WorldWideScience

Sample records for macrophages enhance hiv

  1. HIV infection of macrophages is enhanced in the presence of increased expression of CD163 induced by substance P.

    Science.gov (United States)

    Tuluc, Florin; Meshki, John; Spitsin, Sergei; Douglas, Steven D

    2014-07-01

    Activation of NK1R by SP contributes to increased HIV-1 infection in macrophages. The scavenger receptor CD163 is expressed on cells of monocyte-macrophage origin. Our main goal was to determine if there is interplay among SP, CD163 expression, and HIV infection in macrophages. We showed that SP triggers intracellular calcium elevation and increased CD163 expression in human monocytes in a time- and concentration-dependent manner. The role of CD163 on HIV infection was examined by RT-PCR in sorted monocytes (CD163(low) and CD163(high)) and in macrophages having CD163 knocked down using siRNA. We found that the productivity of HIV infection was higher in CD163(high) cells. Additionally, in macrophages with CD163 expression knocked down, we found a significant decrease of HIV infection. Furthermore, Hb-Hp complexes, which function as an endogenous ligand for CD163, decreased HIV infection in macrophages in a dose-dependent manner. Thus, we demonstrate that SP induces higher levels of CD163 in monocytes and that high expression of CD163 is associated with increases HIV infection in macrophages. Thus, in addition to being a prognostic marker of HIV infection, the expression of CD163 on macrophages may be critical in HIV immunopathogenesis. © 2014 Society for Leukocyte Biology.

  2. Enhancement of NMDA receptor-mediated excitatory postsynaptic currents by gp120-treated macrophages: implications for HIV-1-associated neuropathology.

    Science.gov (United States)

    Yang, Jianming; Hu, Dehui; Xia, Jianxun; Liu, Jianuo; Zhang, Gang; Gendelman, Howard E; Boukli, Nawal M; Xiong, Huangui

    2013-09-01

    A plethora of prior studies has linked HIV-1-infected and immune activated brain mononuclear phagocytes (MP; blood borne macrophages and microglia) to neuronal dysfunction. These are modulated by N-methyl-D-aspartate receptor (NMDAR) antagonists and supporting their relevance for HIV-1-associated nervous system disease. The role of NMDAR subsets in HIV-1-induced neuronal injury, nonetheless, is poorly understood. To this end, we investigated conditioned media from HIV-1gp120-treated human monocyte-derived-macrophages (MDM) for its abilities to affect NMDAR-mediated excitatory postsynaptic currents (EPSC(NMDAR)) in rat hippocampal slices. Bath application of gp120-treated MDM-conditioned media (MCM) produced an increase of EPSC(NMDAR). In contrast, control (untreated) MCM had limited effects on EPSC(NMDAR). Testing NR2A NMDAR (NR2AR)-mediated EPSC (EPSC(NR2AR)) and NR2B NMDAR (NR2BR)-mediated EPSC (EPSC(NR2BR)) for MCM showed significant increased EPSC(NR2BR) when compared to EPSC(NR2AR) enhancement. When synaptic NR2AR-mediated EPSC was blocked by bath application of MK801 combined with low frequency stimulations, MCM retained its ability to enhance EPSC(NMDAR) evoked by stronger stimulations. This suggested that increase in EPSC(NMDAR) was mediated, in part, through extra-synaptic NR2BR. Further analyses revealed that the soluble factors with low (NR2BR but not NR2AR blockers. Taken together, these results indicate that macrophage secretory products induce neuronal injury through extra-synaptic NR2BRs.

  3. Bioinformatic analysis of neurotropic HIV envelope sequences identifies polymorphisms in the gp120 bridging sheet that increase macrophage-tropism through enhanced interactions with CCR5

    Energy Technology Data Exchange (ETDEWEB)

    Mefford, Megan E., E-mail: megan_mefford@hms.harvard.edu [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA (United States); Kunstman, Kevin, E-mail: kunstman@northwestern.edu [Northwestern University Medical School, Chicago, IL (United States); Wolinsky, Steven M., E-mail: s-wolinsky@northwestern.edu [Northwestern University Medical School, Chicago, IL (United States); Gabuzda, Dana, E-mail: dana_gabuzda@dfci.harvard.edu [Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA (United States); Department of Neurology (Microbiology and Immunobiology), Harvard Medical School, Boston, MA (United States)

    2015-07-15

    Macrophages express low levels of the CD4 receptor compared to T-cells. Macrophage-tropic HIV strains replicating in brain of untreated patients with HIV-associated dementia (HAD) express Envs that are adapted to overcome this restriction through mechanisms that are poorly understood. Here, bioinformatic analysis of env sequence datasets together with functional studies identified polymorphisms in the β3 strand of the HIV gp120 bridging sheet that increase M-tropism. D197, which results in loss of an N-glycan located near the HIV Env trimer apex, was detected in brain in some HAD patients, while position 200 was estimated to be under positive selection. D197 and T/V200 increased fusion and infection of cells expressing low CD4 by enhancing gp120 binding to CCR5. These results identify polymorphisms in the HIV gp120 bridging sheet that overcome the restriction to macrophage infection imposed by low CD4 through enhanced gp120–CCR5 interactions, thereby promoting infection of brain and other macrophage-rich tissues. - Highlights: • We analyze HIV Env sequences and identify amino acids in beta 3 of the gp120 bridging sheet that enhance macrophage tropism. • These amino acids at positions 197 and 200 are present in brain of some patients with HIV-associated dementia. • D197 results in loss of a glycan near the HIV Env trimer apex, which may increase exposure of V3. • These variants may promote infection of macrophages in the brain by enhancing gp120–CCR5 interactions.

  4. Enhancement of NMDA receptor-mediated excitatory postsynaptic currents by gp120-treated macrophages: Implications for HIV-1-associated neuropathology

    OpenAIRE

    Yang, Jianming; Hu, Dehui; Xia, Jianxun; Liu, Jianuo; Zhang, Gang; Gendelman, Howard E; Nawal M. Boukli; Xiong, Huangui

    2013-01-01

    A plethora of prior studies has linked HIV-1-infected and immune activated brain mononuclear phagocytes (MP; blood borne macrophages and microglia) to neuronal dysfunction. These are modulated by N-methyl-D-aspartate receptor (NMDAR) antagonists and supporting their relevance for HIV-1-associated nervous system disease. The role of NMDAR subsets in HIV-1-induced neuronal injury, nonetheless, is poorly understood. To this end, we investigated conditioned media from HIV-1gp120-treated human mon...

  5. HIV-1 assembly in macrophages

    Directory of Open Access Journals (Sweden)

    Benaroch Philippe

    2010-04-01

    Full Text Available Abstract The molecular mechanisms involved in the assembly of newly synthesized Human Immunodeficiency Virus (HIV particles are poorly understood. Most of the work on HIV-1 assembly has been performed in T cells in which viral particle budding and assembly take place at the plasma membrane. In contrast, few studies have been performed on macrophages, the other major target of HIV-1. Infected macrophages represent a viral reservoir and probably play a key role in HIV-1 physiopathology. Indeed macrophages retain infectious particles for long periods of time, keeping them protected from anti-viral immune response or drug treatments. Here, we present an overview of what is known about HIV-1 assembly in macrophages as compared to T lymphocytes or cell lines. Early electron microscopy studies suggested that viral assembly takes place at the limiting membrane of an intracellular compartment in macrophages and not at the plasma membrane as in T cells. This was first considered as a late endosomal compartment in which viral budding seems to be similar to the process of vesicle release into multi-vesicular bodies. This view was notably supported by a large body of evidence involving the ESCRT (Endosomal Sorting Complex Required for Transport machinery in HIV-1 budding, the observation of viral budding profiles in such compartments by immuno-electron microscopy, and the presence of late endosomal markers associated with macrophage-derived virions. However, this model needs to be revisited as recent data indicate that the viral compartment has a neutral pH and can be connected to the plasma membrane via very thin micro-channels. To date, the exact nature and biogenesis of the HIV assembly compartment in macrophages remains elusive. Many cellular proteins potentially involved in the late phases of HIV-1 cycle have been identified; and, recently, the list has grown rapidly with the publication of four independent genome-wide screens. However, their respective

  6. Bioinformatic analysis of neurotropic HIV envelope sequences identifies polymorphisms in the gp120 bridging sheet that increase macrophage-tropism through enhanced interactions with CCR5.

    Science.gov (United States)

    Mefford, Megan E; Kunstman, Kevin; Wolinsky, Steven M; Gabuzda, Dana

    2015-07-01

    Macrophages express low levels of the CD4 receptor compared to T-cells. Macrophage-tropic HIV strains replicating in brain of untreated patients with HIV-associated dementia (HAD) express Envs that are adapted to overcome this restriction through mechanisms that are poorly understood. Here, bioinformatic analysis of env sequence datasets together with functional studies identified polymorphisms in the β3 strand of the HIV gp120 bridging sheet that increase M-tropism. D197, which results in loss of an N-glycan located near the HIV Env trimer apex, was detected in brain in some HAD patients, while position 200 was estimated to be under positive selection. D197 and T/V200 increased fusion and infection of cells expressing low CD4 by enhancing gp120 binding to CCR5. These results identify polymorphisms in the HIV gp120 bridging sheet that overcome the restriction to macrophage infection imposed by low CD4 through enhanced gp120-CCR5 interactions, thereby promoting infection of brain and other macrophage-rich tissues.

  7. Methamphetamine enhances human immunodeficiency virus 1 infection in macrophages%甲基苯丙胺对HIV-1感染人巨噬细胞的影响

    Institute of Scientific and Technical Information of China (English)

    陈晖; 梁冰玉; 蒋俊俊; 廖艳研; 蒋敦科; 曾锦荣; 阮族明

    2014-01-01

    目的 研究甲基苯丙胺(METH)是否促进HIV-1感染人巨噬细胞及其机制.方法 采集健康成人新鲜外周血,分离单核细胞,再经贴壁法培养纯化为巨噬细胞.用METH和/或多巴胺受体D1阻滞剂对巨噬细胞作预处理,加进HIV Bal病毒感染细胞,收集细胞,检测细胞中HIV RNA的水平;同时,采用实时荧光定量PCR检测巨噬细胞多巴胺受体D1的表达,探讨METH在HIV-1感染人巨噬细胞中的作用及可能机制.结果 METH处理可增强HIV Bal在人巨噬细胞中的感染和复制,呈剂量依赖和时间效应关系;机制研究表明METH是通过细胞的多巴胺受体发挥作用,用多巴胺受体D1阻滞剂(SCH23390)可以阻断METH处理导致的人巨噬细胞感染HIV Bal的增强.此外,METH处理可以上调细胞多巴胺受体D1的表达,有助于HIV在细胞中的感染和复制.结论 METH可能通过诱导巨噬细胞多巴胺受体D1的表达,促进HIV在巨噬细胞中的感染和复制,是HIV感染的协同因子.%Objective To investigate whether methamphetamine (METH) can enhance human immunodeficiency virus 1 (HIV-1) infection in macrophages and the possible mechanism.Methods Peripheral blood samples were collected from eight healthy adult donors.Monocytes were isolated from blood samples and then cultured in vitro to induce differentiation to macrophages.These macrophages were treated with METH and/or dopamine receptor D1 (DRD1) antagonist,and then infected with HIV Bal strains.The levels of HIV RNA were measured in HIV Bal-infected macrophages by RT-PCR analysis.The real-time RTPCR was performed for the quantification of cellular DRD1.Results METH promoted HIV replication in macrophages in a dose and time dependent manner.This METH-mediated enhancement of HIV infection and replication in macrophages could be blocked by the DRD1 antagonist (SCH23390).Moreover,METH could induce the expression of DRD1.Conclusion METH might play a co-factor role in HIV infection in human

  8. HIV-1 Latency in Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2014-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.

  9. DMPD: Monocyte/macrophage traffic in HIV and SIV encephalitis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12960230 Monocyte/macrophage traffic in HIV and SIV encephalitis. Kim WK, Corey S, ...Show Monocyte/macrophage traffic in HIV and SIV encephalitis. PubmedID 12960230 Title Monocyte/macrophage traffic

  10. HIV-1-infection of T lymphocytes and macrophages affects their migration via Nef

    Directory of Open Access Journals (Sweden)

    Christel eVérollet

    2015-10-01

    Full Text Available The human immunodeficiency virus (HIV-1 disseminates in the body and is found in several organs and tissues. While HIV-1 mainly targets both CD4+ T lymphocytes and macrophages, it has contrasting effects between these cell populations. HIV-1 infection namely reduces the viability of CD4+ T cells, whereas infected macrophages are long-lived. In addition, the migration of T cells is reduced by the infection, while HIV-1 differentially modulates the migration modes of macrophages. In 2-dimensions (2D assays, infected macrophages are less motile compared to the control counterparts. In 3D environments, macrophages use two migration modes that are dependent on the matrix architecture: amoeboid and mesenchymal migration. HIV-1 infected macrophages exhibit a reduced amoeboid migration but an enhanced mesenchymal migration, via the viral protein Nef. Indeed, the mesenchymal migration involves podosomes, and Nef stabilizes these cell structures through the activation of the tyrosine kinase Hck, which in turn phosphorylates the Wiskott Aldrich Syndrome Protein (WASP. WASP is a key player in actin remodeling and cell migration. The reprogramed motility of infected macrophages observed in vitro correlates in vivo with enhanced macrophage infiltration in experimental tumors in Nef-transgenic mice compared to control mice.In conclusion, HIV infection of host target cells modifies their migration capacity; we infer that HIV-1 enhances virus spreading in confined environments by reducing T cells migration, and facilitates virus dissemination into different organs and tissues of the human body by enhancing macrophage mesenchymal migration.

  11. αEnv-decorated phosphatidylserine liposomes trigger phagocytosis of HIV-virus-like particles in macrophages.

    Science.gov (United States)

    Gramatica, Andrea; Petazzi, Roberto A; Lehmann, Maik J; Ziomkowska, Joanna; Herrmann, Andreas; Chiantia, Salvatore

    2014-07-01

    Macrophages represent an important cellular target of HIV-1. Interestingly, they are also believed to play a potential role counteracting its infection. However, HIV-1 is known to impair macrophage immune functions such as antibody-mediated phagocytosis. Here, we present immunoliposomes that can bind HIV-1 virus-like particles (HIV-VLPs) while being specifically phagocytosed by macrophages, thus allowing the co-internalization of HIV-VLPs. These liposomes are decorated with anti-Env antibodies and contain phosphatidylserine (PS). PS mediates liposome internalization by macrophages via a mechanism not affected by HIV-1. Hence, PS-liposomes mimic apoptotic cells and are internalized into the macrophages due to specific recognition, carrying the previously bound HIV-VLPs. With a combination of flow cytometry, confocal live-cell imaging and electron microscopy we demonstrate that the PS-immunoliposomes presented here are able to elicit efficient HIV-VLPs phagocytosis by macrophages and might represent a new nanotechnological approach to enhance HIV-1 antigen presentation and reduce the ongoing inflammation processes. This team of authors demonstrate that specific phosphatidylserin immunoliposomes are able to elicit efficient phagocytosis of HIV-virus-like particle by macrophages and might represent a new nanomedicine approach to enhance HIV-1 antigen presentation and reduce ongoing inflammation processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. IFN-λ Inhibits Drug-Resistant HIV Infection of Macrophages

    Science.gov (United States)

    Wang, Xu; Wang, He; Liu, Man-Qing; Li, Jie-Liang; Zhou, Run-Hong; Zhou, Yu; Wang, Yi-Zhong; Zhou, Wang; Ho, Wen-Zhe

    2017-01-01

    Type III interferons (IFN-λs) have been demonstrated to inhibit a number of viruses, including HIV. Here, we further examined the anti-HIV effect of IFN-λs in macrophages. We found that IFN-λs synergistically enhanced anti-HIV activity of antiretrovirals [azidothymidine (AZT), efavirenz, indinavir, and enfuvirtide] in infected macrophages. Importantly, IFN-λs could suppress HIV infection of macrophages with the drug-resistant strains, including AZT-resistant virus (A012) and reverse transcriptase inhibitor-resistant virus (TC49). Mechanistically, IFN-λs were able to induce the expression of several important anti-HIV cellular factors, including myxovirus resistance 2 (Mx2), a newly identified HIV post-entry inhibitor and tetherin, a restriction factor that blocks HIV release from infected cells. These observations provide additional evidence to support the potential use of IFN-λs as therapeutics agents for the treatment of HIV infection. PMID:28321215

  13. Siglec-1 initiates formation of the virus-containing compartment and enhances macrophage-to-T cell transmission of HIV-1.

    Directory of Open Access Journals (Sweden)

    Jason E Hammonds

    2017-01-01

    Full Text Available HIV-1 particles assemble and bud from the plasma membrane of infected T lymphocytes. Infected macrophages, in contrast, accumulate particles within an apparent intracellular compartment known as the virus-containing compartment or VCC. Many aspects of the formation and function of the VCC remain unclear. Here we demonstrate that VCC formation does not actually require infection of the macrophage, but can be reproduced through the exogenous addition of non-infectious virus-like particles or infectious virions to macrophage cultures. Particles were captured by Siglec-1, a prominent cell surface lectin that attaches to gangliosides on the lipid envelope of the virus. VCCs formed within infected macrophages were readily targeted by the addition of ganglioside-containing virus-like particles to the extracellular media. Depletion of Siglec-1 from the macrophage or depletion of gangliosides from viral particles prevented particle uptake into the VCC and resulted in substantial reductions of VCC volume. Furthermore, Siglec-1-mediated virion capture and subsequent VCC formation was required for efficient trans-infection of autologous T cells. Our results help to define the nature of this intracellular compartment, arguing that it is a compartment formed by particle uptake from the periphery, and that this compartment can readily transmit virus to target T lymphocytes. Inhibiting or eliminating the VCC may be an important component of strategies to reduce HIV transmission and to eradicate HIV reservoirs.

  14. HIV infection enhances TRAIL-induced cell death in macrophage by down-regulating decoy receptor expression and generation of reactive oxygen species.

    Directory of Open Access Journals (Sweden)

    Dan-Ming Zhu

    Full Text Available BACKGROUND: Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL could induce apoptosis of HIV-1-infected monocyte-derived macrophage (MDM, but the molecular mechanisms are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: By using an HIV-1 Env-pseudotyped virus (HIV-1 PV-infected MDM cell model we demonstrate that HIV-1 PV infection down-regulates the expression of TRAIL decoy receptor 1 (DcR1 and 2 (DcR2, and cellular FLICE-inhibitory protein (c-FLIP, but dose not affect the expression of death receptor 4 and 5 (DR4, DR5, and Bcl-2 family members in MDM cells. Furthermore, recombinant soluble TRAIL and an agonistic anti-DR5 antibody, AD5-10, treatment stimulates reactive oxygen species (ROS generation and JNK phosphorylation. CONCLUSIONS/SIGNIFICANCE: HIV infection facilitates TRIAL-induced cell death in MDM by down-regulating the expression of TRAIL decoy receptors and intracellular c-FLIP. Meanwhile, the agonistic anti-DR5 antibody, AD5-10, induces apoptosis synergistically with TRAIL in HIV-1-infected cells. ROS generation and JNK phosphorylation are involved in this process. These findings potentiate clinical usage of the combination of TRAIL and AD5-10 in eradication of HIV-infected macrophage and AIDS.

  15. The macrophage in HIV-1 infection: From activation to deactivation?

    Directory of Open Access Journals (Sweden)

    Varin Audrey

    2010-04-01

    Full Text Available Abstract Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1 induced in particular by IFN-γ display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2 induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM. Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease.

  16. The macrophage in HIV-1 infection: from activation to deactivation?

    Science.gov (United States)

    Herbein, Georges; Varin, Audrey

    2010-04-09

    Macrophages play a crucial role in innate and adaptative immunity in response to microorganisms and are an important cellular target during HIV-1 infection. Recently, the heterogeneity of the macrophage population has been highlighted. Classically activated or type 1 macrophages (M1) induced in particular by IFN-gamma display a pro-inflammatory profile. The alternatively activated or type 2 macrophages (M2) induced by Th-2 cytokines, such as IL-4 and IL-13 express anti-inflammatory and tissue repair properties. Finally IL-10 has been described as the prototypic cytokine involved in the deactivation of macrophages (dM). Since the capacity of macrophages to support productive HIV-1 infection is known to be modulated by cytokines, this review shows how modulation of macrophage activation by cytokines impacts the capacity to support productive HIV-1 infection. Based on the activation status of macrophages we propose a model starting with M1 classically activated macrophages with accelerated formation of viral reservoirs in a context of Th1 and proinflammatory cytokines. Then IL-4/IL-13 alternatively activated M2 macrophages will enter into the game that will stop the expansion of the HIV-1 reservoir. Finally IL-10 deactivation of macrophages will lead to immune failure observed at the very late stages of the HIV-1 disease.

  17. HIV-1 activates macrophages independent of Toll-like receptors.

    Directory of Open Access Journals (Sweden)

    Joseph N Brown

    Full Text Available BACKGROUND: Macrophages provide an interface between innate and adaptive immunity and are important long-lived reservoirs for Human Immunodeficiency Virus Type-1 (HIV-1. Multiple genetic networks involved in regulating signal transduction cascades and immune responses in macrophages are coordinately modulated by HIV-1 infection. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate complex interrelated processes and to assemble an integrated view of activated signaling networks, a systems biology strategy was applied to genomic and proteomic responses by primary human macrophages over the course of HIV-1 infection. Macrophage responses, including cell cycle, calcium, apoptosis, mitogen-activated protein kinases (MAPK, and cytokines/chemokines, to HIV-1 were temporally regulated, in the absence of cell proliferation. In contrast, Toll-like receptor (TLR pathways remained unaltered by HIV-1, although TLRs 3, 4, 7, and 8 were expressed and responded to ligand stimulation in macrophages. HIV-1 failed to activate phosphorylation of IRAK-1 or IRF-3, modulate intracellular protein levels of Mx1, an interferon-stimulated gene, or stimulate secretion of TNF, IL-1beta, or IL-6. Activation of pathways other than TLR was inadequate to stimulate, via cross-talk mechanisms through molecular hubs, the production of proinflammatory cytokines typical of a TLR response. HIV-1 sensitized macrophage responses to TLR ligands, and the magnitude of viral priming was related to virus replication. CONCLUSIONS/SIGNIFICANCE: HIV-1 induced a primed, proinflammatory state, M1(HIV, which increased the responsiveness of macrophages to TLR ligands. HIV-1 might passively evade pattern recognition, actively inhibit or suppress recognition and signaling, or require dynamic interactions between macrophages and other cells, such as lymphocytes or endothelial cells. HIV-1 evasion of TLR recognition and simultaneous priming of macrophages may represent a strategy for viral survival, contribute

  18. Cytokine expression of macrophages in HIV-1-associated vacuolar myelopathy.

    Science.gov (United States)

    Tyor, W R; Glass, J D; Baumrind, N; McArthur, J C; Griffin, J W; Becker, P S; Griffin, D E

    1993-05-01

    Macrophages are frequently present within the periaxonal and intramyelinic vacuoles that are located primarily in the posterior and lateral funiculi of the thoracic spinal cord in HIV-associated vacuolar myelopathy. But the role of these macrophages in the formation of the vacuoles is unclear. One hypothesis is that cytokines, such as interleukin-1 (IL-1) and tumor necrosis factor (TNF)-alpha, are produced locally by macrophages and have toxic effects on myelin or oligodendrocytes. The resulting myelin damage eventually culminates in the removal of myelin by macrophages and vacuole formation. We studied thoracic spinal cord specimens taken at autopsy from HIV-positive (+) and HIV-negative individuals. The predominant mononuclear cells present in HIV+ spinal cords are macrophages. They are located primarily in the posterior and lateral funiculi regardless of the presence or absence of vacuolar myelopathy. Macrophages and microglia are more frequent in HIV+ than HIV-negative individuals and these cells frequently stain for class I and class II antigens, IL-1, and TNF-alpha. Activated macrophages positive for IL-1 and TNF-alpha are great increased in the posterior and lateral funiculi of HIV+ individuals with and without vacuolar myelopathy, suggesting they are present prior to the development of vacuoles. Cytokines, such as TNF-alpha, may be toxic for myelin or oligodendrocytes, leading to myelin damage and removal by macrophages and vacuole formation.

  19. HIV-related proteins prolong macrophage survival through induction of Triggering receptor expressed on myeloid cells-1

    Science.gov (United States)

    Yuan, Zhihong; Fan, Xian; Staitieh, Bashar; Bedi, Chetna; Spearman, Paul; Guidot, David M; Sadikot, Ruxana T

    2017-01-01

    Triggering receptor expressed on myeloid cells-1(TREM-1) is a member of the superimmunoglobulin receptor family. We have previously shown that TREM-1 prolongs survival of macrophages treated with lipoolysaccharide through Egr2-Bcl2 signaling. Recent studies suggest a role for TREM-1 in viral immunity. Human immunodeficiency virus-1 (HIV) targets the monocyte/macrophage lineage at varying stages of infection. Emerging data suggest that macrophages are key reservoirs for latent HIV even in individuals on antiretroviral therapy. Here, we investigated the potential role of TREM-1 in HIV latency in macrophages. Our data show that human macrophages infected with HIV show an increased expression of TREM-1. In parallel, direct exposure to the HIV-related proteins Tat or gp120 induces TREM-1 expression in macrophages and confers anti-apoptotic attributes.NF-κB p65 silencing identified that these proteins induce TREM-1 in p65-dependent manner. TREM-1 silencing in macrophages exposed to HIV-related proteins led to increased caspase 3 activation and reduced Bcl-2 expression, rendering them susceptible to apotosis. These novel data reveal that TREM-1 may play a critical role in establishing HIV reservoir in macrophages by inhibiting apoptosis. Therefore, targeting TREM-1 could be a novel therapeutic approach to enhance clearance of the HIV reservoir, at least within the macrophage pools. PMID:28181540

  20. Host hindrance to HIV-1 replication in monocytes and macrophages

    Directory of Open Access Journals (Sweden)

    Pancino Gianfranco

    2010-04-01

    Full Text Available Abstract Monocytes and macrophages are targets of HIV-1 infection and play critical roles in multiple aspects of viral pathogenesis. HIV-1 can replicate in blood monocytes, although only a minor proportion of circulating monocytes harbor viral DNA. Resident macrophages in tissues can be infected and function as viral reservoirs. However, their susceptibility to infection, and their capacity to actively replicate the virus, varies greatly depending on the tissue localization and cytokine environment. The susceptibility of monocytes to HIV-1 infection in vitro depends on their differentiation status. Monocytes are refractory to infection and become permissive upon differentiation into macrophages. In addition, the capacity of monocyte-derived macrophages to sustain viral replication varies between individuals. Host determinants regulate HIV-1 replication in monocytes and macrophages, limiting several steps of the viral life-cycle, from viral entry to virus release. Some host factors responsible for HIV-1 restriction are shared with T lymphocytes, but several anti-viral mechanisms are specific to either monocytes or macrophages. Whilst a number of these mechanisms have been identified in monocytes or in monocyte-derived macrophages in vitro, some of them have also been implicated in the regulation of HIV-1 infection in vivo, in particular in the brain and the lung where macrophages are the main cell type infected by HIV-1. This review focuses on cellular factors that have been reported to interfere with HIV-1 infection in monocytes and macrophages, and examines the evidences supporting their role in vivo, highlighting unique aspects of HIV-1 restriction in these two cell types.

  1. Association of enhanced HIV-1 neutralization by a single Y681H substitution in gp41 with increased gp120-CD4 interaction and macrophage infectivity.

    Directory of Open Access Journals (Sweden)

    Rajesh Ringe

    Full Text Available HIV-1 variants that show unusual sensitivity to autologous antibodies due to presence of critical neutralization signatures would likely contribute towards rational envelope based HIV-1 vaccine design. In the present study, we found that presence of a naturally occurring H681 in gp41 membrane proximal external region (MPER of a clade C envelope (Env obtained from a recently infected Indian patient conferred increased sensitivity to autologous and heterologous plasma antibodies. Furthermore, Env-pseudotyped viruses expressing H681 showed increased sensitivity to soluble CD4, b12 and 4E10 monoclonal antibodies both in related and unrelated Envs and was corroborated with increased Env susceptibility and binding to cellular CD4 as well as with prolonged exposure of MPER epitopes. The increased gp120-CD4 interaction was further associated with relative exposure of CD4-induced epitopes and macrophage infectivity. In summary, our data indicate that Y681H substitution exposes neutralizing epitopes in CD4bs and MPER towards comprehensive interference in HIV-1 entry.

  2. Mycobacterium avium complex augments macrophage HIV-1 production and increases CCR5 expression.

    Science.gov (United States)

    Wahl, S M; Greenwell-Wild, T; Peng, G; Hale-Donze, H; Doherty, T M; Mizel, D; Orenstein, J M

    1998-10-13

    Infection with HIV-1 results in pronounced immune suppression and susceptibility to opportunistic infections (OI). Reciprocally, OI augment HIV-1 replication. As we have shown for Mycobacterium avium complex (MAC) and Pneumocystis carinii, macrophages infected with opportunistic pathogens and within lymphoid tissues containing OI, exhibit striking levels of viral replication. To explore potential underlying mechanisms for increased HIV-1 replication associated with coinfection, blood monocytes were exposed to MAC antigens (MAg) or viable MAC and their levels of tumor necrosis factor alpha (TNFalpha) and HIV-1 coreceptors monitored. MAC enhanced TNFalpha production in vitro, consistent with its expression in coinfected lymph nodes. Using a polyclonal antibody to the CCR5 coreceptor that mediates viral entry of macrophage tropic HIV-1, a subset of unstimulated monocytes was shown to be CCR5-positive by fluorescence-activated cell sorter analysis. After stimulation with MAg or infection with MAC, CCR5 expression was increased at both the mRNA level and on the cell surface. Up-regulation of CCR5 by MAC was not paralleled by an increase in the T cell tropic coreceptor, CXCR4. Increases in NF-kappaB, TNFalpha, and CCR5 were consistent with the enhanced production of HIV-1 in MAg-treated adherent macrophage cultures as measured by HIV-1 p24 levels. Increased CCR5 was also detected in coinfected lymph nodes as compared with tissues with only HIV-1. The increased production of TNFalpha, together with elevated expression of CCR5, provide potential mechanisms for enhanced infection and replication of HIV-1 by macrophages in OI-infected cells and tissues. Consequently, treating OI may inhibit not only the OI-induced pathology, but also limit the viral burden.

  3. Dopamine Receptor Activation Increases HIV Entry into Primary Human Macrophages

    Science.gov (United States)

    Gaskill, Peter J.; Yano, Hideaki H.; Kalpana, Ganjam V.; Javitch, Jonathan A.; Berman, Joan W.

    2014-01-01

    Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers. PMID:25268786

  4. Dopamine receptor activation increases HIV entry into primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Peter J Gaskill

    Full Text Available Macrophages are the primary cell type infected with HIV in the central nervous system, and infection of these cells is a major component in the development of neuropathogenesis and HIV-associated neurocognitive disorders. Within the brains of drug abusers, macrophages are exposed to increased levels of dopamine, a neurotransmitter that mediates the addictive and reinforcing effects of drugs of abuse such as cocaine and methamphetamine. In this study we examined the effects of dopamine on HIV entry into primary human macrophages. Exposure to dopamine during infection increased the entry of R5 tropic HIV into macrophages, irrespective of the concentration of the viral inoculum. The entry pathway affected was CCR5 dependent, as antagonizing CCR5 with the small molecule inhibitor TAK779 completely blocked entry. The effect was dose-dependent and had a steep threshold, only occurring above 108 M dopamine. The dopamine-mediated increase in entry required dopamine receptor activation, as it was abrogated by the pan-dopamine receptor antagonist flupenthixol, and could be mediated through both subtypes of dopamine receptors. These findings indicate that the effects of dopamine on macrophages may have a significant impact on HIV pathogenesis. They also suggest that drug-induced increases in CNS dopamine may be a common mechanism by which drugs of abuse with distinct modes of action exacerbate neuroinflammation and contribute to HIV-associated neurocognitive disorders in infected drug abusers.

  5. Macrophages and lymphocytes differentially modulate the ability of RANTES to inhibit HIV-1 infection.

    Science.gov (United States)

    Gross, Eleanore; Amella, Carol A; Pompucci, Lorena; Franchin, Giovanni; Sherry, Barbara; Schmidtmayerova, Helena

    2003-11-01

    The beta-chemokines MIP-1alpha, MIP-1beta, and RANTES inhibit HIV-1 infection of CD4+ T cells by inhibiting interactions between the virus and CCR5 receptors. However, while beta-chemokine-mediated inhibition of HIV-1 infection of primary lymphocytes is well documented, conflicting results have been obtained using primary macrophages as the virus target. Here, we show that the beta-chemokine RANTES inhibits virus entry into both cellular targets of the virus, lymphocytes and macrophages. However, while virus entry is inhibited at the moment of infection in both cell types, the amount of virus progeny is lowered only in lymphocytes. In macrophages, early-entry restriction is lost during long-term cultivation, and the amount of virus produced by RANTES-treated macrophages is similar to the untreated cultures, suggesting an enhanced virus replication. We further show that at least two distinct cellular responses to RANTES treatment in primary lymphocytes and macrophages contribute to this phenomenon. In lymphocytes, exposure to RANTES significantly increases the pool of inhibitory beta-chemokines through intracellular signals that result in increased production of MIP-1alpha and MIP-1beta, thereby amplifying the antiviral effects of RANTES. In macrophages this amplification step does not occur. In fact, RANTES added to the macrophages is efficiently cleared from the culture, without inducing synthesis of beta-chemokines. Our results demonstrate dichotomous effects of RANTES on HIV-1 entry at the moment of infection, and on production and spread of virus progeny in primary macrophages. Since macrophages serve as a reservoir of HIV-1, this may contribute to the failure of endogenous chemokines to successfully eradicate the virus.

  6. Astrocytes Resist HIV-1 Fusion but Engulf Infected Macrophage Material

    Directory of Open Access Journals (Sweden)

    Rebecca A. Russell

    2017-02-01

    Full Text Available HIV-1 disseminates to diverse tissues and establishes long-lived viral reservoirs. These reservoirs include the CNS, in which macrophage-lineage cells, and as suggested by many studies, astrocytes, may be infected. Here, we have investigated astrocyte infection by HIV-1. We confirm that astrocytes trap and internalize HIV-1 particles for subsequent release but find no evidence that these particles infect the cell. Astrocyte infection was not observed by cell-free or cell-to-cell routes using diverse approaches, including luciferase and GFP reporter viruses, fixed and live-cell fusion assays, multispectral flow cytometry, and super-resolution imaging. By contrast, we observed intimate interactions between HIV-1-infected macrophages and astrocytes leading to signals that might be mistaken for astrocyte infection using less stringent approaches. These results have implications for HIV-1 infection of the CNS, viral reservoir formation, and antiretroviral therapy.

  7. Micro RNA in Exosomes from HIV-Infected Macrophages.

    Science.gov (United States)

    Roth, William W; Huang, Ming Bo; Addae Konadu, Kateena; Powell, Michael D; Bond, Vincent C

    2015-12-22

    Exosomes are small membrane-bound vesicles secreted by cells that function to shuttle RNA and proteins between cells. To examine the role of exosomal micro RNA (miRNA) during the early stage of HIV-1 infection we characterized miRNA in exosomes from HIV-infected macrophages, compared with exosomes from non-infected macrophages. Primary human monocytes from uninfected donors were differentiated to macrophages (MDM) which were either mock-infected or infected with the macrophage-tropic HIV-1 BaL strain. Exosomes were recovered from culture media and separated from virus particles by centrifugation on iodixanol density gradients. The low molecular weight RNA fraction was prepared from purified exosomes. After pre-amplification, RNA was hybridized to microarrays containing probes for 1200 miRNA species of known and unknown function. We observed 48 miRNA species in both infected and uninfected MDM exosomes. Additionally, 38 miRNAs were present in infected-cell exosomes but not uninfected-cell exosomes. Of these, 13 miRNAs were upregulated in exosomes from HIV-infected cells, including 4 miRNA species that were increased by more than 10-fold. Though numerous miRNA species have been identified in HIV-infected cells, relatively little is known about miRNA content in exosomes from these cells. In the future, we plan to investigate whether the upregulated miRNA species we identified are increased in exosomes from HIV-1-positive patients.

  8. Micro RNA in Exosomes from HIV-Infected Macrophages

    Directory of Open Access Journals (Sweden)

    William W. Roth

    2015-12-01

    Full Text Available Exosomes are small membrane-bound vesicles secreted by cells that function to shuttle RNA and proteins between cells. To examine the role of exosomal micro RNA (miRNA during the early stage of HIV-1 infection we characterized miRNA in exosomes from HIV-infected macrophages, compared with exosomes from non-infected macrophages. Primary human monocytes from uninfected donors were differentiated to macrophages (MDM which were either mock-infected or infected with the macrophage-tropic HIV-1 BaL strain. Exosomes were recovered from culture media and separated from virus particles by centrifugation on iodixanol density gradients. The low molecular weight RNA fraction was prepared from purified exosomes. After pre-amplification, RNA was hybridized to microarrays containing probes for 1200 miRNA species of known and unknown function. We observed 48 miRNA species in both infected and uninfected MDM exosomes. Additionally, 38 miRNAs were present in infected-cell exosomes but not uninfected-cell exosomes. Of these, 13 miRNAs were upregulated in exosomes from HIV-infected cells, including 4 miRNA species that were increased by more than 10-fold. Though numerous miRNA species have been identified in HIV-infected cells, relatively little is known about miRNA content in exosomes from these cells. In the future, we plan to investigate whether the upregulated miRNA species we identified are increased in exosomes from HIV-1-positive patients.

  9. Porphyromonas gingivalis-mediated signaling through TLR4 mediates persistent HIV infection of primary macrophages

    Science.gov (United States)

    Agosto, Luis M.; Hirnet, Juliane B.; Michaels, Daniel H.; Shaik-Dasthagirisaheb, Yazdani B.; Gibson, Frank C.; Viglianti, Gregory; Henderson, Andrew J.

    2016-01-01

    Periodontal infections contribute to HIV-associated co-morbidities in the oral cavity and provide a model to interrogate the dysregulation of macrophage function, inflammatory disease progression, and HIV replication during co-infections. We investigated the effect of Porphyromonas gingivalis on the establishment of HIV infection in monocyte-derived macrophages. HIV replication in macrophages was significantly repressed in the presence of P. gingivalis. This diminished viral replication was due partly to a decrease in the expression of integrated HIV provirus. HIV repression depended upon signaling through TLR4 as knock-down of TLR4 with siRNA rescued HIV expression. Importantly, HIV expression was reactivated upon removal of P. gingivalis. Our observations suggest that exposure of macrophages to Gram-negative bacteria influence the establishment and maintenance of HIV persistence in macrophages through a TLR4-dependent mechanism. PMID:27639573

  10. Short Communication: HIV Controller T Cells Effectively Inhibit Viral Replication in Alveolar Macrophages.

    Science.gov (United States)

    Walker-Sperling, Victoria E; Merlo, Christian A; Buckheit, Robert W; Lambert, Allison; Tarwater, Patrick; Kirk, Greg D; Drummond, M Bradley; Blankson, Joel N

    Macrophages are targets of HIV-1 infection, and control of viral replication within these cells may be an important component of a T-cell-based vaccine. Although several studies have analyzed the ability of CD8(+) T cells to inhibit viral replication in monocyte-derived macrophages, the effect of T cells on HIV-1-infected tissue macrophages is less clear. We demonstrate here that both CD4(+) and CD8(+) T-cell effectors from HIV controllers are capable of suppressing viral replication in bronchoalveolar lavage-derived alveolar macrophages. These findings have implications for HIV-1 vaccine and eradication strategies.

  11. Sulforaphane Inhibits HIV Infection of Macrophages through Nrf2.

    Directory of Open Access Journals (Sweden)

    Andrea Kinga Marias Furuya

    2016-04-01

    Full Text Available Marburg virus, the Kaposi's sarcoma-associated herpesvirus (KSHV and Dengue virus all activate, and benefit from, expression of the transcription regulator nuclear erythroid 2-related factor 2 (Nrf2. The impact of Nrf2 activation on human immunodeficiency virus (HIV infection has not been tested. Sulforaphane (SFN, produced in cruciferous vegetables after mechanical damage, mobilizes Nrf2 to potently reprogram cellular gene expression. Here we show for the first time that SFN blocks HIV infection in primary macrophages but not in primary T cells. Similarly SFN blocks infection in PMA-differentiated promonocytic cell lines, but not in other cell lines tested. siRNA-mediated depletion of Nrf2 boosted HIV infectivity in primary macrophages and reduced the anti-viral effects of SFN treatment. This supports a model in which anti-viral activity is mediated through Nrf2 after it is mobilized by SFN. We further found that, like the type I interferon-induced cellular anti-viral proteins SAMHD1 and MX2, SFN treatment blocks infection after entry, but before formation of 2-LTR circles. Interestingly however, neither SAMHD1 nor MX2 were upregulated. This shows for the first time that Nrf2 action can potently block HIV infection and highlights a novel way to trigger this inhibition.

  12. Altered sialylation of alveolar macrophages in HIV-1-infected individuals.

    Science.gov (United States)

    Perrin, C; Giordanengo, V; Bannwarth, S; Blaive, B; Lefebvre, J C

    1997-10-01

    In previous studies, we have demonstrated that O-glycans at the surface of HIV-1-infected cell lines were hyposialylated. Moreover, we and others have shown that HIV+ individuals produced autoantibodies that react with hyposialylated CD43, on T cell lines. Since the autoantigen responsible for this abnormal immune response was not easily found in the peripheral blood cells of corresponding patients, we searched for its possible presence in other sites. Using fluorescence staining of alveolar macrophages with various lectins, we show that the binding of the PNA lectin specific for asialo O-glycans is much more efficient on cells from HIV-1-infected individuals. Moreover, the degree of reactivity of PNA is correlated with the clinical stage of the illness.

  13. The role of HIV and monocytes/macrophages in adipose tissue biology.

    Science.gov (United States)

    Shikuma, Cecilia M; Gangcuangco, Louie Mar A; Killebrew, Deirdre A; Libutti, Daniel E; Chow, Dominic C; Nakamoto, Beau K; Liang, Chin Yuan; Milne, Cris I P; Ndhlovu, Lishomwa C; Barbour, Jason D; Shiramizu, Bruce T; Gerschenson, Mariana

    2014-02-01

    To assess the role of HIV and monocytes/macrophages in adipose tissue dysregulation. Cross-sectional study in 5 groups: HIV seronegative, HIV+ antiretroviral therapy (ART)-naive, HIV+ nonlipoatrophic on zidovudine- and/or stavudine-containing ART, HIV+ lipoatrophic on similar ART, and HIV+ on abacavir- or tenofovir-containing ART. HIV DNA in circulating monocyte subsets was quantitated by real-time polymerase chain reaction. Biopsied subcutaneous fat was examined for macrophage content by CD68 staining. Isolated adipocytes and macrophages were cultured and the supernatant assayed for secretory products by Luminex multiplex cytokine technology. Sixty-nine subjects were enrolled. Lipoatrophic subjects had higher median HIV DNA levels (270.5 copies/10 cells) in circulating peripheral CD14CD16 co-expressing monocyte subsets compared with subjects who were ART-naive (25.0 copies), nonlipoatrophic (15.0 copies), or on abacavir/tenofovir (57.5 copies), P adipocytes and adipose macrophage content were marginal. Although adipocyte secretory products were similar, HIV-infected subjects had higher adipose macrophage-derived interleukin (IL)-12p40, IL-6, IL-8, and monocyte inflammatory protein 1 alpha and lower eotaxin and interferon gamma levels than HIV seronegative subjects (P adipose macrophage secretory products were comparable between subjects naive with ART versus those on ART. Circulating HIV-infected and proinflammatory CD14CD16 monocyte subsets contribute to the pathogenesis of HIV-associated lipoatrophy. Among HIV-infected individuals, macrophages, rather than adipocytes, are the primary source of low-grade inflammation in subcutaneous adipose tissue. HIV infection modifies these macrophages to a more proinflammatory phenotype, and these changes are not substantially mitigated by the use of ART.

  14. Transcriptional Regulation of CXCL5 in HIV-1-Infected Macrophages and Its Functional Consequences on CNS Pathology.

    Science.gov (United States)

    Guha, Debjani; Klamar, Cynthia R; Reinhart, Todd; Ayyavoo, Velpandi

    2015-05-01

    Human immunodeficiency virus-1 (HIV-1)-infected monocytes/macrophages and microglia release increased levels of proinflammatory cytokines and chemokines, including ELR+ (containing glutamic acid-leucine-arginine motif) chemokines. To investigate the role of HIV-1 infection on chemokine regulation, monocyte-derived macrophages (MDMs) from normal donors were infected with HIV-1 and the expression of chemokines and their downstream biological functions were evaluated. Among the tested chemokines, CXCL5 was upregulated significantly both at the mRNA and protein level in the HIV-1-infected MDMs compared with mock-infected cultures. Upregulation of CXCL5 in the HIV-1-infected MDMs is, in part, regulated by increased interleukin-1β (IL-1β) production and phosphorylation of ERK1/2. Functional analyses indicate that HIV-1-induced overexpression of CXCL5 has enhanced the ability to attract neutrophils, as observed by chemotaxis assay. However, exposure of NT2, SH-SY5Y cells, and primary neurons to HIV-1-infected MDM supernatants resulted in cell death that was not rescued by anti-CXCL5 antibody suggesting that CXCL5 does not have direct effect on neuronal death. Together, these results suggest that the increased level of CXCL5 in tissue compartments, including the central nervous system of HIV-1-infected individuals might alter the inflammatory response through the infiltration of neutrophils into tissue compartment, thus causing secondary effects on resident cells.

  15. 17β-estradiol protects primary macrophages against HIV infection through induction of interferon-alpha.

    Science.gov (United States)

    Tasker, Carley; Ding, Jian; Schmolke, Mirco; Rivera-Medina, Amariliz; García-Sastre, Adolfo; Chang, Theresa L

    2014-05-01

    Estrogen has been shown to increase resistance to HIV/SIV transmission by increasing the thickness of the genital epithelium. The immunological role of estrogen in HIV infection of primary target cells is less well characterized. We have found that primary macrophages are a target for anti-HIV activity of 17β-estradiol (E2). E2 did not affect surface expression of CD4 and HIV co-receptors nor HIV attachment to monocyte-derived macrophages (MDMs). In addition, E2 treatment blocked infection by a co-receptor-independent HIV-1VSV-G pseudotyped virus. Quantitative polymerase chain reaction analysis of HIV reverse transcribed DNA products indicated that E2 blocked HIV reverse transcription. E2 upregulated gene expression of interferons (IFNs) in MDMs from multiple donors. However, induction of host restriction factors APOBEC3G, APOBEC3F, or SAMHD1 was not consistent, with exception of APOBEC3A. Anti-HIV activity of E2 was abolished in the presence of IFN-α neutralizing antibody, and was absent in bone marrow-derived macrophages from IFN-α receptor deficient mice. Interestingly, HIV overcame E2-mediated HIV inhibition by suppressing induction of IFNs when MDMs were exposed to HIV before E2 treatment. These results offer a new mechanism of E2 on HIV inhibition. Future studies on the interplay between HIV and E2-mediated innate immune responses will likely provide insights relevant for development of effective strategies for HIV prevention.

  16. Apoptotic killing of HIV-1-infected macrophages is subverted by the viral envelope glycoprotein.

    Directory of Open Access Journals (Sweden)

    Simon Swingler

    2007-09-01

    Full Text Available Viruses have evolved strategies to protect infected cells from apoptotic clearance. We present evidence that HIV-1 possesses a mechanism to protect infected macrophages from the apoptotic effects of the death ligand TRAIL (tumor necrosis factor-related apoptosis-inducing ligand. In HIV-1-infected macrophages, the viral envelope protein induced macrophage colony-stimulating factor (M-CSF. This pro-survival cytokine downregulated the TRAIL receptor TRAIL-R1/DR4 and upregulated the anti-apoptotic genes Bfl-1 and Mcl-1. Inhibition of M-CSF activity or silencing of Bfl-1 and Mcl-1 rendered infected macrophages highly susceptible to TRAIL. The anti-cancer agent Imatinib inhibited M-CSF receptor activation and restored the apoptotic sensitivity of HIV-1-infected macrophages, suggesting a novel strategy to curtail viral persistence in the macrophage reservoir.

  17. Adenosine deaminase acting on RNA-1 (ADAR1 inhibits HIV-1 replication in human alveolar macrophages.

    Directory of Open Access Journals (Sweden)

    Michael D Weiden

    Full Text Available While exploring the effects of aerosol IFN-γ treatment in HIV-1/tuberculosis co-infected patients, we observed A to G mutations in HIV-1 envelope sequences derived from bronchoalveolar lavage (BAL of aerosol IFN-γ-treated patients and induction of adenosine deaminase acting on RNA 1 (ADAR1 in the BAL cells. IFN-γ induced ADAR1 expression in monocyte-derived macrophages (MDM but not T cells. ADAR1 siRNA knockdown induced HIV-1 expression in BAL cells of four HIV-1 infected patients on antiretroviral therapy. Similar results were obtained in MDM that were HIV-1 infected in vitro. Over-expression of ADAR1 in transformed macrophages inhibited HIV-1 viral replication but not viral transcription measured by nuclear run-on, suggesting that ADAR1 acts post-transcriptionally. The A to G hyper-mutation pattern observed in ADAR1 over-expressing cells in vitro was similar to that found in the lungs of HIV-1 infected patients treated with aerosol IFN-γ suggesting the model accurately represented alveolar macrophages. Together, these results indicate that ADAR1 restricts HIV-1 replication post-transcriptionally in macrophages harboring HIV-1 provirus. ADAR1 may therefore contribute to viral latency in macrophages.

  18. HIV-1 Infection of T Cells and Macrophages Are Differentially Modulated by Virion-Associated Hck: A Nef-Dependent Phenomenon

    Directory of Open Access Journals (Sweden)

    Gilda Tachedjian

    2013-09-01

    Full Text Available The proline repeat motif (PxxP of Nef is required for interaction with the SH3 domains of macrophage-specific Src kinase Hck. However, the implication of this interaction for viral replication and infectivity in macrophages and T lymphocytes remains unclear. Experiments in HIV-1 infected macrophages confirmed the presence of a Nef:Hck complex which was dependent on the Nef proline repeat motif. The proline repeat motif of Nef also enhanced both HIV-1 infection and replication in macrophages, and was required for incorporation of Hck into viral particles. Unexpectedly, wild-type Hck inhibited infection of macrophages, but Hck was shown to enhance infection of primary T lymphocytes. These results indicate that the interaction between Nef and Hck is important for Nef-dependent modulation of viral infectivity. Hck-dependent enhancement of HIV-1 infection of T cells suggests that Nef-Hck interaction may contribute to the spread of HIV-1 infection from macrophages to T cells by modulating events in the producer cell, virion and target cell.

  19. Activation of TLR3/interferon signaling pathway by bluetongue virus results in HIV inhibition in macrophages.

    Science.gov (United States)

    Dai, Ming; Wang, Xu; Li, Jie-Liang; Zhou, Yu; Sang, Ming; Liu, Jin-Biao; Wu, Jian-Guo; Ho, Wen-Zhe

    2015-12-01

    Bluetongue virus (BTV), a nonenveloped double-stranded RNA virus, is a potent inducer of type Ι interferons in multiple cell systems. In this study, we report that BTV16 treatment of primary human macrophages induced both type I and III IFN expression, resulting in the production of multiple antiviral factors, including myxovirus resistance protein A, 2',5'-oligoadenylate synthetase, and the IFN-stimulated gene 56. Additionally, BTV-treated macrophages expressed increased HIV restriction factors (apolipoprotein B mRNA-editing enzyme catalytic polypeptide 3 G/F/H) and CC chemokines (macrophage inflammatory protein 1-α, macrophage inflammatory protein 1-β, regulated on activation of normal T cell expressed and secreted), the ligands for HIV entry coreceptor CC chemokine receptor type 5. BTV16 also induced the expression of tetherin, which restricts HIV release from infected cells. Furthermore, TLR3 signaling of macrophages by BTV16 resulted in the induction of several anti-HIV microRNAs (miRNA-28, -29a, -125b, -150, -223, and -382). More importantly, the induction of antiviral responses by BTV resulted in significant suppression of HIV in macrophages. These findings demonstrate the potential of BTV-mediated TLR3 activation in macrophage innate immunity against HIV.

  20. M2 polarization enhances silica nanoparticle uptake by macrophages

    Directory of Open Access Journals (Sweden)

    Jessica eHoppstädter

    2015-03-01

    Full Text Available While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth.We employed different models of M1 and M2 polarization: GM-CSF/LPS/IFN-gamma was used to generate primary human M1 cells and M-CSF/IL-10 to differentiate M2 monocyte-derived macrophages. PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-gamma and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø 26 and 41 nm and microparticles (Ø 1.75 µm was quantified. At the concentration used (50 µg/ml, silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human monocyte-derived macrophages compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages (TAM obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue.In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but might also open up therapeutic perspectives allowing to specifically target M2

  1. Dysregulation of macrophage-secreted cathepsin B contributes to HIV-1-linked neuronal apoptosis.

    Directory of Open Access Journals (Sweden)

    Eillen J Rodriguez-Franco

    Full Text Available Chronic HIV infection leads to the development of cognitive impairments, designated as HIV-associated neurocognitive disorders (HAND. The secretion of soluble neurotoxic factors by HIV-infected macrophages plays a central role in the neuronal dysfunction and cell death associated with HAND. One potentially neurotoxic protein secreted by HIV-1 infected macrophages is cathepsin B. To explore the potential role of cathepsin B in neuronal cell death after HIV infection, we cultured HIV-1(ADA infected human monocyte-derived macrophages (MDM and assayed them for expression and activity of cathepsin B and its inhibitors, cystatins B and C. The neurotoxic activity of the secreted cathepsin B was determined by incubating cells from the neuronal cell line SK-N-SH with MDM conditioned media (MCM from HIV-1 infected cultures. We found that HIV-1 infected MDM secreted significantly higher levels of cathepsin B than did uninfected cells. Moreover, the activity of secreted cathepsin B was significantly increased in HIV-infected MDM at the peak of viral production. Incubation of neuronal cells with supernatants from HIV-infected MDM resulted in a significant increase in the numbers of apoptotic neurons, and this increase was reversed by the addition of either the cathepsin B inhibitor CA-074 or a monoclonal antibody to cathepsin B. In situ proximity ligation assays indicated that the increased neurotoxic activity of the cathepsin B secreted by HIV-infected MDM resulted from decreased interactions between the enzyme and its inhibitors, cystatins B and C. Furthermore, preliminary in vivo studies of human post-mortem brain tissue suggested an upregulation of cathepsin B immunoreactivity in the hippocampus and basal ganglia in individuals with HAND. Our results demonstrate that HIV-1 infection upregulates cathepsin B in macrophages, increases cathepsin B activity, and reduces cystatin-cathepsin interactions, contributing to neuronal apoptosis. These findings

  2. Architecture and regulation of the HIV-1 assembly and holding compartment in macrophages.

    Science.gov (United States)

    Welsch, Sonja; Groot, Fedde; Kräusslich, Hans-Georg; Keppler, Oliver T; Sattentau, Quentin J

    2011-08-01

    Productive infection of macrophages is central to HIV-1 pathogenesis. Newly formed virions bud into a tubular membranous compartment that is contiguous with the plasma membrane. However, little is known about the structure of this compartment and its potential regulation by infection. Here we characterized this compartment in macrophages using electron tomography and electron microscopy with stereology. We found an intricate, interconnected membrane network that constitutes a preexisting physiologic structure in macrophages but which expands in size upon HIV-1 infection. Membranes required for this expansion were apparently derived from preexisting pools of plasma membrane. Physical connections between this compartment and the extracellular milieu were frequently made by tube-like structures of insufficient diameter for virion passage. We conclude that HIV-1 induces the expansion of a complex membranous labyrinth in macrophages in which the virus buds and can be retained, with potential consequences for transmission and immune evasion.

  3. Architecture and Regulation of the HIV-1 Assembly and Holding Compartment in Macrophages

    Science.gov (United States)

    Welsch, Sonja; Groot, Fedde; Kräusslich, Hans-Georg; Keppler, Oliver T.; Sattentau, Quentin J.

    2011-01-01

    Productive infection of macrophages is central to HIV-1 pathogenesis. Newly formed virions bud into a tubular membranous compartment that is contiguous with the plasma membrane. However, little is known about the structure of this compartment and its potential regulation by infection. Here we characterized this compartment in macrophages using electron tomography and electron microscopy with stereology. We found an intricate, interconnected membrane network that constitutes a preexisting physiologic structure in macrophages but which expands in size upon HIV-1 infection. Membranes required for this expansion were apparently derived from preexisting pools of plasma membrane. Physical connections between this compartment and the extracellular milieu were frequently made by tube-like structures of insufficient diameter for virion passage. We conclude that HIV-1 induces the expansion of a complex membranous labyrinth in macrophages in which the virus buds and can be retained, with potential consequences for transmission and immune evasion. PMID:21613397

  4. The Fc and not CD4 Receptor Mediates Antibody Enhancement of HIV Infection in Human Cells

    Science.gov (United States)

    Homsy, Jacques; Meyer, Mia; Tateno, Masatoshi; Clarkson, Sarah; Levy, Jay A.

    1989-06-01

    Antibodies that enhance human immunodeficiency virus (HIV) infectivity have been found in the blood of infected individuals and in infected or immunized animals. These findings raise serious concern for the development of a safe vaccine against acquired immunodeficiency syndrome. To address the in vivo relevance and mechanism of this phenomenon, antibody-dependent enhancement of HIV infectivity in peripheral blood macrophages, lymphocytes, and human fibroblastoid cells was studied. Neither Leu3a, a monoclonal antibody directed against the CD4 receptor, nor soluble recombinant CD4 even at high concentrations prevented this enhancement. The addition of monoclonal antibody to the Fc receptor III (anti-FcRIII), but not of antibodies that react with FcRI or FcRII, inhibited HIV type 1 and HIV type 2 enhancement in peripheral blood macrophages. Although enhancement of HIV infection in CD4+ lymphocytes could not be blocked by anti-FcRIII, it was inhibited by the addition of human immunoglobulin G aggregates. The results indicate that the FcRIII receptor on human macrophages and possibly another Fc receptor on human CD4+ lymphocytes mediate antibody-dependent enhancement of HIV infectivity and that this phenomenon proceeds through a mechanism independent of the CD4 protein.

  5. Intracellular pathogens within alveolar macrophages in a patient with HIV infection: diagnostic challenge

    Directory of Open Access Journals (Sweden)

    Takashi Shinha

    2015-03-01

    Full Text Available In HIV-infected individuals, macrophages, the key defense effector cells, manifest defective activity in their interactions with a wide variety of opportunistic pathogens, including fungi and protozoa. Understanding the morphological characteristics of intracellular opportunistic pathogens in addition to their pathogenesis is of critical importance to provide optimal therapy, thereby decreasing morbidity and mortality in HIV-infected patients. We herein present a case of disseminated histoplasmosis confused with disseminated visceral leishmaniasis in an HIV-infected individual from Guyana who developed intracellular organisms within alveolar macrophages

  6. Sesamin Enhances Cholesterol Efflux in RAW264.7 Macrophages

    OpenAIRE

    Nan Liu; Chongming Wu; Lizhong Sun; Jun Zheng; Peng Guo

    2014-01-01

    Foam cells formation as a result of the uncontrolled cytophagy of modified cholesterol by macrophages plays a key role in the occurrence and development of atherosclerosis. Sesamin is an active constituent of Sesamum indicum which has been shown to possess multiple pharmacological activities. In this work, we investigated the effects of sesamin on foam cell formation and cholesterol efflux in RAW264.7 macrophages. Sesamin dose-dependently inhibited the enhanced cholesterol accumulation elicit...

  7. Mycobacterium avium complex augments macrophage HIV-1 production and increases CCR5 expression

    OpenAIRE

    1998-01-01

    Infection with HIV-1 results in pronounced immune suppression and susceptibility to opportunistic infections (OI). Reciprocally, OI augment HIV-1 replication. As we have shown for Mycobacterium avium complex (MAC) and Pneumocystis carinii, macrophages infected with opportunistic pathogens and within lymphoid tissues containing OI, exhibit striking levels of viral replication. To explore potential underlying mechanisms for increased HIV-1 replication associated with coinfection, blood monocyte...

  8. Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage

    Directory of Open Access Journals (Sweden)

    Rohr Olivier

    2010-04-01

    Full Text Available Abstract The introduction of the highly active antiretroviral therapy (HAART has greatly improved survival. However, these treatments fail to definitively cure the patients and unveil the presence of quiescent HIV-1 reservoirs like cells from monocyte-macrophage lineage. A purge, or at least a significant reduction of these long lived HIV-1 reservoirs will be needed to raise the hope of the viral eradication. This review focuses on the molecular mechanisms responsible for viral persistence in cells of the monocyte-macrophage lineage. Controversy on latency and/or cryptic chronic replication will be specifically evoked. In addition, since HIV-1 infected monocyte-macrophage cells appear to be more resistant to apoptosis, this obstacle to the viral eradication will be discussed. Understanding the intimate mechanisms of HIV-1 persistence is a prerequisite to devise new and original therapies aiming to achieve viral eradication.

  9. HIV-1 RNAs are Not Part of the Argonaute 2 Associated RNA Interference Pathway in Macrophages.

    Directory of Open Access Journals (Sweden)

    Valentina Vongrad

    Full Text Available MiRNAs and other small noncoding RNAs (sncRNAs are key players in post-transcriptional gene regulation. HIV-1 derived small noncoding RNAs (sncRNAs have been described in HIV-1 infected cells, but their biological functions still remain to be elucidated. Here, we approached the question whether viral sncRNAs may play a role in the RNA interference (RNAi pathway or whether viral mRNAs are targeted by cellular miRNAs in human monocyte derived macrophages (MDM.The incorporation of viral sncRNAs and/or their target RNAs into RNA-induced silencing complex was investigated using photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP as well as high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP, which capture Argonaute2-bound miRNAs and their target RNAs. HIV-1 infected monocyte-derived macrophages (MDM were chosen as target cells, as they have previously been shown to express HIV-1 sncRNAs. In addition, we applied small RNA deep sequencing to study differential cellular miRNA expression in HIV-1 infected versus non-infected MDMs.PAR-CLIP and HITS-CLIP data demonstrated the absence of HIV-1 RNAs in Ago2-RISC, although the presence of a multitude of HIV-1 sncRNAs in HIV-1 infected MDMs was confirmed by small RNA sequencing. Small RNA sequencing revealed that 1.4% of all sncRNAs were of HIV-1 origin. However, neither HIV-1 derived sncRNAs nor putative HIV-1 target sequences incorporated into Ago2-RISC were identified suggesting that HIV-1 sncRNAs are not involved in the canonical RNAi pathway nor is HIV-1 targeted by this pathway in HIV-1 infected macrophages.

  10. HIV-1 Vpr induces interferon-stimulated genes in human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Muhammad Atif Zahoor

    Full Text Available Macrophages act as reservoirs of human immunodeficiency virus type 1 (HIV-1 and play an important role in its transmission to other cells. HIV-1 Vpr is a multi-functional protein involved in HIV-1 replication and pathogenesis; however, its exact role in HIV-1-infected human macrophages remains poorly understood. In this study, we used a microarray approach to explore the effects of HIV-1 Vpr on the transcriptional profile of human monocyte-derived macrophages (MDMs. More than 500 genes, mainly those involved in the innate immune response, the type I interferon pathway, cytokine production, and signal transduction, were differentially regulated (fold change >2.0 after infection with a recombinant adenovirus expressing HIV-1 Vpr protein. The differential expression profiles of select interferon-stimulated genes (ISGs and genes involved in the innate immune response, including STAT1, IRF7, MX1, MX2, ISG15, ISG20, IFIT1, IFIT2, IFIT3, IFI27, IFI44L, APOBEC3A, DDX58 (RIG-I, TNFSF10 (TRAIL, and RSAD2 (viperin were confirmed by real-time quantitative PCR and were consistent with the microarray data. In addition, at the post-translational level, HIV-1 Vpr induced the phosphorylation of STAT1 at tyrosine 701 in human MDMs. These results demonstrate that HIV-1 Vpr leads to the induction of ISGs and expand the current understanding of the function of Vpr and its role in HIV-1 immune pathogenesis.

  11. IFN-λ3 inhibits HIV infection of macrophages through the JAK-STAT pathway.

    Directory of Open Access Journals (Sweden)

    Man-Qing Liu

    Full Text Available BACKGROUND: Interferon lambda 3 (IFN-λ3 is a newly identified cytokine with antiviral activity, and its single nucleotide polymorphisms are strongly associated with the treatment effectiveness and development of chronic hepatitis C virus infection. We thus examined the potential of IFN-λ3 to inhibit HIV replication and the possible mechanisms of the anti-HIV action by IFN-λ3 in human macrophages. PRINCIPAL FINDINGS: Under different conditions (before, during, and after HIV infection, IFN-λ3 significantly inhibited viral replication in macrophages, which was associated with the induction of multiple antiviral cellular factors (ISG56, MxA, OAS-1, A3G/F and tetherin and IFN regulatory factors (IRF-1, 3, 5, 7 and 9. This anti-HIV action of IFN-λ3 could be compromised by the JAK-STAT inhibitor. In addition, IFN-λ3 treatment of macrophages induced the expression of toll-like receptor 3 (TLR3 and two key adaptors (MyD88 and TRIF in type I IFN pathway activation. However, HIV infection compromised IFN-λ3-mediated induction of the key elements in JAK-STAT signaling pathway. CONCLUSIONS: These data indicate that IFN-λ3 exerts its anti-HIV function by activating JAK-STAT pathway-mediated innate immunity in macrophages. Future in vivo studies are necessary in order to explore the potential for developing IFN-λ3-based therapy for HIV disease.

  12. Inhibition of P-glycoprotein by HIV protease inhibitors increases intracellular accumulation of berberine in murine and human macrophages.

    Directory of Open Access Journals (Sweden)

    Weibin Zha

    Full Text Available BACKGROUND: HIV protease inhibitor (PI-induced inflammatory response in macrophages is a major risk factor for cardiovascular diseases. We have previously reported that berberine (BBR, a traditional herbal medicine, prevents HIV PI-induced inflammatory response through inhibiting endoplasmic reticulum (ER stress in macrophages. We also found that HIV PIs significantly increased the intracellular concentrations of BBR in macrophages. However, the underlying mechanisms of HIV PI-induced BBR accumulation are unknown. This study examined the role of P-glycoprotein (P-gp in HIV PI-mediated accumulation of BBR in macrophages. METHODOLOGY AND PRINCIPAL FINDINGS: Cultured mouse RAW264.7 macrophages, human THP-1-derived macrophages, Wild type MDCK (MDCK/WT and human P-gp transfected (MDCK/P-gp cells were used in this study. The intracellular concentration of BBR was determined by HPLC. The activity of P-gp was assessed by measuring digoxin and rhodamine 123 (Rh123 efflux. The interaction between P-gp and BBR or HIV PIs was predicated by Glide docking using Schrodinger program. The results indicate that P-gp contributed to the efflux of BBR in macrophages. HIV PIs significantly increased BBR concentrations in macrophages; however, BBR did not alter cellular HIV PI concentrations. Although HIV PIs did not affect P-gp expression, P-gp transport activities were significantly inhibited in HIV PI-treated macrophages. Furthermore, the molecular docking study suggests that both HIV PIs and BBR fit the binding pocket of P-gp, and HIV PIs may compete with BBR to bind P-gp. CONCLUSION AND SIGNIFICANCE: HIV PIs increase the concentration of BBR by modulating the transport activity of P-gp in macrophages. Understanding the cellular mechanisms of potential drug-drug interactions is critical prior to applying successful combinational therapy in the clinic.

  13. Attenuation of HIV-1 replication in macrophages by cannabinoid receptor 2 agonists.

    Science.gov (United States)

    Ramirez, Servio H; Reichenbach, Nancy L; Fan, Shongshan; Rom, Slava; Merkel, Steven F; Wang, Xu; Ho, Wen-Zhe; Persidsky, Yuri

    2013-05-01

    Infiltrating monocytes and macrophages play a crucial role in the progression of HIV-1 infection in the CNS. Previous studies showed that activation of the CB₂ can attenuate inflammatory responses and affect HIV-1 infectivity in T cells and microglia. Here, we report that CB₂ agonists can also act as immunomodulators on HIV-1-infected macrophages. First, our findings indicated the presence of elevated levels of CB₂ expression on monocytes/macrophages in perivascular cuffs of postmortem HIV-1 encephalitic cases. In vitro analysis by FACS of primary human monocytes revealed a step-wise increase in CB₂ surface expression in monocytes, MDMs, and HIV-1-infected MDMs. We next tested the notion that up-regulation of CB₂ may allow for the use of synthetic CB₂ agonist to limit HIV-1 infection. Two commercially available CB₂ agonists, JWH133 and GP1a, and a resorcinol-based CB₂ agonist, O-1966, were evaluated. Results from measurements of HIV-1 RT activity in the culture media of 7 day-infected cells showed a significant decrease in RT activity when the CB₂ agonist was present. Furthermore, CB₂ activation also partially inhibited the expression of HIV-1 pol. CB₂ agonists did not modulate surface expression of CXCR4 or CCR5 detected by FACS. We speculate that these findings indicate that prevention of viral entry is not a central mechanism for CB₂-mediated suppression in viral replication. However, CB₂ may affect the HIV-1 replication machinery. Results from a single-round infection with the pseudotyped virus revealed a marked decrease in HIV-1 LTR activation by the CB₂ ligands. Together, these results indicate that CB₂ may offer a means to limit HIV-1 infection in macrophages.

  14. Estradiol reduces susceptibility of CD4+ T cells and macrophages to HIV-infection.

    Directory of Open Access Journals (Sweden)

    Marta Rodriguez-Garcia

    Full Text Available The magnitude of the HIV epidemic in women requires urgent efforts to find effective preventive methods. Even though sex hormones have been described to influence HIV infection in epidemiological studies and regulate different immune responses that may affect HIV infection, the direct role that female sex hormones play in altering the susceptibility of target cells to HIV-infection is largely unknown. Here we evaluated the direct effect of 17-β-estradiol (E2 and ethinyl estradiol (EE in HIV-infection of CD4(+ T-cells and macrophages. Purified CD4(+ T-cells and monocyte-derived macrophages were generated in vitro from peripheral blood and infected with R5 and X4 viruses. Treatment of CD4(+ T-cells and macrophages with E2 prior to viral challenge reduced their susceptibility to HIV infection in a dose-dependent manner. Addition of E2 2 h after viral challenge however did not result in reduced infection. In contrast, EE reduced infection in macrophages to a lesser extent than E2 and had no effect on CD4(+ T-cell infection. Reduction of HIV-infection induced by E2 in CD4(+ T-cells was not due to CCR5 down-regulation, but was an entry-mediated mechanism since infection with VSV-G pseudotyped HIV was not modified by E2. In macrophages, despite the lack of an effect of E2 on CCR5 expression, E2-treatment reduced viral entry 2 h after challenge and increased MIP-1β secretion. These results demonstrate the direct effect of E2 on susceptibility of HIV-target cells to infection and indicate that inhibition of target cell infection involves cell-entry related mechanisms.

  15. Pharmacokinetic enhancers in HIV therapeutics.

    Science.gov (United States)

    Larson, Kajal B; Wang, Kun; Delille, Cecile; Otofokun, Igho; Acosta, Edward P

    2014-10-01

    Maximal and durable viral load suppression is one of the most important goals of HIV therapy and is directly related to adequate drug exposure. Protease inhibitors (PIs), an important component of the antiretroviral armada, were historically associated with poor oral bioavailability and high pill burden. However, because the PIs are metabolized by cytochrome P450 (CYP) 3A enzymes, intentional inhibition of these enzymes leads to higher drug exposure, lower pill burden, and therefore simplified dosing schedules with this class of drug. This is the basis of pharmacokinetic enhancement. In HIV therapy, two pharmacokinetic enhancers or boosting agents are used: ritonavir and cobicistat. Both agents inhibit CYP3A4, with cobicistat being a more specific CYP inhibitor than ritonavir. Unlike ritonavir, cobicistat does not have antiretroviral activity. Cobicistat has been evaluated in clinical trials and was recently approved in the USA as a fixed-dose combination with the integrase inhibitor, elvitegravir and two nucleos(t)ide analogs. Additional studies are examining cobicistat in fixed-dose combinations with various PIs. In this review, we summarize current knowledge of these agents and clinically relevant drug regimens and ongoing trials. Studies with elvitegravir and the novel PI TMC319011 are also discussed.

  16. Inhibition of ecto-ATPase activities impairs HIV-1 infection of macrophages.

    Science.gov (United States)

    Schachter, Julieta; Delgado, Kelly Valcárcel; Barreto-de-Souza, Victor; Bou-Habib, Dumith Chequer; Persechini, Pedro Muanis; Meyer-Fernandes, José Roberto

    2015-05-01

    Nucleotides and nucleosides are secreted into extracellular media at different concentrations as a consequence of different physiologic and pathological conditions. Ecto-nucleotidases, enzymes present on the surface of most cells, hydrolyze these extracellular nucleotides and reduce the concentration of them, thus affecting the activation of different nucleotide and nucleoside receptors. Also, ecto-nucleotidases are present in a number of microorganisms and play important roles in host-pathogen interactions. Here, we characterized the ecto-ATPase activities present on the surface of HIV-1 particle and human macrophages as well. We found that the kinetic properties of HIV-1 and macrophage ecto-ATPases are similar, suggesting that the enzyme is the same. This ecto-ATPase activity was increased in macrophages infected in vitro with HIV-1. Using three different non-related ecto-ATPase inhibitors-POM-1, ARL67156 and BG0-we showed that the inhibition of these macrophage and viral ecto-ATPase activities impairs HIV-1 infection. In addition, we also found that elevated extracellular concentrations of ATP inhibit HIV-1 production by infected macrophages. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. HIV aspartyl peptidase inhibitors interfere with cellular proliferation, ultrastructure and macrophage infection of Leishmania amazonensis.

    Directory of Open Access Journals (Sweden)

    Lívia O Santos

    Full Text Available BACKGROUND: Leishmania is the etiologic agent of leishmanisais, a protozoan disease whose pathogenic events are not well understood. Current therapy is suboptimal due to toxicity of the available therapeutic agents and the emergence of drug resistance. Compounding these problems is the increase in the number of cases of Leishmania-HIV coinfection, due to the overlap between the AIDS epidemic and leishmaniasis. METHODOLOGY/PRINCIPAL FINDINGS: In the present report, we have investigated the effect of HIV aspartyl peptidase inhibitors (PIs on the Leishmania amazonensis proliferation, ultrastructure, interaction with macrophage cells and expression of classical peptidases which are directly involved in the Leishmania pathogenesis. All the HIV PIs impaired parasite growth in a dose-dependent fashion, especially nelfinavir and lopinavir. HIV PIs treatment caused profound changes in the leishmania ultrastructure as shown by transmission electron microscopy, including cytoplasm shrinking, increase in the number of lipid inclusions and some cells presenting the nucleus closely wrapped by endoplasmic reticulum resembling an autophagic process, as well as chromatin condensation which is suggestive of apoptotic death. The hydrolysis of HIV peptidase substrate by L. amazonensis extract was inhibited by pepstatin and HIV PIs, suggesting that an aspartyl peptidase may be the intracellular target of the inhibitors. The treatment with HIV PIs of either the promastigote forms preceding the interaction with macrophage cells or the amastigote forms inside macrophages drastically reduced the association indexes. Despite all these beneficial effects, the HIV PIs induced an increase in the expression of cysteine peptidase b (cpb and the metallopeptidase gp63, two well-known virulence factors expressed by Leishmania spp. CONCLUSIONS/SIGNIFICANCE: In the face of leishmaniasis/HIV overlap, it is critical to further comprehend the sophisticated interplays among Leishmania

  18. Soluble ICAM-1 activates lung macrophages and enhances lung injury

    DEFF Research Database (Denmark)

    Schmal, H; Czermak, B J; Lentsch, A B

    1998-01-01

    Because of the important role of rat ICAM-1 in the development of lung inflammatory injury, soluble recombinant rat ICAM-1 (sICAM-1) was expressed in bacteria, and its biologic activities were evaluated. Purified sICAM-1 did bind to rat alveolar macrophages in a dose-dependent manner and induced...... of the proteosome inhibitor and by genistein. Alveolar macrophages showed adherence to immobilized sICAM-1 in a CD18-dependent manner. Finally, airway instillation of sICAM-1 intensified lung injury produced by intrapulmonary deposition of IgG immune complexes in a manner associated with enhanced lung production...... of TNF-alpha and MIP-2 and increased neutrophil recruitment. Therefore, through engagement of beta2 integrins, sICAM-1 enhances alveolar macrophage production of MIP-2 and TNF-alpha, the result of which is intensified lung injury after intrapulmonary disposition of immune complexes....

  19. Antiviral activity of derivatized dextrans on HIV-1 infection of primary macrophages and blood lymphocytes.

    Science.gov (United States)

    Seddiki, N; Mbemba, E; Letourneur, D; Ylisastigui, L; Benjouad, A; Saffar, L; Gluckman, J C; Jozefonvicz, J; Gattegno, L

    1997-11-28

    The present study demonstrates at the molecular level that dextran derivatives carboxymethyl dextran benzylamine (CMDB) and carboxymethyl dextran benzylamine sulfonate (CMDBS), characterized by a statistical distribution of anionic carboxylic groups, hydrophobic benzylamide units, and/or sulfonate moieties, interact with HIV-1 LAI gp120 and V3 consensus clades B domain. Only limited interaction was observed with carboxy-methyl dextran (CMD) or dextran (D) under the same conditions. CMDBS and CMDB (1 microM) strongly inhibited HIV-1 infection of primary macrophages and primary CD4+ lymphocytes by macrophage-tropic and T lymphocyte-tropic strains, respectively, while D or CMD had more limited effects on M-tropic infection of primary macrophages and exert no inhibitory effect on M- or T-tropic infection of primary lymphocytes. CMDBS and CMDB (1 microM) had limited but significant effect on oligomerized soluble recombinant gp120 binding to primary macrophages while they clearly inhibit (> 50%) such binding to primary lymphocytes. In conclusion, the inhibitory effect of CMDB and the CMDBS, is observed for HIV M- and T-tropic strain infections of primary lymphocytes and macrophages which indicates that these compounds interfere with steps of HIV replicative cycle which neither depend on the virus nor on the cell.

  20. Global Dynamics of HIV Infection of CD4+ T Cells and Macrophages

    OpenAIRE

    A. M. Elaiw; A. S. Alsheri

    2013-01-01

    We study the global dynamics of an HIV infection model describing the interaction of the HIV with CD4+ T cells and macrophages. The incidence rate of virus infection and the growth rate of the uninfected CD4+ T cells and macrophages are given by general functions. We have incorporated two types of distributed delays into the model to account for the time delay between the time the uninfected cells are contacted by the virus particle and the time for the emission of infectious (matures) virus ...

  1. HIV-1 buds predominantly at the plasma membrane of primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Sonja Welsch

    2007-03-01

    Full Text Available HIV-1 assembly and release are believed to occur at the plasma membrane in most host cells with the exception of primary macrophages, for which exclusive budding at late endosomes has been reported. Here, we applied a novel ultrastructural approach to assess HIV-1 budding in primary macrophages in an immunomarker-independent manner. Infected macrophages were fed with BSA-gold and stained with the membrane-impermeant dye ruthenium red to identify endosomes and the plasma membrane, respectively. Virus-filled vacuolar structures with a seemingly intracellular localization displayed intense staining with ruthenium red, but lacked endocytosed BSA-gold, defining them as plasma membrane. Moreover, HIV budding profiles were virtually excluded from gold-filled endosomes while frequently being detected on ruthenium red-positive membranes. The composition of cellular marker proteins incorporated into HIV-1 supported a plasma membrane-derived origin of the viral envelope. Thus, contrary to current opinion, the plasma membrane is the primary site of HIV-1 budding also in infected macrophages.

  2. Cyclophilin B enhances HIV-1 infection

    Energy Technology Data Exchange (ETDEWEB)

    DeBoer, Jason; Madson, Christian J. [Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE (United States); Belshan, Michael, E-mail: michaelbelshan@creighton.edu [Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE (United States); The Nebraska Center for Virology, University of Nebraska, Lincoln, NE (United States)

    2016-02-15

    Cyclophilin B (CypB) is a member of the immunophilin family and intracellular chaperone. It predominantly localizes to the ER, but also contains a nuclear localization signal and is secreted from cells. CypB has been shown to interact with the Gag protein of human immunodeficiency type 1 (HIV-1). Several proteomic and genetic studies identified it as a potential factor involved in HIV replication. Herein, we show that over-expression of CypB enhances HIV infection by increasing nuclear import of viral DNA. This enhancement was unaffected by cyclosporine treatment and requires the N-terminus of the protein. The N-terminus contains an ER leader sequence, putative nuclear localization signal, and is required for secretion. Deletion of the N-terminus resulted in mislocalization from the ER and suppression of HIV infection. Passive transfer experiments showed that secreted CypB did not impact HIV infection. Combined, these experiments show that intracellular CypB modulates a pathway of HIV nuclear import. - Highlights: • CypB has been identified in several proteomic studies of HIV-1 infection. • CypB expression is upregulated in activated and infected T-cells. • Over-expression of CypB enhances HIV nuclear import and infection. • The N-terminus of CypB is necessary for these effects.

  3. Δ(9)-Tetrahydrocannabinol treatment during human monocyte differentiation reduces macrophage susceptibility to HIV-1 infection.

    Science.gov (United States)

    Williams, Julie C; Appelberg, Sofia; Goldberger, Bruce A; Klein, Thomas W; Sleasman, John W; Goodenow, Maureen M

    2014-06-01

    The major psychoactive component of marijuana, Δ(9)-tetrahydrocannabinol (THC), also acts to suppress inflammatory responses. Receptors for THC, CB1, CB2, and GPR55, are differentially expressed on multiple cell types including monocytes and macrophages, which are important modulators of inflammation in vivo and target cells for HIV-1 infection. Use of recreational and medicinal marijuana is increasing, but the consequences of marijuana exposure on HIV-1 infection are unclear. Ex vivo studies were designed to investigate effects on HIV-1 infection in macrophages exposed to THC during or following differentiation. THC treatment of primary human monocytes during differentiation reduced HIV-1 infection of subsequent macrophages by replication competent or single cycle CCR5 using viruses. In contrast, treatment of macrophages with THC immediately prior to or continuously following HIV-1 exposure failed to alter infection. Specific receptor agonists indicated that the THC effect during monocyte differentiation was mediated primarily through CB2. THC reduced the number of p24 positive cells with little to no effect on virus production per infected cell, while quantitation of intracellular viral gag pinpointed the THC effect to an early event in the viral life cycle. Cells treated during differentiation with THC displayed reduced expression of CD14, CD16, and CD163 and donor dependent increases in mRNA expression of selected viral restriction factors, suggesting a fundamental alteration in phenotype. Ultimately, the mechanism of THC suppression of HIV-1 infection was traced to a reduction in cell surface HIV receptor (CD4, CCR5 and CXCR4) expression that diminished entry efficiency.

  4. Δ9-tetrahydrocannabinol treatment during human monocyte differentiation reduces macrophage susceptibility to HIV-1 infection

    Science.gov (United States)

    Williams, Julie C.; Appelberg, Sofia; Goldberger, Bruce A.; Klein, Thomas W.; Sleasman, John W.; Goodenow, Maureen M.

    2014-01-01

    The major psychoactive component of marijuana, Δ9-tetrahydrocannabinol (THC), also acts to suppress inflammatory responses. Receptors for THC, CB1, CB2, and GPR55, are differentially expressed on multiple cell types including monocytes and macrophages, which are important modulators of inflammation in vivo and target cells for HIV-1 infection. Use of recreational and medicinal marijuana is increasing, but the consequences of marijuana exposure on HIV-1 infection are unclear. Ex vivo studies were designed to investigate effects on HIV-1 infection in macrophages exposed to THC during or following differentiation. THC treatment of primary human monocytes during differentiation reduced HIV-1 infection of subsequent macrophages by replication competent or single cycle CCR5 using viruses. In contrast, treatment of macrophages with THC immediately prior to or continuously following HIV-1 exposure failed to alter infection. Specific receptor agonists indicated that the THC effect during monocyte differentiation was mediated primarily through CB2. THC reduced the number of p24 positive cells with little to no effect on virus production per infected cell, while quantitation of intracellular viral gag pinpointed the THC effect to an early event in the viral life cycle. Cells treated during differentiation with THC displayed reduced expression of CD14, CD16, and CD163 and donor dependent increases in mRNA expression of selected viral restriction factors, suggesting a fundamental alteration in phenotype. Ultimately, the mechanism of THC suppression of HIV-1 infection was traced to a reduction in cell surface HIV receptor (CD4, CCR5 and CXCR4) expression that diminished entry efficiency. PMID:24562630

  5. Vpr Promotes Macrophage-Dependent HIV-1 Infection of CD4+ T Lymphocytes.

    Directory of Open Access Journals (Sweden)

    David R Collins

    2015-07-01

    Full Text Available Vpr is a conserved primate lentiviral protein that promotes infection of T lymphocytes in vivo by an unknown mechanism. Here we demonstrate that Vpr and its cellular co-factor, DCAF1, are necessary for efficient cell-to-cell spread of HIV-1 from macrophages to CD4+ T lymphocytes when there is inadequate cell-free virus to support direct T lymphocyte infection. Remarkably, Vpr functioned to counteract a macrophage-specific intrinsic antiviral pathway that targeted Env-containing virions to LAMP1+ lysosomal compartments. This restriction of Env also impaired virological synapses formed through interactions between HIV-1 Env on infected macrophages and CD4 on T lymphocytes. Treatment of infected macrophages with exogenous interferon-alpha induced virion degradation and blocked synapse formation, overcoming the effects of Vpr. These results provide a mechanism that helps explain the in vivo requirement for Vpr and suggests that a macrophage-dependent stage of HIV-1 infection drives the evolutionary conservation of Vpr.

  6. HIV-1 Vpr modulates macrophage metabolic pathways: a SILAC-based quantitative analysis.

    Directory of Open Access Journals (Sweden)

    Carlos A Barrero

    Full Text Available Human immunodeficiency virus type 1 encoded viral protein Vpr is essential for infection of macrophages by HIV-1. Furthermore, these macrophages are resistant to cell death and are viral reservoir. However, the impact of Vpr on the macrophage proteome is yet to be comprehended. The goal of the present study was to use a stable-isotope labeling by amino acids in cell culture (SILAC coupled with mass spectrometry-based proteomics approach to characterize the Vpr response in macrophages. Cultured human monocytic cells, U937, were differentiated into macrophages and transduced with adenovirus construct harboring the Vpr gene. More than 600 proteins were quantified in SILAC coupled with LC-MS/MS approach, among which 136 were significantly altered upon Vpr overexpression in macrophages. Quantified proteins were selected and clustered by biological functions, pathway and network analysis using Ingenuity computational pathway analysis. The proteomic data illustrating increase in abundance of enzymes in the glycolytic pathway (pentose phosphate and pyruvate metabolism was further validated by western blot analysis. In addition, the proteomic data demonstrate down regulation of some key mitochondrial enzymes such as glutamate dehydrogenase 2 (GLUD2, adenylate kinase 2 (AK2 and transketolase (TKT. Based on these observations we postulate that HIV-1 hijacks the macrophage glucose metabolism pathway via the Vpr-hypoxia inducible factor 1 alpha (HIF-1 alpha axis to induce expression of hexokinase (HK, glucose-6-phosphate dehyrogenase (G6PD and pyruvate kinase muscle type 2 (PKM2 that facilitates viral replication and biogenesis, and long-term survival of macrophages. Furthermore, dysregulation of mitochondrial glutamate metabolism in macrophages can contribute to neurodegeneration via neuroexcitotoxic mechanisms in the context of NeuroAIDS.

  7. Inhibition of HIV-1 replication in alveolar macrophages by adenovirus gene transfer vectors.

    Science.gov (United States)

    Rice, Joshua; Connor, Ruth; Worgall, Stefan; Moore, John P; Leopold, Philip L; Kaner, Robert J; Crystal, Ronald G

    2002-08-01

    To assess the hypothesis that infection of alveolar macrophages (AM) with adenovirus (Ad) gene transfer vectors might prevent subsequent human immunodeficiency virus (HIV)-1 replication in AM, AM isolated from normal volunteers were infected with increasing doses of first generation (E1(-)) Ad vectors, followed 72 h later by infection with HIV-1(JRFL), an R5/M-tropic strain that preferentially uses the CCR5 coreceptor. As a measure of HIV-1 replication, p24 Ag was quantified by enzyme-linked imunosorbent assay in supernatants on Days 4 to 14 after HIV-1infection. Pretreatment of the AM with an Ad vector resulted in a dose- and time-dependent suppression of subsequent HIV-1 replication. The Ad vector inhibition of HIV-1 replication was independent of the transgene in the Ad vector expression cassette and E4 genes in the Ad backbone. Moreover, it did not appear to be secondary to a soluble factor released by the AM, nor was it overridden by the concomitant transfer of the CCR5 or CXCR4 receptors to the AM before HIV-1 infection. These observations have implications regarding pulmonary host responses associated with HIV-1 infection, as well as possibly uncovering new therapeutic strategies against HIV-1 infection.

  8. HIV Blocks Interferon Induction in Human Dendritic Cells and Macrophages by Dysregulation of TBK1

    Science.gov (United States)

    Harman, Andrew N.; Nasr, Najla; Feetham, Alexandra; Galoyan, Ani; Alshehri, Abdullateef A.; Rambukwelle, Dharshini; Botting, Rachel A.; Hiener, Bonnie M.; Diefenbach, Eve; Diefenbach, Russell J.; Kim, Min; Mansell, Ashley

    2015-01-01

    ABSTRACT Dendritic cells (DCs) and macrophages are present in the tissues of the anogenital tract, where HIV-1 transmission occurs in almost all cases. These cells are both target cells for HIV-1 and represent the first opportunity for the virus to interfere with innate recognition. Previously we have shown that both cell types fail to produce type I interferons (IFNs) in response to HIV-1 but that, unlike T cells, the virus does not block IFN induction by targeting IFN regulatory factor 3 (IRF3) for cellular degradation. Thus, either HIV-1 inhibits IFN induction by an alternate mechanism or, less likely, these cells fail to sense HIV-1. Here we show that HIV-1 (but not herpes simplex virus 2 [HSV-2] or Sendai virus)-exposed DCs and macrophages fail to induce the expression of all known type I and III IFN genes. These cells do sense the virus, and pattern recognition receptor (PRR)-induced signaling pathways are triggered. The precise stage in the IFN-inducing signaling pathway that HIV-1 targets to block IFN induction was identified; phosphorylation but not K63 polyubiquitination of TANK-binding kinase 1 (TBK1) was completely inhibited. Two HIV-1 accessory proteins, Vpr and Vif, were shown to bind to TBK1, and their individual deletion partly restored IFN-β expression. Thus, the inhibition of TBK1 autophosphorylation by binding of these proteins appears to be the principal mechanism by which HIV-1 blocks type I and III IFN induction in myeloid cells. IMPORTANCE Dendritic cells (DCs) and macrophages are key HIV target cells. Therefore, definition of how HIV impairs innate immune responses to initially establish infection is essential to design preventative interventions, especially by restoring initial interferon production. Here we demonstrate how HIV-1 blocks interferon induction by inhibiting the function of a key kinase in the interferon signaling pathway, TBK1, via two different viral accessory proteins. Other viral proteins have been shown to target the

  9. Vascular endothelial growth factor enhances macrophage clearance of apoptotic cells

    Science.gov (United States)

    Dalal, Samay; Horstmann, Sarah A.; Richens, Tiffany R.; Tanaka, Takeshi; Doe, Jenna M.; Boe, Darren M.; Voelkel, Norbert F.; Taraseviciene-Stewart, Laimute; Janssen, William J.; Lee, Chun G.; Elias, Jack A.; Bratton, Donna; Tuder, Rubin M.; Henson, Peter M.; Vandivier, R. William

    2012-01-01

    Efficient clearance of apoptotic cells from the lung by alveolar macrophages is important for the maintenance of tissue structure and function. Lung tissue from humans with emphysema contains increased numbers of apoptotic cells and decreased levels of vascular endothelial growth factor (VEGF). Mice treated with VEGF receptor inhibitors have increased numbers of apoptotic cells and develop emphysema. We hypothesized that VEGF regulates apoptotic cell clearance by alveolar macrophages (AM) via its interaction with VEGF receptor 1 (VEGF R1). Our data show that the uptake of apoptotic cells by murine AMs and human monocyte-derived macrophages is inhibited by depletion of VEGF and that VEGF activates Rac1. Antibody blockade or pharmacological inhibition of VEGF R1 activity also decreased apoptotic cell uptake ex vivo. Conversely, overexpression of VEGF significantly enhanced apoptotic cell uptake by AMs in vivo. These results indicate that VEGF serves a positive regulatory role via its interaction with VEGF R1 to activate Rac1 and enhance AM apoptotic cell clearance. PMID:22307908

  10. Molecular Determinants Directing HIV-1 Gag Assembly to Virus-Containing Compartments in Primary Macrophages.

    Science.gov (United States)

    Inlora, Jingga; Chukkapalli, Vineela; Bedi, Sukhmani; Ono, Akira

    2016-10-01

    The subcellular sites of HIV-1 assembly, determined by the localization of the structural protein Gag, vary in a cell-type-dependent manner. In T cells and transformed cell lines used as model systems, HIV-1 assembles at the plasma membrane (PM). The binding and localization of HIV-1 Gag to the PM are mediated by the interaction between the matrix (MA) domain, specifically the highly basic region, and a PM-specific acidic phospholipid, phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. In primary macrophages, prominent accumulation of assembling or assembled particles is found in the virus-containing compartments (VCCs), which largely consist of convoluted invaginations of the PM. To elucidate the molecular mechanism of HIV-1 Gag targeting to the VCCs, we examined the impact of overexpression of polyphosphoinositide 5-phosphatase IV (5ptaseIV), which depletes cellular PI(4,5)P2, in primary macrophages. We found that the VCC localization and virus release of HIV-1 are severely impaired upon 5ptaseIV overexpression, suggesting an important role for the MA-PI(4,5)P2 interaction in HIV-1 assembly in primary macrophages. However, our analysis of HIV-1 Gag derivatives with MA changes showed that this interaction contributes to Gag membrane binding but is dispensable for specific targeting of Gag to the VCCs per se We further determined that deletion of the NC domain abolishes VCC-specific localization of HIV-1 Gag. Notably, HIV-1 Gag localized efficiently to the VCCs when the NC domain was replaced with a leucine zipper dimerization motif that promotes Gag multimerization. Altogether, our data revealed that targeting of HIV-1 Gag to the VCCs requires NC-dependent multimerization. In T cells and model cell lines, HIV-1 Gag localizes to the PM in a manner dependent on the MA-PI(4,5)P2 interaction. On the other hand, in primary macrophages, HIV-1 Gag localizes to convoluted intracellular membrane structures termed virus-containing compartments (VCCs). Although these

  11. VDRL antibodies enhance phagocytosis of Treponema pallidum by macrophages.

    Science.gov (United States)

    Baker-Zander, S A; Shaffer, J M; Lukehart, S A

    1993-05-01

    Although reactivity in nontreponemal tests develops in patients with untreated syphilis, no immunologic function has been ascribed to these antibodies. This study demonstrates that rabbit antibodies induced by immunization with VDRL antigen and VDRL antibodies affinity-purified from syphilitic rabbit serum enhance phagocytosis of Treponema pallidum. The proportion of macrophages ingesting treponemes in the presence of these antisera was 45% +/- 5% and 27% +/- 4%, respectively, versus 14% +/- 3% for normal serum (P VDRL antibodies from syphilitic serum diminished but did not eliminate opsonization, suggesting at least two classes of target molecules. Despite opsonic capacity, VDRL antibodies fail to facilitate macrophage-mediated killing of T. pallidum. Nevertheless, VDRL-immunized rabbits are partially protected against T. pallidum infection, developing fewer lesions (delayed and smaller) than do unimmunized controls. These results suggest a heretofore unrecognized functional role for VDRL antibodies in syphilis infection.

  12. Role of Gag and lipids during HIV-1 assembly in CD4 T cells and Macrophages

    Directory of Open Access Journals (Sweden)

    Charlotte eMariani

    2014-06-01

    Full Text Available HIV-1 is an RNA enveloped virus that preferentiallyinfects CD4+ T lymphocytes andalso macrophages. In CD4+ T cells, HIV-1mainly buds from the host cell plasma membrane.The viral Gag polyprotein targets theplasma membrane and is the orchestrator ofthe HIV assembly as its expression is sufficientto promote the formation of virus-likeparticles particles carrying a lipidic envelopederiving from the host cell membrane. Certainlipids are enriched in the viral membraneand are thought to play a key role in theassembly process and the envelop composition.A large body of work performed oninfected CD4+ T cells has provided importantknowledge about the assembly process andthe membrane virus lipid composition. WhileHIV assembly and budding in macrophages isthought to follow the same general Gag-drivenmechanism as in T-lymphocytes, the HIV cyclein macrophage exhibits specific features.In these cells, new virions bud from the limitingmembrane of seemingly intracellular compartments,where they accumulate while remaininginfectious. These structures are now oftenreferred to as Virus Containing Compartments(VCCs. Recent studies suggest that VCCsrepresent intracellularly sequestered regionsof the plasma membrane, but their precisenature remains elusive. The proteomic andlipidomic characterization of virions producedby T cells or macrophages has highlightedthe similarity between their composition andthat of the plasma membrane of producercells, as well as their enrichment in acidiclipids, some components of raft lipids andin tetraspanin-enriched microdomains. Greatchances are that Gag promotes the coalescenceof these components into an assemblyplatform from which viral budding takesplace. How Gag exactly interacts with membranelipids and what are the mechanisms involvedin the interaction between the differentmembrane nanodomains within the assemblyplatform remains unclear. Here we review recentliterature regarding the role of Gag andlipids

  13. Inhibition of HIV-1 replication in human monocyte-derived macrophages by parasite Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Guadalupe Andreani

    Full Text Available BACKGROUND: Cells of monocyte/macrophage lineage are one of the major targets of HIV-1 infection and serve as reservoirs for viral persistence in vivo. These cells are also the target of the protozoa Trypanosoma cruzi, the causative agent of Chagas disease, being one of the most important endemic protozoonoses in Latin America. It has been demonstrated in vitro that co-infection with other pathogens can modulate HIV replication. However, no studies at cellular level have suggested an interaction between T. cruzi and HIV-1 to date. METHODOLOGY/PRINCIPAL FINDINGS: By using a fully replicative wild-type virus, our study showed that T. cruzi inhibits HIV-1 antigen production by nearly 100% (p99% being stronger than HIV-T. cruzi (approximately 90% for BaL and approximately 85% for VSV-G infection. In MDM with established HIV-1 infection, T. cruzi significantly inhibited luciferate activity (p<0.01. By quantifying R-U5 and U5-gag transcripts by real time PCR, our study showed the expression of both transcripts significantly diminished in the presence of trypomastigotes (p<0.05. Thus, T. cruzi inhibits viral post-integration steps, early post-entry steps and entry into MDM. Trypomastigotes also caused a approximately 60-70% decrease of surface CCR5 expression on MDM. Multiplication of T. cruzi inside the MDM does not seem to be required for inhibiting HIV-1 replication since soluble factors secreted by trypomastigotes have shown similar effects. Moreover, the major parasite antigen cruzipain, which is secreted by the trypomastigote form, was able to inhibit viral production in MDM over 90% (p<0.01. CONCLUSIONS/SIGNIFICANCE: Our study showed that T. cruzi inhibits HIV-1 replication at several replication stages in macrophages, a major cell target for both pathogens.

  14. Exosomes contribute to the transmission of anti-HIV activity from TLR3-activated brain microvascular endothelial cells to macrophages

    Science.gov (United States)

    Sun, Li; Wang, Xu; Zhou, Yu; Zhou, Run-Hong; Ho, Wen-Zhe; Li, Jie-Liang

    2017-01-01

    Human brain microvascular endothelial cells (HBMECs), the major cell type in the blood-brain barrier (BBB), play a key role in maintaining brain homeostasis. However, their role in the BBB innate immunity against HIV invasion of the central nervous system (CNS) remains to be determined. Our early work showed that TLR3 signaling of HBMECs could produce the antiviral factors that inhibit HIV replication in macrophages. The present study examined whether exosomes from TLR3-activated HBMECs mediate the intercellular transfer of antiviral factors to macrophages. Primary human macrophages could take up exosomes from TLR3-activated HBMECs. HBMECs-derived exosomes contained multiple antiviral factors, including several key IFN-stimulated genes (ISGs; ISG15, ISG56, and Mx2) at mRNA and protein levels. The depletion of exosomes from TLR3-activated HBMECs culture supernatant diminished HBMECs-mediated anti-HIV activity in macrophages. In conclusion, we demonstrate that exosomes shed by HBMECs are able to transport the antiviral molecules to macrophages. This finding suggests the possibility that HIV nonpermissive BBB cells (HBMECs) can help to restore the antiviral state in HIV-infected macrophages, which may be a defense mechanism against HIV neuroinvasion. PMID:27496004

  15. Macroautophagy regulation during HIV-1 infection of CD4+ T cells and macrophages

    Directory of Open Access Journals (Sweden)

    Sophie eBorel

    2012-05-01

    Full Text Available Autophagy is an intracellular mechanism whereby pathogens, particularly viruses, are destroyed in autolysosomes after their entry into targets cells. Therefore, to survive and replicate in host cells, viruses have developed multiple strategies to either counteract or exploit this process. The aim of this review is to outline the known relationships between HIV-1 and autophagy in CD4+ T lymphocytes and macrophages, two main HIV-1 cell targets. The differential regulation of autophagy in these two cell types is highlighted and its potential consequences in terms of viral replication and physiopathology discussed.

  16. Global Dynamics of HIV Infection of CD4+ T Cells and Macrophages

    Directory of Open Access Journals (Sweden)

    A. M. Elaiw

    2013-01-01

    Full Text Available We study the global dynamics of an HIV infection model describing the interaction of the HIV with CD4+ T cells and macrophages. The incidence rate of virus infection and the growth rate of the uninfected CD4+ T cells and macrophages are given by general functions. We have incorporated two types of distributed delays into the model to account for the time delay between the time the uninfected cells are contacted by the virus particle and the time for the emission of infectious (matures virus particles. We have established a set of conditions which are sufficient for the global stability of the steady states of the model. Using Lyapunov functionals and LaSalle's invariant principle, we have proven that if the basic reproduction number R0 is less than or equal to unity, then the uninfected steady state is globally asymptotically stable (GAS, and if the infected steady state exists, then it is GAS.

  17. The enhancement of astrocytic-derived monocyte chemoattractant protein-1 induced by the interaction of opiate and HIV tat in HIV-associated dementia

    Institute of Scientific and Technical Information of China (English)

    Xiao Han

    2009-01-01

    HIV-assodated dementia (HAD) is a public health problem and is particularly prevalent in drug abusers. The neuropathogenesis of human immunodeficiency virus (HIV) infection involves a complex cascade of inflammatory events, including monocyte/macrophage infiltration in the brain, glial immune activation and release of neurotoxic substances. In these events, astrocytic-derived monocyte chemoattractant protein-1 (MCP-1) plays an important role, whose release is elevated by HIV transactivator of transcription (HIV tat) and could be further elevated by opiates. This review will also consider some critical factors and events in MCP-1 enhancement induced by the interactions of opiate and HIV tat, including the mediating role of mu opioid receptor (MOR) and CCR2 as well as the possible signal transduction pathways within the cells. Finally, it will make some future perspectives on the exact pathways, new receptors and target cells, and the vulnerability to neurodegeneration with HIV and opiates.

  18. Sesamin Enhances Cholesterol Efflux in RAW264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Nan Liu

    2014-06-01

    Full Text Available Foam cells formation as a result of the uncontrolled cytophagy of modified cholesterol by macrophages plays a key role in the occurrence and development of atherosclerosis. Sesamin is an active constituent of Sesamum indicum which has been shown to possess multiple pharmacological activities. In this work, we investigated the effects of sesamin on foam cell formation and cholesterol efflux in RAW264.7 macrophages. Sesamin dose-dependently inhibited the enhanced cholesterol accumulation elicited by oxidized low-density lipoprotein cholesterol (oxLDL in RAW264.7 cells. Treatment with sesamin (10 μM significantly enhanced cholesterol efflux mediated by high-density lipoprotein (HDL. Realtime quantitative PCR and luciferase assays showed that sesamin significantly increased the mRNA levels of PPARγ, LXRα, and ABCG1, and increased the transcriptional activity of PPARγ. The stimulating effect of sesamin on cholesterol efflux was substantially inhibited by the co-treatment with GW9662, a potent inhibitor of PPARγ. These results suggest that sesamin is a new inhibitor of foam cell formation that may stimulate cholesterol efflux through upregulation of the PPARγ-LXRα-ABCG1 pathway.

  19. Sesamin enhances cholesterol efflux in RAW264.7 macrophages.

    Science.gov (United States)

    Liu, Nan; Wu, Chongming; Sun, Lizhong; Zheng, Jun; Guo, Peng

    2014-06-06

    Foam cells formation as a result of the uncontrolled cytophagy of modified cholesterol by macrophages plays a key role in the occurrence and development of atherosclerosis. Sesamin is an active constituent of Sesamum indicum which has been shown to possess multiple pharmacological activities. In this work, we investigated the effects of sesamin on foam cell formation and cholesterol efflux in RAW264.7 macrophages. Sesamin dose-dependently inhibited the enhanced cholesterol accumulation elicited by oxidized low-density lipoprotein cholesterol (oxLDL) in RAW264.7 cells. Treatment with sesamin (10 μM) significantly enhanced cholesterol efflux mediated by high-density lipoprotein (HDL). Realtime quantitative PCR and luciferase assays showed that sesamin significantly increased the mRNA levels of PPARγ, LXRα, and ABCG1, and increased the transcriptional activity of PPARγ. The stimulating effect of sesamin on cholesterol efflux was substantially inhibited by the co-treatment with GW9662, a potent inhibitor of PPARγ. These results suggest that sesamin is a new inhibitor of foam cell formation that may stimulate cholesterol efflux through upregulation of the PPARγ-LXRα-ABCG1 pathway.

  20. Immunotherapy of HIV-infected patients with Gc protein-derived macrophage activating factor (GcMAF).

    Science.gov (United States)

    Yamamoto, Nobuto; Ushijima, Naofumi; Koga, Yoshihiko

    2009-01-01

    Serum Gc protein (known as vitamin D3-binding protein) is the precursor for the principal macrophage activating factor (MAF). The MAF precursor activity of serum Gc protein of HIV-infected patients was lost or reduced because Gc protein is deglycosylated by alpha-N-acetylgalactosaminidase (Nagalase) secreted from HIV-infected cells. Therefore, macrophages of HIV-infected patients having deglycosylated Gc protein cannot be activated, leading to immunosuppression. Since Nagalase is the intrinsic component of the envelope protein gp120, serum Nagalase activity is the sum of enzyme activities carried by both HIV virions and envelope proteins. These Nagalase carriers were already complexed with anti-HIV immunoglobulin G (IgG) but retained Nagalase activity that is required for infectivity. Stepwise treatment of purified Gc protein with immobilized beta-galactosidase and sialidase generated the most potent macrophage activating factor (termed GcMAF), which produces no side effects in humans. Macrophages activated by administration of 100 ng GcMAF develop a large amount of Fc-receptors as well as an enormous variation of receptors that recognize IgG-bound and unbound HIV virions. Since latently HIV-infected cells are unstable and constantly release HIV virions, the activated macrophages rapidly intercept the released HIV virions to prevent reinfection resulting in exhaustion of infected cells. After less than 18 weekly administrations of 100 ng GcMAF for nonanemic patients, they exhibited low serum Nagalase activities equivalent to healthy controls, indicating eradication of HIV-infection, which was also confirmed by no infectious center formation by provirus inducing agent-treated patient PBMCs. No recurrence occurred and their healthy CD + cell counts were maintained for 7 years.

  1. Chimeric HIV-1 envelope glycoproteins with potent intrinsic granulocyte-macrophage colony-stimulating factor (GM-CSF activity.

    Directory of Open Access Journals (Sweden)

    Gözde Isik

    Full Text Available HIV-1 acquisition can be prevented by broadly neutralizing antibodies (BrNAbs that target the envelope glycoprotein complex (Env. An ideal vaccine should therefore be able to induce BrNAbs that can provide immunity over a prolonged period of time, but the low intrinsic immunogenicity of HIV-1 Env makes the elicitation of such BrNAbs challenging. Co-stimulatory molecules can increase the immunogenicity of Env and we have engineered a soluble chimeric Env trimer with an embedded granulocyte-macrophage colony-stimulating factor (GM-CSF domain. This chimeric molecule induced enhanced B and helper T cell responses in mice compared to Env without GM-CSF. We studied whether we could optimize the activity of the embedded GM-CSF as well as the antigenic structure of the Env component of the chimeric molecule. We assessed the effect of truncating GM-CSF, removing glycosylation-sites in GM-CSF, and adjusting the linker length between GM-CSF and Env. One of our designed Env(GM-CSF chimeras improved GM-CSF-dependent cell proliferation by 6-fold, reaching the same activity as soluble recombinant GM-CSF. In addition, we incorporated GM-CSF into a cleavable Env trimer and found that insertion of GM-CSF did not compromise Env cleavage, while Env cleavage did not compromise GM-CSF activity. Importantly, these optimized Env(GM-CSF proteins were able to differentiate human monocytes into cells with a macrophage-like phenotype. Chimeric Env(GM-CSF should be useful for improving humoral immunity against HIV-1 and these studies should inform the design of other chimeric proteins.

  2. Pathobiology of HIV in the Human Monocyte-Macrophage

    Science.gov (United States)

    1993-12-03

    34’ amplifies a I I 55-bp repon of pgconserved amnxw4the HlV -1t islates DNA nolated from HIV-1 lllB-snkfcted ~ cells was sitd as a pcwtiaw control and DNA...stem cell factor (SCF) or interleukin-3 (IL-3) are capable of overcoming the bone marrow suppressive effects of cytokines or drugs involved in the...abnormalities associated with drugs commonly used in the care of AIDS patients. In contrast, they may have less capacity to 2 overcome the bone marrow

  3. Macrophage mediated PCI enhanced gene-directed enzyme prodrug therapy

    Science.gov (United States)

    Christie, Catherine E.; Zamora, Genesis; Kwon, Young J.; Berg, Kristian; Madsen, Steen J.; Hirschberg, Henry

    2015-03-01

    Photochemical internalization (PCI) is a photodynamic therapy-based approach for improving the delivery of macromolecules and genes into the cell cytosol. Prodrug activating gene therapy (suicide gene therapy) employing the transduction of the E. coli cytosine deaminase (CD) gene into tumor cells, is a promising method. Expression of this gene within the target cell produces an enzyme that converts the nontoxic prodrug, 5-FC, to the toxic metabolite, 5-fluorouracil (5-FU). 5-FC may be particularly suitable for brain tumors, because it can readily cross the bloodbrain barrier (BBB). In addition the bystander effect, where activated drug is exported from the transfected cancer cells into the tumor microenvironment, plays an important role by inhibiting growth of adjacent tumor cells. Tumor-associated macrophages (TAMs) are frequently found in and around glioblastomas. Monocytes or macrophages (Ma) loaded with drugs, nanoparticles or photosensitizers could therefore be used to target tumors by local synthesis of chemo attractive factors. The basic concept is to combine PCI, to enhance the ex vivo transfection of a suicide gene into Ma, employing specially designed core/shell NP as gene carrier.

  4. Tim-3 blocking rescue macrophage and T cell function against Mycobacterium tuberculosis infection in HIV+ patients

    Directory of Open Access Journals (Sweden)

    Isabel Sada-Ovalle

    2015-10-01

    Full Text Available Introduction: T cell immunoglobulin and mucin domain (Tim 3 and programmed death 1 (PD-1 are co-inhibitory receptors involved in the so-called T cell exhaustion, and in vivo blockade of these molecules restores T cell dysfunction. High expression of Tim-3 and PD-1 is induced after chronic antigen-specific stimulation of T cells during HIV infection. We have previously demonstrated that the interaction of Tim-3 with its ligand galectin-9 induces macrophage activation and killing of Mycobacterium tuberculosis. Our aim in this study was to analyze the Tim-3 expression profile before and after six months of antiretroviral therapy and the impact of Tim-3 and PD-1 blocking on immunity against M. tuberculosis. Materials and methods: HIV+ patients naïve to anti-retroviral therapy (ART were followed up for six months. Peripheral immune-cell phenotype (CD38/HLA-DR/galectin-9/Tim-3 and PD-1 was assessed by flow cytometry. Supernatants were analyzed with a multiplex cytokine detection system (human Th1/Th2 cytokine Cytometric Bead Array by flow cytometry. Control of bacterial growth was evaluated by using an in vitro experimental model in which virulent M. tuberculosis-infected macrophages were cultured with T cells in the presence or absence of Tim-3 and PD-1 blocking antibodies. Interleukin-1 beta treatment of infected macrophages was evaluated by enumerating colony-forming units. Results: We showed that HIV+ patients had an increased expression of Tim-3 in T cells and were able to control bacterial growth before ART administration. By blocking Tim-3 and PD-1, macrophages and T cells recovered their functionality and had a higher ability to control bacterial growth; this result was partially dependent on the restitution of cytokine production. Conclusions: In this study, we demonstrated that increased Tim-3 expression can limit the ability of the immune system to control the infection of intracellular bacteria such as M. tuberculosis. The use of ART and

  5. Tim-3 blocking rescue macrophage and T cell function against Mycobacterium tuberculosis infection in HIV+ patients

    Science.gov (United States)

    Sada-Ovalle, Isabel; Ocaña-Guzman, Ranferi; Pérez-Patrigeón, Santiago; Chávez-Galán, Leslie; Sierra-Madero, Juan; Torre-Bouscoulet, Luis; Addo, Marylyn M.

    2015-01-01

    Introduction T cell immunoglobulin and mucin domain (Tim) 3 and programmed death 1 (PD-1) are co-inhibitory receptors involved in the so-called T cell exhaustion, and in vivo blockade of these molecules restores T cell dysfunction. High expression of Tim-3 and PD-1 is induced after chronic antigen-specific stimulation of T cells during HIV infection. We have previously demonstrated that the interaction of Tim-3 with its ligand galectin-9 induces macrophage activation and killing of Mycobacterium tuberculosis. Our aim in this study was to analyze the Tim-3 expression profile before and after six months of antiretroviral therapy and the impact of Tim-3 and PD-1 blocking on immunity against M. tuberculosis. Materials and methods HIV+ patients naïve to anti-retroviral therapy (ART) were followed up for six months. Peripheral immune-cell phenotype (CD38/HLA-DR/galectin-9/Tim-3 and PD-1) was assessed by flow cytometry. Supernatants were analyzed with a multiplex cytokine detection system (human Th1/Th2 cytokine Cytometric Bead Array) by flow cytometry. Control of bacterial growth was evaluated by using an in vitro experimental model in which virulent M. tuberculosis-infected macrophages were cultured with T cells in the presence or absence of Tim-3 and PD-1 blocking antibodies. Interleukin-1 beta treatment of infected macrophages was evaluated by enumerating colony-forming units. Results We showed that HIV+ patients had an increased expression of Tim-3 in T cells and were able to control bacterial growth before ART administration. By blocking Tim-3 and PD-1, macrophages and T cells recovered their functionality and had a higher ability to control bacterial growth; this result was partially dependent on the restitution of cytokine production. Conclusions In this study, we demonstrated that increased Tim-3 expression can limit the ability of the immune system to control the infection of intracellular bacteria such as M. tuberculosis. The use of ART and the in vitro

  6. HIV-1 Nef impairs key functional activities in human macrophages through CD36 downregulation.

    Directory of Open Access Journals (Sweden)

    Eleonora Olivetta

    Full Text Available Monocytes and macrophages utilize the class A and B scavenger receptors to recognize and perform phagocytosis of invading microbes before a pathogen-specific immune response is generated. HIV-1 Nef protein affects the innate immune system impairing oxidative burst response and phagocytic capacity of macrophages. Our data show that exogenous recombinant myristoylated Nef protein induces a marked CD36 downregulation in monocytes from Peripheral Blood Mononuclear Cells, in Monocyte-Derived Macrophages (MDMs differentiated by cytokines and in MDMs contained in a mixed culture obtained expanding PBMCs under Human Erythroid Massive Amplification condition. Under the latter culture condition we identify three main populations after 6 days of expansion: lymphocytes (37.8 ± 14.7%, erythroblasts (46.7±6.1% and MDMs (15.7 ± 7.5%. The Nef addition to the cell culture significantly downregulates CD36 expression in MDMs, but not in erythroid cells. Furthermore, CD36 inhibition is highly specific since it does not modify the expression levels of other MDM markers such as CD14, CD11c, CD86, CD68, CD206, Toll-like Receptor 2 and Toll-like Receptor 4. Similar results were obtained in MDMs infected with VSV-G pseudotyped HIV-1-expressing Nef. The reduced CD36 membrane expression is associated with decrease of correspondent CD36 mRNA transcript. Furthermore, Nef-induced CD36 downregulation is linked to both impaired scavenger activity with reduced capability to take up oxidized lipoproteins and to significant decreased phagocytosis of fluorescent beads and GFP-expressing Salmonella tiphymurium. In addition we observed that Nef induces TNF-α release in MDMs. Although these data suggest a possible involvement of TNF-α in mediating Nef activity, our results exclude a possible relationship between Nef-induced TNF-α release and Nef-mediated CD36 downregulation. The present work shows that HIV-1 Nef protein may have a role in the strategies elaborated by HIV-1 to

  7. Genome-Wide Association Study Identifies Single Nucleotide Polymorphism in DYRK1A Associated with Replication of HIV-1 in Monocyte-Derived Macrophages

    NARCIS (Netherlands)

    Bol, S.M.; Moerland, P.D.; Limou, S.; van Remmerden, Y.; Coulonges, C.; Manen, D.; Herbeck, J.T.; Fellay, J.; Sieberer, M.; Sietzema, J.G.; van 't Slot, R.; Martinson, J.; Zagury, J.F.; Schuitemaker, H.; van 't Wout, A.B.

    2011-01-01

    Background: HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART), macrophages keep producing virus because tissue penetr

  8. Rebamipide delivered by brushite cement enhances osteoblast and macrophage proliferation.

    Science.gov (United States)

    Pujari-Palmer, Michael; Pujari-Palmer, Shiuli; Engqvist, Håkan; Karlsson Ott, Marjam

    2015-01-01

    Many of the bioactive agents capable of stimulating osseous regeneration, such as bone morphogenetic protein-2 (BMP-2) or prostaglandin E2 (PGE2), are limited by rapid degradation, a short bioactive half-life at the target site in vivo, or are prohibitively expensive to obtain in large quantities. Rebamipide, an amino acid modified hydroxylquinoline, can alter the expression of key mediators of bone anabolism, cyclo-oxygenase 2 (COX-2), BMP-2 and vascular endothelial growth factor (VEGF), in diverse cell types such as mucosal and endothelial cells or chondrocytes. The present study investigates whether Rebamipide enhances proliferation and differentiation of osteoblasts when delivered from brushite cement. The reactive oxygen species (ROS) quenching ability of Rebampide was tested in macrophages as a measure of bioactivity following drug release incubation times, up to 14 days. Rebamipide release from brushite occurs via non-fickian diffusion, with a rapid linear release of 9.70% ± 0.37% of drug per day for the first 5 days, and an average of 0.5%-1% per day thereafter for 30 days. Rebamipide slows the initial and final cement setting time by up to 3 and 1 minute, respectively, but does not significantly reduce the mechanical strength below 4% (weight percentage). Pre-osteoblast proliferation increases by 24% upon exposure to 0.4 uM Rebamipide, and by up to 73% when Rebamipide is delivered via brushite cement. Low doses of Rebamipide do not adversely affect peak alkaline phosphatase activity in differentiating pre-osteoblasts. Rebamipide weakly stimulates proliferation in macrophages at low concentrations (118 ± 7.4% at 1 uM), and quenches ROS by 40-60%. This is the first investigation of Rebamipide in osteoblasts.

  9. Rebamipide delivered by brushite cement enhances osteoblast and macrophage proliferation.

    Directory of Open Access Journals (Sweden)

    Michael Pujari-Palmer

    Full Text Available Many of the bioactive agents capable of stimulating osseous regeneration, such as bone morphogenetic protein-2 (BMP-2 or prostaglandin E2 (PGE2, are limited by rapid degradation, a short bioactive half-life at the target site in vivo, or are prohibitively expensive to obtain in large quantities. Rebamipide, an amino acid modified hydroxylquinoline, can alter the expression of key mediators of bone anabolism, cyclo-oxygenase 2 (COX-2, BMP-2 and vascular endothelial growth factor (VEGF, in diverse cell types such as mucosal and endothelial cells or chondrocytes. The present study investigates whether Rebamipide enhances proliferation and differentiation of osteoblasts when delivered from brushite cement. The reactive oxygen species (ROS quenching ability of Rebampide was tested in macrophages as a measure of bioactivity following drug release incubation times, up to 14 days. Rebamipide release from brushite occurs via non-fickian diffusion, with a rapid linear release of 9.70% ± 0.37% of drug per day for the first 5 days, and an average of 0.5%-1% per day thereafter for 30 days. Rebamipide slows the initial and final cement setting time by up to 3 and 1 minute, respectively, but does not significantly reduce the mechanical strength below 4% (weight percentage. Pre-osteoblast proliferation increases by 24% upon exposure to 0.4 uM Rebamipide, and by up to 73% when Rebamipide is delivered via brushite cement. Low doses of Rebamipide do not adversely affect peak alkaline phosphatase activity in differentiating pre-osteoblasts. Rebamipide weakly stimulates proliferation in macrophages at low concentrations (118 ± 7.4% at 1 uM, and quenches ROS by 40-60%. This is the first investigation of Rebamipide in osteoblasts.

  10. HIV-1-infected and immune-activated macrophages induce astrocytic differentiation of human cortical neural progenitor cells via the STAT3 pathway.

    Directory of Open Access Journals (Sweden)

    Hui Peng

    Full Text Available Diminished adult neurogenesis is considered a potential mechanism in the pathogenesis of HIV-1-associated dementia (HAD. In HAD, HIV-1-infected and immune-activated brain mononuclear phagocytes (MP; perivascular macrophages and microglia drive central nervous system (CNS inflammation and may alter normal neurogenesis. We previously demonstrated HIV-1-infected and lipopolysaccharide (LPS activated monocyte-derived macrophages (MDM inhibit human neural progenitor cell (NPC neurogenesis, while enhancing astrogliogenesis through the secretion of the inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α, in vitro and in vivo. Here we further test the hypothesis that HIV-1-infected/activated MDM promote NPC astrogliogenesis via activation of the transcription factor signal transducer and activator of transcription 3 (STAT3, a critical factor for astrogliogenesis. Our results show that LPS-activated MDM-conditioned medium (LPS-MCM and HIV-infected/LPS-activated MDM-conditioned medium (LPS+HIV-MCM induced Janus kinase 1 (Jak1 and STAT3 activation. Induction of the Jak-STAT3 activation correlated with increased glia fibrillary acidic protein (GFAP expression, demonstrating an induction of astrogliogenesis. Moreover, STAT3-targeting siRNA (siSTAT3 decreased MCM-induced STAT3 activation and NPC astrogliogenesis. Furthermore, inflammatory cytokines (including IL-6, IL-1β and TNF-α produced by LPS-activated and/or HIV-1-infected MDM may contribute to MCM-induced STAT3 activation and astrocytic differentiation. These observations were confirmed in severe combined immunodeficient (SCID mice with HIV-1 encephalitis (HIVE. In HIVE mice, siRNA control (without target sequence, sicon pre-transfected NPCs injected with HIV-1-infected MDM showed more astrocytic differentiation and less neuronal differentiation of NPCs as compared to NPC injection alone. siSTAT3 abrogated HIV-1-infected MDM-induced astrogliogenesis of injected NPCs. Collectively, these

  11. Cystatin B and HIV regulate the STAT-1 signaling circuit in HIV-infected and INF-β-treated human macrophages.

    Science.gov (United States)

    Rivera, L E; Kraiselburd, E; Meléndez, L M

    2016-10-01

    Cystatin B is a cysteine protease inhibitor that induces HIV replication in monocyte-derived macrophages (MDM). This protein interacts with signal transducer and activator of transcription (STAT-1) factor and inhibits the interferon (IFN-β) response in Vero cells by preventing STAT-1 translocation to the nucleus. Cystatin B also decreases the levels of tyrosine-phosphorylated STAT-1 (STAT-1PY). However, the mechanisms of cystatin B regulation on STAT-1 phosphorylation in MDM are unknown. We hypothesized that cystatin B inhibits IFN-β antiviral responses and induces HIV replication in macrophage reservoirs through the inhibition of STAT-1 phosphorylation. Macrophages were transfected with cystatin B siRNA prior to interferon-β treatment or infected with HIV-ADA to determine the effect of cystatin B modulation in STAT-1 localization and activation using immunofluorescence and proximity ligation assays. Cystatin B decreased STAT-1PY and its transportation to the nucleus, while HIV infection retained unphosphorylated STAT (USTAT-1) in the nucleus avoiding its exit to the cytoplasm for eventual phosphorylation. In IFN-β-treated MDM, cystatin B inhibited the nuclear translocation of both, USTAT-1 and STAT-1PY. These results demonstrate that cystatin B interferes with the STAT-1 signaling and IFN-β-antiviral responses perpetuating HIV in macrophage reservoirs.

  12. Characterization of HIV-1 Infection and Innate Sensing in Different Types of Primary Human Monocyte-Derived Macrophages

    Directory of Open Access Journals (Sweden)

    Elisabeth A. Diget

    2013-01-01

    Full Text Available Macrophages play an important role in human immunodeficiency virus (HIV pathogenesis and contribute to establishment of a viral reservoir responsible for continuous virus production and virus transmission to T cells. In this study, we investigated the differences between various monocyte-derived macrophages (MDMs generated through different differentiation protocols and evaluated different cellular, immunological, and virological properties. We found that elevated and persistent HIV-1 pWT/BaL replication could be obtained only in MDMs grown in RPMI containing macrophage colony-stimulating factor (M-CSF. Interestingly, this MDM type was also most responsive to toll-like receptor stimulation. By contrast, all MDM types were activated to a comparable extent by intracellular DNA, and the macrophage serum-free medium-(Mac-SFM-differentiated MDMs responded strongly to membrane fusion through expression of CXCL10. Finally, we found that HIV infection of RPMI/M-CSF-differentiated MDMs induced low-grade expression of two interferon-stimulated genes in some donors. In conclusion, our study demonstrates that the differentiation protocol used greatly influences the ability of MDMs to activate innate immune reactions and support HIV-1 replication. Paradoxically, the data show that the MDMs with the strongest innate immune response were also the most permissive for HIV-1 replication.

  13. Mycobacterium tuberculosis-induced CXCR4 and chemokine expression leads to preferential X4 HIV-1 replication in human macrophages.

    Science.gov (United States)

    Hoshino, Yoshihiko; Tse, Doris B; Rochford, Gemma; Prabhakar, Savita; Hoshino, Satomi; Chitkara, Nishay; Kuwabara, Kenichi; Ching, Elbert; Raju, Bindu; Gold, Jeffrey A; Borkowsky, William; Rom, William N; Pine, Richard; Weiden, Michael

    2004-05-15

    Opportunistic infections such as pulmonary tuberculosis (TB) increase local HIV-1 replication and mutation. As AIDS progresses, alteration of the HIV-1 gp120 V3 sequence is associated with a shift in viral coreceptor use from CCR5 (CD195) to CXCR4 (CD184). To better understand the effect of HIV/TB coinfection, we screened transcripts from bronchoalveolar lavage cells with high density cDNA arrays and found that CXCR4 mRNA is increased in patients with TB. Surprisingly, CXCR4 was predominately expressed on alveolar macrophages (AM). Mycobacterium tuberculosis infection of macrophages in vitro increased CXCR4 surface expression, whereas amelioration of disease reduced CXCR4 expression in vivo. Bronchoalveolar lavage fluid from TB patients had elevated levels of CCL4 (macrophage inflammatory protein-1beta), CCL5 (RANTES), and CX3CL1 (fractalkine), but not CXCL12 (stromal-derived factor-1alpha). We found that M. tuberculosis infection of macrophages in vitro increased viral entry and RT of CXCR4-using [corrected] HIV-1, but not of CCR5-using [corrected] HIV-1. Lastly, HIV-1 derived from the lung contains CD14, suggesting that they were produced in AM. Our results demonstrate that TB produces a permissive environment for replication of CXCR4-using virus by increasing CXCR4 expression in AM and for suppression of CCR5-using HIV-1 by increasing CC chemokine expression. These changes explain in part why TB accelerates the course of AIDS. CXCR4 inhibitors are a rational therapeutic approach in HIV/TB coinfection.

  14. HIV-1 infection induces changes in expression of cellular splicing factors that regulate alternative viral splicing and virus production in macrophages

    Directory of Open Access Journals (Sweden)

    Purcell Damian FJ

    2008-02-01

    Full Text Available Abstract Background Macrophages are important targets and long-lived reservoirs of HIV-1, which are not cleared of infection by currently available treatments. In the primary monocyte-derived macrophage model of infection, replication is initially productive followed by a decline in virion output over ensuing weeks, coincident with a decrease in the levels of the essential viral transactivator protein Tat. We investigated two possible mechanisms in macrophages for regulation of viral replication, which appears to be primarily regulated at the level of tat mRNA: 1 differential mRNA stability, used by cells and some viruses for the rapid regulation of gene expression and 2 control of HIV-1 alternative splicing, which is essential for optimal viral replication. Results Following termination of transcription at increasing times after infection in macrophages, we found that tat mRNA did indeed decay more rapidly than rev or nef mRNA, but with similar kinetics throughout infection. In addition, tat mRNA decayed at least as rapidly in peripheral blood lymphocytes. Expression of cellular splicing factors in uninfected and infected macrophage cultures from the same donor showed an inverse pattern over time between enhancing factors (members of the SR family of RNA binding proteins and inhibitory factors (members of the hnRNP family. While levels of the SR protein SC35 were greatly up-regulated in the first week or two after infection, hnRNPs of the A/B and H groups were down-regulated. Around the peak of virus production in each culture, SC35 expression declined to levels in uninfected cells or lower, while the hnRNPs increased to control levels or above. We also found evidence for increased cytoplasmic expression of SC35 following long-term infection. Conclusion While no evidence of differential regulation of tat mRNA decay was found in macrophages following HIV-1 infection, changes in the balance of cellular splicing factors which regulate alternative

  15. HIV-1 regulation of latency in the monocyte-macrophage lineage and in CD4+ T lymphocytes.

    Science.gov (United States)

    Redel, Laetitia; Le Douce, Valentin; Cherrier, Thomas; Marban, Céline; Janossy, Andrea; Aunis, Dominique; Van Lint, Carine; Rohr, Olivier; Schwartz, Christian

    2010-04-01

    The introduction in 1996 of the HAART raised hopes for the eradication of HIV-1. Unfortunately, the discovery of latent HIV-1 reservoirs in CD4+ T cells and in the monocyte-macrophage lineage proved the optimism to be premature. The long-lived HIV-1 reservoirs constitute a major obstacle to the eradication of HIV-1. In this review, we focus on the establishment and maintenance of HIV-1 latency in the two major targets for HIV-1: the CD4+ T cells and the monocyte-macrophage lineage. Understanding the cell-type molecular mechanisms of establishment, maintenance, and reactivation of HIV-1 latency in these reservoirs is crucial for efficient therapeutic intervention. A complete viral eradication, the holy graal for clinicians, might be achieved by strategic interventions targeting latently and productively infected cells. We suggest that new approaches, such as the combination of different kinds of proviral activators, may help to reduce dramatically the size of latent HIV-1 reservoirs in patients on HAART.

  16. Nuclear phosphoinositide-specific phospholipase C β1 controls cytoplasmic CCL2 mRNA levels in HIV-1 gp120-stimulated primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Francesca Spadaro

    Full Text Available HIV-1 envelope glycoprotein gp120 induces, independently of infection, the release of CCL2 from macrophages. In turn, this chemokine acts as an autocrine factor enhancing viral replication. In this study, we show for the first time that phosphoinositide-specific phospholipase C (PI-PLC is required for the production of CCL2 triggered by gp120 in macrophages. Using a combination of confocal laser-scanner microscopy, pharmacologic inhibition, western blotting and fluorescence-activated cell sorter analysis, we demonstrate that gp120 interaction with CCR5 leads to nuclear localization of the PI-PLC β1 isozyme mediated by mitogen-activated protein kinase ERK-1/2. Notably, phosphatidylcholine-specific phospholipase C (PC-PLC, previously reported to be required for NF-kB-mediated CCL2 production induced by gp120 in macrophages, drives both ERK1/2 activation and PI-PLC β1 nuclear localization induced by gp120. PI-PLC β1 activation through CCR5 is also triggered by the natural chemokine ligand CCL4, but independently of ERK1/2. Finally, PI-PLC inhibition neither blocks gp120-mediated NF-kB activation nor overall accumulation of CCL2 mRNA, whereas it decreases CCL2 transcript level in the cytoplasm. These results identify nuclear PI-PLC β1 as a new intermediate in the gp120-triggered PC-PLC-driven signal transduction pathway leading to CCL2 secretion in macrophages. The finding that a concerted gp120-mediated signaling involving both PC- and PI-specific PLCs is required for the expression of CCL2 in macrophages suggests that this signal transduction pathway may also be relevant for the modulation of viral replication in these cells. Thus, this study may contribute to identify novel targets for therapeutic intervention in HIV-1 infection.

  17. Vpu serine 52 dependent counteraction of tetherin is required for HIV-1 replication in macrophages, but not in ex vivo human lymphoid tissue

    Directory of Open Access Journals (Sweden)

    Specht Anke

    2010-01-01

    Full Text Available Abstract Background The human immunodeficiency virus type 1 (HIV-1 Vpu protein degrades CD4 and counteracts a restriction factor termed tetherin (CD317; Bst-2 to enhance virion release. It has been suggested that both functions can be genetically separated by mutation of a serine residue at position 52. However, recent data suggest that the S52 phosphorylation site is also important for the ability of Vpu to counteract tetherin. To clarify this issue, we performed a comprehensive analysis of HIV-1 with a mutated casein kinase-II phosphorylation site in Vpu in various cell lines, primary blood lymphocytes (PBL, monocyte-derived macrophages (MDM and ex vivo human lymphoid tissue (HLT. Results We show that mutation of serine 52 to alanine (S52A entirely disrupts Vpu-mediated degradation of CD4 and strongly impairs its ability to antagonize tetherin. Furthermore, casein-kinase II inhibitors blocked the ability of Vpu to degrade tetherin. Overall, Vpu S52A could only overcome low levels of tetherin, and its activity decreased in a manner dependent on the amount of transiently or endogenously expressed tetherin. As a consequence, the S52A Vpu mutant virus was unable to replicate in macrophages, which express high levels of this restriction factor. In contrast, HIV-1 Vpu S52A caused CD4+ T-cell depletion and spread efficiently in ex vivo human lymphoid tissue and PBL, most likely because these cells express comparably low levels of tetherin. Conclusion Our data explain why the effect of the S52A mutation in Vpu on virus release is cell-type dependent and suggest that a reduced ability of Vpu to counteract tetherin impairs HIV-1 replication in macrophages, but not in tissue CD4+ T cells.

  18. Protein kinase C-delta regulates HIV-1 replication at an early post-entry step in macrophages

    Directory of Open Access Journals (Sweden)

    Contreras Xavier

    2012-05-01

    Full Text Available Abstract Background Macrophages, which are CD4 and CCR5 positive, can sustain HIV-1 replication for long periods of time. Thus, these cells play critical roles in the transmission, dissemination and persistence of viral infection. Of note, current antiviral therapies do not target macrophages efficiently. Previously, it was demonstrated that interactions between CCR5 and gp120 stimulate PKC. However, the PKC isozymes involved were not identified. Results In this study, we identified PKC-delta as a major cellular cofactor for HIV-1 replication in macrophages. Indeed, PKC-delta was stimulated following the interaction between the virus and its target cell. Moreover, inhibition of PKC-delta blocked the replication of R5-tropic viruses in primary human macrophages. However, this inhibition did not have significant effects on receptor and co-receptor expression or fusion. Additionally, it did not affect the formation of the early reverse transcription product containing R/U5 sequences, but did inhibit the synthesis of subsequent cDNAs. Importantly, the inhibition of PKC-delta altered the redistribution of actin, a cellular cofactor whose requirement for the completion of reverse transcription was previously established. It also prevented the association of the reverse transcription complex with the cytoskeleton. Conclusion This work highlights the importance of PKC-delta during early steps of the replicative cycle of HIV-1 in human macrophages.

  19. Differential expression of HIV-1 interfering factors in monocyte-derived macrophages stimulated with polarizing cytokines or interferons

    Science.gov (United States)

    Jiménez, Viviana Cobos; Booiman, Thijs; de Taeye, Steven W.; van Dort, Karel A.; Rits, Maarten A. N.; Hamann, Jörg; Kootstra, Neeltje A.

    2012-10-01

    HIV-1 replication in macrophages can be regulated by cytokines and infection is restricted in macrophages activated by type I interferons and polarizing cytokines. Here, we observed that the expression levels of the cellular factors Trim5α, CypA, APOBEC3G, SAMHD-1, Trim22, tetherin and TREX-1, and the anti-HIV miRNAs miR-28, miR-150, miR-223 and miR-382 was upregulated by IFN-α and IFN-β in macrophages, which may account for the inhibiting effect on viral replication and the antiviral state of these cells. Expression of these factors was also increased by IFN-γ +/- TNF-α, albeit to a lesser extent; yet, HIV-1 replication in these cells was not restricted at the level of proviral synthesis, indicating that these cellular factors only partially contribute to the observed restriction. IL-4, IL-10 or IL-32 polarization did not affect the expression of cellular factors and miRNAs, suggesting only a limited role for these cellular factors in restricting HIV-1 replication in macrophages.

  20. The replicative restriction of lymphocytotropic isolates of HIV-1 in macrophages is overcome by TGF-beta.

    Science.gov (United States)

    Lazdins, J K; Klimkait, T; Woods-Cook, K; Walker, M; Alteri, E; Cox, D; Cerletti, N; Shipman, R; Bilbe, G; McMaster, G

    1992-04-01

    In vitro exposure of human blood monocyte-derived macrophages to T-cell tropic human immunodeficiency virus (HIV) isolates fails to establish a productive viral infection. Several studies have shown that such preferential HIV-1 replication in T cells or in mononuclear phagocytes (HIV tropism) may be determined by distinct viral characteristics. In the present study it was demonstrated that transforming growth factor-beta (TGF-beta), a factor known to be produced by platelets, macrophages, and other cells present at a wound site, can act as a mediator in overcoming the lymphocytotropic restriction of several well-characterized viral isolates of HIV-1 (i.e., LAV, Z84, pLAI, NY5). Macrophages infected with these isolates show cytopathic changes comparable to those seen upon infection with the monocytotropic isolate ADA. To achieve this effect with TGF-beta, the factor must be present after the infection period. The emerging virus retains its original cellular tropism. Based on these observations the authors propose a role for TGF-beta in the establishment and progression of HIV infection and disease.

  1. Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity.

    Directory of Open Access Journals (Sweden)

    Hans Rempel

    Full Text Available BACKGROUND: HIV-1 infection dysregulates the immune system and alters gene expression in circulating monocytes. Differential gene expression analysis of CD14(+ monocytes from subjects infected with HIV-1 revealed increased expression of sialoadhesin (Sn, CD169, Siglec 1, a cell adhesion molecule first described in a subset of macrophages activated in chronic inflammatory diseases. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed sialoadhesin expression on CD14(+ monocytes by flow cytometry and found significantly higher expression in subjects with elevated viral loads compared to subjects with undetectable viral loads. In cultured CD14(+ monocytes isolated from healthy individuals, sialoadhesin expression was induced by interferon-alpha and interferon-gamma but not tumor necrosis factor-alpha. Using a stringent binding assay, sialoadhesin-expressing monocytes adsorbed HIV-1 through interaction with the sialic acid residues on the viral envelope glycoprotein gp120. Furthermore, monocytes expressing sialoadhesin facilitated HIV-1 trans infection of permissive cells, which occurred in the absence of monocyte self-infection. CONCLUSIONS/SIGNIFICANCE: Increased sialoadhesin expression on CD14(+ monocytes occurred in response to HIV-1 infection with maximum expression associated with high viral load. We show that interferons induce sialoadhesin in primary CD14(+ monocytes, which is consistent with an antiviral response during viremia. Our findings suggest that circulating sialoadhesin-expressing monocytes are capable of binding HIV-1 and effectively delivering virus to target cells thereby enhancing the distribution of HIV-1. Sialoadhesin could disseminate HIV-1 to viral reservoirs during monocyte immunosurveillance or migration to sites of inflammation and then facilitate HIV-1 infection of permissive cells.

  2. Enhanced fatty acid oxidation in adipocytes and macrophages reduces lipid-induced triglyceride accumulation and inflammation.

    Science.gov (United States)

    Malandrino, Maria Ida; Fucho, Raquel; Weber, Minéia; Calderon-Dominguez, María; Mir, Joan Francesc; Valcarcel, Lorea; Escoté, Xavier; Gómez-Serrano, María; Peral, Belén; Salvadó, Laia; Fernández-Veledo, Sonia; Casals, Núria; Vázquez-Carrera, Manuel; Villarroya, Francesc; Vendrell, Joan J; Serra, Dolors; Herrero, Laura

    2015-05-01

    Lipid overload in obesity and type 2 diabetes is associated with adipocyte dysfunction, inflammation, macrophage infiltration, and decreased fatty acid oxidation (FAO). Here, we report that the expression of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme in mitochondrial FAO, is higher in human adipose tissue macrophages than in adipocytes and that it is differentially expressed in visceral vs. subcutaneous adipose tissue in both an obese and a type 2 diabetes cohort. These observations led us to further investigate the potential role of CPT1A in adipocytes and macrophages. We expressed CPT1AM, a permanently active mutant form of CPT1A, in 3T3-L1 CARΔ1 adipocytes and RAW 264.7 macrophages through adenoviral infection. Enhanced FAO in palmitate-incubated adipocytes and macrophages reduced triglyceride content and inflammation, improved insulin sensitivity in adipocytes, and reduced endoplasmic reticulum stress and ROS damage in macrophages. We conclude that increasing FAO in adipocytes and macrophages improves palmitate-induced derangements. This indicates that enhancing FAO in metabolically relevant cells such as adipocytes and macrophages may be a promising strategy for the treatment of chronic inflammatory pathologies such as obesity and type 2 diabetes.

  3. Morphine enhances HIV-1SF162-mediated neuron death and delays recovery of injured neurites.

    Directory of Open Access Journals (Sweden)

    Ruturaj R Masvekar

    Full Text Available HIV-1 enters the CNS soon after initial systemic infection; within the CNS parenchyma infected and/or activated perivascular macrophages, microglia and astrocytes release viral and cellular toxins that drive secondary toxicity in neurons and other cell types. Our previous work has largely modeled HIV-neuropathology using the individual viral proteins Tat or gp120, with murine striatal neurons as targets. To model disease processes more closely, the current study uses supernatant from HIV-1-infected cells. Supernatant from HIV-1SF162-infected differentiated-U937 cells (HIV+sup was collected and p24 level was measured by ELISA to assess the infection. Injection drug abuse is a significant risk factor for HIV-infection, and opiate drug abusers show increased HIV-neuropathology, even with anti-retroviral treatments. We therefore assessed HIV+sup effects on neuronal survival and neurite growth/pruning with or without concurrent exposure to morphine, an opiate that preferentially acts through µ-opioid receptors. Effects of HIV+sup ± morphine were assessed on neuronal populations, and also by time-lapse imaging of individual cells. HIV+sup caused dose-dependent toxicity over a range of p24 levels (10-500 pg/ml. Significant interactions occurred with morphine at lower p24 levels (10 and 25 pg/ml, and GSK3β was implicated as a point of convergence. In the presence of glia, selective neurotoxic measures were significantly enhanced and interactions with morphine were also augmented, perhaps related to a decreased level of BDNF. Importantly, the arrest of neurite growth that occurred with exposure to HIV+sup was reversible unless neurons were continuously exposed to morphine. Thus, while reducing HIV-infection levels may be protective, ongoing exposure to opiates may limit recovery. Opiate interactions observed in this HIV-infective environment were similar, though not entirely concordant, with Tat/gp120 interactions reported previously, suggesting

  4. A Novel Role for the Receptor of the Complement Cleavage Fragment C5a, C5aR1, in CCR5-Mediated Entry of HIV into Macrophages.

    Science.gov (United States)

    Moreno-Fernandez, Maria E; Aliberti, Julio; Groeneweg, Sander; Köhl, Jörg; Chougnet, Claire A

    2016-04-01

    The complement system is an ancient pattern recognition system that becomes activated during all stages of HIV infection. Previous studies have shown that C5a can enhance the infection of monocyte-derived macrophages and T cells indirectly through the production of interleukin (IL)-6 and tumor necrosis factor (TNF)-α and the attraction of dendritic cells. C5a exerts its multiple biologic functions mainly through activation of C5a receptor 1 (C5aR1). Here, we assessed the role of C5aR1 as an enhancer of CCR5-mediated HIV infection. We determined CCR5 and C5aR1 heterodimer formation in myeloid cells and the impact of C5aR1 blockade on HIV entry and genomic integration. C5aR1/CCR5 heterodimer formation was identified by immunoprecipitation and western blotting. THP-1 cells and monocyte-derived macrophages (MDM) were infected by R5 laboratory strains or HIV pseudotyped for the vesicular stomatitis virus (VSV) envelope. Levels of integrated HIV were measured by quantitative PCR after targeting of C5aR1 by a C5aR antagonist, neutralizing C5aR1 monoclonal antibody (mAb) or hC5a. C5aR1 was also silenced by specific siRNA prior to viral entry. We found that C5aR1 forms heterodimers with the HIV coreceptor CCR5 in myeloid cells. Targeting C5aR1 significantly decreased integration by R5 viruses but not by VSV-pseudotyped viruses, suggesting that C5aR1 is critical for viral entry. The level of inhibition achieved with C5aR1-blocking reagents was comparable to that of CCR5 antagonists. Mechanistically, C5aR1 targeting decreased CCR5 expression. MDM from CCR5Δ32 homozygous subjects expressed levels of C5aR1 similar to CCR5 WT individuals, suggesting that mere C5aR1 expression is not sufficient for HIV infection. HIV appeared to preferentially enter THP-1 cells expressing high levels of both C5aR1 and CCR5. Targeted reduction of C5aR1 expression in such cells reduced HIV infection by ~50%. Our data thus suggest that C5aR1 acts as an enhancer of CCR5-mediated HIV entry into

  5. Polysaccharide-rich fraction of Agaricus brasiliensis enhances the candidacidal activity of murine macrophages

    Directory of Open Access Journals (Sweden)

    Priscila Raquel Martins

    2008-05-01

    Full Text Available A polysaccharide-rich fraction (ATF of medicinal mushroom Agaricus brasiliensis was evaluated on the candidacidal activity, H2O2 and nitric oxide (NO production, and expression of mannose receptors by murine peritoneal macrophages. Mice received three intraperitoneal (i.p. injections of ATF and after 48 h their peritoneal resident macrophages were assayed against Candida albicans yeast forms. The treatment increased fungicidal activity and it was associated with higher levels of H2O2, whereas NO production was not affected. We also found that the treatment enhances mannose receptor expression by peritoneal macrophages, which are involved in the attachment and phagocytosis of non-opsonized microorganisms. Treatment of animals with ATF was able to enhance the clearance of C. albicans during the first 6 h after the experimental i.p. infection. Our results suggest that this extract can increase host resistance against some infectious agents through the stimulation of microbicidal activity of macrophages.

  6. HIV-1 inhibits phagocytosis and inflammatory cytokine responses of human monocyte-derived macrophages to P. falciparum infected erythrocytes.

    Directory of Open Access Journals (Sweden)

    Louise E Ludlow

    Full Text Available HIV-1 infection increases the risk and severity of malaria by poorly defined mechanisms. We investigated the effect of HIV-1(Ba-L infection of monocyte-derived macrophages (MDM on phagocytosis of opsonised P. falciparum infected erythrocytes (IE and subsequent proinflammatory cytokine secretion. Compared to mock-infected MDM, HIV-1 infection significantly inhibited phagocytosis of IE (median (IQR (10 (0-28 versus (34 (27-108; IE internalised/100 MDM; p = 0.001 and decreased secretion of IL-6 (1,116 (352-3,387 versus 1,552 (889-6,331; pg/mL; p = 0.0078 and IL-1β (16 (7-21 versus 33 (27-65; pg/mL; p = 0.0078. Thus inadequate phagocytosis and cytokine production may contribute to impaired control of malaria in HIV-1 infected individuals.

  7. Stimulation of alveolar macrophages by BCG vaccine enhances the process of lung fibrosis induced by bleomycin.

    Science.gov (United States)

    Chyczewska, E; Chyczewski, L; Bańkowski, E; Sułkowski, S; Nikliński, J

    1993-01-01

    It was found that the BCG vaccine injected subcutaneously to the rats enhances the process of lung fibrosis induced by bleomycin. Pretreatment of rats with this vaccine results in accumulation of activated macrophages in lung interstitium and in the bronchoalveolar spaces. It may be suggested that the activated macrophages release various cytokines which may stimulate the proliferation of fibroblasts and biosynthesis of extracellular matrix components.

  8. Evidence for predilection of macrophage infiltration patterns in the deeper midline and mesial temporal structures of the brain uniquely in patients with HIV-associated dementia

    Directory of Open Access Journals (Sweden)

    Hsu Kenneth

    2009-12-01

    Full Text Available Abstract Background HIV-1 penetrates the central nervous system, which is vital for HIV-associated dementia (HAD. But the role of cellular infiltration and activation together with HIV in the development of HAD is poorly understood. Methods To study activation and infiltration patterns of macrophages, CD8+ T cells in relation to HIV in diverse CNS areas of patients with and without dementia. 46 brain regions from two rapidly progressing severely demented patients and 53 regions from 4 HIV+ non-dementia patients were analyzed. Macrophage and CD8+ T cell infiltration of the CNS in relation to HIV was assessed using immuno-histochemical analysis with anti-HIV (P24, anti-CD8 and anti-CD68, anti-S-100A8 and granzyme B antibodies (cellular activation. Statistical analysis was performed with SPSS 12.0 with Student's t test and ANOVA. Results Overall, the patterns of infiltration of macrophages and CD8+ T cells were indiscernible between patients with and without dementia, but the co-localization of macrophages and CD8+ T cells along with HIV P24 antigen in the deeper midline and mesial temporal structures of the brain segregated the two groups. This predilection of infected macrophages and CD8+ T cells to the middle part of the brain was unique to both HAD patients, along with unique nature of provirus gag gene sequences derived from macrophages in the midline and mesial temporal structures. Conclusion Strong predilection of infected macrophages and CD8+ T cells was typical of the deeper midline and mesial temporal structures uniquely in HAD patients, which has some influence on neurocognitive impairment during HIV infection.

  9. Macrophagic enhancement in optical coherence tomography imaging by means of superparamagnetic iron oxide nanoparticles.

    Science.gov (United States)

    Gutiérrez-Chico, Juan Luis; Jaguszewski, Milosz; Comesaña-Hermo, Miguel; Correa-Duarte, Miguel Ángel; Mariñas-Pardo, Luis; Hermida-Prieto, Manuel

    2017-05-12

    The ability of optical coherence tomography (OCT) to visualise macrophages in vivo in coronary arteries is still controversial. We hypothesise that imaging of macrophages in OCT could be enhanced by means of superparamagnetic nanoparticles. We compared the optical backscattering and attenuation of cell pellets containing RAW 264.7 macrophages with those of macrophagic cell pellets labelled with very small superparamagnetic oxydised nanoparticles (VSOP) by means of light intensity analysis in OCT. The labelled macrophages were incubated with VSOP at a concentration of 1 mM Fe, corresponding to intracellular iron concentrations of 8.8 pg/cell. To study the effect of intracellular accumulation on the backscattering, VSOP dilutions without cells were also compared. OCT pullbacks of the PCR tubes containing the cell pellets were obtained and light intensity analysis was performed on raw OCT images in polar view, after normalisation by the backscattering of the PCR tube. The backscattering was estimated by the peak normalised intensity, whilst the attenuation was estimated by the number of pixels between the peak and the normalised intensity 1 (peak-to-one). VSOP-loaded macrophages have higher backscattering than the corresponding unlabelled macrophages (peak normalised intensity 6.30 vs. 3.15) with also slightly higher attenuation (peak-to-one 61 vs. 66 pixels). The backscattering of the nanoparticles in suspension was negligible in the light intensity analysis. VSOP increase significantly the optical backscattering of macrophages in the near-infrared region, with minimal increase in signal attenuation. This finding enables the enhancement of macrophages in conventional OCT imaging with an easily implementable methodology.

  10. Methamphetamine Enhances HIV-1 Infectivity in Monocyte Derived Dendritic Cells

    OpenAIRE

    2008-01-01

    The US is currently experiencing an epidemic of methamphetamine (Meth) use as a recreational drug. Recent studies also show a high prevalence of HIV-1 infection among Meth users. We report that Meth enhances HIV-1 infectivity of dendritic cells as measured by multinuclear activation of a galactosidase indicator (MAGI) cell assay, p24 assay, and LTR-RU5 amplification. Meth induces increased HIV-1 infection in association with an increase in the HIV-1 coreceptors, CXCR4 and CCR5, and infection ...

  11. The endoplasmic reticulum stress inducer thapsigargin enhances the toxicity of ZnO nanoparticles to macrophages and macrophage-endothelial co-culture.

    Science.gov (United States)

    Chen, Gui; Shen, Yuexin; Li, Xiyue; Jiang, Qin; Cheng, Shanshan; Gu, Yuxiu; Liu, Liangliang; Cao, Yi

    2017-03-01

    It was recently shown that exposure to ZnO nanoparticles (NPs) could induce endoplasmic reticulum (ER) stress both in vivo and in vitro, but the role of ER stress in ZnO NP induced toxicity remains unclear. Because macrophages are sensitive to ER stress, we hypothesized that stressing macrophages with ER stress inducer could enhance the toxicity of ZnO NPs. In this study, the effects of ER stress inducer thapsigargin (TG) on the toxicity of ZnO NPs to THP-1 macrophages were investigated. The results showed that TG enhanced ZnO NP induced cytotoxicity as revealed by water soluble tetrazolium-1 (WST-1) and neutral red uptake assays, but not lactate dehydrogenase (LDH) assay. ZnO NPs dose-dependently enhanced the accumulation of intracellular Zn ions without the induction of reactive oxygen species (ROS), and the presence of TG did not significantly affect these effects. In the co-culture, exposure of THP-1 macrophages in the upper chamber to ZnO NPs and TG significantly reduced the viability of human umbilical vein endothelial cells (HUVECs) in the lower chamber, but the release of tumor necrosis factor α (TNFα) was not induced. In summary, our data showed that stressing THP-1 macrophages with TG enhanced the cytotoxicity of ZnO NPs to macrophages and macrophage-endothelial co-cultures.

  12. The magnitude of HIV-1 resistance to the CCR5 antagonist maraviroc may impart a differential alteration in HIV-1 tropism for macrophages and T-cell subsets.

    Science.gov (United States)

    Flynn, Jacqueline K; Paukovics, Geza; Moore, Miranda S; Ellett, Anne; Gray, Lachlan R; Duncan, Renee; Salimi, Hamid; Jubb, Becky; Westby, Mike; Purcell, Damian F J; Lewin, Sharon R; Lee, Benhur; Churchill, Melissa J; Gorry, Paul R; Roche, Michael

    2013-07-20

    Human immunodeficiency virus type 1 (HIV-1) resistance to CCR5 antagonists, including maraviroc (MVC), results from alterations in the HIV-1 envelope glycoproteins (Env) enabling recognition of antagonist-bound CCR5. Here, we characterized tropism alterations for CD4+ T-cell subsets and macrophages by Envs from two subjects who developed MVC resistance in vivo, which displayed either relatively efficient or inefficient recognition of MVC-bound CCR5. We show that MVC-resistant Env with efficient recognition of drug-bound CCR5 displays a tropism shift for CD4+ T-cell subsets associated with increased infection of central memory T-cells and reduced infection of effector memory and transitional memory T-cells, and no change in macrophage infectivity. In contrast, MVC-resistant Env with inefficient recognition of drug-bound CCR5 displays no change in tropism for CD4+ T-cell subsets, but exhibits a significant reduction in macrophage infectivity. The pattern of HIV-1 tropism alterations for susceptible cells may therefore be variable in subjects with MVC resistance.

  13. Dysregulation of alveolar macrophage PPARγ, NADPH oxidases and TGFβsub>1sub> in otherwise healthy HIV-infected individuals.

    Science.gov (United States)

    Yeligar, Samantha M; Ward, Janine M; Harris, Frank L; Brown, Lou Ann; Guidot, David; Cribbs, Sushma K

    2017-03-17

    Rationale: Despite antiretroviral therapy (ART), respiratory infections increase mortality in individuals living with chronic human immunodeficiency virus (HIV) infection. In experimental and clinical studies of chronic HIV infection, alveolar macrophages (AMs) exhibit impaired phagocytosis and bacterial clearance. Peroxisome proliferator-activated receptor (PPAR)γ, NADPH oxidase (Nox) isoforms Nox1, Nox2, Nox4, and transforming growth factor-beta 1 (TGFβsub>1sub>) are critical mediators of AM oxidative stress and phagocytic dysfunction. Therefore, we hypothesized that HIV alters AM expression of these targets, resulting in chronic lung oxidative stress and subsequent immune dysfunction. Methods: A cross-sectional study of HIV-infected (n=22) and HIV-uninfected (n=6) subjects was conducted. Bronchoalveolar lavage (BAL) was performed and AMs were isolated. Lung Hsub>2sub>Osub>2sub> generation was determined by measuring Hsub>2sub>Osub>2sub> in the BAL fluid. In AMs, PPARγ, Nox1, Nox2, Nox4, and TGFβsub>1sub> mRNA (qRT-PCR) and protein (fluorescent immunomicroscopy) levels were assessed. Results: Compared to HIV-uninfected (control) subjects, HIV-infected subjects were relatively older and the majority were African American; ~86% were on ART and their median CD4 count was 445 with a median viral load of 0 log copies/mL. HIV infection was associated with increased Hsub>2sub>Osub>2sub> in the BAL, decreased AM mRNA and protein levels of PPARγ, and increased AM mRNA and protein levels of Nox1, Nox2, Nox4, and TGFβsub>1sub>. Conclusions: PPARγ attenuation and increases in Nox1, Nox2, Nox4, and TGFβsub>1sub> contribute to AM oxidative stress and immune dysfunction in the AMs of otherwise healthy HIV-infected subjects. These findings provide novel insights into the molecular mechanisms by which HIV increases susceptibility to pulmonary infections.

  14. Type I interferons and interferon regulatory factors regulate TNF-related apoptosis-inducing ligand (TRAIL in HIV-1-infected macrophages.

    Directory of Open Access Journals (Sweden)

    Yunlong Huang

    Full Text Available TNF-related apoptosis-inducing ligand (TRAIL is a member of the TNF family that participates in HIV-1 pathogenesis through the depletion of CD4+ T cells. TRAIL is expressed on the cell membrane of peripheral immune cells and can be cleaved into a soluble, secreted form. The regulation of TRAIL in macrophages during HIV-1 infection is not completely understood. In this study, we investigated the mechanism(s of TRAIL expression in HIV-1-infected macrophages, an important cell type in HIV-1 pathogenesis. A human monocyte-derived macrophage (MDM culture system was infected with macrophage-tropic HIV-1(ADA, HIV-1(JR-FL, or HIV-1(BAL strains. TRAIL, predominantly the membrane-bound form, increased following HIV-1 infection. We found that HIV-1 infection also induced interferon regulatory factor (IRF-1, IRF-7 gene expression and signal transducers and activators of transcription 1 (STAT1 activation. Small interfering RNA knockdown of IRF-1 or IRF-7, but not IRF-3, reduced STAT1 activation and TRAIL expression. Furthermore, the upregulation of IRF-1, IRF-7, TRAIL, and the activation of STAT1 by HIV-1 infection was reduced by the treatment of type I interferon (IFN-neutralizing antibodies. In addition, inhibition of STAT1 by fludarabine abolished IRF-1, IRF-7, and TRAIL upregulation. We conclude that IRF-1, IRF-7, type I IFNs, and STAT1 form a signaling feedback loop that is critical in regulating TRAIL expression in HIV-1-infected macrophages.

  15. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling

    Science.gov (United States)

    Xu, Li-Hui; Liang, Yi-Dan; Wei, Hong-Xia; Hu, Bo; Pan, Hao; Zha, Qing-Bing; Ouyang, Dong-Yun; He, Xian-Hui

    2017-01-01

    The isoquinoline alkaloid berberine possesses many pharmacological activities including antibacterial infection. Although the direct bactericidal effect of berberine has been documented, its influence on the antibacterial functions of macrophages is largely unknown. As inflammasome activation in macrophages is important for the defense against bacterial infection, we aimed to investigate the influence of berberine on inflammasome activation in murine macrophages. Our results showed that berberine significantly increased ATP-induced inflammasome activation as reflected by enhanced pyroptosis as well as increased release of caspase-1p10 and mature interleukin-1β (IL-1β) in macrophages. Such effects of berberine could be suppressed by AMP-activated protein kinase (AMPK) inhibitor compound C or by knockdown of AMPKα expression, indicating the involvement of AMPK signaling in this process. In line with increased IL-1β release, the ability of macrophages to kill engulfed bacteria was also intensified by berberine. This was corroborated by the in vivo finding that the peritoneal live bacterial load was decreased by berberine treatment. Moreover, berberine administration significantly improved survival of bacterial infected mice, concomitant with increased IL-1β levels and elevated neutrophil recruitment in the peritoneal cavity. Collectively, these data suggested that berberine could enhance bacterial killing by augmenting inflammasome activation in macrophages through AMPK signaling. PMID:27980220

  16. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    Science.gov (United States)

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival.

  17. Exercise enhances wound healing and prevents cancer progression during aging by targeting macrophage polarity.

    Science.gov (United States)

    Goh, Jorming; Ladiges, Warren C

    2014-07-01

    Physical activity, which can include regular and repetitive exercise training, has been shown to decrease the incidence of age-related diseases. Aging is characterized by aberrant immune responses, including impaired wound healing and increased cancer risk. The behavior and polarized phenotype of tissue macrophages are distinct between young and old organisms. The balance of M1 and M2 macrophages is altered in the aged tissue microenvironment, with a tilt towards an M2-dominant macrophage population, as well as its associated signaling pathways. These M2-type responses may result in unresolved inflammation and create an environment that impairs wound healing and is favorable for cancer growth. We discuss the concept that exercise training can improve the regulation of macrophage polarization and normalize the inflammatory process, and thereby exert anticancer effects and enhance wound healing in older humans.

  18. Immune modulation with sulfasalazine attenuates immunopathogenesis but enhances macrophage-mediated fungal clearance during Pneumocystis pneumonia.

    Directory of Open Access Journals (Sweden)

    Jing Wang

    Full Text Available Although T cells are critical for host defense against respiratory fungal infections, they also contribute to the immunopathogenesis of Pneumocystis pneumonia (PcP. However, the precise downstream effector mechanisms by which T cells mediate these diverse processes are undefined. In the current study the effects of immune modulation with sulfasalazine were evaluated in a mouse model of PcP-related Immune Reconstitution Inflammatory Syndrome (PcP-IRIS. Recovery of T cell-mediated immunity in Pneumocystis-infected immunodeficient mice restored host defense, but also initiated the marked pulmonary inflammation and severe pulmonary function deficits characteristic of IRIS. Sulfasalazine produced a profound attenuation of IRIS, with the unexpected consequence of accelerated fungal clearance. To determine whether macrophage phagocytosis is an effector mechanism of T cell-mediated Pneumocystis clearance and whether sulfasalazine enhances clearance by altering alveolar macrophage phagocytic activity, a novel multispectral imaging flow cytometer-based method was developed to quantify the phagocytosis of Pneumocystis in vivo. Following immune reconstitution, alveolar macrophages from PcP-IRIS mice exhibited a dramatic increase in their ability to actively phagocytose Pneumocystis. Increased phagocytosis correlated temporally with fungal clearance, and required the presence of CD4(+ T cells. Sulfasalazine accelerated the onset of the CD4(+ T cell-dependent alveolar macrophage phagocytic response in PcP-IRIS mice, resulting in enhanced fungal clearance. Furthermore, sulfasalazine promoted a TH2-polarized cytokine environment in the lung, and sulfasalazine-enhanced phagocytosis of Pneumocystis was associated with an alternatively activated alveolar macrophage phenotype. These results provide evidence that macrophage phagocytosis is an important in vivo effector mechanism for T cell-mediated Pneumocystis clearance, and that macrophage phenotype can be altered

  19. Soluble factor from murine bladder tumor-2 cell elevates nitric oxide production in macrophages and enhances the taxol-mediated macrophage cytotoxicity on tumor cells.

    Science.gov (United States)

    Choi, Suck-Chei; Oh, Hyun-Mee; Park, Jae-Sung; Han, Weon-Cheol; Yoon, Kwon-Ha; Kim, Tae-Hyeon; Yun, Ki-Jung; Kim, Eun-Cheol; Nah, Yong-Ho; Cha, Young-Nam; Chung, Hun-Taeg; Jun, Chang-Duk

    2003-01-01

    The therapeutic mechanism of taxol is believed to reside primarily in its ability to stabilize microtubules and prevent cell progression through mitosis. Taxol also can activate macrophage-mediated antitumor mechanism through a nitric oxide (NO)-dependent pathway. To address whether any mechanisms account for superficial urinary bladder tumor cell killing, we evaluated the effects of taxol on the growth and viability of murine bladder tumor-2 (MBT-2) cells in vitro, both in the absence and presence of murine macrophages. In addition, we evaluated whether a soluble factor generated from MBT-2 cells could modulate the antitumor activity of the taxol-activated macrophages. Although taxol inhibited the growth of MBT-2 cells, it did not kill the tumor cells. However, preincubation of macrophages with taxol significantly decreased the viability of MBT-2 cells. Secretion of NO correlated with MBT-2 cell killing, and the activated macrophages failed to kill tumor cell targets in the presence of NG-monomethyl-L-arginine, a competitive inhibitor of NO synthase. By the co-culture of macrophages and MBT-2 cells, untreated macrophages also released modest amount of NO and this was synergistically augmented by the treatment with taxol, indicating that MBT-2 tumor cells released some unknown factor that activated the macrophages and enhanced NO production. We named this factor the tumor-derived macrophage activating factor (TMAF). The TMAF-mediated activation of macrophages to enhance the NO production was not blocked by treatment of macrophages with oxidized low-density lipoprotein (Ox-LDL), implying that the scavenger receptor of macrophages is not involved. Sodium nitroprusside (SNP), an NO donor given to the MBT-2 cells, increased the activities of c-Jun N-terminal kinase and caspase-3 in MBT-2 cells and associated with nucleosomal fragmentation or apoptosis, whereas taxol had no direct effect on these parameters. Collectively, our results strongly suggest that taxol kills

  20. Genome-wide association study identifies single nucleotide polymorphism in DYRK1A associated with replication of HIV-1 in monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Sebastiaan M Bol

    Full Text Available BACKGROUND: HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART, macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages. METHODOLOGY/PRINCIPAL FINDINGS: Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96 or high (n = 96 p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16 × 10(-5. While the association was not genome-wide significant (p<1 × 10(-7, we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034. Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84 × 10(-6. In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the kinase

  1. SAMHD1 enhances nucleoside-analogue efficacy against HIV-1 in myeloid cells

    Science.gov (United States)

    Ordonez, Paula; Kunzelmann, Simone; Groom, Harriet C. T.; Yap, Melvyn W.; Weising, Simon; Meier, Chris; Bishop, Kate N.; Taylor, Ian A.; Stoye, Jonathan P.

    2017-01-01

    SAMHD1 is an intracellular enzyme that specifically degrades deoxynucleoside triphosphates into component nucleoside and inorganic triphosphate. In myeloid-derived dendritic cells and macrophages as well as resting T-cells, SAMHD1 blocks HIV-1 infection through this dNTP triphosphohydrolase activity by reducing the cellular dNTP pool to a level that cannot support productive reverse transcription. We now show that, in addition to this direct effect on virus replication, manipulating cellular SAMHD1 activity can significantly enhance or decrease the anti-HIV-1 efficacy of nucleotide analogue reverse transcription inhibitors presumably as a result of modulating dNTP pools that compete for recruitment by viral polymerases. Further, a variety of other nucleotide-based analogues, not normally considered antiretrovirals, such as the anti-herpes drugs Aciclovir and Ganciclovir and the anti-cancer drug Clofarabine are now revealed as potent anti-HIV-1 agents, under conditions of low dNTPs. This in turn suggests novel uses for nucleotide analogues to inhibit HIV-1 in differentiated cells low in dNTPs. PMID:28220857

  2. Enhanced rifampicin delivery to alveolar macrophages by solid lipid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chuan Junlan [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China); Li Yanzhen [Tianjin Institute of Pharmaceutical Research, State Key Laboratory of Drug Delivery Technology and Pharmacokinetics (China); Yang Likai; Sun Xun [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China); Zhang Qiang [Peking University, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences (China); Gong Tao, E-mail: gongtaoy@126.com; Zhang Zhirong, E-mail: zrzzl@vip.sina.com [West China School of Pharmacy, Sichuan University, Key Laboratory of Drug Targeting and Drug Delivery System, Ministry of Education (China)

    2013-05-15

    The present study aimed at developing a drug delivery system targeting the densest site of tuberculosis infection, the alveolar macrophages (AMs). Rifampicin (RFP)-loaded solid lipid nanoparticles (RFP-SLNs) with an average size of 829.6 {+-} 16.1 nm were prepared by a modified lipid film hydration method. The cytotoxicity of RFP-SLNs to AMs and alveolar epithelial type II cells (AECs) was examined using MTT assays. The viability of AMs and AECs was above 80 % after treatment with RFP-SLNs, which showed low toxicity to both AMs and AECs. Confocal Laser Scanning Microscopy was employed to observe the interaction between RFP-SLNs and both AMs and AECs. After incubating the cells with RFP-SLNs for 2 h, the fluorescent intensity in AMs was more and remained longer (from 0.5 to 12 h) when compared with that in AECs (from 0.5 to 8 h). In vitro uptake characteristics of RFP-SLNs in AMs and AECs were also investigated by detection of intracellular RFP by High performance liquid chromatography. Results showed that RFP-SLNs delivered markedly higher RFP into AMs (691.7 ng/mg in cultured AMs, 662.6 ng/mg in primary AMs) than that into AECs (319.2 ng/mg in cultured AECs, 287.2 ng/mg in primary AECs). Subsequently, in vivo delivery efficiency and the selectivity of RFP-SLNs were further verified in Sprague-Dawley rats. Under pulmonary administration of RFP-SLNs, the amount of RFP in AMs was significantly higher than that in AECs at each time point. Our results demonstrated that solid lipid nanoparticles are a promising strategy for the delivery of rifampicin to alveolar macrophages selectively.

  3. A novel strain of Bacteroides fragilis enhances phagocytosis and polarises M1 macrophages

    Science.gov (United States)

    Deng, Huimin; Li, Zhengchao; Tan, Yafang; Guo, Zhaobiao; Liu, Yangyang; Wang, Ye; Yuan, Yuan; Yang, Ruifu; Bi, Yujing; Bai, Yang; Zhi, Fachao

    2016-01-01

    Commensal Bacteroides fragilis possesses immune-regulatory characteristics. Consequently, it has been proposed as a potential novel probiotic because of its therapeutic effects on immune imbalance, mental disorders and inflammatory diseases. Macrophages play a central role in the immune response, developing either a classical-M1 or an alternative-M2 phenotype after stimulation with various signals. The interactions between macrophages and B. fragilis, however, remain to be defined. Here, a new isolate of B. fragilis, ZY-312, was shown to possess admirable properties, including tolerance to simulated gastric fluid, intestinal fluid and ox bile, and good safety (MOI = 100, 200) and adherent ability (MOI = 100) to LoVo cells. Isolate ZY-312 cell lysate promoted phagocytosis of fluorescent microspheres and pathogenic bacteria in bone marrow-derived macrophage (BMDM) cells. Gene expression of IL-12, iNOS and IL-1β in BMDM cells was increased after treatment with ZY-312, indicating the induction of M1 macrophages, consistent with enhanced secretion of NO. Cell surface expression of CD80 and CD86 was also increased. This study is the first to demonstrate that B. fragilis enhances the phagocytic functions of macrophages, polarising them to an M1 phenotype. Our findings provide insight into the close relationship between B. fragilis and the innate immune system. PMID:27381366

  4. Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure.

    Science.gov (United States)

    Jessop, Forrest; Hamilton, Raymond F; Rhoderick, Joseph F; Shaw, Pamela K; Holian, Andrij

    2016-10-15

    Autophagy is an important metabolic mechanism that can promote cellular survival following injury. The specific contribution of autophagy to silica-induced inflammation and disease is not known. The objective of these studies was to determine the effects of silica exposure on the autophagic pathway in macrophages, as well as the general contribution of autophagy in macrophages to inflammation and disease. Silica exposure enhanced autophagic activity in vitro in Bone Marrow derived Macrophages and in vivo in Alveolar Macrophages isolated from silica-exposed mice. Impairment of autophagy in myeloid cells in vivo using Atg5(fl/fl)LysM-Cre(+) mice resulted in enhanced cytotoxicity and inflammation after silica exposure compared to littermate controls, including elevated IL-18 and the alarmin HMGB1 in the whole lavage fluid. Autophagy deficiency caused some spontaneous inflammation and disease. Greater silica-induced acute inflammation in Atg5(fl/fl)LysM-Cre(+) mice correlated with increased fibrosis and chronic lung disease. These studies demonstrate a critical role for autophagy in suppressing silica-induced cytotoxicity and inflammation in disease development. Furthermore, this data highlights the importance of basal autophagy in macrophages and other myeloid cells in maintaining lung homeostasis.

  5. Glycoengineering of therapeutic antibodies enhances monocyte/macrophage-mediated phagocytosis and cytotoxicity.

    Science.gov (United States)

    Herter, Sylvia; Birk, Martina C; Klein, Christian; Gerdes, Christian; Umana, Pablo; Bacac, Marina

    2014-03-01

    Therapeutic Abs possess several clinically relevant mechanisms of action including perturbation of tumor cell signaling, activation of complement-dependent cytotoxicity, Ab-dependent cellular cytotoxicity (ADCC), Ab-dependent cellular phagocytosis (ADCP), and induction of adaptive immunity. In view of the important role of phagocytic lineage cells in the mechanism of action of therapeutic Abs, we analyzed FcγR receptor-dependent effector functions of monocytes and macrophages triggered by glycoengineered (GE) Abs (having enhanced FcγRIIIa [CD16a] binding affinity) versus their wild-type (WT) counterparts under different experimental conditions. We first defined the precise FcγR repertoire on classical and nonclassical intermediate monocytes--M1 and M2c macrophage populations. We further show that WT and GE Abs display comparable binding and induce similar effector functions (ADCC and ADCP) in the absence of nonspecific, endogenous IgGs. However, in the presence of these IgGs (i.e., in a situation that more closely mimics physiologic conditions), GE Abs display significantly superior binding and promote stronger monocyte and macrophage activity. These data show that in addition to enhancing CD16a-dependent NK cell cytotoxicity, glycoengineering also enhances monocyte and macrophage phagocytic and cytotoxic activities through enhanced binding to CD16a under conditions that more closely resemble the physiologic setting.

  6. Platelets Mediate Host Defense against Staphylococcus aureus through Direct Bactericidal Activity and by Enhancing Macrophage Activities.

    Science.gov (United States)

    Ali, Ramadan A; Wuescher, Leah M; Dona, Keith R; Worth, Randall G

    2017-01-01

    Platelets are the chief effector cells in hemostasis. However, recent evidence suggests they have multiple roles in host defense against infection. Reports by us and others showed that platelets functionally contribute to protection against Staphylococcus aureus infection. In the current study, the capacity of mouse platelets to participate in host defense against S. aureus infection was determined by assessing two possibilities. First, we determined the ability of platelets to kill S. aureus directly; and, second, we tested the possibility that platelets enhance macrophage phagocytosis and intracellular killing of S. aureus In this study we report evidence in support of both mechanisms. Platelets effectively killed two different strains of S. aureus. A clinical isolate of methicillin-resistant S. aureus was killed by platelets (>40% killing in 2 h) in a thrombin-dependent manner whereas a methicillin-sensitive strain was killed to equal extent but did not require thrombin. Interestingly, thrombin-stimulated platelets also significantly enhanced peritoneal macrophage phagocytosis of both methicillin-resistant S. aureus and methicillin-sensitive S. aureus by >70%, and restricted intracellular growth by >40%. Enhancement of macrophage anti-S. aureus activities is independent of contact with platelets but is mediated through releasable products, namely IL-1β. These data confirm our hypothesis that platelets participate in host defense against S. aureus both through direct killing of S. aureus and enhancing the antimicrobial function of macrophages in protection against S. aureus infection. Copyright © 2016 by The American Association of Immunologists, Inc.

  7. Cold Atmospheric Plasma Inhibits HIV-1 Replication in Macrophages by Targeting Both the Virus and the Cells

    Science.gov (United States)

    Volotskova, Olga; Dubrovsky, Larisa; Keidar, Michael; Bukrinsky, Michael

    2016-01-01

    Cold atmospheric plasma (CAP) is a specific type of partially ionized gas that is less than 104°F at the point of application. It was recently shown that CAP can be used for decontamination and sterilization, as well as anti-cancer treatment. Here, we investigated the effects of CAP on HIV-1 replication in monocyte-derived macrophages (MDM). We demonstrate that pre-treatment of MDM with CAP reduced levels of CD4 and CCR5, inhibiting virus-cell fusion, viral reverse transcription and integration. In addition, CAP pre-treatment affected cellular factors required for post-entry events, as replication of VSV-G-pseudotyped HIV-1, which by-passes HIV receptor-mediated fusion at the plasma membrane during entry, was also inhibited. Interestingly, virus particles produced by CAP-treated cells had reduced infectivity, suggesting that the inhibitory effect of CAP extended to the second cycle of infection. These results demonstrate that anti-HIV activity of CAP involves the effects on target cells and the virus, and suggest that CAP may be considered for potential application as an anti-HIV treatment. PMID:27783659

  8. Enhanced alveolar monocytic phagocyte (macrophage) proliferation in tobacco and marijuana smokers

    Energy Technology Data Exchange (ETDEWEB)

    Barbers, R.G.; Evans, M.J.; Gong, H. Jr.; Tashkin, D.P. (Univ. of California-Los Angeles School of Medicine (USA))

    1991-05-01

    We tested the hypothesis that enhanced cell division accounted for the augmented numbers of monocytic phagocytes with characteristics attributed to alveolar macrophages (AM) found in the lungs of habitual tobacco (T) and marijuana (M) smokers. The monocytic phagocytes, that is, alveolar macrophages, were obtained by bronchoalveolar lavage (BAL) from 12 nonsmoking subjects; 10 subjects who smoked T only (TS); 13 subjects who smoked M only (MS); and 6 smokers of both T and M (MTS). The replication of these cells was determined by measuring the incorporation of ({sup 3}H)thymidine into the DNA of dividing cells and visually counting 2,000 cells on autoradiographically prepared cytocentrifuge cell preparations. This study demonstrated that the number of ({sup 3}H)thymidine-labeled monocytic phagocytes with characteristics of alveolar macrophages from either TS or MS have a higher proliferative index compared to cells (macrophages) from nonsmokers, p less than 0.05 by one-way ANOVA. The total number of BAL macrophages that are in mitosis in TS (17.90 +/- 4.50 labeled AM x 10(3)/ml) or MTS (10.50 +/- 4.20 labeled AM x 10(3)/ml) are 18- and 10-fold greater, respectively, than the number obtained from nonsmokers (1.01 +/- 0.18 labeled AM x 10(3)/ml). Interestingly, the number of ({sup 3}H)thymidine-labeled macrophages from MS (2.90 +/- 0.66 labeled AM x 10(3)/ml) are also greater than the number obtained from nonsmokers, although this is not statistically significant. The stimulus augmenting alveolar macrophage replication is as yet unknown but may likely be found in the T or M smoke.

  9. Plasma gelsolin improves lung host defense against pneumonia by enhancing macrophage NOS3 function.

    Science.gov (United States)

    Yang, Zhiping; Chiou, Terry Ting-Yu; Stossel, Thomas P; Kobzik, Lester

    2015-07-01

    Plasma gelsolin (pGSN) functions as part of the "extracellular actin-scavenging system," but its potential to improve host defense against infection has not been studied. In a mouse model of primary pneumococcal pneumonia, recombinant human pGSN (rhu-pGSN) caused enhanced bacterial clearance, reduced acute inflammation, and improved survival. In vitro, rhu-pGSN rapidly improved lung macrophage uptake and killing of bacteria (Streptococcus pneumoniae, Escherichia coli, and Francisella tularensis). pGSN triggers activating phosphorylation (Ser(1177)) of macrophage nitric oxide synthase type III (NOS3), an enzyme with important bactericidal functions in lung macrophages. rhu-pGSN failed to enhance bacterial killing by NOS3(-/-) macrophages in vitro or bacterial clearance in NOS3(-/-) mice in vivo. Prophylaxis with immunomodulators may be especially relevant for patients at risk for secondary bacterial pneumonia, e.g., after influenza. Treatment of mice with pGSN challenged with pneumococci on postinfluenza day 7 (the peak of enhanced susceptibility to secondary infection) caused a ∼15-fold improvement in bacterial clearance, reduced acute neutrophilic inflammation, and markedly improved survival, even without antibiotic therapy. pGSN is a potential immunomodulator for improving lung host defense against primary and secondary bacterial pneumonia. Copyright © 2015 the American Physiological Society.

  10. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae, E-mail: chidkim@pusan.ac.kr

    2012-04-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  11. Variation in HIV-1 R5 macrophage-tropism correlates with sensitivity to reagents that block envelope: CD4 interactions but not with sensitivity to other entry inhibitors

    Directory of Open Access Journals (Sweden)

    Simmonds Peter

    2008-01-01

    Full Text Available Abstract Background HIV-1 R5 viruses cause most of the AIDS cases worldwide and are preferentially transmitted compared to CXCR4-using viruses. Furthermore, R5 viruses vary extensively in capacity to infect macrophages and highly macrophage-tropic variants are frequently identified in the brains of patients with dementia. Here, we investigated the sensitivity of R5 envelopes to a range of inhibitors and antibodies that block HIV entry. We studied a large panel of R5 envelopes, derived by PCR amplification without culture from brain, lymph node, blood and semen. These R5 envelopes conferred a wide range of macrophage tropism and included highly macrophage-tropic variants from brain and non-macrophage-tropic variants from lymph node. Results R5 macrophage-tropism correlated with sensitivity to inhibition by reagents that inhibited gp120:CD4 interactions. Thus, increasing macrophage-tropism was associated with increased sensitivity to soluble CD4 and to IgG-CD4 (PRO 542, but with increased resistance to the anti-CD4 monoclonal antibody (mab, Q4120. These observations were highly significant and are consistent with an increased affinity of envelope for CD4 for macrophage-tropic envelopes. No overall correlations were noted between R5 macrophage-tropism and sensitivity to CCR5 antagonists or to gp41 specific reagents. Intriguingly, there was a relationship between increasing macrophage-tropism and increased sensitivity to the CD4 binding site mab, b12, but decreased sensitivity to 2G12, a mab that binds a glycan complex on gp120. Conclusion Variation in R5 macrophage-tropism is caused by envelope variation that predominantly influences sensitivity to reagents that block gp120:CD4 interactions. Such variation has important implications for therapy using viral entry inhibitors and for the design of envelope antigens for vaccines.

  12. Genome-wide innate immune responses in HIV-1-infected macrophages are preserved despite attenuation of the NF-kappa B activation pathway.

    Science.gov (United States)

    Noursadeghi, Mahdad; Tsang, Jhen; Miller, Robert F; Straschewski, Sarah; Kellam, Paul; Chain, Benjamin M; Katz, David R

    2009-01-01

    Macrophages contribute to HIV-1 infection at many levels. They provide permissive cells at the site of inoculation, augment virus transfer to T cells, generate long-lived viral reservoirs, and cause bystander cell apoptosis. A body of evidence suggests that the role of macrophages in cellular host defense is also compromised by HIV-1 infection. In this respect, macrophages are potent cells of the innate immune system that initiate and regulate wide-ranging immunological responses. This study focuses on the effect of HIV-1 infection on innate immune responses by macrophages at the level of signal transduction, whole genome transcriptional profiling, and cytokine secretion. We show that in an ex vivo model, M-CSF-differentiated monocyte-derived macrophages uniformly infected with replicating CCR5-tropic HIV-1, without cytopathic effect, exhibit selective attenuation of the NF-kappaB activation pathway in response to TLR4 and TLR2 stimulation. However, functional annotation clustering analysis of genome-wide transcriptional responses to LPS stimulation suggests substantial preservation of gene expression changes at the systems level, with modest attenuation of a subset of up-regulated LPS-responsive genes, and no effect on a selection of inflammatory cytokine responses at the protein level. These results extend existing reports of inhibitory interactions between HIV-1 accessory proteins and NF-kappaB signaling pathways, and whole genome expression profiling provides comprehensive assessment of the consequent effects on immune response gene expression. Unexpectedly, our data suggest innate immune responses are broadly preserved with limited exceptions, and pave the way for further study of the complex relationship between HIV-1 and immunological pathways within macrophages.

  13. Nigella sativa seed extract: 1. Enhancement of sheep macrophage immune functions in vitro.

    Science.gov (United States)

    Elmowalid, Gamal; Amar, Ahmad M; Ahmad, Adel Attia M

    2013-10-01

    Nigella sativa (N. sativa) seed, Black cumin, immunomodulatory activity has been investigated in human and mice. Little is known about the immunomodulatory effect of Nigella sativa (N. sativa) seed extract on animals' immune cells, specifically, antigen presenting cells such as macrophages. This study focused on the immunomodulatory effect of N. sativa seed extract on sheep macrophage functions in vitro. Sheep peripheral blood monocytes were isolated and derived to macrophages (MDM). The MDM were cultured with N. sativa seed extract and their morphological changes, phagocytic activity, nitric oxide production, and microbicidal activity were investigated. Marked morphological changes were observed in MDM cultured with N. sativa seed extract including cell size enlargement; increase in both cytoplasmic space and cytoplasmic granules. Significant increases in phagocytic activity to Candida albicans yeast and in number of yeast engulfed per individual MDM were observed in cells cultured with seed extract. MDM capacity to produce nitric oxide was higher in the culture media of the seed extract-cultured cells compared to the control. Interestingly, prominent enhancement in MDM microbicidal activity to yeast or bacteria was observed in MDM cultured with N. sativa seed extract confirming the potent immunostimulatory effect of the extract. From this study, it could be concluded that N. sativa seed extract can enhance macrophages' important innate immune functions that could control infectious diseases and regulate adaptive immunity.

  14. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing.

    Directory of Open Access Journals (Sweden)

    Liwen Chen

    Full Text Available Bone marrow derived mesenchymal stem cells (BM-MSCs have been shown to enhance wound healing; however, the mechanisms involved are barely understood. In this study, we examined paracrine factors released by BM-MSCs and their effects on the cells participating in wound healing compared to those released by dermal fibroblasts. Analyses of BM-MSCs with Real-Time PCR and of BM-MSC-conditioned medium by antibody-based protein array and ELISA indicated that BM-MSCs secreted distinctively different cytokines and chemokines, such as greater amounts of VEGF-alpha, IGF-1, EGF, keratinocyte growth factor, angiopoietin-1, stromal derived factor-1, macrophage inflammatory protein-1alpha and beta and erythropoietin, compared to dermal fibroblasts. These molecules are known to be important in normal wound healing. BM-MSC-conditioned medium significantly enhanced migration of macrophages, keratinocytes and endothelial cells and proliferation of keratinocytes and endothelial cells compared to fibroblast-conditioned medium. Moreover, in a mouse model of excisional wound healing, where concentrated BM-MSC-conditioned medium was applied, accelerated wound healing occurred compared to administration of pre-conditioned or fibroblast-conditioned medium. Analysis of cell suspensions derived from the wound by FACS showed that wounds treated with BM-MSC-conditioned medium had increased proportions of CD4/80-positive macrophages and Flk-1-, CD34- or c-kit-positive endothelial (progenitor cells compared to wounds treated with pre-conditioned medium or fibroblast-conditioned medium. Consistent with the above findings, immunohistochemical analysis of wound sections showed that wounds treated with BM-MSC-conditioned medium had increased abundance of macrophages. Our results suggest that factors released by BM-MSCs recruit macrophages and endothelial lineage cells into the wound thus enhancing wound healing.

  15. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption.

    Science.gov (United States)

    He, D; Kou, X; Luo, Q; Yang, R; Liu, D; Wang, X; Song, Y; Cao, H; Zeng, M; Gan, Y; Zhou, Y

    2015-01-01

    Mechanical force-induced orthodontic root resorption is a major clinical challenge in orthodontic treatment. Macrophages play an important role in orthodontic root resorption, but the underlying mechanism remains unclear. In this study, we examined the mechanism by which the ratio of M1 to M2 macrophage polarization affects root resorption during orthodontic tooth movement. Root resorption occurred when nickel-titanium coil springs were applied on the upper first molars of rats for 3 to 14 d. Positively stained odontoclasts or osteoclasts with tartrate-resistant acid phosphatase were found in resorption areas. Meanwhile, M1-like macrophages positive for CD68 and inducible nitric oxide synthase (iNOS) persistently accumulated on the compression side of periodontal tissues. In addition, the expressions of the M1 activator interferon-γ and the M1-associated pro-inflammatory cytokine tumor necrosis factor (TNF)-α were upregulated on the compression side of periodontal tissues. When the coil springs were removed at the 14th day after orthodontic force application, root resorption was partially rescued. The number of CD68(+)CD163(+) M2-like macrophages gradually increased on the compression side of periodontal tissues. The levels of M2 activator interleukin (IL)-4 and the M2-associated anti-inflammatory cytokine IL-10 also increased. Systemic injection of the TNF-α inhibitor etanercept or IL-4 attenuated the severity of root resorption and decreased the ratio of M1 to M2 macrophages. These data imply that the balance between M1 and M2 macrophages affects orthodontic root resorption. Root resorption was aggravated by an enhanced M1/M2 ratio but was partially rescued by a reduced M1/M2 ratio.

  16. Noninvasive detection of macrophages in atherosclerotic lesions by computed tomography enhanced with PEGylated gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Qin J

    2014-12-01

    Full Text Available Jinbao Qin,1,* Chen Peng,2,* Binghui Zhao,2,* Kaichuang Ye,1 Fukang Yuan,1 Zhiyou Peng,1 Xinrui Yang,1 Lijia Huang,1 Mier Jiang,1 Qinghua Zhao,3 Guangyu Tang,2 Xinwu Lu1,4 1Department of Vascular Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai JiaoTong University, School of Medicine; 2Department of Radiology, Shanghai Tenth People’s Hospital Affiliated to Tongji University, School of Medicine; 3Department of Orthopaedics, Shanghai First People’s Hospital, School of Medicine, Shanghai Jiao Tong University; 4Vascular Center of Shanghai JiaoTong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Macrophages are becoming increasingly significant in the progression of atherosclerosis (AS. Molecular imaging of macrophages may improve the detection and characterization of AS. In this study, dendrimer-entrapped gold nanoparticles (Au DENPs with polyethylene glycol (PEG and fluorescein isothiocyanate (FI coatings were designed, tested, and applied as contrast agents for the enhanced computed tomography (CT imaging of macrophages in atherosclerotic lesions. Cell counting kit-8 assay, fluorescence microscopy, silver staining, and transmission electron microscopy revealed that the FI-functionalized Au DENPs are noncytotoxic at high concentrations (3.0 µM and can be efficiently taken up by murine macrophages in vitro. These nanoparticles were administered to apolipoprotein E knockout mice as AS models, which demonstrated that the macrophage burden in atherosclerotic areas can be tracked noninvasively and dynamically three-dimensionally in live animals using micro-CT. Our findings suggest that the designed PEGylated gold nanoparticles are promising biocompatible nanoprobes for the CT imaging of macrophages in atherosclerotic lesions and will provide new insights into the pathophysiology of AS and other concerned inflammatory diseases. Keywords: atherosclerosis, CT, in vivo

  17. Enhanced M1 macrophage polarization in human helicobacter pylori-associated atrophic gastritis and in vaccinated mice.

    Directory of Open Access Journals (Sweden)

    Marianne Quiding-Järbrink

    Full Text Available BACKGROUND: Infection with Helicobacter pylori triggers a chronic gastric inflammation that can progress to atrophy and gastric adenocarcinoma. Polarization of macrophages is a characteristic of both cancer and infection, and may promote progression or resolution of disease. However, the role of macrophages and their polarization during H. pylori infection has not been well defined. METHODOLOGY/PRINCIPAL FINDINGS: By using a mouse model of infection and gastric biopsies from 29 individuals, we have analyzed macrophage recruitment and polarization during H. pylori infection by flow cytometry and real-time PCR. We found a sequential recruitment of neutrophils, eosinophils and macrophages to the gastric mucosa of infected mice. Gene expression analysis of stomach tissue and sorted macrophages revealed that gastric macrophages were polarized to M1 after H. pylori infection, and this process was substantially accelerated by prior vaccination. Human H. pylori infection was characterized by a mixed M1/M2 polarization of macrophages. However, in H. pylori-associated atrophic gastritis, the expression of inducible nitric oxide synthase was markedly increased compared to uncomplicated gastritis, indicative of an enhanced M1 macrophage polarization in this pre-malignant lesion. CONCLUSIONS/SIGNIFICANCE: These results show that vaccination of mice against H. pylori amplifies M1 polarization of gastric macrophages, and that a similar enhanced M1 polarization is present in human H. pylori-induced atrophic gastritis.

  18. DMPD: Is HIV infection a TNF receptor signalling-driven disease? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18178131 Is HIV infection a TNF receptor signalling-driven disease? Herbein G, Khan... KA. Trends Immunol. 2008 Feb;29(2):61-7. (.png) (.svg) (.html) (.csml) Show Is HIV infection a TNF receptor sig...nalling-driven disease? PubmedID 18178131 Title Is HIV infection a TNF receptor signalling-driven diseas

  19. 77 FR 36550 - Office of Clinical and Preventive Services Funding Opportunity: National HIV Program for Enhanced...

    Science.gov (United States)

    2012-06-19

    ...: National HIV Program for Enhanced HIV/AIDS Screening and Engagement in Care Announcement Type: New. Funding... has the administrative infrastructure to support activities to increase HIV/ AIDS screening and assist.... Describe the objectives of the program and how they will increase HIV screening in...

  20. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages.

    Directory of Open Access Journals (Sweden)

    Maria Ruweka Fernando

    Full Text Available Macrophages are important innate immune cells that are associated with two distinct phenotypes: a pro-inflammatory (or classically activated subset with prototypic macrophage functions such as inflammatory cytokine production and bactericidal activity, and an anti-inflammatory (or alternatively activated (AAM subset linked with wound healing and tissue repair processes. In this study, we examined the effect of interlukein-6 on human and murine macrophage polarization. The results indicate that despite being commonly associated with pro-inflammatory functions and being implicated in the pathogenesis/pathophysiology of numerous inflammatory diseases, interleukin-6 can enhance the polarization of AAMs, based on increased expression of hallmark markers: arginase-1, Ym1 and CD206; this effect required the AAM differentiating cytokines, IL-4 and IL-13. Co-treatment of AAMs with IL-6 resulted in spontaneous release of IL-10, suppressed LPS-induced nitric oxide production and inhibited cytokine production by activated CD4+ T cells - immunoregulatory features not observed in the 'parent' IL-4+IL-13-induced AAM. The effect of IL-6 required signal transducer and activator of transcription (STAT-3, was partially dependent on up-regulation of the IL4Rα chain, and was independent of autocrine IL-10. In the presence of IFNγ, IL-6 promoted the production of IL-1β and TNFα suggesting that this cytokine can enhance the phenotype to which a macrophage has committed. This finding may explain the pleiotrophic nature of IL-6, where it is associated with the perpetuation and enhancement of disease in inflammatory situations, but is also necessary for resolution of inflammation and adequate wound healing to occur in others. Thus, the potential benefit of IL-6 in promoting an AAM, with its' anti-inflammatory and wound healing ability, may need to be considered in immunotherapies aimed at in vivo modulation or inhibition of IL-6.

  1. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages.

    Science.gov (United States)

    Fernando, Maria Ruweka; Reyes, Jose Luis; Iannuzzi, Jordan; Leung, Gabriella; McKay, Derek Mark

    2014-01-01

    Macrophages are important innate immune cells that are associated with two distinct phenotypes: a pro-inflammatory (or classically activated) subset with prototypic macrophage functions such as inflammatory cytokine production and bactericidal activity, and an anti-inflammatory (or alternatively activated (AAM)) subset linked with wound healing and tissue repair processes. In this study, we examined the effect of interlukein-6 on human and murine macrophage polarization. The results indicate that despite being commonly associated with pro-inflammatory functions and being implicated in the pathogenesis/pathophysiology of numerous inflammatory diseases, interleukin-6 can enhance the polarization of AAMs, based on increased expression of hallmark markers: arginase-1, Ym1 and CD206; this effect required the AAM differentiating cytokines, IL-4 and IL-13. Co-treatment of AAMs with IL-6 resulted in spontaneous release of IL-10, suppressed LPS-induced nitric oxide production and inhibited cytokine production by activated CD4+ T cells - immunoregulatory features not observed in the 'parent' IL-4+IL-13-induced AAM. The effect of IL-6 required signal transducer and activator of transcription (STAT)-3, was partially dependent on up-regulation of the IL4Rα chain, and was independent of autocrine IL-10. In the presence of IFNγ, IL-6 promoted the production of IL-1β and TNFα suggesting that this cytokine can enhance the phenotype to which a macrophage has committed. This finding may explain the pleiotrophic nature of IL-6, where it is associated with the perpetuation and enhancement of disease in inflammatory situations, but is also necessary for resolution of inflammation and adequate wound healing to occur in others. Thus, the potential benefit of IL-6 in promoting an AAM, with its' anti-inflammatory and wound healing ability, may need to be considered in immunotherapies aimed at in vivo modulation or inhibition of IL-6.

  2. CD14-dependent monocyte isolation enhances phagocytosis of listeria monocytogenes by proinflammatory, GM-CSF-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Caroline Neu

    Full Text Available Macrophages are an important line of defence against invading pathogens. Human macrophages derived by different methods were tested for their suitability as models to investigate Listeria monocytogenes (Lm infection and compared to macrophage-like THP-1 cells. Human primary monocytes were isolated by either positive or negative immunomagnetic selection and differentiated in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF or macrophage colony-stimulating factor (M-CSF into pro- or anti-inflammatory macrophages, respectively. Regardless of the isolation method, GM-CSF-derived macrophages (GM-Mφ stained positive for CD206 and M-CSF-derived macrophages (M-Mφ for CD163. THP-1 cells did not express CD206 or CD163 following incubation with PMA, M- or GM-CSF alone or in combination. Upon infection with Lm, all primary macrophages showed good survival at high multiplicities of infection whereas viability of THP-1 was severely reduced even at lower bacterial numbers. M-Mφ generally showed high phagocytosis of Lm. Strikingly, phagocytosis of Lm by GM-Mφ was markedly influenced by the method used for isolation of monocytes. GM-Mφ derived from negatively isolated monocytes showed low phagocytosis of Lm whereas GM-Mφ generated from positively selected monocytes displayed high phagocytosis of Lm. Moreover, incubation with CD14 antibody was sufficient to enhance phagocytosis of Lm by GM-Mφ generated from negatively isolated monocytes. By contrast, non-specific phagocytosis of latex beads by GM-Mφ was not influenced by treatment with CD14 antibody. Furthermore, phagocytosis of Lactococcus lactis, Escherichia coli, human cytomegalovirus and the protozoan parasite Leishmania major by GM-Mφ was not enhanced upon treatment with CD14 antibody indicating that this effect is specific for Lm. Based on these observations, we propose macrophages derived by ex vivo differentiation of negatively selected human primary monocytes as the most

  3. Virus-induced enhancement of arachidonate metabolism by bovine alveolar macrophages in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Laegreid, W.W.; Taylor, S.M.; Leid, R.W.; Silflow, R.M.; Evermann, J.R.; Breeze, R.G.; Liggitt, H.D.

    1989-04-01

    Virus infection of alveolar macrophages both in vivo and in vitro has been associated with a variety of changes in cellular function. Some of these changes are identical to the effects that arachidonate-derived mediators, prostaglandins, leukotrienes, and hydroxyeicosatetraenoic acids, have on macrophage function. Virus infection of macrophages has been previously shown to increase the output of some arachidonate metabolites, most notably PGE2. However, the effect of virus infection on arachidonate metabolism in general has not been well described. In our experiments, primary cultures of alveolar macrophages obtained from normal cattle by bronchoalveolar lavage, were infected in vitro with parainfluenza type 3 virus. At days 0 to 4 post-infection (p.i.) these cells were labelled with 3H-arachidonic acid and stimulated with either serum-coated zymosan, the calcium ionophore A23187, or phorbol myristate acetate. The complete spectrum of arachidonate-derived metabolites was determined by reverse-phase high performance liquid chromatography with UV and on-line radiometric monitoring of column eluant. The total output of metabolites of arachidonic acid by virus-infected alveolar macrophages was increased over that of noninfected controls (with all stimuli tested) by day 4 p.i. (P less than or equal to 0.05). The production of metabolites by the cyclooxygenase, 12- and 5-lipoxygenase enzyme systems was significantly increased, as was the release of 3H-arachidonate. The lack of stimulus specificity and the increases in arachidonate release suggest that greater substrate availability, due either to increased phospholipase activity or direct virus-membrane interaction, may be responsible for the virus-induced enhancement of metabolite output.

  4. Lipopolysaccharide enhances the inhibition of NF-κB expression in NNK-mediated peritoneal macrophages

    Institute of Scientific and Technical Information of China (English)

    Bin Li; Mei Wu; Xiaoping Liu

    2014-01-01

    The aim of the study was to investigate the efect of lipopolysaccharide (LPS) on the expression of nuclear factor kappa B (NF-κB) in 4-(methylitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-mediated primary mouse peritoneal macrophagesin vitro.Methods: The activity of peritoneal macrophages treated with diferent concentrations of LPS was de-tected by MTT assay in rider to find the optimal concentration. Peritoneal macrophages were also treated with NNK (100-500μM), with or without LPS for 9 h. The expression of NF-κB was demonstrated via immunocytochemistry (ICC) and Western-blot, respectively.Results:The concentration of LPS at 25 μg/mL was found to be the optimal concentration to improve the activity of peritoneal macrophages (P < 0.01). Simultaneously, LPS (25 μg/mL) increased the expression of NF-κB in both the nucleus and cytoplasm and facilitated transfer of NF-κB to the nucleus. NNK treatment significantly inhibited the expression of NF-κB in a concentration-dependent manner, among the LPS-stimulated or unstimulated peritoneal macrophages, espe-cialy when cotreated with LPS (25 μg/mL,P < 0.01 ). Furthermore, NNK treatment (500 μM) with LPS yielded a significant decrease in NF-κB translocation to nucleus and inhibited the expression of NF-κB (P < 0.005).Conclusion: LPS enhances the suppression of NF-κB expression in NNK-mediated mouse peritoneal macrophages, which may provide a theoretical basis for the inhibition of cancer.

  5. Lentiviral transduction of Tar Decoy and CCR5 ribozyme into CD34+ progenitor cells and derivation of HIV-1 resistant T cells and macrophages

    Directory of Open Access Journals (Sweden)

    Rossi John

    2004-12-01

    Full Text Available Abstract Background RNA based antiviral approaches against HIV-1 are among the most promising for long-term gene therapy. These include ribozymes, aptamers (decoys, and small interfering RNAs (siRNAs. Lentiviral vectors are ideal for transduction of such inhibitory RNAs into hematopoietic stem cells due to their ability to transduce non-dividing cells and their relative refractiveness to gene silencing. The objective of this study is to introduce an HIV-1 Tar aptamer either alone or in combination with an anti-CCR5 ribozyme into CD34+ hematopoietic progenitor cells via an HIV-based lentiviral vector to derive viral resistant progeny T cells and macrophages. Results High efficiency and sustained gene transfer into CD34+ cells were achieved with lentiviral vector constructs harboring either Tar decoy or Tar decoy in combination with CCR5 ribozyme. Cells transduced with these constructs differentiated normally into T-lymphocytes in vivo in thy/liv grafts of SCID-hu mice, and into macrophages in vitro in the presence of appropriate growth factors. When challenged in vitro, the differentiated T lymphocytes and macrophages showed marked resistance against HIV-1 infection. Conclusions Viral resistant transgenic T cells and macrophages that express HIV-1 Tar aptamer either alone or in combination with an anti-CCR5 ribozyme could be obtained by lentiviral gene transduction of CD34+ progenitor cells. These results showed for the first time that expression of these anti-HIV-1 transgenes in combination do not interfere with normal thymopoiesis and thus have set the stage for their application in stem cell based gene therapy for HIV/AIDS.

  6. Enhancer Turnover Is Associated with a Divergent Transcriptional Response to Glucocorticoid in Mouse and Human Macrophages.

    Science.gov (United States)

    Jubb, Alasdair W; Young, Robert S; Hume, David A; Bickmore, Wendy A

    2016-01-15

    Phenotypic differences between individuals and species are controlled in part through differences in expression of a relatively conserved set of genes. Genes expressed in the immune system are subject to especially powerful selection. We have investigated the evolution of both gene expression and candidate enhancers in human and mouse macrophages exposed to glucocorticoid (GC), a regulator of innate immunity and an important therapeutic agent. Our analyses revealed a very limited overlap in the repertoire of genes responsive to GC in human and mouse macrophages. Peaks of inducible binding of the GC receptor (GR) detected by chromatin immunoprecipitation-Seq correlated with induction, but not repression, of target genes in both species, occurred at distal regulatory sites not promoters, and were strongly enriched for the consensus GR-binding motif. Turnover of GR binding between mice and humans was associated with gain and loss of the motif. There was no detectable signal of positive selection at species-specific GR binding sites, but clear evidence of purifying selection at the small number of conserved sites. We conclude that enhancer divergence underlies the difference in transcriptional activation after GC treatment between mouse and human macrophages. Only the shared inducible loci show evidence of selection, and therefore these loci may be important for the subset of responses to GC that is shared between species.

  7. An evolutionary role for HIV latency in enhancing viral transmission.

    Science.gov (United States)

    Rouzine, Igor M; Weinberger, Ariel D; Weinberger, Leor S

    2015-02-26

    HIV latency is the chief obstacle to eradicating HIV but is widely believed to be an evolutionary accident providing no lentiviral fitness advantage. However, findings of latency being "hardwired" into HIV's gene-regulatory circuitry appear inconsistent with latency being an evolutionary accident, given HIV's rapid mutation rate. Here, we propose that latency is an evolutionary "bet-hedging" strategy whose frequency has been optimized to maximize lentiviral transmission by reducing viral extinction during mucosal infections. The model quantitatively fits the available patient data, matches observations of high-frequency latency establishment in cell culture and primates, and generates two counterintuitive but testable predictions. The first prediction is that conventional CD8-depletion experiments in SIV-infected macaques increase latent cells more than viremia. The second prediction is that strains engineered to have higher replicative fitness—via reduced latency—will exhibit lower infectivity in animal-model mucosal inoculations. Therapeutically, the theory predicts treatment approaches that may substantially enhance "activate-and-kill" HIV-cure strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Antibodies Against Sporothrix schenckii Enhance TNF-α Production and Killing by Macrophages.

    Science.gov (United States)

    Franco, D de Lima; Nascimento, R C; Ferreira, K S; Almeida, S R

    2012-02-01

    Sporotrichosis is a chronic granulomatous mycosis caused by the dimorphic fungus Sporothrix schenckii. The immunological mechanisms involved in the prevention and control of sporotrichosis suggest that cell-mediated immunity plays an important role in protecting the host against S. schenckii. Nonetheless, recent data strongly support the existence of protective Abs against this pathogenic fungus. In a previous study, we showed that passive Ab therapy led to a significant reduction in the number of colony forming unit in the organs of mice when the MAb was injected before and during S. schenckii infection. The ability of opsonization to enhance macrophage damage to S. schenckii and subsequent cytokine production was investigated in this work. Here we show that the fungicidal characteristics of macrophages are increased when the fungus is phagocytosed in the presence of inactivated serum from mice infected with S. schenckii or mAb anti-gp70. Additionally, we show an increase in the levels of pro-inflammatory cytokines such as TNF-α and IL-1β. This study provides additional support for the importance of antibodies in protecting against S. schenckii and concludes that opsonization is an important process to increase TNF-α production and fungus killing by macrophages in experimental sporotrichosis.

  9. Granulin exacerbates lupus nephritis via enhancing macrophage M2b polarization.

    Directory of Open Access Journals (Sweden)

    Xi Chen

    Full Text Available BACKGROUND AND AIMS: Lupus nephritis (LN, with considerable morbidity and mortality, is one of the most severe manifestations of systemic lupus erythematosus (SLE. Yet, the pathogenic mechanisms of LN have not been clearly elucidated, and efficient therapies are still in great need. Granulin (GRN, a multifunctional protein linked to inflammatory diseases, has recently been reported to correlate with the disease activity of autoimmune diseases. However, the role of GRN in the pathogenic process of LN still remains obscure. In this study, we explored its potential role and underlying mechanism in the pathogenesis of LN. METHODOLOGY/PRINCIPAL FINDINGS: We found that serum GRN levels were significantly up-regulated and were positively correlated with the severity of LN. Overexpression of GRN in vivo by transgenic injection remarkably exacerbated LN, whereas down-regulation of GRN with shRNA ameliorated LN, firmly demonstrating the critical role of GRN in the pathogenesis of LN. Notably, macrophage phenotype analysis revealed that overexpression of GRN could enhance macrophage polarization to M2b, a key mediator of the initiation and progression of LN. On the contrary, down-regulation of GRN resulted in impaired M2b differentiation, thus ameliorating LN. Moreover, we found that MAPK signals were necessary for the effect of GRN on macrophage M2b polarization. CONCLUSION/SIGNIFICANCE: We first demonstrated that GRN could aggravate lupus nephritis (LN via promoting macrophage M2b polarization, which might provide insights into the pathogenesis of LN as well as potential therapeutic strategies against LN.

  10. HIV-1 gp120 signaling through TLR4 modulates innate immune activation in human macrophages and the biology of hepatic stellate cells.

    Science.gov (United States)

    Del Cornò, Manuela; Cappon, Andrea; Donninelli, Gloria; Varano, Barbara; Marra, Fabio; Gessani, Sandra

    2016-09-01

    Highly active antiretroviral therapy has significantly improved the prognosis of HIV-infected subjects. However, patients treated long term still manifest increased mortality and, even with undetectable plasma viremia, often experience persistent immune activation. Furthermore, liver-related mortality is now the most common cause of non-AIDS-related death in HIV-infected individuals on highly active antiretroviral therapy through accelerated fibrosis progression. TLRs are the first line of the host response to pathogens and play an important role in human host defense against viruses through sensing of viral structural proteins. Growing evidence points to TLR4 as a key player in chronic immune activation, HIV recognition/replication, and liver fibrosis progression, suggesting that HIV triggering of TLR4 may dictate some aspects of the multifaceted AIDS pathogenesis. In this study, we provide evidence for an interplay between host TLR4 and HIV-1 gp120 in human monocyte-derived macrophages and hepatic stellate cells, leading to intracellular pathways and biologic activities that mediate proinflammatory and profibrogenic signals. Finally, we hypothesize that CCR5 and TLR4 are likely part of a common receptor cluster, as the blocking of CCR5 by specific antagonists impairs the macrophage capacity to produce chemokines in response to LPS. Chronic immune activation and liver fibrosis remain important obstacles for highly active antiretroviral therapy success. Thus, the identification of gp120-TLR4 axis as a novel determinant of immune system and hepatic stellate cell biology opens new perspectives to the management of HIV infection and disease.

  11. Macrophage inducible nitric oxide synthase gene expression is blocked by a benzothiophene derivative with anti-HIV properties.

    Science.gov (United States)

    Carballo, M; Conde, M; Tejedo, J; Gualberto, A; Jimenez, J; Monteseirín, J; Santa María, C; Bedoya, F J; Hunt, S W; Pintado, E; Baldwin, A S; Sobrino, F

    2002-04-01

    Nitric oxide (NO) has been shown to mediate multiple physiological and toxicological functions. The inducible nitric oxide synthase (iNOS) is responsible for the high output generation of NO by macrophages following their stimulation by cytokines or bacterial antigens. The inhibition of TNF alpha-stimulated HIV expression and the anti-inflammatory property of PD144795, a new benzothiophene derivative, have been recently described. We have now analyzed whether some of these properties could be mediated by an effect of PD144795 on NO-dependent inflammatory events. We show that PD144795 suppresses the lipopolysaccharide-elicited production of nitrite (NO(-)(2)) by primary peritoneal mouse macrophages and by a macrophage-derived cell line, RAW 264.7. This effect was dependent on the dose and timing of addition of PD144795 to the cells. Suppression of NO(-)(2) production was associated with a decrease in the amount of iNOS protein, iNOS enzyme activity and mRNA expression. The effect of PD144795 was partially abolished by coincubation of the cells with LPS and IFN gamma. However, the inhibitory effect of PD144795 was not abrogated by the simultaneous addition of LPS and TNF alpha, which indirectly suggests that the effect of PD144795 was not due to the inhibition of TNF alpha synthesis. Additionally, PD144795 did not block NF-kappa B nuclear translocation induced by LPS. Inhibition of iNOS gene expression represents a novel mechanism of PD144795 action that underlines the anti-inflammatory effects of this immunosuppressive drug.

  12. Aging Enhances Production of Reactive Oxygen Species and Bactericidal Activity in Peritoneal Macrophages by Up-Regulating Classical Activation Pathways

    Science.gov (United States)

    Smallwood, Heather S.; López-Ferrer, Daniel; Squier, Thomas C.

    2011-01-01

    Maintenance of macrophages in their basal state and their rapid activation in response to pathogen detection is central to the innate immune system, acting to limit nonspecific oxidative damage and promote pathogen killing following infection. To identify possible age-related alterations in macrophage function, we have assayed the function of peritoneal macrophages from young (3–4 mo) and aged (14–15 mo) Balb/c mice. In agreement with prior suggestions, we observe age-dependent increases in macrophage recruitment into the peritoneum, as well as ex vivo functional changes involving enhanced nitric oxide production under resting conditions that contribute to a reduction in the time needed for full activation of senescent macrophages following exposure to LPS. Further, we observe enhanced bactericidal activity following Salmonella uptake by macrophages isolated from aged Balb/c mice in comparison with those isolated from young animals. Pathways responsible for observed phenotypic changes were interrogated using tandem mass spectrometry, which identified age-dependent increases in proteins linked to immune cell pathways under both basal conditions and following LPS activation. Immune pathways up-regulated in macrophages isolated from aged mice include proteins critical to formation of the immunoproteasome. Detection of these latter proteins are dramatically enhanced following LPS exposure for macrophages isolated from aged animals; in comparison, the identification of immunoproteasome subunits is insensitive to LPS exposure for macrophages isolated from young animals. Consistent with observed global changes in the proteome, quantitative proteomic measurements indicate that there are age-dependent abundance changes involving specific proteins linked to immune cell function under basal conditions. LPS exposure selectively increases many proteins involved in immune cell function in aged Balb/c mice. Collectively these results indicate that macrophages isolated from

  13. Aging Enhances the Production of Reactive Oxygen Species and Bactericidal Activity in Peritoneal Macrophages by Upregulating Classical Activation Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, Heather S.; López-Ferrer, Daniel; Squier, Thomas C.

    2011-10-07

    Maintenance of macrophages in their basal state and their rapid activation in response to pathogen detection are central to the innate immune system, acting to limit nonspecific oxidative damage and promote pathogen killing following infection. To identify possible age-related alterations in macrophage function, we have assayed the function of peritoneal macrophages from young (3–4 months) and aged (14–15 months) Balb/c mice. In agreement with prior suggestions, we observe age-dependent increases in the extent of recruitment of macrophages into the peritoneum, as well as ex vivo functional changes involving enhanced nitric oxide production under resting conditions that contribute to a reduction in the time needed for full activation of senescent macrophages following exposure to lipopolysaccharides (LPS). Further, we observe enhanced bactericidal activity following Salmonella uptake by macrophages isolated from aged Balb/c mice in comparison with those isolated from young animals. Pathways responsible for observed phenotypic changes were interrogated using tandem mass spectrometry, which identified age-dependent increases in levels of proteins linked to immune cell pathways under basal conditions and following LPS activation. Immune pathways upregulated in macrophages isolated from aged mice include proteins critical to the formation of the immunoproteasome. Detection of these latter proteins is dramatically enhanced following LPS exposure for macrophages isolated from aged animals; in comparison, the identification of immunoproteasome subunits is insensitive to LPS exposure for macrophages isolated from young animals. Consistent with observed global changes in the proteome, quantitative proteomic measurements indicate that there are age-dependent abundance changes involving specific proteins linked to immune cell function under basal conditions. LPS exposure selectively increases the levels of many proteins involved in immune cell function in aged Balb/c mice

  14. Macrophage migration inhibitory factor enhances Pseudomonas aeruginosa biofilm formation potentially contributing to cystic fibrosis pathogenesis.

    Science.gov (United States)

    Tynan, Aisling; Mawhinney, Leona; Armstrong, Michelle E; O'Reilly, Ciaran; Kennedy, Sarah; Caraher, Emma; Jülicher, Karen; O'Dwyer, David; Maher, Lewena; Schaffer, Kirsten; Fabre, Aurélie; McKone, Edward F; Leng, Lin; Bucala, Richard; Bernhagen, Jürgen; Cooke, Gordon; Donnelly, Seamas C

    2017-08-02

    Macrophage migration inhibitory factor (MIF) is a key proinflammatory mediator that we have previously shown to be associated with an aggressive clinical phenotype in cystic fibrosis. It possesses unique tautomerase enzymatic activity. However, to date, no human-derived substrate has been identified that has the capacity to interact with this cytokine's unique tautomerase activity. This led us to hypothesize that MIF may have the capacity to interact with external substrates. We describe for the first time how Pseudomonas aeruginosa can utilize human recombinant MIF (rMIF) to significantly (P < 0.01) enhance its endogenous biofilm formation. Our in vivo studies demonstrate that utilizing a small-molecular-weight inhibitor targeting MIF's tautomerase activity (SCD-19) significantly reduces the inflammatory response in a murine pulmonary chronic P. aeruginosa model. In addition, we show that in in vitro experiments, pretreatment of P. aeruginosa with rMIF is associated with reduced bacterial killing by tobramycin. Our novel findings support the concept of an anti-MIF strategy that targets this enzymatic activity as a potential future antibacterial therapeutic approach.-Tynan, A., Mawhinney, L., Armstrong, M. E., O'Reilly, C., Kennedy, S., Caraher, E., Jülicher, K., O'Dwyer, D., Maher, L., Schaffer, K., Fabre, A., McKone, E. F., Leng, L., Bucala, R., Bernhagen, J., Cooke, G., Donnelly, S. C. Macrophage migration inhibitory factor enhances Pseudomonas aeruginosa biofilm formation potentially contributing to cystic fibrosis pathogenesis. © FASEB.

  15. Polydopamine-Coated Porous Microspheres Conjugated with Immune Stimulators for Enhanced Cytokine Induction in Macrophages.

    Science.gov (United States)

    Jang, Hyo-Eun; Mok, Hyejung

    2016-11-01

    Polydopamine-coated porous microsphere (PPM) is investigated as a simple and versatile immobilization strategy for immune-stimulating biomolecules to enhance delivery efficiency and immune-stimulating effects such as cytokine induction in macrophages. The PPMs, with diameters of about 2 μm, exhibit simultaneous and efficient incorporation of biomolecules (nucleotides and proteins), which is comparable to that achieved using microspheres carrying biomolecules internally by virtue of their porous structure. Ovalbumin-conjugated PPMs are internalized into macrophages efficiently and selectively via the phagocytic pathway, without any noticeable toxicity. Internalized CpG oligodeoxynucleotide (ODN)-conjugated PPMs (PPM-CpG) greatly enhance the induction of selected cytokines (TNF-α and IL-6) in RAW 264.7 cells compared to that by the soluble CpG ODN and ionic complexes. Therefore, PPMs generated in this study may serve as effective carriers of immune-stimulating biomolecules such as diverse toll-like receptor agonists. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Macrophage imaging by USPIO-enhanced MR for the differentiation of infectious osteomyelitis and aseptic vertebral inflammation

    Energy Technology Data Exchange (ETDEWEB)

    Bierry, Guillaume [University Hospital, Department of Radiology, Strasbourg (France); University Louis Pasteur, EA 3432, Strasbourg (France); Jehl, Francois [University Hospital of Strasbourg, Department of Bacteriology, Strasbourg (France); University Louis Pasteur, EA 3432, Strasbourg (France); Boehm, Nelly [University Louis Pasteur, Institute of Histology, Faculty of Medicine, Strasbourg (France); University Louis Pasteur, INSERM U666, Strasbourg (France); Robert, Philippe [Guerbet Research, Roissy (France); Dietemann, Jean-Louis; Kremer, Stephane [University Hospital, Department of Radiology, Strasbourg (France)

    2009-07-15

    The purpose of this study was to prospectively evaluate USPIO-enhanced MR imaging for the differentiation of vertebral infectious osteomyelitis and sterile inflammation. Vertebral osteomyelitis and sterile vertebral inflammation were induced in two groups of six rabbits each. MRI examinations were performed including unenhanced and gadolinium-enhanced fat-saturated SE T1w sequences. Once endplate enhancement was observed on the T1 gadolinium-enhanced MR sequence, a second MRI examination (SE T1w sequence) was performed 24 h after USPIO administration (45 {mu}mol Fe/kg). MR imaging was correlated with histopathological findings (macrophage immunostaining and Perls Prussian blue staining). On gadolinium-enhanced T1 sequences, a significant SNR increase in vertebral endplates was present in both groups without significant difference between the two groups (P = 0.26). On USPIO-enhanced T1 sequences, a significant SNR increase was only observed in the infection group (P = 0.03) with a significant difference in SNR between the infection and the sterile-inflammation groups (P = 0.002). Infected areas presented replacement of bone marrow by an intense macrophage infiltration, some being iron-loaded. Sterile inflammation showed a replacement of bone marrow by inflammatory tissue with only rare macrophages without any Perls blue staining. USPIO-enhanced MR imaging can distinguish infectious osteomyelitis from sterile vertebral inflammation due to different macrophage distributions in the two lesions. (orig.)

  17. Inhibition of SIK2 and SIK3 during differentiation enhances the anti-inflammatory phenotype of macrophages

    Science.gov (United States)

    Darling, Nicola J.; Toth, Rachel; Arthur, J. Simon C.

    2017-01-01

    The salt-inducible kinases (SIKs) control a novel molecular switch regulating macrophage polarization. Pharmacological inhibition of the SIKs induces a macrophage phenotype characterized by the secretion of high levels of anti-inflammatory cytokines, including interleukin (IL)-10, and the secretion of very low levels of pro-inflammatory cytokines, such as tumour necrosis factor α. The SIKs, therefore, represent attractive new drug targets for the treatment of macrophage-driven diseases, but which of the three isoforms, SIK1, SIK2 or SIK3, would be appropriate to target remains unknown. To address this question, we developed knock-in (KI) mice for SIK1, SIK2 and SIK3, in which we introduced a mutation that renders the enzymes catalytically inactive. Characterization of primary macrophages from the single and double KI mice established that all three SIK isoforms, and in particular SIK2 and SIK3, contribute to macrophage polarization. Moreover, we discovered that inhibition of SIK2 and SIK3 during macrophage differentiation greatly enhanced the production of IL-10 compared with their inhibition in mature macrophages. Interestingly, macrophages differentiated in the presence of SIK inhibitors, MRT199665 and HG-9-91-01, still produced very large amounts of IL-10, but very low levels of pro-inflammatory cytokines, even after the SIKs had been reactivated by removal of the drugs. Our data highlight an integral role for SIK2 and SIK3 in innate immunity by preventing the differentiation of macrophages into a potent and stable anti-inflammatory phenotype. PMID:27920213

  18. The scavenger protein apoptosis inhibitor of macrophages (AIM potentiates the antimicrobial response against Mycobacterium tuberculosis by enhancing autophagy.

    Directory of Open Access Journals (Sweden)

    Lucía Sanjurjo

    Full Text Available Apoptosis inhibitor of macrophages (AIM, a scavenger protein secreted by tissue macrophages, is transcriptionally regulated by the nuclear receptor Liver X Receptor (LXR and Retinoid X Receptor (RXR heterodimer. Given that LXR exerts a protective immune response against M. tuberculosis, here we analyzed whether AIM is involved in this response. In an experimental murine model of tuberculosis, AIM serum levels peaked dramatically early after infection with M. tuberculosis, providing an in vivo biological link to the disease. We therefore studied the participation of AIM in macrophage response to M. tuberculosis in vitro. For this purpose, we used the H37Rv strain to infect THP-1 macrophages transfected to stably express AIM, thereby increasing infected macrophage survival. Furthermore, the expression of this protein enlarged foam cell formation by enhancing intracellular lipid content. Phagocytosis assays with FITC-labeled M. tuberculosis bacilli indicated that this protein was not involved in bacterial uptake; however, AIM expression decreased the number of intracellular cfus by up to 70% in bacterial killing assays, suggesting that AIM enhances macrophage mycobactericidal activity. Accordingly, M. tuberculosis-infected AIM-expressing cells upregulated the production of reactive oxygen species. Moreover, real-time PCR analysis showed increased mRNA levels of the antimicrobial peptides cathelicidin and defensin 4B. These increases were concomitant with greater cellular concentrations of the autophagy-related molecules Beclin 1 and LC3II, as well as enhanced acidification of mycobacterial phagosomes and LC3 co-localization. In summary, our data support the notion that AIM contributes to key macrophage responses to M. tuberculosis.

  19. HMGB1 Promotes Systemic Lupus Erythematosus by Enhancing Macrophage Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Mudan Lu

    2015-01-01

    Full Text Available Background/Purpose. HMGB1, which may act as a proinflammatory mediator, has been proposed to contribute to the pathogenesis of multiple chronic inflammatory and autoimmune diseases including systemic lupus erythematosus (SLE; however, the precise mechanism of HMGB1 in the pathogenic process of SLE remains obscure. Method. The expression of HMGB1 was measured by ELISA and western blot. The ELISA was also applied to detect proinflammatory cytokines levels. Furthermore, nephritic pathology was evaluated by H&E staining of renal tissues. Results. In this study, we found that HMGB1 levels were significantly increased and correlated with SLE disease activity in both clinical patients and murine model. Furthermore, gain- and loss-of-function analysis showed that HMGB1 exacerbated the severity of SLE. Of note, the HMGB1 levels were found to be associated with the levels of proinflammatory cytokines such as TNF-α and IL-6 in SLE patients. Further study demonstrated that increased HMGB1 expression deteriorated the severity of SLE via enhancing macrophage inflammatory response. Moreover, we found that receptor of advanced glycation end products played a critical role in HMGB1-mediated macrophage inflammatory response. Conclusion. These findings suggested that HMGB1 might be a risk factor for SLE, and manipulation of HMGB1 signaling might provide a therapeutic strategy for SLE.

  20. Interleukin 36α Attenuates Sepsis by Enhancing Antibacterial Functions of Macrophages.

    Science.gov (United States)

    Tao, Xintong; Song, Zhixin; Wang, Chuanjiang; Luo, Hongchun; Luo, Qin; Lin, Xue; Zhang, Liping; Yin, Yibing; Cao, Ju

    2017-01-15

    Sepsis is newly defined as life-threatening organ dysfunction caused by a dysregulated host response to infection with a high mortality rate and limited effective treatments. The role of interleukin 36α (IL-36α) in host response during sepsis remains unknown. An experimental sepsis model of cecal ligation and puncture was established to investigate the effects of IL-36α on host response to sepsis. IL-36α production was significantly up-regulated during sepsis. IL-36α treatment reduced the mortality rate in mice with severe sepsis by cecal ligation and puncture. IL-36α-treated mice had more efficient bacterial clearance, inhibited tissue inflammation, improved organ injury, and reduced immune cell apoptosis. The therapeutic implication of these observations was also highlighted by the finding that specific blockade of IL-36α led to an increased mortality rate in mice with nonsevere sepsis. Furthermore, we found that IL-36α enhanced bacterial phagocytosis and killing by macrophages, thereby allowing local and systemic bacterial clearance. Importantly, macrophage depletion before the onset of sepsis eliminated IL-36α-mediated protection against sepsis. Our results demonstrate that IL-36α plays an important role in the host defense response to sepsis and suggest a potential therapeutic role for IL-36α in sepsis.

  1. Phagosomal degradation increases TLR access to bacterial ligands and enhances macrophage sensitivity to bacteria

    Science.gov (United States)

    Wolf, Andrea J.; Arruda, Andrea; Reyes, Christopher N.; Kaplan, Amber T.; Shimada, Takahiro; Shimada, Kenichi; Arditi, Moshe; Liu, George; Underhill, David M.

    2011-01-01

    Signaling by innate immune receptors initiates and orchestrates the overall immune responses to infection. Macrophage receptors recognizing pathogens can be broadly grouped into surface receptors and receptors restricted to intracellular compartments, such as phagosomes and the cytoplasm. There is an expectation that ingestion and degradation of microorganisms by phagocytes contributes to activation of intracellular innate receptors, although direct demonstrations of this are rare and many model ligands are studied in soluble form, outside of their microbial context. By comparing a wild-type strain of Staphylococcus aureus and a lysozyme-sensitive mutant, we have been able to directly address the role of degradation of live bacteria by mouse macrophages in determining the overall innate cellular inflammatory response. Our investigations revealed a biphasic response to S. aureus that consisted of an initial signal resulting from the engagement of surface TLR2, followed by a later, second wave on inflammatory gene induction. This second wave of inflammatory signaling was dependent on and correlated with the timing of bacterial degradation in phagosomes. We found that TLR2 signaling followed by TLR2/TLR9 signaling enhanced sensitivity to small numbers of bacteria. We further found that treating wild-type bacteria with the peptidoglycan synthesis-inhibiting antibiotic vancomycin made S. aureus more susceptible to degradation and resulted in increased inflammatory responses, similar to those observed for mutant degradation-sensitive bacteria. PMID:22031762

  2. Oleacein enhances anti-inflammatory activity of human macrophages by increasing CD163 receptor expression.

    Science.gov (United States)

    Filipek, Agnieszka; Czerwińska, Monika E; Kiss, Anna K; Wrzosek, Małgorzata; Naruszewicz, Marek

    2015-12-15

    Oleacein (dialdehydic form of decarboxymethyl elenolic acid linked to hydroxytyrosol; 3,4-DHPEA-EDA) have been proven to possess antioxidant and anti-inflammatory activity. In this study, we examined whether oleacein could increase CD163 and IL-10 receptor expression as well as HO-1 intracellular secretion in human macrophages. Effect of oleacein (10 and 20 μmol/l) or oleacein together with complexes of haemoglobin (Hb) and haptoglobin 1-1 (Hp11) or haptoglobin 2-2 (Hp22) on expression of IL-10 and CD163 receptor was determined by Flow Cytometry. Expression of CD163mRNA was measured by real-time quantitative RT-PCR. Heme oxygenase 1 (HO-1) intracellular secretion in macrophages was investigated by enzyme-linked immunosorbent assay (ELISA). Oleacein (OC) together with complexes HbHp11 or HbHp22 stimulated the expression of CD163 (30-100-fold), IL-10 (170-300-fold) and HO-1 secretion (60-130-fold) after 5 days of coincubation. The 2-fold (24 h), 4-fold (48 h) increase of CD163 mRNA level and its final (72 h) decrease was also observed. Our results suggested that oleacein enhances anti-inflammatory activity of complexes haemoglobin with haptoglobin 1-1 and 2-2 and could play a potential role in the prevention of inflammatory disease related to atherosclerosis. Copyright © 2015 Elsevier GmbH. All rights reserved.

  3. The enhancement of astrocytic-derived monocyte chemoattractant protein-1 induced by the interaction of opiate and HIV tat in HIV-associated dementia

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    HIV-associated dementia(HAD)is a public health problem and is particularly prevalent in drug abusers.The neuropathogenesis of human immunodeficiency virus(HIV)infection involves a complex cascade of inflammatory events,including monocyte/macrophage infiltration in the brain,glial immune activation and release of neurotoxic substances.In these events,astrocytic-derived monocyte chemoattractant protein-1(MCP-1)plays an important role,whose release is elevated by HIV transactivator of transcription(HIV tat)and...

  4. A role for microRNA-155 modulation in the anti-HIV-1 effects of Toll-like receptor 3 stimulation in macrophages.

    Directory of Open Access Journals (Sweden)

    Gokul Swaminathan

    2012-09-01

    Full Text Available HIV-1 infection of macrophages plays a key role in viral pathogenesis and progression to AIDS. Polyinosine-polycytidylic acid (poly(I:C; a synthetic analog of dsRNA and bacterial lipopolysaccharide (LPS, the ligands for Toll-like receptors (TLR TLR3 and TLR4, respectively, are known to decrease HIV-1 infection in monocyte-derived macrophages (MDMs, but the mechanism(s are incompletely understood. We found that poly(I:C- and LPS-stimulation of MDMs abrogated infection by CCR5-using, macrophage-tropic HIV-1, and by vesicular stomatitis virus glycoprotein-pseudotyped HIV-1 virions, while TLR2, TLR7 or TLR9 agonists only partially reduced infection to varying extent. Suppression of infection, or lack thereof, did not correlate with differential effects on CD4 or CCR5 expression, type I interferon induction, or production of pro-inflammatory cytokines or β-chemokines. Integrated pro-viruses were readily detected in unstimulated, TLR7- and TLR9-stimulated cells, but not in TLR3- or TLR4-stimulated MDMs, suggesting the alteration of post-entry, pre-integration event(s. Using microarray analysis and quantitative reverse transcription (RT-PCR, we found increased microRNA (miR-155 levels in MDMs upon TLR3/4- but not TLR7-stimulation, and a miR-155 specific inhibitor (but not a scrambled control partially restored infectivity in poly(I:C-stimulated MDMs. Ectopic miR-155 expression remarkably diminished HIV-1 infection in primary MDMs and cell lines. Furthermore, poly(I:C-stimulation and ectopic miR-155 expression did not alter detection of early viral RT products, but both resulted in an accumulation of late RT products and in undetectable or extremely low levels of integrated pro-viruses and 2-LTR circles. Reduced mRNA and protein levels of several HIV-1 dependency factors involved in trafficking and/or nuclear import of pre-integration complexes (ADAM10, TNPO3, Nup153, LEDGF/p75 were found in poly(I:C-stimulated and miR-155-transfected MDMs, and a

  5. A role for microRNA-155 modulation in the anti-HIV-1 effects of Toll-like receptor 3 stimulation in macrophages.

    Science.gov (United States)

    Swaminathan, Gokul; Rossi, Fiorella; Sierra, Luz-Jeannette; Gupta, Archana; Navas-Martín, Sonia; Martín-García, Julio

    2012-09-01

    HIV-1 infection of macrophages plays a key role in viral pathogenesis and progression to AIDS. Polyinosine-polycytidylic acid (poly(I:C); a synthetic analog of dsRNA) and bacterial lipopolysaccharide (LPS), the ligands for Toll-like receptors (TLR) TLR3 and TLR4, respectively, are known to decrease HIV-1 infection in monocyte-derived macrophages (MDMs), but the mechanism(s) are incompletely understood. We found that poly(I:C)- and LPS-stimulation of MDMs abrogated infection by CCR5-using, macrophage-tropic HIV-1, and by vesicular stomatitis virus glycoprotein-pseudotyped HIV-1 virions, while TLR2, TLR7 or TLR9 agonists only partially reduced infection to varying extent. Suppression of infection, or lack thereof, did not correlate with differential effects on CD4 or CCR5 expression, type I interferon induction, or production of pro-inflammatory cytokines or β-chemokines. Integrated pro-viruses were readily detected in unstimulated, TLR7- and TLR9-stimulated cells, but not in TLR3- or TLR4-stimulated MDMs, suggesting the alteration of post-entry, pre-integration event(s). Using microarray analysis and quantitative reverse transcription (RT)-PCR, we found increased microRNA (miR)-155 levels in MDMs upon TLR3/4- but not TLR7-stimulation, and a miR-155 specific inhibitor (but not a scrambled control) partially restored infectivity in poly(I:C)-stimulated MDMs. Ectopic miR-155 expression remarkably diminished HIV-1 infection in primary MDMs and cell lines. Furthermore, poly(I:C)-stimulation and ectopic miR-155 expression did not alter detection of early viral RT products, but both resulted in an accumulation of late RT products and in undetectable or extremely low levels of integrated pro-viruses and 2-LTR circles. Reduced mRNA and protein levels of several HIV-1 dependency factors involved in trafficking and/or nuclear import of pre-integration complexes (ADAM10, TNPO3, Nup153, LEDGF/p75) were found in poly(I:C)-stimulated and miR-155-transfected MDMs, and a reporter

  6. 4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses

    OpenAIRE

    Laurence Madera; Anna Greenshields; Power Coombs, Melanie R.; Hoskin, David W.

    2015-01-01

    Tumor progression and the immune response are intricately linked. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, little is known regarding how cancers affect macrophage-dependent innate host defense. In this study, murine bone-marrow-derived macrophages (BMDM) were exposed to murine carcinoma-conditioned media prior to assessment of the macrophage inflammatory response. BMDMs exposed to 4T1 mammary carcinoma-conditioned medium demonstrated...

  7. A candidate HIV/AIDS vaccine (MVA-B lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses.

    Directory of Open Access Journals (Sweden)

    Juan García-Arriaza

    Full Text Available The vaccinia virus (VACV C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8+ T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8+ T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8+ T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.

  8. A candidate HIV/AIDS vaccine (MVA-B) lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses.

    Science.gov (United States)

    García-Arriaza, Juan; Nájera, José Luis; Gómez, Carmen E; Tewabe, Nolawit; Sorzano, Carlos Oscar S; Calandra, Thierry; Roger, Thierry; Esteban, Mariano

    2011-01-01

    The vaccinia virus (VACV) C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L) had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs) are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8+ T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8+ T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8+ T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.

  9. Making a Short Story Long: Regulation of P-TEFb and HIV-1 Transcriptional Elongation in CD4+ T Lymphocytes and Macrophages

    Directory of Open Access Journals (Sweden)

    Andrew P. Rice

    2012-06-01

    Full Text Available Productive transcription of the integrated HIV-1 provirus is restricted by cellular factors that inhibit RNA polymerase II elongation. The viral Tat protein overcomes this by recruiting a general elongation factor, P-TEFb, to the TAR RNA element that forms at the 5’ end of nascent viral transcripts. P-TEFb exists in multiple complexes in cells, and its core consists of a kinase, Cdk9, and a regulatory subunit, either Cyclin T1 or Cyclin T2. Tat binds directly to Cyclin T1 and thereby targets the Cyclin T1/P-TEFb complex that phosphorylates the CTD of RNA polymerase II and the negative factors that inhibit elongation, resulting in efficient transcriptional elongation. P-TEFb is tightly regulated in cells infected by HIV-1—CD4+ T lymphocytes and monocytes/macrophages. A number of mechanisms have been identified that inhibit P-TEFb in resting CD4+ T lymphocytes and monocytes, including miRNAs that repress Cyclin T1 protein expression and dephosphorylation of residue Thr186 in the Cdk9 T-loop. These repressive mechanisms are overcome upon T cell activation and macrophage differentiation when the permissivity for HIV-1 replication is greatly increased. This review will summarize what is currently known about mechanisms that regulate P-TEFb and how this regulation impacts HIV-1 replication and latency.

  10. Peroxynitrite decomposition catalyst prevents apoptotic cell death in a human astrocytoma cell line incubated with supernatants of HIV-infected macrophages

    Directory of Open Access Journals (Sweden)

    Perno Carlo

    2002-09-01

    Full Text Available Abstract Background Oxidative stress has shown to contribute in the mechanisms underlying apoptotic cell death occuring in AIDS-dementia complex. Here we investigated the role of peroxynitrite in apoptosis occurring in astroglial cells incubated with supernatants of HIV-infected human primary macrophages (M/M. Results Flow cytometric analysis (FACS of human cultured astrocytes shortly incubated with HIV-1-infected M/M supernatants showed apoptotic cell death, an effect accompanied by pronounced staining for nitrotyrosine (footprint of peroxynitrite and by abnormal formation of malondialdehyde (MDA. Pretreatment of astrocytes with the peroxynitrite decomposition catalyst FeTMPS antagonized HIV-related astrocytic apoptosis, MDA formation and nitrotyrosine staining. Conclusions Taken together, our results suggest that inibition of peroxynitrite leads to protection against peroxidative stress accompanying HIV-related apoptosis of astrocytes. Overall results support the role of peroxynitrite in HIV-related programmed death of astrocytes and suggest the use of peroxynitrite decomposition catalyst to counteract HIV-1-related neurological disorders.

  11. Modeling of HIV-1 infection: insights to the role of monocytes/macrophages, latently infected T4 cells, and HAART regimes.

    Directory of Open Access Journals (Sweden)

    Qiang Li

    Full Text Available A novel dynamic model covering five types of cells and three connected compartments, peripheral blood (PB, lymph nodes (LNs, and the central nervous system (CNS, is here proposed. It is based on assessment of the biological principles underlying the interactions between the human immunodeficiency virus type I (HIV-1 and the human immune system. The simulated results of this model matched the three well-documented phases of HIV-1 infection very closely and successfully described the three stages of LN destruction that occur during HIV-1 infection. The model also showed that LNs are the major location of viral replication, creating a pool of latently infected T4 cells during the latency period. A detailed discussion of the role of monocytes/macrophages is made, and the results indicated that infected monocytes/macrophages could determine the progression of HIV-1 infection. The effects of typical highly active antiretroviral therapy (HAART drugs on HIV-1 infection were analyzed and the results showed that efficiency of each drug but not the time of the treatment start contributed to the change of the turnover of the disease greatly. An incremental count of latently infected T4 cells was made under therapeutic simulation, and patients were found to fail to respond to HAART therapy in the presence of certain stimuli, such as opportunistic infections. In general, the dynamics of the model qualitatively matched clinical observations very closely, indicating that the model may have benefits in evaluating the efficacy of different drug therapy regimens and in the discovery of new monitoring markers and therapeutic schemes for the treatment of HIV-1 infection.

  12. HIV-Enhancing Factors Are Secreted by Reproductive Epithelia upon Inoculation with Bacterial Vaginosis-Associated Bacteria.

    Science.gov (United States)

    Eade, Colleen R; Diaz, Camila; Chen, Sixue; Cole, Amy L; Cole, Alexander M

    2015-01-01

    Bacterial vaginosis is a common reproductive infection in which commensal vaginal lactobacilli are displaced by a mixed population of pathogenic bacteria. Bacterial vaginosis increases susceptibility to HIV, and it has been suggested that host innate immune responses to pathogenic bacteria contribute to enhanced infection, yet the cellular mechanisms mediating the increased HIV susceptibility remain uncharacterized. We evaluated the HIV-enhancing effects of bacterial vaginosis by inoculating endocervical epithelia with Atopobium vaginae, a bacterial vaginosis-associated bacteria, and assaying secreted factors for HIV-enhancing activity. When epithelia and A. vaginae were cocultured, we observed increased HIV-enhancing activity mediated by secreted low molecular weight factors. From this complex mixture we identified several upregulated host proteins, which functioned in combination to enhance HIV infection. These studies suggest that the host immune response to bacterial vaginosis-associated bacteria results in the release of HIV-enhancing factors. The combined activity of bacterial vaginosis-induced proteins likely mediates HIV enhancement.

  13. Butyrate enhances antibacterial effects while suppressing other features of alternative activation in IL-4-induced macrophages.

    Science.gov (United States)

    Fernando, Maria R; Saxena, Alpana; Reyes, José-Luis; McKay, Derek M

    2016-05-15

    The short-chain fatty acid butyrate is produced by fermentation of dietary fiber by the intestinal microbiota; butyrate is the primary energy source of colonocytes and has immunomodulatory effects. Having shown that macrophages differentiated with IL-4 [M(IL-4)s] can suppress colitis, we hypothesized that butyrate would reinforce an M(IL-4) phenotype. Here, we show that in the presence of butyrate M(IL-4)s display reduced expression of their hallmark markers Arg1 and Ym1 and significantly suppressed LPS-induced nitric oxide, IL-12p40, and IL-10 production. Butyrate treatment likely altered the M(IL-4) phenotype via inhibition of histone deacetylation. Functionally, M(IL-4)s treated with butyrate showed increased phagocytosis and killing of bacteria, compared with M(IL-4) and this was not accompanied by enhanced proinflammatory cytokine production. Culture of regulatory T cells with M(IL-4)s and M(IL-4 + butyrate)s revealed that both macrophage subsets suppressed expression of the regulatory T-cell marker Foxp3. However, Tregs cocultured with M(IL-4 + butyrate) produced less IL-17A than Tregs cocultured with M(IL-4). These data illustrate the importance of butyrate, a microbial-derived metabolite, in the regulation of gut immunity: the demonstration that butyrate promotes phagocytosis in M(IL-4)s that can limit T-cell production of IL-17A reveals novel aspects of bacterial-host interaction in the regulation of intestinal homeostasis.

  14. USPIO-enhanced MR imaging of macrophage infiltration in native and transplanted kidneys: initial results in humans.

    Science.gov (United States)

    Hauger, Olivier; Grenier, Nicolas; Deminère, Colette; Lasseur, Catherine; Delmas, Yahsou; Merville, Pierre; Combe, Christian

    2007-11-01

    The purpose of this study was to evaluate the detection and characterization of macrophage infiltration in native and transplanted kidneys using ultrasmall superparamagnetic iron oxide particles (USPIO). Among 21 patients initially enrolled, 12 scheduled for renal biopsy for acute or rapidly progressive renal failure (n = 7) or renal graft rejection (n = 5) completed the study. Three magnetic resonance (MR) sessions were performed with a 1.5-T system, before, immediately after and 72 h after i.v. injection of USPIO at doses of 1.7-2.6 mg of iron/kg. Signal intensity change was evaluated visually and calculated based on a region of interest (ROI) positioned on the kidney compartments. Histological examination showed cortical macrophage infiltration in four patients (>5 macrophages/mm(2)), two in native kidneys (proliferative extracapillary glomerulonephritis) and two in transplants (acute rejection). These patients showed a 33 +/- 18% mean cortical signal loss on T2*-weighted images. In the remaining eight patients, with <5 macrophages/mm(2), there was no cortical signal loss. However, in three of these, presenting with ischemic acute tubular necrosis, a strong (42 +/- 18%) signal drop was found in the medulla exclusively. USPIO-enhanced MR imaging can demonstrate infiltration of the kidneys by macrophages both in native and transplanted kidneys and may help to differentiate between kidney diseases.

  15. USPIO-enhanced MR imaging of macrophage infiltration in native and transplanted kidneys: initial results in humans

    Energy Technology Data Exchange (ETDEWEB)

    Hauger, Olivier; Grenier, Nicolas [Service d' Imagerie Diagnostique et Therapeutique de l' Adulte, Groupe Hospitalier Pellegrin, Bordeaux Cedex (France); Laboratoire d' Imagerie Moleculaire et Fonctionnelle, ERT CNRS/Universite Victor Segalen Bordeaux 2, Bordeaux (France); Deminere, Colette [Service d' Anatomo-pathologie, Groupe Hospitalier Pellegrin, Bordeaux (France); Lasseur, Catherine; Delmas, Yahsou; Merville, Pierre; Combe, Christian [Departement de Nephrologie, Groupe Hospitalier Pellegrin, Bordeaux (France)

    2007-11-15

    The purpose of this study was to evaluate the detection and characterization of macrophage infiltration in native and transplanted kidneys using ultrasmall superparamagnetic iron oxide particles (USPIO). Among 21 patients initially enrolled, 12 scheduled for renal biopsy for acute or rapidly progressive renal failure (n = 7) or renal graft rejection (n = 5) completed the study. Three magnetic resonance (MR) sessions were performed with a 1.5-T system, before, immediately after and 72 h after i.v. injection of USPIO at doses of 1.7-2.6 mg of iron/kg. Signal intensity change was evaluated visually and calculated based on a region of interest (ROI) positioned on the kidney compartments. Histological examination showed cortical macrophage infiltration in four patients (>5 macrophages/mm{sup 2}), two in native kidneys (proliferative extracapillary glomerulonephritis) and two in transplants (acute rejection). These patients showed a 33 {+-} 18% mean cortical signal loss on T2*-weighted images. In the remaining eight patients, with <5 macrophages/mm{sup 2}, there was no cortical signal loss. However, in three of these, presenting with ischemic acute tubular necrosis, a strong (42 {+-} 18%) signal drop was found in the medulla exclusively. USPIO-enhanced MR imaging can demonstrate infiltration of the kidneys by macrophages both in native and transplanted kidneys and may help to differentiate between kidney diseases. (orig.)

  16. Astragaloside IV enhances diabetic wound healing involving upregulation of alternatively activated macrophages.

    Science.gov (United States)

    Luo, Xiaochun; Huang, Ping; Yuan, Baohong; Liu, Tao; Lan, Fang; Lu, Xiaoyan; Dai, Liangcheng; Liu, Yunjun; Yin, Hui

    2016-06-01

    Astragaloside IV (AS-IV), one of the major active compounds extracted from Astragali Radix, has been used experimentally for its potent antiinflammatory and immunoregulatory activities. In this study, we further investigate the potential efficacy of AS-IV on impaired wound healing in streptozotocin-induced diabetic mice. A full-thickness skin wound was produced on the back of diabetic mice and treated with AS-IV or vehicle topically. Our results showed that AS-IV application promoted diabetic wound repair with wounds gaping narrower and exhibiting augmented reepithelialization. AS-IV enhanced the collagen deposition and the expression of extracellular matrix (ECM)-related genes such as fibronectin and collagen IIIa, which implies a direct effect of AS-IV on matrix synthesis. AS-IV also improved the new blood vessel formation in wound tissue with increased numbers of endothelial cells and enhanced expression of VEGF and vWF. Moreover, the beneficial effect of AS-IV was related to the development of polarized alternatively activated macrophages, which involved in resolution of inflammation and facilitation of wound repair. All together, these findings suggest that AS-IV may play a potential effect on maintenance of cutaneous homeostasis and acceleration of diabetic wound healing.

  17. Enhanced Macrophage M1 Polarization and Resistance to Apoptosis Enable Resistance to Plague.

    Science.gov (United States)

    Pachulec, Emilia; Abdelwahed Bagga, Rym Ben; Chevallier, Lucie; O'Donnell, Hope; Guillas, Chloé; Jaubert, Jean; Montagutelli, Xavier; Carniel, Elisabeth; Demeure, Christian E

    2017-09-15

    Susceptibility to infection is in part genetically driven, and C57BL/6 mice resist various pathogens through the proinflammatory response of their M1 macrophages (MPs). However, they are susceptible to plague. It has been reported elsewhere that Mus spretus SEG mice resist plague and develop an immune response characterized by a strong recruitment of MPs. The responses of C57BL/6 and SEG MPs exposed to Yersinia pestis in vitro were examined. SEG MPs exhibit a stronger bactericidal activity with higher nitric oxide production, a more proinflammatory polarized cytokine response, and a higher resistance to Y. pestis-induced apoptosis. This response was not specific to Y. pestis and involved a reduced sensitivity to M2 polarization/signal transducer and activator of transcription 6 activation and inhibition of caspase 8. The enhanced M1 profile was inducible in C57BL/6 MPs in vitro, and when transferred to susceptible C57BL/6 mice, these MPs significantly increased survival of bubonic plague. MPs can develop an enhanced functional profile beyond the prototypic M1, characterized by an even more potent proinflammatory response coordinated with resistance to killing. This programming plays a key role in the plague-resistance phenotype and may be similarly significant in other highly lethal infections, suggesting that orienting the MP response may represent a new therapeutic approach.

  18. Chlamydia trachomatis Infection of Endocervical Epithelial Cells Enhances Early HIV Transmission Events.

    Science.gov (United States)

    Buckner, Lyndsey R; Amedee, Angela M; Albritton, Hannah L; Kozlowski, Pamela A; Lacour, Nedra; McGowin, Chris L; Schust, Danny J; Quayle, Alison J

    2016-01-01

    Chlamydia trachomatis causes a predominantly asymptomatic, but generally inflammatory, genital infection that is associated with an increased risk for HIV acquisition. Endocervical epithelial cells provide the major niche for this obligate intracellular bacterium in women, and the endocervix is also a tissue in which HIV transmission can occur. The mechanism by which CT infection enhances HIV susceptibility at this site, however, is not well understood. Utilizing the A2EN immortalized endocervical epithelial cell line grown on cell culture inserts, we evaluated the direct role that CT-infected epithelial cells play in facilitating HIV transmission events. We determined that CT infection significantly enhanced the apical-to-basolateral migration of cell-associated, but not cell-free, HIVBaL, a CCR5-tropic strain of virus, across the endocervical epithelial barrier. We also established that basolateral supernatants from CT-infected A2EN cells significantly enhanced HIV replication in peripheral mononuclear cells and a CCR5+ T cell line. These results suggest that CT infection of endocervical epithelial cells could facilitate both HIV crossing the mucosal barrier and subsequent infection or replication in underlying target cells. Our studies provide a mechanism by which this common STI could potentially promote the establishment of founder virus populations and the maintenance of local HIV reservoirs in the endocervix. Development of an HIV/STI co-infection model also provides a tool to further explore the role of other sexually transmitted infections in enhancing HIV acquisition.

  19. Effect of cytokines on Siglec-1 and HIV-1 entry in monocyte-derived macrophages: the importance of HIV-1 envelope V1V2 region.

    Science.gov (United States)

    Jobe, Ousman; Trinh, Hung V; Kim, Jiae; Alsalmi, Wadad; Tovanabutra, Sodsai; Ehrenberg, Philip K; Peachman, Kristina K; Gao, Guofen; Thomas, Rasmi; Kim, Jerome H; Michael, Nelson L; Alving, Carl R; Rao, Venigalla B; Rao, Mangala

    2016-06-01

    Monocytes and monocyte-derived macrophages express relatively low levels of CD4. Despite this, macrophages can be effectively infected with human immunodeficiency virus type 1. Macrophages have a critical role in human immunodeficiency virus type 1 transmission; however, the mechanism or mechanisms of virus infection are poorly understood. We report that growth factors, such as granulocyte macrophage colony-stimulating factor and macrophage colony-stimulating factor affect the phenotypic profile and permissiveness of macrophages to human immunodeficiency virus type 1. Human immunodeficiency virus type 1 infection of monocyte-derived macrophages derived from granulocyte macrophage and macrophage colony-stimulating factors was predominantly facilitated by the sialic acid-binding immunoglobulin-like lectin-1. The number of sialic acid-binding immunoglobulin-like lectin receptors on macrophage colony-stimulating factor-derived monocyte-derived macrophages was significantly greater than on granulocyte macrophage colony-stimulating factor-derived monocyte-derived macrophages, and correspondingly, human immunodeficiency virus type 1 infection was greater in the macrophage colony-stimulating factor-derived monocyte-derived macrophages. Single-genome analysis and quantitative reverse transcriptase-polymerase chain reaction revealed that the differences in infectivity was not due to differences in viral fitness or in viral variants with differential infectivity but was due to reduced viral entry into the granulocyte macrophage colony-stimulating factor-derived monocyte-derived macrophages. Anti-sialic acid-binding immunoglobulin-like lectin, trimeric glycoprotein 145, and scaffolded V1V2 proteins were bound to sialic acid-binding immunoglobulin-like lectin and significantly reduced human immunodeficiency virus type 1 entry and infection. Furthermore, sialic acid residues present in the V1V2 region of the envelope protein mediated human immunodeficiency virus type 1

  20. Enhancing Special Educators' Knowledge and Understanding of HIV/AIDS

    Science.gov (United States)

    Sileo, Nancy M.; Sileo, Thomas W.; Prater, Mary Anne

    2008-01-01

    HIV/AIDS continues to spread among children, youth, and young adults across all racial, ethnic, and cultural populations, including those with disabilities. This article considers information on HIV/AIDS such as individuals' health-risk behaviors, environmental circumstances, and perceptions that may contribute to HIV-infection; how disability…

  1. Macrophage stimulating protein variation enhances the risk of sporadic extrahepatic cholangiocarcinoma.

    Science.gov (United States)

    Krawczyk, Marcin; Höblinger, Aksana; Mihalache, Florentina; Grünhage, Frank; Acalovschi, Monica; Lammert, Frank; Zimmer, Vincent

    2013-07-01

    Primary sclerosing cholangitis confers risk of cholangiocarcinoma. Here, we assessed the primary sclerosing cholangitis-associated variant rs3197999 in the MST1 gene, coding for RON receptor tyrosine kinase ligand macrophage stimulating protein, in a large European cholangiocarcinoma cohort. 223 cholangiocarcinoma patients including three primary sclerosing cholangitis individuals and 355 cancer- and primary sclerosing cholangitis-free controls were genotyped for MST1 rs3197999. The cancer group departed from Hardy-Weinberg equilibrium (p = 0.022) and exhibited a trend for rs3197999 [A] overrepresentation (31% vs. 26%: p = 0.10). Homozygous rs3197999 [AA] carrier status significantly increased overall (OR = 1.97; p = 0.023) and primary sclerosing cholangitis-unrelated biliary tract cancer risk (OR = 1.84; p = 0.044), relative to homozygous common allele carriers. The association was most pronounced in patients with extrahepatic tumours. This finding was robust to multivariate analysis (p < 0.05), validating the [AA] genotype as an independent cholangiocarcinoma risk factor. These results suggest that the [AA] genotype of the common MST1 variant rs3197999 enhances genetic risk of sporadic extrahepatic cholangiocarcinoma irrespective of primary sclerosing cholangitis status, presumably by modulating inflammatory responses and/or altered MSP/RON signalling. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  2. Cartilage inflammation and degeneration is enhanced by pro-inflammatory (M1) macrophages in vitro, but not inhibited directly by anti-inflammatory (M2) macrophages

    NARCIS (Netherlands)

    L. Utomo (Lizette); Y.M. Bastiaansen-Jenniskens (Yvonne); J.A.N. Verhaar (Jan); G.J.V.M. van Osch (Gerjo)

    2016-01-01

    textabstractObjective Macrophages play a crucial role in the progression of osteoarthritis (OA). Their phenotype may range from pro-inflammatory to anti-inflammatory. The aim of this study was to evaluate the direct effects of macrophage subtypes on cartilage by culturing macrophage conditioned

  3. Antibacterial responses by peritoneal macrophages are enhanced following vitamin D supplementation.

    Directory of Open Access Journals (Sweden)

    Justine Bacchetta

    Full Text Available Patients with chronic kidney disease (CKD, who usually display low serum 25-hydroxyvitamin D (25D and 1,25-dihydroxyvitamin D (1,25D, are at high risk of infection, notably those undergoing peritoneal dialysis (PD. We hypothesized that peritoneal macrophages from PD patients are an important target for vitamin D-induced antibacterial activity. Dialysate effluent fluid was obtained from 27 non-infected PD patients. Flow cytometry indicated that PD cells were mainly monocytic (37.9±17.7% cells CD14+/CD45+. Ex vivo analyses showed that PD cells treated with 25D (100 nM, 6 hrs or 1,25D (5 nM, 6 hrs induced mRNA for antibacterial cathelicidin (CAMP but conversely suppressed mRNA for hepcidin (HAMP. PD cells from patients with peritonitis (n = 3 showed higher baseline expression of CAMP (18-fold±9, p<0.05 and HAMP (64-fold±7 relative to cells from non-infected patients. In 12 non-infected PD patients, oral supplementation with a single dose of vitamin D2 (100,000 IU increased serum levels of 25D from 18±8 to 41±15 ng/ml (p = 0.002. This had no significant effect on PD cell CD14/CD45 expression, but mRNA for HAMP was suppressed significantly (0.5-fold, p = 0.04. Adjustment for PD cell CD14/CD45 expression using a mixed linear statistical model also revealed increased expression of CAMP (mRNA in PD cells and protein in effluent in vitamin D-supplemented patients. These data show for the first time that vitamin D supplementation in vitro and in vivo promotes innate immune responses that may enhance macrophage antibacterial responses in patients undergoing PD. This highlights a potentially important function for vitamin D in preventing infection-related complications in CKD.

  4. Enhancement of human ACAT1 gene expression to promote the macrophage-derived foam cell formation by dexamethasone

    Institute of Scientific and Technical Information of China (English)

    Li YANG; Ta Yuan CHANG; Bo Liang LI; Jin Bo YANG; Jia CHEN; Guang Yao YU; Pei ZHOU; Lei LEI; Zhen Zhen WANG; Catherine CY CHANG; XinYing YANG

    2004-01-01

    In macrophages, the accumulation of cholesteryl esters synthesized by the activated acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1) results in the foam cell formation, a hallmark of early atherosclerotic lesions. In this study,with the treatment of a glucocorticoid hormone dexamethasone (Dex), lipid staining results clearly showed the large accumulation of lipid droplets containing cholesteryl esters in THP- 1-derived macrophages exposed to lower concentration of the oxidized low-density lipoprotein (ox-LDL). More notably, when treated together with specific anti-ACAT inhibitors, the abundant cholesteryl ester accumulation was markedly diminished in THP-l-derived macrophages, confirming that ACAT is the key enzyme responsible for intracellular cholesteryl ester synthesis. RT-PCR and Western blot results indicated that Dex caused up-regulation of human ACAT1 expression at both the mRNA and protein levels in THP-1 and THP- 1-derived macrophages. The luciferase activity assay demonstrated that Dex could enhance the activity of human ACAT1 gene P1 promoter, a major factor leading to the ACAT1 activation, in a cell-specific manner.Further experimental evidences showed that a glucocorticoid response element (GRE) located within human ACAT1gene P1 promoter to response to the elevation of human ACAT1 gene expression by Dex could be functionally bound with glucocorticoid receptor (GR) proteins. These data supported the hypothesis that the clinical treatment with Dex,which increased the incidence of atherosclerosis, may in part due to enhancing the ACAT1 expression to promote the accumulation of cholesteryl esters during the macrophage-derived foam cell formation, an early stage of atherosclerosis.

  5. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2016-06-01

    Full Text Available Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%–8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions.

  6. Cyclin T1-dependent genes in activated CD4 T and macrophage cell lines appear enriched in HIV-1 co-factors.

    Directory of Open Access Journals (Sweden)

    Wendong Yu

    Full Text Available HIV-1 is dependent upon cellular co-factors to mediate its replication cycle in CD4(+ T cells and macrophages, the two major cell types infected by the virus in vivo. One critical co-factor is Cyclin T1, a subunit of a general RNA polymerase II elongation factor known as P-TEFb. Cyclin T1 is targeted directly by the viral Tat protein to activate proviral transcription. Cyclin T1 is up-regulated when resting CD4(+ T cells are activated and during macrophage differentiation or activation, conditions that are also necessary for high levels of HIV-1 replication. Because Cyclin T1 is a subunit of a transcription factor, the up-regulation of Cyclin T1 in these cells results in the induction of cellular genes, some of which might be HIV-1 co-factors. Using shRNA depletions of Cyclin T1 and transcriptional profiling, we identified 54 cellular mRNAs that appear to be Cyclin T1-dependent for their induction in activated CD4(+ T Jurkat T cells and during differentiation and activation of MM6 cells, a human monocytic cell line. The promoters for these Cyclin T1-dependent genes (CTDGs are over-represented in two transcription factor binding sites, SREBP1 and ARP1. Notably, 10 of these CTDGs have been reported to be involved in HIV-1 replication, a significant over-representation of such genes when compared to randomly generated lists of 54 genes (p value<0.00021. The results of siRNA depletion and dominant-negative protein experiments with two CTDGs identified here, CDK11 and Casein kinase 1 gamma 1, suggest that these genes are involved either directly or indirectly in HIV-1 replication. It is likely that the 54 CTDGs identified here include novel HIV-1 co-factors. The presence of CTDGs in the protein space that was available for HIV-1 to sample during its evolution and acquisition of Tat function may provide an explanation for why CTDGs are enriched in viral co-factors.

  7. Macrophage polarization and HIV infection%巨噬细胞极化与人类免疫缺陷病毒感染

    Institute of Scientific and Technical Information of China (English)

    赵敏; 黄磊

    2011-01-01

    极化是免疫系统进行免疫调节,发挥不同功能的重要策略.巨噬细胞作为固有免疫的重要组成部分和免疫调节者,其极化会对后续的免疫反应产生深刻的影响.巨噬细胞是HIV靶细胞,不同的极化方向也必然会影响对HIV感染的敏感性.同时,HIV感染导致宿主免疫功能紊乱也不可避免地影响到巨噬细胞正常的极化.本文就巨噬细胞极化与HIV感染相互关系的研究进展进行概述.%Polarization is an important strategy of immunoloregulation by which immune system develops different functions. As an important component of innate immunity and modulator of immunity as well as target cells of HIV, polarization of marcrophages will substantially influence subsequent immune response and susceptibility to HIV. Meanwhile, immune functional disorder caused by HIV infection will also impact normal polarization of marcrophages. The review focuses on the current progress of studies on the correlations between macrophage polarization and HIV infection.

  8. Berberine reduces Toll-like receptor-mediated macrophage migration by suppression of Src enhancement.

    Science.gov (United States)

    Cheng, Wei-Erh; Ying Chang, Miao; Wei, Jyun-Yan; Chen, Yen-Jen; Maa, Ming-Chei; Leu, Tzeng-Horng

    2015-06-15

    Berberine is an isoquinoline with anti-inflammatory activity. We previously demonstrated that there was a loop of signal amplification between nuclear factor kappa B and Src for macrophage mobility triggered by the engagement of Toll-like receptors (TLRs). The simultaneous suppression of lipopolysaccharide (LPS)-mediated upregulation of inducible nitric oxide synthase, cyclooxygenase 2, and cell mobility in berberine-treated macrophages suggested Src might be a target of berberine. Indeed, th reduced migration, greatly suppressed Src induction in both protein and RNA transcript by berberine were observed in macrophages exposed to LPS, peptidoglycan, polyinosinic-polycytidylic acid, and CpG-oligodeoxynucleotides. In addition to Src induction, berberine also inhibited LPS-mediated Src activation in Src overexpressing macrophages and S-nitroso-N-acetylpenicillamine (a nitric oxide donor) could partly restore it. Moreover, berberine suppressed Src activity in fibronectin-stimulated macrophages and in v-Src transformed cells. These results implied that by effectively reducing Src expression and activity, berberine inhibited TLR-mediated cell motility in macrophages.

  9. Induction of cyclooxygenase-2 expression during HIV-1-infected monocyte-derived macrophage and human brain microvascular endothelial cell interactions

    NARCIS (Netherlands)

    Pereira, CF; Boven, LA; Middel, J; Verhoef, J; Nottet, HSLM

    2000-01-01

    Human immunodeficiency virus type-1 (HIV-1)-associated dementia (HAD) is a neurodegenerative disease characterized by HIV infection and replication in brain tissue. HIV-1-infected monocytes overexpress inflammatory molecules that facilitate their entry into the brain. Prostanoids are lipid mediators

  10. Enhancement of macrophage candidacidal activity by interferon-gamma. Increased phagocytosis, killing, and calcium signal mediated by a decreased number of mannose receptors.

    Science.gov (United States)

    Maródi, L; Schreiber, S; Anderson, D C; MacDermott, R P; Korchak, H M; Johnston, R B

    1993-01-01

    In contrast to its macrophage-activating capacity, IFN-gamma downregulates expression of the macrophage mannose receptor (MMR), which mediates uptake of Candida and other microorganisms. We found that IFN-gamma induced a concentration-dependent increase in the capacity of human monocyte-derived macrophages to ingest and kill both opsonized and unopsonized Candida albicans and to release superoxide anion upon stimulation with Candida. Mannan or mannosylated albumin inhibited this activated uptake of unopsonized Candida, but glucan did not. Addition of mAb to complement receptor (CR) 3 did not inhibit ingestion; macrophages that lacked CR3 (leukocyte adhesion defect) showed normal upregulation of ingestion by IFN-gamma. The increased candidacidal activity of IFN-gamma-activated macrophages was associated with reduced expression of MMR by a mean of 79% and decreased pinocytic uptake of 125I-mannosylated BSA by 73%; K(uptake) of pinocytosis was not changed. Exposure of resident macrophages to unopsonized Candida did not elicit a transient increase in intracellular free Ca2+ ([Ca2+]i); macrophages activated by IFN-gamma expressed a brisk increase in [Ca2+]i on exposure to Candida. These data suggest that macrophage activation by IFN-gamma can enhance resistance to C. albicans infection in spite of downregulation of the MMR, perhaps through enhanced coupling of the MMR to microbicidal functions. PMID:8390485

  11. Autocrine interferon priming in macrophages but not dendritic cells results in enhanced cytokine and chemokine production after coronavirus infection.

    Science.gov (United States)

    Zhou, Haixia; Zhao, Jincun; Perlman, Stanley

    2010-10-19

    Coronaviruses efficiently inhibit interferon (IFN) induction in nonhematopoietic cells and conventional dendritic cells (cDC). However, IFN is produced in infected macrophages, microglia, and plasmacytoid dendritic cells (pDC). To begin to understand why IFN is produced in infected macrophages, we infected bone marrow-derived macrophages (BMM) and as a control, bone marrow-derived DC (BMDC) with the coronavirus mouse hepatitis virus (MHV). As expected, BMM but not BMDC expressed type I IFN. IFN production in infected BMM was nearly completely dependent on signaling through the alpha/beta interferon (IFN-α/β) receptor (IFNAR). Several IFN-dependent cytokines and chemokines showed the same expression pattern, with enhanced production in BMM compared to BMDC and dependence upon signaling through the IFNAR. Exogenous IFN enhanced IFN-dependent gene expression in BMM at early times after infection and in BMDC at all times after infection but did not stimulate expression of molecules that signal through myeloid differentiation factor 88 (MyD88), such as tumor necrosis factor (TNF). Collectively, our results show that IFN is produced at early times postinfection (p.i.) in MHV-infected BMM, but not in BMDC, and primes expression of IFN and IFN-responsive genes. Further, our results also show that BMM are generally more responsive to MHV infection, since MyD88-dependent pathways are also activated to a greater extent in these cells than in BMDC.

  12. Urokinase plasminogen activator inhibits HIV virion release from macrophage-differentiated chronically infected cells via activation of RhoA and PKCε.

    Directory of Open Access Journals (Sweden)

    Francesca Graziano

    Full Text Available BACKGROUND: HIV replication in mononuclear phagocytes is a multi-step process regulated by viral and cellular proteins with the peculiar feature of virion budding and accumulation in intra-cytoplasmic vesicles. Interaction of urokinase-type plasminogen activator (uPA with its cell surface receptor (uPAR has been shown to favor virion accumulation in such sub-cellular compartment in primary monocyte-derived macrophages and chronically infected promonocytic U1 cells differentiated into macrophage-like cells by stimulation with phorbol myristate acetate (PMA. By adopting this latter model system, we have here investigated which intracellular signaling pathways were triggered by uPA/uPAR interaction leading the redirection of virion accumulation in intra-cytoplasmic vesicles. RESULTS: uPA induced activation of RhoA, PKCδ and PKCε in PMA-differentiated U1 cells. In the same conditions, RhoA, PKCδ and PKCε modulated uPA-induced cell adhesion and polarization, whereas only RhoA and PKCε were also responsible for the redirection of virions in intracellular vesicles. Distribution of G and F actin revealed that uPA reorganized the cytoskeleton in both adherent and polarized cells. The role of G and F actin isoforms was unveiled by the use of cytochalasin D, a cell-permeable fungal toxin that prevents F actin polymerization. Receptor-independent cytoskeleton remodeling by Cytochalasin D resulted in cell adhesion, polarization and intracellular accumulation of HIV virions similar to the effects gained with uPA. CONCLUSIONS: These findings illustrate the potential contribution of the uPA/uPAR system in the generation and/or maintenance of intra-cytoplasmic vesicles that actively accumulate virions, thus sustaining the presence of HIV reservoirs of macrophage origin. In addition, our observations also provide evidences that pathways controlling cytoskeleton remodeling and activation of PKCε bear relevance for the design of new antiviral strategies aimed

  13. Endotoxin-induced enhancement of glucose influx into murine peritoneal macrophages via GLUT1.

    Science.gov (United States)

    Fukuzumi, M; Shinomiya, H; Shimizu, Y; Ohishi, K; Utsumi, S

    1996-01-01

    Hypoglycemia is among the most injurious metabolic disorders caused by endotoxemia. In experimental endotoxemia with lipopolysaccharide (LPS) in animals, a marked glucose consumption is observed in macrophage-rich organs. However, the direct effect of LPS on the uptake of glucose by macrophages has not been fully understood, and the present study was undertaken to shed light on this point. The consumption and uptake of glucose, as measured with 2-deoxy-D-[3H]glucose, by murine peritoneal exudate macrophages in culture were accelerated two- to threefold by stimulation with 3 ng of LPS per ml. The rate of glucose uptake reached a plateau after 20 min of stimulation and remained at the maximum as long as LPS was present. Northern (RNA) blot analysis with cDNA probes for five known isoforms of glucose transporter (GLUT) revealed that the expression of GLUT by macrophages was restricted to the GLUT1 isoform during LPS stimulation and the amount of GLUT1 mRNA was increased by the stimulation. These results suggest that macrophage responses to LPS are supported by a rapid and sustained glucose influx via GLUT1 and that this is a participating factor in the development of systemic hypoglycemia when endotoxemia is prolonged. PMID:8557327

  14. Adrenergic regulation of monocyte chemotactic protein 1 leads to enhanced macrophage recruitment and ovarian carcinoma growth

    Science.gov (United States)

    Armaiz-Pena, Guillermo N.; Gonzalez-Villasana, Vianey; Nagaraja, Archana S.; Rodriguez-Aguayo, Cristian; Sadaoui, Nouara C.; Stone, Rebecca L.; Matsuo, Koji; Dalton, Heather J.; Previs, Rebecca A.; Jennings, Nicholas B.; Dorniak, Piotr; Hansen, Jean M.; Arevalo, Jesusa M.G.; Cole, Steve W.; Lutgendorf, Susan K.; Sood, Anil K.; Lopez-Berestein, Gabriel

    2015-01-01

    Increased adrenergic signaling facilitates tumor progression, but the underlying mechanisms remain poorly understood. We examined factors responsible for stress-mediated effects on monocyte/macrophage recruitment into the tumor microenvironment, and the resultant effects on tumor growth. In vitro, MCP1 was significantly increased after catecholamine exposure, which was mediated by cAMP and PKA. Tumor samples from mice subjected to daily restraint stress had elevated MCP1 gene and protein levels, increased CD14+ cells, and increased infiltration of CD68+ cells. hMCP1 siRNA-DOPC nanoparticles significantly abrogated daily restraint stress-induced tumor growth and inhibited infiltration of CD68+ and F4/80+ cells. In ovarian cancer patients, elevated peripheral blood monocytes and tumoral macrophages were associated with worse overall survival. Collectively, we demonstrate that increased adrenergic signaling is associated with macrophage infiltration and mediated by tumor cell-derived MCP1 production. PMID:25738355

  15. Enhanced prenatal HIV couple oriented counselling session and couple communication about HIV (ANRS 12127 Prenahtest Trial)

    NARCIS (Netherlands)

    Plazy, M.; Orne-Gliemann, J.; Balestre, E.; Miric, M.; Darak, S.; Butsashvili, M.; Tchendjou, P.; Dabis, F.; du Lou, A. Desgrees

    Background. - The Prenahtest study investigated the efficacy of a couple-oriented HIV counselling session (COC) in encouraging couple HIV counselling and testing, and improving intra-couple communication about sexual and reproductive health. We report here on the effect of COC on intra-couple

  16. Enhanced prenatal HIV couple oriented counselling session and couple communication about HIV (ANRS 12127 Prenahtest Trial)

    NARCIS (Netherlands)

    Plazy, M.; Orne-Gliemann, J.; Balestre, E.; Miric, M.; Darak, S.; Butsashvili, M.; Tchendjou, P.; Dabis, F.; du Lou, A. Desgrees

    2013-01-01

    Background. - The Prenahtest study investigated the efficacy of a couple-oriented HIV counselling session (COC) in encouraging couple HIV counselling and testing, and improving intra-couple communication about sexual and reproductive health. We report here on the effect of COC on intra-couple commun

  17. Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-alpha expression.

    Science.gov (United States)

    Lai, Jiann-Jyh; Lai, Kuo-Pao; Chuang, Kuang-Hsiang; Chang, Philip; Yu, I-Chen; Lin, Wen-Jye; Chang, Chawnshang

    2009-12-01

    Cutaneous wounds heal more slowly in elderly males than in elderly females, suggesting a role for sex hormones in the healing process. Indeed, androgen/androgen receptor (AR) signaling has been shown to inhibit cutaneous wound healing. AR is expressed in several cell types in healing skin, including keratinocytes, dermal fibroblasts, and infiltrating macrophages, but the exact role of androgen/AR signaling in these different cell types remains unclear. To address this question, we generated and studied cutaneous wound healing in cell-specific AR knockout (ARKO) mice. General and myeloid-specific ARKO mice exhibited accelerated wound healing compared with WT mice, whereas keratinocyte- and fibroblast-specific ARKO mice did not. Importantly, the rate of wound healing in the general ARKO mice was dependent on AR and not serum androgen levels. Interestingly, although dispensable for wound closure, keratinocyte AR promoted re-epithelialization, while fibroblast AR suppressed it. Further analysis indicated that AR suppressed wound healing by enhancing the inflammatory response through a localized increase in TNF-alpha expression. Furthermore, AR enhanced local TNF-alpha expression via multiple mechanisms, including increasing the inflammatory monocyte population, enhancing monocyte chemotaxis by upregulating CCR2 expression, and enhancing TNF-alpha expression in macrophages. Finally, targeting AR by topical application of a compound (ASC-J9) that degrades AR protein resulted in accelerated healing, suggesting a potential new therapeutic approach that may lead to better treatment of wound healing.

  18. Access to HIV community services by vulnerable populations: evidence from an enhanced HIV/AIDS surveillance system.

    Science.gov (United States)

    Madden, H C E; Phillips-Howard, P A; Hargreaves, S C; Downing, J; Bellis, M A; Vivancos, R; Morley, C; Syed, Q; Cook, P A

    2011-05-01

    HIV disproportionately affects vulnerable populations such as black and minority ethnic groups, men who have sex with men (MSM) and migrants, in many countries including those in the UK. Community organisations in the UK are charitable non-governmental organisations with a proportion of the workforce who volunteer, and provide invaluable additional support for people living with HIV (PLWHIV). Information on their contribution to HIV care in vulnerable groups is relatively sparse. Data generated from an enhanced HIV surveillance system in North West England, UK, was utilised for this study. We aimed to determine the characteristics of individuals who chose to access community services in addition to clinical services (1375 out of 4195 records of PLWHIV in clinical services). Demographic information, risk factors including residency status, uniquely gathered in this region, and deprivation scores were examined. Multivariate logistic regression modelling was conducted to predict the relative effect of patient characteristics on attendance at community services. Attendance at community services was highest in those living in the most, compared with least, deprived areas (prefugees (AOR = 5.75, 95% CI 3.3-10.03; pmigrant workers (AOR = 5.48, 95% CI 2.22-13.51; pmigrant populations, community services are vital for the management of HIV in black and minority groups. Paradoxically, this coincides with increasing funding pressures on these services.

  19. Reprogramming of murine macrophages through TLR2 confers viral resistance via TRAF3-mediated, enhanced interferon production.

    Directory of Open Access Journals (Sweden)

    Darren J Perkins

    Full Text Available The cell surface/endosomal Toll-like Receptors (TLRs are instrumental in initiating immune responses to both bacteria and viruses. With the exception of TLR2, all TLRs and cytosolic RIG-I-like receptors (RLRs with known virus-derived ligands induce type I interferons (IFNs in macrophages or dendritic cells. Herein, we report that prior ligation of TLR2, an event previously shown to induce "homo" or "hetero" tolerance, strongly "primes" macrophages for increased Type I IFN production in response to subsequent TLR/RLR signaling. This occurs by increasing activation of the transcription factor, IFN Regulatory Factor-3 (IRF-3 that, in turn, leads to enhanced induction of IFN-β, while expression of other pro-inflammatory genes are suppressed (tolerized. In vitro or in vivo "priming" of murine macrophages with TLR2 ligands increase virus-mediated IFN induction and resistance to infection. This priming effect of TLR2 is mediated by the selective upregulation of the K63 ubiquitin ligase, TRAF3. Thus, we provide a mechanistic explanation for the observed antiviral actions of MyD88-dependent TLR2 and further define the role of TRAF3 in viral innate immunity.

  20. Enhanced NF-κB activation and cellular function in macrophages lacking IκB kinase 1 (IKK1)

    Science.gov (United States)

    Li, Qiutang; Lu, Qingxian; Bottero, Virginie; Estepa, Gabriela; Morrison, Lisa; Mercurio, Frank; Verma, Inder M.

    2005-01-01

    IκB kinase (IKK) complex plays a key regulatory role in macrophages for NF-κB activation during both innate and adaptive immune responses. Because IKK1–/– mice died at birth, we differentiated functional macrophages from embryonic day 15.5 IKK1 mutant embryonic liver. The embryonic liver-derived macrophage (ELDM) showed enhanced phagocytotic clearance of bacteria, more efficient antigen-presenting capacity, elevated secretion of several key proinflammatory cytokines and chemokines, and known NFκB target genes. Increased NFκB activity in IKK1 mutant ELDM was the result of prolonged degradation of IκBα in response to infectious pathogens. The delayed restoration of IκBα in pathogen-activated IKK1–/– ELDM was a direct consequence of uncontrolled IKK2 kinase activity. We hypothesize that IKK1 plays a checkpoint role in the proper control of IκBα kinase activity in innate and adaptive immunity. PMID:16116086

  1. Toxoplasma gondii peroxiredoxin promotes altered macrophage function, caspase-1-dependent IL-1β secretion enhances parasite replication

    Directory of Open Access Journals (Sweden)

    Marshall Edward S

    2011-06-01

    Full Text Available Abstract Alternatively activated macrophages (AAM are a key feature Th2 immunity and have been associated with a variety of roles during helminth infection. The role this cell subset plays in protzoan infection remain relatively unexplored, herein we describe the effects of a redox enzyme (rTgPrx derived from Toxoplasma gondii on murine macrophage phenotype in vitro. RTgPrx has been previously associated with the maintainence of parasite oxidative balance. Here our experiments show that rTgPrx promotes AAM as indicated by high arginase-1 (arg-1, YM1 and FIZZ expression via both signal transducer and activator of transcription (STAT6-dependent and -independent mechanisms. Additionally rTgPrx treatment reduced caspase-1 activity and IL-1β secretion, while simultaneously increasing IL-10 release. Furthermore the in vitro replication of T. gondii (RH strain was enhanced when macrophages were treated with rTgPrx. This is in contrast with the previously described effects of a Plasmodium berghei ANKA 2-cys-peroxiredoxin that promotes pro-inflammatory cytokine production. These results highlight the role of T. gondii derived redox enzymes as important immune modulators and potentially indicate a role for AAM in modulating immunopathology and promoting parasite replication during T. gondii infection.

  2. Enhancing HIV Treatment Access and Outcomes Amongst HIV Infected Children and Adolescents in Resource Limited Settings.

    Science.gov (United States)

    Goga, Ameena Ebrahim; Singh, Yagespari; Singh, Michelle; Noveve, Nobuntu; Magasana, Vuyolwethu; Ramraj, Trisha; Abdullah, Fareed; Coovadia, Ashraf H; Bhardwaj, Sanjana; Sherman, Gayle G

    2017-01-01

    Introduction Increasing access to HIV-related care and treatment for children aged 0-18 years in resource-limited settings is an urgent global priority. In 2011-2012 the percentage increase in children accessing antiretroviral therapy was approximately half that of adults (11 vs. 21 %). We propose a model for increasing access to, and retention in, paediatric HIV care and treatment in resource-limited settings. Methods Following a rapid appraisal of recent literature seven main challenges in paediatric HIV-related care and treatment were identified: (1) lack of regular, integrated, ongoing HIV-related diagnosis; (2) weak facility-based systems for tracking and retention in care; (3) interrupted availability of dried blood spot cards (expiration/stock outs); (4) poor quality control of rapid HIV testing; (5) supply-related gaps at health facility-laboratory interface; (6) poor uptake of HIV testing, possibly relating to a fatalistic belief about HIV infection; (7) community-associated reasons e.g. non-disclosure and weak systems for social support, resulting in poor retention in care. Results To increase sustained access to paediatric HIV-related care and treatment, regular updating of Policies, review of inter-sectoral Plans (at facility and community levels) and evaluation of Programme implementation and impact (at national, subnational, facility and community levels) are non-negotiable critical elements. Additionally we recommend the intensified implementation of seven main interventions: (1) update or refresher messaging for health care staff and simple messaging for key staff at early childhood development centres and schools; (2) contact tracing, disclosure and retention monitoring; (3) paying particular attention to infant dried blood spot (DBS) stock control; (4) regular quality assurance of rapid HIV testing procedures; (5) workshops/meetings/dialogues between health facilities and laboratories to resolve transport-related gaps and to facilitate return of

  3. Enhancing self-care, adjustment and engagement through mobile phones in youth with HIV.

    Science.gov (United States)

    John, M E; Samson-Akpan, P E; Etowa, J B; Akpabio, I I; John, E E

    2016-12-01

    To evaluate the effectiveness of mobile phones in enhancing self-care, adjustment and engagement in non-disclosed youth living with HIV. Youth aged 15-24 years represent 42% of new HIV infections globally. Youth who are aware of their HIV status generally do not disclose it or utilize HIV-related facilities because of fear of stigma. They rely on the Internet for health maintenance information and access formal care only when immune-compromised and in crisis. This study shows how non-disclosed youth living with HIV can be reached and engaged for self-management and adjustment through mobile phone. One-group pre-test/post-test experimental design was used. Mobile phones were used to give information, motivation and counselling to 19 purposively recruited non-disclosed youth with HIV in Calabar, South-South Nigeria. Psychological adjustment scale, modified self-care capacity scale and patient activation measure were used to collect data. Data were analysed using PASW 18.0. Scores on self-care capacity, psychological adjustment and engagement increased significantly at post-test. HIV-related visits to health facilities did not improve significantly even at 6 months. Participants still preferred to consult healthcare providers for counselling through mobile phone. Mobile phone-based interventions are low cost, convenient, ensure privacy and are suitable for youth. Such remote health counselling enhances self-management and positive living. Mobile phones enhance self-care, psychological adjustment and engagement in non-disclosed youth living with HIV, and can be used to increase care coverage. Findings underline the importance of policies to increase access by locating, counselling and engaging HIV-infected youth in care. © 2016 International Council of Nurses.

  4. Enhanced neutralization of HIV by antibodies displayed on the S-layer of Caulobacter crescentus.

    Science.gov (United States)

    Duval, Mark; Lewis, Christopher J; Nomellini, John F; Horwitz, Marc S; Smit, John; Cavacini, Lisa A

    2011-12-01

    Innovative methods of prevention are needed to stop the more than two million new HIV-1 infections annually, particularly in women. Local application of anti-HIV antibodies has been shown to be effective at preventing infection in nonhuman primates; however, the concentrations needed are cost prohibitive. Display of antibodies on a particulate platform will likely prolong effectiveness of these anti-HIV agents and lower the cost of goods. Here, we demonstrate that the bacterium Caulobacter crescentus and its highly expressed surface-layer (S-layer) protein can provide this antibody display platform. Caulobacters displaying protein G, alone or with CD4 codisplay, successfully captured HIV-1-specific antibodies and demonstrated functional neutralization. Compared to soluble antibodies, a neutralizing anti-HIV antibody displayed on Caulobacter was as effective or more effective at neutralizing diverse HIV-1 isolates. Moreover, when an antibody reactive with an epitope induced by CD4 binding (CD4i) was codisplayed with CD4, there was significant enhancement in HIV-1 neutralization. These results suggest that caulobacters displaying anti-HIV antibodies offer a distinct improvement in the use of antibodies as microbicides. Furthermore, these reagents can specifically evaluate anti-HIV antibodies in concert with other HIV-1 blocking agents to assess the most suitable tools for conversion to scFvs, allowing for direct display within the S-layer protein and further reducing cost of goods. In summary, C. crescentus, which can be easily produced and chemically stabilized at low cost, is well suited for engineering as an effective platform, offering an inexpensive way to produce and deliver HIV-1-specific microbicides.

  5. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy.

    Science.gov (United States)

    Li, Zhibin; Huang, Hao; Tang, Siying; Li, Yong; Yu, Xue-Feng; Wang, Huaiyu; Li, Penghui; Sun, Zhengbo; Zhang, Han; Liu, Chenli; Chu, Paul K

    2016-01-01

    One of the challenges to adopt photothermal ablation clinically is optimization of the agent delivery in vivo. Herein, a cell-mediated delivery and therapy system by employing macrophage vehicles to transport 7 nm diameter Au nanorods (sAuNRs) is described. Owing to the small size, the sAuNRs exhibit much higher macrophage uptake and negligible cytotoxicity in comparison with commonly used 14 nm diameter AuNRs to achieve healthy BSA-coated sAuNRs-laden-macrophages. By delivering BSA-coated sAuNRs to the entire tumor after intratumoral injection, the BSA-coated sAuNRs-laden-macrophages show greatly improved photothermal conversion almost everywhere in the tumor, resulting in minimized tumor recurrence rates compared to free BSA-coated sAuNRs. Our findings not only provide a desirable approach to improve the photothermal therapy efficiency by optimizing the intratumoral distribution of the agents, but also expedite clinical application of nanotechnology to cancer treatment.

  6. Cyclic AMP enhancing drugs modulate eicosanoid release from human alveolar macrophages

    NARCIS (Netherlands)

    F.D. Beusenberg; H.C. Hoogsteden (Henk); I.L. Bonta; J.G.C. van Amsterdam (Jan)

    1994-01-01

    textabstractThe effect of the phosphodiesterase inhibitor isobutyl-methylxanthine (IBMX), salbutamol and sodium nitroprusside was evaluated regarding PGE2 and LTB4 release and cAMP and cGMP level in human alveolar macrophages obtained from controls and COPD patients. Basal levels per five million co

  7. Macrophage retinoblastoma deficiency leads to enhanced atherosclerosis development in ApoE-deficient mice

    NARCIS (Netherlands)

    Boesten, L.S.M.; Zadelaar, A.S.M.; Nieuwkoop, A. van; Hu, L.; Jonkers, J.; Water, B. van de; Gijbels, M.J.J.; Made, I. van der; Winther, M.P.J. de; Havekes, L.M.; Vlijmen, B.J.M. van

    2006-01-01

    The cellular composition of an atherosclerotic lesion is determined by cell infiltration, proliferation, and apoptosis. The tumor suppressor gene retinoblastoma (Rb) has been shown to regulate both cell proliferation and cell death in many cell types. To study the role of macrophage Rb in the

  8. Gallic Acid Is an Antagonist of Semen Amyloid Fibrils That Enhance HIV-1 Infection.

    Science.gov (United States)

    LoRicco, Josephine G; Xu, Changmingzi Sherry; Neidleman, Jason; Bergkvist, Magnus; Greene, Warner C; Roan, Nadia R; Makhatadze, George I

    2016-07-01

    Recent in vitro studies have demonstrated that amyloid fibrils found in semen from healthy and HIV-infected men, as well as semen itself, can markedly enhance HIV infection rates. Semen fibrils are made up of multiple naturally occurring peptide fragments derived from semen. The best characterized of these fibrils are SEVI (semen-derived enhancer of viral infection), made up of residues 248-286 of prostatic acidic phosphatase, and the SEM1 fibrils, made up of residues 86-107 of semenogelin 1. A small molecule screen for antagonists of semen fibrils identified four compounds that lowered semen-mediated enhancement of HIV-1 infectivity. One of the four, gallic acid, was previously reported to antagonize other amyloids and to exert anti-inflammatory effects. To better understand the mechanism by which gallic acid modifies the properties of semen amyloids, we performed biophysical measurements (atomic force microscopy, electron microscopy, confocal microscopy, thioflavin T and Congo Red fluorescence assays, zeta potential measurements) and quantitative assays on the effects of gallic acid on semen-mediated enhancement of HIV infection and inflammation. Our results demonstrate that gallic acid binds to both SEVI and SEM1 fibrils and modifies their surface electrostatics to render them less cationic. In addition, gallic acid decreased semen-mediated enhancement of HIV infection but did not decrease the inflammatory response induced by semen. Together, these observations identify gallic acid as a non-polyanionic compound that inhibits semen-mediated enhancement of HIV infection and suggest the potential utility of incorporating gallic acid into a multicomponent microbicide targeting both the HIV virus and host components that promote viral infection.

  9. Time-controlled phagocytosis of asymmetric liposomes: Application to phosphatidylserine immunoliposomes binding HIV-1 virus-like particles.

    Science.gov (United States)

    Petazzi, Roberto Arturo; Gramatica, Andrea; Herrmann, Andreas; Chiantia, Salvatore

    2015-11-01

    Macrophage immune functions such as antibody-mediated phagocytosis are strongly impaired in individuals affected by HIV-1. Nevertheless, infected macrophages are still able to phagocytose apoptotic cells. For this reason, we recently developed antibody-decorated phosphatidylserine (PS)-containing liposomes that bind HIV-1 virus-like particles and, by mimicking apoptotic cells, are efficiently internalized by macrophages. In the context of an in vivo application, it would be extremely important to initially protect immunoliposomes from macrophages, in order to provide enough time to redistribute through the body and achieve maximum virus binding. To this end, we have designed asymmetric immunoliposomes in which the PS is initially confined to the inner leaflet and thus cannot be recognized by macrophages. Spontaneous PS flip-flop to the outer surface leads to a time-delay in internalization by macrophages in vitro. Such a delay can be fine-tuned by altering the molecular composition of the immunoliposomes. In the fight against HIV-1, macrophage plays an important role. Ironically, the phagocytic functions of these cells are often impaired by HIV-1. In this interesting article, the authors described the development of asymmetric liposomes, which would bind HIV-1 with prolonged systemic circulation, such that the clearance of virus by macrophages is enhanced. This system represents a promising effective approach to utilize the phagocytic capability of macrophages. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Enhanced FCGR2A and FCGR3A signaling by HIV viremic controller IgG

    Science.gov (United States)

    Alvarez, Raymond A.; Maestre, Ana M.; Durham, Natasha D.; Barria, Maria Ines; Ishii-Watabe, Akiko; Tada, Minoru; Hotta, Mathew T.; Rodriguez-Caprio, Gabriela; Fierer, Daniel S.; Fernandez-Sesma, Ana; Simon, Viviana; Chen, Benjamin K.

    2017-01-01

    HIV-1 viremic controllers (VC) spontaneously control infection without antiretroviral treatment. Several studies indicate that IgG Abs from VCs induce enhanced responses from immune effector cells. Since signaling through Fc-γ receptors (FCGRs) modulate these Ab-driven responses, here we examine if enhanced FCGR activation is a common feature of IgG from VCs. Using an infected cell–based system, we observed that VC IgG stimulated greater FCGR2A and FCGR3A activation as compared with noncontrollers, independent of the magnitude of HIV-specific Ab binding or virus neutralization activities. Multivariate regression analysis showed that enhanced FCGR signaling was a significant predictor of VC status as compared with chronically infected patients (CIP) on highly active antiretroviral therapy (HAART). Unsupervised hierarchical clustering of patient IgG functions primarily grouped VC IgG profiles by enhanced FCGR2A, FCGR3A, or dual signaling activity. Our findings demonstrate that enhanced FCGR signaling is a common and significant predictive feature of VC IgG, with VCs displaying a distinct spectrum of FCGR activation profiles. Thus, profiling FCGR activation may provide a useful method for screening and distinguishing protective anti-HIV IgG responses in HIV-infected patients and in monitoring HIV vaccination regimens.

  11. Enhanced clearance of HIV-1-infected cells by broadly neutralizing antibodies against HIV-1 in vivo.

    Science.gov (United States)

    Lu, Ching-Lan; Murakowski, Dariusz K; Bournazos, Stylianos; Schoofs, Till; Sarkar, Debolina; Halper-Stromberg, Ariel; Horwitz, Joshua A; Nogueira, Lilian; Golijanin, Jovana; Gazumyan, Anna; Ravetch, Jeffrey V; Caskey, Marina; Chakraborty, Arup K; Nussenzweig, Michel C

    2016-05-20

    Antiretroviral drugs and antibodies limit HIV-1 infection by interfering with the viral life cycle. In addition, antibodies also have the potential to guide host immune effector cells to kill HIV-1-infected cells. Examination of the kinetics of HIV-1 suppression in infected individuals by passively administered 3BNC117, a broadly neutralizing antibody, suggested that the effects of the antibody are not limited to free viral clearance and blocking new infection but also include acceleration of infected cell clearance. Consistent with these observations, we find that broadly neutralizing antibodies can target CD4(+) T cells infected with patient viruses and can decrease their in vivo half-lives by a mechanism that requires Fcγ receptor engagement in a humanized mouse model. The results indicate that passive immunotherapy can accelerate elimination of HIV-1-infected cells.

  12. HIV-1-infected monocytes and monocyte-derived macrophages are impaired in their ability to produce superoxide radicals.

    Science.gov (United States)

    Howell, A L; Groveman, D S; Wallace, P K; Fanger, M W

    1997-01-01

    Monocytes and monocyte-derived macrophages play a key role in immune defense against pathogenic organisms. Superoxide anion production is a key mechanism by which phagocytes kill pathogens. We sought to determine whether human immunodeficiency virus-infected monocytes and monocyte-derived macrophages are compromised in their ability to produce the superoxide anion following stimulation with phorbol myristate acetate (PMA) or after cross-linking the type I Fc receptor for IgG (Fc gamma RI). Fc gamma RI was cross-linked by the binding of monoclonal antibody 197, which reacts with an epitope of Fc gamma RI via its Fc region. Monocytes and monocyte-derived macrophages obtained from seronegative donors were infected in vitro with human immunodeficiency virus-1JR-FL and used in effector assays that measured superoxide anion production by the reduction of nitroblue tetrazolium. Reduced nitroblue tetrazolium was measured spectrophotometrically and by microscopy in which the percentage of cells containing intracellular deposits of the dye was assessed. By spectrophotometric measurement, we found that human immunodeficiency virus-infected monocytes and monocyte-derived macrophages produced less superoxide anion following either phorbol myristate acetate stimulation or Fc gamma RI cross-linking than uninfected cells from the same donor. Using microscopy we saw no difference in the percentage of infected and uninfected macrophages containing intracellular deposits of nitroblue tetrazolium suggesting that human immunodeficiency virus-infected macrophages produce less superoxide anion on a per cell basis than uninfected macrophages. Activation of human immunodeficiency virus-infected monocytes with interferon-gamma for 72 h prior to stimulation with phorbol myristate acetate or monoclonal antibody 197 increased their ability to reduce nitroblue tetrazolium. These findings suggest that impairment in the production of reactive oxygen intermediates may, in some cases, contribute to

  13. IL-10-secreting T cells from HIV-infected pregnant women downregulate HIV-1 replication: effect enhanced by antiretroviral treatment.

    Science.gov (United States)

    Bento, Cleonice A M; Hygino, Joana; Andrade, Regis M; Saramago, Carmen S M; Silva, Renato G; Silva, Agostinho A L; Linhares, Ulisses C; Brindeiro, Rodrigo; Tanuri, Amilcar; Rosenzwajg, Michelle; Klatzmann, David; Andrade, Arnaldo F B

    2009-01-02

    This study aimed to evaluate the impact of pregnancy-related immune events on the HIV-1 replication and to analyze their relationship with the risk of vertical transmission. The peripheral blood from HIV-1-infected pregnant women who controlled (G1) or not controlled (G2) their plasma viral load was drawn, and the plasma and the T cells were obtained. The T-cell cultures were activated in vitro with anti-CD3 and anti-CD28, and the proliferation and cytokine production profile were evaluated after 3 days of incubation. The in-vitro HIV-1 replication was measured in culture supernatants in the seventh day following stimulation. The cytokines were also analyzed in the plasma. Our results demonstrated a lower T-cell proliferation and a lower interleukin-1beta, tumor necrosis factor-alpha and interferon-gamma production in polyclonally activated T-cell cultures from G1 patients, when compared with G2. Furthermore, high levels of interleukin-10 were produced both systemically and by activated T-cell cultures from G1 patients. Interestingly, the neutralization of endogenous interleukin-10 by anti-interleukin-10 monoclonal antibody elevated both the inflammatory cytokines' release and the HIV-1 replication in the polyclonally activated T-cell cultures from G1 patients. Additionally, the maternal antiretroviral treatment significantly enhanced the systemic interleukin-10 production. Finally, the higher systemic interleukin-10 levels were inversely correlated with vertical virus transmission risk. These results indicate that a high tendency of pregnant women to produce interleukin-10 can help them control the HIV-1 replication, and this can reduce the risk of vertical transmission. Furthermore, our data suggest a role for maternal antiretroviral treatment in enhancing this phenomenon.

  14. Enhancing the Emotional Wellbeing of Perinatally HIV Infected Youth across Global Contexts.

    Science.gov (United States)

    Small, Latoya; Mercado, Micaela; Gopalan, Priya; Pardo, Gisselle; Ann Mellins, Claude; McKay, Mary McKernan

    2014-03-01

    Increased access to antiretroviral treatment worldwide makes it more possible for children diagnosed with HIV before their 15(th) birthday to age into adolescence and beyond. Many HIV+ youth navigate stressors including poverty and resource scarcity, which may converge to produce emotional distress. For over a decade, CHAMP (Collaborative HIV Prevention and Adolescent Mental Health Project) investigators partnered with youth, caregivers, providers and community stakeholders to address the health, mental health and risk taking behaviors of perinatally HIV-infected youth. This paper explores the mental health needs of aging cohorts of HIV+ youth, across three global contexts, New York (U.S.), Buenos Aires (Argentina), and KwaZulu-Natal (South Africa), to inform the development and implementation of combination HIV care and prevention supports for HIV+ youth. Analysis of data pooled across three countries involving HIV+ early adolescents and their caregivers over time (baseline and three month follow-up) was conducted. Univariate and multivariate analyses were applied to data from standardized measures used across sites to identify mental health needs of youth participants. The impact of the site specific versions of a family-strengthening intervention, CHAMP+U.S., CHAMP+Argentina, CHAMP+SA, was also examined relative to a randomized standard of care (SOC) comparison condition. Analyses revealed mental health resilience in a large proportion of HIV+ youth, particularly behavioral functioning and overall mental health. Yet, significant numbers of caregivers across country contexts reported impaired child emotional and prosocial wellbeing. Significant site differences emerged at baseline. Involvement in the CHAMP+ Family Program was related to significant improvement in emotional wellbeing and a trend towards enhanced prosocial behavior relative to SOC across global sites. Ongoing partnerships with youth, family and provider stakeholders across global sites helped to

  15. Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS.

    Science.gov (United States)

    Jackson, Megan V; Morrison, Thomas J; Doherty, Declan F; McAuley, Daniel F; Matthay, Michael A; Kissenpfennig, Adrien; O'Kane, Cecilia M; Krasnodembskaya, Anna D

    2016-08-01

    Mesenchymal stromal cells (MSC) have been reported to improve bacterial clearance in preclinical models of Acute Respiratory Distress Syndrome (ARDS) and sepsis. The mechanism of this effect is not fully elucidated yet. The primary objective of this study was to investigate the hypothesis that the antimicrobial effect of MSC in vivo depends on their modulation of macrophage phagocytic activity which occurs through mitochondrial transfer. We established that selective depletion of alveolar macrophages (AM) with intranasal (IN) administration of liposomal clodronate resulted in complete abrogation of MSC antimicrobial effect in the in vivo model of Escherichia coli pneumonia. Furthermore, we showed that MSC administration was associated with enhanced AM phagocytosis in vivo. We showed that direct coculture of MSC with monocyte-derived macrophages enhanced their phagocytic capacity. By fluorescent imaging and flow cytometry we demonstrated extensive mitochondrial transfer from MSC to macrophages which occurred at least partially through tunneling nanotubes (TNT)-like structures. We also detected that lung macrophages readily acquire MSC mitochondria in vivo, and macrophages which are positive for MSC mitochondria display more pronounced phagocytic activity. Finally, partial inhibition of mitochondrial transfer through blockage of TNT formation by MSC resulted in failure to improve macrophage bioenergetics and complete abrogation of the MSC effect on macrophage phagocytosis in vitro and the antimicrobial effect of MSC in vivo. Collectively, this work for the first time demonstrates that mitochondrial transfer from MSC to innate immune cells leads to enhancement in phagocytic activity and reveals an important novel mechanism for the antimicrobial effect of MSC in ARDS. Stem Cells 2016;34:2210-2223.

  16. Enhancing exposure of HIV-1 neutralization epitopes through mutations in gp41.

    Directory of Open Access Journals (Sweden)

    Catherine A Blish

    2008-01-01

    Full Text Available BACKGROUND: The generation of broadly neutralizing antibodies is a priority in the design of vaccines against HIV-1. Unfortunately, most antibodies to HIV-1 are narrow in their specificity, and a basic understanding of how to develop antibodies with broad neutralizing activity is needed. Designing methods to target antibodies to conserved HIV-1 epitopes may allow for the generation of broadly neutralizing antibodies and aid the global fight against AIDS by providing new approaches to block HIV-1 infection. Using a naturally occurring HIV-1 Envelope (Env variant as a template, we sought to identify features of Env that would enhance exposure of conserved HIV-1 epitopes. METHODS AND FINDINGS: Within a cohort study of high-risk women in Mombasa, Kenya, we previously identified a subtype A HIV-1 Env variant in one participant that was unusually sensitive to neutralization. Using site-directed mutagenesis, the unusual neutralization sensitivity of this variant was mapped to two amino acid mutations within conserved sites in the transmembrane subunit (gp41 of the HIV-1 Env protein. These two mutations, when introduced into a neutralization-resistant variant from the same participant, resulted in 3- to >360-fold enhanced neutralization by monoclonal antibodies specific for conserved regions of both gp41 and the Env surface subunit, gp120, >780-fold enhanced neutralization by soluble CD4, and >35-fold enhanced neutralization by the antibodies found within a pool of plasmas from unrelated individuals. Enhanced neutralization sensitivity was not explained by differences in Env infectivity, Env concentration, Env shedding, or apparent differences in fusion kinetics. Furthermore, introduction of these mutations into unrelated viral Env sequences, including those from both another subtype A variant and a subtype B variant, resulted in enhanced neutralization susceptibility to gp41- and gp120-specific antibodies, and to plasma antibodies. This enhanced

  17. Inhibition of nitric oxide enhances ovine lentivirus replication in monocyte-derived macrophages.

    Science.gov (United States)

    Keane, Kevin A; Mason, Gary L; DeMartini, James C

    2002-12-01

    Ovine lentivirus (OvLV) also known as maedi-visna virus, infects and replicates primarily in macrophages. This investigation examined the role of nitric oxide in the replication of OvLV in cultured macrophages. Peripheral blood mononuclear cells were collected from OvLV-free sheep and cultured in Teflon coated flasks at a high concentration of lamb serum. The cells were subsequently infected with OvLV strain 85/34. OvLV replication was assessed under different experimental treatments by comparison of reverse transcriptase (RT) activity in culture supernatant. Cultures that were treated with exogenous nitric oxide via S-nitroso-acetylpenicillamine did not have altered levels of RT activity compared to cultures treated with the inactive control compound, acetylpenicillamine. However, blockage of nitric oxide production by treatment with aminoguanidine, a competitive inhibitor of inducible nitric oxide synthase (iNOS), led to a significant rise in RT activity. This rise in RT activity was partially reversed in aminoguanidine treated cultures by L-arginine, the normal substrate for iNOS. Finally, the number of viral antigen producing cells was also quantified after aminoguanidine treatment and found to be significantly higher than untreated cultures. Collectively, these results indicate that nitric oxide is a negative regulator of OvLV replication in macrophages.

  18. Semen-mediated enhancement of HIV infection is donor-dependent and correlates with the levels of SEVI

    Directory of Open Access Journals (Sweden)

    Hahn Beatrice H

    2010-06-01

    Full Text Available Abstract Background HIV-1 is usually transmitted in the presence of semen. We have shown that semen boosts HIV-1 infection and contains fragments of prostatic acid phosphatase (PAP forming amyloid aggregates termed SEVI (semen-derived enhancer of viral infection that promote virion attachment to target cells. Despite its importance for the global spread of HIV-1, however, the effect of semen on virus infection is controversial. Results Here, we established methods allowing the meaningful analysis of semen by minimizing its cytotoxic effects and partly recapitulating the conditions encountered during sexual HIV-1 transmission. We show that semen rapidly and effectively enhances the infectivity of HIV-1, HIV-2, and SIV. This enhancement occurs independently of the viral genotype and coreceptor tropism as well as the virus producer and target cell type. Semen-mediated enhancement of HIV-1 infection was also observed under acidic pH conditions and in the presence of vaginal fluid. We further show that the potency of semen in boosting HIV-1 infection is donor dependent and correlates with the levels of SEVI. Conclusions Our results show that semen strongly enhances the infectivity of HIV-1 and other primate lentiviruses and that SEVI contributes to this effect. Thus, SEVI may play an important role in the sexual transmission of HIV-1 and addition of SEVI inhibitors to microbicides may improve their efficacy.

  19. Mucosal stromal fibroblasts markedly enhance HIV infection of CD4+ T cells

    Science.gov (United States)

    Kohgadai, Nargis; Müller, Janis A.; Laustsen, Anders; Thavachelvam, Karthiga; Stürzel, Christina M.; Jones, Jennifer J.; Somsouk, Ma; Garcia, Maurice M.; Smith, James F.; Greenblatt, Ruth M.; Münch, Jan; Jakobsen, Martin R.; Giudice, Linda C.; Greene, Warner C.; Roan, Nadia R.

    2017-01-01

    Understanding early events of HIV transmission within mucosal tissues is vital for developing effective prevention strategies. Here, we report that primary stromal fibroblasts isolated from endometrium, cervix, foreskin, male urethra, and intestines significantly increase HIV infection of CD4+ T cells–by up to 37-fold for R5-tropic HIV and 100-fold for X4-tropic HIV–without themselves becoming infected. Fibroblasts were more efficient than dendritic cells at trans-infection and mediate this response in the absence of the DC-SIGN and Siglec-1 receptors. In comparison, mucosal epithelial cells secrete antivirals and inhibit HIV infection. These data suggest that breaches in the epithelium allow external or luminal HIV to escape an antiviral environment to access the infection-favorable environment of the stromal fibroblasts, and suggest that resident fibroblasts have a central, but previously unrecognized, role in HIV acquisition at mucosal sites. Inhibiting fibroblast-mediated enhancement of HIV infection should be considered as a novel prevention strategy. PMID:28207890

  20. Photothermal enhancement of chemotherapy mediated by gold-silica nanoshell-loaded macrophages: in vitro squamous cell carcinoma study

    Science.gov (United States)

    Madsen, Steen J.; Shih, En-Chung; Peng, Qian; Christie, Catherine; Krasieva, Tatiana; Hirschberg, Henry

    2016-01-01

    Moderate hyperthermia (MHT) has been shown to enhance the effects of chemotherapeutic agents in a wide variety of cancers. The purpose of this study was to investigate the combined effects of commonly used chemotherapeutic agents with MHT induced by near-infrared (NIR) activation of gold nanoshell (AuNS)-loaded macrophages (Ma). AuNS-loaded murine Ma combined with human FaDu squamous cells, in hybrid monolayers, were subjected to three cytotoxic drugs (doxorubicin, bleomycin, cisplatin) with or without NIR laser irradiation. For all three drugs, efficacy was increased by NIR activation of AuNS-loaded Ma. The results of this in vitro study provide proof-of-concept for the use of AuNS-loaded Ma for photothermal enhancement of the effects of chemotherapy on squamous cell carcinoma.

  1. Thromboxane A{sub 2} receptor signaling promotes liver tissue repair after toxic injury through the enhancement of macrophage recruitment

    Energy Technology Data Exchange (ETDEWEB)

    Minamino, Tsutomu [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Departments of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Ito, Yoshiya [Departments of Surgery, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Ohkubo, Hirotoki [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Departments of Surgery, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Hosono, Kanako; Suzuki, Tatsunori [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Sato, Takehito [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Departments of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Ae, Takako; Shibuya, Akitaka [Departments of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Sakagami, Hiroyuki [Departments of Anatomy, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Narumiya, Shuh [Department of Pharmacology, Kyoto University School of Medicine, Kyoto, 606-8315 (Japan); Koizumi, Wasaburo [Departments of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan); Majima, Masataka, E-mail: mmajima@med.kitasato-u.ac.jp [Departments of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374 (Japan)

    2012-02-15

    It is thought that thromboxane A{sub 2} (TxA{sub 2}) contributes to the progression of inflammation during acute hepatic injury; however, it is still unknown whether TxA{sub 2} is involved in liver repair. The objective of the present study was to examine the role of TxA{sub 2} receptor (TP) signaling in liver injury and repair in response to toxic injury. Carbon tetrachloride (CCl{sub 4}) was used to induce liver injury in TP knockout (TP{sup −/−}) mice and wild-type (WT) mice. In WT mice, serum levels of alanine aminotransferase (ALT) and the size of the necrotic area peaked at 24 and 48 h, respectively, and then declined. In TP{sup −/−} mice, the changes in ALT levels were similar to WT mice, but liver regeneration was impaired as evidenced by remained elevated levels of hepatic necrosis and by delayed hepatocyte proliferation, which was associated with the reduced expression of growth factors including interleukin-6 (IL-6), tumor necrosis factor alpha (TNFα), and hepatocyte growth factor (HGF). In TP{sup −/−} mice, the accumulation of hepatic CD11b{sup +}/F4/80{sup +} macrophages in injured livers was attenuated, and the hepatic expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and its receptor, the C―C chemokine receptor (CCR2), was reduced compared to WT. Additionally, the application of the TP receptor agonist, U-46619, enhanced the expression of MCP-1/CCL2 and CCR2 in peritoneal macrophages, which was associated with increased levels of IL-6, TNFα and HGF. These results suggested that TP receptor signaling facilitates liver recovery following CCl{sub 4}-induced hepatotoxicity by affecting the expression of hepatotrophic growth factors, and through the recruitment of macrophages mediated by MCP-1/CCL2-CCR2 expression. -- Highlights: ► TP enhances liver regeneration by CCl{sub 4}. ► TP accumulates macrophages. ► TP up-regulates MCP-1.

  2. l-Arginine Uptake by Cationic Amino Acid Transporter Promotes Intra-Macrophage Survival of Leishmania donovani by Enhancing Arginase-Mediated Polyamine Synthesis.

    Science.gov (United States)

    Mandal, Abhishek; Das, Sushmita; Kumar, Ajay; Roy, Saptarshi; Verma, Sudha; Ghosh, Ayan Kumar; Singh, Ruby; Abhishek, Kumar; Saini, Savita; Sardar, Abul Hasan; Purkait, Bidyut; Kumar, Ashish; Mandal, Chitra; Das, Pradeep

    2017-01-01

    The survival of intracellular protozoan parasite, Leishmania donovani, the causative agent of Indian visceral leishmaniasis (VL), depends on the activation status of macrophages. l-Arginine, a semi-essential amino acid plays a crucial regulatory role for activation of macrophages. However, the role of l-arginine transport in VL still remains elusive. In this study, we demonstrated that intra-macrophage survival of L. donovani depends on the availability of extracellular l-arginine. Infection of THP-1-derived macrophage/human monocyte-derived macrophage (hMDM) with Leishmania, resulted in upregulation of l-arginine transport. While investigating the involvement of the transporters, we observed that Leishmania survival was greatly impaired when the transporters were blocked either using inhibitor or siRNA-mediated downregulation. CAT-2 was found to be the main isoform associated with l-arginine transport in L. donovani-infected macrophages. l-arginine availability and its transport regulated the host arginase in Leishmania infection. Arginase and inducible nitric oxide synthase (iNOS) expression were reciprocally regulated when assayed using specific inhibitors and siRNA-mediated downregulation. Interestingly, induction of iNOS expression and nitric oxide production were observed in case of inhibition of arginase in infected macrophages. Furthermore, inhibition of l-arginine transport as well as arginase resulted in decreased polyamine production, limiting parasite survival inside macrophages. l-arginine availability and transport regulated Th1/Th2 cytokine levels in case of Leishmania infection. Upregulation of l-arginine transport, induction of host arginase, and enhanced polyamine production were correlated with increased level of IL-10 and decreased level of IL-12 and TNF-α in L. donovani-infected macrophages. Our findings provide clear evidence for targeting the metabolism of l-arginine and l-arginine-metabolizing enzymes as an important therapeutic and

  3. Macrophage specific overexpression of the human macrophage scavenger receptor in transgenic mice, using a 180-kb yeast artificial chromosome, leads to enhanced foam cell formation of isolated peritoneal macrophages

    NARCIS (Netherlands)

    Winther, M.P.J. de; Dijk, K.W. van; Vlijmen, B.J.M. van; Gijbels, M.J.J.; Heus, J.J.; Wijers, E.R.; Bos, A.C. van den; Breuer, M.; Frants, R.R.; Havekes, L.M.; Hofker, M.H.

    1999-01-01

    Macrophage scavenger receptors class A (MSR) are thought to play an important role in atherogenesis by mediating the unrestricted uptake of modified lipoproteins by macrophages in the vessel wall leading to foam cell formation. To investigate the in vivo role of the MSR in this process, a transgenic

  4. Arginase 2 deletion leads to enhanced M1 macrophage activation and upregulated polyamine metabolism in response to Helicobacter pylori infection.

    Science.gov (United States)

    Hardbower, Dana M; Asim, Mohammad; Murray-Stewart, Tracy; Casero, Robert A; Verriere, Thomas; Lewis, Nuruddeen D; Chaturvedi, Rupesh; Piazuelo, M Blanca; Wilson, Keith T

    2016-10-01

    We reported that arginase 2 (ARG2) deletion results in increased gastritis and decreased bacterial burden during Helicobacter pylori infection in mice. Our studies implicated a potential role for inducible nitric oxide (NO) synthase (NOS2), as Arg2 (-/-) mice exhibited increased NOS2 levels in gastric macrophages, and NO can kill H. pylori. We now bred Arg2 (-/-) to Nos2 (-/-) mice, and infected them with H. pylori. Compared to wild-type mice, both Arg2 (-/-) and Arg2 (-/-) ;Nos2 (-/-) mice exhibited increased gastritis and decreased colonization, the latter indicating that the effect of ARG2 deletion on bacterial burden was not mediated by NO. While Arg2 (-/-) mice demonstrated enhanced M1 macrophage activation, Nos2 (-/-) and Arg2 (-/-) ;Nos2 (-/-) mice did not demonstrate these changes, but exhibited increased CXCL1 and CXCL2 responses. There was an increased expression of the Th1/Th17 cytokines, interferon gamma and interleukin 17, in gastric tissues and splenic T-cells from Arg2 (-/-), but not Nos2 (-/-) or Arg2 (-/-) ;Nos2 (-/-) mice. Gastric tissues from infected Arg2 (-/-) mice demonstrated increased expression of arginase 1, ornithine decarboxylase, adenosylmethionine decarboxylase 1, spermidine/spermine N (1)-acetyltransferase 1, and spermine oxidase, along with increased spermine levels. These data indicate that ARG2 deletion results in compensatory upregulation of gastric polyamine synthesis and catabolism during H. pylori infection, which may contribute to increased gastric inflammation and associated decreased bacterial load. Overall, the finding of this study is that ARG2 contributes to the immune evasion of H. pylori by restricting M1 macrophage activation and polyamine metabolism.

  5. Fibrinogen enhances the inflammatory response of alveolar macrophages to TiO2, SiO2 and carbon nanomaterials.

    Science.gov (United States)

    Marucco, Arianna; Gazzano, Elena; Ghigo, Dario; Enrico, Emanuele; Fenoglio, Ivana

    2016-01-01

    Many studies have shown that the composition of the protein corona dramatically affects the response of cells to nanomaterials (NMs). However, the role of each single protein is still largely unknown. Fibrinogen (FG), one of the most abundant plasma proteins, is believed to mediate foreign-body reactions. Since this protein is absent in cell media used in in vitro toxicological tests the possible FG-mediated effects have not yet been assessed. Here, the effect of FG on the toxicity of three different kinds of inorganic NMs (carbon, SiO2 and TiO2) on alveolar macrophages has been investigated. A set of integrated techniques (UV-vis spectroscopy, dynamic light scattering and sodium dodecyl sulphate-polyacrylamide gel electrophoresis) have been used to study the strength and the kinetics of interaction of FG with the NMs. The inflammatory response of alveolar macrophages (MH-S) exposed to the three NMs associated with FG has also been investigated. We found that FG significantly enhances the cytotoxicity (lactate dehydrogenase leakage) and the inflammatory response (increase in nitric oxide (NO) concentration and NO synthase activation) induced by SiO2, carbon and TiO2 NMs on alveolar macrophages. This effect appears related to the amount of FG interacting with the NMs. In the case of carbon NMs, the activation of fibrinolysis, likely related to the exposure of cryptic sites of FG, was also observed after 24 h. These findings underline the critical role played by FG in the toxic response to NMs.

  6. Enhanced expression of the decoy receptor IL-13Rα2 in macrophages of Schistosoma japonicum-infected mice

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; SHEN Yu-xian; LI Jing; ZHANG Shi-hai; LUO Qing-li; ZHONG Zhen-rong; JIANG Zuo-jun; SHEN Ji-long

    2009-01-01

    Background Type 2 cytokine interleukin (IL)-13 and its decoy receptor, IL-13 receptor (R)α2 appear to play a major role in tissue fibrosis of schistosomiasis and asthma. IL-13 is a key regulator of the extracellular matrix (ECM). It is known to signal to cells by binding to the IL-13Ra1, which then heterodimerizes with IL-4Rα. In contrast, IL-13Rα2 binds IL-13 with high affinity but does not signal. IL-13Rα2 is known to down-regulate granulomatous inflammation and prolong host survival in Schistosoma mansoni (S. Mansoni) infection, but little is known about the location and expression level of IL-13Ra2 in the context of S. Japonicum infection. Methods We established S. Japonicum-infected mouse models. Kinetic serum levels of IL-13Rα2 were examined with ELISA. IL-13Rα2 mRNA and protein of liver tissues were determined by PCR and immunoblotting analysis, respectively. Detection of IL-13Rα2 expression and location in macrophages was performed by TaqMan PCR and fluorescent immunocytochemistry technique, respectively. Results A marked elevation of mRNA and protein expression of IL-13Rα2 was observed in mice during S. Japonicum infection. An enhanced expression of IL-13Rg2 was further demonstrated in primary macrophages of murine schistosomiasis. Conclusions IL-13Rα2 in macrophages may be a critical contributor to pathogenesis of schistosomiasis. The data highlight the potential importance of cell signaling and antifibrotic gene therapeutics in T helper 2 cell (Th2)-mediated diseases.

  7. Type II Toxoplasma gondii induction of CD40 on infected macrophages enhances interleukin-12 responses.

    Science.gov (United States)

    Morgado, Pedro; Sudarshana, Dattanand M; Gov, Lanny; Harker, Katherine S; Lam, Tonika; Casali, Paolo; Boyle, Jon P; Lodoen, Melissa B

    2014-10-01

    Toxoplasma gondii is an obligate intracellular parasite that can cause severe neurological disease in infected humans. CD40 is a receptor on macrophages that plays a critical role in controlling T. gondii infection. We examined the regulation of CD40 on the surface of T. gondii-infected bone marrow-derived macrophages (BMdMs). T. gondii induced CD40 expression both at the transcript level and on the cell surface, and interestingly, the effect was parasite strain specific: CD40 levels were dramatically increased in type II T. gondii-infected BMdMs compared to type I- or type III-infected cells. Type II induction of CD40 was specific to cells harboring intracellular parasites and detectable as early as 6 h postinfection (hpi) at the transcript level. CD40 protein expression peaked at 18 hpi. Using forward genetics with progeny from a type II × type III cross, we found that CD40 induction mapped to a region of chromosome X that included the gene encoding the dense granule protein 15 (GRA15). Using type I parasites stably expressing the type II allele of GRA15 (GRA15II), we found that type I GRA15II parasites induced the expression of CD40 on infected cells in an NF-κB-dependent manner. In addition, stable expression of hemagglutinin-tagged GRA15II in THP-1 cells resulted in CD40 upregulation in the absence of infection. Since CD40 signaling contributes to interleukin-12 (IL-12) production, we examined IL-12 from infected macrophages and found that CD40L engagement of CD40 amplified the IL-12 response in type II-infected cells. These data indicate that GRA15II induction of CD40 promotes parasite immunity through the production of IL-12. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. CIITA enhances HIV-1 attachment to CD4+ T cells leading to enhanced infection and cell depletion.

    Science.gov (United States)

    Porter, Kristen A; Kelley, Lauren N; Nekorchuk, Michael D; Jones, James H; Hahn, Amy B; de Noronha, Carlos M C; Harton, Jonathan A; Duus, Karen M

    2010-12-01

    Activated CD4(+) T cells are more susceptible to HIV infection than resting T cells; the reason for this remains unresolved. Induction of CIITA and subsequent expression of the MHC class II isotype HLA-DR are hallmarks of CD4(+) T cell activation; therefore, we investigated the role of CIITA expression in T cells during HIV infection. CIITA-expressing SupT1 cells display enhanced virion attachment in a gp160/CD4-dependent manner, which results in increased HIV infection, virus release, and T cell depletion. Although increased attachment and infection of T cells correlated with HLA-DR surface expression, Ab blocking, transient expression of HLA-DR without CIITA, and short hairpin RNA knockdown demonstrate that HLA-DR does not directly enhance susceptibility of CIITA-expressing cells to HIV infection. Further analysis of the remaining MHC class II isotypes, HLA-DP and HLA-DQ, MHC class I isotypes, HLA-A, HLA-B, and HLA-C, and the class II Ag presentation genes, invariant chain and HLA-DM, demonstrate that these proteins likely do not contribute to CIITA enhancement of HIV infection. Finally, we demonstrate that in activated primary CD4(+) T cells as HLA-DR/CIITA expression increases there is a corresponding increase in virion attachment. Overall, this work suggests that induction of CIITA expression upon CD4(+) T cell activation contributes to enhanced attachment, infection, virus release, and cell death through an undefined CIITA transcription product that may serve as a new antiviral target.

  9. Marrubium vulgare extract inhibits human-LDL oxidation and enhances HDL-mediated cholesterol efflux in THP-1 macrophage.

    Science.gov (United States)

    Berrougui, Hicham; Isabelle, Maxim; Cherki, Mounia; Khalil, Abdelouahed

    2006-12-14

    The objective of the present study was to elucidate the beneficial properties of aqueous extracts of Marrubium vulgare (AEM) towards cardiovascular disease by protecting human-LDL against lipid peroxidation and promoting HDL-mediated cholesterol efflux. Human-LDL were oxidised by incubation with CuSO(4) in the presence of increased concentrations of AEM (0-100 microg/ml). LDL lipid peroxidation was evaluated by conjugated diene formation, vitamin E disappearance as well as LDL-electrophoretic mobility. HDL-mediated cholesterol efflux assay was carried out in human THP-1 macrophages. Incubation of LDL with AEM significantly prolonged the lag phase (P=0.014), lowered the progression rate of lipid peroxidation (P=0.004), reduced the disappearance of vitamin E and the electrophoretic mobility in a dose-dependent manner. Also, incubation of HDL with AEM significantly increased HDL-mediated cholesterol efflux from THP-1 macrophages implicating an independent ATP binding cassette A1 (ABCA1) pathways. Our findings suggest that M. vulgare provides a source of natural antioxidants, which inhibit LDL oxidation and enhance reverse cholesterol transport and thus can prevent cardiovascular diseases development. These antioxidant properties increase the anti-atherogenic potential of HDL.

  10. Macrophage Cell Membrane Camouflaged Au Nanoshells for in Vivo Prolonged Circulation Life and Enhanced Cancer Photothermal Therapy.

    Science.gov (United States)

    Xuan, Mingjun; Shao, Jingxin; Dai, Luru; Li, Junbai; He, Qiang

    2016-04-20

    Macrophage cell membrane (MPCM)-camouflaged gold nanoshells (AuNS) that can serve as a new generation of photothermal conversion agents for in vivo photothermal cancer therapy are presented. They are constructed by the fusion of biocompatible AuNSs and MPCM vesicles. The resulting MPCM-coated AuNSs exhibited good colloidal stability and kept the original near-infrared (NIR) adsorption of AuNSs. Because AuNS carried high-density coverage of MPCMs, the totally functional portions of macrophage cells membrane were grafted onto the surface of AuNSs. This surface functionalization provided active targeting ability by recognizing tumor endothelium and thus improved tumoritropic accumulation compared to the red blood cell membrane-coating approach. These biomimetic nanoparticles significantly enhance in vivo blood circulation time and local accumulation at the tumor when administered systematically. Upon NIR laser irradiation, local heat generated by the MPCM-coated AuNS achieves high efficiency to suppress tumor growth and selectively ablate cancerous cells within the illuminated zone. Therefore, MPCM-coated AuNSs remained the natural properties of their source cells, which may improve the efficacy of photothermal therapy modulated by AuNSs and other noble-metal nanoparticles.

  11. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy.

    Directory of Open Access Journals (Sweden)

    Yolanda Williams-Bey

    Full Text Available The omega-3 (ω3 fatty acid docosahexaenoic acid (DHA can suppress inflammation, specifically IL-1β production through poorly understood molecular mechanisms. Here, we show that DHA reduces macrophage IL-1β production by limiting inflammasome activation. Exposure to DHA reduced IL-1β production by ligands that stimulate the NLRP3, AIM2, and NAIP5/NLRC4 inflammasomes. The inhibition required Free Fatty Acid Receptor (FFAR 4 (also known as GPR120, a G-protein coupled receptor (GPR known to bind DHA. The exposure of cells to DHA recruited the adapter protein β-arrestin1/2 to FFAR4, but not to a related lipid receptor. DHA treatment reduced the initial inflammasome priming step by suppressing the nuclear translocation of NF-κB. DHA also reduced IL-1β levels by enhancing autophagy in the cells. As a consequence macrophages derived from mice lacking the essential autophagy protein ATG7 were partially resistant to suppressive effects of DHA. Thus, DHA suppresses inflammasome activation by two distinct mechanisms, inhibiting the initial priming step and by augmenting autophagy, which limits inflammasome activity.

  12. A Yersinia effector with enhanced inhibitory activity on the NF-κB pathway activates the NLRP3/ASC/caspase-1 inflammasome in macrophages.

    Directory of Open Access Journals (Sweden)

    Ying Zheng

    2011-04-01

    Full Text Available A type III secretion system (T3SS in pathogenic Yersinia species functions to translocate Yop effectors, which modulate cytokine production and regulate cell death in macrophages. Distinct pathways of T3SS-dependent cell death and caspase-1 activation occur in Yersinia-infected macrophages. One pathway of cell death and caspase-1 activation in macrophages requires the effector YopJ. YopJ is an acetyltransferase that inactivates MAPK kinases and IKKβ to cause TLR4-dependent apoptosis in naïve macrophages. A YopJ isoform in Y. pestis KIM (YopJ(KIM has two amino acid substitutions, F177L and K206E, not present in YopJ proteins of Y. pseudotuberculosis and Y. pestis CO92. As compared to other YopJ isoforms, YopJ(KIM causes increased apoptosis, caspase-1 activation, and secretion of IL-1β in Yersinia-infected macrophages. The molecular basis for increased apoptosis and activation of caspase-1 by YopJ(KIM in Yersinia-infected macrophages was studied. Site directed mutagenesis showed that the F177L and K206E substitutions in YopJ(KIM were important for enhanced apoptosis, caspase-1 activation, and IL-1β secretion. As compared to YopJ(CO92, YopJ(KIM displayed an enhanced capacity to inhibit phosphorylation of IκB-α in macrophages and to bind IKKβ in vitro. YopJ(KIM also showed a moderately increased ability to inhibit phosphorylation of MAPKs. Increased caspase-1 cleavage and IL-1β secretion occurred in IKKβ-deficient macrophages infected with Y. pestis expressing YopJ(CO92, confirming that the NF-κB pathway can negatively regulate inflammasome activation. K+ efflux, NLRP3 and ASC were important for secretion of IL-1β in response to Y. pestis KIM infection as shown using macrophages lacking inflammasome components or by the addition of exogenous KCl. These data show that caspase-1 is activated in naïve macrophages in response to infection with a pathogen that inhibits IKKβ and MAPK kinases and induces TLR4-dependent apoptosis. This pro

  13. Enhancing HIV Communication between Parents and Children: Efficacy of the Parents Matter! Program

    Science.gov (United States)

    Miller, Kim S.; Lin, Carol Y.; Poulsen, Melissa N.; Fasula, Amy; Wyckoff, Sarah C.; Forehand, Rex; Long, Nicholas; Armistead, Lisa

    2011-01-01

    We examine efficacy of the Parents Matter! Program (PMP), a program to teach African-American parents of preadolescents sexual communication and HIV-prevention skills, through a multicenter, randomized control trial. A total of 1115 parent-child participants were randomized to one of three intervention arms (enhanced, brief, control). Percentages…

  14. Antibodies to several conformation-dependent epitopes of gp120/gp41 inhibit CCR-5-dependent cell-to-cell fusion mediated by the native envelope glycoprotein of a primary macrophage-tropic HIV-1 isolate

    OpenAIRE

    Verrier, Florence C.; Charneau, Pierre; Altmeyer, Ralf; Laurent, Stephanie; Borman, Andrew M.; Girard, Marc

    1997-01-01

    The β-chemokine receptor CCR-5 is essential for the efficient entry of primary macrophage-tropic HIV-1 isolates into CD4+ target cells. To study CCR-5-dependent cell-to-cell fusion, we have developed an assay system based on the infection of CD4+ CCR-5+ HeLa cells with a Semliki Forest virus recombinant expressing the gp120/gp41 envelope (Env) from a primary clade B HIV-1 isolate (BX08), or from a laboratory T cell line-adapted strain (LAI). In this system, gp120/gp41 of the “nonsyncytium-ind...

  15. Dendritic Cells Enhance HIV Infection of Memory CD4(+) T Cells in Human Lymphoid Tissues.

    Science.gov (United States)

    Reyes-Rodriguez, Angel L; Reuter, Morgan A; McDonald, David

    2016-02-01

    Dendritic cells (DCs) play a key role in controlling infections by coordinating innate and adaptive immune responses to invading pathogens. Paradoxically, DCs can increase HIV-1 dissemination in vitro by binding and transferring infectious virions to CD4(+) T cells, a process called transinfection. Transinfection has been well characterized in cultured cell lines and circulating primary T cells, but it is unknown whether DCs enhance infection of CD4(+) T cells in vivo. In untreated HIV infection, massive CD4(+) T-cell infection and depletion occur in secondary lymphoid tissues long before decline is evident in the peripheral circulation. To study the role of DCs in HIV infection of lymphoid tissues, we utilized human tonsil tissues, cultured either as tissue blocks or as aggregate suspension cultures, in single-round infection experiments. In these experiments, addition of monocyte-derived DCs (MDDCs) to the cultures increased T-cell infection, particularly in CD4(+) T cells expressing lower levels of HLA-DR. Subset analysis demonstrated that MDDCs increased HIV-1 infection of central and effector memory T-cell populations. Depletion of endogenous myeloid DCs (myDCs) from the cultures decreased memory T-cell infection, and readdition of MDDCs restored infection to predepletion levels. Using an HIV-1 fusion assay, we found that MDDCs equally increased HIV delivery into naïve, central, and effector memory T cells in the cultures, whereas predepletion of myDCs reduced fusion into memory T cells. Together, these data suggest that resident myDCs facilitate memory T-cell infection in lymphoid tissues, implicating DC-mediated transinfection in driving HIV dissemination within these tissues in untreated HIV/AIDS.

  16. Obesity Contributes to Ovarian Cancer Metastatic Success through Increased Lipogenesis, Enhanced Vascularity, and Decreased Infiltration of M1 Macrophages.

    Science.gov (United States)

    Liu, Yueying; Metzinger, Matthew N; Lewellen, Kyle A; Cripps, Stephanie N; Carey, Kyle D; Harper, Elizabeth I; Shi, Zonggao; Tarwater, Laura; Grisoli, Annie; Lee, Eric; Slusarz, Ania; Yang, Jing; Loughran, Elizabeth A; Conley, Kaitlyn; Johnson, Jeff J; Klymenko, Yuliya; Bruney, Lana; Liang, Zhong; Dovichi, Norman J; Cheatham, Bentley; Leevy, W Matthew; Stack, M Sharon

    2015-12-01

    Epithelial ovarian cancer (EOC) is the leading cause of death from gynecologic malignancy, with high mortality attributable to widespread intraperitoneal metastases. Recent meta-analyses report an association between obesity, ovarian cancer incidence, and ovarian cancer survival, but the effect of obesity on metastasis has not been evaluated. The objective of this study was to use an integrative approach combining in vitro, ex vivo, and in vivo studies to test the hypothesis that obesity contributes to ovarian cancer metastatic success. Initial in vitro studies using three-dimensional mesomimetic cultures showed enhanced cell-cell adhesion to the lipid-loaded mesothelium. Furthermore, in an ex vivo colonization assay, ovarian cancer cells exhibited increased adhesion to mesothelial explants excised from mice modeling diet-induced obesity (DIO), in which they were fed a "Western" diet. Examination of mesothelial ultrastructure revealed a substantial increase in the density of microvilli in DIO mice. Moreover, enhanced intraperitoneal tumor burden was observed in overweight or obese animals in three distinct in vivo models. Further histologic analyses suggested that alterations in lipid regulatory factors, enhanced vascularity, and decreased M1/M2 macrophage ratios may account for the enhanced tumorigenicity. Together, these findings show that obesity potently affects ovarian cancer metastatic success, which likely contributes to the negative correlation between obesity and ovarian cancer survival. ©2015 American Association for Cancer Research.

  17. Mutagen-mediated enhancement of HIV-1 replication in persistently infected cells.

    Science.gov (United States)

    Sánchez-Jiménez, Carmen; Olivares, Isabel; de Ávila Lucas, Ana Isabel; Toledano, Víctor; Gutiérrez-Rivas, Mónica; Lorenzo-Redondo, Ramón; Grande-Pérez, Ana; Domingo, Esteban; López-Galíndez, Cecilio

    2012-03-15

    Lethal mutagenesis, a new antiviral strategy to extinguish virus through elevated mutation rates, was explored in H61-D cells an HIV-1 persistently infected lymphoid cell line. Three mutagenic agents: 5-hydroxy-2(')-deoxycytidine (5-OHdC), 5-fluorouracil (5-FU) and 2,2(')-difluoro-2(')-deoxycytidine (gemcitabine) were used. After 54 passages, treatments with 5-FU and gemcitabine reduced virus infectivity, p24 and RT activity. Treatment with the pyrimidine analog 5-OHdC resulted in increases of p24 production, RT activity and infectivity. Rise in viral replication by 5-OHdC during HIV-1 persistence is in contrast with its inhibitory effect in acute infections. Viral replication enhancement by 5-OHdC was associated with an increase in intracellular HIV-1 RNA mutations. Mechanisms of HIV-1 replication enhancement by 5-OHdC are unknown but some potential factors are discussed. Increase of HIV-1 replication by 5-OHdC cautions against the use, without previous analyses, of mutagenic nucleoside analogs for AIDS treatment.

  18. SIRT1/Adenosine Monophosphate-Activated Protein Kinase α Signaling Enhances Macrophage Polarization to an Anti-inflammatory Phenotype in Rheumatoid Arthritis.

    Science.gov (United States)

    Park, So Youn; Lee, Sung Won; Lee, Sang Yeob; Hong, Ki Whan; Bae, Sun Sik; Kim, Koanhoi; Kim, Chi Dae

    2017-01-01

    Macrophages are crucially involved in the pathogenesis of rheumatoid arthritis (RA). Macrophages of the M1 phenotype act as pro-inflammatory mediators in synovium, whereas those of the M2 phenotype suppress inflammation and promote tissue repair. SIRT1 is a class 3 histone deacetylase with anti-inflammatory characteristics. However, the role played by SIRT1 in macrophage polarization has not been defined in RA. We investigated whether SIRT1 exerts anti-inflammatory effects by modulating M1/M2 polarization in macrophages from RA patients. In this study, SIRT1 activation promoted the phosphorylation of an adenosine monophosphate-activated protein kinase (AMPK) α/acetyl-CoA carboxylase in macrophages exposed to interleukin (IL)-4, and that this resulted in the expressions of M2 genes, including MDC, FcεRII, MrC1, and IL-10, at high levels. Furthermore, these expressions were inhibited by sirtinol (an inhibitor of SIRT1) and compound C (an inhibitor of AMPK). Moreover, SIRT1 activation downregulated LPS/interferon γ-mediated NF-κB activity by inhibiting p65 acetylation and the expression of M1 genes, such as CCL2, iNOS, IL-12 p35, and IL-12 p40. Macrophages from SIRT1 transgenic (Tg)-mice exhibited enhanced polarization of M2 phenotype macrophages and reduced polarization of M1 phenotype macrophages. In line with these observations, SIRT1-Tg mice showed less histological signs of arthritis, that is, lower TNFα and IL-1β expressions and less severe arthritis in the knee joints, compared to wild-type mice. Taken together, the study shows activation of SIRT1/AMPKα signaling exerts anti-inflammatory activities by regulating M1/M2 polarization, and thereby reduces inflammatory responses in RA. Furthermore, it suggests that SIRT1 signaling be viewed as a therapeutic target in RA.

  19. The role of IgG subclass of mouse monoclonal antibodies in antibody-dependent enhancement of feline infectious peritonitis virus infection of feline macrophages.

    Science.gov (United States)

    Hohdatsu, T; Tokunaga, J; Koyama, H

    1994-01-01

    Antibody-dependent enhancement (ADE) of feline infectious peritonitis virus (FIPV) infection was studied in feline alveolar macrophages and human monocyte cell line U937 using mouse neutralizing monoclonal antibodies (MAbs) directed to the spike protein of FIPV. Even among the MAbs that have been shown to recognize the same antigenic site, IgG 2a MAbs enhanced FIPV infection strongly, whereas IgG 1 MAbs did not. These IgG 2a MAbs enhanced the infection even when macrophages pretreated with the MAb were washed and then inoculated with the virus. Immunofluorescence flow cytometric analysis of the macrophages treated with each of the MAbs showed that the IgG 2a MAbs but not the IgG 1 MAbs bound to feline alveolar macrophages. Treatment of the IgG 2a MAb with protein A decreased the binding to the macrophages and, in parallel, diminished the ADE activity. Although no infection was observed by inoculation of FIPV to human monocyte cell line U937 cells, FIPV complexed with either the IgG 2a MAb or the IgG 1 MAb caused infection in U937 cells which are shown to express Fc gamma receptor (Fc gamma R) I and II that can bind mouse IgG 2a and IgG 1, respectively. These results suggest that the enhancing activity of MAb is closely correlated with IgG subclass and that the correlation is involved in binding of MAb to Fc gamma R on feline macrophage.

  20. Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases.

    Science.gov (United States)

    Hagemann, Thorsten; Robinson, Stephen C; Schulz, Matthias; Trümper, Lorenz; Balkwill, Frances R; Binder, Claudia

    2004-08-01

    Apart from the neoplastic cells, malignant tumours consist of the extracellular matrix (ECM) and normal cells, in particular tumour-associated macrophages (TAM). To understand the mechanisms by which TAM can influence tumour cell invasion we co-cultured the human breast cancer cell lines MCF-7, SK-BR-3 and the benign mammary epithelial cell line hTERT-HME1 with macrophages. Co-incubation enhanced invasiveness of the tumour cells, while hTERT-HME1 remained non-invasive. Addition of the broad-spectrum matrix metalloprotease (MMP)-inhibitor FN 439, neutralizing MMP-9 or tumour necrosis factor-alpha (TNF-alpha) antibodies reduced invasiveness to basal levels. As shown by zymography, all cell lines produced low amounts of MMP-2, -3, -7 and -9 under control conditions. Basal MMP production by macrophages was significantly higher. Upon co-incubation, supernatant levels of MMPs -2, -3, -7 and -9 increased significantly, paralleled by an increase of MMP-2 activation. MMP-2 and -9 induction could be blocked by TNF-alpha antibodies. Co-culture of macrophages and hTERT-HME1 did not lead to MMP induction. In the co-cultures, mRNAs for MMPs and TNF-alpha were significantly up-regulated in macrophages, while the mRNA concentrations in the tumour cells remained unchanged. In summary, we have found that co-cultivation of tumour cells with macrophages leads to enhanced invasiveness of the malignant cells due to TNF-alpha dependent MMP induction in the macrophages.

  1. Sesamol and sesame (Sesamum indicum) oil enhance macrophage cholesterol efflux via up-regulation of PPARγ1 and LXRα transcriptional activity in a MAPK-dependent manner.

    Science.gov (United States)

    Majdalawieh, Amin F; Ro, Hyo-Sung

    2015-08-01

    Cholesterol clearance by macrophages is a vital process to eliminate excess cholesterol from the body. Internalization of modified cholesterol by macrophages triggers overexpression of peroxisome proliferator-activated receptor γ1 (PPARγ1) and liver X receptor α (LXRα), two transcription factors that are critically involved in macrophage cholesterol efflux. Recent studies demonstrate that oral administration of sesamol derivative (INV-403) and sesame oil leads to a significant attenuation of atherosclerosis in Watanabe heritable hyperlipidemic rabbits and LDLR(-/-) mice, respectively. However, the exact molecular mechanisms underlying such anti-atherogenic effects remain largely unrevealed. Luciferase reporter assays were performed to assess the effects of sesamol and sesame oil on PPARγ1 and LXRα gene expression. The potential of sesamol and sesame oil to modulate cholesterol efflux was evaluated using (3)H-cholesterol efflux assays. Sesamol and sesame oil treatments lead to a significant up-regulation of PPARγ1 and LXRα expression and transcriptional activity in a MAPK-dependent manner. Importantly, primary macrophages display a significantly enhanced cholesterol efflux potential upon treatment with sesamol and sesame oil, and this stimulatory effect is mediated by MAPK signaling. Our findings suggest that the previously reported anti-atherogenic effects of sesamol and sesame oil could be attributed, at least in part, to enhanced PPARγ1 and LXRα expression and transcriptional activity leading to improved macrophage cholesterol efflux. Our study is novel in elucidating the molecular and cellular mechanisms underlying the protective effects of sesamol and sesame oil against atherosclerosis.

  2. Granulocyte-macrophage colony stimulatory factor enhances the pro-inflammatory response of interferon-γ-treated macrophages to Pseudomonas aeruginosa infection.

    Directory of Open Access Journals (Sweden)

    Sonali Singh

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic fibrosis (CF patients. CF patients have been proposed to have a Th2 and Th17-biased immune response suggesting that the lack of Th1 and/or over exuberant Th17 responses could contribute to the establishment of chronic P. aeruginosa infection and deterioration of lung function. Accordingly, we have observed that interferon (IFN-γ production by peripheral blood mononuclear cells from CF patients positively correlated with lung function, particularly in patients chronically infected with P. aeruginosa. In contrast, IL-17A levels tended to correlate negatively with lung function with this trend becoming significant in patients chronically infected with P. aeruginosa. These results are in agreement with IFN-γ and IL-17A playing protective and detrimental roles, respectively, in CF. In order to explore the protective effect of IFN-γ in CF, the effect of IFN-γ alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF, on the ability of human macrophages to control P. aeruginosa growth, resist the cytotoxicity induced by this bacterium or promote inflammation was investigated. Treatment of macrophages with IFN-γ, in the presence and absence of GM-CSF, failed to alter bacterial growth or macrophage survival upon P. aeruginosa infection, but changed the inflammatory potential of macrophages. IFN-γ caused up-regulation of monocyte chemoattractant protein-1 (MCP-1 and TNF-α and down-regulation of IL-10 expression by infected macrophages. GM-CSF in combination with IFN-γ promoted IL-6 production and further reduction of IL-10 synthesis. Comparison of TNF-α vs. IL-10 and IL-6 vs. IL-10 ratios revealed the following hierarchy in regard to the pro-inflammatory potential of human

  3. A novel trifunctional IgG-like bispecific antibody to inhibit HIV-1 infection and enhance lysis of HIV by targeting activation of complement

    Directory of Open Access Journals (Sweden)

    Tomlinson Stephen

    2010-06-01

    Full Text Available Abstract Background The complement system is not only a key component of innate immunity but also provides a first line of defense against invading pathogens, especially for viral pathogens. Human immunodeficiency virus (HIV, however, possesses several mechanisms to evade complement-mediated lysis (CoML and exploit the complement system to enhance viral infectivity. Responsible for this intrinsic resistance against complement-mediated virolysis are complement regulatory membrane proteins derived from the host cell that inherently downregulates complement activation at several stages of the cascade. In addition, HIV is protected from complement-mediated lysis by binding soluble factor H (fH through the viral envelope proteins, gp120 and gp41. Whereas inhibition of complement activity is the desired outcome in the vast majority of therapeutic approaches, there is a broader potential for complement-mediated inhibition of HIV by complement local stimulation. Presentation of the hypothesis Our previous studies have proven that the complement-mediated antibody-dependent enhancement of HIV infection is mediated by the association of complement receptor type 2 bound to the C3 fragment and deposited on the surface of HIV virions. Thus, we hypothesize that another new activator of complement, consisting of two dsFv (against gp120 and against C3d respectively linked to a complement-activating human IgG1 Fc domain ((anti-gp120 × anti-C3d-Fc, can not only target and amplify complement activation on HIV virions for enhancing the efficiency of HIV lysis, but also reduce the infectivity of HIV through blocking the gp120 and C3d on the surface of HIV. Testing the hypothesis Our hypothesis was tested using cell-free HIV-1 virions cultivated in vitro and assessment of virus opsonization was performed by incubating appropriate dilutions of virus with medium containing normal human serum and purified (anti-gp120 × anti-C3d-Fc proteins. As a control group, viruses

  4. Enhanced binding of antibodies generated during chronic HIV infection to mucus component MUC16

    Science.gov (United States)

    Bastian, Arangassery Rosemary; Fahrbach, Kelly; Smith, Archer; Mahan, Alison; Karim, Marcus; Licht, Anna; Zvonar, Ivan; Tedesco, Jacquelynn; Anderson, Meegan; Chapel, Anais; Suscovich, Todd; Malaspina, David; Streeck, Hendrik; Walker, Bruce D.; Kim, Arthur; Lauer, Georg; Altfeld, Marcus; Pillai, Shiv; Szleifer, Igal; Kelleher, Neil L.; Kiser, Patrick F.; Hope, Thomas J.; Alter, Galit

    2016-01-01

    Transmission of HIV across mucosal barriers accounts for the majority of HIV infections worldwide. Thus, efforts aimed at enhancing protective immunity at these sites are a top priority, including increasing virus-specific antibodies (Abs) and antiviral activity at mucosal sites. Mucin proteins, including the largest cell-associated mucin, MUC16, help form mucus to provide a physical barrier to incoming pathogens. Here we describe a natural interaction between Abs and MUC16 that is enhanced in specific disease settings such as chronic HIV infection. Binding to MUC16 was independent of IgG subclass, but strongly associated with shorter Ab glycan profiles, with agalactosylated (G0) Abs demonstrating the highest binding to MUC16. Binding of Abs to epithelial cells was diminished following MUC16-knockdown, and the MUC16 N-linked glycans were critical for binding. Further, agalactosylated VRC01 captured HIV more efficiently in MUC16. These data point to a novel opportunity to enrich Abs at mucosal sites by targeting Abs to MUC16 through changes in Fc-glycosylation, potentially blocking viral movement and sequestering the virus far from the epithelial border. Thus, next-generation vaccines or monoclonal therapeutics may enhance protective immunity by tuning Ab glycosylation to promote the enrichment of Abs at mucosal barriers. PMID:26960182

  5. Enhanced efficiency of female-to-male HIV transmission in core groups in developing countries: the need to target men.

    Science.gov (United States)

    O'Farrell, N

    2001-02-01

    The spread of heterosexual HIV in developing countries is heterogeneous. Factors that explain the wide diversity of HIV prevalences in different countries are undetermined. International aid organizations currently appear to be focusing activities mainly on women rather than on men. To identify critical determinants contributing to the high rates of heterosexual HIV transmission in developing countries through a review of studies investigating HIV per-act transmission rates, and to discuss how these factors might be prioritized through HIV-prevention interventions. Studies investigating the per-act HIV transmission rate were identified through a MEDLINE search and a review of the abstracts of the Annual International AIDS Conferences. When the summary mean per-act HIV transmission rates were calculated, the ratio of female-to-male HIV transmission in developing countries compared with that in the developed world was 341, whereas that for male-to-female transmission was 2.9. Enhanced female-to-male HIV transmission in male core groups is a critical determinant of high-prevalence HIV epidemics among heterosexuals in developing countries. In addition to condom promotion, there is a need for an increased emphasis on HIV-prevention activities in men to decrease their susceptibility in developing countries, particularly in the countries most affected by the epidemic.

  6. Human Alpha-Defensin HNP1 Increases HIV Traversal of the Epithelial Barrier: A Potential Role in STI-Mediated Enhancement of HIV Transmission.

    Science.gov (United States)

    Valere, Kimyata; Rapista, Aprille; Eugenin, Eliseo; Lu, Wuyuan; Chang, Theresa L

    2015-12-01

    Alpha-defensins, including human neutrophil peptides 1-3 (HNP1-3) and human defensin 5 (HD5), are elevated at the genital mucosa in individuals with sexually transmitted infections (STIs). The presence of STIs is associated with an increased risk of human immunodeficiency virus (HIV) transmission, suggesting there may be a role for defensins in early events of HIV transmission. HD5 has been demonstrated to contribute to STI-mediated increased HIV infectivity in vitro. HNPs exhibit anti-HIV activity in vitro. However, increased levels of HNPs have been associated with enhanced HIV acquisition and higher viral load in breast milk. This study found that HNP1, but not HD5, significantly disrupted epithelial integrity and promoted HIV traversal of epithelial barriers. Linear HNP1 with the same charges did not affect epithelial permeability, indicating that the observed effect of HNP1 on the epithelial barrier was structure dependent. These results suggest a role for HNP1 in STI-mediated enhancement of HIV transmission.

  7. Granulocyte-macrophage colony-stimulating factor, a potent adjuvant for polarization to Th-17 pattern: an experience on HIV-1 vaccine model.

    Science.gov (United States)

    Mahdavi, Mehdi; Tajik, Amir Hossein; Ebtekar, Massoumeh; Rahimi, Roghieh; Adibzadeh, Mohammad Mehdi; Moozarmpour, Hamid Reza; Beikverdi, Mohammad Sadegh; Olfat, Soophie; Hassan, Zuhair Mohammad; Choopani, Mohammad; Kameli, Morteza; Hartoonian, Christine

    2017-06-01

    Cytokines are mediators for polarization of immune response in vaccines. Studies show that co-immunization of DNA vaccines with granulocyte-macrophage colony-stimulating factor (GM-CSF) can increase immune responses. Here, experimental mice were immunized with HIV-1tat/pol/gag/env DNA vaccine with GM-CSF and boosted with recombinant vaccine. Lymphocyte proliferation with Brdu and CTL activity, IL-4, IFN-γ, IL-17 cytokines, total antibody, and IgG1 and IgG2a isotypes were assessed with ELISA. Results show that GM-CSF as adjuvant in DNA immunization significantly increased lymphocyte proliferation and IFN-γ cytokines, but CTL response was tiny increased. Also GM-CSF as adjuvant decreased IL-4 cytokine vs mere vaccine group. IL-17 in the group that immunized with mixture of DNA vaccine/GM-CSF was significantly increased vs DNA vaccine group. Result of total antibody shows that GM-CSF increased antibody response in which both IgG1 and IgG2a increased. Overall, results confirmed the beneficial effect of GM-CSF as adjuvant to increase vaccine immunogenicity. The hallmark result of this study was to increase IL-17 cytokine with DNA vaccine/GM-CSF immunized group. This study for the first time provides the evidence of the potency of GM-CSF in the induction of IL-17 in response to a vaccine, which is important for control of infection such as HIV-1. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  8. Adenosine deaminase enhances the immunogenicity of human dendritic cells from healthy and HIV-infected individuals.

    Directory of Open Access Journals (Sweden)

    Víctor Casanova

    Full Text Available ADA is an enzyme implicated in purine metabolism, and is critical to ensure normal immune function. Its congenital deficit leads to severe combined immunodeficiency (SCID. ADA binding to adenosine receptors on dendritic cell surface enables T-cell costimulation through CD26 crosslinking, which enhances T-cell activation and proliferation. Despite a large body of work on the actions of the ecto-enzyme ADA on T-cell activation, questions arise on whether ADA can also modulate dendritic cell maturation. To this end we investigated the effects of ADA on human monocyte derived dendritic cell biology. Our results show that both the enzymatic and non-enzymatic activities of ADA are implicated in the enhancement of CD80, CD83, CD86, CD40 and CCR7 expression on immature dendritic cells from healthy and HIV-infected individuals. These ADA-mediated increases in CD83 and costimulatory molecule expression is concomitant to an enhanced IL-12, IL-6, TNF-α, CXCL8(IL-8, CCL3(MIP1-α, CCL4(MIP-1β and CCL5(RANTES cytokine/chemokine secretion both in healthy and HIV-infected individuals and to an altered apoptotic death in cells from HIV-infected individuals. Consistently, ADA-mediated actions on iDCs are able to enhance allogeneic CD4 and CD8-T-cell proliferation, globally yielding increased iDC immunogenicity. Taken together, these findings suggest that ADA would promote enhanced and correctly polarized T-cell responses in strategies targeting asymptomatic HIV-infected individuals.

  9. Mice deficient in Sfrp1 exhibit increased adiposity, dysregulated glucose metabolism, and enhanced macrophage infiltration.

    Directory of Open Access Journals (Sweden)

    Kelly J Gauger

    Full Text Available The molecular mechanisms involved in the development of obesity and related complications remain unclear. Wnt signaling plays an important role in preadipocyte differentiation and adipogenesis. The expression of a Wnt antagonist, secreted frizzled related protein 1 (SFRP1, is increased in response to initial weight gain, then levels are reduced under conditions of extreme obesity in both humans and animals. Here we report that loss of Sfrp1 exacerbates weight gain, glucose homeostasis and inflammation in mice in response to diet induced obesity (DIO. Sfrp1(-/- mice fed a high fat diet (HFD exhibited an increase in body mass accompanied by increases in body fat percentage, visceral white adipose tissue (WAT mass, and adipocyte size. Moreover, Sfrp1 deficiency increases the mRNA levels of key de novo lipid synthesis genes (Fasn, Acaca, Acly, Elovl, Scd1 and the transcription factors that regulate their expression (Lxr-α, Srebp1, Chreb, and Nr1h3 in WAT. Fasting glucose levels are elevated, glucose clearance is impaired, hepatic gluconeogenesis regulators are aberrantly upregulated (G6pc and Pck1, and glucose transporters are repressed (Slc2a2 and Slc2a4 in Sfrp1(-/- mice fed a HFD. Additionally, we observed increased steatosis in the livers of Sfrp1(-/- mice. When there is an expansion of adipose tissue there is a sustained inflammatory response accompanied by adipokine dysregulation, which leads to chronic subclinical inflammation. Thus, we assessed the inflammatory state of different tissues and revealed that Sfrp1(-/- mice fed a HFD exhibited increased macrophage infiltration and expression of pro-inflammatory markers including IL-6, Nmnat, Tgf-β2, and SerpinE1. Our findings demonstrate that the expression of Sfrp1 is a critical factor required for maintaining appropriate cellular signaling in response to the onset of obesity.

  10. Leishmania donovani infection enhances lateral mobility of macrophage membrane protein which is reversed by liposomal cholesterol.

    Directory of Open Access Journals (Sweden)

    Moumita Ghosh

    2014-12-01

    Full Text Available The protozoan parasite Leishmania donovani (LD reduces cellular cholesterol of the host possibly for its own benefit. Cholesterol is mostly present in the specialized compartment of the plasma membrane. The relation between mobility of membrane proteins and cholesterol depletion from membrane continues to be an important issue. The notion that leishmania infection alters the mobility of membrane proteins stems from our previous study where we showed that the distance between subunits of IFNγ receptor (R1 and R2 on the cell surface of LD infected cell is increased, but is restored to normal by liposomal cholesterol treatment.We determined the lateral mobility of a membrane protein in normal, LD infected and liposome treated LD infected cells using GFP-tagged PLCδ1 as a probe. The mobility of PLCδ1 was computationally analyzed from the time lapse experiment using boundary distance plot and radial profile movement. Our results showed that the lateral mobility of the membrane protein, which is increased in infection, is restored to normal upon liposomal cholesterol treatment. The results of FRAP experiment lent further credence to the above notion. The membrane proteins are intimately linked with cellular actin and alteration of cellular actin may influence lateral mobility. We found that F-actin is decreased in infection but is restored to normal upon liposomal cholesterol treatment as evident from phalloidin staining and also from biochemical analysis by immunoblotting.To our knowledge this is the first direct demonstration that LD parasites during their intracellular life cycle increases lateral mobility of membrane proteins and decreases F-actin level in infected macrophages. Such defects may contribute to ineffective intracellular signaling and other cellular functions.

  11. Late gadolinium enhancement and subclinical cardiac dysfunction on cardiac MRI in asymptomatic HIV-positive men

    Directory of Open Access Journals (Sweden)

    A Loy

    2012-11-01

    Full Text Available Background: HIV is associated with an increased risk of cardiovascular disease (CVD and related clinical events. While traditional risk factors play an important role in the pathology of cardiovascular disease, HIV infection and its sequelae of immune activation and inflammation may have significant effects on the myocardium before becoming clinically evident. Cardiac MRI (CMR can be used to detect the pattern of these subclinical changes. This will lead to a better understanding of risk factors contributing to cardiovascular disease prior to it becoming clinically significant in HIV-positive patients. Methods: Prospective cohort study of 127 asymptomatic HIV-positive men on ART compared to 35 matched controls. Baseline demographics, HIV parameters, 12-lead ECG, routine biochemistry, and traditional cardiovascular risk factors were recorded. Images were acquired on a 3T Achieva Philips MRI scanner with 5 channel phase array cardiac coil and weight-based IV gadolinium was given at 0.15 mmol/kg dose with post-contrast inversion recovery imaging after 10 minutes. Results: 6/127 (4.7% of asymptomatic HIV-positive men had late gadolinium enhancement (LGE on MRI verses 1/35 (2.9% in the control group. In 3/6 (50% of cases this was in a classical infarction pattern with subendocardial involvement. 3/6 (50% were consistent with prior myocarditis. There was no significant difference in mean LVEF (66.93% vs 65.18%, LVMI (60.05g/m2 vs 55.94g/m2 or posterolateral wall thickness (8.28 mm and 8.16 mm between cases and controls respectively. There was significantly more diastolic dysfunction, E:A ratio < 1, found in the HIV-positive group, 18% vs 7% of controls (p = 0.037. Framingham risk did not predict either of these outcomes. Conclusions: There is an increased incidence of LGE detected on CMR in this asymptomatic HIV-positive cohort. Two distinct pathological processes were identifed as causing these changes, myocardial infarction and myocarditis

  12. Heme oxygenase-1 induction alters chemokine regulation and ameliorates human immunodeficiency virus-type-1 infection in lipopolysaccharide-stimulated macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhao-Hua [Division of Monoclonal Antibodies, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); Kumari, Namita; Nekhai, Sergei [Center for Sickle Cell Disease, Department of Medicine, Howard University, Washington, DC (United States); Clouse, Kathleen A. [Division of Monoclonal Antibodies, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States); Wahl, Larry M. [National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Yamada, Kenneth M. [Laboratory of Cell and Development Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Dhawan, Subhash, E-mail: subhash.dhawan@fda.hhs.gov [Viral Immunology Section, Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD (United States)

    2013-06-07

    Highlights: •Lipopolysaccharide stimulation of heme oxygenase-1 (HO-1) ameliorated HIV-1 infection of primary human macrophages. •The partial protection by HO-1 against HIV infection was associated with induction of chemokines such as MIP1α and MIP1β. •This mechanism explains lipopolysaccharide-stimulated HO-1-mediated inhibition of HIV-1 infection of macrophages. -- Abstract: We have elucidated a putative mechanism for the host resistance against HIV-1 infection of primary human monocyte-derived macrophages (MDM) stimulated with lipopolysaccharide (LPS). We show that LPS-activated MDM both inhibited HIV-1 entry into the cells and were refractory to post-entry productive viral replication. LPS-treated cells were virtually negative for mature virions as revealed by transmission electron microscopy. LPS activation of MDM markedly enhanced the expression of heme oxygenase-1 (HO-1), a potent inducible cytoprotective enzyme. Increased HO-1 expression was accompanied by elevated production of macrophage inflammatory chemokines (MIP1α and MIP1β) by LPS-activated MDM, significantly decreased surface chemokine receptor-5 (CCR-5) expression, and substantially reduced virus replication. Treatment of cells with HO-1 inhibitor SnPP IX (tin protoporphyrin IX) attenuated the LPS-mediated responses, HIV-1 replication and secretion of MIP1α, MIP1β, and LD78β chemokines with little change in surface CCR-5 expression. These results identify a novel role for HO-1 in the modulation of host immune response against HIV infection of MDM.

  13. First Phase I human clinical trial of a killed whole-HIV-1 vaccine: demonstration of its safety and enhancement of anti-HIV antibody responses.

    Science.gov (United States)

    Choi, Eunsil; Michalski, Chad J; Choo, Seung Ho; Kim, Gyoung Nyoun; Banasikowska, Elizabeth; Lee, Sangkyun; Wu, Kunyu; An, Hwa-Yong; Mills, Anthony; Schneider, Stefan; Bredeek, U Fritz; Coulston, Daniel R; Ding, Shilei; Finzi, Andrés; Tian, Meijuan; Klein, Katja; Arts, Eric J; Mann, Jamie F S; Gao, Yong; Kang, C Yong

    2016-11-28

    Vaccination with inactivated (killed) whole-virus particles has been used to prevent a wide range of viral diseases. However, for an HIV vaccine this approach has been largely negated due to inherent safety concerns, despite the ability of killed whole-virus vaccines to generate a strong, predominantly antibody-mediated immune response in vivo. HIV-1 Clade B NL4-3 was genetically modified by deleting the nef and vpu genes and substituting the coding sequence for the Env signal peptide with that of honeybee melittin signal peptide to produce a less virulent and more replication efficient virus. This genetically modified virus (gmHIV-1NL4-3) was inactivated and formulated as a killed whole-HIV vaccine, and then used for a Phase I human clinical trial (Trial Registration: Clinical Trials NCT01546818). The gmHIV-1NL4-3 was propagated in the A3.01 human T cell line followed by virus purification and inactivation with aldrithiol-2 and γ-irradiation. Thirty-three HIV-1 positive volunteers receiving cART were recruited for this observer-blinded, placebo-controlled Phase I human clinical trial to assess the safety and immunogenicity. Genetically modified and killed whole-HIV-1 vaccine, SAV001, was well tolerated with no serious adverse events. HIV-1NL4-3-specific PCR showed neither evidence of vaccine virus replication in the vaccine virus-infected human T lymphocytes in vitro nor in the participating volunteers receiving SAV001 vaccine. Furthermore, SAV001 with adjuvant significantly increased the pre-existing antibody response to HIV-1 proteins. Antibodies in the plasma of vaccinees were also found to recognize HIV-1 envelope protein on the surface of infected cells as well as showing an enhancement of broadly neutralizing antibodies inhibiting tier I and II of HIV-1 B, D, and A subtypes. The killed whole-HIV vaccine, SAV001, is safe and triggers anti-HIV immune responses. It remains to be determined through an appropriate trial whether this immune response prevents HIV

  14. Epidemiology of tuberculosis in a high HIV prevalence population provided with enhanced diagnosis of symptomatic disease.

    Directory of Open Access Journals (Sweden)

    Elizabeth L Corbett

    2007-01-01

    Full Text Available BACKGROUND: Directly observed treatment short course (DOTS, the global control strategy aimed at controlling tuberculosis (TB transmission through prompt diagnosis of symptomatic smear-positive disease, has failed to prevent rising tuberculosis incidence rates in Africa brought about by the HIV epidemic. However, rising incidence does not necessarily imply failure to control tuberculosis transmission, which is primarily driven by prevalent infectious disease. We investigated the epidemiology of prevalent and incident TB in a high HIV prevalence population provided with enhanced primary health care. METHODS AND FINDINGS: Twenty-two businesses in Harare, Zimbabwe, were provided with free smear- and culture-based investigation of TB symptoms through occupational clinics. Anonymised HIV tests were requested from all employees. After 2 y of follow-up for incident TB, a culture-based survey for undiagnosed prevalent TB was conducted. A total of 6,440 of 7,478 eligible employees participated. HIV prevalence was 19%. For HIV-positive and -negative participants, the incidence of culture-positive tuberculosis was 25.3 and 1.3 per 1,000 person-years, respectively (adjusted incidence rate ratio = 18.8; 95% confidence interval [CI] = 10.3 to 34.5: population attributable fraction = 78%, and point prevalence after 2 y was 5.7 and 2.6 per 1,000 population (adjusted odds ratio = 1.7; 95% CI = 0.5 to 6.8: population attributable fraction = 14%. Most patients with prevalent culture-positive TB had subclinical disease when first detected. CONCLUSIONS: Strategies based on prompt investigation of TB symptoms, such as DOTS, may be an effective way of controlling prevalent TB in high HIV prevalence populations. This may translate into effective control of TB transmission despite high TB incidence rates and a period of subclinical infectiousness in some patients.

  15. Spermine oxidase is a regulator of macrophage host response to Helicobacter pylori: enhancement of antimicrobial nitric oxide generation by depletion of spermine.

    Science.gov (United States)

    Chaturvedi, Rupesh; Asim, Mohammad; Barry, Daniel P; Frye, Jeanetta W; Casero, Robert A; Wilson, Keith T

    2014-03-01

    The gastric pathogen Helicobacter pylori causes peptic ulcer disease and gastric cancer. We have reported that in H. pylori-activated macrophages, nitric oxide (NO) derived from inducible NO synthase (iNOS) can kill the bacterium, iNOS protein expression is dependent on uptake of its substrate L-arginine (L-Arg), the polyamine spermine can inhibit iNOS translation by inhibiting L-Arg uptake, and inhibition of polyamine synthesis enhances NO-mediated bacterial killing. Because spermine oxidase (SMO), which back-converts spermine to spermidine, is induced in macrophages by H. pylori, we determined its role in iNOS-dependent host defense. SMO shRNA knockdown in RAW 264.7 murine macrophages resulted in a marked decrease in H. pylori-stimulated iNOS protein, but not mRNA expression, and a 90% reduction in NO levels; NO production was also inhibited in primary murine peritoneal macrophages with SMO knockdown. There was an increase in spermine levels after H. pylori stimulation that rapidly decreased, while SMO knockdown caused a greater increase in spermine that was sustained. With SMO knockdown, L-Arg uptake and killing of H. pylori by macrophages was prevented. The overexpression of SMO by transfection of an expression plasmid prevented the H. pylori-stimulated increase in spermine levels, and led to increased L-Arg uptake, iNOS protein expression and NO production, and H. pylori killing. In two human monocytic cell lines, U937 and THP-1, overexpression of SMO caused a significant enhancement of NO production with H. pylori stimulation. By depleting spermine, SMO can abrogate the inhibitory effect of polyamines on innate immune responses to H. pylori by enhancing antimicrobial NO production.

  16. Class II transactivator (CIITA enhances cytoplasmic processing of HIV-1 Pr55Gag.

    Directory of Open Access Journals (Sweden)

    Kristen A Porter

    Full Text Available BACKGROUND: The Pr55(gag (Gag polyprotein of HIV serves as a scaffold for virion assembly and is thus essential for progeny virion budding and maturation. Gag localizes to the plasma membrane (PM and membranes of late endosomes, allowing for release of infectious virus directly from the cell membrane and/or upon exocytosis. The host factors involved in Gag trafficking to these sites are largely unknown. Upon activation, CD4+ T cells, the primary target of HIV infection, express the class II transcriptional activator (CIITA and therefore the MHC class II isotype, HLA-DR. Similar to Gag, HLA-DR localizes to the PM and at the membranes of endosomes and specialized vesicular MHC class II compartments (MIICs. In HIV producer cells, transient HLA-DR expression induces intracellular Gag accumulation and impairs virus release. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that both stable and transient expression of CIITA in HIV producer cells does not induce HLA-DR-associated intracellular retention of Gag, but does increase the infectivity of virions. However, neither of these phenomena is due to recapitulation of the class II antigen presentation pathway or CIITA-mediated transcriptional activation of virus genes. Interestingly, we demonstrate that CIITA, apart from its transcriptional effects, acts cytoplasmically to enhance Pr160(gag-pol (Gag-Pol levels and thereby the viral protease and Gag processing, accounting for the increased infectivity of virions from CIITA-expressing cells. CONCLUSIONS/SIGNIFICANCE: This study demonstrates that CIITA enhances HIV Gag processing, and provides the first evidence of a novel, post-transcriptional, cytoplasmic function for a well-known transactivator.

  17. Macrophage Inflammatory Protein-1alpha mediates Matrix Metalloproteinase-9 enhancement in human adherent monocytes fed with malarial pigment

    Institute of Scientific and Technical Information of China (English)

    Giuliana Giribaldi; Elena Valente; Amina Khadjavi; Manuela Polimeni; Mauro Prato

    2011-01-01

    Objective:To investigate the role of macrophage inflammatory protein-1alpha (MIP-1alpha) in the detrimental enhancement of matrix metalloproteinase-9 (MMP-9)expression, release and activity induced by phagocytosis of malarial pigment (haemozoin,HZ) in human monocytes. Methods: Human adherent monocytes were unfed/fed with nativeHZ for 2 h. After 24 hours, MIP-1alpha production was evaluated by ELISA in cell supernatants. Alternatively,HZ-unfed/fed monocytes were treated in presence/absence of anti-humanMIP-1alpha blocking antibodies or recombinant humanMIP-1alpha for15 h (RNA studies) or 24 h (protein studies); therefore,MMP-9mRNA expression was evaluated in cell lysates by Real TimeRT-PCR, whereas proMMP-9and activeMMP-9protein release were measured in cell supernatants by Western blotting and gelatin zymography.Results: Phagocytosis ofHZ by human monocytes increased production ofMIP-1alpha, mRNA expression ofMMP-9and protein release of proMMP-9 and activeMMP-9. All theHZ-enhancing effects onMMP-9 were abrogated by anti-humanMIP-1alpha blocking antibodies and mimicked by recombinant humanMIP-1alpha.Conclusions:The present work suggests a role for MIP-1alpha in theHZ-dependent enhancement ofMMP-9 expression, release and activity observed in human monocytes, highlighting new detrimental effects ofHZ-triggered proinflammatory response by phagocytic cells in falciparum malaria.

  18. Shifting Resources and Focus to Meet the Goals of the National HIV/AIDS Strategy: The Enhanced Comprehensive HIV Prevention Planning Project, 2010-2013.

    Science.gov (United States)

    Flores, Stephen A; Purcell, David W; Fisher, Holly H; Belcher, Lisa; Carey, James W; Courtenay-Quirk, Cari; Dunbar, Erica; Eke, Agatha N; Galindo, Carla A; Glassman, Marlene; Margolis, Andrew D; Neumann, Mary Spink; Prather, Cynthia; Stratford, Dale; Taylor, Raekiela D; Mermin, Jonathan

    2016-01-01

    In September 2010, CDC launched the Enhanced Comprehensive HIV Prevention Planning (ECHPP) project to shift HIV-related activities to meet goals of the 2010 National HIV/AIDS Strategy (NHAS). Twelve health departments in cities with high AIDS burden participated. These 12 grantees submitted plans detailing jurisdiction-level goals, strategies, and objectives for HIV prevention and care activities. We reviewed plans to identify themes in the planning process and initial implementation. Planning themes included data integration, broad engagement of partners, and resource allocation modeling. Implementation themes included organizational change, building partnerships, enhancing data use, developing protocols and policies, and providing training and technical assistance for new and expanded activities. Pilot programs also allowed grantees to assess the feasibility of large-scale implementation. These findings indicate that health departments in areas hardest hit by HIV are shifting their HIV prevention and care programs to increase local impact. Examples from ECHPP will be of interest to other health departments as they work toward meeting the NHAS goals.

  19. Cocaine enhances HIV-1 replication in CD4+ T cells by down-regulating MiR-125b.

    Directory of Open Access Journals (Sweden)

    Chinmay K Mantri

    Full Text Available The main objective of this study was to examine effects of cocaine on HIV-1 replication in primary CD4+ T cells. Cocaine a commonly used drug among HIV-1 positive individuals serves as a cofactor for HIV-1 infection and progression to acquired immunodeficiency syndrome (AIDS. Accumulating evidence suggest that cocaine increases HIV-1 replication in cell cultures, peripheral blood mononuclear cells (PBMCs and animal models. Intriguingly, there are no studies on cocaine-induced alterations in HIV-1 replication in primary CD4+ T cells that serve as the main targets for HIV-1 replication in vivo. In this report, we demonstrate cocaine-induced enhancement of HIV-1 replication in primary CD4+ T cells isolated from human PBMCs. To decipher a potential mechanism, we examined whether cocaine targets the innate antiviral immunity of CD4+ T cells mediated by cellular microRNAs (miRNAs. This is because recently a network of anti-HIV miRNAs in CD4+ T cells is highlighted to suppress viral replication. Our genome wide miRNA expression analysis indicated downregulation of several anti-HIV miRNAs (miR-28, miR-125b, miR-150, miR-223, and miR-382 in cocaine treated CD4+ T cells. However, our real-time quantitative PCR analysis revealed significant downregulation of miR-125b only. Our results illustrated that miR-125b knockdown enhances HIV-1 replication, whereas overexpression of miR-125b decreases HIV-1 replication in these cells. Therefore, we believe miR-125b is a key player for the cocaine induced enhancement of HIV-1 replication in CD4+ T cells. Since, miR-125b targets the 3' UTR regions of HIV-1 transcripts and inhibits viral protein translation, our data suggest modulation of post entry steps of HIV-1 by cocaine. Given that a plethora of studies suggest that cocaine regulates HIV entry, our results implicate a potentially novel mechanism by which cocaine can increase viral replication in CD4+ T cells.

  20. Ion Channel Blockers as Antimicrobial Agents, Efflux Inhibitors, and Enhancers of Macrophage Killing Activity against Drug Resistant Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Diana Machado

    Full Text Available Given the ability of M. tuberculosis to survive as an intracellular pathogen and its propensity to develop resistance to the existing antituberculosis drugs, its treatment requires new approaches. Here the antimycobacterial properties of verapamil, thioridazine, chlorpromazine, flupenthixol and haloperidol were investigated against a panel of drug resistant M. tuberculosis strains, both in vitro and on human-infected macrophages. These compounds are efflux inhibitors that share among them the characteristic of being ion channel blockers. In vitro, all compounds exhibited synergistic inhibitory activities when combined with isoniazid and rifampicin, and were able to inhibit active efflux, demonstrating their role as efflux inhibitors. Gene expression analysis showed that M. tuberculosis efflux genes were overexpressed in response to antibiotic exposure, in vitro and within macrophages, irrespective of their resistance pattern. These compounds displayed a rapid and high killing activity against M. tuberculosis, associated with a decrease in intracellular ATP levels demonstrating that the bactericidal action of the ion channel blockers against M. tuberculosis clinical strains is associated with their interference with energy metabolism. The compounds led to a decrease in the intracellular mycobacterial load by increasing phagosome acidification and activating lysosomal hydrolases. The results presented in this study enable us to propose the following mechanism of action for these compounds: a in the bacteria, the compounds generate a cascade of events involving the inhibition of the respiratory chain complexes and energy production for efflux activity. Indirectly, this reduce the resistance level to antituberculosis drugs potentiating their activity; b on the host cell, the treatment with the ion channel blockers increases phagosome acidification and induces the expression of phagosomal hydrolases, leading to bacterial growth restriction

  1. Enhanced performance of macrophage-encapsulated nanoparticle albumin-bound-paclitaxel in hypo-perfused cancer lesions

    Science.gov (United States)

    Leonard, Fransisca; Curtis, Louis T.; Yesantharao, Pooja; Tanei, Tomonori; Alexander, Jenolyn F.; Wu, Min; Lowengrub, John; Liu, Xuewu; Ferrari, Mauro; Yokoi, Kenji; Frieboes, Hermann B.; Godin, Biana

    2016-06-01

    Hypovascularization in tumors such as liver metastases originating from breast and other organs correlates with poor chemotherapeutic response and higher mortality. Poor prognosis is linked to impaired transport of both low- and high-molecular weight drugs into the lesions and to high washout rate. Nanoparticle albumin-bound-paclitaxel (nAb-PTX) has demonstrated benefits in clinical trials when compared to paclitaxel and docetaxel. However, its therapeutic efficacy for breast cancer liver metastasis is disappointing. As macrophages are the most abundant cells in the liver tumor microenvironment, we design a multistage system employing macrophages to deliver drugs into hypovascularized metastatic lesions, and perform in vitro, in vivo, and in silico evaluation. The system encapsulates nAb-PTX into nanoporous biocompatible and biodegradable multistage vectors (MSV), thus promoting nAb-PTX retention in macrophages. We develop a 3D in vitro model to simulate clinically observed hypo-perfused tumor lesions surrounded by macrophages. This model enables evaluation of nAb-PTX and MSV-nab PTX efficacy as a function of transport barriers. Addition of macrophages to this system significantly increases MSV-nAb-PTX efficacy, revealing the role of macrophages in drug transport. In the in vivo model, a significant increase in macrophage number, as compared to unaffected liver, is observed in mice, confirming the in vitro findings. Further, a mathematical model linking drug release and retention from macrophages is implemented to project MSV-nAb-PTX efficacy in a clinical setting. Based on macrophage presence detected via liver tumor imaging and biopsy, the proposed experimental/computational approach could enable prediction of MSV-nab PTX performance to treat metastatic cancer in the liver.Hypovascularization in tumors such as liver metastases originating from breast and other organs correlates with poor chemotherapeutic response and higher mortality. Poor prognosis is linked to

  2. Role of the tumor suppressor ARF in macrophage polarization: Enhancement of the M2 phenotype in ARF-deficient mice.

    Science.gov (United States)

    Herranz, Sandra; Través, Paqui G; Luque, Alfonso; Hortelano, Sonsoles

    2012-11-01

    The ARF locus is frequently inactivated in human cancer. The oncosuppressor ARF has indeed been described as a general sensor for different situation of cellular stress. We have previously demonstrated that ARF deficiency severely impairs inflammatory responses in vitro and in vivo, establishing a role for ARF in the regulation of innate immunity. The aim of the present work was to get further insights into the immune functions of ARF and to evaluate its possible contribution to the polarization of macrophages toward the M1 or M2 phenotype. Our results demonstrate that resting Arf(-/-) macrophages express high levels of Ym1 and Fizz-1, two typical markers of alternatively-activated macrophages (M2). Additionally, Arf(-/-) peritoneal macrophages showed an impaired response to lipopolysaccharide (a classical inducer of M1 polaryzation) and a reduced production of pro-inflammatory cytokines/chemokines. Moreover, upon stimulation with interleukin-4 (IL-4), an inducer of the M2 phenotype, well established M2 markers such as Fizz-1, Ym1 and arginase-1 were upregulated in Arf(-/-) as compared with wild type macrophages. Accordingly, the cytokine and chemokine profile associated with the M2 phenotype was significantly overexpressed in Arf(-/-) macrophages responding to IL-4. In addition, multiple pro-angiogenic factors such as VEGF and MMP-9 were also increased. In summary, these results indicate that ARF contributes to the polarization and functional plasticity of macrophages.

  3. A sensitive HIV-1 envelope induced fusion assay identifies fusion enhancement of thrombin

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, De-Chun; Zhong, Guo-Cai; Su, Ju-Xiang [Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081 (China); Liu, Yan-Hong [Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, Heilongjiang 150081 (China); Li, Yan; Wang, Jia-Ye [Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081 (China); Hattori, Toshio [Department of Emerging Infectious Diseases, Division of Internal Medicine, Graduate School of Medicine, Tohoku University, Sendai 9808574 (Japan); Ling, Hong, E-mail: lingh@ems.hrbmu.edu.cn [Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081 (China); Department of Parasitology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081 (China); Key Lab of Heilongjiang Province for Infection and Immunity, Key Lab of Heilongjiang Province Education Bureau for Etiology, Harbin, Heilongjiang 150081 (China); Zhang, Feng-Min, E-mail: fengminzhang@yahoo.com.cn [Department of Microbiology, Harbin Medical University, 194 Xuefu Road, Harbin, Heilongjiang 150081 (China); Key Lab of Heilongjiang Province for Infection and Immunity, Key Lab of Heilongjiang Province Education Bureau for Etiology, Harbin, Heilongjiang 150081 (China)

    2010-01-22

    To evaluate the interaction between HIV-1 envelope glycoprotein (Env) and target cell receptors, various cell-cell-fusion assays have been developed. In the present study, we established a novel fusion system. In this system, the expression of the sensitive reporter gene, firefly luciferase (FL) gene, in the target cells was used to evaluate cell fusion event. Simultaneously, constitutively expressed Renilla luciferase (RL) gene was used to monitor effector cell number and viability. FL gave a wider dynamic range than other known reporters and the introduction of RL made the assay accurate and reproducible. This system is especially beneficial for investigation of potential entry-influencing agents, for its power of ruling out the false inhibition or enhancement caused by the artificial cell-number variation. As a case study, we applied this fusion system to observe the effect of a serine protease, thrombin, on HIV Env-mediated cell-cell fusion and have found the fusion enhancement activity of thrombin over two R5-tropic HIV strains.

  4. Curcumin enhanced cholesterol efflux by upregulating ABCA1 expression through AMPK-SIRT1-LXRα signaling in THP-1 macrophage-derived foam cells.

    Science.gov (United States)

    Lin, Xiao-long; Liu, Mi-Hua; Hu, Hui-Jun; Feng, Hong-ru; Fan, Xiao-Juan; Zou, Wei-wen; Pan, Yong-quan; Hu, Xue-mei; Wang, Zuo

    2015-09-01

    Curcumin, a traditional Chinese derivative from the rhizomes of Curcuma longa, is beneficial to health by modulating lipid metabolism and suppressing atherogenesis. A key part of atherosclerosis is the failure of macrophages to restore their cellular cholesterol homeostasis and the formation of foam cells. In this study, results showed that curcumin dramatically increased the expression of ATP-binding cassette transporter 1 (ABCA1), promoted cholesterol efflux from THP-1 macrophage-derived foam cells, and reduced cellular cholesterol levels. Curcumin activated AMP-activated protein kinase (AMPK) and SIRT1, and then activated LXRα in THP-1 macrophage-derived foam cells. Inhibiting AMPK/SIRT1 activity by its specific inhibitor or by small interfering RNA could inhibit LXRα activation and abolish curcumin-induced ABCA1 expression and cholesterol efflux. Thus, curcumin enhanced cholesterol efflux by upregulating ABCA1 expression through activating AMPK-SIRT1-LXRα signaling in THP-1 macrophage-derived foam cells. This study describes a possible mechanism for understanding the antiatherogenic effects of curcumin on attenuating the progression of atherosclerosis.

  5. ENHANCEMENT OF NIH3T3 CELL PROLIFERATION BY EXPRESSING MACROPHAGE COLONY STIMULATING FACTOR IN NUCLEI

    Institute of Scientific and Technical Information of China (English)

    曹震宇; 吴克复; 李戈; 林永敏; 张斌; 郑国光

    2003-01-01

    Objective: To explore the effects of nuclear M-CSF on the process of tumorigenesis. Methods: Functional part of M-CSF cDNA was inserted into an eukaryotic expression plasmid pCMV/myc/nuc, which can add three NLS to the C-terminal of the expressed protein and direct the protein into the cell nuclei. The constructed plasmid was transferred into NIH3T3 cells and the cell clones were selected by G-418 selection. Cell clones stable expressing target protein were identified by RT-PCR, ABC immunohistochemistry assay and Western blot. Cell growth kinetics analyses through growth curves, cell doubling time, MTT test and anti-sense oligodeoxynucleotide (ASODN) inhibiting cell growth test were performed to identify cells proliferation potential. Results: The transfected cells showed elevated proliferation potential over the control cells. Conclusion: Abnormal appearance of M-CSF in nucleus could enhance cell proliferation, which suggests that cytokine isoforms within cell nucleus might play transcription factor-like role.

  6. Dendritic cells enhance UHMWPE wear particle-induced osteoclast differentiation of macrophages.

    Science.gov (United States)

    Cang, Dingwei; Guo, Kaijin; Zhao, Fengchao

    2015-10-01

    Ultra-high molecular weight polyethylene (UHMWPE) has been widely used in large joint replacement. Osteolysis induced by the UHMWPE wear particles is one of the main causes of replacement failure. This study aims to elucidate whether dendritic cells play a role in UHMWPE particle-induced osteolysis. An in vitro Raw 264.7 and DC 2.4 coculture system was employed to examine the effects of dendritic cells on the inflammatory and osteoclastogenic responses of Raw 264.7 toward UHMWPE particles. The expression of cytokines, NF-κB, and osteoclast marker genes was analyzed by ELISA, western blot, or quantitative PCR. The osteoclast differentiation was measured by TRAP staining and flow cytometry. UHMWPE particles induced Raw 264.7 cells to differentiate into osteoclasts, which was enhanced by coculturing with DC 2.4 cells. DC 2.4 cells augmented UHMWPE particle-elicited activation of NF-κB signaling, higher levels of TNF-α and MCP-1, and an increased expression of MMP-9, Calcr, and Ctsk, though DC 2.4 coculture alone did not significantly cause the aforementioned changes. These results suggest that dendritic cells, among other immune cells recruited by UHMWPE particle induced inflammation, could further exacerbate inflammation and osteolysis.

  7. Killing of Escherichia coli by Crohn's Disease Monocyte-derived Macrophages and Its Enhancement by Hydroxychloroquine and Vitamin D

    OpenAIRE

    Flanagan, Paul K.; Chiewchengchol, Direkrit; Helen L Wright; Edwards, Steven W.; Alswied, Abdullah; Satsangi, Jack; Subramanian, Sreedhar; Rhodes, Jonathan M.; Campbell, Barry J.

    2015-01-01

    BACKGROUND: Crohn's disease (CD) is associated with defective innate immunity, including impaired neutrophil chemotaxis, and mucosal invasion by bacteria, particularly adherent and invasive Escherichia coli that replicate inside macrophage phagolysosomes. We compared CD and healthy control (HC) macrophages for their abilities to kill E. coli and generate neutrophil chemoattractants and also assessed the effects of hydroxychloroquine (HCQ) and vitamin D on killing of phagocytosed E. coli.METHO...

  8. C/EBPα Activates Pre-existing and De Novo Macrophage Enhancers during Induced Pre-B Cell Transdifferentiation and Myelopoiesis.

    Science.gov (United States)

    van Oevelen, Chris; Collombet, Samuel; Vicent, Guillermo; Hoogenkamp, Maarten; Lepoivre, Cyrille; Badeaux, Aimee; Bussmann, Lars; Sardina, Jose Luis; Thieffry, Denis; Beato, Miguel; Shi, Yang; Bonifer, Constanze; Graf, Thomas

    2015-08-11

    Transcription-factor-induced somatic cell conversions are highly relevant for both basic and clinical research yet their mechanism is not fully understood and it is unclear whether they reflect normal differentiation processes. Here we show that during pre-B-cell-to-macrophage transdifferentiation, C/EBPα binds to two types of myeloid enhancers in B cells: pre-existing enhancers that are bound by PU.1, providing a platform for incoming C/EBPα; and de novo enhancers that are targeted by C/EBPα, acting as a pioneer factor for subsequent binding by PU.1. The order of factor binding dictates the upregulation kinetics of nearby genes. Pre-existing enhancers are broadly active throughout the hematopoietic lineage tree, including B cells. In contrast, de novo enhancers are silent in most cell types except in myeloid cells where they become activated by C/EBP factors. Our data suggest that C/EBPα recapitulates physiological developmental processes by short-circuiting two macrophage enhancer pathways in pre-B cells.

  9. DC-SIGN-mediated infectious synapse formation enhances X4 HIV-1 transmission from dendritic cells to T cells.

    Science.gov (United States)

    Arrighi, Jean-François; Pion, Marjorie; Garcia, Eduardo; Escola, Jean-Michel; van Kooyk, Yvette; Geijtenbeek, Teunis B; Piguet, Vincent

    2004-11-15

    Dendritic cells (DCs) are essential for the early events of human immunodeficiency virus (HIV) infection. Model systems of HIV sexual transmission have shown that DCs expressing the DC-specific C-type lectin DC-SIGN capture and internalize HIV at mucosal surfaces and efficiently transfer HIV to CD4+ T cells in lymph nodes, where viral replication occurs. Upon DC-T cell clustering, internalized HIV accumulates on the DC side at the contact zone (infectious synapse), between DCs and T cells, whereas HIV receptors and coreceptors are enriched on the T cell side. Viral concentration at the infectious synapse may explain, at least in part, why DC transmission of HIV to T cells is so efficient.Here, we have investigated the role of DC-SIGN on primary DCs in X4 HIV-1 capture and transmission using small interfering RNA-expressing lentiviral vectors to specifically knockdown DC-SIGN. We demonstrate that DC-SIGN- DCs internalize X4 HIV-1 as well as DC-SIGN+ DCs, although binding of virions is reduced. Strikingly, DC-SIGN knockdown in DCs selectively impairs infectious synapse formation between DCs and resting CD4+ T cells, but does not prevent the formation of DC-T cells conjugates. Our results demonstrate that DC-SIGN is required downstream from viral capture for the formation of the infectious synapse between DCs and T cells. These findings provide a novel explanation for the role of DC-SIGN in the transfer and enhancement of HIV infection from DCs to T cells, a crucial step for HIV transmission and pathogenesis.

  10. Enhancing and suppressing effects of recombinant murine macrophage inflammatory proteins on colony formation in vitro by bone marrow myeloid progenitor cells.

    Science.gov (United States)

    Broxmeyer, H E; Sherry, B; Lu, L; Cooper, S; Oh, K O; Tekamp-Olson, P; Kwon, B S; Cerami, A

    1990-09-15

    Purified recombinant (r) macrophage inflammatory proteins (MIPs) 1 alpha, 1 beta, and 2 were assessed for effects on murine (mu) and human (hu) marrow colony-forming unit-granulocyte-macrophage (CFU-GM) and burst-forming unit-erythroid (BFU-E) colonies. Recombinant MIP-1 alpha, -1 beta, and -2 enhanced muCFU-GM colonies above that stimulated with 10 to 100 U natural mu macrophage-colony-stimulating factor (M-CSF) or rmuGM-CSF, with enhancement seen on huCFU-GM colony formation stimulated with suboptimal rhuM-CSF or rhuGM-CSF; effects were neutralized by respective MIP-specific antibodies. Macrophage inflammatory proteins had no effects on mu or huBFU-E colonies stimulated with erythropoietin (Epo). However, natural MIP-1 and rMIP-1 alpha, but not rMIP-1 beta or -2, suppressed muCFU-GM stimulated with pokeweed mitogen spleen-conditioned medium (PWMSCM), huCFU-GM stimulated with optimal rhuGM-CSF plus rhu interleukin-3 (IL-3), muBFU-E and multipotential progenitors (CFU-GEMM) stimulated with Epo plus PWMSCM, and huBFU-E and CFU-GEMM stimulated with Epo plus rhuIL-3 or rhuGM-CSF. The suppressive effects of natural MIP-1 and rMIP-1 alpha were also apparent on a population of BFU-E, CFU-GEMM, and CFU-GM present in cell-sorted fractions of human bone marrow (CD34 HLA-DR+) highly enriched for progenitors with cloning efficiencies of 42% to 75%. These results, along with our previous studies, suggest that MIP-1 alpha, -1 beta, and -2 may have direct myelopoietic enhancing activity for mature progenitors, while MIP-1 alpha may have direct suppressing activity for more immature progenitors.

  11. Azurophil granule proteins constitute the major mycobactericidal proteins in human neutrophils and enhance the killing of mycobacteria in macrophages.

    Directory of Open Access Journals (Sweden)

    Prajna Jena

    Full Text Available Pathogenic mycobacteria reside in, and are in turn controlled by, macrophages. However, emerging data suggest that neutrophils also play a critical role in innate immunity to tuberculosis, presumably by their different antibacterial granule proteins. In this study, we purified neutrophil azurophil and specific granules and systematically analyzed the antimycobacterial activity of some purified azurophil and specific granule proteins against M. smegmatis, M. bovis-BCG and M. tuberculosis H37Rv. Using gel overlay and colony forming unit assays we showed that the defensin-depleted azurophil granule proteins (AZP were more active against mycobacteria compared to other granule proteins and cytosolic proteins. The proteins showing antimycobacterial activity were identified by MALDI-TOF mass spectrometry. Electron microscopic studies demonstrate that the AZP disintegrate bacterial cell membrane resulting in killing of mycobacteria. Exogenous addition of AZP to murine macrophage RAW 264.7, THP-1 and peripheral blood monocyte-derived macrophages significantly reduced the intracellular survival of mycobacteria without exhibiting cytotoxic activity on macrophages. Immunofluorescence studies showed that macrophages actively endocytose neutrophil granular proteins. Treatment with AZP resulted in increase in co-localization of BCG containing phagosomes with lysosomes but not in increase of autophagy. These data demonstrate that neutrophil azurophil proteins may play an important role in controlling intracellular survival of mycobacteria in macrophages.

  12. Azurophil granule proteins constitute the major mycobactericidal proteins in human neutrophils and enhance the killing of mycobacteria in macrophages.

    Science.gov (United States)

    Jena, Prajna; Mohanty, Soumitra; Mohanty, Tirthankar; Kallert, Stephanie; Morgelin, Matthias; Lindstrøm, Thomas; Borregaard, Niels; Stenger, Steffen; Sonawane, Avinash; Sørensen, Ole E

    2012-01-01

    Pathogenic mycobacteria reside in, and are in turn controlled by, macrophages. However, emerging data suggest that neutrophils also play a critical role in innate immunity to tuberculosis, presumably by their different antibacterial granule proteins. In this study, we purified neutrophil azurophil and specific granules and systematically analyzed the antimycobacterial activity of some purified azurophil and specific granule proteins against M. smegmatis, M. bovis-BCG and M. tuberculosis H37Rv. Using gel overlay and colony forming unit assays we showed that the defensin-depleted azurophil granule proteins (AZP) were more active against mycobacteria compared to other granule proteins and cytosolic proteins. The proteins showing antimycobacterial activity were identified by MALDI-TOF mass spectrometry. Electron microscopic studies demonstrate that the AZP disintegrate bacterial cell membrane resulting in killing of mycobacteria. Exogenous addition of AZP to murine macrophage RAW 264.7, THP-1 and peripheral blood monocyte-derived macrophages significantly reduced the intracellular survival of mycobacteria without exhibiting cytotoxic activity on macrophages. Immunofluorescence studies showed that macrophages actively endocytose neutrophil granular proteins. Treatment with AZP resulted in increase in co-localization of BCG containing phagosomes with lysosomes but not in increase of autophagy. These data demonstrate that neutrophil azurophil proteins may play an important role in controlling intracellular survival of mycobacteria in macrophages.

  13. Identification of personal lubricants that can cause rectal epithelial cell damage and enhance HIV type 1 replication in vitro.

    Science.gov (United States)

    Begay, Othell; Jean-Pierre, Ninochka; Abraham, Ciby J; Chudolij, Anne; Seidor, Samantha; Rodriguez, Aixa; Ford, Brian E; Henderson, Marcus; Katz, David; Zydowsky, Thomas; Robbiani, Melissa; Fernández-Romero, José A

    2011-09-01

    Over-the-counter personal lubricants are used frequently during vaginal and anal intercourse, but they have not been extensively tested for biological effects that might influence HIV transmission. We evaluated the in vitro toxicity anti-HIV-1 activity and osmolality of popular lubricants. A total of 41 lubricants were examined and compared to Gynol II and Carraguard as positive and negative controls for toxicity, respectively. Cytotoxicity was assessed using the XTT assay. The MAGI assay with R5 and X4 HIV-1 laboratory strains was used to evaluate antiviral activity. The effect of the lubricants on differentiated Caco-2 cell monolayers (transepithelial electrical resistance, TEER) was also measured. None of the lubricants tested showed significant activity against HIV-1. Surprisingly, four of them, Astroglide Liquid, Astroglide Warming Liquid, Astroglide Glycerin & Paraben-Free Liquid, and Astroglide Silken Secret, significantly enhanced HIV-1 replication (plubricants were found to be hyperosmolar and the TEER value dropped approximately 60% 2 h after exposure to all lubricants tested. Cells treated with Carraguard, saline, and cell controls maintained about 100% initial TEER value after 2-6 h. We have identified four lubricants that significantly increase HIV-1 replication in vitro. In addition, the epithelial damage caused by these and many other lubricants may have implications for enhancing HIV transmission in vivo. These data emphasize the importance of performing more rigorous safety testing on these products.

  14. Tetherin does not significantly restrict dendritic cell-mediated HIV-1 transmission and its expression is upregulated by newly synthesized HIV-1 Nef

    Directory of Open Access Journals (Sweden)

    Wu Li

    2011-04-01

    Full Text Available Abstract Background Dendritic cells (DCs are among the first cells to encounter HIV-1 and play important roles in viral transmission and pathogenesis. Immature DCs allow productive HIV-1 replication and long-term viral dissemination. The pro-inflammatory factor lipopolysaccharide (LPS induces DC maturation and enhances the efficiency of DC-mediated HIV-1 transmission. Type I interferon (IFN partially inhibits HIV-1 replication and cell-cell transmission in CD4+ T cells and macrophages. Tetherin is a type I IFN-inducible restriction factor that blocks HIV-1 release and modulates CD4+ T cell-mediated cell-to-cell transmission of HIV-1. However, the role of type I IFN and tetherin in HIV-1 infection of DCs and DC-mediated viral transmission remains unknown. Results We demonstrated that IFN-alpha (IFNα-induced mature DCs restricted HIV-1 replication and trans-infection of CD4+ T cells. Tetherin expression in monocyte-derived immature DCs was undetectable or very low. High levels of tetherin were transiently expressed in LPS- and IFNα-induced mature DCs, while HIV-1 localized into distinct patches in these DCs. Knockdown of induced tetherin in LPS- or IFNα-matured DCs modestly enhanced HIV-1 transmission to CD4+ T cells, but had no significant effect on wild-type HIV-1 replication in mature DCs. Intriguingly, we found that HIV-1 replication in immature DCs induced significant tetherin expression in a Nef-dependent manner. Conclusions The restriction of HIV-1 replication and transmission in IFNα-induced mature DCs indicates a potent anti-HIV-1 response; however, high levels of tetherin induced in mature DCs cannot significantly restrict wild-type HIV-1 release and DC-mediated HIV-1 transmission. Nef-dependent tetherin induction in HIV-1-infected immature DCs suggests an innate immune response of DCs to HIV-1 infection.

  15. Extensive complement-dependent enhancement of HIV-1 by autologous non-neutralising antibodies at early stages of infection

    Directory of Open Access Journals (Sweden)

    Williams Ian

    2011-03-01

    Full Text Available Abstract Background Non-neutralising antibodies to the envelope glycoprotein are elicited during acute HIV-1 infection and are abundant throughout the course of disease progression. Although these antibodies appear to have negligible effects on HIV-1 infection when assayed in standard neutralisation assays, they have the potential to exert either inhibitory or enhancing effects through interactions with complement and/or Fc receptors. Here we report that non-neutralising antibodies produced early in response to HIV-1 infection can enhance viral infectivity. Results We investigated this complement-mediated antibody-dependent enhancement (C'-ADE of early HIV infection by carrying out longitudinal studies with primary viruses and autologous sera derived sequentially from recently infected individuals, using a T cell line naturally expressing the complement receptor 2 (CR2; CD21. The C'-ADE was consistently observed and in some cases achieved infection-enhancing levels of greater than 350-fold, converting a low-level infection to a highly destructive one. C'-ADE activity declined as a neutralising response to the early virus emerged, but later virus isolates that had escaped the neutralising response demonstrated an increased capacity for enhanced infection by autologous antibodies. Moreover, sera with autologous enhancing activity were capable of C'ADE of heterologous viral isolates, suggesting the targeting of conserved epitopes on the envelope glycoprotein. Ectopic expression of CR2 on cell lines expressing HIV-1 receptors was sufficient to render them sensitive to C'ADE. Conclusions Taken together, these results suggest that non-neutralising antibodies to the HIV-1 envelope that arise during acute infection are not 'passive', but in concert with complement and complement receptors may have consequences for HIV-1 dissemination and pathogenesis.

  16. Extensive complement-dependent enhancement of HIV-1 by autologous non-neutralising antibodies at early stages of infection.

    Science.gov (United States)

    Willey, Suzanne; Aasa-Chapman, Marlén M I; O'Farrell, Stephen; Pellegrino, Pierre; Williams, Ian; Weiss, Robin A; Neil, Stuart J D

    2011-03-14

    Non-neutralising antibodies to the envelope glycoprotein are elicited during acute HIV-1 infection and are abundant throughout the course of disease progression. Although these antibodies appear to have negligible effects on HIV-1 infection when assayed in standard neutralisation assays, they have the potential to exert either inhibitory or enhancing effects through interactions with complement and/or Fc receptors. Here we report that non-neutralising antibodies produced early in response to HIV-1 infection can enhance viral infectivity. We investigated this complement-mediated antibody-dependent enhancement (C'-ADE) of early HIV infection by carrying out longitudinal studies with primary viruses and autologous sera derived sequentially from recently infected individuals, using a T cell line naturally expressing the complement receptor 2 (CR2; CD21). The C'-ADE was consistently observed and in some cases achieved infection-enhancing levels of greater than 350-fold, converting a low-level infection to a highly destructive one. C'-ADE activity declined as a neutralising response to the early virus emerged, but later virus isolates that had escaped the neutralising response demonstrated an increased capacity for enhanced infection by autologous antibodies. Moreover, sera with autologous enhancing activity were capable of C'ADE of heterologous viral isolates, suggesting the targeting of conserved epitopes on the envelope glycoprotein. Ectopic expression of CR2 on cell lines expressing HIV-1 receptors was sufficient to render them sensitive to C'ADE. Taken together, these results suggest that non-neutralising antibodies to the HIV-1 envelope that arise during acute infection are not 'passive', but in concert with complement and complement receptors may have consequences for HIV-1 dissemination and pathogenesis.

  17. Expression of macrophage migration inhibitory factor is associated with enhanced angiogenesis and advanced stage in gastric carcinomas

    Institute of Scientific and Technical Information of China (English)

    Chia-Tung Shun; Jaw-Town Lin; Shih-Pei Huang; Min-Tsan Lin; Ming-Shiang Wu

    2005-01-01

    AIM: Macrophage migration inhibitory factor (MIF) was reported to inactivate p53 and play an essential role in the growth and angiogenesis of tumors that arise at sites of chronic inflammation. Gastric inflammation is a prerequisite for the development of gastric carcinoma (GC), which has recently been linked to Helicobacter pylori(H pylori)infection. This study aimed to investigate dinicopathologicalsignificance of MIF expression in GCs.METHODS: We selected 90 consecutive patients with GCs for investigation of the relation among MIF status, clinicopathological parameters, p53 expression and angiogenesis. MIF and p53 expression was assessed by immunohistochemistry as positive and negative groups. Tumor vascularity was evaluated by counting microvessel density on anti-CD34 stained sections. Expression status of MIF was correlated with determined clinicopathological data, p53 immunoreactivity and microvessel counts.RESULTS: Strong immunostainings of MIF were observed in the cytoplasm of cancerous cells in 40% (36/90) of cases but not in normal or metaplastic epithelia. There was no statistically significant correlation between MIFexpression and age, gender, H pylori infection, tumor location, histological subtypes, lymph node metastasis or p53 expression. Early GC less frequently overexpressed MIFas compared to advanced GCs (4/20 vs 32/70, P = 0.04).A remarkably increased microvessel count was noted inGCs with MIF expression than those without MIF expression (55.1±30.1 vs 31.3±28.8, P= 0.0001).CONCLUSION: Our results suggest that expression of MIF may contribute to the progression and enhanced angiogenesis in a substantial portion of GCs.

  18. Cytoprotective and enhanced anti-inflammatory activities of liposomal piroxicam formulation in lipopolysaccharide-stimulated RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Chiong HS

    2013-03-01

    Full Text Available Hoe Siong Chiong,1 Yoke Keong Yong,1 Zuraini Ahmad,1 Mohd Roslan Sulaiman,1 Zainul Amiruddin Zakaria,1 Kah Hay Yuen,2 Muhammad Nazrul Hakim1,31Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia; 2School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia; 3Sports Academy, Universiti Putra Malaysia, Serdang, MalaysiaBackground: Liposomal drug delivery systems, a promising lipid-based nanoparticle technology, have been known to play significant roles in improving the safety and efficacy of an encapsulated drug.Methods: Liposomes, prepared using an optimized proliposome method, were used in the present work to encapsulate piroxicam, a widely prescribed nonsteroidal anti-inflammatory drug. The cytotoxic effects as well as the in vitro efficacy in regulation of inflammatory responses by free-form piroxicam and liposome-encapsulated piroxicam were evaluated using a lipopolysaccharide-sensitive macrophage cell line, RAW 264.7.Results: Cells treated with liposome-encapsulated piroxicam demonstrated higher cell viabilities than those treated with free-form piroxicam. In addition, the liposomal piroxicam formulation resulted in statistically stronger inhibition of pro-inflammatory mediators (ie, nitric oxide, tumor necrosis factor-α, interleukin-1β, and prostaglandin E2 than piroxicam at an equivalent dose. The liposome-encapsulated piroxicam also caused statistically significant production of interleukin-10, an anti-inflammatory cytokine.Conclusion: This study affirms the potential of a liposomal piroxicam formulation in reducing cytotoxicity and enhancing anti-inflammatory responses in vitro.Keywords: liposomes, nitric oxide, cytokines, prostaglandin E2, interleukin-1β, piroxicam

  19. Enhanced HIV-1 neutralization by a CD4-VH3-IgG1 fusion protein

    Energy Technology Data Exchange (ETDEWEB)

    Meyuhas, Ronit; Noy, Hava; Fishman, Sigal [Laboratory of Immunology, MIGAL, P.O. Box 831, Kiryat Shmona 11016 (Israel); Margalit, Alon [Laboratory of Immunology, MIGAL, P.O. Box 831, Kiryat Shmona 11016 (Israel); Department of Biotechnology, Tel-Hai Academic College, Upper Galilee 12210 (Israel); Montefiori, David C. [Department of Surgery, Duke University Medical Center, Durham, NC 27710 (United States); Gross, Gideon, E-mail: gidi@migal.org.il [Laboratory of Immunology, MIGAL, P.O. Box 831, Kiryat Shmona 11016 (Israel); Department of Biotechnology, Tel-Hai Academic College, Upper Galilee 12210 (Israel)

    2009-08-21

    HIV-1 gp120 is an alleged B cell superantigen, binding certain VH3+ human antibodies. We reasoned that a CD4-VH3 fusion protein could possess higher affinity for gp120 and improved HIV-1 inhibitory capacity. To test this we produced several human IgG1 immunoligands harboring VH3. Unlike VH3-IgG1 or VH3-CD4-IgG1, CD4-VH3-IgG1 bound gp120 considerably stronger than CD4-IgG1. CD4-VH3-IgG1 exhibited {approx}1.5-2.5-fold increase in neutralization of two T-cell laboratory-adapted strains when compared to CD4-IgG1. CD4-VH3-IgG1 improved neutralization of 7/10 clade B primary isolates or pseudoviruses, exceeding 20-fold for JR-FL and 13-fold for Ba-L. It enhanced neutralization of 4/8 clade C viruses, and had negligible effect on 1/4 clade A pseudoviruses. We attribute this improvement to possible pairing of VH3 with CD4 D1 and stabilization of an Ig Fv-like structure, rather than to superantigen interactions. These novel findings support the current notion that CD4 fusion proteins can act as better HIV-1 entry inhibitors with potential clinical implications.

  20. A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity

    Energy Technology Data Exchange (ETDEWEB)

    Doores, Katie J.; Fulton, Zara; Hong, Vu; Patel, Mitul K.; Scanlan, Christopher N.; Wormald, Mark R.; Finn, M.G.; Burton, Dennis R.; Wilson, Ian A.; Davis, Benjamin G. (Scripps); (Oxford)

    2011-08-24

    Antibody 2G12 uniquely neutralizes a broad range of HIV-1 isolates by binding the high-mannose glycans on the HIV-1 surface glycoprotein, gp120. Antigens that resemble these natural epitopes of 2G12 would be highly desirable components for an HIV-1 vaccine. However, host-produced (self)-carbohydrate motifs have been unsuccessful so far at eliciting 2G12-like antibodies that cross-react with gp120. Based on the surprising observation that 2G12 binds nonproteinaceous monosaccharide D-fructose with higher affinity than D-mannose, we show here that a designed set of nonself, synthetic monosaccharides are potent antigens. When introduced to the terminus of the D1 arm of protein glycans recognized by 2G12, their antigenicity is significantly enhanced. Logical variation of these unnatural sugars pinpointed key modifications, and the molecular basis of this increased antigenicity was elucidated using high-resolution crystallographic analyses. Virus-like particle protein conjugates containing such nonself glycans are bound more tightly by 2G12. As immunogens they elicit higher titers of antibodies than those immunogenic conjugates containing the self D1 glycan motif. These antibodies generated from nonself immunogens also cross-react with this self motif, which is found in the glycan shield, when it is presented in a range of different conjugates and glycans. However, these antibodies did not bind this glycan motif when present on gp120.

  1. High prevalence of tuberculosis in newly enrolled HIV patients in Zambia: need for enhanced screening approach.

    Science.gov (United States)

    Henostroza, G; Harris, J B; Chitambi, R; Siyambango, M; Turnbull, E R; Maggard, K R; Krüüner, A; Kapata, N; Reid, S E

    2016-08-01

    Tuberculosis (TB) remains a leading cause of morbidity and mortality in sub-Saharan Africa. In Zambia, smear microscopy and chest radiography (CXR) are the primary TB diagnostic tools, and most cases are not bacteriologically confirmed. We implemented enhanced screening to determine the TB burden among new human immunodeficiency virus (HIV) clinic enrollees. Consecutive adult HIV clinic enrollees were screened, regardless of symptoms. All underwent microscopy (Ziehl-Neelsen/fluorescence microscopy) on three sputum specimens, physical examination, and digital CXR. Sputum, blood and urine specimens were cultured. Xpert(®) MTB/RIF testing was performed retrospectively. From July 2011 to April 2012, 399 patients were enrolled. The median age was 34.4 years; body mass index was 20.8 kg/m(2), CD4 count was 202 cells/μl and 86% were symptomatic. Culture-confirmed TB was diagnosed in 72/399 (18%) patients; an additional 31/399 (8%) were culture-negative but diagnosed clinically. Symptom screening for any cough, fever, weight loss or night sweats had high sensitivity (95%) but low specificity (14%) for detecting culture-confirmed cases. Among culture-confirmed cases, 35/72 (49%) were missed clinically and detected only by culture. Xpert was 64% sensitive and 98% specific. High TB prevalence was found in Zambians newly enrolled into HIV care. Screening with sensitive diagnostics should be considered with culture when feasible in this population.

  2. Glutamine Modulates Macrophage Lipotoxicity

    Directory of Open Access Journals (Sweden)

    Li He

    2016-04-01

    Full Text Available Obesity and diabetes are associated with excessive inflammation and impaired wound healing. Increasing evidence suggests that macrophage dysfunction is responsible for these inflammatory defects. In the setting of excess nutrients, particularly dietary saturated fatty acids (SFAs, activated macrophages develop lysosome dysfunction, which triggers activation of the NLRP3 inflammasome and cell death. The molecular pathways that connect lipid stress to lysosome pathology are not well understood, but may represent a viable target for therapy. Glutamine uptake is increased in activated macrophages leading us to hypothesize that in the context of excess lipids glutamine metabolism could overwhelm the mitochondria and promote the accumulation of toxic metabolites. To investigate this question we assessed macrophage lipotoxicity in the absence of glutamine using LPS-activated peritoneal macrophages exposed to the SFA palmitate. We found that glutamine deficiency reduced lipid induced lysosome dysfunction, inflammasome activation, and cell death. Under glutamine deficient conditions mTOR activation was decreased and autophagy was enhanced; however, autophagy was dispensable for the rescue phenotype. Rather, glutamine deficiency prevented the suppressive effect of the SFA palmitate on mitochondrial respiration and this phenotype was associated with protection from macrophage cell death. Together, these findings reveal that crosstalk between activation-induced metabolic reprogramming and the nutrient microenvironment can dramatically alter macrophage responses to inflammatory stimuli.

  3. Efficacy of enhanced HIV counseling for risk reduction during pregnancy and in the postpartum period: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Suzanne Maman

    Full Text Available INTRODUCTION: Pregnancy and the postpartum period present important intervention opportunities. Counseling can leverage the motivation women have during this time to change behaviors that may negatively affect their health and the heath of their infants. METHODS: Pregnant women attending an antenatal clinic in South Africa were randomly allocated to treatment (n=733 and control arms (n=747. Treatment arm participants received enhanced HIV pre- and post-test counseling, legal support and access to support groups at baseline, which occurred at the first antenatal visit, and then six and ten weeks postpartum. Control arm participants received standard HIV testing and counseling (HTC and two postpartum attention control sessions. Outcomes were incidence of sexually transmitted infection (STI by 14 weeks postpartum and past 30-day inconsistent condom use at 14 weeks and 9 months postpartum. RESULTS: There were no intervention effects on incident STIs for either HIV-negative (adjusted risk ratio (aRR 1.01, 95% CI 0.71-1.44 or HIV-positive participants (aRR 0.86, 95% CI 0.61-1.23. The intervention was associated with a 28% decrease in risk of past 30-day inconsistent condom use at nine-months among HIV-negative women (aRR 0.72,95% CI 0.59-0.88, but did not affect inconsistent condom use among HIV-positive women (aRR1.08; 95% CI 0.67-1.75. DISCUSSION: An enhanced counseling intervention during pregnancy and the postpartum period can lead to reductions in inconsistent condom use among HIV-negative women. Results underscore the importance of the counseling that accompanies HIV HTC. More work is needed to understand how to promote and sustain risk reduction among HIV-positive women. TRIAL REGISTRATION: ClinicalTrials.gov NCT01683461.

  4. Signaling of Prostaglandin E Receptors, EP3 and EP4 Facilitates Wound Healing and Lymphangiogenesis with Enhanced Recruitment of M2 Macrophages in Mice.

    Science.gov (United States)

    Hosono, Kanako; Isonaka, Risa; Kawakami, Tadashi; Narumiya, Shuh; Majima, Masataka

    2016-01-01

    Lymphangiogenesis plays an important role in homeostasis, metabolism, and immunity, and also occurs during wound-healing. Here, we examined the roles of prostaglandin E2 (PGE2) receptor (EP) signaling in enhancement of lymphangiogenesis in wound healing processes. The hole-punch was made in the ears of male C57BL/6 mice using a metal ear punch. Healing process and lymphangiogenesis together with macrophage recruitment were analyzed in EP knockout mice. Lymphangiogenesis was up-regulated in the granulation tissues at the margins of punched-hole wounds in mouse ears, and this increase was accompanied by increased expression levels of COX-2 and microsomal prostaglandin E synthase-1. Administration of celecoxib, a COX-2 inhibitor, suppressed lymphangiogenesis in the granulation tissues and reduced the induction of the pro-lymphangiogenic factors, vascular endothelial growth factor (VEGF) -C and VEGF-D. Topical applications of selective EP receptor agonists enhanced the expressions of lymphatic vessel endothelial hyaluronan receptor-1 and VEGF receptor-3. The wound-healing processes and recruitment of CD11b-positive macrophages, which produced VEGF-C and VEGF-D, were suppressed under COX-2 inhibition. Mice lacking either EP3 or EP4 exhibited reduced wound-healing, lymphangiogenesis and recruitment of M2 macrophages, compared with wild type mice. Proliferation of cultured human lymphatic endothelial cells was not detected under PGE2 stimulation. Lymphangiogenesis and recruitment of M2 macrophages that produced VEGF-C/D were suppressed in mice treated with a COX-2 inhibitor or lacking either EP3 or EP4 during wound healing. COX-2 and EP3/EP4 signaling may be novel targets to control lymphangiogenesis in vivo.

  5. Signaling of Prostaglandin E Receptors, EP3 and EP4 Facilitates Wound Healing and Lymphangiogenesis with Enhanced Recruitment of M2 Macrophages in Mice

    Science.gov (United States)

    Hosono, Kanako; Isonaka, Risa; Kawakami, Tadashi; Narumiya, Shuh; Majima, Masataka

    2016-01-01

    Lymphangiogenesis plays an important role in homeostasis, metabolism, and immunity, and also occurs during wound-healing. Here, we examined the roles of prostaglandin E2 (PGE2) receptor (EP) signaling in enhancement of lymphangiogenesis in wound healing processes. The hole-punch was made in the ears of male C57BL/6 mice using a metal ear punch. Healing process and lymphangiogenesis together with macrophage recruitment were analyzed in EP knockout mice. Lymphangiogenesis was up-regulated in the granulation tissues at the margins of punched-hole wounds in mouse ears, and this increase was accompanied by increased expression levels of COX-2 and microsomal prostaglandin E synthase-1. Administration of celecoxib, a COX-2 inhibitor, suppressed lymphangiogenesis in the granulation tissues and reduced the induction of the pro-lymphangiogenic factors, vascular endothelial growth factor (VEGF) -C and VEGF-D. Topical applications of selective EP receptor agonists enhanced the expressions of lymphatic vessel endothelial hyaluronan receptor-1 and VEGF receptor-3. The wound-healing processes and recruitment of CD11b-positive macrophages, which produced VEGF-C and VEGF-D, were suppressed under COX-2 inhibition. Mice lacking either EP3 or EP4 exhibited reduced wound-healing, lymphangiogenesis and recruitment of M2 macrophages, compared with wild type mice. Proliferation of cultured human lymphatic endothelial cells was not detected under PGE2 stimulation. Lymphangiogenesis and recruitment of M2 macrophages that produced VEGF-C/D were suppressed in mice treated with a COX-2 inhibitor or lacking either EP3 or EP4 during wound healing. COX-2 and EP3/EP4 signaling may be novel targets to control lymphangiogenesis in vivo. PMID:27711210

  6. Proinflammatory Macrophages Enhance the Regenerative Capacity of Human Myoblasts by Modifying Their Kinetics of Proliferation and Differentiation

    Science.gov (United States)

    Bencze, Maximilien; Negroni, Elisa; Vallese, Denis; Yacoub–Youssef, Houda; Chaouch, Soraya; Wolff, Annie; Aamiri, Ahmed; Di Santo, James P; Chazaud, Bénédicte; Butler-Browne, Gillian; Savino, Wilson; Mouly, Vincent; Riederer, Ingo

    2012-01-01

    Macrophages have been shown to be essential for muscle repair by delivering trophic cues to growing skeletal muscle precursors and young fibers. Here, we investigated whether human macrophages, either proinflammatory or anti-inflammatory, coinjected with human myoblasts into regenerating muscle of Rag2−/− γC−/− immunodeficient mice, could modify in vivo the kinetics of proliferation and differentiation of the transplanted human myogenic precursors. Our results clearly show that proinflammatory macrophages improve in vivo the participation of injected myoblasts to host muscle regeneration, extending the window of proliferation, increasing migration, and delaying differentiation. Interestingly, immunostaining of transplanted proinflammatory macrophages at different time points strongly suggests that these cells are able to switch to an anti-inflammatory phenotype in vivo, which then may stimulate differentiation during muscle regeneration. Conceptually, our data provide for the first time in vivo evidence strongly suggesting that proinflammatory macrophages play a supportive role in the regulation of myoblast behavior after transplantation into preinjured muscle, and could thus potentially optimize transplantation of myogenic progenitors in the context of cell therapy. PMID:23070116

  7. Proinflammatory macrophages enhance the regenerative capacity of human myoblasts by modifying their kinetics of proliferation and differentiation.

    Science.gov (United States)

    Bencze, Maximilien; Negroni, Elisa; Vallese, Denis; Yacoub-Youssef, Houda; Chaouch, Soraya; Wolff, Annie; Aamiri, Ahmed; Di Santo, James P; Chazaud, Bénédicte; Butler-Browne, Gillian; Savino, Wilson; Mouly, Vincent; Riederer, Ingo

    2012-11-01

    Macrophages have been shown to be essential for muscle repair by delivering trophic cues to growing skeletal muscle precursors and young fibers. Here, we investigated whether human macrophages, either proinflammatory or anti-inflammatory, coinjected with human myoblasts into regenerating muscle of Rag2(-/-) γC(-/-) immunodeficient mice, could modify in vivo the kinetics of proliferation and differentiation of the transplanted human myogenic precursors. Our results clearly show that proinflammatory macrophages improve in vivo the participation of injected myoblasts to host muscle regeneration, extending the window of proliferation, increasing migration, and delaying differentiation. Interestingly, immunostaining of transplanted proinflammatory macrophages at different time points strongly suggests that these cells are able to switch to an anti-inflammatory phenotype in vivo, which then may stimulate differentiation during muscle regeneration. Conceptually, our data provide for the first time in vivo evidence strongly suggesting that proinflammatory macrophages play a supportive role in the regulation of myoblast behavior after transplantation into preinjured muscle, and could thus potentially optimize transplantation of myogenic progenitors in the context of cell therapy.

  8. Chronic cigarette smoking enhances spontaneous release of tumour necrosis factor-α from alveolar macrophages of rats

    Directory of Open Access Journals (Sweden)

    G. P. Pessina

    1993-01-01

    Full Text Available Some biological effects of chronic cigarette smoking (two cigarettes for 2 h, daily for 4 months in rats were evaluated. During the smoking period, body weight of smoker rats was always significantly lower than that of control rats. Immediately after the last smoking session the carboxyhaemoglobin concentration in the blood was about 8.5% and the polymorphonuclear cells in the bronchoalveolar fluid increased significantly. At the same time, enzymatic analyses on the supernatants of bronchoalveolar fluid revealed a significant increase of β-glucuronidase in the smoker group. Alveolar macrophages, collected 0, 8 and 24 h after the last smoking session, significantly increased the generation of superoxide anion and, after incubation for 24 h at 37° C in a humidified atmosphere, released significantly high amounts of TNF-α. When challenged with lipopolysaccharide, alveolar macrophages of smoker rats released much more TNF-α but, in such a case, TNF-α release was about one half of that observed in the control group. Peritoneal macrophages of both control and smoker rats were unable either to generate high levels of superoxide anion or to release significant amounts of TNF-α. The results clearly demonstrated the activated state of alveolar macrophages and the resting state of peritoneal macrophages.

  9. Enhancement of CD147 on M1 macrophages induces differentiation of Th17 cells in the lung interstitial fibrosis.

    Science.gov (United States)

    Geng, Jie-jie; Zhang, Kui; Chen, Li-na; Miao, Jin-lin; Yao, Meng; Ren, Ying; Fu, Zhi-guang; Chen, Zhi-nan; Zhu, Ping

    2014-09-01

    Lung interstitial fibrosis is a chronic lung disease, and few effective therapies are available to halt or reverse the progression of the disease. In murine and human lung fibrosis, the expression of CD147 is increased. However, the role of CD147 in lung fibrosis has not been identified, and it remains to be determined whether lung fibrosis would be improved by decreasing the expression of CD147. A murine bleomycin-induced lung interstitial fibrosis model was used in the experiments, and HAb18 mAbs and CsA were administered during the induction of lung fibrosis. In our study, we found that the HAb18 mAbs markedly reduced the collagen score and down-regulated M1 macrophages and Th17 cells. In vitro, flow cytometry analysis showed that M1 macrophages induced higher Th17 differentiation than M2 macrophages. After treatment with HAb18 mAbs or after reducing the expression of CD147 by lentivirus interference in M1 macrophages, the level of Th17 cells were significantly inhibited. In conclusion, HAb18 mAbs or CsA treatment ameliorates lung interstitial fibrosis. CD147 promoted M1 macrophage and induced the differentiation of Th17 cells in lung interstitial fibrosis, perhaps by regulating some cytokines such as IL-6, IL-1β, IL-12 and IL-23. These results indicated that CD147 may play an important role in the development of lung interstitial fibrosis.

  10. SIV Infection of Lung Macrophages.

    Directory of Open Access Journals (Sweden)

    Yue Li

    Full Text Available HIV-1 depletes CD4+ T cells in the blood, lymphatic tissues, gut and lungs. Here we investigated the relationship between depletion and infection of CD4+ T cells in the lung parenchyma. The lungs of 38 Indian rhesus macaques in early to later stages of SIVmac251 infection were examined, and the numbers of CD4+ T cells and macrophages plus the frequency of SIV RNA+ cells were quantified. We showed that SIV infected macrophages in the lung parenchyma, but only in small numbers except in the setting of interstitial inflammation where large numbers of SIV RNA+ macrophages were detected. However, even in this setting, the number of macrophages was not decreased. By contrast, there were few infected CD4+ T cells in lung parenchyma, but CD4+ T cells were nonetheless depleted by unknown mechanisms. The CD4+ T cells in lung parenchyma were depleted even though they were not productively infected, whereas SIV can infect large numbers of macrophages in the setting of interstitial inflammation without depleting them. These observations point to the need for future investigations into mechanisms of CD4+ T cell depletion at this mucosal site, and into mechanisms by which macrophage populations are maintained despite high levels of infection. The large numbers of SIV RNA+ macrophages in lungs in the setting of interstitial inflammation indicates that lung macrophages can be an important source for SIV persistent infection.

  11. A comprehensive HIV stigma-reduction and wellness-enhancement community intervention: a case study.

    Science.gov (United States)

    French, Heleen; Greeff, Minrie; Watson, Martha J; Doak, Coleen M

    2015-01-01

    We describe the implementation of a comprehensive HIV stigma-reduction and wellness-enhancement community intervention that focused on people living with HIV (PLWH), as well as people living close to them (PLC) from six designated groups. A holistic multiple case study design was used in urban and rural settings in the North West Province, South Africa. Purposive voluntary sampling was used to recruit the PLWH group; snowball sampling was used for the PLCs. Data were analyzed by means of open coding and text document analysis. The comprehensive nature of the intervention ensured enhancement in relationships in all groups. The increase in knowledge about stigma, coping with it, and improved relationships led to PLWH feeling less stigmatized and more willing to disclose. PLCs became aware of their stigmatizing behaviors and were empowered to lead stigma reduction in their communities. Many community members were reached through these initiatives. Copyright © 2015 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.

  12. Brucella Rough Mutant Induce Macrophage Death via Activating IRE1α Pathway of Endoplasmic Reticulum Stress by Enhanced T4SS Secretion

    Directory of Open Access Journals (Sweden)

    Peng Li

    2017-09-01

    Full Text Available Brucella is a Gram-negative facultative intracellular pathogen that causes the worldwide zoonosis, known as brucellosis. Brucella virulence relies mostly on its ability to invade and replicate within phagocytic cells. The type IV secretion system (T4SS and lipopolysaccharide are two major Brucella virulence factors. Brucella rough mutants reportedly induce the death of infected macrophages, which is T4SS dependent. However, the underlying molecular mechanism remains unclear. In this study, the T4SS secretion capacities of Brucella rough mutant and its smooth wild-type strain were comparatively investigated, by constructing the firefly luciferase fused T4SS effector, BPE123 and VceC. In addition, quantitative real-time PCR and western blotting were used to analyze the T4SS expression. The results showed that T4SS expression and secretion were enhanced significantly in the Brucella rough mutant. We also found that the activity of the T4SS virB operon promoter was notably increased in the Brucella rough mutant, which depends on quorum sensing-related regulators of VjbR upregulation. Cell infection and cell death assays revealed that deletion of vjbR in the Brucella rough mutant absolutely abolished cytotoxicity within macrophages by downregulating T4SS expression. This suggests that up-regulation of T4SS promoted by VjbR in rough mutant ΔrfbE contribute to macrophage death. In addition, we found that the Brucella rough mutant induce macrophage death via activating IRE1α pathway of endoplasmic reticulum stress. Taken together, our study provide evidence that in comparison to the Brucella smooth wild-type strain, VjbR upregulation in the Brucella rough mutant increases transcription of the virB operon, resulting in overexpression of the T4SS gene, accompanied by the over-secretion of effecter proteins, thereby causing the death of infected macrophages via activating IRE1α pathway of endoplasmic reticulum stress, suggesting novel insights into the

  13. Depletion of H2S during obesity enhances store-operated Ca2+ entry in adipose tissue macrophages to increase cytokine production.

    Science.gov (United States)

    Velmurugan, Gopal V; Huang, Huiya; Sun, Hongbin; Candela, Joseph; Jaiswal, Mukesh K; Beaman, Kenneth D; Yamashita, Megumi; Prakriya, Murali; White, Carl

    2015-12-15

    The increased production of proinflammatory cytokines by adipose tissue macrophages (ATMs) contributes to chronic, low-level inflammation during obesity. We found that obesity in mice reduced the bioavailability of the gaseous signaling molecule hydrogen sulfide (H2S). Steady-state, intracellular concentrations of H2S were lower in ATMs isolated from mice with diet-induced obesity than in ATMs from lean mice. In addition, the intracellular concentration of H2S in the macrophage cell line RAW264.7 was reduced during an acute inflammatory response evoked by the microbial product lipopolysaccharide (LPS). Reduced intracellular concentrations of H2S led to increased Ca(2+) influx through the store-operated Ca(2+) entry (SOCE) pathway, which was prevented by the exogenous H2S donor GYY4137. Furthermore, GYY4137 inhibited the Orai3 channel, a key component of the SOCE machinery. The enhanced production of proinflammatory cytokines by RAW264.7 cells and ATMs from obese mice was reduced by exogenous H2S or by inhibition of SOCE. Together, these data suggest that the depletion of macrophage H2S that occurs during acute (LPS-induced) or chronic (obesity) inflammation increases SOCE through disinhibition of Orai3 and promotes the production of proinflammatory cytokines.

  14. Depletion of H2S during obesity enhances store-operated Ca2+ entry in adipose tissue macrophages to increase cytokine production

    Science.gov (United States)

    Velmurugan, Gopal V.; Huang, Huiya; Sun, Hongbin; Candela, Joseph; Jaiswal, Mukesh K.; Beaman, Kenneth D.; Yamashita, Megumi; Prakriya, Murali; White, Carl

    2017-01-01

    The increased production of proinflammatory cytokines by adipose tissue macrophages (ATMs) contributes to chronic, low-level inflammation during obesity. We found that obesity in mice reduced the bioavailability of the gaseous signaling molecule hydrogen sulfide (H2S). Steady-state, intracellular concentrations of H2S were lower in ATMs isolated from mice with diet-induced obesity than in ATMs from lean mice. In addition, the intracellular concentration of H2S in the macrophage cell line RAW264.7 was reduced during an acute inflammatory response evoked by the microbial product lipopolysaccharide (LPS). Reduced intracellular concentrations of H2S led to increased Ca2+ influx through the store-operated Ca2+ entry (SOCE) pathway, which was prevented by the exogenous H2S donor GYY4137. Furthermore, GYY4137 inhibited the Orai3 channel, a key component of the SOCE machinery. The enhanced production of proinflammatory cytokines by RAW264.7 cells and ATMs from obese mice was reduced by exogenous H2S or by inhibition of SOCE. Together, these data suggest that the depletion of macrophage H2S that occurs during acute (LPS-induced) or chronic (obesity) inflammation increases SOCE through disinhibition of Orai3 and promotes the production of proinflammatory cytokines. PMID:26671149

  15. Suppression of HIV-1 Infectivity by Human Glioma Cells.

    Science.gov (United States)

    Hoque, Sheikh Ariful; Tanaka, Atsushi; Islam, Salequl; Ahsan, Gias Uddin; Jinno-Oue, Atsushi; Hoshino, Hiroo

    2016-05-01

    HIV-1 infection to the central nervous system (CNS) is very common in AIDS patients. The predominant cell types infected in the brain are monocytes and macrophages, which are surrounded by several HIV-1-resistant cell types, such as astrocytes, oligodendrocytes, neurons, and microvascular cells. The effect of these HIV-1-resistant cells on HIV-1 infection is largely unknown. In this study, we examined the stability of HIV-1 cultured with several human glioblastoma cell lines, for example, NP-2, U87MG, T98G, and A172, to determine whether these HIV-1-resistant brain cells could enhance or suppress HIV-1 infection and thus modulate HIV-1 infection in the CNS. The HIV-1 titer was determined using the MAGIC-5A indicator cell line as well as naturally occurring CD4(+) T cells. We found that the stability of HIV-1 incubated with NP-2 or U87MG cells at 37°C was significantly shorter (half-life, 2.5-4 h) compared to that of HIV-1 incubated with T98G or A172 cells or in culture medium without cells (half-life, 8-18 h). The spent culture media (SCM) of NP-2 and U87MG cells had the ability to suppress both R5- and X4-HIV-1 infection by inhibiting HIV-1 attachment to target cells. This inhibitory effect was eliminated by the treatment of the SCM with chondroitinase ABC but not heparinase, suggesting that the inhibitory factor(s) secreted by NP-2 and U87MG cells was chiefly mediated by chondroitin sulfate (CS) or CS-like moiety. Thus, this study reveals that some but not all glioma cells secrete inhibitory molecules to HIV-1 infection that may contribute in lowering HIV-1 infection in the CNS in vivo.

  16. Changeover-time in psychosocial wellbeing of people living with HIV and people living close to them after an HIV stigma reduction and wellness enhancement community intervention.

    Science.gov (United States)

    Chidrawi, H Christa; Greeff, Minrie; Temane, Q Michael; Ellis, Suria

    2015-01-01

    HIV stigma continues to affect the psychosocial wellbeing of people living with HIV (PLWH) and people living close to them (PLC). Literature unequivocally holds the view that HIV stigma and psychosocial wellbeing interact with and have an impact on each other. This study, which is part of a larger research project funded by the South Africa Netherlands research Programme on Alternatives in Development (SANPAD), responds to the lack of interventions mitigating the impactful interaction of HIV stigma and psychosocial wellbeing and tests one such intervention. The research objectives were to test the changeover-time in the psychosocial wellbeing of PLWH and PLC in an urban and a rural setting, following a comprehensive community-based HIV stigma reduction and wellness enhancement intervention. An experimental quantitative single system research design with a pre- and four repetitive post-tests was used, conducting purposive voluntary sampling for PLWH (n = 18) and snowball sampling for PLC (n = 60). The average age of participants was 34 years old. The five measuring instruments used for both groups were the mental health continuum short-form scale, the patient health questionnaire, the satisfaction with life scale, the coping self-efficacy scale and the spirituality wellbeing scale. No significant differences were found between the urban-rural settings and data were pooled for analysis. The findings show that initial psychosocial wellbeing changes after the intervention were better sustained (over time) by the PLC than by the PLWH and seemed to be strengthened by interpersonal interaction. Recommendations included that the intervention should be re-utilised and that its tenets, content and activities be retained. A second intervention three to six months after the first should be included to achieve more sustainability and to add focused activities for the enhancement of psychosocial wellbeing. PLWH and PLC are to be encouraged to engage with innovative community

  17. Activation of the HIV-1 enhancer by the LEF-1 HMG protein on nucleosome-assembled DNA in vitro.

    Science.gov (United States)

    Sheridan, P L; Sheline, C T; Cannon, K; Voz, M L; Pazin, M J; Kadonaga, J T; Jones, K A

    1995-09-01

    Lymphoid enhancer-binding factor 1 (LEF-1) is a regulatory high mobility group (HMG) protein that activates the T cell receptor alpha (TCR alpha) enhancer in a context-restricted manner in T cells. In this paper we demonstrate that the distal region of the human immunodeficiency virus-1 (HIV-1) enhancer, which contains DNA-binding sites for LEF-1 and Ets-1, also provides a functional context for activation by LEF-1. First, we show that mutations in the LEF-1-binding site inhibit the activity of multimerized copies of the HIV-1 enhancer in Jurkat T cells, and that LEF-1/GAL4 can activate a GAL4-substituted HIV-1 enhancer 80- to 100-fold in vivo. Second, recombinant LEF-1 is shown to activate HIV-1 transcription on chromatin-assembled DNA in vitro. By using a nucleosome-assembly system derived from Drosophila embryos, we find that the packaging of DNA into chromatin in vitro strongly represses HIV-1 transcription and that repression can be counteracted efficiently by preincubation of the DNA with LEF-1 (or LEF-1 and Ets-1) supplemented with fractions containing the promoter-binding protein, Sp1. Addition of TFE-3, which binds to an E-box motif upstream of the LEF-1 and Ets-1 sites, further augments transcription in this system. Individually or collectively, none of the three enhancer-binding proteins (LEF-1, Ets-1, and TFE-3) could activate transcription in the absence of Sp1. A truncation mutant of LEF-1 (HMG-88), which contains the HMG box but lacks the trans-activation domain, did not activate transcription from nucleosomal DNA, indicating that bending of DNA by the HMG domain is not sufficient to activate transcription in vitro. We conclude that transcription activation by LEF-1 in vitro is a chromatin-dependent process that requires a functional trans-activation domain in addition to the HMG domain.

  18. TLR2-Modulating Lipoproteins of the Mycobacterium tuberculosis Complex Enhance the HIV Infectivity of CD4+ T Cells.

    Science.gov (United States)

    Skerry, Ciaran; Klinkenberg, Lee G; Page, Kathleen R; Karakousis, Petros C

    2016-01-01

    Co-infection with Mycobacterium tuberculosis accelerates progression from HIV to AIDS. Our previous studies showed that M. tuberculosis complex, unlike M. smegmatis, enhances TLR2-dependent susceptibility of CD4+ T cells to HIV. The M. tuberculosis complex produces multiple TLR2-stimulating lipoproteins, which are absent in M. smegmatis. M. tuberculosis production of mature lipoproteins and TLR2 stimulation is dependent on cleavage by lipoprotein signal peptidase A (LspA). In order to determine the role of potential TLR2-stimulating lipoproteins on mycobacterial-mediated HIV infectivity of CD4+ T cells, we generated M. smegmatis recombinant strains overexpressing genes encoding various M. bovis BCG lipoproteins, as well as a Mycobacterium bovis BCG strain deficient in LspA (ΔlspA). Exposure of human peripheral blood mononuclear cells (PBMC) to M. smegmatis strains overexpressing the BCG lipoproteins, LprF (p<0.01), LprH (p<0.05), LprI (p<0.05), LprP (p<0.001), LprQ (p<0.005), MPT83 (p<0.005), or PhoS1 (p<0.05), resulted in increased HIV infectivity of CD4+ T cells isolated from these PBMC. Conversely, infection of PBMC with ΔlspA reduced HIV infectivity of CD4+ T cells by 40% relative to BCG-infected cells (p<0.05). These results may have important implications for TB vaccination programs in areas with high mother-to-child HIV transmission.

  19. Enhanced activity of carbosilane dendrimers against HIV when combined with reverse transcriptase inhibitor drugs: searching for more potent microbicides

    Science.gov (United States)

    Vacas-Córdoba, Enrique; Galán, Marta; de la Mata, Francisco J; Gómez, Rafael; Pion, Marjorie; Muñoz-Fernández, M Ángeles

    2014-01-01

    Self-administered topical microbicides or oral preexposure prophylaxis could be very helpful tools for all risk groups to decrease the human immunodeficiency virus (HIV)-1 infection rates. Up until now, antiretrovirals (ARVs) have been the most advanced microbicide candidates. Nevertheless, the majority of clinical trials has failed in HIV-1 patients. Nanotechnology offers suitable approaches to develop novel antiviral agents. Thereby, new nanosystems, such as carbosilane dendrimers, have been shown to be safe and effective compounds against HIV with great potential as topical microbicides. In addition, because most of the attempts to develop effective topical microbicides were unsuccessful, combinatorial strategies could be a valid approach when designing new microbicides. We evaluated various combinations of anionic carbosilane dendrimers with sulfated (G3-S16) and naphthyl sulfonated (G2-NF16) ended groups with different ARVs against HIV-1 infection. The G3-S16 and G2-NF16 dendrimers showed a synergistic or additive activity profile with zidovudine, efavirenz, and tenofovir in the majority of the combinations tested against the X4 and R5 tropic HIV-1 in cell lines, as well as in human primary cells. Therefore, the combination of ARVs and polyanionic carbosilane dendrimers enhances the antiviral potency of the individual compounds, and our findings support further clinical research on combinational approaches as potential microbicides to block the sexual transmission of HIV-1. PMID:25114528

  20. Elimination of Mother-To-Child Transmission of HIV Infection: The Drug Resource Enhancement against AIDS and Malnutrition Model

    Directory of Open Access Journals (Sweden)

    Giuseppe Liotta

    2015-10-01

    Full Text Available The Drug Resource Enhancement against AIDS and Malnutrition Program (DREAM gathered professionals in the field of Elimination of HIV-Mother-To-Child Transmission (EMTCT in Maputo in 2013 to discuss obstacles and solutions for the elimination of HIV vertical transmission in sub-Saharan Africa. During this workshop, the benefits of administrating combined antiretroviral therapy (cART to HIV positive women from pregnancy throughout breastfeeding were reviewed. cART is capable of reducing vertical transmission to less than 5% at 24 months of age, as well as maternal mortality and infant mortality in both HIV infected and exposed populations to levels similar to those of uninfected individuals. The challenge for programs targeting eMTCT in developing countries is retention in care and treatment adherence. Both are intrinsically related to the model of care. The drop-out from eMTCT programs before cART initiation ranges from 33%–88% while retention rates at 18–24 months are less than 50%. Comprehensive strategies including peer-to-peer education, social support and laboratory monitoring can reduce refusals to less than 5% and attain retention rates approaching 90%. Several components of the model of care for reduction of HIV-1 MTCT are feasible and implementable in scale-up strategies. A review of this model of care for HIV eMTCT is provided.

  1. Amsterdam's STI/HIV programme: An innovative strategy to achieve and enhance the participation of migrant community-based organisations

    NARCIS (Netherlands)

    Wagemakers, A.; Husen, van G.; Barrett, J.B.; Koelen, M.A.

    2015-01-01

    Objective: The STI/HIV prevention programme in Amsterdam aims to improve the sexual health of Amsterdam residents of African, Antillean, Aruban and Surinamese origins. The programme strategy is to achieve and enhance the participation of migrant community-based organisations (CBOs) in sexual health

  2. Amsterdam's STI/HIV Programme: An Innovative Strategy to Achieve and Enhance the Participation of Migrant Community-Based Organisations

    Science.gov (United States)

    Wagemakers, Annemarie; van Husen, Gwen; Barrett, Jennifer B.; Koelen, Maria A.

    2015-01-01

    Objective: The STI/HIV prevention programme in Amsterdam aims to improve the sexual health of Amsterdam residents of African, Antillean, Aruban and Surinamese origins. The programme strategy is to achieve and enhance the participation of migrant community-based organisations (CBOs) in sexual health promotion through a grant scheme and by providing…

  3. HIV-1gp120 induces neuronal apoptosis through enhancement of 4-aminopyridine-senstive outward K+ currents.

    Directory of Open Access Journals (Sweden)

    Lina Chen

    Full Text Available Human immunodeficiency virus type 1 (HIV-1-associated dementia (HAD usually occurs late in the course of HIV-1 infection and the mechanisms underlying HAD pathogenesis are not well understood. Accumulating evidence indicates that neuronal voltage-gated potassium (Kv channels play an important role in memory processes and acquired neuronal channelopathies in HAD. To examine whether Kv channels are involved in HIV-1-associated neuronal injury, we studied the effects of HIV-1 glycoprotein 120 (gp120 on outward K+ currents in rat cortical neuronal cultures using whole-cell patch techniques. Exposure of cortical neurons to gp120 produced a dose-dependent enhancement of A-type transient outward K+ currents (IA. The gp120-induced increase of IA was attenuated by T140, a specific antagonist for chemokine receptor CXCR4, suggesting gp120 enhancement of neuronal IA via CXCR4. Pretreatment of neuronal cultures with a protein kinase C (PKC inhibitor, GF109203X, inhibited the gp120-induced increase of IA. Biological significance of gp120 enhancement of IA was demonstrated by experimental results showing that gp120-induced neuronal apoptosis, as detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL assay and caspase-3 staining, was attenuated by either an IA blocker 4-aminopyridine or a specific CXCR4 antagonist T140. Taken together, these results suggest that gp120 may induce caspase-3 dependent neuronal apoptosis by enhancing IA via CXCR4-PKC signaling.

  4. Protein corona formation in bronchoalveolar fluid enhances diesel exhaust nanoparticle uptake and pro-inflammatory responses in macrophages.

    Science.gov (United States)

    Shaw, Catherine A; Mortimer, Gysell M; Deng, Zhou J; Carter, Edwin S; Connell, Shea P; Miller, Mark R; Duffin, Rodger; Newby, David E; Hadoke, Patrick W F; Minchin, Rodney F

    2016-09-01

    In biological fluids nanoparticles bind a range of molecules, particularly proteins, on their surface. The resulting protein corona influences biological activity and fate of nanoparticle in vivo. Corona composition is often determined by the biological milieu encountered at the entry portal into the body, and, can therefore, depend on the route of exposure to the nanoparticle. For environmental nanoparticles where exposure is by inhalation, this will be lung lining fluid. This study examined plasma and bronchoalveolar fluid (BALF) protein binding to engineered and environmental nanoparticles. We hypothesized that protein corona on nanoparticles would influence nanoparticle uptake and subsequent pro-inflammatory biological response in macrophages. All nanoparticles bound plasma and BALF proteins, but the profile of bound proteins varied between nanoparticles. Focusing on diesel exhaust nanoparticles (DENP), we identified proteins bound from plasma to include fibrinogen, and those bound from BALF to include albumin and surfactant proteins A and D. The presence on DENP of a plasma-derived corona or one of purified fibrinogen failed to evoke an inflammatory response in macrophages. However, coronae formed in BALF increased DENP uptake into macrophages two fold, and increased nanoparticulate carbon black (NanoCB) uptake fivefold. Furthermore, a BALF-derived corona increased IL-8 release from macrophages in response to DENP from 1720 ± 850 pg/mL to 5560 ± 1380 pg/mL (p = 0.014). These results demonstrate that the unique protein corona formed on nanoparticles plays an important role in determining biological reactivity and fate of nanoparticle in vivo. Importantly, these findings have implications for the mechanism of detrimental properties of environmental nanoparticles since the principle route of exposure to such particles is via the lung.

  5. Suppression of CCR5-tropic HIV type 1 infection by OX40 stimulation via enhanced production of β-chemokines.

    Science.gov (United States)

    Tanaka, Reiko; Takahashi, Yoshiaki; Kodama, Akira; Saito, Mineki; Ansari, Aftab A; Tanaka, Yuetsu

    2010-10-01

    To elucidate the immunological role for the costimulatory molecule OX40 against the early stage of HIV-1 infection, fresh peripheral blood mononuclear cells (PBMCs) from normal donors were stimulated with immobilized anti-CD3 monoclonal antibody (mAb) together with soluble anti-CD28 mAb for 24 h, infected with CCR5-tropic (R5) HIV-1, and then cocultured in the presence or absence of OX40 ligand (OX40L). Results of these studied showed that OX40 stimulation led to a marked reduction in levels of p24, the frequency of intracellular p24(+) cells, as well as HIV-1-mediated syncytium formation. The suppression was reversed by anti-OX40L mAb. The mechanism underlying the R5 HIV-1 suppression was shown to be mediated in part by the CCR5-binding β-chemokines RANTES, MIP-1α, and MIP-1β, since the effect of the OX40 stimulation was reversed by a neutralizing antibody mixture against these three β-chemokines. Thus, OX40 stimulation enhanced the production of these CCR5-binding β-chemokines by the activated PBMCs and subsequently down-modulated CCR5 expression on the activated CD4(+) T cells. Taken together, the present data revealed a new role for OX40 in HIV-1 infection and documents the fact that OX40 stimulation suppresses the infection of primary activated PBMCs with R5 HIV-1 via enhanced production of R5 HIV-1 suppressing β-chemokines.

  6. Decreased chronic morbidity but elevated HIV associated cytokine levels in HIV-infected older adults receiving HIV treatment: benefit of enhanced access to care?

    Directory of Open Access Journals (Sweden)

    Portia C Mutevedzi

    Full Text Available BACKGROUND: The association of HIV with chronic morbidity and inflammatory markers (cytokines in older adults (50+years is potentially relevant for clinical care, but data from African populations is scarce. OBJECTIVE: To examine levels of chronic morbidity by HIV and ART status in older adults (50+years and subsequent associations with selected pro-inflammatory cytokines and body mass index. METHODS: Ordinary, ordered and generalized ordered logistic regression techniques were employed to compare chronic morbidity (heart disease (angina, arthritis, stroke, hypertension, asthma and diabetes and cytokines (Interleukins-1 and -6, C-Reactive Protein and Tumor Necrosis Factor-alpha by HIV and ART status on a cross-sectional random sample of 422 older adults nested within a defined rural South African population based demographic surveillance. RESULTS: Using a composite measure of all morbidities, controlling for age, gender, BMI, smoking and wealth quintile, HIV-infected individuals on ART had 51% decreased odds (95% CI:0.26-0.92 of current morbidity compared to HIV-uninfected. In adjusted regression, compared to HIV-uninfected, the proportional odds (aPOR of having elevated inflammation markers of IL6 (>1.56 pg/mL was nearly doubled in HIV-infected individuals on (aPOR 1.84; 95%CI: 1.05-3.21 and not on (aPOR 1.94; 95%CI: 1.11-3.41 ART. Compared to HIV-uninfected, HIV-infected individuals on ART had >twice partial proportional odds (apPOR=2.30;p=0.004 of having non-clinically significant raised hsCRP levels(>1 ug/mL; ART-naïve HIV-infected individuals had >double apPOR of having hsCRP levels indicative of increased heart disease risk(>3.9 ug/mL;p=0.008. CONCLUSIONS: Although HIV status was associated with increased inflammatory markers, our results highlight reduced morbidity in those receiving ART and underscore the need of pro-actively extending these services to HIV-uninfected older adults, beyond mere provision at fixed clinics. Providing

  7. A NF-κB-dependent dual promoter-enhancer initiates the lipopolysaccharide-mediated transcriptional activation of the chicken lysozyme in macrophages.

    Directory of Open Access Journals (Sweden)

    James Witham

    Full Text Available The transcriptional activation of the chicken lysozyme gene (cLys by lipopolysaccharide (LPS in macrophages is dependent on transcription of a LPS-Inducible Non-Coding RNA (LINoCR triggering eviction of the CCCTC-binding factor (CTCF from a negative regulatory element upstream of the lysozyme transcription start site. LINoCR is transcribed from a promoter originally characterized as a hormone response enhancer in the oviduct. Herein, we report the characterization of this cis-regulatory element (CRE. In activated macrophages, a 60 bp region bound by NF-κB, AP1 and C/EBPβ controls this CRE, which is strictly dependent on NF-κB binding for its activity in luciferase assays. Moreover, the serine/threonine kinase IKKα, known to be recruited by NF-κB to NF-κB-dependent genes is found at the CRE and within the transcribing regions of both cLys and LINoCR. Such repartition suggests a simultaneous promoter and enhancer activity of this CRE, initiating cLys transcriptional activation and driving CTCF eviction. This recruitment was transient despite persistence of both cLys transcription and NF-κB binding to the CRE. Finally, comparing cLys with other LPS-inducible genes indicates that IKKα detection within transcribing regions can be correlated with the presence of the elongating form of RNA polymerase II or concentrated in the 3' end of the gene.

  8. A NF-κB-dependent dual promoter-enhancer initiates the lipopolysaccharide-mediated transcriptional activation of the chicken lysozyme in macrophages.

    Science.gov (United States)

    Witham, James; Ouboussad, Lylia; Lefevre, Pascal F

    2013-01-01

    The transcriptional activation of the chicken lysozyme gene (cLys) by lipopolysaccharide (LPS) in macrophages is dependent on transcription of a LPS-Inducible Non-Coding RNA (LINoCR) triggering eviction of the CCCTC-binding factor (CTCF) from a negative regulatory element upstream of the lysozyme transcription start site. LINoCR is transcribed from a promoter originally characterized as a hormone response enhancer in the oviduct. Herein, we report the characterization of this cis-regulatory element (CRE). In activated macrophages, a 60 bp region bound by NF-κB, AP1 and C/EBPβ controls this CRE, which is strictly dependent on NF-κB binding for its activity in luciferase assays. Moreover, the serine/threonine kinase IKKα, known to be recruited by NF-κB to NF-κB-dependent genes is found at the CRE and within the transcribing regions of both cLys and LINoCR. Such repartition suggests a simultaneous promoter and enhancer activity of this CRE, initiating cLys transcriptional activation and driving CTCF eviction. This recruitment was transient despite persistence of both cLys transcription and NF-κB binding to the CRE. Finally, comparing cLys with other LPS-inducible genes indicates that IKKα detection within transcribing regions can be correlated with the presence of the elongating form of RNA polymerase II or concentrated in the 3' end of the gene.

  9. Glycine tomentella Hayata inhibits IL-1β and IL-6 production, inhibits MMP-9 activity, and enhances RAW264.7 macrophage clearance of apoptotic cells

    Directory of Open Access Journals (Sweden)

    Sun Yu-Shu

    2010-11-01

    Full Text Available Abstract Background To assess the effects of Glycine tomentella Hayata (GTH, a traditional herbal medicine for treatment of rheumatic diseases on the expression of the proinflammatory cytokines and on the clearance of apoptotic cells by macrophages. Methods RAW264.7 cells were cultured with lipopolysaccharide (LPS in the presence or absence of ethanol extract of GTH. The expression of proinflammatory cytokines IL-1β, IL-6, and TNF-α, and inducible nitric oxide synthase (iNOS and transglutaminase 2 (TG2 were assayed by reverse transcriptase-polymerase chain reaction (RT-PCR and enzyme-linked immunosorbent assay (ELISA. Matrix metalloproteinase (MMP-2 and MMP-9 were assayed by gelatin zymography. For detecting uptake of apoptotic cells, RAW264.7 cells were cultured with carboxyfluorescein diacetate (CFDA-stained apoptotic cells and assayed by flow cytometry. Results The major components of GTH analyzed by high-performance liquid chromatography (HPLC chromatogram were daidzein (42.5%, epicatechin (28.8%, and naringin (9.4%. GTH treatment inhibited the expression of proinflammatory cytokines IL-1β, IL-6 and MMP-9 but did not affect the expression of TNF-α and iNOS. GTH significantly enhanced the expression of TG2 and the clearance of apoptotic cells by RAW264.7 macrophages. Conclusions GTH inhibits proinflammatory cytokine secretion and MMP-9 activity, enhances apoptotic cell uptake and up-regulates TG2 expression. Our data show that GTH might have beneficial effects on rheumatic diseases.

  10. Targeting cFMS signaling to restore immune function and eradicate HIV reservoirs

    Science.gov (United States)

    Gerngross, Lindsey

    While combination anti-retroviral therapy (cART) has improved the length and quality of life of individuals living with HIV-1 infection, the prevalence of HIV-associated neurocognitive disorders (HAND) has increased and remains a significant clinical concern. The neuropathogenesis of HAND is not completely understood, however, latent HIV infection in the central nervous system (CNS) and chronic neuroinflammation are believed to play a prominent role. CNS-associated macrophages and resident microglia are significant contributors to CNS inflammation and constitute the chief reservoir of HIV-1 infection in the CNS. Previous studies from our lab suggest monocyte/macrophage invasion of the CNS in HIV may be driven by altered monocyte/macrophage homeostasis. We have reported expansion of a monocyte subset (CD14+CD16 +CD163+) in peripheral blood of HIV+ patients that is phenotypically similar to macrophages/microglia that accumulate in the CNS as seen in post-mortem tissue. The factors driving the expansion of this monocyte subset are unknown, however, signaling through cFMS, a type III receptor tyrosine kinase (RTK), may play a role. Macrophage-colony stimulating factor (M-CSF), a ligand of cFMS, has been shown to be elevated in the cerebral spinal fluid (CSF) of individuals with the most severe form of HAND, HIV-associated dementia (HAD). M-CSF promotes a Macrophage-2-like phenotype and increases CD16 and CD163 expression in cultured monocytes. M-CSF has also been shown to increase the susceptibility of macrophages to HIV infection and enhance virus production. These findings, in addition to the known function of M-CSF in promoting macrophage survival, supports a role for M-CSF in the development and maintenance of macrophage viral reservoirs in tissues where these cells accumulate, including the CNS. Interestingly, a second ligand for cFMS, IL-34, was recently identified and reported to share some functions with M-CSF, suggesting that both ligands may contribute to HIV

  11. HIV-1 Nef is transferred from expressing T cells to hepatocytic cells through conduits and enhances HCV replication.

    Directory of Open Access Journals (Sweden)

    In-Woo Park

    Full Text Available HIV-1 infection enhances HCV replication and as a consequence accelerates HCV-mediated hepatocellular carcinoma (HCC. However, the precise molecular mechanism by which this takes place is currently unknown. Our data showed that infectious HIV-1 failed to replicate in human hepatocytic cell lines. No discernible virus replication was observed, even when the cell lines transfected with HIV-1 proviral DNA were co-cultured with Jurkat T cells, indicating that the problem of liver deterioration in the co-infected patient is not due to the replication of HIV-1 in the hepatocytes of the HCV infected host. Instead, HIV-1 Nef protein was transferred from nef-expressing T cells to hepatocytic cells through conduits, wherein up to 16% (average 10% of the cells harbored the transferred Nef, when the hepatocytic cells were co-cultured with nef-expressing Jurkat cells for 24 h. Further, Nef altered the size and numbers of lipid droplets (LD, and consistently up-regulated HCV replication by 1.5∼2.5 fold in the target subgenomic replicon cells, which is remarkable in relation to the initially indolent viral replication. Nef also dramatically augmented reactive oxygen species (ROS production and enhanced ethanol-mediated up-regulation of HCV replication so as to accelerate HCC. Taken together, these data indicate that HIV-1 Nef is a critical element in accelerating progression of liver pathogenesis via enhancing HCV replication and coordinating modulation of key intra- and extra-cellular molecules for liver decay.

  12. Role of HIV-1 subtype C envelope V3 to V5 regions in viral entry, coreceptor utilization and replication efficiency in primary T-lymphocytes and monocyte-derived macrophages

    Directory of Open Access Journals (Sweden)

    Gopalan Sarla

    2007-11-01

    Full Text Available Abstract Background Several subtypes of HIV-1 circulate in infected people worldwide, including subtype B in the United States and subtype C in Africa and India. To understand the biological properties of HIV-1 subtype C, including cellular tropism, virus entry, replication efficiency and cytopathic effects, we reciprocally inserted our previously characterized envelope V3–V5 regions derived from 9 subtype C infected patients from India into a subtype B molecular clone, pNL4-3. Equal amounts of the chimeric viruses were used to infect T-lymphocyte cell lines (A3.01 and MT-2, coreceptor cell lines (U373-MAGI-CCR5/CXCR4, primary blood T-lymphocytes (PBL and monocyte-derived macrophages (MDM. Results We found that subtype C envelope V3–V5 region chimeras failed to replicate in T-lymphocyte cell lines but replicated in PBL and MDM. In addition, these chimeras were able to infect U373MAGI-CD4+-CCR5+ but not U373MAGI-CD4+-CXCR4+ cell line, suggesting CCR5 coreceptor utilization and R5 phenotypes. These subtype C chimeras were unable to induce syncytia in MT-2 cells, indicative of non-syncytium inducing (NSI phenotypes. More importantly, the subtype C envelope chimeras replicated at higher levels in PBL and MDM compared with subtype B chimeras and isolates. Furthermore, the higher levels subtype C chimeras replication in PBL and MDM correlated with increased virus entry in U373MAGI-CD4+-CCR5+. Conclusion Taken together, these results suggest that the envelope V3 to V5 regions of subtype C contributed to higher levels of HIV-1 replication compared with subtype B chimeras, which may contribute to higher viral loads and faster disease progression in subtype C infected individuals than other subtypes as well as rapid HIV-1 subtype C spread in India.

  13. Influence of socio-demographic factors on distances travelled to access HIV services: enhanced surveillance of HIV patients in north west England

    Directory of Open Access Journals (Sweden)

    Tocque Karen

    2009-03-01

    Full Text Available Abstract Background Patient choice and access to health care is compromised by many barriers including travel distance. Individuals with the human immunodeficiency virus (HIV can seek free specialist care in Britain, without a referral, providing flexible access to care services. Willingness to travel beyond local services for preferred care has funding and service implications. Data from an enhanced HIV surveillance system were used to explore geodemographic and clinical factors associated with accessing treatment services. Methods We extracted data on the location, type and frequency of care services utilized by HIV positive persons (n = 3983 accessing treatment in north west England between January 1st 2005 and June 30th 2006. Individuals were allocated a deprivation score and grouped by urban/rural residence, and distance to care services was calculated. Analysis identified independent predictors of distance travelled (general linear modelling and, for those bypassing their nearest clinic, the probability of accessing a specialist service (logistic regression, SPSS ver 14. Inter-relationships between variables and distance travelled were visualised using detrended correspondence analysis (PC-ORD ver 4.1. Results HIV infected persons travelled an average of 4.8 km (95% confidence intervals (CI 4.6–4.9 per trip and had on average 6 visits (95% CI 5.9–6.2 annually for care. Longer trips were made by males (4.8 km vs 4.5 km, white people (6.2 km, the young (>15 years, 6.8 km and elderly (60+ years, 6.3 km, those on multiple therapy (5.3 km vs 4.0 km, and the more affluent living in rural areas (16.1 km, P Conclusion Distance travelled, and type of HIV services used, were associated with socioeconomic status, even after accounting for ethnicity, route of infection and age. Thus despite offering an 'equitable' service, travel costs may advantage those with higher income.

  14. Bioelectric modulation of macrophage polarization

    Science.gov (United States)

    Li, Chunmei; Levin, Michael; Kaplan, David L.

    2016-02-01

    Macrophages play a critical role in regulating wound healing and tissue regeneration by changing their polarization state in response to local microenvironmental stimuli. The native roles of polarized macrophages encompass biomaterials and tissue remodeling needs, yet harnessing or directing the polarization response has been largely absent as a potential strategy to exploit in regenerative medicine to date. Recent data have revealed that specific alteration of cells’ resting potential (Vmem) is a powerful tool to direct proliferation and differentiation in a number of complex tissues, such as limb regeneration, craniofacial patterning and tumorigenesis. In this study, we explored the bioelectric modulation of macrophage polarization by targeting ATP sensitive potassium channels (KATP). Glibenclamide (KATP blocker) and pinacidil (KATP opener) treatment not only affect macrophage polarization, but also influence the phenotype of prepolarized macrophages. Furthermore, modulation of cell membrane electrical properties can fine-tune macrophage plasticity. Glibenclamide decreased the secretion and gene expression of selected M1 markers, while pinacidil augmented M1 markers. More interestingly, glibencalmide promoted macrophage alternative activation by enhancing certain M2 markers during M2 polarization. These findings suggest that control of bioelectric properties of macrophages could offer a promising approach to regulate macrophage phenotype as a useful tool in regenerative medicine.

  15. HIV-1 Nef enhances dendritic cell-mediated viral transmission to CD4+ T cells and promotes T-cell activation.

    Directory of Open Access Journals (Sweden)

    Corine St Gelais

    Full Text Available HIV-1 Nef enhances dendritic cell (DC-mediated viral transmission to CD4(+ T cells, but the underlying mechanism is not fully understood. It is also unknown whether HIV-1 infected DCs play a role in activating CD4(+ T cells and enhancing DC-mediated viral transmission. Here we investigated the role of HIV-1 Nef in DC-mediated viral transmission and HIV-1 infection of primary CD4(+ T cells using wild-type HIV-1 and Nef-mutated viruses. We show that HIV-1 Nef facilitated DC-mediated viral transmission to activated CD4(+ T cells. HIV-1 expressing wild-type Nef enhanced the activation and proliferation of primary resting CD4(+ T cells. However, when co-cultured with HIV-1-infected autologous DCs, there was no significant trend for infection- or Nef-dependent proliferation of resting CD4(+ T cells. Our results suggest an important role of Nef in DC-mediated transmission of HIV-1 to activated CD4(+ T cells and in the activation and proliferation of resting CD4(+ T cells, which likely contribute to viral pathogenesis.

  16. T-cell activation is enhanced by targeting IL-10 cytokine production in toll-like receptor- stimulated macrophages

    Directory of Open Access Journals (Sweden)

    Walk RM

    2012-11-01

    Full Text Available Ryan M Walk,1,2 Steven T Elliott,2 Felix C Blanco,2 Jason A Snyder,2 Ashley M Jacobi,3 Scott D Rose,3 Mark A Behlke,3 Aliasger K Salem,4 Stanislav Vukmanovic,2 Anthony D Sandler21Department of Surgery, Walter Reed Army Medical Center, Washington, DC, USA; 2Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC, USA; 3Integrated DNA Technologies, Coralville, IA, USA; 4Division of Pharmaceutics, University of Iowa, Iowa City, IA, USAAbstract: Toll-like receptor (TLR agonists represent potentially useful cancer vaccine adjuvants in their ability to stimulate antigen-presenting cells (APCs and subsequently amplify the cytotoxic T-cell response. The purpose of this study was to characterize APC responses to TLR activation and to determine the subsequent effect on lymphocyte activation. We exposed murine primary bone marrow-derived macrophages to increasing concentrations of agonists to TLRs 2, 3, 4, and 9. This resulted in a dose-dependent increase in production of not only tumor necrosis factor–alpha (TNF-α, a surrogate marker of the proinflammatory response, but also interleukin 10 (IL-10, a well-described inhibitory cytokine. Importantly, IL-10 secretion was not induced by low concentrations of TLR agonists that readily produced TNF-α. We subsequently stimulated lymphocytes with anti-CD3 antibody in the presence of media from macrophages activated with higher doses of TLR agonists and observed suppression of interferon gamma release. Use of both IL-10 knockout macrophages and IL-10 small-interfering RNA (siRNA ablated this suppressive effect. Finally, IL-10 siRNA was successfully used to suppress CpG-induced IL-10 production in vivo. We conclude that TLR-mediated APC stimulation can induce a paradoxical inhibitory effect on T-cell activation mediated by IL-10.Keywords: toll-like receptors, innate immunity, IL-10

  17. 78 FR 45246 - Office of Clinical and Preventive Services National HIV Program: Enhanced HIV/AIDS Screening and...

    Science.gov (United States)

    2013-07-26

    ... mission to protect and advance the physical and mental health of the American people. Dated: June 5, 2013... subject to the availability of funds. In the absence of funding, the IHS is under no obligation to make... Recommendations. 2. Increasing community awareness of new HIV testing and support availability. Include...

  18. Enhanced normalisation of CD4/CD8 ratio with early antiretroviral therapy in primary HIV infection

    Directory of Open Access Journals (Sweden)

    John Thornhill

    2014-11-01

    association between normal CD4/CD8 ratio and being virally suppressed (<400 copies HIV RNA/ml p<0.001. CD4 count normalization was also significantly more likely for those initiating early (HR 5.00, 95% CI 1.52 – 16.41, p=0.008. Conclusions: The likelihood of achieving normalization of CD4/CD8 ratios was increased if ART was initiated within six months of PHI. Higher CD4/CD8 ratio may reflect a more “normal” immune phenotype conferring enhanced prognosis and predict post-treatment control.

  19. TIM-family proteins inhibit HIV-1 release.

    Science.gov (United States)

    Li, Minghua; Ablan, Sherimay D; Miao, Chunhui; Zheng, Yi-Min; Fuller, Matthew S; Rennert, Paul D; Maury, Wendy; Johnson, Marc C; Freed, Eric O; Liu, Shan-Lu

    2014-09-02

    Accumulating evidence indicates that T-cell immunoglobulin (Ig) and mucin domain (TIM) proteins play critical roles in viral infections. Herein, we report that the TIM-family proteins strongly inhibit HIV-1 release, resulting in diminished viral production and replication. Expression of TIM-1 causes HIV-1 Gag and mature viral particles to accumulate on the plasma membrane. Mutation of the phosphatidylserine (PS) binding sites of TIM-1 abolishes its ability to block HIV-1 release. TIM-1, but to a much lesser extent PS-binding deficient mutants, induces PS flipping onto the cell surface; TIM-1 is also found to be incorporated into HIV-1 virions. Importantly, TIM-1 inhibits HIV-1 replication in CD4-positive Jurkat cells, despite its capability of up-regulating CD4 and promoting HIV-1 entry. In addition to TIM-1, TIM-3 and TIM-4 also block the release of HIV-1, as well as that of murine leukemia virus (MLV) and Ebola virus (EBOV); knockdown of TIM-3 in differentiated monocyte-derived macrophages (MDMs) enhances HIV-1 production. The inhibitory effects of TIM-family proteins on virus release are extended to other PS receptors, such as Axl and RAGE. Overall, our study uncovers a novel ability of TIM-family proteins to block the release of HIV-1 and other viruses by interaction with virion- and cell-associated PS. Our work provides new insights into a virus-cell interaction that is mediated by TIMs and PS receptors.

  20. Creating an Artificial Tail Anchor as a Novel Strategy To Enhance the Potency of Peptide-Based HIV Fusion Inhibitors.

    Science.gov (United States)

    Su, Shan; Zhu, Yun; Ye, Sheng; Qi, Qianqian; Xia, Shuai; Ma, Zhenxuan; Yu, Fei; Wang, Qian; Zhang, Rongguang; Jiang, Shibo; Lu, Lu

    2017-01-01

    20 (enfuvirtide) and other peptides derived from the human immunodeficiency virus type 1 (HIV-1) gp41 C-terminal heptad repeat (CHR) region inhibit HIV fusion by binding to the hydrophobic grooves on the N-terminal heptad repeat (NHR) trimer and blocking six-helix-bundle (6-HB) formation. Several strategies focusing on the binding grooves of the NHR trimer have been adopted to increase the antiviral activity of the CHR peptides. Here, we developed a novel and simple strategy to greatly enhance the potency of the existing peptide-based HIV fusion inhibitors. First, we identified a shallow pocket adjacent to the groove in the N-terminal region of NHR trimer as a new drug target, and then we designed several short artificial peptides to fit this target. After the addition of IDL (Ile-Asp-Leu) to the C terminus of CHR peptide WQ or MT-WQ, the conjugated peptides, WQ-IDL and MT-WQ-IDL, showed much more potent activities than WQ and T20, respectively, in inhibiting HIV-1 IIIB infection. WQ-IDL and MT-WQ-IDL were also more effective than WQ in blocking HIV-1 Env-mediated membrane fusion and had higher levels of binding affinity with NHR peptide N46. We solved the crystal structure of the 6-HB formed by MT-WQ-IDL and N46 and found that, besides the N-terminal MT hook tail, the IDL tail anchor of MT-WQ-IDL also binds with the shallow hydrophobic pocket outside the groove of the NHR trimer, resulting in enhanced inhibition of HIV-1 fusion with the target cell. It is expected that this novel approach can be widely used to improve the potency of peptidic fusion inhibitors against other enveloped viruses with class I fusion proteins.

  1. Roflumilast enhances the renal protective effects of retinoids in an HIV-1 transgenic mouse model of rapidly progressive renal failure.

    Science.gov (United States)

    Zhong, Yifei; Wu, Yingwei; Liu, Ruijie; Deng, Yueyi; Mallipattu, Sandeep K; Klotman, Paul E; Chuang, Peter Y; He, John C

    2012-05-01

    Retinoic acid decreases proteinuria and glomerulosclerosis in several animal models of kidney disease by protecting podocytes from injury. Our recent in vitro studies suggest that all-trans retinoic acid induces podocyte differentiation by activating the retinoic acid receptor-α (RARα)/cAMP/PKA/CREB pathway. When used in combination with all-trans retinoic acid, an inhibitor of phosphodiesterase 4 further enhanced podocyte differentiation by increasing intracellular cAMP. Additionally, we found that Am580, a specific RARα agonist, has similar renal protective effects as all-trans retinoic acid in a rederived colony of HIV-1 transgenic mice with rapidly progressive renal failure (HIV-Tg) that mimics human HIV-associated nephropathy. Treatment with either the inhibitor of phosphodiesterase 4, roflumilast, or Am580 significantly reduced proteinuria, attenuated kidney injury, and improved podocyte differentiation in these HIV-Tg mice. Additional renal protective effects were found when roflumilast was combined with Am580. Consistent with the in vitro data, glomeruli from HIV-Tg mice treated with both Am580 and roflumilast had more active phosphorylated CREB than with either agent alone. Thus, phosphodiesterase 4 inhibitors could be used in combination with RARα agonists to provide additional renal protection.

  2. Antibodies against invasive phenotype-specific antigens increase Mycobacterium avium subspecies paratuberculosis translocation across a polarized epithelial cell model and enhance killing by bovine macrophages

    Science.gov (United States)

    Everman, Jamie L.; Bermudez, Luiz E.

    2015-01-01

    Johne's disease, caused by Mycobacterium avium subspecies paratuberculosis (MAP), is a severe chronic enteritis which affects large populations of ruminants globally. Prevention strategies to combat the spread of Johne's disease among cattle herds involve adhering to strict calving practices to ensure young susceptible animals do not come in contact with MAP-contaminated colostrum, milk, or fecal material. Unfortunately, the current vaccination options available are associated with high cost and suboptimal efficacy. To more successfully combat the spread of Johne's disease to young calves, an efficient method of protection is needed. In this study, we examined passive immunization as a mode of introducing protective antibodies against MAP to prevent the passage of the bacterium to young animals via colostrum and milk. Utilizing the infectious MAP phenotype developed after bacterial exposure to milk, we demonstrate that in vitro opsonization with serum from Johne's-positive cattle results in enhanced translocation across a bovine MDBK polarized epithelial cell monolayer. Furthermore, immune serum opsonization of MAP results in a rapid host cell-mediated killing by bovine macrophages in an oxidative-, nitrosative-, and extracellular DNA trap-independent manner. This study illustrates that antibody opsonization of MAP expressing an infectious phenotype leads to the killing of the bacterium during the initial stage of macrophage infection. PMID:26301206

  3. Anti‑inflammatory and antioxidant activity of the traditional herbal formula Gwakhyangjeonggi‑san via enhancement of heme oxygenase‑1 expression in RAW264.7 macrophages.

    Science.gov (United States)

    Jeong, Soo-Jin; Kim, Ohn-Soon; Yoo, Sae-Rom; Seo, Chang-Seob; Kim, Yeji; Shin, Hyeun-Kyoo

    2016-05-01

    Gwakhyangjeonggi‑san (GHJGS) is a mixture of herbal plants, including Agastache rugosa, Perilla frutescens, Angelica dahurica, Areca catechu, Poria cocos, Magnolia officinalis, Atractylodes macrocephala, Citrus reticulata, Pinellia ternata, Platycodon grandiflorum, Glycyrrhiza uralensis, Ziziphus jujuba and Zingiber officinale. GHJGS has been used for treating diarrhea‑predominant irritable bowel syndrome in traditional Korean medicine. In the present study, the anti‑inflammatory and antioxidant effects of GHJGS were investigated using the RAW 264.7 murine macrophage cell line. GHJGS significantly reduced production of the proinflammatory cytokines, tumor necrosis factor‑α, interleukin‑6 and prostaglandin E2 in lipopolysaccharide (LPS)‑stimulated macrophages. GHJGS markedly suppressed LPS‑induced phosphorylation of mitogen‑activated protein kinases, whereas it had no effect on nuclear factor‑κB activation. Furthermore, GHJGS enhanced expression of heme oxygenase‑1 and prevented the generation of reactive oxygen species in RAW 264.7 cells. These results indicate that GHJGS is a viable therapeutic agent against inflammation and oxidative stress‑associated disorders.

  4. Viral replication is enhanced by an HIV-1 intersubtype recombination-derived Vpu protein

    Directory of Open Access Journals (Sweden)

    Salomón Horacio

    2010-10-01

    Full Text Available Abstract Background Multiple HIV-1 intersubtype recombinants have been identified in human populations. Previous studies from our lab group have shown that the epidemic in Argentina is characterized by the high prevalence of a circulating recombinant form, CRF12_BF, and many related BF recombinant forms. In these genomic structures a recombination breakpoint frequently involved the vpu coding region. Due to the scarce knowledge of Vpu participation in the virion release process and its impact on pathogenesis and of the functional capacities of intersubtype recombinant Vpu proteins, the aim of this work was to perform a comparative analysis on virion release capacity and relative replication capacity among viral variants harboring either a BF recombinant Vpu or a subtype B Vpu. Results Our results showed that BF recombinant Vpu was associated to an increased viral particles production when compared to WT B variant in tetherin-expressing cell lines. This observation was tested in the context of a competition assay between the above mentioned variants. The results showed that the replication of the BF Vpu-harboring variant was more efficient in cell cultures than subtype B, reaching a higher frequency in the viral population in a short period of time. Conclusion This study showed that as a result of intersubtype recombination, a structurally re-organized HIV-1 Vpu has an improved in vitro capacity of enhancing viral replication, and provides evidence of the changes occurring in this protein function that could play an important role in the successful spread of intersubtype recombinant variants.

  5. Antibodies Against Glycolipids Enhance Antifungal Activity of Macrophages and Reduce Fungal Burden After Infection with Paracoccidioides brasiliensis.

    Science.gov (United States)

    Bueno, Renata A; Thomaz, Luciana; Muñoz, Julian E; da Silva, Cássia J; Nosanchuk, Joshua D; Pinto, Márcia R; Travassos, Luiz R; Taborda, Carlos P

    2016-01-01

    Paracoccidioidomycosis is a fungal disease endemic in Latin America. Polyclonal antibodies to acidic glycosphingolipids (GSLs) from Paracoccidioides brasiliensis opsonized yeast forms in vitro increasing phagocytosis and reduced the fungal burden of infected animals. Antibodies to GSL were active in both prophylactic and therapeutic protocols using a murine intratracheal infection model. Pathological examination of the lungs of animals treated with antibodies to GSL showed well-organized granulomas and minimally damaged parenchyma compared to the untreated control. Murine peritoneal macrophages activated by IFN-γ and incubated with antibodies against acidic GSLs more effectively phagocytosed and killed P. brasiliensis yeast cells as well as produced more nitric oxide compared to controls. The present work discloses a novel target of protective antibodies against P. brasiliensis adding to other well-studied mediators of the immune response to this fungus.

  6. Antibodies against glycolipids enhance antifungal activity of macrophages and reduce fungal burden after infection with Paracoccidioides brasiliensis

    Directory of Open Access Journals (Sweden)

    Renata Amelia eBueno

    2016-02-01

    Full Text Available Paracoccidioidomycosis is a fungal disease endemic in Latin America. Polyclonal antibodies to acidic glycosphingolipids (GSLs from Paracoccidioides brasiliensis opsonized yeast forms in vitro increasing phagocytosis and reduced the fungal burden of infected animals. Antibodies to GSL were active in both prophylactic and therapeutic protocols using a murine intratracheal infection model. Pathological examination of the lungs of animals treated with antibodies to GSL showed well-organized granulomas and minimally damaged parenchyma compared to the untreated control. Murine peritoneal macrophages activated by IFN-γ and incubated with antibodies against acidic GSLs more effectively phagocytosed and killed P. brasiliensis yeast cells as well as produced more nitric oxide compared to controls. The present work discloses a novel target of protective antibodies against P. brasiliensis adding to other well-studied mediators of the immune response to this fungus.

  7. Enhanced stability of monomer fold correlates with extreme drug resistance of HIV-1 protease.

    Science.gov (United States)

    Louis, John M; Tözsér, József; Roche, Julien; Matúz, Krisztina; Aniana, Annie; Sayer, Jane M

    2013-10-29

    During treatment, mutations in HIV-1 protease (PR) are selected rapidly that confer resistance by decreasing affinity to clinical protease inhibitors (PIs). As these unique drug resistance mutations can compromise the fitness of the virus to replicate, mutations that restore conformational stability and activity while retaining drug resistance are selected on further evolution. Here we identify several compensating mechanisms by which an extreme drug-resistant mutant bearing 20 mutations (PR20) with >5-fold increased Kd and >4000-fold decreased affinity to the PI darunavir functions. (1) PR20 cleaves, albeit poorly, Gag polyprotein substrates essential for viral maturation. (2) PR20 dimer, which exhibits distinctly enhanced thermal stability, has highly attenuated autoproteolysis, thus likely prolonging its lifetime in vivo. (3) The enhanced stability of PR20 results from stabilization of the monomer fold. Both monomeric PR20(T26A) and dimeric PR20 exhibit Tm values 6-7.5 °C higher than those for their PR counterparts. Two specific mutations in PR20, L33F and L63P at sites of autoproteolysis, increase the Tm of monomeric PR(T26A) by ~8 °C, similar to PR20(T26A). However, without other compensatory mutations as seen in PR20, L33F and L63P substitutions, together, neither restrict autoproteolysis nor significantly reduce binding affinity to darunavir. To determine whether dimer stability contributes to binding affinity for inhibitors, we examined single-chain dimers of PR and PR(D25N) in which the corresponding identical monomer units were covalently linked by GGSSG sequence. Linking of the subunits did not appreciably change the ΔTm on inhibitor binding; thus stabilization by tethering appears to have little direct effect on enhancing inhibitor affinity.

  8. Programming of neurotoxic cofactor CXCL-10 in HIV-1-associated dementia: abrogation of CXCL-10-induced neuro-glial toxicity in vitro by PKC activator

    Science.gov (United States)

    2012-01-01

    Background More than 50% of patients undergoing lifelong suppressive antiviral treatment for HIV-1 infection develop minor HIV-1-associated neurocognitive disorders. Neurological complications during HIV-1 infection are the result of direct neuronal damage by proinflammatory products released from HIV-1-infected or -uninfected activated lymphocytes, monocytes, macrophages, microglia and astrocytes. The specific pro-inflammatory products and their roles in neurotoxicity are far from clear. We investigated proinflammatory cytokines and chemokines in the cerebrospinal fluid (CSF) of HIV-demented (HIV-D) and HIV-nondemented (HIV-ND) patients and studied their affect on neuroglial toxicity. Methods and results Bioplex array showed elevated levels of signatory chemokines or cytokines (IL-6, IFN-γ, CXCL10, MCP-1 and PDGF) in the CSF of HIV-D patients (n = 7) but not in that of HIV-ND patients (n = 7). Among the signatory cytokines and chemokines, CXCL10 was distinctly upregulated in-vitro in HIV-1 (NLENG1)-activated human fetal astrocytes, HIV-1 (Ba-L)-infected macrophages, and HIV-1 (NLENG1)-infected lymphocytes. Virus-infected macrophages also had increased levels of TNF-α. Consistently, human fetal astrocytes treated with HIV-1 and TNF-α induced the signatory molecules. CXCL10 in combination with HIV-1 synergistically enhanced neuronal toxicity and showed chemotactic activity (~ 40 fold) for activated peripheral blood mononuclear cells (PBMC), suggesting the intersection of signaling events imparted by HIV-1 and CXCL10 after binding to their respective surface receptors, CXCR4 and CXCR3, on neurons. Blocking CXCR3 and its downstream MAP kinase (MAPK) signaling pathway suppressed combined CXCL10 and HIV-1-induced neurotoxicity. Bryostatin, a PKC modulator and suppressor of CXCR4, conferred neuroprotection against combined insult with HIV-1 and CXCL10. Bryostatin also suppressed HIV-1 and CXCL10-induced PBMC chemotaxis. Although, therapeutic targeting of chemokines in

  9. Programming of neurotoxic cofactor CXCL-10 in HIV-1-associated dementia: abrogation of CXCL-10-induced neuro-glial toxicity in vitro by PKC activator

    Directory of Open Access Journals (Sweden)

    Mehla Rajeev

    2012-10-01

    Full Text Available Abstract Background More than 50% of patients undergoing lifelong suppressive antiviral treatment for HIV-1 infection develop minor HIV-1-associated neurocognitive disorders. Neurological complications during HIV-1 infection are the result of direct neuronal damage by proinflammatory products released from HIV-1-infected or -uninfected activated lymphocytes, monocytes, macrophages, microglia and astrocytes. The specific pro-inflammatory products and their roles in neurotoxicity are far from clear. We investigated proinflammatory cytokines and chemokines in the cerebrospinal fluid (CSF of HIV-demented (HIV-D and HIV-nondemented (HIV-ND patients and studied their affect on neuroglial toxicity. Methods and results Bioplex array showed elevated levels of signatory chemokines or cytokines (IL-6, IFN-γ, CXCL10, MCP-1 and PDGF in the CSF of HIV-D patients (n = 7 but not in that of HIV-ND patients (n = 7. Among the signatory cytokines and chemokines, CXCL10 was distinctly upregulated in-vitro in HIV-1 (NLENG1-activated human fetal astrocytes, HIV-1 (Ba-L-infected macrophages, and HIV-1 (NLENG1-infected lymphocytes. Virus-infected macrophages also had increased levels of TNF-α. Consistently, human fetal astrocytes treated with HIV-1 and TNF-α induced the signatory molecules. CXCL10 in combination with HIV-1 synergistically enhanced neuronal toxicity and showed chemotactic activity (~ 40 fold for activated peripheral blood mononuclear cells (PBMC, suggesting the intersection of signaling events imparted by HIV-1 and CXCL10 after binding to their respective surface receptors, CXCR4 and CXCR3, on neurons. Blocking CXCR3 and its downstream MAP kinase (MAPK signaling pathway suppressed combined CXCL10 and HIV-1-induced neurotoxicity. Bryostatin, a PKC modulator and suppressor of CXCR4, conferred neuroprotection against combined insult with HIV-1 and CXCL10. Bryostatin also suppressed HIV-1 and CXCL10-induced PBMC chemotaxis. Although, therapeutic targeting

  10. TLR2-Modulating Lipoproteins of the Mycobacterium tuberculosis Complex Enhance the HIV Infectivity of CD4+ T Cells.

    Directory of Open Access Journals (Sweden)

    Ciaran Skerry

    Full Text Available Co-infection with Mycobacterium tuberculosis accelerates progression from HIV to AIDS. Our previous studies showed that M. tuberculosis complex, unlike M. smegmatis, enhances TLR2-dependent susceptibility of CD4+ T cells to HIV. The M. tuberculosis complex produces multiple TLR2-stimulating lipoproteins, which are absent in M. smegmatis. M. tuberculosis production of mature lipoproteins and TLR2 stimulation is dependent on cleavage by lipoprotein signal peptidase A (LspA. In order to determine the role of potential TLR2-stimulating lipoproteins on mycobacterial-mediated HIV infectivity of CD4+ T cells, we generated M. smegmatis recombinant strains overexpressing genes encoding various M. bovis BCG lipoproteins, as well as a Mycobacterium bovis BCG strain deficient in LspA (ΔlspA. Exposure of human peripheral blood mononuclear cells (PBMC to M. smegmatis strains overexpressing the BCG lipoproteins, LprF (p<0.01, LprH (p<0.05, LprI (p<0.05, LprP (p<0.001, LprQ (p<0.005, MPT83 (p<0.005, or PhoS1 (p<0.05, resulted in increased HIV infectivity of CD4+ T cells isolated from these PBMC. Conversely, infection of PBMC with ΔlspA reduced HIV infectivity of CD4+ T cells by 40% relative to BCG-infected cells (p<0.05. These results may have important implications for TB vaccination programs in areas with high mother-to-child HIV transmission.

  11. Development and implementation of a workshop to enhance the effectiveness of mentors working with diverse mentees in HIV research.

    Science.gov (United States)

    Gandhi, Monica; Fernandez, Alicia; Stoff, David M; Narahari, Swathi; Blank, Michael; Fuchs, Jonathan; Evans, Clyde H; Kahn, James S; Johnson, Mallory O

    2014-08-01

    Abstract A growing body of evidence highlights the importance of competent mentoring in academic research in the field of HIV, particularly for early stage investigators from diverse, underrepresented backgrounds. We describe the development and implementation of a 2-day intensive workshop to train mid-level and senior-level investigators conducting HIV-related clinical and translational research across multiple academic institutions on more effective mentoring, with an emphasis on techniques to foster mentees of diversity. The workshop was focused on training mentors in techniques designed to improve the effectiveness of the mentor-mentee relationship, and included didactic presentations, interactive discussions, and small-group problem-based learning activities. Mid-level or senior-level faculty involved or planning to be involved in significant mentorship activities related to HIV research were eligible. Surveys and formal actions plans allowed for workshop evaluation and laid the groundwork for subsequent workshops. Twenty-six faculty from 16 U.S.-based institutions participated, with good representation across discipline, gender, and race/ethnicity. The sessions were highly rated and discussions and evaluations revealed important barriers and facilitators to mentoring, challenges and solutions related to mentoring mentees from diverse backgrounds, and specific tools to enhance mentoring effectiveness. The Mentoring the Mentors training program for HIV researchers focusing on early career investigators of diversity was the first of its kind and was well attended, was rated highly, and provided guidance for improving the program in the future. This training program fills an important gap in the HIV researcher community and offers guidance for training mentors interested in diversity issues in settings outside of HIV.

  12. Human immunodeficiency virus impairs reverse cholesterol transport from macrophages.

    Directory of Open Access Journals (Sweden)

    Zahedi Mujawar

    2006-10-01

    Full Text Available Several steps of HIV-1 replication critically depend on cholesterol. HIV infection is associated with profound changes in lipid and lipoprotein metabolism and an increased risk of coronary artery disease. Whereas numerous studies have investigated the role of anti-HIV drugs in lipodystrophy and dyslipidemia, the effects of HIV infection on cellular cholesterol metabolism remain uncharacterized. Here, we demonstrate that HIV-1 impairs ATP-binding cassette transporter A1 (ABCA1-dependent cholesterol efflux from human macrophages, a condition previously shown to be highly atherogenic. In HIV-1-infected cells, this effect was mediated by Nef. Transfection of murine macrophages with Nef impaired cholesterol efflux from these cells. At least two mechanisms were found to be responsible for this phenomenon: first, HIV infection and transfection with Nef induced post-transcriptional down-regulation of ABCA1; and second, Nef caused redistribution of ABCA1 to the plasma membrane and inhibited internalization of apolipoprotein A-I. Binding of Nef to ABCA1 was required for down-regulation and redistribution of ABCA1. HIV-infected and Nef-transfected macrophages accumulated substantial amounts of lipids, thus resembling foam cells. The contribution of HIV-infected macrophages to the pathogenesis of atherosclerosis was supported by the presence of HIV-positive foam cells in atherosclerotic plaques of HIV-infected patients. Stimulation of cholesterol efflux from macrophages significantly reduced infectivity of the virions produced by these cells, and this effect correlated with a decreased amount of virion-associated cholesterol, suggesting that impairment of cholesterol efflux is essential to ensure proper cholesterol content in nascent HIV particles. These results reveal a previously unrecognized dysregulation of intracellular lipid metabolism in HIV-infected macrophages and identify Nef and ABCA1 as the key players responsible for this effect. Our findings

  13. HIV-TAT enhances the transdermal delivery of NSAID drugs from liquid crystalline mesophases.

    Science.gov (United States)

    Cohen-Avrahami, Marganit; Shames, Alexander I; Ottaviani, M Francesca; Aserin, Abraham; Garti, Nissim

    2014-06-12

    Sodium diclofenac (Na-DFC) and celecoxib (CLXB) are common nonsteroidal anti-inflammatory (NSAID) drugs which suffer from poor bioavailability and severe side effects when consumed orally, and their transdermal delivery might present important advantages. In this study, the drugs were solubilized in cubic and lamellar mesophases as transdermal delivery vehicles, and a cell-penetrating peptide, HIV-TAT (TAT), was examined as a skin penetration enhancer. SD-NMR, ATR-FTIR, and EPR measurements revealed that, in the cubic mesophase (which is rich in water content), TAT populates the aqueous cores and binds water, while in the dense lamellar system (with the lower water content) TAT is bound also to the glycerol monooleate (GMO) and increases the microviscosity and the order degree. TAT secondary structure in the cubic system was found to be a random coil while once it was embedded in the closely packed lamellar system it transforms to a more ordered compact state of β-turns arranged around the GMO headgroups. TAT remarkably increased the diffusion of Na-DFC and CLXB from the cubic systems by 6- and 9-fold enhancement, respectively. TAT effect on drug diffusion from the lamellar systems was limited to an increase of 1.3- and 1.7-fold, respectively. The dense packing and strong binding in the lamellar phase led to slow diffusion rates and slower drug release in controlled pattern. These effects of the chemical composition and vehicle geometry on drug diffusion are demonstrated with the impacts of TAT which can be specifically utilized for controlling skin delivery of drugs as required.

  14. Boosting with Subtype C CN54rgp140 Protein Adjuvanted with Glucopyranosyl Lipid Adjuvant after Priming with HIV-DNA and HIV-MVA Is Safe and Enhances Immune Responses: A Phase I Trial.

    Directory of Open Access Journals (Sweden)

    Agricola Joachim

    Full Text Available A vaccine against HIV is widely considered the most effective and sustainable way of reducing new infections. We evaluated the safety and impact of boosting with subtype C CN54rgp140 envelope protein adjuvanted in glucopyranosyl lipid adjuvant (GLA-AF in Tanzanian volunteers previously given three immunizations with HIV-DNA followed by two immunizations with recombinant modified vaccinia virus Ankara (HIV-MVA.Forty volunteers (35 vaccinees and five placebo recipients were given two CN54rgp140/GLA-AF immunizations 30-71 weeks after the last HIV-MVA vaccination. These immunizations were delivered intramuscularly four weeks apart.The vaccine was safe and well tolerated except for one episode of asymptomatic hypoglycaemia that was classified as severe adverse event. Two weeks after the second HIV-MVA vaccination 34 (97% of the 35 previously vaccinated developed Env-specific binding antibodies, and 79% and 84% displayed IFN-γ ELISpot responses to Gag and Env, respectively. Binding antibodies to subtype C Env (included in HIV-DNA and protein boost, subtype B Env (included only in HIV-DNA and CRF01_AE Env (included only in HIV-MVA were significantly boosted by the CN54rgp140/GLA-AF immunizations. Functional antibodies detected using an infectious molecular clone virus/peripheral blood mononuclear cell neutralization assay, a pseudovirus/TZM-bl neutralization assay or by assays for antibody-dependent cellular cytotoxicity (ADCC were not significantly boosted. In contrast, T-cell proliferative responses to subtype B MN antigen and IFN-γ ELISpot responses to Env peptides were significantly enhanced. Four volunteers not primed with HIV-DNA and HIV-MVA before the CN54rgp140/GLA-AF immunizations mounted an antibody response, while cell-mediated responses were rare. After the two Env subtype C protein immunizations, a trend towards higher median subtype C Env binding antibody titers was found in vaccinees who had received HIV-DNA and HIV-MVA prior to the

  15. The V1-V3 region of a brain-derived HIV-1 envelope glycoprotein determines macrophage tropism, low CD4 dependence, increased fusogenicity and altered sensitivity to entry inhibitors

    Directory of Open Access Journals (Sweden)

    Martín-García Julio

    2008-10-01

    Full Text Available Abstract Background HIV-1 infects macrophages and microglia in the brain and can cause neurological disorders in infected patients. We and others have shown that brain-derived envelope glycoproteins (Env have lower CD4 dependence and higher avidity for CD4 than those from peripheral isolates, and we have also observed increased fusogenicity and reduced sensitivity to the fusion inhibitor T-1249. Due to the genetic differences between brain and spleen env from one individual throughout gp120 and in gp41's heptad repeat 2 (HR2, we investigated the viral determinants for the phenotypic differences by performing functional studies with chimeric and mutant Env. Results Chimeric Env showed that the V1/V2-C2-V3 region in brain's gp120 determines the low CD4 dependence and high avidity for CD4, as well as macrophage tropism and reduced sensitivity to the small molecule BMS-378806. Changes in brain gp41's HR2 region did not contribute to the increased fusogenicity or to the reduced sensitivity to T-1249, since a T-1249-based peptide containing residues found in brain's but not in spleen's HR2 had similar potency than T-1249 and interacted similarly with an immobilized heptad repeat 1-derived peptide in surface plasmon resonance analysis. However, the increased fusogenicity and reduced T-1249 sensitivity of brain and certain chimeric Env mostly correlated with the low CD4 dependence and high avidity for CD4 determined by brain's V1-V3 region. Remarkably, most but not all of these low CD4-dependent, macrophage tropic envelopes glycoproteins also had increased sensitivity to the novel allosteric entry inhibitor HNG-105. The gp120's C2 region asparagine 283 (N283 has been previously associated with macrophage tropism, brain infection, lower CD4 dependence and higher CD4 affinity. Therefore, we introduced the N283T mutation into an env clone from a brain-derived isolate and into a brain tissue-derived env clone, and the T283N change into a spleen-derived env

  16. The Effects of the Recombinant CCR5 T4 Lysozyme Fusion Protein on HIV-1 Infection.

    Directory of Open Access Journals (Sweden)

    Qingwen Jin

    Full Text Available Insertion of T4 lysozyme (T4L into the GPCR successfully enhanced GPCR protein stability and solubilization. However, the biological functions of the recombinant GPCR protein have not been analyzed.We engineered the CCR5-T4L mutant and expressed and purified the soluble recombinant protein using an E.coli expression system. The antiviral effects of this recombinant protein in THP-1 cell lines, primary human macrophages, and PBMCs from different donors were investigated. We also explored the possible mechanisms underlying the observed antiviral effects.Our data showed the biphasic inhibitory and promotion effects of different concentrations of soluble recombinant CCR5-T4L protein on R5 tropic human immunodeficiency virus-1 (HIV-1 infection in THP-1 cell lines, human macrophages, and PBMCs from clinical isolates. We demonstrated that soluble recombinant CCR5-T4L acts as a HIV-1 co-receptor, interacts with wild type CCR5, down-regulates the surface CCR5 expression in human macrophages, and interacts with CCL5 to inhibit macrophage migration. Using binding assays, we further determined that recombinant CCR5-T4L and [125I]-CCL5 compete for the same binding site on wild type CCR5.Our results suggest that recombinant CCR5-T4L protein marginally promotes HIV-1 infection at low concentrations and markedly inhibits infection at higher concentrations. This recombinant protein may be helpful in the future development of anti-HIV-1 therapeutic agents.

  17. Enhanced p62 Is Responsible for Mitochondrial Pathway-Dependent Apoptosis and Interleukin-1β Production at the Early Phase by Monosodium Urate Crystals in Murine Macrophage.

    Science.gov (United States)

    Kim, Seong-Kyu; Choe, Jung-Yoon; Park, Ki-Yeun

    2016-10-01

    The aim of this study was to clarify the role of p62-dependent mitochondrial apoptosis in the initiation of monosodium urate (MSU) crystal-induced inflammation in macrophages. The induction of mitochondrial apoptosis in RAW 264.7 murine macrophages by MSU crystals was measured using western blotting and quantitative real-time polymerase chain reaction for Bax, caspase-3, caspase-9, or PARP1, and by flow cytometric analysis. Immunoprecipitation and western blotting was applied to detect ubiquitination of p62, TRAF6, and caspase-9. Mitochondrial apoptosis, reactive oxygen species (ROS) generation, and cell proliferation were assessed in cells transfected with p62 small interfering RNA (siRNA). Treatment of RAW 264.7 cells with MSU crystals induced activation of Bax, caspase-3, caspase-9, and PARP1 at the early phase, in addition to enhancing IL-1β expression, but these findings were attenuated at the late phase. MSU crystals induced ubiquitination of p62, followed by ubiquitination of TRAF6 and caspase-9, which were significantly reversed by ascorbic acid. RAW 264.7 cells transfected with p62 siRNA showed attenuated expression of Bax, caspase-3, caspase-9, and PARP1, decreased ROS and IL-1β production, and increased cell proliferation, compared to controls. The antioxidant ascorbic acid inhibited p62, caspase-9, and IL-1β expression increased by MSU crystals. p62 may be a crucial mediator for the mitochondrial apoptosis pathway in MSU crystal-induced inflammation, which is linked to the acute inflammatory response during the early phase of gout.

  18. Alveolar Macrophage Polarisation in Lung Cancer

    Directory of Open Access Journals (Sweden)

    Saleh A. Almatroodi

    2014-01-01

    Full Text Available The role of alveolar macrophages in lung cancer is multifaceted and conflicting. Alveolar macrophage secretion of proinflammatory cytokines has been found to enhance antitumour functions, cytostasis (inhibition of tumour growth, and cytotoxicity (macrophage-mediated killing. In contrast, protumour functions of alveolar macrophages in lung cancer have also been indicated. Inhibition of antitumour function via secretion of the anti-inflammatory cytokine IL-10 as well as reduced secretion of proinflammatory cytokines and reduction of mannose receptor expression on alveolar macrophages may contribute to lung cancer progression and metastasis. Alveolar macrophages have also been found to contribute to angiogenesis and tumour growth via the secretion of IL-8 and VEGF. This paper reviews the evidence for a dual role of alveolar macrophages in lung cancer progression.

  19. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells

    Energy Technology Data Exchange (ETDEWEB)

    Iordanskiy, Sergey [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Van Duyne, Rachel [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States); Romerio, Fabio [Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 (United States); Kashanchi, Fatah, E-mail: fkashanc@gmu.edu [School of Systems Biology, Laboratory of Molecular Virology, George Mason University, Manassas, VA 20110 (United States)

    2015-11-15

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4{sup +} T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4{sup +} T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4{sup +} T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the “Shock and Kill” strategy for latently HIV-1 infected cells. - Highlights: • X-ray irradiation

  20. Enhancing global control of alcohol to reduce unsafe sex and HIV in sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Rees Helen V

    2009-11-01

    Full Text Available Abstract Sub-Saharan Africa carries a massive dual burden of HIV and alcohol disease, and these pandemics are inextricably linked. Physiological and behavioural research indicates that alcohol independently affects decision-making concerning sex, and skills for negotiating condoms and their correct use. More than 20 studies in Africa have reported higher occurrence of HIV among people with problem drinking; a finding strongly consistent across studies and similar among women and men. Conflation of HIV and alcohol disease in these setting is not surprising given patterns of heavy-episodic drinking and that drinking contexts are often coterminous with opportunities for sexual encounters. HIV and alcohol also share common ground with sexual violence. Both perpetrators and victims of sexual violence have a high likelihood of having drunk alcohol prior to the incident, as with most forms of violence and injury in sub-Saharan Africa. Reducing alcohol harms necessitates multi-level interventions and should be considered a key component of structural interventions to alleviate the burden of HIV and sexual violence. Brief interventions for people with problem drinking (an important component of primary health care, must incorporate specific discussion of links between alcohol and unsafe sex, and consequences thereof. Interventions to reduce alcohol harm among HIV-infected persons are also an important element in positive-prevention initiatives. Most importantly, implementation of known effective interventions could alleviate a large portion of the alcohol-attributable burden of disease, including its effects on unsafe sex, unintended pregnancy and HIV transmission.

  1. Acrolein enhances epigenetic modifications, FasL expression and hepatocyte toxicity induced by anti-HIV drug Zidovudine.

    Science.gov (United States)

    Ghare, Smita S; Donde, Hridgandh; Chen, Wei-Yang; Barker, David F; Gobejishvilli, Leila; McClain, Craig J; Barve, Shirish S; Joshi-Barve, Swati

    2016-09-01

    Zidovudine (AZT) remains the mainstay of antiretroviral therapy against HIV in resource-poor countries; however, its use is frequently associated with hepatotoxicity. Not all HIV patients on AZT develop hepatotoxicity, and the determining factors are unclear. Alcohol consumption and cigarette smoking are known risk factors for HIV hepatotoxicity, and both are significant sources of acrolein, a highly reactive and toxic aldehyde. This study examines the potential hepatotoxic interactions between acrolein and AZT. Our data demonstrate that acrolein markedly enhanced AZT-induced transcriptionally permissive histone modifications (H3K9Ac and H3K9Me3) allowing the recruitment of transcription factor NF-kB and RNA polymerase II at the FasL gene promoter, resulting in FasL upregulation and apoptosis in hepatocytes. Notably, the acrolein scavenger, hydralazine prevented these promoter-associated epigenetic changes and inhibited FasL upregulation and apoptosis induced by the combination of AZT and acrolein, as well as AZT alone. Our data strongly suggest that acrolein enhancement of promoter histone modifications and FasL upregulation are major pathogenic mechanisms driving AZT-induced hepatotoxicity. Moreover, these data also indicate the therapeutic potential of hydralazine in mitigating AZT hepatotoxicity.

  2. Enhanced activity of carbosilane dendrimers against HIV when combined with reverse transcriptase inhibitor drugs: searching for more potent microbicides

    Directory of Open Access Journals (Sweden)

    Vacas-Córdoba E

    2014-07-01

    Full Text Available Enrique Vacas-Córdoba,1–3 Marta Galán,3,4 Francisco J de la Mata,3,4 Rafael Gómez,3,4 Marjorie Pion,1–3 M Ángeles Muñoz-Fernández1–3 1Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain; 2Instituto de Investigación Sanitaria del Gregorio Marañón, Madrid, Spain; 3Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, (CIBER-BBN, Madrid, Spain; 4Dendrimers for Biomedical Applications Group (BioInDen, University of Alcalá, Madrid, Spain Abstract: Self-administered topical microbicides or oral preexposure prophylaxis could be very helpful tools for all risk groups to decrease the human immunodeficiency virus (HIV-1 infection rates. Up until now, antiretrovirals (ARVs have been the most advanced microbicide candidates. Nevertheless, the majority of clinical trials has failed in HIV-1 patients. Nanotechnology offers suitable approaches to develop novel antiviral agents. Thereby, new nanosystems, such as carbosilane dendrimers, have been shown to be safe and effective compounds against HIV with great potential as topical microbicides. In addition, because most of the attempts to develop effective topical microbicides were unsuccessful, combinatorial strategies could be a valid approach when designing new microbicides. We evaluated various combinations of anionic carbosilane dendrimers with sulfated (G3-S16 and naphthyl sulfonated (G2-NF16 ended groups with different ARVs against HIV-1 infection. The G3-S16 and G2-NF16 dendrimers showed a synergistic or additive activity profile with zidovudine, efavirenz, and tenofovir in the majority of the combinations tested against the X4 and R5 tropic HIV-1 in cell lines, as well as in human primary cells. Therefore, the combination of ARVs and polyanionic carbosilane dendrimers enhances the antiviral potency of the individual compounds, and our findings support further clinical research on combinational approaches as

  3. Cobicistat: a review of its use as a pharmacokinetic enhancer of atazanavir and darunavir in patients with HIV-1 infection.

    Science.gov (United States)

    Deeks, Emma D

    2014-02-01

    Cobicistat (Tybost™) is a mechanism-based inhibitor of cytochrome P450 (CYP) 3A enzymes that is indicated in the EU as a pharmacokinetic enhancer (i.e. booster) of the HIV-1 protease inhibitors (PIs) atazanavir and darunavir in adults. Cobicistat has a lower potential for off-target drug interactions than the standard boosting agent ritonavir, due to its more selective inhibition of CYP3A and lower likelihood for enzymatic induction, and is devoid of anti-HIV activity. When used to boost darunavir or atazanavir in healthy volunteers, oral cobicistat 150 mg once daily provided bioequivalent PI exposure to that seen with oral ritonavir 100 mg once daily (i.e. low-dose ritonavir). Moreover, in treatment-naïve adults infected with HIV-1 participating in a large, double-blind, phase III trial, an atazanavir-based antiretroviral regimen boosted with cobicistat 150 mg once daily provided a high rate of virological suppression after 48 weeks of therapy that was noninferior to that seen with low-dose ritonavir boosting. Cobicistat was generally well tolerated in this study, with a tolerability profile similar to that of ritonavir. Cobicistat may increase serum creatinine levels (possibly via inhibition of proximal renal tubular cell transporters) and thus reduce estimated glomerular filtration rate (GFR), although it does not appear to affect actual GFR. The drug is more soluble than ritonavir, making coformulation easier, and fixed-dose formulations combining cobicistat with darunavir and atazanavir are in development. Thus, cobicistat is an emerging alternative to ritonavir for the pharmacokinetic enhancement of PIs in adults with HIV-1 infection.

  4. Ring enhancing intracranial lesion responding to antituberculous treatment in an HIV-infected patient

    OpenAIRE

    Daniela Pellegrino; Juliana Gerhardt; Porfírio,Fátima M.V.; Edgar Bortholi Santos; Dauar,Rafi F.; Augusto C. Penalva de Oliveira; José E. Vidal

    2010-01-01

    Cerebral tuberculomas constitute a major differential diagnosis of cerebral toxoplasmosis in human immunodeficiency virus (HIV)-infected patients in developing countries. We report the case of a 34-year old woman co-infected with HIV and possible disseminated tuberculosis (hepatitis, lymphadenopathy, and pleural effusion) who presented a large and solitary intracranial mass lesion. Despite extensive diagnostic efforts, including brain, ganglionar, and liver biopsies, no definitive diagnosis w...

  5. Soluble multi-trimeric TNF superfamily ligand adjuvants enhance immune responses to a HIV-1 Gag DNA vaccine.

    Science.gov (United States)

    Kanagavelu, Saravana K; Snarsky, Victoria; Termini, James M; Gupta, Sachin; Barzee, Suzanne; Wright, Jacqueline A; Khan, Wasif N; Kornbluth, Richard S; Stone, Geoffrey W

    2012-01-17

    DNA vaccines remain an important component of HIV vaccination strategies, typically as part of a prime/boost vaccination strategy with viral vector or protein boost. A number of DNA prime/viral vector boost vaccines are currently being evaluated for both preclinical studies and in Phase I and Phase II clinical trials. These vaccines would benefit from molecular adjuvants that increase correlates of immunity during the DNA prime. While HIV vaccine immune correlates are still not well defined, there are a number of immune assays that have been shown to correlate with protection from viral challenge including CD8+ T cell avidity, antigen-specific proliferation, and polyfunctional cytokine secretion. Recombinant DNA vaccine adjuvants composed of a fusion between Surfactant Protein D (SP-D) and either CD40 Ligand (CD40L) or GITR Ligand (GITRL) were previously shown to enhance HIV-1 Gag DNA vaccines. Here we show that similar fusion constructs composed of the TNF superfamily ligands (TNFSFL) 4-1BBL, OX40L, RANKL, LIGHT, CD70, and BAFF can also enhanced immune responses to a HIV-1 Gag DNA vaccine. BALB/c mice were vaccinated intramuscularly with plasmids expressing secreted Gag and SP-D-TNFSFL fusions. Initially, mice were analyzed 2 weeks or 7 weeks following vaccination to evaluate the relative efficacy of each SP-D-TNFSFL construct. All SP-D-TNFSFL constructs enhanced at least one Gag-specific immune response compared to the parent vaccine. Importantly, the constructs SP-D-4-1BBL, SP-D-OX40L, and SP-D-LIGHT enhanced CD8+ T cell avidity and CD8+/CD4+ T cell proliferation 7 weeks post vaccination. These avidity and proliferation data suggest that 4-1BBL, OX40L, and LIGHT fusion constructs may be particularly effective as vaccine adjuvants. Constructs SP-D-OX40L, SP-D-LIGHT, and SP-D-BAFF enhanced Gag-specific IL-2 secretion in memory T cells, suggesting these adjuvants can increase the number of self-renewing Gag-specific CD8+ and/or CD4+ T cells. Finally adjuvants SP

  6. Reduced sTWEAK and increased sCD163 levels in HIV-infected patients: modulation by antiretroviral treatment, HIV replication and HCV co-infection.

    Directory of Open Access Journals (Sweden)

    Luis M Beltrán

    Full Text Available BACKGROUND: Patients infected with the human immunodeficiency virus (HIV have an increased risk of cardiovascular disease due to increased inflammation and persistent immune activation. CD163 is a macrophage scavenger receptor that is involved in monocyte-macrophage activation in HIV-infected patients. CD163 interacts with TWEAK, a member of the TNF superfamily. Circulating levels of sTWEAK and sCD163 have been previously associated with cardiovascular disease, but no previous studies have fully analyzed their association with HIV. OBJECTIVE: The aim of this study was to analyze circulating levels of sTWEAK and sCD163 as well as other known markers of inflammation (hsCRP, IL-6 and sTNFRII and endothelial dysfunction (sVCAM-1 and ADMA in 26 patients with HIV before and after 48 weeks of antiretroviral treatment (ART and 23 healthy subjects. RESULTS: Patients with HIV had reduced sTWEAK levels and increased sCD163, sVCAM-1, ADMA, hsCRP, IL-6 and sTNFRII plasma concentrations, as well as increased sCD163/sTWEAK ratio, compared with healthy subjects. Antiretroviral treatment significantly reduced the concentrations of sCD163, sVCAM-1, hsCRP and sTNFRII, although they remained elevated when compared with healthy subjects. Antiretroviral treatment had no effect on the concentrations of ADMA and sTWEAK, biomarkers associated with endothelial function. The use of protease inhibitors as part of antiretroviral therapy and the presence of HCV-HIV co-infection and/or active HIV replication attenuated the ART-mediated decrease in sCD163 plasma concentrations. CONCLUSION: HIV-infected patients showed a proatherogenic profile characterized by increased inflammatory, immune-activation and endothelial-dysfunction biomarkers that partially improved after ART. HCV-HIV co-infection and/or active HIV replication enhanced immune activation despite ART.

  7. Nutritional Rehabilitation of HIV-Exposed Infants in Malawi: Results from the Drug Resources Enhancement Against AIDS and Malnutrition Program

    Directory of Open Access Journals (Sweden)

    Fulvio Erba

    2012-01-01

    Full Text Available Infant malnutrition in sub-Saharan Africa is a public health priority and a challenge in high HIV prevalence areas. The Drug Resources Enhancement Against AIDS and Malnutrition program, with multiple medical centers in Sub-Saharan Africa, developed an innovative intervention for the surveillance and control of malnutrition. In a pilot initiative, 36 HIV-exposed children were evaluated at baseline upon presentation for malnutrition and at six months post- treatment. Parameters included HIV-free survival, nutritional status and change in diet. Food diary data was entered and processed using the Nutrisurvey (WHO software. At 6 months post-intervention, a significant improvement in anthropometric parameters was noted. Slowing of linear growth was observed in patients with malaria with a mean gain in centimetres of 4.4 ± 1.7 as compared to 5.6 ± 1.7 in children with no malaria, p < 0.048 (CL 95%: −2.32, −0.01. Dietary diversity scores increased from 5.3 ± 1.9 to 6.5 ± 1.3, p < 0.01 at 6 months. A significant increase (+25%, p < 0.02 in the number of children eating fish meals was noted. Our pilot data describes positive outcomes from a rehabilitative nutritional approach based on use of local foods, peer education, anthropometric and clinical monitoring in areas of high food insecurity. The relationship between malaria and linear growth retardation requires further investigation.

  8. Resveratrol Co-Treatment Attenuates the Effects of HIV Protease Inhibitors on Rat Body Weight and Enhances Cardiac Mitochondrial Respiration

    Science.gov (United States)

    Symington, Burger; Mapanga, Rudo F.; Norton, Gavin R.

    2017-01-01

    Since the early 1990s human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) emerged as a global health pandemic, with sub-Saharan Africa the hardest hit. While the successful roll-out of antiretroviral (ARV) therapy provided significant relief to HIV-positive individuals, such treatment can also elicit damaging side-effects. Here especially HIV protease inhibitors (PIs) are implicated in the onset of cardio-metabolic complications such as type-2 diabetes and coronary heart disease. As there is a paucity of data regarding suitable co-treatments within this context, this preclinical study investigated whether resveratrol (RSV), aspirin (ASP) or vitamin C (VitC) co-treatment is able to blunt side-effects in a rat model of chronic PI exposure (Lopinavir/Ritonavir treatment for 4 months). Body weights and weight gain, blood metabolite levels (total cholesterol, HDL, LDL, triglycerides), echocardiography and cardiac mitochondrial respiration were assessed in PI-treated rats ± various co-treatments. Our data reveal that PI treatment significantly lowered body weight and cardiac respiratory function while no significant changes were found for heart function and blood metabolite levels. Moreover, all co-treatments ameliorated the PI-induced decrease in body weight after 4 months of PI treatment, while RSV co-treatment enhanced cardiac mitochondrial respiratory capacity in PI-treated rats. This pilot study therefore provides novel hypotheses regarding RSV co-treatment that should be further assessed in greater detail. PMID:28107484

  9. Long-time treatment by low-dose N-acetyl-L-cysteine enhances proinflammatory cytokine expressions in LPS-stimulated macrophages.

    Directory of Open Access Journals (Sweden)

    Tomokazu Ohnishi

    Full Text Available N-acetyl-L-cysteine is known to act as a reactive oxygen species scavenger and used in clinical applications. Previous reports have shown that high-dose N-acetyl-L-cysteine treatment inhibits the expression of proinflammatory cytokines in activated macrophages. Here, we have found that long-time N-acetyl-L-cysteine treatment at low-concentration increases phosphorylation of extracellular signal-regulated kinase 1/2 and AKT, which are essential for the induction of proinflammatory cytokines including interleukin 1β and interleukin 6 in lipopolysaccharide-stimulated RAW264.7 cells. Furthermore, long-time N-acetyl-L-cysteine treatment decreases expressions of protein phosphatases, catalytic subunit of protein phosphatase-2A and dual specificity phosphatase 1. On the other hand, we have found that short-time N-acetyl-L-cysteine treatment at low dose increases p53 expression, which inhibits expressions of proinflammatory cytokines. These observations suggest that long-time low-dose N-acetyl-L-cysteine treatment increases expressions of proinflammatory cytokines through enhancement of kinase phosphorylation.

  10. Granulocyte-macrophage colony-stimulating factor DNA prime-protein boost strategy to enhance efficacy of a recombinant pertussis DNA vaccine

    Institute of Scientific and Technical Information of China (English)

    Qing-tian LI; Yong-zhang ZHU; Jia-you CHU; Ke DONG; Ping HE; Chun-yan FENG; Bao-yu HU; Shu-min ZHANG; Xiao-kui GUO

    2006-01-01

    Aim: To investigate a new strategy to enhance the efficacy of a recombinant pertussis DNA vaccine. The strategy is co-injection with cytokine plasmids as prime, and boosted with purified homologous proteins. Method: A recombinant pertussis DNA vaccine containing the pertussis toxin subunit 1 (PTS1), fragments of the filamentous hemagglutinin (FHA) gene and pertactin (PRN) gene encoding filamentous hemagglutinin and pertactin were constructed. Balb/c mice were immunized with several DNA vaccines and antigen-specific antibodies anti-PTSl, anti-PRN, anti-FHA, cytokines interleukin (IL)-10, IL-4, IFN-γ, TNF-oc, and spleno-cyte-proliferation assay were used to describe immune responses. Results: The recombinant DNA vaccine could elicit similar immune responses in mice as that of separate plasmids encoding the 3 fragments, respectively. Mice immunized with DNA and boosted with the corresponding protein elicited more antibodies than those that received DNA as boost. In particular, when the mice were co-immunized with murine granulocyte-macrophage colony-stimulating factor plasmids and boosted with proteins, all 4 cytokines and the 3 antigen-specific antibodies were significantly increased compared to the pVAXl group. Anti-PTSl, anti-FHA, IL-4 and TNF-α elicited in the colony stimulating factor (CSF) prime-protein boost group showed significant increase compared to all the other groups. Conclusion: This prime and boost strategy has proven to be very useful in improving the immunogenicity of DNA vaccines against pertussis.

  11. Oral ingestion of Capsaicin, the pungent component of chili pepper, enhances a discreet population of macrophages and confers protection from autoimmune diabetes.

    Science.gov (United States)

    Nevius, E; Srivastava, P K; Basu, S

    2012-01-01

    Vanilloid receptor 1 (VR1) is expressed on immune cells as well as on sensory neurons. Here we report that VR1 can regulate immunological events in the gut in response to its ligand Capsaicin (CP), a nutritional factor, the pungent component of chili peppers. Oral administration of CP attenuates the proliferation and activation of autoreactive T cells in pancreatic lymph nodes (PLNs) but not other lymph nodes, and protects mice from development of type 1 diabetes (T1D). This is a general phenomenon and not restricted to one particular strain of mice. Engagement of VR1 enhances a discreet population of CD11b(+)/F4/80(+) macrophages in PLN, which express anti-inflammatory factors interleukin (IL)-10 and PD-L1. This population is essential for CP-mediated attenuation of T-cell proliferation in an IL-10-dependent manner. Lack of VR1 expression fails to inhibit proliferation of autoreactive T cells, which is partially reversed in (VR1(+/+) → VR1(-/-)) bone marrow chimeric mice, implying the role of VR1 in crosstalk between neuronal and immunological responses in vivo. These findings imply that endogenous ligands of VR1 can have profound effect on gut-mediated immune tolerance and autoimmunity by influencing the nutrient-immune interactions.

  12. Nanoformulated antiretroviral drug combinations extend drug release and antiretroviral responses in HIV-1-infected macrophages: implications for neuroAIDS therapeutics.

    Science.gov (United States)

    Nowacek, Ari S; McMillan, JoEllyn; Miller, Reagan; Anderson, Alec; Rabinow, Barrett; Gendelman, Howard E

    2010-12-01

    We posit that improvements in pharmacokinetics and biodistributions of antiretroviral therapies (ART) for human immunodeficiency virus type one-infected people can be achieved through nanoformulationed drug delivery systems. To this end, we manufactured nanoparticles of atazanavir, efavirenz, and ritonavir (termed nanoART) and treated human monocyte-derived macrophages (MDM) in combination therapies to assess antiretroviral responses. This resulted in improved drug uptake, release, and antiretroviral efficacy over monotherapy. MDM rapidly, within minutes, ingested nanoART combinations, at equal or similar rates, as individual formulations. Combination nanoART ingested by MDM facilitated individual drug release from 15 to >20 days. These findings are noteworthy as a nanoART cell-mediated drug delivery provides a means to deliver therapeutics to viral sanctuaries, such as the central nervous system during progressive human immunodeficiency virus type one infection. The work brings us yet another step closer to realizing the utility of nanoART for virus-infected people.

  13. Enhanced invasion of lung adenocarcinoma cells after co-culture with THP-1-derived macrophages via the induction of EMT by IL-6.

    Science.gov (United States)

    Dehai, Che; Bo, Pan; Qiang, Tian; Lihua, Shang; Fang, Liu; Shi, Jin; Jingyan, Cao; Yan, Yu; Guangbin, Wang; Zhenjun, Yuan

    2014-07-01

    Lung cancer is the leading cause of cancer mortality worldwide, and the cause of death is metastasis. The epithelial-to-mesenchymal transition (EMT) plays a key role in the process of metastasis. Macrophages within the lung cancer microenvironment release cytokines, such as interleukin-6 (IL-6), and promote lung cancer cell invasion and metastasis. However, the interaction between macrophages and lung cancer cells and the effect of this interaction on the expression of IL-6, EMT, and the invasiveness of lung cancer cells remain unclear. Therefore, we established an in vitro co-culture model of human lung adenocarcinoma A549 or H1299 cells with THP-1-derived macrophages to illuminate the important role of macrophages in the invasion of lung cancer. In this study, we demonstrated that the concentrations of IL-6 in the co-culture supernatants were significantly increased compared with controls. Thus, a complex chemical cross-talk is induced by the indirect cell-to-cell contact between lung cancer cells and THP-1-derived macrophages. THP-1-derived macrophages appeared to play an important initiator role in the process. The analysis of the mRNA expression profiles of the sorted cells from the co-culture system revealed that the co-cultured lung cancer cells are the main source of the observed increase in IL-6 secretion. In addition, the interactions between lung cancer cells and THP-1-derived macrophages are bidirectional. The THP-1-derived macrophages underwent differentiation towards the M2-macrophage phenotype during the co-culture process. The expression of IL-6 was correlated with the induction of EMT, which contributed to a significant increase in the invasiveness of the A549 and H1299 cells in vitro. In addition, the addition of an anti-IL-6 antibody reversed these changes. In summary, we demonstrated that the in vitro co-culture of A549 or H1299 cells with THP-1-derived macrophages upregulates IL-6 expression, which increases the invasion ability of the A549 and

  14. The microvesicle component of HIV-1 inocula modulates dendritic cell infection and maturation and enhances adhesion to and activation of T lymphocytes.

    Directory of Open Access Journals (Sweden)

    Sarah K Mercier

    2013-10-01

    Full Text Available HIV-1 is taken up by immature monocyte derived dendritic cells (iMDDCs into tetraspanin rich caves from which the virus can either be transferred to T lymphocytes or enter into endosomes resulting in degradation. HIV-1 binding and fusion with the DC membrane results in low level de novo infection that can also be transferred to T lymphocytes at a later stage. We have previously reported that HIV-1 can induce partial maturation of iMDDCs at both stages of trafficking. Here we show that CD45⁺ microvesicles (MV which contaminate purified HIV-1 inocula due to similar size and density, affect DC maturation, de novo HIV-1 infection and transfer to T lymphocytes. Comparing iMDDCs infected with CD45-depleted HIV-1BaL or matched non-depleted preparations, the presence of CD45⁺ MVs was shown to enhance DC maturation and ICAM-1 (CD54 expression, which is involved in DC∶T lymphocyte interactions, while restricting HIV-1 infection of MDDCs. Furthermore, in the DC culture HIV-1 infected (p24⁺ MDDCs were more mature than bystander cells. Depletion of MVs from the HIV-1 inoculum markedly inhibited DC∶T lymphocyte clustering and the induction of alloproliferation as well as limiting HIV-1 transfer from DCs to T lymphocytes. The effects of MV depletion on these functions were reversed by the re-addition of purified MVs from activated but not non-activated SUPT1.CCR5-CL.30 or primary T cells. Analysis of the protein complement of these MVs and of these HIV-1 inocula before and after MV depletion showed that Heat Shock Proteins (HSPs and nef were the likely DC maturation candidates. Recombinant HSP90α and β and nef all induced DC maturation and ICAM-1 expression, greater when combined. These results suggest that MVs contaminating HIV-1 released from infected T lymphocytes may be biologically important, especially in enhancing T cell activation, during uptake by DCs in vitro and in vivo, particularly as MVs have been detected in the circulation of HIV-1

  15. Glutathione and adaptive immune responses against Mycobacterium tuberculosis infection in healthy and HIV infected individuals.

    Directory of Open Access Journals (Sweden)

    Carlos Guerra

    Full Text Available Glutathione (GSH, a tripeptide antioxidant, is essential for cellular homeostasis and plays a vital role in diverse cellular functions. Individuals who are infected with Human immuno deficiency virus (HIV are known to be susceptible to Mycobacterium tuberculosis (M. tb infection. We report that by enhancing GSH levels, T-cells are able to inhibit the growth of M. tb inside macrophages. In addition, those GSH-replenished T cell cultures produced increased levels of Interleukin-2 (IL-2, Interleukin-12 (IL-12, and Interferon-gamma (IFN-γ, cytokines, which are known to be crucial for the control of intracellular pathogens. Our study reveals that T lymphocytes that are derived from HIV infected individuals are deficient in GSH, and that this deficiency correlates with decreased levels of Th1 cytokines and enhanced growth of M. tb inside human macrophages.

  16. Proliferating Cellular Nuclear Antigen Expression as a Marker of Perivascular Macrophages in Simian Immunodeficiency Virus Encephalitis

    OpenAIRE

    2002-01-01

    Brain perivascular macrophages are a major target of simian immunodeficiency virus (SIV) infection in rhesus macaques and HIV infection in humans. Perivascular macrophages are distinct from parenchymal microglia in their location, morphology, expression of myeloid markers, and turnover in the CNS. In contrast to parenchymal microglia, perivascular macrophages are continuously repopulated by blood monocytes, which undergo maturation to macrophages on entering the central nervous system (CNS). ...

  17. Enhancing HIV Prevention Among Young Men Who Have Sex With Men: A Systematic Review of HIV Behavioral Interventions for Young Gay and Bisexual Men.

    Science.gov (United States)

    Hergenrather, Kenneth C; Emmanuel, Diona; Durant, Sarah; Rhodes, Scott D

    2016-06-01

    Men who have sex with men (MSM) represent 64.0% of people living with HIV (PLWH) over the age of 13 years. Young men who have sex with men (YMSM) are particularly affected by HIV/AIDS; the rate of HIV infection for YMSM between the ages of 13 and 24 represents 72.0% of new infections among youth. To understand the current state of the science meant to prevent HIV for YMSM, we reviewed studies of HIV behavioral prevention interventions for YMSM. Five literature databases were searched, from their inception through October 2015, using key words associated with HIV prevention intervention evaluation studies for YMSM. The review criteria included behavioral HIV/AIDS prevention interventions, articles published in English-language peer-reviewed journals, YMSM between 13 and 24 years of age, and longitudinal repeated measures design. A total of 15 YMSM behavioral HIV prevention intervention studies were identified that met inclusion criteria and reported statistically significant findings. Common outcomes included unprotected sexual intercourse, HIV/AIDS risk behavior, condom use, HIV testing, safer sex attitude, and HIV prevention communication. Participant age, representation of Black/African American YMSM, application of theoretical and model underpinnings, congruence of assessment measures used, follow-up assessment times, and application of process evaluation were inconsistent across studies. To advance HIV prevention intervention research for YMSM, future studies should be theory-based, identify common constructs, utilize standard measures, include process evaluation, and evaluate sustained change over standard periods of time. HIV prevention interventions should incorporate the needs of the diverse, well-educated, web-connected millennial generation and differentiate between adolescent YMSM (13 to 18 years of age) and young adulthood YMSM (19 to 24 years of age). Because Black/African American YMSM represent more than 50% of new HIV infections, future HIV

  18. Determinants in HIV-1 Nef for enhancement of virus replication and depletion of CD4+ T lymphocytes in human lymphoid tissue ex vivo

    Directory of Open Access Journals (Sweden)

    Sertel Serkan

    2009-01-01

    Full Text Available Abstract Background HIV-1 Nef critically contributes to AIDS in part by augmenting virus titers in infected individuals. Analyzing which of Nef's activities contribute to HIV pathogenesis has been hampered by the lack of a cell culture model in which Nef exerts pronounced effects on HIV replication. The human lymphoid aggregate culture (HLAC from tonsil maintains the cell populations and cytokine milieu found in vivo, supports a productive infection without exogenous stimulation, and Nef contributes to efficient HIV-1 replication as well as CD4+ T cell depletion in this experimental ex vivo-model. Results To identify determinants in Nef that mediate these activities, we infected HLAC with a panel of isogenic HIV-1NL4-3 strains that encode for well-characterized mutants of HIV-1SF2 Nef. Determination of HIV-1 replication revealed that enhancement of the virus spread by Nef is governed by a complex set of protein interaction surfaces. In contrast, increased CD4+ T lymphocyte depletion depended on only two protein interaction surfaces in Nef that mediate either downregulation of cell surface CD4 or interaction with the NAKC signalosome. Consistently, in HLAC from 9 out of 14 donors, Nef enhanced CD4+ T cell depletion in the absence of a significant effect on virus replication. Moreover, our results suggest that this Nef-dependent enhancement in depletion occurred predominately in uninfected bystander CD4+ T cells. Conclusion Our findings suggest that Nef facilitates depletion of CD4+ T lymphocytes in HIV-1-infected lymphoid tissue ex vivo by increasing the pool of productively infected cells and by sensitizing bystander cells for killing. This ability might contribute to Nef's pathogenic potential in vivo.

  19. Interferon-alpha administration enhances CD8+ T cell activation in HIV infection.

    Directory of Open Access Journals (Sweden)

    Maura Manion

    Full Text Available BACKGROUND: Type I interferons play important roles in innate immune defense. In HIV infection, type I interferons may delay disease progression by inhibiting viral replication while at the same time accelerating disease progression by contributing to chronic immune activation. METHODS: To investigate the effects of type I interferons in HIV-infection, we obtained cryopreserved peripheral blood mononuclear cell samples from 10 subjects who participated in AIDS Clinical Trials Group Study 5192, a trial investigating the activity of systemic administration of IFNα for twelve weeks to patients with untreated HIV infection. Using flow cytometry, we examined changes in cell cycle status and expression of activation antigens by circulating T cells and their maturation subsets before, during and after IFNα treatment. RESULTS: The proportion of CD38+HLA-DR+CD8+ T cells increased from a mean of 11.7% at baseline to 24.1% after twelve weeks of interferon treatment (p = 0.006. These frequencies dropped to an average of 20.1% six weeks after the end of treatment. In contrast to CD8+ T cells, the frequencies of activated CD4+ T cells did not change with administration of type I interferon (mean percentage of CD38+DR+ cells = 2.62% at baseline and 2.17% after 12 weeks of interferon therapy. As plasma HIV levels fell with interferon therapy, this was correlated with a "paradoxical" increase in CD8+ T cell activation (p<0.001. CONCLUSION: Administration of type I interferon increased expression of the activation markers CD38 and HLA DR on CD8+ T cells but not on CD4+ T cells of HIV+ persons. These observations suggest that type I interferons may contribute to the high levels of CD8+ T cell activation that occur during HIV infection.

  20. Cocaine enhances HIV-1-induced CD4(+) T-cell apoptosis: implications in disease progression in cocaine-abusing HIV-1 patients.

    Science.gov (United States)

    Pandhare, Jui; Addai, Amma B; Mantri, Chinmay K; Hager, Cynthia; Smith, Rita M; Barnett, Louis; Villalta, Fernando; Kalams, Spyros A; Dash, Chandravanu

    2014-04-01

    Substance abuse is a major barrier in eradication of the HIV epidemic because it serves as a powerful cofactor for viral transmission, disease progression, and AIDS-related mortality. Cocaine, one of the commonly abused drugs among HIV-1 patients, has been suggested to accelerate HIV disease progression. However, the underlying mechanism remains largely unknown. Therefore, we tested whether cocaine augments HIV-1-associated CD4(+) T-cell decline, a predictor of HIV disease progression. We examined apoptosis of resting CD4(+) T cells from HIV-1-negative and HIV-1-positive donors in our study, because decline of uninfected cells plays a major role in HIV-1 disease progression. Treatment of resting CD4(+) T cells with cocaine (up to 100 μmol/L concentrations) did not induce apoptosis, but 200 to 1000 μmol/L cocaine induced apoptosis in a dose-dependent manner. Notably, treatment of CD4(+) T cells isolated from healthy donors with both HIV-1 virions and cocaine significantly increased apoptosis compared with the apoptosis induced by cocaine or virions alone. Most important, our biochemical data suggest that cocaine induces CD4(+) T-cell apoptosis by increasing intracellular reactive oxygen species levels and inducing mitochondrial depolarization. Collectively, our results provide evidence of a synergy between cocaine and HIV-1 on CD4(+) T-cell apoptosis that may, in part, explain the accelerated disease observed in HIV-1-infected drug abusers.

  1. Recent HIV Testing Among Young Men Who Have Sex with Men in Bangkok and Chiang Mai: HIV Testing and Prevention Strategies Must Be Enhanced in Thailand.

    Science.gov (United States)

    Johnston, Lisa G; Steinhaus, Mara C; Sass, Justine; Sirinirund, Petchsri; Lee, Catherine; Benjarattanaporn, Patchara; Gass, Robert

    2016-09-01

    HIV infection among men who have sex with men, particularly in Thai urban settings and among younger cohorts, is escalating. HIV testing and counseling (HTC) are important for prevention and obtaining treatment and care. We examine data from a 2013 survey of males, 15-24 years, reporting past-year sex with a male and living in Bangkok or Chiang Mai. Almost three quarters of young MSM (YMSM) in Bangkok and only 27 % in Chiang Mai had an HIV test in the previous year. Associations for HIV testing varied between cities, although having employment increased the odds of HIV testing for both cities. In Bangkok, family knowledge of same sex attraction and talking to parents/guardians about HIV/AIDS had higher odds of HIV testing. Expanded HTC coverage is needed for YMSM in Chiang Mai. All health centers providing HTC, including those targeting MSM, need to address the specific needs of younger cohorts.

  2. Tumor-produced versican V1 enhances hCAP18/LL-37 expression in macrophages through activation of TLR2 and vitamin D3 signaling to promote ovarian cancer progression in vitro.

    Directory of Open Access Journals (Sweden)

    Dong Li

    Full Text Available Tumor-associated macrophages have been shown to promote tumor growth. They may have an obligatory function in angiogenesis, invasion, and metastasis through release of inflammatory mediators. Their presence in ovarian cancer has been correlated with poor prognosis in these patients. The human cationic antimicrobial protein-18 (hCAP18/LL-37 was originally identified as an effector molecule of the innate immune system. It is released by innate immune cells, such as macrophages, to combat microorganisms. Previous studies have characterized the hCAP18/LL-37 as a growth factor that has been shown to promote ovarian tumor progression. However, the role hCAP18/LL-37 has in macrophage-promoted ovarian tumor development and how its expression is controlled in this context remains poorly understood. Here, we demonstrate in co-culture experiments of macrophages and ovarian cancer cells a significant increase in the in vitro proliferation and invasiveness of the tumor cells is observed. These enhanced growth and invasion properties correlated with hCAP18/LL-37 induction. HCAP18/LL-37 expression was diminished by addition of two neutralizing antibodies, TLR2 or TLR6, as well as Cyp27B1 or VDR inhibitors. Furthermore, either the TLR2 or TLR6 antibody reduced vitamin D3 signaling and tumor cell progression in vitro. Addition of Cyp27B1 or VDR inhibitors abrogated TLR2/6 activation-induced expression of hCAP18/LL-37 in macrophages. Knockdown of tumor-produced versican V1 by RNAi in these tumor cells led to a decreased induction of hCAP18/LL-37 in macrophages. Versican V1 knockdown also inhibited TLR2 and vitamin D3 signaling, as well as growth and invasiveness of these tumor cells in the in vitro co-culture. In summary, we have found that versican V1 enhances hCAP18/LL-37 expression in macrophages through activation of TLR2 and subsequent vitamin D-dependent mechanisms which promote ovarian tumor progression in vitro.

  3. HIV-infected microglia mediate cathepsin B-induced neurotoxicity.

    Science.gov (United States)

    Zenón, Frances; Cantres-Rosario, Yisel; Adiga, Radhika; Gonzalez, Mariangeline; Rodriguez-Franco, Eillen; Langford, Dianne; Melendez, Loyda M

    2015-10-01

    HIV-1-infected mononuclear phagocytes release soluble factors that affect the homeostasis in tissue. HIV-1 can prompt metabolic encephalopathy with the addition of neuronal dysfunction and apoptosis. Recently, we reported that HIV-1 enhances the expression and secretion of bioactive cathepsin B in monocyte-derived macrophages, ultimately contributing to neuronal apoptosis. In this research, we asked if microglia respond to HIV infection similarly by modifying the expression, secretion, and neurotoxic potential of cathepsin B and determined the in vivo relevance of these findings. HIV-1ADA-infected human primary microglia and CHME-5 microglia cell line were assessed for expression and activity of cathepsin B, its inhibitors, cystatins B and C, and the neurotoxicity associated with these changes. Human primary neurons were exposed to supernatants from HIV-infected and uninfected microglia in the presence of cathepsin B inhibitors and apoptosis was assessed by TUNEL. Microglial expression of cathepsin B was validated in brain tissue from HIV encephalitis (HIVE) patients. HIV-infected microglia secreted significantly greater levels of cathepsin B, cystatin B, and cystatin C compared to uninfected cells. Increased apoptosis was observed in neurons exposed to supernatants from HIV-1 infected microglia at day 12 post-infection. The cathepsin B inhibitor CA-074 and cathepsin B antibody prevented neuronal apoptosis. Increased microglia-derived cathepsin B, cystatin B, and cystatin C and caspase-3+ neurons were detected in HIVE brains compared to controls. Our results suggest that HIV-1-induced cathepsin B production in microglia contributes to neuronal apoptosis and may be an important factor in neuronal death associated with HIVE.

  4. Development and Evaluation of a Multimedia-Enhanced STD/HIV Curriculum for Middle Schools

    Science.gov (United States)

    Goldsworthy, Richard; Schwartz, Nancy

    2008-01-01

    STD infection among adolescents is a significant public health concern. Surveys indicate that parents believe STD and HIV/AIDS are appropriate topics for middle school and high school students; however, school-based STD education efforts remain inconsistent, perhaps in part as a result of the lack of standardized, well-distributed curricula.…

  5. Responding to Changes in HIV Policy: Updating and Enhancing the "Families Matter!" Curriculum

    Science.gov (United States)

    Miller, Kim S; Winskell, Kate; Berrier, Faith L

    2016-01-01

    Objectives: The past decade has seen changes in US HIV policy in sub-Saharan Africa in response to a new Administration and far-reaching technical, scientific and programmatic developments. These include dramatically increased access to life-saving anti-retroviral therapy (ART) and related services, the roll-out of voluntary medical male…

  6. Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication

    DEFF Research Database (Denmark)

    Meschi, Joseph; Crouch, Erika C; Skolnik, Paul;

    2005-01-01

    The envelope protein (gp120) of human immunodeficiency virus (HIV) contains highly conserved mannosylated oligosaccharides. These glycoconjugates contribute to resistance to antibody neutralization, and binding to cell surface lectins on macrophages and dendritic cells. Mannose-binding lectin (MBL......) binds to gp120 and plays a role in defence against the virus. In this study it is demonstrated that surfactant protein D (SP-D) binds to gp120 and inhibits HIV infectivity at significantly lower concentrations than MBL. The binding of SP-D was mediated by its calcium-dependent carbohydrate...... defence against HIV. A chimeric protein containing the N-terminal and collagen domains of SP-D linked to the neck and carbohydrate-recognition domains of MBL (called SP-D/MBL(neck+CRD)) had greater ability to bind to gp120 and inhibit virus replication than either SP-D or MBL. The enhanced binding of SP...

  7. Science challenging HIV infection.

    Science.gov (United States)

    Rao, R R; Lakshi, V

    1993-04-01

    The first accepted report of a novel human, slow virus disease belonging to "lentivirus" known as acquired immunodeficiency syndrome can be traced to reports of June 1981. HIV-1 and HIV-2 were later found over the period 1984-86 to be unequivocally associated with AIDS. They are two serologically distinct viruses belonging to the same family with the unique properties of integration and latency in the host cell genome and the presence of reverse transcriptase. Typical of all retroviruses, the HIV genome comprises three genes governing the synthesis of all core proteins, replication protein encoding, and envelope proteins. HIV uses the CD4 antigen on T-helper cells, and about 40% of blood monocytes and tissue macrophages as a cell surface receptor. HIV may, however, also infect cells which contain no CD4. Macrophages serve as the main reservoir of HIV and may carry the virus to different organs. Very recently a rare type of white blood cell called the dendritic cell has been found to allow for direct infection by HIV during sexual intercourse. These cells are prominently present in the anal and vaginal mucosa. The authors discuss facts and figures on the HIV epidemic, the Indian scenario, classification of the clinical spectrum, the enzyme immunoassay HIV testing format, Western blot, immunofluorescence antibody, HIV culture, flow cytometry, radio immuno precipitation assay, and the detection of HIV DNA. Significant advances have been made over the last ten years in understanding the pathogenesis of HIV infection and accurately diagnosing infected individuals, with recombinant technology, polymerase chain reaction, and the construction of synthetic hybrid virus rapidly becoming part of routine diagnostics. More sensitive, specific, and rapid techniques are, however, needed for the early diagnosis and management of AIDS cases. The need for more ideal antibody incorporating both regulatory and structural proteins of the virion, preferably manufactured using

  8. Enhanced expression of hemoglobin scavenger receptor CD163 in accumulated macrophages within filtered debris between acute coronary syndromes and stable angina pectoris.

    Science.gov (United States)

    Sato, Takao; Kameyama, Tomoki; Noto, Takahisa; Ueno, Hiroshi; Inoue, Hiroshi

    2015-01-01

    Coronary intraplaque hemorrhage up-regulates hemoglobin scavenger receptor CD163 expression on macrophages, and has an association with vulnerable plaque development. During percutaneous coronary intervention, mechanical plaque disruption exposes potentially embolic atheromatous contents from culprit plaque.In 37 patients with stable angina pectoris (SAP, n = 20) or acute coronary syndrome (ACS, n = 17), atherothrombotic debris was collected using a filter-based distal embolic protection device. We immunohistochemically determined CD14-positive macrophages and CD163-positive macrophages in filtered debris. We also examined the relation of CD14- and CD163-positive macrophages with culprit plaque volume and components evaluated with ultrasonic tissue characterization (VH-IVUS).The only significant difference in clinical characteristics between the two groups was in hs-CRP. In ACS, the percentage of CD14- and CD163-positive macrophages to the whole cells (%CD14 and %CD163, respectively) was significantly higher than that in SAP (20.1 ± 8.2 versus 8.8 ± 6.8%, P CD163 had a significant positive correlation with %NC (%CD14: r = 0.40, P = 0.01 and %CD163: r = 0.45, P = 0.01), but only %CD163 was negatively correlated with %Fibrous (%CD163: r = -0.48, P = 0.01).These findings suggest that the presence of CD14- and CD163-positive macrophages may reflect plaque inflammation, NC expansion, and plaque vulnerability in patients with coronary heart disease.

  9. Enhanced Inhibitory Effect of Ultra-Fine Granules of Red Ginseng on LPS-induced Cytokine Expression in the Monocyte-Derived Macrophage THP-1 Cells

    Directory of Open Access Journals (Sweden)

    Hong-Yeoul Kim

    2008-08-01

    Full Text Available Red ginseng is one of the most popular traditional medicines in Korea because its soluble hot-water extract is known to be very effective on enhancing immunity as well as inhibiting inflammation. Recently, we developed a new technique, called the HACgearshift system, which can pulverize red ginseng into the ultra-fine granules ranging from 0.2 to 7.0 μm in size. In this study, the soluble hot-water extract of those ultra-fine granules of red ginseng (URG was investigated and compared to that of the normal-sized granules of red ginseng (RG. The high pressure liquid chromatographic analyses of the soluble hot-water extracts of both URG and RG revealed that URG had about 2-fold higher amounts of the ginsenosides, the biologically active components in red ginseng, than RG did. Using quantitative RT-PCR, cytokine profiling against the Escherichia coli lipopolysaccharide (LPS in the monocyte-derived macrophage THP-1 cells demonstrated that the URG-treated cells showed a significant reduction in cytokine expression than the RG-treated ones. Transcription expression of the LPS-induced cytokines such as TNF-α, IL-1β, IL-6, IL-8, IL-10, and TGF-β was significantly inhibited by URG compared to RG. These results suggest that some biologically active and soluble components in red ginseng can be more effectively extracted from URG than RG by standard hot-water extraction.

  10. Chronic immune activation in HIV-1 infection contributes to reduced interferon alpha production via enhanced CD40:CD40 ligand interaction.

    Directory of Open Access Journals (Sweden)

    Norbert Donhauser

    Full Text Available Although a signature of increased interferon (IFN-alpha production is observed in HIV-1 infection, the response of circulating plasmacytoid dendritic cells (PDC to Toll-like receptor ligand stimulation is substantially impaired. This functional PDC deficit, which we specifically observed in HIV-1 infected individuals with less than 500 CD4+ T cells/µl, is not well understood. We provide evidence that the peripheral IFN-alpha production in HIV-1 infection is actively suppressed by the enhanced interaction of CD40 ligand (CD40L, a member of the tumor necrosis factor family, and its receptor CD40, which are both upregulated upon immune activation. Plasma levels of soluble CD40L were significantly higher in untreated HIV-1 infected individuals (n = 52 than in subjects on long-term antiretroviral therapy (n = 62, p<0.03 and in uninfected control donors (n = 16, p<0.001. Concomitantly, cell-associated CD40L and the expression of the receptor CD40 on the PDC were significantly upregulated in HIV-1 infection (p<0.05. Soluble and cell-associated CD40L inhibited the PDC-derived IFN-alpha production by CpG oligodeoxynucleotides dose-dependently. This suppressive effect was observed at much lower, physiological CD40L concentrations in peripheral blood mononuclear cells (PBMC of HIV-1 infected individuals compared to controls (p<0.05. The CpG-induced IFN-alpha production in PBMC of HIV-1 infected donors was directly correlated with PDC and CD4+ T cell counts, and inversely correlated with the viral loads (p<0.001. In HIV-1 infected donors with less than 500 CD4+ T cells/µl, the CpG-induced IFN-alpha production was significantly correlated with the percentage of CD40-expressing PDC and the level of CD40 expression on these cells (p<0.05, whereas CD40L plasma levels played a minor role. In addition, low-dose CD40L contributed to the enhanced production of interleukin 6 and 8 in PBMC of HIV-1 infected donors compared to controls. Our data support

  11. Immune-enhancing effect of nano-DNA vaccine encoding a gene of the prME protein of Japanese encephalitis virus and BALB/c mouse granulocyte-macrophage colony-stimulating factor.

    Science.gov (United States)

    Zhai, Yongzhen; Zhou, Yan; Li, Ximei; Feng, Guohe

    2015-07-01

    Plasmid-encoded granulocyte-macrophage colony-stimulating factor (GM‑CSF) is an adjuvant for genetic vaccines; however, how GM-CSF enhances immunogenicity remains to be elucidated. In the present study, it was demonstrated that injection of a plasmid encoding the premembrane (prM) and envelope (E) protein of Japanese encephalitis virus and mouse GM-CSF (pJME/GM-CSF) into mouse muscle recruited large and multifocal conglomerates of macrophages and granulocytes, predominantly neutrophils. During the peak of the infiltration, an appreciable number of immature dendritic cells (DCs) appeared, although no T and B-cells was detected. pJME/GM-CSF increased the number of splenic DCs and the expression of major histocompatibility complex class II (MHCII) on splenic DC, and enhanced the antigenic capture, processing and presentation functions of splenic DCs, and the cell-mediated immunity induced by the vaccine. These findings suggested that the immune-enhancing effect by pJME/GM-CSF was associated with infiltrate size and the appearance of integrin αx (CD11c)+cells. Chitosan-pJME/GM-CSF nanoparticles, prepared by coacervation via intramuscular injection, outperformed standard pJME/GM-CSF administrations in DC recruitment, antigen processing and presentation, and vaccine enhancement. This revealed that muscular injection of chitosan‑pJME/GM-CSF nanoparticles may enhance the immunoadjuvant properties of GM-CSF.

  12. Families as catalysts for peer adherence support in enhancing hope for people living with HIV/AIDS in South Africa

    Directory of Open Access Journals (Sweden)

    Caroline Masquillier

    2014-04-01

    Full Text Available Introduction: Hope is an essential dimension of successful coping in the context of illnesses such as HIV/AIDS, because positive expectations for the future alleviate emotional distress, enhance quality of life and have been linked to the capacity for behavioural change. The social environment (e.g. family, peers is a regulator of hope for people living with HIV/AIDS (PLWHA. In this regard, the dual aim of this article is (1 to analyze the influence of a peer adherence support (PAS intervention and the family environment on the state of hope in PLWHA and (2 to investigate the interrelationship between the two determinants. Methods: The Effective AIDS Treatment and Support in the Free State study is a prospective randomized controlled trial. Participants were recruited from 12 public antiretroviral treatment (ART clinics across five districts in the Free State Province of South Africa. Each of these patients was assigned to one of the following groups: a control group receiving standard care, a group receiving additional biweekly PAS or a group receiving PAS and nutritional support. Latent cross-lagged modelling (Mplus was used to analyse the impact of PAS and the family environment on the level of hope in PLWHA. Results: The results of the study indicate that neither PAS nor the family environment has a direct effect on the level of hope in PLWHA. Subsequent analysis reveals a positive significant interaction between family functioning and PAS at the second follow-up, indicating that better family functioning increases the positive effect of PAS on the state of hope in PLWHA. Conclusions: The interplay between well-functioning families and external PAS generates higher levels of hope, which is an essential dimension in the success of lifelong treatment. This study provides additional insight into the important role played by family dynamics in HIV/AIDS care, and it underscores the need for PAS interventions that are sensitive to the contexts in

  13. Enhanced Th17 phenotype in uninfected neonates born from viremic HIV-1-infected pregnant women.

    Science.gov (United States)

    Hygino, Joana; Vieira, Morgana M; Guillermo, Landi V; Silva-Filho, Renato G; Saramago, Carmen; Lima-Silva, Agostinho A; Andrade, Regis M; Andrade, Arnaldao F B; Brindeiro, Rodrigo M; Tanuri, Amilcar; Guimarães, Vander; de Melo Bento, Cleonice Alves

    2011-04-01

    Our objective was to evaluate the in vitro functional profile of T cells from uninfected neonates born from HIV-1-infected pregnant women who controlled (G1) or not (G2) the virus replication. We demonstrated that the lymphoproliferation of T cell to polyclonal activators was higher in the G2 as compared with G1. Nevertheless, no detectable proliferative response was observed in response to HIV-1 antigens in both neonate groups. Cytokine dosage in the supernatants of these polyclonally activated T cell cultures demonstrated that, while IL-10 was the dominant cytokine produced in G1, Th17-related cytokines were significantly higher in G2 neonates. The higher Th17 phenotype tendency in G2 was related to high production of IL-23 by lipopolysaccharide-activated monocyte-derived dendritic cells from these neonates. Our results demonstrated immunological disorders in uninfected neonates born from viremic HIV-1-infected mothers that can help to explain why some of these children have elevated risk of clinical morbidity and mortality due to pathological hypersensitivity.

  14. Nef alleles from all major HIV-1 clades activate Src-family kinases and enhance HIV-1 replication in an inhibitor-sensitive manner.

    Directory of Open Access Journals (Sweden)

    Purushottam S Narute

    Full Text Available The HIV-1 accessory factor Nef is essential for high-titer viral replication and AIDS progression. Nef function requires interaction with many host cell proteins, including specific members of the Src kinase family. Here we explored whether Src-family kinase activation is a conserved property of Nef alleles from a wide range of primary HIV-1 isolates and their sensitivity to selective pharmacological inhibitors. Representative Nef proteins from the major HIV-1 subtypes A1, A2, B, C, F1, F2, G, H, J and K strongly activated Hck and Lyn as well as c-Src to a lesser extent, demonstrating for the first time that Src-family kinase activation is a highly conserved property of primary M-group HIV-1 Nef isolates. Recently, we identified 4-amino substituted diphenylfuropyrimidines (DFPs that selectively inhibit Nef-dependent activation of Src-family kinases as well as HIV replication. To determine whether DFP compounds exhibit broad-spectrum Nef-dependent antiretroviral activity against HIV-1, we first constructed chimeric forms of the HIV-1 strain NL4-3 expressing each of the primary Nef alleles. The infectivity and replication of these Nef chimeras was indistinguishable from that of wild-type virus in two distinct cell lines (U87MG astroglial cells and CEM-T4 lymphoblasts. Importantly, the 4-aminopropanol and 4-aminobutanol derivatives of DFP potently inhibited the replication of all chimeric forms of HIV-1 in both U87MG and CEM-T4 cells in a Nef-dependent manner. The antiretroviral effects of these compounds correlated with inhibition of Nef-dependent activation of endogenous Src-family kinases in the HIV-infected cells. Our results demonstrate that the activation of Hck, Lyn and c-Src by Nef is highly conserved among all major clades of HIV-1 and that selective targeting of this pathway uniformly inhibits HIV-1 replication.

  15. HIV Protease Inhibitor-Induced Cathepsin Modulation Alters Antigen Processing and Cross-Presentation.

    Science.gov (United States)

    Kourjian, Georgio; Rucevic, Marijana; Berberich, Matthew J; Dinter, Jens; Wambua, Daniel; Boucau, Julie; Le Gall, Sylvie

    2016-05-01

    Immune recognition by T cells relies on the presentation of pathogen-derived peptides by infected cells, but the persistence of chronic infections calls for new approaches to modulate immune recognition. Ag cross-presentation, the process by which pathogen Ags are internalized, degraded, and presented by MHC class I, is crucial to prime CD8 T cell responses. The original degradation of Ags is performed by pH-dependent endolysosomal cathepsins. In this article, we show that HIV protease inhibitors (PIs) prescribed to HIV-infected persons variably modulate cathepsin activities in human APCs, dendritic cells and macrophages, and CD4 T cells, three cell subsets infected by HIV. Two HIV PIs acted in two complementary ways on cathepsin hydrolytic activities: directly on cathepsins and indirectly on their regulators by inhibiting Akt kinase activities, reducing NADPH oxidase 2 activation, and lowering phagolysosomal reactive oxygen species production and pH, which led to enhanced cathepsin activities. HIV PIs modified endolysosomal degradation and epitope production of proteins from HIV and other pathogens in a sequence-dependent manner. They altered cross-presentation of Ags by dendritic cells to epitope-specific T cells and T cell-mediated killing. HIV PI-induced modulation of Ag processing partly changed the MHC self-peptidome displayed by primary human cells. This first identification, to our knowledge, of prescription drugs modifying the regulation of cathepsin activities and the MHC-peptidome may provide an alternate therapeutic approach to modulate immune recognition in immune disease beyond HIV.

  16. HIV-1 infected and immune competent mononuclear phagocytes induce quantitative alterations in neuronal dendritic arbor: relevance for HIV-1-associated dementia.

    Science.gov (United States)

    Zheng, J; Thylin, M R; Cotter, R L; Lopez, A L; Ghorpade, A; Persidsky, Y; Xiong, H; Leisman, G B; Che, M H; Gendelman, H E

    2001-10-01

    Neuronal loss, alterations in dendritic arbor, and decreased synaptic density, in infected brain tissue, are neuropathological signatures of HIV-1-associated dementia (HAD). Brain mononuclear phagocyte (MP) (macrophage and microglia) secretory products can effect neuronal compromise, although the underlying mechanism(s) remain incompletely defined. To these ends, we quantitatively assessed the effects of virus-infected and/or immune activated MP secretory products on multiple aspects of neuronal morphology. Rat cortical and hippocampal neurons were exposed to secretory products from HIV-1-infected and lipopolysaccharide (LPS)-activated human monocyte-derived macrophage (MDM). Our assays for alterations in neuronal dendritic arbor and cell loss included the quantification of neurofilament (NF), neuron-specific enolase (NSE), and MAP-2 by ELISA and cellular morphology. MDM conditioned media (MCM) enhanced neuronal survival. HIV-1 infection or activation by LPS had modest neurotoxic effects. In contrast, the combination of HIV-1 infection and activation of MDM produced significant neurotoxicity. Such MDM products altered dendritic arbor, decreased synaptic density, and increased LDH release. Comparable neurotrophic/toxic responses were observed when neurons were exposed to MCM collected from 12 separate human donors. Similar responses were observed with MCM from human fetal microglia, further supporting the role of HIV-1-infected and immune-activated brain MP in the overall neurotoxic responses. This work provides quantitative measures of neuronal damage by which virus infected and activated MP can elicit neuronal injury in HAD.

  17. Relationships between humoral factors in HIV-1-infected mothers and the occurrence of HIV infection in their infants.

    Science.gov (United States)

    Mabondzo, A; Rouvier, P; Raoul, H; Le Naour, R; Courpotin, C; Hervé, F; Parnet-Mathieu, F; Lasfargues, G; Dormont, D

    1995-12-01

    Based on what is known about the biology of HIV-1 vertical transmission, the HIV burden of the mother, maternal immune factors and the integrity of the placental barrier are likely to play major roles. We therefore sought to determine whether the presence of antibodies in sera from 47 HIV-1-infected mothers, including 30 non-transmitting and 17 transmitting mothers, affected the risk of HIV-1 transmission to infants. Our findings showed no significant correlation between the capacity of antibodies to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) and their capacity to induce protection of the child from HIV-1 infection (P = 0.14). Furthermore, no correlation was found between the capacity of maternal antibodies to neutralize in vitro lymphocyte or macrophage heterologous viral infection and the occurrence of in vivo HIV-1 infection in the infant. Sera recovered from five of 12 transmitting mothers and from five of 11 non-transmitting mothers were compared in their capacity to neutralize the viruses drawn from the same individuals. Four out of five maternal isolates from transmitting mothers and all maternal isolates from non-transmitting mothers were sensitive to enhancement of infection mediated by the maternal serum.

  18. Mycobacterium avium subspecies induce differential expression of pro-inflammatory mediators in a murine macrophage model: evidence for enhanced pathogenicity of Mycobacterium avium subspecies paratuberculosis.

    Science.gov (United States)

    Basler, Tina; Geffers, Robert; Weiss, Siegfried; Valentin-Weigand, Peter; Goethe, Ralph

    2008-01-01

    Mycobacterium avium subspecies (ssp.) paratuberculosis (MAP) is the etiological agent of paratuberculosis, a chronic, non-treatable granulomatous enteritis of ruminants. MAP is the only mycobacterium affecting the intestinal tract, which is of interest since it is presently the most favoured pathogen linked to Crohn's disease (CD) in humans due to its frequent detection in CD tissues. MAP is genetically closely related to other M. avium ssp. such as M. avium ssp. avium (MAA) and M. avium ssp. hominissuis (MAH) which can cause mycobacteriosis in animals and immunocompromised humans. We have recently shown that murine macrophage cell lines represent suitable systems to analyse M. avium ssp. patho-mechanisms and could show that MAP, but not MAA, specifically inhibited the antigen-specific stimulatory capacity for CD4(+) T-cells. In the present study, we compared gene expression profiles of murine RAW264.7 macrophages in response to infections with MAP or MAA using murine high-density oligonucleotide Affymetrix microarrays. A comparison of MAP and MAA infection revealed 17 differentially expressed genes. They were expressed at a much lower level in MAP-infected macrophages than in MAA-infected macrophages. Among these were the genes for IL-1beta, IL-1alpha, CXCL2, PTGS2 (COX2), lipocalin (LCN2) and TNF, which are important pro-inflammatory factors. The microarray data were confirmed for selected genes by quantitative real-time reverse transcription PCR and, by protein array analyses and ELISA. Similar to MAA, infection with MAH also showed robust induction of IL-1beta, CXCL2, COX2, LCN2 and TNF. Taken together, our results from M. avium ssp.-infected murine macrophages provide evidence that MAP in contrast to MAA and MAH specifically suppresses the pro-inflammatory defence mechanisms of infected macrophages.

  19. HIV-1 and its gp120 inhibits the influenza A(H1N1pdm09 life cycle in an IFITM3-dependent fashion.

    Directory of Open Access Journals (Sweden)

    Milene Mesquita

    Full Text Available HIV-1-infected patients co-infected with A(H1N1pdm09 surprisingly presented benign clinical outcome. The knowledge that HIV-1 changes the host homeostatic equilibrium, which may favor the patient resistance to some co-pathogens, prompted us to investigate whether HIV-1 infection could influence A(H1N1pdm09 life cycle in vitro. We show here that exposure of A(H1N1pdm09-infected epithelial cells to HIV-1 viral particles or its gp120 enhanced by 25% the IFITM3 content, resulting in a decrease in influenza replication. This event was dependent on toll-like receptor 2 and 4. Moreover, knockdown of IFITM3 prevented HIV-1 ability to inhibit A(H1N1pdm09 replication. HIV-1 infection also increased IFITM3 levels in human primary macrophages by almost 100%. Consequently, the arrival of influenza ribonucleoproteins (RNPs to nucleus of macrophages was inhibited, as evaluated by different approaches. Reduction of influenza RNPs entry into the nucleus tolled A(H1N1pdm09 life cycle in macrophages earlier than usual, limiting influenza's ability to induce TNF-α. As judged by analysis of the influenza hemagglutin (HA gene from in vitro experiments and from samples of HIV-1/A(H1N1pdm09 co-infected individuals, the HIV-1-induced reduction of influenza replication resulted in delayed viral evolution. Our results may provide insights on the mechanisms that may have attenuated the clinical course of Influenza in HIV-1/A(H1N1pdm09 co-infected patients during the recent influenza form 2009/2010.

  20. λ Light Chain Bias Associated With Enhanced Binding and Function of Anti-HIV Env Glycoprotein Antibodies.

    Science.gov (United States)

    Sajadi, Mohammad M; Farshidpour, Maham; Brown, Eric P; Ouyang, Xin; Seaman, Michael S; Pazgier, Marzena; Ackerman, Margaret E; Robinson, Harriet; Tomaras, Georgia; Parsons, Matthew S; Charurat, Manhattan; DeVico, Anthony L; Redfield, Robert R; Lewis, George K

    2016-01-01

    The humoral response to human immunodeficiency virus (HIV) remains incompletely understood. In this report, we describe biased λ light chain use during the HIV Env glycoprotein (Env) response in HIV infection and vaccination. We examined HIV Env binding (and neutralization) in the context of light chain use in subjects with acute HIV infection, chronic HIV infection, and among HIV vaccinees. In all populations tested, there was a λ chain bias for HIV Env binding antibodies, compared with other HIV antigens (such as p24) or tetanus toxoid. In subjects with chronic HIV infection, a λ bias was noted for neutralization, with λ antibodies accounting for up to 90% of all neutralization activity observed. This is the first report of antibody function in a human infection being tied to light chain use. In HIV infection, antibodies expressing λ light chains tended to have longer CDRL3s, increased light chain contact with HIV Env, and less hypermutation in the heavy chain, compared with antibodies using the κ light chain. These data also support an evolutionary model for the understanding the various κ to λ light chain ratios observed across species and suggest that the λ light chain bias against HIV provides the host an advantage in developing a more efficient humoral response. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  1. Enhancing the health of women living with HIV: the SMART/EST Women's Project

    Directory of Open Access Journals (Sweden)

    Stephen M Weiss

    2011-02-01

    Full Text Available Stephen M Weiss1, Jonathan N Tobin2, Michael Antoni1, Gail Ironson1, Mary Ishii1, Anita Vaughn2, Andrea Cassells2, Deborah Jones1, Neil Schneiderman1, Elizabeth Brondolo3, Arthur LaPerriere1, Maria Lopez1, Olga Villar-Loubet1, Joanne Camille2, Mahendra Kumar1, J Bryan Page1, SMART/EST Women's Project Team*1University of Miami, Miami, FL, USA; 2Clinical Directors Network, New York, NY, USA; 3St Johns University, Queens, NY, USA; *The SMART/EST Womens' Project Team: DeVieux J, Jean-Gilles M, Gousse Y, Alexander K, Bustamonte V, Lopez E, Casani J, Stanley H, Asthana D, Van Splunteren F, Goldstein A, Nasajon R, Wiesner Y, Zukerman M, Segal-Isaacson CJ, Romanowsky A, Masheb R, Coma C, Ubiera M, D'Andrea SM, Ittai N.Abstract: The principal objective of these multisite studies (Florida, New York, New Jersey: epicenters for human immunodeficiency virus [HIV] among women was to develop and implement effective combinations of behavioral interventions to optimize the health status of the most neglected and understudied population affected by the acquired immunodeficiency syndrome (AIDS epidemic in the United States: poor women of color living with HIV. The two studies enrolled nearly 900 women randomly assigned to “high intensity” (cognitive–behavioral stress management training combined with expressive–supportive therapy [CBSM]+ group or “low intensity” (individual psychoeducational program treatment conditions over a period of 9 years. The initial study of the stress management and relaxation training/expressive–supportive therapy (SMART/EST Women's Project (SWP I focused on reducing depression and anxiety, as well as improving self-efficacy and overall quality of life for women with case-defined AIDS. Findings from this study demonstrated the utility of CBSM+ in reducing distress (depression, anxiety and denial, while improving social support, self-efficacy, coping skills, and quality of life. The second study (SWP II, which included all

  2. Enhancement of HIV-1 DNA vaccine immunogenicity by BCG-PSN, a novel adjuvant.

    Science.gov (United States)

    Sun, Jing; Hou, Jue; Li, Dingfeng; Liu, Yong; Hu, Ningzhu; Hao, Yanling; Fu, Jingjing; Hu, Yunzhang; Shao, Yiming

    2013-01-07

    Although the importance of DNA vaccines, especially as a priming immunization has been well established in numerous HIV vaccine studies, the immunogenictiy of DNA vaccines is generally moderate. Novel adjuvant is in urgent need for improving the immunogenicity of DNA vaccine. Polysaccharide and nucleic acid fraction extracted by hot phenol method from Mycobacterium bovis bacillus Calmette-Guérin, known as BCG-PSN, is a widely used immunomodulatory product in China clinical practice. In this study, we evaluated whether the BCG-PSN could serve as a novel adjuvant of DNA vaccine to trigger better cellular and humoral immune responses against the HIV-1 Env antigen in Balb/C mouse model. The BCG-PSN was mixed with 10 μg or 100 μg of pDRVI1.0gp145 (HIV-1 CN54 gp145 gene) DNA vaccine and intramuscularly immunized two or three times. We found that BCG-PSN could significantly improve the immunogenicity of DNA vaccine when co-administered with DNA vaccine. Further, at the same vaccination schedule, BCG-PSN co-immunization with 10 μg DNA vaccine could elicit cellular and humoral immune responses which were comparable to that induced by 100 μg DNA vaccine alone. Moreover, our results demonstrate that BCG-PSN can activate TLR signaling pathways and induce Th1-type cytokines secretion. These findings suggest that BCG-PSN can serve as a novel and effective adjuvant for DNA vaccination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Increased interleukin-10 in the the endocervical secretions of women with non-ulcerative sexually transmitted diseases: a mechanism for enhanced HIV-1 transmission?

    Science.gov (United States)

    Cohen, C R; Plummer, F A; Mugo, N; Maclean, I; Shen, C; Bukusi, E A; Irungu, E; Sinei, S; Bwayo, J; Brunham, R C

    1999-02-25

    Although non-ulcerative sexually transmitted diseases (STD) and bacterial vaginosis are implicated as cofactors in heterosexual HIV-1 transmission, the mechanisms have not been defined. Recent in vitro data suggest that interleukin (IL)-10 may increase susceptibility of macrophages to HIV-1 infection. Therefore, we performed this study to assess whether non-ulcerative STD are associated with detection of IL-10 in the female genital tract. Women with clinical pelvic inflammatory disease with or without cervicovaginal discharge were recruited from an STD clinic in Nairobi, Kenya. Endocervical and endometrial specimens were obtained for Neisseria gonorrhoeae and Chlamydia trachomatis DNA detection, Trichonomas vaginalis culture, and CD4 and CD8 T-cell enumeration. Bacterial vaginosis was diagnosed by Gram stain. IL-10 was detected in endocervical specimens using enzyme-linked immunosorbent assay. Blood was obtained for HIV-1 serology. One hundred and seventy-two women were studied. N. gonorrhoeae, C. trachomatis, bacterial vaginosis, and T. vaginalis were detected in 38 (21%), 17 (9%), 71 (43%), and 22 (12%) women, respectively. Cervical IL-10 was detected more often in women with N. gonorrhoeae [adjusted odds ratio (AOR), 3.4; 95% confidence interval (CI), 1.4-8.4], C. trachomatis (AOR, 4.4; 95% CI, 1.2-15.6), and bacterial vaginosis (AOR, 3.1; 95% CI, 1.4-6.9) than in women without these infections. The association of non-ulcerative STD and bacterial vaginosis with increased frequency of IL-10 detection in endocervical secretions suggests a potential mechanism through which these infections may alter susceptibility to HIV-1 infection in women.

  4. DNA vaccine molecular adjuvants SP-D-BAFF and SP-D-APRIL enhance anti-gp120 immune response and increase HIV-1 neutralizing antibody titers.

    Science.gov (United States)

    Gupta, Sachin; Clark, Emily S; Termini, James M; Boucher, Justin; Kanagavelu, Saravana; LeBranche, Celia C; Abraham, Sakhi; Montefiori, David C; Khan, Wasif N; Stone, Geoffrey W

    2015-04-01

    Broadly neutralizing antibodies (bNAbs) specific for conserved epitopes on the HIV-1 envelope (Env) are believed to be essential for protection against multiple HIV-1 clades. However, vaccines capable of stimulating the production of bNAbs remain a major challenge. Given that polyreactivity and autoreactivity are considered important characteristics of anti-HIV bNAbs, we designed an HIV vaccine incorporating the molecular adjuvants BAFF (B cell activating factor) and APRIL (a proliferation-inducing ligand) with the potential to facilitate the maturation of polyreactive and autoreactive B cells as well as to enhance the affinity and/or avidity of Env-specific antibodies. We designed recombinant DNA plasmids encoding soluble multitrimers of BAFF and APRIL using surfactant protein D as a scaffold, and we vaccinated mice with these molecular adjuvants using DNA and DNA-protein vaccination strategies. We found that immunization of mice with a DNA vaccine encoding BAFF or APRIL multitrimers, together with interleukin 12 (IL-12) and membrane-bound HIV-1 Env gp140, induced neutralizing antibodies against tier 1 and tier 2 (vaccine strain) viruses. The APRIL-containing vaccine was particularly effective at generating tier 2 neutralizing antibodies following a protein boost. These BAFF and APRIL effects coincided with an enhanced germinal center (GC) reaction, increased anti-gp120 antibody-secreting cells, and increased anti-gp120 functional avidity. Notably, BAFF and APRIL did not cause indiscriminate B cell expansion or an increase in total IgG. We propose that BAFF and APRIL multitrimers are promising molecular adjuvants for vaccines designed to induce bNAbs against HIV-1. Recent identification of antibodies that neutralize most HIV-1 strains has revived hopes and efforts to create novel vaccines that can effectively stimulate HIV-1 neutralizing antibodies. However, the multiple immune evasion properties of HIV have hampered these efforts. These include the instability of

  5. Description and Demonstration of Cognitive Behavioral Therapy to Enhance Antiretroviral Therapy Adherence and Treat Depression in HIV-Infected Adults

    OpenAIRE

    Newcomb, Michael E.; Bedoya, C. Andres; Blashill, Aaron J.; Lerner, Jonathan A.; O’Cleirigh, Conall; Pinkston, Megan M.; Safren, Steven A.

    2015-01-01

    There are an estimated 1.1 million individuals living with HIV/AIDS in the United States. In addition to the various medical comorbidities of HIV infection, depression is one of the most frequently co-occurring psychiatric conditions among HIV-infected individuals. Furthermore, depression has been found to be associated with nonadherence to antiretroviral therapy (ART), as well as HIV disease progression. Cognitive behavioral therapy (CBT) has repeatedly been found to effectively treat depres...

  6. In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Sandhya Vasan

    Full Text Available BACKGROUND: DNA-based vaccines have been safe but weakly immunogenic in humans to date. METHODS AND FINDINGS: We sought to determine the safety, tolerability, and immunogenicity of ADVAX, a multigenic HIV-1 DNA vaccine candidate, injected intramuscularly by in vivo electroporation (EP in a Phase-1, double-blind, randomized placebo-controlled trial in healthy volunteers. Eight volunteers each received 0.2 mg, 1 mg, or 4 mg ADVAX or saline placebo via EP, or 4 mg ADVAX via standard intramuscular injection at weeks 0 and 8. A third vaccination was administered to eleven volunteers at week 36. EP was safe, well-tolerated and considered acceptable for a prophylactic vaccine. EP delivery of ADVAX increased the magnitude of HIV-1-specific cell mediated immunity by up to 70-fold over IM injection, as measured by gamma interferon ELISpot. The number of antigens to which the response was detected improved with EP and increasing dosage. Intracellular cytokine staining analysis of ELISpot responders revealed both CD4+ and CD8+ T cell responses, with co-secretion of multiple cytokines. CONCLUSIONS: This is the first demonstration in healthy volunteers that EP is safe, tolerable, and effective in improving the magnitude, breadth and durability of cellular immune responses to a DNA vaccine candidate. TRIAL REGISTRATION: ClinicalTrials.gov NCT00545987.

  7. Combining epidemiologic and biostatistical tools to enhance variable selection in HIV cohort analyses.

    Directory of Open Access Journals (Sweden)

    Christopher Rentsch

    Full Text Available BACKGROUND: Variable selection is an important step in building a multivariate regression model for which several methods and statistical packages are available. A comprehensive approach for variable selection in complex multivariate regression analyses within HIV cohorts is explored by utilizing both epidemiological and biostatistical procedures. METHODS: Three different methods for variable selection were illustrated in a study comparing survival time between subjects in the Department of Defense's National History Study and the Atlanta Veterans Affairs Medical Center's HIV Atlanta VA Cohort Study. The first two methods were stepwise selection procedures, based either on significance tests (Score test, or on information theory (Akaike Information Criterion, while the third method employed a Bayesian argument (Bayesian Model Averaging. RESULTS: All three methods resulted in a similar parsimonious survival model. Three of the covariates previously used in the multivariate model were not included in the final model suggested by the three approaches. When comparing the parsimonious model to the previously published model, there was evidence of less variance in the main survival estimates. CONCLUSIONS: The variable selection approaches considered in this study allowed building a model based on significance tests, on an information criterion, and on averaging models using their posterior probabilities. A parsimonious model that balanced these three approaches was found to provide a better fit than the previously reported model.

  8. The Chinese Life-Steps Program: A Cultural Adaptation of a Cognitive-Behavioral Intervention to Enhance HIV Medication Adherence

    Science.gov (United States)

    Shiu, Cheng-Shi; Chen, Wei-Ti; Simoni, Jane; Fredriksen-Goldsen, Karen; Zhang, Fujie; Zhou, Hongxin

    2013-01-01

    China is considered to be the new frontier of the global AIDS pandemic. Although effective treatment for HIV is becoming widely available in China, adherence to treatment remains a challenge. This study aimed to adapt an intervention promoting HIV-medication adherence--favorably evaluated in the West--for Chinese HIV-positive patients. The…

  9. Safrole-modulated immune response is mediated through enhancing the CD11b surface marker and stimulating the phagocytosis by macrophages in BALB/c mice.

    Science.gov (United States)

    Fan, M-J; Lin, S-Y; Yu, C-C; Tang, N-Y; Ho, H-C; Chung, H-K; Yang, J-S; Huang, Y-P; Ip, S-W; Chung, J-G

    2012-09-01

    Safrole, a component of piper betle inflorescence, is a documented rodent hepatocarcinogen and inhibits bactericidal activity and the release of superoxide anion (O(2-)) by polymorphonuclear leukocytes (PMNs). In the present study, we investigated the effects of safrole on immune responses, including natural killer (NK) cell cytotoxicity, phagocytic activity and population distribution of leukocytes from normal BALB/c mice. The cells population (cell surface markers) and phagocytosis by macrophages and monocytes from the peripheral blood mononuclear cells (PBMCs) were determined, and NK cell cytotoxicity from splenocytes of mice after oral treatment with safrole was performed using flow cytometric assay. Results indicated that safrole did not affect the weights of body, spleen and liver when compared with the normal mice group. Safrole also promoted the levels of CD11b (monocytes) and Mac-3 (macrophages) that might be the reason for promoting the activity of phagocytosis. However, safrole reduced the cell population such as CD3 (T cells) and CD19 (B cells) of safrole-treated normal mice by oral administration. Furthermore, safrole elevated the uptake of Escherichia coli-labelled fluorescein isothiocyanate (FITC) by macrophages from blood and significantly stimulated the NK cell cytotoxicity in normal mice in vivo. In conclusions, alterations of the cell population (the increase in monocytes and macrophages, respectively) in safrole-treated normal BALB/c mice might indirectly influence the immune responses in vivo.

  10. Mycobacterium tuberculosis replicates within necrotic human macrophages

    Science.gov (United States)

    Lerner, Thomas R.; Repnik, Urska; Herbst, Susanne; Collinson, Lucy M.; Griffiths, Gareth

    2017-01-01

    Mycobacterium tuberculosis modulation of macrophage cell death is a well-documented phenomenon, but its role during bacterial replication is less characterized. In this study, we investigate the impact of plasma membrane (PM) integrity on bacterial replication in different functional populations of human primary macrophages. We discovered that IFN-γ enhanced bacterial replication in macrophage colony-stimulating factor–differentiated macrophages more than in granulocyte–macrophage colony-stimulating factor–differentiated macrophages. We show that permissiveness in the different populations of macrophages to bacterial growth is the result of a differential ability to preserve PM integrity. By combining live-cell imaging, correlative light electron microscopy, and single-cell analysis, we found that after infection, a population of macrophages became necrotic, providing a niche for M. tuberculosis replication before escaping into the extracellular milieu. Thus, in addition to bacterial dissemination, necrotic cells provide first a niche for bacterial replication. Our results are relevant to understanding the environment of M. tuberculosis replication in the host. PMID:28242744

  11. A Cross-Site Intervention in Chinese Rural Migrants Enhances HIV/AIDS Knowledge, Attitude and Behavior

    Directory of Open Access Journals (Sweden)

    Ning Li

    2014-04-01

    Full Text Available Background: With the influx of rural migrants into urban areas, the spread of HIV has increased significantly in Shaanxi Province (China. Migrant workers are at high risk of HIV infection due to social conditions and hardships (isolation, separation, marginalization, barriers to services, etc.. Objective: We explored the efficacy of a HIV/AIDS prevention and control program for rural migrants in Shaanxi Province, administered at both rural and urban sites. Methods: Guidance concerning HIV/AIDS prevention was given to the experimental group (266 migrants for 1 year by the center of disease control, community health agencies and family planning department. The intervention was conducted according to the HIV/AIDS Prevention Management Manual for Rural Migrants. A control group of migrants only received general population intervention. The impact of the intervention was evaluated by administering HIV/AIDS knowledge, attitudes and sexual behavior (KAB questionnaires after 6 and 12 months. Results: In the experimental group; 6 months of intervention achieved improvements in HIV/AIDS related knowledge. After 12 months; HIV/AIDS-related knowledge reached near maximal scores. Attitude and most behaviors scores were significantly improved. Moreover; the experimental group showed significant differences in HIV-AIDS knowledge; attitude and most behavior compared with the control group. Conclusions: The systematic long-term cross-site HIV/AIDS prevention in both rural and urban areas is a highly effective method to improve HIV/AIDS KAB among rural migrants.

  12. Macrophages and Uveitis in Experimental Animal Models

    Directory of Open Access Journals (Sweden)

    Salvador Mérida

    2015-01-01

    Full Text Available Resident and infiltrated macrophages play relevant roles in uveitis as effectors of innate immunity and inductors of acquired immunity. They are major effectors of tissue damage in uveitis and are also considered to be potent antigen-presenting cells. In the last few years, experimental animal models of uveitis have enabled us to enhance our understanding of the leading role of macrophages in eye inflammation processes, including macrophage polarization in experimental autoimmune uveoretinitis and the major role of Toll-like receptor 4 in endotoxin-induced uveitis. This improved knowledge should guide advantageous iterative research to establish mechanisms and possible therapeutic targets for human uveitis resolution.

  13. The cellular protein hnRNP A2/B1 enhances HIV-1 transcription by unfolding LTR promoter G-quadruplexes

    Science.gov (United States)

    Scalabrin, Matteo; Frasson, Ilaria; Ruggiero, Emanuela; Perrone, Rosalba; Tosoni, Elena; Lago, Sara; Tassinari, Martina; Palù, Giorgio; Richter, Sara N.

    2017-01-01

    G-quadruplexes are four-stranded conformations of nucleic acids that act as cellular epigenetic regulators. A dynamic G-quadruplex forming region in the HIV-1 LTR promoter represses HIV-1 transcription when in the folded conformation. This activity is enhanced by nucleolin, which induces and stabilizes the HIV-1 LTR G-quadruplexes. In this work by a combined pull-down/mass spectrometry approach, we consistently found hnRNP A2/B1 as an additional LTR-G-quadruplex interacting protein. Surface plasmon resonance confirmed G-quadruplex specificity over linear sequences and fluorescence resonance energy transfer analysis indicated that hnRNP A2/B1 is able to efficiently unfold the LTR G-quadruplexes. Evaluation of the thermal stability of the LTR G-quadruplexes in different-length oligonucleotides showed that the protein is fit to be most active in the LTR full-length environment. When hnRNP A2/B1 was silenced in cells, LTR activity decreased, indicating that the protein acts as a HIV-1 transcription activator. Our data highlight a tightly regulated control of transcription based on G-quadruplex folding/unfolding, which depends on interacting cellular proteins. These findings provide a deeper understanding of the viral transcription mechanism and may pave the way to the development of drugs effective against the integrated HIV-1, present both in actively and latently infected cells.

  14. A compensatory mutation provides resistance to disparate HIV fusion inhibitor peptides and enhances membrane fusion.

    Directory of Open Access Journals (Sweden)

    Matthew P Wood

    Full Text Available Fusion inhibitors are a class of antiretroviral drugs used to prevent entry of HIV into host cells. Many of the fusion inhibitors being developed, including the drug enfuvirtide, are peptides designed to competitively inhibit the viral fusion protein gp41. With the emergence of drug resistance, there is an increased need for effective and unique alternatives within this class of antivirals. One such alternative is a class of cyclic, cationic, antimicrobial peptides known as θ-defensins, which are produced by many non-human primates and exhibit broad-spectrum antiviral and antibacterial activity. Currently, the θ-defensin analog RC-101 is being developed as a microbicide due to its specific antiviral activity, lack of toxicity to cells and tissues, and safety in animals. Understanding potential RC-101 resistance, and how resistance to other fusion inhibitors affects RC-101 susceptibility, is critical for future development. In previous studies, we identified a mutant, R5-tropic virus that had evolved partial resistance to RC-101 during in vitro selection. Here, we report that a secondary mutation in gp41 was found to restore replicative fitness, membrane fusion, and the rate of viral entry, which were compromised by an initial mutation providing partial RC-101 resistance. Interestingly, we show that RC-101 is effective against two enfuvirtide-resistant mutants, demonstrating the clinical importance of RC-101 as a unique fusion inhibitor. These findings both expand our understanding of HIV drug-resistance to diverse peptide fusion inhibitors and emphasize the significance of compensatory gp41 mutations.

  15. Human cyclin T1 expression ameliorates a T-cell-specific transcriptional limitation for HIV in transgenic rats, but is not sufficient for a spreading infection of prototypic R5 HIV-1 strains ex vivo

    Directory of Open Access Journals (Sweden)

    Littman Dan R

    2009-01-01

    Full Text Available Abstract Background Cells derived from native rodents have limits at distinct steps of HIV replication. Rat primary CD4 T-cells, but not macrophages, display a profound transcriptional deficit that is ameliorated by transient trans-complementation with the human Tat-interacting protein Cyclin T1 (hCycT1. Results Here, we generated transgenic rats that selectively express hCycT1 in CD4 T-cells and macrophages. hCycT1 expression in rat T-cells boosted early HIV gene expression to levels approaching those in infected primary human T-cells. hCycT1 expression was necessary, but not sufficient, to enhance HIV transcription in T-cells from individual transgenic animals, indicating that endogenous cellular factors are critical co-regulators of HIV gene expression in rats. T-cells from hCD4/hCCR5/hCycT1-transgenic rats did not support productive infection of prototypic wild-type R5 HIV-1 strains ex vivo, suggesting one or more significant limitation in the late phase of the replication cycle in this primary rodent cell type. Remarkably, we identify a replication-competent HIV-1 GFP reporter strain (R7/3 YU-2 Env that displays characteristics of a spreading, primarily cell-to-cell-mediated infection in primary T-cells from hCD4/hCCR5-transgenic rats. Moreover, the replication of this recombinant HIV-1 strain was significantly enhanced by hCycT1 transgenesis. The viral determinants of this so far unique replicative ability are currently unknown. Conclusion Thus, hCycT1 expression is beneficial to de novo HIV infection in a transgenic rat model, but additional genetic manipulations of the host or virus are required to achieve full permissivity.

  16. Macrophage Polarization in Obesity and Type 2 Diabetes: Weighing Down our Understanding of Macrophage Function?

    Directory of Open Access Journals (Sweden)

    Michael James Kraakman

    2014-09-01

    Full Text Available Obesity and type 2 diabetes are now recognized as chronic pro-inflammatory diseases. In the last decade, the role of the macrophage in particular has become increasingly implicated in their pathogenesis. Abundant literature now establishes that monocytes get recruited to peripheral tissues (ie pancreas, liver and adipose tissue to become resident macrophages and contribute to local inflammation, development of insulin resistance or even pancreatic dysfunction. Furthermore, an accumulation of evidence has established an important role for macrophage polarisation in the development of metabolic diseases. The general view in obesity is that there is an imbalance in the ratio of M1/M2 macrophages, with M1 pro-inflammatory macrophages being enhanced compared with M2 anti-inflammatory macrophages being down-regulated, leading to chronic inflammation and the propagation of metabolic dysfunction. However, there is emerging evidence revealing a more complex scenario with the spectrum of macrophage states exceeding well beyond the M1/M2 binary classification and confused further by human and animal models exhibiting different macrophage profiles. In this review we will discuss the recent findings regarding macrophage polarization in obesity and type 2 diabetes.

  17. Envelope deglycosylation enhances antigenicity of HIV-1 gp41 epitopes for both broad neutralizing antibodies and their unmutated ancestor antibodies.

    Directory of Open Access Journals (Sweden)

    Ben-Jiang Ma

    2011-09-01

    Full Text Available The HIV-1 gp41 envelope (Env membrane proximal external region (MPER is an important vaccine target that in rare subjects can elicit neutralizing antibodies. One mechanism proposed for rarity of MPER neutralizing antibody generation is lack of reverted unmutated ancestor (putative naive B cell receptor antibody reactivity with HIV-1 envelope. We have studied the effect of partial deglycosylation under non-denaturing (native conditions on gp140 Env antigenicity for MPER neutralizing antibodies and their reverted unmutated ancestor antibodies. We found that native deglycosylation of clade B JRFL gp140 as well as group M consensus gp140 Env CON-S selectively increased the reactivity of Env with the broad neutralizing human mAbs, 2F5 and 4E10. Whereas fully glycosylated gp140 Env either did not bind (JRFL, or weakly bound (CON-S, 2F5 and 4E10 reverted unmutated ancestors, natively deglycosylated JRFL and CON-S gp140 Envs did bind well to these putative mimics of naive B cell receptors. These data predict that partially deglycoslated Env would bind better than fully glycosylated Env to gp41-specific naïve B cells with improved immunogenicity. In this regard, immunization of rhesus macaques demonstrated enhanced immunogenicity of the 2F5 MPER epitope on deglyosylated JRFL gp140 compared to glycosylated JRFL gp140. Thus, the lack of 2F5 and 4E10 reverted unmutated ancestor binding to gp140 Env may not always be due to lack of unmutated ancestor antibody reactivity with gp41 peptide epitopes, but rather, may be due to glycan interference of binding of unmutated ancestor antibodies of broad neutralizing mAb to Env gp41.

  18. Assembly of infectious HIV-1 in human epithelial and T-lymphoblastic cell lines.

    Science.gov (United States)

    Grigorov, Boyan; Arcanger, Fabienne; Roingeard, Philippe; Darlix, Jean-Luc; Muriaux, Delphine

    2006-06-16

    The canonical view of the ultimate steps of HIV-1 replication is that virus assembly and budding are taking place at the plasma membrane of infected cells. Surprisingly, recent studies revealed that these steps also occur on endosomal membranes in the interior of infected cells, such as macrophages. This prompted us to revisit the site of HIV-1 assembly in human epithelial-like cells and in infected human T-lymphoblastic cells. To address this question, we investigated the intracellular location of the major viral structural components of HIV-1, namely Gag, Env and the genomic RNA. Using a sub-cellular fractionation method, as well as immuno-confocal and electron microscopy, we show that Gag, the Env glycoproteins and the genomic RNA accumulate in late endosomes that contain infectious HIV-1 particles. In epithelial-like 293T cells, HIV-1 assembles and buds both at the plasma membrane and in endosomes, while in chronically infected human T lymphocytes, viral assembly mostly occurs within the cell where large amounts of infectious virions accumulate in endosomal compartments. In addition, HIV-1 release could be enhanced by ionomycin, a drug stimulating calcium-dependent exocytosis. These results favour the view that newly made Gag molecules associate with the genomic RNA in the cytosol, then viral core complexes can be targeted to late endosomes together with Env, where infectious HIV-1 are made and subsequently released by exocytosis.

  19. HIV-1 infection of in vitro cultured human monocytes: early events and influence of anti HIV-1 antibodies

    DEFF Research Database (Denmark)

    Arendrup, M; Olofsson, S; Nielsen, Jens Ole;

    1994-01-01

    To characterize the role of the humoral immune response on HIV-1 infection of monocytes and macrophages (M phi s) we examined the susceptibility of in vitro cultured monocyte/M phi s to various HIV-1 isolates and the influence of heterologous and particularly autologous anti HIV-1 sera on this in...

  20. Water extract isolated from Chelidonium majus enhances nitric oxide and tumour necrosis factor-alpha production via nuclear factor-kappaB activation in mouse peritoneal macrophages.

    Science.gov (United States)

    Chung, Hwan-Suck; An, Hyo-Jin; Jeong, Hyun-Ja; Won, Jin-Hee; Hong, Seung-Heon; Kim, Hyung-Min

    2004-01-01

    Chelidonium majus is used to treat several inflammatory diseases and tumours. We have examined the effect of C. majus on nitric oxide (NO) production using mouse peritoneal macrophages. When C. majus was used in combination with recombinant interferon-gamma (rIFN-gamma, 10 U mL(-1)), there was a marked cooperative induction of NO production. Treatment of rIFN-gamma plus C. majus (1 mgmL(-1)) in macrophages caused a significant increase in tumour necrosis factor-alpha (TNF-alpha) production. The increased production of NO and TNF-alpha from rIFN-gamma plus C. majus-stimulated cells was almost completely inhibited by nuclear factor-kappaB (NF-kappaB) inhibitor, pyrrolidine dithiocarbamate (100 microM). These findings demonstrated that C. majus increased the production of NO and TNF-alpha by rIFN-gamma-primed macrophages and suggested that NF-kappaB played a critical role in mediating the effects of C. majus.

  1. A whole genome screen for HIV restriction factors

    Directory of Open Access Journals (Sweden)

    Liu Li

    2011-11-01

    Full Text Available Abstract Background Upon cellular entry retroviruses must avoid innate restriction factors produced by the host cell. For human immunodeficiency virus (HIV human restriction factors, APOBEC3 (apolipoprotein-B-mRNA-editing-enzyme, p21 and tetherin are well characterised. Results To identify intrinsic resistance factors to HIV-1 replication we screened 19,121 human genes and identified 114 factors with significant inhibition of infection. Those with a known function are involved in a broad spectrum of cellular processes including receptor signalling, vesicle trafficking, transcription, apoptosis, cross-nuclear membrane transport, meiosis, DNA damage repair, ubiquitination and RNA processing. We focused on the PAF1 complex which has been previously implicated in gene transcription, cell cycle control and mRNA surveillance. Knockdown of all members of the PAF1 family of proteins enhanced HIV-1 reverse transcription and integration of provirus. Over-expression of PAF1 in host cells renders them refractory to HIV-1. Simian Immunodeficiency Viruses and HIV-2 are also restricted in PAF1 expressing cells. PAF1 is expressed in primary monocytes, macrophages and T-lymphocytes and we demonstrate strong activity in MonoMac1, a monocyte cell line. Conclusions We propose that the PAF1c establishes an anti-viral state to prevent infection by incoming retroviruses. This previously unrecognised mechanism of restriction could have implications for invasion of cells by any pathogen.

  2. Adoptive transfer of macrophages ameliorates renal fibrosis in mice.

    Science.gov (United States)

    Nishida, Masashi; Okumura, Yasuko; Fujimoto, Shin-Ichiro; Shiraishi, Isao; Itoi, Toshiyuki; Hamaoka, Kenji

    2005-06-24

    We performed adoptive transfer of bone marrow-derived (BM) macrophages following pharmacological depletion of leukocytes in a mouse model of unilateral ureteral obstruction (UUO). Treatment with cyclophosphamide (CPM) caused marked decrease in the numbers of F4/80-positive interstitial macrophages as well as in peripheral blood leukocyte counts, and adoptive transfer of BM macrophages to CPM-treated mice resulted in significant increase in the numbers of interstitial macrophages both at day 5 and at day 14 after UUO. At day 5 after UUO, no significant change was observed in the degree of renal interstitial fibrosis either by treatment with CPM or with CPM+macrophage. However, at day 14 after UUO, treatment with CPM caused significant increase in the degree of interstitial fibrosis, and adoptive macrophage transfer to these mice attenuated this enhancement in renal fibrosis. Our result suggests the role of infiltrating macrophages on facilitating tissue repair at late stage of UUO.

  3. Mutation of neutralizing/antibody-dependent enhancing epitope on spike protein and 7b gene of feline infectious peritonitis virus: influences of viral replication in monocytes/macrophages and virulence in cats.

    Science.gov (United States)

    Takano, Tomomi; Tomiyama, Yoshika; Katoh, Yasuichiroh; Nakamura, Michiyo; Satoh, Ryoichi; Hohdatsu, Tsutomu

    2011-03-01

    We previously prepared neutralizing monoclonal antibody (MAb)-resistant (mar) mutant viruses using a laboratory strain feline infectious peritonitis virus (FIPV) 79-1146 (Kida et al., 1999). Mar mutant viruses are mutated several amino acids of the neutralizing epitope of Spike protein, compared with the parent strain, FIPV 79-1146. We clarified that MAb used to prepare mar mutant viruses also lost its activity to enhance homologous mar mutant viruses, strongly suggesting that neutralizing and antibody-dependent enhancing epitopes are present in the same region in the strain FIPV 79-1146. We also discovered that amino acid mutation in the neutralizing epitope reduced viral replication in monocytes/macrophages. We also demonstrated that the mutation or deletion of two nucleotides in 7b gene abrogate the virulence of strain FIPV 79-1146.

  4. Functional modifications of macrophage activity after sublethal irradiation. [Toxoplasma gondii

    Energy Technology Data Exchange (ETDEWEB)

    Swartz, R.P.

    1982-01-01

    The modifications of macrophage activity following sublethal irradiation, both in vivo and in vitro, were studied using spreading and C3b-receptor-mediated ingestion assays. Nonelicited peritoneal washout cells were examined for changes in activity and selected population characteristics. The cells from irradiated mice were from a resident peritoneal population and not immigrating cells. The macrophage population showed enhanced activity early with a refractory period (24-48) when the macrophages were unresponsive to stimulation by irradiated lymphocytes. The enhanced activity was inversely dose dependent on macrophage. The lymphocytes showed a regulatory function(s) on the time post irradiation at which they were examined. Early lymphocytes exhibited the ability to enhance the activity of normal macrophages while lymphocytes removed 24 hours post irradiation could suppress the activity of already activated macrophages. The effect(s) of the various lymphocyte populations were reproduced with cell-free supernatants which was indicative of the production of lymphokines. Separation on nylon wool columns indicated that the activity resided primarily in the T-cell population of lymphocytes. In vitro irradiation indicated that stimulation of the lymphocytes is macrophage dependent. Additional work indicated that sublethally irradiated macrophages did not inhibit replication of the coccidian protozoon Toxoplasma gondii although they did show increased phagocytosis. Examination of the serum from whole body irradiated mice showed the presence of a postirradiation substance which enhanced the phagocytosis of normal macrophages. It was not present in the serum of normal mice and was not endotoxin.

  5. Infection with HIV and HCV enhances the release of fatty acid synthase into circulation: evidence for a novel indicator of viral infection

    Directory of Open Access Journals (Sweden)

    Aragonès Gerard

    2010-08-01

    Full Text Available Abstract Background Fatty acid synthase (FASN is an enzyme synthesized by the liver and plays an important role in lipogenesis. The present study aimed to investigate whether serum FASN concentration may provide a direct link between HIV and/or HCV viral infections and lipid metabolic disorders commonly observed in HIV/HCV-infected patients. Methods We evaluated serum FASN concentration in 191 consecutive HIV-infected patients in the absence or presence of HCV co-infection. For comparison, 102 uninfected controls were included. Metabolic and inflammatory phenotype was also compared with respect to the presence of HCV co-infection. Results Serum FASN concentration was significantly higher in HIV-infected patients than in healthy participants and HCV co-infected patients showed higher levels than those without co-infection. Levels were also affected by treatment regimen, but marginally influenced by virological variables. Insulin concentration was the sole variable among metabolic parameters that demonstrated a significant correlation with serum FASN concentrations. Serum alanine aminotransferase (ALT values correlated significantly with serum FASN concentration and provided the best discrimination with respect to the presence or absence of HCV co-infection. In multivariate analysis, only ALT, monocyte chemoattractant protein-1 (MCP-1 and the presence of antiretroviral treatment regimen significantly contributed to explain serum FASN concentration in HIV/HCV co-infected patients. Conclusion Serum FASN concentration is significantly increased in HIV-infected individuals. The release of FASN into the circulation is further enhanced in patients who are co-infected with HCV. Subsequent studies should explore the usefulness of this indicator to monitor the effect of viral infections on disease progression and survival.

  6. Therapeutic doses of irradiation activate viral transcription and induce apoptosis in HIV-1 infected cells

    Science.gov (United States)

    Iordanskiy, Sergey; Van Duyne, Rachel; Sampey, Gavin C; Woodson, Caitlin M; Fry, Kelsi; Saifuddin, Mohammed; Guo, Jia; Wu, Yuntao; Romerio, Fabio; Kashanchi, Fatah

    2015-01-01

    The highly active antiretroviral therapy reduces HIV-1 RNA in plasma to undetectable levels. However, the virus continues to persist in the long-lived resting CD4+ T cells, macrophages and astrocytes which form a viral reservoir in infected individuals. Reactivation of viral transcription is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus. Using the chronically HIV-1 infected T lymphoblastoid and monocytic cell lines, primary quiescent CD4+ T cells and humanized mice infected with dual-tropic HIV-1 89.6, we examined the effect of various X-ray irradiation (IR) doses (used for HIV-related lymphoma treatment and lower doses) on HIV-1 transcription and viability of infected cells. Treatment of both T cells and monocytes with IR, a well-defined stress signal, led to increase of HIV-1 transcription, as evidenced by the presence of RNA polymerase II and reduction of HDAC1 and methyl transferase SUV39H1 on the HIV-1 promoter. This correlated with the increased GFP signal and elevated level of intracellular HIV-1 RNA in the IR-treated quiescent CD4+ T cells infected with GFP-encoding HIV-1. Exposition of latently HIV-1infected monocytes treated with PKC agonist bryostatin 1 to IR enhanced transcription activation effect of this latency-reversing agent. Increased HIV-1 replication after IR correlated with higher cell death: the level of phosphorylated Ser46 in p53, responsible for apoptosis induction, was markedly higher in the HIV-1 infected cells following IR treatment. Exposure of HIV-1 infected humanized mice with undetectable viral RNA level to IR resulted in a significant increase of HIV-1 RNA in plasma, lung and brain tissues. Collectively, these data point to the use of low to moderate dose of IR alone or in combination with HIV-1 transcription activators as a potential application for the “Shock and Kill” strategy for latently HIV-1 infected cells. PMID:26184775

  7. Fusion proteins of HIV-1 envelope glycoprotein gp120 with CD4-induced antibodies showed enhanced binding to CD4 and CD4 binding site antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weizao, E-mail: chenw3@mail.nih.gov [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Feng, Yang [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Wang, Yanping [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); The Basic Research Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Zhu, Zhongyu; Dimitrov, Dimiter S. [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Some recombinant HIV-1 gp120s do not preserve their conformations on gp140s. Black-Right-Pointing-Pointer We hypothesize that CD4i antibodies could induce conformational changes in gp120. Black-Right-Pointing-Pointer CD4i antibodies enhance binding of CD4 and CD4bs antibodies to gp120. Black-Right-Pointing-Pointer CD4i antibody-gp120 fusion proteins could have potential as vaccine immunogens. -- Abstract: Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibit decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.

  8. Modulation of Macrophage Efferocytosis in Inflammation

    Directory of Open Access Journals (Sweden)

    Darlynn R Korns

    2011-11-01

    Full Text Available A critical function of macrophages within the inflammatory milieu is the removal of dying cells by a specialized phagocytic process called efferocytosis (to carry to the grave. Through specific receptor engagement and induction of downstream signaling, efferocytosing macrophages promote resolution of inflammation by i efficiently engulfing dying cells, thus avoiding cellular disruption and release of inflammatory contents, and ii producing anti-inflammatory mediators such as IL-10 and TGF-β that dampen pro-inflammatory responses. Evidence suggests that plasticity in macrophage programming, in response to changing environmental cues, modulates efferocytic capability. Essential to programming for enhanced efferocytosis is activation of the nuclear receptors PPARγ, PPARδ, LXR and possibly RXRα. Additionally, a number of signals in the inflammatory milieu, including those from dying cells themselves, can influence efferocytic efficacy either by acting as immediate inhibitors/enhancers or by altering macrophage programming for longer-term effects. Importantly, sustained inflammatory programming of macrophages can lead to defective apoptotic cell clearance and is associated with development of autoimmunity and other chronic inflammatory disorders. This review summarizes the current knowledge of the multiple factors that modulate macrophage efferocytic ability and highlights emerging therapeutic targets with significant potential for limiting chronic inflammation.

  9. Long-Time Treatment by Low-Dose N-Acetyl-L-Cysteine Enhances Proinflammatory Cytokine Expressions in LPS-Stimulated Macrophages

    OpenAIRE

    Tomokazu Ohnishi; Kenjiro Bandow; Kyoko Kakimoto; Joji Kusuyama; Tetsuya Matsuguchi

    2014-01-01

    N-acetyl-L-cysteine is known to act as a reactive oxygen species scavenger and used in clinical applications. Previous reports have shown that high-dose N-acetyl-L-cysteine treatment inhibits the expression of proinflammatory cytokines in activated macrophages. Here, we have found that long-time N-acetyl-L-cysteine treatment at low-concentration increases phosphorylation of extracellular signal-regulated kinase 1/2 and AKT, which are essential for the induction of proinflammatory cytokines in...

  10. Co-administration of Interleukin-2 Enhances Cellular and Humoral Immune Responses to HIV Vaccine DNA Prime/MVA Boost Regime

    Institute of Scientific and Technical Information of China (English)

    JIANG Chun-lai; YU Xiang-hui; WU Yong-ge; LI Wei; KONG Wei

    2005-01-01

    Interleukine-2(IL-2) is a growth factor for antigen-stimulated T lymphocytes and is responsible for T-cell clonal expansion after antigen recognition. It has been demonstrated that DNA vaccine-elicited immune responses in mice could be augmented substantially by using either an IL-2 protein or a plasmid expressing IL-2. Twenty mice, divided into four experimental groups, were immunized with: (1) sham plasmid; (2) HIV-1 DNA vaccine alone; (3) HIV-1 DNA vaccine and IL-2 protein; or (4) HIV-1 DNA vaccine and IL-2 plasmid, separately. All the groups were immunized 3 times at a 2-week interval. Fourteen days after the last DNA vaccine injection, recombinant MVA was injected into all the mice except those in group 1. ELISA and ELISPOT were employed to investigate the effect of IL-2 on DNA vaccine immune responses. The obtained results strongly indicate that the efficacy of HIV vaccine can be enhanced by co-administration of a plasmid encoding IL-2.

  11. Cyclophilin A enhances macrophage differentiation and lipid uptake in high glucose conditions: a cellular mechanism for accelerated macro vascular disease in diabetes mellitus.

    Science.gov (United States)

    Ramachandran, Surya; Vinitha, Anandan; Kartha, Cheranellore Chandrasekharan

    2016-11-03

    Vascular disease in diabetes is initiated by monocyte adhesion to vascular endothelium, transmigration and formation of foam cells. Increasing clinical evidence supports a role for the secretory protein, cyclophilin A in diabetic vascular disease. The means by which cyclophilin A contributes to vascular lesion development in diabetes is however largely unknown. In this study we investigated using THP1 cells and human monocytes whether cyclophilin A under hyperglycemic conditions, functions in the inflammatory cascade as a chemoattractant and increases lipid uptake by formation of foam cells invitro. We developed an invitro model of monocytes cultured in 20 mm glucose (high glucose) equivalent to 360 mg/dL of plasma glucose levels. These monocytes were then differentiated into macrophages using PMA and subsequently transformed to lipid laden foam cells using oxidized low density lipoproteins in the presence and absence of cyclophilin A. This cellular model was used to study monocyte to macrophage differentiation, transmigration and foam cell formation. A similar cellular model using siRNA mediated transient elimination of the cyclophilin A gene as well as chemical inhibitors were used to further confirm the role of cyclophilin A in the differentiation and foam cell formation process. Cyclophilin A effectively increased migration of high glucose treated monocytes to the endothelial cell monolayer (p diabetes mellitus.

  12. Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection.

    Science.gov (United States)

    Damouche, Abderaouf; Lazure, Thierry; Avettand-Fènoël, Véronique; Huot, Nicolas; Dejucq-Rainsford, Nathalie; Satie, Anne-Pascale; Mélard, Adeline; David, Ludivine; Gommet, Céline; Ghosn, Jade; Noel, Nicolas; Pourcher, Guillaume; Martinez, Valérie; Benoist, Stéphane; Béréziat, Véronique; Cosma, Antonio; Favier, Benoit; Vaslin, Bruno; Rouzioux, Christine; Capeau, Jacqueline; Müller-Trutwin, Michaela; Dereuddre-Bosquet, Nathalie; Le Grand, Roger; Lambotte, Olivier; Bourgeois, Christine

    2015-09-01

    Two of the crucial aspects of human immunodeficiency virus (HIV) infection are (i) viral persistence in reservoirs (precluding viral eradication) and (ii) chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART)-controlled HIV-infected patients). The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF); the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV). The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART). Data on the impact of HIV on the SVF (especially in individuals not receiving ART) are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV) infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells) are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low-grade chronic

  13. Adipose Tissue Is a Neglected Viral Reservoir and an Inflammatory Site during Chronic HIV and SIV Infection.

    Directory of Open Access Journals (Sweden)

    Abderaouf Damouche

    2015-09-01

    Full Text Available Two of the crucial aspects of human immunodeficiency virus (HIV infection are (i viral persistence in reservoirs (precluding viral eradication and (ii chronic inflammation (directly associated with all-cause morbidities in antiretroviral therapy (ART-controlled HIV-infected patients. The objective of the present study was to assess the potential involvement of adipose tissue in these two aspects. Adipose tissue is composed of adipocytes and the stromal vascular fraction (SVF; the latter comprises immune cells such as CD4+ T cells and macrophages (both of which are important target cells for HIV. The inflammatory potential of adipose tissue has been extensively described in the context of obesity. During HIV infection, the inflammatory profile of adipose tissue has been revealed by the occurrence of lipodystrophies (primarily related to ART. Data on the impact of HIV on the SVF (especially in individuals not receiving ART are scarce. We first analyzed the impact of simian immunodeficiency virus (SIV infection on abdominal subcutaneous and visceral adipose tissues in SIVmac251 infected macaques and found that both adipocytes and adipose tissue immune cells were affected. The adipocyte density was elevated, and adipose tissue immune cells presented enhanced immune activation and/or inflammatory profiles. We detected cell-associated SIV DNA and RNA in the SVF and in sorted CD4+ T cells and macrophages from adipose tissue. We demonstrated that SVF cells (including CD4+ T cells are infected in ART-controlled HIV-infected patients. Importantly, the production of HIV RNA was detected by in situ hybridization, and after the in vitro reactivation of sorted CD4+ T cells from adipose tissue. We thus identified adipose tissue as a crucial cofactor in both viral persistence and chronic immune activation/inflammation during HIV infection. These observations open up new therapeutic strategies for limiting the size of the viral reservoir and decreasing low

  14. Sustained Small Interfering RNA-Mediated Human Immunodeficiency Virus Type 1 Inhibition in Primary Macrophages

    OpenAIRE

    2003-01-01

    Small interfering RNAs (siRNAs) can induce potent gene silencing by degradation of cognate mRNA. However, in dividing cells, the silencing lasts only 3 to 7 days, presumably because of siRNA dilution with cell division. Here, we investigated if sustained siRNA-mediated silencing of human immunodeficiency virus type 1 (HIV-1) is possible in terminally differentiated macrophages, which constitute an important reservoir of HIV in vivo. CCR5, the major HIV-1 coreceptor...

  15. HIV Transmission

    Science.gov (United States)

    ... Abroad Treatment Basic Statistics Get Tested Find an HIV testing site near you. Enter ZIP code or city Follow HIV/AIDS CDC HIV CDC HIV/AIDS See RSS | ... on HIV Syndicated Content Website Feedback HIV/AIDS HIV Transmission Language: English (US) Español (Spanish) Recommend ...

  16. Description and Demonstration of Cognitive Behavioral Therapy to Enhance Antiretroviral Therapy Adherence and Treat Depression in HIV-Infected Adults.

    Science.gov (United States)

    Newcomb, Michael E; Bedoya, C Andres; Blashill, Aaron J; Lerner, Jonathan A; O'Cleirigh, Conall; Pinkston, Megan M; Safren, Steven A

    2015-11-01

    There are an estimated 1.1 million individuals living with HIV/AIDS in the United States. In addition to the various medical comorbidities of HIV infection, depression is one of the most frequently co-occurring psychiatric conditions among HIV-infected individuals. Furthermore, depression has been found to be associated with nonadherence to antiretroviral therapy (ART), as well as HIV disease progression. Cognitive behavioral therapy (CBT) has repeatedly been found to effectively treat depression in adult populations, and CBT for adherence and depression (CBT-AD) is an effective treatment for improving depressive symptoms and medication adherence in the context of various chronic health conditions, including diabetes and HIV-infection. This paper provides a description of the CBT-AD approach to treat depression and ART adherence in HIV-infected adults, which we have developed and tested in our clinic, and for which detailed therapist and client guides exist. To augment the description of treatment, the present article provides video component demonstrations of several core modules that highlight important aspects of this treatment, including Life-Steps for medication adherence, orientation to CBT-AD and psychoeducation, and suggestions for adaptation of core CBT modules for HIV-infected adults. Discussion of video demonstrations highlights differences in patient presentations and course of treatment between HIV-infected adults receiving CBT-AD and HIV-uninfected adults receiving traditional CBT for depression. This description and the accompanying demonstrations are intended as a practical guide to assist therapists wishing to conduct such a treatment in the outpatient setting.

  17. Social support seeking and self-efficacy-building strategies in enhancing the emotional well-being of informal HIV/AIDS caregivers in Ibadan, Oyo state, Nigeria.

    Science.gov (United States)

    Okeke, Bernedette Okwuchukwu

    2016-01-01

    This study examined the relative efficacy of social support seeking (SSS) and self-efficacy building (SEB) in the management of emotional well-being of caregivers of people suffering from HIV/AIDS. It was based at the United States President's Emergency Plan for AIDS Relief (PEPFAR) center in the University College Hospital, Ibadan, Oyo state, being the first and the largest teaching hospital in Nigeria. A 3 × 2 factorial design consisting of treatment and a control group was used. The columns have two levels of gender being male and female caregivers. One-hundred and sixty-five (165) caregivers who were taking care of people that are suffering from HIV/AIDS were purposively selected and randomly assigned to the treatment groups and control. The treatment was carried out for a period of eight weeks. Two null hypotheses were tested, both at .05 levels of significance. Data were collected with the use of standardized intruments rating scale; social support scale, general self-efficacy scale and emotional well-being scale. ANCOVA was used to establish significant treatment effects with the pretest as covariate. Even though SSS and SEB were both found to be effective in enhancing the emotional well-being of informal caregivers in this study when compared to the controls, SSS was significantly more effective than SEB in achieving this goal. Since the HIV/AIDS patients cannot be adequately cared for in the hospital settings due to severe shortages of material, personnel and time, serious efforts should be made by the three levels of the health care system viz: the primary, secondary and tertiary health care systems, to encourage the employment of the psychological management of caregivers of people suffering from HIV/AIDS. Also, the psychologists, clinical psychologists and the significant others should be encouraged to employ this psychological management in the care of HIV/AIDS informal caregivers.

  18. Immunostimulatory effect of spinach aqueous extract on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages.

    Science.gov (United States)

    Ishida, Momoko; Ose, Saya; Nishi, Kosuke; Sugahara, Takuya

    2016-07-01

    We herein report the immunostimulatory effect of spinach aqueous extract (SAE) on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages. SAE significantly enhanced the production of interleukin (IL)-6 and tumor necrosis factor-α by both J774.1 cells and peritoneal macrophages by enhancing the expression levels of these cytokine genes. In addition, the phagocytosis activity of J774.1 cells was facilitated by SAE. Immunoblot analysis revealed that SAE activates mitogen-activated protein kinase and nuclear factor-κB cascades. It was found that SAE activates macrophages through not only TLR4, but also other receptors. The production of IL-6 was significantly enhanced by peritoneal macrophages from SAE-administered BALB/c mice, suggesting that SAE has a potential to stimulate macrophage activity in vivo. Taken together, these data indicate that SAE would be a beneficial functional food with immunostimulatory effects on macrophages.

  19. Benzoxazole and benzothiazole amides as novel pharmacokinetic enhancers of HIV protease inhibitors.

    Science.gov (United States)

    Jonckers, Tim H M; Rouan, Marie-Claude; Haché, Geerwin; Schepens, Wim; Hallenberger, Sabine; Baumeister, Judith; Sasaki, Jennifer C

    2012-08-01

    A new class of benzoxazole and benzothiazole amide derivatives exhibiting potent CYP3A4 inhibiting properties was identified. Extensive lead optimization was aimed at improving the CYP3A4 inhibitory properties as well as overall ADME profile of these amide derivatives. This led to the identification of thiazol-5-ylmethyl (2S,3R)-4-(2-(ethyl(methyl)amino)-N-isobutylbenzo[d]oxazole-6-carboxamido)-3-hydroxy-1-phenylbutan-2-ylcarbamate (C1) as a lead candidate for this class. This compound together with structurally similar analogues demonstrated excellent 'boosting' properties when tested in dogs. These findings warrant further evaluation of their properties in an effort to identify valuable alternatives to Ritonavir as pharmacokinetic enhancers.

  20. Preparation, characterization, and safety evaluation of poly(lactide-co-glycolide nanoparticles for protein delivery into macrophages

    Directory of Open Access Journals (Sweden)

    Guedj AS

    2015-09-01

    Full Text Available Anne-Sophie Guedj,1 Arnold J Kell,2 Michael Barnes,2 Sandra Stals,1 David Gonçalves,3 Denis Girard,3 Carole Lavigne11National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, 2National Research Council of Canada, Ottawa, ON, 3Laboratoire de recherche en inflammation et physiologie des granulocytes, Univ