate a moderator effect of physical self-concept: Individuals with a high physical self-concept benefited (in terms of reduced perceived exertion levels in particular from an induction of generally positive expectations. In contrast, individuals with a low physical self-concept benefited when positive expectations were related to the exercise product they were wearing. In sum, these results suggest that placebo expectations may be a further, previously neglected class of psychological factors that influence the perception of exertion.

  1. Musical agency reduces perceived exertion during strenuous physical performance.

    Science.gov (United States)

    Fritz, Thomas Hans; Hardikar, Samyogita; Demoucron, Matthias; Niessen, Margot; Demey, Michiel; Giot, Olivier; Li, Yongming; Haynes, John-Dylan; Villringer, Arno; Leman, Marc

    2013-10-29

    Music is known to be capable of reducing perceived exertion during strenuous physical activity. The current interpretation of this modulating effect of music is that music may be perceived as a diversion from unpleasant proprioceptive sensations that go along with exhaustion. Here we investigated the effects of music on perceived exertion during a physically strenuous task, varying musical agency, a task that relies on the experience of body proprioception, rather than simply diverting from it. For this we measured psychologically indicated exertion during physical workout with and without musical agency while simultaneously acquiring metabolic values with spirometry. Results showed that musical agency significantly decreased perceived exertion during workout, indicating that musical agency may actually facilitate physically strenuous activities. This indicates that the positive effect of music on perceived exertion cannot always be explained by an effect of diversion from proprioceptive feedback. Furthermore, this finding suggests that the down-modulating effect of musical agency on perceived exertion may be a previously unacknowledged driving force for the development of music in humans: making music makes strenuous physical activities less exhausting.

  2. Antioxidative and cytoprotective effects of andrographolide against CCl4-induced hepatotoxicity in HepG2 cells.

    Science.gov (United States)

    Krithika, R; Verma, R J; Shrivastav, P S

    2013-05-01

    This article describes antioxidative and cytoprotective property of andrographolide, a major active component of the plant Andrographis paniculata (A. paniculata). High yields (2.7%) of andrographolide was isolated from the aerial parts of this plant via silica column chromatography. The purity of the compound was determined by high-performance thin-layer chromatography (HPTLC) and reversed phase high-performance liquid chromatography (HPLC) analysis. The structure was elucidated using techniques such as UV-visible spectrophotometry, elemental analysis, Fourier transform infrared (FT-IR), (1)H nuclear magnetic resonance ((1)H NMR), (13)C nuclear magnetic resonance ((13)C NMR) and mass spectral analysis and the data obtained were comparable with reported results. It was observed that andrographolide exhibited significant antioxidative property (IC50 = 3.2 µg/ml) by its ability to scavenge a stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) as compared to known antioxidants like ascorbic acid, butylated hydroxy toluene (BHT) and the plant extract. The cytoprotective role of andrographolide against carbon tetrachloride (CCl4) toxicity in human hepatoma HepG2 cell line was assessed using trypan blue exclusion test, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, by estimation of various leakage enzymes and by measuring the glutathione levels. The recovery obtained for andrographolide treatment in the presence of CCl4 was two-fold compared to A. paniculata extract for all other related biochemical parameters investigated. The results of the study indicate that andrographolide is a potent inhibitor of CCl4-mediated lipid peroxidation.

  3. A hybrid of coumarin and phenylsulfonylfuroxan induces caspase-dependent apoptosis and cytoprotective autophagy in lung adenocarcinoma cells.

    Science.gov (United States)

    Wang, Qian; Guo, Yalan; Jiang, Shanshan; Dong, Mengxue; Kuerban, Kudelaidi; Li, Jiyang; Feng, Meiqing; Chen, Ying; Ye, Li

    2018-01-15

    Lung adenocarcinoma is the most primary histologic subtype of non-small cell lung cancer (NSCLC). Compound 8b, a novel coumarin derivative with phenylsulfonylfuroxan group, shows significant antiproliferation activity against lung adenocarcinoma cell with low toxicity. This study aims to uncover the potential of compound 8b in relation to apoptosis as well as autophagy induction in lung adenocarcinoma cells. The cytotoxicity and apoptosis of A549 and H1299 cells induced by compound 8b were detected by MTT, microscope and western blot analysis. Autophagy was determined by TEM, confocal microscopy and western blot analysis. Akt/mTOR and Erk signaling pathway were also examined by western blot analysis. First, significant growth inhibition and caspase-dependent apoptosis were observed in compound 8b-treated A549 and H1299 cells. Then, we confirmed compound 8b-induced autophagy by autophagosomes formation, upregulated expression of autophagy-related protein LC3-II and autophagic flux. Importantly, abolishing autophagy using inhibitors and ATG5 siRNA enhanced the cytotoxicity of compound 8b, indicating the cytoprotective role of autophagy in lung adenocarcinoma. Further mechanistic investigations suggested that Akt/mTOR and Erk signaling pathways contributed to autophagy induction by compound 8b. This results demonstrate that compound 8b induces caspase-dependent apoptosis as well as cytoprotective autophagy in lung adenocarcinoma cells, which may provide scientific evidence for developing this furoxan-based NO-releasing coumarin derivative as a potential anti-lung adenocarcinoma therapeutic agents. Copyright © 2017 Elsevier GmbH. All rights reserved.

  4. Dexamethasone palmitate ameliorates macrophages-rich graft-versus-host disease by inhibiting macrophage functions.

    Science.gov (United States)

    Nishiwaki, Satoshi; Nakayama, Takayuki; Murata, Makoto; Nishida, Tetsuya; Terakura, Seitaro; Saito, Shigeki; Kato, Tomonori; Mizuno, Hiroki; Imahashi, Nobuhiko; Seto, Aika; Ozawa, Yukiyasu; Miyamura, Koichi; Ito, Masafumi; Takeshita, Kyosuke; Kato, Hidefumi; Toyokuni, Shinya; Nagao, Keisuke; Ueda, Ryuzo; Naoe, Tomoki

    2014-01-01

    Macrophage infiltration of skin GVHD lesions correlates directly with disease severity, but the mechanisms underlying this relationship remain unclear and GVHD with many macrophages is a therapeutic challenge. Here, we characterize the macrophages involved in GVHD and report that dexamethasone palmitate (DP), a liposteroid, can ameliorate such GVHD by inhibiting macrophage functions. We found that host-derived macrophages could exacerbate GVHD in a mouse model through expression of higher levels of pro-inflammatory TNF-α and IFN-γ, and lower levels of anti-inflammatory IL-10 than resident macrophages in mice without GVHD. DP significantly decreased the viability and migration capacity of primary mouse macrophages compared to conventional dexamethasone in vitro. DP treatment on day 7 and day 14 decreased macrophage number, and attenuated GVHD score and subsequent mortality in a murine model. This is the first study to provide evidence that therapy for GVHD should be changed on the basis of infiltrating cell type.

  5. DMPD: Macrophage differentiation and function in health and disease. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available in health and disease. PubmedID 18251777 Title Macrophage differentiation and function in health and disease...thol Int. 2008 Mar;58(3):143-55. (.png) (.svg) (.html) (.csml) Show Macrophage differentiation and function

  6. Biomimetic carbon monoxide delivery based on hemoglobin vesicles ameliorates acute pancreatitis in mice via the regulation of macrophage and neutrophil activity.

    Science.gov (United States)

    Taguchi, Kazuaki; Nagao, Saori; Maeda, Hitoshi; Yanagisawa, Hiroki; Sakai, Hiromi; Yamasaki, Keishi; Wakayama, Tomohiko; Watanabe, Hiroshi; Otagiri, Masaki; Maruyama, Toru

    2018-11-01

    Macrophages play a central role in various inflammatory disorders and are broadly divided into two subpopulations, M1 and M2 macrophage. In the healing process in acute inflammatory disorders, shifting the production of M1 macrophages to M2 macrophages is desirable, because M1 macrophages secrete pro-inflammatory cytokines, whilst the M2 variety secrete anti-inflammatory cytokines. Previous findings indicate that when macrophages are treated with carbon monoxide (CO), the secretion of anti-inflammatory cytokine is increased and the expression of pro-inflammatory cytokines is inhibited, indicating that CO may have a potential to modulate the production of macrophages toward the M2-like phenotype. In this study, we examined the issue of whether CO targeting macrophages using a nanotechnology-based CO donor, namely CO-bound hemoglobin vesicles (CO-HbV), modulates their polarization and show therapeutic effects against inflammatory disorders. The results showed that the CO-HbV treatment polarized a macrophage cell line toward an M2-like phenotype. Furthermore, in an in vivo study using acute pancreatitis model mice as a model of an inflammatory disease, a CO-HbV treatment also tended to polarize macrophages toward an M2-like phenotype and inhibited neutrophil infiltration in the pancreas, resulting in a significant inflammation. In addition to the suppression of acute pancreatitis, CO-HbV diminished a subsequent pancreatitis-associated acute lung injury. This could be due to the inhibition of the systemic inflammation, neutrophil infiltration in the lungs and the production of HMGB-1. These findings suggest that CO-HbV exerts superior anti-inflammatory effects against inflammatory disorders via the regulation of macrophage and neutrophil activity.

  7. Mesenchymal stem cell-educated macrophages

    OpenAIRE

    Eggenhofer Elke; Hoogduijn Martin J

    2012-01-01

    Abstract Mesenchymal stem cells (MSC) mediate their immunosuppressive effects via a variety of mechanisms. One of these mechanisms involves the induction of macrophages with immunomodulatory capacities. This effect of MSC may be exploited when MSC are used as a cell therapeutic product. Furthermore, MSC are resident in tissues where they may locally target infiltrating macrophages to adapt more regulatory properties. The present review discusses the interaction between MSC and macrophages, th...

  8. Quantitative GPCR and ion channel transcriptomics in primary alveolar macrophages and macrophage surrogates

    Directory of Open Access Journals (Sweden)

    Groot-Kormelink Paul J

    2012-10-01

    Full Text Available Abstract Background Alveolar macrophages are one of the first lines of defence against invading pathogens and play a central role in modulating both the innate and acquired immune systems. By responding to endogenous stimuli within the lung, alveolar macrophages contribute towards the regulation of the local inflammatory microenvironment, the initiation of wound healing and the pathogenesis of viral and bacterial infections. Despite the availability of protocols for isolating primary alveolar macrophages from the lung these cells remain recalcitrant to expansion in-vitro and therefore surrogate cell types, such as monocyte derived macrophages and phorbol ester-differentiated cell lines (e.g. U937, THP-1, HL60 are frequently used to model macrophage function. Methods The availability of high throughput gene expression technologies for accurate quantification of transcript levels enables the re-evaluation of these surrogate cell types for use as cellular models of the alveolar macrophage. Utilising high-throughput TaqMan arrays and focussing on dynamically regulated families of integral membrane proteins, we explore the similarities and differences in G-protein coupled receptor (GPCR and ion channel expression in alveolar macrophages and their widely used surrogates. Results The complete non-sensory GPCR and ion channel transcriptome is described for primary alveolar macrophages and macrophage surrogates. The expression of numerous GPCRs and ion channels whose expression were hitherto not described in human alveolar macrophages are compared across primary macrophages and commonly used macrophage cell models. Several membrane proteins known to have critical roles in regulating macrophage function, including CXCR6, CCR8 and TRPV4, were found to be highly expressed in macrophages but not expressed in PMA-differentiated surrogates. Conclusions The data described in this report provides insight into the appropriate choice of cell models for

  9. Macrophage antioxidant protection within atherosclerotic plaques.

    Science.gov (United States)

    Gieseg, Steven P; Leake, David S; Flavall, Elizabeth M; Amit, Zunika; Reid, Linzi; Yang, Ya-Ting

    2009-01-01

    Macrophage cells within inflammatory lesions are exposed to a wide range of degrading and cytotoxic molecules including reactive oxygen species. Unlike neutrophils, macrophages do not normally die in this environment but continue to generate oxidants, phagocytose cellular remains, and release a range of cyto-active agents which modulate the immune response. It is this potential of the macrophage cell to survive in an oxidative environment that allows the growth and complexity of advanced atherosclerotic plaques. This review will examine the oxidants encountered by macrophages within an atherosclerotic plaque and describe some of the potential antioxidant mechanisms which enable macrophages to function within inflammatory lesions. Ascorbate, a-tocopherol, and glutathione appear to be central to the protection of macrophages yet additional antioxidant mechanisms appear to be involved. Gamma-Interferon causes macrophages to generate 7,8-dihydroneopterin, neopterin and 3-hydroxyanthranilic acid both of which have antioxidant properties. Manganese superoxide dismutase is also upregulated in macrophages. The evidence that these antioxidants provide further protection, so allowing the macrophage cells to survive within sites of chronic inflammation such as atherosclerotic plaques, will be described.

  10. MONOCYTES AND MACROPHAGES IN PREGNANCY AND PREECLAMPSIA

    Directory of Open Access Journals (Sweden)

    Marijke M Faas

    2014-06-01

    Full Text Available Preeclampsia is an important complication in pregnancy, characterized byhypertension and proteinuria in the second half of pregnancy. Generalizedactivation of the inflammatory response is thought to play a role in thepathogenesis of preeclampsia. Monocytes may play a central role in thisinflammatory response. Monocytes are short lived cells, that mature in thecirculation and invade into tissues upon an inflammatory stimulus anddevelop into macrophages. Macrophages are abundantly present in theendometrium and play a role in implantation and placentation in normalpregnancy. In preeclampsia, these macrophages appear to be present in largernumbers and are also activated. In the present review we focused on the roleof monocytes and macrophages in the pathophysiology of preeclampsia.

  11. Macrophage Plasticity in Skeletal Muscle Repair

    Directory of Open Access Journals (Sweden)

    Elena Rigamonti

    2014-01-01

    Full Text Available Macrophages are one of the first barriers of host defence against pathogens. Beyond their role in innate immunity, macrophages play increasingly defined roles in orchestrating the healing of various injured tissues. Perturbations of macrophage function and/or activation may result in impaired regeneration and fibrosis deposition as described in several chronic pathological diseases. Heterogeneity and plasticity have been demonstrated to be hallmarks of macrophages. In response to environmental cues they display a proinflammatory (M1 or an alternative anti-inflammatory (M2 phenotype. A lot of evidence demonstrated that after acute injury M1 macrophages infiltrate early to promote the clearance of necrotic debris, whereas M2 macrophages appear later to sustain tissue healing. Whether the sequential presence of two different macrophage populations results from a dynamic shift in macrophage polarization or from the recruitment of new circulating monocytes is a subject of ongoing debate. In this paper, we discuss the current available information about the role that different phenotypes of macrophages plays after injury and during the remodelling phase in different tissue types, with particular attention to the skeletal muscle.

  12. DMPD: Shaping of monocyte and macrophage function by adenosine receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17056121 Shaping of monocyte and macrophage function by adenosine receptors. Hasko ...tml) (.csml) Show Shaping of monocyte and macrophage function by adenosine receptors. PubmedID 17056121 Titl...e Shaping of monocyte and macrophage function by adenosine receptors. Authors Has

  13. DMPD: Macrophage activation by endogenous danger signals. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18161744 Macrophage activation by endogenous danger signals. Zhang X, Mosser DM. J ...Pathol. 2008 Jan;214(2):161-78. (.png) (.svg) (.html) (.csml) Show Macrophage activation by endogenous dange...r signals. PubmedID 18161744 Title Macrophage activation by endogenous danger signals. Authors Zhang X, Moss

  14. DMPD: Regulation of endogenous apolipoprotein E secretion by macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18388328 Regulation of endogenous apolipoprotein E secretion by macrophages. Kockx ...svg) (.html) (.csml) Show Regulation of endogenous apolipoprotein E secretion by macrophages. PubmedID 18388...328 Title Regulation of endogenous apolipoprotein E secretion by macrophages. Aut

  15. DMPD: Macrophage migration inhibitory factor and host innate immune responses tomicrobes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14620137 Macrophage migration inhibitory factor and host innate immune responses to...microbes. Calandra T. Scand J Infect Dis. 2003;35(9):573-6. (.png) (.svg) (.html) (.csml) Show Macrophage migration... inhibitory factor and host innate immune responses tomicrobes. PubmedID 14620137 Title Macrophage migration

  16. DMPD: Cellular signaling in macrophage migration and chemotaxis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11073096 Cellular signaling in macrophage migration and chemotaxis. Jones GE. J Leu...koc Biol. 2000 Nov;68(5):593-602. (.png) (.svg) (.html) (.csml) Show Cellular signaling in macrophage migration... and chemotaxis. PubmedID 11073096 Title Cellular signaling in macrophage migration and chemotaxis. Autho

  17. DMPD: Monocyte/macrophage traffic in HIV and SIV encephalitis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12960230 Monocyte/macrophage traffic in HIV and SIV encephalitis. Kim WK, Corey S, ...Alvarez X, Williams K. J Leukoc Biol. 2003 Nov;74(5):650-6. Epub 2003 Aug 11. (.png) (.svg) (.html) (.csml) Show Monocyte/macrophage... traffic in HIV and SIV encephalitis. PubmedID 12960230 Title Monocyte/macrophage tr

  18. DMPD: CSF-1 and cell cycle control in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 8981359 CSF-1 and cell cycle control in macrophages. Hamilton JA. Mol Reprod Dev. 1...997 Jan;46(1):19-23. (.png) (.svg) (.html) (.csml) Show CSF-1 and cell cycle control in macrophages. PubmedI...D 8981359 Title CSF-1 and cell cycle control in macrophages. Authors Hamilton JA. Publication Mol Reprod Dev

  19. DMPD: Silica binding and toxicity in alveolar macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18226603 Silica binding and toxicity in alveolar macrophages. Hamilton RF Jr, Thaku...l) Show Silica binding and toxicity in alveolar macrophages. PubmedID 18226603 Title Silica binding and toxicity in alveolar macropha...ges. Authors Hamilton RF Jr, Thakur SA, Holian A. Public

  20. DMPD: Iron regulation of hepatic macrophage TNFalpha expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11841920 Iron regulation of hepatic macrophage TNFalpha expression. Tsukamoto H. Fr...ee Radic Biol Med. 2002 Feb 15;32(4):309-13. (.png) (.svg) (.html) (.csml) Show Iron regulation of hepatic macrophage... TNFalpha expression. PubmedID 11841920 Title Iron regulation of hepatic macrophage TNFalpha expres

  1. Histone Deacetylase 7 Promotes Toll-like Receptor 4-dependent Proinflammatory Gene Expression in Macrophages*

    Science.gov (United States)

    Shakespear, Melanie R.; Hohenhaus, Daniel M.; Kelly, Greg M.; Kamal, Nabilah A.; Gupta, Praveer; Labzin, Larisa I.; Schroder, Kate; Garceau, Valerie; Barbero, Sheila; Iyer, Abishek; Hume, David A.; Reid, Robert C.; Irvine, Katharine M.; Fairlie, David P.; Sweet, Matthew J.

    2013-01-01

    Broad-spectrum inhibitors of histone deacetylases (HDACs) constrain Toll-like receptor (TLR)-inducible production of key proinflammatory mediators. Here we investigated HDAC-dependent inflammatory responses in mouse macrophages. Of the classical Hdacs, Hdac7 was expressed at elevated levels in inflammatory macrophages (thioglycollate-elicited peritoneal macrophages) as compared with bone marrow-derived macrophages and the RAW264 cell line. Overexpression of a specific, alternatively spliced isoform of Hdac7 lacking the N-terminal 22 amino acids (Hdac7-u), but not the Refseq Hdac7 (Hdac7-s), promoted LPS-inducible expression of Hdac-dependent genes (Edn1, Il-12p40, and Il-6) in RAW264 cells. A novel class IIa-selective HDAC inhibitor reduced recombinant human HDAC7 enzyme activity as well as TLR-induced production of inflammatory mediators in thioglycollate-elicited peritoneal macrophages. Both LPS and Hdac7-u up-regulated the activity of the Edn1 promoter in an HDAC-dependent fashion in RAW264 cells. A hypoxia-inducible factor (HIF) 1 binding site in this promoter was required for HDAC-dependent TLR-inducible promoter activity and for Hdac7- and HIF-1α-mediated trans-activation. Coimmunoprecipitation assays showed that both Hdac7-u and Hdac7-s interacted with HIF-1α, whereas only Hdac7-s interacted with the transcriptional repressor CtBP1. Thus, Hdac7-u positively regulates HIF-1α-dependent TLR signaling in macrophages, whereas an interaction with CtBP1 likely prevents Hdac7-s from exerting this effect. Hdac7 may represent a potential inflammatory disease target. PMID:23853092

  2. Histone deacetylase 7 promotes Toll-like receptor 4-dependent proinflammatory gene expression in macrophages.

    Science.gov (United States)

    Shakespear, Melanie R; Hohenhaus, Daniel M; Kelly, Greg M; Kamal, Nabilah A; Gupta, Praveer; Labzin, Larisa I; Schroder, Kate; Garceau, Valerie; Barbero, Sheila; Iyer, Abishek; Hume, David A; Reid, Robert C; Irvine, Katharine M; Fairlie, David P; Sweet, Matthew J

    2013-08-30

    Broad-spectrum inhibitors of histone deacetylases (HDACs) constrain Toll-like receptor (TLR)-inducible production of key proinflammatory mediators. Here we investigated HDAC-dependent inflammatory responses in mouse macrophages. Of the classical Hdacs, Hdac7 was expressed at elevated levels in inflammatory macrophages (thioglycollate-elicited peritoneal macrophages) as compared with bone marrow-derived macrophages and the RAW264 cell line. Overexpression of a specific, alternatively spliced isoform of Hdac7 lacking the N-terminal 22 amino acids (Hdac7-u), but not the Refseq Hdac7 (Hdac7-s), promoted LPS-inducible expression of Hdac-dependent genes (Edn1, Il-12p40, and Il-6) in RAW264 cells. A novel class IIa-selective HDAC inhibitor reduced recombinant human HDAC7 enzyme activity as well as TLR-induced production of inflammatory mediators in thioglycollate-elicited peritoneal macrophages. Both LPS and Hdac7-u up-regulated the activity of the Edn1 promoter in an HDAC-dependent fashion in RAW264 cells. A hypoxia-inducible factor (HIF) 1 binding site in this promoter was required for HDAC-dependent TLR-inducible promoter activity and for Hdac7- and HIF-1α-mediated trans-activation. Coimmunoprecipitation assays showed that both Hdac7-u and Hdac7-s interacted with HIF-1α, whereas only Hdac7-s interacted with the transcriptional repressor CtBP1. Thus, Hdac7-u positively regulates HIF-1α-dependent TLR signaling in macrophages, whereas an interaction with CtBP1 likely prevents Hdac7-s from exerting this effect. Hdac7 may represent a potential inflammatory disease target.

  3. Purple perilla extracts with α-asarone enhance cholesterol efflux from oxidized LDL-exposed macrophages.

    Science.gov (United States)

    Park, Sin-Hye; Paek, Ji Hun; Shin, Daekeun; Lee, Jae-Yong; Lim, Soon Sung; Kang, Young-Hee

    2015-04-01

    The cellular accumulation of cholesterol is critical in the development and progression of atherosclerosis. ATP-binding cassette (ABC) transporters play an essential role in mediating the efflux of excess cholesterol. In the current study, we investigated whether purple Perilla frutescens extracts (PPE) at a non-toxic concentration of 1-10 µg/ml stimulate the induction of the ABC transporters, ABCA1 and ABCG1, and cholesterol efflux from lipid-laden J774A.1 murine macrophages exposed to 50 ng/ml oxidized low-density lipoprotein (LDL). Purple perilla, an annual herb in the mint family and its constituents, have been reported to exhibit antioxidant and cytostatic activity, as well as to exert anti-allergic effects. Our results revealed that treatment with oxidized LDL for 24 h led to the accumulation of lipid droplets in the macrophages. PPE suppressed the oxidized LDL-induced foam cell formation by blocking the induction of scavenger receptor B1. However, PPE promoted the induction of the ABC transporters, ABCA1 and ABCG1, and subsequently accelerated cholesterol efflux from the lipid-loaded macrophages. The liver X receptor (LXR) agonist, TO-091317, and the peroxisome proliferator-activated receptor (PPAR) agonist, pioglitazone, increased ABCA1 expression and treatment with 10 µg/ml PPE further enhanced this effect. PPE did not induce LXRα and PPARγ expression per se, but enhanced their expression in the macrophages exposed to oxidized LDL. α-asarone was isolated from PPE and characterized as a major component enhancing the induction of ABCA1 and ABCG1 in macrophages exposed to oxidized LDL. α-asarone, but not β-asarone was effective in attenuating foam cell formation and enhancing cholesterol efflux, revealing an isomeric difference in their activity. The results from the present study demonstrate that PPE promotes cholesterol efflux from macrophages by activating the interaction of PPARγ-LXRα-ABC transporters.

  4. Exertional rhabdomyolysis: physiological response or manifestation of an underlying myopathy?

    Science.gov (United States)

    Scalco, Renata S; Snoeck, Marc; Quinlivan, Ros; Treves, Susan; Laforét, Pascal; Jungbluth, Heinz; Voermans, Nicol C

    2016-01-01

    Exertional rhabdomyolysis is characterised by muscle breakdown associated with strenuous exercise or normal exercise under extreme circumstances. Key features are severe muscle pain and sudden transient elevation of serum creatine kinase (CK) levels with or without associated myoglobinuria. Mild cases may remain unnoticed or undiagnosed. Exertional rhabdomyolysis is well described among athletes and military personnel, but may occur in anybody exposed to unaccustomed exercise. In contrast, exertional rhabdomyolysis may be the first manifestation of a genetic muscle disease that lowers the exercise threshold for developing muscle breakdown. Repeated episodes of exertional rhabdomyolysis should raise the suspicion of such an underlying disorder, in particular in individuals in whom the severity of the rhabdomyolysis episodes exceeds the expected response to the exercise performed. The present review aims to provide a practical guideline for the acute management and postepisode counselling of patients with exertional rhabdomyolysis, with a particular emphasis on when to suspect an underlying genetic disorder. The pathophysiology and its clinical features are reviewed, emphasising four main stepwise approaches: (1) the clinical significance of an acute episode, (2) risks of renal impairment, (3) clinical indicators of an underlying genetic disorders and (4) when and how to recommence sport activity following an acute episode of rhabdomyolysis. Genetic backgrounds that appear to be associated with both enhanced athletic performance and increased rhabdomyolysis risk are briefly reviewed. PMID:27900193

  5. Exertional rhabdomyolysis: physiological response or manifestation of an underlying myopathy?

    Science.gov (United States)

    Scalco, Renata S; Snoeck, Marc; Quinlivan, Ros; Treves, Susan; Laforét, Pascal; Jungbluth, Heinz; Voermans, Nicol C

    2016-01-01

    Exertional rhabdomyolysis is characterised by muscle breakdown associated with strenuous exercise or normal exercise under extreme circumstances. Key features are severe muscle pain and sudden transient elevation of serum creatine kinase (CK) levels with or without associated myoglobinuria. Mild cases may remain unnoticed or undiagnosed. Exertional rhabdomyolysis is well described among athletes and military personnel, but may occur in anybody exposed to unaccustomed exercise. In contrast, exertional rhabdomyolysis may be the first manifestation of a genetic muscle disease that lowers the exercise threshold for developing muscle breakdown. Repeated episodes of exertional rhabdomyolysis should raise the suspicion of such an underlying disorder, in particular in individuals in whom the severity of the rhabdomyolysis episodes exceeds the expected response to the exercise performed. The present review aims to provide a practical guideline for the acute management and postepisode counselling of patients with exertional rhabdomyolysis, with a particular emphasis on when to suspect an underlying genetic disorder. The pathophysiology and its clinical features are reviewed, emphasising four main stepwise approaches: (1) the clinical significance of an acute episode, (2) risks of renal impairment, (3) clinical indicators of an underlying genetic disorders and (4) when and how to recommence sport activity following an acute episode of rhabdomyolysis. Genetic backgrounds that appear to be associated with both enhanced athletic performance and increased rhabdomyolysis risk are briefly reviewed.

  6. Arctigenin Induces an Activation Response in Porcine Alveolar Macrophage Through TLR6-NOX2-MAPKs Signaling Pathway

    OpenAIRE

    Zheng Lu; Lingling Chang; Qian Du; Yong Huang; Xiujuan Zhang; Xingchen Wu; Jie Zhang; Ruizhen Li; Zelin Zhang; Wenlong Zhang; Xiaomin Zhao; Dewen Tong

    2018-01-01

    Arctigenin (ARG), one of the most active ingredients abstracted from seeds of Arctium lappa L., has been proved to exert promising biological activities such as immunomodulatory, anti-viral, and anti-cancer etc. However, the mechanism behind its immunomodulatory function still remains elusive to be further investigated. In this study, we found that ARG had no significant effects on the cell proliferation in both porcine alveolar macrophage cell line (3D4/21) and primary porcine derived alveol...

  7. Nicotine Impairs Macrophage Control of Mycobacterium tuberculosis.

    Science.gov (United States)

    Bai, Xiyuan; Stitzel, Jerry A; Bai, An; Zambrano, Cristian A; Phillips, Matthew; Marrack, Philippa; Chan, Edward D

    2017-09-01

    Pure nicotine impairs macrophage killing of Mycobacterium tuberculosis (MTB), but it is not known whether the nicotine component in cigarette smoke (CS) plays a role. Moreover, the mechanisms by which nicotine impairs macrophage immunity against MTB have not been explored. To neutralize the effects of nicotine in CS extract, we used a competitive inhibitor to the nicotinic acetylcholine receptor (nAChR)-mecamylamine-as well as macrophages derived from mice with genetic disruption of specific subunits of nAChR. We also determined whether nicotine impaired macrophage autophagy and whether nicotine-exposed T regulatory cells (Tregs) could subvert macrophage anti-MTB immunity. Mecamylamine reduced the CS extract increase in MTB burden by 43%. CS extract increase in MTB was also significantly attenuated in macrophages from mice with genetic disruption of either the α7, β2, or β4 subunit of nAChR. Nicotine inhibited autophagosome formation in MTB-infected THP-1 cells and primary murine alveolar macrophages, as well as increased the intracellular MTB burden. Nicotine increased migration of THP-1 cells, consistent with the increased number of macrophages found in the lungs of smokers. Nicotine induced Tregs to produce transforming growth factor-β. Naive mouse macrophages co-cultured with nicotine-exposed Tregs had significantly greater numbers of viable MTB recovered with increased IL-10 production and urea production, but no difference in secreted nitric oxide as compared with macrophages cocultured with unexposed Tregs. We conclude that nicotine in CS plays an important role in subverting macrophage control of MTB infection.

  8. Development of mannose functionalized dendrimeric nanoparticles for targeted delivery to macrophages: use of this platform to modulate atherosclerosis.

    Science.gov (United States)

    He, Hongliang; Yuan, Quan; Bie, Jinghua; Wallace, Ryan L; Yannie, Paul J; Wang, Jing; Lancina, Michael G; Zolotarskaya, Olga Yu; Korzun, William; Yang, Hu; Ghosh, Shobha

    2018-03-01

    Dysfunctional macrophages underlie the development of several diseases including atherosclerosis where accumulation of cholesteryl esters and persistent inflammation are 2 of the critical macrophage processes that regulate the progression as well as stability of atherosclerotic plaques. Ligand-dependent activation of liver-x-receptor (LXR) not only enhances mobilization of stored cholesteryl ester but also exerts anti-inflammatory effects mediated via trans-repression of proinflammatory transcription factor nuclear factor kappa B. However, increased hepatic lipogenesis by systemic administration of LXR ligands (LXR-L) has precluded their therapeutic use. The objective of the present study was to devise a strategy to selectively deliver LXR-L to atherosclerotic plaque-associated macrophages while limiting hepatic uptake. Mannose-functionalized dendrimeric nanoparticles (mDNP) were synthesized to facilitate active uptake via the mannose receptor expressed exclusively by macrophages using polyamidoamine dendrimer. Terminal amine groups were used to conjugate mannose and LXR-L T091317 via polyethylene glycol spacers. mDNP-LXR-L was effectively taken up by macrophages (and not by hepatocytes), increased expression of LXR target genes (ABCA1/ABCG1), and enhanced cholesterol efflux. When administered intravenously to LDLR-/- mice with established plaques, significant accumulation of fluorescently labeled mDNP-LXR-L was seen in atherosclerotic plaque-associated macrophages. Four weekly injections of mDNP-LXR-L led to significant reduction in atherosclerotic plaque progression, plaque necrosis, and plaque inflammation as assessed by expression of nuclear factor kappa B target gene matrix metalloproteinase 9; no increase in hepatic lipogenic genes or plasma lipids was observed. These studies validate the development of a macrophage-specific delivery platform for the delivery of anti-atherosclerotic agents directly to the plaque-associated macrophages to attenuate plaque

  9. Proprotein convertase 1/3 inhibited macrophages: A novel therapeutic based on drone macrophages.

    Science.gov (United States)

    Duhamel, Marie; Rodet, Franck; Murgoci, Adriana; Wisztorski, Maxence; Day, Robert; Fournier, Isabelle; Salzet, Michel

    2016-06-01

    We demonstrated here thanks to proteomic, that proprotein convertase 1/3 knockdown macrophages present all the characteristic of activated pro-inflammatory macrophages. TLR4 and TLR9 signaling pathways can be enhanced leading to the secretion of pro-inflammatory factors and antitumor factors. We can control their activation by controlling one enzyme, PC1/3. In a tumor context, PC1/3 inhibition in macrophages may reactivate them and lead to a cytokine storm after stimulation "at distance" with a TLR ligand. Therefore, we name these proprotein convertase inhibited macrophages the "drone macrophages". They constitute an innovative cell therapy to treat efficiently tumors.

  10. Mycobacterial Phenolic Glycolipids Selectively Disable TRIF-Dependent TLR4 Signaling in Macrophages

    Directory of Open Access Journals (Sweden)

    Reid Oldenburg

    2018-01-01

    Full Text Available Phenolic glycolipids (PGLs are cell wall components of a subset of pathogenic mycobacteria, with immunomodulatory properties. Here, we show that in addition, PGLs exert antibactericidal activity by limiting the production of nitric oxide synthase (iNOS in mycobacteria-infected macrophages. PGL-mediated downregulation of iNOS was complement receptor 3-dependent and comparably induced by bacterial and purified PGLs. Using Mycobacterium leprae PGL-1 as a model, we found that PGLs dampen the toll-like receptor (TLR4 signaling pathway, with macrophage exposure to PGLs leading to significant reduction in TIR-domain-containing adapter-inducing interferon-β (TRIF protein level. PGL-driven decrease in TRIF operated posttranscriptionally and independently of Src-family tyrosine kinases, lysosomal and proteasomal degradation. It resulted in the defective production of TRIF-dependent IFN-β and CXCL10 in TLR4-stimulated macrophages, in addition to iNOS. Our results unravel a mechanism by which PGLs hijack both the bactericidal and inflammatory responses of host macrophages. Moreover, they identify TRIF as a critical node in the crosstalk between CR3 and TLR4.

  11. Factors associated with high physical exertion during manual lifting

    DEFF Research Database (Denmark)

    Andersen, Lars L.; Sundstrup, Emil; Brandt, Mikkel

    2018-01-01

    BACKGROUND: High physical exertion during work is a risk factor for back pain and long-term sickness absence. OBJECTIVE: To investigate which factors are associated with physical exertion during manual lifting. METHODS: From 14 workplaces across Denmark, 200 blue-collar workers reported perceived...... physical exertion (Borg-CR10) during manual lifting from floor to table height of 5, 10, 20 and 30 kg at the beginning and end of the working day. The workers also responded to a questionnaire and went through testing of isometric back muscle strength. Associations were modelled using logistic regression...... during manual lifting in blue-collar workers. These factors should be considered when planning work with manual lifting for individual workers....

  12. Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-γ.

    Science.gov (United States)

    Pahl, Jens H W; Kwappenberg, Kitty M C; Varypataki, Eleni M; Santos, Susy J; Kuijjer, Marieke L; Mohamed, Susan; Wijnen, Juul T; van Tol, Maarten J D; Cleton-Jansen, Anne-Marie; Egeler, R Maarten; Jiskoot, Wim; Lankester, Arjan C; Schilham, Marco W

    2014-03-10

    In osteosarcoma, the presence of tumor-infiltrating macrophages positively correlates with patient survival in contrast to the negative effect of tumor-associated macrophages in patients with other tumors. Liposome-encapsulated muramyl tripeptide (L-MTP-PE) has been introduced in the treatment of osteosarcoma patients, which may enhance the potential anti-tumor activity of macrophages. Direct anti-tumor activity of human macrophages against human osteosarcoma cells has not been described so far. Hence, we assessed osteosarcoma cell growth after co-culture with human macrophages. Monocyte-derived M1-like and M2-like macrophages were polarized with LPS + IFN-γ, L-MTP-PE +/- IFN-γ or IL-10 and incubated with osteosarcoma cells. Two days later, viable tumor cell numbers were analyzed. Antibody-dependent effects were investigated using the therapeutic anti-EGFR antibody cetuximab. M1-like macrophages inhibited osteosarcoma cell growth when activated with LPS + IFN-γ. Likewise, stimulation of M1-like macrophages with liposomal muramyl tripeptide (L-MTP-PE) inhibited tumor growth, but only when combined with IFN-γ. Addition of the tumor-reactive anti-EGFR antibody cetuximab did not further improve the anti-tumor activity of activated M1-like macrophages. The inhibition was mediated by supernatants of activated M1-like macrophages, containing TNF-α and IL-1β. However, specific blockage of these cytokines, nitric oxide or reactive oxygen species did not inhibit the anti-tumor effect, suggesting the involvement of other soluble factors released upon macrophage activation. While LPS + IFN-γ-activated M2-like macrophages had low anti-tumor activity, IL-10-polarized M2-like macrophages were able to reduce osteosarcoma cell growth in the presence of the anti-EGFR cetuximab involving antibody-dependent tumor cell phagocytosis. This study demonstrates that human macrophages can be induced to exert direct anti-tumor activity against osteosarcoma cells. Our

  13. Influence of permittivity on gradient force exerted on Mie spheres.

    Science.gov (United States)

    Chen, Jun; Li, Kaikai; Li, Xiao

    2018-04-01

    In optical trapping, whether a particle could be stably trapped into the focus region greatly depends on the strength of the gradient force. Individual theoretical study on gradient force exerted on a Mie particle is rare because the mathematical separation of the gradient force and the scattering force in the Mie regime is difficult. Based on the recent forces separation work by Du et al. [Sci. Rep.7, 18042 (2017)SRCEC32045-232210.1038/s41598-017-17874-1], we investigate the influence of permittivity (an important macroscopic physical quantity) on the gradient force exerted on a Mie particle by cooperating numerical calculation using fast Fourier transform and analytical analysis using multipole expansion. It is revealed that gradient forces exerted on small spheres are mainly determined by the electric dipole moment except for certain permittivity with which the real part of polarizability of the electric dipole approaches zero, and gradient forces exerted on larger spheres are complex because of the superposition of the multipole moments. The classification of permittivity corresponding to different varying tendencies of gradient forces exerted on small spheres or larger Mie particles are illustrated. Absorption of particles favors the trapping of small spheres by gradient force, while it is bad for the trapping of larger particles. Moreover, the absolute values of the maximal gradient forces exerted on larger Mie particles decline greatly versus the varied imaginary part of permittivity. This work provides elaborate investigation on the different varying tendencies of gradient forces versus permittivity, which favors more accurate and free optical trapping.

  14. Ameloginins promote an alternatively activated macrophage phenotype in vitro

    DEFF Research Database (Denmark)

    Almqvist, S; Werthen, M; Lyngstadas, SP

    2011-01-01

    aggregates were visualised by transmission electron microscopy. The amelogenin treatment of macrophages increased several pro- and anti-inflammatory cytokines, including alternative macrophage activation marker AMAC-1 (p

  15. Macrophage diversity in renal injury and repair

    NARCIS (Netherlands)

    Ricardo, Sharon D.; van Goor, Harry; Eddy, Allison A.

    Monocyte-derived macrophages can determine the outcome of the immune response and whether this response contributes to tissue repair or mediates tissue destruction. In addition to their important role in immune-mediated renal disease and host defense, macrophages play a fundamental role in tissue

  16. Macrophage polarization: the epigenetic point of view

    NARCIS (Netherlands)

    van den Bossche, Jan; Neele, Annette E.; Hoeksema, Marten A.; de Winther, Menno P. J.

    2014-01-01

    The first functions of macrophages to be identified by Metchnikoff were phagocytosis and microbial killing. Although these are important features, macrophages are functionally very complex and involved in virtually all aspects of life, from immunity and host defense, to homeostasis, tissue repair

  17. Macrophages Promote Axon Regeneration with Concurrent Neurotoxicity

    NARCIS (Netherlands)

    Gensel, J.C.; Nakamura, S.; Guan, Z.; Rooijen, van N.; Ankeny, D.P.; Popovich, P.G.

    2009-01-01

    Activated macrophages can promote regeneration of CNS axons. However, macrophages also release factors that kill neurons. These opposing functions are likely induced simultaneously but are rarely considered together in the same experimental preparation. A goal of this study was to unequivocally

  18. Genesis and kinetics of peritoneal macrophages

    International Nuclear Information System (INIS)

    Wacker, H.H.

    1982-01-01

    The author intended to develop an experimental model for investigations of the proliferation kinetics of tissue macrophages, using the example of peritoneal macrophages. To get a suitable cell population, a blood cell population was labelled with 3 H-thymidine and transferred in a parabiotic test. (orig./MG) [de

  19. Macrophage Activation Mechanisms in Human Monocytic Cell Line-derived Macrophages.

    Science.gov (United States)

    Sumiya, Yu; Ishikawa, Mami; Inoue, Takahiro; Inui, Toshio; Kuchiike, Daisuke; Kubo, Kentaro; Uto, Yoshihiro; Nishikata, Takahito

    2015-08-01

    Although the mechanisms of macrophage activation are important for cancer immunotherapy, they are poorly understood. Recently, easy and robust assay systems for assessing the macrophage-activating factor (MAF) using monocytic cell line-derived macrophages were established. Gene-expression profiles of U937- and THP-1-derived macrophages were compared using gene expression microarray analysis and their responses against several MAFs were examined by in vitro experiments. Activated states of these macrophages could not be assigned to a specific sub-type but showed, however, different unique characteristics. The unique of monocytic cell line-derived macrophages could provide clues to understand the activation mechanism of macrophages and, therefore, help to develop effective cancer immunotherapy with MAFs. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  20. Purinergic signaling during macrophage differentiation results in M2 alternative activated macrophages.

    Science.gov (United States)

    Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Pelegrín, Pablo

    2016-02-01

    Macrophages represent a highly heterogenic cell population of the innate immune system, with important roles in the initiation and resolution of the inflammatory response. Purinergic signaling regulates both M1 and M2 macrophage function at different levels by controlling the secretion of cytokines, phagocytosis, and the production of reactive oxygen species. We found that extracellular nucleotides arrest macrophage differentiation from bone marrow precursors via adenosine and P2 receptors. This results in a mature macrophage with increased expression of M2, but not M1, genes. Similar to adenosine and ATP, macrophage growth arrested with LPS treatment resulted in an increase of the M2-related marker Ym1. Recombinant Ym1 was able to affect macrophage proliferation and could, potentially, be involved in the arrest of macrophage growth during hematopoiesis. © Society for Leukocyte Biology.

  1. Alternatively activated macrophages (M2 macrophages) in the skin of patient with localized scleroderma.

    Science.gov (United States)

    Higashi-Kuwata, Nobuyo; Makino, Takamitsu; Inoue, Yuji; Takeya, Motohiro; Ihn, Hironobu

    2009-08-01

    Localized scleroderma is a connective tissue disorder that is limited to the skin and subcutaneous tissue. Macrophages have been reported to be particularly activated in patients with skin disease including systemic sclerosis and are potentially important sources for fibrosis-inducing cytokines, such as transforming growth factor beta. To clarify the features of immunohistochemical characterization of the immune cell infiltrates in localized scleroderma focusing on macrophages, skin biopsy specimens were analysed by immunohistochemistry. The number of cells stained with monoclonal antibodies, CD68, CD163 and CD204, was calculated. An evident macrophage infiltrate and increased number of alternatively activated macrophages (M2 macrophages) in their fibrotic areas were observed along with their severity of inflammation. This study revealed that alternatively activated macrophages (M2 macrophages) may be a potential source of fibrosis-inducing cytokines in localized scleroderma, and may play a crucial role in the pathogenesis of localized scleroderma.

  2. Mycobacteria, Metals, and the Macrophage

    Science.gov (United States)

    Niederweis, Michael; Wolschendorf, Frank; Mitra, Avishek; Neyrolles, Olivier

    2015-01-01

    Summary Mycobacterium tuberculosis is a facultative intracellular pathogen that thrives inside host macrophages. A key trait of M. tuberculosis is to exploit and manipulate metal cation trafficking inside infected macrophages to ensure survival and replication inside the phagosome. Here we describe the recent fascinating discoveries that the mammalian immune system responds to infections with M. tuberculosis by overloading the phagosome with copper and zinc, two metals which are essential nutrients in small quantities but are toxic in excess. M. tuberculosis has developed multi-faceted resistance mechanisms to protect itself from metal toxicity including control of uptake, sequestration inside the cell, oxidation, and efflux. The host response to infections combines this metal poisoning strategy with nutritional immunity mechanisms that deprive M. tuberculosis from metals such as iron and manganese to prevent bacterial replication. Both immune mechanisms rely on the translocation of metal transporter proteins to the phagosomal membrane during the maturation process of the phagosome. This review summarizes these recent findings and discusses how metal-targeted approaches might complement existing TB chemotherapeutic regimens with novel anti-infective therapies. PMID:25703564

  3. Depletion of cutaneous macrophages and dendritic cells promotes growth of basal cell carcinoma in mice.

    Science.gov (United States)

    König, Simone; Nitzki, Frauke; Uhmann, Anja; Dittmann, Kai; Theiss-Suennemann, Jennifer; Herrmann, Markus; Reichardt, Holger M; Schwendener, Reto; Pukrop, Tobias; Schulz-Schaeffer, Walter; Hahn, Heidi

    2014-01-01

    Basal cell carcinoma (BCC) belongs to the group of non-melanoma skin tumors and is the most common tumor in the western world. BCC arises due to mutations in the tumor suppressor gene Patched1 (Ptch). Analysis of the conditional Ptch knockout mouse model for BCC reveals that macrophages and dendritic cells (DC) of the skin play an important role in BCC growth restraining processes. This is based on the observation that a clodronate-liposome mediated depletion of these cells in the tumor-bearing skin results in significant BCC enlargement. The depletion of these cells does not modulate Ki67 or K10 expression, but is accompanied by a decrease in collagen-producing cells in the tumor stroma. Together, the data suggest that cutaneous macrophages and DC in the tumor microenvironment exert an antitumor effect on BCC.

  4. Effect of Kramecyne on the Inflammatory Response in Lipopolysaccharide-Stimulated Peritoneal Macrophages

    Science.gov (United States)

    Sánchez-Miranda, E.; Lemus-Bautista, J.; Pérez, S.; Pérez-Ramos, J.

    2013-01-01

    Kramecyne is a new peroxide, it was isolated from Krameria cytisoides, methanol extract, and this plant was mostly found in North and South America. This compound showed potent anti-inflammatory activity; however, the mechanisms by which this compound exerts its anti-inflammatory effect are not well understood. In this study, we examined the effects of kramecyne on inflammatory responses in mouse lipopolysaccharide- (LPS-) induced peritoneal macrophages. Our findings indicate that kramecyne inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin- (IL-) 6. During the inflammatory process, levels of cyclooxygenase- (COX-) 2, nitric oxide synthase (iNOS), and nitric oxide (NO) increased in mouse peritoneal macrophages; however, kramecyne suppressed them significantly. These results provide novel insights into the anti-inflammatory actions and support its potential use in the treatment of inflammatory diseases. PMID:23573152

  5. Life history of plutonium dioxide in the lung: from macrophage to carcinoma

    International Nuclear Information System (INIS)

    Sanders, C.L.; Adee, R.R.; Rhoads, K.; Madison, R.M.

    1976-01-01

    The pulmonary macrophage exerts a large influence upon the distribution of alpha energy from inhaled 239 PuO 2 , while the pulmonary epithelium serves as the prime 'target' cell for neoplastic transformation. In the rat, of the total radiation energy absorbed in the lung, about 80 percent is delivered to the alveolar septae, 19 percent to the vascular tissues and less than 1 percent to the bronchial epithelium. Of the radiation energy delivered to the alveolar septae, about 10 percent is absorbed by alveolar epithelium, 10 percent by macrophage, 10 percent by endothelium and 70 percent by other cellular and noncellular elements. Both the type II alveolar epithelium and the bronchiolar epithelium serve as the probable cells of origin for induced adenocarcinoma

  6. Unraveling Macrophage Heterogeneity in Erythroblastic Islands

    Directory of Open Access Journals (Sweden)

    Katie Giger Seu

    2017-09-01

    Full Text Available Mammalian erythropoiesis occurs within erythroblastic islands (EBIs, niches where maturing erythroblasts interact closely with a central macrophage. While it is generally accepted that EBI macrophages play an important role in erythropoiesis, thorough investigation of the mechanisms by which they support erythropoiesis is limited largely by inability to identify and isolate the specific macrophage sub-population that constitute the EBI. Early studies utilized immunohistochemistry or immunofluorescence to study EBI morphology and structure, while more recent efforts have used flow cytometry for high-throughput quantitative characterization of EBIs and their central macrophages. However, these approaches based on the expectation that EBI macrophages are a homogeneous population (F4/80+/CD169+/VCAM-1+ for example provide an incomplete picture and potentially overlook critical information about the nature and biology of the islands and their central macrophages. Here, we present a novel method for analysis of EBI macrophages from hematopoietic tissues of mice and rats using multispectral imaging flow cytometry (IFC, which combines the high-throughput advantage of flow cytometry with the morphological and fluorescence features derived from microscopy. This method provides both quantitative analysis of EBIs, as well as structural and morphological details of the central macrophages and associated cells. Importantly, the images, combined with quantitative software features, can be used to evaluate co-expression of phenotypic markers which is crucial since some antigens used to identify macrophages (e.g., F4/80 and CD11b can be expressed on non-erythroid cells associated with the islands instead of, or in addition to the central macrophage itself. We have used this method to analyze native EBIs from different hematopoietic tissues and evaluated the expression of several markers that have been previously reported to be expressed on EBI macrophages. We

  7. Leucine supplementation attenuates macrophage foam-cell formation: Studies in humans, mice, and cultured macrophages.

    Science.gov (United States)

    Grajeda-Iglesias, Claudia; Rom, Oren; Hamoud, Shadi; Volkova, Nina; Hayek, Tony; Abu-Saleh, Niroz; Aviram, Michael

    2018-02-05

    Whereas atherogenicity of dietary lipids has been largely studied, relatively little is known about the possible contribution of dietary amino acids to macrophage foam-cell formation, a hallmark of early atherogenesis. Recently, we showed that leucine has antiatherogenic properties in the macrophage model system. In this study, an in-depth investigation of the role of leucine in macrophage lipid metabolism was conducted by supplementing humans, mice, or cultured macrophages with leucine. Macrophage incubation with serum obtained from healthy adults supplemented with leucine (5 g/d, 3 weeks) significantly decreased cellular cholesterol mass by inhibiting the rate of cholesterol biosynthesis and increasing cholesterol efflux from macrophages. Similarly, leucine supplementation to C57BL/6 mice (8 weeks) resulted in decreased cholesterol content in their harvested peritoneal macrophages (MPM) in relation with reduced cholesterol biosynthesis rate. Studies in J774A.1 murine macrophages revealed that leucine dose-dependently decreased cellular cholesterol and triglyceride mass. Macrophages treated with leucine (0.2 mM) showed attenuated uptake of very low-density lipoproteins and triglyceride biosynthesis rate, with a concurrent down-regulation of diacylglycerol acyltransferase-1, a key enzyme catalyzing triglyceride biosynthesis in macrophages. Similar effects were observed when macrophages were treated with α-ketoisocaproate, a key leucine metabolite. Finally, both in vivo and in vitro leucine supplementation significantly improved macrophage mitochondrial respiration and ATP production. The above studies, conducted in human, mice, and cultured macrophages, highlight a protective role for leucine attenuating macrophage foam-cell formation by mechanisms related to the metabolism of cholesterol, triglycerides, and energy production. © 2018 BioFactors, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  8. Suppressive effects of ketamine on macrophage functions

    International Nuclear Information System (INIS)

    Chang Yi; Chen, T.-L.; Sheu, J.-R.; Chen, R.-M.

    2005-01-01

    Ketamine is an intravenous anesthetic agent. Clinically, induction of anesthesia with ketamine can cause immunosuppression. Macrophages play important roles in host defense. In this study, we attempted to evaluate the effects of ketamine on macrophage functions and its possible mechanism using mouse macrophage-like Raw 264.7 cells as the experimental model. Exposure of macrophages to 10 and 100 μM ketamine, which correspond to 0.1 and 1 times the clinically relevant concentration, for 1, 6, and 24 h had no effect on cell viability or lactate dehydrogenase release. When the administered concentration reached 1000 μM, ketamine caused a release of lactate dehydrogenase and cell death. Ketamine, at 10 and 100 μM, did not affect the chemotactic activity of macrophages. Administration of 1000 μM ketamine in macrophages resulted in a decrease in cell migration. Treatment of macrophages with ketamine reduced phagocytic activities. The oxidative ability of macrophages was suppressed by ketamine. Treatment with lipopolysaccharide induced TNF-α, IL-1β, and IL-6 mRNA in macrophages. Administration of ketamine alone did not influence TNF-α, IL-1β, or IL-6 mRNA production. Meanwhile, cotreatment with ketamine and lipopolysaccharide significantly inhibited lipopolysaccharide-induced TNF-α, IL-1β, and IL-6 mRNA levels. Exposure to ketamine led to a decrease in the mitochondrial membrane potential. However, the activity of mitochondrial complex I NADH dehydrogenase was not affected by ketamine. This study shows that a clinically relevant concentration of ketamine (100 μM) can suppress macrophage function of phagocytosis, its oxidative ability, and inflammatory cytokine production possibly via reduction of the mitochondrial membrane potential instead of direct cellular toxicity

  9. LC-MS analysis and cytoprotective effect against the mercurium and aluminium toxicity by bioactive products of Psidium brownianum Mart. ex DC.

    Science.gov (United States)

    Sobral-Souza, Celestina E; Silva, Ana R P; Leite, Nadghia F; Costa, José G M; Menezes, Irwin R A; Cunha, Francisco A B; Rolim, Larissa A; Coutinho, Henrique D M

    2018-03-21

    This study aimed to verify the chelating, antioxidant and cytoprotective activities of Psidium brownianum Mart. Ex DC against mercury and aluminum. The ethanolic extract, as well as the tannic and flavonoid fractions, were prepared and subjected to liquid chromatography-mass spectrometry analysis. Ferric ion reduction and antioxidant activity measurement using the FRAP method were performed with P. brownianum. After determining the sub-allelopathic doses, germination tests using Lactuca sativa (lettuce) seeds were performed. The main compounds identified in the extract and fractions were: quercetin and its derivatives; myricetin and its derivatives; gallic acid; ellagic acid; quinic acid and gallocatechin. The Minimum Inhibitory Concentration (MIC) for all samples were ≥ 1024 μg/mL. The flavonoid fraction in association with mercury chloride demonstrated cytoprotection (p flavonoids. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Exertional Heat Illness among Secondary School Athletes: Statewide Policy Implications

    Science.gov (United States)

    Rodgers, Jill; Slota, Peggy; Zamboni, Beth

    2018-01-01

    Exertional heat illness (EHI) is a leading cause of preventable death among student athletes. While causes and preventative measures for EHI are known, school districts may not be implementing evidence-based practices. This descriptive, exploratory study explored school policies, resources, and practices of coaches in a mid-Atlantic state in the…

  11. Mechanochemistry Induced Using Force Exerted by a Functionalized Microscope Tip

    DEFF Research Database (Denmark)

    Zhang, Yajie; Wang, Yongfeng; Lü, Jing-Tao

    2017-01-01

    Atomic-scale mechanochemistry is realized from force exerted by a C60 -functionalized scanning tunneling microscope tip. Two conformers of tin phthalocyanine can be prepared on coinage-metal surfaces. A transition between these conformers is induced on Cu(111) and Ag(100). Density...

  12. Juglans regia Hexane Extract Exerts Antitumor Effect, Apoptosis ...

    African Journals Online (AJOL)

    Original Research Article. Juglans regia Hexane Extract Exerts Antitumor Effect,. Apoptosis Induction and Cell Circle Arrest in Prostate. Cancer Cells In vitro. Wei Li1, De-Yuan Li2*, ... composition of walnut is juglone (5-hydroxy-1, 4- naphthoquinone), the .... extract was confirmed by studying apoptotic body formation using ...

  13. Exertional heat illness: emerging concepts and advances in prehospital care.

    Science.gov (United States)

    Pryor, Riana R; Roth, Ronald N; Suyama, Joe; Hostler, David

    2015-06-01

    Exertional heat illness is a classification of disease with clinical presentations that are not always diagnosed easily. Exertional heat stroke is a significant cause of death in competitive sports, and the increasing popularity of marathons races and ultra-endurance competitions will make treating many heat illnesses more common for Emergency Medical Services (EMS) providers. Although evidence is available primarily from case series and healthy volunteer studies, the consensus for treating exertional heat illness, coupled with altered mental status, is whole body rapid cooling. Cold or ice water immersion remains the most effective treatment to achieve this goal. External thermometry is unreliable in the context of heat stress and direct internal temperature measurement by rectal or esophageal probes must be used when diagnosing heat illness and during cooling. With rapid recognition and implementation of effective cooling, most patients suffering from exertional heat stroke will recover quickly and can be discharged home with instructions to rest and to avoid heat stress and exercise for a minimum of 48 hours; although, further research pertaining to return to activity is warranted.

  14. Forces exerted by jumping children: A pilot study

    NARCIS (Netherlands)

    Moes, C.C.M.; Bakker, H.E.

    1998-01-01

    This article reports on a pilot study of the loads exerted vertically by children when jumping. The subjects of the study were 17 children, aged from two to twelve years. Measurements were made using video recordings and a force-plate. The influence of the stiffness of the base and of jumping with

  15. Mind the gap : probing exertion experience with experiential design landscapes

    NARCIS (Netherlands)

    Ren, X.; Lu, Y.; Brombacher, A.C.; Bogers, S.J.A.

    2016-01-01

    In this paper, we report our study on applying Experiential Design Landscapes as the basis of design process to support the design of exertion games. We approach this question by setting up an 8-day interaction design module with 7 groups of students. The methods of our module were developed based

  16. 20 CFR 220.132 - Physical exertion requirements.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false Physical exertion requirements. 220.132 Section 220.132 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT... of walking and standing is often necessary in carrying out job duties. Jobs are sedentary if walking...

  17. Modulation of transglutaminase 2 activity in H9c2 cells by PKC and PKA signalling: a role for transglutaminase 2 in cytoprotection

    Science.gov (United States)

    Almami, Ibtesam; Dickenson, John M; Hargreaves, Alan J; Bonner, Philip L R

    2014-01-01

    BACKGROUND AND PURPOSE Tissue transglutaminase (TG2) has been shown to mediate cell survival in many cell types. In this study, we investigated whether the role of TG2 in cytoprotection was mediated by the activation of PKA and PKC in cardiomyocyte-like H9c2 cells. EXPERIMENTAL APPROACH H9c2 cells were extracted following stimulation with phorbol-12-myristate-13-acetate (PMA) and forskolin. Transglutaminase activity was determined using an amine incorporating and a protein crosslinking assay. The presence of TG isoforms (TG1, 2, 3) was determined using Western blot analysis. The role of TG2 in PMA- and forskolin-induced cytoprotection was investigated by monitoring H2O2-induced oxidative stress in H9c2 cells. KEY RESULTS Western blotting showed TG2 >> TG1 protein expression but no detectable TG3. The amine incorporating activity of TG2 in H9c2 cells increased in a time and concentration-dependent manner following stimulation with PMA and forskolin. PMA and forskolin-induced TG2 activity was blocked by PKC (Ro 31-8220) and PKA (KT 5720 and Rp-8-Cl-cAMPS) inhibitors respectively. The PMA- and forskolin-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Immunocytochemistry revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (β-tubulin) and novel (α-actinin) protein substrates for TG2. Pretreatment with PMA and forskolin reversed H2O2-induced decrease in MTT reduction and release of LDH. TG2 inhibitors R283 and Z-DON blocked PMA- and forskolin-induced cytoprotection. CONCLUSIONS AND IMPLICATIONS TG2 activity was stimulated via PKA- and PKC-dependent signalling pathways in H9c2 cells These results suggest a role for TG2 in cytoprotection induced by these kinases. PMID:24821315

  18. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals

    International Nuclear Information System (INIS)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-ichi; Kotani, Eiji; Hirano, Tomoko; Nakajima, Yumiko; Matsumoto, Goichi; Mori, Hajime

    2014-01-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase–Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6. - Highlights: • 3D cultures using FGF-2 and FGF-7 microcrystals as a human skin model • Cytoprotection of keratinocytes against ROS by FGF-7 microcrystals • Overexpression of SOD and Prdx6 in keratinocytes by FGF-7 microcrystals

  19. 3D co-cultures of keratinocytes and melanocytes and cytoprotective effects on keratinocytes against reactive oxygen species by insect virus-derived protein microcrystals

    Energy Technology Data Exchange (ETDEWEB)

    Shimabukuro, Junji; Yamaoka, Ayako; Murata, Ken-ichi [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Kotani, Eiji [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan); Hirano, Tomoko [Venture Laboratory, Kyoto Institute of Technology, Kyoto (Japan); Nakajima, Yumiko [Functional Genomics Group, COMB, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa (Japan); Matsumoto, Goichi [Division of Oral Surgery, Yokohama Clinical Education Center of Kanagawa Dental University, Yokohama (Japan); Mori, Hajime, E-mail: hmori@kit.ac.jp [Department of Applied Biology, Kyoto Institute of Technology, Kyoto (Japan); Insect Biomedical Research Center, Kyoto Institute of Technology, Kyoto (Japan)

    2014-09-01

    Stable protein microcrystals called polyhedra are produced by certain insect viruses. Cytokines, such as fibroblast growth factors (FGFs), can be immobilized within polyhedra. Here, we investigated three-dimensional (3D) co-cultures of keratinocytes and melanocytes on collagen gel containing FGF-2 and FGF-7 polyhedra. Melanocytes were observed to reside at the base of the 3D cell culture and melanin was also typically observed in the lower layer. The 3D cell culture model with FGF-2 and FGF-7 polyhedra was a useful in vitro model of the epidermis due to effective melanogenesis, proliferation and differentiation of keratinocytes. FGF-7 polyhedra showed a potent cytoprotective effect when keratinocytes were treated with menadione, which is a generator of reactive oxygen species. The cytoprotective effect was activated by the inositol triphosphate kinase–Akt pathway leading to upregulation of the antioxidant enzymes superoxide dismutase and peroxiredoxin 6. - Highlights: • 3D cultures using FGF-2 and FGF-7 microcrystals as a human skin model • Cytoprotection of keratinocytes against ROS by FGF-7 microcrystals • Overexpression of SOD and Prdx6 in keratinocytes by FGF-7 microcrystals.

  20. Susceptibility of bone marrow-derived macrophages to influenza virus infection is dependent on macrophage phenotype.

    Science.gov (United States)

    Campbell, Gillian M; Nicol, Marlynne Q; Dransfield, Ian; Shaw, Darren J; Nash, Anthony A; Dutia, Bernadette M

    2015-10-01

    The role of the macrophage in influenza virus infection is complex. Macrophages are critical for resolution of influenza virus infections but implicated in morbidity and mortality in severe infections. They can be infected with influenza virus and consequently macrophage infection is likely to have an impact on the host immune response. Macrophages display a range of functional phenotypes, from the prototypical pro-inflammatory classically activated cell to alternatively activated anti-inflammatory macrophages involved in immune regulation and wound healing. We were interested in how macrophages of different phenotype respond to influenza virus infection and therefore studied the infection of bone marrow-derived macrophages (BMDMs) of classical and alternative phenotype in vitro. Our results show that alternatively activated macrophages are more readily infected and killed by the virus than classically activated. Classically activated BMDMs express the pro-inflammatory markers inducible nitric oxide synthase (iNOS) and TNF-α, and TNF-α expression was further upregulated following infection. Alternatively activated macrophages express Arginase-1 and CD206; however, following infection, expression of these markers was downregulated whilst expression of iNOS and TNF-α was upregulated. Thus, infection can override the anti-inflammatory state of alternatively activated macrophages. Importantly, however, this results in lower levels of pro-inflammatory markers than those produced by classically activated cells. Our results showed that macrophage phenotype affects the inflammatory macrophage response following infection, and indicated that modulating the macrophage phenotype may provide a route to develop novel strategies to prevent and treat influenza virus infection.

  1. HIV-1 Latency in Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2014-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.

  2. Inflammatory Macrophages Promotes Development of Diabetic Encephalopathy.

    Science.gov (United States)

    Wang, Beiyun; Miao, Ya; Zhao, Zhe; Zhong, Yuan

    2015-01-01

    Diabetes and Alzheimer's disease are often associated with each other, whereas the relationship between two diseases is ill-defined. Although hyperglycemia during diabetes is a major cause of encephalopathy, diabetes may also cause chronic inflammatory complications including peripheral neuropathy. Hence the role and the characteristics of inflammatory macrophages in the development of diabetic encephalopathy need to be clarified. Diabetes were induced in mice by i.p. injection of streptozotocin (STZ). Two weeks after STZ injection and confirmation of development of diabetes, inflammatory macrophages were eliminated by i.p. injection of 20µg saporin-conjugated antibody against a macrophage surface marker CD11b (saporin-CD11b) twice per week, while a STZ-treated group received injection of rat IgG of same frequency as a control. The effects of macrophage depletion on brain degradation markers, brain malondialdehyde (MDA), catalase, superoxidase anion-positive cells and nitric oxide (NO) were measured. Saporin-CD11b significantly reduced inflammatory macrophages in brain, without affecting mouse blood glucose, serum insulin, glucose responses and beta cell mass. However, reduced brain macrophages significantly inhibited the STZ-induced decreases in brain MDA, catalase and superoxidase anion-positive cells, and the STZ-induced decreases in brain NO. Inflammatory macrophages may promote development of diabetic encephalopathy. © 2015 S. Karger AG, Basel.

  3. Continuous de novo biosynthesis of haem and its rapid turnover to bilirubin are necessary for cytoprotection against cell damage

    Science.gov (United States)

    Takeda, Taka-aki; Mu, Anfeng; Tai, Tran Tien; Kitajima, Sakihito; Taketani, Shigeru

    2015-01-01

    It is well known that haem serves as the prosthetic group of various haemoproteins that function in oxygen transport, respiratory chain, and drug metabolism. However, much less is known about the functions of the catabolites of haem in mammalian cells. Haem is enzymatically degraded to iron, carbon monoxide (CO), and biliverdin, which is then converted to bilirubin. Owing to difficulties in measuring bilirubin, however, the generation and transport of this end product remain unclear despite its clinical importance. Here, we used UnaG, the recently identified bilirubin-binding fluorescent protein, to analyse bilirubin production in a variety of human cell lines. We detected a significant amount of bilirubin with many non-blood cell types, which was sensitive to inhibitors of haem metabolism. These results suggest that there is a basal level of haem synthesis and its conversion into bilirubin. Remarkably, substantial changes were observed in the bilirubin generation when cells were exposed to stress insults. Since the stress-induced cell damage was exacerbated by the pharmacological blockade of haem metabolism but was ameliorated by the addition of biliverdin and bilirubin, it is likely that the de novo synthesis of haem and subsequent conversion to bilirubin play indispensable cytoprotective roles against cell damage. PMID:25990790

  4. Isolating a cytoprotective compound from Ganoderma tsugae: effects on induction of Nrf-2-related genes in endothelial cells.

    Science.gov (United States)

    Wei, Yu-Shan; Wung, Being-Sun; Lin, Yuan-Chun; Hsieh, Chia-Wen

    2009-08-01

    Ganoderma tsugae is a medicinal fungus with several biological activities. It has long been used as a folk remedy for the promotion of health and longevity in China and other oriental countries. Here, a bioactive fraction of G. tsugae was progressively purified to be enriched in the activity of cytoprotective enzymes. The highest bioactivity was detected in the 20% EtOH-precipitated fraction, which was prepared from submerged fermentation filtrate of G. tsugae. Following further purification by gel filtration chromatography and acetone extraction, the most bioactive fraction, F5-2, was identified as a peptidoglycan-like compound. Extracts of G. tsugae (F5-2) induced heme oxygenase-1 (HO-1) and thioredoxin reductase-1 (TrxR1) expression in endothelial cells by increasing NF-E2-related factor-2 (Nrf2) nuclear translocation. Pretreatment with F5-2 increased intracellular glutathione (GSH) and protected against H(2)O(2), suggesting that induction of these antioxidant enzymes is important in protection against oxidative stress. Hence the bioactive peptidoglycan-like compound from G. tsugae might protect endothelial cells.

  5. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes.

    Science.gov (United States)

    Clafshenkel, William P; Murata, Hironobu; Andersen, Jill; Creeger, Yehuda; Koepsel, Richard R; Russell, Alan J

    2016-01-01

    Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP), may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidyl)suberate (BS3). A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system.

  6. The Effect of Covalently-Attached ATRP-Synthesized Polymers on Membrane Stability and Cytoprotection in Human Erythrocytes.

    Directory of Open Access Journals (Sweden)

    William P Clafshenkel

    Full Text Available Erythrocytes have been described as advantageous drug delivery vehicles. In order to ensure an adequate circulation half-life, erythrocytes may benefit from protective enhancements that maintain membrane integrity and neutralize oxidative damage of membrane proteins that otherwise facilitate their premature clearance from circulation. Surface modification of erythrocytes using rationally designed polymers, synthesized via atom-transfer radical polymerization (ATRP, may further expand the field of membrane-engineered red blood cells. This study describes the fate of ATRP-synthesized polymers that were covalently attached to human erythrocytes as well as the effect of membrane engineering on cell stability under physiological and oxidative conditions in vitro. The biocompatible, membrane-reactive polymers were homogenously retained on the periphery of modified erythrocytes for at least 24 hours. Membrane engineering stabilized the erythrocyte membrane and effectively neutralized oxidative species, even in the absence of free-radical scavenger-containing polymers. The targeted functionalization of Band 3 protein by NHS-pDMAA-Cy3 polymers stabilized its monomeric form preventing aggregation in the presence of the crosslinking reagent, bis(sulfosuccinimidylsuberate (BS3. A free radical scavenging polymer, NHS-pDMAA-TEMPO˙, provided additional protection of surface modified erythrocytes in an in vitro model of oxidative stress. Preserving or augmenting cytoprotective mechanisms that extend circulation half-life is an important consideration for the use of red blood cells for drug delivery in various pathologies, as they are likely to encounter areas of imbalanced oxidative stress as they circuit the vascular system.

  7. Chemical study, antioxidant, anti-hypertensive, and cytotoxic/cytoprotective activities of Centaurea cyanus L. petals aqueous extract.

    Science.gov (United States)

    Escher, Graziela Bragueto; Santos, Jânio Sousa; Rosso, Neiva Deliberali; Marques, Mariza Boscacci; Azevedo, Luciana; do Carmo, Mariana Araújo Vieira; Daguer, Heitor; Molognoni, Luciano; Prado-Silva, Leonardo do; Sant'Ana, Anderson Souza; da Silva, Marcia Cristina; Granato, Daniel

    2018-05-19

    This study aimed to optimise the experimental conditions of extraction of the phytochemical compounds and functional properties of Centaurea cyanus petals. The following parameters were determined: the chemical composition (LC-ESI-MS/MS), the effects of pH on the stability and antioxidant activity of anthocyanins, the inhibition of lipid peroxidation, antioxidant activity, anti-hemolytic activity, antimicrobial, anti-hypertensive, and cytotoxic/cytoprotective effect, and the measurements of intracellular reactive oxygen species. Results showed that the temperature and time influenced (p ≤ 0.05) the content of flavonoids, anthocyanins, and FRAP. Only the temperature influenced the total phenolic content, non-anthocyanin flavonoids, and antioxidant activity (DPPH). The statistical approach made it possible to obtain the optimised experimental extraction conditions to increase the level of bioactive compounds. Chlorogenic, caffeic, ferulic, and p-coumaric acids, isoquercitrin, and coumarin were identified as the major compounds in the optimised extract. The optimised extract presented anti-hemolytic and anti-hypertensive activity in vitro, in addition to showing stability and reversibility of anthocyanins and antioxidant activity with pH variation. The C. cyanus extract exhibited high IC 50 and GI 50 (>900 μg/mL) values for all cell lines, meaning low cytotoxicity. Based on the stress oxidative assay, the extract exhibited pro-oxidant action (10-100 μg/mL) but did not cause damage or cell death. Copyright © 2018. Published by Elsevier Ltd.

  8. In vitro antioxidant and cytoprotective properties of Maillard reaction products from phloridzin-amino acid model systems.

    Science.gov (United States)

    Han, Linna; Li, Feng; Yu, Qijian; Li, Dapeng

    2018-01-01

    The aim of this study was to investigate in vitro antioxidant activities and cytoprotective effect of Maillard reaction products (MRPs) from phloridzin (Pz)-amino acid model systems. Their structures were also characterised by Fourier transform-infrared spectroscopy (FTIR). MRPs were prepared from the Pz-methionine (Met), Pz-lysine (Lys), Pz-isoleucine (Ile), Pz-histidine (His) or Pz-glutamic acid (Glu) model system. The Pz-Lys MRPs, rich in antioxidant potency, were subjected to ultrafiltration to yield four MRPs fractions with different molecular weights (Mw). The fraction with Mw 30-50 kDa had significantly (P Maillard reaction. The results obtained in this study may provide some basis for the purported health-promoting effects of MRPs and their potential application as antioxidant agents in food industry. Also, it is important for our understanding of the variation of bioactive substances in food during thermal processing. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Macrophages and Uveitis in Experimental Animal Models

    Directory of Open Access Journals (Sweden)

    Salvador Mérida

    2015-01-01

    Full Text Available Resident and infiltrated macrophages play relevant roles in uveitis as effectors of innate immunity and inductors of acquired immunity. They are major effectors of tissue damage in uveitis and are also considered to be potent antigen-presenting cells. In the last few years, experimental animal models of uveitis have enabled us to enhance our understanding of the leading role of macrophages in eye inflammation processes, including macrophage polarization in experimental autoimmune uveoretinitis and the major role of Toll-like receptor 4 in endotoxin-induced uveitis. This improved knowledge should guide advantageous iterative research to establish mechanisms and possible therapeutic targets for human uveitis resolution.

  10. Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion

    DEFF Research Database (Denmark)

    Falchi, Mario; Varricchio, Lilian; Martelli, Fabrizio

    2015-01-01

    Cultures of human CD34(pos) cells stimulated with erythroid growth factors plus dexamethasone, a model for stress erythropoiesis, generate numerous erythroid cells plus a few macrophages (approx. 3%; 3:1 positive and negative for CD169). Interactions occurring between erythroblasts and macrophages...... in these cultures and the biological effects associated with these interactions were documented by live phase-contrast videomicroscopy. Macrophages expressed high motility interacting with hundreds/thousands of erythroblasts per hour. CD169(pos) macrophages established multiple rapid 'loose' interactions...... with proerythroblasts leading to formation of transient erythroblastic island-like structures. By contrast, CD169(neg) macrophages established 'tight' interactions with mature erythroblasts and phagocytosed these cells. 'Loose' interactions of CD169(pos) macrophages were associated with proerythroblast cytokinesis (the...

  11. The Scavenger Protein Apoptosis Inhibitor of Macrophages (AIM) Potentiates the Antimicrobial Response against Mycobacterium tuberculosis by Enhancing Autophagy

    Science.gov (United States)

    Sanjurjo, Lucía; Amézaga, Núria; Vilaplana, Cristina; Cáceres, Neus; Marzo, Elena; Valeri, Marta; Cardona, Pere-Joan; Sarrias, Maria-Rosa

    2013-01-01

    Apoptosis inhibitor of macrophages (AIM), a scavenger protein secreted by tissue macrophages, is transcriptionally regulated by the nuclear receptor Liver X Receptor (LXR) and Retinoid X Receptor (RXR) heterodimer. Given that LXR exerts a protective immune response against M. tuberculosis, here we analyzed whether AIM is involved in this response. In an experimental murine model of tuberculosis, AIM serum levels peaked dramatically early after infection with M. tuberculosis, providing an in vivo biological link to the disease. We therefore studied the participation of AIM in macrophage response to M. tuberculosis in vitro. For this purpose, we used the H37Rv strain to infect THP-1 macrophages transfected to stably express AIM, thereby increasing infected macrophage survival. Furthermore, the expression of this protein enlarged foam cell formation by enhancing intracellular lipid content. Phagocytosis assays with FITC-labeled M. tuberculosis bacilli indicated that this protein was not involved in bacterial uptake; however, AIM expression decreased the number of intracellular cfus by up to 70% in bacterial killing assays, suggesting that AIM enhances macrophage mycobactericidal activity. Accordingly, M. tuberculosis-infected AIM-expressing cells upregulated the production of reactive oxygen species. Moreover, real-time PCR analysis showed increased mRNA levels of the antimicrobial peptides cathelicidin and defensin 4B. These increases were concomitant with greater cellular concentrations of the autophagy-related molecules Beclin 1 and LC3II, as well as enhanced acidification of mycobacterial phagosomes and LC3 co-localization. In summary, our data support the notion that AIM contributes to key macrophage responses to M. tuberculosis. PMID:24223991

  12. A methanolic extract of Trigonella foenum-graecum (fenugreek seeds regulates markers of macrophage polarization.

    Directory of Open Access Journals (Sweden)

    Nurudeen Hassan

    2015-12-01

    Full Text Available Background: Macrophages are key cellular mediators in diabetes-related inflammation. Molecular cues such as cytokines found in the tissue microenvironment regulates the polarization of macrophages into an M1 (pro-inflammatory or M2 (immunoregulatory phenotype. Recent evidence suggests that M1 macrophages in diabetic patients may contribute to the complications associated with the disease such as atherosclerosis. Trigonella foenum- graecum (Tfg: fenugreek seeds have been used in traditional medicine in Asia, Africa and the Middle-East for their alleged anti-diabetic properties. Objective: To identify the molecular mechanism(s through which Tfg seeds exert their effects, we investigated the role of a crude methanolic extract of Tfg (FME seeds on macrophage polarization in vitro. Method: THP-1 macrophages (Mϕ were treated with gBSA in the presence/absence of FME and the release and expression of M1 and M2 markers/cytokines were analysed. The role of FME on NF-κB activity was also explored using transfected HEK-293T cells. Results: This study found that the FME significantly (P<0.05 decreased gBSA-induced secretion of M1 cytokines (TNF-α, IL-1β, IL-6 and IL-8 in THP-1 Mϕ cells. In the presence of gBSA, FME also significantly increased the gene expression of the M2 marker Dectin-1, but had no effect on IL-10, IL-1Ra. FME also significantly decreased TNF-α induced NF-kB reporter activity. Conclusion: These results suggest that FME can regulate the expression of M1 and M2 markers in THP-1 Mϕ cells. This may be potentially through the modulation of NF-kB activity. Further work should be carried out to identify precise mechanism(s involved in the effects of FME and Tfg seeds.

  13. [Poor tolerance of exertion during sports and bronchial hyperreactivity].

    Science.gov (United States)

    Potiron-Josse, M; Boutet, S; Ginet, J

    1992-11-01

    135 sportsmen and women, 55 girls, 80 boys, aged from 7 to 30 years, from various sports, who complained of bad tolerance of exertion were examined with an exercise test and isocapnic spontaneous hyperventilation. 61, about 45%, during a hyperventilation test had a fall of V.E.M.S. greater than or equal to 20%, showing bronchial hyperreactivity. After three tests, this fall index was greater than or equal to 50%. 68% of the positive responses were seen in boys and 2/3 of the subjects with a positive response were atopics. No other argument could be maintained from the questioning or clinical history to predict the positive or negative character of the hyperventilation (age, sporting level, symptoms, previous asthma or asthmatic, allergy). H.S.V.I. of the chests of a sporting population that complains of exertion intolerance, therefore allows verification of an H.R.B. assessment of its severity and to follow evolution after treatment.

  14. Pressure exerted by a vesicle on a surface

    International Nuclear Information System (INIS)

    Owczarek, A L; Prellberg, T

    2014-01-01

    Several recent works have considered the pressure exerted on a wall by a model polymer. We extend this consideration to vesicles attached to a wall, and hence include osmotic pressure. We do this by considering a two-dimensional directed model, namely that of area-weighted Dyck paths. Not surprisingly, the pressure exerted by the vesicle on the wall depends on the osmotic pressure inside, especially its sign. Here, we discuss the scaling of this pressure in the different regimes, paying particular attention to the crossover between positive and negative osmotic pressure. In our directed model, there exists an underlying Airy function scaling form, from which we extract the dependence of the bulk pressure on small osmotic pressures. (paper)

  15. The response of macrophages to titanium particles is determined by macrophage polarization.

    Science.gov (United States)

    Pajarinen, Jukka; Kouri, Vesa-Petteri; Jämsen, Eemeli; Li, Tian-Fang; Mandelin, Jami; Konttinen, Yrjö T

    2013-11-01

    Aseptic loosening of total joint replacements is driven by the reaction of macrophages to foreign body particles released from the implant. It was hypothesized that the macrophages' response to these particles is dependent, in addition to particle characteristics and contaminating biomolecules, on the state of macrophage polarization as determined by the local cytokine microenvironment. To test this hypothesis we differentiated M1 and M2 macrophages from human peripheral blood monocytes and compared their responses to titanium particles using genome-wide microarray analysis and a multiplex cytokine assay. In comparison to non-activated M0 macrophages, the overall chemotactic and inflammatory responses to titanium particles were greatly enhanced in M1 macrophages and effectively suppressed in M2 macrophages. In addition, the genome-wide approach revealed several novel, potentially osteolytic, particle-induced mediators, and signaling pathway analysis suggested the involvement of toll-like and nod-like receptor signaling in particle recognition. It is concluded that the magnitude of foreign body reaction caused by titanium particles is dependent on the state of macrophage polarization. Thus, by limiting the action of M1 polarizing factors, e.g. bacterial biofilm formation, in peri-implant tissues and promoting M2 macrophage polarization by biomaterial solutions or pharmacologically, it might be possible to restrict wear-particle-induced inflammation and osteolysis. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential.

    Science.gov (United States)

    Schepetkin, Igor A; Quinn, Mark T

    2006-03-01

    Botanical polysaccharides exhibit a number of beneficial therapeutic properties, and it is thought that the mechanisms involved in these effects are due to the modulation of innate immunity and, more specifically, macrophage function. In this review, we summarize our current state of understanding of the macrophage modulatory effects of botanical polysaccharides isolated from a wide array of different species of flora, including higher plants, mushrooms, lichens and algae. Overall, the primary effect of botanical polysaccharides is to enhance and/or activate macrophage immune responses, leading to immunomodulation, anti-tumor activity, wound-healing and other therapeutic effects. Furthermore, botanical and microbial polysaccharides bind to common surface receptors and induce similar immunomodulatory responses in macrophages, suggesting that evolutionarily conserved polysaccharide structural features are shared between these organisms. Thus, the evaluation of botanical polysaccharides provides a unique opportunity for the discovery of novel therapeutic agents and adjuvants that exhibit beneficial immunomodulatory properties.

  17. Epigenetic Regulation of Monocyte and Macrophage Function

    NARCIS (Netherlands)

    Hoeksema, Marten A.; de Winther, Menno P. J.

    2016-01-01

    Monocytes and macrophages are key players in tissue homeostasis and immune responses. Epigenetic processes tightly regulate cellular functioning in health and disease. Recent Advances: Recent technical developments have allowed detailed characterizations of the transcriptional circuitry underlying

  18. Exercise, physical activity, and exertion over the business cycle.

    Science.gov (United States)

    Colman, Gregory; Dave, Dhaval

    2013-09-01

    Shifts in time and income constraints over economic expansions and contractions would be expected to affect individuals' behaviors. We explore the impact of the business cycle on individuals' exercise, time use, and total physical exertion, utilizing information on 112,000 individual records from the 2003-2010 American Time Use Surveys. In doing so, we test a key causal link that has been hypothesized in the relation between unemployment and health, but not heretofore assessed. Using more precise measures of exercise (and other activities) than previous studies, we find that as work-time decreases during a recession, recreational exercise, TV-watching, sleeping, childcare, and housework increase. This, however, does not compensate for the decrease in work-related exertion due to job-loss, and total physical exertion declines. These effects are strongest among low-educated men, which is validating given that employment in the Great Recession has declined most within manufacturing, mining, and construction. We also find evidence of intra-household spillover effects, wherein individuals respond to shifts in spousal employment conditional on their own labor supply. The decrease in total physical activity during recessions is especially problematic for vulnerable populations concentrated in boom-and-bust industries, and may have longer-term effects on obesity and related health outcomes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Lack of RNase L attenuates macrophage functions.

    Directory of Open Access Journals (Sweden)

    Xin Yi

    Full Text Available Macrophages are one of the major cell types in innate immunity against microbial infection. It is believed that the expression of proinflammatory genes such as tumor necrosis factor-α (TNF-α, interleukin (IL-1β, IL-6, and cyclooxygenase-2 (Cox-2 by macrophages is also crucial for activation of both innate and adaptive immunities. RNase L is an interferon (IFN inducible enzyme which is highly expressed in macrophages. It has been demonstrated that RNase L regulates the expression of certain inflammatory genes. However, its role in macrophage function is largely unknown.Bone marrow-derived macrophages (BMMs were generated from RNase L(+/+and (-/- mice. The migration of BMMs was analyzed by using Transwell migration assays. Endocytosis and phagocytosis of macrophages were assessed by using fluorescein isothiocyanate (FITC-Dextran 40,000 and FITC-E. coli bacteria, respectively. The expression of inflammatory genes was determined by Western Blot and ELISA. The promoter activity of Cox-2 was measured by luciferase reporter assays.Lack of RNase L significantly decreased the migration of BMMs induced by M-CSF, but at a less extent by GM-CSF and chemokine C-C motif ligand-2 (CCL2. Interestingly, RNase L deficient BMMs showed a significant reduction of endocytic activity to FITC-Dextran 40,000, but no any obvious effect on their phagocytic activity to FITC-bacteria under the same condition. RNase L impacts the expression of certain genes related to cell migration and inflammation such as transforming growth factor (TGF-β, IL-1β, IL-10, CCL2 and Cox-2. Furthermore, the functional analysis of the Cox-2 promoter revealed that RNase L regulated the expression of Cox-2 in macrophages at its transcriptional level. Taken together, our findings provide direct evidence showing that RNase L contributes to innate immunity through regulating macrophage functions.

  20. A Trematode Parasite Derived Growth Factor Binds and Exerts Influences on Host Immune Functions via Host Cytokine Receptor Complexes.

    Directory of Open Access Journals (Sweden)

    Azad A Sulaiman

    2016-11-01

    Full Text Available The trematode Fasciola hepatica is responsible for chronic zoonotic infection globally. Despite causing a potent T-helper 2 response, it is believed that potent immunomodulation is responsible for rendering this host reactive non-protective host response thereby allowing the parasite to remain long-lived. We have previously identified a growth factor, FhTLM, belonging to the TGF superfamily can have developmental effects on the parasite. Herein we demonstrate that FhTLM can exert influence over host immune functions in a host receptor specific fashion. FhTLM can bind to receptor members of the Transforming Growth Factor (TGF superfamily, with a greater affinity for TGF-β RII. Upon ligation FhTLM initiates the Smad2/3 pathway resulting in phenotypic changes in both fibroblasts and macrophages. The formation of fibroblast CFUs is reduced when cells are cultured with FhTLM, as a result of TGF-β RI kinase activity. In parallel the wound closure response of fibroblasts is also delayed in the presence of FhTLM. When stimulated with FhTLM blood monocyte derived macrophages adopt an alternative or regulatory phenotype. They express high levels interleukin (IL-10 and arginase-1 while displaying low levels of IL-12 and nitric oxide. Moreover they also undergo significant upregulation of the inhibitory receptor PD-L1 and the mannose receptor. Use of RNAi demonstrates that this effect is dependent on TGF-β RII and mRNA knock-down leads to a loss of IL-10 and PD-L1. Finally, we demonstrate that FhTLM aids newly excysted juveniles (NEJs in their evasion of antibody-dependent cell cytotoxicity (ADCC by reducing the NO response of macrophages-again dependent on TGF-β RI kinase. FhTLM displays restricted expression to the F. hepatica gut resident NEJ stages. The altered fibroblast responses would suggest a role for dampened tissue repair responses in facilitating parasite migration. Furthermore, the adoption of a regulatory macrophage phenotype would allow

  1. Macrophages in intestinal homeostasis and inflammation

    Science.gov (United States)

    Bain, Calum C; Mowat, Allan McI

    2014-01-01

    The intestine contains the largest pool of macrophages in the body which are essential for maintaining mucosal homeostasis in the face of the microbiota and the constant need for epithelial renewal but are also important components of protective immunity and are involved in the pathology of inflammatory bowel disease (IBD). However, defining the biological roles of intestinal macrophages has been impeded by problems in defining the phenotype and origins of different populations of myeloid cells in the mucosa. Here, we discuss how multiple parameters can be used in combination to discriminate between functionally distinct myeloid cells and discuss the roles of macrophages during homeostasis and how these may change when inflammation ensues. We also discuss the evidence that intestinal macrophages do not fit the current paradigm that tissue-resident macrophages are derived from embryonic precursors that self-renew in situ, but require constant replenishment by blood monocytes. We describe our recent work demonstrating that classical monocytes constantly enter the intestinal mucosa and how the environment dictates their subsequent fate. We believe that understanding the factors that drive intestinal macrophage development in the steady state and how these may change in response to pathogens or inflammation could provide important insights into the treatment of IBD. PMID:24942685

  2. Endometriosis, a disease of the macrophage

    Directory of Open Access Journals (Sweden)

    Annalisa eCapobianco

    2013-01-01

    Full Text Available Endometriosis, a common cause of pelvic pain and female infertility, depends on the growth of vascularised endometrial tissue at ectopic sites. Endometrial fragments reach the peritoneal cavity during the fertile years: local cues decide whether they yield endometriotic lesions. Macrophages are recruited at sites of hypoxia and tissue stress, where they clear cell debris and heme-iron and generate pro-life and pro-angiogenesis signals. Macrophages are abundant in endometriotic lesions, where are recruited and undergo alternative activation. In rodents macrophages are required for lesions to establish and to grow; bone-marrow derived Tie-2 expressing macrophages specifically contribute to lesions neovasculature, possibly because they concur to the recruitment of circulating endothelial progenitors, and sustain their survival and the integrity of the vessel wall. Macrophages sense cues (hypoxia, cell death, iron overload in the lesions and react delivering signals to restore the local homeostasis: their action represents a necessary, non-redundant step in the natural history of the disease. Endometriosis may be due to a misperception of macrophages about ectopic endometrial tissue. They perceive it as a wound, they activate programs leading to ectopic cell survival and tissue vascularization. Clearing this misperception is a critical area for the development of novel medical treatments of endometriosis, an urgent and unmet medical need.

  3. Macrophages and nerve fibres in peritoneal endometriosis.

    Science.gov (United States)

    Tran, Lu Vinh Phuc; Tokushige, Natsuko; Berbic, Marina; Markham, Robert; Fraser, Ian S

    2009-04-01

    Endometriosis is considered to be an inflammatory disease, and macrophages are the most numerous immune cells in endometriotic lesions. However, the mechanisms underlying the elevation of macrophages and their role in the pathogenesis and manifestations of endometriosis still remain unclear. The number of macrophages stained for CD68 in endometriotic lesions (n = 24) and in peritoneum distant from the lesions (n = 14) from women with endometriosis was compared with the number of macrophages in normal peritoneum from women without endometriosis (n = 18). Peritoneal lesions were also double-stained for CD68 and protein gene product 9.5 to study the relationship between macrophages and nerve fibres. The densities of macrophages in peritoneal endometriotic lesions and unaffected peritoneum from women with endometriosis were both significantly higher than that in normal peritoneum from women without endometriosis (P peritoneal lesions from women with endometriosis compared with normal peritoneum from women without endometriosis. These cells may well play roles in the growth and development of endometriotic lesions and in the generation of pain through interaction with nerve fibres.

  4. MODULATION OF THE INFLAMMATORY CYTOKINES AND CYTOPROTECTIVE ENZYME BY BILIRUBIN TREATMENT TO ENHANCE CUTANEOUS WOUND HEALING IN RATS

    Directory of Open Access Journals (Sweden)

    Raju Prasad

    2017-06-01

    Full Text Available Inflammation is the main process of wound healing where expression of certain cytokines likes Interleukin-10 (IL-10 and Tumour necrosis factor ∝ (TNF ∝ plays an important role. In view of the antioxidant potential of bilirubin, the present study was aimed to evaluate time-dependent (day 3, 7, 14 wound healing effects of bilirubin ointment (0.3% in excisional wound model in rats. Thirty-six acclimatized healthy male Wistar rats (120-150g were divided into control and treated groups containing 18 rats each. Each group was further sub- divided into three sub-groups (day 3, 7 and 14 days, n= 6. The ointment base (soft paraffin 90%, lanolin 5% and hard paraffin 5% and bilirubin ointment (0.3% were applied topically once daily for 14 days in control and treated group respectively. The wound area was determined on days 3, 7, and 14. The mRNA expression of TNF ∝ gene and IL-10 gene were determined on days 3, 7 and 14 by Real Time PCR and their protein levels by ELISA method. The protein expression of cyto-protective enzyme HO-1 (Heme oxygenage-1 and growth factor VEGF (Vascular growth factor was determined by western blotting method. The mRNA expression and protein level of TNF ∝ was significantly reduced and IL-10 was significantly increased whereas the expression of HO-1 enzyme and VEGF was significantly increased in treated group on days 3, 7 and 14. It may be concluded that the bilirubin has pro-healing potential.

  5. Topical application of the synthetic triterpenoid RTA 408 activates Nrf2 and induces cytoprotective genes in rat skin.

    Science.gov (United States)

    Reisman, Scott A; Lee, Chun-Yue I; Meyer, Colin J; Proksch, Joel W; Ward, Keith W

    2014-07-01

    RTA 408 is a member of the synthetic oleanane triterpenoid class of compounds known to potently activate the cytoprotective transcription factor Nrf2. Because skin is constantly exposed to external oxidative stress, such as that from ultraviolet radiation, from chemical exposure, during improper wound healing, and throughout the course of cancer radiation therapy, it may benefit from activation of Nrf2. This study was conducted to evaluate the transdermal penetration properties and Nrf2 activation potential of RTA 408 in normal rat skin. RTA 408 (0.1, 1.0, or 3.0%) was applied topically to the shaved skin of male Sprague-Dawley rats twice daily for 4 days and once on Day 5. Topical application of RTA 408 resulted in transdermal penetration, with low but dose-dependent plasma exposure with AUC(0-24 h) values of 3.6, 26.0, and 41.1 h ng/mL for the 0.1, 1.0, and 3.0% doses, respectively. Further, topical application of RTA 408 resulted in increased translocation of Nrf2 to the nucleus, dose-dependent mRNA induction of Nrf2 target genes (e.g. Nqo1, Srxn1, Gclc, and Gclm), and induction of the protein expression of the prototypical Nrf2 target gene Nqo1 and increased total glutathione (GSH) in normal rat skin. Immunohistochemistry demonstrated that increased staining for Nqo1 and total GSH of structures in both the epidermis and dermis was consistent with the full transdermal penetration of RTA 408. Finally, topically administered RTA 408 was well tolerated with no adverse in-life observations and normal skin histology. Thus, the data support the further development of RTA 408 for the potential treatment of skin diseases.

  6. Identification of an unintended consequence of Nrf2-directed cytoprotection against a key tobacco carcinogen plus a counteracting chemopreventive intervention

    Science.gov (United States)

    Paonessa, Joseph D.; Ding, Yi; Randall, Kristen L.; Munday, Rex; Argoti, Dayana; Vouros, Paul; Zhang, Yuesheng

    2011-01-01

    Nrf2 is a major cytoprotective gene and is a key chemopreventive target against cancer and other diseases. Here we show that Nrf2 faces a dilemma in defense against 4-aminobiphenyl (ABP), a major human bladder carcinogen from tobacco smoke and other environmental sources. While Nrf2 protected mouse liver against ABP (which is metabolically activated in liver), the bladder level of N-(deoxyguanosin-8-yl)-4-aminobiphenyl (dG-C8-ABP), the predominant ABP-DNA adduct formed in bladder cells and tissues, was markedly higher in Nrf2+/+ mice than in Nrf2−/− mice after ABP exposure. Notably, Nrf2 protected bladder cells against ABP in vitro. Mechanistic investigations showed that the dichotomous effects of Nrf2 could be explained at least partly by upregulation of UDP-glucuronosyltransferase (UGT). Nrf2 promoted conjugation of ABP with glucuronic acid in the liver, increasing urinary excretion of the conjugate. While glucuronidation of ABP and its metabolites is a detoxification process, these conjugates, which are excreted in urine, are known to be unstable in acidic urine, leading to delivery of the parent compounds to bladder. Hence, while higher liver UGT activity may protect the liver against ABP it increases bladder exposure to ABP. These findings raise concerns of potential bladder toxicity when Nrf2-activating chemopreventive agents are used in humans exposed to ABP, especially in smokers. We further demonstrate that 5,6-dihydrocyclopenta[c][1,2]-dithiole-3(4H)-thione (CPDT) significantly inhibits dG-C8-ABP formation in bladder cells and tissues, but does not appear to significantly modulate ABP-catalyzing UGT in liver. Thus, CPDT exemplifies a counteracting solution to the dilemma posed by Nrf2. PMID:21487034

  7. Oxidative stress modulates heme synthesis and induces peroxiredoxin-2 as a novel cytoprotective response in β-thalassemic erythropoiesis.

    Science.gov (United States)

    De Franceschi, Lucia; Bertoldi, Mariarita; De Falco, Luigia; Santos Franco, Sara; Ronzoni, Luisa; Turrini, Franco; Colancecco, Alessandra; Camaschella, Clara; Cappellini, Maria Domenica; Iolascon, Achille

    2011-11-01

    β-thalassemic syndromes are inherited red cell disorders characterized by severe ineffective erythropoiesis and increased levels of reactive oxygen species whose contribution to β-thalassemic anemia is only partially understood. We studied erythroid precursors from normal and β-thalassemic peripheral CD34(+) cells in two-phase liquid culture by proteomic, reverse transcriptase polymerase chain reaction and immunoblot analyses. We measured intracellular reactive oxygen species, heme levels and the activity of δ-aminolevulinate-synthase-2. We exposed normal cells and K562 cells with silenced peroxiredoxin-2 to H(2)O(2) and generated a recombinant peroxiredoxin-2 for kinetic measurements in the presence of H(2)O(2) or hemin. In β-thalassemia the increased production of reactive oxygen species was associated with down-regulation of heme oxygenase-1 and biliverdin reductase and up-regulation of peroxiredoxin-2. In agreement with these observations in β-thalassemic cells we found decreased heme levels related to significantly reduced activity of the first enzyme of the heme pathway, δ-aminolevulinate synthase-2 without differences in its expression. We demonstrated that the activity of recombinant δ-aminolevulinate synthase-2 is inhibited by both reactive oxygen species and hemin as a protective mechanism in β-thalassemic cells. We then addressed the question of the protective role of peroxiredoxin-2 in erythropoiesis by exposing normal cells to oxidative stress and silencing peroxiredoxin-2 in human erythroleukemia K562 cells. We found that peroxiredoxin-2 expression is up-regulated in response to oxidative stress and required for K562 cells to survive oxidative stress. We then showed that peroxiredoxin-2 binds heme in erythroid precursors with high affinity, suggesting a possible multifunctional cytoprotective role of peroxiredoxin-2 in β-thalassemia. In β-thalassemic erythroid cells the reduction of δ-aminolevulinate synthase-2 activity and the increased

  8. The role of glycolysis and gluconeogenesis in the cytoprotection of neuroblastoma cells against 1-methyl 4-phenylpyridinium ion toxicity.

    Science.gov (United States)

    Mazzio, Elizabeth; Soliman, Karam F A

    2003-01-01

    1-Methyl-4-phenylpyridinium (MPP+) is a mitochondrial Complex I inhibitor and is frequently used to investigate the pathological degeneration of neurons associated with Parkinson's disease (PD). In vitro, extracellular concentration of glucose is one of the most critical factors in establishing the vulnerability of neurons to MPP+ toxicity. While glucose is the primary energy fuel for the brain, central nervous system (CNS) neurons can also take up and utilize other metabolic intermediates for energy. In this study, we compared various monosaccharides, disaccharides, nutritive/non-nutritive sugar alcohols, glycolytic and gluconeogenic metabolic intermediates for their cytoprotection against MPP+ in murine brain neuroblastoma cells. Several monosaccharides were effective against MMP+ (500 microM) including glucose, fructose and mannose, which restored cell viability to 109 +/- 5%, 70 +/- 5%, 99 +/- 3% of live controls, respectively. Slight protective effects were observed in the presence of 3-phosphoglyceric acid and glucose-6-phosphate; however, no protective effects were exhibited by galactose, sucrose, sorbitol, mannitol, glycerol or various gluconeogenic and ketogenic amino acids. On the other hand, fructose 1,6 bisphosphate and gluconeogenic energy intermediates [pyruvic acid, malic acid and phospho(enol)pyruvate (PEP)] were neuroprotective against MPP+. The gluconeogenic intermediates elevated intracellular levels of ATP and reduced propidium iodide (PI) nucleic acid staining to live controls, but did not alter the MPP(+)-induced loss of mitochondrial O2 consumption. These data indicate that malic acid, pyruvic acid and PEP contribute to anaerobic substrate level phosphorylation. The use of hydrazine sulfate to impede gluconeogenesis through PEP carboxykinase (PEPCK) inhibition heightened the protective effects of energy substrates possibly due to attenuated ATP demands from pyruvate carboxylase (PC) activity and pyruvate mitochondrial transport. It was

  9. Fatty Acids Dietary Supplements Exert Anti-Inflammatory Action and Limit Ganglion Cell Degeneration in the Retina of the EAE Mouse Model of Multiple Sclerosis

    Science.gov (United States)

    Locri, Filippo; Amato, Rosario; Marsili, Stefania; Rusciano, Dario; Bagnoli, Paola

    2018-01-01

    Optic neuritis is an acute inflammatory demyelinating disorder of the optic nerve (ON) and is an initial symptom of multiple sclerosis (MS). Optic neuritis is characterized by ON degeneration and retinal ganglion cell (RGC) loss that contributes to permanent visual disability and lacks a reliable treatment. Here, we used the experimental autoimmune encephalomyelitis (EAE) mouse model of MS, a well-established model also for optic neuritis. In this model, C57BL6 mice, intraperitoneally injected with a fragment of the myelin oligodendrocyte glycoprotein (MOG), were found to develop inflammation, Müller cell gliosis, and infiltration of macrophages with increased production of oncomodulin (OCM), a calcium binding protein that acts as an atypical trophic factor for neurons enabling RGC axon regeneration. Immunolabeling of retinal whole mounts with a Brn3a antibody demonstrated drastic RGC loss. Dietary supplementation with Neuro-FAG (nFAG®), a balanced mixture of fatty acids (FAs), counteracted inflammatory and gliotic processes in the retina. In contrast, infiltration of macrophages and their production of OCM remained at elevated levels thus eventually preserving OCM trophic activity. In addition, the diet supplement with nFAG exerted a neuroprotective effect preventing MOG-induced RGC death. In conclusion, these data suggest that the balanced mixture of FAs may represent a useful form of diet supplementation to limit inflammatory events and death of RGCs associated to optic neuritis. This would occur without affecting macrophage infiltration and the release of OCM thus favoring the maintenance of OCM neuroprotective role. PMID:29517994

  10. Fatty Acids Dietary Supplements Exert Anti-Inflammatory Action and Limit Ganglion Cell Degeneration in the Retina of the EAE Mouse Model of Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Massimo Dal Monte

    2018-03-01

    Full Text Available Optic neuritis is an acute inflammatory demyelinating disorder of the optic nerve (ON and is an initial symptom of multiple sclerosis (MS. Optic neuritis is characterized by ON degeneration and retinal ganglion cell (RGC loss that contributes to permanent visual disability and lacks a reliable treatment. Here, we used the experimental autoimmune encephalomyelitis (EAE mouse model of MS, a well-established model also for optic neuritis. In this model, C57BL6 mice, intraperitoneally injected with a fragment of the myelin oligodendrocyte glycoprotein (MOG, were found to develop inflammation, Müller cell gliosis, and infiltration of macrophages with increased production of oncomodulin (OCM, a calcium binding protein that acts as an atypical trophic factor for neurons enabling RGC axon regeneration. Immunolabeling of retinal whole mounts with a Brn3a antibody demonstrated drastic RGC loss. Dietary supplementation with Neuro-FAG (nFAG®, a balanced mixture of fatty acids (FAs, counteracted inflammatory and gliotic processes in the retina. In contrast, infiltration of macrophages and their production of OCM remained at elevated levels thus eventually preserving OCM trophic activity. In addition, the diet supplement with nFAG exerted a neuroprotective effect preventing MOG-induced RGC death. In conclusion, these data suggest that the balanced mixture of FAs may represent a useful form of diet supplementation to limit inflammatory events and death of RGCs associated to optic neuritis. This would occur without affecting macrophage infiltration and the release of OCM thus favoring the maintenance of OCM neuroprotective role.

  11. Adiponectin and plant-derived mammalian adiponectin homolog exert a protective effect in murine colitis

    KAUST Repository

    Arsenescu, Violeta

    2011-04-11

    Background: Hypoadiponectinemia has been associated with states of chronic inflammation in humans. Mesenteric fat hypertrophy and low adiponectin have been described in patients with Crohn\\'s disease. We investigated whether adiponectin and the plant-derived homolog, osmotin, are beneficial in a murine model of colitis. Methods: C57BL/6 mice were injected (i.v.) with an adenoviral construct encoding the full-length murine adiponectin gene (AN+DSS) or a reporter-LacZ (Ctr and V+DSS groups) prior to DSS colitis protocol. In another experiment, mice with DSS colitis received either osmotin (Osm+DSS) or saline (DSS) via osmotic pumps. Disease progression and severity were evaluated using body weight, stool consistency, rectal bleeding, colon lengths, and histology. In vitro experiments were carried out in bone marrow-derived dendritic cells. Results: Mice overexpressing adiponectin had lower expression of proinflammatory cytokines (TNF, IL-1β), adipokines (angiotensin, osteopontin), and cellular stress and apoptosis markers. These mice had higher levels of IL-10, alternative macrophage marker, arginase 1, and leukoprotease inhibitor. The plant adiponectin homolog osmotin similarly improved colitis outcome and induced robust IL-10 secretion. LPS induced a state of adiponectin resistance in dendritic cells that was reversed by treatment with PPARγ agonist and retinoic acid. Conclusion: Adiponectin exerted protective effects during murine DSS colitis. It had a broad activity that encompassed cytokines, chemotactic factors as well as processes that assure cell viability during stressful conditions. Reducing adiponectin resistance or using plant-derived adiponectin homologs may become therapeutic options in inflammatory bowel disease. © 2011 Springer Science+Business Media, LLC.

  12. Triterpenoids and Polysaccharide Fractions of Ganoderma tsugae Exert Different Effects on Antiallergic Activities

    Directory of Open Access Journals (Sweden)

    Miaw-Ling Chen

    2015-01-01

    Full Text Available This study was to investigate antiallergic effects of triterpenoids (Gt-TRE and polysaccharide (Gt-PS extracts from Ganoderma tsugae, using mast cell line RBL-2H3, T cell line EL4, primary T cells, and transfected RAW264.7 macrophage cells. The results showed that histamine secreted from activated RBL-2H3 mast cells was significantly suppressed by Gt-TRE but not Gt-PS. Interleukin- (IL- 4 secreted from activated EL4 cells was significantly suppressed by Gt-TRE but not Gt-PS. Further primary CD4+ T cells cultures also confirmed that Gt-TRE (5~50 µg/mL significantly suppressed Th2 cytokines IL-4 and IL-5 secretions but had no effect on Th1 cytokines IL-2 and interferon (IFN-γ. Gt-PS did not affect IL-4 and IL-5 secretions until higher doses (400, 500 µg/mL and significantly suppressed IFNγ secretions but enhanced IL-2 at these high doses. The reporter gene assay indicated that Gt-TRE inhibited but Gt-PS enhanced the transcriptional activity of NF-κB in activated transfected RAW264.7 cells and transfected EL4 cells. IL-4 secreted by this transfected EL-4 cells was also significantly decreased by Gt-TRE but not by Gt-PS, suggesting that these two fractions may exert different effects on NF-κB related cytokines expression. These data suggested that triterpenoids fraction of Ganoderma tsugae might be the main constituents to alleviate allergic asthma.

  13. DMPD: Nuclear receptors in macrophages: a link between metabolism and inflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18022390 Nuclear receptors in macrophages: a link between metabolism and inflammati...on. Szanto A, Roszer T. FEBS Lett. 2008 Jan 9;582(1):106-16. Epub 2007 Nov 20. (.png) (.svg) (.html) (.csml) Show Nuclear... receptors in macrophages: a link between metabolism and inflammation. PubmedID 18022390 Title Nuclear

  14. DMPD: Receptor tyrosine kinases and the regulation of macrophage activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14726496 Receptor tyrosine kinases and the regulation of macrophage activation. Cor...osine kinases and the regulation of macrophage activation. PubmedID 14726496 Title Receptor tyrosine...rell PH, Morrison AC, Lutz MA. J Leukoc Biol. 2004 May;75(5):731-7. Epub 2004 Jan 14. (.png) (.svg) (.html) (.csml) Show Receptor tyr

  15. Colonic macrophage polarization in homeostasis, inflammation, and cancer

    Science.gov (United States)

    Appleyard, Caroline B.

    2016-01-01

    Our review focuses on the colonic macrophage, a monocyte-derived, tissue-resident macrophage, and the role it plays in health and disease, specifically in inflammatory conditions such as inflammatory bowel disease and cancer of the colon and rectum. We give special emphasis to macrophage polarization, or phenotype, in these different states. We focus on macrophages because they are one of the most numerous leukocytes in the colon, and because they normally contribute to homeostasis through an anti-inflammatory phenotype. However, in conditions such as inflammatory bowel disease, proinflammatory macrophages are increased in the colon and have been linked to disease severity and progression. In colorectal cancer, tumor cells may employ anti-inflammatory macrophages to promote tumor growth and dissemination, whereas proinflammatory macrophages may antagonize tumor growth. Given the key roles that this cell type plays in homeostasis, inflammation, and cancer, the colonic macrophage is an intriguing therapeutic target. As such, potential macrophage-targeting strategies are discussed. PMID:27229123

  16. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages.

    Directory of Open Access Journals (Sweden)

    Mário Henrique M Barros

    Full Text Available Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn's disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a

  17. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages.

    Science.gov (United States)

    Barros, Mário Henrique M; Hauck, Franziska; Dreyer, Johannes H; Kempkes, Bettina; Niedobitek, Gerald

    2013-01-01

    Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th) 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn's disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a suitable tool for

  18. Crosstalk between mesenchymal stem cells and macrophages in inflammatory bowel disease and associated colorectal cancer

    Directory of Open Access Journals (Sweden)

    Fei Mao

    2017-06-01

    Full Text Available Mesenchymal stem cells (MSCs are attractive seed cells for immunotherapy, tissue engineering and regenerative medicine due to their self-renewal and multidirectional differentiation abilities, diverse immunoregulatory functions and ease of isolation from a wide range of tissues. MSCs exert their immunoregulatory effect on immune cells via cell-to-cell contact and paracrine mechanisms. In turn, MSCs can also be modulated by immune cells. Macrophages are constantly present in the mucosa of the intestinal tract of mammals and play an important role in the development and progression of inflammatory bowel disease (IBD, a chronic and recurrent inflammatory disease of the gastrointestinal tract characterized by idiopathic mucosal inflammation. The increased morbidity and mortality of IBD have made it a disease hard to cure in the clinic. MSCs have emerged as an important tool for IBD therapy due to their abilities to differentiate into enterocyte-like cells and regulate inflammatory cells, especially macrophages. In this review, we discuss the recent advances in the interaction between MSCs and macrophages in diseases, with an emphasis on IBD. We propose that an optimized MSC-based therapy would provide a novel strategy for the treatment of IBD and the prevention of IBD-associated colorectal cancer (CRC.

  19. BMP pathway regulation of and by macrophages.

    Directory of Open Access Journals (Sweden)

    Megha Talati

    Full Text Available Pulmonary arterial hypertension (PAH is a disease of progressively increasing pulmonary vascular resistance, associated with mutations of the type 2 receptor for the BMP pathway, BMPR2. The canonical signaling pathway for BMPR2 is through the SMAD family of transcription factors. BMPR2 is expressed in every cell type, but the impact of BMPR2 mutations affecting SMAD signaling, such as Bmpr2delx4+, had only previously been investigated in smooth muscle and endothelium. In the present study, we created a mouse with universal doxycycline-inducible expression of Bmpr2delx4+ in order to determine if broader expression had an impact relevant to the development of PAH. We found that the most obvious phenotype was a dramatic, but patchy, increase in pulmonary inflammation. We crossed these double transgenic mice onto an NF-κB reporter strain, and by luciferase assays on live mice, individual organs and isolated macrophages, we narrowed down the origin of the inflammatory phenotype to constitutive activation of tissue macrophages. Study of bone marrow-derived macrophages from mutant and wild-type mice suggested a baseline difference in differentiation state in Bmpr2 mutants. When activated with LPS, both mutant and wild-type macrophages secrete BMP pathway inhibitors sufficient to suppress BMP pathway activity in smooth muscle cells (SMC treated with conditioned media. Functionally, co-culture with macrophages results in a BMP signaling-dependent increase in scratch closure in cultured SMC. We conclude that SMAD signaling through BMP is responsible, in part, for preventing macrophage activation in both live animals and in cells in culture, and that activated macrophages secrete BMP inhibitors in sufficient quantity to cause paracrine effect on vascular smooth muscle.

  20. Measurements of the Exerted Pressure by Pelvic Circumferential Compression Devices

    Science.gov (United States)

    Knops, Simon P; van Riel, Marcel P.J.M; Goossens, Richard H.M; van Lieshout, Esther M.M; Patka, Peter; Schipper, Inger B

    2010-01-01

    Background: Data on the efficacy and safety of non-invasive Pelvic Circumferential Compression Devices (PCCDs) is limited. Tissue damage may occur if a continuous pressure on the skin exceeding 9.3 kPa is sustained for more than two or three hours. The aim of this study was to gain insight into the pressure build-up at the interface, by measuring the PCCD-induced pressure when applying pulling forces to three different PCCDs (Pelvic Binder® , SAM-Sling ® and T-POD® ) in a simplified model. Methods: The resulting exerted pressures were measured at four ‘anatomical’ locations (right, left, posterior and anterior) in a model using a pressure measurement system consisting of pressure cuffs. Results: The exerted pressure varied substantially between the locations as well as between the PCCDs. Maximum pressures ranged from 18.9-23.3 kPa and from 19.2-27.5 kPa at the right location and left location, respectively. Pressures at the posterior location stayed below 18 kPa. At the anterior location pressures varied markedly between the different PCCDs. Conclusion: The circumferential compression by the different PCCDs showed high pressures measured at the four locations using a simplified model. Difference in design and functional characteristics of the PCCDs resulted in different pressure build-up at the four locations. When following the manufacturer’s instructions, the exerted pressure of all three PCCDs tested exceeded the tissue damaging level (9.3 kPa). In case of prolonged use in a clinical situation this might put patients at risk for developing tissue damage. PMID:20361001

  1. A macrophage activation switch (MAcS)-index for assessment of monocyte/macrophage activation

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Lauridsen, Mette; Knudsen, Troels Bygum

    2008-01-01

    , simplified by the M1-M2 dichotomy of classically activated (M1), pro-inflammatory cells and alternatively activated (M2), anti-inflammatory cells. Macrophages, however, display a large degree of flexibility and are able to switch between activation states (1). The hemoglobin scavenger receptor CD163...... is expressed exclusively on monocytes and macrophages, and its expression is strongly induced by anti-inflammatory stimuli like IL10 and glucocorticoid, making CD163 an ideal M2 macrophage marker (2). Furthermore a soluble variant of CD163 (sCD163) is shed from the cell surface to plasma by protease mediated.......058-5139) (panti-inflammatory state.   CONCLUSION: We present a CD163-derived macrophage activation switch (MAcS)-index, which seems able to differentiate between (predominantly) pro-inflammatory and anti-inflammatory macrophage activation. The index needs...

  2. The in vitro biocompatibility and macrophage phagocytosis of Mg17Al12 phase in Mg-Al-Zn alloys.

    Science.gov (United States)

    Liu, Chen; He, Peng; Wan, Peng; Li, Mei; Wang, Kehong; Tan, Lili; Zhang, Yu; Yang, Ke

    2015-07-01

    Mg alloys are gaining interest for applications as biodegradable medical implant, including Mg-Al-Zn series alloys with good combination of mechanical properties and reasonable corrosion resistance. However, whether the existence of second phase particles in the alloys exerts influence on the biocompatibility is still not clear. A deeper understanding of how the particles regulate specific biological responses is becoming a crucial requirement for their subsequent biomedical application. In this work, the in vitro biocompatibility of Mg17Al12 as a common second phase in biodegradable Mg-Al-Zn alloys was investigated via hemolysis, cytotoxicity, cell proliferation, and cell adhesion tests. Moreover, osteogenic differentiation was evaluated by the extracellular matrix mineralization assay. The Mg17Al12 particles were also prepared to simulate the real situation of second phase in the in vivo environment in order to estimate the cellular response in macrophages to the Mg17Al12 particles. The experimental results indicated that no hemolysis was found and an excellent cytocompatibility was also proved for the Mg17Al12 second phase when co-cultured with L929 cells, MC3T3-E1 cells and BMSCs. Macrophage phagocytosis co-culture test revealed that Mg17Al12 particles exerted no harmful effect on RAW264.7 macrophages and could be phagocytized by the RAW264.7 cells. Furthermore, the possible inflammatory reaction and metabolic way for Mg17Al12 phase were also discussed in detail. © 2014 Wiley Periodicals, Inc.

  3. LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature.

    Science.gov (United States)

    van der Does, Anne M; Beekhuizen, Henry; Ravensbergen, Bep; Vos, Tim; Ottenhoff, Tom H M; van Dissel, Jaap T; Drijfhout, Jan W; Hiemstra, Pieter S; Nibbering, Peter H

    2010-08-01

    The human cathelicidin LL-37 has broad-spectrum antimicrobial activity. It also participates at the interface of innate and adaptive immunity by chemoattracting immune effector cells, modulating the production of a variety of inflammatory mediators by different cell types, and regulating the differentiation of monocytes into dendritic cells. In this study, we investigated the effects of LL-37 on the differentiation of human monocytes into anti-inflammatory macrophages (MPhi-2; driven by M-CSF) versus proinflammatory macrophages (MPhi-1; driven by GM-CSF) as well as on fully differentiated MPhi-1 and MPhi-2. Results revealed that monocytes cultured with M-CSF in the presence of LL-37 resulted in macrophages displaying a proinflammatory signature, namely, low expression of CD163 and little IL-10 and profound IL-12p40 production on LPS stimulation. The effects of LL-37 on M-CSF-driven macrophage differentiation were dose- and time-dependent with maximal effects observed at 10 microg/ml when the peptide was present from the start of the cultures. The peptide enhanced the GM-CSF-driven macrophage differentiation. Exposure of fully differentiated MPhi-2 to LL-37 for 6 d resulted in macrophages that produced less IL-10 and more IL-12p40 on LPS stimulation than control MPhi-2. In contrast, LL-37 had no effect on fully differentiated MPhi-1. Peptide mapping using a set of 16 overlapping 22-mer peptides covering the complete LL-37 sequence revealed that the C-terminal portion of LL-37 is responsible for directing macrophage differentiation. Our results furthermore indicate that the effects of LL-37 on macrophage differentiation required internalization of the peptide. Together, we conclude that LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature.

  4. Spray-dried Eudragit® L100 microparticles containing ferulic acid: Formulation, in vitro cytoprotection and in vivo anti-platelet effect

    Energy Technology Data Exchange (ETDEWEB)

    Nadal, Jessica Mendes; Gomes, Mona Lisa Simionatto [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná (Brazil); Borsato, Débora Maria [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa (Brazil); Almeida, Martinha Antunes [Postgraduate Program in Chemistry, Department of Chemistry, Federal University of Paraná (Brazil); Barboza, Fernanda Malaquias [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa (Brazil); Zawadzki, Sônia Faria [Postgraduate Program in Chemistry, Department of Chemistry, Federal University of Paraná (Brazil); Kanunfre, Carla Cristine [Postgraduate Program in Biomedical Science, Department of General Biology, State University of Ponta Grossa (Brazil); Farago, Paulo Vitor, E-mail: pvfarago@gmail.com [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmaceutical Sciences, State University of Ponta Grossa (Brazil); Zanin, Sandra Maria Warumby [Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná (Brazil)

    2016-07-01

    This paper aimed to obtain new spray-dried microparticles containing ferulic acid (FA) prepared by using a methacrylic polymer (Eudragit® L100). Microparticles were intended for oral use in order to provide a controlled release, and improved in vitro and in vivo biological effects. FA-loaded Eudragit® L100 microparticles were obtained by spray-drying. Physicochemical properties, in vitro cell-based effects, and in vivo platelet aggregation were investigated. FA-loaded Eudragit® L100 microparticles were successfully prepared by spray-drying. Formulations showed suitable encapsulation efficiency, i.e. close to 100%. Microparticles were of spherical and almost-spherical shape with a smooth surface and a mean diameter between 2 and 3 μm. Fourier-transformed infrared spectra demonstrated no chemical bond between FA and polymer. X-ray diffraction and differential scanning calorimetry analyses indicated that microencapsulation led to drug amorphization. FA-loaded microparticles showed a slower dissolution rate than pure drug. The chosen formulation demonstrated higher in vitro cytoprotection, anti-inflammatory and immunomodulatory potential and also improved in vivo anti-platelet effect. These results support an experimental basis for the use of FA spray-dried microparticles as a feasible oral drug delivery carrier for the controlled release of FA and improved cytoprotective and anti-platelet effects. - Highlights: • Ferulic acid-loaded Eudragit® L100 microparticles with high drug-loading were obtained. • Spray-dried Eudragit® L100 microparticles containing ferulic acid showed improved in vitro cytoprotective effect. • Ferulic acid spray-dried microparticles had potential as in vitro anti-inflammatory and immunomodulatory. • In vivo studies demonstrated an enhanced antiplatelet effect for ferulic acid-loaded Eudragit® L100 microparticles.

  5. Spray-dried Eudragit® L100 microparticles containing ferulic acid: Formulation, in vitro cytoprotection and in vivo anti-platelet effect

    International Nuclear Information System (INIS)

    Nadal, Jessica Mendes; Gomes, Mona Lisa Simionatto; Borsato, Débora Maria; Almeida, Martinha Antunes; Barboza, Fernanda Malaquias; Zawadzki, Sônia Faria; Kanunfre, Carla Cristine; Farago, Paulo Vitor; Zanin, Sandra Maria Warumby

    2016-01-01

    This paper aimed to obtain new spray-dried microparticles containing ferulic acid (FA) prepared by using a methacrylic polymer (Eudragit® L100). Microparticles were intended for oral use in order to provide a controlled release, and improved in vitro and in vivo biological effects. FA-loaded Eudragit® L100 microparticles were obtained by spray-drying. Physicochemical properties, in vitro cell-based effects, and in vivo platelet aggregation were investigated. FA-loaded Eudragit® L100 microparticles were successfully prepared by spray-drying. Formulations showed suitable encapsulation efficiency, i.e. close to 100%. Microparticles were of spherical and almost-spherical shape with a smooth surface and a mean diameter between 2 and 3 μm. Fourier-transformed infrared spectra demonstrated no chemical bond between FA and polymer. X-ray diffraction and differential scanning calorimetry analyses indicated that microencapsulation led to drug amorphization. FA-loaded microparticles showed a slower dissolution rate than pure drug. The chosen formulation demonstrated higher in vitro cytoprotection, anti-inflammatory and immunomodulatory potential and also improved in vivo anti-platelet effect. These results support an experimental basis for the use of FA spray-dried microparticles as a feasible oral drug delivery carrier for the controlled release of FA and improved cytoprotective and anti-platelet effects. - Highlights: • Ferulic acid-loaded Eudragit® L100 microparticles with high drug-loading were obtained. • Spray-dried Eudragit® L100 microparticles containing ferulic acid showed improved in vitro cytoprotective effect. • Ferulic acid spray-dried microparticles had potential as in vitro anti-inflammatory and immunomodulatory. • In vivo studies demonstrated an enhanced antiplatelet effect for ferulic acid-loaded Eudragit® L100 microparticles.

  6. Activation of MMPs in Macrophages by Mycobacterium tuberculosis via the miR-223-BMAL1 Signaling Pathway.

    Science.gov (United States)

    Lou, Jun; Wang, Yongli; Zhang, Zhimin; Qiu, Weiqiang

    2017-12-01

    An interaction between Mycobacterium tuberculosis and macrophages constitutes an essential step in tuberculosis development, as macrophages exert both positive and negative effects on M. tuberculosis-triggered organ lesions. In this study, we focused on the regulation of the expression of matrix metalloproteinases (MMPs), which is responsible for lung matrix degradation and bacteria dissection, in macrophages following M. tuberculosis infection. Female BALB/c mice were intravenously injected with the M. tuberculosis strain H37Rv at 0 h zeitgeber time (ZT0) or 12 h zeitgeber time (ZT12). The expression and activity of MMP-1, -2, -3, and -9 in lungs and spleens were then evaluated. In vitro, peritoneal macrophages were harvested at ZT0 or at ZT12 and infected with 10 MOI M. tuberculosis. The expression of MMPs, microRNA-223 and BMAL1 was analyzed by qRT-PCR and/or Western blot. The binding of BMAL1 3'-UTR by miR-223 was confirmed by luciferase activity assay. Additionally, wild-type BMAL1 or NLS mut BMAL1 plasmids were transfected to evaluate the effect of BMAL1 on MMPs. The results showed a differential expression of MMPs in mice tissues infected at different times. M. tuberculosis infection caused enhanced MMP-1, -9, and miR-223 expression, with inhibited BMAL1 expression. MiR-223 modulated BMAL1 expression via the direct binding of BMAL1 3'-UTR. Furthermore, wild-type BMAL1 other than NLS mut BMAL1 attenuated MMPs expression in M. tuberculosis-infected macrophages. Overall, this study demonstrated a potential involvement of circadian rhythm in MMP activation by M. tuberculosis in macrophages. J. Cell. Biochem. 118: 4804-4812, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Suzuki Kenji

    2011-06-01

    Full Text Available Abstract Background Chronic inflammation plays an important role in the progression of diabetic nephropathy (DN and that the infiltration of macrophages in glomerulus has been implicated in the development of glomerular injury. We hypothesized that the plant polyphenolic compound curcumin, which is known to exert potent anti-inflammatory effect, would ameliorate macrophage infiltration in streptozotocin (STZ-induced diabetic rats. Methods Diabetes was induced with STZ (55 mg/kg by intraperitoneal injection in rats. Three weeks after STZ injection, rats were divided into three groups, namely, control, diabetic, and diabetic treated with curcumin at 100 mg/kg/day, p.o., for 8 weeks. The rats were sacrificed 11 weeks after induction of diabetes. The excised kidney was used to assess macrophage infiltration and expression of various inflammatory markers. Results At 11 weeks after STZ injection, diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, increased blood glucose, blood urea nitrogen and proteinuria, along with marked reduction in the body weight. All of these abnormalities were significantly reversed by curcumin. Hyperglycemia induced the degradation of IκBα and NF-κB activation and as a result increased infiltration of macrophages (52% as well as increased proinflammatory cytokines: TNF-α and IL-1β. Curcumin treatment significantly reduced macrophage infiltration in the kidneys of diabetic rats, suppressed the expression of above proinflammatory cytokines and degradation of IκBα. In addition, curcumin treatment also markedly decreased ICAM-1, MCP-1 and TGF-β1 protein expression. Moreover, at nuclear level curcumin inhibited the NF-κB activity. Conclusion Our results suggested that curcumin treatment protect against the development of DN in rats by reducing macrophage infiltration through the inhibition of NF-κB activation in STZ-induced diabetic rats.

  8. Optimum polygenic profile to resist exertional rhabdomyolysis during a marathon.

    Science.gov (United States)

    Del Coso, Juan; Valero, Marjorie; Salinero, Juan José; Lara, Beatriz; Gallo-Salazar, César; Areces, Francisco

    2017-01-01

    Exertional rhabdomyolysis can occur in individuals performing various types of exercise but it is unclear why some individuals develop this condition while others do not. Previous investigations have determined the role of several single nucleotide polymorphisms (SNPs) to explain inter-individual variability of serum creatine kinase (CK) concentrations after exertional muscle damage. However, there has been no research about the interrelationship among these SNPs. The purpose of this investigation was to analyze seven SNPs that are candidates for explaining individual variations of CK response after a marathon competition (ACE = 287bp Ins/Del, ACTN3 = p.R577X, CKMM = NcoI, IGF2 = C13790G, IL6 = 174G>C, MLCK = C37885A, TNFα = 308G>A). Using Williams and Folland's model, we determined the total genotype score from the accumulated combination of these seven SNPs for marathoners with a low CK response (n = 36; serum CK rhabdomyolysis. Yet other SNPs, in addition to exercise training, might also play a role in the values of CK after damaging exercise.

  9. The pressure exerted by a confined ideal gas

    International Nuclear Information System (INIS)

    Pang Hai; Dai Wusheng; Xie Mi

    2011-01-01

    In this paper, we study the pressure exerted by a confined ideal gas on the container boundary and we introduce a surface force in gases. First, the general expression for the local surface pressure tensor is obtained. We find, by examples, that the pressure vanishes at the edges of a box, peaks at the middle of the surface and its magnitude for different statistics satisfies p Fermi > p classical > p Bose on every boundary point. Then, the relation between the surface pressure tensor and generalized forces is studied. Based on the relation, we find that a confined ideal gas can exert forces whose effect is to reduce the total surface area of the boundary of an incompressible object. The force provides mechanisms for several mechanical effects. (1) The force contributes to the adhesion of two thin films in contact with each other. We derive an expression for the adhesion force between two square sheets, estimate its magnitude, and also give a method for distinguishing it from other adhesion forces. (2) The force can lead to the recoiling of a DNA-like column. We study the recoiling process using a simple model and find a deviation from the result given in the thermodynamic limit, which is in accordance with experiments. (3) An open container immersed in a gas can be compressed by this force like the Casimir effect. We discuss the effect for various geometries. (paper)

  10. Leg 201Tl-SPECT in chronic exertional compartment syndrome

    International Nuclear Information System (INIS)

    Elkadri, N.; Slim, I.; Blondet, C.; Choquet, Ph.; Constantinesco, A.; Lecocq, J.

    2004-01-01

    Leg 201 Tl-SPECT in chronic exertional compartment syndrome Background: The chronic exertional compartment syndrome is one of the most frequent origins regarding leg pain due to sport training. The diagnosis can be established by invasive compartment pressure measurement. The aim of this study is to evaluate the role that could have 201 Tl-SPECT for patients with suspicion of compartment syndrome. Patients and methods: 51 leg 201 Tl-SPECT exams were performed (exercise - and rest without reinjection) in 49 patients; 28 had compartment syndrome confirmed by pressure measurement. About 100 MBq of 201 Tl were injected during exercise, when pain appeared or at least after 25 minutes exercise. We studied mean percentages of level uptake for each compartment, referred to the maximal uptake of both legs. Results: 47 compartments were concerned by compartment syndrome and 361 compartments were not. Scintigraphic patterns in compartments are reversible ischaemia (45%), uptake stability (36%) or reverse redistribution (19%); these patterns are not linked to compartment syndrome. However, there is a significant difference of rest 201 Tl level uptake between compartments with and without compartment syndrome and a significant correlation between muscular pressure measurement and rest level uptake. Conclusion: 201 Tl-SPECT shows that only ischaemia does not explain compartment syndrome. Moreover, it allows to predict pressure variation during exercise but it does not offer any interest in order to select patients for muscular invasive pressure measurement. (author)

  11. NEBIVOLOL IN TREATMENT OF STABLE EXERTIONAL ANGINA PECTORIS

    Directory of Open Access Journals (Sweden)

    Y. V. Gavrilov

    2015-12-01

    Full Text Available Aim. To evaluate antianginal and antiischemic efficiency of nebivolol in patients with stable angina pectoris.Material and methods. 100 patients with ischemic heart disease showing stable exertional angina pectoris and having no contraindications to beta-blockers were studied. After 5-7 days of control period 50 randomly selected patients began to take nebivolol in initial dose of 5mg once daily and 50 patients started to take metoprolol in initial dose of 50 mg twice daily. Duration of treatment was 8 weeks. Efficiency of treatment was assessed according to the results of control treadmill assessment and control daily ECG monitoring.Results. 56-day therapy with nebivolol at a dose of 7,5 mg per day results in increase in duration of treadmill test before angina or ST depression (p<0.05. Antianginal and antiischemic effect of nebivolol 7.5 mg once daily is rather similar with that of metoprolol in average daily dose of 175 mg. Nebivolol compared to metoprolol significantly (p<0.05 more effectively reduces the number of silent myocardial ischemia.Conclusion. Nebivolol is an efficient antianginal and antiischemic drug for patients with stable exertional angina pectoris.

  12. National Athletic Trainers' Association Position Statement: Exertional Heat Illnesses.

    Science.gov (United States)

    Casa, Douglas J; DeMartini, Julie K; Bergeron, Michael F; Csillan, Dave; Eichner, E Randy; Lopez, Rebecca M; Ferrara, Michael S; Miller, Kevin C; O'Connor, Francis; Sawka, Michael N; Yeargin, Susan W

    2015-09-01

    To present best-practice recommendations for the prevention, recognition, and treatment of exertional heat illnesses (EHIs) and to describe the relevant physiology of thermoregulation. Certified athletic trainers recognize and treat athletes with EHIs, often in high-risk environments. Although the proper recognition and successful treatment strategies are well documented, EHIs continue to plague athletes, and exertional heat stroke remains one of the leading causes of sudden death during sport. The recommendations presented in this document provide athletic trainers and allied health providers with an integrated scientific and clinically applicable approach to the prevention, recognition, treatment of, and return-to-activity guidelines for EHIs. These recommendations are given so that proper recognition and treatment can be accomplished in order to maximize the safety and performance of athletes. Athletic trainers and other allied health care professionals should use these recommendations to establish onsite emergency action plans for their venues and athletes. The primary goal of athlete safety is addressed through the appropriate prevention strategies, proper recognition tactics, and effective treatment plans for EHIs. Athletic trainers and other allied health care professionals must be properly educated and prepared to respond in an expedient manner to alleviate symptoms and minimize the morbidity and mortality associated with these illnesses.

  13. Adipocyte-Macrophage Cross-Talk in Obesity.

    Science.gov (United States)

    Engin, Ayse Basak

    2017-01-01

    Obesity is characterized by the chronic low-grade activation of the innate immune system. In this respect, macrophage-elicited metabolic inflammation and adipocyte-macrophage interaction has a primary importance in obesity. Large amounts of macrophages are accumulated by different mechanisms in obese adipose tissue. Hypertrophic adipocyte-derived chemotactic monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathway also promotes more macrophage accumulation into the obese adipose tissue. However, increased local extracellular lipid concentrations is a final mechanism for adipose tissue macrophage accumulation. A paracrine loop involving free fatty acids and tumor necrosis factor-alpha (TNF-alpha) between adipocytes and macrophages establishes a vicious cycle that aggravates inflammatory changes in the adipose tissue. Adipocyte-specific caspase-1 and production of interleukin-1beta (IL-1beta) by macrophages; both adipocyte and macrophage induction by toll like receptor-4 (TLR4) through nuclear factor-kappaB (NF-kappaB) activation; free fatty acid-induced and TLR-mediated activation of c-Jun N-terminal kinase (JNK)-related pro-inflammatory pathways in CD11c+ immune cells; are effective in macrophage accumulation and in the development of adipose tissue inflammation. Old adipocytes are removed by macrophages through trogocytosis or sending an "eat me" signal. The obesity-induced changes in adipose tissue macrophage numbers are mainly due to increases in the triple-positive CD11b+ F4/80+ CD11c+ adipose tissue macrophage subpopulation. The ratio of M1-to-M2 macrophages is increased in obesity. Furthermore, hypoxia along with higher concentrations of free fatty acids exacerbates macrophage-mediated inflammation in obesity. The metabolic status of adipocytes is a major determinant of macrophage inflammatory output. Macrophage/adipocyte fatty-acid-binding proteins act at the interface of metabolic and inflammatory pathways. Both macrophages and

  14. Efferocytosis is impaired in Gaucher macrophages.

    Science.gov (United States)

    Aflaki, Elma; Borger, Daniel K; Grey, Richard J; Kirby, Martha; Anderson, Stacie; Lopez, Grisel; Sidransky, Ellen

    2017-04-01

    Gaucher disease, the inherited deficiency of lysosomal glucocerebrosidase, is characterized by the presence of glucosylceramide-laden macrophages resulting from impaired digestion of aged erythrocytes or apoptotic leukocytes. Studies of macrophages from patients with type 1 Gaucher disease with genotypes N370S/N370S, N370S/L444P or N370S/c.84dupG revealed that Gaucher macrophages have impaired efferocytosis resulting from reduced levels of p67 phox and Rab7. The decreased Rab7 expression leads to impaired fusion of phagosomes with lysosomes. Moreover, there is defective translocation of p67 phox to phagosomes, resulting in reduced intracellular production of reactive oxygen species. These factors contribute to defective deposition and clearance of apoptotic cells in phagolysosomes, which may have an impact on the inflammatory response and contribute to the organomegaly and inflammation seen in patients with Gaucher disease. Copyright© Ferrata Storti Foundation.

  15. Lysine Deacetylases and Regulated Glycolysis in Macrophages.

    Science.gov (United States)

    Shakespear, Melanie R; Iyer, Abishek; Cheng, Catherine Youting; Das Gupta, Kaustav; Singhal, Amit; Fairlie, David P; Sweet, Matthew J

    2018-06-01

    Regulated cellular metabolism has emerged as a fundamental process controlling macrophage functions, but there is still much to uncover about the precise signaling mechanisms involved. Lysine acetylation regulates the activity, stability, and/or localization of metabolic enzymes, as well as inflammatory responses, in macrophages. Two protein families, the classical zinc-dependent histone deacetylases (HDACs) and the NAD-dependent HDACs (sirtuins, SIRTs), mediate lysine deacetylation. We describe here mechanisms by which classical HDACs and SIRTs directly regulate specific glycolytic enzymes, as well as evidence that links these protein deacetylases to the regulation of glycolysis-related genes. In these contexts, we discuss HDACs and SIRTs as key control points for regulating immunometabolism and inflammatory outputs from macrophages. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Adipocyte fetuin-A contributes to macrophage migration into adipose tissue and polarization of macrophages.

    Science.gov (United States)

    Chatterjee, Priyajit; Seal, Soma; Mukherjee, Sandip; Kundu, Rakesh; Mukherjee, Sutapa; Ray, Sukanta; Mukhopadhyay, Satinath; Majumdar, Subeer S; Bhattacharya, Samir

    2013-09-27

    Macrophage infiltration into adipose tissue during obesity and their phenotypic conversion from anti-inflammatory M2 to proinflammatory M1 subtype significantly contributes to develop a link between inflammation and insulin resistance; signaling molecule(s) for these events, however, remains poorly understood. We demonstrate here that excess lipid in the adipose tissue environment may trigger one such signal. Adipose tissue from obese diabetic db/db mice, high fat diet-fed mice, and obese diabetic patients showed significantly elevated fetuin-A (FetA) levels in respect to their controls; partially hepatectomized high fat diet mice did not show noticeable alteration, indicating adipose tissue to be the source of this alteration. In adipocytes, fatty acid induces FetA gene and protein expressions, resulting in its copious release. We found that FetA could act as a chemoattractant for macrophages. To simulate lipid-induced inflammatory conditions when proinflammatory adipose tissue and macrophages create a niche of an altered microenvironment, we set up a transculture system of macrophages and adipocytes; the addition of fatty acid to adipocytes released FetA into the medium, which polarized M2 macrophages to M1. This was further confirmed by direct FetA addition to macrophages. Taken together, lipid-induced FetA from adipocytes is an efficient chemokine for macrophage migration and polarization. These findings open a new dimension for understanding obesity-induced inflammation.

  17. Galectin-2 induces a proinflammatory, anti-arteriogenic phenotype in monocytes and macrophages.

    Directory of Open Access Journals (Sweden)

    Cansu Yıldırım

    Full Text Available Galectin-2 is a monocyte-expressed carbohydrate-binding lectin, for which increased expression is genetically determined and associated with decreased collateral arteriogenesis in obstructive coronary artery disease patients. The inhibiting effect of galectin-2 on arteriogenesis was confirmed in vivo, but the mechanism is largely unknown. In this study we aimed to explore the effects of galectin-2 on monocyte/macrophage phenotype in vitro and vivo, and to identify the receptor by which galectin-2 exerts these effects. We now show that the binding of galectin-2 to different circulating human monocyte subsets is dependent on monocyte surface expression levels of CD14. The high affinity binding is blocked by an anti-CD14 antibody but not by carbohydrates, indicating a specific protein-protein interaction. Galectin-2 binding to human monocytes modulated their transcriptome by inducing proinflammatory cytokines and inhibiting pro-arteriogenic factors, while attenuating monocyte migration. Using specific knock-out mice, we show that galectin-2 acts through the CD14/toll-like receptor (TLR-4 pathway. Furthermore, galectin-2 skews human macrophages to a M1-like proinflammatory phenotype, characterized by a reduced motility and expression of an anti-arteriogenic cytokine/growth factor repertoire. This is accompanied by a switch in surface protein expression to CD40-high and CD206-low (M1. In a murine model we show that galectin-2 administration, known to attenuate arteriogenesis, leads to increased numbers of CD40-positive (M1 and reduced numbers of CD206-positive (M2 macrophages surrounding actively remodeling collateral arteries. In conclusion galectin-2 is the first endogenous CD14/TLR4 ligand that induces a proinflammatory, non-arteriogenic phenotype in monocytes/macrophages. Interference with CD14-Galectin-2 interaction may provide a new intervention strategy to stimulate growth of collateral arteries in genetically compromised cardiovascular

  18. JS-III-49, a hydroquinone derivative, exerts anti-inflammatory activity by targeting Akt and p38.

    Science.gov (United States)

    Yi, Young-Su; Kim, Mi-Yeon; Cho, Jae Youl

    2017-05-01

    Since previous studies have reported that hydroquinone (HQ) exerted immunosuppressive and anti-inflammatory activity, various HQ derivatives have been synthesized and their biological activities investigated. In this study, we explored the anti-inflammatory activity of JS-III-49, a novel HQ derivative, in macrophage-mediated inflammatory responses. JS-III-49 suppressed the production of the inflammatory mediators nitric oxide (NO) and prostaglandin E 2 (PGE 2 ) and down-regulated the mRNA expression of the inflammatory enzymes cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) as well as the expression of the pro-inflammatory cytokines interleukin-6 (IL-6) and IL-1b without cytotoxicity in LPS-stimulated RAW264.7 cells. JS-III-49 inhibited nuclear translocation of the NF-kB transcription factors p65 and p50 by directly targeting Akt, an upstream kinase of the NF-kB pathway, in LPS-stimulated RAW264.7 cells. However, JS-III-49 did not directly inhibit the kinase activities of Src and Syk, which are upstream kinases of Akt, in LPS-stimulated RAW264.7 cells. Moreover, JS-III-49 suppressed the nuclear translocation of c-Fos, one of the components of AP-1, by specifically targeting p38, an upstream mitogen-activated protein kinase (MAPK) in the AP-1 pathway in LPS-stimulated RAW264.7 cells. These results suggest that JS-III-49 plays an anti-inflammatory role in LPS-stimulated macrophages by targeting Akt and p38 in the NF-kB and AP-1 pathways, respectively.

  19. Optimum polygenic profile to resist exertional rhabdomyolysis during a marathon.

    Directory of Open Access Journals (Sweden)

    Juan Del Coso

    Full Text Available Exertional rhabdomyolysis can occur in individuals performing various types of exercise but it is unclear why some individuals develop this condition while others do not. Previous investigations have determined the role of several single nucleotide polymorphisms (SNPs to explain inter-individual variability of serum creatine kinase (CK concentrations after exertional muscle damage. However, there has been no research about the interrelationship among these SNPs. The purpose of this investigation was to analyze seven SNPs that are candidates for explaining individual variations of CK response after a marathon competition (ACE = 287bp Ins/Del, ACTN3 = p.R577X, CKMM = NcoI, IGF2 = C13790G, IL6 = 174G>C, MLCK = C37885A, TNFα = 308G>A.Using Williams and Folland's model, we determined the total genotype score from the accumulated combination of these seven SNPs for marathoners with a low CK response (n = 36; serum CK <400 U·L-1 vs. marathoners with a high CK response (n = 31; serum CK ≥400 U·L-1.At the end of the race, low CK responders had lower serum CK (290±65 vs. 733±405 U·L-1; P<0.01 and myoglobin concentrations (443±328 vs. 1009±971 ng·mL-1, P<0.01 than high CK responders. Although the groups were similar in age, anthropometric characteristics, running experience and training habits, total genotype score was higher in low CK responders than in high CK responders (5.2±1.4 vs. 4.4±1.7 point, P = 0.02.Marathoners with a lower CK response after the race had a more favorable polygenic profile than runners with high serum CK concentrations. This might suggest a significant role of genetic polymorphisms in the levels of exertional muscle damage and rhabdomyolysis. Yet other SNPs, in addition to exercise training, might also play a role in the values of CK after damaging exercise.

  20. Drug Trafficking into Macrophages via the Endocytotic Receptor CD163

    DEFF Research Database (Denmark)

    Graversen, Jonas Heilskov; Moestrup, Søren Kragh

    2015-01-01

    for cytotoxic or phenotype-modulating drugs in the treatment of inflammatory and cancerous diseases. Such targeting of macrophages has been tried using the natural propensity of macrophages to non-specifically phagocytose circulating foreign particulate material. In addition, the specific targeting...... of macrophage-expressed receptors has been used in order to obtain a selective uptake in macrophages and reduce adverse effects of off-target delivery of drugs. CD163 is a highly expressed macrophage-specific endocytic receptor that has been studied for intracellular delivery of small molecule drugs...... to macrophages using targeted liposomes or antibody drug conjugates. This review will focus on the biology of CD163 and its potential role as a target for selective macrophage targeting compared with other macrophage targeting approaches....

  1. Wip1-dependent modulation of macrophage migration and phagocytosis

    DEFF Research Database (Denmark)

    Tang, Yiting; Pan, Bing; Zhou, Xin

    2017-01-01

    Macrophage accumulation within the vascular wall is a hallmark of atherosclerosis. Controlling macrophage conversion into foam cells remains a major challenge for treatment of atherosclerotic diseases. Here, we show that Wip1, a member of the PP2C family of Ser/Thr protein phosphatases, modulates...... macrophage migration and phagocytosis associated with atherosclerotic plaque formation. Wip1 deficiency increases migratory and phagocytic activities of the macrophage under stress conditions. Enhanced migration of Wip1-/- macrophages is mediated by Rac1-GTPase and PI3K/AKT signalling pathways. Elevated...... phagocytic ability of Wip1-/- macrophages is linked to CD36 plasma membrane recruitment that is regulated by AMPK activity. Our study identifies Wip1 as an intrinsic negative regulator of macrophage chemotaxis. We propose that Wip1-dependent control of macrophage function may provide avenues for preventing...

  2. Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis

    Directory of Open Access Journals (Sweden)

    Yuri V. Bobryshev

    2016-01-01

    Full Text Available Atherosclerosis can be regarded as a chronic inflammatory state, in which macrophages play different and important roles. Phagocytic proinflammatory cells populate growing atherosclerotic lesions, where they actively participate in cholesterol accumulation. Moreover, macrophages promote formation of complicated and unstable plaques by maintaining proinflammatory microenvironment. At the same time, anti-inflammatory macrophages contribute to tissue repair and remodelling and plaque stabilization. Macrophages therefore represent attractive targets for development of antiatherosclerotic therapy, which can aim to reduce monocyte recruitment to the lesion site, inhibit proinflammatory macrophages, or stimulate anti-inflammatory responses and cholesterol efflux. More studies are needed, however, to create a comprehensive classification of different macrophage phenotypes and to define their roles in the pathogenesis of atherosclerosis. In this review, we provide an overview of the current knowledge on macrophage diversity, activation, and plasticity in atherosclerosis and describe macrophage-based cellular tests for evaluation of potential antiatherosclerotic substances.

  3. The macrophage scavenger receptor CD163

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Madsen, Mette; Møller, Holger J

    2006-01-01

    CD163 is the monocyte/macrophage-specific receptor for haptoglobin-hemoglobin (Hp-Hb) complexes. The cytoplasmic tail of human CD163 exists as a short tail variant and two long tail variants. Reverse transcriptase-polymerase chain reaction analysis indicated that all three CD163 variants are subs......CD163 is the monocyte/macrophage-specific receptor for haptoglobin-hemoglobin (Hp-Hb) complexes. The cytoplasmic tail of human CD163 exists as a short tail variant and two long tail variants. Reverse transcriptase-polymerase chain reaction analysis indicated that all three CD163 variants...

  4. Matrix metalloproteinase-12 gene regulation by a PPAR alpha agonist in human monocyte-derived macrophages

    International Nuclear Information System (INIS)

    Souissi, Imen Jguirim; Billiet, Ludivine; Cuaz-Perolin, Clarisse; Slimane, Mohamed-Naceur; Rouis, Mustapha

    2008-01-01

    MMP-12, a macrophage-specific matrix metalloproteinase with large substrate specificity, has been reported to be highly expressed in mice, rabbits and human atherosclerotic lesions. Increased MMP-12 from inflammatory macrophages is associated with several degenerative diseases such as atherosclerosis. In this manuscript, we show that IL-1β, a proinflammatory cytokine found in atherosclerotic plaques, increases both mRNA and protein levels of MMP-12 in human monocyte-derived macrophages (HMDM). Since peroxisome proliferator-activated receptors (PPARs), such as PPARα and PPARγ, are expressed in macrophages and because PPAR activation exerts an anti-inflammatory effect on vascular cells, we have investigated the effect of PPARα and γ isoforms on MMP-12 regulation in HMDM. Our results show that MMP-12 expression (mRNA and protein) is down regulated in IL-1β-treated macrophages only in the presence of a specific PPARα agonist, GW647, in a dose-dependent manner. In contrast, this inhibitory effect was abolished in IL-1β-stimulated peritoneal macrophages isolated from PPARα -/- mice and treated with the PPARα agonist, GW647. Moreover, reporter gene transfection experiments using different MMP-12 promoter constructs showed a reduction of the promoter activities by ∼ 50% in IL-1β-stimulated PPARα-pre-treated cells. However, MMP-12 promoter analysis did not reveal the presence of a PPRE response element. The IL-1β effect is known to be mediated through the AP-1 binding site. Mutation of the AP-1 site, located at - 81 in the MMP-12 promoter region relative to the transcription start site, followed by transfection analysis, gel shift and ChIP experiments revealed that the inhibitory effect was the consequence of the protein-protein interaction between GW 647-activated PPARα and c-Fos or c-Jun transcription factors, leading to inhibition of their binding to the AP-1 motif. These studies suggest that PPARα agonists may be used therapeutically, not only for lipid

  5. Cytotoxicity and Hsp 70 induction in Hep G2 cells in response to zearalenone and cytoprotection by sub-lethal heat shock

    International Nuclear Information System (INIS)

    Hassen, Wafa; Golli, Emna El; Baudrimont, Isabelle; Mobio, A. Theophile; Ladjimi, M. Moncef; Creppy, E. Edmond; Bacha, Hassen

    2005-01-01

    Zearalenone (ZEN) is a mycotoxin with several adverse effects in laboratory and domestic animals. The mechanism of ZEN toxicity that involves mainly binding to oestrogen receptors and inhibition of macromolecules synthesis is not fully understood. Using human hepatocytes Hep G2 cells as a model, the aim of this work was (i) to investigate the ability of ZEN to induce heat shock proteins Hsp 70 and (ii) to find out the mechanisms of ZEN cytotoxicity by examining cell proliferation and protein synthesis. Our study demonstrated that ZEN induces Hsp 70 expression in a time and dose-dependant manner; this induction occurs at non-cytotoxic concentrations, it could be therefore considered as a biomarker of toxicity. A cytoprotective effect of Hsp 70 was elicited when Hep G2 cells were exposed to Sub-Lethal heat shock prior to ZEN treatment and evidenced by a reduced ZEN cytolethality. This cytoprotection suggests that Hsp 70 may constitute an important cellular defence mechanism. Finally, our data show that ZEN is cytotoxic in Hep G2 cells by inhibiting cell proliferation and total protein synthesis and pointed out oxidative damage as possible pathway involved in ZEN toxicity; however, other investigations are needed to further confirm Zen induced oxidative stress

  6. Comparative Study on the Cytoprotective Effects of Activated Protein C Treatment in Nonsteatotic and Steatotic Livers under Ischemia-Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Akitoshi Matsuda

    2015-01-01

    Full Text Available Activated protein C (APC has cytoprotective effects on liver ischemia-reperfusion injury (IRI. However, it is unclear whether APC is beneficial in steatotic liver IRI. We compared the cytoprotective effects of APC in nonsteatotic and steatotic liver IRI. Methods. Mice fed either normal diets (ND mice or high fat diets (HF mice, were treated with APC or saline (control and were performed 60 min partial IRI. Moreover, primary steatotic hepatocytes were either untreated or treated with APC and then incubated with H2O2. Results. APC significantly reduced serum transaminase levels and the inflammatory cells infiltration compared with control at 4 h in ND mice and at 24 h in HF mice. APC inhibited sinusoidal endothelial injury in ND mice, but not in HF mice. In contrast, APC activated adenosine monophosphate-activated protein kinase (AMPK phosphorylation in HF mice, but not in ND mice. In the in vitro study, APC significantly increased AMPK phosphorylation, ATP concentration, and survival rates of hepatocytes compared with control. Conclusion. During IRI in normal liver, APC attenuated initial damage by inhibiting inflammatory cell infiltration and sinusoidal endothelial injury, but not in steatotic liver. However, in steatotic liver, APC might attenuate late damage via activation of AMPK.

  7. An exceptionally potent inducer of cytoprotective enzymes: elucidation of the structural features that determine inducer potency and reactivity with Keap1.

    Science.gov (United States)

    Dinkova-Kostova, Albena T; Talalay, Paul; Sharkey, John; Zhang, Ying; Holtzclaw, W David; Wang, Xiu Jun; David, Emilie; Schiavoni, Katherine H; Finlayson, Stewart; Mierke, Dale F; Honda, Tadashi

    2010-10-29

    The Keap1/Nrf2/ARE pathway controls a network of cytoprotective genes that defend against the damaging effects of oxidative and electrophilic stress, and inflammation. Induction of this pathway is a highly effective strategy in combating the risk of cancer and chronic degenerative diseases, including atherosclerosis and neurodegeneration. An acetylenic tricyclic bis(cyano enone) bearing two highly electrophilic Michael acceptors is an extremely potent inducer in cells and in vivo. We demonstrate spectroscopically that both cyano enone functions of the tricyclic molecule react with cysteine residues of Keap1 and activate transcription of cytoprotective genes. Novel monocyclic cyano enones, representing fragments of rings A and C of the tricyclic compound, reveal that the contribution to inducer potency of the ring C Michael acceptor is much greater than that of ring A, and that potency is further enhanced by spatial proximity of an acetylenic function. Critically, the simultaneous presence of two cyano enone functions in rings A and C within a rigid three-ring system results in exceptionally high inducer potency. Detailed understanding of the structural elements that contribute to the reactivity with the protein sensor Keap1 and to high potency of induction is essential for the development of specific and selective lead compounds as clinically relevant chemoprotective agents.

  8. Characteristics of patients with chronic exertional compartment syndrome.

    Science.gov (United States)

    Davis, Daniel E; Raikin, Steven; Garras, David N; Vitanzo, Peter; Labrador, Hallie; Espandar, Ramin

    2013-10-01

    Chronic exertional compartment syndrome (CECS) is a condition that causes reversible ischemia and lower extremity pain during exercise. To date there are few large studies examining the characteristics of patients with CECS. This study aimed to present these characteristics by examining the largest published series of patients with a confirmed diagnosis of the disorder. An IRB-approved, retrospective review was undertaken of patients with a suspected diagnosis of CECS undergoing pre- and postexercise compartment pressure testing between 2000 and 2012. Patients were evaluated for gender, age, duration of symptoms, pain level, specific compartments involved, compartment pressure measurements, and participation and type of athletics. Two-hundred twenty-six patients (393 legs) underwent compartment pressure testing. A diagnosis of CECS was made in 153 (67.7%) patients and 250 (63.6%) legs with elevated compartment measurements; average age of the patients was 24 years (range, 13-69 years). Female patients accounted for 92 (60.1%) of those with elevated pressures. Anterior and lateral compartment pressures were elevated most frequently, with 200 (42.5%) and 167 (35.5%) compartments, respectively. One hundred forty-one (92.2%) patients reported participation in sports, with running being the most common individual sport and soccer being the most common team sport. Duration of pain prior to diagnosis averaged 28 months. Although there is ample literature pertaining to the diagnostic criteria and treatment algorithm of the condition, few papers have described the type of patient most likely to develop CECS. This is the largest study to date to evaluate the type of patient likely to present with chronic exertional compartment syndrome. Level III, retrospective review.

  9. Traction Stresses Exerted by Adherent Cells: From Angiogenesis to Metastasis

    Science.gov (United States)

    Reinhart-King, Cynthia

    2010-03-01

    Cells exert traction stresses against their substrate that mediate their ability to sense the mechanical properties of their microenvironment. These same forces mediate cell adhesion, migration and the formation of stable cell-cell contacts during tissue formation. In this talk, I will present our data on the traction stresses generated by endothelial cells and metastatic breast cancer cells focused on understanding the processes of angiogenesis and metastasis, respectively. In the context of capillary formation, our data indicate that the mechanics of the substrate play a critical role in establishing endothelial cell-cell contacts. On more compliant substrates, endothelial cell shape and traction stresses polarize and promote the formation of stable cell-cell contacts. On stiffer substrates, traction stresses are less polarized and cell connectivity is disrupted. These data indicate that the mechanical properties of the microenvironment may drive cell connectivity and the formation of stable cell-cell contacts through the reorientation of traction stresses. In our studies of metastatic cell migration, we have found that traction stresses increase with increasing metastatic potential. We investigated three lines of varying metastatic potential (MCF10A, MCF7 and MDAMB231). MDAMB231, which are the most invasive, exert the most significant forces as measured by Traction Force Microscopy. These data present the possibility that cellular traction stress generation aids in the ability of metastatic cells to migrate through the matrix-dense tumor microenvironment. Such measurements are integral to link the mechanical and chemical microenvironment with the resulting response of the cell in health and disease.

  10. Physical Exertion and Immediate Classroom Mental Performance Among Elementary School Children.

    Science.gov (United States)

    Gabbard, Carl

    This study was designed (1) to investigate the relationship between physical exertion and mental performance in elementary school children and (2) to determine if male or female mental performances are more affected by physical exertion. A total of 95 second graders participated in six treatments of induced physical exertion during their regularly…

  11. Proprotein convertase 1/3 inhibited macrophages: A novel therapeutic based on drone macrophages

    Directory of Open Access Journals (Sweden)

    Marie Duhamel

    2016-06-01

    Full Text Available We demonstrated here thanks to proteomic, that proprotein convertase 1/3 knockdown macrophages present all the characteristic of activated pro-inflammatory macrophages. TLR4 and TLR9 signaling pathways can be enhanced leading to the secretion of pro-inflammatory factors and antitumor factors. We can control their activation by controlling one enzyme, PC1/3. In a tumor context, PC1/3 inhibition in macrophages may reactivate them and lead to a cytokine storm after stimulation “at distance” with a TLR ligand. Therefore, we name these proprotein convertase inhibited macrophages the “drone macrophages”. They constitute an innovative cell therapy to treat efficiently tumors.

  12. Misbehaving macrophages in the pathogenesis of psoriasis.

    Science.gov (United States)

    Clark, Rachael A; Kupper, Thomas S

    2006-08-01

    Psoriasis is a chronic inflammatory skin disease unique to humans. In this issue of the JCI, 2 studies of very different mouse models of psoriasis both report that macrophages play a key role in inducing psoriasis-like skin disease. Psoriasis is clearly a polygenic, inherited disease of uncontrolled cutaneous inflammation. The debate that currently rages in the field is whether psoriasis is a disease of autoreactive T cells or whether it reflects an intrinsic defect within the skin--or both. However, these questions have proven difficult to dissect using molecular genetic tools. In the current studies, the authors have used 2 different animal models to address the role of macrophages in disease pathogenesis: Wang et al. use a mouse model in which inflammation is T cell dependent, whereas the model used by Stratis et al. is T cell independent (see the related articles beginning on pages 2105 and 2094, respectively). Strikingly, both groups report an important contribution by macrophages, implying that macrophages can contribute to both epithelial-based and T cell-mediated pathways of inflammation.

  13. Metabolic-epigenetic crosstalk in macrophage activation

    NARCIS (Netherlands)

    Baardman, Jeroen; Licht, Iris; de Winther, Menno P. J.; van den Bossche, Jan

    2015-01-01

    Epigenetic enzymes are emerging as crucial controllers of macrophages, innate immune cells that determine the outcome of many inflammatory diseases. Recent studies demonstrate that the activity of particular chromatin-modifying enzymes is regulated by the availability of specific metabolites like

  14. The macrophage scavenger receptor CD163

    NARCIS (Netherlands)

    Fabriek, Babs O.; Dijkstra, Christine D.; van den Berg, Timo K.

    2005-01-01

    Mature tissue macrophages form a first line of defense to recognize and eliminate potential pathogens; these specialized cells are capable of phagocytosis, degradation of self and foreign materials, establishment of cell-cell interactions, and the production of inflammatory mediators. Mature tissue

  15. Mouse adenovirus type 1 infection of macrophages

    NARCIS (Netherlands)

    Ashley, S.L.; Welton, A.R.; Harwood, K.M.; Rooijen, van N.; Spindler, K.R.

    2009-01-01

    Mouse adenovirus type 1 (MAV-1) causes acute and persistent infections in mice, with high levels of virus found in the brain, spinal cord and spleen in acute infections. MAV-1 infects endothelial cells throughout the mouse, and monocytes/macrophages have also been implicated as targets of the virus.

  16. NFAT5-Regulated Macrophage Polarization Supports the Proinflammatory Function of Macrophages and T Lymphocytes.

    Science.gov (United States)

    Tellechea, Mónica; Buxadé, Maria; Tejedor, Sonia; Aramburu, Jose; López-Rodríguez, Cristina

    2018-01-01

    Macrophages are exquisite sensors of tissue homeostasis that can rapidly switch between pro- and anti-inflammatory or regulatory modes to respond to perturbations in their microenvironment. This functional plasticity involves a precise orchestration of gene expression patterns whose transcriptional regulators have not been fully characterized. We had previously identified the transcription factor NFAT5 as an activator of TLR-induced responses, and in this study we explore its contribution to macrophage functions in different polarization settings. We found that both in classically and alternatively polarized macrophages, NFAT5 enhanced functions associated with a proinflammatory profile such as bactericidal capacity and the ability to promote Th1 polarization over Th2 responses. In this regard, NFAT5 upregulated the Th1-stimulatory cytokine IL-12 in classically activated macrophages, whereas in alternatively polarized ones it enhanced the expression of the pro-Th1 mediators Fizz-1 and arginase 1, indicating that it could promote proinflammatory readiness by regulating independent genes in differently polarized macrophages. Finally, adoptive transfer assays in vivo revealed a reduced antitumor capacity in NFAT5-deficient macrophages against syngeneic Lewis lung carcinoma and ID8 ovarian carcinoma cells, a defect that in the ID8 model was associated with a reduced accumulation of effector CD8 T cells at the tumor site. Altogether, detailed analysis of the effect of NFAT5 in pro- and anti-inflammatory macrophages uncovered its ability to regulate distinct genes under both polarization modes and revealed its predominant role in promoting proinflammatory macrophage functions. Copyright © 2017 by The American Association of Immunologists, Inc.

  17. DMPD: The oxidation of lipoproteins by monocytes-macrophages. Biochemical andbiological mechanisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10473535 The oxidation of lipoproteins by monocytes-macrophages. Biochemical andbio.... (.png) (.svg) (.html) (.csml) Show The oxidation of lipoproteins by monocytes-macrophages. Biochemical and...onocytes-macrophages. Biochemical andbiological mechanisms. Authors Chisolm GM 3rd, Hazen SL, Fox PL, Cathca

  18. DMPD: Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategies. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11207583 Pathogen-induced apoptosis of macrophages: a common end for different path...ml) Show Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategies. PubmedI...D 11207583 Title Pathogen-induced apoptosis of macrophages: a common end for diff

  19. DMPD: Mechanism of age-associated up-regulation in macrophage PGE2 synthesis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15331118 Mechanism of age-associated up-regulation in macrophage PGE2 synthesis. Wu...e-associated up-regulation in macrophage PGE2 synthesis. PubmedID 15331118 Title Mechanism of age-associated... up-regulation in macrophage PGE2 synthesis. Authors Wu D, Meydani SN. Publicatio

  20. MiR-146a modulates macrophage polarization by inhibiting Notch1 pathway in RAW264.7 macrophages.

    Science.gov (United States)

    Huang, Cheng; Liu, Xue-Jiao; QunZhou; Xie, Juan; Ma, Tao-Tao; Meng, Xiao-Ming; Li, Jun

    2016-03-01

    Macrophages are heterogeneous and plastic cells which are able to undergo dynamic transition between M1 and M2 polarized phenotypes in response to the microenvironment signals. However, the underlying molecular mechanisms of macrophage polarization are still obscure. In the current study, it was revealed that miR-146a might play a pivotal role in macrophage polarization. As our results indicated, miR-146a was highly expressed in M2 macrophages rather than M1 macrophages. Over-expression of miR-146a resulted in significantly decreased production of pro-inflammatory cytokines including iNOS and TNF-α in M1 macrophages, while increased production of M2 marker genes such as Arg1 and CD206 in M2 macrophages. In contrast, knockdown of miR-146a promoted M1 macrophage polarization but diminished M2 macrophage polarization. Mechanistically, it was revealed that miR-146a modulated macrophage polarization by targeting Notch1. Of note, PPARγ was responsible as another target for miR-146a-mediated macrophage polarization. Taken together, it was suggested that miR-146a might serve as a molecular regulator in macrophage polarization and is a potential therapeutic target for inflammatory diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. DMPD: Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: roles of the receptor complex. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14609719 Molecular mechanisms of macrophage activation and deactivation bylipopolys...acol Ther. 2003 Nov;100(2):171-94. (.png) (.svg) (.html) (.csml) Show Molecular mechanisms of macrophage act...medID 14609719 Title Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: ro

  2. DMPD: Genetic regulation of macrophage priming/activation: the Lsh gene story. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1757110 Genetic regulation of macrophage priming/activation: the Lsh gene story. Bl... (.svg) (.html) (.csml) Show Genetic regulation of macrophage priming/activation: the Lsh gene story. Pubmed...ID 1757110 Title Genetic regulation of macrophage priming/activation: the Lsh gen

  3. Yersinia pestis and host macrophages: immunodeficiency of mouse macrophages induced by YscW.

    Science.gov (United States)

    Bi, Yujing; Du, Zongmin; Han, Yanping; Guo, Zhaobiao; Tan, Yafang; Zhu, Ziwen; Yang, Ruifu

    2009-09-01

    The virulence of the pathogenic Yersinia species depends on a plasmid-encoded type III secretion system (T3SS) that transfers six Yersinia outer protein (Yop) effector proteins into the cytoplasm of eukaryotic cells, leading to disruption of host defence mechanisms. It is shown in this study that Yersinia pestis YscW, a protein of the T3SS injectisome, contributes to the induction of a deficiency in phagocytosis in host macrophages and a reduction in their antigen-presenting capacity. A Y. pestis strain lacking yscW had no effect on uptake by host macrophages. In mice infected with wild-type Y. pestis, the yscW mutant or a complement strain, immunodeficiency was observed in host macrophages compared with those from uninfected mice. However, the phagocytosis and antigen presenting capacities of macrophages infected by yscW mutant strain both in vivo and in vitro were significantly higher than those by wild type strain. Consistent with this finding, when YscW was expressed in the RAW264.7 macrophage cell line, phagocytosis and antigen-presenting capacities were significantly lower than those of the control groups. These results indicate that Y. pestis YscW may directly induce immunodeficiency in murine macrophages by crippling their phagocytosis and antigen-presenting capacities. These data provide evidences to Y. pestis pathogenesis that some proteins in T3SS injectisome, such as YscW protein, might play independent roles in disrupting host defense apart from their known functions.

  4. Macrophage-Mediated Lymphangiogenesis: The Emerging Role of Macrophages as Lymphatic Endothelial Progenitors

    International Nuclear Information System (INIS)

    Ran, Sophia; Montgomery, Kyle E.

    2012-01-01

    It is widely accepted that macrophages and other inflammatory cells support tumor progression and metastasis. During early stages of neoplastic development, tumor-infiltrating macrophages (TAMs) mount an immune response against transformed cells. Frequently, however, cancer cells escape the immune surveillance, an event that is accompanied by macrophage transition from an anti-tumor to a pro-tumorigenic type. The latter is characterized by high expression of factors that activate endothelial cells, suppress immune response, degrade extracellular matrix, and promote tumor growth. Cumulatively, these products of TAMs promote tumor expansion and growth of both blood and lymphatic vessels that facilitate metastatic spread. Breast cancers and other epithelial malignancies induce the formation of new lymphatic vessels (i.e., lymphangiogenesis) that leads to lymphatic and subsequently, to distant metastasis. Both experimental and clinical studies have shown that TAMs significantly promote tumor lymphangiogenesis through paracrine and cell autonomous modes. The paracrine effect consists of the expression of a variety of pro-lymphangiogenic factors that activate the preexisting lymphatic vessels. The evidence for cell-autonomous contribution is based on the observed tumor mobilization of macrophage-derived lymphatic endothelial cell progenitors (M-LECP) that integrate into lymphatic vessels prior to sprouting. This review will summarize the current knowledge of macrophage-dependent growth of new lymphatic vessels with specific emphasis on an emerging role of macrophages as lymphatic endothelial cell progenitors (M-LECP)

  5. Molecular Mechanisms Modulating the Phenotype of Macrophages and Microglia

    Directory of Open Access Journals (Sweden)

    Stephanie A. Amici

    2017-11-01

    Full Text Available Macrophages and microglia play crucial roles during central nervous system development, homeostasis and acute events such as infection or injury. The diverse functions of tissue macrophages and microglia are mirrored by equally diverse phenotypes. A model of inflammatory/M1 versus a resolution phase/M2 macrophages has been widely used. However, the complexity of macrophage function can only be achieved by the existence of varied, plastic and tridimensional macrophage phenotypes. Understanding how tissue macrophages integrate environmental signals via molecular programs to define pathogen/injury inflammatory responses provides an opportunity to better understand the multilayered nature of macrophages, as well as target and modulate cellular programs to control excessive inflammation. This is particularly important in MS and other neuroinflammatory diseases, where chronic inflammatory macrophage and microglial responses may contribute to pathology. Here, we perform a comprehensive review of our current understanding of how molecular pathways modulate tissue macrophage phenotype, covering both classic pathways and the emerging role of microRNAs, receptor-tyrosine kinases and metabolism in macrophage phenotype. In addition, we discuss pathway parallels in microglia, novel markers helpful in the identification of peripheral macrophages versus microglia and markers linked to their phenotype.

  6. Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders?

    Science.gov (United States)

    Baci, Denisa; Tremolati, Marco; Fanuli, Matteo; Farronato, Giampietro; Mortara, Lorenzo

    2018-01-01

    Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in “distant” pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders (M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy. PMID:29507865

  7. Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders?

    Directory of Open Access Journals (Sweden)

    Luca Parisi

    2018-01-01

    Full Text Available Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1 or alternatively activated (M2. However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in “distant” pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like and/or builders (M2-like. We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy.

  8. HIV Infection of Macrophages: Implications for Pathogenesis and Cure

    Directory of Open Access Journals (Sweden)

    Kiera Leigh Clayton

    2017-05-01

    Full Text Available Although CD4+ T cells represent the major reservoir of persistent HIV and SIV infection, accumulating evidence suggests that macrophages also contribute. However, investigations of the role of macrophages are often underrepresented at HIV pathogenesis and cure meetings. This was the impetus for a scientific workshop dedicated to this area of study, held in Cambridge, MA in January 2017. The workshop brought together experts in the fields of HIV/SIV immunology/virology, macrophage biology and immunology, and animal models of HIV/SIV infection to facilitate discussions regarding the role of macrophages as a physiologically relevant viral reservoir, and the implications of macrophage infection for HIV pathogenesis and cure strategies. An emerging consensus that infected macrophages likely persist in the setting of combination antiretroviral therapy, driving persistent inflammation and contributing to the viral reservoir, indicate the importance of addressing macrophages as well as CD4+ T cells with future therapeutic strategies.

  9. Lysosomal Disorders Drive Susceptibility to Tuberculosis by Compromising Macrophage Migration

    Science.gov (United States)

    Berg, Russell D.; Levitte, Steven; O’Sullivan, Mary P.; O’Leary, Seónadh M.; Cambier, C.J.; Cameron, James; Takaki, Kevin K.; Moens, Cecilia B.; Tobin, David M.; Keane, Joseph; Ramakrishnan, Lalita

    2016-01-01

    Summary A zebrafish genetic screen for determinants of susceptibility to Mycobacterium marinum identified a hypersusceptible mutant deficient in lysosomal cysteine cathepsins that manifests hallmarks of human lysosomal storage diseases. Under homeostatic conditions, mutant macrophages accumulate undigested lysosomal material, which disrupts endocytic recycling and impairs their migration to, and thus engulfment of, dying cells. This causes a buildup of unengulfed cell debris. During mycobacterial infection, macrophages with lysosomal storage cannot migrate toward infected macrophages undergoing apoptosis in the tuberculous granuloma. The unengulfed apoptotic macrophages undergo secondary necrosis, causing granuloma breakdown and increased mycobacterial growth. Macrophage lysosomal storage similarly impairs migration to newly infecting mycobacteria. This phenotype is recapitulated in human smokers, who are at increased risk for tuberculosis. A majority of their alveolar macrophages exhibit lysosomal accumulations of tobacco smoke particulates and do not migrate to Mycobacterium tuberculosis. The incapacitation of highly microbicidal first-responding macrophages may contribute to smokers’ susceptibility to tuberculosis. PMID:27015311

  10. Association between work engagement and perceived exertion among healthcare workers

    Directory of Open Access Journals (Sweden)

    Rodrigo Luiz Carregaro

    Full Text Available INTRODUCTION: Complaints and musculoskeletal discomforts are common manifestations of individuals affected by work-related disorders (WRMD, and the influence of individual and/or psychosocial risk factors may play a significant role in WRMD development. OBJECTIVE: To evaluate and to compare work engagement (WE and ratings of perceived exertion (RPE and to assess the association between indexes of WE and RPE among healthcare workers. MATERIALS AND METHODS: Seventeen female subjects (36 ± 11 years, 1.58 ± 0.06 m and 59 ± 9 kg participated, all officially employed on a nonprofit agency. The Nordic Questionnaire was used to evaluate musculoskeletal complaints and the Borg Scale used to evaluate the RPE. The Utrecht Work Engagement Scale quantified WE (vigor, dedication and absorption domains. Participants were divided into two groups, according to their sectors: healthcare clinics and institution for the elderly. The independent student t test was used to verify differences between groups and the chi-square test to verify associations between variables. RESULTS: All subjects reported musculoskeletal complaints, mainly in the low back (58%. RPE did not differ between groups, while in the vigor, it was found a significant statistically difference (p = 0.035. An association between RPE and vigor and RPE and dedication was establish (p = 0.02 and p = 0.036, respectively. CONCLUSION: The association between WE and RPE suggests that workers with lower indexes of vigor and dedication may perceive greater physical demand, which can be imposed by work demands.

  11. Exertional Rhabdomyolysis after an Extreme Conditioning Competition: A Case Report

    Directory of Open Access Journals (Sweden)

    Ramires Alsamir Tibana

    2018-04-01

    Full Text Available This case report describes an instance of exercise-induced rhabdomyolysis caused by an extreme conditioning program (ECP competition. A 35-year-old female presented with abdominal pain and soreness, which began one day after she completed two days of ECPcompetition composed of five workouts. Three days after competition, creatine kinase (CK was 77,590 U/L accompanied by myalgia and abnormal liver function tests, while renal function was normal and this resulted in a diagnosis of rhabdomyolysis. A follow-up examination revealed that her serum level of CK was still elevated to 3034 U/L on day 10 and 1257 U/L on day 25 following the ECP competition. The subject reported myalgia even up to 25 days after the ECP competition. Exertional rhabdomyolysis can be observed in ECP athletes following competition and highlights a dangerous condition, which may be increasing in recent years due to the massive expansion of ECP popularity and a growing number of competitions. Future research should investigate the causes of rhabdomyolysis that occur as a result of ECP, especially training methods and/or tasks developed specifically for these competitions.

  12. Metallic nanomaterials formed by exerting large plastic strains

    International Nuclear Information System (INIS)

    Richert, M; Richert, J.; Zasadzinski, J.; Hawrylkiewicz, S.

    2002-01-01

    The investigations included pure Al and Cu single crystals, AlMg5 alloy and AlCuZr alloy have been presented. The materials were deformed by the cyclic extrusion compression method (CEC) within the range of true strains φ = 0.4-59.8 (1 to 67 deformation cycles by the CEC method). In all examined materials a strong tendency to form banded was observed. Within the range of very large plastic strains there was observed intensive rebuilding of the banded microstructure into subgrains, at first of rhombic shape, and next into equiaxial subgrains. A characteristic feature of the newly formed subgrains, not encountered in the range of conventional deformations, was the occurrence of large misorientation angles between the newly formed subgrains. The proportion of large misorientation angles in the microstructure varied, and it increased with increasing deformation. Reduction of the recovery process in AlMg5 and AlCuZr alloys preserved the growth of the newly formed nanograins, favoring the retaining of the nanomeric dimensions. This results show that there is the effective possibility of production of metallic nanomaterials by exerting of very large nonconventional plastic strains. (author)

  13. Synthetic oligorotaxanes exert high forces when folding under mechanical load

    Science.gov (United States)

    Sluysmans, Damien; Hubert, Sandrine; Bruns, Carson J.; Zhu, Zhixue; Stoddart, J. Fraser; Duwez, Anne-Sophie

    2018-01-01

    Folding is a ubiquitous process that nature uses to control the conformations of its molecular machines, allowing them to perform chemical and mechanical tasks. Over the years, chemists have synthesized foldamers that adopt well-defined and stable folded architectures, mimicking the control expressed by natural systems1,2. Mechanically interlocked molecules, such as rotaxanes and catenanes, are prototypical molecular machines that enable the controlled movement and positioning of their component parts3-5. Recently, combining the exquisite complexity of these two classes of molecules, donor-acceptor oligorotaxane foldamers have been synthesized, in which interactions between the mechanically interlocked component parts dictate the single-molecule assembly into a folded secondary structure6-8. Here we report on the mechanochemical properties of these molecules. We use atomic force microscopy-based single-molecule force spectroscopy to mechanically unfold oligorotaxanes, made of oligomeric dumbbells incorporating 1,5-dioxynaphthalene units encircled by cyclobis(paraquat-p-phenylene) rings. Real-time capture of fluctuations between unfolded and folded states reveals that the molecules exert forces of up to 50 pN against a mechanical load of up to 150 pN, and displays transition times of less than 10 μs. While the folding is at least as fast as that observed in proteins, it is remarkably more robust, thanks to the mechanically interlocked structure. Our results show that synthetic oligorotaxanes have the potential to exceed the performance of natural folding proteins.

  14. Petiveria alliacea exerts mnemonic and learning effects on rats.

    Science.gov (United States)

    Silva, Mallone Lopes; Luz, Diandra Araújo; Paixão, Thiago Portal da; Silva, João Paulo Bastos; Belém-Filho, Ivaldo Jesus Almeida; Fernandes, Luanna Melo Pereira; Gonçalves, Ana Cristina Baetas; Fontes-Júnior, Enéas Andrade; de Andrade, Marciene Ataíde; Maia, Cristiane Socorro Ferraz

    2015-07-01

    Petiveria alliacea L. (Phytolaccaceae) is a perennial shrub native to the Amazon region and other tropical areas such as Central America and the Caribbean. Popularly known as mucuracaá, P. alliacea is used in the folk medicine for a broad variety of therapeutic purpose and also in religious ceremonies by slaves as a sedative, which highlights its properties on the Central Nervous System (CNS). The present study evaluated the effects of the P. alliacea leaves hydroalcoholic extract (PaLHE) on the cognition, including learning and memory. Three-month-old male and female Wistar rats (n=8-10/group) were administered with 900mg/kg of PaLHE. The behavioral assays included Step-down Inhibitory avoidance (IA) and Morris Water Maze (MWM) tests. Consistent with our previous reports, P. alliacea improved long-term memory. It also exerted previously unreported effects on short-term and spatial memory improvement, and increased learning in the tasks. The P. alliacea extract elicited mnemonic effects and improved the learning process in both IA and MWM tests. Our results highlight the importance of further studies in order to identify the active substances of the PaLHE and investigate the pharmacological mechanisms that underlies the reported effects. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Arctigenin Induces an Activation Response in Porcine Alveolar Macrophage Through TLR6-NOX2-MAPKs Signaling Pathway

    Science.gov (United States)

    Lu, Zheng; Chang, Lingling; Du, Qian; Huang, Yong; Zhang, Xiujuan; Wu, Xingchen; Zhang, Jie; Li, Ruizhen; Zhang, Zelin; Zhang, Wenlong; Zhao, Xiaomin; Tong, Dewen

    2018-01-01

    Arctigenin (ARG), one of the most active ingredients abstracted from seeds of Arctium lappa L., has been proved to exert promising biological activities such as immunomodulatory, anti-viral, and anti-cancer etc. However, the mechanism behind its immunomodulatory function still remains elusive to be further investigated. In this study, we found that ARG had no significant effects on the cell proliferation in both porcine alveolar macrophage cell line (3D4/21) and primary porcine derived alveolar macrophage. It remarkably increased the expression and secretion of the two cytokines including tumor necrosis factor-alpha (TNF-α) and transforming growth factor beta1 (TGF-β1) in a dose-dependent manner with the concomitant enhancement of phagocytosis, which are the indicators of macrophage activation. ARG also elevated the intracellular reactive oxygen species (ROS) production by activating NOX2-based NADPH oxidase. Furthermore, inhibition of ROS generation by diphenyliodonium and apocynin significantly suppressed ARG-induced cytokine secretion and phagocytosis increase, indicating the requirement of ROS for the porcine alveolar macrophage activation. In addition, TLR6-My88 excitation, p38 MAPK and ERK1/2 phosphorylation were all involved in the process. As blocking TLR6 receptor dramatically attenuated the NOX2 oxidase activation, cytokine secretion and phagocytosis increase. Inhibiting ROS generation almost abolished p38 and ERK1/2 phosphorylation, and the cytokine secretion could also be remarkably reduced by p38 and ERK1/2 inhibitors (SB203580 and UO126). Our finding gave a new insight of understanding that ARG could improve the immune-function of porcine alveolar macrophages through TLR6-NOX2 oxidase-MAPKs signaling pathway.

  16. Arctigenin Induces an Activation Response in Porcine Alveolar Macrophage Through TLR6-NOX2-MAPKs Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Zheng Lu

    2018-05-01

    Full Text Available Arctigenin (ARG, one of the most active ingredients abstracted from seeds of Arctium lappa L., has been proved to exert promising biological activities such as immunomodulatory, anti-viral, and anti-cancer etc. However, the mechanism behind its immunomodulatory function still remains elusive to be further investigated. In this study, we found that ARG had no significant effects on the cell proliferation in both porcine alveolar macrophage cell line (3D4/21 and primary porcine derived alveolar macrophage. It remarkably increased the expression and secretion of the two cytokines including tumor necrosis factor-alpha (TNF-α and transforming growth factor beta1 (TGF-β1 in a dose-dependent manner with the concomitant enhancement of phagocytosis, which are the indicators of macrophage activation. ARG also elevated the intracellular reactive oxygen species (ROS production by activating NOX2-based NADPH oxidase. Furthermore, inhibition of ROS generation by diphenyliodonium and apocynin significantly suppressed ARG-induced cytokine secretion and phagocytosis increase, indicating the requirement of ROS for the porcine alveolar macrophage activation. In addition, TLR6-My88 excitation, p38 MAPK and ERK1/2 phosphorylation were all involved in the process. As blocking TLR6 receptor dramatically attenuated the NOX2 oxidase activation, cytokine secretion and phagocytosis increase. Inhibiting ROS generation almost abolished p38 and ERK1/2 phosphorylation, and the cytokine secretion could also be remarkably reduced by p38 and ERK1/2 inhibitors (SB203580 and UO126. Our finding gave a new insight of understanding that ARG could improve the immune-function of porcine alveolar macrophages through TLR6-NOX2 oxidase-MAPKs signaling pathway.

  17. Arctigenin Induces an Activation Response in Porcine Alveolar Macrophage Through TLR6-NOX2-MAPKs Signaling Pathway.

    Science.gov (United States)

    Lu, Zheng; Chang, Lingling; Du, Qian; Huang, Yong; Zhang, Xiujuan; Wu, Xingchen; Zhang, Jie; Li, Ruizhen; Zhang, Zelin; Zhang, Wenlong; Zhao, Xiaomin; Tong, Dewen

    2018-01-01

    Arctigenin (ARG), one of the most active ingredients abstracted from seeds of Arctium lappa L. , has been proved to exert promising biological activities such as immunomodulatory, anti-viral, and anti-cancer etc. However, the mechanism behind its immunomodulatory function still remains elusive to be further investigated. In this study, we found that ARG had no significant effects on the cell proliferation in both porcine alveolar macrophage cell line (3D4/21) and primary porcine derived alveolar macrophage. It remarkably increased the expression and secretion of the two cytokines including tumor necrosis factor-alpha (TNF-α) and transforming growth factor beta1 (TGF-β1) in a dose-dependent manner with the concomitant enhancement of phagocytosis, which are the indicators of macrophage activation. ARG also elevated the intracellular reactive oxygen species (ROS) production by activating NOX2-based NADPH oxidase. Furthermore, inhibition of ROS generation by diphenyliodonium and apocynin significantly suppressed ARG-induced cytokine secretion and phagocytosis increase, indicating the requirement of ROS for the porcine alveolar macrophage activation. In addition, TLR6-My88 excitation, p38 MAPK and ERK1/2 phosphorylation were all involved in the process. As blocking TLR6 receptor dramatically attenuated the NOX2 oxidase activation, cytokine secretion and phagocytosis increase. Inhibiting ROS generation almost abolished p38 and ERK1/2 phosphorylation, and the cytokine secretion could also be remarkably reduced by p38 and ERK1/2 inhibitors (SB203580 and UO126). Our finding gave a new insight of understanding that ARG could improve the immune-function of porcine alveolar macrophages through TLR6-NOX2 oxidase-MAPKs signaling pathway.

  18. Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated inflammation in macrophages.

    Science.gov (United States)

    Wang, Ying; Wang, Gary Z; Rabinovitch, Peter S; Tabas, Ira

    2014-01-31

    Mitochondrial oxidative stress (mitoOS) has been shown to correlate with the progression of human atherosclerosis. However, definitive cell type-specific causation studies in vivo are lacking, and the molecular mechanisms of potential proatherogenic effects remain to be determined. Our aims were to assess the importance of macrophage mitoOS in atherogenesis and to explore the underlying molecular mechanisms. We first validated Western diet-fed Ldlr(-/-) mice as a model of human mitoOS-atherosclerosis association by showing that non-nuclear oxidative DNA damage, a marker of mitoOS in lesional macrophages, correlates with aortic root lesion development. To investigate the importance of macrophage mitoOS, we used a genetic engineering strategy in which the OS suppressor catalase was ectopically expressed in mitochondria (mCAT) in macrophages. MitoOS in lesional macrophages was successfully suppressed in these mice, and this led to a significant reduction in aortic root lesional area. The mCAT lesions had less monocyte-derived cells, less Ly6c(hi) monocyte infiltration into lesions, and lower levels of monocyte chemotactic protein-1. The decrease in lesional monocyte chemotactic protein-1 was associated with the suppression of other markers of inflammation and with decreased phosphorylation of RelA (NF-κB p65), indicating decreased activation of the proinflammatory NF-κB pathway. Using models of mitoOS in cultured macrophages, we showed that mCAT suppressed monocyte chemotactic protein-1 expression by decreasing the activation of the IκB-kinase β-RelA NF-κB pathway. MitoOS in lesional macrophages amplifies atherosclerotic lesion development by promoting NF-κB-mediated entry of monocytes and other inflammatory processes. In view of the mitoOS-atherosclerosis link in human atheromata, these findings reveal a potentially new therapeutic target to prevent the progression of atherosclerosis.

  19. Exertion Testing in Youth with Mild Traumatic Brain Injury/Concussion.

    Science.gov (United States)

    Dematteo, Carol; Volterman, Kimberly A; Breithaupt, Peter G; Claridge, Everett A; Adamich, John; Timmons, Brian W

    2015-11-01

    The decision regarding return to activity (RTA) after mild traumatic brain injuries/concussion is one of the most difficult and controversial areas in concussion management, particularly for youth. This study investigated how youth with postconcussion syndrome (PCS) are affected by exertion and whether standardized exertion testing using the McMaster All-Out Progressive Continuous Cycling Test can contribute to clinical decision making for safe RTA. Fifty-four youth (8.5-18.3 yr) with a previously confirmed concussion participated in the study. Each participant performed exertion testing on a cycle ergometer and completed a Postconcussion Symptom scale at the following time points: before exertion (baseline), 5 and 30 min, and 24 h after exertion. A modified Postconcussion Symptom scale was administered at 2-min intervals during exertion. Participants had a mean ± SD symptom duration of 6.3 ± 6.9 months after the most recent concussive injury, with a median of 4.1 months (range, 0.7-35 months). Sixty-three percent of participants had symptoms during exertion testing. Symptom profile (number and severity) significantly affected perception of exertion at 50% peak mechanical power. During acute assessment of symptoms (30-min after exertion), headache (P = 0.39), nausea (P = 0.63), and dizziness (P = 0.35) did not change. However, both the number and severity of symptoms significantly improved over 24 h, with 56.8% of youth showing improvements. The time from the most recent injury had a significant effect on the symptom score at baseline, 30 min after exertion, and 24 h after exertion. Exertion testing has an important role in the evaluation of symptoms and readiness to RTA, particularly in youth who are slow to recover. Overall, controlled exertion seemed to lesson symptoms for most youth.

  20. Elevation of serum N-terminal pro-brain natriuretic peptide after exercise is an index of myocardial damage or a cytoprotective reflection?

    Science.gov (United States)

    Faviou, E; Zachari, A; Nounopoulos, C; Agrafiotis, E; Vourli, G; Dionyssiou-Asteriou, A

    2008-03-01

    Recent investigations have suggested the occurrence of transient cardiac dysfunction and reversible myocardial injury in healthy individuals after heavy exercise. Our purpose was to examine if the release of N-terminal pro-brain natriuretic peptide (NT-proBNP) after intense exercise in obviously healthy participants may have cytoprotective and growth-regulating effects or may result from myocardial dysfunction/damage with changes in cTnT as a marker for myocardial cell necrosis during exercise. In 43 highly-trained male athletes hypertrophy. A normal plasma concentration of NT-proBNP in consecutive routine check-up, before and after exercise, could minimize the possibility of cardiac dysfunction, whereas persistent elevated plasma concentrations warrant further cardiological evaluation.

  1. Cytoprotection of human endothelial cells against oxidative stress by 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im): application of systems biology to understand the mechanism of action.

    Science.gov (United States)

    Wang, Xinyu; Bynum, James A; Stavchansky, Solomon; Bowman, Phillip D

    2014-07-05

    Cellular damage from oxidative stress, in particular following ischemic injury, occurs during heart attack, stroke, or traumatic injury, and is potentially reducible with appropriate drug treatment. We previously reported that caffeic acid phenethyl ester (CAPE), a plant-derived polyphenolic compound, protected human umbilical vein endothelial cells (HUVEC) from menadione-induced oxidative stress and that this cytoprotective effect was correlated with the capacity to induce heme oxygenase-1 (HMOX1) and its protein product, a phase II cytoprotective enzyme. To further improve this cytoprotective effect, we studied a synthetic triterpenoid, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im), which is known as a potent phase II enzyme inducer with antitumor and anti-inflammatory activities, and compared it to CAPE. CDDO-Im at 200nM provided more protection to HUVEC against oxidative stress than 20μM CAPE. We explored the mechanism of CDDO-Im cytoprotection with gene expression profiling and pathway analysis and compared to that of CAPE. In addition to potent up-regulation of HMOX1, heat shock proteins (HSP) were also found to be highly induced by CDDO-Im in HUVEC. Pathway analysis results showed that transcription factor Nrf2-mediated oxidative stress response was among the top canonical pathways commonly activated by both CDDO-Im and CAPE. Compared to CAPE, CDDO-Im up-regulated more HSP and some of them to a much higher extent. In addition, CDDO-Im treatment affected Nrf2 pathway more significantly. These findings may provide an explanation why CDDO-Im is a more potent cytoprotectant than CAPE against oxidative stress in HUVEC. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Distemper virus encephalitis exerts detrimental effects on hippocampal neurogenesis.

    Science.gov (United States)

    von Rüden, E-L; Avemary, J; Zellinger, C; Algermissen, D; Bock, P; Beineke, A; Baumgärtner, W; Stein, V M; Tipold, A; Potschka, H

    2012-08-01

    Despite knowledge about the impact of brain inflammation on hippocampal neurogenesis, data on the influence of virus encephalitis on dentate granule cell neurogenesis are so far limited. Canine distemper is considered an interesting model of virus encephalitis, which can be associated with a chronic progressing disease course and can cause symptomatic seizures. To determine the impact of canine distemper virus (CDV) infection on hippocampal neurogenesis, we compared post-mortem tissue from dogs with infection with and without seizures, from epileptic dogs with non-viral aetiology and from dogs without central nervous system diseases. The majority of animals with infection and with epilepsy of non-viral aetiology exhibited neuronal progenitor numbers below the age average in controls. Virus infection with and without seizures significantly decreased the mean number of neuronal progenitor cells by 43% and 76% as compared to age-matched controls. Ki-67 labelling demonstrated that hippocampal cell proliferation was neither affected by infection nor by epilepsy of non-viral aetiology. Analysis of CDV infection in cells expressing caspase-3, doublecortin or Ki-67 indicated that infection of neuronal progenitor cells is extremely rare and suggests that infection might damage non-differentiated progenitor cells, hamper neuronal differentiation and promote glial differentiation. A high inter-individual variance in the number of lectin-reactive microglial cells was evident in dogs with distemper infection. Statistical analyses did not reveal a correlation between the number of lectin-reactive microglia cells and neuronal progenitor cells. Our data demonstrate that virus encephalitis with and without seizures can exert detrimental effects on hippocampal neurogenesis, which might contribute to long-term consequences of the disease. The lack of a significant impact of distemper virus on Ki-67-labelled cells indicates that the infection affected neuronal differentiation and

  3. Outcomes of exertional rhabdomyolysis following high-intensity resistance training.

    Science.gov (United States)

    Huynh, A; Leong, K; Jones, N; Crump, N; Russell, D; Anderson, M; Steinfort, D; Johnson, D F

    2016-05-01

    High-intensity resistance training (HIRT) programmes are increasingly popular amongst personal trainers and those attending gymnasiums. We report the experience of exertional rhabdomyolysis (ER) at two tertiary hospitals in Melbourne, Australia. To compare the clinical outcomes of ER with other causes of rhabdomyolysis. Retrospective cross-sectional study of patients presenting with a serum creatine kinase (CK) of greater than 25 000 units/L from 1 September 2013 to 31 August 2014 at two tertiary referral hospitals in Melbourne, Australia. Records were examined to identify care measures implemented during hospital stay, clinical outcomes during admission and on subsequent follow up. Thirty four cases of rhabdomyolysis with a CK of greater than 25 000 units/L (normal range: 20-180 units/L) were identified during the 12-month study period. Twelve of the 34 cases (35%) had ER with 10 of 12 related to HIRT. No acute kidney injury, intensive care admission or death were seen among those with ER. All cases were managed conservatively, with 11 admitted and 9 receiving intravenous fluids only. In contrast, patients with rhabdomyolysis from other causes experienced significantly higher rates of intensive care admission (64%, P = 0.0002), acute kidney injury (82%, P = 0.0001) and death (27%, P = 0.069). ER resulting from HIRT appears to have a benign course compared with rhabdomyolysis of other aetiologies in patients with a serum CK greater than 25 000 units/L. Conservative management of ER appears to be adequate, although this requires confirmation in future prospective studies. © 2016 Royal Australasian College of Physicians.

  4. Relationship between perceived exertion during exercise and subsequent recovery measurements

    Directory of Open Access Journals (Sweden)

    TN Mann

    2016-12-01

    Full Text Available The return towards resting homeostasis in the post-exercise period has the potential to represent the internal training load of the preceding exercise bout. However, the relative potential of metabolic and autonomic recovery measurements in this role has not previously been established. Therefore the aim of this study was to investigate which of 4 recovery measurements was most closely associated with Borg’s Rating of Perceived Exertion (RPE, a measurement widely acknowledged as an integrated measurement of the homeostatic stress of an exercise bout. A heterogeneous group of trained and untrained participants (n = 36 completed a bout of exercise on the treadmill (3 km at 70% of maximal oxygen uptake followed by 1 hour of controlled recovery. Expired respiratory gases and heart rate (HR were measured throughout the exercise and recovery phases of the trial with recovery measurements used to calculate the magnitude of excess post-exercise oxygen consumption (EPOCMAG, the time constant of the EPOC curve (EPOCτ, 1 min heart rate recovery (HRR60s and the time constant of the HR recovery curve (HRRτ for each participant. RPE taken in the last minute of exercise was significantly associated with HRR60s (r=-0.69, EPOCτ (r=0.52 and HRRτ (r=0.43 but not with EPOCMAG. This finding suggests that, of the 4 recovery measurements under investigation, HRR60s shows modest potential to represent inter-individual variation in the homeostatic stress of a standardized exercise bout, in a group with a range of fitness levels.

  5. Studies on the biosynthesis of macrophage migration inhibitory factor in delayed hypersensitivity, 1

    International Nuclear Information System (INIS)

    Mizoguchi, Yasuhiro; Yamamoto, Sukeo; Morisawa, Seiji

    1973-01-01

    Specific antigenic stimulation of sensitized lymphocytes leads to the production of macrophage migration inhibitory factor (MIF). Production of MIF is inhibited by mitomycin C, actinomycin D, and puromycin. These inhibition effects are studied by using thymidine- 3 H. The first two of these antibiotics only inhibit MIF production when added to the culture medium at a very early stage of antigenic stimulation. In contrast, puromycin exerts its inhibitory effect several hours after the antigenic stimulation, but not at an earlier stage. MIF behaves like a protein, so it seems likely that synthesis of RNA is necessary for MIF formation and MIF synthesis may start as early as a few hours after specific antigenic activation of the sensitized lymphocytes. The inhibitory effects of the antibiotics are discussed in relation to the kinetics of MIF production. (author)

  6. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration

    DEFF Research Database (Denmark)

    Saclier, Marielle; Yacoub-Youssef, Houda; Mackey, Abigail

    2013-01-01

    , we explored both in vitro and in vivo, in human, the interactions of differentially activated MPs with myogenic precursor cells (MPCs) during adult myogenesis and skeletal muscle regeneration. We showed in vitro that through the differential secretion of cytokines and growth factors, proinflammatory...... anti-inflammatory markers. These data demonstrate for the first time in human that MPs sequentially orchestrate adult myogenesis during regeneration of damaged skeletal muscle. These results support the emerging concept that inflammation, through MP activation, controls stem cell fate and coordinates......Macrophages (MPs) exert either beneficial or deleterious effects on tissue repair, depending on their activation/polarization state. They are crucial for adult skeletal muscle repair, notably by acting on myogenic precursor cells. However, these interactions have not been fully characterized. Here...

  7. Leishmania hijacking of the macrophage intracellular compartments.

    Science.gov (United States)

    Liévin-Le Moal, Vanessa; Loiseau, Philippe M

    2016-02-01

    Leishmania spp., transmitted to humans by the bite of the sandfly vector, are responsible for the three major forms of leishmaniasis, cutaneous, diffuse mucocutaneous and visceral. Leishmania spp. interact with membrane receptors of neutrophils and macrophages. In macrophages, the parasite is internalized within a parasitophorous vacuole and engages in a particular intracellular lifestyle in which the flagellated, motile Leishmania promastigote metacyclic form differentiates into non-motile, metacyclic amastigote form. This phenomenon is induced by Leishmania-triggered events leading to the fusion of the parasitophorous vacuole with vesicular members of the host cell endocytic pathway including recycling endosomes, late endosomes and the endoplasmic reticulum. Maturation of the parasitophorous vacuole leads to the intracellular proliferation of the Leishmania amastigote forms by acquisition of host cell nutrients while escaping host defense responses. © 2015 FEBS.

  8. Molecular Characterization of Macrophage-Biomaterial Interactions.

    Science.gov (United States)

    Moore, Laura Beth; Kyriakides, Themis R

    2015-01-01

    Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulation. In this review, we discuss the molecular events that contribute to macrophage activation and fusion with a focus on the role of the inflammasome, signaling pathways such as JAK/STAT and NF-κB, and the putative involvement of micro RNAs in the regulation of these processes.

  9. Activity of ethanolic extracts leaves of Machaerium floribundum against acne-inducing bacteria, and their cytoprotective and antioxidant effects on fibroblast

    Directory of Open Access Journals (Sweden)

    Lorena Díaz

    2011-08-01

    Full Text Available Propionibacterium acnes, Staphylococcus epidermidis and Staphylococcus aureus have been recognized as the bacteria that are involved in the inflammatory process of acne, while oxidants and antioxidants are involved in the repair of cutaneous tissue affected. In this study an evaluation was made of the antibacterial effect by the agar diffusion and broth dilution method, the cytoprotective and antioxidant effect on 3T3 dermic fibroblast cells, treated with hydrogen peroxide and the scavenging capacity of free radicals was determined by the 2, 2-diphenyl-l-picrylhydrazyl (DPPH method as well as the Reducing Power of the ethanolic extracts of the leaves of the Machaerium floribundum. Minimal bactericidal concentrations (MBC were obtained against Propionibacterium acnes and Staphylococcus aureus of 5 mg/mL and 2 mg/mL, respectively. A cytoprotective effect of 111% was observed over the cellular viability of the fibroblasts at 10 μg/mL and an antioxidant effect of 92% over the viability of the fibroblasts treated with hydrogen peroxide at 25 μg/mL. A stimulation of 24% growth of fibroblasts at 50 μg/mL was evidenced. On the other hand a 93% scavenging activity of the DPPH free radical was shown for 100 μg/mL with a CI50 of 34 μg/mL. The reducing power was evidenced to be dependent on the concentration. The results obtained indicated that the ethanolic extract of Machaerium floribundum shows a good antibacterial activity against bacteria that induce acne and a high potential for scavenging of free radicals at relatively low concentrations.

  10. In vitro cytoprotective effects of acetylsalicylic acid, carprofen, meloxicam, or robenacoxib against apoptosis induced by sodium nitroprusside in canine cruciate ligament cells.

    Science.gov (United States)

    Waldherr, Katrin; Zurbriggen, Andreas; Spreng, David E; Forterre, Simone

    2012-11-01

    To determine whether incubation of cruciate ligament cells with acetylsalicylic acid, carprofen, meloxicam, or robenacoxib provides protection against apoptosis induced by sodium nitroprusside (SNP). Explants of cranial (CCL) and caudal (CaCL) cruciate ligaments from eight 1-day-old Beagles. Primary cultures of CCL and CaCL cells were created via enzymatic dissociation of cruciate explants. Purified cell cultures were incubated for 2 hours without (controls) or with 1 of 3 concentrations of 1 of 4 NSAIDs (10, 100, or 200 μg of acetylsalicylic acid/mL; 0.1, 1, or 10 μg of carprofen/mL; 0.1, 1, or 10 μg of meloxicam/mL; or 0.1, 1, or 10 μg of robenacoxib/mL) and subsequently incubated for 18 hours with 1 of 3 concentrations of SNP in an attempt to induce mild, moderate, or severe cytotoxic effects. Cell viability and apoptosis were analyzed via a cell proliferation assay and flow cytometry, respectively. Prostaglandin E(2) concentrations were measured via an ELISA. Cytoprotective effects of NSAIDs were dependent on the extent of SNP-induced apoptosis and were greatest in CCL and CaCL cell cultures with moderate SNP-induced cytotoxic effects. Preincubation with an NSAID improved cell viability by 15% to 45% when CCL and CaCL cells were subsequently incubated with SNP. Carprofen (10 μg/mL) had the greatest cytoprotective effects for CCL and CaCL cells. Incubation with NSAIDs resulted in a nonsignificant decrease in PGE(2) production from SNP-damaged cells. Results indicated that carprofen, meloxicam, and robenacoxib may reduce apoptosis in cells originating from canine cruciate ligaments.

  11. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Kume, Toshiaki; Izumi, Yasuhiko [Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29, Simoadachi-cho, Sakyo-ku, Kyoto 606-8501 (Japan); Park, Si-Bum [Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun [Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Hirata, Takashi [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Faculty of Rehabilitation, Shijonawategakuen University, 5-11-10, Hojo, Daitou-shi, Osaka 574-0011 (Japan); Sugawara, Tatsuya, E-mail: sugawara@kais.kyoto-u.ac.jp [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan)

    2016-04-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H:quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. - Highlights: • We evaluated the effect of modified fatty acids generated by Lactobacillus plantarum. • 10-Oxo-trans-11-ocatadecenoic acid (KetoC) protected cells from oxidative stress. • KetoC activated the Nrf2-ARE pathway to promote antioxidative gene expression. • KetoC promoted the expression of antioxidative enzymes in mice organs. • The cytoprotective effect of KetoC was because of α,β-unsaturated carbonyl moiety.

  12. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo

    International Nuclear Information System (INIS)

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan; Surh, Young-Joon

    2013-01-01

    Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin

  13. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress

    International Nuclear Information System (INIS)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Kume, Toshiaki; Izumi, Yasuhiko; Park, Si-Bum; Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun; Hirata, Takashi; Sugawara, Tatsuya

    2016-01-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H:quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. - Highlights: • We evaluated the effect of modified fatty acids generated by Lactobacillus plantarum. • 10-Oxo-trans-11-ocatadecenoic acid (KetoC) protected cells from oxidative stress. • KetoC activated the Nrf2-ARE pathway to promote antioxidative gene expression. • KetoC promoted the expression of antioxidative enzymes in mice organs. • The cytoprotective effect of KetoC was because of α,β-unsaturated carbonyl moiety.

  14. Purinergic signaling to terminate TLR responses in macrophages

    Directory of Open Access Journals (Sweden)

    Kajal eHamidzadeh

    2016-03-01

    Full Text Available Macrophages undergo profound physiological alterations when they encounter pathogen associated molecular patterns (PAMPs. These alterations can result in the elaboration of cytokines and mediators that promote immune responses and contribute to the clearance of pathogens. These innate immune responses by myeloid cells are transient. The termination of these secretory responses is not due to the dilution of stimuli, but rather to the active down-regulation of innate responses induced by the very PAMPs that initiated them. Here we describe a purinergic autoregulatory program whereby TLR-stimulated macrophages control their activation state. In this program, TLR stimulated macrophages undergo metabolic alterations that result in the production of ATP and its release through membrane pannexin channels. This purine nucleotide is rapidly hydrolyzed to adenosine by ectoenzymes on the macrophage surface, CD39 and CD73. Adenosine then signals through the P1 class of seven transmembrane receptors to induce a regulatory state that is characterized by the down-regulation of inflammatory cytokines and the production of anti-inflammatory cytokines and growth factors. This purinergic autoregulatory system mitigates the collateral damage that would be caused by the prolonged activation of macrophages, and rather allows the macrophage to maintain homeostasis. The transient activation of macrophages can be prolonged by treating macrophages with IFN-γ. IFN-γ treated macrophages become less sensitive to the regulatory effects of adenosine, allowing them to sustain macrophage activation for the duration of an adaptive immune response.

  15. Macrophage Phenotype and Function in Different Stages of Atherosclerosis

    Science.gov (United States)

    Tabas, Ira; Bornfeldt, Karin E.

    2016-01-01

    The remarkable plasticity and plethora of biological functions performed by macrophages have enticed scientists to study these cells in relation to atherosclerosis for more than 50 years, and major discoveries continue to be made today. It is now understood that macrophages play important roles in all stages of atherosclerosis, from initiation of lesions and lesion expansion, to necrosis leading to rupture and the clinical manifestations of atherosclerosis, to resolution and regression of atherosclerotic lesions. Lesional macrophages are derived primarily from blood monocytes, although recent research has shown that lesional macrophage-like cells can also be derived from smooth muscle cells. Lesional macrophages take on different phenotypes depending on their environment and which intracellular signaling pathways are activated. Rather than a few distinct populations of macrophages, the phenotype of the lesional macrophage is more complex and likely changes during the different phases of atherosclerosis and with the extent of lipid and cholesterol loading, activation by a plethora of receptors, and metabolic state of the cells. These different phenotypes allow the macrophage to engulf lipids, dead cells, and other substances perceived as danger signals; efflux cholesterol to HDL; proliferate and migrate; undergo apoptosis and death; and secrete a large number of inflammatory and pro-resolving molecules. This review article, part of the Compendium on Atherosclerosis, discusses recent advances in our understanding of lesional macrophage phenotype and function in different stages of atherosclerosis. With the increasing understanding of the roles of lesional macrophages, new research areas and treatment strategies are beginning to emerge. PMID:26892964

  16. Human Induced Pluripotent Stem Cell-Derived Macrophages for Unraveling Human Macrophage Biology.

    Science.gov (United States)

    Zhang, Hanrui; Reilly, Muredach P

    2017-11-01

    Despite a substantial appreciation for the critical role of macrophages in cardiometabolic diseases, understanding of human macrophage biology has been hampered by the lack of reliable and scalable models for cellular and genetic studies. Human induced pluripotent stem cell (iPSC)-derived macrophages (IPSDM), as an unlimited source of subject genotype-specific cells, will undoubtedly play an important role in advancing our understanding of the role of macrophages in human diseases. In this review, we summarize current literature in the differentiation and characterization of IPSDM at phenotypic, functional, and transcriptomic levels. We emphasize the progress in differentiating iPSC to tissue resident macrophages, and in understanding the ontogeny of in vitro differentiated IPSDM that resembles primitive hematopoiesis, rather than adult definitive hematopoiesis. We review the application of IPSDM in modeling both Mendelian genetic disorders and host-pathogen interactions. Finally, we highlighted the potential areas of research using IPSDM in functional validation of coronary artery disease loci in genome-wide association studies, functional genomic analyses, drug testing, and cell therapeutics in cardiovascular diseases. © 2017 American Heart Association, Inc.

  17. Misbehaving macrophages in the pathogenesis of psoriasis

    OpenAIRE

    Clark, Rachael A.; Kupper, Thomas S.

    2006-01-01

    Psoriasis is a chronic inflammatory skin disease unique to humans. In this issue of the JCI, 2 studies of very different mouse models of psoriasis both report that macrophages play a key role in inducing psoriasis-like skin disease. Psoriasis is clearly a polygenic, inherited disease of uncontrolled cutaneous inflammation. The debate that currently rages in the field is whether psoriasis is a disease of autoreactive T cells or whether it reflects an intrinsic defect within the skin — or both....

  18. Molecular Characterization of Macrophage-Biomaterial Interactions

    OpenAIRE

    Moore, Laura Beth; Kyriakides, Themis R.

    2015-01-01

    Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulati...

  19. Macrophage specific drug delivery in experimental leishmaniasis.

    Science.gov (United States)

    Basu, Mukul Kumar; Lala, Sanchaita

    2004-09-01

    Macrophage-specific delivery systems are the subject of much interest nowadays, because of the fact that macrophages act as host cells for many parasites and bacteria, which give rise to outbreak of so many deadly diseases(eg. leishmaniasis, tuberculosis etc.) in humans. To combat these deadly diseases initially macrophage specific liposomal delivery system were thought of and tested in vivo against experimental leishmaniasis in hamsters using a series of indigenous or synthetic antileishmanial compounds and the results were critically discussed. In vitro testing was also done against macrophages infected with Leishmania donovani, the causative agent for visceral leishmaniasis. The common problem of liposome therapy being their larger size, stability and storage, non-ionic surfactant vesicles, niosomes were prepared, for their different drug distribution and release characteristics compared to liposomes. When tested in vivo, the retention capacity of niosomes was found to be higher than that of liposomes due to the absence of lipid molecules and their smaller size. Thus the therapeutic efficacy of certain antileishmanial compounds was found to be better than that in the liposomal form. The niosomes, being cheaper, less toxic, biodegradable and non-immunogenic, were considered for sometime as suitable alternatives to liposomes as drug carriers. Besides the advent of other classical drugs carriers(e.g. neoglycoproteins), the biggest challenge came from polymeric delivery vehicles, specially the polymeric nanoparticles which were made of cost effective biodegradable polymers and different natural polymers. Because of very small size and highly stable nature, use of nanoparticles as effective drug carriers has been explored in experimental leishmaniasis using a series of antileishmanial compounds, both of indigenous and synthetic origin. The feasibility of application in vivo, when tested for biological as well as for other physicochemical parameters, the polymeric

  20. M2 polarization enhances silica nanoparticle uptake by macrophages

    Directory of Open Access Journals (Sweden)

    Jessica eHoppstädter

    2015-03-01

    Full Text Available While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth.We employed different models of M1 and M2 polarization: GM-CSF/LPS/IFN-gamma was used to generate primary human M1 cells and M-CSF/IL-10 to differentiate M2 monocyte-derived macrophages. PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-gamma and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø 26 and 41 nm and microparticles (Ø 1.75 µm was quantified. At the concentration used (50 µg/ml, silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human monocyte-derived macrophages compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages (TAM obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue.In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but might also open up therapeutic perspectives allowing to specifically target M2

  1. Legumain is activated in macrophages during pancreatitis

    Science.gov (United States)

    Wartmann, Thomas; Fleming, Alicia K.; Gocheva, Vasilena; van der Linden, Wouter A.; Withana, Nimali P.; Verdoes, Martijn; Aurelio, Luigi; Edgington-Mitchell, Daniel; Lieu, TinaMarie; Parker, Belinda S.; Graham, Bim; Reinheckel, Thomas; Furness, John B.; Joyce, Johanna A.; Storz, Peter; Halangk, Walter; Bogyo, Matthew; Bunnett, Nigel W.

    2016-01-01

    Pancreatitis is an inflammatory disease of the pancreas characterized by dysregulated activity of digestive enzymes, necrosis, immune infiltration, and pain. Repeated incidence of pancreatitis is an important risk factor for pancreatic cancer. Legumain, a lysosomal cysteine protease, has been linked to inflammatory diseases such as atherosclerosis, stroke, and cancer. Until now, legumain activation has not been studied during pancreatitis. We used a fluorescently quenched activity-based probe to assess legumain activation during caerulein-induced pancreatitis in mice. We detected activated legumain by ex vivo imaging, confocal microscopy, and gel electrophoresis. Compared with healthy controls, legumain activity in the pancreas of caerulein-treated mice was increased in a time-dependent manner. Legumain was localized to CD68+ macrophages and was not active in pancreatic acinar cells. Using a small-molecule inhibitor of legumain, we found that this protease is not essential for the initiation of pancreatitis. However, it may serve as a biomarker of disease, since patients with chronic pancreatitis show strongly increased legumain expression in macrophages. Moreover, the occurrence of legumain-expressing macrophages in regions of acinar-to-ductal metaplasia suggests that this protease may influence reprogramming events that lead to inflammation-induced pancreatic cancer. PMID:27514475

  2. Pegylated silica nanoparticles: cytotoxicity and macrophage uptake

    Science.gov (United States)

    Glorani, Giulia; Marin, Riccardo; Canton, Patrizia; Pinto, Marcella; Conti, Giamaica; Fracasso, Giulio; Riello, Pietro

    2017-08-01

    Here, we present a thorough study of pegylated silica nanoparticle (SNP) interaction with different biological environments. The SNPs have a mean diameter of about 40 nm and are coated with polyethylene glycol (PEG) of different molecular weights. The physicochemical characterization of SNPs allowed the confirmation of the binding of PEG chains to the silica surface, the reproducibility of the synthesis and the narrow size-dispersion. In view of clarifying the SNP interaction with biological environments, we first assessed the SNP reactivity after the incubation with two cell lines (macrophages RAW 264.7 and primary human fibroblasts), observing a reduced toxicity of pegylated SNPs compared to the bare ones. Then, we investigated the effect of the protein adsorption on the SNP surface using the model serum protein, bovine serum albumin (BSA). We found that the protein adsorption takes place more heavily on poorly pegylated SNPs, promoting the uptake of the latter by macrophages and leading to an increased mortality of these cells. To better understand this mechanism by means of flow cytometry, the dye Ru(bpy)3Cl2 was incorporated in the SNPs. The overall results highlight the SNP potentialities as a drug delivery system, thanks to the low interactions with the macrophages.

  3. Burkholderia pseudomallei transcriptional adaptation in macrophages

    Directory of Open Access Journals (Sweden)

    Chieng Sylvia

    2012-07-01

    Full Text Available Abstract Background Burkholderia pseudomallei is a facultative intracellular pathogen of phagocytic and non-phagocytic cells. How the bacterium interacts with host macrophage cells is still not well understood and is critical to appreciate the strategies used by this bacterium to survive and how intracellular survival leads to disease manifestation. Results Here we report the expression profile of intracellular B. pseudomallei following infection of human macrophage-like U937 cells. During intracellular growth over the 6 h infection period, approximately 22 % of the B. pseudomallei genome showed significant transcriptional adaptation. B. pseudomallei adapted rapidly to the intracellular environment by down-regulating numerous genes involved in metabolism, cell envelope, motility, replication, amino acid and ion transport system and regulatory function pathways. Reduced expression in catabolic and housekeeping genes suggested lower energy requirement and growth arrest during macrophage infection, while expression of genes encoding anaerobic metabolism functions were up regulated. However, whilst the type VI secretion system was up regulated, expression of many known virulence factors was not significantly modulated over the 6hours of infection. Conclusions The transcriptome profile described here provides the first comprehensive view of how B. pseudomallei survives within host cells and will help identify potential virulence factors and proteins that are important for the survival and growth of B. pseudomallei within human cells.

  4. Placental Growth Factor Contributes to Liver Inflammation, Angiogenesis, Fibrosis in Mice by Promoting Hepatic Macrophage Recruitment and Activation

    Directory of Open Access Journals (Sweden)

    Xi Li

    2017-07-01

    Full Text Available Placental growth factor (PlGF, a member of the vascular endothelial growth factor (VEGF family, mediates wound healing and inflammatory responses, exerting an effect on liver fibrosis and angiogenesis; however, the precise mechanism remains unclear. The aims of this study are to identify the role of PlGF in liver inflammation and fibrosis induced by bile duct ligation (BDL in mice and to reveal the underlying molecular mechanism. PlGF small interfering RNA (siRNA or non-targeting control siRNA was injected by tail vein starting 2 days after BDL. Liver inflammation, fibrosis, angiogenesis, macrophage infiltration, and hepatic stellate cells (HSCs activation were examined. Our results showed that PlGF was highly expressed in fibrotic livers and mainly distributed in activated HSCs and macrophages. Furthermore, PlGF silencing strongly reduced the severity of liver inflammation and fibrosis, and inhibited the activation of HSCs. Remarkably, PlGF silencing also attenuated BDL-induced hepatic angiogenesis, as evidenced by attenuated liver endothelial cell markers CD31 and von Willebrand factor immunostaining and genes or protein expression. Interestingly, these pathological ameliorations by PlGF silencing were due to a marked reduction in the numbers of intrahepatic F4/80+, CD68+, and Ly6C+ cell populations, which were reflected by a lower expression of these macrophage marker molecules in fibrotic livers. In addition, knockdown of PlGF by siRNA inhibited macrophages activation and substantially suppressed the expression of pro-inflammatory cytokines and chemokines in fibrotic livers. Mechanistically, evaluation of cultured RAW 264.7 cells revealed that VEGF receptor 1 (VEGFR1 mainly involved in mediating the role of PlGF in macrophages recruitment and activation, since using VEGFR1 neutralizing antibody blocking PlGF/VEGFR1 signaling axis significantly inhibited macrophages migration and inflammatory responses. Together, these findings indicate

  5. Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses

    Science.gov (United States)

    Haase, A.; Tentschert, J.; Jungnickel, H.; Graf, P.; Mantion, A.; Draude, F.; Plendl, J.; Goetz, M. E.; Galla, S.; Mašić, A.; Thuenemann, A. F.; Taubert, A.; Arlinghaus, H. F.; Luch, A.

    2011-07-01

    Silver nanoparticles (SNP) are among the most commercialized nanoparticles worldwide. They can be found in many diverse products, mostly because of their antibacterial properties. Despite its widespread use only little data on possible adverse health effects exist. It is difficult to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles. Here, we applied a novel synthesis approach to obtain SNP, which are covalently stabilized by a small peptide. This enables a tight control of both size and shape. We applied these SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP-1-derived human macrophages. Similar gold nanoparticles with the same coating (Au20Pep) were used for comparison and found to be non-toxic. We assessed the cytotoxicity of particles and confirmed their cellular uptake via transmission electron microscopy and confocal Raman microscopy. Importantly a majority of the SNP could be detected as individual particles spread throughout the cells. Furthermore we studied several types of oxidative stress related responses such as induction of heme oxygenase I or formation of protein carbonyls. In summary, our data demonstrate that even low doses of SNP exerted adverse effects in human macrophages.

  6. Toxicity of silver nanoparticles in human macrophages: uptake, intracellular distribution and cellular responses

    International Nuclear Information System (INIS)

    Haase, A; Tentschert, J; Jungnickel, H; Goetz, M E; Luch, A; Graf, P; Mantion, A; Thuenemann, A F; Draude, F; Galla, S; Arlinghaus, H F; Plendl, J; Masic, A; Taubert, A

    2011-01-01

    Silver nanoparticles (SNP) are among the most commercialized nanoparticles worldwide. They can be found in many diverse products, mostly because of their antibacterial properties. Despite its widespread use only little data on possible adverse health effects exist. It is difficult to compare biological data from different studies due to the great variety in sizes, coatings or shapes of the particles. Here, we applied a novel synthesis approach to obtain SNP, which are covalently stabilized by a small peptide. This enables a tight control of both size and shape. We applied these SNP in two different sizes of 20 or 40 nm (Ag20Pep and Ag40Pep) and analyzed responses of THP-1-derived human macrophages. Similar gold nanoparticles with the same coating (Au20Pep) were used for comparison and found to be non-toxic. We assessed the cytotoxicity of particles and confirmed their cellular uptake via transmission electron microscopy and confocal Raman microscopy. Importantly a majority of the SNP could be detected as individual particles spread throughout the cells. Furthermore we studied several types of oxidative stress related responses such as induction of heme oxygenase I or formation of protein carbonyls. In summary, our data demonstrate that even low doses of SNP exerted adverse effects in human macrophages.

  7. Origins and Hallmarks of Macrophages: Development, Homeostasis, and Disease

    Science.gov (United States)

    Wynn, Thomas A.; Chawla, Ajay; Pollard, Jeffrey W.

    2013-01-01

    Preface Macrophages the most plastic cells of the hematopoietic system are found in all tissues and exhibit great functional diversity. They have roles in development, homeostasis, tissue repair, and immunity. While anatomically distinct, resident tissue macrophages exhibit different transcriptional profiles, and functional capabilities, they are all required for the maintenance of homeostasis. However, these reparative and homeostatic functions can be subverted by chronic insults, resulting in a causal association of macrophages with disease states. In this review, we discuss how macrophages regulate normal physiology and development and provide several examples of their pathophysiologic roles in disease. We define the “hallmarks” of macrophages performing particular functions, taking into account novel insights into the diversity of their lineages, identity, and regulation. This diversity is essential to understand because macrophages have emerged as important therapeutic targets in many important human diseases. PMID:23619691

  8. Regulation of macrophage development and function in peripheral tissues

    Science.gov (United States)

    Lavin, Yonit; Mortha, Arthur; Rahman, Adeeb; Merad, Miriam

    2015-01-01

    Macrophages are immune cells of haematopoietic origin that provide crucial innate immune defence and have tissue-specific functions in the regulation and maintenance of organ homeostasis. Recent studies of macrophage ontogeny, as well as transcriptional and epigenetic identity, have started to reveal the decisive role of the tissue stroma in the regulation of macrophage function. These findings suggest that most macrophages seed the tissues during embryonic development and functionally specialize in response to cytokines and metabolites that are released by the stroma and drive the expression of unique transcription factors. In this Review, we discuss how recent insights into macrophage ontogeny and macrophage–stroma interactions contribute to our understanding of the crosstalk that shapes macrophage function and the maintenance of organ integrity. PMID:26603899

  9. Tumor-Associated Macrophages in Oncolytic Virotherapy: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Nicholas L. Denton

    2016-07-01

    Full Text Available Cancer therapy remains a challenge due to toxicity limitations of chemotherapy and radiation therapy. Oncolytic viruses that selectively replicate and destroy cancer cells are of increasing interest. In addition to direct cell lysis, these vectors stimulate an anti-tumor immune response. A key regulator of tumor immunity is the tumor-associated macrophage population. Macrophages can either support oncolytic virus therapy through pro-inflammatory stimulation of the anti-tumor response at the cost of hindering direct oncolysis or through immunosuppressive protection of virus replication at the cost of hindering the anti-tumor immune response. Despite similarities in macrophage interaction between adult and pediatric tumors and the abundance of research supporting macrophage modulation in adult tumors, there are few studies investigating macrophage modulation in pediatric cancers or modulation of immunotherapy. We review the current state of knowledge regarding macrophages in cancers and their influence on oncolytic virotherapy.

  10. Role of Macrophage-Induced Inflammation in Mesothelioma

    Science.gov (United States)

    2011-07-01

    macrophages). Normal pleura becomes available intermittently , serving to slow the completion of this task. All is set in place for us to complete the...GFP) regulated by a Csf1r-promoter (Sasmono et al. 2003) show that macrophages travel up and down these fibers at a fast rate and also “jump” between...2010). Macrophages have also recently been shown to be important in adipogenesis at least during obesity , through their secretion of adipocyte growth

  11. Sargachromenol from Sargassum micracanthum Inhibits the Lipopolysaccharide-Induced Production of Inflammatory Mediators in RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Eun-Jin Yang

    2013-01-01

    Full Text Available During our ongoing screening program designed to determine the anti-inflammatory potential of natural compounds, we isolated sargachromenol from Sargassum micracanthum. In the present study, we investigated the anti-inflammatory effects of sargachromenol on lipopolysaccharide (LPS-induced inflammation in murine RAW 264.7 macrophage cells and the underlying mechanisms. Sargachromenol significantly inhibited the LPS-induced production of nitric oxide (NO and prostaglandin E2 (PGE2 in a dose-dependent manner. It also significantly inhibited the protein expression of inducible NO synthase (iNOS and cyclooxygenase-2 (COX-2 in a dose-dependent manner in LPS-stimulated macrophage cells. Further analyses showed that sargachromenol decreased the cytoplasmic loss of inhibitor κBα (IκBα protein. These results suggest that sargachromenol may exert its anti-inflammatory effects on LPS-stimulated macrophage cells by inhibiting the activation of the NF-κB signaling pathway. In conclusion, to our knowledge, this is the first study to show that sargachromenol isolated from S. micracanthum has an effective anti-inflammatory activity. Therefore, sargachromenol might be useful for cosmetic, food, or medical applications requiring anti-inflammatory properties.

  12. Maternal Diet, Metabolic State, and Inflammatory Response Exert Unique and Long-Lasting Influences on Offspring Behavior in Non-Human Primates

    Directory of Open Access Journals (Sweden)

    Jacqueline R. Thompson

    2018-04-01

    Full Text Available Nutritional status influences brain health and gestational exposure to metabolic disorders (e.g. obesity and diabetes increases the risk of neuropsychiatric disorders. The aim of the present study was to further investigate the role of maternal Western-style diet (WSD, metabolic state, and inflammatory factors in the programming of Japanese macaque offspring behavior. Utilizing structural equation modeling, we investigated the relationships between maternal diet, prepregnancy adiposity, third trimester insulin response, and plasma cytokine levels on 11-month-old offspring behavior. Maternal WSD was associated with greater reactive and ritualized anxiety in offspring. Maternal adiposity and third trimester macrophage-derived chemokine (MDC exerted opposing effects on offspring high-energy outbursts. Elevated levels of this behavior were associated with low maternal MDC and increased prepregnancy adiposity. This is the first study to show that maternal MDC levels influence offspring behavior. We found no evidence suggesting maternal peripheral inflammatory response mediated the effect of maternal diet and metabolic state on aberrant offspring behavior. Additionally, the extent of maternal metabolic impairment differentially influenced chemokine response. Elevated prepregnancy adiposity suppressed third trimester chemokines, while obesity-induced insulin resistance augmented peripheral chemokine levels. WSD also directly increased maternal interleukin-12. This is the first non-human primate study to delineate the effects of maternal diet and metabolic state on gestational inflammatory environment and subsequent offspring behavior. Our findings give insight to the complex mechanisms by which diet, metabolic state, and inflammation during pregnancy exert unique influences on offspring behavioral regulation.

  13. The effect of two novel amino acid-coated magnetic nanoparticles on survival in vascular endothelial cells, bone marrow stromal cells, and macrophages

    Science.gov (United States)

    Wu, Qinghua; Meng, Ning; Zhang, Yanru; Han, Lei; Su, Le; Zhao, Jing; Zhang, Shangli; Zhang, Yun; Zhao, Baoxiang; Miao, Junying

    2014-09-01

    Magnetic nanoparticles (MNPs) have been popularly used in many fields. Recently, many kinds of MNPs are modified as new absorbents, which have attracted considerable attention and are promising to be applied in waste water. In our previous study, we synthesized two novel MNPs surface-coated with glycine or lysine, which could efficiently remove many anionic and cationic dyes under severe conditions. It should be considered that MNP residues in water may exert some side effects on human health. In the present study, we evaluated the potential nanotoxicity of MNPs in human endothelial cells, macrophages, and rat bone marrow stromal cells. The results showed that the two kinds of nanoparticles were consistently absorbed into the cell cytoplasm. The concentration of MNPs@Gly that could distinctly decrease survival was 15 μg/ml in human umbilical vascular endothelial cells (HUVECs) or bone marrow stromal cells (BMSCs) and 10 μg/ml in macrophages. While the concentration of MNPs@Lys that obviously reduced viability was 15 μg/ml in HUVECs or macrophages and 50 μg/ml in BMSCs. Furthermore, cell nucleus staining and cell integrity assay indicated that the nanoparticles induced cell apoptosis, but not necrosis even at a high concentration. Altogether, these data suggest that the amino acid-coated magnetic nanoparticles exert relatively high cytotoxicity. By contrast, lysine-coated magnetic nanoparticles are more secure than glycine-coated magnetic nanoparticles.

  14. Macrophages: contributors to allograft dysfunction, repair, or innocent bystanders?

    Science.gov (United States)

    Mannon, Roslyn B

    2012-02-01

    Macrophages are members of the innate immune response. However, their role in the adaptive immune response is not known. The purpose of this review is to highlight our current understanding of macrophage structure and function and how they may participate in allograft injury. Studies in acute kidney injury models identify macrophages as key mediators of inflammatory injury, while more recent studies indicate that they may play a reparative role, depending on phenotype - M1 or M2 type macrophages. Mregs, generated in vitro, appear to have immune suppressive abilities and a unique phenotype. In solid-organ transplant, the emphasis of studies has been on acute or chronic injury. These data are derived from animal models using depletion of macrophages or antagonizing their activation and inflammatory responses. The relative contribution of macrophage phenotype in transplantation has not been explored. These studies suggest that macrophages play an injurious role in acute cellular allograft rejection, as well as in chronic injury. Infiltration of an allograft with macrophages is also associated with worse graft function and poor prognosis. Further studies are needed to understand the mechanisms of macrophage-mediated injury, explore their potential reparative role, and determine if they or their functional products are biomarkers of poor graft outcomes.

  15. L-Plastin promotes podosome longevity and supports macrophage motility

    Science.gov (United States)

    Zhou, Julie Y.; Szasz, Taylor P.; Stewart-Hutchinson, Phillip J.; Sivapalan, Janardan; Todd, Elizabeth M.; Deady, Lauren E.; Cooper, John A.; Onken, Michael D.; Morley, S. Celeste

    2016-01-01

    Elucidating the molecular regulation of macrophage migration is essential for understanding the patho-physiology of multiple human diseases, including host responses to infection and autoimmune disorders. Macrophage migration is supported by dynamic rearrangements of the actin cytoskeleton, with formation of actin-based structures such as podosomes and lamellipodia. Here we provide novel insights into the function of the actin-bundling protein l-plastin (LPL) in primary macrophages. We found that podosome stability is disrupted in primary resident peritoneal macrophages from LPL−/− mice. Live-cell imaging of F-actin using resident peritoneal macrophages from LifeACT-RFP+ mice demonstrated that loss of LPL led to decreased longevity of podosomes, without reducing the number of podosomes initiated. Additionally, macrophages from LPL−/− mice failed to elongate in response to chemotactic stimulation. These deficiencies in podosome stabilization and in macrophage elongation correlated with impaired macrophage transmigration in culture and decreased monocyte migration into murine peritoneum. Thus, we have identified a role for LPL in stabilizing long-lived podosomes and in enabling macrophage motility. PMID:27614263

  16. Functional modifications of macrophage activity after sublethal irradiation

    International Nuclear Information System (INIS)

    Swartz, R.P.

    1982-01-01

    The modifications of macrophage activity following sublethal irradiation, both in vivo and in vitro, were studied using spreading and C3b-receptor-mediated ingestion assays. Nonelicited peritoneal washout cells were examined for changes in activity and selected population characteristics. The cells from irradiated mice were from a resident peritoneal population and not immigrating cells. The macrophage population showed enhanced activity early with a refractory period (24-48) when the macrophages were unresponsive to stimulation by irradiated lymphocytes. The enhanced activity was inversely dose dependent on macrophage. The lymphocytes showed a regulatory function(s) on the time post irradiation at which they were examined. Early lymphocytes exhibited the ability to enhance the activity of normal macrophages while lymphocytes removed 24 hours post irradiation could suppress the activity of already activated macrophages. The effect(s) of the various lymphocyte populations were reproduced with cell-free supernatants which was indicative of the production of lymphokines. Separation on nylon wool columns indicated that the activity resided primarily in the T-cell population of lymphocytes. In vitro irradiation indicated that stimulation of the lymphocytes is macrophage dependent. Additional work indicated that sublethally irradiated macrophages did not inhibit replication of the coccidian protozoon Toxoplasma gondii although they did show increased phagocytosis. Examination of the serum from whole body irradiated mice showed the presence of a postirradiation substance which enhanced the phagocytosis of normal macrophages. It was not present in the serum of normal mice and was not endotoxin

  17. Macrophage migration inhibitory factor is associated with aneurysmal expansion

    DEFF Research Database (Denmark)

    Pan, Jie-Hong; Lindholt, Jes Sanddal; Sukhova, Galina K

    2003-01-01

    Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine released mainly from macrophages and activated lymphocytes. Both atherosclerosis and abdominal aortic aneurysm (AAA) are inflammatory diseases tightly linked to the function of these cells. The correlation and contribution o...... of MIF to these human diseases remain unknown, although a recent rabbit study showed expression of this cytokine in atherosclerotic lesions.......Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine released mainly from macrophages and activated lymphocytes. Both atherosclerosis and abdominal aortic aneurysm (AAA) are inflammatory diseases tightly linked to the function of these cells. The correlation and contribution...

  18. High density lipoprotein (HDL)-associated sphingosine 1-phosphate (S1P) inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression.

    Science.gov (United States)

    Feuerborn, Renata; Becker, Susen; Potì, Francesco; Nagel, Petra; Brodde, Martin; Schmidt, Harmut; Christoffersen, Christina; Ceglarek, Uta; Burkhardt, Ralph; Nofer, Jerzy-Roch

    2017-02-01

    Macrophage apoptosis is critically involved in atherosclerosis. We here examined the effect of anti-atherogenic high density lipoprotein (HDL) and its component sphingosine-1-phosphate (S1P) on apoptosis in RAW264.7 murine macrophages. Mitochondrial or endoplasmic reticulum-dependent apoptosis was induced by exposure of macrophages to etoposide or thapsigargin/fukoidan, respectively. Cell death induced by these compounds was inhibited by S1P as inferred from reduced annexin V binding, TUNEL staining, and caspase 3, 9 and 12 activities. S1P induced expression of the inhibitor of apoptosis protein (IAP) family proteins cIAP1, cIAP2 and survivin, but only the inhibitor of survivin expression YM155 and not the cIAP1/2 blocker GDC0152 reversed the inhibitory effect of S1P on apoptosis. Moreover, S1P activated signal transducer and activator of transcription 3 (STAT3) and Janus kinase 2 (JAK2) and the stimulatory effect of S1P on survivin expression and inhibitory effects on apoptosis were attenuated by STAT3 or JAK2 inhibitors, S3I-201 or AG490, respectively. The effects of S1P on STAT3 activation, survivin expression and macrophage apoptosis were emulated by HDL, HDL lipids, and apolipoprotein (apo) M-containing HDL, but not by apoA-I or HDL deprived of S1P or apoM. In addition, JTE013 and CAY10444, S1P receptor 2 and 3 antagonists, respectively, compromised the S1P and HDL capacities to stimulate STAT3 activation and survivin expression, and to inhibit apoptosis. HDL-associated S1P inhibits macrophage apoptosis by stimulating STAT3 activity and survivin expression. The suppression of macrophage apoptosis may represent a novel mechanism utilized by HDL to exert its anti-atherogenic effects. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. In vitro studies of interaction of rickettsia and macrophages: effect of ultraviolet light on Coxiella burnetti inactivation and macrophage enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Little, J.S.; Kishimoto, R.A.; Canonico, P.G.

    1980-03-01

    The inactivation of Coxiella burnetii in suspension or in cultures of guinea pig peritoneal macrophages by ultraviolet (uv) light was studied. The effect of uv treatment on the activity of macrophage organelle marker enzymes and their subsequent equilibration in linear sucrose gradients was also determined. It was shown that uv treatment for 15 s at a distance of 10 cm inactivated C. burnetti, either in suspension or within guinea pig peritoneal macrophages. Similar uv treatment had little effect on the activity or equilibration of macrophage organelle marker enzymes in linear sucrose gradients.

  20. Moderate restriction of macrophage-tropic human immunodeficiency virus type 1 by SAMHD1 in monocyte-derived macrophages.

    Science.gov (United States)

    Taya, Kahoru; Nakayama, Emi E; Shioda, Tatsuo

    2014-01-01

    Macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains are able to grow to high titers in human monocyte-derived macrophages. However, it was recently reported that cellular protein SAMHD1 restricts HIV-1 replication in human cells of the myeloid lineage, including monocyte-derived macrophages. Here we show that degradation of SAMHD1 in monocyte-derived macrophages was associated with moderately enhanced growth of the macrophage-tropic HIV-1 strain. SAMHD1 degradation was induced by treating target macrophages with vesicular stomatitis virus glycoprotein-pseudotyped human immunodeficiency virus type 2 (HIV-2) particles containing viral protein X. For undifferentiated monocytes, HIV-2 particle treatment allowed undifferentiated monocytes to be fully permissive for productive infection by the macrophage-tropic HIV-1 strain. In contrast, untreated monocytes were totally resistant to HIV-1 replication. These results indicated that SAMHD1 moderately restricts even a macrophage-tropic HIV-1 strain in monocyte-derived macrophages, whereas the protein potently restricts HIV-1 replication in undifferentiated monocytes.

  1. Macrophage heterogeneity and cholesterol homeostasis: classically-activated macrophages are associated with reduced cholesterol accumulation following treatment with oxidized LDL.

    Science.gov (United States)

    Chu, Eugene M; Tai, Daven C; Beer, Jennifer L; Hill, John S

    2013-02-01

    Macrophages are centrally involved during atherosclerosis development and are the predominant cell type that accumulates cholesterol in the plaque. Macrophages however, are heterogeneous in nature reflecting a variety of microenvironments and different phenotypes may be more prone to contribute towards atherosclerosis progression. Using primary human monocyte-derived macrophages, we sought to evaluate one aspect of atherogenic potential of different macrophage phenotypes by determining their propensity to associate with and accumulate oxidized low density lipoprotein (oxLDL). Classically-activated macrophages treated simultaneously with interferon γ (IFNγ) and tumor necrosis factor α (TNFα) associated with less oxLDL and accumulated less cholesterol compared to untreated controls. The combined treatment of IFNγ and TNFα reduced the mRNA expression of CD36 and the expression of both cell surface CD36 and macrophage scavenger receptor 1 (MSR1) protein. Under oxLDL loaded conditions, IFNγ and TNFα did not reduce macrophage protein expression of the transcription factor peroxisome proliferator-actived receptor γ (PPARγ) which is known to positively regulate CD36 expression. However, macrophages treated with IFNγ attenuated the ability of the PPARγ-specific agonist rosiglitazone from upregulating cell surface CD36 protein expression. Our results demonstrate that the observed reduction of cholesterol accumulation in macrophages treated with IFNγ and TNFα following oxLDL treatment was due at least in part to reduced cell surface CD36 and MSR1 protein expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. In vitro studies of interaction of rickettsia and macrophages: effect of ultraviolet light on Coxiella burnetti inactivation and macrophage enzymes

    International Nuclear Information System (INIS)

    Little, J.S.; Kishimoto, R.A.; Canonico, P.G.

    1980-01-01

    The inactivation of Coxiella burnetii in suspension or in cultures of guinea pig peritoneal macrophages by ultraviolet (uv) light was studied. The effect of uv treatment on the activity of macrophage organelle marker enzymes and their subsequent equilibration in linear sucrose gradients was also determined. It was shown that uv treatment for 15 s at a distance of 10 cm inactivated C. burnetti, either in suspension or within guinea pig peritoneal macrophages. Similar uv treatment had little effect on the activity or equilibration of macrophage organelle marker enzymes in linear sucrose gradients

  3. DMPD: Signal integration between IFNgamma and TLR signalling pathways in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16920490 Signal integration between IFNgamma and TLR signalling pathways in macroph...tml) (.csml) Show Signal integration between IFNgamma and TLR signalling pathways in macrophages. PubmedID 16920490 Title Signal inte...gration between IFNgamma and TLR signalling pathways in

  4. Modulation of human macrophage activity by Ascaris antigens is dependent on macrophage polarization state

    DEFF Research Database (Denmark)

    Almeida, Sara; Nejsum, Peter; Williams, Andrew R.

    2018-01-01

    Parasitic worms (helminths) are known to actively modulate host immune responses and inflammation. The aim of this study was to investigate if adult body fluid (ABF) from the helminth Ascaris suum has immunomodulatory effects on different subtypes of human monocyte-derived macrophages (Mɸ) in vitro...

  5. Nicotinamide: a vitamin able to shift macrophage differentiation toward macrophages with restricted inflammatory features.

    Science.gov (United States)

    Weiss, Ronald; Schilling, Erik; Grahnert, Anja; Kölling, Valeen; Dorow, Juliane; Ceglarek, Uta; Sack, Ulrich; Hauschildt, Sunna

    2015-11-01

    The differentiation of human monocytes into macrophages is influenced by environmental signals. Here we asked in how far nicotinamide (NAM), a vitamin B3 derivative known to play a major role in nicotinamide adenine dinucleotide (NAD)-mediated signaling events, is able to modulate monocyte differentiation into macrophages developed in the presence of granulocyte macrophage colony-stimulating factor (GM-MØ) or macrophage colony-stimulating factor (M-MØ). We found that GM-MØ undergo biochemical, morphological and functional modifications in response to NAM, whereas M-MØ were hardly affected. GM-MØ exposed to NAM acquired an M-MØ-like structure while the LPS-induced production of pro-inflammatory cytokines and COX-derived eicosanoids were down-regulated. In contrast, NAM had no effect on the production of IL-10 or the cytochrome P450-derived eicosanoids. Administration of NAM enhanced intracellular NAD concentrations; however, it did not prevent the LPS-mediated drain on NAD pools. In search of intracellular molecular targets of NAM known to be involved in LPS-induced cytokine and eicosanoid synthesis, we found NF-κB activity to be diminished. In conclusion, our data show that vitamin B3, when present during the differentiation of monocytes into GM-MØ, interferes with biochemical pathways resulting in strongly reduced pro-inflammatory features. © The Author(s) 2015.

  6. Immunomodulatory Molecule IRAK-M Balances Macrophage Polarization and Determines Macrophage Responses during Renal Fibrosis.

    Science.gov (United States)

    Steiger, Stefanie; Kumar, Santhosh V; Honarpisheh, Mohsen; Lorenz, Georg; Günthner, Roman; Romoli, Simone; Gröbmayr, Regina; Susanti, Heni-Eka; Potempa, Jan; Koziel, Joanna; Lech, Maciej

    2017-08-15

    Activation of various innate immune receptors results in IL-1 receptor-associated kinase (IRAK)-1/IRAK-4-mediated signaling and secretion of proinflammatory cytokines such as IL-12, IL-6, or TNF-α, all of which are implicated in tissue injury and elevated during tissue remodeling processes. IRAK-M, also known as IRAK-3, is an inhibitor of proinflammatory cytokine and chemokine expression in intrarenal macrophages. Innate immune activation contributes to both acute kidney injury and tissue remodeling that is associated with chronic kidney disease (CKD). Our study assessed the contribution of macrophages in CKD and the role of IRAK-M in modulating disease progression. To evaluate the effect of IRAK-M in chronic renal injury in vivo, a mouse model of unilateral ureteral obstruction (UUO) was employed. The expression of IRAK-M increased within 2 d after UUO in obstructed compared with unobstructed kidneys. Mice deficient in IRAK-M were protected from fibrosis and displayed a diminished number of alternatively activated macrophages. Compared to wild-type mice, IRAK-M-deficient mice showed reduced tubular injury, leukocyte infiltration, and inflammation following renal injury as determined by light microscopy, immunohistochemistry, and intrarenal mRNA expression of proinflammatory and profibrotic mediators. Taken together, these results strongly support a role for IRAK-M in renal injury and identify IRAK-M as a possible modulator in driving an alternatively activated profibrotic macrophage phenotype in UUO-induced CKD. Copyright © 2017 by The American Association of Immunologists, Inc.

  7. Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease

    NARCIS (Netherlands)

    Keliher, Edmund J.; Ye, Yu-Xiang; Wojtkiewicz, Gregory R.; Aguirre, Aaron D.; Tricot, Benoit; Senders, Max L.; Groenen, Hannah; Fay, Francois; Perez-Medina, Carlos; Calcagno, Claudia; Carlucci, Giuseppe; Reiner, Thomas; Sun, Yuan; Courties, Gabriel; Iwamoto, Yoshiko; Kim, Hye-Yeong; Wang, Cuihua; Chen, John W.; Swirski, Filip K.; Wey, Hsiao-Ying; Hooker, Jacob; Fayad, Zahi A.; Mulder, Willem J. M.; Weissleder, Ralph; Nahrendorf, Matthias

    2017-01-01

    Tissue macrophage numbers vary during health versus disease. Abundant inflammatory macrophages destruct tissues, leading to atherosclerosis, myocardial infarction and heart failure. Emerging therapeutic options create interest in monitoring macrophages in patients. Here we describe positron emission

  8. Impaired Player-Coach Perceptions of Exertion and Recovery During Match Congestion

    NARCIS (Netherlands)

    Doeven, Steven H.; Brink, Michel S.; Frencken, Wouter G. P.; Lemmink, Koen A. P. M.

    2017-01-01

    During intensified phases of competition, attunement of exertion and recovery is crucial to maintain performance. Although a mismatch between coach' and players' perceptions of training load is demonstrated, it is unknown if these discrepancies also exist for match exertion and recovery. PURPOSE:

  9. Stiffness and thickness of fascia do not explain chronic exertional compartment syndrome

    DEFF Research Database (Denmark)

    Dahl, Morten; Hansen, Philip; Stål, Per

    2011-01-01

    Chronic exertional compartment syndrome is diagnosed based on symptoms and elevated intramuscular pressure and often is treated with fasciotomy. However, what contributes to the increased intramuscular pressure remains unknown.......Chronic exertional compartment syndrome is diagnosed based on symptoms and elevated intramuscular pressure and often is treated with fasciotomy. However, what contributes to the increased intramuscular pressure remains unknown....

  10. Macrophage Efferocytosis and Prostate Cancer Bone Metastasis

    Science.gov (United States)

    2018-03-01

    E) ELISA for total CXCL1 and CXCL5 levels in supernatants of MΦs alone or cocultured with RM1(HA) or PC3(HA). (F) Transcriptional activ- ity cell...marrow macrophages (Fig- ure 1D). ELISA evaluation for CXCL1 and CXCL5 proteins in the coculture media for apoptotic cancer cells (Figure 1E) confirmed... ELISA analysis of total pro- tein lysates from VEH- (n = 10) and AP-treated (n = 11) tumor vossicles. (G) Graphs depicting the correlation between

  11. Exposure to di(n-butyl)phthalate and benzo(a)pyrene alters IL-1β secretion and subset expression of testicular macrophages, resulting in decreased testosterone production in rats

    International Nuclear Information System (INIS)

    Zheng Shanjun; Tian Huaijun; Cao Jia; Gao Yuqi

    2010-01-01

    Di(n-butyl)phthalate (DBP) and benzo(a)pyrene (BaP) are environmental endocrine disruptors that are potentially hazardous to humans. These chemicals affect testicular macrophage immuno-endocrine function and testosterone production. However, the underlying mechanisms for these effects are not fully understood. It is well known that interleukin-1 beta (IL-1β), which is secreted by testicular macrophages, plays a trigger role in regulating Leydig cell steroidogenesis. The purpose of this study was to reveal the effects of co-exposure to DBP and BaP on testicular macrophage subset expression, IL-1β secretion and testosterone production. Adult male Sprague-Dawley rats were randomly divided into seven groups; two groups received DBP plus BaP (DBP + BaP: 50 + 1 or 250 + 5 mg/kg/day) four groups received DBP or BaP alone (DBP: 50 or 250 mg/kg/day; BaP: 1 or 5 mg/kg/day), and one group received vehicle alone (control). After co-exposure for 90 days, the relative expression of macrophage subsets and their functions changed. ED2 + testicular macrophages (reactive with a differentiation-related antigen present on the resident macrophages) were activated and IL-1β secretion was enhanced. DBP and BaP acted additively, as demonstrated by greater IL-1β secretion relative to each compound alone. These observations suggest that exposure to DBP plus BaP exerted greater suppression on testosterone production compared with each compound alone. The altered balance in the subsets of testicular macrophages and the enhanced ability of resident testicular macrophages to secrete IL-1β, resulted in enhanced production of IL-1β as a potent steroidogenesis repressor. This may represent an important mechanism by which DBP and BaP repress steroidogenesis.

  12. Macrophage activation by a vanadyl-aspirin complex is dependent on L-type calcium channel and the generation of nitric oxide

    International Nuclear Information System (INIS)

    Molinuevo, Maria Silvina; Etcheverry, Susana Beatriz; Cortizo, Ana Maria

    2005-01-01

    Bone homeostasis is the result of a tight balance between bone resorption and bone formation where macrophage activation is believed to contribute to bone resorption. We have previously shown that a vanadyl(IV)-aspirin complex (VOAspi) regulates cell proliferation and differentiation of osteoblasts in culture. In this study, we assessed VOAspi and VO effects and their possible mechanism of action on a mouse macrophage cell line RAW 264.7. Both vanadium compounds inhibited cell proliferation in a dose-dependent manner. Nifedipine completely reversed the VOAspi-induced macrophage cytotoxicity, while it could not block the effect of VO. VOAspi also stimulated nitric oxide (NO) production, the oxidation of dihydrorhodamine 123 (DHR-123) and enhanced the expression of both constitutive and inducible isoforms of nitric oxide syntases (NOS). All these effects were abolished by nifedipine. Althogether our finding give evidence that VOAspi-induced macrophage cytotoxicity is dependent on L-type calcium channel and the generation of NO though the induction of eNOS and iNOS. Contrary, the parent compound VO exerted a cytotoxic effect by mechanisms independent of a calcium entry and the NO/NOS activation

  13. Silymarin attenuated paraquat-induced cytotoxicity in macrophage by regulating Trx/TXNIP complex, inhibiting NLRP3 inflammasome activation and apoptosis.

    Science.gov (United States)

    Liu, Zhenning; Sun, Mingli; Wang, Yu; Zhang, Lichun; Zhao, Hang; Zhao, Min

    2018-02-01

    Oxidative stress and inflammation are involved in paraquat-induced cytotoxicity. Silymarin can exert a potent antioxidative and anti-inflammatory effect in various pathophysiological processes. The aim of this current study is to explore the protective effect and potential mechanism of silymarin in paraquat-induced macrophage injury. Cells were pretreated with different doses of silymarin for 3h before exposure to paraquat. At 24h after exposure to paraquat, the paraquat-induced cytotoxicity to macrophage was measured via the MTT assay and LDH release. The levels of intracellular reactive oxygen species, GSH-Px, SOD, and lipid peroxidation product malondialdehyde were measured to evaluate the oxidative effect of paraquat. NLRP3 inflammasome and cytokines secretion in macrophage exposed to paraquat at 24h were measured via immunofluorescence microscopy, western blot or Elisa. Our results revealed that paraquat could dramatically cause cytotoxicity and reactive oxygen species generation, enhance TXNIP expression, and induce NLRP3 inflammasome activation and cytokines secretion. The pretreatment with silymarin could remarkably reduce the cytotoxicity, promote the expression of Trx and antioxidant enzymes, and suppress the TXNIP and NLRP3 inflammasome activation. In conclusion, silymarin attenuated paraquat-induced cytotoxicity in macrophage by inhibiting oxidative stress, NLRP3 inflammasome activation, cytokines secretion and apoptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Amomum tsao-ko suppresses lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages via Nrf2-dependent heme oxygenase-1 expression.

    Science.gov (United States)

    Li, Bin; Choi, Hee-Jin; Lee, Dong-Sung; Oh, Hyuncheol; Kim, Youn-Chul; Moon, Jin-Young; Park, Won-Hwan; Park, Sun-Dong; Kim, Jai-Eun

    2014-01-01

    Amomum tsao-ko Crevost et Lemaire, used as a spice in Asia, is an important source of Chinese cuisine and traditional Chinese medicines. A. tsao-ko is reported to exert a variety of biological and pharmacological activities, including anti-proliferative, anti-oxidative and neuroprotective effects. In this study, NNMBS227, consisting of the ethanol extract of A. tsao-ko, exhibited potent anti-inflammatory activities in RAW264.7 macrophages. We investigated the effect of NNMBS227 in the suppression of pro-inflammatory mediators, including pro-inflammatory enzymes (inducible nitric oxide synthase and cyclooxygenase-2) and cytokines (tumor necrosis factor-α and interleukin-1β) in LPS stimulated macrophages. NNMBS227 also inhibited the phosphorylation and degradation of IκB-α, as well as the nuclear translocation of nuclear factor kappa B (NF-κB) p65 caused by stimulation with LPS. In addition, NNMBS227 induced heme oxygenase (HO)-1 expression through the nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) in macrophages. Using tin protoporphyrin (SnPP), an HO activity inhibitor, we confirmed an association between the anti-inflammatory effects of NNMBS227 and the up-regulation of HO-1. These findings suggest that Nrf2-dependent increases in the expression of HO-1 induced by NNMBS227 conferred anti-inflammatory activities in LPS stimulated RAW264.7 macrophages.

  15. Anti-inflammatory effect of garlic 14-kDa protein on LPS-stimulated-J774A.1 macrophages.

    Science.gov (United States)

    Rabe, Shahrzad Zamani Taghizadeh; Ghazanfari, Tooba; Siadat, Zahra; Rastin, Maryam; Rabe, Shahin Zamani Taghizadeh; Mahmoudi, Mahmoud

    2015-04-01

    Garlic 14-kDa protein is purified from garlic (Allium sativum L.) which is used in traditional medicine and exerts various immunomodulatory activities. The present study investigated the suppressive effect of garlic 14-kDa protein on LPS-induced expression of pro-inflammatory mediators and underlying mechanism in inflammatory macrophages. J774A.1 macrophages were treated with 14-kDa protein (5-30 μg/ml) with/without LPS (1 μg/ml) and the production of inflammatory mediators such as prostaglandin E2 (PGE2), TNF-α, and IL-1β released were measured using ELISA. Nitric oxide (NO) production was determined using the Griess method. The anti-inflammatory activity of 14-kDa protein was examined by measuring inducible nitric oxide synthase and cyclooxygenase-2 proteins using western blot. The expression of nuclear NF-κB p65 subunit was assessed by western blot. Garlic 14-kDa protein significantly inhibited the excessive production of NO, PGE, TNF-α, and IL-1β in lipopolysaccharide (LPS)-activated J774A.1 macrophages in a concentration-related manner without cytotoxic effect. Western blot analysis demonstrated that garlic 14-kDa protein suppressed corresponding inducible NO synthase expression and activated cyclooxygenase-2 protein expression. The inhibitory effect was mediated partly by a reduction in the activity and expression of transcription factor NF-κB protein. Our results suggested, for the first time, garlic 14-kDa protein exhibits anti-inflammatory properties in macrophages possibly by suppressing the inflammatory mediators via the inhibition of transcription factor NF-κB signaling pathway. The traditional use of garlic as anti-inflammatory remedy could be ascribed partly to 14-kDa protein content. This protein might be a useful candidate for controlling inflammatory diseases and further investigations in vivo.

  16. Curcumin inhibits EMMPRIN and MMP-9 expression through AMPK-MAPK and PKC signaling in PMA induced macrophages.

    Science.gov (United States)

    Cao, Jiatian; Han, Zhihua; Tian, Lei; Chen, Kan; Fan, Yuqi; Ye, Bozhi; Huang, Weijian; Wang, Changqian; Huang, Zhouqing

    2014-09-21

    In coronary arteries, plaque disruption, the major acute clinical manifestations of atherosclerosis, leads to a subsequent cardiac event, such as acute myocardial infarction (AMI) and unstable angina pectoris (UA). Numerous reports have shown that high expression of MMP-9 (matrix metalloproteinase-9), MMP-13 (matrix metalloproteinase-13) and EMMPRIN (extracellular matrix metalloproteinase induce) in monocyte/macrophage results in the plaque progression and destabilization. Curcumin exerts well-known anti-inflammatory and antioxidant effects and probably has a protective role in the atherosclerosis. The purpose of our study was to investigate the molecular mechanisms by which curcumin affects MMP-9, MMP13 and EMMPRIN in PMA (phorbol 12-myristate 13-acetate) induced macrophages. Human monocytic cells (THP-1 cells) were pretreated with curcumin or compound C for 1 h, and then induced by PMA for 48 h. Total RNA and proteins were collected for real-time PCR and Western blot analysis, respectively. In the present study, the exposure to curcumin resulted in attenuated JNK, p38, and ERK activation and decreased expression of MMP-9, MMP-13 and EMMPRIN in PMA induced macrophages. Moreover, we demonstrated that AMPK (AMP-activated protein kinase) and PKC (Protein Kinase C) was activated by PMA during monocyte/macrophage differentiation. Furthermore, curcumin reversed PMA stimulated PKC activation and suppressed the chronic activation of AMPK, which in turn reduced the expression of MMP-9, MMP-13 and EMMPRIN. Therefore, it is suggested that curcumin by inhibiting AMPK-MAPK (mitogen activated protein kinase) and PKC pathway may led to down-regulated EMMPRIN, MMP-9 and MMP-13 expression in PMA-induced THP-1 cells.

  17. Xylitol, an anticaries agent, exhibits potent inhibition of inflammatory responses in human THP-1-derived macrophages infected with Porphyromonas gingivalis.

    Science.gov (United States)

    Park, Eunjoo; Na, Hee Sam; Kim, Sheon Min; Wallet, Shannon; Cha, Seunghee; Chung, Jin

    2014-06-01

    Xylitol is a well-known anticaries agent and has been used for the prevention and treatment of dental caries. In this study, the anti-inflammatory effects of xylitol are evaluated for possible use in the prevention and treatment of periodontal infections. Cytokine expression was stimulated in THP-1 (human monocyte cell line)-derived macrophages by live Porphyromonas gingivalis, and enzyme-linked immunosorbent assay and a commercial multiplex assay kit were used to determine the effects of xylitol on live P. gingivalis-induced production of cytokine. The effects of xylitol on phagocytosis and the production of nitric oxide were determined using phagocytosis assay, viable cell count, and Griess reagent. The effects of xylitol on P. gingivalis adhesion were determined by immunostaining, and costimulatory molecule expression was examined by flow cytometry. Live P. gingivalis infection increased the production of representative proinflammatory cytokines, such as tumor necrosis factor-α and interleukin (IL)-1β, in a multiplicity of infection- and time-dependent manner. Live P. gingivalis also enhanced the release of cytokines and chemokines, such as IL-12 p40, eotaxin, interferon γ-induced protein 10, monocyte chemotactic protein-1, and macrophage inflammatory protein-1. The pretreatment of xylitol significantly inhibited the P. gingivalis-induced cytokines production and nitric oxide production. In addition, xylitol inhibited the attachment of live P. gingivalis on THP-1-derived macrophages. Furthermore, xylitol exerted antiphagocytic activity against both Escherichia coli and P. gingivalis. These findings suggest that xylitol acts as an anti-inflammatory agent in THP-1-derived macrophages infected with live P. gingivalis, which supports its use in periodontitis.

  18. Seaweed extracts and unsaturated fatty acid constituents from the green alga Ulva lactuca as activators of the cytoprotective Nrf2–ARE pathway

    Science.gov (United States)

    Wang, Rui; Paul, Valerie J.; Luesch, Hendrik

    2013-01-01

    Increased amounts of reactive oxygen species (ROS) have been implicated in many pathological conditions, including cancer. The major machinery that the cell employs to neutralize excess ROS is through the activation of the antioxidant-response element (ARE) that controls the activation of many phase II detoxification enzymes. The transcription factor that recognizes the ARE, Nrf2, can be activated by a variety of small molecules, most of which contain an α,β-unsaturated carbonyl system. In the pursuit of chemopreventive agents from marine organisms, we built, fractionated, and screened a library of 30 field-collected eukaryotic algae from Florida. An edible green alga, Ulva lactuca, yielded multiple active fractions by ARE–luciferase reporter assay. We isolated three monounsaturated fatty acid (MUFA) derivatives as active components, including a new keto-type C18 fatty acid (1), the corresponding shorter chain C16 acid (2), and an amide derivative (3) of the C18 acid. Their chemical structures were elucidated by NMR and mass spectrometry. All three contain the conjugated enone motif between C7 and C9, which is thought to be responsible for the ARE activity. Subsequent biological studies focused on 1, the most active and abundant ARE activator isolated. C18 acid 1 induced the expression of ARE-regulated cytoprotective genes, including NAD(P)H:quinone oxidoreductase 1, heme oxygenase 1, thioredoxin reductase 1, both subunits of the glutamate–cysteine ligase (catalytic subunit and modifier subunit), and the cystine/glutamate exchange transporter, in IMR-32 human neuroblastoma cells. Its cellular activity requires the presence of Nrf2 and PI3K function, based on RNA interference and pharmacological inhibitor studies, respectively. Treatment with 1 led only to Nrf2 activation, and not the increase in production of NRF2 mRNA. To test its ARE activity and cytoprotective potential in vivo, we treated mice with a single dose of a U. lactuca fraction that was enriched

  19. Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a systemic shift in macrophage polarization.

    Science.gov (United States)

    Cucak, Helena; Grunnet, Lars Groth; Rosendahl, Alexander

    2014-01-01

    Human T2D is characterized by a low-grade systemic inflammation, loss of β-cells, and diminished insulin production. Local islet immunity is still poorly understood, and hence, we evaluated macrophage subpopulations in pancreatic islets in the well-established murine model of T2D, the db/db mouse. Already at 8 weeks of disease, on average, 12 macrophages were observed in the diabetic islets, whereas only two were recorded in the nondiabetic littermates. On a detailed level, the islet resident macrophages increased fourfold compared with nondiabetic littermates, whereas a pronounced recruitment (eightfold) of a novel subset of macrophages (CD68+F4/80-) was observed. The majority of the CD68+F4/80+ but only 40% of the CD68+F4/80- islet macrophages expressed CD11b. Both islet-derived macrophage subsets expressed moderate MHC-II, high galectin-3, and low CD80/CD86 levels, suggesting the cells to be macrophages rather than DCs. On a functional level, the vast majority of the macrophages in the diabetic islets was of the proinflammatory, M1-like phenotype. The systemic immunity in diabetic animals was characterized by a low-grade inflammation with elevated cytokine levels and increase of splenic cytokine, producing CD68+F4/80- macrophages. In late-stage diabetes, the cytokine signature changed toward a TGF-β-dominated profile, coinciding with a significant increase of galectin-3-positive macrophages in the spleen. In summary, our results show that proinflammatory M1-like galectin-3+ CD80/CD86(low) macrophages invade diabetic islets. Moreover, the innate immunity matures in a diabetes-dependent manner from an initial proinflammatory toward a profibrotic phenotype, supporting the concept that T2D is an inflammatory disease.

  20. Differential S1P Receptor Profiles on M1- and M2-Polarized Macrophages Affect Macrophage Cytokine Production and Migration.

    Science.gov (United States)

    Müller, Jan; von Bernstorff, Wolfram; Heidecke, Claus-Dieter; Schulze, Tobias

    2017-01-01

    Introduction . Macrophages are key players in complex biological processes. In response to environmental signals, macrophages undergo polarization towards a proinflammatory (M1) or anti-inflammatory (M2) phenotype. Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid that acts via 5 G-protein coupled receptors (S1P 1-5 ) in order to influence a broad spectrum of biological processes. This study assesses S1P receptor expression on macrophages before and after M1 and M2 polarization and performs a comparative analysis of S1P signalling in the two activational states of macrophages. Methods . Bone marrow derived macrophages (BMDM) from C57 BL/6 mice were cultured under either M1- or M2-polarizing conditions. S1P-receptor expression was determined by quantitative RT-PCR. Influence of S1P on macrophage activation, migration, phagocytosis, and cytokine secretion was assessed in vitro. Results . All 5 S1P receptor subclasses were expressed in macrophages. Culture under both M1- and M2-polarizing conditions led to significant downregulation of S1P 1 . In contrast, M1-polarized macrophages significantly downregulated S1P 4 . The expression of the remaining three S1P receptors did not change. S1P increased expression of iNOS under M2-polarizing conditions. Furthermore, S1P induced chemotaxis in M1 macrophages and changed cytokine production in M2 macrophages. Phagocytosis was not affected by S1P-signalling. Discussion . The expression of different specific S1P receptor profiles may provide a possibility to selectively influence M1- or M2-polarized macrophages.

  1. Transcriptional landscape of Mycobacterium tuberculosis infection in macrophages

    KAUST Repository

    Roy, Sugata; Schmeier, Sebastian; Kaczkowski, Bogumil; Arner, Erik; Alam, Tanvir; Ozturk, Mumin; Tamgue, Ousman; Parihar, Suraj P.; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Carninci, Piero; Hayashizaki, Yoshihide; Forrest, Alistair R. R.; Guler, Reto; Bajic, Vladimir B.; Brombacher, Frank; Suzuki, Harukazu

    2018-01-01

    landscape of IFNγ (M1) or IL-4/IL-13 (M2) stimulated macrophages during Mtb infection in a time-kinetic manner. Mtb infection widely and drastically altered macrophage-specific gene expression, which is far larger than that of M1 or M2 activations. Gene

  2. DNA Damage Signaling Instructs Polyploid Macrophage Fate in Granulomas

    DEFF Research Database (Denmark)

    Herrtwich, Laura; Nanda, Indrajit; Evangelou, Konstantinos

    2016-01-01

    to a chronic stimulus, though critical for disease outcome, have not been defined. Here, we delineate a macrophage differentiation pathway by which a persistent Toll-like receptor (TLR) 2 signal instructs polyploid macrophage fate by inducing replication stress and activating the DNA damage response. Polyploid...

  3. Niacin and its metabolites as master regulators of macrophage activation.

    Science.gov (United States)

    Montserrat-de la Paz, Sergio; Naranjo, M Carmen; Lopez, Sergio; Abia, Rocio; Muriana, Francisco J Garcia; Bermudez, Beatriz

    2017-01-01

    Niacin is a broad-spectrum lipid-regulating drug used for clinical therapy of chronic high-grade inflammatory diseases. However, the mechanisms by which either niacin or the byproducts of its catabolism ameliorate these inflammatory diseases are not clear yet. Human circulating monocytes and mature macrophages were used to analyze the effects of niacin and its metabolites (NAM, NUA and 2-Pyr) on oxidative stress, plasticity and inflammatory response by using biochemical, flow cytometry, quantitative real-time PCR and Western blot technologies. Niacin, NAM and 2-Pyr significantly decreased ROS, NO and NOS2 expression in LPS-treated human mature macrophages. Niacin and NAM skewed macrophage polarization toward antiinflammatory M2 macrophage whereas a trend toward proinflammatory M1 macrophage was noted following treatment with NUA. Niacin and NAM also reduced the inflammatory competence of LPS-treated human mature macrophages and promoted bias toward antiinflammatory CD14 + CD16 ++ nonclassical human primary monocytes. This study reveals for the first time that niacin and its metabolites possess antioxidant, reprogramming and antiinflammatory properties on human primary monocytes and monocyte-derived macrophages. Our findings imply a new understanding of the mechanisms by which niacin and its metabolites favor a continuous and gradual plasticity process in the human monocyte/macrophage system. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Epigenetic pathways in macrophages emerge as novel targets in atherosclerosis

    NARCIS (Netherlands)

    Neele, Annette E.; van den Bossche, Jan; Hoeksema, Marten A.; de Winther, Menno P. J.

    2015-01-01

    Atherosclerosis is a lipid-driven chronic inflammatory disorder. Monocytes and macrophages are key immune cells in the development of disease and clinical outcome. It is becoming increasingly clear that epigenetic pathways govern many aspects of monocyte and macrophage differentiation and

  5. Consistent inhibition of cyclooxygenase drives macrophages towards the inflammatory phenotype.

    Directory of Open Access Journals (Sweden)

    Yi Rang Na

    Full Text Available Macrophages play important roles in defense against infection, as well as in homeostasis maintenance. Thus alterations of macrophage function can have unexpected pathological results. Cyclooxygenase (COX inhibitors are widely used to relieve pain, but the effects of long-term usage on macrophage function remain to be elucidated. Using bone marrow-derived macrophage culture and long-term COX inhibitor treatments in BALB/c mice and zebrafish, we showed that chronic COX inhibition drives macrophages into an inflammatory state. Macrophages differentiated in the presence of SC-560 (COX-1 inhibitor, NS-398 (COX-2 inhibitor or indomethacin (COX-1/2 inhibitor for 7 days produced more TNFα or IL-12p70 with enhanced p65/IκB phosphoylation. YmI and IRF4 expression was reduced significantly, indicative of a more inflammatory phenotype. We further observed that indomethacin or NS-398 delivery accelerated zebrafish death rates during LPS induced sepsis. When COX inhibitors were released over 30 days from an osmotic pump implant in mice, macrophages from peritoneal cavities and adipose tissue produced more TNFα in both the basal state and under LPS stimulation. Consequently, indomethacin-exposed mice showed accelerated systemic inflammation after LPS injection. Our findings suggest that macrophages exhibit a more inflammatory phenotype when COX activities are chronically inhibited.

  6. Nanomedicine Strategies to Target Tumor-Associated Macrophages

    NARCIS (Netherlands)

    Binnemars-Postma, Karin A.; Storm, G; Prakash, Jai

    2017-01-01

    In recent years, the influence of the tumor microenvironment (TME) on cancer progression has been better understood. Macrophages, one of the most important cell types in the TME, exist in different subtypes, each of which has a different function. While classically activated M1 macrophages are

  7. Nanomedicine strategies to target tumor-associated macrophages

    NARCIS (Netherlands)

    Binnemars-Postma, Karin; Storm, Gert; Prakash, Jai

    2017-01-01

    In recent years, the influence of the tumor microenvironment (TME) on cancer progression has been better understood. Macrophages, one of the most important cell types in the TME, exist in different subtypes, each of which has a different function. While classically activated M1 macrophages are

  8. Biomaterials Influence Macrophage-Mesenchymal Stem Cell Interaction In Vitro

    NARCIS (Netherlands)

    N. Grotenhuis (Nienke); S.F. De Witte (Samantha Fh); G.J.V.M. van Osch (Gerjo); Y. Bayon (Yves); J.F. Lange (Johan); Y.M. Bastiaansen-Jenniskens (Yvonne)

    2016-01-01

    textabstractBackground: Macrophages and mesenchymal stem cells (MSCs) are important cells in wound healing. We hypothesized that the cross-talk between macrophages and adipose tissue-derived MSCs (ASCs) is biomaterial dependent, thereby influencing processes involved in wound healing. Materials and

  9. Macrophages are critical effectors of antibody therapies for cancer.

    Science.gov (United States)

    Weiskopf, Kipp; Weissman, Irving L

    2015-01-01

    Macrophages are innate immune cells that derive from circulating monocytes, reside in all tissues, and participate in many states of pathology. Macrophages play a dichotomous role in cancer, where they promote tumor growth but also serve as critical immune effectors of therapeutic antibodies. Macrophages express all classes of Fcγ receptors, and they have immense potential to destroy tumors via the process of antibody-dependent phagocytosis. A number of studies have demonstrated that macrophage phagocytosis is a major mechanism of action of many antibodies approved to treat cancer. Consequently, a number of approaches to augment macrophage responses to therapeutic antibodies are under investigation, including the exploration of new targets and development of antibodies with enhanced functions. For example, the interaction of CD47 with signal-regulatory protein α (SIRPα) serves as a myeloid-specific immune checkpoint that limits the response of macrophages to antibody therapies, and CD47-blocking agents overcome this barrier to augment phagocytosis. The response of macrophages to antibody therapies can also be enhanced with engineered Fc variants, bispecific antibodies, or antibody-drug conjugates. Macrophages have demonstrated success as effectors of cancer immunotherapy, and further investigation will unlock their full potential for the benefit of patients.

  10. Of macrophages and red blood cells; a complex love story

    NARCIS (Netherlands)

    de Back, Djuna Z.; Kostova, Elena B.; van Kraaij, Marian; van den Berg, Timo K.; van Bruggen, Robin

    2014-01-01

    Macrophages tightly control the production and clearance of red blood cells (RBC). During steady state hematopoiesis, approximately 10(10) RBC are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with

  11. Of macrophages and red blood cells; a complex love story.

    Directory of Open Access Journals (Sweden)

    Djuna Zoe de Back

    2014-01-01

    Full Text Available Macrophages tightly control the production and clearance of red blood cells (RBC. During steady state haematopoiesis, approximately 1010 red blood cells are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages.

  12. Of macrophages and red blood cells; a complex love story.

    Science.gov (United States)

    de Back, Djuna Z; Kostova, Elena B; van Kraaij, Marian; van den Berg, Timo K; van Bruggen, Robin

    2014-01-01

    Macrophages tightly control the production and clearance of red blood cells (RBC). During steady state hematopoiesis, approximately 10(10) RBC are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages.

  13. Cytokine expression of macrophages in HIV-1-associated vacuolar myelopathy.

    Science.gov (United States)

    Tyor, W R; Glass, J D; Baumrind, N; McArthur, J C; Griffin, J W; Becker, P S; Griffin, D E

    1993-05-01

    Macrophages are frequently present within the periaxonal and intramyelinic vacuoles that are located primarily in the posterior and lateral funiculi of the thoracic spinal cord in HIV-associated vacuolar myelopathy. But the role of these macrophages in the formation of the vacuoles is unclear. One hypothesis is that cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor (TNF)-alpha, are produced locally by macrophages and have toxic effects on myelin or oligodendrocytes. The resulting myelin damage eventually culminates in the removal of myelin by macrophages and vacuole formation. We studied thoracic spinal cord specimens taken at autopsy from HIV-positive (+) and HIV-negative individuals. The predominant mononuclear cells present in HIV+ spinal cords are macrophages. They are located primarily in the posterior and lateral funiculi regardless of the presence or absence of vacuolar myelopathy. Macrophages and microglia are more frequent in HIV+ than HIV-negative individuals and these cells frequently stain for class I and class II antigens, IL-1, and TNF-alpha. Activated macrophages positive for IL-1 and TNF-alpha are great increased in the posterior and lateral funiculi of HIV+ individuals with and without vacuolar myelopathy, suggesting they are present prior to the development of vacuoles. Cytokines, such as TNF-alpha, may be toxic for myelin or oligodendrocytes, leading to myelin damage and removal by macrophages and vacuole formation.

  14. Selective phosphorylation during early macrophage differentiation

    KAUST Repository

    Zhang, Huoming

    2015-08-26

    The differentiation of macrophages from monocytes is a tightly controlled and complex biological process. Although numerous studies have been conducted using biochemical approaches or global gene/gene profiling, the mechanisms of the early stages of differentiation remain unclear. Here we used SILAC-based quantitative proteomics approach to perform temporal phosphoproteome profiling of early macrophage differentiation. We identified a large set of phosphoproteins and grouped them as PMA-regulated and non-regulated phosphoproteins in the early stages of differentiation. Further analysis of the PMA-regulated phosphoproteins revealed that transcriptional suppression, cytoskeletal reorganization and cell adhesion were among the most significantly activated pathways. Some key involved regulators of these pathways are mTOR, MYB, STAT1 and CTNNB. Moreover, we were able to classify the roles and activities of several transcriptional factors during different differentiation stages and found that E2F is likely to be an important regulator during the relatively late stages of differentiation. This study provides the first comprehensive picture of the dynamic phosphoproteome during myeloid cells differentiation, and identifies potential molecular targets in leukemic cells.

  15. Nanopatterned bulk metallic glass-based biomaterials modulate macrophage polarization.

    Science.gov (United States)

    Shayan, Mahdis; Padmanabhan, Jagannath; Morris, Aaron H; Cheung, Bettina; Smith, Ryan; Schroers, Jan; Kyriakides, Themis R

    2018-06-01

    Polarization of macrophages by chemical, topographical and mechanical cues presents a robust strategy for designing immunomodulatory biomaterials. Here, we studied the ability of nanopatterned bulk metallic glasses (BMGs), a new class of metallic biomaterials, to modulate murine macrophage polarization. Cytokine/chemokine analysis of IL-4 or IFNγ/LPS-stimulated macrophages showed that the secretion of TNF-α, IL-1α, IL-12, CCL-2 and CXCL1 was significantly reduced after 24-hour culture on BMGs with 55 nm nanorod arrays (BMG-55). Additionally, under these conditions, macrophages increased phagocytic potential and exhibited decreased cell area with multiple actin protrusions. These in vitro findings suggest that nanopatterning can modulate biochemical cues such as IFNγ/LPS. In vivo evaluation of the subcutaneous host response at 2 weeks demonstrated that the ratio of Arg-1 to iNOS increased in macrophages adjacent to BMG-55 implants, suggesting modulation of polarization. In addition, macrophage fusion and fibrous capsule thickness decreased and the number and size of blood vessels increased, which is consistent with changes in macrophage responses. Our study demonstrates that nanopatterning of BMG implants is a promising technique to selectively polarize macrophages to modulate the immune response, and also presents an effective tool to study mechanisms of macrophage polarization and function. Implanted biomaterials elicit a complex series of tissue and cellular responses, termed the foreign body response (FBR), that can be influenced by the polarization state of macrophages. Surface topography can influence polarization, which is broadly characterized as either inflammatory or repair-like. The latter has been linked to improved outcomes of the FBR. However, the impact of topography on macrophage polarization is not fully understood, in part, due to a lack of high moduli biomaterials that can be reproducibly processed at the nanoscale. Here, we studied

  16. Therapeutic potential of carbohydrates as regulators of macrophage activation.

    Science.gov (United States)

    Lundahl, Mimmi L E; Scanlan, Eoin M; Lavelle, Ed C

    2017-12-15

    It is well established for a broad range of disease states, including cancer and Mycobacterium tuberculosis infection, that pathogenesis is bolstered by polarisation of macrophages towards an anti-inflammatory phenotype, known as M2. As these innate immune cells are relatively long-lived, their re-polarisation to pro-inflammatory, phagocytic and bactericidal "classically activated" M1 macrophages is an attractive therapeutic approach. On the other hand, there are scenarios where the resolving inflammation, wound healing and tissue remodelling properties of M2 macrophages are beneficial - for example the successful introduction of biomedical implants. Although there are numerous endogenous and exogenous factors that have an impact on the macrophage polarisation spectrum, this review will focus specifically on prominent macrophage-modulating carbohydrate motifs with a view towards highlighting structure-function relationships and therapeutic potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Macrophages recognize size and shape of their targets.

    Directory of Open Access Journals (Sweden)

    Nishit Doshi

    2010-04-01

    Full Text Available Recognition by macrophages is a key process in generating immune response against invading pathogens. Previous studies have focused on recognition of pathogens through surface receptors present on the macrophage's surface. Here, using polymeric particles of different geometries that represent the size and shape range of a variety of bacteria, the importance of target geometry in recognition was investigated. The studies reported here reveal that attachment of particles of different geometries to macrophages exhibits a strong dependence on size and shape. For all sizes and shapes studied, particles possessing the longest dimension in the range of 2-3 microm exhibited highest attachment. This also happens to be the size range of most commonly found bacteria in nature. The surface features of macrophages, in particular the membrane ruffles, might play an important role in this geometry-based target recognition by macrophages. These findings have significant implications in understanding the pathogenicity of bacteria and in designing drug delivery carriers.

  18. Soluble ICAM-1 activates lung macrophages and enhances lung injury

    DEFF Research Database (Denmark)

    Schmal, H; Czermak, B J; Lentsch, A B

    1998-01-01

    production of TNF-alpha and the CXC chemokine, macrophage inflammatory protein-2 (MIP-2). Alveolar macrophages exhibited cytokine responses to both sICAM-1 and immobilized sICAM-1, while rat PBMCs failed to demonstrate similar responses. Exposure of alveolar macrophages to sICAM-1 resulted in NFkappa......B activation (which was blocked by the presence of the aldehyde peptide inhibitor of 28S proteosome and by genistein, a tyrosine kinase inhibitor). As expected, cross-linking of CD18 on macrophages with Ab resulted in generation of TNF-alpha and MIP-2. This response was also inhibited in the presence...... of TNF-alpha and MIP-2 and increased neutrophil recruitment. Therefore, through engagement of beta2 integrins, sICAM-1 enhances alveolar macrophage production of MIP-2 and TNF-alpha, the result of which is intensified lung injury after intrapulmonary disposition of immune complexes....

  19. Engineering mechanical microenvironment of macrophage and its biomedical applications.

    Science.gov (United States)

    Li, Jing; Li, Yuhui; Gao, Bin; Qin, Chuanguang; He, Yining; Xu, Feng; Yang, Hui; Lin, Min

    2018-03-01

    Macrophages are the most plastic cells in the hematopoietic system and can be widely found in almost all tissues. Recently studies have shown that mechanical cues (e.g., matrix stiffness and stress/strain) can significantly affect macrophage behaviors. Although existing reviews on the physical and mechanical cues that regulate the macrophage's phenotype are available, engineering mechanical microenvironment of macrophages in vitro as well as a comprehensive overview and prospects for their biomedical applications (e.g., tissue engineering and immunotherapy) has yet to be summarized. Thus, this review provides an overview on the existing methods for engineering mechanical microenvironment of macrophages in vitro and then a section on their biomedical applications and further perspectives are presented.

  20. Effect of Surface Modification and Macrophage Phenotype on Particle Internalization

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daniel [Iowa State University; Phan, Ngoc [Iowa State University; Isely, Christopher [Iowa State University; Bruene, Lucas [Iowa State University; Bratlie, Kaitlin M [Ames Laboratory

    2014-11-10

    Material properties play a key role in the cellular internalization of polymeric particles. In the present study, we have investigated the effects of material characteristics such as water contact angle, zeta potential, melting temperature, and alternative activation of complement on particle internalization for pro-inflammatory, pro-angiogenic, and naïve macrophages by using biopolymers (~600 nm), functionalized with 13 different molecules. Understanding how material parameters influence particle internalization for different macrophage phenotypes is important for targeted delivery to specific cell populations. Here, we demonstrate that material parameters affect the alternative pathway of complement activation as well as particle internalization for different macrophage phenotypes. Here, we show that the quantitative structure–activity relationship method (QSAR) previously used to predict physiochemical properties of materials can be applied to targeting different macrophage phenotypes. These findings demonstrated that targeted drug delivery to macrophages could be achieved by exploiting material parameters.

  1. Macrophages Contribute to the Spermatogonial Niche in the Adult Testis

    Directory of Open Access Journals (Sweden)

    Tony DeFalco

    2015-08-01

    Full Text Available The testis produces sperm throughout the male reproductive lifespan by balancing self-renewal and differentiation of spermatogonial stem cells (SSCs. Part of the SSC niche is thought to lie outside the seminiferous tubules of the testis; however, specific interstitial components of the niche that regulate spermatogonial divisions and differentiation remain undefined. We identified distinct populations of testicular macrophages, one of which lies on the surface of seminiferous tubules, in close apposition to areas of tubules enriched for undifferentiated spermatogonia. These macrophages express spermatogonial proliferation- and differentiation-inducing factors, such as colony-stimulating factor 1 (CSF1 and enzymes involved in retinoic acid (RA biosynthesis. We show that transient depletion of macrophages leads to a disruption in spermatogonial differentiation. These findings reveal an unexpected role for macrophages in the spermatogonial niche in the testis and raise the possibility that macrophages play previously unappreciated roles in stem/progenitor cell regulation in other tissues.

  2. Potential antioxidant and cytoprotective effects of essential oil extracted from Cymbopogon citratus on OxLDL and H2O2 LDL induced Human Peripheral Blood Mononuclear Cells (PBMC

    Directory of Open Access Journals (Sweden)

    Jamuna S.

    2017-06-01

    Full Text Available Cymbopogon citratus (lemon grass is commonly used in traditional folk medicine. The essential oil extracted from C. citratus has been reported as a potential anti-oxidant and anti-inflammatory agent. This study has been designed to explore the protective effect of C. citratus (lemon grass against modified LDL (OxLDL and H2O2 LDL induced cytotoxicity in Peripheral Blood Mononuclear Cells (PBMC. The essential oil extracted from C. citratus (EOC was subjected to FT-IR spectroscopic analysis for the identification of functional groups. In vitro antioxidant assays were carried out to assess the electron donating capability of EOC as compared with a known standard L-ascorbic acid. The cytoprotective effects of EOC were determined in PBMC induced with modified LDL. Spectra obtained from FT-IR analysis showed the presence of functional groups in EOC such as H-bonded, OH stretching, NH stretching, aldehydeCH stretching, aldehyde/ketoneCO stretching, CC-stretching, CH3 bending, CH in plane bending. EOC has greater antioxidant property when compared with the standard L-ascorbic acid. EOC at all test concentrations demonstrated free radical scavenging activity and cytoprotective effect when challenged against modified LDL in PBMC. The above results show EOC as a promising antioxidant and cytoprotective agent.

  3. Motivational incentives lead to a strong increase in lateral prefrontal activity after self-control exertion.

    Science.gov (United States)

    Luethi, Matthias S; Friese, Malte; Binder, Julia; Boesiger, Peter; Luechinger, Roger; Rasch, Björn

    2016-10-01

    Self-control is key to success in life. Initial acts of self-control temporarily impair subsequent self-control performance. Why such self-control failures occur is unclear, with prominent models postulating a loss of a limited resource vs a loss of motivation, respectively. Here, we used functional magnetic resonance imaging to identify the neural correlates of motivation-induced benefits on self-control. Participants initially exerted or did not exert self-control. In a subsequent Stroop task, participants performed worse after exerting self-control, but not if they were motivated to perform well by monetary incentives. On the neural level, having exerted self-control resulted in decreased activation in the left inferior frontal gyrus. Increasing motivation resulted in a particularly strong activation of this area specifically after exerting self-control. Thus, after self-control exertion participants showed more prefrontal neural activity without improving performance beyond baseline level. These findings suggest that impaired performance after self-control exertion may not exclusively be due to a loss of motivation. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. DMPD: Differential responses of human monocytes and macrophages to IL-4 and IL-13. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10534111 Differential responses of human monocytes and macrophages to IL-4 and IL-1...):575-8. (.png) (.svg) (.html) (.csml) Show Differential responses of human monocytes and macrophages to IL-...4 and IL-13. PubmedID 10534111 Title Differential responses of human monocytes an

  5. DMPD: Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited signalingpathways. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12960231 Macrophage activation through CCR5- and CXCR4-mediated gp120-elicited sign...82. Epub 2003 Jul 22. (.png) (.svg) (.html) (.csml) Show Macrophage activation through CCR5- and CXCR4-media...on through CCR5- and CXCR4-mediated gp120-elicited signalingpathways. Authors Lee C, Liu QH, Tomkowicz B, Yi

  6. DMPD: Mechanisms for the anti-inflammatory effects of adiponectin in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18336664 Mechanisms for the anti-inflammatory effects of adiponectin in macrophages...(.html) (.csml) Show Mechanisms for the anti-inflammatory effects of adiponectin in macrophages. PubmedID 18...336664 Title Mechanisms for the anti-inflammatory effects of adiponectin in macro

  7. Trypanosomatid Infections: How Do Parasites and Their Excreted–Secreted Factors Modulate the Inducible Metabolism of l-Arginine in Macrophages?

    Directory of Open Access Journals (Sweden)

    Philippe Holzmuller

    2018-04-01

    Full Text Available Mononuclear phagocytes (monocytes, dendritic cells, and macrophages are among the first host cells to face intra- and extracellular protozoan parasites such as trypanosomatids, and significant expansion of macrophages has been observed in infected hosts. They play essential roles in the outcome of infections caused by trypanosomatids, as they can not only exert a powerful antimicrobial activity but also promote parasite proliferation. These varied functions, linked to their phenotypic and metabolic plasticity, are exerted via distinct activation states, in which l-arginine metabolism plays a pivotal role. Depending on the environmental factors and immune response elements, l-arginine metabolites contribute to parasite elimination, mainly through nitric oxide (NO synthesis, or to parasite proliferation, through l-ornithine and polyamine production. To survive and adapt to their hosts, parasites such as trypanosomatids developed mechanisms of interaction to modulate macrophage activation in their favor, by manipulating several cellular metabolic pathways. Recent reports emphasize that some excreted–secreted (ES molecules from parasites and sugar-binding host receptors play a major role in this dialog, particularly in the modulation of the macrophage’s inducible l-arginine metabolism. Preventing l-arginine dysregulation by drugs or by immunization against trypanosomatid ES molecules or by blocking partner host molecules may control early infection and is a promising way to tackle neglected diseases including Chagas disease, leishmaniases, and African trypanosomiases. The present review summarizes recent knowledge on trypanosomatids and their ES factors with regard to their influence on macrophage activation pathways, mainly the NO synthase/arginase balance. The review ends with prospects for the use of biological knowledge to develop new strategies of interference in the infectious processes used by trypanosomatids, in particular for the

  8. Pirarubicin induces an autophagic cytoprotective response through suppression of the mammalian target of rapamycin signaling pathway in human bladder cancer cells

    International Nuclear Information System (INIS)

    Li, Kuiqing; Chen, Xu; Liu, Cheng; Gu, Peng; Li, Zhuohang; Wu, Shaoxu; Xu, Kewei; Lin, Tianxin; Huang, Jian

    2015-01-01

    Pirarubicin is widely used in intravesical chemotherapy for bladder cancer, but its efficacy is limited due to drug resistance; the mechanism has not been well studied. Emerging evidence shows that autophagy can be a novel target for cancer therapy. This study aimed to investigate the role of autophagy in pirarubicin-treated bladder cancer cells. Bladder cancer cells EJ and J82 were treated with pirarubicin, siRNA, 3-methyladenine or hydroxychloroquine. Cell proliferation and apoptosis were tested by cell survival assay and flow cytometric analysis, respectively. Autophagy was evaluated by immunoblotting before and after the treatments. The phosphorylated mammalian target of rapamycin, serine/threonine kinase p70 S6 kinase, and eukaryotic translation initiation factor 4E binding protein 1 were also investigated by immunoblotting. We found that pirarubicin could induce autophagy in bladder cancer cells. Inhibition of autophagy by 3-methyladenine, hydroxychloroquine or knockdown of autophagy related gene 3 significantly increased apoptosis in pirarubicin-treated bladder cancer cells. Pirarubicin-induced autophagy was mediated via the mTOR/p70S6K/4E-BP1 signaling pathway. In conclusion, autophagy induced by pirarubicin plays a cytoprotective role in bladder cancer cells, suggesting that inhibition of autophagy may improve efficacy over traditional pirarubicin chemotherapy in bladder cancer patients. - Highlights: • Pirarubicin induced autophagy in bladder cancer cells. • Inhibition of autophagy enhanced pirarubicin-induced apoptosis. • Pirarubicin induced autophagy through inhibition of mTOR signaling pathway

  9. Comparative analysis of the role of small G proteins in cell migration and cell death: Cytoprotective and promigratory effects of RalA

    International Nuclear Information System (INIS)

    Jeon, Hyejin; Zheng, Long Tai; Lee, Shinrye; Lee, Won-Ha; Park, Nammi; Park, Jae-Yong; Heo, Won Do; Lee, Myung-Shik; Suk, Kyoungho

    2011-01-01

    Small G protein superfamily consists of more than 150 members, and is classified into six families: the Ras, Rho, Rab, Arf, Ran, and RGK families. They regulate a wide variety of cell functions such as cell proliferation/differentiation, cytoskeletal reorganization, vesicle trafficking, nucleocytoplasmic transport and microtubule organization. The small G proteins have also been shown to regulate cell death/survival and cell shape. In this study, we compared the role of representative members of the six families of small G proteins in cell migration and cell death/survival, two cellular phenotypes that are associated with inflammation, tumorigenesis, and metastasis. Our results show that small G proteins of the six families differentially regulate cell death and cell cycle distribution. In particular, our results indicate that Rho family of small G proteins is antiapoptotic. Ras, Rho, and Ran families promoted cell migration. There was no significant correlation between the cell death- and cell migration-regulating activities of the small G proteins. Nevertheless, RalA was not only cytoprotective against multiple chemotherapeutic drugs, but also promigratory inducing stress fiber formation, which was accompanied by the activation of Akt and Erk pathways. Our study provides a framework for further systematic investigation of small G proteins in the perspectives of cell death/survival and motility in inflammation and cancer.

  10. Study on interaction of gastrointestinal agents in the presence of cytoprotective drugs. Part III. In vitro study on the adsorption of selected prokinetic drugs on sucralfate.

    Science.gov (United States)

    Grimling, Bozena; Pluta, Janusz

    2005-01-01

    Adsorbance of certain prokinetic drugs, regulating the motility of the digestive tract, on a cytoprotective drug--sucralfate was investigated. The evaluation of adsorbance capability was carried out by means of a statistical method in in vitro conditions, taking into account environmental pH, concentration of the investigated drugs as well as the form of sucralfate. Obtained results prove that the analyzed active agents are adsorbed on sucralfate at all the investigated pH ranges and the capability of sucralfate binding depends on its form and environmental pH. The highest binding capability was revealed by samples with pH = 3.6 in the presence of sucralfate in the form of suspension, while the lowest binding capability was observed at pH = 1.5 in the presence of sucralfate in the form of paste. The adsorbance capacity of sucralfate (k) at pH = 3.6 is the highest for cisaprid (k = 8.5) and it is significantly lower for metoclopramide (k = 1.5)

  11. 10-Oxo-trans-11-octadecenoic acid generated from linoleic acid by a gut lactic acid bacterium Lactobacillus plantarum is cytoprotective against oxidative stress.

    Science.gov (United States)

    Furumoto, Hidehiro; Nanthirudjanar, Tharnath; Kume, Toshiaki; Izumi, Yasuhiko; Park, Si-Bum; Kitamura, Nahoko; Kishino, Shigenobu; Ogawa, Jun; Hirata, Takashi; Sugawara, Tatsuya

    2016-04-01

    Oxidative stress is a well-known cause of multiple diseases. The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway plays a central role in cellular antioxidative responses. In this study, we investigated the effects of novel fatty acid metabolite derivatives of linoleic acid generated by the gut lactic acid bacteria Lactobacillus plantarum on the Nrf2-ARE pathway. 10-Oxo-trans-11-octadecenoic acid (KetoC) protected HepG2 cells from cytotoxicity induced by hydrogen peroxide. KetoC also significantly increased cellular Nrf2 protein levels, ARE-dependent transcription, and the gene expression of antioxidative enzymes such as heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and quinone oxidoreductase 1 (NQO1) in HepG2 cells. Additionally, a single oral dose administration of KetoC also increased antioxidative gene expression and protein levels of Nrf2 and HO-1 in mouse organs. Since other fatty acid metabolites and linoleic acid did not affect cellular antioxidative responses, the cytoprotective effect of KetoC may be because of its α,β-unsaturated carbonyl moiety. Collectively, our data suggested that KetoC activated the Nrf2-ARE pathway to enhance cellular antioxidative responses in vitro and in vivo, which further suggests that KetoC may prevent multiple diseases induced by oxidative stress. Copyright © 2016. Published by Elsevier Inc.

  12. Mechanisms of CDDO-imidazolide-mediated cytoprotection against acrolein-induced neurocytotoxicity in SH-SY5Y cells and primary human astrocytes.

    Science.gov (United States)

    Speen, Adam; Jones, Colton; Patel, Ruby; Shah, Halley; Nallasamy, Palanisamy; Brooke, Elizabeth A S; Zhu, Hong; Li, Y Robert; Jia, Zhenquan

    2015-10-01

    Acrolein is a ubiquitous unsaturated aldehyde has been implicated in the pathogenesis of various neurological disorders. However, limited study has been conducted into potential therapeutic protection and underlying mechanism against acrolein-induced cytotoxicity via upregulation of cellular aldehyde-detoxification defenses. In this study we have utilized RA-differentiated human SH-SY5Y cells and primary human astrocytes to investigate the induction of glutathione (GSH) by the synthetic triterpenoid 2-cyano-3,12-dixooleana-1,9-dien-28-imidazolide (CDDO-Im) and the protective effects CDDO-Im-mediated antioxidant defenses on acrolein toxicity. Acrolein exposure to RA-differentiated SH-SY5Y cells resulted in a significant time dependent depletion of cellular GSH preceding a reduction in cell viability and LDH release. Further, we demonstrated the predominance of cellular GSH in protection against acrolein-induced cytotoxicity. Buthionine sulfoximine (BSO) at 25μM dramatically depleted GSH and significantly potentiated acrolein-induced cytotoxicity. Pretreatment of the cells with 100nM CDDO-Im afforded a dramatic protection against acrolein-induced cytotoxicity. Pretreatment of BSO and CDDO was found to prevent the CDDO-Im-mediated GSH induction and partially reversed the cytoprotective effects of CDDO-Im against acrolein cytotoxicity. Overall, this study represents for the first time the CDDO-Im mediated upregulation of GSH is a predominant mechanism against acrolein-induced neurotoxicity. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Intracoronary Cytoprotective Gene Therapy: A Study of VEGF-B167 in a Pre-Clinical Animal Model of Dilated Cardiomyopathy.

    Science.gov (United States)

    Woitek, Felix; Zentilin, Lorena; Hoffman, Nicholas E; Powers, Jeffery C; Ottiger, Isabel; Parikh, Suraj; Kulczycki, Anna M; Hurst, Marykathryn; Ring, Nadja; Wang, Tao; Shaikh, Farah; Gross, Polina; Singh, Harinder; Kolpakov, Mikhail A; Linke, Axel; Houser, Steven R; Rizzo, Victor; Sabri, Abdelkarim; Madesh, Muniswamy; Giacca, Mauro; Recchia, Fabio A

    2015-07-14

    Vascular endothelial growth factor (VEGF)-B activates cytoprotective/antiapoptotic and minimally angiogenic mechanisms via VEGF receptors. Therefore, VEGF-B might be an ideal candidate for the treatment of dilated cardiomyopathy, which displays modest microvascular rarefaction and increased rate of apoptosis. This study evaluated VEGF-B gene therapy in a canine model of tachypacing-induced dilated cardiomyopathy. Chronically instrumented dogs underwent cardiac tachypacing for 28 days. Adeno-associated virus serotype 9 viral vectors carrying VEGF-B167 genes were infused intracoronarily at the beginning of the pacing protocol or during compensated heart failure. Moreover, we tested a novel VEGF-B167 transgene controlled by the atrial natriuretic factor promoter. Compared with control subjects, VEGF-B167 markedly preserved diastolic and contractile function and attenuated ventricular chamber remodeling, halting the progression from compensated to decompensated heart failure. Atrial natriuretic factor-VEGF-B167 expression was low in normally functioning hearts and stimulated by cardiac pacing; it thus functioned as an ideal therapeutic transgene, active only under pathological conditions. Our results, obtained with a standard technique of interventional cardiology in a clinically relevant animal model, support VEGF-B167 gene transfer as an affordable and effective new therapy for nonischemic heart failure. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. Pirarubicin induces an autophagic cytoprotective response through suppression of the mammalian target of rapamycin signaling pathway in human bladder cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kuiqing; Chen, Xu [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Liu, Cheng [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Gu, Peng; Li, Zhuohang; Wu, Shaoxu [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Xu, Kewei [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Lin, Tianxin, E-mail: tianxinl@sina.com [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China); Huang, Jian, E-mail: urolhj@sina.com [Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120 (China)

    2015-05-01

    Pirarubicin is widely used in intravesical chemotherapy for bladder cancer, but its efficacy is limited due to drug resistance; the mechanism has not been well studied. Emerging evidence shows that autophagy can be a novel target for cancer therapy. This study aimed to investigate the role of autophagy in pirarubicin-treated bladder cancer cells. Bladder cancer cells EJ and J82 were treated with pirarubicin, siRNA, 3-methyladenine or hydroxychloroquine. Cell proliferation and apoptosis were tested by cell survival assay and flow cytometric analysis, respectively. Autophagy was evaluated by immunoblotting before and after the treatments. The phosphorylated mammalian target of rapamycin, serine/threonine kinase p70 S6 kinase, and eukaryotic translation initiation factor 4E binding protein 1 were also investigated by immunoblotting. We found that pirarubicin could induce autophagy in bladder cancer cells. Inhibition of autophagy by 3-methyladenine, hydroxychloroquine or knockdown of autophagy related gene 3 significantly increased apoptosis in pirarubicin-treated bladder cancer cells. Pirarubicin-induced autophagy was mediated via the mTOR/p70S6K/4E-BP1 signaling pathway. In conclusion, autophagy induced by pirarubicin plays a cytoprotective role in bladder cancer cells, suggesting that inhibition of autophagy may improve efficacy over traditional pirarubicin chemotherapy in bladder cancer patients. - Highlights: • Pirarubicin induced autophagy in bladder cancer cells. • Inhibition of autophagy enhanced pirarubicin-induced apoptosis. • Pirarubicin induced autophagy through inhibition of mTOR signaling pathway.

  15. Transport stress induces heart damage in newly hatched chicks via blocking the cytoprotective heat shock response and augmenting nitric oxide production.

    Science.gov (United States)

    Sun, F; Zuo, Y-Z; Ge, J; Xia, J; Li, X-N; Lin, J; Zhang, C; Xu, H-L; Li, J-L

    2018-04-20

    Transport stress affects the animal's metabolism and psychological state. As a pro-survival pathway, the heat shock response (HSR) protects healthy cells from stressors. However, it is unclear whether the HSR plays a role in transport stress-induced heart damage. To evaluate the effects of transport stress on heart damage and HSR protection, newly hatched chicks were treated with transport stress for 2 h, 4 h and 8 h. Transport stress caused decreases in body weight and increases in serum creatine kinase (CK) activity, nitric oxide (NO) content in heart tissue, cardiac nitric oxide syntheses (NOS) activity and NOS isoforms transcription. The mRNA expression of heat shock factors (HSFs, including HSF1-3) and heat shock proteins (HSPs, including HSP25, HSP40, HSP47, HSP60, HSP70, HSP90 and HSP110) in the heart of 2 h transport-treated chicks was upregulated. After 8 h of transport stress in chicks, the transcription levels of the same HSPs and HSF2 were reduced in the heart. It was also found that the changes in the HSP60, HSP70 and HSP90 protein levels had similar tendencies. These results suggested that transport stress augmented NO generation through enhancing the activity of NOS and the transcription of NOS isoforms. Therefore, this study provides new evidence that transport stress induces heart damage in the newly hatched chicks by blocking the cytoprotective HSR and augmenting NO production.

  16. The cytoprotective role of DJ-1 and p45 NFE2 against human primary alveolar type II cell injury and emphysema.

    Science.gov (United States)

    Tan, Li Hui; Bahmed, Karim; Lin, Chih-Ru; Marchetti, Nathaniel; Bolla, Sudhir; Criner, Gerard J; Kelsen, Steven; Madesh, Muniswamy; Kosmider, Beata

    2018-02-23

    Emphysema is characterized by irreversibly enlarged airspaces and destruction of alveolar walls. One of the factors contributing to this disease pathogenesis is an elevation in extracellular matrix (ECM) degradation in the lung. Alveolar type II (ATII) cells produce and secrete pulmonary surfactants and proliferate to restore the epithelium after damage. We isolated ATII cells from control non-smokers, smokers and patients with emphysema to determine the role of NFE2 (nuclear factor, erythroid-derived 2). NFE2 is a heterodimer composed of two subunits, a 45 kDa (p45 NFE2) and 18 kDa (p18 NFE2) polypeptides. Low expression of p45 NFE2 in patients with emphysema correlated with a high ECM degradation. Moreover, we found that NFE2 knockdown increased cell death induced by cigarette smoke extract. We also studied the cross talk between p45 NFE2 and DJ-1. DJ-1 protein is a redox-sensitive chaperone that protects cells from oxidative stress. We detected that cigarette smoke significantly increased p45 NFE2 levels in DJ-1 KO mice compared to wild-type mice. Our results indicate that p45 NFE2 expression is induced by exposure to cigarette smoke, has a cytoprotective activity against cell injury, and its downregulation in human primary ATII cells may contribute to emphysema pathogenesis.

  17. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    International Nuclear Information System (INIS)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Kim, Won

    2014-01-01

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  18. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Lee, Sik [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2014-08-08

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  19. The influence of macrophage growth factors on Theiler's Murine Encephalomyelitis Virus (TMEV) infection and activation of macrophages.

    Science.gov (United States)

    Schneider, Karin M; Watson, Neva B; Minchenberg, Scott B; Massa, Paul T

    2018-02-01

    Macrophages are common targets for infection and innate immune activation by many pathogenic viruses including the neurotropic Theiler's Murine Encephalomyelitis Virus (TMEV). As both infection and innate activation of macrophages are key determinants of viral pathogenesis especially in the central nervous system (CNS), an analysis of macrophage growth factors on these events was performed. C3H mouse bone-marrow cells were differentiated in culture using either recombinant macrophage colony stimulating factor (M-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF), inoculated with TMEV (BeAn) and analyzed at various times thereafter. Cytokine RNA and protein analysis, virus titers, and flow cytometry were performed to characterize virological parameters under these culture conditions. GM-CSF-differentiated macrophages showed higher levels of TMEV viral RNA and proinflammatory molecules compared to infected M-CSF-differentiated cells. Thus, GM-CSF increases both TMEV infection and TMEV-induced activation of macrophages compared to that seen with M-CSF. Moreover, while infectious viral particles decreased from a peak at 12h to undetectable levels at 48h post infection, TMEV viral RNA remained higher in GM-CSF- compared to M-CSF-differentiated macrophages in concert with increased proinflammatory gene expression. Analysis of a possible basis for these differences determined that glycolytic rates contributed to heightened virus replication and proinflammatory cytokine secretion in GM-CSF compared to M-CSF-differentiated macrophages. In conclusion, we provide evidence implicating a role for GM-CSF in promoting virus replication and proinflammatory cytokine expression in macrophages, indicating that GM-CSF may be a key factor for TMEV infection and the induction of chronic TMEV-induced immunopathogenesis in the CNS. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance

    DEFF Research Database (Denmark)

    Houthuijzen, Julia M; Oosterom, Ilse; Hudson, Brian D

    2017-01-01

    Although chemotherapy is designed to eradicate tumor cells, it also has significant effects on normal tissues. The platinum-induced fatty acid 16:4(n-3) (hexadeca-4,7,10,13-tetraenoic acid) induces systemic resistance to a broad range of DNA-damaging chemotherapeutics. We show that 16:4(n-3) exerts....... M., Peeper, D. S., Jafari Sadatmand, S., Roodhart, J. M. L., van de Lest, C. H. A., Ulven, T., Ishihara, K., Milligan, G., Voest, E. E. Fatty acid 16:4(n-3) stimulates a GPR120-induced signaling cascade in splenic macrophages to promote chemotherapy resistance....

  1. Soluble human leukocyte antigen G5 polarizes differentiation of macrophages toward a decidual macrophage-like phenotype.

    Science.gov (United States)

    Lee, Cheuk-Lun; Guo, YiFan; So, Kam-Hei; Vijayan, Madhavi; Guo, Yue; Wong, Vera H H; Yao, YuanQing; Lee, Kai-Fai; Chiu, Philip C N; Yeung, William S B

    2015-10-01

    What are the actions of soluble human leukocyte antigen G5 (sHLAG5) on macrophage differentiation? sHLAG5 polarizes the differentiation of macrophages toward a decidual macrophage-like phenotype, which could regulate fetomaternal tolerance and placental development. sHLAG5 is a full-length soluble isoform of human leukocyte antigen implicated in immune tolerance during pregnancy. Low or undetectable circulating level of sHLAG5 in first trimester of pregnancy is associated with pregnancy complications such as pre-eclampsia and spontaneous abortion. Decidual macrophages are located in close proximity to invasive trophoblasts, and are involved in regulating fetomaternal tolerance and placental development. Human peripheral blood monocytes were differentiated into macrophages by treatment with granulocyte macrophage colony-stimulating factor in the presence or absence of recombinant sHLAG5 during the differentiation process. The phenotypes and the biological activities of the resulting macrophages were compared. Recombinant sHLAG5 was produced in Escherichia coli BL21 and the protein identity was verified by tandem mass spectrometry. The expression of macrophage markers were analyzed by flow cytometry and quantitative PCR. Phagocytosis was determined by flow cytometry. Indoleamine 2,3-dioxygenase 1 expression and activity were measured by western blot analysis and kynurenine assay, respectively. Cell proliferation and cell cycling were determined by fluorometric cell proliferation assay and flow cytometry, respectively. Cytokine secretion was determined by cytokine array and ELISA kits. Intracellular cytokine expression was measured by flow cytometry. Cell invasion and migration were determined by trans-well invasion and migration assay, respectively. sHLAG5 drove the differentiation of macrophages with 'immuno-modulatory' characteristics, including reduced expression of M1 macrophage marker CD86 and increased expression of M2 macrophage marker CD163. sHLAG5-polarized

  2. Macrophage Phenotypes Regulate Scar Formation and Chronic Wound Healing.

    Science.gov (United States)

    Hesketh, Mark; Sahin, Katherine B; West, Zoe E; Murray, Rachael Z

    2017-07-17

    Macrophages and inflammation play a beneficial role during wound repair with macrophages regulating a wide range of processes, such as removal of dead cells, debris and pathogens, through to extracellular matrix deposition re-vascularisation and wound re-epithelialisation. To perform this range of functions, these cells develop distinct phenotypes over the course of wound healing. They can present with a pro-inflammatory M1 phenotype, more often found in the early stages of repair, through to anti-inflammatory M2 phenotypes that are pro-repair in the latter stages of wound healing. There is a continuum of phenotypes between these ranges with some cells sharing phenotypes of both M1 and M2 macrophages. One of the less pleasant consequences of quick closure, namely the replacement with scar tissue, is also regulated by macrophages, through their promotion of fibroblast proliferation, myofibroblast differentiation and collagen deposition. Alterations in macrophage number and phenotype disrupt this process and can dictate the level of scar formation. It is also clear that dysregulated inflammation and altered macrophage phenotypes are responsible for hindering closure of chronic wounds. The review will discuss our current knowledge of macrophage phenotype on the repair process and how alterations in the phenotypes might alter wound closure and the final repair quality.

  3. Effects of microparticle size and Fc density on macrophage phagocytosis.

    Directory of Open Access Journals (Sweden)

    Patricia Pacheco

    Full Text Available Controlled induction of phagocytosis in macrophages offers the ability to therapeutically regulate the immune system as well as improve delivery of chemicals or biologicals for immune processing. Maximizing particle uptake by macrophages through Fc receptor-mediated phagocytosis could lead to new delivery mechanisms in drug or vaccine development. Fc ligand density and particle size were examined independently and in combination in order to optimize and tune the phagocytosis of opsonized microparticles. We show the internalization efficiency of small polystyrene particles (0.5 µm to 2 µm is significantly affected by changes in Fc ligand density, while particles greater than 2 µm show little correlation between internalization and Fc density. We found that while macrophages can efficiently phagocytose a large number of smaller particles, the total volume of phagocytosed particles is maximized through the non-specific uptake of larger microparticles. Therefore, larger microparticles may be more efficient at delivering a greater therapeutic payload to macrophages, but smaller opsonized microparticles can deliver bio-active substances to a greater percentage of the macrophage population. This study is the first to treat as independent variables the physical and biological properties of Fc density and microparticle size that initiate macrophage phagocytosis. Defining the physical and biological parameters that affect phagocytosis efficiency will lead to improved methods of microparticle delivery to macrophages.

  4. Influence of Macrophages on the Rooster Spermatozoa Quality.

    Science.gov (United States)

    Kuzelova, L; Vasicek, J; Chrenek, P

    2015-08-01

    The goal of this study was to evaluate the occurrence of macrophages in rooster semen and to investigate their impact on the spermatozoa quality. Ross 308 breeder males (n = 30) with no evidence of genital tract infections were used to determine the concentration of macrophages using fluorescently conjugated acetylated low-density lipoprotein (AcLDL). Subsequently, the roosters were divided into two groups on the basis of semen macrophage concentration, and semen quality was compared in two heterospermic samples. We applied computer-assisted semen analysis (CASA) system to determine motility parameters. Fluorescence microscopy and flow cytometry were used to evaluate occurrence of apoptotic and dead spermatozoa. Spermatozoa fertility potential was examined after intravaginal artificial insemination of hens. Eighteen roosters (control group) contained 0.2-3% of macrophages within spermatozoa population and ten roosters (macrophage group) had 10-15% of macrophages. Males from macrophage group had lower (p rooster semen may have a negative effect on some parameters of rooster spermatozoa evaluated in vitro. Furthermore, our study suggests that flow cytometry allows more precise examination of spermatozoa viability and apoptosis in a very short time compared with the fluorescent microscopy. © 2015 Blackwell Verlag GmbH.

  5. Effects of lipopolysaccharide on the catabolic activity of macrophages

    International Nuclear Information System (INIS)

    Cluff, C.; Ziegler, H.K.

    1986-01-01

    The ability of macrophages to degrade and catabolize antigens is of relevance both as a means to process complex antigens prior to presentation to T cells, as well as a way to down regulate immune responses by destroying the antigenicity of polypeptides. With these considerations, the authors have investigated the regulation of macrophage catabolic activity by lipopolysaccharide (LPS). Catabolic activity was quantitated by following the distribution and molecular form of 125 -I labelled surface components of heat-killed Listeria monocytogenes (HKLM) subsequent to their uptake by macrophages. They have compared the catabolic activity of macrophages from peritoneal exudates of mice injected i.p. with saline or LPS and have found that LPS-elicited macrophages display a greatly enhanced (3 fold) rate of catabolism. This increase in catabolic activity peaks 3 days after LPS injection and steadily declines thereafter, approaching a baseline level after 3 weeks. The enhancement of catabolic activity is under LPS gene control. LPS-elicited macrophages rapidly destroy the antigenicity of bacterial antigens and function poorly as antigen presenting cells in vitro. These results suggest that LPS elicits a macrophage population specialized for antigen degradation functions with negative regulatory effects on the induction of specific immune responses

  6. Unique proteomic signatures distinguish macrophages and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Lev Becker

    Full Text Available Monocytes differentiate into heterogeneous populations of tissue macrophages and dendritic cells (DCs that regulate inflammation and immunity. Identifying specific populations of myeloid cells in vivo is problematic, however, because only a limited number of proteins have been used to assign cellular phenotype. Using mass spectrometry and bone marrow-derived cells, we provided a global view of the proteomes of M-CSF-derived macrophages, classically and alternatively activated macrophages, and GM-CSF-derived DCs. Remarkably, the expression levels of half the plasma membrane proteins differed significantly in the various populations of cells derived in vitro. Moreover, the membrane proteomes of macrophages and DCs were more distinct than those of classically and alternatively activated macrophages. Hierarchical cluster and dual statistical analyses demonstrated that each cell type exhibited a robust proteomic signature that was unique. To interrogate the phenotype of myeloid cells in vivo, we subjected elicited peritoneal macrophages harvested from wild-type and GM-CSF-deficient mice to mass spectrometric and functional analysis. Unexpectedly, we found that peritoneal macrophages exhibited many features of the DCs generated in vitro. These findings demonstrate that global analysis of the membrane proteome can help define immune cell phenotypes in vivo.

  7. Multiple Myeloma Macrophages: Pivotal Players in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Simona Berardi

    2013-01-01

    Full Text Available Tumor microenvironment is essential for multiple myeloma (MM growth, progression, and drug resistance through provision of survival signals and secretion of growth and proangiogenic factors. This paper examines the importance of macrophages within MM bone marrow (BM microenvironment, referred to as MM-associated macrophages, as a potential niche component that supports tumor plasma cells. These macrophages are derived from peripheral blood monocytes recruited into the tumor. Upon activation by MM plasma cells and mesenchymal stromal cells, macrophages can release growth factors, proteolytic enzymes, cytokines, and inflammatory mediators that promote plasma cell growth and survival. Macrophages promote tumor progression through several mechanisms including angiogenesis, growth, and drug resistance. Indeed, these macrophages are essential for the induction of an angiogenic response through vasculogenic mimicry, and this ability proceeds in step with progression of the plasma cell tumors. Data suggest that macrophages play an important role in the biology and survival of patients with MM, and they may be a target for the MM antivascular management.

  8. EXERT Yourself and Help in the Search for an Alzheimer's Cure

    Science.gov (United States)

    ... Yourself and Help in the Search for an Alzheimer’s Cure Can exercise slow or prevent cognitive decline in older people who are at increased risk for Alzheimer’s disease? The EXERT Study: Building Memories Through Exercise ...

  9. Stiffness and thickness of fascia do not explain chronic exertional compartment syndrome

    DEFF Research Database (Denmark)

    Dahl, Morten; Hansen, Philip; Stål, Per

    2011-01-01

    Chronic exertional compartment syndrome is diagnosed based on symptoms and elevated intramuscular pressure and often is treated with fasciotomy. However, what contributes to the increased intramuscular pressure remains unknown....

  10. Physical exercise at the workplace reduces perceived physical exertion during healthcare work

    DEFF Research Database (Denmark)

    Jakobsen, Markus Due; Sundstrup, Emil; Brandt, Mikkel

    2015-01-01

    BACKGROUND: High physical exertion during work is a risk factor for musculoskeletal pain and long-term sickness absence. Physical exertion (RPE) reflects the balance between physical work demands and physical capacity of the individual. Thus, increasing the physical capacity through physical......: 3.1 on a scale of 0 to 10, average WRPE: 3.6 on a scale of 0 to 10) from 18 departments at three participating hospitals. Participants were randomly allocated at the cluster level to 10 weeks of: (1) workplace physical exercise (WORK) performed in groups during working hours for 5×10 minutes per...... exercise may decrease physical exertion during work. This study investigates the effect of workplace-based versus home-based physical exercise on physical exertion during work (WRPE) among healthcare workers. METHODS: 200 female healthcare workers (age: 42.0, body mass index: 24.1, average pain intensity...

  11. Ginger extract inhibits LPS induced macrophage activation and function

    Directory of Open Access Journals (Sweden)

    Bruch David

    2008-01-01

    Full Text Available Abstract Background Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation. Methods Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction. Results We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines and RANTES, MCP-1 (pro inflammatory chemokines production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed. Conclusion In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation.

  12. Rhinovirus infection induces distinct transcriptome profiles in polarized human macrophages.

    Science.gov (United States)

    Rajput, Charu; Walsh, Megan P; Eder, Breanna N; Metitiri, Ediri E; Popova, Antonia P; Hershenson, Marc B

    2018-05-01

    Infections with rhinovirus (RV) cause asthma exacerbations. Recent studies suggest that macrophages play a role in asthmatic airway inflammation and the innate immune response to RV infection. Macrophages exhibit phenotypes based on surface markers and gene expression. We hypothesized that macrophage polarization state alters gene expression in response to RV infection. Cells were derived from human peripheral blood derived monocytes. M1 and M2 polarization was carried out by using IFN-γ and IL-4, respectively, and RNA was extracted for Affymetrix Human Gene ST2.1 exon arrays. Selected genes were validated by quantitative (q)PCR. Treatment of nonactivated (M0) macrophages with IFN-γ and IL-4 induced the expression of 252 and 153 distinct genes, respectively, including previously-identified M1 and M2 markers. RV infection of M0 macrophages induced upregulation of 232 genes; pathway analysis showed significant overrepresentation of genes involved in IFN-α/β signaling and cytokine signaling in the immune system. RV infection induced differential expression of 195 distinct genes in M1-like macrophages but only seven distinct genes in M2-like-polarized cells. In a secondary analysis, comparison between M0-, RV-infected, and M1-like-polarized, RV-infected macrophages revealed differential expression of 227 genes including those associated with asthma and its exacerbation. qPCR demonstrated increased expression of CCL8, CXCL10, TNFSF10, TNFSF18, IL6, NOD2, and GSDMD and reduced expression of VNN1, AGO1, and AGO2. Together, these data show that, in contrast to M2-like-polarized macrophages, gene expression of M1-like macrophages is highly regulated by RV.

  13. Benign vascular sexual headache and exertional headache: interrelationships and long term prognosis.

    OpenAIRE

    Silbert, P L; Edis, R H; Stewart-Wynne, E G; Gubbay, S S

    1991-01-01

    There is a definite relationship between the vascular type of benign sexual headache and benign exertional headache. Forty five patients with benign vascular sexual headache were reviewed. Twenty seven (60%) experienced benign vascular sexual headache alone and eighteen (40%) had experienced both benign vascular sexual headache and benign exertional headache on at least one occasion. The mean age was 34.3 years with a male:female ratio of 5.4:1. Thirty patients with a history of benign vascul...

  14. Update: Exertional rhabdomyolysis, active component, U.S. Armed Forces, 2012-2016.

    Science.gov (United States)

    2017-03-01

    Among active component service members in 2016, there were 525 incident diagnoses of rhabdomyolysis likely due to physical exertion and/or heat stress ("exertional rhabdomyolysis"). The crude incidence rate in 2016 was 40.7 cases per 100,000 person-years. Annual rates of incident diagnoses of exertional rhabdomyolysis increased 46.2% between 2013 and 2016, with the greatest percentage change occurring between 2014 and 2015. In 2016, relative to their respective counterparts, the highest incidence rates of exertional rhabdomyolysis affected service members who were male; younger than 20 years of age; and black, non-Hispanic. During the surveillance period, annual incidence rates were highest among service members of the Marine Corps, intermediate among those in the Army, and lowest among those in the Air Force and Navy. Most cases of exertional rhabdomyolysis were diagnosed at installations that support basic combat/recruit training or major ground combat units of the Army or the Marine Corps. Medical care providers should consider exertional rhabdomyolysis in the differential diagnosis when service members (particularly recruits) present with muscular pain or swelling, limited range of motion, or the excretion of dark urine (possibly due to myoglobinuria) after strenuous physical activity, particularly in hot, humid weather.

  15. The Influence of a Bout of Exertion on Novice Barefoot Running Dynamics.

    Science.gov (United States)

    Hashish, Rami; Samarawickrame, Sachithra D; Baker, Lucinda; Salem, George J

    2016-06-01

    Barefoot, forefoot strike (FFS) running has recently risen in popularity. Relative to shod, rear-foot strike (RFS) running, employing a FFS is associated with heightened triceps surae muscle activation and ankle mechanical demand. Novice to this pattern, it is plausible that habitually shod RFS runners exhibit fatigue to the triceps surae when acutely transitioning to barefoot running, thereby limiting their ability to attenuate impact. Therefore, the purpose was to determine how habitually shod RFS runners respond to an exertion bout of barefoot running, operationally defined as a barefoot run 20% of mean daily running distance. Twenty-one RFS runners performed novice barefoot running, before and after exertion. Ankle peak torque, triceps surae EMG median frequency, foot-strike patterns, joint energy absorption, and loading rates were evaluated. Of the 21 runners, 6 maintained a RFS, 10 adopted a mid-foot strike (MFS), and 5 adopted a FFS during novice barefoot running. In-response to exertion, MFS and FFS runners demonstrated reductions in peak torque, median frequency, and ankle energy absorption, and an increase in loading rate. RFS runners demonstrated reductions in peak torque and loading rate. These results indicate that a short bout of running may elicit fatigue to novice barefoot runners, limiting their ability to attenuate impact. Key pointsIn response to exertion, novice barefoot runners demonstrate fatigue to their soleus.In response to exertion, novice barefoot runners demonstrate a reduction in ankle energy absorptionIn response to exertion, novice barefoot runners demonstrate an increase in loading rate.

  16. Targeting Dexamethasone to Macrophages in a Porcine Endotoxemic Model

    DEFF Research Database (Denmark)

    Granfeldt, Asger; Hvas, Christine Lodberg; Graversen, Jonas Heilskov

    2013-01-01

    -8 minutes. CONCLUSION: Targeted delivery of dexamethasone to macrophages using a humanized CD163 antibody as carrier exhibits anti-inflammatory effects comparable with 50 times higher concentrations of free dexamethasone and does not inhibit endogenous cortisol production. This antibody-drug complex showing......OBJECTIVES: Macrophages are important cells in immunity and the main producers of pro-inflammatory cytokines. The main objective was to evaluate if specific delivery of glucocorticoid to the macrophage receptor CD163 is superior to systemic glucocorticoid therapy in dampening the cytokine response...

  17. Rediscovering peritoneal macrophages in a murine endometriosis model.

    Science.gov (United States)

    Yuan, Ming; Li, Dong; An, Min; Li, Qiuju; Zhang, Lu; Wang, Guoyun

    2017-01-01

    What are the features of peritoneal macrophage subgroups and T helper cells in the development of murine endometriosis? During the development of endometriosis in a murine model, large peritoneal macrophages (LPMs) and small peritoneal macrophages (SPMs) are polarized into M1 and M2 cells, respectively, and the proportions of T helper (Th) 1, Th17 and T regulatory (T reg ) cells are increased. Numerous studies investigating the etiology and pathogenesis of endometriosis have focused on the polarization states of peritoneal macrophages in endometriosis models and patients, but the results are inconclusive. Further studies indicate that peritoneal macrophages are composed of two distinct subsets: LPMs and SPMs, although their roles in endometriosis are unknown. This study involves a prospective and randomized experiment. Fifty C57BL/6 female mice were randomly allocated to five control and five experimental groups (n = 5/group) according to the presence or absence of transplantation. The transplant periods are 0.25, 3, 14, 28 and 42 days. C57BL/6 mice were utilized to establish an endometriosis model by i.p. injection of allogeneic endometrial segments. Dynamic changes of peritoneal macrophage subsets and polarization profiles were evaluated by flow cytometry (FCM). Macrophage morphology and density were assessed by cell counting under a microscope. Dynamic changes of Th1, Th2, Th17 and T reg cells were estimated by FCM. Peritoneal macrophages are composed of two distinct subsets: LPMs and SPMs. The proportion of SPMs increased immediately after peritoneal injection of endometrial tissues, whereas LPMs showed an opposite trend. Peritoneal macrophages differentiated into both M1 and M2 macrophages. The bidirectional polarization of macrophages was caused by the inverse trends of polarization of LPMs and SPMs. Consistently, the proportions of Th1, Th17 and T reg cells were all increased in mice with endometriosis. N/A. In this study, detection was only performed in a

  18. The Role of Macrophage Lipophagy in Reverse Cholesterol Transport

    Directory of Open Access Journals (Sweden)

    Se-Jin Jeong

    2017-03-01

    Full Text Available Macrophage cholesterol efflux is a central step in reverse cholesterol transport, which helps to maintain cholesterol homeostasis and to reduce atherosclerosis. Lipophagy has recently been identified as a new step in cholesterol ester hydrolysis that regulates cholesterol efflux, since it mobilizes cholesterol from lipid droplets of macrophages via autophagy and lysosomes. In this review, we briefly discuss recent advances regarding the mechanisms of the cholesterol efflux pathway in macrophage foam cells, and present lipophagy as a therapeutic target in the treatment of atherosclerosis.

  19. Macrophage heterogeneity in tissues: phenotypic diversity and functions

    Science.gov (United States)

    Gordon, Siamon; Plüddemann, Annette; Martinez Estrada, Fernando

    2014-01-01

    During development and throughout adult life, macrophages derived from hematopoietic progenitors are seeded throughout the body, initially in the absence of inflammatory and infectious stimuli as tissue-resident cells, with enhanced recruitment, activation, and local proliferation following injury and pathologic insults. We have learned a great deal about macrophage properties ex vivo and in cell culture, but their phenotypic heterogeneity within different tissue microenvironments remains poorly characterized, although it contributes significantly to maintaining local and systemic homeostasis, pathogenesis, and possible treatment. In this review, we summarize the nature, functions, and interactions of tissue macrophage populations within their microenvironment and suggest questions for further investigation. PMID:25319326

  20. Macrophage Depletion Ameliorates Peripheral Neuropathy in Aging Mice.

    Science.gov (United States)

    Yuan, Xidi; Klein, Dennis; Kerscher, Susanne; West, Brian L; Weis, Joachim; Katona, Istvan; Martini, Rudolf

    2018-05-09

    Aging is known as a major risk factor for the structure and function of the nervous system. There is urgent need to overcome such deleterious effects of age-related neurodegeneration. Here we show that peripheral nerves of 24-month-old aging C57BL/6 mice of either sex show similar pathological alterations as nerves from aging human individuals, whereas 12-month-old adult mice lack such alterations. Specifically, nerve fibers showed demyelination, remyelination and axonal lesion. Moreover, in the aging mice, neuromuscular junctions showed features typical for dying-back neuropathies, as revealed by a decline of presynaptic markers, associated with α-bungarotoxin-positive postsynapses. In line with these observations were reduced muscle strengths. These alterations were accompanied by elevated numbers of endoneurial macrophages, partially comprising the features of phagocytosing macrophages. Comparable profiles of macrophages could be identified in peripheral nerve biopsies of aging persons. To determine the pathological impact of macrophages in aging mice, we selectively targeted the cells by applying an orally administered CSF-1R specific kinase (c-FMS) inhibitor. The 6-month-lasting treatment started before development of degenerative changes at 18 months and reduced macrophage numbers in mice by ∼70%, without side effects. Strikingly, nerve structure was ameliorated and muscle strength preserved. We show, for the first time, that age-related degenerative changes in peripheral nerves are driven by macrophages. These findings may pave the way for treating degeneration in the aging peripheral nervous system by targeting macrophages, leading to reduced weakness, improved mobility, and eventually increased quality of life in the elderly. SIGNIFICANCE STATEMENT Aging is a major risk factor for the structure and function of the nervous system. Here we show that peripheral nerves of 24-month-old aging mice show similar degenerative alterations as nerves from aging

  1. Human Induced Pluripotent Stem Cell-Derived Macrophages Share Ontogeny with MYB-Independent Tissue-Resident Macrophages

    Directory of Open Access Journals (Sweden)

    Julian Buchrieser

    2017-02-01

    Full Text Available Tissue-resident macrophages, such as microglia, Kupffer cells, and Langerhans cells, derive from Myb-independent yolk sac (YS progenitors generated before the emergence of hematopoietic stem cells (HSCs. Myb-independent YS-derived resident macrophages self-renew locally, independently of circulating monocytes and HSCs. In contrast, adult blood monocytes, as well as infiltrating, gut, and dermal macrophages, derive from Myb-dependent HSCs. These findings are derived from the mouse, using gene knockouts and lineage tracing, but their applicability to human development has not been formally demonstrated. Here, we use human induced pluripotent stem cells (iPSCs as a tool to model human hematopoietic development. By using a CRISPR-Cas9 knockout strategy, we show that human iPSC-derived monocytes/macrophages develop in an MYB-independent, RUNX1-, and SPI1 (PU.1-dependent fashion. This result makes human iPSC-derived macrophages developmentally related to and a good model for MYB-independent tissue-resident macrophages, such as alveolar and kidney macrophages, microglia, Kupffer cells, and Langerhans cells.

  2. Induced-Pluripotent-Stem-Cell-Derived Primitive Macrophages Provide a Platform for Modeling Tissue-Resident Macrophage Differentiation and Function.

    Science.gov (United States)

    Takata, Kazuyuki; Kozaki, Tatsuya; Lee, Christopher Zhe Wei; Thion, Morgane Sonia; Otsuka, Masayuki; Lim, Shawn; Utami, Kagistia Hana; Fidan, Kerem; Park, Dong Shin; Malleret, Benoit; Chakarov, Svetoslav; See, Peter; Low, Donovan; Low, Gillian; Garcia-Miralles, Marta; Zeng, Ruizhu; Zhang, Jinqiu; Goh, Chi Ching; Gul, Ahmet; Hubert, Sandra; Lee, Bernett; Chen, Jinmiao; Low, Ivy; Shadan, Nurhidaya Binte; Lum, Josephine; Wei, Tay Seok; Mok, Esther; Kawanishi, Shohei; Kitamura, Yoshihisa; Larbi, Anis; Poidinger, Michael; Renia, Laurent; Ng, Lai Guan; Wolf, Yochai; Jung, Steffen; Önder, Tamer; Newell, Evan; Huber, Tara; Ashihara, Eishi; Garel, Sonia; Pouladi, Mahmoud A; Ginhoux, Florent

    2017-07-18

    Tissue macrophages arise during embryogenesis from yolk-sac (YS) progenitors that give rise to primitive YS macrophages. Until recently, it has been impossible to isolate or derive sufficient numbers of YS-derived macrophages for further study, but data now suggest that induced pluripotent stem cells (iPSCs) can be driven to undergo a process reminiscent of YS-hematopoiesis in vitro. We asked whether iPSC-derived primitive macrophages (iMacs) can terminally differentiate into specialized macrophages with the help of growth factors and organ-specific cues. Co-culturing human or murine iMacs with iPSC-derived neurons promoted differentiation into microglia-like cells in vitro. Furthermore, murine iMacs differentiated in vivo into microglia after injection into the brain and into functional alveolar macrophages after engraftment in the lung. Finally, iPSCs from a patient with familial Mediterranean fever differentiated into iMacs with pro-inflammatory characteristics, mimicking the disease phenotype. Altogether, iMacs constitute a source of tissue-resident macrophage precursors that can be used for biological, pathophysiological, and therapeutic studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure.

    Science.gov (United States)

    Murthy, Shubha; Larson-Casey, Jennifer L; Ryan, Alan J; He, Chao; Kobzik, Lester; Carter, A Brent

    2015-08-01

    Alternative activation of alveolar macrophages is linked to fibrosis following exposure to asbestos. The scavenger receptor, macrophage receptor with collagenous structure (MARCO), provides innate immune defense against inhaled particles and pathogens; however, a receptor for asbestos has not been identified. We hypothesized that MARCO acts as an initial signaling receptor for asbestos, polarizes macrophages to a profibrotic M2 phenotype, and is required for the development of asbestos-induced fibrosis. Compared with normal subjects, alveolar macrophages isolated from patients with asbestosis express higher amounts of MARCO and have greater profibrotic polarization. Arginase 1 (40-fold) and IL-10 (265-fold) were higher in patients. In vivo, the genetic deletion of MARCO attenuated the profibrotic environment and pulmonary fibrosis in mice exposed to chrysotile. Moreover, alveolar macrophages from MARCO(-/-) mice polarize to an M1 phenotype, whereas wild-type mice have higher Ym1 (>3.0-fold) and nearly 7-fold more active TGF-β1 in bronchoalveolar lavage (BAL) fluid (BALF). Arg(432) and Arg(434) in domain V of MARCO are required for the polarization of macrophages to a profibrotic phenotype as mutation of these residues reduced FIZZ1 expression (17-fold) compared with cells expressing MARCO. These observations demonstrate that a macrophage membrane protein regulates the fibrotic response to lung injury and suggest a novel target for therapeutic intervention. © FASEB.

  4. Inhibition of EMMPRIN and MMP-9 Expression by Epigallocatechin-3-Gallate through 67-kDa Laminin Receptor in PMA-Induced Macrophages.

    Science.gov (United States)

    Wang, Qi-Ming; Wang, Hao; Li, Ya-Fei; Xie, Zhi-Yong; Ma, Yao; Yan, Jian-Jun; Gao, Yi Fan Wei; Wang, Ze-Mu; Wang, Lian-Sheng

    2016-01-01

    It is well documented that overexpression of EMMPRIN (extracellular matrix metalloproteinase inducer) and MMPs (matrix metalloproteinases) by monocytes/macrophages plays an important role in atherosclerotic plaque rupture. Green tea polyphenol epigallocatechin-3-gallate (EGCG) has a variety of pharmacological properties and exerts cardiovascular protective effects. Recently, the 67-kD laminin receptor (67LR) has been identified as a cell surface receptor of EGCG. The aim of the present study was to evaluate the effects of EGCG on the expression of EMMPRIN and MMP-9 in PMA-induced macrophages, and the potential mechanisms underlying its effects. Human monocytic THP-1 cells were induced to differentiate into macrophages with phorbol 12-myristate 13-acetate (PMA). Protein expression and MMP-9 activity were assayed by Western blot and Gelatin zymography, respectively. Real-time PCR was used to examine EMMPRIN and MMP-9 mRNA expression. We showed that EGCG (10-50µmol/L) significantly inhibited the expression of EMMPRIN and MMP-9 and activation of extracellular signal-regulated kinase 1/2 (ERK1/2), p38 and c-Jun N-terminal kinase (JNK) in PMA-induced macrophages. Downregulation of EMMPRIN by gene silencing hindered PMA-induced MMP-9 secretion and expression, indicating an important role of EMMPRIN in the inhibition of MMP-9 by EGCG. Moreover, 67LR was involved in EGCG-mediated suppression of EMMPRIN and MMP-9 expression. Anti-67LR antibody treatment led to abrogation of the inhibitory action of EGCG on the expression of EMMPRIN and MMP-9 and activation of ERK1/2, p38, and JNK. Our results indicate that EGCG restrains EMMPRIN and MMP-9 expression via 67LR in PMA-induced macrophages, which also suggests that EGCG may be a possible therapeutic agent for stabilizing atherosclerotic plaque. © 2016 The Author(s) Published by S. Karger AG, Basel.

  5. Inhibition of EMMPRIN and MMP-9 Expression by Epigallocatechin-3-Gallate through 67-kDa Laminin Receptor in PMA-Induced Macrophages

    Directory of Open Access Journals (Sweden)

    Qi-Ming Wang

    2016-11-01

    Full Text Available Background/Aims: It is well documented that overexpression of EMMPRIN (extracellular matrix metalloproteinase inducer and MMPs (matrix metalloproteinases by monocytes/macrophages plays an important role in atherosclerotic plaque rupture. Green tea polyphenol epigallocatechin-3-gallate (EGCG has a variety of pharmacological properties and exerts cardiovascular protective effects. Recently, the 67-kD laminin receptor (67LR has been identified as a cell surface receptor of EGCG. The aim of the present study was to evaluate the effects of EGCG on the expression of EMMPRIN and MMP-9 in PMA-induced macrophages, and the potential mechanisms underlying its effects. Methods: Human monocytic THP-1 cells were induced to differentiate into macrophages with phorbol 12-myristate 13-acetate (PMA. Protein expression and MMP-9 activity were assayed by Western blot and Gelatin zymography, respectively. Real-time PCR was used to examine EMMPRIN and MMP-9 mRNA expression. Results: We showed that EGCG (10-50µmol/L significantly inhibited the expression of EMMPRIN and MMP-9 and activation of extracellular signal-regulated kinase 1/2 (ERK1/2, p38 and c-Jun N-terminal kinase (JNK in PMA-induced macrophages. Downregulation of EMMPRIN by gene silencing hindered PMA-induced MMP-9 secretion and expression, indicating an important role of EMMPRIN in the inhibition of MMP-9 by EGCG. Moreover, 67LR was involved in EGCG-mediated suppression of EMMPRIN and MMP-9 expression. Anti-67LR antibody treatment led to abrogation of the inhibitory action of EGCG on the expression of EMMPRIN and MMP-9 and activation of ERK1/2, p38, and JNK. Conclusion: Our results indicate that EGCG restrains EMMPRIN and MMP-9 expression via 67LR in PMA-induced macrophages, which also suggests that EGCG may be a possible therapeutic agent for stabilizing atherosclerotic plaque.

  6. M1 Macrophages but Not M2 Macrophages Are Characterized by Upregulation of CRP Expression via Activation of NFκB: a Possible Role for Ox-LDL in Macrophage Polarization.

    Science.gov (United States)

    Kaplan, Marielle; Shur, Anna; Tendler, Yvgeny

    2018-04-23

    Arterial macrophages comprise a heterogeneous population: pro-inflammatory (M1) and anti-inflammatory (M2). Since C-reactive protein (CRP) is produced by macrophages in atherosclerotic lesions, understanding of CRP regulation in macrophages could be crucial to decipher inflammatory patterns in atherogenesis. We aimed to analyze CRP expression in M1/M2 macrophages and to question whether it involves NFκB signaling pathway. Furthermore, we questioned whether oxidative stress affect macrophage phenotype and modulate macrophage CRP expression. M1/M2 macrophage polarization was validated using THP-1 macrophages. CRP mRNA and protein expression were determined using real-time PCR and immunohistochemistry. Involvement of NFκB was determined by nuclear translocation of p50 subunit and the use of NFκB inhibitor. Involvement of oxidative stress in macrophage phenotypes induction was studied using oxidized-LDL (Ox-LDL) and antioxidants. M1 macrophages were characterized by elevated CRP mRNA expression (by 67%), CRP protein levels (by 108%), and upregulation of NFκB activation compared to control, but these features were not shared by M2 macrophages. Macrophages incubation with Ox-LDL led to a moderate M1 phenotype combined with a M2 phenotype, correlated with increased CRP mRNA expression. Antioxidants inhibited by up to 86% IL6 expression but did not significantly affect IL10 secretion. Antioxidants significantly inhibited CRP expression in M1 macrophages, but not in M2 macrophages. Elevated expression of CRP was characteristic of M1 macrophages rather than M2 through NFκB activation. Oxidative stress could be one of the endogenous triggers for macrophage activation to a mixed M1 and M2 phenotype, in association with increased expression of CRP.

  7. Macrophage ABCA2 deletion modulates intracellular cholesterol deposition, affects macrophage apoptosis, and decreases early atherosclerosis in LDL receptor knockout mice.

    Science.gov (United States)

    Calpe-Berdiel, Laura; Zhao, Ying; de Graauw, Marjo; Ye, Dan; van Santbrink, Peter J; Mommaas, A Mieke; Foks, Amanda; Bot, Martine; Meurs, Illiana; Kuiper, Johan; Mack, Jody T; Van Eck, Miranda; Tew, Kenneth D; van Berkel, Theo J C

    2012-08-01

    The ABCA2 transporter shares high structural homology to ABCA1, which is crucial for the removal of excess cholesterol from macrophages and, by extension, in atherosclerosis. It has been suggested that ABCA2 sequesters cholesterol inside the lysosomes, however, little is known of the macrophage-specific role of ABCA2 in regulating lipid homeostasis in vivo and in modulating susceptibility to atherosclerosis. Chimeras with dysfunctional macrophage ABCA2 were generated by transplantation of bone marrow from ABCA2 knockout (KO) mice into irradiated LDL receptor (LDLr) KO mice. Interestingly, lack of ABCA2 in macrophages resulted in a diminished lesion size in the aortic root (-24.5%) and descending thoracic aorta (-36.6%) associated with a 3-fold increase in apoptotic cells, as measured by both caspase 3 and TUNEL. Upon oxidized LDL exposure, macrophages from wildtype (WT) transplanted animals developed filipin-positive droplets in lysosomal-like compartments, corresponding to free cholesterol (FC) accumulation. In contrast, ABCA2-deficient macrophages displayed an abnormal diffuse distribution of FC over peripheral regions. The accumulation of neutral sterols in lipid droplets was increased in ABCA2-deficient macrophages, but primarily in cytoplasmic clusters and not in lysosomes. Importantly, apoptosis of oxLDL loaded macrophages lacking ABCA2 was increased 2.7-fold, probably as a consequence of the broad cellular distribution of FC. Lack of functional ABCA2 generates abnormalities in intracellular lipid distribution/trafficking in macrophages consistent with its lysosomal sequestering role, leading to an increased susceptibility to apoptosis in response to oxidized lipids and reduced atherosclerotic lesion development. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. Granulocyte-macrophage colony-stimulating factor primes interleukin-13 production by macrophages via protease-activated receptor-2.

    Science.gov (United States)

    Aoki, Manabu; Yamaguchi, Rui; Yamamoto, Takatoshi; Ishimaru, Yasuji; Ono, Tomomichi; Sakamoto, Arisa; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-04-01

    Chronic inflammation is often linked to the presence of type 2-polarized macrophages, which are induced by the T helper type 2 cytokines interleukin-4 and interleukin-13 (IL-13). IL-13 is a key mediator of tissue fibrosis caused by T helper type 2-based inflammation. Human neutrophil elastase (HNE) plays a pivotal role in the pathogenesis of pulmonary fibrosis. This study investigated the priming effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on IL-13 expression by macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. Expression of IL-13 mRNA and protein by GM-CSF-dependent macrophages was investigated after stimulation with HNE, using the polymerase chain reaction and enzyme-linked immunosorbent assay. GM-CSF had a priming effect on IL-13 mRNA and protein expression by macrophages stimulated with HNE, while this effect was not observed for various other cytokines. GM-CSF-dependent macrophages showed a significant increase in the expression of protease activated receptor-2 (PAR-2) mRNA and protein. The response of IL-13 mRNA to HNE was significantly decreased by pretreatment with alpha1-antitrypsin, a PAR-2 antibody (SAM11), or a PAR-2 antagonist (ENMD-1068). These findings suggest that stimulation with HNE can induce IL-13 production by macrophages, especially GM-CSF-dependent macrophages. Accordingly, neutrophil elastase may have a key role in fibrosis associated with chronic inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Vpx complementation of 'non-macrophage tropic' R5 viruses reveals robust entry of infectious HIV-1 cores into macrophages.

    Science.gov (United States)

    Mlcochova, Petra; Watters, Sarah A; Towers, Greg J; Noursadeghi, Mahdad; Gupta, Ravindra K

    2014-03-21

    It is now known that clinically derived viruses are most commonly R5 tropic with very low infectivity in macrophages. As these viruses utilize CD4 inefficiently, defective entry has been assumed to be the dominant restriction. The implication is that macrophages are not an important reservoir for the majority of circulating viruses. Macrophage infection by clinical transmitted/founder isolates was 10-100 and 30-450 fold less efficient as compared to YU-2 and BaL respectively. Vpx complementation augmented macrophage infection by non-macrophage tropic viruses to the level of infectivity observed for YU-2 in the absence of Vpx. Augmentation was evident even when Vpx was provided 24 hours post-infection. The entry defect was measured as 2.5-5 fold, with a further 3.5-10 fold block at strong stop and subsequent stages of reverse transcription as compared to YU-2. The overall block to infection was critically dependent on the mechanism of entry as demonstrated by rescue of infection after pseudotyping with VSV-G envelope. Reverse transcription in macrophages could not be enhanced using a panel of cytokines or lipopolysaccharide (LPS). Although the predominant block to clinical transmitted/founder viruses is post-entry, infectivity is determined by Env-CD4 interactions and can be rescued with VSV-G pseudotyping. This suggests a functional link between the optimal entry pathway taken by macrophage tropic viruses and downstream events required for reverse transcription. Consistent with a predominantly post-entry block, replication of R5 using viruses can be greatly enhanced by Vpx. We conclude therefore that entry is not the limiting step and that macrophages represent clinically relevant reservoirs for 'non-macrophage tropic' viruses.

  10. Exertional heat stroke management strategies in United States high school football.

    Science.gov (United States)

    Kerr, Zachary Y; Marshall, Stephen W; Comstock, R Dawn; Casa, Douglas J

    2014-01-01

    The 5-year period of 2005-2009 saw more exertional heat stroke-related deaths in organized sports than any other 5-year period in the past 35 years. The risk of exertional heat stroke appears highest in football, particularly during the preseason. To estimate the incidence of exertional heat stroke events and assess the utilization of exertional heat stroke management strategies during the 2011 preseason in United States high school football programs. Cross-sectional study; Level of evidence, 3. A self-administered online questionnaire addressing the incidence of exertional heat stroke events and utilization of exertional heat stroke management strategies (eg, removing athlete's football equipment, calling Emergency Medical Services [EMS]) was completed in May to June 2012 by 1142 (18.0%) athletic trainers providing care to high school football athletes during the 2011 preseason. Among all respondents, 20.3% reported treating at least 1 exertional heat stroke event. An average of 0.50 ± 1.37 preseason exertional heat stroke events were treated per program. Athletic trainers responding to exertional heat stroke reported using an average of 6.6 ± 1.8 management strategies. The most common management strategies were low-level therapeutic interventions such as removing the athlete's football equipment (98.2%) and clothing (77.8%) and moving the athlete to a shaded area (91.6%). Few athletic trainers reported active management strategies such as calling EMS (29.3%) or using a rectal thermometer to check core body temperature (0.9%). Athletic trainers in states with mandated preseason heat acclimatization guidelines reported a higher utilization of management strategies such as cooling the athlete through air conditioning (90.1% vs 65.0%, respectively; P football programs. The standard of care is (and should be) to treat proactively; therefore, treatment is not a perfect proxy for incidence. Nevertheless, there is an urgent need for improved education and awareness of

  11. Lysophosphatidic acid directly induces macrophage-derived foam cell formation by blocking the expression of SRBI.

    Science.gov (United States)

    Chen, Linmu; Zhang, Jun; Deng, Xiao; Liu, Yan; Yang, Xi; Wu, Qiong; Yu, Chao

    2017-09-23

    The leading cause of morbidity and mortality is the result of cardiovascular disease, mainly atherosclerosis. The formation of macrophage foam cells by ingesting ox-LDL and focal retention in the subendothelial space are the hallmarks of the early atherosclerotic lesion. Lysophosphatidic acid (LPA), which is a low-molecular weight lysophospholipid enriched in oxidized LDL, exerts a range of effects on the cardiovascular system. Previous reports show that LPA increases the uptake of ox-LDL to promote the formation of foam cells. However, as the most active component of ox-LDL, there is no report showing whether LPA directly affects foam cell formation. The aim of this study was to investigate the effects of LPA on foam cell formation, as well as to elucidate the underlying mechanism. Oil red O staining and a Cholesterol/cholesteryl ester quantitation assay were used to evaluate foam cell formation in Raw264.7 macrophage cells. We utilized a Western blot and RT-PCR to investigate the relationship between LPA receptors and lipid transport related proteins. We found that LPA promoted foam cell formation, using 200 μM for 24 h. Meanwhile, the expression of the Scavenger receptor BI (SRBI), which promotes the efflux of free cholesterol, was decreased. Furthermore, the LPA 1/3 receptor antagonist Ki16425 significantly abolished the LPA effects, indicating that LPA 1/3 was involved in the foam cell formation and SRBI expression induced by LPA. Additionally, the LPA-induced foam cell formation was blocked with an AKT inhibitor. Our results suggest that LPA-enhanced foam cell formation is mediated by LPA 1/3 -AKT activation and subsequent SRBI expression. Copyright © 2017. Published by Elsevier Inc.

  12. Determining the effects of green chemistry synthesized Ag-nisin nanoparticle on macrophage cells.

    Science.gov (United States)

    Moein, Masood; Imani Fooladi, Abbas Ali; Mahmoodzadeh Hosseini, Hamideh

    2018-01-01

    Bacteriocins are low molecular weight substances produced through post transcriptional changes. These molecules are easily degraded in mammalian gut by proteolytic enzymes especially protease. Nisin is a peptide with 34 aa and its structure contains a pentacyclic lanthionine and 4 beta metyllanthionine residues. Different formulations have been designed for nisin. Since "green synthesis" is a progressive method to prepare anti-microbial and anti-cancer compounds, this study aimed at green synthesis of nisin metal compounds to be used lower concentration still exerting nisin effects. For this purpose, a 1 mg/ml nisin solution was added to a 1 mM silver nitrate solution and incubated to synthesis nano Ag-nisin, then the optical density of new solution was detected using UV spectroscopy. To determine biomolecules in the Ag-nisin solution, the FTIR method was employed. The size and morphology of Ag-nisin was measured by TEM. The toxicity, inflammatory cytokines production, and intracellular ROS quantity was evaluated using MTT, ELISA and flow-cytometry. XRD pattern indicated the silver crystals in Ag-nisin solution. In addition, FTRI findings showed that the carbonyl groups of amino acid are potently able to bind to metal nanoparticles, cover, and prevent them from particle agglomeration. Treating macrophage cells with 10, 25, 50 and 100 μg/ml of Ag-nisin had no significant effect on the cell viability and intracellular ROS quantity compared to the control group. In addition, different concentrations of Ag-nisin had no effect on the IL-10 and TNF-α levels but caused an increased level of IL-12 in comparison with the control group. In the current study, for the first time, green synthesize was used to prepare Ag-nisin particles. The synthesized nanoparticle is able to induce inflammatory activity via increasing IL-12 without any change in the TNF-α level in macrophage cells. Copyright © 2017. Published by Elsevier Ltd.

  13. Fluoromica nanoparticle cytotoxicity in macrophages decreases with size and extent of uptake

    Directory of Open Access Journals (Sweden)

    Tee N

    2015-03-01

    Full Text Available Nicolin Tee,1 Yingdong Zhu,2 Gysell M Mortimer,1 Darren J Martin,2 Rodney F Minchin11School of Biomedical Science, University of Queensland, Brisbane, QLD, Australia; 2Australian Institute of Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, AustraliaAbstract: Polyurethanes are widely used in biomedical devices such as heart valves, pacemaker leads, catheters, vascular devices, and surgical dressings because of their excellent mechanical properties and good biocompatibility. Layered silicate nanoparticles can significantly increase tensile strength and breaking strain of polyurethanes potentially increasing the life span of biomedical devices that suffer from wear in vivo. However, very little is known about how these nanoparticles interact with proteins and cells and how they might exert unwanted effects. A series of fluoromica nanoparticles ranging in platelet size from 90 to over 600 nm in diameter were generated from the same base material ME100 by high energy milling and differential centrifugation. The cytotoxicity of the resulting particles was dependent on platelet size but in a manner that is opposite to many other types of nanomaterials. For the fluoromicas, the smaller the platelet size, the less toxicity was observed. The small fluoromica nanoparticles (<200 nm were internalized by macrophages via scavenger receptors, which was dependent on the protein corona formed in serum. This internalization was associated with apoptosis in RAW cells but not in dTHP-1 cells. The larger particles were not internalized efficiently but mostly decorated the surface of the cells, causing membrane disruption, even in the presence of 80% serum. This work suggests the smaller fluoromica platelets may be safer for use in humans but their propensity to recognize macrophage scavenger receptors also suggests that they will target the reticulo-endoplasmic system in vivo.Keywords: layered silicates, accumulation, phagocytosis, high

  14. The interplay of lung surfactant proteins and lipids assimilates the macrophage clearance of nanoparticles.

    Directory of Open Access Journals (Sweden)

    Christian A Ruge

    F