WorldWideScience

Sample records for macrophage-secreted factors induce

  1. Dysregulation of macrophage-secreted cathepsin B contributes to HIV-1-linked neuronal apoptosis.

    Directory of Open Access Journals (Sweden)

    Eillen J Rodriguez-Franco

    Full Text Available Chronic HIV infection leads to the development of cognitive impairments, designated as HIV-associated neurocognitive disorders (HAND. The secretion of soluble neurotoxic factors by HIV-infected macrophages plays a central role in the neuronal dysfunction and cell death associated with HAND. One potentially neurotoxic protein secreted by HIV-1 infected macrophages is cathepsin B. To explore the potential role of cathepsin B in neuronal cell death after HIV infection, we cultured HIV-1(ADA infected human monocyte-derived macrophages (MDM and assayed them for expression and activity of cathepsin B and its inhibitors, cystatins B and C. The neurotoxic activity of the secreted cathepsin B was determined by incubating cells from the neuronal cell line SK-N-SH with MDM conditioned media (MCM from HIV-1 infected cultures. We found that HIV-1 infected MDM secreted significantly higher levels of cathepsin B than did uninfected cells. Moreover, the activity of secreted cathepsin B was significantly increased in HIV-infected MDM at the peak of viral production. Incubation of neuronal cells with supernatants from HIV-infected MDM resulted in a significant increase in the numbers of apoptotic neurons, and this increase was reversed by the addition of either the cathepsin B inhibitor CA-074 or a monoclonal antibody to cathepsin B. In situ proximity ligation assays indicated that the increased neurotoxic activity of the cathepsin B secreted by HIV-infected MDM resulted from decreased interactions between the enzyme and its inhibitors, cystatins B and C. Furthermore, preliminary in vivo studies of human post-mortem brain tissue suggested an upregulation of cathepsin B immunoreactivity in the hippocampus and basal ganglia in individuals with HAND. Our results demonstrate that HIV-1 infection upregulates cathepsin B in macrophages, increases cathepsin B activity, and reduces cystatin-cathepsin interactions, contributing to neuronal apoptosis. These findings

  2. Influence of selected factors on induced syneresis

    Directory of Open Access Journals (Sweden)

    Jovanović Snežana T.

    2004-01-01

    Full Text Available Syneresis is the process of whey separation induced by gel contraction resulting in rearranging or restructuring of casein matrix formed during enzymatic coagulation. Numerous factors can influence the process of syneresis. The influences of pH, calcium concentration, temperature of coagulation of milk and applied heat treatment on the syneresis induced by different intensity of centrifugal force have been investigated. Coagulated samples were centrifuged at 1000, 2000 and 3000 rpm for 5 min, respectively. Reconstituted skim milk powder (control sample and reconstituted non-fat milk heat treated at 87ºC/10 min (experimental sample are coagulated at temperatures of 30ºC and 35ºC, at pH value of 5.8 and 6.2, and with the addition of 100, 200 and 400 mg/l of CaCl2, respectively. Centrifugation at 1000 rpm of both control and experimental samples didn’t recover any sera, regardless of the applied coagulation conditions. This indicates that the intensity of centrifugal force wasn’t strong enough to disrupt gel structure and cause syneresis. When the intensity of centrifugal force was increased up to 2000 rpm, the syneresis was induced, but the degree of syneresis depended on the applied factors of coagulation, primary on the applied heat treatments and temperature of coagulation. The amount of added CaCl2 didn’t have a significant influence on the induced syneresis at 2000 rpm. The induced syneresis was very significant for both control and experimental samples when the intensity of centrifugal force of 3000 rpm was applied. It was also noted that curd produced from heat treated milk in which milk protein coaggregates were formed, released less sera regardless of the applied coagulation factors.

  3. Risk factors for amiodarone-induced thyroid dysfunction in Japan

    Directory of Open Access Journals (Sweden)

    Sayoko Kinoshita

    2016-12-01

    Conclusion: DCM and cardiac sarcoidosis were identified as risk factors for amiodarone-induced hyperthyroidism. Risk factors for amiodarone-induced hypothyroidism included higher baseline TSH level and lower baseline free T4 level, suggesting that subclinical hypothyroidism may be a potential risk factor for the development of amiodarone-induced hypothyroidism.

  4. Critical Factors for Inducing Curved Somatosensory Saccades

    Directory of Open Access Journals (Sweden)

    Tamami Nakano

    2011-10-01

    Full Text Available We are able to make a saccade toward a tactile stimuli to one hand, but trajectories of many saccades curved markedly when the arms were crossed (Groh & Sparks, 2006. However, it remains unknown why some curved and others did not. We therefore examined critical factors for inducing the curved somatosensory saccades. Participants made a saccade as soon as possible from a central fixation point toward a tactile stimulus delivered to one of the two hands, and switched between arms-crossed and arms-uncrossed postures every 6 trials. Trajectories were generally straight when the arms were uncrossed, but all participants made curved saccades when the arms were crossed (12–64%. We found that the probability of curved saccades depended critically on the onset latency: the probability was less than 5% when the latency was larger than 250 ms, but the probability increased up to 70–80% when the onset latency was 160 ms. This relationship was shared across participants. The results suggest that a touch in the arms-crossed posture was always mapped to the wrong hand in the initial phase up to 160 ms, and then remapped to the correct hand during the next 100 ms by some fundamental neural mechanisms shared across participants.

  5. Structural integration in hypoxia-inducible factors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Dalei; Potluri, Nalini; Lu, Jingping; Kim, Youngchang; Rastinejad, Fraydoon

    2015-08-20

    The hypoxia-inducible factors (HIFs) coordinate cellular adaptations to low oxygen stress by regulating transcriptional programs in erythropoiesis, angiogenesis and metabolism. These programs promote the growth and progression of many tumours, making HIFs attractive anticancer targets. Transcriptionally active HIFs consist of HIF-alpha and ARNT (also called HIF-1 beta) subunits. Here we describe crystal structures for each of mouse HIF-2 alpha-ARNT and HIF-1 alpha-ARNT heterodimers in states that include bound small molecules and their hypoxia response element. A highly integrated quaternary architecture is shared by HIF-2 alpha-ARNT and HIF-1 alpha-ARNT, wherein ARNT spirals around the outside of each HIF-alpha subunit. Five distinct pockets are observed that permit small-molecule binding, including PAS domain encapsulated sites and an interfacial cavity formed through subunit heterodimerization. The DNA-reading head rotates, extends and cooperates with a distal PAS domain to bind hypoxia response elements. HIF-alpha mutations linked to human cancers map to sensitive sites that establish DNA binding and the stability of PAS domains and pockets.

  6. Production of Tuber-Inducing Factor

    Science.gov (United States)

    Stutte, Gary W.; Yorio, Neil C.

    2006-01-01

    A process for making a substance that regulates the growth of potatoes and some other economically important plants has been developed. The process also yields an economically important by-product: potatoes. The particular growth-regulating substance, denoted tuber-inducing factor (TIF), is made naturally by, and acts naturally on, potato plants. The primary effects of TIF on potato plants are reducing the lengths of the main shoots, reducing the numbers of nodes on the main stems, reducing the total biomass, accelerating the initiation of potatoes, and increasing the edible fraction (potatoes) of the overall biomass. To some extent, these effects of TIF can override environmental effects that typically inhibit the formation of tubers. TIF can be used in the potato industry to reduce growth time and increase harvest efficiency. Other plants that have been observed to be affected by TIF include tomatoes, peppers, radishes, eggplants, marigolds, and morning glories. In the present process, potatoes are grown with their roots and stolons immersed in a nutrient solution in a recirculating hydroponic system. From time to time, a nutrient replenishment solution is added to the recirculating nutrient solution to maintain the required nutrient concentration, water is added to replace water lost from the recirculating solution through transpiration, and an acid or base is added, as needed, to maintain the recirculating solution at a desired pH level. The growing potato plants secrete TIF into the recirculating solution. The concentration of TIF in the solution gradually increases to a range in which the TIF regulates the growth of the plants.

  7. Oxygen Tension Regulates the Expression of Angiogenesis Factor by Macrophages

    Science.gov (United States)

    Knighton, David R.; Hunt, Thomas K.; Scheuenstuhl, Heinz; Halliday, Betty J.; Werb, Zena; Banda, Michael J.

    1983-09-01

    When cultured in a hypoxic environment similar to that found in the center of a wound, macrophages secreted active angiogenesis factor into the medium. Under conditions similar to those of well-oxygenated tissue, macrophages did not secrete active angiogenesis factor. Macrophages that secreted the factor at hypoxic conditions stopped secreting it when returned to room air. Thus the control of angiogenesis in wound healing may be the result of macrophages responding to tissue oxygen tension without the necessity of interacting with other cell types or biochemical signals.

  8. Oxygen tension regulates the expression angiogenesis factor by macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Knighton, D.R.; Hunt, T.K.; Scheuenstuhl, H.; Halliday, B.J.; Werb, Z.; Banda, M.J.

    1983-09-23

    When cultured in a hypoxic environment similar to that found in the center of a wound, macrophages secreted active angiogenesis factor into the medium. Under conditions similar to those of well-oxygenated tissue, macrophages did not secrete active angiogenesis factor. Macrophages that secreted the factor at hyposic conditions stopped secreting it when returned to room air. Thus the control of angiogenesis in wound healing may be the result of macrophages responding to tissue oxygen tension without the necessity of interacting with other cell types or biochemical signals.

  9. Oxygen tension regulated the expression of angiogenesis factor by macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Knighton, D.R.; Hunt, T.K.; Scheuenstuhl, H.; Halliday, B.J.; Werb, Z.; Banda, M.J.

    1983-09-23

    When cultured in a hypoxic environment similar to that found in the center of a wound, macrophages secreted active angiogenesis factor into the medium. Under conditions similar to those of well-oxygenated tissue, macrophages did not secrete active angiogenesis factor. Macrophages that secreted the factor at hypoxic conditions stopped secreting it when returned to room air. Thus the control of angiogenesis in wound healing may be the result of macrophages responding to tissue oxygen tension without the necessity of interacting with other cell types or biochemical signals.

  10. Inducing and Aggravating Factors of Gastroesophageal Reflux Symptoms

    Directory of Open Access Journals (Sweden)

    Radhiyatam Mardhiyah

    2016-12-01

    Full Text Available Gastroesophageal reflux disease (subsequently abbreviated as GERD is a disease commonly found in the community. Several factors have been recognized as inducing and aggravating factors of GERD symptoms such as older age, female gender, obesity, smoking habit, alcohol consumption, certain diet and poor eating habit like eating fatty, spicy, and acid food.

  11. [Risk factors and subjective symptoms of drug-induced leucopenia].

    Science.gov (United States)

    Hayashi, Kyoko; Ohtsu, Fumiko; Yano, Reiko; Sakakibara, Jinsaku; Goto, Nobuyuki

    2011-01-01

    The present study investigated risk factors and subjective symptoms associated with drug-induced leucopenia. We selected 248 patients with drug-induced leucopenia from the Case Reports of Adverse Drug Reactions and Poisoning Information System (CARPIS) database of over 47000 case reports of adverse drug reactions and assigned them to a case group. We also randomly selected 743 cases of adverse drug reactions not associated with leucopenia as a control group. A comparison of patient characteristic data between the two groups using logistic-regression analysis revealed that female sex, autoimmune disease and renal damage were background risk factors for drug-induced leucopenia. In addition, thiamazole, ritodrine, propylthiouracil, ticlopidine, allopurinol, minocycline and captopril administration significantly increased the risk of drug-induced leucopenia. A significant association was also found for fever, chills and pharyngeal abnormalities. Based on these findings, we developed two estimated regression equations to help prevent drug-induced leucopenia in the community pharmacy setting.

  12. Chronic gastritis rat model and role of inducing factors

    Institute of Scientific and Technical Information of China (English)

    Zun Xiang; Jian-Min Si; Huai-De Huang

    2004-01-01

    AIM: To establish an experimental animal model of chronic gastritis in a short term and to investigate the effects of several potential inflammation-inducing factors on rat gastric mucosa.METHODS: Twenty-four healthy, male SD rats were treated with intragastric administration of 600 mL/L alcohol, 20mmol/L sodium deoxycholate and 0.5 g/L ammonia (factor A), forage containing low levels of vitamins (factor B), and/or indomethacin (factor C), according to an L8(27)orthogonal design. After 12 wk, gastric antral and body mucosae were pathologically examined.RESULTS: Chronic gastritis model was successfully induced in rats treated with factor A for 12 wk. After the treatment of animals, the gastric mucosal inflammation was significantly different from that in controls, and the number of pyloric glands at antrum and parietal cells at body were obviously reduced (P<0.01). Indomethacin induced gastritis but without atrophy, and short-term vitamin deficiency failed to induce chronic gastritis and gastric atrophy, In addition,indomethacin and vitamin deficiency had no synergistic effect in inducing gastritis with the factor A. No atypical hyperplasia and intestinal metaplasia in the gastric antrum and body were observed in all rats studied.CONCLUSION: Combined intragastric administration of 600 mL/L alcohol, 20 mmol/L sodium deoxycholate and 0.5 g/L ammonia induces chronic gastritis and gastric atrophy in rats. Indomethacin induces chronic gastritis only.The long-term roles of these factors in gastric inflammation and carcinogenesis need to be further elucidated.

  13. An update on risk factors for drug-induced arrhythmias.

    Science.gov (United States)

    Vlachos, Konstantinos; Georgopoulos, Stamatis; Efremidis, Michael; Sideris, Antonios; Letsas, Konstantinos P

    2016-01-01

    A variety of drugs, either anti-arrhythmics or non-antiarrhythmics, have been associated with drug-induced arrhythmias. Drug-induced arrhythmias are usually observed in the presence of long QT interval or Brugada electrocardiographic pattern. Clinical risk factors, such as female gender, structural heart disease, metabolic and electrolyte abnormalities, bradycardia and conduction disease, increased drug bioavailability, and silent channelopathies act as ''effect amplifiers'' which can make an otherwise relatively safe drug dangerous with regard to risk for polymorphic ventricular tachycardia in the setting of QT interval prolongation. A drug-induced type 1 electrocardiographic pattern of Brugada syndrome is considered highly proarrhythmic. Specific electrocardiographic markers including the corrected QT interval, QRS duration, Tpeak-Tend/QT ratio, and others may predict the risk of arrhythmias in both situations. The present review highlights on the current clinical and electrocardiographic risk factors for prediction of drug-induced arrhythmias.

  14. Hypoxia-Inducible Factor as an Angiogenic Master Switch

    Science.gov (United States)

    Hashimoto, Takuya; Shibasaki, Futoshi

    2015-01-01

    Hypoxia-inducible factors (HIFs) regulate the transcription of genes that mediate the response to hypoxia. HIFs are constantly expressed and degraded under normoxia, but stabilized under hypoxia. HIFs have been widely studied in physiological and pathological conditions and have been shown to contribute to the pathogenesis of various vascular diseases. In clinical settings, the HIF pathway has been studied for its role in inhibiting carcinogenesis. HIFs might also play a protective role in the pathology of ischemic diseases. Clinical trials of therapeutic angiogenesis after the administration of a single growth factor have yielded unsatisfactory or controversial results, possibly because the coordinated activity of different HIF-induced factors is necessary to induce mature vessel formation. Thus, manipulation of HIF activity to simultaneously induce a spectrum of angiogenic factors offers a superior strategy for therapeutic angiogenesis. Because HIF-2α plays an essential role in vascular remodeling, manipulation of HIF-2α is a promising approach to the treatment of ischemic diseases caused by arterial obstruction, where insufficient development of collateral vessels impedes effective therapy. Eukaryotic initiation factor 3 subunit e (eIF3e)/INT6 interacts specifically with HIF-2α and induces the proteasome inhibitor-sensitive degradation of HIF-2α, independent of hypoxia and von Hippel-Lindau protein. Treatment with eIF3e/INT6 siRNA stabilizes HIF-2α activity even under normoxic conditions and induces the expression of several angiogenic factors, at levels sufficient to produce functional arteries and veins in vivo. We have demonstrated that administration of eIF3e/INT6 siRNA to ischemic limbs or cold-injured brains reduces ischemic damage in animal models. This review summarizes the current understanding of the relationship between HIFs and vascular diseases. We also discuss novel oxygen-independent regulatory proteins that bind HIF-α and the implications

  15. Mitochondria released by cells undergoing TNF-α-induced necroptosis act as danger signals.

    Science.gov (United States)

    Maeda, A; Fadeel, B

    2014-07-03

    Necrosis leads to the release of so-called damage-associated molecular patterns (DAMPs), which may provoke inflammatory responses. However, the release of organelles from dying cells, and the consequences thereof have not been documented before. We demonstrate here that mitochondria are released from cells undergoing tumor necrosis factor-α (TNF-α)-induced, receptor-interacting protein (RIP)1-dependent necroptosis, a form of programmed necrosis. The released, purified mitochondria were determined to be intact as they did not emit appreciable amounts of mitochondrial DNA (mtDNA). Pharmacological inhibition of dynamin-related protein 1 (Drp1) prevented mitochondrial fission in TNF-α-triggered cells, but this did not block necroptosis nor the concomitant release of mitochondria. Importantly, primary human macrophages and dendritic cells engulfed mitochondria from necroptotic cells leading to modulation of macrophage secretion of cytokines and induction of dendritic cell maturation. Our results show that intact mitochondria are released from necroptotic cells and suggest that these organelles act as bona fide danger signals.

  16. Growth factor involvement in tension-induced skeletal muscle growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1993-01-01

    Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.

  17. Migration inhibitory factor (MIF) released by macrophages upon recognition of immune complexes is critical to inflammation in Arthus reaction.

    Science.gov (United States)

    Paiva, Claudia N; Arras, Rosa H; Magalhães, Elisabeth S; Alves, Letícia S; Lessa, Luiz Paulo; Silva, Maria Helena; Ejzemberg, Regina; Canetti, Cláudio; Bozza, Marcelo T

    2009-05-01

    Deposition of immune complexes (IC) triggers Fc gamma R-dependent inflammation, leading to tissue damage in rheumatoid arthritis, systemic lupus erythematous, immune glomerulonephritis, and several immune vasculitides. Evidences support a role for macrophage migration inhibitory factor (MIF) in a number of inflammatory diseases, but the triggering of its secretion and its physiopathological role upon IC deposition remain elusive. Herein, we show that human macrophages secreted MIF after IC recognition, which in turn controlled the secretion of TNF. Macrophages from Mif-/- mice produced smaller amounts of TNF when stimulated with IgG-opsonized erythrocytes than wild-type (WT) cells. Using passive reverse Arthus reaction in the peritoneum and lungs as a model for IC-induced inflammation, we demonstrated that Mif-/- mice had a milder response, observed by reduced neutrophil recruitment, vascular leakage, and secretion of TNF, MIP-2, and keratinocyte-derived chemokine compared with WT controls. Adoptive transfer of alveolar macrophages from WT to Mif-/- mice rescued pulmonary neutrophil recruitment and TNF production upon passive reverse Arthus reaction. Our study indicates that Arthus inflammatory reaction is largely dependent on MIF and poses macrophages as a source of the MIF released upon IC recognition. These results give experimental support to the proposition that blockade of MIF might constitute an adjunctive, therapeutic approach to IC disease.

  18. Leukemia Inhibitory Factor Induces Neurotransmitter Switching in Transgenic Mice

    Science.gov (United States)

    Bamber, Bruce A.; Masters, Brian A.; Hoyle, Gary W.; Brinster, Ralph L.; Palmiter, Richard D.

    1994-08-01

    Leukemia inhibitory factor (LIF) is a cytokine growth factor that induces rat sympathetic neurons to switch their neurotransmitter phenotype from noradrenergic to cholinergic in vitro. To test whether LIF can influence neuronal differentiation in vivo, we generated transgenic mice that expressed LIF in pancreatic islets under the control of the insulin promoter and evaluated the neurotransmitter phenotype of the pancreatic sympathetic innervation. We also used the insulin promoter to coexpress nerve growth factor in the islets, which greatly increased the density of sympathetic innervation and facilitated analysis of the effects of LIF. Our data demonstrate that tyrosine hydroxylase and catecholamines declined and choline acetyltransferase increased in response to LIF. We conclude that LIF can induce neurotransmitter switching of sympathetic neurons in vivo.

  19. Medicinal mushroom Lingzhi or Reishi, Ganoderma lucidum (W.Curt.:Fr.) P. Karst., beta-glucan induces Toll-like receptors and fails to induce inflammatory cytokines in NF-kappaB inhibitor-treated macrophages.

    Science.gov (United States)

    Batbayar, Sainkhuu; Kim, Mi Jeong; Kim, Ha Won

    2011-01-01

    Beta-Glucan of medicinal Lingzhi or Reishi mushroom, Ganoderma lucidum (BGG), possesses immunostimulatory and anti-tumor activities. Innate immune cells are activated by the binding of beta-glucan to the dectin-1 receptor. The present study investigated the immunostimulating activities of BGG, including binding to dectin-1, secretion of cytokines and reactive oxygen species, and induction of Toll-like receptors (TLRs) in RAW264.7 mouse macrophages. Reverse transcription-polymerase chain reaction and flow cytometry were used for the cytokine and TLR analyses. A mouse inflammation antibody array was used for protein-level cytokine analysis. BGG bound to dectin-1 and induced RAW264.7 cell secretion of several cytokines, including granulocyte colony-stimulating factor, interleukin (IL)-6, regulated upon activation normal T cell expressed and secreted (RANTES), tissue inhibitor of metalloproteinase-1, and tumor necrosis factor-alpha. The secretion of these cytokines was further increased by the addition of lipopolysaccharide (LPS). BGG also induced both nitric oxide and inducible nitric oxide synthase (iNOS). Treatment with an inhibitor of nuclear factor-kappa B (NF-kappaB) reduced the induction of IL-1, IL-6, and iNOS in a concentration-dependent manner. Expressions of TLR2, TLR4, and TLR6 were increased by BGG treatment, and addition of LPS induced further induction of TLR4 and TLR6. Our result indicates that BGG induces macrophage secretion of inflammatory cytokines, which can be potentiated by the presence of LPS, likely by binding to dectin-1 and TLR-2/6 receptors, which activate NF-kappaB and prompt the secretion of cytokines.

  20. Factors that modify risks of radiation-induced cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J.I.

    1988-11-01

    The collective influence of biologic and physical factors that modify risks of radiation-induced cancer introduces uncertainties sufficient to deny precision of estimates of human cancer risk that can be calculated for low-dose radiation in exposed populations. The important biologic characteristics include the tissue sites and cell types, baseline cancer incidence, minimum latent period, time-to-tumor recognition, and the influence of individual host (age and sex) and competing etiologic influences. Physical factors include radiation dose, dose rate, and radiation quality. Statistical factors include time-response projection models, risk coefficients, and dose-response relationships. Other modifying factors include other carcinogens, and other biological sources (hormonal status, immune status, hereditary factors).

  1. Factors that modify risks of radiation-induced cancer

    Energy Technology Data Exchange (ETDEWEB)

    Fabrikant, J.I.

    1988-11-01

    The collective influence of biologic and physical factors that modify risks of radiation-induced cancer introduces uncertainties sufficient to deny precision of estimates of human cancer risk that can be calculated for low-dose radiation in exposed populations. The important biologic characteristics include the tissue sites and cell types, baseline cancer incidence, minimum latent period, time-to-tumor recognition, and the influence of individual host (age and sex) and competing etiologic influences. Physical factors include radiation dose, dose rate, and radiation quality. Statistical factors include time-response projection models, risk coefficients, and dose-response relationships. Other modifying factors include other carcinogens, and other biological sources (hormonal status, immune status, hereditary factors).

  2. Placental Growth Factor Administration Abolishes Placental Ischemia-Induced Hypertension.

    Science.gov (United States)

    Spradley, Frank T; Tan, Adelene Y; Joo, Woo S; Daniels, Garrett; Kussie, Paul; Karumanchi, S Ananth; Granger, Joey P

    2016-04-01

    Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia because placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and vascular endothelial growth factor are both natural ligands for sFlt-1, vascular endothelial growth factor also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to 4 groups: normal pregnant or RUPP±infusion of recombinant human PlGF (180 μg/kg per day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than normal pregnant rats. Infusion of recombinant human PlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that recombinant human PlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia.

  3. Elastase induces lung epithelial cell autophagy through placental growth factor

    Science.gov (United States)

    Hou, Hsin-Han; Cheng, Shih-Lung; Chung, Kuei-Pin; Kuo, Mark Yen-Ping; Yeh, Cheng-Chang; Chang, Bei-En; Lu, Hsuan-Hsuan; Wang, Hao-Chien; Yu, Chong-Jen

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is a devastating disease, which is associated with increasing mortality and morbidity. Therefore, there is a need to clearly define the COPD pathogenic mechanism and to explore effective therapies. Previous studies indicated that cigarette smoke (CS) induces autophagy and apoptosis in lung epithelial (LE) cells. Excessive ELANE/HNE (elastase, neutrophil elastase), a factor involved in protease-antiprotease imbalance and the pathogenesis of COPD, causes LE cell apoptosis and upregulates the expression of several stimulus-responsive genes. However, whether or not elastase induces autophagy in LE cell remains unknown. The level of PGF (placental growth factor) is higher in COPD patients than non-COPD controls. We hypothesize that elastase induces PGF expression and causes autophagy in LE cells. In this study, we demonstrated that porcine pancreatic elastase (PPE) induced PGF expression and secretion in LE cells in vitro and in vivo. The activation of MAPK8/JNK1 (mitogen-activated protein kinase 8) and MAPK14/p38alpha MAPK signaling pathways was involved in the PGF mediated regulation of the TSC (tuberous sclerosis complex) pathway and autophagy in LE cells. Notably, PGF-induced MAPK8 and MAPK14 signaling pathways mediated the inactivation of MTOR (mechanistic target of rapamycin), the upregulation of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) and the increase of autophagosome formation in mice. Furthermore, the PPE-induced autophagy promotes further apoptosis in vitro and in vivo. In summary, elastase-induced autophagy promotes LE cell apoptosis and pulmonary emphysema through the upregulation of PGF. PGF and its downstream MAPK8 and MAPK14 signaling pathways are potential therapeutic targets for the treatment of emphysema and COPD. PMID:24988221

  4. Engineering Design Handbook: Environmental Series. Part Three. Induced Environmental Factors

    Science.gov (United States)

    1976-01-20

    3-18 3-12. Instruments for Sample Collection 9-19 3-13. Major Deserts of the World 3-20 3-14. Corrosion of Open- hearth Steel...lightning, but otherwise is overshadowed by artificial sources. Each of these induced environmental factors is also influenced greatly by natural...identification: 1. Open- hearth furnaces 2. Incineration 3. Cement plants 4. Fuel oil combustion 5. Coal combustion plus diffraction effects apply

  5. Vectorology and Factor Delivery in Induced Pluripotent Stem Cell Reprogramming

    OpenAIRE

    Hu, Kejin

    2014-01-01

    Induced pluripotent stem cell (iPSC) reprogramming requires sustained expression of multiple reprogramming factors for a limited period of time (10–30 days). Conventional iPSC reprogramming was achieved using lentiviral or simple retroviral vectors. Retroviral reprogramming has flaws of insertional mutagenesis, uncontrolled silencing, residual expression and re-activation of transgenes, and immunogenicity. To overcome these issues, various technologies were explored, including adenoviral vect...

  6. Clinical Aspects of Hypoxia-inducible Factors in Colorectal Cancer

    DEFF Research Database (Denmark)

    Havelund, Birgitte Mayland; Spindler, Karen-Lise Garm; Sørensen, Flemming Brandt;

    to a standardized scheme. 2. The prognostic value of HIF-1α is investigated by SNP analysis and HIF-1α expression in tissue from 300 patients operated for colorectal cancer and the results is validated in a prospectively population of 200 patients. 3. The predictive value of HIF-1α will be investigated in patients......Clinical Aspects of Hypoxia-inducible Factors in Colorectal Cancer   Birgitte Mayland Havelund1,4 MD, Karen-Lise Garm Spindler1,4 MD, PhD, Flemming Brandt Sørensen2,4 MD, DMSc, Ivan Brandslund3 MD, DMSc, Anders Jakobsen1,4 MD, DMSc. 1Department of Oncology, 2Pathology and 3Biochemistry, Vejle...... Hospital, Vejle, Denmark 4Institute of Regional Health Services Research, University of Southern Denmark, Odense Denmark Background Prognostic and predictive markers are needed for individualizing the treatment of colorectal cancer. Hypoxia-inducible factor 1α (HIF-1α) is a transcription-inducing factor...

  7. Functional pathway mapping analysis for hypoxia-inducible factors.

    Science.gov (United States)

    Chuang, Chia-Sheng; Pai, Tun-Wen; Hu, Chin-Hua; Tzou, Wen-Shyong; Dah-Tsyr Chang, Margaret; Chang, Hao-Teng; Chen, Chih-Chia

    2011-06-20

    Hypoxia-inducible factors (HIFs) are transcription factors that play a crucial role in response to hypoxic stress in living organisms. The HIF pathway is activated by changes in cellular oxygen levels and has significant impacts on the regulation of gene expression patterns in cancer cells. Identifying functional conservation across species and discovering conserved regulatory motifs can facilitate the selection of reference species for empirical tests. This paper describes a cross-species functional pathway mapping strategy based on evidence of homologous relationships that employs matrix-based searching techniques for identifying transcription factor-binding sites on all retrieved HIF target genes. HIF-related orthologous and paralogous genes were mapped onto the conserved pathways to indicate functional conservation across species. Quantitatively measured HIF pathways are depicted in order to illustrate the extent of functional conservation. The results show that in spite of the evolutionary process of speciation, distantly related species may exhibit functional conservation owing to conservative pathways. The novel terms OrthRate and ParaRate are proposed to quantitatively indicate the flexibility of a homologous pathway and reveal the alternative regulation of functional genes. The developed functional pathway mapping strategy provides a bioinformatics approach for constructing biological pathways by highlighting the homologous relationships between various model species. The mapped HIF pathways were quantitatively illustrated and evaluated by statistically analyzing their conserved transcription factor-binding elements. hypoxia-inducible factor (HIF), hypoxia-response element (HRE), transcription factor (TF), transcription factor binding site (TFBS), KEGG (Kyoto Encyclopedia of Genes and Genomes), cross-species comparison, orthology, paralogy, functional pathway.

  8. Role of myeloid growth factors in chemotherapy induced neutropenia

    Directory of Open Access Journals (Sweden)

    Ravinutala Srinath Bharadwaj

    2016-10-01

    Full Text Available Neutropenia is a major dose limiting toxicity of many chemo therapeutic regimens. Haemopoietic colony - stimulating factors (CSFs have been shown to reduce the duration and severity of chemotherapy induced neutropenia (CIN and risk of febrile neutropenia. Supportive care with myeloid growth factors improve chemotherapy delivery by minimizing chemotherapy dose reductions or treatment delays by enabling the delivery of full dose chemotherapy (dose dense in short time intervals. The goal of this article is to give comprehensive review of current literature regarding medical practice guidelines and risk assessment models for appropriate use of myeloid growth factors and management of febrile neutropenia. [Int J Basic Clin Pharmacol 2016; 5(5.000: 1715-1721

  9. Noscapine induces apoptosis in human glioma cells by an apoptosis-inducing factor-dependent pathway.

    Science.gov (United States)

    Newcomb, Elizabeth W; Lukyanov, Yevgeniy; Smirnova, Iva; Schnee, Tona; Zagzag, David

    2008-07-01

    Previously, we identified noscapine as a small molecule inhibitor of the hypoxia-inducible factor-1 pathway in hypoxic human glioma cells and human umbilical vein endothelial cells. Noscapine is a nontoxic ingredient in cough medicine currently used in clinical trials for patients with non-Hodgkin's lymphoma or chronic lymphocytic leukemia to assess antitumor efficacy. Here, we have evaluated the sensitivity of four human glioma cell lines to noscapine-induced apoptosis. Noscapine was a potent inhibitor of proliferation and inducer of apoptosis. Induction of apoptosis was associated with activation of the c-jun N-terminal kinase signaling pathway concomitant with inactivation of the extracellular signal regulated kinase signaling pathway and phosphorylation of the antiapoptotic protein Bcl-2. Noscapine-induced apoptosis was associated with the release of mitochondrial proteins apoptosis-inducing factor (AIF) and/or cytochrome c. In some glioma cell lines, only AIF release occurred without cytochrome c release or poly (ADP-ribose) polymerase cleavage. Knock-down of AIF decreased noscapine-induced apoptosis. Our results suggest the potential importance of noscapine as a novel agent for use in patients with glioblastoma owing to its low toxicity profile and its potent anticancer activity.

  10. Endothelin-1 induces connective tissue growth factor expression in cardiomyocytes.

    Science.gov (United States)

    Recchia, Anna Grazia; Filice, Elisabetta; Pellegrino, Daniela; Dobrina, Aldo; Cerra, Maria Carmela; Maggiolini, Marcello

    2009-03-01

    Endothelin (ET)-1 is a vasoconstrictor involved in cardiovascular diseases. Connective tissue growth factor/CCN2 (CTGF) is a fibrotic mediator overexpressed in human atherosclerotic lesions, myocardial infarction, and hypertension. In different cell types CTGF regulates cell proliferation/apoptosis, migration, and extracellular matrix (ECM) accumulation and plays important roles in angiogenesis, chondrogenesis, osteogenesis, tissue repair, cancer and fibrosis. In the present study, we investigated the ET-1 signaling which triggers CTGF expression in cultured adult mouse atrial-muscle HL-1 cells used as a model system. ET-1 activated the CTGF promoter and induced CTGF expression at both mRNA and protein levels. Real-time PCR analysis revealed CTGF induction also in isolated rat heart preparations perfused with ET-1. Several intracellular signals elicited by ET-1 via ET receptors and even Epidermal Growth Factor Receptor (EGFR) contributed to the up-regulation of CTGF, including ERK activation and induction of the AP-1 components c-fos and c-jun, as also evaluated by ChIP analysis. Moreover, in cells treated with ET-1 the expression of ECM component decorin was abolished by CTGF silencing, indicating that CTGF is involved in ET-1 induced ECM accumulation not only in a direct manner but also through downstream effectors. Collectively, our data indicate that CTGF could be a mediator of the profibrotic effects of ET-1 in cardiomyocytes. CTGF inhibitors should be considered in setting a comprehensive pharmacological approach towards ET-1 induced cardiovascular diseases.

  11. Factors Associated with Incidence of Induced Abortion in Hamedan, Iran.

    Science.gov (United States)

    Hosseini, Hatam; Erfani, Amir; Nojomi, Marzieh

    2017-05-01

    There is limited reliable information on abortion in Iran, where abortion is illegal and many women of reproductive age seek clandestine abortion to end their unintended pregnancy. This study aims to examine the determinants of induced abortion in the city of Hamedan, Iran. The study utilizes recent data from the 2015 Hamedan Survey of Fertility, conducted in a representative sample of 3,000 married women aged 15-49 years in the city of Hamedan, Iran. Binary logistic regression models are used to examine factors associated with the incidence of abortion. Overall, 3.8% of respondents reported having had an induced abortion in their life. Multivariate results showed that the incidence of abortion was strongly associated with women's education, type of contraceptive and family income level, after controlling for confounding factors. Women using long-acting contraceptive methods, those educated under high school diploma or postsecondary education, and those with high level of income were more likely to report having an induced abortion. The high incidence of abortion among less or more educated women and those with high income level signifies unmet family planning needs among these women, which must be addressed by focused reproductive health and family planning programs.

  12. Genetic risk factors of cisplatin induced ototoxicity in adult patients.

    Science.gov (United States)

    Talach, T; Rottenberg, J; Gal, B; Kostrica, R; Jurajda, M; Kocak, I; Lakomy, R; Vogazianos, E

    2016-01-01

    Ototoxicity is an important adverse effect of using Cisplatin (cis-diamminedichloroplatinum) (CDDP) as a form of chemotherapy. The clinical picture of CDDP induced ototoxicity includes perceptive hearing impairment (reversible or permanent) and tinnitus. Ototoxicity manifests with considerable variability between patients. The objective of this prospective study was to investigate a possible genetic background to this variability. We assessed ototoxicity induced by therapeutic doses of CDDP in adult patients with germinative testicular tumors, or other tumors treated with an identical CDDP dosage scheme. Audiological examination before, during and after the treatment has shown deterioration in hearing; first in the high-frequencies and with increased CDDP cumulative doses, impairment in other frequencies as well. Occurrence of tinnitus was not dependent on the administered dose of CDDP, or the other risk factors examined in this study. The association of CDDP induced ototoxicity with genetic polymorphisms in candidate genes was examined. Our study has demonstrated an association of early onset of CDDP induced ototoxicity with the presence of two copies of GSTT1 gene (p=0,009) and with T allele of rs9332377 polymorphism in COMT gene (p=0,001).

  13. Viral Carcinogenesis: Factors Inducing DNA Damage and Virus Integration

    Directory of Open Access Journals (Sweden)

    Yan Chen

    2014-10-01

    Full Text Available Viruses are the causative agents of 10%–15% of human cancers worldwide. The most common outcome for virus-induced reprogramming is genomic instability, including accumulation of mutations, aberrations and DNA damage. Although each virus has its own specific mechanism for promoting carcinogenesis, the majority of DNA oncogenic viruses encode oncogenes that transform infected cells, frequently by targeting p53 and pRB. In addition, integration of viral DNA into the human genome can also play an important role in promoting tumor development for several viruses, including HBV and HPV. Because viral integration requires the breakage of both the viral and the host DNA, the integration rate is believed to be linked to the levels of DNA damage. DNA damage can be caused by both endogenous and exogenous factors, including inflammation induced by either the virus itself or by co-infections with other agents, environmental agents and other factors. Typically, cancer develops years to decades following the initial infection. A better understanding of virus-mediated carcinogenesis, the networking of pathways involved in transformation and the relevant risk factors, particularly in those cases where tumorigenesis proceeds by way of virus integration, will help to suggest prophylactic and therapeutic strategies to reduce the risk of virus-mediated cancer.

  14. The hypoxia-inducible factor-1α activates ectopic production of fibroblast growth factor 23 in tumor-induced osteomalacia

    Science.gov (United States)

    Zhang, Qian; Doucet, Michele; Tomlinson, Ryan E; Han, Xiaobin; Quarles, L Darryl; Collins, Michael T; Clemens, Thomas L

    2016-01-01

    Tumor-induced osteomalacia (TIO) is a rare paraneoplastic syndrome in which ectopic production of fibroblast growth factor 23 (FGF23) by non-malignant mesenchymal tumors causes phosphate wasting and bone fractures. Recent studies have implicated the hypoxia-inducible factor-1α (HIF-1α) in other phosphate wasting disorders caused by elevated FGF23, including X-linked hypophosphatemic rickets and autosomal dominant hypophosphatemia. Here we provide evidence that HIF-1α mediates aberrant FGF23 in TIO by transcriptionally activating its promoter. Immunohistochemical studies in phosphaturic mesenchymal tumors resected from patients with documented TIO showed that HIF-1α and FGF23 were co-localized in spindle-shaped cells adjacent to blood vessels. Cultured tumor tissue produced high levels of intact FGF23 and demonstrated increased expression of HIF-1α protein. Transfection of MC3T3-E1 and Saos-2 cells with a HIF-1α expression construct induced the activity of a FGF23 reporter construct. Prior treatment of tumor organ cultures with HIF-1α inhibitors decreased HIF-1α and FGF23 protein accumulation and inhibited HIF-1α-induced luciferase reporter activity in transfected cells. Chromatin immunoprecipitation assays confirmed binding to a HIF-1α consensus sequence within the proximal FGF23 promoter, which was eliminated by treatment with a HIF-1α inhibitor. These results show for the first time that HIF-1α is a direct transcriptional activator of FGF23 and suggest that upregulation of HIF-1α activity in TIO contributes to the aberrant FGF23 production in these patients. PMID:27468359

  15. Platelet-Released Growth Factors Induce Differentiation of Primary Keratinocytes

    Directory of Open Access Journals (Sweden)

    Andreas Bayer

    2017-01-01

    Full Text Available Autologous thrombocyte concentrate lysates, for example, platelet-released growth factors, (PRGFs or their clinically related formulations (e.g., Vivostat PRF® came recently into the physicians’ focus as they revealed promising effects in regenerative and reparative medicine such as the support of healing of chronic wounds. To elucidate the underlying mechanisms, we analyzed the influence of PRGF and Vivostat PRF on human keratinocyte differentiation in vitro and on epidermal differentiation status of skin wounds in vivo. Therefore, we investigated the expression of early (keratin 1 and keratin 10 and late (transglutaminase-1 and involucrin differentiation markers. PRGF treatment of primary human keratinocytes decreased keratin 1 and keratin 10 gene expression but induced involucrin and transglutaminase-1 gene expression in an epidermal growth factor receptor- (EGFR- dependent manner. In concordance with these results, microscopic analyses revealed that PRGF-treated human keratinocytes displayed morphological features typical of keratinocytes undergoing terminal differentiation. In vivo treatment of artificial human wounds with Vivostat PRF revealed a significant induction of involucrin and transglutaminase-1 gene expression. Together, our results indicate that PRGF and Vivostat PRF induce terminal differentiation of primary human keratinocytes. This potential mechanism may contribute to the observed beneficial effects in the treatment of hard-to-heal wounds with autologous thrombocyte concentrate lysates in vivo.

  16. Placental Induced Growth Factor (PIGf) in Coronary Artery Disease

    Science.gov (United States)

    Sundaresan, Alamelu; Carabello, Blaise; Mehta, Satish; Schlegel, Todd; Pellis, Neal; Ott, Mark; Pierson, Duane

    2010-01-01

    Our previous studies on normal human lymphocytes have shown a five-fold increase (p less than 0.001) in angiogenic inducers such as Placental Induced Growth Factor (PIGf) in physiologically stressful environments such as modeled microgravity, a space analog. This suggests de-regulation of cardiovascular signalling pathways indicated by upregulation of PIGf. In the current study, we measured PIGf in the plasma of 33 patients with and without coronary artery disease (CAD) to investigate whether such disease is associated with increased levels of PIGf. A control consisting of 31 sex matched apparently healthy subjects was also included in the study. We observed that the levels of PIGf in CAD patients were significantly increased compared to those in healthy control subjects (p less than 0.001) and usually increased beyond the clinical threshold level (greater than 27ng/L). The mechanisms leading to up-regulation of angiogenic factors and the adaptation of organisms to stressful environments such as isolation, high altitude, hypoxia, ischemia, microgravity, increased radiation, etc are presently unknown and require further investigation in spaceflight and these other physiologically stressed environments.

  17. Platelet-Activating Factor Induces Th17 Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Anne-Marie Drolet

    2011-01-01

    Full Text Available Th17 cells have been implicated in a number of inflammatory and autoimmune diseases. The phospholipid mediator platelet-activating factor (PAF is found in increased concentrations in inflammatory lesions and has been shown to induce IL-6 production. We investigated whether PAF could affect the development of Th17 cells. Picomolar concentrations of PAF induced IL-23, IL-6, and IL-1β expression in monocyte-derived Langerhans cells (LCs and in keratinocytes. Moreover, when LC were pretreated with PAF and then cocultured with anti-CD3- and anti-CD28-activated T cells, the latter developed a Th17 phenotype, with a significant increase in the expression of the transcriptional regulator RORγt and enhanced expression of IL-17, IL-21, and IL-22. PAF-induced Th17 development was prevented by the PAF receptor antagonist WEB2086 and by neutralizing antibodies to IL-23 and IL-6R. This may constitute a previously unknown stimulus for the development and persistence of inflammatory processes that could be amenable to pharmacologic intervention.

  18. Growth Factors and Tension-Induced Skeletal Muscle Growth

    Science.gov (United States)

    Vandenburgh, Herman H.

    1994-01-01

    The project investigated biochemical mechanisms to enhance skeletal muscle growth, and developed a computer based mechanical cell stimulator system. The biochemicals investigated in this study were insulin/(Insulin like Growth Factor) IGF-1 and Steroids. In order to analyze which growth factors are essential for stretch-induced muscle growth in vitro, we developed a defined, serum-free medium in which the differentiated, cultured avian muscle fibers could be maintained for extended periods of time. The defined medium (muscle maintenance medium, MM medium) maintains the nitrogen balance of the myofibers for 3 to 7 days, based on myofiber diameter measurements and myosin heavy chain content. Insulin and IGF-1, but not IGF-2, induced pronounced myofiber hypertrophy when added to this medium. In 5 to 7 days, muscle fiber diameters increase by 71 % to 98% compared to untreated controls. Mechanical stimulation of the avian muscle fibers in MM medium increased the sensitivity of the cells to insulin and IGF-1, based on a leftward shift of the insulin dose/response curve for protein synthesis rates. (54). We developed a ligand binding assay for IGF-1 binding proteins and found that the avian skeletal muscle cultures produced three major species of 31, 36 and 43 kD molecular weight (54) Stretch of the myofibers was found to have no significant effect on the efflux of IGF-1 binding proteins, but addition of exogenous collagen stimulated IGF-1 binding protein production 1.5 to 5 fold. Steroid hormones have a profound effect on muscle protein turnover rates in vivo, with the stress-related glucocorticoids inducing rapid skeletal muscle atrophy while androgenic steroids induce skeletal muscle growth. Exercise in humans and animals reduces the catabolic effects of glucocorticoids and may enhance the anabolic effects of androgenic steroids on skeletal muscle. In our continuing work on the involvement of exogenrus growth factors in stretch-induced avian skeletal muscle growth, we

  19. Growth factor deprivation induces cytosolic translocation of SIRT1

    Science.gov (United States)

    Meng, Chengbo; Xing, Da; Wu, Shengnan; Huang, Lei

    2010-02-01

    Sirtuin type 1 (SIRT1), a NAD+-dependent histone deacetylases, plays a critical role in cellular senescence, aging and longevity. In general, SIRT1 is localized in nucleus and is believed as a nuclear protein. Though overexpression of SIRT1 delays senescence, SIRT1-protein levels decline naturally in thymus and heart during aging. In the present studies, we investigated the subcellular localization of SIRT1 in response to growth factor deprivation in African green monkey SV40-transformed kidney fibroblast cells (COS-7). Using SIRT1-EGFP fluorescence reporter, we found that SIRT1 localized to nucleus in physiological conditions. We devised a model enabling cell senescence via growth factor deprivation, and we found that SIRT1 partially translocated to cytosol under the treatment, suggesting a reduced level of SIRT1's activity. We found PI3K/Akt pathway was involved in the inhibition of SIRT1's cytosolic translocation, because inhibition of these kinases significantly decreased the amount of SIRT1 maintained in nucleus. Taken together, we demonstrated that growth factor deprivation induces cytosolic translocation of SIRT1, which suggesting a possible connection between cytoplasm-localized SIRT1 and the aging process.

  20. Dauricine inhibits insulin-like growth factor-Ⅰ-induced hypoxia inducible factor 1α protein accumulation and vascular endothelial growth factor expression in human breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Xu-dong TANG; Xin ZHOU; Ke-yuan ZHOU

    2009-01-01

    Aim: To investigate the effects of dauricine (Dau) on insulin-like growth factor-Ⅰ (IGF-Ⅰ)-induced hypoxia inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) expression in human breast cancer cells (MCF-7).Methods: Serum-starved MCF-7 cells were pretreated for 1 h with different concentrations of Dau, followed by incubation with IGF-Ⅰ for 6 h. HIF-1α and VEGF protein expression levels were analyzed by Western blotting and ELISA, respectively.HIF-1α and VEGF mRNA levels were determined by real-time PCR. In vitro angiogenesis was observed via the human umbilical vein endothelial cell (HUVEC) tube formation assay. An in vitro invasion assay on HUVECs was performed.Results: Dau significantly inhibited IGF-Ⅰ-induced HIF-1α protein expression but had no effect on HIF-1α mRNA expression. However, Dau remarkably suppressed VEGF expression at both protein and mRNA levels in response to IGF-Ⅰ.Mechanistically, Dau suppressed IGF-Ⅰ-induced HIF-1α and VEGF protein expression mainly by blocking the activation of PI-3K/AKT/mTOR signaling pathway. In addition, Dan reduced IGF-Ⅰ-induced HIF-1α protein accumulation by inhibiting its synthesis as well as by promoting its degradation. Functionally, Dau inhibited angiogenesis in vitro. Moreover, Dau had a direct effect on IGF-Ⅰ-induced invasion of HUVECs.Conclusion: Dau inhibits human breast cancer angiogenesis by suppressing HIF-1α protein accumulation and VEGF expression, which may provide a novel potential mechanism for the anticancer activities of Dau in human breast cancer.

  1. Effects of hypoxia-inducible factor 1 on ischemic cerebrovascular disease

    Institute of Scientific and Technical Information of China (English)

    Yongjie Luo; Xiaoping Wang; Hongbin Sun

    2008-01-01

    Hypoxia-inducible factor I, a nuclear transcription factor, is induced by hypoxia. Hypoxia-inducible factor I, a heterodimeric DNA-binding protein, is composed of hypoxia-inducible factor 1α and hypoxia-inducible factor 1 β subunits, which are family members of the basic helix-loop-helix-PER, ARNT, SIM (PAS) protein. O2 concentration regulates hypoxia-inducible factor 1 activity via this subunit. Hypoxia-inducible factor 1α plays a major role in response to hypoxia and transcriptional activation, as well as in the target gene specificity of the DNA enhancer. Hypoxia-inducible factor 1β cannot be induced by hypoxia. This effect may be due to hypoxia-inducible factor 1 stability and activated conformation due to dimerization. Previous studies have shown that hypoxia-inducible factor 1 mRNA expression increases in the penumbra following ischemia/hypoxia. Hypoxia-inducible factor 1 plays an important role in brain tissue injury alter ischemia by affecting a series of target genes, elevating tolerance to hypoxia, and ensuring survival of neural cells. This article summarizes the structure, function, expression, regulatory mechanisms, biological effects, and significance of hypoxia-inducible factor 1 in patients with ischemic cerebrovascular disease. As a transcriptional activator, hypoxia- inducible factor 1 plays a key role in hypoxic responses by stabilizing the internal environment. It also has been shown to regulate the expression of several genes. The regulatory effects of hypoxia-inducible factor 1 in patients with ischemic cerebrovascular disease have been described. The present review re-examined the concept of brain protection at the level of gene regulation.

  2. Factors that mitigate war-induced anxiety and mental distress.

    Science.gov (United States)

    Almedom, Astier M

    2004-07-01

    The effects of war-induced anxiety and mental distress on individuals and groups can either be mitigated or exacerbated by 'humanitarian action'. This paper focuses on two key factors that protect the mental well-being of war-affected populations: organized displacement or assisted relocation; and coordinated humanitarian aid operations that are responsive to local needs. Qualitative data from two internally displaced person (IDP) camps in Eritrea are presented. Analysis of these data serves to substantiate and refine a working hypothesis: that social support of the right type, provided at the right time and level, can mitigate the worst effects of war and displacement on victims/survivors. An integrated model of psychosocial transition is suggested. The implications of this approach for humanitarian policy and practice are discussed in the wider context of current debates and lamentations of the 'humanitarian idea'.

  3. Epidermal growth factor signaling induces behavioral quiescence in Caenorhabditis elegans.

    Science.gov (United States)

    Van Buskirk, Cheryl; Sternberg, Paul W

    2007-10-01

    The epidermal growth factor receptor (EGFR)/ErbB receptor tyrosine kinases regulate several aspects of development, including the development of the mammalian nervous system. ErbB signaling also has physiological effects on neuronal function, with influences on synaptic plasticity and daily cycles of activity. However, little is known about the effectors of EGFR activation in neurons. Here we show that EGF signaling has a nondevelopmental effect on behavior in Caenorhabditis elegans. Ectopic expression of the EGF-like ligand LIN-3 at any stage induces a reversible cessation of feeding and locomotion. These effects are mediated by neuronal EGFR (also called LET-23) and phospholipase C-gamma (PLC-gamma), diacylglycerol-binding proteins, and regulators of synaptic vesicle release. Activation of EGFR within a single neuron, ALA, is sufficient to induce a quiescent state. This pathway modulates the cessation of pharyngeal pumping and locomotion that normally occurs during the lethargus period that precedes larval molting. Our results reveal an evolutionarily conserved role for EGF signaling in the regulation of behavioral quiescence.

  4. Factors associated with induced abortion among women in Hohoe, Ghana.

    Science.gov (United States)

    Mote, Charity V; Otupiri, Easmon; Hindin, Michelle J

    2010-12-01

    In Hohoe, Ghana, induced abortion is the second highest cause of hospital admissions. We aimed to describe factors influencing induced abortion among 408 randomly selected women aged 15-49 years. 21% of the women had had an abortion; of those, 36% said they did not want to disrupt their education or employment; 66% of the abortions were performed by doctors. Bivariate logistic regression showed that compared with women with secondary education, women with basic education (OR = 0.31, 95% CI: 0.18-0.54) and uneducated women (OR = 0.24, 95% CI: 0.07-0.70) were significantly less likely to have had an abortion. Women who were married (OR = 1.83, 95% CI: 1.10-3.04), peri-urban residents (OR = 1.88, 95% CI: 0.95-3.94), and women with formal employment (OR = 2.22, 95% CI: 0.86-5.45) were more likely to have had an abortion. Stakeholders should improve access to effective contraception to lower the chance of needing an abortion and target education programmes at those with unmet need for contraception.

  5. J774 macrophages secrete antibiotics via organic anion transporters.

    Science.gov (United States)

    Cao, C X; Silverstein, S C; Neu, H C; Steinberg, T H

    1992-02-01

    Mouse macrophages and J774 macrophage-like cells express probenecid-inhibitable organic anion transporters that remove anionic dyes from the cells' cytoplasmic matrix and secrete these dyes into the extracellular medium. The present studies show that these transporters also secrete antibiotics from J774 macrophages. Penicillin G permeates J774 cells poorly, but after it was introduced into the cell cytoplasm, it was secreted in a probenecid-inhibitable fashion. The quinolone norfloxacin enters macrophages readily. Probenecid retarded the secretion of intracellular norfloxacin by J774 cells and enhanced norfloxacin accumulation three- to fourfold. Thus the intracellular accumulation of norfloxacin is regulated in part by organic anion transporters that secrete norfloxacin (and penicillin G) from J774 cells. This transport process may have clinical significance, as fluoroquinolones inhibit growth of intracellular pathogens such as mycobacteria and Brucella organisms in vitro but fail to arrest infections with these organisms in vivo.

  6. Overexpression of Hypoxia-Inducible Factor-1α Exacerbates Endothelial Barrier Dysfunction Induced by Hypoxia

    Directory of Open Access Journals (Sweden)

    Pei Wang

    2013-09-01

    Full Text Available Background/Aims: The mechanisms involved in endothelial barrier dysfunction induced by hypoxia are incompletely understood. There is debate about the role of hypoxia-inducible factor-1α (HIF-1α in endothelial barrier disruption. The aim of this study was to investigate the effect of genetic overexpression of HIF-1α on barrier function and the underlying mechanisms in hypoxic endothelial cells. Methods: The plasmid pcDNA3.1/V5-His-HIF-1α was stably transfected into human endothelial cells. The cells were exposed to normoxia or hypoxia. The mRNA and protein expressions of HIF-1α were detected by RT-PCR and Western blot respectively. The barrier function was assessed by measuring the transendothelial electrical resistance (TER. The Western blot analysis was used to determine the protein expression of glucose transporter-1 (GLUT-1, zonular occludens-1 (ZO-1, occludin, and myosin light chain kinase (MLCK in endothelial cells. The mRNA expression of proinflammatory cytokines was detected by qRT-PCR. Results: Genetic overexpression of HIF-1α significantly increased the mRNA and protein expression of HIF-1α in endothelial cells. The overexpression of HIF-1α enhanced the hypoxia-induced increase of HIF-1α and GLUT-1 protein expression. HIF-1α overexpression not only exacerbated hypoxia-induced endothelial barrier dysfunction but also augmented hypoxia-induced up-regulation of MLCK protein expression. HIF-1α overexpression also enhanced IL-1β, IL-6 and TNF-α mRNA expression. Conclusion: We provide evidence that genetic overexpression of HIF-1α aggravates the hypoxia-induced endothelial barrier dysfunction via enhancing the up-regulation of MLCK protein expression caused by hypoxia, suggesting a potential role for HIF-1α in the pathogenesis of endothelial barrier dysfunction in hypoxia.

  7. Hypoxia-inducible factor 3 biology: complexities and emerging themes.

    Science.gov (United States)

    Duan, Cunming

    2016-02-15

    The hypoxia-inducible factor (HIF) family has three distinct members in most vertebrates. All three HIFs consist of a unique and oxygen-labile α-subunit and a common and stable β-subunit. While HIF-1 and HIF-2 function as master regulators of the transcriptional response to hypoxia, much less is known about HIF-3. The HIF-3α gene gives rise to multiple HIF-3α variants due to the utilization of different promoters, different transcription initiation sites, and alternative splicing. These HIF-3α variants are expressed in different tissues, at different developmental stages, and are differentially regulated by hypoxia and other factors. Recent studies suggest that different HIF-3α variants have different and even opposite functions. There is strong evidence that full-length HIF-3α protein functions as an oxygen-regulated transcription activator and that it activates a unique transcriptional program in response to hypoxia. Many HIF-3α target genes have been identified. While some short HIF-3α variants act as dominant-negative regulators of HIF-1/2α actions, other HIF-3α variants can inhibit HIF-1/2α actions by competing for the common HIF-β. There are also a number of HIF-3α variants yet to be explored. Future studies of these naturally occurring HIF-3α variants will provide new and important insights into HIF biology and may lead to the development of new therapeutic strategies.

  8. Epithelial Barrier Regulation by Hypoxia-Inducible Factor.

    Science.gov (United States)

    Glover, Louise E; Colgan, Sean P

    2017-09-01

    Mucosal tissues represent surfaces that are exposed to the outside world and provide a conduit for internal and external communication. Tissues such as the intestine and the lung are lined by layer(s) of epithelial cells that, when organized in three dimensions, provide a critical barrier to the flux of luminal contents. This selective barrier is provided through the regulated expression of junctional proteins and mucins. Tissue oxygen metabolism is central to the maintenance of homeostasis in the mucosa. In some organs (e.g., the colon), low baseline Po2 determines tissue metabolism and results in basal expression of the transcription factor, hypoxia-inducible factor (HIF), which is enhanced after ischemia/inflammation. Recent studies have indicated that HIF contributes fundamentally to the expression of barrier-related genes and in the regulation of barrier-adaptive responses within the mucosa. Here, we briefly review recent literature on the topic of hypoxia and HIF regulation of barrier in mucosal health and during disease.

  9. Musashi mediates translational repression of the Drosophila hypoxia inducible factor

    Science.gov (United States)

    Bertolin, Agustina P.; Katz, Maximiliano J.; Yano, Masato; Pozzi, Berta; Acevedo, Julieta M.; Blanco-Obregón, Dalmiro; Gándara, Lautaro; Sorianello, Eleonora; Kanda, Hiroshi; Okano, Hideyuki; Srebrow, Anabella; Wappner, Pablo

    2016-01-01

    Adaptation to hypoxia depends on a conserved α/β heterodimeric transcription factor called Hypoxia Inducible Factor (HIF), whose α-subunit is regulated by oxygen through different concurrent mechanisms. In this study, we have identified the RNA binding protein dMusashi, as a negative regulator of the fly HIF homologue Sima. Genetic interaction assays suggested that dMusashi participates of the HIF pathway, and molecular studies carried out in Drosophila cell cultures showed that dMusashi recognizes a Musashi Binding Element in the 3′ UTR of the HIFα transcript, thereby mediating its translational repression in normoxia. In hypoxic conditions dMusashi is downregulated, lifting HIFα repression and contributing to trigger HIF-dependent gene expression. Analysis performed in mouse brains revealed that murine Msi1 protein physically interacts with HIF-1α transcript, suggesting that the regulation of HIF by Msi might be conserved in mammalian systems. Thus, Musashi is a novel regulator of HIF that inhibits responses to hypoxia specifically when oxygen is available. PMID:27141964

  10. Thioredoxin interacting protein inhibits hypoxia-inducible factor transcriptional activity

    Science.gov (United States)

    Farrell, Michael R; Rogers, Lynette K; Liu, Yusen; Welty, Stephen E; Tipple, Trent E

    2010-01-01

    Vascular endothelial growth factor (VEGF) is required for proper lung development and is transcriptionally regulated in alveolar epithelial cells by hypoxia inducible factor (HIF). Previous findings in a newborn mouse model of bronchopulmonary dysplasia (BPD) suggest that thioredoxin interacting protein (Txnip) is a novel regulator of VEGF expression. The present studies were designed to test the hypothesis that Txnip negatively regulates VEGF through effects on HIF-mediated gene expression. To test this hypothesis, we first examined the levels of VEGF and Txnip protein in the lungs of 1 day-old newborn and E19 embryos and detected a significant inverse correlation. To elucidate the mechanisms underlying this relationship, we studied the effects of Txnip overexpression on HIF-mediated transcription using murine lung epithelial (MLE-12) cells. Overexpression of Txnip inhibited HIF-mediated reporter activity in both hypoxia and room air. Suppression of HIF activity by Txnip appeared to be independent of the ability of Txnip to bind to thioredoxin. Thus, our studies support a model in which Txnip is a potentially critical regulator of HIF-mediated gene transcription in the murine lung. Alterations in Txnip expression could alter lung VEGF expression in prematurely born human infants and contribute to the development of BPD. PMID:20692333

  11. Hypoxia-inducible factor-1α induces multidrug resistance protein in colon cancer

    Directory of Open Access Journals (Sweden)

    Lv Y

    2015-07-01

    Full Text Available Yingqian Lv, Shan Zhao, Jinzhu Han, Likang Zheng, Zixin Yang, Li Zhao Department of Oncology, The Second Hospital, Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China Abstract: Multidrug resistance is the major cause of chemotherapy failure in many solid tumors, including colon cancer. Hypoxic environment is a feature for all solid tumors and is important for the development of tumor resistance to chemotherapy. Hypoxia-inducible factor (HIF-1α is the key transcription factor that mediates cellular response to hypoxia. HIF-1α has been shown to play an important role in tumor resistance; however, the mechanism is still not fully understood. Here, we found that HIF-1α and the drug resistance-associated gene multidrug resistance associated protein 1 (MRP1 were induced by treatment of colon cancer cells with the hypoxia-mimetic agent cobalt chloride. Inhibition of HIF-1α by RNA interference and dominant-negative protein can significantly reduce the induction of MRP1 by hypoxia. Bioinformatics analysis showed that a hypoxia response element is located at -378 to -373 bp upstream of the transcription start site of MRP1 gene. Luciferase reporter assay combined with mutation analysis confirmed that this element is essential for hypoxia-mediated activation of MRP gene. Furthermore, RNA interference revealed that HIF-1α is necessary for this hypoxia-driven activation of MRP1 promoter. Importantly, chromatin immunoprecipitation analysis demonstrated that HIF-1α could directly bind to this HRE site in vivo. Together, these data suggest that MRP1 is a downstream target gene of HIF-1α, which provides a potential novel mechanism for HIF-1α-mediated drug resistance in colon cancer and maybe other solid tumors as well. Keywords: hypoxia, hypoxia-inducible factor-1α, multidrug resistance associated protein, transcriptional regulation, chemotherapy tolerance

  12. The role of hypoxia inducible factor-1 alpha in bypassing oncogene-induced senescence.

    Directory of Open Access Journals (Sweden)

    Mehtap Kilic Eren

    Full Text Available Oncogene induced senescence (OIS is a sustained anti-proliferative response acutely induced in primary cells via activation of mitogenic oncogenes such as Ras/BRAF. This mechanism acts as an initial barrier preventing normal cells transformation into malignant cell. Besides oncogenic activation and DNA damage response (DDR, senescence is modulated by a plethora of other factors, and one of the most important one is oxygen tension of the tissue. The aim of this study was to determine the impact of hypoxia on RasV12-induced senescence in human diploid fibroblasts (HDFs. We showed here that hypoxia prevents execution of oncogene induced senescence (OIS, through a strong down-regulation of senescence hallmarks, such as SA- β-galactosidase, H3K9me3, HP1γ, p53, p21CIP1 and p16INK4a in association with induction of hypoxia inducible factor-1α (HIF-1α. In addition, hypoxia also decreased marks of H-RasV12-induced DDR in both cell lines through down-regulation of ATM/ATR, Chk1 and Chk2 phosphorylation as well as decreased γ-H2AX positivity. Utilizing shRNA system targeting HIF-1α we show that HIF-1α is directly involved in down regulation of p53 and its target p21CIP1 but not p16INK4a. In line with this finding we found that knock down of HIF-1α leads to a strong induction of apoptotic response, but not restoration of senescence in Ras expressing HDFs in hypoxia. This indicates that HIF-1α is an important player in early steps of tumorigenesis, leading to suppression of senescence through its negative regulation of p53 and p21CIP1. In our work we describe a mechanism through which hypoxia and specifically HIF-1α preclude cells from maintaining senescence-driven anti proliferative response. These findings indicate the possible mechanism through which hypoxic environment helps premalignant cells to evade impingement of cellular failsafe pathways.

  13. Copper is required for cobalt-induced transcriptional activity of hypoxia-inducible factor-1.

    Science.gov (United States)

    Qiu, Liying; Ding, Xueqin; Zhang, Zhen; Kang, Y James

    2012-08-01

    Cobalt inhibits prolyl hydroxylases, leading to the accumulation of hypoxia-inducible factor-1α (HIF-1α) and a concomitant increase in the transcriptional activity of HIF-1. Therefore, cobalt has been under development as a drug for activating HIF-1 under some disease conditions. However, it has been shown that ischemic conditions resulted in the loss of copper, and the activation of HIF-1 would not occur unless copper was supplemented. The present study was undertaken to test the hypothesis that copper is also required for the cobalt activation of HIF-1 transcriptional activity. Human umbilical vein endothelial cells subjected to treatment with cobalt chloride (CoCl(2)) at concentrations above 25 μM for 2 h resulted in an accumulation of HIF-1α, which was determined by Western blot analysis, and an increase in the expression of vascular endothelial growth factor (VEGF), which was determined by real-time reverse transcription-polymerase chain reaction analysis for mRNA levels and enzyme-linked immunosorbent assay analysis for protein levels. The copper chelator tetraethylenepentamine at 25 μM did not significantly affect the accumulation of HIF-1α but blocked increases in VEGF mRNA and protein levels, an effect that could be reversed by the addition of 25 μM copper sulfate (CuSO(4)). In addition, gene silencing of the copper chaperone for Cu,Zn-superoxide dismutase blocked VEGF expression with little effect on cobalt-induced HIF-1α accumulation. The present study thus demonstrates that copper was required for cobalt-activated transcriptional activity of HIF-1, although copper did not affect cobalt-induced accumulation of HIF-1α in the cells.

  14. LPS-inducible factor(s) from activated macrophages mediates cytolysis of Naegleria fowleri amoebae

    Energy Technology Data Exchange (ETDEWEB)

    Cleary, S.F.; Marciano-Cabral, F.

    1986-03-01

    Soluble cytolytic factors of macrophage origin have previously been described with respect to their tumoricidal activity. The purpose of this study was to investigate the mechanism and possible factor(s) responsible for cytolysis of the amoeba Naegleria fowleri by activated peritoneal macrophages from B6C3F1 mice. Macrophages or conditioned medium (CM) from macrophage cultures were incubated with /sup 3/H-Uridine labeled amoebae. Percent specific release of label served as an index of cytolysis. Bacille Calmette-Guerin (BCG) and Corynebacterium parvum macrophages demonstrated significant cytolysis of amoebae at 24 h with an effector to target ratio of 10:1. Treatment of macrophages with inhibitors of RNA or protein synthesis blocked amoebicidal activity. Interposition of a 1 ..mu..m pore membrane between macrophages and amoebae inhibited killing. Inhibition in the presence of the membrane was overcome by stimulating the macrophages with LPS. CM from SPS-stimulated, but not unstimulated, cultures of activated macrophages was cytotoxic for amoebae. The activity was heat sensitive and was recovered from ammonium sulfate precipitation of the CM. Results indicate that amoebicidal activity is mediated by a protein(s) of macrophage origin induced by target cell contact or stimulation with LPS.

  15. Hypoxia-inducible factor 1 alpha and vascular endothelial growth factor overexpression in ischemic colitis

    Institute of Scientific and Technical Information of China (English)

    Tomoyuki Okuda; Takeshi Azuma; Masahiro Ohtani; Ryuho Masaki; Yoshiyuki Ito; Yukinao Yamazaki; Shigeji Ito; Masaru Kuriyama

    2005-01-01

    AIM: To examine the etiology and pathophysiology in human ischemic colitis from the viewpoint of ischemic favors such as hypoxia-inducible factor 1 alpha (HIF-1alpha and vascular endothelial growth factor (VEGF).METHODS: Thirteen patients with ischemic colitis and 21 normal controls underwent colonoscopy. The follow-up colonoscopy was performed in 8 patients at 7 to 10 d after theoccurrence of ischemic colitis. Biopsy samples were subjected to real-time RT-PCR and immunohistochemistry to detect the expression of HIF-1 alpha and VEGF.RESULTS: HIF-1 alpha and VEGF expression were found in the normal colon tissues by RT-PCR and immunohistochemistry.HIF-1 alpha and VEGF were overexpressed in the lesions of ischemic colitis. Overexpressed HIF-1 alpha and VEGF RNA quickly decreased to the normal level in the scar regions at 7 to 10 d after the occurrence of ischemic colitis.CONCLUSION: Constant expression of HIF-1 alpha and VEGF in normal human colon tissue suggested that HIF-1alpha and VEGF play an important role in maintaining tissue integrity. We confirmed the ischemic crisis in ischemic colitis at the molecular level, demonstrating overexpression of HIF-1 alpha and VEGF in ischemic lesions. These ischemic factors may play an important role in the pathophysiology of ischemic colitis.

  16. Mechanics of Coriolis stimulus and inducing factors of motion sickness.

    Science.gov (United States)

    Isu, N; Shimizu, T; Sugata, K

    2001-12-01

    To specify inducing factors of motion sickness comprised in Coriolis stimulus, or cross-coupled rotation, the sensation of rotation derived from the semicircular canal system during and after Coriolis stimulus under a variety of stimulus conditions, was estimated by an approach from mechanics with giving minimal hypotheses and simplifications on the semicircular canal system and the sensory nervous system. By solving an equation of motion of the endolymph during Coriolis stimulus, rotating angle of the endolymph was obtained, and the sensation of rotation derived from each semicircular canal was estimated. Then the sensation derived from the whole semicircular canal system was particularly considered in two cases of a single Coriolis stimulus and cyclic Coriolis stimuli. The magnitude and the direction of sensation of rotation were shown to depend on an angular velocity of body rotation and a rotating angle of head movement (amplitude of head oscillation when cyclic Coriolis stimuli) irrespective of initial angle (center angle) of the head relative to the vertical axis. The present mechanical analysis of Coriolis stimulus led a suggestion that the severity of nausea evoked by Coriolis stimulus is proportional to the effective value of the sensation of rotation caused by the Coriolis stimulus.

  17. Drug-induced proarrhythmia: risk factors and electrophysiological mechanisms.

    Science.gov (United States)

    Frommeyer, Gerrit; Eckardt, Lars

    2016-01-01

    Drug-induced ventricular tachyarrhythmias can be caused by cardiovascular drugs, noncardiovascular drugs, and even nonprescription agents. They can result in arrhythmic emergencies and sudden cardiac death. If a new arrhythmia or aggravation of an existing arrhythmia develops during therapy with a drug at a concentration usually considered not to be toxic, the situation can be defined as proarrhythmia. Various cardiovascular and noncardiovascular drugs can increase the occurrence of polymorphic ventricular tachycardia of the 'torsade de pointes' type. Antiarrhythmic drugs, antimicrobial agents, and antipsychotic and antidepressant drugs are the most important groups. Age, female sex, and structural heart disease are important risk factors for the occurrence of torsade de pointes. Genetic predisposition and individual pharmacodynamic and pharmacokinetic sensitivity also have important roles in the generation of arrhythmias. An increase in spatial or temporal dispersion of repolarization and a triangular action-potential configuration have been identified as crucial predictors of proarrhythmia in experimental models. These studies emphasized that sole consideration of the QT interval is not sufficient to assess the proarrhythmic risk. In this Review, we focus on important triggers of proarrhythmia and the underlying electrophysiological mechanisms that can enhance or prevent the development of torsade de pointes.

  18. Role of tumor necrosis factor-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) axis in rheumatic diseases

    Institute of Scientific and Technical Information of China (English)

    ZHU Li-xiu; ZHANG Hai-hong; MEI Yi-fang; ZHAO Yan-ping; ZHANG Zhi-yi

    2012-01-01

    Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) is a member of the TNF superfamily of structurally related cytokines and is known to induce proliferation,migration,differentiation,apoptotic cell death,inflammation,and angiogenesis.These physiological processes are induced by the binding of TWEAK to fibroblast growth factor-inducible 14 (Fn14),a highly inducible cell-surface receptor that is linked to several intracellular signaling pathways,including the nuclear factor-κB (NF-κB) pathway.This review discusses the role of the TWEAK-Fn14 axis in several rheumatic diseases and the potential therapeutic benefits of modulation of the TWEAK-Fn14 pathway.

  19. El factor inducible por la hipoxia y la actividad física hypoxia-inducible factor and physical activity

    Directory of Open Access Journals (Sweden)

    Juan Camilo Calderón Vélez

    2007-04-01

    Full Text Available Los animales superiores dependen de un adecuado flujo de oxígeno. Los mecanismos involucrados en los procesos de percibir la hipoxia y responder a ella se han ido aclarando, desde hace unos 15 años, con el descubrimiento de las subunidades α y β del factor inducible por la hipoxia (HIF, por su sigla en inglés y de las hidroxilasas involucradas en su regulación. Las especies reactivas de oxígeno (ERO, al parecer, también participan en el proceso de percibir y responder a la hipoxia. Las células musculares podrían ser un modelo útil para estudiar la interrelación hipoxia-ERO-HIF- respuesta celular, con importantes implicaciones básico-clínicas. Sin embargo, apenas comienza el estudio de esta relación en el músculo esquelético. Se revisan en este artículo algunos aspectos interesantes de la investigación en el músculo esquelético y se plantean algunas preguntas e hipótesis que podrían ser evaluadas en este tipo de células. Higher animals depend on an adequate oxygen flux. Mechanisms involved in the process of sensing and responding to hypoxia have become clearer in the last 15 years with the discovery of the y hypoxia-inducible factor (HIF subunits and hydroxylases involved in their regulation. Reactive oxygen species seem to play some role in the process of sensing and responding to hypoxia. Skeletal muscle cells seem to be a suitable model for studying the hypoxia-reactive oxygen species-HIF-cellular response relationship. Its study has important basic and clinic implications. However, the study of this relationship just begins. Some interesting aspects regarding skeletal muscle research are reviewed in this article, and some questions and hypotheses suitable for being evaluated with muscle cells are discussed.

  20. hypoxia-inducible factors activate CD133 promoter through ETS family transcription factors.

    Directory of Open Access Journals (Sweden)

    Shunsuke Ohnishi

    Full Text Available CD133 is a cellular surface protein that has been reported to be a cancer stem cell marker, and thus it is considered to be a potential target for cancer treatment. However, the mechanism regulating CD133 expression is not yet understood. In this study, we analyzed the activity of five putative promoters (P1-P5 of CD133 in human embryonic kidney (HEK 293 cells and colon cancer cell line WiDr, and found that the activity of promoters, particularly of P5, is elevated by overexpression of hypoxia-inducible factors (HIF-1α and HIF-2α. Deletion and mutation analysis identified one of the two E-twenty six (ETS binding sites (EBSs in the P5 region as being essential for its promoter activity induced by HIF-1α and HIF-2α. In addition, a chromatin imunoprecipitation assay demonstrated that HIF-1α and HIF-2α bind to the proximal P5 promoter at the EBSs. The immunoprecipitation assay showed that HIF-1α physically interacts with Elk1; however, HIF-2α did not bind to Elk1 or ETS1. Furthermore, knockdown of both HIF-1α and HIF-2α resulted in a reduction of CD133 expression in WiDr. Taken together, our results revealed that HIF-1α and HIF-2α activate CD133 promoter through ETS proteins.

  1. Hypoxia and hypoxia-inducible factors in leukaemias

    Directory of Open Access Journals (Sweden)

    Margaux eDeynoux

    2016-02-01

    Full Text Available Despite huge improvements in the treatment of leukaemia, the percentage of patients suffering relapse still remains significant. Relapse most often results from a small number of leukaemic stem cells (LSCs within the bone marrow, which are able to self-renew and therefore re-establish the full tumour. The marrow microenvironment contributes considerably in supporting the protection and development of leukaemic cells. LSCs share specific niches with normal haematopoietic stem cells with the niche itself being composed of a variety of cell types including mesenchymal stem/stromal cells, bone cells, immune cells, neuronal cells and vascular cells. A hallmark of the haematopoietic niche is low oxygen partial pressure, indeed this hypoxia is necessary for the long-term maintenance of HSCs. Hypoxia is a strong signal, principally maintained by members of the hypoxia-inducible factor family. In solid tumours, it has been well-established that hypoxia triggers intrinsic metabolic changes and microenvironmental modifications, such as the stimulation of angiogenesis, through activation of HIFs. As leukaemia is not considered a solid tumour, the role of oxygen in the disease was presumed to be inconsequential and remained long overlooked. This view has now been revised since hypoxia has been shown to influence leukaemic cell proliferation, differentiation and resistance to chemotherapy. However, the role of HIF proteins remains controversial with HIFs being considered as either oncogenes or tumour suppressor genes, depending on the study and model. The purpose of this review is to highlight our knowledge of hypoxia and HIFs in leukaemic development and therapeutic resistance, and to discuss the recent hypoxia-based strategies proposed to eradicate leukaemias.

  2. Clinical and dosimetric factors of radiation-induced esophageal injury: Radiation-induced esophageal toxicity

    Institute of Scientific and Technical Information of China (English)

    Wen-Bo Qiao; Yan-Hui Zhao; Yan-Bin Zhao; Rui-Zhi Wang

    2005-01-01

    AIM: To analyze the clinical and dosimetric predictive factors for radiation-induced esophageal injury in patients with non-small-cell lung cancer (NSCLC) during threedimensional conformal radiotherapy (3D-CRT). METHODS: We retrospectively analyzed 208 consecutive patients (146 men and 62 women) with NSCLC treated with 3D-CRT. The median age of the patients was 64 years (range 35-87 years). The clinical and treatment parameters including gender, age, performance status, sequential chemotherapy, concurrent chemotherapy, presence of carinal or subcarinal lymph nodes, pretreatment weight loss, mean dose to the entire esophagus, maximal point dose to the esophagus, and percentage of volume of esophagus receiving >55 Gy were studied. Clinical and dosimetric factors for radiation-induced acute and late grade 3-5 esophageal injury were analyzed according to Radiation Therapy Oncology Group (RTOG) criteria.RESULTS: Twenty-five (12%) of the two hundred and eight patients developed acute or late grade 3-5 esophageal injury. Among them, nine patients had both acute and late grade 3-5 esophageal injury, two died of late esophageal perforation. Concurrent chemotherapy and maximal point dose to the esophagus ≥60 Gy were significantly associated with the risk of grade 3-5 esophageal injury. Fifty-four (26%) of the two hundred and eight patients received concurrent chemotherapy. Among them, 25 (46%) developed grade 3-5 esophageal injury (P = 0.0001<0.01). However, nograde 3-5 esophageal injury occurred in patients who received a maximal point dose to the esophagus <60 Gy (P= 0.0001<0.01).CONCLUSION: Concurrent chemotherapy and the maximal esophageal point dose ≥60 Gy are significantly associated with the risk of grade 3-5 esophageal injury in patients with NSCLC treated with 3D-CRT.

  3. TCDD induces the hypoxia-inducible factor (HIF)-1α regulatory pathway in human trophoblastic JAR cells.

    Science.gov (United States)

    Liao, Tien-Ling; Chen, Su-Chee; Tzeng, Chii-Reuy; Kao, Shu-Huei

    2014-09-30

    The exposure to dioxin can compromise pregnancy outcomes and increase the risk of preterm births. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) has been demonstrated to induce placental hypoxia at the end of pregnancy in a rat model, and hypoxia has been suggested to be the cause of abnormal trophoblast differentiation and placental insufficiency syndromes. In this study, we demonstrate that the non-hypoxic stimulation of human trophoblastic cells by TCDD strongly increased hypoxia inducible factor-1 alpha (HIF-1α) stabilization. TCDD exposure induced the generation of reactive oxygen species (ROS) and nitric oxide. TCDD-induced HIF-1α stabilization and Akt phosphorylation was inhibited by pretreatment with wortmannin (a phosphatidylinositol 3-kinase (PI3K) inhibitor) or N-acetylcysteine (a ROS scavenger). The augmented HIF-1α stabilization by TCDD occurred via the ROS-dependent activation of the PI3K/Akt pathway. Additionally, a significant increase in invasion and metallomatrix protease-9 activity was found in TCDD-treated cells. The gene expression of vascular endothelial growth factor and placental growth factor was induced upon TCDD stimulation, whereas the protein levels of peroxisome proliferator-activated receptor γ (PPARγ), PPARγ coactivator-1α, mitochondrial transcription factor, and uncoupling protein 2 were decreased. Our results indicate that an activated HIF-1α pathway, elicited oxidative stress, and induced metabolic stress contribute to TCDD-induced trophoblastic toxicity. These findings may provide molecular insight into the TCDD-induced impairment of trophoblast function and placental development.

  4. Hypoxia-inducible factor and vascular endothelial growth factor in the neuroretina and retinal blood vessels after retinal ischemia

    DEFF Research Database (Denmark)

    Håkansson, Gisela; Gesslein, Bodil; Gustafsson, Lotta

    2010-01-01

    Retinal ischemia arises from circulatory failure. As the retinal blood vessels are key organs in circulatory failure, our aim was to study the retinal vasculature separately from the neuroretina to elucidate the role of hypoxia-inducible factor (HIF) 1α and 1β and vascular endothelial growth factor...

  5. Hypoxia-Inducible Factor-1α in carcinogenesis and progression of breast cancer

    NARCIS (Netherlands)

    Bos, R.

    2004-01-01

    This thesis is primarily focused on the previously hardly explored role of HIF-1 in breast cancer. HIF-1 is a transcription factor induced by hypoxia, but also by some oncogenes, tumor suppressor genes and growth factors. Activated HIF-1 can induce angiogenesis, glycolysis, erythropoiesis, and other

  6. Requirement for Tumor Necrosis Factor Receptor 2 Expression on Vascular Cells To Induce Experimental Cerebral Malaria

    OpenAIRE

    Stoelcker, Benjamin; Hehlgans, Thomas; Weigl, Karin; Bluethmann, Horst; Grau, Georges E.; Männel, Daniela N

    2002-01-01

    Using tumor necrosis factor receptor type 2 (TNFR2)-deficient mice and generating bone marrow chimeras which express TNFR2 on either hematopoietic or nonhematopoietic cells, we demonstrated the requirement for TNFR2 expression on tissue cells to induce lethal cerebral malaria. Thus, TNFR2 on the brain vasculature mediates tumor necrosis factor-induced neurovascular lesions in experimental cerebral malaria.

  7. Methoxychlor induces atresia by altering Bcl2 factors and inducing caspase activity in mouse ovarian antral follicles in vitro.

    Science.gov (United States)

    Basavarajappa, Mallikarjuna S; Karman, Bethany N; Wang, Wei; Gupta, Rupesh K; Flaws, Jodi A

    2012-12-01

    Methoxychlor (MXC) is an organochlorine pesticide widely used in many countries against various species of insects that attack crops and domestic animals. MXC reduces fertility by increasing atresia (death) of antral follicles in vivo. MXC also induces atresia of antral follicles after 96 h in vitro. The current work tested the hypothesis that MXC induces morphological atresia at early time points (24 and 48 h) by altering pro-apoptotic (Bax, Bok, Casp3, and caspase activity) and anti-apoptotic (Bcl2 and Bcl-xL) factors in the follicles. The results indicate that at 24 h, MXC increased Bcl-xL and Bax mRNA levels and increased the ratio of Bax/Bcl2. At 48-96 h, MXC induced morphological atresia. At 24-96 h, MXC increased caspase activities. These data suggest that MXC may induce atresia by altering Bcl2 factors and inducing caspase activities in antral follicles.

  8. A Novel Endometriosis Inducing Factor In Women with Endometriosis

    Directory of Open Access Journals (Sweden)

    Ramzy A,

    2010-01-01

    Full Text Available Aim: To confirm the hypothesis of the presence of a possible endometriosis inducing factor(s (EIF in the blood of women with endometriosis. Patients and Methods: Forty infertile women were studied. The study group compromised of fifteen women of each three different degrees of endometriosis and fifteen women without endometriosis as a control group. Stem cells are characterized by being spindle shaped and proliferate in appropriate culture indefinitely. The women sera were co-cultured with mesenchymal stem cells (MSCs which were followed up weekly to look for morphological changes and to detect Annexin 1 marker and ß-actin gene by reverse transcriptase polymerase chain reaction. Results: MSCs cultured with sera of cases with, mild, moderate and severe endometriosis, showed morphological changes to be columnar and cuboidal shaped cells -resembling endometrial cells and glands- by the 4th week in 60%, 60% & 100% respectively. These cells were detected from as early as the first week in women with moderate and severe types (20% for each group. The percentage of the change into endometrial like cells increased among the three groups where it was 30±25.8%, 45±29.9% and 75±37.9% respectively. Moreover, increasing number of endometrial like cells are detected weekly, the more severe the disease is. None of the cultures of serum of the control group had made such changes all over the study. Furthermore, with more differentiation there was a considerable decrease in number of stem cells. These differentiated cells expressed the Annexin-1 marker. Conclusion: It was evident that serum of women with endometriosis posses a factor(s that enables the MSCs to be transformed into endometrial like cells and glands in vitro. This finding supports a new theory for the etiology of endometriosis. This observation may have a tremendous effect on the therapeutic implications of this debilitating condition.Introduction: Endometriosis is a common condition that

  9. Epidermal growth factor inhibits cysteamine-induced duodenal ulcers

    DEFF Research Database (Denmark)

    Poulsen, Steen Seier

    1983-01-01

    The effect of the duodenal ulcerogen cysteamine on secretion of epidermal growth factor from Brunner's gland pouches was studied in the rat. Total output of immunoreactive epidermal growth factor was reduced to approximately 55%, compared with controls, 5 h after administration of cysteamine (300...... mg/kg, s.c.). Furthermore, measurements on tissue extracts of the pouches revealed that 5 h after cysteamine treatment, Brunner's glands were depleted of epidermal growth factor. The effect on ulcer development of intraduodenally applied exogenous epidermal growth factor (1 micrograms/kg . h) also...... factor used, when tested on chronic fistula rats, had no effect on acid secretion and did not influence bicarbonate secretion from Brunner's gland pouches. These results demonstrate that epidermal growth factor has a cytoprotective effect on the duodenal mucosa, and it is suggested that inhibition...

  10. Internet-induced marketing techniques: Critical factors of viral marketing

    OpenAIRE

    Woerndl, M; Papagiannidis, S; Bourlakis, M. A.; Li, F.

    2008-01-01

    The rapid diffusion of the Internet and the emergence of various social constructs facilitated by Internet technologies are changing the drivers that define how marketing techniques are developed and refined. This paper identifies critical factors for viral marketing, an Internet-based ‘word-of-mouth’ marketing technique. Based on existing knowledge, five types of viral marketing factors that may critically influence the success of viral marketing campaigns are identified. These factors are t...

  11. Some factors affecting the valinomycin-induced leak from liposomes

    NARCIS (Netherlands)

    Blok, M.C.; Gier, J. de; Deenen, L.L.M. van

    1974-01-01

    Experiments dealing with the valinomycin-induced K+ leak from egg lecithin liposomes have demonstrated the importance of the enclosed anion. Except when lipophilic anions are enclosed, the addition of both valinomycin and a uncoupler, e.g. carbonylcyanide p-trifluoromethoxyphenylhydrazone, is necess

  12. TCDD Induces the Hypoxia-Inducible Factor (HIF-1α Regulatory Pathway in Human Trophoblastic JAR Cells

    Directory of Open Access Journals (Sweden)

    Tien-Ling Liao

    2014-09-01

    Full Text Available The exposure to dioxin can compromise pregnancy outcomes and increase the risk of preterm births. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD has been demonstrated to induce placental hypoxia at the end of pregnancy in a rat model, and hypoxia has been suggested to be the cause of abnormal trophoblast differentiation and placental insufficiency syndromes. In this study, we demonstrate that the non-hypoxic stimulation of human trophoblastic cells by TCDD strongly increased hypoxia inducible factor-1 alpha (HIF-1α stabilization. TCDD exposure induced the generation of reactive oxygen species (ROS and nitric oxide. TCDD-induced HIF-1α stabilization and Akt phosphorylation was inhibited by pretreatment with wortmannin (a phosphatidylinositol 3-kinase (PI3K inhibitor or N-acetylcysteine (a ROS scavenger. The augmented HIF-1α stabilization by TCDD occurred via the ROS-dependent activation of the PI3K/Akt pathway. Additionally, a significant increase in invasion and metallomatrix protease-9 activity was found in TCDD-treated cells. The gene expression of vascular endothelial growth factor and placental growth factor was induced upon TCDD stimulation, whereas the protein levels of peroxisome proliferator-activated receptor γ (PPARγ, PPARγ coactivator-1α, mitochondrial transcription factor, and uncoupling protein 2 were decreased. Our results indicate that an activated HIF-1α pathway, elicited oxidative stress, and induced metabolic stress contribute to TCDD-induced trophoblastic toxicity. These findings may provide molecular insight into the TCDD-induced impairment of trophoblast function and placental development.

  13. Roscovitine sensitizes leukemia and lymphoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis

    OpenAIRE

    Molinsky, J.; Klánová, M.; Koc, M; Beranová, L. (Lenka); Anděra, L. (Ladislav); Ludvíková, Z.; Bohmova, M.; Gasova, Z.; Strnad, M.; Ivánek, R. (Robert); Trněný, M.; Nečas, E.; Živný, J.; Klener, P.

    2013-01-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a death ligand with selective antitumor activity. However, many primary tumors are TRAIL resistant. Previous studies reported that roscovitine, a cyclin-dependent kinase inhibitor, sensitized various solid cancer cells to TRAIL. We show that roscovitine and TRAIL demonstrate synergistic cytotoxicity in hematologic malignant cell lines and primary cells. Pretreatment of TRAIL-resistant leukemia cells with roscovitine induced en...

  14. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway.

    Science.gov (United States)

    Zhang, Mingdi; Cai, Shizhong; Zuo, Bin; Gong, Wei; Tang, Zhaohui; Zhou, Di; Weng, Mingzhe; Qin, Yiyu; Wang, Shouhua; Liu, Jun; Ma, Fei; Quan, Zhiwei

    2017-05-01

    Gallbladder cancer has poor prognosis and limited therapeutic options. Arctigenin, a representative dibenzylbutyrolactone lignan, occurs in a variety of plants. However, the molecular mechanisms involved in the antitumor effect of arctigenin on gallbladder cancer have not been fully elucidated. The expression levels of epidermal growth factor receptor were examined in 100 matched pairs of gallbladder cancer tissues. A positive correlation between high epidermal growth factor receptor expression levels and poor prognosis was observed in gallbladder cancer tissues. Pharmacological inhibition or inhibition via RNA interference of epidermal growth factor receptor induced cellular senescence in gallbladder cancer cells. The antitumor effect of arctigenin on gallbladder cancer cells was primarily achieved by inducing cellular senescence. In gallbladder cancer cells treated with arctigenin, the expression level of epidermal growth factor receptor significantly decreased. The analysis of the activity of the kinases downstream of epidermal growth factor receptor revealed that the RAF-MEK-ERK signaling pathway was significantly inhibited. Furthermore, the cellular senescence induced by arctigenin could be reverted by pcDNA-epidermal growth factor receptor. Arctigenin also potently inhibited the growth of tumor xenografts, which was accompanied by the downregulation of epidermal growth factor receptor and induction of senescence. This study demonstrates arctigenin could induce cellular senescence in gallbladder cancer through the modulation of epidermal growth factor receptor pathway. These data identify epidermal growth factor receptor as a key regulator in arctigenin-induced gallbladder cancer senescence.

  15. A Taiwanese Propolis Derivative Induces Apoptosis through Inducing Endoplasmic Reticular Stress and Activating Transcription Factor-3 in Human Hepatoma Cells

    Directory of Open Access Journals (Sweden)

    Fat-Moon Suk

    2013-01-01

    Full Text Available Activating transcription factor-(ATF- 3, a stress-inducible transcription factor, is rapidly upregulated under various stress conditions and plays an important role in inducing cancer cell apoptosis. NBM-TP-007-GS-002 (GS-002 is a Taiwanese propolin G (PPG derivative. In this study, we examined the antitumor effects of GS-002 in human hepatoma Hep3B and HepG2 cells in vitro. First, we found that GS-002 significantly inhibited cell proliferation and induced cell apoptosis in dose-dependent manners. Several main apoptotic indicators were found in GS-002-treated cells, such as the cleaved forms of caspase-3, caspase-9, and poly(ADP-ribose polymerase (PARP. GS-002 also induced endoplasmic reticular (ER stress as evidenced by increases in ER stress-responsive proteins including glucose-regulated protein 78 (GRP78, growth arrest- and DNA damage-inducible gene 153 (GADD153, phosphorylated eukaryotic initiation factor 2α (eIF2α, phosphorylated protein endoplasmic-reticular-resident kinase (PERK, and ATF-3. The induction of ATF-3 expression was mediated by mitogen-activated protein kinase (MAPK signaling pathways in GS-002-treated cells. Furthermore, we found that GS-002 induced more cell apoptosis in ATF-3-overexpressing cells. These results suggest that the induction of apoptosis by the propolis derivative, GS-002, is partially mediated through ER stress and ATF-3-dependent pathways, and GS-002 has the potential for development as an antitumor drug.

  16. Helicobacter pylori induces vascular endothelial growth factor production in gastric epithelial cells through hypoxia-inducible factor-1α-dependent pathway.

    Science.gov (United States)

    Kang, Min-Jung; Song, Eun-Jung; Kim, Bo-Yeon; Kim, Dong-Jae; Park, Jong-Hwan

    2014-12-01

    Although Helicobacter pylori have been known to induce vascular endothelial growth factor (VEGF) production in gastric epithelial cells, the precise mechanism for cellular signaling is incompletely understood. In this study, we investigated the role of bacterial virulence factor and host cellular signaling in VEGF production of H. pylori-infected gastric epithelial cells. We evaluated production of VEGF, activation of nuclear factor nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinases (MAPKs) and hypoxia-inducible factor-1α (HIF-1α) stabilization in gastric epithelial cells infected with H. pylori WT or isogenic mutants deficient in type IV secretion system (T4SS). H. pylori induced VEGF production in gastric epithelial cells via both T4SS-dependent and T4SS-independent pathways, although T4SS-independent pathway seems to be the dominant signaling. The inhibitor assay implicated that activation of NF-κB and MAPKs is dispensable for H. pylori-induced VEGF production in gastric epithelial cells. H. pylori led to HIF-1α stabilization in gastric epithelial cells independently of T4SS, NF-κB, and MAPKs, which was essential for VEGF production in these cells. N-acetyl-cysteine (NAC), a reactive oxygen species (ROS) inhibitor, treatment impaired H. pylori-induced HIF-1α stabilization and VEGF production in gastric epithelial cells. We defined the important role of ROS-HIF-1α axis in VEGF production of H. pylori-infected gastric epithelial cells, and bacterial T4SS has a minor role in H. pylori-induced VEGF production of gastric epithelial cells. © 2014 John Wiley & Sons Ltd.

  17. Myeloid-Derived Vascular Endothelial Growth Factor and Hypoxia-Inducible Factor Are Dispensable for Ocular Neovascularization—Brief Report

    Science.gov (United States)

    Liyanage, Sidath E.; Fantin, Alessandro; Villacampa, Pilar; Lange, Clemens A.; Denti, Laura; Cristante, Enrico; Smith, Alexander J.; Ali, Robin R.; Luhmann, Ulrich F.

    2016-01-01

    Objective— Ocular neovascularization (ONV) is a pathological feature of sight-threatening human diseases, such as diabetic retinopathy and age-related macular degeneration. Macrophage depletion in mouse models of ONV reduces the formation of pathological blood vessels, and myeloid cells are widely considered an important source of the vascular endothelial growth factor A (VEGF). However, the importance of VEGF or its upstream regulators hypoxia-inducible factor-1α (HIF1α) and hypoxia-inducible factor-2α (HIF2α) as myeloid-derived regulators of ONV remains to be determined. Approach and Results— We used 2 mouse models of ONV, choroidal neovascularization and oxygen-induced retinopathy, to show that Vegfa is highly expressed by several cell types, but not myeloid cells during ONV. Moreover, myeloid-specific VEGF ablation did not reduce total ocular VEGF during choroidal neovascularization or oxygen-induced retinopathy. In agreement, the conditional inactivation of Vegfa, Hif1a, or Epas1 in recruited and resident myeloid cells that accumulated at sites of neovascularization did not significantly reduce choroidal neovascularization or oxygen-induced retinopathy. Conclusions— The finding that myeloid cells are not a significant local source of VEGF in these rodent models of ONV suggests that myeloid function in neovascular eye disease differs from skin wound healing and other neovascular pathologies. PMID:26603154

  18. Role of hypoxia-inducible factor in diabetic myocardial hypertrophy

    African Journals Online (AJOL)

    under prolonged high glucose, the low expression of HIF-1α led to low expressions of Glut-1, HXK-2 and enolase. ... role in the regulation of physiological and .... significantly altered glucose and lipid metabolism .... growth factor and its receptors in insulin-resistant and ... density, and activation of cell survival signaling. Eur J.

  19. Internet-induced marketing techniques: Critical factors of viral marketing

    Directory of Open Access Journals (Sweden)

    Woerndl, M.

    2008-01-01

    Full Text Available The rapid diffusion of the Internet and the emergence of various social constructs facilitated by Internet technologies are changing the drivers that define how marketing techniques are developed and refined. This paper identifies critical factors for viral marketing, an Internet-based ‘word-of-mouth’ marketing technique. Based on existing knowledge, five types of viral marketing factors that may critically influence the success of viral marketing campaigns are identified. These factors are the overall structure of the campaign, the characteristics of the product or service, the content of the message, the characteristics of the diffusion and, the peer-to-peer information conduit. The paper discusses three examples of viral marketing campaigns and identifies the specific factors in each case that influence its success. The paper concludes with a viral marketing typology differentiating between viral marketing communications, unintended viral marketing and commercial viral marketing. This is still a rapidly evolving area and further research is clearly needed to monitor new developments and make sense of the radical changes these developments bring to the market.

  20. Bovine trophectoderm cell lines induced from bovine fibroblasts with reprogramming factors

    Science.gov (United States)

    Bovine trophectoderm (TE) cells were induced [induced bovine trophectoderm-like (iBT)] from bovine fetal liver-derived fibroblasts, and other bovine fetal fibroblasts, after viral-vector transduction with either four or six reprogramming factors (RF), including POU5F1, KLF4, SOX2, C-MYC, SV40 large ...

  1. Incidence and risk factors for capecitabine-induced symptomatic cardiotoxicity

    DEFF Research Database (Denmark)

    Polk, Anne; Shahmarvand, Nahid; Vistisen, Kirsten

    2016-01-01

    arrest with lethal outcome. 4 of 6 patients (66%) retreated with capecitabine had recurrent symptoms at retreatment. Cardiac comorbidity (p=0.001), hypercholesterolaemia (p=0.005) and current smoking (p=0.023) were risk factors for cardiotoxicity in univariate analyses and remained significant when...... adjusted for age. Patients with cardiac comorbidity were 5.5 times (95% CI 2.0 to 14.8) more likely to develop cardiotoxicity. In the subgroup of patients with apparently no cardiac comorbidity, the incidence of cardiotoxicity was lower (3.7%) and hypercholesterolaemia (p=0.035) and current smoking (p=0.......020) were risk factors of cardiotoxicity. Conclusions The incidence of cardiotoxicity from capecitabine resembles that of intravenous 5-FU (â ‰5%). Cardiac comorbidity, hypercholesterolaemia and current smoking were associated with development of cardiotoxicity....

  2. Leukaemia inhibitory factor--an exercise-induced myokine

    DEFF Research Database (Denmark)

    Broholm, Christa; Pedersen, Bente Klarlund

    2010-01-01

    During and following exercise skeletal muscle synthesises and releases a number of myokines that exert their effects either systemically or locally within the muscle. Several of these myokines influence metabolism, regeneration and/or hypertrophy and are therefore considered to be important...... to oscillations in intracellular Ca2+ concentrations. However, circulating levels of LIF are not increased with exercise suggesting that LIF exerts its effect locally. LIF stimulates muscle satellite cell proliferation and is involved in muscle hypertrophy and regeneration. Thus, LIF may be produced by skeletal...... contributing factors in muscle homeostasis and muscle adaptation to exercise training. Leukaemia inhibitory factor (LIF) is produced and released from muscle cells in vitro and from intact skeletal muscle in vivo. During exercise, skeletal muscle potently up-regulates LIF mRNA expression, likely due...

  3. Incidence and risk factors for capecitabine-induced symptomatic cardiotoxicity

    DEFF Research Database (Denmark)

    Polk, Anne; Shahmarvand, Nahid; Vistisen, Kirsten

    2016-01-01

    OBJECTIVES: Case reports of capecitabine cardiotoxicity resemble those seen with intravenous 5-fluorouracil (5-FU) with chest pain as the predominant manifestation, but few studies of capecitabine cardiotoxicity are available. We aimed to determine the incidence of symptomatic cardiotoxicity from.......020) were risk factors of cardiotoxicity. CONCLUSIONS: The incidence of cardiotoxicity from capecitabine resembles that of intravenous 5-FU (≈5%). Cardiac comorbidity, hypercholesterolaemia and current smoking were associated with development of cardiotoxicity....

  4. An Expandable, Inducible Hemangioblast State Regulated by Fibroblast Growth Factor

    Directory of Open Access Journals (Sweden)

    David T. Vereide

    2014-12-01

    Full Text Available During development, the hematopoietic and vascular lineages are thought to descend from common mesodermal progenitors called hemangioblasts. Here we identify six transcription factors, Gata2, Lmo2, Mycn, Pitx2, Sox17, and Tal1, that “trap” murine cells in a proliferative state and endow them with a hemangioblast potential. These “expandable” hemangioblasts (eHBs are capable, once released from the control of the ectopic factors, to give rise to functional endothelial cells, multilineage hematopoietic cells, and smooth muscle cells. The eHBs can be derived from embryonic stem cells, from fetal liver cells, or poorly from fibroblasts. The eHBs reveal a central role for fibroblast growth factor, which not only promotes their expansion, but also facilitates their ability to give rise to endothelial cells and leukocytes, but not erythrocytes. This study serves as a demonstration that ephemeral progenitor states can be harnessed in vitro, enabling the creation of tractable progenitor cell lines.

  5. Police-induced confessions, risk factors, and recommendations: looking ahead.

    Science.gov (United States)

    Kassin, Saul M; Drizin, Steven A; Grisso, Thomas; Gudjonsson, Gisli H; Leo, Richard A; Redlich, Allison D

    2010-02-01

    Reviewing the literature on police-induced confessions, we identified suspect characteristics and interrogation tactics that influence confessions and their effects on juries. We concluded with a call for the mandatory electronic recording of interrogations and a consideration of other possible reforms. The preceding commentaries make important substantive points that can lead us forward-on the effects of videotaping of interrogations on case dispositions; on the study of non-custodial methods, such as the controversial Mr. Big technique; and on an analysis of why confessions, once withdrawn, elicit such intractable responses compared to statements given by child and adult victims. Toward these ends, we hope that this issue provides a platform for future research aimed at improving the diagnostic value of confession evidence.

  6. Minimal change-like glomerular alterations induced by a human plasma factor

    NARCIS (Netherlands)

    Cheung, PK; Klok, PA; Bakker, WW

    1996-01-01

    Circulating factors, including the plasma protease (100KF) described previously, have been suspected to play a role in the pathogenesis of minimal change disease (MCD) for several decades. This factor was able to induce MCD-like alterations in kidney tissue in vitro, i.e. impairment of glomerular po

  7. Effect of montelukast on platelet activating factor- and tachykinin induced mucus secretion in the rat

    Directory of Open Access Journals (Sweden)

    Groneberg David A

    2008-02-01

    Full Text Available Abstract Background Platelet activating factor and tachykinins (substance P, neurokinin A, neurokinin B are important mediators contributing to increased airway secretion in the context of different types of respiratory diseases including acute and chronic asthma. Leukotriene receptor antagonists are recommended as add-on therapy for this disease. The cys-leukotriene-1 receptor antagonist montelukast has been used in clinical asthma therapy during the last years. Besides its inhibitory action on bronchoconstriction, only little is known about its effects on airway secretions. Therefore, the aim of this study was to evaluate the effects of montelukast on platelet activating factor- and tachykinin induced tracheal secretory activity. Methods The effects of montelukast on platelet activating factor- and tachykinin induced tracheal secretory activity in the rat were assessed by quantification of secreted 35SO4 labelled mucus macromolecules using the modified Ussing chamber technique. Results Platelet activating factor potently stimulated airway secretion, which was completely inhibited by the platelet activating factor receptor antagonist WEB 2086 and montelukast. In contrast, montelukast had no effect on tachykinin induced tracheal secretory activity. Conclusion Cys-leukotriene-1 receptor antagonism by montelukast reverses the secretagogue properties of platelet activating factor to the same degree as the specific platelet activating factor antagonist WEB 2086 but has no influence on treacheal secretion elicited by tachykinins. These results suggest a role of montelukast in the signal transduction pathway of platelet activating factor induced secretory activity of the airways and may further explain the beneficial properties of cys-leukotriene-1 receptor antagonists.

  8. Epidermal growth factor receptor signalling contributes to house dust mite-induced epithelial barrier dysfunction

    NARCIS (Netherlands)

    Heijink, I H; van Oosterhout, A; Kapus, A

    2010-01-01

    Impaired airway epithelial barrier function has emerged as a key factor in the pathogenesis of allergic asthma. We aimed to discern the involvement of the epidermal growth factor receptor (EGFR) in allergen-induced epithelial barrier impairment, as we previously observed that house dust mite (HDM) s

  9. A RNA antagonist of hypoxia-inducible factor-1alpha, EZN-2968, inhibits tumor cell growth

    DEFF Research Database (Denmark)

    Greenberger, Lee M; Horak, Ivan D; Filpula, David

    2008-01-01

    Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that plays a critical role in angiogenesis, survival, metastasis, drug resistance, and glucose metabolism. Elevated expression of the alpha-subunit of HIF-1 (HIF-1alpha), which occurs in response to hypoxia or activation of growth facto...

  10. Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis

    DEFF Research Database (Denmark)

    Villa, Elizabeth; Sengupta, Jayati; Trabuco, Leonard G.

    2009-01-01

    In translation, elongation factor Tu (EF-Tu) molecules deliver aminoacyl-tRNAs to the mRNA-programmed ribosome. The GTPase activity of EF-Tu is triggered by ribosome-induced conformational changes of the factor that play a pivotal role in the selection of the cognate aminoacyl-tRNAs. We present a...

  11. Hinokitiol protects primary neuron cells against prion peptide-induced toxicity via autophagy flux regulated by hypoxia inducing factor-1.

    Science.gov (United States)

    Moon, Ji-Hong; Lee, Ju-Hee; Lee, You-Jin; Park, Sang-Youel

    2016-05-24

    Prion diseases are fatal neurodegenerative disorders that are derived from structural changes of the native PrPc. Recent studies indicated that hinokitiol induced autophagy known to major function that keeps cells alive under stressful conditions. We investigated whether hinokitiol induces autophagy and attenuates PrP (106-126)-induced neurotoxicity. We observed increase of LC3-II protein level, GFP-LC3 puncta by hinokitiol in neuronal cells. Addition to, electron microscopy showed that hinokitiol enhanced autophagic vacuoles in neuronal cells. We demonstrated that hinokitiol protects against PrP (106-126)-induced neurotoxicity via autophagy by using autophagy inhibitor, wortmannin and 3MA, and ATG5 small interfering RNA (siRNA). We checked hinokitiol activated the hypoxia-inducible factor-1α (HIF-1α) and identified that hinokitiol-induced HIF-1α regulated autophagy. Taken together, this study is the first report demonstrating that hinokitiol protected against prion protein-induced neurotoxicity via autophagy regulated by HIF-1α. We suggest that hinokitiol is a possible therapeutic strategy in neuronal disorders including prion disease.

  12. Growth factors have a protective effect on neomycin-induced hair cell loss.

    Science.gov (United States)

    Lou, Xiangxin; Yuan, Huihua; Xie, Jing; Wang, Xianliu; Yang, Liangliang; Zhang, Yanzhong

    2015-01-01

    We have demonstrated that selected growth factors are involved in regulating survival and proliferation of progenitor cells derived from the neonatal rat organ of Corti (OC). The protective and regenerative effects of these defined growth factors on the injured organ of Corti were therefore investigated. The organ of Corti dissected from the Wistar rat pups (P3-P5) was split into apical, middle, and basal parts, explanted and cultured with or without neomycin and growth factors. Insulin-like growth factor-1 (IGF-1), fibroblast growth factor-2 (FGF-2), and epidermal growth factor (EGF) protected the inner hair cells (IHCs) and outer hair cells (OHCs) from neomycin ototoxicity. Using EGF, IGF-1, and FGF-2 alone induced no protective effect on the survival of auditory hair cells. Combining 2 growth factors (EGF + IGF-1, EGF + FGF-2, or IGF-1 + FGF-2) gave statistically protective effects. Similarly, combining all three growth factors effectively protected auditory hair cells from the ototoxic insult. None of the growth factors induced regeneration of hair cells in the explants injured with neomycin. Thus various combinations of the three defined factors (IGF-1, FGF-2, and EGF) can protect the auditory hair cells from the neomycin-induced ototoxic damage, but no regeneration was seen. This offers a possible novel approach to the treatment of hearing loss.

  13. Novel oscillator model with damping factor for plasmon induced transparency in waveguide systems.

    Science.gov (United States)

    Zhao, Mingzhuo; Li, Hongjian; He, Zhihui; Chen, Zhiquan; Xu, Hui; Zheng, Mingfei

    2017-09-06

    We introduce a novel two-oscillator model with damping factor to describe the plasmon induced transparency (PIT) in a bright-dark model plasmonic waveguide system. The damping factor γ in the model can be calculated from metal conductor damping factor γ c and dielectric damping factor γ d . We investigate the influence of geometry parameters and damping factor γ on transmission spectra as well as slow-light effects in the plasmonic waveguide system. We can find an obvious PIT phenomenon and realize a considerable slow-light effect in the double-cavities system. This work may provide guidance for optical switching and plasmon-based information processing.

  14. Modeling Threshold of Stress Intensity Factor in Iodine Induced Stress Corrosion Crack of Zirconium

    Institute of Scientific and Technical Information of China (English)

    SHANG; Xin-yuan; CHEN; Peng

    2013-01-01

    KISCC,which is the threshold of stress intensity factor of iodine induced stress corrosion crack(ISCC)of Zirconium,reflects the susceptibility of ISCC of zirconium.Once the stress intensity factor surpasses the threshold,the cracking propagation modality in material will transform to transgranular from intergranular immediately and the velocity of the cracking will increase rapidly.Four key factors that’s

  15. Polymethylmethacrylate-induced release of bone-resorbing factors

    Energy Technology Data Exchange (ETDEWEB)

    Herman, J.H.; Sowder, W.G.; Anderson, D.; Appel, A.M.; Hopson, C.N. (Univ. of Cincinnati College of Medicine, OH (USA))

    1989-12-01

    A pseudomembranous structure that has the histological characteristics of a foreign-body-like reaction invariably develops at the bone-cement interface in the proximity of resorption of bone around aseptically loosened cemented prostheses. This study was an attempt to implicate polymethylmethacrylate in this resorptive process. Unfractionated peripheral-blood mononuclear cells (consisting of lymphocytes and monocytes) and surface-adherent cells (monocyte-enriched) were prepared from control subjects who did and did not have clinical evidence of osteoarthrosis and from patients who had osteoarthrosis and were having a revision for failure of a cemented hip or knee implant. Cells were cultured for varying periods in the presence and absence of nonpolymerized methacrylate (one to two-micrometer spherules), pulverized polymerized material, or culture chambers that were pre-coated with polymerized cement. Conditioned media that were derived from both methacrylate-stimulated cell populations were shown to contain specific bone-resorbing mediators (interleukin-1, tumor necrosis factor, or prostaglandin E2) and to directly affect bone resorption in 45Ca-labeled murine limb-bone assays.

  16. A Histologically Distinctive Interstitial Pneumonia Induced by Overexpression of the Interleukin 6, Transforming Growth Factor β1, or Platelet-Derived Growth Factor B Gene

    Science.gov (United States)

    Yoshida, Mitsuhiro; Sakuma, Junko; Hayashi, Seiji; Abe, Kin'ya; Saito, Izumu; Harada, Shizuko; Sakatani, Mitsunoir; Yamamoto, Satoru; Matsumoto, Norinao; Kaneda, Yasufumi; Kishmoto, Tadamitsu

    1995-10-01

    Interstitial pneumonia is characterized by alveolitis with resulting fibrosis of the interstitium. To determine the relevance of humoral factors in the pathogenesis of interstitial pneumonia, we introduced expression vectors into Wistar rats via the trachea to locally overexpress humoral factors in the lungs. Human interleukin (IL) 6 and IL-6 receptor genes induced lymphocytic alveolitis without marked fibroblast proliferation. In contrast, overexpression of human transforming growth factor β1 or human platelet-derived growth factor B gene induced only mild or apparent cellular infiltration in the alveoli, respectively. However, both factors induced significant proliferation of fibroblasts and deposition of collagen fibrils. These histopathologic changes induced by the transforming growth factor β1 and platelet-derived growth factor B gene are partly akin to those changes seen in lung tissues from patients with pulmonary fibrosis and markedly contrast with the changes induced by overexpression of the IL-6 and IL-6 receptor genes that mimics lymphocytic interstitial pneumonia.

  17. Function of GATA transcription factors in hydroxyurea-induced HEL cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    HEL cells, a human erythroleukemia cell line, mainly express the fetal (γ)globin gene and trace amount of the embryonic (ε)globin gene, but not adult (β) globin gene. Here we show that hydroxyurea (HU) can induce HEL cells to express adult (β) globin gene and lead these cells to terminal differentiation. Results showed in Gel mobility shift assays that GATA factors could specifically bind to the regulatory elements of humanβ- globin gene, including the proximal regulatory element (theβ- promoter) and the distal regulatory elements (the DNase I hypersensitive sites in the LCR, HS2-HS4 core sequences). However, the DNA binding patterns of GATA factors were quite different between HU-induced and uninduced HEL cells. Western-blot analysis of nuclear extracts from both the uninduced and HU- induced HEL cells revealed that the level of GATA-2 transcription factor decreased, whereas the level of GATA-1 transcription factor increased following the time of hydroxyurea induction. Furthermore, using RT-PCR analysis the expression of human β-globin gene in HU-induced HEL cells could be blocked again when HEL cells were incubated in the presence of antisense oligonucleotides for hGATA-1, suggesting that the upregulation of hGATA-1 transcription factor might be critical for the expression of humanβ- globin gene in HU-induced HEL cells.

  18. Hypoxia-induced cell death and changes in hypoxia-inducible factor-1 activity in PC12 cells upon exposure to nerve growth factor.

    Science.gov (United States)

    Charlier, Nico; Leclere, Norbert; Felderhoff, Ursula; Heldt, Julia; Kietzmann, Thomas; Obladen, Michael; Gross, Johann

    2002-07-15

    The transcription factor hypoxia-inducible factor-1 (HIF-1) strongly contributes to the expression of adaptive genes under hypoxic conditions. In addition, HIF-1 has been implicated in the regulation of delayed neuronal cell death. Suspension-grown and adherent PC12 cells treated with NGF were used as an experimental model for studying the relationship between hypoxia-induced cell death and activation of HIF-1. Cell damage was assessed by flow cytometry of double-stained (Annexin V and propidiumiodide) cells, and by analysis of the overall death parameters LDH and mitochondrial dehydrogenase. In parallel, cells were transfected with a control and a three-hypoxia-responsive-elements (HRE)-containing vector and HIF-1-driven luciferase activity was determined. Exposure of NGF-treated PC12 cells to hypoxia resulted in a higher cell death rate when compared to untreated controls. PC12 cells exposed for 2 days to NGF exhibited a decrease of HIF-1 activity up to a factor of ten. This decrease may contribute to the enhanced hypoxia-induced cell death via reduced expression of HIF-1alpha-regulated genes responsible for adaptation to hypoxia, like those for glucose transport proteins and enzymes of the glycolytic chain. The decrease in HIF-1 activity and the increase in hypoxia sensitivity may suggest that NGF act as an hierarchically organized signaling molecule.

  19. Expression of DDX3 is directly modulated by hypoxia inducible factor-1 alpha in breast epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mahendran Botlagunta

    Full Text Available DEAD box protein, DDX3, is aberrantly expressed in breast cancer cells ranging from weakly invasive to aggressive phenotypes and functions as an important regulator of cancer cell growth and survival. Here, we demonstrate that hypoxia inducible factor-1α is a transcriptional activator of DDX3 in breast cancer cells. Within the promoter region of the human DDX3 gene, we identified three putative hypoxia inducible factor-1 responsive elements. By luciferase reporter assays in combination with mutated hypoxia inducible factor-1 responsive elements, we determined that the hypoxia inducible factor-1 responsive element at position -153 relative to the translation start site is essential for transcriptional activation of DDX3 under hypoxic conditions. We also demonstrated that hypoxia inducible factor-1 binds to the DDX3 promoter and that the binding is specific, as revealed by siRNA against hypoxia inducible factor-1 and chromatin immunoprecipitation assays. Thus, the activation of DDX3 expression during hypoxia is due to the direct binding of hypoxia inducible factor-1 to hypoxia responsive elements in the DDX3 promoter. In addition, we observed a significant overlap in the protein expression pattern of hypoxia inducible factor-1α and DDX3 in MDA-MB-231 xenograft tumors. Taken together, our results demonstrate, for the first time, the role of DDX3 as a hypoxia-inducible gene that exhibits enhanced expression through the interaction of hypoxia inducible factor-1 with hypoxia inducible factor-1 responsive elements in its promoter region.

  20. Expression of DDX3 is directly modulated by hypoxia inducible factor-1 alpha in breast epithelial cells.

    Science.gov (United States)

    Botlagunta, Mahendran; Krishnamachary, Balaji; Vesuna, Farhad; Winnard, Paul T; Bol, Guus M; Patel, Arvind H; Raman, Venu

    2011-03-23

    DEAD box protein, DDX3, is aberrantly expressed in breast cancer cells ranging from weakly invasive to aggressive phenotypes and functions as an important regulator of cancer cell growth and survival. Here, we demonstrate that hypoxia inducible factor-1α is a transcriptional activator of DDX3 in breast cancer cells. Within the promoter region of the human DDX3 gene, we identified three putative hypoxia inducible factor-1 responsive elements. By luciferase reporter assays in combination with mutated hypoxia inducible factor-1 responsive elements, we determined that the hypoxia inducible factor-1 responsive element at position -153 relative to the translation start site is essential for transcriptional activation of DDX3 under hypoxic conditions. We also demonstrated that hypoxia inducible factor-1 binds to the DDX3 promoter and that the binding is specific, as revealed by siRNA against hypoxia inducible factor-1 and chromatin immunoprecipitation assays. Thus, the activation of DDX3 expression during hypoxia is due to the direct binding of hypoxia inducible factor-1 to hypoxia responsive elements in the DDX3 promoter. In addition, we observed a significant overlap in the protein expression pattern of hypoxia inducible factor-1α and DDX3 in MDA-MB-231 xenograft tumors. Taken together, our results demonstrate, for the first time, the role of DDX3 as a hypoxia-inducible gene that exhibits enhanced expression through the interaction of hypoxia inducible factor-1 with hypoxia inducible factor-1 responsive elements in its promoter region.

  1. Differential effects of Radix Paeoniae Rubra (Chishao on cytokine and chemokine expression inducible by mycobacteria

    Directory of Open Access Journals (Sweden)

    Li James

    2011-03-01

    Full Text Available Abstract Background Upon initial infection with mycobacteria, macrophages secrete multiple cytokines and chemokines, including interleukin-6 (IL-6, IL-8 and tumor necrosis factor-α (TNF-α, to mediate host immune responses against the pathogen. Mycobacteria also induce the production of IL-10 via PKR activation in primary human monocytes and macrophages. As an anti-inflammatory cytokine, over-expression of IL-10 may contribute to mycobacterial evasion of the host immunity. Radix Paeoniae Rubra (RPR, Chishao, a Chinese medicinal herb with potentials of anti-inflammatory, hepatoprotective and neuroprotective effects, is used to treat tuberculosis. This study investigates the immunoregulatory effects of RPR on primary human blood macrophages (PBMac during mycobacterial infection. Methods The interaction of Bacillus Calmette-Guerin (BCG with PBMac was used as an experimental model. A series of procedures involving solvent extraction and fractionation were used to isolate bioactive constituents in RPR. RPR-EA-S1, a fraction with potent immunoregulatory effects was obtained with a bioactivity guided fractionation scheme. PBMac were treated with crude RPR extracts or RPR-EA-S1 before BCG stimulation. The expression levels of IL-6, IL-8, IL-10 and TNF-α were measured by qPCR and ELISA. Western blotting was used to determine the effects of RPR-EA-S1 on signaling kinases and transcriptional factors in the BCG-activated PBMac. Results In BCG-stimulated macrophages, crude RPR extracts and fraction RPR-EA-S1 specifically inhibited IL-10 production while enhanced IL-8 expression at both mRNA and protein levels without affecting the expressions of IL-6 and TNF-α. Inhibition of BCG-induced IL-10 expression by RPR-EA-S1 occurred in a dose- and time-dependent manner. RPR-EA-S1 did not affect the phosphorylation of cellular protein kinases including MAPK, Akt and GSK3β. Instead, it suppressed the degradation of IκBα in the cytoplasm and inhibited the

  2. Berberine induces caspase-independent cell death in colon tumor cells through activation of apoptosis-inducing factor.

    Directory of Open Access Journals (Sweden)

    Lihong Wang

    Full Text Available Berberine, an isoquinoline alkaloid derived from plants, is a traditional medicine for treating bacterial diarrhea and intestinal parasite infections. Although berberine has recently been shown to suppress growth of several tumor cell lines, information regarding the effect of berberine on colon tumor growth is limited. Here, we investigated the mechanisms underlying the effects of berberine on regulating the fate of colon tumor cells, specifically the mouse immorto-Min colonic epithelial (IMCE cells carrying the Apc(min mutation, and of normal colon epithelial cells, namely young adult mouse colonic epithelium (YAMC cells. Berberine decreased colon tumor colony formation in agar, and induced cell death and LDH release in a time- and concentration-dependent manner in IMCE cells. In contrast, YAMC cells were not sensitive to berberine-induced cell death. Berberine did not stimulate caspase activation, and PARP cleavage and berberine-induced cell death were not affected by a caspase inhibitor in IMCE cells. Rather, berberine stimulated a caspase-independent cell death mediator, apoptosis-inducing factor (AIF release from mitochondria and nuclear translocation in a ROS production-dependent manner. Amelioration of berberine-stimulated ROS production or suppression of AIF expression blocked berberine-induced cell death and LDH release in IMCE cells. Furthermore, two targets of ROS production in cells, cathepsin B release from lysosomes and PARP activation were induced by berberine. Blockage of either of these pathways decreased berberine-induced AIF activation and cell death in IMCE cells. Thus, berberine-stimulated ROS production leads to cathepsin B release and PARP activation-dependent AIF activation, resulting in caspase-independent cell death in colon tumor cells. Notably, normal colon epithelial cells are less susceptible to berberine-induced cell death, which suggests the specific inhibitory effects of berberine on colon tumor cell growth.

  3. Dioscin induces caspase-independent apoptosis through activation of apoptosis-inducing factor in breast cancer cells.

    Science.gov (United States)

    Kim, Eun-Ae; Jang, Ji-Hoon; Lee, Yun-Han; Sung, Eon-Gi; Song, In-Hwan; Kim, Joo-Young; Kim, Suji; Sohn, Ho-Yong; Lee, Tae-Jin

    2014-07-01

    Dioscin, a saponin extracted from the roots of Polygonatum zanlanscianense, shows several bioactivities such as antitumor, antifungal, and antiviral properties. Although, dioscin is already known to induce cell death in variety cancer cells, the molecular basis for dioscin-induced cell death was not definitely known in cancer cells. In this study, we found that dioscin treatment induced cell death in dose-dependent manner in breast cancer cells such as MDA-MB-231, MDA-MB-453, and T47D cells. Dioscin decreased expressions of Bcl-2 and cIAP-1 proteins, which were down-regulated at the transcriptional level. Conversely, Mcl-1 protein level was down-regulated by facilitating ubiquitin/proteasome-mediated Mcl-1 degradation in dioscin-treated cells. Pretreatment with z-VAD fails to attenuate dioscin-induced cell death as well as caspase-mediated events such as cleavages of procaspase-3 and PARP. In addition, dioscin treatment increased the population of annexin V positive cells and induced DNA fragmentation in a dose-dependent manner in MDA-MB-231 cells. Furthermore, apoptosis inducing factor (AIF) was released from the mitochondria and translocated to the nucleus. Suppression in AIF expression by siRNA reduced dioscin-induced apoptosis in MDA-MB-231 cells. Taken together, our results demonstrate that dioscin-induced cell death was mediated via AIF-facilitating caspase-independent pathway as well as down-regulating anti-apoptotic proteins such as Bcl-2, cIAP-1, and Mcl-1 in breast cancer cells.

  4. Staphylococcus aureus - induced tumor necrosis factor - related apoptosis - inducing ligand expression mediates apoptosis and caspase-8 activation in infected osteoblasts

    Directory of Open Access Journals (Sweden)

    Bost Kenneth L

    2003-04-01

    Full Text Available Abstract Background Staphylococcus aureus infection of normal osteoblasts induces expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL. Results Normal osteoblasts were incubated in the presence of purified bacterial products over a range of concentrations. Results demonstrate that purified surface structures and a selected superantigen present in the extracellular environment are not capable of inducing TRAIL expression by osteoblasts. Osteoblasts were co-cultured with S. aureus at various multiplicities of infection utilizing cell culture chamber inserts. Results of those experiments suggest that direct contact between bacteria and osteoblasts is necessary for optimal TRAIL induction. Finally, S. aureus infection of osteoblasts in the presence of anti-TRAIL antibody demonstrates that TRAIL mediates caspase-8 activation and apoptosis of infected cells. Conclusions Collectively, these findings suggest a mechanism whereby S. aureus mediates bone destruction via induction of osteoblast apoptosis.

  5. [Analysis of risk factors of drug-induced lung injury in patients receiving gemcitabine treatment].

    Science.gov (United States)

    Nakamichi, Hidenori; Fujita, Tetsuo; Tsuji, Daiki; Atsumi, Ichiko; Totsuka, Kasumi; Suzuki, Rina; Miki, Yoshihiro; Tomita, Kazuhiro; Nakamura, Hidenori; Shiokawa, Mitsuru

    2012-05-01

    Gemcitabine hydrochloride is a very safe medicine that even outpatients can be administered, and the bone marrow depression that is the dose limiting factor remains moderate and does not need special treatment, although it is confirmed in most cases. Meanwhile, caution is required because there is a possibility of drug-induced lung injury and death due to high frequency, compared with the appearance rate described in the packaging insertion. We investigated the clinical background of a patient in whom drug-induced lung injury appeared, and clarified the risk factor by administering gemcitabine hydrochloride. Males, people aged 65 or over, those with a smoking history and those undergoing first-line chemotherapy treatment are at risk of drug-induced lung injury. Attention must be paid to the occurrence of drug-induced lung injury, to examining the clinical course, the chest image, and the blood test, and to do earlier detection, the offending medicine discontinuance, and beginning of the treatment.

  6. Acute Cobalt-Induced Lung Injury and the Role of Hypoxia-Inducible Factor 1α in Modulating Inflammation

    Science.gov (United States)

    Saini, Yogesh; Greenwood, Krista K.; Merrill, Christian; Kim, Kyung Y.; Patial, Sonika; Parameswaran, Narayanan; Harkema, Jack R.; LaPres, John J.

    2010-01-01

    Air pollution is a critical factor in the development and exacerbation of pulmonary diseases. Ozone, automobile exhaust, cigarette smoke, and metallic dust are among the potentially harmful pollution components that are linked to disease progression. Transition metals, such as cobalt, have been identified at significant levels in air pollution. Cobalt exerts numerous biological effects, including mimicking hypoxia. Similar to hypoxia, cobalt exposure results in the stabilization of hypoxia-inducible factors (HIFs), a family of proteins that regulate the cellular response to oxygen deficit. HIFs also play an important role in innate immunity and inflammatory processes. To characterize the role of HIF1α, the most ubiquitously expressed HIF, in the early events during cobalt-induced lung inflammation, an inducible lung-specific HIF1α deletion model was employed. Control mice showed classical signs of metal-induced injury following cobalt exposure, including neutrophilic infiltration and induction of Th1 cytokines. In contrast, HIF1α-deficient mice exhibited pronounced eosinophil counts in bronchoalveolar lavage fluid and lung tissue complemented with Th2 cytokine induction. The timing of these results suggests that the loss of epithelial-derived HIF1α alters the lung's innate immune response and biases the tissue toward a Th2-mediated inflammation. PMID:20511350

  7. Role of Forkhead Transcription Factors in Diabetes-Induced Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Bhaskar Ponugoti

    2012-01-01

    Full Text Available Diabetes is a chronic metabolic disorder, characterized by hyperglycemia resulting from insulin deficiency and/or insulin resistance. Recent evidence suggests that high levels of reactive oxygen species (ROS and subsequent oxidative stress are key contributors in the development of diabetic complications. The FOXO family of forkhead transcription factors including FOXO1, FOXO3, FOXO4, and FOXO6 play important roles in the regulation of many cellular and biological processes and are critical regulators of cellular oxidative stress response pathways. FOXO1 transcription factors can affect a number of different tissues including liver, retina, bone, and cell types ranging from hepatocytes to microvascular endothelial cells and pericytes to osteoblasts. They are induced by oxidative stress and contribute to ROS-induced cell damage and apoptosis. In this paper, we discuss the role of FOXO transcription factors in mediating oxidative stress-induced cellular response.

  8. Atrial natriuretic factor inhibits mitogen-induced growth in aortic smooth muscle cells.

    Science.gov (United States)

    Baldini, P M; De Vito, P; Fraziano, M; Mattioli, P; Luly, P; Di Nardo, P

    2002-10-01

    Atrial natriuretic factor (ANF) is a polypeptide able to affect cardiovascular homeostasis exhibiting diuretic, natriuretic, and vasorelaxant activities. ANF shows antimitogenic effects in different cell types acting through R(2) receptor. Excessive proliferation of smooth muscle cells is a common phenomenon in diseases such as atherosclerosis, but the role of growth factors in the mechanism which modulate this process has yet to be clarified. The potential antimitogenic role of ANF on the cell growth induced by growth factors appears very intriguing. Aim of the present study was to investigate the possible involvement of ANF on rat aortic smooth muscle (RASM) cells proliferation induced by known mitogens and the mechanism involved. Our data show that ANF, at physiological concentration range, inhibits RASM cell proliferation induced by known mitogens such as PDGF and insulin, and the effect seems to be elicited through the modulation of phosphatidic acid (PA) production and MAP kinases involvement.

  9. A review of factors influencing the incidence and severity of plaque-induced gingivitis.

    Science.gov (United States)

    Trombelli, L; Farina, R

    2013-06-01

    An individual variation in the gingival inflammatory response to the dental biofilm has been demonstrated. This variability can be observed between individuals with neither quantitative nor qualitative differences in plaque accumulation. The reported significant differences in gingival inflammatory response under quantitatively and/or qualitatively almost identical bacterial challenge suggest that the gingival response to plaque accumulation may be an individual trait, possibly genetic in origin. The most recent classification of periodontal diseases acknowledges that the clinical expression of plaque-induced gingival inflammation can be substantially modified by systemic factors, either inherent to the host or related to environmental influences. The aim of the present literature review is to describe (i) the factors influencing the development of plaque-induced gingivitis as well as (ii) those metabolic, environmental and systemic factors which have a direct impact on the etiopathogenetic pathway of plaque-induced gingivitis, thus altering the nature or course of the gingival inflammatory response to dental biofilm.

  10. Feedback activation of neurofibromin terminates growth factor-induced Ras activation

    OpenAIRE

    Hennig, Anne; Markwart, Robby; Wolff, Katharina; Schubert, Katja; Cui, Yan; Ian A Prior; Manuel A Esparza-Franco; Ladds, Graham; Rubio, Ignacio

    2016-01-01

    This is the final published version. It first appeared at http://biosignaling.biomedcentral.com/articles/10.1186/s12964-016-0128-z. Background Growth factors induce a characteristically short-lived Ras activation in cells emerging from quiescence. Extensive work has shown that transient as opposed to sustained Ras activation is critical for the induction of mitogenic programs. Mitogen-induced accumulation of active Ras-GTP results from increased nucleotide exchange driven by the nucleo...

  11. Mutation of isocitrate dehydrogenase 1 induces glioma cell proliferation via nuclear factor-κB activation in a hypoxia-inducible factor 1-α dependent manner.

    Science.gov (United States)

    Wang, Guoliang; Sai, Ke; Gong, Fanghe; Yang, Qunying; Chen, Furong; Lin, Jian

    2014-05-01

    Recently, mutations of the isocitrate dehydrogenase (IDH) 1 gene, which specifically occur in the majority of low-grade and secondary high-grade gliomas, have drawn particular attention of neuro-oncologists. Mutations of the IDH1 gene have been proposed to have significant roles in the tumorigenesis, progression and prognosis of gliomas. However, the molecular mechanism of the role of IDH1 mutants in gliomagenesis remains to be elucidated. The present study, showed that forced expression of an IDH1 mutant, of which the 132th amino acid residue arginine is substituted by histidine (IDH1R132H), promoted cell proliferation in cultured cells, while wild-type IDH1 overexpression had no effect on cell proliferation. Consistent with previous studies, it was also observed that expression of hypoxia-inducible factor 1-α (HIF1-α) was upregulated in IDH1R132H expressing cells with the induction of vascular endothelial growth factor (VEGF) expression. However, knockdown of VEGF via small RNA interference had no significant influence on the cell proliferation induced by overexpression of IDH1R132H, implying that another signaling pathway may be involved. Next, forced expression of IDH1R132H was found to activate nuclear factor-κB (NF-κB), since the inhibitory IκB protein (IκBα) was highly phosphorylated and the NF-κB p65 subunit was translocated into the nucleus. Notably, knockdown of HIF1-α significantly blocked NF-κB activation, which was induced by the overexpression of IDH1 mutants. In addition, expression of IDH1 mutants markedly induced the NF-κB target gene expression, including cyclin D1 and E and c-myc, which were involved in the regulation of cell proliferation. In conclusion, it was demonstrated that the IDH1 mutant activated NF-κB in a HIF1-α‑dependent manner and was involved in the regulation of cell proliferation.

  12. Roscovitine sensitizes leukemia and lymphoma cells to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis.

    Science.gov (United States)

    Molinsky, Jan; Klanova, Magdalena; Koc, Michal; Beranova, Lenka; Andera, Ladislav; Ludvikova, Zdenka; Bohmova, Martina; Gasova, Zdenka; Strnad, Miroslav; Ivanek, Robert; Trneny, Marek; Necas, Emanuel; Zivny, Jan; Klener, Pavel

    2013-02-01

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a death ligand with selective antitumor activity. However, many primary tumors are TRAIL resistant. Previous studies reported that roscovitine, a cyclin-dependent kinase inhibitor, sensitized various solid cancer cells to TRAIL. We show that roscovitine and TRAIL demonstrate synergistic cytotoxicity in hematologic malignant cell lines and primary cells. Pretreatment of TRAIL-resistant leukemia cells with roscovitine induced enhanced cleavage of death-inducing signaling complex-bound proximal caspases after exposure to TRAIL. We observed increased levels of both pro- and antiapoptotic BCL-2 proteins at the mitochondria following exposure to roscovitine. These results suggest that roscovitine induces priming of cancer cells for death by binding antiapoptotic BCL-2 proteins to proapoptotic BH3-only proteins at the mitochondria, thereby decreasing the threshold for diverse proapoptotic stimuli. We propose that the mitochondrial priming and enhanced processing of apical caspases represent major molecular mechanisms of roscovitine-induced sensitization to TRAIL in leukemia/lymphoma cells.

  13. The Role of the E2F Transcription Factor Family in UV-Induced Apoptosis

    Directory of Open Access Journals (Sweden)

    Orla Gannon

    2011-12-01

    Full Text Available The E2F transcription factor family is traditionally associated with cell cycle control. However, recent data has shown that activating E2Fs (E2F1-3a are potent activators of apoptosis. In contrast, the recently cloned inhibitory E2Fs (E2F7 and 8 appear to antagonize E2F-induced cell death. In this review we will discuss (i the potential role of E2Fs in UV-induced cell death and (ii the implications of this to the development of UV-induced cutaneous malignancies.

  14. Mangiferin induces apoptosis in multiple myeloma cell lines by suppressing the activation of nuclear factor kappa B-inducing kinase.

    Science.gov (United States)

    Takeda, Tomoya; Tsubaki, Masanobu; Kino, Toshiki; Yamagishi, Misa; Iida, Megumi; Itoh, Tatsuki; Imano, Motohiro; Tanabe, Genzoh; Muraoka, Osamu; Satou, Takao; Nishida, Shozo

    2016-05-05

    Mangiferin is a naturally occurring glucosyl xanthone, which induces apoptosis in various cancer cells. However, the molecular mechanism underlying mangiferin-induced apoptosis has not been clarified thus far. Therefore, we examined the molecular mechanism underlying mangiferin-induced apoptosis in multiple myeloma (MM) cell lines. We found that mangiferin decreased the viability of MM cell lines in a concentration-dependent manner. We also observed an increased number of apoptotic cells, caspase-3 activation, and a decrease in the mitochondrial membrane potential. In addition, mangiferin inhibited the nuclear translocation of nuclear factor kappa B (NF-κB) and expression of phosphorylated inhibitor kappa B (IκB) and increased the expression of IκB protein, whereas no changes were observed in the phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-terminal protein kinase 1/2 (JNK1/2), and mammalian target of rapamycin (mTOR). The molecular mechanism responsible for mangiferin-induced inhibition of nuclear translocation of NF-κB was a decrease in the expression of phosphorylated NF-κB-inducing kinase (NIK). Moreover, mangiferin decreased the expression of X-linked inhibitor of apoptosis protein (XIAP), survivin, and Bcl-xL proteins. Knockdown of NIK expression showed results similar to those observed with mangiferin treatment. Our results suggest that mangiferin induces apoptosis through the inhibition of nuclear translocation of NF-κB by suppressing NIK activation in MM cell lines. Our results provide a new insight into the molecular mechanism of mangiferin-induced apoptosis. Importantly, since the number of reported NIK inhibitors is limited, mangiferin, which targets NIK, may be a potential anticancer agent for the treatment of MM.

  15. Two recently duplicated maize NAC transcription factor paralogs are induced in response to Colletotrichum graminicola infection.

    Science.gov (United States)

    Voitsik, Anna-Maria; Muench, Steffen; Deising, Holger B; Voll, Lars M

    2013-05-29

    NAC transcription factors belong to a large family of plant-specific transcription factors with more than 100 family members in monocot and dicot species. To date, the majority of the studied NAC proteins are involved in the response to abiotic stress, to biotic stress and in the regulation of developmental processes. Maize NAC transcription factors involved in the biotic stress response have not yet been identified. We have found that two NAC transcription factors, ZmNAC41 and ZmNAC100, are transcriptionally induced both during the initial biotrophic as well as the ensuing necrotrophic colonization of maize leaves by the hemibiotrophic ascomycete fungus C. graminicola. ZmNAC41 transcripts were also induced upon infection with C. graminicola mutants that are defective in host penetration, while the induction of ZmNAC100 did not occur in such interactions. While ZmNAC41 transcripts accumulated specifically in response to jasmonate (JA), ZmNAC100 transcripts were also induced by the salicylic acid analog 2,6-dichloroisonicotinic acid (INA).To assess the phylogenetic relation of ZmNAC41 and ZmNAC100, we studied the family of maize NAC transcription factors based on the recently annotated B73 genome information. We identified 116 maize NAC transcription factor genes that clustered into 12 clades. ZmNAC41 and ZmNAC100 both belong to clade G and appear to have arisen by a recent gene duplication event. Including four other defence-related NAC transcription factors of maize and functionally characterized Arabidopsis and rice NAC transcription factors, we observed an enrichment of NAC transcription factors involved in host defense regulation in clade G. In silico analyses identified putative binding elements for the defence-induced ERF, Myc2, TGA and WRKY transcription factors in the promoters of four out of the six defence-related maize NAC transcription factors, while one of the analysed maize NAC did not contain any of these potential binding sites. Our study provides a

  16. The effect of squalene on inflammation factors induced by candida albicans in vivo studies

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Haeng [Dept. of Radiology, Nambu University, Gwangju (Korea, Republic of)

    2016-09-15

    In the present study, whether squalene treatment relives inflammatory reactions induced by Candida albicans was checked. The experiment was conducted in vivo using seven experimental animals (ICR mice) per experimental group. Among C. albicans-induced inflammatory factors, TNF-α, IL-6, and NO were observed using the ELISA kits method. Through the experiment, the following conclusions were obtained. 1. In the group infected with C. albicans, it could be identified that squalene treatment was inducing NO generation in renal tissues both on the 1st and 3rd days (p < 0.05). 2. In the group pre-treated(intraperitoneal administration) with SQ (80ml/kg) once per day for seven days and infected with C. albicans, it could be identified that squalene treatment was inducing TNF-α generation in renal tissues only on the 3rd day(p < 0.05). 3. In the group pre-treated(intraperitoneal administration) with SQ (80ml/kg) once per day for seven days and infected with C. albicans, it could be identified that squalene treatment was inducing IL-6 generation in renal tissues only on the 3rd day(p < 0.05). In conclusion, it could be seen that for squalene to suppress C. albicans-induced inflammatory factors, preemptively supplying SQ should be effective. Therefore, effects for recovery from C. albicans-induced immunodepression can be expected from SQ treatment.

  17. Growth factor stimulation induces a distinct ER(alpha) cistrome underlying breast cancer endocrine resistance.

    Science.gov (United States)

    Lupien, Mathieu; Meyer, Clifford A; Bailey, Shannon T; Eeckhoute, Jérôme; Cook, Jennifer; Westerling, Thomas; Zhang, Xiaoyang; Carroll, Jason S; Rhodes, Daniel R; Liu, X Shirley; Brown, Myles

    2010-10-01

    Estrogen receptor α (ERα) expression in breast cancer is predictive of response to endocrine therapy; however, resistance is common in ERα-positive tumors that overexpress the growth factor receptor ERBB2. Even in the absence of estrogen, ERα can be activated by growth factors, including the epidermal growth factor (EGF). EGF induces a transcriptional program distinct from estrogen; however, the mechanism of the stimulus-specific response is unknown. Here we show that the EGF-induced ERα genomic targets, its cistromes, are distinct from those induced by estrogen in a process dependent on the transcription factor AP-1. The EGF-induced ERα cistrome specifically regulates genes found overexpressed in ERBB2-positive human breast cancers. This provides a potential molecular explanation for the endocrine therapy resistance seen in ERα-positive breast cancers that overexpress ERBB2. These results suggest a central role for ERα in hormone-refractory breast tumors dependent on growth factor pathway activation and favors the development of therapeutic strategies completely antagonizing ERα, as opposed to blocking its estrogen responsiveness alone.

  18. Tumor Necrosis Factor-α -and Interleukin-1-Induced Cellular Responses: Coupling Proteomic and Genomic Information

    OpenAIRE

    2007-01-01

    The pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFα) and Interleukin-1 (IL-1) mediate the innate immune response. Dysregulation of the innate immune response contributes to the pathogenesis of cancer, arthritis, and congestive heart failure. TNFα- and IL-1-induced changes in gene expression are mediated by similar transcription factors; however, TNFα and IL-1 receptor knock-out mice differ in their sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune...

  19. Transcriptional program induced by factor VIIa-tissue factor, PAR1 and PAR2 in MDA-MB-231 cells

    DEFF Research Database (Denmark)

    Albrektsen, Tatjana; Sørensen, B B; Hjortø, G M

    2007-01-01

    -activated receptor 1 (PAR1) or PAR2 agonists using MDA-MB-231 breast carcinoma cells that constitutively express TF, PAR1 and PAR2. RESULTS AND CONCLUSIONS: Out of 8500 genes, FVIIa stimulation induced differential regulation of 39 genes most of which were not previously recognized as FVIIa regulated. All genes...... regulated genes encode cytokines, chemokines and growth factors, and the gene repertoire induced by FVIIa in MDA-MB-231 cells is consistent with a role for TF-FVIIa signaling in regulation of a wound healing type of response. Interestingly, a number of genes regulated exclusively by FVIIa/PAR2-mediated cell...... signaling in MDA-MB-231 cells were regulated by thrombin and a PAR1 agonist, but not by FVIIa, in the TF-expressing glioblastoma U373 cell line....

  20. Glycogen synthesis is induced in hypoxia by the hypoxia-inducible factor and promotes cancer cell survival

    Directory of Open Access Journals (Sweden)

    Joffrey ePelletier

    2012-02-01

    Full Text Available The hypoxia-inducible factor 1 (HIF-1, in addition to genetic and epigenetic changes, is largely responsible for alterations in cell metabolism in hypoxic tumor cells. This transcription factor not only favors cell proliferation through the metabolic shift from oxidative phosphorylation to glycolysis and lactic acid production but also stimulates nutrient supply by mediating adaptive survival mechanisms. In this study we showed that glycogen synthesis is enhanced in non-cancer and cancer cells when exposed to hypoxia, resulting in a large increase in glycogen stores. Furthermore, we demonstrated that the mRNA and protein levels of the first enzyme of glycogenesis, phosphoglucomutase1 (PGM1, were increased in hypoxia. We showed that induction of glycogen storage as well as PGM1 expression were dependent on HIF-1 and HIF-2. We established that hypoxia-induced glycogen stores are rapidly mobilized in cells that are starved of glucose. Glycogenolysis allows these hypoxia-preconditioned cells to confront and survive glucose deprivation. In contrast normoxic control cells exhibit a high rate of cell death following glucose removal. These findings point to the important role of hypoxia and HIF in inducing mechanisms of rapid adaptation and survival in response to a decrease in oxygen tension. We propose that a decrease in pO2 acts as an alarm that prepares the cells to face subsequent nutrient depletion and to survive.

  1. Bone marrow stem cells expressing keratinocyte growth factor via an inducible lentivirus protects against bleomycin-induced pulmonary fibrosis.

    Directory of Open Access Journals (Sweden)

    Susana Aguilar

    Full Text Available Many common diseases of the gas exchange surface of the lung have no specific treatment but cause serious morbidity and mortality. Idiopathic Pulmonary Fibrosis (IPF is characterized by alveolar epithelial cell injury, interstitial inflammation, fibroblast proliferation and collagen accumulation within the lung parenchyma. Keratinocyte Growth Factor (KGF, also known as FGF-7 is a critical mediator of pulmonary epithelial repair through stimulation of epithelial cell proliferation. During repair, the lung not only uses resident cells after injury but also recruits circulating bone marrow-derived cells (BMDC. Several groups have used Mesenchymal Stromal Cells (MSCs as therapeutic vectors, but little is known about the potential of Hematopoietic Stem cells (HSCs. Using an inducible lentiviral vector (Tet-On expressing KGF, we were able to efficiently transduce both MSCs and HSCs, and demonstrated that KGF expression is induced in a regulated manner both in vitro and in vivo. We used the in vivo bleomycin-induced lung fibrosis model to assess the potential therapeutic effect of MSCs and HSCs. While both populations reduced the collagen accumulation associated with bleomycin-induced lung fibrosis, only transplantation of transduced HSCs greatly attenuated the histological damage. Using double immunohistochemistry, we show that the reduced lung damage likely occurs through endogenous type II pneumocyte proliferation induced by KGF. Taken together, our data indicates that bone marrow transplantation of lentivirus-transduced HSCs can attenuate lung damage, and shows for the first time the potential of using an inducible Tet-On system for cell based gene therapy in the lung.

  2. Induced Abortion and Associated Factors in Health Facilities of Guraghe Zone, Southern Ethiopia

    Directory of Open Access Journals (Sweden)

    Gezahegn Tesfaye

    2014-01-01

    Full Text Available Unsafe abortion is one of the major medical and public health problems in developing countries including Ethiopia. However, there is a lack of up-to-date and reliable information on induced abortion distribution and its determinant factors in the country. This study was intended to assess induced abortion and associated factors in health facilities of Guraghe zone, Southern Ethiopia. Institution based cross-sectional study was conducted in eight health facilities in Guraghe zone. Client exit interview was conducted on 400 patients using a structured questionnaire. Bivariate and multivariate logistic regression analysis was performed to identify factors associated with induced abortion. Out of 400 women, 75.5% responded that the current pregnancy that ended in abortion is unwanted. However, only 12.3% of the respondents have admitted interference to the current pregnancy. Having more than four pregnancies (AOR = 4.28, CI: (1.24–14.71, age of 30–34 years (AOR = 0.15, CI: (0.04–0.55, primary education (AOR = 0.26, CI: (0.13–0.88, and wanted pregnancy (AOR = 0.44, CI: (0.14–0.65 were found to have association with induced abortion. The study revealed high level of induced abortion which is underpinned by high magnitude of unwanted pregnancy. There is requirement for widespread expansion of increased access to high quality family planning service and post-abortion care.

  3. Role of the Slug Transcription Factor in Chemically-Induced Skin Cancer

    Directory of Open Access Journals (Sweden)

    Kristine von Maltzan

    2016-02-01

    Full Text Available The Slug transcription factor plays an important role in ultraviolet radiation (UVR-induced skin carcinogenesis, particularly in the epithelial-mesenchymal transition (EMT occurring during tumor progression. In the present studies, we investigated the role of Slug in two-stage chemical skin carcinogenesis. Slug and the related transcription factor Snail were expressed at high levels in skin tumors induced by 7,12-dimethylbenz[α]anthracene application followed by 12-O-tetradecanoylphorbol-13-acetate (TPA treatment. TPA-induced transient elevation of Slug and Snail proteins in normal mouse epidermis and studies in Slug transgenic mice indicated that Slug modulates TPA-induced epidermal hyperplasia and cutaneous inflammation. Although Snail family factors have been linked to inflammation via interactions with the cyclooxygenase-2 (COX-2 pathway, a pathway that also plays an important role in skin carcinogenesis, transient TPA induction of Slug and Snail appeared unrelated to COX-2 expression. In cultured human keratinocytes, TPA induced Snail mRNA expression while suppressing Slug expression, and this differential regulation was due specifically to activation of the TPA receptor. These studies show that Slug and Snail exhibit similar patterns of expression during both UVR and chemical skin carcinogenesis, that Slug and Snail can be differentially regulated under some conditions and that in vitro findings may not recapitulate in vivo results.

  4. Induced abortion and associated factors in health facilities of Guraghe zone, southern Ethiopia.

    Science.gov (United States)

    Tesfaye, Gezahegn; Hambisa, Mitiku Teshome; Semahegn, Agumasie

    2014-01-01

    Unsafe abortion is one of the major medical and public health problems in developing countries including Ethiopia. However, there is a lack of up-to-date and reliable information on induced abortion distribution and its determinant factors in the country. This study was intended to assess induced abortion and associated factors in health facilities of Guraghe zone, Southern Ethiopia. Institution based cross-sectional study was conducted in eight health facilities in Guraghe zone. Client exit interview was conducted on 400 patients using a structured questionnaire. Bivariate and multivariate logistic regression analysis was performed to identify factors associated with induced abortion. Out of 400 women, 75.5% responded that the current pregnancy that ended in abortion is unwanted. However, only 12.3% of the respondents have admitted interference to the current pregnancy. Having more than four pregnancies (AOR = 4.28, CI: (1.24-14.71)), age of 30-34 years (AOR = 0.15, CI: (0.04-0.55)), primary education (AOR = 0.26, CI: (0.13-0.88)), and wanted pregnancy (AOR = 0.44, CI: (0.14-0.65)) were found to have association with induced abortion. The study revealed high level of induced abortion which is underpinned by high magnitude of unwanted pregnancy. There is requirement for widespread expansion of increased access to high quality family planning service and post-abortion care.

  5. Hypoxia-inducible factors - regulation, role and comparative aspects in tumourigenesis

    DEFF Research Database (Denmark)

    Hansen, A E; Kristensen, A T; Law, I;

    2011-01-01

    Hypoxia-inducible factors (HIFs) play a key role in the cellular response experienced in hypoxic tumours, mediating adaptive responses that allow hypoxic cells to survive in the hostile environment. Identification and understanding of tumour hypoxia and the influence on cellular processes carries...

  6. SULFASALAZINE INDUCED AGRANULOCYTOSIS TREATED WITH GRANULOCYTE-MACROPHAGE COLONY STIMULATING FACTOR

    NARCIS (Netherlands)

    KUIPERS, EJ; VELLENGA, E; DEWOLF, JTM; HAZENBERG, BPC

    1992-01-01

    We report the use of granulocyte-macrophage colony stimulating factor (GM-CSF) in a case of rheumatoid arthritis with sulfasalazine induced agranulocytosis, leading to a rapid bone marrow recovery within 7 days. This case and 2 others reported in the literature emphasize the need for further researc

  7. Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia

    DEFF Research Database (Denmark)

    Imel, Erik A; Peacock, Munro; Pitukcheewanont, Pisit

    2006-01-01

    Tumor-induced osteomalacia (TIO) is a paraneoplastic syndrome of hypophosphatemia, decreased renal phosphate reabsorption, normal or low serum 1,25-dihydryxyvitamin-D concentration, myopathy, and osteomalacia. Fibroblast growth factor 23 (FGF23) is a phosphaturic protein overexpressed in tumors...

  8. Fasting-induced adipose factor/angiopoietin-like protein 4: a potential target for dyslipidemia?

    NARCIS (Netherlands)

    Zandbergen, F.J.; Dijk, van S.; Müller, M.R.; Kersten, A.H.

    2006-01-01

    Recently, several proteins with homology to angiopoietins have been discovered. Three members of this new group, designated angiopoietin-like proteins (ANGPTLs), have been linked to regulation of energy metabolism. This review will focus on the fasting-induced adipose factor (FIAF)/ANGPTL4 as an

  9. A simplified model for growth factor induced healing of circular wounds

    NARCIS (Netherlands)

    Vermolen, F.J.; E. van Baaren, E.; Adam, J.A.

    2005-01-01

    A mathematical model is developed for the rate of healing of a circular wound in a spherical skull. In this paper the regeneration, decay and transport of a generic "growth factor, which induces the healing of the wound, is taken into account. Further, an equation of motion is derived for the actual

  10. Sensitivity of fibroblast growth factor 23 measurements in tumor-induced osteomalacia.

    NARCIS (Netherlands)

    Imel, E.A.; Peacock, M.; Pitukcheewanont, P.; Heller, H.J.; Ward, L.M.; Shulman, D.; Kassem, M.; Rackoff, P.; Zimering, M.; Dalkin, A.; Drobny, E.; Colussi, G.; Shaker, J.L.; Hoogendoorn, E.H.; Hui, S.L.; Econs, M.J.

    2006-01-01

    CONTEXT: Tumor-induced osteomalacia (TIO) is a paraneoplastic syndrome of hypophosphatemia, decreased renal phosphate reabsorption, normal or low serum 1,25-dihydryxyvitamin-D concentration, myopathy, and osteomalacia. Fibroblast growth factor 23 (FGF23) is a phosphaturic protein overexpressed in tu

  11. Pruritus induced self injury behavior: an overlooked risk factor for amputation in diabetic neuropathy?

    Science.gov (United States)

    Dorfman, David; George, Mary Catherine; Tamler, Ronald; Lushing, Julia; Nmashie, Alexandra; Simpson, David M

    2014-03-01

    Pruritus is a risk factor for self-injury behavior (SIB) in sensory polyneuropathies. Although diabetes patients have elevated risk for pruritus, there are no reports of SIB in diabetic neuropathy. We present the case of a diabetes patient with neuropathy, whose pruritus induced SIB, resulted in partial amputation of a toe.

  12. Role of chronic hypoxia and hypoxia inducible factor in kidney disease

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Cells are endowed with a defensive mechanism against hypoxia,namely hypoxia-inducible factor (HIF) and hypoxia-responsive element (HRE).Under hypoxic conditions,activation of HIF leads to expression of a variety of adaptive genes with HRE in a coordinated manner.

  13. A simplified model for growth factor induced healing of circular wounds

    NARCIS (Netherlands)

    Vermolen, F.J.; E. van Baaren, E.; Adam, J.A.

    2005-01-01

    A mathematical model is developed for the rate of healing of a circular wound in a spherical skull. In this paper the regeneration, decay and transport of a generic "growth factor, which induces the healing of the wound, is taken into account. Further, an equation of motion is derived for the actual

  14. The Disulfide Bond Pattern of Transforming Growth Factor Beta-Induced protein

    DEFF Research Database (Denmark)

    Lukassen, Marie V; Scavenius, Carsten; Thøgersen, Ida B;

    2016-01-01

    Transforming growth factor beta-induced protein (TGFBIp) is an extracellular matrix protein composed of an NH2-terminal cysteine-rich domain (CRD) annotated as an emilin (EMI) domain, and four fasciclin-1 (FAS1-1 to FAS1-4) domains. Mutations in the gene cause corneal dystrophies, a group...

  15. Epidermal growth factor receptor expression in pancreatic lesions induced in the rat by azaserine

    NARCIS (Netherlands)

    Visser, C.J.T.; Weger, R.A. de; Blokland, W.T.M. van; Seifert-Bock, I.; Kobrin, M.S.; Korc, M.; Woutersen, R.A.

    1996-01-01

    In the present study, the expression of the epidermal growth factor receptor (EGFR) was investigated in putative preneoplastic and neoplastic acinar cell lesions induced in the rat pancreas by azaserine, using Northern blotting, in situ hybridisation (ISH) and immunohistochemistry. EGFR protein leve

  16. Hypoxia-Inducible Factor 2α Mutation-Related Paragangliomas Classify as Discrete Pseudohypoxic Subcluster

    NARCIS (Netherlands)

    S.M.J. Fliedner (Stephanie); U. Shankavaram (Uma); Marzouca, G. (Geena); Elkahloun, A. (Abdel); Jochmanova, I. (Ivana); Daerr, R. (Roland); Linehan, W.M. (W. Marston); H.J. Timmers (Henri); A.S. Tischler (Arthur); K. Papaspyrou (Konstantinos); Brieger, J. (Jürgen); R.R. de Krijger (Ronald); Breza, J. (Jan); Eisenhofer, G. (Graeme); Zhuang, Z. (Zhengping); Lehnert, H. (Hendrik); K. Pacak (Karel)

    2016-01-01

    textabstractRecently, activating mutations of the hypoxia-inducible factor 2α gene (HIF2A/EPAS1) have been recognized to predispose to multiple paragangliomas (PGLs) and duodenal somatostatinomas associated with polycythemia, and ocular abnormalities. Previously, mutations in the SDHA/B/C/D, SDHAF2,

  17. Hypoxia-Inducible Factor 2alpha Mutation-Related Paragangliomas Classify as Discrete Pseudohypoxic Subcluster

    NARCIS (Netherlands)

    Fliedner, S.M.; Shankavaram, U.; Marzouca, G.; Elkahloun, A.; Jochmanova, I.; Daerr, R.; Linehan, W.M.; Timmers, H.J.; Tischler, A.S.; Papaspyrou, K.; Brieger, J.; Krijger, R. de; Breza, J.; Eisenhofer, G.; Zhuang, Z.; Lehnert, H.; Pacak, K.

    2016-01-01

    Recently, activating mutations of the hypoxia-inducible factor 2alpha gene (HIF2A/EPAS1) have been recognized to predispose to multiple paragangliomas (PGLs) and duodenal somatostatinomas associated with polycythemia, and ocular abnormalities. Previously, mutations in the SDHA/B/C/D, SDHAF2, VHL,

  18. Toll-like receptor and tumour necrosis factor dependent endotoxin-induced acute lung injury

    Science.gov (United States)

    Togbe, Dieudonnée; Schnyder-Candrian, Silvia; Schnyder, Bruno; Doz, Emilie; Noulin, Nicolas; Janot, Laure; Secher, Thomas; Gasse, Pamela; Lima, Carla; Coelho, Fernando Rodrigues; Vasseur, Virginie; Erard, François; Ryffel, Bernhard; Couillin, Isabelle; Moser, Rene

    2007-01-01

    Recent studies on endotoxin/lipopolysaccharide (LPS)-induced acute inflammatory response in the lung are reviewed. The acute airway inflammatory response to inhaled endotoxin is mediated through Toll-like receptor 4 (TLR4) and CD14 signalling as mice deficient for TLR4 or CD14 are unresponsive to endotoxin. Acute bronchoconstriction, tumour necrosis factor (TNF), interleukin (IL)-12 and keratinocyte-derived chemokine (KC) production, protein leak and neutrophil recruitment in the lung are abrogated in mice deficient for the adaptor molecules myeloid differentiation factor 88 (MyD88) and Toll/Interleukin-1 receptor (TIR)-domain-containing adaptor protein (TIRAP), but independent of TIR-domain-containing adaptor-inducing interferon-beta (TRIF). In particular, LPS-induced TNF is required for bronchoconstriction, but dispensable for inflammatory cell recruitment. Lipopolysaccharide induces activation of the p38 mitogen-activated protein kinase (MAPK). Inhibition of pulmonary MAPK activity abrogates LPS-induced TNF production, bronchoconstriction, neutrophil recruitment into the lungs and broncho-alveolar space. In conclusion, TLR4-mediated, bronchoconstriction and acute inflammatory lung pathology to inhaled endotoxin are dependent on TLR4/CD14/MD2 expression using the adapter proteins TIRAP and MyD88, while TRIF, IL-1R1 or IL-18R signalling pathways are dispensable. Further downstream in this axis of signalling, TNF blockade reduces only acute bronchoconstriction, while MAPK inhibition abrogates completely endotoxin-induced inflammation. PMID:18039275

  19. Transcriptional program induced by factor VIIa-tissue factor, PAR1 and PAR2 in MDA-MB-231 cells

    DEFF Research Database (Denmark)

    Albrektsen, T; Sørensen, B B; Hjortø, G M

    2007-01-01

    -regulated genes was also regulated by a PAR1 agonist peptide suggesting extensive redundancy between FVIIa/PAR2 signaling and thrombin/PAR1 signaling. The FVIIa regulated genes encode cytokines, chemokines and growth factors, and the gene repertoire induced by FVIIa in MDA-MB-231 cells is consistent...... with a role for TF-FVIIa signaling in regulation of a wound healing type of response. Interestingly, a number of genes regulated exclusively by FVIIa/PAR2-mediated cell signaling in MDA-MB-231 cells were regulated by thrombin and a PAR1 agonist, but not by FVIIa, in the TF-expressing glioblastoma U373 cell...

  20. Partial purification and characterization of an escherichia coli toxic factor that induces morphological cell alterations.

    OpenAIRE

    Caprioli, A; Falbo, V.; Roda, L G; Ruggeri, F. M.; Zona, C

    1983-01-01

    A factor produced by several strains of Escherichia coli isolated from enteritis-affected children has been shown to produce both a necrotizing effect on rabbit skin and striking morphological alterations on CHO, Vero, and HeLa cells. The same strains were found to have hemolytic activity on sheep erythrocytes. The toxic, cell-altering factor was demonstrated to be different from both heat-labile and heat-stable enterotoxins and from Vero toxin. The main effect induced by the isolated factor ...

  1. Effect of Agrobacterium Induced Necrosis, Antibiotic Induced Phytotoxicity and Other Factors in Successful Plant Transformation

    Directory of Open Access Journals (Sweden)

    Sandip S. Magdum

    2013-08-01

    Full Text Available Agrobacterium tumefaciens infection and antibiotic wash are the critical steps of Agrobacterium mediated plant transformation procedure, most time responsible for lower transformation efficiency due to necrosis and phytotoxicity caused by biotic stress of Agrobacterium and abiotic stress by antibiotics respectively. Ammi majus Egyptian origin medicinal plant and Pearl millet cereal grain crop were studied for their stress responses to Agrobacterium mediated transformation (AMT. Agrobacterium strains LBA4404 (O.D.=0.6-0.8 and EHA105 (O.D.=0.2-0.4 were used for transformation experiments to infect calli of Ammi majus and embryogenic calli of Pearl millet respectively. Incase of antibiotic wash, Cefotaxime 500 mg L-1 was used for LBA4404 infected Ammi majus calli and Timentin 300 mg L-1 was used for EHA105 infected embryogenic calli of Pearl millet. Effects of Agrobacterium infection, antibiotic and NaOCl washes on Agrobacterium removal and both explants physiological changes during transformation experimental procedures were studied. At the end of the experiments explants survival efficiency of Ammi majus and pearl millet were 8% and 5% respectively. Biotic and abiotic stress factors responsible for lower efficiency were investigated with various other factors and strategies were discussed which are need to be considered for higher transformation events and target tissue survival.

  2. Predictive Factors of Radiation-Induced Lung Toxicity in Lung Cancer Patients: A Retrospective Study

    Directory of Open Access Journals (Sweden)

    Maher Soliman

    2016-07-01

    Full Text Available Background: Radiation-induced lung toxicity is an important dose-limiting toxicity in lung cancer radiotherapy, for which there are no generally accepted predictive factors. This study seeks to identify risk factors associated with the development of severe radiation-induced lung toxicity using clinical and dosimetric parameters. Methods: We reviewed the medical records of 54 patients with histologically proven stage III non-small cell lung cancer treated with three dimensional-conformal radiotherapy at Alexandria Main University Hospital between January 2008 and December 2011. The original treatment plans for those patients were restored and imported to a treatment planning system. Lung dose–volume histograms and various dosimetric parameters were calculated. Univariate and multivariate logistic regression analyses were performed. Results: The following grades of radiation-induced lung toxicity were observed in patients - grade 0: 17 (31.5%, grade 1: 5 (9.3%, grade 2: 13 (24.1%, grade 3: 15 (27.8%, and grade 5: 4 (7.4%. A total of 19 (35.2% patients developed grade ≥3 and were considered to have an event. Univariate analysis showed that age, presence of chronic obstructive pulmonary disease and location of the primary tumor had significant associations with severe radiation-induced lung toxicity. Other dosimetric variables such as tumor side, histology, forced expiratory volume in 1 s, smoking, and gender showed no significant correlations with severe radiation-induced lung toxicity. Multivariate analysis showed that the presence of chronic obstructive pulmonary disease (P=0.001 and location of the primary tumor (P=0.010 were the only predictive factors for severe radiation-induced lung toxicity. Conclusion: This study demonstrates that patients with chronic obstructive pulmonary disease and lower lung lobe tumors have a high risk of severe radiationinduced lung toxicity when treated with combined chemoradiotherapy. These easily obtained

  3. Lactobacillus acidophilus alleviates platelet-activating factor-induced inflammatory responses in human intestinal epithelial cells.

    Directory of Open Access Journals (Sweden)

    Alip Borthakur

    Full Text Available Probiotics have been used as alternative prevention and therapy modalities in intestinal inflammatory disorders including inflammatory bowel diseases (IBD and necrotizing enterocolitis (NEC. Pathophysiology of IBD and NEC includes the production of diverse lipid mediators, including platelet-activating factor (PAF that mediate inflammatory responses in the disease. PAF is known to activate NF-κB, however, the mechanisms of PAF-induced inflammation are not fully defined. We have recently described a novel PAF-triggered pathway of NF-κB activation and IL-8 production in intestinal epithelial cells (IECs, requiring the pivotal role of the adaptor protein Bcl10 and its interactions with CARMA3 and MALT1. The current studies examined the potential role of the probiotic Lactobacillus acidophilus in reversing the PAF-induced, Bcl10-dependent NF-κB activation and IL-8 production in IECs. PAF treatment (5 µM×24 h of NCM460 and Caco-2 cells significantly increased nuclear p65 NF-κB levels and IL-8 secretion (2-3-fold, P<0.05, compared to control, which were blocked by pretreatment of the cells for 6 h with L. acidophilus (LA or its culture supernatant (CS, followed by continued treatments with PAF for 24 h. LA-CS also attenuated PAF-induced increase in Bcl10 mRNA and protein levels and Bcl10 promoter activity. LA-CS did not alter PAF-induced interaction of Bcl10 with CARMA3, but attenuated Bcl10 interaction with MALT1 and also PAF-induced ubiquitination of IKKγ. Efficacy of bacteria-free CS of LA in counteracting PAF-induced inflammatory cascade suggests that soluble factor(s in the CS of LA mediate these effects. These results define a novel mechanism by which probiotics counteract PAF-induced inflammation in IECs.

  4. Identification of two juvenile hormone inducible transcription factors from the silkworm, Bombyx mori.

    Science.gov (United States)

    Matsumoto, Hitoshi; Ueno, Chihiro; Nakamura, Yuki; Kinjoh, Terunori; Ito, Yuka; Shimura, Sachiko; Noda, Hiroaki; Imanishi, Shigeo; Mita, Kazuei; Fujiwara, Haruhiko; Hiruma, Kiyoshi; Shinoda, Tetsuro; Kamimura, Manabu

    2015-09-01

    Juvenile hormone (JH) regulates many physiological processes in insects. However, the signal cascades in which JH is active have not yet been fully elucidated, particularly in comparison to another major hormone ecdysteroid. Here we identified two JH inducible transcription factors as candidate components of JH signaling pathways in the silkworm, Bombyx mori. DNA microarray analysis showed that expression of two transcription factor genes, E75 and Enhancer of split mβ (E(spl)mβ), was induced by juvenile hormone I (JH I) in NIAS-Bm-aff3 cells. Real time RT-PCR analysis confirmed that expression of four E75 isoforms (E75A, E75B, E75C and E75D) and E(spl)mβ was 3-8 times greater after JH I addition. Addition of the protein synthesis inhibitor cycloheximide did not suppress JH-induced expression of the genes, indicating that they were directly induced by JH. JH-induced expression of E75 and E(spl)mβ was also observed in four other B. mori cell lines and in larval hemocytes of final instar larvae. Notably, E75A expression was induced very strongly in larval hemocytes by topical application of the JH analog fenoxycarb; the level of induced expression was comparable to that produced by feeding larvae with 20-hydroxyecdysone. These results suggest that E75 and E(spl)mβ are general and direct target genes of JH and that the transcription factors encoded by these genes play important roles in JH signaling.

  5. Pigment Epithelium-Derived Factor Alleviates Tamoxifen-Induced Endometrial Hyperplasia.

    Science.gov (United States)

    Goldberg, Keren; Bar-Joseph, Hadas; Grossman, Hadas; Hasky, Noa; Uri-Belapolsky, Shiri; Stemmer, Salomon M; Chuderland, Dana; Shalgi, Ruth; Ben-Aharon, Irit

    2015-12-01

    Tamoxifen is a cornerstone component of adjuvant endocrine therapy for patients with hormone-receptor-positive breast cancer. Its significant adverse effects include uterine hyperplasia, polyps, and increased risk of endometrial cancer. However, the underlying molecular mechanism remains unclear. Excessive angiogenesis, a hallmark of tumorigenesis, is a result of disrupted balance between pro- and anti-angiogenic factors. VEGF is a pro-angiogenic factor shown to be elevated by tamoxifen in the uterus. Pigment epithelium-derived factor (PEDF) is a potent anti-angiogenic factor that suppresses strong pro-angiogenic factors, such as VEGF. Our aim was to investigate whether angiogenic balance plays a role in tamoxifen-induced uterine pathologies, elucidate the molecular impairment in that network, and explore potential intervention to offset the proposed imbalance elicited by tamoxifen. Using in vivo mouse models, we demonstrated that tamoxifen induced a dose-dependent shift in endogenous uterine angiogenic balance favoring VEGF over PEDF. Treatment with recombinant PEDF (rPEDF) abrogated tamoxifen-induced uterine hyperplasia and VEGF elevation, resulting in reduction of blood vessels density. Exploring the molecular mechanism revealed that tamoxifen promoted survival and malignant transformation pathways, whereas rPEDF treatment prevents these changes. Activation of survival pathways was decreased, demonstrated by reduction in AKT phosphorylation concomitant with elevation in JNK phosphorylation. Estrogen receptor-α and c-Myc oncoprotein levels were reduced. Our findings provide novel insight into the molecular mechanisms tamoxifen induces in the uterus, which may become the precursor events of subsequent endometrial hyperplasia and cancer. We demonstrate that rPEDF may serve as a useful intervention to alleviate the risk of tamoxifen-induced endometrial pathologies.

  6. Epidermal growth-factor-induced transcript isoform variation drives mammary cell migration.

    Directory of Open Access Journals (Sweden)

    Wolfgang J Köstler

    Full Text Available Signal-induced transcript isoform variation (TIV includes alternative promoter usage as well as alternative splicing and alternative polyadenylation of mRNA. To assess the phenotypic relevance of signal-induced TIV, we employed exon arrays and breast epithelial cells, which migrate in response to the epidermal growth factor (EGF. We show that EGF rapidly--within one hour--induces widespread TIV in a significant fraction of the transcriptome. Importantly, TIV characterizes many genes that display no differential expression upon stimulus. In addition, similar EGF-dependent changes are shared by a panel of mammary cell lines. A functional screen, which utilized isoform-specific siRNA oligonucleotides, indicated that several isoforms play essential, non-redundant roles in EGF-induced mammary cell migration. Taken together, our findings highlight the importance of TIV in the rapid evolvement of a phenotypic response to extracellular signals.

  7. Identification of rice (Oryza sativa L.) signal factors capable of inducing Agrobacterium vir gene expression

    Institute of Scientific and Technical Information of China (English)

    许东晖; 李宝健; 刘煜; 黄志纾; 古练权

    1996-01-01

    Two kinds of signal factors capable of inducing Agrobaorerium vir gene expression were purified and identified from leaf extracts of panicle-differentiating to flowering stage of rice (Oryza saliva L. cv. IR 72) detected by Agrobacterium vir(?) lacZ. fusion genes. The induction was similar to that observed with 5 μm actosyringone (AS). Based on the comprehensive analysis of the data by UV, IR, NMR, MS, HMQC and HMBC, the structures of these two signal factors are identified as 5, 7, 4’-trihydroxy-3’, 5’-dimethoxy-flavone (named tricin) and 5, 4’ -dihydroxy-3’, 5’ -dimethoxy-7- (β-D-glucosyloxy) -flavone, respectively. These results demonstrate that monocotyledonous plants do contain highly efficient vir gene inducing factors of Agrobacterium, and the reason why monocotyledonous plants are difficult to transform by Ayrobacterium is not due to absence of vir gene inducing factors, but due to the signal factors only produced in specific stage and tissue of monocotyledonous plants

  8. Hypoxia inducible factor-1alpha mediates protection of DL-3-n-butylphthalide in brain microvascular endothelial cells against oxygen glucose deprivation-induced injury

    Institute of Scientific and Technical Information of China (English)

    Weihong Yang; Ling Li; Ruxun Huang; Zhong Pei; Songjie Liao; Jinsheng Zeng

    2012-01-01

    Studies have demonstrated that DL-3-n-butylphthalide can significantly alleviate oxygen glucose deprivation-induced injury of human umbilical vein endothelial cells at least partly associated with its enhancement on oxygen glucose deprivation -induced hypoxia inducible factor-1α expression. In this study, we hypothesized that DL-3-n-butylphthalide can protect against oxygen glucose deprivation-induced injury of newborn rat brain microvascular endothelial cells by means of upregulating hypoxia inducible factor-1α expression. MTT assay and Hoechst staining results showed that DL-3-n-butylphthalide protected brain microvascular endothelial cells against oxygen glucose deprivation-induced injury in a dose-dependent manner. Western blot and immunofluorescent staining results further confirmed that the protective effect was related to upregulation of hypoxia inducible factor-1α. Real-time RT-PCR reaction results showed that DL-3-n-butylphthalide reduced apoptosis by inhibiting downregulation of pro-apoptotic gene caspase-3 mRNA expression and upregulation of apoptosis-executive protease bcl-2 mRNA expression; however, DL-3-n-butylphthalide had no protective effects on brain microvascular endothelial cells after knockdown of hypoxia inducible factor-1α by small interfering RNA. These findings suggest that DL-3-n-butylphthalide can protect brain microvascular endothelial cells against oxygen glucose deprivation-induced injury by upregulating bcl-2 expression and downregulating caspase-3 expression though hypoxia inducible factor-1α pathway.

  9. Statistical extremes and peak factors in wind-induced vibration of tall buildings

    Institute of Scientific and Technical Information of China (English)

    Ming-feng HUANG; Chun-man CHAN; Wen-juan LOU; Kenny Chung-Siu KWOK

    2012-01-01

    In the structural design of tall buildings,peak factors have been widely used to predict mean extreme responses of tall buildings under wind excitations.Vanmarcke's peak factor is directly related to an explicit measure of structural reliability against a Gaussian response process.We review the use of this factor for time-variant reliability design by comparing it to the conventional Davenport's peak factor.Based on the asymptotic theory of statistical extremes,a new closed-form peak factor,the so-called Gamma peak factor,can be obtained for a non-Gaussian resultant response characterized by a Rayleigh distribution process.Using the Gamma peak factor,a combined peak factor method was developed for predicting the expected maximum resultant responses of a building undergoing lateral-torsional vibration.The effects of the standard deviation ratio of two sway components and the inter-component correlation on the evaluation of peak resultant response were also investigated.Utilizing wind tunnel data derived from synchronous multi-pressure measurements,we carried out a wind-induced time history response analysis of the Commonwealth Advisory Aeronautical Research Council (CAARC) standard tall building to validate the applicability of the Gamma peak factor to the prediction of the peak resultant acceleration.Results from the building example indicated that the use of the Gamma peak factor enables accurate predictions to be made of the mean extreme resultant acceleration responses for dynamic serviceability performance design of modern tall buildings.

  10. The Factors that Induce or Overcome Freezing of Gait in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    S. Rahman

    2008-01-01

    Full Text Available Freezing of gait (FoG, a transient halt in walking, is a major mobility problem for patients with Parkinson’s disease (PD. This study examined the factors that induce FoG, and identified the cues and strategies that help overcome it through a postal survey of 130 PD patients. 72% reported FoG. The factors that commonly induced FoG were turning, fatigue, confined spaces and stressful situations, in addition to emotional factors. FoG was also ameliorated by various attentional and external cueing strategies. The concept of paradoxical kinesis, the potential neural substrates of such external cueing effects, and their importance for rehabilitation in PD are discussed.

  11. Crocin suppresses tumor necrosis factor-alpha-induced cell death of neuronally differentiated PC-12 cells.

    Science.gov (United States)

    Soeda, S; Ochiai, T; Paopong, L; Tanaka, H; Shoyama, Y; Shimeno, H

    2001-11-01

    Crocus sativus L. is used in Chinese traditional medicine to treat some disorders of the central nervous system. Crocin is an ethanol-extractable component of Crocus sativus L.; it is reported to prevent ethanol-induced impairment of learning and memory in mice. In this study, we demonstrate that crocin suppresses the effect of tumor necrosis factor (TNF)-alpha on neuronally differentiated PC-12 cells. PC-12 cells dead from exposure to TNF-alpha show apoptotic morphological changes and DNA fragmentation. These hallmark features of cell death did not appear in cells treated in the co-presence of 10 microM crocin. Moreover, crocin suppressed the TNF-alpha-induced expression of Bcl-Xs and LICE mRNAs and simultaneously restored the cytokine-induced reduction of Bcl-X(L) mRNA expression. The modulating effects of crocin on the expression of Bcl-2 family proteins led to a marked reduction of a TNF-alpha-induced release of cytochrome c from the mitochondria. Crocin also blocked the cytochrome c-induced activation of caspase-3. To learn how crocin exhibits these anti-apoptotic actions in PC-12 cells, we tested the effect of crocin on PC-12 cell death induced by daunorubicin. We found that crocin inhibited the effect of daunorubicin as well. Our findings suggest that crocin inhibits neuronal cell death induced by both internal and external apoptotic stimuli.

  12. Clinico-Epidemiological Study Of Factors Associated With Pregnancy Induced Hypertension

    Directory of Open Access Journals (Sweden)

    Amir Ali

    1998-01-01

    Full Text Available Research Question: What are the factors responsible for pregnancy induced hypertension. Objectives: To determine whether maternal, demographic, clinical and socio-economic characteristics are predictive of hypertension associated with pregnancy. Study design: Cross â€" Sectional. Participants: 728 hypertensive pregnant mothers attending the ante-natal clinic and admitted to the inpatient department of obstetric unit. Study Variables: Maternal, demographic and socio-economic characteristics. Outcome variable: Hypertension associated with pregnancy. Statistical analysis: Percentages and proportions. Results: The relative incidence of pregnancy induced hypertension was 71.29%. The critical evaluation of social and demographic characteristics of 519 cases of pregnancy induced hypertension revealed that nulliparous, young women (15-25 years belonging to low socio-economic group with lower literacy status and higher house hold work load are more vulnerable to develop pregnancy induced hypertension. Inadequate diet having low protein, rich carbohydrate and extra salt intake played a crucial role in the development of pregnancy induced hypertension. Conclusions: i since the nulliparous and younger women are vulnerable to develop pregnancy induced hypertension, the age at first pregnancy be reasonably delayed. ii Balanced diet is to be ensured through appropriate nutrition education and within t he resources of the family. iii The heavy household work is to be avoided and adequate rest and sleep be ensured in those who are at risk of developing pregnancy induced hypertension.

  13. Rheumatic diseases induced by drugs and environmental factors: the state-of-the-art - part one.

    Science.gov (United States)

    Niklas, Karolina; Niklas, Arkadiusz A; Majewski, Dominik; Puszczewicz, Mariusz

    2016-01-01

    The majority of rheumatic diseases belong to the group of autoimmune diseases and are associated with autoantibody production. Their etiology is not fully understood. Certain medications and environmental factors may have an influence on the occurrence of rheumatic diseases. Establishing a cause-effect relationship between a certain factor and disease induction is not always simple. It is important to administer the drug continuously or monitor exposure to a given factor in the period preceding the onset of symptoms. The lack of previously diagnosed autoimmune disease, or finally the lack of symptoms within a few weeks/months after discontinuation of the drug/cessation of exposure, is also important. The most frequently mentioned rheumatic diseases caused by drugs and environmental factors include systemic lupus erythematosus, scleroderma, systemic vasculitis, polymyositis, dermatomyositis, and Sjögren's syndrome. The objective of this study is to summarize current knowledge on rheumatic diseases induced by drugs and environmental factors.

  14. Rheumatic diseases induced by drugs and environmental factors: the state-of-the-art - part two.

    Science.gov (United States)

    Niklas, Karolina; Niklas, Arkadiusz A; Majewski, Dominik; Puszczewicz, Mariusz J

    2016-01-01

    The majority of rheumatic diseases belong to the group of autoimmune diseases and are associated with autoantibody production. Their etiology is not fully understood. Certain medications and environmental factors may have an influence on the occurrence of rheumatic diseases. Establishing a cause-effect relationship between a certain factor and disease induction is not always simple. It is important to administer the drug continuously or monitor exposure to a given factor in the period preceding the onset of symptoms. The lack of early diagnosed autoimmune disease, or finally the lack of symptoms within a few weeks/months after discontinuation of the drug/cessation of exposure, is also important. The most frequently mentioned rheumatic diseases caused by drugs and environmental factors include systemic lupus erythematosus (SLE), scleroderma, systemic vasculitis, polymyositis, dermatomyositis, and Sjögren's syndrome. The objective of this study is to summarize current knowledge on rheumatic diseases induced by drugs and environmental factors.

  15. Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors.

    Science.gov (United States)

    Hermann, Andreas; Kim, Jeong Beom; Srimasorn, Sumitra; Zaehres, Holm; Reinhardt, Peter; Schöler, Hans R; Storch, Alexander

    2016-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by overexpression of the transcription factors OCT4, SOX2, KLF4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk of chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC. We recently showed that a reduction of reprogramming factors in murine cells not only reduces reprogramming efficiency but also may worsen subsequent differentiation. To prove whether this is also true for human cells, we compared the efficiency of neuronal differentiation of iPSC generated from fetal human neural stem cells with either one (OCT4; hiPSC1F-NSC) or two (OCT4, KLF4; hiPSC2F-NSC) reprogramming factors with iPSC produced from human fibroblasts using three (hiPSC3F-FIB) or four reprogramming factors (hiPSC4F-FIB). After four weeks of coculture with PA6 stromal cells, neuronal differentiation of hiPSC1F-NSC and hiPSC2F-NSC was as efficient as iPSC3F-FIB or iPSC4F-FIB. We conclude that a reduction of reprogramming factors in human cells does reduce reprogramming efficiency but does not alter subsequent differentiation into neural lineages. This is of importance for the development of future application of iPSC in cell replacement therapies.

  16. Factor-Reduced Human Induced Pluripotent Stem Cells Efficiently Differentiate into Neurons Independent of the Number of Reprogramming Factors

    Directory of Open Access Journals (Sweden)

    Andreas Hermann

    2016-01-01

    Full Text Available Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs by overexpression of the transcription factors OCT4, SOX2, KLF4, and c-Myc holds great promise for the development of personalized cell replacement therapies. In an attempt to minimize the risk of chromosomal disruption and to simplify reprogramming, several studies demonstrated that a reduced set of reprogramming factors is sufficient to generate iPSC. We recently showed that a reduction of reprogramming factors in murine cells not only reduces reprogramming efficiency but also may worsen subsequent differentiation. To prove whether this is also true for human cells, we compared the efficiency of neuronal differentiation of iPSC generated from fetal human neural stem cells with either one (OCT4; hiPSC1F-NSC or two (OCT4, KLF4; hiPSC2F-NSC reprogramming factors with iPSC produced from human fibroblasts using three (hiPSC3F-FIB or four reprogramming factors (hiPSC4F-FIB. After four weeks of coculture with PA6 stromal cells, neuronal differentiation of hiPSC1F-NSC and hiPSC2F-NSC was as efficient as iPSC3F-FIB or iPSC4F-FIB. We conclude that a reduction of reprogramming factors in human cells does reduce reprogramming efficiency but does not alter subsequent differentiation into neural lineages. This is of importance for the development of future application of iPSC in cell replacement therapies.

  17. Apoptosis-Inducing Factor Participation in Bovine Macrophage Mycobacterium bovis-Induced Caspase-Independent Cell Death▿

    Science.gov (United States)

    Vega-Manriquez, X.; López-Vidal, Y.; Moran, J.; Adams, L. G.; Gutiérrez-Pabello, J. A.

    2007-01-01

    Mycobacterium tuberculosis complex species survive and replicate in phagosomes of the host cell. Cell death (CD) has been highlighted as one of the probable outcomes in this host-pathogen interaction. Previously, our group demonstrated macrophage apoptosis as a consequence of Mycobacterium bovis infection. In this study, we aimed to identify the contribution of apoptotic effector elements in M. bovis-induced CD. Bovine macrophages were either infected with M. bovis (multiplicity of infection, 10:1) or treated with an M. bovis cell extract (CFE). Structural changes compatible with CD were evaluated. Chromatin condensation was increased three times by the CFE. On the other hand, a terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) assay demonstrated that levels of DNA fragmentation induced by M. bovis and CFE were 53.7% ± 24% and 38.9% ± 14%, respectively, whereas control cells had a basal proportion of 8.9% ± 4.1%. Rates of DNA fragmentation were unaffected by the presence of the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp (z-VAD). Cells treated with 100 μg of CFE for 12 h had a fivefold decrease in the level of mitochondrial outer membrane permeabilization compared to that of untreated cells. Neither M. bovis infection nor CFE treatment induced activation of caspase 3, 8, or 9. Translocation of apoptosis-inducing factor (AIF) to the nucleus was identified in 32% ± 3.5% and 26.3% ± 4.9% of M. bovis-infected and CFE-treated cells, respectively. Incubation of macrophages with z-VAD prior to infection did not alter the percentage of cells showing AIF translocation. Our data suggest that M. bovis-induced CD in bovine macrophages is caspase independent with AIF participation. PMID:17158896

  18. Exposure to nerve growth factor worsens nephrotoxic effect induced by Cyclosporine A in HK-2 cells.

    Directory of Open Access Journals (Sweden)

    Donatella Vizza

    Full Text Available Nerve growth factor is a neurotrophin that promotes cell growth, differentiation, survival and death through two different receptors: TrkA(NTR and p75(NTR. Nerve growth factor serum concentrations increase during many inflammatory and autoimmune diseases, glomerulonephritis, chronic kidney disease, end-stage renal disease and, particularly, in renal transplant. Considering that nerve growth factor exerts beneficial effects in the treatment of major central and peripheral neurodegenerative diseases, skin and corneal ulcers, we asked whether nerve growth factor could also exert a role in Cyclosporine A-induced graft nephrotoxicity. Our hypothesis was raised from basic evidence indicating that Cyclosporine A-inhibition of calcineurin-NFAT pathway increases nerve growth factor expression levels. Therefore, we investigated the involvement of nerve growth factor and its receptors in the damage exerted by Cyclosporine A in tubular renal cells, HK-2. Our results showed that in HK-2 cells combined treatment with Cyclosporine A + nerve growth factor induced a significant reduction in cell vitality concomitant with a down-regulation of Cyclin D1 and up-regulation of p21 levels respect to cells treated with Cyclosporine A alone. Moreover functional experiments showed that the co-treatment significantly up-regulated human p21promoter activity by involvement of the Sp1 transcription factor, whose nuclear content was negatively regulated by activated NFATc1. In addition we observed that the combined exposure to Cyclosporine A + nerve growth factor promoted an up-regulation of p75 (NTR and its target genes, p53 and BAD leading to the activation of intrinsic apoptosis. Finally, the chemical inhibition of p75(NTR down-regulated the intrinsic apoptotic signal. We describe two new mechanisms by which nerve growth factor promotes growth arrest and apoptosis in tubular renal cells exposed to Cyclosporine A.

  19. Exposure to Nerve Growth Factor Worsens Nephrotoxic Effect Induced by Cyclosporine A in HK-2 Cells

    Science.gov (United States)

    Lofaro, Danilo; Toteda, Giuseppina; Lupinacci, Simona; Leone, Francesca; Gigliotti, Paolo; Papalia, Teresa; Bonofiglio, Renzo

    2013-01-01

    Nerve growth factor is a neurotrophin that promotes cell growth, differentiation, survival and death through two different receptors: TrkANTR and p75NTR. Nerve growth factor serum concentrations increase during many inflammatory and autoimmune diseases, glomerulonephritis, chronic kidney disease, end-stage renal disease and, particularly, in renal transplant. Considering that nerve growth factor exerts beneficial effects in the treatment of major central and peripheral neurodegenerative diseases, skin and corneal ulcers, we asked whether nerve growth factor could also exert a role in Cyclosporine A-induced graft nephrotoxicity. Our hypothesis was raised from basic evidence indicating that Cyclosporine A-inhibition of calcineurin-NFAT pathway increases nerve growth factor expression levels. Therefore, we investigated the involvement of nerve growth factor and its receptors in the damage exerted by Cyclosporine A in tubular renal cells, HK-2. Our results showed that in HK-2 cells combined treatment with Cyclosporine A + nerve growth factor induced a significant reduction in cell vitality concomitant with a down-regulation of Cyclin D1 and up-regulation of p21 levels respect to cells treated with Cyclosporine A alone. Moreover functional experiments showed that the co-treatment significantly up-regulated human p21promoter activity by involvement of the Sp1 transcription factor, whose nuclear content was negatively regulated by activated NFATc1. In addition we observed that the combined exposure to Cyclosporine A + nerve growth factor promoted an up-regulation of p75 NTR and its target genes, p53 and BAD leading to the activation of intrinsic apoptosis. Finally, the chemical inhibition of p75NTR down-regulated the intrinsic apoptotic signal. We describe two new mechanisms by which nerve growth factor promotes growth arrest and apoptosis in tubular renal cells exposed to Cyclosporine A. PMID:24244623

  20. Hypoxia-inducible factor-1 α/platelet derived growth factor axis in HIV-associated pulmonary vascular remodeling

    Directory of Open Access Journals (Sweden)

    Bartolome Sonja

    2011-08-01

    Full Text Available Abstract Background Human immunodeficiency virus (HIV infected patients are at increased risk for the development of pulmonary arterial hypertension (PAH. Recent reports have demonstrated that HIV associated viral proteins induce reactive oxygen species (ROS with resultant endothelial cell dysfunction and related vascular injury. In this study, we explored the impact of HIV protein induced oxidative stress on production of hypoxia inducible factor (HIF-1α and platelet-derived growth factor (PDGF, critical mediators implicated in the pathogenesis of HIV-PAH. Methods The lungs from 4-5 months old HIV-1 transgenic (Tg rats were assessed for the presence of pulmonary vascular remodeling and HIF-1α/PDGF-BB expression in comparison with wild type controls. Human primary pulmonary arterial endothelial cells (HPAEC were treated with HIV-associated proteins in the presence or absence of pretreatment with antioxidants, for 24 hrs followed by estimation of ROS levels and western blot analysis of HIF-1α or PDGF-BB. Results HIV-Tg rats, a model with marked viral protein induced vascular oxidative stress in the absence of active HIV-1 replication demonstrated significant medial thickening of pulmonary vessels and increased right ventricular mass compared to wild-type controls, with increased expression of HIF-1α and PDGF-BB in HIV-Tg rats. The up-regulation of both HIF-1α and PDGF-B chain mRNA in each HIV-Tg rat was directly correlated with an increase in right ventricular/left ventricular+septum ratio. Supporting our in-vivo findings, HPAECs treated with HIV-proteins: Tat and gp120, demonstrated increased ROS and parallel increase of PDGF-BB expression with the maximum induction observed on treatment with R5 type gp-120CM. Pre-treatment of endothelial cells with antioxidants or transfection of cells with HIF-1α small interfering RNA resulted in abrogation of gp-120CM mediated induction of PDGF-BB, therefore, confirming that ROS generation and

  1. Nuclear factor-κB mediates placental growth factor induced pro-labour mediators in human placenta.

    Science.gov (United States)

    Lappas, Martha

    2012-07-01

    Prostaglandins, pro-inflammatory cytokines, extracellular matrix remodelling enzymes and nuclear factor-kappa B (NF-κB) are involved in the mechanisms of term and preterm parturition. Recent studies have reported an increase in angiogenesis-related genes during term and preterm labour, including placental growth factor (PLGF). In non-gestational tissues, PLGF induces inflammation via NF-κB. The aim of this study was to determine the effect of PLGF on the gene expression and release of pro-labour mediators in human placenta. Samples were obtained from normal pregnancies at the time of Caesarean section. Human placenta was incubated in the absence (basal control) or presence of a 10 ng/ml PLGF for 24 h. Inflammatory gene expression was analysed by quantitative RT-PCR, concentration of pro-inflammatory cytokines and prostaglandins was quantified by ELISA, and secretory matrix metalloproteinases (MMPs) activity by zymography. NF-κB DNA-binding activity and IκB-α (inhibitor of NF-κB) protein degradation were analysed by ELISA and Western blotting, respectively. PLGF significantly increased interleukin (IL)-6 and IL-8 gene expression and secretion, cyclooxygenase-2 expression and resultant prostaglandin (PG) E(2) and PGF(2α) release, and MMP-9 gene expression and enzyme production. PLGF induced the degradation of IκB-α whilst increasing NF-κB p65 DNA-binding activity. The PLGF-induced pro-labour responses were abrogated by co-treatment with the NF-κB inhibitor BAY 11-7082. In summary, the pro-inflammatory and pro-labour effects of PLGF in human placenta are mediated by NF-κB.

  2. Interaction between human monocytes and vascular smooth muscle cells induces vascular endothelial growth factor expression.

    Science.gov (United States)

    Hojo, Y; Ikeda, U; Maeda, Y; Takahashi, M; Takizawa, T; Okada, M; Funayama, H; Shimada, K

    2000-05-01

    The objective of this study was to investigate whether synthesis of vascular endothelial growth factor (VEGF), a major mitogen for vascular endothelial cells, was induced by a cell-to-cell interaction between monocytes and vascular smooth muscle cells (VSMCs). Human VSMCs and THP-1 cells (human monocytoid cell) were cocultured. VEGF levels in the coculture medium were determined by enzyme-linked immunosorbent assay. Northern blot analysis of VEGF mRNA was performed using a specific cDNA probe. Immunohistochemistry was performed to determine which types of cell produce VEGF. Adding THP-1 cells to VSMCs for 24 h increased VEGF levels of the culture media, 8- and 10-fold relative to those of THP-1 cells and VSMCs alone, respectively. Northern blot analysis showed that VEGF mRNA expression was induced in the cocultured cells and peaked after 12 h. Immunohistochemistry disclosed that both types of cell in the coculture produced VEGF. Separate coculture experiments revealed that both direct contact and a soluble factor(s) contributed to VEGF production. Neutralizing anti-interleukin (IL)-6 antibody inhibited VEGF production by the coculture of THP-1 cells and VSMCs. A cell-to-cell interaction between monocytes and VSMCs induced VEGF synthesis in both types of cell. An IL-6 mediated mechanism is at least partially involved in VEGF production by the cocultures. Local VEGF production induced by a monocyte-VSMC interaction may play an important role in atherosclerosis and vascular remodeling.

  3. Selective alterations of transcription factors in MPP+-induced neurotoxicity in PC12 cells.

    Science.gov (United States)

    Xu, Z; Cawthon, D; McCastlain, K A; Duhart, H M; Newport, G D; Fang, H; Patterson, T A; Slikker, W; Ali, S F

    2005-08-01

    MPP(+) (1-methyl-4-phenylpyridinium; the active metabolite of the neurotoxin MPTP (1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine)) depletes dopamine (DA) content and elicits cell death in PC12 cells. However, the mechanism of MPP(+)-induced neurotoxicity is still unclear. In this study, the dose response and time-course of MPP(+)-induced DA depletion and decreased cell viability were determined in nerve growth factor (NGF)-differentiated PC12 cells. The alteration of transcription factors (TFs) induced by MPP(+) from a selected dose level and time point was then evaluated using protein/DNA-binding arrays. K-means clustering analysis identified four patterns of protein/DNA-binding changes. Three of the 28 TFs identified in PC12 cells increased by 100% (p53, PRE, Smad SBE) and 2 decreased by 50% (HSE, RXR(DR1)) of control with MPP(+) treatment. In addition, three TFs decreased within the range of 33-50% (TFIID, E2F1, CREB) and two TFs increased within the range of 50-100% (PAX-5, Stat4). An electrophoretic mobility shift assay (EMSA) was used to confirm the changes of p53 and HSE. The observed changes in TFs correlated with the alterations of DA and cell viability. The data indicates that selective transcription factors are involved in MPP(+)-induced neurotoxicity and it provides mechanistic information that may be applicable to animal studies with MPTP and clinical studies of Parkinson's disease.

  4. Hypoxia inducible factor: It’s role in angiogenesis and tumor

    Directory of Open Access Journals (Sweden)

    Mozhgan Jahani

    2016-02-01

    Full Text Available Angiogenesis, as the process of new vessel formation from pre-existing vessels is dependent on a delicate equilibrium between endogenous angiogenic and antiangiogenic factors. However, under pathological conditions, this tight regulation becomes lost which can result in the formation of the different diseases such as cancer. Angiogenesis is a complex process that includes many gene products that are produced by different cells. Each of the processes influenced by specific genes that their expression can be regulated by hypoxi inducible factor-1 (HIF-1. Hypoxia, the imbalance between the oxygen in need and the oxygen available, usually occurs in tumors and ischemic cardiovascular diseases. In order to overcome this challenge, tumors regulate and control the expression of genes related to angiogenesis, cell cycle and metabolism using hypoxia-inducible factor 1 (HIF-1. HIF-1 was first recognized as a transcription factor involved in hypoxia-induced erythropoietin expression. As angiogenesis pathway molecules are being described, this factor has been characterized as a key transcription regulator for these molecules. In this review article, after discussing HIF-1 structure and characterization, the role of this important factor in angiogenesis and cancer as a pathological case and finally, the clinical applications has been evaluated. Articles related to the key words of hypoxia, HIF-1 and angiogenesis were searched from valid databases such as Springer Link, google scholar, Pubmed and Sciencedirect. Then, the articles related to the role of hypoxia and HIF-1 in activation of genes that are involved in angiogenesis and cancer were searched and selected for this study. Studies show that, HIF-1 activation of genes including vascular endothelial growth factor (VEGF, angiopoietin-1 (Ang-1 and angiopoietin-2 (Ang-2, etc., induced angiogenesis in the tumor cells. Furthermore, the activation of genes such as insulin-like growth factor 2 (IGF2

  5. Identification and characterization of a novel regulatory factor: IgA-inducing protein.

    Science.gov (United States)

    Austin, Amy S; Haas, Karen M; Naugler, Sasha M; Bajer, Anna A; Garcia-Tapia, David; Estes, D Mark

    2003-08-01

    IgA is the predominant Ig isotype in mucosal secretions and thus plays a pivotal role in host defense. The mechanisms by which IgA expression is regulated may differ among species and involve multiple pathways. Various cytokines and costimulators have been identified which regulate expression of this isotype, including IL-10, IL-2, vasoactive intestinal peptide, and TGF-beta. We have tested a wide array of known factors, but only under very limited conditions do these factors mediate substantial IgA production in vitro from bovine B cells. In response to these findings, we generated a cDNA library in a mammalian expression vector from activated cells derived from bovine gut-associated lymphoid tissues (Peyer's patch and mesenteric lymph node cells) as a source of soluble factor(s) that may regulate IgA production. We have identified a novel factor, IgA-inducing protein, which stimulates relatively high levels of IgA production in vitro following CD40 stimulation in coculture with IL-2. Our data suggest that IgA-inducing protein regulates IgA by acting as a switch or differentiation factor and is expressed in a variety of lymphoid and nonlymphoid tissues.

  6. Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1.

    Science.gov (United States)

    Rosenbauer, Frank; Wagner, Katharina; Kutok, Jeffery L; Iwasaki, Hiromi; Le Beau, Michelle M; Okuno, Yutaka; Akashi, Koichi; Fiering, Steven; Tenen, Daniel G

    2004-06-01

    Transcription factors are believed to have a dominant role in acute myeloid leukemia (AML). This idea is supported by analysis of gene-knockout mice, which uncovered crucial roles of several transcription factors in normal hematopoiesis, and of individuals with leukemia, in whom transcription factors are frequently downregulated or mutated. However, analysis of knockout animals has not shown a direct link between abrogated transcription factors and the pathogenesis of AML. Sfpi1, encoding the lineage-specific transcription factor PU.1, is indispensable for normal myeloid and lymphoid development. We found that mice carrying hypomorphic Sfpi1 alleles that reduce PU.1 expression to 20% of normal levels, unlike mice carrying homo- or heterozygous deletions of Sfpi1, developed AML. Unlike complete or 50% loss, 80% loss of PU.1 induced a precancerous state characterized by accumulation of an abnormal precursor pool retaining responsiveness to G-CSF with disruption of M- and GM-CSF pathways. Malignant transformation was associated with a high frequency of clonal chromosomal changes. Retroviral restoration of PU.1 expression rescued myeloid differentiation of mutant progenitors and AML blasts. These results suggest that tightly graded reduction, rather than complete loss, of a lineage-indispensable transcription factor can induce AML.

  7. Protective effect of serum thymic factor, FTS, on cephaloridine-induced nephrotoxicity in rats.

    Science.gov (United States)

    Kohda, Yuka; Matsunaga, Yoshiko; Yonogi, Katsuya; Kawai, Yoshiko; Awaya, Akira; Gemba, Munekazu

    2005-11-01

    Serum thymic factor (FTS), a thymic peptide hormone, has been reported to increase superoxide disumutase (SOD) levels in senescence-accelerated mice. In the present study, we examined the effect of FTS on cephaloridine (CER)-induced nephrotoxicity in vivo and in vitro. We previously reported that CER led to extracellular signal-regulated protein kinase (ERK) activation in the rat kidney. So, we also investigated whether FTS has an effect on ERK activation induced by CER. Treatment of male Sprague-Dawley rats with intravenous CER (1.2 g/kg) for 24 h markedly increased BUN and plasma creatinine levels and urinary excretion of glucose and protein, decreased creatinine clearance and also led to marked pathological changes in the proximal tubules, as revealed by electron micrographs. An increase in phosphorylated ERK (pERK) was detected in the nuclear fraction prepared from the rat kidney cortex 24 h after CER injection. Pretreatment of rats with FTS (50 microg/kg, i.v.) attenuated the CER-induced renal dysfunction and pathological damage. FTS also suppressed CER-induced ERK activation in the kidney. In vitro treatment of the established cell line, LLC-PK1 cells, with FTS significantly ameliorated CER-induced cell injury, as measured by lactate dehydrogenase (LDH) leakage. Our results, taken together with our previous report that MEK inhibitors ameliorated CER-induced renal cell injury and ERK activation induced by CER, suggest that FTS participates in protection from CER-induced nephrotoxicity by suppressing ERK activation induced by CER.

  8. Hypoxia-inducible factor-1 modulates the expression of vascular endothelial growth factor and endothelial nitric oxide synthase induced by eccentric exercise.

    Science.gov (United States)

    Rodriguez-Miguelez, Paula; Lima-Cabello, Elena; Martínez-Flórez, Susana; Almar, Mar; Cuevas, María J; González-Gallego, Javier

    2015-04-15

    The present study investigated the effects of acute and chronic eccentric exercise on the hypoxia-inducible factor (HIF)-1α activation response and the concomitant modulation of vascular endothelial growth factor (VEGF) and endothelial nitric oxide synthase (eNOS) expression in rat skeletal muscle. Twenty-four male Wistar rats were randomly assigned to three experimental groups: rested control group, acutely exercised group after an intermittent downhill protocol for 90 min, and acutely exercise group with a previous eccentric training of 8 wk. HIF-1α activation, VEGF and eNOS gene expression, protein content, and promoter activation were assessed in vastus lateralis muscle biopsies. Acute eccentric exercise induced a marked activation of HIF-1α and resulted in increased VEGF and eNOS mRNA level and protein concentration. The binding of HIF-1α to the VEGF and eNOS promoters, measured by a chromatin immunoprecipitation assay, was undetectable in rested rats, whereas it was evident in acutely exercised animals. Acute exercise also increased myeloperoxidase, toll-like receptor-4, tumor necrosis factor-α, and interleukin-1β protein content, suggesting a contribution of proinflammatory stimuli to HIF-1α activation and VEGF overexpression. All of these effects were partially abolished by training. Moreover, training resulted in an increased capillary density. In summary, our findings indicate that eccentric exercise prompts an HIF-1α response in untrained skeletal muscle that contributes to the upregulation of VEGF and eNOS gene expression and is attenuated after an eccentric training program. Copyright © 2015 the American Physiological Society.

  9. Expression and role of factor inhibiting hypoxia-inducible factor-1 in pulmonary arteries of rat with hypoxia-induced hypertension

    Institute of Scientific and Technical Information of China (English)

    Daiyan Fu; Aiguo Dai; Ruicheng Hu; Yunrong Chen; Liming Zhu

    2008-01-01

    Hypoxia-inducible factor-11α subunit (HIF-1α) plays a pivotal role during the development of hypoxia-induced pulmonary hypertension (HPH) by transactivating it's target genes. As an oxygen-sensitive attenuator, factor inhibiting HIF-1 (FIH)hydroxylates a conserved asparagine residue within the C-terminal transactivation domain of HIF-1α under normoxia and moderate hypoxia. FIH protein is downregulated in response to hypoxia, but its dynamic expression and role during the development of HPH remains unclear. In this study,an HPH rat model was established. The mean pulmonary arterial pressure increased significantly after 7 d of hypoxia.The pulmonary artery remodeling index became evident after 7 d of hypoxia, while the right ventricular hypertrophy index became significant after 14 d of hypoxia. The messenger RNA (mRNA) and protein expression of HIF-1α and vascular endothelial growth factor (VEGF), a well-characterized target gene of HIF-1α, were markedly upregulated after exposure to hypoxia in pulmonary arteries. FIH protein in lung tissues declined after 7 d of hypoxia and continued to decline through the duration of hypoxia. FIH mRNA had few changes after exposure to hypoxia compared with after exposure to normoxia.In hypoxic rats, FIH protein showed significant negative correlation with VEGF mRNA and VEGF protein. FIH protein was negatively correlated with mean pulmonary arterial pressure, pulmonary artery remodeling index and right ventricular hypertrophy index. Taken together, our results suggest that, in the pulmonary arteries of rat exposed to moderate hypoxia, a time-dependent decrease in FIH protein may contribute to the development of rat HPH by enhancing the transactivation of HIF-1α target genes such as VEGF.

  10. Factors associated with induced abortion at selected hospitals in the Volta Region, Ghana.

    Science.gov (United States)

    Klutsey, Ellen Eyi; Ankomah, Augustine

    2014-01-01

    Induced abortion rates remained persistently high in the Volta Region of Ghana in the 5 years from 2006 to 2011. Some hospitals, both rural and urban, report induced abortion-related complications as one of the top ten conditions in hospital admissions. This study explored demographic and other factors associated with induced abortion, and also assessed awareness of abortion-related complications among women of reproductive age in the Volta Region. A quantitative, hospital-based, unmatched case-control study was performed. The Volta Region was stratified into two health administration zones, ie, north and south. For each zone, hospitals were stratified into government and private hospitals. Employing simple random sampling, one private and three government hospitals were selected from each zone. This study is therefore based on eight hospitals, ie, six government hospitals and two private hospitals. Marital status, employment status, number of total pregnancies, and knowledge about contraception were found to be associated with induced abortion. Multiple logistic regression showed a 4% reduction in the odds of induced abortion in married women compared with women who were single (odds ratio [OR] 0.11, 95% confidence interval [CI] 0.07-0.22). Unemployed women of reproductive age were found to be 0.35 times less likely to seek induced abortion compared with their employed counterparts (OR 0.35, CI 0.19-0.65). It was also observed that women with their second pregnancies were 3.8 times more likely to seek induced abortion and women with more than two pregnancies were 6.6 times more likely to do so (OR 3.81, CI 1.94-7.49 and OR 6.58, CI 2.58-16.79, respectively). Women with no knowledge of contraceptive methods were 4.6 times likely to seek induced abortion (OR 4.64, CI 1.39-15.4). Compared with women who had not had induced abortion, women with a high number of pregnancies and no contraceptive knowledge were more likely to have induced abortion. It was found that lack

  11. Little effects of Insulin-like Growth Factor-I on testicular atrophy induced by hypoxia

    OpenAIRE

    Casares Amelia; Diaz-Sanchez Matias; Puche Juan; Garcia-Fernandez Maria; Castilla-Cortázar Inma; Diez-Caballero Fernando; Aliaga-Montilla M Aurelia; Rodriguez-Borrajo Coronación; Gonzalez-Barón Salvador

    2006-01-01

    Abstract Background Insulin-like Growth Factor-I (IGF-I) supplementation restores testicular atrophy associated with advanced liver cirrhosis that is a condition of IGF-I deficiency. The aim of this work was to evaluate the effect of IGF-I in rats with ischemia-induced testicular atrophy (AT) without liver disease and consequently with normal serum level of IGF-I. Methods Testicular atrophy was induced by epinephrine (1, 2 mg/Kg intra-scrotal injection five times per week) during 11 weeks. Th...

  12. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Hidalgo, Cecilia [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Lavandero, Sergio, E-mail: slavander@uchile.cl [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile)

    2009-10-09

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  13. Human Cytomegalovirus Secretome Contains Factors That Induce Angiogenesis and Wound Healing

    Energy Technology Data Exchange (ETDEWEB)

    Dumortier, Jerome; Streblow, Daniel N.; Moses, Ashlee V.; Jacobs, Jon M.; Kreklywich, Craig N.; Camp, David G.; Smith, Richard D.; Orloff, Susan L.; Nelson, Jay

    2008-07-01

    Human cytomegalovirus (HCMV) is implicated in the acceleration of a number of vascular diseases including transplant vascular sclerosis (TVS), the lesion associated with chronic rejection (CR) of solid organ transplants. Although the virus persists in the allograft throughout the course of disease, few cells are directly infected by CMV. This observation is in contrast to the global effects that CMV has on the acceleration of TVS/CR, suggesting that CMV infection indirectly promotes the vascular disease process. Recent transcriptome analysis of CMV-infected heart allografts indicates that the virus induces cytokines and growth factors associated with angiogenesis (AG) and wound healing (WH), suggesting that CMV may accelerate TVS/CR through the induction and secretion of AG/WH factors from infected cells. We analyzed virus-free supernatants from HCMV-infected cells (HCMV secretomes) for growth factors, by mass spectrometry and immunoassays, and found that the HCMV secretome contains over 1,000 cellular proteins, many of which are involved in AG/WH. Importantly, functional assays demonstrated that CMV but not herpes simplex virus secretomes not only induce AG/WH but also promote neovessel stabilization and endothelial cell survival for 2 weeks. These findings suggest that CMV acceleration of TVS occurs through virus-induced growth factors and cytokines in the CMV secretome.

  14. Attitude of Reproductive Age Women towards Factors Affecting Induced Abortion in Hamedan, Iran

    Directory of Open Access Journals (Sweden)

    Seyede Zahra Masoumi

    2016-07-01

    Full Text Available Background & aim: Abortion is the third leading cause of maternal mortality. The attitude of women towards abortion is one of the most important factors involved in this issue. This study aimed to evaluate the attitude of women of reproductive age towards induced abortion. Methods This cross-sectional study was performed on 450 women of reproductive age in Fatemieh Hospital in Hamedan, Iran in 2014. Data was collected using abortion attitude scale consisting of five sections: socioeconomic status, family status, maternal and fetal health status, psycho -cultural background, and fertility status. Mean score less than three in each domain was considered as negative attitude, while scores higher or equal to three indicated positive attitude towards induced abortion. To analyze the data, logistic regression analysis, Chi-square and Fisher's exact tests were performed using SPSS version 21. P value of less than 0.05 was considered statistically significant. Results: In this study, induced abortion had no significant relationship with family status, maternal and fetal health, and fertility domains (82.1%, 77.3%, and 64.4%, respectively. A relationship was observed between induced abortion and socioeconomic and psycho-cultural domains (61.8% and 56%, respectively. Logistic regression analysis showed that the predictors of induced abortion were the attitude towards the effect of abortion on the health of mother and fetus (P= 0.01, as well as the psychocultural status of the mothers (P= 0.02. Conclusion: Evaluation of the results indicated a strong belief in the majority of the participants in psychocultural and socioeconomic domains as the most significant predictive factors for induced abortion. Since it is difficult to alter the socioeconomic and psychocultural domains of individuals, changes are recommended in predominant attitudes towards induced abortion.

  15. Elastase induces lung epithelial cell autophagy through placental growth factor: a new insight of emphysema pathogenesis.

    Science.gov (United States)

    Hou, Hsin-Han; Cheng, Shih-Lung; Chung, Kuei-Pin; Kuo, Mark Yen-Ping; Yeh, Cheng-Chang; Chang, Bei-En; Lu, Hsuan-Hsuan; Wang, Hao-Chien; Yu, Chong-Jen

    2014-09-01

    Chronic obstructive pulmonary disease (COPD) is a devastating disease, which is associated with increasing mortality and morbidity. Therefore, there is a need to clearly define the COPD pathogenic mechanism and to explore effective therapies. Previous studies indicated that cigarette smoke (CS) induces autophagy and apoptosis in lung epithelial (LE) cells. Excessive ELANE/HNE (elastase, neutrophil elastase), a factor involved in protease-antiprotease imbalance and the pathogenesis of COPD, causes LE cell apoptosis and upregulates the expression of several stimulus-responsive genes. However, whether or not elastase induces autophagy in LE cell remains unknown. The level of PGF (placental growth factor) is higher in COPD patients than non-COPD controls. We hypothesize that elastase induces PGF expression and causes autophagy in LE cells. In this study, we demonstrated that porcine pancreatic elastase (PPE) induced PGF expression and secretion in LE cells in vitro and in vivo. The activation of MAPK8/JNK1 (mitogen-activated protein kinase 8) and MAPK14/p38alpha MAPK signaling pathways was involved in the PGF mediated regulation of the TSC (tuberous sclerosis complex) pathway and autophagy in LE cells. Notably, PGF-induced MAPK8 and MAPK14 signaling pathways mediated the inactivation of MTOR (mechanistic target of rapamycin), the upregulation of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) and the increase of autophagosome formation in mice. Furthermore, the PPE-induced autophagy promotes further apoptosis in vitro and in vivo. In summary, elastase-induced autophagy promotes LE cell apoptosis and pulmonary emphysema through the upregulation of PGF. PGF and its downstream MAPK8 and MAPK14 signaling pathways are potential therapeutic targets for the treatment of emphysema and COPD.

  16. Nerve growth factor induced hyperalgesia in the rat hind paw is dependent on circulating neutrophils.

    Science.gov (United States)

    Bennett, G; al-Rashed, S; Hoult, J R; Brain, S D

    1998-09-01

    The mechanisms by which nerve growth factor (NGF) induces thermal hyperalgesia and neutrophil accumulation have been investigated in the rat. Thermal nociceptive thresholds in rat hind paw were measured as the time taken for paw withdrawal from a heat source and neutrophil accumulation was measured in hind paw and dorsal skin samples using a myeloperoxidase assay. NGF (23-80 pmol intraplantar (i.pl.) injection) induced a significant (P NGF (40 pmol). In dorsal skin, where multiple samples can be assessed, intradermal (i.d.) NGF was 10-30 times less potent than interleukin-1beta in inducing neutrophil accumulation. The 5-lipoxygenase inhibitor ZM230487 (10 nmol co-injected with NGF) significantly attenuated neutrophil accumulation and hyperalgesia induced by NGF; unlike the histamine and 5-hydroxytryptamine antagonists (mepyramine and methysergide) which were without effect at the times measured. Furthermore, depletion of circulating neutrophils (using a rabbit anti-rat neutrophil antibody) abolished NGF induced hyperalgesia. These results indicate that neutrophils, which accumulate in response to a 5-lipoxygenase product, play a crucial role in NGF-induced hyperalgesia.

  17. A viral vector expressing hypoxia-inducible factor 1 alpha inhibits hippocampal neuronal apoptosis

    Institute of Scientific and Technical Information of China (English)

    Xiqing Chai; Weina Kong; Lingyun Liu; Wenguo Yu; Zhenqing Zhang; Yimin Sun

    2014-01-01

    Hypoxia-inducible factor 1 (HIF-1) attenuates amyloid-beta protein neurotoxicity and decreases apoptosis induced by oxidative stress or hypoxia in cortical neurons. In this study, we construct-ed a recombinant adeno-associated virus (rAAV) vector expressing the human HIF-1αgene (rAAV-HIF-1α), and tested the assumption that rAAV-HIF-1αrepresses hippocampal neuronal apoptosis induced by amyloid-beta protein. Our results conifrmed that rAAV-HIF-1αsigniifcant-ly reduces apoptosis induced by amyloid-beta protein in primary cultured hippocampal neurons. Direct intracerebral rAAV-HIF-1αadministration also induced robust and prolonged HIF-1αproduction in rat hippocampus. Single rAAV-HIF-1αadministration resulted in decreased apoptosis of hippocampal neurons in an Alzheimer’s disease rat model established by intrace-rebroventricular injection of aggregated amyloid-beta protein (25-35). Our in vitro and in vivo ifndings demonstrate that HIF-1 has potential for attenuating hippocampal neuronal apoptosis induced by amyloid-beta protein, and provides experimental support for treatment of neurode-generative diseases using gene therapy.

  18. Macrophage migration inhibitory factor induces autophagy via reactive oxygen species generation.

    Directory of Open Access Journals (Sweden)

    Yung-Chun Chuang

    Full Text Available Autophagy is an evolutionarily conserved catabolic process that maintains cellular homeostasis under stress conditions such as starvation and pathogen infection. Macrophage migration inhibitory factor (MIF is a multifunctional cytokine that plays important roles in inflammation and tumorigenesis. Cytokines such as IL-1β and TNF-α that are induced by MIF have been shown to be involved in the induction of autophagy. However, the actual role of MIF in autophagy remains unclear. Here, we have demonstrated that incubation of human hepatoma cell line HuH-7 cells with recombinant MIF (rMIF induced reactive oxygen species (ROS production and autophagy formation, including LC3-II expression, LC3 punctae formation, autophagic flux, and mitochondria membrane potential loss. The autophagy induced by rMIF was inhibited in the presence of MIF inhibitor, ISO-1 as well as ROS scavenger N-acetyl-L-cysteine (NAC. In addition, serum starvation-induced MIF release and autophagy of HuH-7 cells were partly blocked in the presence of NAC. Moreover, diminished MIF expression by shRNA transfection or inhibition of MIF by ISO-1 decreased serum starvation-induced autophagy of HuH-7 cells. Taken together, these data suggest that cell autophagy was induced by MIF under stress conditions such as inflammation and starvation through ROS generation.

  19. Hypoxia-Inducible Factor 1 Is an Inductor of Transcription Factor Activating Protein 2 Epsilon Expression during Chondrogenic Differentiation

    Directory of Open Access Journals (Sweden)

    Stephan Niebler

    2015-01-01

    Full Text Available The transcription factor AP-2ε (activating enhancer-binding protein epsilon is expressed in cartilage of humans and mice. However, knowledge about regulatory mechanisms influencing AP-2ε expression is limited. Using quantitative real time PCR, we detected a significant increase in AP-2ε mRNA expression comparing initial and late stages of chondrogenic differentiation processes in vitro and in vivo. Interestingly, in these samples the expression pattern of the prominent hypoxia marker gene angiopoietin-like 4 (Angptl4 strongly correlated with that of AP-2ε suggesting that hypoxia might represent an external regulator of AP-2ε expression in mammals. In order to show this, experiments directly targeting the activity of hypoxia-inducible factor-1 (HIF1, the complex mediating responses to oxygen deprivation, were performed. While the HIF1-activating compounds 2,2′-dipyridyl and desferrioxamine resulted in significantly enhanced mRNA concentration of AP-2ε, siRNA against HIF1α led to a significantly reduced expression rate of AP-2ε. Additionally, we detected a significant upregulation of the AP-2ε mRNA level after oxygen deprivation. In sum, these different experimental approaches revealed a novel role for the HIF1 complex in the regulation of the AP-2ε gene in cartilaginous cells and underlined the important role of hypoxia as an important external regulatory stimulus during chondrogenic differentiation modulating the expression of downstream transcription factors.

  20. Homeodomain Protein Transforming Growth Factor Beta-Induced Factor 2 Like, X-Linked Function in Colon Adenocarcinoma Cells

    Science.gov (United States)

    Akbari, Abolfazl; Agah, Shahram; Heidari, Mansour; Mobini, Gholam Reza; Faghihloo, Ebrahim; Sarveazad, Arash; Mirzaei, Alireza

    2017-08-27

    Background: TGIF2LX (transforming growth factor beta-induced factor 2 like, X-linked) is a homeodomain (HD) protein that has been implicated in the negative regulation of cell signaling pathways. The aim of this study was to investigate the possible functions of TGIF2LX in colon adenocarcinoma cells. Methods: The human SW48 cell line was transfected with cDNA for the wild-type TGIF2LX gene and gene/protein over-expression was confirmed by microscopic analysis, real time RT-PCR and Western blotting techniques. In vitro cell proliferation was evaluated by MTT and BrdU assays. After developing a colon tumor model in nude mice, immunohistochemical (IHC) staining of tumor tissue was carried out for Ki-67 (proliferation) and CD34 (angiogenesis) markers. To predict potential protein partners of TGIF2LX, in-silico analysis was also conducted. Results: Obtained results showed over-expression of TGIF2LX as a potential transcription factor could inhibit either proliferation or angiogenesis (P<0.05) in colon tumors. In-silico results predicted interaction of TGIF2LX with other proteins considered important for cellular development. Conclusions: Our findings provided evidence of molecular mechanisms by which TGIF2LX could act as a tumor suppressor in colon adenocarcinoma cells. Thus, this gene may potentially be a promising option for colon cancer gene-based therapeutic strategies. Creative Commons Attribution License

  1. Wound induced tanscriptional regulation of benzylisoquinoline pathway and characterization of wound inducible PsWRKY transcription factor from Papaver somniferum.

    Directory of Open Access Journals (Sweden)

    Sonal Mishra

    Full Text Available Wounding is required to be made in the walls of the green seed pod of Opium poppy prior exudation of latex. To withstand this kind of trauma plants regulate expression of some metabolites through an induced transcript level. 167 unique wound-inducible ESTs were identified by a repetitive round of cDNA subtraction after 5 hours of wounding in Papaver somniferum seedlings. Further repetitive reverse northern analysis of these ESTs revealed 80 transcripts showing more than two fold induction, validated through semi-quantitative RT-PCR & real time expression analysis. One of the major classified categories among identified ESTs belonged to benzylisoquinoline transcripts. Tissue specific metabolite analysis of benzylisoquinoline alkaloids (BIAs in response to wounding revealed increased accumulation of narcotine and papaverine. Promoter analysis of seven transcripts of BIAs pathway showed the presence of W-box cis-element with the consensus sequence of TGAC, which is the proposed binding site for WRKY type transcription factors. One of the Wound inducible 'WRKY' EST isolated from our subtracted library was made full-length and named as 'PsWRKY'. Bacterially expressed PsWRKY interacted with the W-box element having consensus sequence TTGACT/C present in the promoter region of BIAs biosynthetic pathway genes. PsWRKY further activated the TYDC promoter in yeast and transiently in tobacco BY2 cells. Preferential expression of PsWRKY in straw and capsule and its interaction with consensus W-box element present in BIAs pathway gene transcripts suggest its possible involvement in the wound induced regulation of BIAs pathway.

  2. Resveratrol induces growth arrest and apoptosis through activation of FOXO transcription factors in prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Qinghe Chen

    Full Text Available BACKGROUND: Resveratrol, a naturally occurring phytopolyphenol compound, has attracted extensive interest in recent years because of its diverse pharmacological characteristics. Although resveratrol possesses chemopreventive properties against several cancers, the molecular mechanisms by which it inhibits cell growth and induces apoptosis have not been clearly understood. The present study was carried out to examine whether PI3K/AKT/FOXO pathway mediates the biological effects of resveratrol. METHODOLOGY/PRINCIPAL FINDINGS: Resveratrol inhibited the phosphorylation of PI3K, AKT and mTOR. Resveratrol, PI3K inhibitors (LY294002 and Wortmannin and AKT inhibitor alone slightly induced apoptosis in LNCaP cells. These inhibitors further enhanced the apoptosis-inducing potential of resveratrol. Overexpression of wild-type PTEN slightly induced apoptosis. Wild type PTEN and PTEN-G129E enhanced resveratrol-induced apoptosis, whereas PTEN-G129R had no effect on proapoptotic effects of resveratrol. Furthermore, apoptosis-inducing potential of resveratrol was enhanced by dominant negative AKT, and inhibited by wild-type AKT and constitutively active AKT. Resveratrol has no effect on the expression of FKHR, FKHRL1 and AFX genes. The inhibition of FOXO phosphorylation by resveratrol resulted in its nuclear translocation, DNA binding and transcriptional activity. The inhibition of PI3K/AKT pathway induced FOXO transcriptional activity resulting in induction of Bim, TRAIL, p27/KIP1, DR4 and DR5, and inhibition of cyclin D1. Similarly, resveratrol-induced FOXO transcriptional activity was further enhanced when activation of PI3K/AKT pathway was blocked. Over-expression of phosphorylation deficient mutants of FOXO proteins (FOXO1-TM, FOXO3A-TM and FOXO4-TM induced FOXO transcriptional activity, which was further enhanced by resveratrol. Inhibition of FOXO transcription factors by shRNA blocked resveratrol-induced upregulation of Bim, TRAIL, DR4, DR5, p27/KIP1 and

  3. Inducing effects of hepatocyte growth factor on the expression of vascular endothelial growth factor in human colorectal carcinoma cells through MEK and PI3K signaling pathways

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-hua; WEI Wei; XU Hao; WANG Yan-yan; WU Wen-xi

    2007-01-01

    Background Vascular endothelial growth factor plays a key role in human colorectal carcinoma invasion and metastasis. However, the regulation mechanism remains unknown. Recent studies have shown that several cytokines can regulate the expression of vascular endothelial growth factor in tumor cells. In this study, we investigated whether hepatocyte growth factor can regulate the expression of vascular endothelial growth factor in colorectal carcinoma cells.Methods Hepatocyte growth factor and vascular endothelial growth factor in human serum were measured by ELISA.The mRNA level of vascular endothelial growth factor was analyzed by reverse transcription-PCR. Western blot assay was performed to evaluate levels of c-Met and several other proteins involved in the MAPK and PI3K signaling pathways in colorectal carcinoma cells.Results Serum hepatocyte growth factor and vascular endothelial growth factor were significantly increased in colorectal carcinoma subjects. In vitro extraneous hepatocyte growth factor markedly increased protein and mRNA levels of vascular endothelial growth factor in colorectal carcinoma cells. Hepatocyte growth factor induced phosphorylation of c-Met, ERK1/2 and AKT in a dose-dependent manner. Specific inhibitors on MEK and PI3K inhibited the hepatocyte growth factor-induced expression of vascular endothelial growth factor in colorectal carcinoma cells.Conclusion This present study indicates that hepatocyte growth factor upregulates the expression of vascular endothelial growth factor in colorectal carcinoma cells via the MEK/ERK and PI3K/AKT signaling pathways.

  4. Epidermal growth factor (EGF)-induced corneal epithelial wound healing through nuclear factor κB subtype-regulated CCCTC binding factor (CTCF) activation.

    Science.gov (United States)

    Wang, Ling; Wu, Xiaolin; Shi, Ting; Lu, Luo

    2013-08-23

    Epidermal growth factor (EGF) plays an important role in corneal epithelial migration and proliferation to improve the wound healing process. This study aimed to understand the role of NFκB in EGF-induced corneal epithelial wound healing through regulation of CTCF activity, which plays important roles in cell motility and migration to promote wound healing. The effect of NFκB p50 on corneal epithelial wound healing was investigated by comparing the eyes of wild-type and p50 knockout mice. We found that there was a significant retardation in corneal epithelial wound healing in the corneas of p50 knockout mice. Wound closure rates were measured in human corneal epithelial cells transfected with an NFκB activation-sensitive CTCF expression construct to demonstrate the effect of human CTCF expression under the control of EGF-induced NFκB activation on wound healing. EGF stimulation activated NFκB, which directly triggered the expression of the exogenous human CTCF in transfected cells and, subsequently, promoted human corneal epithelial cell motility, migration, and wound healing. Overexpression of CTCF in corneal epithelial cells and mouse corneas significantly enhanced the wound healing process. Furthermore, the effect of overexpressing NFκB p50 in corneal epithelial cells on the promotion of wound healing was abolished by knockdown of CTCF with CTCF-specific shRNA. Thus, a direct regulatory relationship between EGF-induced NFκB p50 and CTCF activation affecting corneal epithelial wound healing has been established, indicating that CTCF is, indeed, a NFκB p50-targeted and effective gene product in the core transcriptional network downstream from the growth factor-induced NFκB signaling pathway.

  5. Hypoxia-inducible factor plays a gut-injurious role in intestinal ischemia reperfusion injury.

    Science.gov (United States)

    Kannan, Kolenkode B; Colorado, Iriana; Reino, Diego; Palange, David; Lu, Qi; Qin, Xiaofa; Abungu, Billy; Watkins, Anthony; Caputo, Francis J; Xu, Da-Zhong; Semenza, Gregg L; Deitch, Edwin A; Feinman, Rena

    2011-05-01

    Gut injury and loss of normal intestinal barrier function are key elements in the paradigm of gut-origin systemic inflammatory response syndrome, acute lung injury, and multiple organ dysfunction syndrome (MODS). As hypoxia-inducible factor (HIF-1) is a critical determinant of the physiological and pathophysiological response to hypoxia and ischemia, we asked whether HIF-1 plays a proximal role in the induction of gut injury and subsequent lung injury. Using partially HIF-1α-deficient mice in an isolated superior mesenteric artery occlusion (SMAO) intestinal ischemia reperfusion (I/R) injury model (45 min SMAO followed by 3 h of reperfusion), we showed a direct relationship between HIF-1 activation and intestinal I/R injury. Specifically, partial HIF-1α deficiency attenuated SMAO-induced increases in intestinal permeability, lipid peroxidation, mucosal caspase-3 activity, and IL-1β mRNA levels. Furthermore, partial HIF-1α deficiency prevented the induction of ileal mucosal inducible nitric oxide synthase (iNOS) protein levels after SMAO and iNOS deficiency ameliorated SMAO-induced villus injury. Resistance to SMAO-induced gut injury was also associated with resistance to lung injury, as reflected by decreased levels of myeloperoxidase, IL-6 and IL-10 in the lungs of HIF-1α(+/-) mice. In contrast, a short duration of SMAO (15 min) followed by 3 h of reperfusion neither induced mucosal HIF-1α protein levels nor caused significant gut and lung injury in wild-type or HIF-1α(+/-) mice. This study indicates that intestinal HIF-1 activation is a proximal regulator of I/R-induced gut mucosal injury and gut-induced lung injury. However, the duration and severity of the gut I/R insult dictate whether HIF-1 plays a gut-protective or deleterious role.

  6. Serum thymic factor, FTS, attenuates cisplatin nephrotoxicity by suppressing cisplatin-induced ERK activation.

    Science.gov (United States)

    Kohda, Yuka; Kawai, Yoshiko; Iwamoto, Noriaki; Matsunaga, Yoshiko; Aiga, Hiromi; Awaya, Akira; Gemba, Munekazu

    2005-11-01

    Serum thymic factor (FTS), a thymic peptide hormone, has been reported to attenuate the bleomycin-induced pulmonary injury and also experimental pancreatitis and diabetes. In the present study, we investigated the effect of FTS on cis-diamminedichloroplatinum II (cisplatin)-induced nephrotoxicity. We have already demonstrated that cephaloridine, a nephrotoxic antibiotic, leads to extracellular signal-regulated protein kinase (ERK) activation in the rat kidney, which probably contributes to cephaloridine-induced renal dysfunction. The aim of this study was to examine the effect of cisplatin on ERK activation in the rat kidney and also the effect of FTS on cisplatin-induced nephrotoxicity in rats. In vitro treatment of LLC-PK1 cells with FTS significantly ameliorated cisplatin-induced cell injury. Treatment of rats with intravenous cisplatin for 3 days markedly induced renal dysfunction and increased platinum contents in the kidney cortex. An increase in pERK was detected in the nuclear fraction prepared from the rat kidney cortex from days 1 to 3 after injection of cisplatin. FTS suppressed cisplatin-induced renal dysfunction and ERK activation in the kidney. FTS did not influence any Pt contents in the kidney after cisplatin administration. FTS has been shown to enhance the in vivo expression of heat shock protein (HSP) 70 in the kidney cortex. The beneficial role of FTS against cisplatin nephrotoxicity may be mediated in part by HSP70, as suggested by its up-regulation in the kidney cortex treated with FTS alone. Our results suggest that FTS participates in protection from cisplatin-induced nephrotoxicity by suppressing ERK activation caused by cisplatin.

  7. A lipochito-oligosaccharide, Nod factor, induces transient calcium influx in soybean suspension-cultured cells.

    Science.gov (United States)

    Yokoyama, T; Kobayashi, N; Kouchi, H; Minamisawa, K; Kaku, H; Tsuchiya, K

    2000-04-01

    Lipochito-oligosaccharides (Nod factors) produced by Rhizobium or Bradyrhizobium are the key signal molecules for eliciting nodulation in their corresponding host legumes. To elucidate the signal transduction events mediated by Nod factors, we investigated the effects of Nod factors on the cytosolic [Ca2+] of protoplasts prepared from roots and suspension-cultured cells of soybean (Glycine max and G. soja) using a fluorescent Ca2+ indicator, Fura-PE3. NodBj-V (C18:1, MeFuc), which is a major component of Nod factors produced by Bradyrhizobium japonicum, induces transient elevation of cytosolic [Ca2+] in the cells of soybean within a few minutes. This effect is specific to soybean cells and was not observed in the tobacco BY-2 cells. Furthermore, NodBj-V without MeFuc did not induce any cytosolic [Ca2+] elevation in soybean cells. Exclusion of Ca2+ from the medium, as well as pre-treatment of the cells with an external Ca2+ chelator or with a plasma membrane voltage-dependent Ca2+ channel inhibitor, suppressed the Nod factor-dependent cytosolic [Ca2+] elevation. These results indicate that transient Ca2+ influx from extracellular fluid is one of the earliest responses of soybean cells to NodBj-V (C18:1, MeFuc) in a host-specific manner.

  8. Puerarin decreases hypoxia inducible factor-1 alpha in the hippocampus of vascular dementia rats

    Institute of Scientific and Technical Information of China (English)

    Haiqin Wu; Huqing Wang; Bei Zhang; Guilian Zhang; Ru Zhang; Lingfeng Zhang

    2012-01-01

    In this study, a rat vascular dementia model was established by permanent bilateral common carotid arterial occlusion. Rats were intraperitoneally injected with puerarin 3 days before modeling, for 45 successive days. Results demonstrated that in treated animals hippocampal structures were clear, nerve cells arranged neatly, and cytoplasm was rich in Nissl bodies. The number of cells positive for hypoxia inducible factor-1 alpha, erythropoietin and endothelial nitric oxide synthase was reduced; and the learning and memory abilities of rats were significantly improved. Our experimental findings indicate that puerarin can significantly improve learning and memory in a vascular dementia model, and that the underlying mechanism may be associated with the regulation of the expression of hypoxia inducible factor-1 alpha.

  9. Sequential process in brain-derived neurotrophic factor-induced functional periodontal tissue regeneration.

    Science.gov (United States)

    Konishi, Akihiro; Takeda, Katsuhiro; Fujita, Tsuyoshi; Kajiya, Mikihito; Matsuda, Shinji; Kittaka, Mizuho; Shiba, Hideki; Kurihara, Hidemi

    2016-04-01

    We recently demonstrated that brain-derived neurotrophic factor (BDNF) promotes periodontal tissue regeneration. The purpose of this study was to establish an essential component of a rational approach for the clinical application of BDNF in periodontal regenerative therapy. Here, we assessed the sequence of early events in BDNF-induced periodontal tissue regeneration, especially from the aspect of cementum regeneration. Brain-derived neurotrophic factor was applied into experimental periodontal defects in Beagle dogs. The localization of cells positive for neurotrophic tyrosine kinase, receptor, type 2, proliferating cell nuclear antigen, osteopontin, integrin αVβ3, and integrin α2β1 was evaluated by immunohistochemistry. The effects of BDNF on adhesion of cultured human periodontal ligament cells was examined by an in vitro study. The results suggest that BDNF could induce rapid cementum regeneration by stimulating adhesion, proliferation, and differentiation of periodontal ligament cells in the early regenerative phase, resulting in enhancement of periodontal tissue regeneration.

  10. Evidence for a diffusible factor that induces susceptibility in the Colletotrichum-maize disease interaction.

    Science.gov (United States)

    Torres, Maria F; Cuadros, Diego F; Vaillancourt, Lisa J

    2014-01-01

    Colletotrichum graminicola, the causal agent of maize anthracnose, is a hemibiotrophic fungus that initially infects living host cells via primary hyphae surrounded by a membrane. A nonpathogenic mutant disrupted in a gene encoding a component of the signal peptidase complex, and believed to be deficient in protein processing and secretion, regained pathogenicity when it was inoculated onto maize leaf sheaths close to the wild-type fungus. Evidence is presented suggesting that the wild-type produces a diffusible factor(s) that induces the localized susceptibility of host cells at the borders of expanding colonies, causing them to become receptive to biotrophic invasion. The induced susceptibility effect is limited to a distance of approximately eight cells from the edge of the wild-type colony, is dosage dependent and is specific to C. graminicola. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  11. Tumor Necrosis Factor-α -and Interleukin-1-Induced Cellular Responses: Coupling Proteomic and Genomic Information

    Science.gov (United States)

    Ott, Lee W.; Resing, Katheryn A.; Sizemore, Alecia W.; Heyen, Joshua W.; Cocklin, Ross R.; Pedrick, Nathan M.; Woods, H. Cary; Chen, Jake Y.; Goebl, Mark G.; Witzmann, Frank A.; Harrington, Maureen A.

    2010-01-01

    The pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFα) and Interleukin-1 (IL-1) mediate the innate immune response. Dysregulation of the innate immune response contributes to the pathogenesis of cancer, arthritis, and congestive heart failure. TNFα- and IL-1-induced changes in gene expression are mediated by similar transcription factors; however, TNFα and IL-1 receptor knock-out mice differ in their sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune response. The contrasting responses to LPS indicate that TNFα and IL-1 regulate different processes. A large-scale proteomic analysis of TNFα- and IL-1-induced responses was undertaken to identify processes uniquely regulated by TNFα and IL-1. When combined with genomic studies, our results indicate that TNFα, but not IL-1, mediates cell cycle arrest. PMID:17503796

  12. Tumor Necrosis Factor-alpha- and interleukin-1-induced cellular responses: coupling proteomic and genomic information.

    Science.gov (United States)

    Ott, Lee W; Resing, Katheryn A; Sizemore, Alecia W; Heyen, Joshua W; Cocklin, Ross R; Pedrick, Nathan M; Woods, H Cary; Chen, Jake Y; Goebl, Mark G; Witzmann, Frank A; Harrington, Maureen A

    2007-06-01

    The pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFalpha) and Interleukin-1 (IL-1) mediate the innate immune response. Dysregulation of the innate immune response contributes to the pathogenesis of cancer, arthritis, and congestive heart failure. TNFalpha- and IL-1-induced changes in gene expression are mediated by similar transcription factors; however, TNFalpha and IL-1 receptor knock-out mice differ in their sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune response. The contrasting responses to LPS indicate that TNFalpha and IL-1 regulate different processes. A large-scale proteomic analysis of TNFalpha- and IL-1-induced responses was undertaken to identify processes uniquely regulated by TNFalpha and IL-1. When combined with genomic studies, our results indicate that TNFalpha, but not IL-1, mediates cell cycle arrest.

  13. Matrine inhibits proliferation of mouse skin fibroblasts induced by platelet-derived growth factor-BB

    Institute of Scientific and Technical Information of China (English)

    WU Yan-an; GAO Chun-fang; WANG Hao; HUANG Chao; KONG Xian-tao

    2001-01-01

    To study the effect of matrine on proliferation of mouse skin fibroblasts induced by platelet-derived growth factor-BB (PDGF-BB). Methods: Mouse skin fibroblasts were obtained from newborn ⅠCR mice and propagated in vitro. Proliferation of cell was analyzed by mitochondrial reduction of tetrazolium salt MTT and actual cell count. Results: Matrine (50 to 500 μg/ml) caused dose-dependent reduction of serum-stimulated cell growth. Growth inhibition was totally reversed after removal of the drug. Matrine also inhibited PDGF-BB induced cell growth dose-dependently. Conclusion: Matrine exhibits potent anti-proliferation effect on mouse skin fibroblast. This effect appears to be mediated by decrease of PDGF-induced growth. These results suggest that matrine might have preventive and therapeutic implication in skin fibrosis.

  14. Diffusible Factors Secreted by Glioblastoma and Medulloblastoma Cells Induce Oxidative Stress in Bystander Neural Stem Progenitors.

    Science.gov (United States)

    Sharma, Neha; Colangelo, Nicholas W; de Toledo, Sonia M; Azzam, Edouard I

    2016-08-01

    Harmful effects that alter the homeostasis of neural stem or progenitor cells (NSPs) can affect regenerative processes in the central nervous system. We investigated the effect of soluble factors secreted by control or (137)Cs-γ-irradiated glioblastoma or medulloblastoma cells on redox-modulated endpoints in recipient human NSPs. Growth medium harvested from the nonirradiated brain tumor cells, following 24 h of growth, induced prominent oxidative stress in recipient NSPs as judged by overall increases in mitochondrial superoxide radical levels (p p21(Waf1) and p27(Kip1), and perturbations in cell cycle progression (p cells to radiation only slightly altered the induced oxidative changes in the bystander NSPs, except for medium from irradiated medulloblastoma cells that was more potent at inducing apoptosis in the NSPs than medium from nonirradiated cells (p cells is often used to support the growth of stem cells.

  15. Risk factors for legal induced abortion-related mortality in the United States.

    Science.gov (United States)

    Bartlett, Linda A; Berg, Cynthia J; Shulman, Holly B; Zane, Suzanne B; Green, Clarice A; Whitehead, Sara; Atrash, Hani K

    2004-04-01

    To assess risk factors for legal induced abortion-related deaths. This is a descriptive epidemiologic study of women dying of complications of induced abortions. Numerator data are from the Abortion Mortality Surveillance System. Denominator data are from the Abortion Surveillance System, which monitors the number and characteristics of women who have legal induced abortions in the United States. Risk factors examined include age of the woman, gestational length of pregnancy at the time of termination, race, and procedure. Main outcome measures include crude, adjusted, and risk factor-specific mortality rates. During 1988-1997, the overall death rate for women obtaining legally induced abortions was 0.7 per 100000 legal induced abortions. The risk of death increased exponentially by 38% for each additional week of gestation. Compared with women whose abortions were performed at or before 8 weeks of gestation, women whose abortions were performed in the second trimester were significantly more likely to die of abortion-related causes. The relative risk (unadjusted) of abortion-related mortality was 14.7 at 13-15 weeks of gestation (95% confidence interval [CI] 6.2, 34.7), 29.5 at 16-20 weeks (95% CI 12.9, 67.4), and 76.6 at or after 21 weeks (95% CI 32.5, 180.8). Up to 87% of deaths in women who chose to terminate their pregnancies after 8 weeks of gestation may have been avoidable if these women had accessed abortion services before 8 weeks of gestation. Although primary prevention of unintended pregnancy is optimal, among women who choose to terminate their pregnancies, increased access to surgical and nonsurgical abortion services may increase the proportion of abortions performed at lower-risk, early gestational ages and help further decrease deaths. II-2

  16. BMP2-induced inflammation can be suppressed by the osteoinductive growth factor NELL-1.

    Science.gov (United States)

    Shen, Jia; James, Aaron W; Zara, Janette N; Asatrian, Greg; Khadarian, Kevork; Zhang, James B; Ho, Stephanie; Kim, Hyun Ju; Ting, Kang; Soo, Chia

    2013-11-01

    Bone-morphogenetic protein 2 (BMP2) is currently the only Food and Drug Administration-approved osteoinductive growth factor used in clinical settings for bone regeneration and repair. However, the use of BMP2 is encumbered by numerous clinical complications, including postoperative inflammation and life-threatening cervical swelling. Thus, methods to prevent BMP2-induced inflammation would have far-reaching clinical implications toward improving current BMP2-based methods for bone regeneration. For the first time, we investigate the potential role of the growth factor Nel-like molecule-1 (NELL-1) in inhibiting BMP2-induced inflammation. Adult rats underwent a femoral bone onlay procedure, treated with either BMP2 protein (4 mg/mL), NELL-1 protein (4 mg/mL), or both proteins combined. Animals were evaluated at 3, 7, and 14 days postoperatively by histology, histomorphometry, immunohistochemistry, and real-time PCR for markers of inflammation (TNFα, IL6). The relative levels of TNFα and IL6 in serum were also detected by ELISA. The mechanism for NELL-1's anti-inflammatory effect was further assessed through examining inflammatory markers and generation of reactive oxygen species (ROS) in the mouse embryonic fibroblast NIH3T3 cells. BMP2 significantly induced local inflammation, including an early and pronounced polymorphonuclear cell infiltration accompanied by increased expression of TNFα and IL6. Treatment with NELL-1 alone elicited no significant inflammatory response. However, NELL-1 significantly attenuated BMP2-induced inflammation by all markers and at all timepoints. These local findings were also confirmed using systemic serum inflammatory biomarkers (TNFα, IL6). In each case, NELL-1 fully reversed BMP2-induced systemic inflammation. Lastly, our findings were recapitulated in vitro, where NELL-1 suppressed BMP2 induced expression of inflammatory markers, as well as NF-κB transcriptional activity and generation of ROS. BMP2-induced inflammation is a

  17. Stress-induced Nuclear Bodies Are Sites of Accumulation of Pre-mRNA Processing Factors

    Science.gov (United States)

    Denegri, Marco; Chiodi, Ilaria; Corioni, Margherita; Cobianchi, Fabio; Riva, Silvano; Biamonti, Giuseppe

    2001-01-01

    Heterogeneous nuclear ribonucleoprotein (hnRNP) HAP (hnRNP A1 interacting protein) is a multifunctional protein with roles in RNA metabolism, transcription, and nuclear structure. After stress treatments, HAP is recruited to a small number of nuclear bodies, usually adjacent to the nucleoli, which consist of clusters of perichromatin granules and are depots of transcripts synthesized before stress. In this article we show that HAP bodies are sites of accumulation for a subset of RNA processing factors and are related to Sam68 nuclear bodies (SNBs) detectable in unstressed cells. Indeed, HAP and Sam68 are both present in SNBs and in HAP bodies, that we rename “stress-induced SNBs.” The determinants required for the redistribution of HAP lie between residue 580 and 788. Different portions of this region direct the recruitment of the green fluorescent protein to stress-induced SNBs, suggesting an interaction of HAP with different components of the bodies. With the use of the 580–725 region as bait in a two-hybrid screening, we have selected SRp30c and 9G8, two members of the SR family of splicing factors. Splicing factors are differentially affected by heat shock: SRp30c and SF2/ASF are efficiently recruited to stress-induced SNBs, whereas the distribution of SC35 is not perturbed. We propose that the differential sequestration of splicing factors could affect processing of specific transcripts. Accordingly, the formation of stress-induced SNBs is accompanied by a change in the splicing pattern of the adenovirus E1A transcripts. PMID:11694584

  18. Radiation-induced bystander effects enhanced by elevated sodium chloride through sensitizing cells to bystander factors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Lingyan; Han Wei; Chen Shaopeng; Zhao Ye; Jiang Erkang; Bao Lingzhi; Pei Bei; Yang Gen; Zhao Guoping; Wang Jun; Xu An [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, Anhui (China); Wu Lijun [Key Laboratory of Ion Beam Bioengineering, Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei 230031, Anhui (China)], E-mail: ljw@ipp.ac.cn

    2008-09-26

    Radiation-induced bystander effects (RIBE) have been demonstrated to occur widely in various cell lines. However, very little data is available on the genotoxic effects of RIBE combined with other factor(s). We reported previously that with a low dose of {alpha}-particle irradiation, the fraction of {gamma}-H2AX foci-positive cells in non-irradiated bystander cells was significantly increased under elevated NaCl culture conditions. In this study, we further investigated the functional role of NaCl in the enhancement of RIBE using a specially designed co-culture system and micronucleus (MN) test. It was shown that the MN frequency was not increased significantly by elevated NaCl (9.0 g/L) alone or by medium exposure. However, with 1.0 cGy {alpha}-particle irradiation, the induced MN frequency increased significantly in both irradiated and non-irradiated bystander regions. Additional studies showed that elevated NaCl made the non-irradiated bystander cells more vulnerable to bystander factors. Furthermore, it was found that the induced MN frequency in cells both in irradiated and non-irradiated bystander regions was weakened when the hypertonic medium was changed to normotonic medium for 2 h before irradiation. Such observations were quite similar to the co-effect of NaCl and hydrogen peroxide (H{sub 2}O{sub 2}), indicating that elevated NaCl might sensitize non-irradiated cells to bystander factors-induced oxidative stress.

  19. A Synthetic Manassantin A Derivative Inhibits Hypoxia-Inducible Factor 1 and Tumor Growth

    OpenAIRE

    Liwei Lang; Xiaoyu Liu; Yan Li; Qing Zhou; Ping Xie; Chunhong Yan; Xiaoguang Chen

    2014-01-01

    The dineolignan manassantin A from Saururaceae was recently identified as a hypoxia-inducible factor 1 (HIF-1) inhibitor, but its in-vivo anti-tumor effect has not been explored. We synthesized a series of manassantin A derivatives, and found that replacing the central tetrahydrofuran moiety with a cyclopentane ring yielded a compound (LXY6006) with increased HIF-1-inhibitory activity yet decreased stereochemically complexity amenable to a simplified synthesis scheme. LXY6006 inhibited HIF-1α...

  20. Synthesis and Biological Evaluation of Manassantin Analogues for Hypoxia-Inducible Factor 1α Inhibition

    OpenAIRE

    Kwon, Do-Yeon; Lee, Hye Eun; Weitzel, Douglas H.; PARK, KYUNGHYE; Lee, Sun Hee; Lee, Chen-Ting; Stephenson, Tesia N.; Park, Hyeri; Fitzgerald, Michael C.; Chi, Jen-Tsan; Mook, Robert A.; Dewhirst, Mark W.; Lee, You Mie; Hong, Jiyong

    2015-01-01

    To cope with hypoxia, tumor cells have developed a number of adaptive mechanisms mediated by hypoxia-inducible factor 1 (HIF-1) to promote angiogenesis and cell survival. Due to significant roles of HIF-1 in the initiation, progression, metastasis, and resistance to treatment of most solid tumors, a considerable amount of effort has been made to identify HIF-1 inhibitors for treatment of cancer. Isolated from Saururus cernuus, manassantins A (1) and B (2) are potent inhibitors of HIF-1 activi...

  1. Saururus cernuus Lignans - Potent Small Molecule Inhibitors of Hypoxia-Inducible Factor-1

    OpenAIRE

    Hossain, Chowdhury Faiz; Kim, Yong-Pil; Baerson, Scott R; Zhang, Lei; Bruick, Richard K.; Mohammed, Kaleem A.; Agarwal, Ameeta K.; Nagle, Dale G.; Zhou, Yu-Dong

    2005-01-01

    Hypoxia-inducible factor-1 (HIF-1) represents an important tumor-selective therapeutic target for solid tumors. In search of novel small molecule HIF-1 inhibitors, 5400 natural product-rich extracts from plants, marine organisms, and microbes were examined for HIF-1 inhibitory activities using a cell-based reporter assay. Bioassay-guided fractionation and isolation, followed by structure elucidation, yielded three potent natural product-derived HIF-1 inhibitors and two structurally related in...

  2. Protective effects of decay-accelerating factor on blast-induced neurotrauma in rats

    OpenAIRE

    Li, Yansong; Chavko, Mikulas; Slack, Jessica L.; Liu, Bin; McCarron, Richard M.; Ross, James D. (Dalhousie University); Dalle Lucca, Jurandir J

    2013-01-01

    Background Blast-induced neurotrauma (BINT) is the signature life threatening injury of current military casualties. Neuroinflammation is a key pathological occurrence of secondary injury contributing to brain damage after blast injury. We have recently demonstrated that blast-triggered complement activation and cytokine release are associated with BINT. Here, we evaluated if administration of the complement inhibitor recombinant human decay-accelerating factor (rhDAF) is beneficial on neuroi...

  3. Effect of Brain-Derived Neurotrophic Factor Haploinsufficiency on Stress-Induced Remodeling of Hippocampal Neurons

    OpenAIRE

    Magariños, A.M.; Li, C. J.; Toth, J. Gal; Bath, K.G.; Jing, D; Lee, F S; MCEWEN, B. S.

    2011-01-01

    Chronic restraint stress (CRS) induces the remodeling (i.e., retraction and simplification) of the apical dendrites of hippocampal CA3 pyramidal neurons in rats, suggesting that intrahippocampal connectivity can be affected by a prolonged stressful challenge. Since the structural maintenance of neuronal dendritic arborizations and synaptic connectivity requires neurotrophic support, we investigated the potential role of brain derived neurotrophic factor (BDNF), a neurotrophin enriched in the ...

  4. Glucocorticoid-induced tumour necrosis factor receptor (GITR) and its ligand (GITRL) in atopic dermatitis

    DEFF Research Database (Denmark)

    Baumgartner-Nielsen, Jane; Vestergaard, Christian; Thestrup-Pedersen, K.

    2006-01-01

    The glucocorticoid-induced tumour necrosis factor receptor-related gene (GITR) is expressed on regulatory T-cells (Treg), which are CD4+CD25+ lymphocytes. Binding of the GITR-ligand (GITRL) leads to downregulation of the regulatory function of Tregs. Patients suffering from a defect in their Treg......-cells are localized in the vicinity of GITRL-expressing cells in atopic dermatitis skin, the GITR/GITRL interaction may serve to perpetuate the inflammation locally....

  5. Pigment Epithelium Derived Factor Peptide Protects Murine Hepatocytes from Carbon Tetrachloride-Induced Injury.

    Directory of Open Access Journals (Sweden)

    Shou-Chuan Shih

    Full Text Available Fibrogenesis is induced by repeated injury to the liver and reactive regeneration and leads eventually to liver cirrhosis. Pigment epithelium derived factor (PEDF has been shown to prevent liver fibrosis induced by carbon tetrachloride (CCl4. A 44 amino acid domain of PEDF (44-mer was found to have a protective effect against various insults to several cell types. In this study, we investigated the capability of synthetic 44-mer to protect against liver injury in mice and in primary cultured hepatocytes. Acute liver injury, induced by CCl4, was evident from histological changes, such as cell necrosis, inflammation and apoptosis, and a concomitant reduction of glutathione (GSH and GSH redox enzyme activities in the liver. Intraperitoneal injection of the 44-mer into CCl4-treated mice abolished the induction of AST and ALT and markedly reduced histological signs of liver injury. The 44-mer treatment can reduce hepatic oxidative stress as evident from lower levels of lipid hydroperoxide, and higher levels of GSH. CCl4 caused a reduction of Bcl-xL, PEDF and PPARγ, which was markedly restored by the 44-mer treatment. Consequently, the 44-mer suppressed liver fibrosis induced by repeated CCl4 injury. Furthermore, our observations in primary culture of rat hepatocytes showed that PEDF and the 44-mer protected primary rat hepatocytes against apoptosis induced by serum deprivation and TGF-β1. PEDF/44-mer induced cell protective STAT3 phosphorylation. Pharmacological STAT3 inhibition prevented the antiapoptotic action of PEDF/44-mer. Among several PEDF receptor candidates that may be responsible for hepatocyte protection, we demonstrated that PNPLA2 was essential for PEDF/44-mer-mediated STAT3 phosphorylation and antiapoptotic activity by using siRNA to selectively knockdown PNPLA2. In conclusion, the PEDF 44-mer protects hepatocytes from single and repeated CCl4 injury. This protective effect may stem from strengthening the counter oxidative stress

  6. Role of heat shock factor-1 activation in the doxorubicin-induced heart failure in mice.

    Science.gov (United States)

    Vedam, Kaushik; Nishijima, Yoshinori; Druhan, Lawrence J; Khan, Mahmood; Moldovan, Nicanor I; Zweier, Jay L; Ilangovan, Govindasamy

    2010-06-01

    Treating cancer patients with chemotherapeutics, such as doxorubicin (Dox), cause dilated cardiomyopathy and congestive heart failure because of oxidative stress. On the other hand, heat shock factor-1 (HSF-1), a transcription factor for heat shock proteins (Hsps), is also known to be activated in response to oxidative stress. However, the possible role of HSF-1 activation and the resultant Hsp25 in chemotherapeutic-induced heart failure has not been investigated. Using HSF-1 wild-type (HSF-1(+/+)) and knock-out (HSF-1(-/-)) mice, we tested the hypothesis that activation of HSF-1 plays a role in the development of Dox-induced heart failure. Higher levels of Hsp25 and its phosphorylated forms were found in the failing hearts of Dox-treated HSF-1(+/+) mice. More than twofold increase in Hsp25 mRNA level was found in Dox-treated hearts. Proteomic analysis showed that there is accumulation and aggregation of Hsp25 in Dox-treated failing hearts. Additionally, Hsp25 was found to coimmunoprecipitate with p53 and vice versa. Further studies indicated that the Dox-induced higher levels of Hsp25 transactivated p53 leading to higher levels of the pro-apoptotic protein Bax, but other p53-related proteins remained unaltered. Moreover, HSF-1(-/-) mice showed significantly reduced Dox-induced heart failure and higher survival rate, and there was no change in Bax upon treating with Dox in HSF-1(-/-) mice. From these results we propose a novel mechanism for Dox-induced heart failure: increased expression of Hsp25 because of oxidant-induced activation of HSF-1 transactivates p53 to increase Bax levels, which leads to heart failure.

  7. Trophic factor-induced excitatory synaptogenesis involves postsynaptic modulation of nicotinic acetylcholine receptors.

    Science.gov (United States)

    Woodin, Melanie A; Munno, David W; Syed, Naweed I

    2002-01-15

    Neurotrophic factors have well established roles in neuronal development, although their precise involvement in synapse formation and plasticity is yet to be fully determined. Using soma-soma synapses between identified Lymnaea neurons, we have shown recently that trophic factors are required for excitatory but not inhibitory synapse formation. However, neither the precise site (presynaptic versus postsynaptic cell) nor the underlying mechanisms have yet been defined. In the present study, synapse formation between the presynaptic cell visceral dorsal 4 (VD4) and its postsynaptic partner right pedal dorsal 1 (RPeD1) was examined to define the cellular mechanisms mediating trophic factor-induced excitatory synaptogenesis in cell culture. When paired in a soma-soma configuration in the presence of defined media (DM, nonproteinacious), mutually inhibitory synapses were appropriately reconstructed between VD4 and RPeD1. However, when cells were paired in the presence of increasing concentrations of Lymnaea brain-conditioned medium (CM), a biphasic synapse (initial excitatory synaptic component followed by inhibition) developed. The CM-induced excitatory synapse formation required trophic factor-mediated activation of receptor tyrosine kinases in the postsynaptic cell, RPeD1, and a concomitant modulation of existing postsynaptic nicotinic acetylcholine receptors (nAChRs). Specifically, when RPeD1 was isolated in DM, exogenously applied ACh induced a hyperpolarizing response that was sensitive to the AChR antagonist methyllycaconitine (MLA). In contrast, a single RPeD1 isolated in CM exhibited a biphasic response to exogenously applied ACh. The initial depolarizing phase of the biphasic response was sensitive to both mecamylamine and hexamethonium chloride, whereas the hyperpolarizing phase was blocked by MLA. In soma-soma-paired neurons, the VD4-induced synaptic responses in RPeD1 were sensitive to the cholinergic antagonists in a concentration range similar to that

  8. Transforming growth factor β1 inhibition protects from noise-induced hearing loss

    Directory of Open Access Journals (Sweden)

    Silvia eMurillo-Cuesta

    2015-03-01

    Full Text Available Excessive exposure to noise damages the principal cochlear structures leading to hearing impairment. Inflammatory and immune responses are central mechanisms in cochlear defensive response to noise but, if unregulated, they contribute to inner ear damage and hearing loss. Transforming growth factor ß (TGF-ß is a key regulator of both responses and high levels of this factor have been associated with cochlear injury in hearing loss animal models. To evaluate the potential of targeting TGF-ß as a therapeutic strategy for preventing or ameliorating noise-induced hearing loss, we studied the auditory function, cochlear morphology, gene expression and oxidative stress markers in mice exposed to noise and treated with TGF-ß1 peptidic inhibitors P17 and P144, just before or immediately after noise insult. Our results indicate that systemic administration of both peptides significantly improved both the evolution of hearing thresholds and the degenerative changes induced by noise-exposure in lateral wall structures. Moreover, treatments ameliorated the inflammatory state and redox balance. These therapeutic effects were dose-dependent and more effective if the TGF-ß1 inhibitors were administered prior to inducing the injury. In conclusion, inhibition of TGF-ß1 actions with antagonistic peptides represents a new, promising therapeutic strategy for the prevention and repair of noise-induced cochlear damage.

  9. Coleusin factor, a novel anticancer diterpenoid, inhibits osteosarcoma growth by inducing bone morphogenetic protein-2-dependent differentiation.

    Science.gov (United States)

    Geng, Shuo; Sun, Bo; Lu, Ran; Wang, Jingze

    2014-06-01

    Coleusin factor is a diterpenoid compound isolated from the root of a tropical plant, Coleus forskohlii. Although Coleusin factor has been reported to suppress proliferation of and induce apoptosis in several types of cancer cells, the effects of Coleusin factor on osteosarcoma and the underlying mechanism are still not fully understood. In this study, we show that Coleusin factor treatment potently inhibits the growth of osteosarcoma cells associated with G(1) cell-cycle arrest. Interestingly, apoptosis and cell death are not induced. Instead, Coleusin factor causes osteosarcoma cells to exhibit typical properties of differentiated osteoblasts, including a morphologic alteration resembling osteoblasts, the expression of osteoblast differentiation markers, elevated alkaline phosphatase activity, and increased cellular mineralization. Coleusin factor treatment significantly increases the expression of bone morphogenetic protein-2 (BMP-2), a crucial osteogenic regulator, and runt-related transcription factor 2 (RUNX2), one of the key transcription factors of the BMP pathway. When BMP-2 signaling is blocked, Coleusin factor fails to inhibit cell proliferation and to induce osteoblast differentiation. Thus, upregulation of BMP-2 autocrine is critical for Coleusin factor to induce osteoblast differentiation and exert its anticancer effects on osteosarcoma. Importantly, administration of Coleusin factor inhibits the growth of osteosarcoma xenografted in nude mice without systemic or immunologic toxicity. Osteosarcoma is a highly aggressive cancer marked by the loss of normal differentiation. Coleusin factor represents a new type of BMP-2 inducer that restores differentiation in osteosarcoma cells. It may provide a promising therapeutic strategy against osteosarcoma with minimal side effects.

  10. Epidermal growth factor inhibits hormone- and fibroblast growth factor-induced activation of phospholipase C in rat pancreatic acini.

    Science.gov (United States)

    Stryjek-Kaminska, D; Piiper, A; Caspary, W F; Zeuzem, S

    1995-01-01

    Epidermal growth factor (EGF) inhibits cholecystokinin-octapeptide-stimulated amylase release and inositol 1,4,5-trisphosphate (1,4,5-IP3) production in isolated rat pancreatic acini. In the present study, pancreatic acini were used to investigate the effect of EGF on amylase release and 1,4,5-IP3 production induced by secretagogues that activate either phospholipase C-beta (carbachol, bombesin) or phospholipase C-gamma [basic fibroblast growth factor (bFGF)]. The results show that EGF (100 ng/ml) inhibited bombesin (0.1 nM-1 microM)-induced amylase release almost completely. Similarly, the effect of EGF on carbachol-stimulated amylase release was substantial at submaximal (0.1 microM: 44% inhibition), maximal (1 microM: 75% inhibition), and supramaximal (100 microM: 33% inhibition) carbachol concentrations. EGF reduced amylase release at submaximal bFGF concentrations (0.1 nM: 40% inhibition), but not at supramaximal bFGF concentrations (1 and 10 nM). EGF decreased the peak increase of 1,4,5-IP3 in response to bombesin and carbachol (5 s after beginning of the incubation) and bFGF (15 s after beginning of the incubation) by 81 +/- 19%, 65 +/- 15%, and 56 +/- 18%, respectively. Receptor binding characteristics for secretagogues that activate phospholipase C were not influenced by coincubation with EGF excluding heterologous transmembrane receptor modulation. These results suggest that EGF inhibits the action of phospholipase C-beta- and gamma-isoenzyme-activating secretagogues in the exocrine pancreas by a postreceptor mechanism.

  11. A volatile factor inducing transmissible lysis in Gaeumannomyces graminis (Sacc.) Arx and Olivier var. tritici Walker.

    Science.gov (United States)

    Sivasithamparam, K; Stukely, M; Parker, C A

    1975-03-01

    Filtered water extract of Gabalong soil with a recent history of take-all in wheat caused lytic plaques to form in agar cultures of a virulent strain of Gaeumannomyces graminis var. tritici. The plaques resembled those produced by Bdellovibrio on plate seeded with bacteria. However, there was no evidence of the presence of bacteria, viruses, or mycoplasmas. The lytic factor was transmissible in culture filtrates to fresh subcultures of the fungus. Exposure of young healthy colonies to sublethal doses of ultraviolet light also induced transmissible lysis. The lytic factor was heat-stable, passed through a 25-nm filter, and was not affected by nuclease (enzymes) or severe irradiation with UV light. It also induced bysis in several other strains of G. graminis. Lysis was always preceded by a growth-stimulatory effect on the fungus. The lytic factor was active as a volatile chemical which induced transmissible lysis and continued to be formed, apparently as a self-perpetuating agent, in lysing cultures of the fungus.

  12. Mast Cell Proteases 6 and 7 Stimulate Angiogenesis by Inducing Endothelial Cells to Release Angiogenic Factors.

    Directory of Open Access Journals (Sweden)

    Devandir Antonio de Souza Junior

    Full Text Available Mast cell proteases are thought to be involved with tumor progression and neo-vascularization. However, their exact role is still unclear. The present study was undertaken to further elucidate the function of specific subtypes of recombinant mouse mast cell proteases (rmMCP-6 and 7 in neo-vascularization. SVEC4-10 cells were cultured on Geltrex® with either rmMCP-6 or 7 and tube formation was analyzed by fluorescence microscopy and scanning electron microscopy. Additionally, the capacity of these proteases to induce the release of angiogenic factors and pro and anti-angiogenic proteins was analyzed. Both rmMCP-6 and 7 were able to stimulate tube formation. Scanning electron microscopy showed that incubation with the proteases induced SVEC4-10 cells to invade the gel matrix. However, the expression and activity of metalloproteases were not altered by incubation with the mast cell proteases. Furthermore, rmMCP-6 and rmMCP-7 were able to induce the differential release of angiogenic factors from the SVEC4-10 cells. rmMCP-7 was more efficient in stimulating tube formation and release of angiogenic factors than rmMCP-6. These results suggest that the subtypes of proteases released by mast cells may influence endothelial cells during in vivo neo-vascularization.

  13. Predictive factor and antihypertensive usage of tyrosine kinase inhibitor-induced hypertension in kidney cancer patients

    Science.gov (United States)

    IZUMI, KOUJI; ITAI, SHINGO; TAKAHASHI, YOSHIKO; MAOLAKE, AERKEN; NAMIKI, MIKIO

    2014-01-01

    Hypertension (HT) is the common adverse event associated with vascular endothelial growth factor receptor-tyrosine kinase inhibitors (VEGFR-TKI). The present study was performed to identify the predictive factors of TKI-induced HT and to determine the classes of antihypertensive agents (AHTA) that demonstrate optimal efficacy against this type of HT. The charts of 50 cases of patients that had received VEGFR-TKI treatment were retrospectively examined. The association between patient background and TKI-induced HT, and the effect of administering AHTA were analyzed. High systolic blood pressure at baseline was identified to be a predictive factor for HT. In addition, there was no difference observed between calcium channel blockers (CCBs) and angiotensin receptor II blockers (ARBs) as first-line AHTA for the control of HT. The findings of the present study may aid with predicting the onset of TKI-induced HT, as well as for its management via the primary use of either CCBs or ARBs. PMID:24959266

  14. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability.

    Science.gov (United States)

    Sollier, Julie; Stork, Caroline Townsend; García-Rubio, María L; Paulsen, Renee D; Aguilera, Andrés; Cimprich, Karlene A

    2014-12-18

    R-loops, consisting of an RNA-DNA hybrid and displaced single-stranded DNA, are physiological structures that regulate various cellular processes occurring on chromatin. Intriguingly, changes in R-loop dynamics have also been associated with DNA damage accumulation and genome instability; however, the mechanisms underlying R-loop-induced DNA damage remain unknown. Here we demonstrate in human cells that R-loops induced by the absence of diverse RNA processing factors, including the RNA/DNA helicases Aquarius (AQR) and Senataxin (SETX), or by the inhibition of topoisomerase I, are actively processed into DNA double-strand breaks (DSBs) by the nucleotide excision repair endonucleases XPF and XPG. Surprisingly, DSB formation requires the transcription-coupled nucleotide excision repair (TC-NER) factor Cockayne syndrome group B (CSB), but not the global genome repair protein XPC. These findings reveal an unexpected and potentially deleterious role for TC-NER factors in driving R-loop-induced DNA damage and genome instability.

  15. Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability

    Science.gov (United States)

    Sollier, Julie; Stork, Caroline Townsend; García-Rubio, María L.; Paulsen, Renee D.; Aguilera, Andrés; Cimprich, Karlene A.

    2014-01-01

    Summary R-loops, consisting of an RNA-DNA hybrid and displaced single-stranded DNA, are physiological structures that regulate various cellular processes occurring on chromatin. Intriguingly, changes in R-loop dynamics have also been associated with DNA damage accumulation and genome instability, however the mechanisms underlying R-loop induced DNA damage remain unknown. Here we demonstrate in human cells that R-loops induced by the absence of diverse RNA processing factors, including the RNA/DNA helicases Aquarius (AQR) and Senataxin (SETX), or by the inhibition of topoisomerase I, are actively processed into DNA double-strand breaks (DSBs) by the nucleotide excision repair endonucleases XPF and XPG. Surprisingly, DSB formation requires the transcription-coupled nucleotide excision repair (TC-NER) factor Cockayne syndrome group B (CSB), but not the global genome repair protein XPC. These findings reveal an unexpected and potentially deleterious role for TC-NER factors in driving R-loop-induced DNA damage and genome instability. PMID:25435140

  16. Clandestine induced abortion: prevalence, incidence and risk factors among women in a Latin American country.

    Science.gov (United States)

    Bernabé-Ortiz, Antonio; White, Peter J; Carcamo, Cesar P; Hughes, James P; Gonzales, Marco A; Garcia, Patricia J; Garnett, Geoff P; Holmes, King K

    2009-02-03

    Clandestine induced abortions are a public health problem in many developing countries where access to abortion services is legally restricted. We estimated the prevalence and incidence of, and risk factors for, clandestine induced abortions in a Latin American country. We conducted a large population-based survey of women aged 18-29 years in 20 cities in Peru. We asked questions about their history of spontaneous and induced abortions, using techniques to encourage disclosure. Of 8242 eligible women, 7992 (97.0%) agreed to participate. The prevalence of reported induced abortions was 11.6% (95% confidence interval [CI] 10.9%-12.4%) among the 7962 women who participated in the survey. It was 13.6% (95% CI 12.8%-14.5%) among the 6559 women who reported having been sexually active. The annual incidence of induced abortion was 3.1% (95% CI 2.9%-3.3%) among the women who had ever been sexually active. In the multivariable analysis, risk factors for induced abortion were higher age at the time of the survey (odds ratio [OR] 1.11, 95% CI 1.07-1.15), lower age at first sexual intercourse (OR 0.87, 95% CI 0.84-0.91), geographic region (highlands: OR 1.56, 95% CI 1.23-1.97; jungle: OR 1.81, 95% CI 1.41-2.31 [v. coastal region]), having children (OR 0.82, 95% CI 0.68-0.98), having more than 1 sexual partner in lifetime (2 partners: OR 1.61, 95% CI 1.23-2.09; > or = 3 partners: OR 2.79, 95% CI 2.12-3.67), and having 1 or more sexual partners in the year before the survey (1 partner: OR 1.36, 95% CI 1.01-1.72; > or = 2 partners: OR 1.54, 95% CI 1.14-2.02). Overall, 49.0% (95% CI 47.6%-50.3%) of the women who reported being currently sexually active were not using contraception. The incidence of clandestine, potentially unsafe induced abortion in Peru is as high as or higher than the rates in many countries where induced abortion is legal and safe. The provision of contraception and safer-sex education to those who require it needs to be greatly improved and could potentially

  17. P-Selectin Induces the Expression of Tissue Factor on Monocytes

    Science.gov (United States)

    Celi, Alessandro; Pellegrini, Giuliana; Lorenzet, Roberto; de Blasi, Antonio; Ready, Neal; Ready, Neal; Furie, Barbara C.; Furie, Bruce

    1994-09-01

    P-selectin on activated platelets and stimulated endothelial cells mediates cell adhesion with monocytes and neutrophils. Since activated platelets induce tissue factor on mononuclear leukocytes, we examined the effect of P-selectin on the expression of tissue factor activity in monocytes. Purified P-selectin stimulated tissue factor expression on mononuclear leukocytes in a dose-dependent manner. Chinese hamster ovary (CHO) cells expressing P-selectin stimulated tissue factor procoagulant activity in purified monocytes, whereas untransfected CHO cells and CHO cells expressing E-selectin did not. Anti-P-selectin antibodies inhibited the effects of purified P-selectin and CHO cells expressing P-selectin on monocytes. Incubation of CHO cells expressing P-selectin with monocytes leads to the development of tissue factor mRNA in monocytes and to the expression of tissue factor antigen on the monocyte surface. These results indicate that P-selectin upregulates the expression of tissue factor on monocytes as well as mediates the binding of platelets and endothelial cells with monocytes and neutrophils. The binding of P-selectin to monocytes in the area of vascular injury may be a component of a mechanism that initiates thrombosis.

  18. Isorhamnetin Inhibits Reactive Oxygen Species-Dependent Hypoxia Inducible Factor (HIF)-1α Accumulation.

    Science.gov (United States)

    Seo, Suho; Seo, Kyuhwa; Ki, Sung Hwan; Shin, Sang Mi

    2016-01-01

    Isorhamnetin is a flavonoid metabolite of quercetin and isolated from water dropwort (Oenanthe javanica, Umbelliferae). It has been reported that isorhamnetin exerts beneficial effects including antioxidant, anti-inflammatory, and anti-proliferative activities. The present study investigated whether the antioxidant activity of isorhamnetin is correlated with its anti-cancer effects on colorectal cancer cells. Isorhamnetin significantly repressed cobalt chloride (CoCl2)- or hypoxia-induced hypoxia inducible factor-1α (HIF-1α) accumulation in HCT116 and HT29 cells. When compared with quercetin, isorhamnetin showed potent inhibition of HIF-1α. Moreover, it inhibited CoCl2-induced activity of hypoxia response element reporter gene and HIF-1α-dependent transcription of genes such as glucose transporter 1, lactate dehydrogenase A, carbonic anhydrase-IX, and pyruvate dehydrogenase kinase 1. Isorhamnetin also blocked hydrogen peroxide (H2O2)-induced HIF-1α accumulation. The antioxidant effects of isorhamnetin were confirmed by observation of CoCl2- or H2O2-induced reactive oxygen species (ROS) production. Consistently, overexpressed HIF-1α was decreased by isorhamnetin or N-acetyl-L-cysteine in HEK293 cells. In vitro migration and invasion assay further confirmed the inhibitory effects of isorhamnetin on cancer cells. Collectively, these results demonstrate that isorhamnetin inhibits ROS-mediated HIF-1α accumulation, which contributes to its anti-metastatic efficacy.

  19. Hypoxia-inducible factor-1 alpha regulates the role of vascular endothelial growth factor on pulmonary arteries of rats with hypoxia-induced pulmonary hypertension

    Institute of Scientific and Technical Information of China (English)

    李启芳; 戴爱国

    2004-01-01

    Background Hypoxia-inducible factor-1α (HIF-1α) is one of the pivotal mediators in the response of lungs to decreased oxygen availability, and increasingly has been implicated in the pathogenesis of pulmonary hypertension. Vascular endothelial growth factor (VEGF), a downstream target gene of HIF-1α, plays an important role in the pathogenesis of hypoxic pulmonary hypertension and hypoxic pulmonary artery remodelling. In this study, we investigated the dynamic expression of HIF-1α and VEGF in pulmonary artery of rats with hypoxia-induced pulmonary hypertension. Methods Forty male Wistar rats were exposed to hypoxia for 0, 3, 7, 14 or 21 days. Mean pulmonary arterial pressure (mPAP), vessel morphometry and right ventricle hypertrophy index (RVHI) were estimated. Lungs were inflated and fixed for in situ hybridisation and immunohistochemistry. Results mPAP values were significantly higher than the control values after 7days of hypoxia [(18.4±0.4) mmHg, P<0.05]. RVHI developed significantly after 14 days of hypoxia. Expression of HIF-1α protein increased in pulmonary arterial tunica intima of all hypoxic rats. In pulmonary arterial tunica media, HIF-1α protein was markedly increased by day 3 (0.20±0.02, P<0.05), reached the peak by day 7, then declined after day 14 of hypoxia. HIF-1α mRNA increased significantly after day 14 of hypoxia (0.20±0.02, P<0.05). VEGF protein began to increase markedly after day 7 of hypoxia, reaching its peak around day 14 of hypoxia (0.15±0.02, P<0.05). VEGF mRNA began to increase after day 7 of hypoxia, then remained more or less stable from day 7 onwards. VEGF mRNA is located mainly in tunica intima and tunica media, whereas VEGF protein is located predominantly in tunica intima. Linear analysis showed that HIF-1α mRNA, VEGF and mPAP were correlated with hypoxic pulmonary artery remodelling. HIF-1α mRNA was positively correlated with VEGF mRNA and protein (P<0.01). Conclusion HIF-1α and VEGF are both involved in the

  20. Factors Affecting Canagliflozin-Induced Transient Urine Volume Increase in Patients with Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Tanaka, Hiroyuki; Takano, Kazuhiko; Iijima, Hiroaki; Kubo, Hajime; Maruyama, Nobuko; Hashimoto, Toshio; Arakawa, Kenji; Togo, Masanori; Inagaki, Nobuya; Kaku, Kohei

    2017-02-01

    Sodium glucose co-transporter 2 (SGLT2) inhibitors exhibit diuretic activity, which is a possible mechanism underlying the cardiovascular benefit of these inhibitors. However, the osmotic diuresis-induced increase in urine volume, and the risk of dehydration have been of concern with SGLT2 inhibitor treatment. This study aimed to investigate the mechanism underlying SGLT2 inhibitor canagliflozin-induced diuresis in Japanese type 2 diabetes mellitus (T2DM) patients. Thirteen T2DM patients received a daily oral dose of 100 mg canagliflozin before breakfast for 6 days. Blood and urine samples were collected at predetermined time points. The primary endpoint was evaluation of correlations between changes from baseline in urine volume and factors that are known to affect urine volume and between actual urine volume and these factors. Canagliflozin transiently increased urine volume and urinary sodium excretion on Day 1 with a return to baseline levels thereafter. Canagliflozin administration increased urinary glucose excretion, which was sustained during repeated-dose administration. Plasma atrial natriuretic peptide (ANP) and N-terminal pro-b-type natriuretic peptide (NT-proBNP) levels decreased, while plasma renin activity increased. On Day 1 of treatment, changes in sodium and potassium excretion were closely correlated with changes in urine output. A post hoc multiple regression analysis showed changes in sodium excretion and water intake as factors that affected urine volume change at Day 1. Furthermore, relative to that at baseline, canagliflozin decreased blood glucose throughout the day and increased plasma total GLP-1 after breakfast. Canagliflozin induced transient sodium excretion and did not induce water intake at Day 1; hence, natriuresis rather than glucose-induced osmotic diuresis may be a major factor involved in the canagliflozin-induced transient increase in urine output. In addition, canagliflozin decreased plasma ANP and NT-proBNP levels and

  1. Sulindac metabolites induce proteosomal and lysosomal degradation of the epidermal growth factor receptor.

    Science.gov (United States)

    Pangburn, Heather A; Ahnen, Dennis J; Rice, Pamela L

    2010-04-01

    The epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases. In response to ligand, EGFR is internalized and degraded by the ubiquitin-proteasome/lysosome pathway. We previously reported that metabolites of the nonsteroidal anti-inflammatory drug sulindac downregulate the expression of EGFR and inhibit basal and EGF-induced EGFR signaling through extracellular signal-regulated kinase 1/2. We now have evaluated the mechanisms of sulindac metabolite-induced downregulation of EGFR. EGF-induced downregulation of EGFR occurs within 10 minutes and lasts for 24 hours. By contrast, downregulation of EGFR by sulindac sulfide and sulindac sulfone was first evident at 4 and 24 hours, respectively, with maximal downregulation at 72 hours. Pretreatment with either the lysosomal inhibitor chloroquine or the proteosomal inhibitor MG132 blocked sulindac metabolite-induced downregulation of EGFR. Sulindac metabolites also increased the ubiquitination of EGFR. Whereas sulindac metabolites inhibited phosphorylation of EGFR pY1068, they increased phosphorylation of EGFR pY1045, the docking site where c-Cbl binds, thereby enabling receptor ubiquitination and degradation. Immunofluorescence analysis of EGF and EGFR distribution confirmed the biochemical observations that sulindac metabolites alter EGFR localization and EGFR internalization in a manner similar to that seen with EGF treatment. Expression of ErbB family members HER2 and HER3 was also downregulated by sulindac metabolites. We conclude that downregulation of EGFR expression by sulindac metabolites is mediated via lysosomal and proteosomal degradation that may be due to drug-induced phosphorylation at pY1045 with resultant ubiquitination of EGFR. Thus, sulindac metabolite-induced downregulation of EGFR seems to be mediated through mechanism(s) similar, at least in part, to those involved in EGF-induced downregulation of EGFR.

  2. Expression of hypoxia-inducible factors and vascular endothelial growth factor during pregnancy in the feline uterus.

    Science.gov (United States)

    Agaoglu, Ozgecan Korkmaz; Agaoglu, Ali Reha; Guzeloglu, Aydin; Kurar, Ercan; Kayis, Seyit Ali; Ozmen, Ozlem; Schäfer-Somi, Sabine; Aslan, Selim

    2015-07-01

    Hypoxia-inducible factors (HIFs) and vascular endothelial growth factor (VEGF) have critical roles during the development of the fetomaternal unit. The HIFs regulate placentation and vascularization by stimulation of VEGF gene expression. This study aimed to investigate the expression profiles of HIF gene family and VEGF in the cat uterus during pregnancy. Tissue samples of the whole uterine wall were collected after ovariohysterectomy and allocated to the following groups: embryo positive (group 1 [G1], n = 7, 7 days after mating), early pregnancy (group 2 [G2], n = 7, 20 days after mating), mid-pregnancy (group 3 [G3], n = 7, 24 days after mating), late pregnancy (group 4 [G4], n = 7, 30-45 days after mating), and oocyte positive groups (group 5 [G5], n = 7, 7 days after induction of ovulation with GnRH analog). Relative mRNA levels were determined by real-time polymerase chain reaction. As housekeeping gene, glyceraldehyde-3-phosphate dehydrogenase was used. The relative gene expression of HIF1A in G5 was found to be significantly higher than that of other groups (G1, G2, G3, and G4) (P pregnancy and oocyte groups. The expression of HIF3A did not change significantly in any group investigated. These observations suggest that HIFs and VEGF may play a role in the establishment and development of pregnancy.

  3. Receptor Signaling Directs Global Recruitment of Pre-existing Transcription Factors to Inducible Elements

    Science.gov (United States)

    Cockerill, Peter N.

    2016-01-01

    Gene expression programs are largely regulated by the tissue-specific expression of lineage-defining transcription factors or by the inducible expression of transcription factors in response to specific stimuli. Here I will review our own work over the last 20 years to show how specific activation signals also lead to the wide-spread re-distribution of pre-existing constitutive transcription factors to sites undergoing chromatin reorganization. I will summarize studies showing that activation of kinase signaling pathways creates open chromatin regions that recruit pre-existing factors which were previously unable to bind to closed chromatin. As models I will draw upon genes activated or primed by receptor signaling in memory T cells, and genes activated by cytokine receptor mutations in acute myeloid leukemia. I also summarize a hit-and-run model of stable epigenetic reprograming in memory T cells, mediated by transient Activator Protein 1 (AP-1) binding, which enables the accelerated activation of inducible enhancers. PMID:28018147

  4. Apigenin ameliorates hypertension-induced cardiac hypertrophy and down-regulates cardiac hypoxia inducible factor-lα in rats.

    Science.gov (United States)

    Zhu, Zeng-Yan; Gao, Tian; Huang, Yan; Xue, Jie; Xie, Mei-Lin

    2016-04-01

    Apigenin is a natural flavonoid compound that can inhibit hypoxia-inducible factor (HIF)-1α expression in cultured tumor cells under hypoxic conditions. Hypertension-induced cardiac hypertrophy is always accompanied by abnormal myocardial glucolipid metabolism due to an increase of HIF-1α. However, whether or not apigenin may ameliorate the cardiac hypertrophy and abnormal myocardial glucolipid metabolism remains unknown. This study aimed to examine the effects of apigenin. Rats with cardiac hypertrophy induced by renovascular hypertension were treated with apigenin 50-100 mg kg(-1) (the doses can be achieved by pharmacological or dietary supplementation for an adult person) by gavage for 4 weeks. The results showed that after treatment with apigenin, the blood pressure, heart weight, heart weight index, cardiomyocyte cross-sectional area, serum angiotensin II, and serum and myocardial free fatty acids were reduced. It is important to note that apigenin decreased the expression level of myocardial HIF-1α protein. Moreover, apigenin simultaneously increased the expression levels of myocardial peroxisome proliferator-activated receptor (PPAR) α, carnitine palmitoyltransferase (CPT)-1, and pyruvate dehydrogenase kinase (PDK)-4 proteins and decreased the expression levels of myocardial PPARγ, glycerol-3-phosphate acyltransferase genes (GPAT), and glucose transporter (GLUT)-4 proteins. These findings demonstrated that apigenin could improve hypertensive cardiac hypertrophy and abnormal myocardial glucolipid metabolism in rats, and its mechanisms might be associated with the down-regulation of myocardial HIF-1α expression and, subsequently increasing the expressions of myocardial PPARα and its target genes CPT-1 and PDK-4, and decreasing the expressions of myocardial PPARγ and its target genes GPAT and GLUT-4.

  5. Role of hypoxia inducing factor-1β in alcohol-induced autophagy, steatosis and liver injury in mice.

    Directory of Open Access Journals (Sweden)

    Hong-Min Ni

    Full Text Available Chronic alcohol causes liver hypoxia and steatosis, which eventually develops into alcoholic liver disease (ALD. While it has been known that alcohol consumption activates hepatic hypoxia inducing factor-1α (HIF-1α, conflicting results regarding the role of HIF-1α in alcohol-induced liver injury and steatosis in mice have been reported. In the present study, we aimed to use hepatocyte-specific HIF-1β knockout mice to eliminate the possible compensatory effects of the single knockout of the 1α subunit of HIF to study the role of HIFs in ALD. C57BL/6 wild type mice were treated with acute ethanol to mimic human binge drinking. Matched wild-type and hepatocyte specific HIF-1β knockout mice were also subjected to a recently established Gao-binge alcohol model to mimic chronic plus binge conditions, which is quite common in human alcoholics. We found that acute alcohol treatment increased BNIP3 and BNIP3L/NIX expression in primary cultured hepatocytes and in mouse livers, suggesting that HIF may be activated in these models. We further found that hepatocyte-specific HIF-1β knockout mice developed less steatosis and liver injury following the Gao-binge model or acute ethanol treatment compared with their matched wild type mice. Mechanistically, protection against Gao-binge treatment-induced steatosis and liver injury was likely associated with increased FoxO3a activation and subsequent induction of autophagy in hepatocyte-specific HIF-1β knockout mice.

  6. The role of nerve growth factor inducible protein B in the pathogenesis of levodopa-induced dyskinesias

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To study the role of the expression of nerve growth factor inducible protein B gene (NGFI-B) in striatum in the pathogenesis of levodopa-induced dyskinesias (LID). Methods: The rat model of LID was treated with SCH 23390( 1 mg/kg ip,a dopamine D1 antagonist) and haloperidol (1 mg/kg ip, a dopamine D2 antagonist) respectively. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to measure the expression of NGFI-B mRNA in striatum and the behavior changes were observed. Results: After treatment with SCH23390, abnormal involuntary movement (AIM) in LID rats was decreased ( P <0.05) and the expression of NGFI-B mRNA in striatum did not change significantly. After treatment with haloperidol, the changes of AIM in LID rats were not significant and the expression of NGFI-B mRNA was increased significantly( P < 0.01). Conclusion: LID is associated with over-expression of NGFI-B in striatum. Abnormal activity in the direct pathway and the basal ganglia circuit could be involved in the occurrence of LID.

  7. Sphingosine-1-phosphate mediates epidermal growth factor-induced muscle satellite cell activation

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp; Ohashi, Kazuya; Wada, Eiji; Yuasa, Yuki; Shiozuka, Masataka; Nonomura, Yoshiaki; Matsuda, Ryoichi

    2014-08-01

    Skeletal muscle can regenerate repeatedly due to the presence of resident stem cells, called satellite cells. Because satellite cells are usually quiescent, they must be activated before participating in muscle regeneration in response to stimuli such as injury, overloading, and stretch. Although satellite cell activation is a crucial step in muscle regeneration, little is known of the molecular mechanisms controlling this process. Recent work showed that the bioactive lipid sphingosine-1-phosphate (S1P) plays crucial roles in the activation, proliferation, and differentiation of muscle satellite cells. We investigated the role of growth factors in S1P-mediated satellite cell activation. We found that epidermal growth factor (EGF) in combination with insulin induced proliferation of quiescent undifferentiated mouse myoblast C2C12 cells, which are also known as reserve cells, in serum-free conditions. Sphingosine kinase activity increased when reserve cells were stimulated with EGF. Treatment of reserve cells with the D-erythro-N,N-dimethylsphingosine, Sphingosine Kinase Inhibitor, or siRNA duplexes specific for sphingosine kinase 1, suppressed EGF-induced C2C12 activation. We also present the evidence showing the S1P receptor S1P2 is involved in EGF-induced reserve cell activation. Moreover, we demonstrated a combination of insulin and EGF promoted activation of satellite cells on single myofibers in a manner dependent on SPHK and S1P2. Taken together, our observations show that EGF-induced satellite cell activation is mediated by S1P and its receptor. - Highlights: • EGF in combination with insulin induces proliferation of quiescent C2C12 cells. • Sphingosine kinase activity increases when reserve cells are stimulated with EGF. • EGF-induced activation of reserve cells is dependent on sphingosine kinase and ERK. • The S1P receptor S1P2 is involved in EGF-induced reserve cell activation. • EGF-induced reserve cell activation is mediated by S1P and its

  8. Improving poor fill factors for solar cells via light-induced plating

    Institute of Scientific and Technical Information of China (English)

    Xing Zhao; Jia Rui; Ding Wuchang; Meng Yanlong; Jin Zhi; Liu Xinyu

    2012-01-01

    Silicon solar cells are prepared following the conventional fabrication processes,except for the metallization firing process.The cells are divided into two groups with higher and lower fill factors,respectively.After light-induced plating (LIP),the fill factors of the solar cells in both groups with different initial values reach the same level.Scanning electron microscope (SEM) images are taken under the bulk silver electrodes,which prove that the improvement for cells with a poor factor after LIP should benefit from sufficient exploitation of the high density silver crystals formed during the firing process.Moreover,the application of LIP to cells with poor electrode contact performance,such as nanowire cells and radial junction solar cells,is proposed.

  9. Expression of hypoxia-inducible factor 1α in human normal, benign, and malignant prostate tissue

    Institute of Scientific and Technical Information of China (English)

    都镇先; 藤山千里; 陈永昕; 真崎善二郎

    2003-01-01

    Objective To investigate hypoxia-inducible factor 1α (HIF-1α) protein expression in normal prostates (NP), benign prostatic glandular hyperplasia (BPH), and prostate adenocarcinoma (Pca).Methods HIF-1α protein expression was determined by immunohistochemistry in formalin-fixed and paraffin-embedded specimens obtained from 13 cases of NP, 28 cases of BPH, and 34 cases of Pca. In cases of Pca, the relationship between HIF-1α protein expression and certain clinicopathological factors, such as clinicopathologic stage and Gleason score, was evaluated.Results NP manifested no immunoreactivity, whereas Pca and BPH showed significantly increased HIF-1α protein expression. A significantly higher expression was observed in Pca specimens compared with BPH samples. In Pca, no significant relationship between HIF-1α protein expression and clinicopathological factors was found.Conclusion Our findings of increased HIF-1α protein expression in BPH and Pca specimens suggests the potential role of this protein in BPH and Pca.

  10. Coagulation-induced shedding of platelet glycoprotein VI mediated by factor Xa.

    Science.gov (United States)

    Al-Tamimi, Mohammad; Grigoriadis, George; Tran, Huy; Paul, Eldho; Servadei, Patricia; Berndt, Michael C; Gardiner, Elizabeth E; Andrews, Robert K

    2011-04-01

    This study evaluated shedding of the platelet collagen receptor, glycoprotein VI (GPVI) in human plasma. Collagen or other ligands induce metalloproteinase-mediated GPVI ectodomain shedding, generating approximately 55-kDa soluble GPVI (sGPVI) and approximately 10-kDa platelet-associated fragments. In the absence of GPVI ligands, coagulation of platelet-rich plasma from healthy persons induced GPVI shedding, independent of added tissue factor, but inhibitable by metalloproteinase inhibitor, GM6001. Factor Xa (FXa) common to intrinsic and tissue factor-mediated coagulation pathways was critical for sGPVI release because (1) shedding was strongly blocked by the FXa-selective inhibitor rivaroxaban but not FIIa (thrombin) inhibitors dabigatran or hirudin; (2) Russell viper venom that directly activates FX generated sGPVI, with complete inhibition by enoxaparin (inhibits FXa and FIIa) but not hirudin; (3) impaired GPVI shedding during coagulation of washed platelets resuspended in FX-depleted plasma was restored by adding purified FX; and (4) purified FXa induced GM6001-inhibitable GPVI shedding from washed platelets. In 29 patients with disseminated intravascular coagulation, mean plasma sGPVI was 53.9 ng/mL (95% confidence interval, 39.9-72.8 ng/mL) compared with 12.5 ng/mL (95% confidence interval, 9.0-17.3 ng/mL) in thrombocytopenic controls (n = 36, P coagulation-induced GPVI shedding via FXa down-regulates GPVI under procoagulant conditions. FXa inhibitors have an unexpected role in preventing GPVI down-regulation.

  11. Therapeutic treatment with a novel hypoxia-inducible factor hydroxylase inhibitor (TRC160334 ameliorates murine colitis

    Directory of Open Access Journals (Sweden)

    Gupta R

    2014-01-01

    Full Text Available Ram Gupta,1 Anita R Chaudhary,2 Binita N Shah,1 Avinash V Jadhav,3 Shitalkumar P Zambad,1 Ramesh Chandra Gupta,4 Shailesh Deshpande,4 Vijay Chauthaiwale,4 Chaitanya Dutt4 1Department of Pharmacology, 2Cellular and Molecular Biology, 3Preclinical Safety Evaluation, 4Discovery, Torrent Research Centre, Torrent Pharmaceuticals Ltd, Gandhinagar, Gujarat, India Background and aim: Mucosal healing in inflammatory bowel disease (IBD can be achieved by improvement of intestinal barrier protection. Activation of hypoxia-inducible factor (HIF has been identified as a critical factor for barrier protection during mucosal insult and is linked with improvement in symptoms of colitis. Although prophylactic efficacy of HIF hydroxylase inhibitors in murine colitis have been established, its therapeutic efficacy in clinically relevant therapeutic settings have not been established. In the present study we aim to establish therapeutic efficacy of TRC160334, a novel HIF hydroxylase inhibitor, in animal models of colitis. Methods: The efficacy of TRC160334 was evaluated in two different mouse models of colitis by oral route. A prophylactic efficacy study was performed in a 2,4,6-trinitrobenzene sulfonic acid-induced mouse model of colitis representing human Crohn's disease pathology. Additionally, a therapeutic efficacy study was performed in a dextran sulfate sodium-induced mouse model of colitis, a model simulating human ulcerative colitis. Results: TRC160334 treatment resulted in significant improvement in disease end points in both models of colitis. TRC160334 treatment resulted into cytoprotective heatshock protein 70 induction in inflamed colon. TRC160334 successfully attenuated the rate of fall in body weight, disease activity index, and macroscopic and microscopic scores of colonic damage leading to overall improvement in study outcome. Conclusion: Our findings are the first to demonstrate that therapeutic intervention with a HIF hydroxylase inhibitor

  12. Pathophysiology of early trauma-induced coagulopathy: emerging evidence for hemodilution and coagulation factor depletion.

    Science.gov (United States)

    Shaz, Beth H; Winkler, Anne M; James, Adelbert B; Hillyer, Christopher D; MacLeod, Jana B

    2011-06-01

    Trauma patients present with a coagulopathy, termed early trauma-induced coagulopathy (ETIC), that is associated with increased mortality. This study investigated hemostatic changes responsible for ETIC. Case-control study of trauma patients with and without ETIC, defined as prolonged prothrombin time (PT), was performed from prospective cohort of consecutive trauma patients who presented to Level I trauma center. Univariate and multivariate analyses were performed. The case-control study group (n = 91) was 80% male, with mean age of 37 years, 17% penetrating trauma and 7% mortality rate. Patients with ETIC demonstrated decreased common and extrinsic pathway factor activities (factors V and VII) and decreased inhibition of the coagulation cascade (antithrombin and protein C activities) when compared with the matched control patients without ETIC. Both cohorts had evidence of increased thrombin and fibrin generation (prothrombin fragment 1.2 levels, thrombin-antithrombin complexes, and soluble fibrin monomer), increased fibrinolysis (d-dimer levels), and increased inhibition of fibrinolysis (plasminogen activator inhibitor-1 activity) above normal reference values. Patients with versus without ETIC had increased mortality and received increased amount of blood products. ETIC following injury is associated with decreased factor activities without significant differences in thrombin and fibrin generation, suggesting that despite these perturbations in the coagulation cascade, patients displayed a balanced hemostatic response to injury. The lower factor activities are likely secondary to increased hemodilution and coagulation factor depletion. Thus, decreasing the amount of crystalloid infused in the early phases following trauma and administration of coagulation factors may prevent the development.

  13. Oxidative stress effect on progesterone-induced blocking factor (PIBF) binding to PIBF-receptor in lymphocytes.

    Science.gov (United States)

    de la Haba, Carlos; Palacio, José R; Palkovics, Tamas; Szekeres-Barthó, Júlia; Morros, Antoni; Martínez, Paz

    2014-01-01

    Receptor-ligand binding is an essential interaction for biological function. Oxidative stress can modify receptors and/or membrane lipid dynamics, thus altering cell physiological functions. The aim of this study is to analyze how oxidative stress may alter receptor-ligand binding and lipid domain distribution in the case of progesterone-induced blocking factor/progesterone-induced blocking factor-receptor. For membrane fluidity regionalization analysis of MEC-1 lymphocytes, two-photon microscopy was used in individual living cells. Lymphocytes were also double stained with AlexaFluor647/progesterone-induced blocking factor and Laurdan to evaluate -induced blocking factor/progesterone-induced blocking factor-receptor distribution in the different membrane domains, under oxidative stress. A new procedure has been developed which quantitatively analyzes the regionalization of a membrane receptor among the lipid domains of different fluidity in the plasma membrane. We have been able to establish a new tool which detects and evaluates lipid raft clustering from two-photon microscopy images of individual living cells. We show that binding of progesterone-induced blocking factor to progesterone-induced blocking factor-receptor causes a rigidification of plasma membrane which is related to an increase of lipid raft clustering. However, this clustering is inhibited under oxidative stress conditions. In conclusion, oxidative stress decreases membrane fluidity, impairs receptor-ligand binding and reduces lipid raft clustering.

  14. Expression of hypoxia-inducible factor 1 alpha and its downstream targets in fibroepithelial tumors of the breast

    NARCIS (Netherlands)

    Kuijper, Arno; Groep, P. van der; Wall, E. van der; Diest, P.J. van

    2005-01-01

    INTRODUCTION Hypoxia-inducible factor 1 (HIF-1) alpha and its downstream targets carbonic anhydrase IX (CAIX) and vascular endothelial growth factor (VEGF) are key factors in the survival of proliferating tumor cells in a hypoxic microenvironment. We studied the expression and prognostic relevance o

  15. Systematic in vitro and in vivo characterization of Leukemia-inhibiting factor- and Fibroblast growth factor-derived porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Secher, Jan Ole Bertelsen; Ceylan, Ahmet; Mazzoni, Gianluca;

    2017-01-01

    Derivation and stable maintenance of porcine induced pluripotent stem cells (piPSCs) is challenging. We herein systematically analyzed two piPSC lines, derived by lentiviral transduction and cultured under either leukemia inhibitory factor (LIF) or fibroblast growth factor (FGF) conditions, to shed...

  16. Systematic in vitro and in vivo characterization of Leukemia-inhibiting factor- and Fibroblast growth factor-derived porcine induced pluripotent stem cells

    DEFF Research Database (Denmark)

    Secher, Jan O; Ceylan, Ahmet; Mazzoni, Gianluca

    2017-01-01

    Derivation and stable maintenance of porcine induced pluripotent stem cells (piPSCs) is challenging. We herein systematically analyzed two piPSC lines, derived by lentiviral transduction and cultured under either leukemia inhibitory factor (LIF) or fibroblast growth factor (FGF) conditions, to sh...

  17. Vascular endothelial growth factor and hypoxia-inducible factor-1α gene polymorphisms and coronary collateral formation in patients with coronary chronic total occlusions

    Directory of Open Access Journals (Sweden)

    Vincent Amoah

    2016-06-01

    Full Text Available Introduction: We evaluated the association between two single nucleotide polymorphisms of the vascular endothelial growth factor gene and one of the hypoxia-inducible factor-1α gene and the degree of coronary collateral formation in patients with a coronary chronic total occlusion. Methods: Totally, 98 patients with symptomatic coronary artery disease and a chronic total occlusion observed during coronary angiography were recruited. Genotyping of two vascular endothelial growth factor promoter single nucleotide polymorphisms (−152G>A and −165C>T and the C1772T single nucleotide polymorphism of hypoxia-inducible factor-1α were performed using polymerase chain reaction and restriction fragment length polymorphism analysis. The presence and extent of collateral vessel filling was scored by blinded observers using the Rentrop grade. Results: We found no association between the vascular endothelial growth factor −152G>A, −165C>T and hypoxia-inducible factor-1α −1772C>T with the presence and filling of coronary collateral vessels. A history of percutaneous coronary intervention and transient ischaemic attack/cerebrovascular accident were associated with the presence of enhanced collateral vessel formation following binary logistic regression analysis. Conclusion: The study findings suggest that coronary collateral formation is not associated with the tested polymorphic variants of vascular endothelial growth factor and hypoxia-inducible factor-1α in patients with symptomatic coronary artery disease and the presence of a chronic total occlusion.

  18. Generation of Induced Neuronal Cells by the Single Reprogramming Factor ASCL1

    Directory of Open Access Journals (Sweden)

    Soham Chanda

    2014-08-01

    Full Text Available Direct conversion of nonneural cells to functional neurons holds great promise for neurological disease modeling and regenerative medicine. We previously reported rapid reprogramming of mouse embryonic fibroblasts (MEFs into mature induced neuronal (iN cells by forced expression of three transcription factors: ASCL1, MYT1L, and BRN2. Here, we show that ASCL1 alone is sufficient to generate functional iN cells from mouse and human fibroblasts and embryonic stem cells, indicating that ASCL1 is the key driver of iN cell reprogramming in different cell contexts and that the role of MYT1L and BRN2 is primarily to enhance the neuronal maturation process. ASCL1-induced single-factor neurons (1F-iN expressed mature neuronal markers, exhibited typical passive and active intrinsic membrane properties, and formed functional pre- and postsynaptic structures. Surprisingly, ASCL1-induced iN cells were predominantly excitatory, demonstrating that ASCL1 is permissive but alone not deterministic for the inhibitory neuronal lineage.

  19. Heat shock factor 1 inducers from the bark of Eucommia ulmoides as cytoprotective agents.

    Science.gov (United States)

    Nam, Joo-Won; Kim, Seo-Young; Yoon, Taesook; Lee, Yoo Jin; Kil, Yun-Seo; Lee, Yun-Sil; Seo, Eun-Kyoung

    2013-07-01

    The barks of Eucommia ulmoides (Eucommiae Cortex, Eucommiaceae) have been used as a traditional medicine in Korea, Japan, and China to treat hypertension, reinforce the muscles and bones, and recover the damaged liver and kidney functions. Among these traditional uses, to establish the recovery effects on the damaged organs on the basis of phytochemistry, the barks of E. ulmoides have been investigated to afford three known phenolic compounds, coniferaldehyde glucoside (1), bartsioside (2), and feretoside (3), which were found in the family Eucommiaceae for the first time. The compounds 1-3 were evaluated for their inducible activities on the heat shock factor 1 (HSF1), and heat shock proteins (HSPs) 27 and 70, along with four compounds, geniposide (4), geniposidic acid (5), pinoresinol diglucoside (6), and liriodendrin (7), which were previously reported from E. ulmoides. Compounds 1-7 increased expression of HSF1 by a factor of 1.214, 1.144, 1.153, 1.114, 1.159, 1.041, and 1.167 at 3 μM, respectively. Coniferaldehyde glucoside (1) showed the most effective increase of HSF1 and induced successive expressions of HSP27 and HSP70 in a dose-dependent manner without cellular cytotoxicity, suggesting a possible application as a HSP inducer to act as cytoprotective agent.

  20. Glial cell line-derived neurotrophic factor protects against high-fat diet-induced obesity.

    Science.gov (United States)

    Mwangi, Simon Musyoka; Nezami, Behtash Ghazi; Obukwelu, Blessing; Anitha, Mallappa; Marri, Smitha; Fu, Ping; Epperson, Monica F; Le, Ngoc-Anh; Shanmugam, Malathy; Sitaraman, Shanthi V; Tseng, Yu-Hua; Anania, Frank A; Srinivasan, Shanthi

    2014-03-01

    Obesity is a growing epidemic with limited effective treatments. The neurotrophic factor glial cell line-derived neurotrophic factor (GDNF) was recently shown to enhance β-cell mass and improve glucose control in rodents. Its role in obesity is, however, not well characterized. In this study, we investigated the ability of GDNF to protect against high-fat diet (HFD)-induced obesity. GDNF transgenic (Tg) mice that overexpress GDNF under the control of the glial fibrillary acidic protein promoter and wild-type (WT) littermates were maintained on a HFD or regular rodent diet for 11 wk, and weight gain, energy expenditure, and insulin sensitivity were monitored. Differentiated mouse brown adipocytes and 3T3-L1 white adipocytes were used to study the effects of GDNF in vitro. Tg mice resisted the HFD-induced weight gain, insulin resistance, dyslipidemia, hyperleptinemia, and hepatic steatosis seen in WT mice despite similar food intake and activity levels. They exhibited significantly (PGDNF enhanced β-adrenergic-mediated cAMP release in brown adipocytes and suppressed lipid accumulation in differentiated 3T3L-1 cells through a p38MAPK signaling pathway. Our studies demonstrate a novel role for GDNF in the regulation of high-fat diet-induced obesity through increased energy expenditure. They show that GDNF and its receptor agonists may be potential targets for the treatment or prevention of obesity.

  1. Shape changes induced by biologically active peptides and nerve growth factor in blood platelets of rabbits.

    Science.gov (United States)

    Gudat, F; Laubscher, A; Otten, U; Pletscher, A

    1981-11-01

    1 Nerve growth factor (NGF), substance P (SP) and thymopoietin all caused shape change reactions of rapid onset in rabbit platelets. NGF had the highest maximal effect, and SP the lowest EC50 (concentration causing half maximal shape change). The action of SP was reversible within 5 min, whereas that of NGF lasted for at least 1 h. A series of other peptides were inactive. 2 After preincubation of platelets with SP, a second application of SP no longer caused a shape change reaction, whereas the effect of NGF was not influenced. 3 An oxidized NGF-derivative without biological activity did not cause a shape change reaction, neither did epidermal growth factor. 4 Prostaglandin E1 (PGE1) and pretreatment of the platelets with 3% butanol, which counteract the shape changes caused by 5-hydroxytryptamine (5-HT) and adenosine 3',5'-diphosphate, also antagonized those induced by NGF and SP. Neither heparin nor methysergide, an antagonist of 5-HT-receptors, influenced the shape change induced by NGF or SP. The action of NGF was also antagonized by a specific antibody to NGF. 5 Thymopoietin, like the basic polypeptide polyornithine (mol. wt. 40,000) was not antagonized by PGE1 and butanol. Heparin, which counteracted the effect of polyornithine, did not influence that of thymopoietin. 6 In conclusion, different modes of action are involved in the shape change of blood platelets induced by polypeptides and proteins. SP and NGF may act by stimulating specific membrane receptors.

  2. Imipramine induces brain-derived neurotrophic factor mRNA expression in cultured astrocytes.

    Science.gov (United States)

    Takano, Katsura; Yamasaki, Hiroshi; Kawabe, Kenji; Moriyama, Mitsuaki; Nakamura, Yoichi

    2012-01-01

    Depression is one of the most prevalent and livelihood-threatening forms of mental illnesses and the neural circuitry underlying depression remains incompletely understood. Recent studies suggest that the neuronal plasticity involved with brain-derived neurotrophic factor (BDNF) plays an important role in the recovery from depression. Some antidepressants are reported to induce BDNF expression in vivo; however, the mechanisms have been considered solely in neurons and not fully elucidated. In the present study, we evaluated the effects of imipramine, a classic tricyclic antidepressant drug, on BDNF expression in cultured rat brain astrocytes. Imipramine dose-dependently increased BDNF mRNA expression in astrocytes. The imipramine-induced BDNF increase was suppressed with inhibitors for protein kinase A (PKA) or MEK/ERK. Moreover, imipramine exposure activated transcription factor cAMP response element binding protein (CREB) in a dose-dependent manner. These results suggested that imipramine induced BDNF expression through CREB activation via PKA and/or ERK pathways. Imipramine treatment in depression might exert antidepressant action through BDNF production from astrocytes, and glial BDNF expression might be a target of developing novel antidepressants.

  3. Ovulation-inducing factor: a protein component of llama seminal plasma

    Directory of Open Access Journals (Sweden)

    Huanca Wilfredo

    2010-05-01

    Full Text Available Abstract Background Previously, we documented the presence of ovulation-inducing factor (OIF in the seminal plasma of llamas and alpacas. The purpose of the study was to define the biochemical characteristics of the molecule(s in seminal plasma responsible for inducing ovulation. Methods In Experiment 1, llama seminal plasma was centrifuged using filtration devices with nominal molecular mass cut-offs of 30, 10 and 5 kDa. Female llamas (n = 9 per group were treated i.m. with whole seminal plasma (positive control, phosphate-buffered saline (negative control, or the fraction of seminal plasma equal or higher than 30 kDa, 10 to 30 kDa, 5 to 10 kDa, or Results In Experiment 1, all llamas in the equal or higher than 30 kDa and positive control groups ovulated (9/9 in each, but none ovulated in the other groups (P Conclusions We conclude that ovulation-inducing factor (OIF in llama seminal plasma is a protein molecule that is resistant to heat and enzymatic digestion with proteinase K, and has a molecular mass of approximately equal or higher than 30 kDa.

  4. Factors related to induced abortion among young women in Edo State, Nigeria.

    Science.gov (United States)

    Murray, Nancy; Winfrey, William; Chatterji, Minki; Moreland, Scott; Dougherty, Leanne; Okonofua, Friday

    2006-12-01

    Sub-Saharan Africa has the highest death rate from induced abortion in the world, and young women in southern Nigeria are particularly likely to terminate their pregnancies. This study assesses the prevalence of and factors associated with induced abortion among 602 young women aged 15-24 who were surveyed in Edo State, Nigeria, in 2002. We find that 41 percent of all pregnancies reported by the young women surveyed were terminated, and we estimate the age-specific abortion rate for 15-19-year-olds in Edo State at 49 abortions per 1,000 women, which is slightly higher than previous local estimates and nearly double the countrywide estimate for women aged 15-49. We construct explanatory multivariate models to predict the likelihood that a young woman has experienced sexual intercourse, has become pregnant, and has undergone an induced abortion, controlling for important demographic and risk-behavior factors. Young women unmarried at the time of the interview are found to be significantly more likely than married women to have had an abortion. Young women who have experienced transactional or forced sex are also significantly more likely to report ever having had an abortion, as are young women who have experienced more than one pregnancy. We conclude with suggestions for modifying the content and target populations of behavioral change messages and programs in the area.

  5. Factors associated with induced abortion at selected hospitals in the Volta Region, Ghana

    Directory of Open Access Journals (Sweden)

    Klutsey EE

    2014-08-01

    Full Text Available Ellen Eyi Klutsey,1 Augustine Ankomah2 1School of Nursing and Midwifery, University of Health and Allied Sciences, Ho, Volta Region, 2Department of Population, Family and Reproductive Health School of Public Health, University of Ghana, Legon, Accra, Ghana Background: Induced abortion rates remained persistently high in the Volta Region of Ghana in the 5 years from 2006 to 2011. Some hospitals, both rural and urban, report induced abortion-related complications as one of the top ten conditions in hospital admissions. This study explored demographic and other factors associated with induced abortion, and also assessed awareness of abortion-related complications among women of reproductive age in the Volta Region. Methods: A quantitative, hospital-based, unmatched case-control study was performed. The Volta Region was stratified into two health administration zones, ie, north and south. For each zone, hospitals were stratified into government and private hospitals. Employing simple random sampling, one private and three government hospitals were selected from each zone. This study is therefore based on eight hospitals, ie, six government hospitals and two private hospitals. Results: Marital status, employment status, number of total pregnancies, and knowledge about contraception were found to be associated with induced abortion. Multiple logistic regression showed a 4% reduction in the odds of induced abortion in married women compared with women who were single (odds ratio [OR] 0.11, 95% confidence interval [CI] 0.07–0.22. Unemployed women of reproductive age were found to be 0.35 times less likely to seek induced abortion compared with their employed counterparts (OR 0.35, CI 0.19–0.65. It was also observed that women with their second pregnancies were 3.8 times more likely to seek induced abortion and women with more than two pregnancies were 6.6 times more likely to do so (OR 3.81, CI 1.94–7.49 and OR 6.58, CI 2.58–16.79, respectively

  6. Nucleoside drugs induce cellular differentiation by caspase-dependent degradation of stem cell factors.

    Directory of Open Access Journals (Sweden)

    Tanja Musch

    Full Text Available BACKGROUND: Stem cell characteristics are an important feature of human cancer cells and play a major role in the therapy resistance of tumours. Strategies to target cancer stem cells are thus of major importance for cancer therapy. Differentiation therapy by nucleoside drugs represents an attractive approach for the elimination of cancer stem cells. However, even if it is generally assumed that the activity of these drugs is mediated by their ability to modulate epigenetic pathways, their precise mode of action remains to be established. We therefore analysed the potential of three nucleoside analogues to induce differentiation of the embryonic cancer stem cell line NTERA 2 D1 and compared their effect to the natural ligand retinoic acid. METHODOLOGY/PRINCIPAL FINDINGS: All nucleoside analogues analyzed, but not retinoic acid, triggered proteolytic degradation of the Polycomb group protein EZH2. Two of them, 3-Deazaneplanocin A (DZNep and 2'-deoxy-5-azacytidine (decitabine, also induced a decrease in global DNA methylation. Nevertheless, only decitabine and 1beta-arabinofuranosylcytosine (cytarabine effectively triggered neuronal differentiation of NT2 cells. We show that drug-induced differentiation, in contrast to retinoic acid induction, is caused by caspase activation, which mediates depletion of the stem cell factors NANOG and OCT4. Consistent with this observation, protein degradation and differentiation could be counteracted by co-treatment with caspase inhibitors or by depletion of CASPASE-3 and CASPASE-7 through dsRNA interference. In agreement with this, OCT4 was found to be a direct in-vitro-target of CASPASE-7. CONCLUSIONS/SIGNIFICANCE: We show that drug-induced differentiation is not a consequence of pharmacologic epigenetic modulation, but is induced by the degradation of stem-cell-specific proteins by caspases. Our results thus uncover a novel pathway that induces differentiation of embryonic cancer stem cells and is triggered by

  7. Adenovirus-mediated hypoxia-inducible factor-1 alpha gene transfer induces angiogenesis and neurogenesis following cerebral ischemia in rats

    Institute of Scientific and Technical Information of China (English)

    Wanfu Wu; Xiu Chen; Zhen Yu; Changlin Hu; Wenqin Cai

    2008-01-01

    BACKGROUND: Hypoxia-inducible factor-1 (HIF-1) accumulates under conditions of hypoxia. HIF-1α target genes have pleiotropic effects on neurogenesis, neuroprotection and angiogenesis in the brain.OBJECTIVE: To investigate whether a recombinant adenovirus carrying HIF-1α can increase the expression of HIF-1α in vivo and thus promote angiogenesis and neurogenesis in a rat model of focal cerebral ischemia.DESIGN, TIME AND SETTING: The randomized, controlled experiment was performed at the Department of Neurobiology, Third Military Medical University of Chinese PLA from September 2006 to October 2007.MATERIALS: 68 healthy adult male Sprague-Dawley (SD) rats, weighing 230-250 g, were used. HIF-1α antibody was purchased from Wuhan Boster Company. Vascular endothelial growth factor (VEGF) antibody was purchased from Santa Cruz Biotech Company.METHODS: All 68 rats were induced with a transient middle cerebral artery occlusion (MCAO), according to the method of intra-luminal vascular occlusion. 54 rats, in which MCAO was successfully induced, were randomly divided into adenovirus (Ad) group and recombinant adenovirus with HIF-1αgene (Ad-HIF-1α) group (27 rats for each group). Rats were injected with 10 μL Ad (Ad group) or Ad-HIF-1α (Ad-HIF-1α group) into the lateral ventricle, 1 day after MCAO induction. MAIN OUTCOME MEASURES: Reverse transcription polymerase chain reaction was used to measure the expression of HIF-1α and of VEGF. Immunohistochemistry was used to detect the localization of HIF-1α, VEGF and factor Ⅷ in ischemic penumbra. Rat newborn nerve cells were labeled with 5-bromodeoxyuridine (BrdU) after ischemia. BrdU/neurofilament 200 (NF200) and BrdU/glial fibrillary acidic protein (GFAP) double labeled immunofluorescent histochemistry was used to identify the differentiation of newborn cells. Neurological function was evaluated using the modified neurological severity score (NSS).RESULTS: Compared with Ad, Ad-HIF-1αenhanced the expression of HIF-1

  8. Cisplatin induces cytotoxicity through the mitogen-activated protein kinase pathways and activating transcription factor 3.

    Science.gov (United States)

    St Germain, Carly; Niknejad, Nima; Ma, Laurie; Garbuio, Kyla; Hai, Tsonwin; Dimitroulakos, Jim

    2010-07-01

    The mechanisms underlying the proapoptotic effect of the chemotherapeutic agent, cisplatin, are largely undefined. Understanding the mechanisms regulating cisplatin cytotoxicity may uncover strategies to enhance the efficacy of this important therapeutic agent. This study evaluates the role of activating transcription factor 3 (ATF3) as a mediator of cisplatin-induced cytotoxicity. Cytotoxic doses of cisplatin and carboplatin treatments consistently induced ATF3 expression in five tumor-derived cell lines. Characterization of this induction revealed a p53, BRCA1, and integrated stress response-independent mechanism, all previously implicated in stress-mediated ATF3 induction. Analysis of mitogen-activated protein kinase (MAPK) pathway involvement in ATF3 induction by cisplatin revealed a MAPK-dependent mechanism. Cisplatin treatment combined with specific inhibitors to each MAPK pathway (c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p38) resulted in decreased ATF3 induction at the protein level. MAPK pathway inhibition led to decreased ATF3 messenger RNA expression and reduced cytotoxic effects of cisplatin as measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cell viability assay. In A549 lung carcinoma cells, targeting ATF3 with specific small hairpin RNA also attenuated the cytotoxic effects of cisplatin. Similarly, ATF3-/- murine embryonic fibroblasts (MEFs) were shown to be less sensitive to cisplatin-induced cytotoxicity compared with ATF3+/+ MEFs. This study identifies cisplatin as a MAPK pathway-dependent inducer of ATF3, whose expression influences cisplatin's cytotoxic effects.

  9. Heat shock transcription factors regulate heat induced cell death in a rat histiocytoma

    Indian Academy of Sciences (India)

    Kolla V, P Rasad; Aftab Taiyab; D Jyothi; Usha K Srinivas; Amere S Sreedhar

    2007-04-01

    Heat shock response is associated with the synthesis of heat shock proteins (Hsps) which is strictly regulated by different members of heat shock transcription factors (HSFs). We previously reported that a rat histiocytoma, BC-8 failed to synthesize Hsps when subjected to typical heat shock conditions (42°C, 60 min). The lack of Hsp synthesis in these cells was due to a failure in HSF1 DNA binding activity. In the present study we report that BC-8 tumor cells when subjected to heat shock at higher temperature (43°C, 60 min) or incubation for longer time at 42°C, exhibited necrosis characteristics; however, under mild heat shock (42°C, 30 min) conditions cells showed activation of autophagy. Mild heat shock treatment induced proteolysis of HSF1, and under similar conditions we observed an increase in HSF2 expression followed by its enhanced DNA binding activity. Inhibiting HSF1 proteolysis by reversible proteasome inhibition failed to inhibit heat shock induced autophagy. Compromising HSF2 expression but not HSF1 resulted in the inhibition of autophagy, suggesting HSF2 dependent activation of autophagy. We are reporting for the first time that HSF2 is heat inducible and functions in heat shock induced autophagic cell death in BC-8 tumor cells.

  10. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5.

    Science.gov (United States)

    Buxadé, Maria; Lunazzi, Giulia; Minguillón, Jordi; Iborra, Salvador; Berga-Bolaños, Rosa; Del Val, Margarita; Aramburu, José; López-Rodríguez, Cristina

    2012-02-13

    Toll-like receptors (TLRs) engage networks of transcriptional regulators to induce genes essential for antimicrobial immunity. We report that NFAT5, previously characterized as an osmostress responsive factor, regulates the expression of multiple TLR-induced genes in macrophages independently of osmotic stress. NFAT5 was essential for the induction of the key antimicrobial gene Nos2 (inducible nitric oxide synthase [iNOS]) in response to low and high doses of TLR agonists but is required for Tnf and Il6 mainly under mild stimulatory conditions, indicating that NFAT5 could regulate specific gene patterns depending on pathogen burden intensity. NFAT5 exhibited two modes of association with target genes, as it was constitutively bound to Tnf and other genes regardless of TLR stimulation, whereas its recruitment to Nos2 or Il6 required TLR activation. Further analysis revealed that TLR-induced recruitment of NFAT5 to Nos2 was dependent on inhibitor of κB kinase (IKK) β activity and de novo protein synthesis, and was sensitive to histone deacetylases. In vivo, NFAT5 was necessary for effective immunity against Leishmania major, a parasite whose clearance requires TLRs and iNOS expression in macrophages. These findings identify NFAT5 as a novel regulator of mammalian anti-pathogen responses.

  11. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Dixon Richard A

    2008-12-01

    Full Text Available Abstract Background Exposure of Medicago truncatula cell suspension cultures to pathogen or wound signals leads to accumulation of various classes of flavonoid and/or triterpene defense molecules, orchestrated via a complex signalling network in which transcription factors (TFs are essential components. Results In this study, we analyzed TFs responding to yeast elicitor (YE or methyl jasmonate (MJ. From 502 differentially expressed TFs, WRKY and AP2/EREBP gene families were over-represented among YE-induced genes whereas Basic Helix-Loop-Helix (bHLH family members were more over-represented among the MJ-induced genes. Jasmonate ZIM-domain (JAZ transcriptional regulators were highly induced by MJ treatment. To investigate potential involvement of WRKY TFs in signalling, we expressed four Medicago WRKY genes in tobacco. Levels of soluble and wall bound phenolic compounds and lignin were increased in all cases. WRKY W109669 also induced tobacco endo-1,3-β-glucanase (NtPR2 and enhanced the systemic defense response to tobacco mosaic virus in transgenic tobacco plants. Conclusion These results confirm that Medicago WRKY TFs have broad roles in orchestrating metabolic responses to biotic stress, and that they also represent potentially valuable reagents for engineering metabolic changes that impact pathogen resistance.

  12. Etk/Bmx transactivates vascular endothelial growth factor 2 and recruits phosphatidylinositol 3-kinase to mediate the tumor necrosis factor-induced angiogenic pathway.

    Science.gov (United States)

    Zhang, Rong; Xu, Yingqian; Ekman, Niklas; Wu, Zhenhua; Wu, Jiong; Alitalo, Kari; Min, Wang

    2003-12-19

    Tumor necrosis factor (TNF), via its receptor 2 (TNFR2), induces Etk (or Bmx) activation and Etk-dependent endothelial cell (EC) migration and tube formation. Because TNF receptor 2 lacks an intrinsic kinase activity, we examined the kinase(s) mediating TNF-induced Etk activation. TNF induces a coordinated phosphorylation of vascular endothelial growth factor (VEGF) receptor 2 (VEGFR2) and Etk, which is blocked by VEGFR2-specific inhibitors. In response to TNF, Etk and VEGFR2 form a complex resulting in a reciprocal activation between the two kinases. Subsequently, the downstream phosphatidylinositol 3-kinase (PI3K)-Akt signaling (but not signaling through phospholipase C-gamma) was initiated and directly led to TNF-induced EC migration, which was significantly inhibited by VEGFR2-, PI3K-, or Akt-specific inhibitors. Phosphorylation of VEGFR2 at Tyr-801 and Tyr-1175, the critical sites for VEGF-induced PI3K-Akt signaling, was not involved in TNF-mediated Akt activation. However, TNF induces phosphorylation of Etk at Tyr-566, directly mediating the recruitment of the p85 subunit of PI3K. Furthermore, TNF- but not VEGF-induced activation of VEGFR2, Akt, and EC migration are blunted in EC genetically deficient with Etk. Taken together, our data demonstrated that TNF induces transactivation between Etk and VEGFR2, and Etk directly activates PI3K-Akt angiogenic signaling independent of VEGF-induced VEGFR2-PI3K-Akt signaling pathway.

  13. Characterization of LPS-induced TNFα factor (LITAF) from orange-spotted grouper, Epinephelus coioides.

    Science.gov (United States)

    Cai, Jia; Huang, Youhua; Wei, Shina; Ouyang, Zhengliang; Huang, Xiaohong; Qin, Qiwei

    2013-12-01

    Lipopolysaccharide-induced TNFα factor (LITAF) is an important transcription factor that mediates cell apoptosis and inflammatory response. In the present study, we cloned and characterized a LITAF gene from orange-spotted grouper (Epinephelus coioides) (Ec-LITAF). Ec-LITAF encoded a predicted 142 amino acid protein which shared 74% identity to sablefish (Anoplopoma fimbria) LITAF homolog. Multiple amino acid alignment showed that Ec-LITAF contained a typical LITAF domain with two CXXC motifs. Phylogenetic analysis indicated that Ec-LITAF was closely related to that of sablefish. Ec-LITAF mRNA was widely expressed in different tissues and its expression level in spleen was up-regulated after Singapore grouper iridovirus (SGIV) infection. Subcellular localization analysis revealed that the distribution of Ec-LITAF showed diffuse and aggregated patterns in cytoplasm. Interestingly, the distribution of Ec-LITAF overlayed with a viral LITAF homolog (vLITAF) encoded by SGIV. Overexpression of Ec-LITAF in vitro up-regulated the expression of tumor necrosis factors (TNF1 and TNF2) and TNF receptors (TNFR1 and TNFR2), and the expression of itself initiated apoptosis in fish cells. In addition, overexpression of Ec-LITAF not only accelerated SGIV infection induced CPE and cell death, but also increased viral gene transcription. Taken together, our data suggested that Ec-LITAF might play crucial roles during SGIV replication.

  14. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    Science.gov (United States)

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  15. Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway?

    Directory of Open Access Journals (Sweden)

    Hemant Kumar

    2015-01-01

    Full Text Available Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1–1% O2, physioxia or physoxia (∼1–13%, and normoxia (∼20% are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia or excess oxygen (hyperoxia could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude and pathological conditions (e.g., inflammation, solid tumor formation, lung disease, or myocardial infarction. Hypoxia plays a key role in the pathophysiology of heart disease, cancers, stroke, and other causes of mortality. Hypoxia inducible factor(s (HIFs are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen tension. These transcription factors regulate cellular adaptation to hypoxia and protect cells by responding acutely and inducing production of endogenous metabolites and proteins to promptly regulate metabolic pathways. Here, we review the role of the HIF pathway as a metabolic adaptation pathway and how this pathway plays a role in cell survival. We emphasize the roles of the HIF pathway in physiological adaptation, cell death, pH regulation, and adaptation during exercise.

  16. Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway?

    Science.gov (United States)

    Kumar, Hemant; Choi, Dong-Kug

    2015-01-01

    Oxygen homeostasis reflects the constant body requirement to generate energy. Hypoxia (0.1-1% O2), physioxia or physoxia (∼1-13%), and normoxia (∼20%) are terms used to define oxygen concentration in the cellular environment. A decrease in oxygen (hypoxia) or excess oxygen (hyperoxia) could be deleterious for cellular adaptation and survival. Hypoxia can occur under both physiological (e.g., exercise, embryonic development, underwater diving, or high altitude) and pathological conditions (e.g., inflammation, solid tumor formation, lung disease, or myocardial infarction). Hypoxia plays a key role in the pathophysiology of heart disease, cancers, stroke, and other causes of mortality. Hypoxia inducible factor(s) (HIFs) are key oxygen sensors that mediate the ability of the cell to cope with decreased oxygen tension. These transcription factors regulate cellular adaptation to hypoxia and protect cells by responding acutely and inducing production of endogenous metabolites and proteins to promptly regulate metabolic pathways. Here, we review the role of the HIF pathway as a metabolic adaptation pathway and how this pathway plays a role in cell survival. We emphasize the roles of the HIF pathway in physiological adaptation, cell death, pH regulation, and adaptation during exercise.

  17. Upregulation of hypoxia-inducible factors in normal and psoriatic skin.

    Science.gov (United States)

    Rosenberger, Christian; Solovan, Caius; Rosenberger, Alina D; Jinping, Li; Treudler, Regina; Frei, Ulrich; Eckardt, Kai-Uwe; Brown, Lawrence F

    2007-10-01

    Angiogenesis induced by vascular endothelial growth factor (VEGF) plays an important role in psoriasis. Hypoxic adaptation is conferred through hypoxia-inducible transcription factors (HIFs). VEGF and its receptor Flt-1 are HIF target genes. Growth factors and inflammatory cytokines activate the phosphoinositol-3 kinase pathway, and via activated protein kinase B (phospho-Akt) augment HIF activity. Here, we demonstrate that the major oxygen-dependent HIF isoforms are strongly upregulated in psoriatic skin: HIF-1alpha mainly in the epidermis, in an expression pattern similar to VEGF mRNA; HIF-2alpha in both the epidermis and in capillary endothelial cells of the dermis. In contrast, normal human skin shows low expression of HIF-alpha proteins, with the exception of hair follicles, and glands, which strongly express HIF-1alpha. In normal human skin, phospho-Akt appeared in the basal epidermal layer, in hair follicles, and in dermal glands. In contrast, in psoriasis, phospho-Akt expression was low in the epidermis, but markedly enhanced in the dermal capillaries and in surrounding interstitial/inflammatory cells. Our data suggest that hypoxia initiates a potentially self-perpetuating cycle involving HIF, VEGF, and Akt activation, which could drive physiologic growth of hair follicles and skin glands. Furthermore, such a cycle may exist in psoriasis in dermal capillaries and contribute to disease progression.

  18. Use of in vivo-induced antigen technology (IVIAT) to identify virulence factors of Porphyromonas gingivalis.

    Science.gov (United States)

    Wallet, Shannon M; Chung, Jin; Handfield, Martin

    2010-01-01

    Porphyromonas gingivalis is a Gram-negative anaerobic bacterium associated with the initiation and progression of adult periodontal disease. The pathogenicity of P. gingivalis is multifaceted and the infection process is influenced by both microbial and host factors. It is generally accepted that genes of a pathogen that are specifically expressed during infection are likely to be important for pathogenicity. Numerous technologies have been developed to identify these genes. A novel strategy known as in vivo-induced antigen technology (IVIAT) avoids the use of animal models and utilizes serum from patients who have experienced disease caused by the pathogen of interest. While a number of putative virulence factors have been described for P. gingivalis, the identity, relevance, and mechanisms of action of virulence factors that actually provide a selective advantage to the organism in the oral cavity of diseased patients is still unclear. Here we describe the IVIAT protocol for identification of in vivo-induced genes of P. gingivalis, which can be adapted with few modifications to any microbial pathogen.

  19. Risk factors and incidence of contrast induced nephropathy following coronary intervention

    Directory of Open Access Journals (Sweden)

    Yoga Yuniadi

    2008-06-01

    Full Text Available Contrast induced nephropathy (CIN is one of important complication of contrast media administration. Its incidence and risk factors among Indonesian patients undergoing coronary intervention has not been reported yet. CIN was defined as increasing of serum creatinine by 0.5 mg/dl or more in the third day following contrast media exposure. Of 312 patients undergoing coronary intervention, 25% developed CIN. Patient-related risk factors comprised of hypertension, diabetes mellitus, NYHA class, proteinuria, serum creatinine > 1.5 mg/dl and ejection fraction ≤ 35%. Contrast-related risk factors comprised of contrast media volume > 300 ml, contrast media type. However, our final model demonstrated that only hypertension [Hazard ratio (HR = 2.89, 95% confidence intrval (CI = 1.78 to 4.71, P = 0.000], diabetes mellitus (HR = 3.09, 95% CI = 1.89 to 5.06, P = 0.000, ejection fraction (EF ≤ 35% (HR = 2.92; 95% CI = 1.72 to 4.96; P = 0.000, total contrast volume > 300 ml (HR = 7.73; 95% CI = 3.09 to 19.37; P = 0.000 and proteinuria (HR = 14.96; 95% CI = 3.45 to 64.86; P = 0.000 were independent risk factors of CIN. In conclusion, CIN developed in 25% of patients undergoing coronary intervention. The independent risk factors of CIN included hypertension, diabetes mellitus, EF ≤ 35%, contrast volume > 300 ml and proteinuria. (Med J Indones 2008; 17: 131-7Keywords: contrast induced nephropathy, coronary intervention

  20. Contribution of endothelium-derived hyperpolarizing factor to exercise-induced vasodilation in health and hypercholesterolemia.

    Science.gov (United States)

    Ozkor, Muhiddin A; Hayek, Salim S; Rahman, Ayaz M; Murrow, Jonathan R; Kavtaradze, Nino; Lin, Ji; Manatunga, Amita; Quyyumi, Arshed A

    2015-02-01

    The role of endothelium-derived hyperpolarizing factor (EDHF) in either the healthy circulation or in those with hypercholesterolemia is unknown. In healthy and hypercholesterolemic subjects, we measured forearm blood flow (FBF) using strain-gauge plethysmography at rest, during graded handgrip exercise, and after sodium nitroprusside infusion. Measurements were repeated after l-NMMA, tetraethylammonium (TEA), and combined infusions. At rest, l-NMMA infusion reduced FBF in healthy but not hypercholesterolemic subjects. At peak exercise, vasodilation was lower in hypercholesterolemic compared to healthy subjects (274% vs 438% increase in FBF, p=0.017). TEA infusion reduced exercise-induced vasodilation in both healthy and hypercholesterolemic subjects (27%, pvasodilation in hypercholesterolemia. In conclusion, exercise-induced vasodilation is impaired and predominantly mediated by EDHF in hypercholesterolemic subjects. CLINICAL TRIAL REGISTRATION IDENTIFIER NCT00166166:

  1. A synthetic manassantin a derivative inhibits hypoxia-inducible factor 1 and tumor growth.

    Science.gov (United States)

    Lang, Liwei; Liu, Xiaoyu; Li, Yan; Zhou, Qing; Xie, Ping; Yan, Chunhong; Chen, Xiaoguang

    2014-01-01

    The dineolignan manassantin A from Saururaceae was recently identified as a hypoxia-inducible factor 1 (HIF-1) inhibitor, but its in-vivo anti-tumor effect has not been explored. We synthesized a series of manassantin A derivatives, and found that replacing the central tetrahydrofuran moiety with a cyclopentane ring yielded a compound (LXY6006) with increased HIF-1-inhibitory activity yet decreased stereochemically complexity amenable to a simplified synthesis scheme. LXY6006 inhibited HIF-1α nuclear accumulation induced by hypoxia, and inhibited cancer cell growth as a consequence of G2/M arrest. Oral administration of LXY6006 significantly inhibited growth of breast, lung, and pancreatic tumors implanted in nude mice. These results indicate that LXY6006 represents a novel class of agents targeting a broad range of human cancers.

  2. A synthetic manassantin a derivative inhibits hypoxia-inducible factor 1 and tumor growth.

    Directory of Open Access Journals (Sweden)

    Liwei Lang

    Full Text Available The dineolignan manassantin A from Saururaceae was recently identified as a hypoxia-inducible factor 1 (HIF-1 inhibitor, but its in-vivo anti-tumor effect has not been explored. We synthesized a series of manassantin A derivatives, and found that replacing the central tetrahydrofuran moiety with a cyclopentane ring yielded a compound (LXY6006 with increased HIF-1-inhibitory activity yet decreased stereochemically complexity amenable to a simplified synthesis scheme. LXY6006 inhibited HIF-1α nuclear accumulation induced by hypoxia, and inhibited cancer cell growth as a consequence of G2/M arrest. Oral administration of LXY6006 significantly inhibited growth of breast, lung, and pancreatic tumors implanted in nude mice. These results indicate that LXY6006 represents a novel class of agents targeting a broad range of human cancers.

  3. Biodentine Reduces Tumor Necrosis Factor Alpha-induced TRPA1 Expression in Odontoblastlike Cells.

    Science.gov (United States)

    El Karim, Ikhlas A; McCrudden, Maelíosa T C; McGahon, Mary K; Curtis, Tim M; Jeanneau, Charlotte; Giraud, Thomas; Irwin, Chris R; Linden, Gerard J; Lundy, Fionnuala T; About, Imad

    2016-04-01

    The transient receptor potential (TRP) ion channels have emerged as important cellular sensors in both neuronal and non-neuronal cells, with TRPA1 playing a central role in nociception and neurogenic inflammation. The functionality of TRP channels has been shown to be modulated by inflammatory cytokines. The aim of this study was to investigate the effect of inflammation on odontoblast TRPA1 expression and to determine the effect of Biodentine (Septodent, Paris, France) on inflammatory-induced TRPA1 expression. Immunohistochemistry was used to study TRPA1 expression in pulp tissue from healthy and carious human teeth. Pulp cells were differentiated to odontoblastlike cells in the presence of 2 mmol/L beta-glycerophosphate, and these cells were used in quantitative polymerase chain reaction, Western blotting, calcium imaging, and patch clamp studies. Immunofluorescent staining revealed TRPA1 expression in odontoblast cell bodies and odontoblast processes, which was more intense in carious versus healthy teeth. TRPA1 gene expression was induced in cultured odontoblastlike cells by tumor necrosis factor alpha, and this expression was significantly reduced in the presence of Biodentine. The functionality of the TRPA1 channel was shown by calcium microfluorimetry and patch clamp recording, and our results showed a significant reduction in tumor necrosis factor alpha-induced TRPA1 responses after Biodentine treatment. In conclusion, this study showed TRPA1 to be modulated by caries-induced inflammation and that Biodentine reduced TRPA1 expression and functional responses. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Emodin Decreases Hepatic Hypoxia-Inducible Factor-1[Formula: see text] by Inhibiting its Biosynthesis.

    Science.gov (United States)

    Ma, Feifei; Hu, Lijuan; Yu, Ming; Wang, Feng

    2016-01-01

    Hypoxia-inducible factor-1 (HIF-1) is an [Formula: see text] dimeric transcription factor. Because HIF-1[Formula: see text] is instable with oxygen, HIF-1 is scarce in normal mammalian cells. However, HIF-1[Formula: see text] is expressed in pathological conditions such as cancer and obesity. Inhibiting HIF-1[Formula: see text] may be of therapeutic value for these pathologies. Here, we investigated whether emodin, derived from the herb of Rheum palmatum L, which is also known as Chinese rhubarb, and is native to China, regulates HIF-1[Formula: see text] expression. Male C57BL/6 mice without or with diet-induced obesity were treated with emodin for two weeks, while control mice were treated with vehicle. HIF-1[Formula: see text] expression was determined by Western blot. We found that emodin inhibited obesity-induced HIF-1[Formula: see text] expression in liver and skeletal muscle but did not regulate HIF-1[Formula: see text] expression in the kidneys or in intra-abdominal fat. In vitro, emodin inhibited HIF-1[Formula: see text] expression in human HepG2 hepatic cells and Y1 adrenocortical cells. Further, we investigated the mechanisms of HIF-1[Formula: see text] expression in emodin-treated HepG2 cells. First, we found that HIF-1[Formula: see text] had normal stability in the presence of emodin. Thus, emodin did not decrease HIF-1[Formula: see text] by stimulating its degradation. Importantly, emodin decreased the activity of the signaling pathways that led to HIF-1[Formula: see text] biosynthesis. Interestingly, emodin increased HIF-1[Formula: see text] mRNA in HepG2 cells. This may be a result of feedback in response to the emodin-induced decrease in the protein of HIF-1[Formula: see text]. In conclusion, emodin decreases hepatic HIF-1[Formula: see text] by inhibiting its biosynthesis.

  5. Pea3 transcription factors and wnt1-induced mouse mammary neoplasia.

    Directory of Open Access Journals (Sweden)

    Rebecca Baker

    Full Text Available The role of the PEA3 subfamily of Ets transcription factors in breast neoplasia is controversial. Although overexpression of PEA3 (E1AF/ETV4, and of the related factors ERM (ETV5 and ER81 (ETV1, have been observed in human and mouse breast tumors, PEA3 factors have also been ascribed a tumor suppressor function. Here, we utilized the MMTV/Wnt1 mouse strain to further interrogate the role of PEA3 transcription factors in mammary tumorigenesis based on our previous observation that Pea3 is highly expressed in MMTV/Wnt1 mammary tumors. Pea3 expression in mouse mammary tissues was visualized using a Pea3(NLSlacZ reporter strain. In normal mammary glands, Pea3 expression is predominantly confined to myoepithelial cells. Wnt1 transgene expression induced marked amplification of this cell compartment in nontumorous mammary glands, accompanied by an apparent increase in Pea3 expression. The pattern of Pea3 expression in MMTV/Wnt1 mammary glands recapitulated the cellular profile of activated beta-catenin/TCF signaling, which was visualized using both beta-catenin immunohistochemistry and the beta-catenin/TCF-responsive reporter Axin2(NLSlacZ. To test the requirement for PEA3 factors in Wnt1-induced tumorigenesis, we employed a mammary-targeted dominant negative PEA3 transgene, DeltaNPEA3En. Expression of DeltaNPEA3En delayed early-onset tumor formation in MMTV/Wnt1 virgin females (P = 0.03, suggesting a requirement for PEA3 factor function for Wnt1-driven tumor formation. Consistent with this observation, expression of the DeltaNPEA3En transgene was profoundly reduced in mammary tumors compared to nontumorous mammary glands from bigenic MMTV/Wnt1, MMTV/DeltaNPEA3En mice (P = 0.01. Our data provide the first description of Wnt1-mediated expansion of the Pea3-expressing myoepithelial compartment in nontumorous mammary glands. Consistent with this observation, mammary myoepithelium was selectively responsive to Wnt1. Together these data suggest the MMTV

  6. On the quasi-steady aerodynamics of normal hovering flight part I: the induced power factor.

    Science.gov (United States)

    Nabawy, Mostafa R A; Crowther, William J

    2014-04-06

    An analytical treatment to quantify the losses captured in the induced power factor, k, is provided for flapping wings in normal hover, including the effects of non-uniform downwash, tip losses and finite flapping amplitude. The method is based on a novel combination of actuator disc and lifting line blade theories that also takes into account the effect of advance ratio. The model has been evaluated against experimental results from the literature and qualitative agreement obtained for the effect of advance ratio on the lift coefficient of revolving wings. Comparison with quantitative experimental data for the circulation as a function of span for a fruitfly wing shows that the model is able to correctly predict the circulation shape of variation, including both the magnitude of the peak circulation and the rate of decay in circulation towards zero. An evaluation of the contributions to induced power factor in normal hover for eight insects is provided. It is also shown how Reynolds number can be accounted for in the induced power factor, and good agreement is obtained between predicted span efficiency as a function of Reynolds number and numerical results from the literature. Lastly, it is shown that for a flapping wing in hover k owing to the non-uniform downwash effect can be reduced to 1.02 using an arcsech chord distribution. For morphologically realistic wing shapes based on beta distributions, it is shown that a value of 1.07 can be achieved for a radius of first moment of wing area at 40% of wing length.

  7. Hypoxia inducible factor-1αaccumulation in steatotic liver preservation:Role of nitric oxide

    Institute of Scientific and Technical Information of China (English)

    Mohamed; Amine; Zaouali; Ismail; Ben; Mosbah; Eleonora; Boncompagni; Hassen; Ben; Abdennebi; Maria; Teresa; Mitjavila; Ramon; Bartrons; Isabel; Freitas; Antoni; Rimola; Joan; Roselló-Catafau

    2010-01-01

    AIM:To examine the relevance of hypoxia inducible factor(HIF-1)and nitric oxide(NO)on the preservation of fatty liver against cold ischemia-reperfusion injury(IRI). METHODS:We used an isolated perfused rat liver model and we evaluated HIF-1αin steatotic and non-steatotic livers preserved for 24 h at 4℃in University of Wisconsin and IGL-1 solutions,and then subjected to 2 h of normothermic reperfusion.After normoxic reperfusion,liver enzymes,bile production,bromosulfophthalein clearance,as well as HIF-1αand ...

  8. Regulation of tumour necrosis factor (TNF) induced apoptosis by soluble TNF receptors in Helicobacter pylori infection

    OpenAIRE

    Shibata, J; Goto, H.; Arisawa, T.; Niwa, Y.; Hayakawa, T.; Nakayama, A.; Mori, N.

    1999-01-01

    BACKGROUND—Tumour necrosis factor (TNF) is a predominant cytokine produced in the gastric mucosa of patients with Helicobacter pylori infection. TNF induces apoptosis in a variety of cells. The soluble TNF receptors (sTNF-Rs) can be divided into sTNF-RI and sTNF-RII, both of which inhibit TNF activity. However, their precise mechanisms remain unclear.
AIM—To investigate the role of sTNF-Rs in H pylori infection.
METHODS—In 40 patients, production of TNF and sTNF-Rs in gastric mucosa was measu...

  9. Ligand-induced expansion of the S1' site in the anthrax toxin lethal factor

    Energy Technology Data Exchange (ETDEWEB)

    Maize, Kimberly M.; Kurbanov, Elbek K.; Johnson, Rodney L.; Amin, Elizabeth Ambrose; Finzel, Barry C. (UMM)

    2016-07-05

    The Bacillus anthracis lethal factor (LF) is one component of a tripartite exotoxin partly responsible for persistent anthrax cytotoxicity after initial bacterial infection. Inhibitors of the zinc metalloproteinase have been investigated as potential therapeutic agents, but LF is a challenging target because inhibitors lack sufficient selectivity or possess poor pharmaceutical properties. These structural studies reveal an alternate conformation of the enzyme, induced upon binding of specific inhibitors, that opens a previously unobserved deep pocket termed S1'* which might afford new opportunities to design selective inhibitors that target this subsite.

  10. Factors influencing chymosin-induced gelation of milk from individual dairy cows

    DEFF Research Database (Denmark)

    Gustavsson, F.; Glantz, M; Buitenhuis, Albert Johannes

    2014-01-01

    calcium content, phosphorous content and casein micelle size on chymosin-induced gelation was determined in milk from 98 Swedish Red cows. The study showed that protein content and total calcium content, ionic calcium concentration and casein micelle size were the most important factors explaining...... the variation of gelation properties in this sample set. Non-coagulating milk was suggested to have lower ionic and total calcium content as well as lower relative concentrations of β-lactoglobulin than coagulating milk. The lower total calcium content in non-coagulating milk poses a problem as the difference...

  11. Tissue factor in antiphospholipid antibody-induced pregnancy loss:a pro-inflammatory molecule

    OpenAIRE

    Girardi, G.; MACKMAN, N.

    2008-01-01

    Fetal loss in patients with antiphospholipid antibodies (aPL) has been ascribed to thrombosis of placental vessels. However, we have shown that inflammation, specifically complement activation with generation of the anaphylotoxin C5a, is an essential mediator of fetal injury. We have analysed the role of tissue factor (TF) in a mouse model of aPL-induced pregnancy loss. TF is the major cellular activator of the coagulation cascade but also has cell signaling activity. Mice that received aPL-I...

  12. Understanding the Dr. Jekyll and Mr. Hyde nature of apoptosis-inducing factor: future perspectives

    Directory of Open Access Journals (Sweden)

    Giulio Preta

    2017-08-01

    Full Text Available Apoptosis-inducing factor (AIF is emerging as a key protein in regulation of basic physiological processes including phagocytosis, mitophagy and regulation of the redox state. Recent evidences suggest that the enzymatic activity of AIF may play an active role in tumor progression controlling energy metabolism and redox balance. The present manuscript briefly describes the story of this protein from its initial discovery as caspase-independent apoptotic protein, throughout its role in oxidative phosphorylation and lately involvement in tumor progression. Understanding the dualistic nature of AIF is a critical starting point to clarify its contribution in tumor metabolic balance and to develop new AIF-specific therapeutic strategies.

  13. Hydrogen Sulfide Inhibits Transforming Growth Factor-β1-Induced EMT via Wnt/Catenin Pathway.

    Directory of Open Access Journals (Sweden)

    Lin Guo

    Full Text Available Hydrogen sulfide (H2S has anti-fibrotic potential in lung, kidney and other organs. The exogenous H2S is released from sodium hydrosulfide (NaHS and can influence the renal fibrosis by blocking the differentiation of quiescent renal fibroblasts to myofibroblasts. But whether H2S affects renal epithelial-to-mesenchymal transition (EMT and the underlying mechanisms remain unknown. Our study is aimed at investigating the in vitro effects of H2S on transforming growth factor-β1 (TGF-β1-induced EMT in renal tubular epithelial cells (HK-2 cells and the associated mechanisms. The induced EMT is assessed by Western blotting analysis on the expressions of α-SMA, E-cadherin and fibronectin. HK-2 cells were treated with NaHS before incubating with TGF-β1 to investigate its effect on EMT and the related molecular mechanism. Results demonstrated that NaHS decreased the expression of α-SMA and fibronectin, and increased the expression of E-cadherin. NaHS reduced the expression of TGF-β receptor type I (TβR I and TGF-β receptor type II (TβR II. In addition, NaHS attenuated TGF-β1-induced increase of β-catenin expression and ERK phosphorylation. Moreover, it inhibited the TGF-β1-induced nuclear translocation of ββ-catenin. These effects of NaHS on fibronectin, E-cadherin and TβR I were abolished by the ERK inhibitor U0126 or β-catenin inhibitor XAV939, or β-catenin siRNA interference. We get the conclusion that NaHS attenuated TGF-β1-induced EMT in HK-2 cells through both ERK-dependent and β-catenin-dependent pathways.

  14. Hydrogen Sulfide Inhibits Transforming Growth Factor-β1-Induced EMT via Wnt/Catenin Pathway

    Science.gov (United States)

    Tao, Jie; Lan, Zhen; Hei, Hongya; Tian, Lulu; Pan, Wanma; Wang, Li; Zhang, Xuemei

    2016-01-01

    Hydrogen sulfide (H2S) has anti-fibrotic potential in lung, kidney and other organs. The exogenous H2S is released from sodium hydrosulfide (NaHS) and can influence the renal fibrosis by blocking the differentiation of quiescent renal fibroblasts to myofibroblasts. But whether H2S affects renal epithelial-to-mesenchymal transition (EMT) and the underlying mechanisms remain unknown. Our study is aimed at investigating the in vitro effects of H2S on transforming growth factor-β1 (TGF-β1)-induced EMT in renal tubular epithelial cells (HK-2 cells) and the associated mechanisms. The induced EMT is assessed by Western blotting analysis on the expressions of α-SMA, E-cadherin and fibronectin. HK-2 cells were treated with NaHS before incubating with TGF-β1 to investigate its effect on EMT and the related molecular mechanism. Results demonstrated that NaHS decreased the expression of α-SMA and fibronectin, and increased the expression of E-cadherin. NaHS reduced the expression of TGF-β receptor type I (TβR I) and TGF-β receptor type II (TβR II). In addition, NaHS attenuated TGF-β1-induced increase of β-catenin expression and ERK phosphorylation. Moreover, it inhibited the TGF-β1-induced nuclear translocation of ββ-catenin. These effects of NaHS on fibronectin, E-cadherin and TβR I were abolished by the ERK inhibitor U0126 or β-catenin inhibitor XAV939, or β-catenin siRNA interference. We get the conclusion that NaHS attenuated TGF-β1-induced EMT in HK-2 cells through both ERK-dependent and β-catenin-dependent pathways. PMID:26760502

  15. The HIV-1 transactivator factor (Tat induces enterocyte apoptosis through a redox-mediated mechanism.

    Directory of Open Access Journals (Sweden)

    Vittoria Buccigrossi

    Full Text Available The intestinal mucosa is an important target of human immunodeficiency virus (HIV infection. HIV virus induces CD4+ T cell loss and epithelial damage which results in increased intestinal permeability. The mechanisms involved in nutrient malabsorption and alterations of intestinal mucosal architecture are unknown. We previously demonstrated that HIV-1 transactivator factor (Tat induces an enterotoxic effect on intestinal epithelial cells that could be responsible for HIV-associated diarrhea. Since oxidative stress is implicated in the pathogenesis and morbidity of HIV infection, we evaluated whether Tat induces apoptosis of human enterocytes through oxidative stress, and whether the antioxidant N-acetylcysteine (NAC could prevent it. Caco-2 and HT29 cells or human intestinal mucosa specimens were exposed to Tat alone or combined with NAC. In an in-vitro cell model, Tat increased the generation of reactive oxygen species and decreased antioxidant defenses as judged by a reduction in catalase activity and a reduced (GSH/oxidized (GSSG glutathione ratio. Tat also induced cytochrome c release from mitochondria to cytosol, and caspase-3 activation. Rectal dialysis samples from HIV-infected patients were positive for the oxidative stress marker 8-hydroxy-2'-deoxyguanosine. GSH/GSSG imbalance and apoptosis occurred in jejunal specimens from HIV-positive patients at baseline and from HIV-negative specimens exposed to Tat. Experiments with neutralizing anti-Tat antibodies showed that these effects were direct and specific. Pre-treatment with NAC prevented Tat-induced apoptosis and restored the glutathione balance in both the in-vitro and the ex-vivo model. These findings indicate that oxidative stress is one of the mechanism involved in HIV-intestinal disease.

  16. Role of nonalcoholic fatty liver disease as risk factor for drug-induced hepatotoxicity

    Science.gov (United States)

    Massart, Julie; Begriche, Karima; Moreau, Caroline; Fromenty, Bernard

    2017-01-01

    Background Obesity is often associated with nonalcoholic fatty liver disease (NAFLD), which refers to a large spectrum of hepatic lesions including fatty liver, nonalcoholic steatohepatitis (NASH) and cirrhosis. Different investigations showed or suggested that obesity and NAFLD are able to increase the risk of hepatotoxicity of different drugs. Some of these drugs could induce more frequently an acute hepatitis in obese individuals whereas others could worsen pre-existing NAFLD. Aim The main objective of the present review was to collect the available information regarding the role of NAFLD as risk factor for drug-induced hepatotoxicity. For this purpose, we performed a data-mining analysis using different queries including drug-induced liver injury (or DILI), drug-induced hepatotoxicity, fatty liver, nonalcoholic fatty liver disease (or NAFLD), steatosis and obesity. The main data from the collected articles are reported in this review and when available, some pathophysiological hypotheses are put forward. Relevance for patients Drugs that could pose a potential risk in obese patients include compounds belonging to different pharmacological classes such as acetaminophen, halothane, methotrexate, rosiglitazone, stavudine and tamoxifen. For some of these drugs, experimental investigations in obese rodents confirmed the clinical observations and unveiled different pathophysiological mechanisms which could explain why these pharmaceuticals are particularly hepatotoxic in obesity and NAFLD. Other drugs such as pentoxifylline, phenobarbital and omeprazole might also pose a risk but more investigations are required to determine whether this risk is significant or not. Because obese people often take several drugs for the treatment of different obesity-related diseases such as type 2 diabetes, hyperlipidemia and coronary heart disease, it is urgent to identify the main pharmaceuticals that can cause acute hepatitis on a fatty liver background or induce NAFLD worsening

  17. Hypoxia inducible factor 1α promotes survival of mesenchymal stem cells under hypoxia

    Science.gov (United States)

    Lv, Bingke; Li, Feng; Fang, Jie; Xu, Limin; Sun, Chengmei; Han, Jianbang; Hua, Tian; Zhang, Zhongfei; Feng, Zhiming; Jiang, Xiaodan

    2017-01-01

    Mesenchymal stem cells (MSCs) are ideal materials for cell therapy. Research has indicated that hypoxia benefits MSC survival, but little is known about the underlying mechanism. This study aims to uncover potential mechanisms involving hypoxia inducible factor 1α (HIF1A) to explain the promoted MSC survival under hypoxia. MSCs were obtained from Sprague-Dawley rats and cultured under normoxia or hypoxia condition. The overexpression vector or small interfering RNA of Hif1a gene was transfected to MSCs, after which cell viability, apoptosis and expression of HIF1A were analyzed by MTT assay, flow cytometry, qRT-PCR and Western blot. Factors in p53 pathway were detected to reveal the related mechanisms. Results showed that hypoxia elevated MSCs viability and up-regulated HIF1A (P cell CLL/lymphoma 2 (BCL2) expression had the opposite pattern (P cell therapy.

  18. Regulatory roles of tumor necrosis factor alpha-induced proteins (TNFAIPs) 3 and 9 in arthritis.

    Science.gov (United States)

    Matsumoto, Isao; Inoue, Asuka; Takai, Chinatsu; Umeda, Naoto; Tanaka, Yuki; Kurashima, Yuko; Sumida, Takayuki

    2014-07-01

    Tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) have proved to be important in rheumatoid arthritis (RA) because the outcome of RA has greatly improved with the recent availability of biologics targeting them. It is well accepted that these cytokines are involved in the activation of the nuclear factor-κB (NF-κB) signaling pathway, but our understanding of the dependency of these pro-inflammatory cytokines and the link between them in RA is currently limited. Recently, we and others proved the importance of TNFα-induced protein (TNFAIP), due to the spontaneous development of arthritis in deficient animals that are dependent on IL-6. To date, nine TNFAIPs have been identified, and TNFAIP3 and TNFAIP9 were found to be clearly associated with mouse and human arthritis. In this review, we compare and discuss recent TNFAIP topics, especially focusing on TNFAIP3 and TNFAIP9 in autoimmune arthritis in mice and humans.

  19. Endothelium-derived hyperpolarizing factor contributes to hypoxia-induced skeletal muscle vasodilation in humans.

    Science.gov (United States)

    Spilk, Samson; Herr, Michael D; Sinoway, Lawrence I; Leuenberger, Urs A

    2013-12-01

    Systemic hypoxia causes skeletal muscle vasodilation, thereby preserving O2 delivery to active tissues. Nitric oxide (NO), adenosine, and prostaglandins contribute to this vasodilation, but other factors may also play a role. We tested the hypothesis that regional inhibition of endothelium-derived hyperpolarizing factor with the cytochrome P-450 2C9 antagonist fluconazole, alone or combined with the NO synthase antagonist N(G)-monomethyl-L-arginine (L-NMMA), attenuates hypoxia-induced vasodilation. We compared forearm blood flow (FBF) and skin blood flow before and during brachial artery infusion of fluconazole (0.3 mg/min; trial 1) or fluconazole + L-NMMA (50 mg over 10 min; trial 2) and during systemic hypoxia (10 min, arterial Po2 ~37 mmHg) in infused (experimental) and control forearms of 12 healthy humans. During normoxia, fluconazole and fluconazole + L-NMMA reduced (P vasodilation and could be particularly relevant when other vasodilator systems are impaired.

  20. Nonsteroidal Anti-Inflammatory Drug-Induced Gastroduodenal Bleeding: Risk Factors and Prevention Strategies

    Directory of Open Access Journals (Sweden)

    Thomas Wex

    2010-07-01

    Full Text Available Nonsteroidal anti-inflammatory drugs (NSAIDs are the most widely prescribed medications in the World. A frequent complication of NSAID use is gastroduodenal bleeding. Risk factors for gastroduodenal bleeding while on NSAID therapy are age, prior peptic ulcer and co-medication with anti-platelet agents, anticoagulants, glucocorticosteroids and selective serotonin-reuptake inhibitors (SSRI. Prevention strategies for at-risk patients include the use of the lowest effective dose of NSAIDs, co-therapy with proton-pump inhibitors and/or the use of a COX-2 selective agent. Treatment of Helicobacter pylori infection is beneficial for primary prophylaxis of NSAID-induced gastroduodenal bleeding in NSAID-naive patients. For patients with cardiovascular risk factors requiring NSAIDs, naproxen should be selected. In very high risk patients for both gastrointestinal and cardiovascular complications NSAID therapy should be avoided altogether.

  1. Paradoxical Reaction to Golimumab: Tumor Necrosis Factor α Inhibitor Inducing Psoriasis Pustulosa

    Directory of Open Access Journals (Sweden)

    Marien Siqueira Soto Lopes

    2013-11-01

    Full Text Available Importance: Golimumab is a human monoclonal antibody, used for rheumatoid arthritis, psoriatic arthritis and ankylosing spondylitis. Adverse reactions are increasing with this class of medication (tumor necrosis factor α inhibitors. Observations: The authors present a case of a female patient who presented with psoriasis pustulosa after the use of golimumab for rheumatoid arthritis. Conclusions and Relevance: Paradoxically, in this case, golimumab, which is used for psoriasis, induced the pustular form of this disease. We are observing an increasing number of patients who develop collateral effects with tumor necrosis factor α inhibitors, and the understanding of the mechanism of action and how these adverse reactions occur may contribute to avoid these sometimes severe situations.

  2. Transcription activation of a UV-inducible Clostridium perfringens bacteriocin gene by a novel sigma factor.

    Science.gov (United States)

    Dupuy, Bruno; Mani, Nagraj; Katayama, Seiichi; Sonenshein, Abraham L

    2005-02-01

    Expression of the plasmid-encoded Clostridium perfringens gene for bacteriocin BCN5 was shown to depend in vivo and in vitro on the activity of UviA protein. UviA, also plasmid-encoded, proved to be an RNA polymerase sigma factor and was also partly autoregulatory. The uviA gene has two promoters; one provided a UviA-independent, basal level of gene expression while the stronger, UviA-dependent promoter was only utilized after the cell experienced DNA damage. As a result, BCN5 synthesis is induced by treatment with UV light or mitomycin C. UviA is related to a special class of sigma factors found to date only in Clostridium species and responsible for activating transcription of toxin genes in Clostridium difficile, Clostridium tetani, and Clostridium botulinum.

  3. Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors.

    Science.gov (United States)

    Mercer, Andrew C; Gaj, Thomas; Sirk, Shannon J; Lamb, Brian M; Barbas, Carlos F

    2014-10-17

    The construction of increasingly sophisticated synthetic biological circuits is dependent on the development of extensible tools capable of providing specific control of gene expression in eukaryotic cells. Here, we describe a new class of synthetic transcription factors that activate gene expression in response to extracellular chemical stimuli. These inducible activators consist of customizable transcription activator-like effector (TALE) proteins combined with steroid hormone receptor ligand-binding domains. We demonstrate that these ligand-responsive TALE transcription factors allow for tunable and conditional control of gene activation and can be used to regulate the expression of endogenous genes in human cells. Since TALEs can be designed to recognize any contiguous DNA sequence, the conditional gene regulatory system described herein will enable the design of advanced synthetic gene networks.

  4. Surface proteome analysis identifies platelet derived growth factor receptor-alpha as a critical mediator of transforming growth factor-beta-induced collagen secretion.

    Science.gov (United States)

    Heinzelmann, Katharina; Noskovičová, Nina; Merl-Pham, Juliane; Preissler, Gerhard; Winter, Hauke; Lindner, Michael; Hatz, Rudolf; Hauck, Stefanie M; Behr, Jürgen; Eickelberg, Oliver

    2016-05-01

    Fibroblasts are extracellular matrix-producing cells in the lung. Fibroblast activation by transforming growth factor-beta leads to myofibroblast-differentiation and increased extracellular matrix deposition, a hallmark of pulmonary fibrosis. While fibroblast function with respect to migration, invasion, and extracellular matrix deposition has been well-explored, little is known about the surface proteome of lung fibroblasts in general and its specific response to fibrogenic growth factors, in particular transforming growth factor-beta. We thus performed a cell-surface proteome analysis of primary human lung fibroblasts in presence/absence of transforming growth factor-beta, followed by characterization of our findings using FACS analysis, Western blot, and siRNA-mediated knockdown experiments. We identified 213 surface proteins significantly regulated by transforming growth factor-beta, platelet derived growth factor receptor-alpha being one of the top down-regulated proteins. Transforming growth factor beta-induced downregulation of platelet derived growth factor receptor-alpha induced upregulation of platelet derived growth factor receptor-beta expression and phosphorylation of Akt, a downstream target of platelet derived growth factor signaling. Importantly, collagen type V expression and secretion was strongly increased after forced knockdown of platelet derived growth factor receptor-alpha, an effect that was potentiated by transforming growth factor-beta. We therefore show previously underappreciated cross-talk of transforming growth factor-beta and platelet derived growth factor signaling in human lung fibroblasts, resulting in increased extracellular matrix deposition in a platelet derived growth factor receptor-alpha dependent manner. These findings are of particular importance for the treatment of lung fibrosis patients with high pulmonary transforming growth factor-beta activity.

  5. Ethanol enhances tumor angiogenesis in vitro induced by low-dose arsenic in colon cancer cells through hypoxia-inducible factor 1 alpha pathway.

    Science.gov (United States)

    Wang, Lei; Son, Young-Ok; Ding, Songze; Wang, Xin; Hitron, John Andrew; Budhraja, Amit; Lee, Jeong-Chae; Lin, Qinchen; Poyil, Pratheeshkumar; Zhang, Zhuo; Luo, Jia; Shi, Xianglin

    2012-12-01

    Health effects due to environmental exposure to arsenic are a major global health concern. Arsenic has been known to induce carcinogenesis and enhance tumor development via complex and unclear mechanism. Ethanol is also a well-established risk factor for many malignancies. However, little is known about the effects of coexposure to arsenic and ethanol in tumor development. In this study, we investigate the signaling and angiogenic effect of coexposure of arsenic and ethanol on different colon cancer cell lines. Results show that ethanol markedly enhanced arsenic-induced tumor angiogenesis in vitro. These responses are related to intracellular reactive oxygen species (ROS) generation, NADPH oxidase activation, and upregulation of PI3K/Akt and hypoxia-inducible factor 1 alpha (HIF-1α) signaling. We have also found that ethanol increases the arsenic-induced expression and secretion of angiogenic signaling molecules such as vascular endothelial growth factor, which further confirmed the above observation. Antioxidant enzymes inhibited arsenic/ethanol-induced tumor angiogenesis, demonstrating that the responsive signaling pathways of coexposure to arsenic and ethanol are related to ROS generation. We conclude that ethanol is able to enhance arsenic-induced tumor angiogenesis in colorectal cancer cells via the HIF-1α pathway. These results indicate that alcohol consumption should be taken into consideration in the investigation of arsenic-induced carcinogenesis in arsenic-exposed populations.

  6. Anti-vascular agent Combretastatin A-4-P modulates Hypoxia Inducible Factor-1 and gene expression

    Directory of Open Access Journals (Sweden)

    Currie Margaret J

    2006-12-01

    Full Text Available Abstract Background A functional vascular network is essential for the survival, growth and spread of solid tumours, making blood vessels a key target for therapeutic strategies. Combretastatin A-4 phosphate (CA-4-P is a tubulin-depolymerising agent in Phase II clinical trials as a vascular disrupting agent. Not much is known of the molecular effect of CA-4-P under tumour conditions. The tumour microenvironment differs markedly from that in normal tissue, specifically with respect to oxygenation (hypoxia. Gene regulation under tumour conditions is governed by hypoxia inducible factor 1 (HIF-1, controlling angiogenic and metastatic pathways. Methods We investigated the effect of CA-4-P on factors of the upstream and downstream signalling pathway of HIF-1 in vitro. Results CA-4-P treatment under hypoxia tended to reduce HIF-1 accumulation in a concentration-dependent manner, an effect which was more prominent in endothelial cells than in cancer cell lines. Conversely, CA-4-P increased HIF-1 accumulation under aerobic conditions in vitro. At these concentrations of CA-4-P under aerobic conditions, nuclear factor κB was activated via the small GTPase RhoA, and expression of the HIF-1 downstream angiogenic effector gene, vascular endothelial growth factor (VEGF-A, was increased. Conclusion Our findings advance the understanding of signal transduction pathways involved in the actions of the anti-vascular agent CA-4-P.

  7. Nerve growth factor partially recovers inflamed skin from stress-induced worsening in allergic inflammation.

    Science.gov (United States)

    Peters, Eva M J; Liezmann, Christiane; Spatz, Katharina; Daniltchenko, Maria; Joachim, Ricarda; Gimenez-Rivera, Andrey; Hendrix, Sven; Botchkarev, Vladimir A; Brandner, Johanna M; Klapp, Burghard F

    2011-03-01

    Neuroimmune dysregulation characterizes atopic disease, but its nature and clinical impact remain ill-defined. Induced by stress, the neurotrophin nerve growth factor (NGF) may worsen cutaneous inflammation. We therefore studied the role of NGF in the cutaneous stress response in a mouse model for atopic dermatitis-like allergic dermatitis (AlD). Combining several methods, we found that stress increased cutaneous but not serum or hypothalamic NGF in telogen mice. Microarray analysis showed increased mRNAs of inflammatory and growth factors associated with NGF in the skin. In stress-worsened AlD, NGF-neutralizing antibodies markedly reduced epidermal thickening together with NGF, neurotrophin receptor (tyrosine kinase A and p75 neurotrophin receptor), and transforming growth factor-β expression by keratinocytes but did not alter transepidermal water loss. Moreover, NGF expression by mast cells was reduced; this corresponded to reduced cutaneous tumor necrosis factor-α (TNF-α) mRNA levels but not to changes in mast cell degranulation or in the T helper type 1 (Th1)/Th2 cytokine balance. Also, eosinophils expressed TNF receptor type 2, and we observed reduced eosinophil infiltration after treatment with NGF-neutralizing antibodies. We thus conclude that NGF acts as a local stress mediator in perceived stress and allergy and that increased NGF message contributes to worsening of cutaneous inflammation mainly by enhancing epidermal hyperplasia, pro-allergic cytokine induction, and allergy-characteristic cellular infiltration.

  8. Evaluation of Stress-Inducing Factors of Educational Environment in Hamadan Dentistry School’s Students

    Directory of Open Access Journals (Sweden)

    M. Dalband

    2007-01-01

    Full Text Available ntroduction & Objective: The aim of this study was to evaluate stressor factors of educational environment in Hamadan dental school’s students in year 2002.Materials & Methods: The study design was descriptive, cross-sectional and it was accomplished using a questionnaire which was taken from DES (dental environment stress questionnaire. According to restricted number of statistical population all members of population (154 students were evaluated as samples and this study was a survey one. Results: The results of this study indicated that most stressfull factors in dental students has been related to class work with mean score 3.18±0.83 and faculty-student relationship with mean score 3.05±0.83. Female students showed more total stress than male students (2.73 vs. 2.44. The fourth-year students had the most stress rate in all students of different years (3.05 and preclinical and clinical factors were the most stress-inducing factors of these students (3.63.Conclusion: It is concluded that the environment of Hamadan dental school and the process of education in the field of dentistry is potentially stressful. Also there is a reverse relationship between level of stress in students and their academic efficiencies.

  9. Prevalence and risk factors of stress-induced gastrointestinal bleeding in critically ill children

    Institute of Scientific and Technical Information of China (English)

    Chookhuan Nithiwathanapong; Sanit Reungrongrat; Nuthapong Ukarapol

    2005-01-01

    AIM: To assess the frequency and the risk factors of stress-induced gastrointestinal (GI) bleeding in children admitted to a pediatric intensive care unit (PICU).METHODS: The medical records of children aged between 1 month and 15 years admitted to the PICU between January 2002 and December 2002 were reviewed.Demographic data, indications for PICU admission, principle diagnosis, and basic laboratory investigations were recorded. Previously described factors for stress ulcer bleeding (mechanical ventilation, sepsis, acute respiratory distress syndrome, renal insufficiency, coagulopathy,thrombocytopenia, and intracranial pathology) were used as independent variables in a multivariate analysis.RESULTS: One hundred and seventy of two hundred and five medical records were eligible for review. The most common indication for PICU admission was respiratory failure (48.8%). Twenty-five children received stress ulcer bleeding prophylaxis with ranitidine. The incidence of stress ulcer bleeding was 43.5%, in which 5.3% were clinically significant bleeding. Only mechanical ventilation and thrombocytopenia were significantly associated with stress ulcer bleeding using the univariate analysis.The odds ratio and 95% confidence intervals were 5.13(1.86-14.12) and 2.26 (1.07-4.74), respectively. However, the logistic regression analysis showed that mechanicai ventilation was the only significant risk factor with the odds ratio of 14.1.CONCLUSION: The incidence of gastrointestinal bleeding was high in critically ill children. Mechanical ventilation was an important risk factor for gastrointestinal bleeding.

  10. Vascular endothelial growth factor is crucial for erythropoietin-induced improvement of cardiac function in heart failure

    NARCIS (Netherlands)

    Westenbrink, B. Daan; Ruifrok, Willem-Peter T.; Voors, Adriaan A.; Tilton, Ronald G.; van Veldhuisen, Dirk J.; Schoemaker, Regien G.; van Gilst, Wiek H.; de Boer, Rudolf A.

    2010-01-01

    We intended to delineate the mechanisms of erythropoietin (EPO)-induced cardiac vascular endothelial growth factor (VEGF) production and to establish if VEGF is crucial for EPO-induced improvement of cardiac performance. The effects of EPO on VEGF expression were studied in cultured cardiac cells an

  11. Vascular endothelial growth factor is crucial for erythropoietin-induced improvement of cardiac function in heart failure

    NARCIS (Netherlands)

    Westenbrink, B. Daan; Ruifrok, Willem-Peter T.; Voors, Adriaan A.; Tilton, Ronald G.; van Veldhuisen, Dirk J.; Schoemaker, Regien G.; van Gilst, Wiek H.; de Boer, Rudolf A.

    2010-01-01

    We intended to delineate the mechanisms of erythropoietin (EPO)-induced cardiac vascular endothelial growth factor (VEGF) production and to establish if VEGF is crucial for EPO-induced improvement of cardiac performance. The effects of EPO on VEGF expression were studied in cultured cardiac cells an

  12. Myeloid cell-derived hypoxia-inducible factor attenuates inflammation in unilateral ureteral obstruction-induced kidney injury.

    Science.gov (United States)

    Kobayashi, Hanako; Gilbert, Victoria; Liu, Qingdu; Kapitsinou, Pinelopi P; Unger, Travis L; Rha, Jennifer; Rivella, Stefano; Schlöndorff, Detlef; Haase, Volker H

    2012-05-15

    Renal fibrosis and inflammation are associated with hypoxia, and tissue pO(2) plays a central role in modulating the progression of chronic kidney disease. Key mediators of cellular adaptation to hypoxia are hypoxia-inducible factor (HIF)-1 and -2. In the kidney, they are expressed in a cell type-specific manner; to what degree activation of each homolog modulates renal fibrogenesis and inflammation has not been established. To address this issue, we used Cre-loxP recombination to activate or to delete both Hif-1 and Hif-2 either globally or cell type specifically in myeloid cells. Global activation of Hif suppressed inflammation and fibrogenesis in mice subjected to unilateral ureteral obstruction, whereas activation of Hif in myeloid cells suppressed inflammation only. Suppression of inflammatory cell infiltration was associated with downregulation of CC chemokine receptors in renal macrophages. Conversely, global deletion or myeloid-specific inactivation of Hif promoted inflammation. Furthermore, prolonged hypoxia suppressed the expression of multiple inflammatory molecules in noninjured kidneys. Collectively, we provide experimental evidence that hypoxia and/or myeloid cell-specific HIF activation attenuates renal inflammation associated with chronic kidney injury.

  13. Interleukin-1beta induced vascular permeability is dependent on induction of endothelial tissue factor (TF) activity.

    Science.gov (United States)

    Puhlmann, Markus; Weinreich, David M; Farma, Jeffrey M; Carroll, Nancy M; Turner, Ewa M; Alexander, H Richard

    2005-09-30

    IL-1beta is a pleotropic cytokine that may mediate increased procoagulant activity and permeability in endothelial tissue during inflammatory conditions. The procoagulant effects of IL-1beta are mediated through induction of tissue factor (TF) but its alterations on vascular permeability are not well characterized. We found that IL-1beta induced a rapid and dose-dependent increase in TF activity in human umbilical vein endothelial cells (ECs) under routine culture conditions. However, IL-1beta caused a rapid and marked increase in permeability across confluent EC monolayers using a two-compartment in vitro model only in the presence of factor VIII-deficient plasma that was completely abrogated by neutralizing anti-TF antibody pre-treatment. In vitro permeability was associated with loss of EC surface expression of VE-cadherin and contraction of F-actin cytoskeletal elements that resulted in EC intercellular gap formation. These data demonstrate that IL-1beta induces marked changes in permeability across activated endothelium via a TF dependent mechanism and suggest that modulation of TF activity may represent a strategy to treat various acute and chronic inflammatory conditions mediated by this cytokine.

  14. Interleukin-1β induced vascular permeability is dependent on induction of endothelial Tissue Factor (TF activity

    Directory of Open Access Journals (Sweden)

    Turner Ewa M

    2005-09-01

    Full Text Available Abstract IL-1β is a pleotropic cytokine that may mediate increased procoagulant activity and permeability in endothelial tissue during inflammatory conditions. The procoagulant effects of IL-1β are mediated through induction of tissue factor (TF but its alterations on vascular permeability are not well characterized. We found that IL-1β induced a rapid and dose-dependent increase in TF activity in human umbilical vein endothelial cells (ECs under routine culture conditions. However, IL-1β caused a rapid and marked increase in permeability across confluent EC monolayers using a two-compartment in vitro model only in the presence of factor VIII-deficient plasma that was completely abrogated by neutralizing anti-TF antibody pre-treatment. In vitro permeability was associated with loss of EC surface expression of VE-cadherin and contraction of F-actin cytoskeletal elements that resulted in EC intercellular gap formation. These data demonstrate that IL-1β induces marked changes in permeability across activated endothelium via a TF dependent mechanism and suggest that modulation of TF activity may represent a strategy to treat various acute and chronic inflammatory conditions mediated by this cytokine.

  15. The Role of Macrophage Migration Inhibitory Factor (MIF) in Ultraviolet Radiation-Induced Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Tadamichi [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, 930-0194, Toyama (Japan)

    2010-08-09

    Ultraviolet (UV) radiation is the most common cause of physical injury to the skin due to environmental damage, and UV exposure substantially increases the risk of actinic damage to the skin. The inflammatory changes induced by acute UV exposure include erythema (sunburn) of the skin, while chronic exposure to solar UV radiation causes photo-aging, immunosuppression, and ultimately, carcinogenesis of the skin. After skin damage by UV radiation, the cells are known to secrete many cytokines, including interleukin (IL)-1, IL-6, tumor necrosis factor (TNF)-α. and macrophage migration inhibitory factor (MIF). MIF was originally identified as a lymphokine that concentrates macrophages at inflammatory loci, and is known to be a potent activator of macrophages in vivo. MIF is considered to play an important role in cell-mediated immunity. Since the molecular cloning of MIF cDNA, MIF has been re-evaluated as a proinflammatory cytokine and pituitary-derived hormone that potentiates endotoxemia. MIF is ubiquitously expressed in various tissues, including the skin. Recent studies have suggested a potentially broader role for MIF in growth regulation because of its ability to antagonize p53-mediated gene activation and apoptosis. This article reviews the latest findings on the roles of MIF with regard to UV-induced skin cancer.

  16. Field induced magnetic form factor in UIr{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Verniere, A.; Boucherle, J.X. [CEA Grenoble, Dept. de Recherche Fondamentale sur la Matiere Condensee (DRFMC), 38 (France); Lejay, P.; Verniere, A. [Centre National de la Recherche Scientifique (CNRS), 38 - Grenoble (France). Centre de Recherches sur les Tres Basses Temperatures; Gillon, B. [Laboratoire Leon Brillouin (LLB) - CEA/Saclay, 91 - Gif-sur-Yvette (France)

    1998-07-01

    The heavy fermion quadratic compound UIr{sub 2}Si{sub 2} presents an antiferromagnetic ordering below T = 6 K, with a very small moment of 0.10 (1) {mu} {beta}. Below this temperature, a metamagnetic transition is induced by an applied field. The induced moment is then 0 36 (1) {mu} {beta}. To try to understand this behaviour, we have performed magnetization density measurements on a single crystal with polarised neutrons, above and below the metamagnetic transition. The results have been analysed by the Maximum Entropy method and by form factor least square refinements. In both cases, the whole magnetic density is located on the uranium atoms. This density is mainly due to 5f electrons, but a small positive density of d-type is also present. The analysis of the uranium form factor seems to indicate that, specially above the metamagnetic transition, the orbital contribution to the 5f density is smaller, compared to the spin one, than expected for the free ion. (authors)

  17. Synthesis and Biological Evaluation of Manassantin Analogues for Hypoxia-Inducible Factor 1α Inhibition.

    Science.gov (United States)

    Kwon, Do-Yeon; Lee, Hye Eun; Weitzel, Douglas H; Park, Kyunghye; Lee, Sun Hee; Lee, Chen-Ting; Stephenson, Tesia N; Park, Hyeri; Fitzgerald, Michael C; Chi, Jen-Tsan; Mook, Robert A; Dewhirst, Mark W; Lee, You Mie; Hong, Jiyong

    2015-10-08

    To cope with hypoxia, tumor cells have developed a number of adaptive mechanisms mediated by hypoxia-inducible factor 1 (HIF-1) to promote angiogenesis and cell survival. Due to significant roles of HIF-1 in the initiation, progression, metastasis, and resistance to treatment of most solid tumors, a considerable amount of effort has been made to identify HIF-1 inhibitors for treatment of cancer. Isolated from Saururus cernuus, manassantins A (1) and B (2) are potent inhibitors of HIF-1 activity. To define the structural requirements of manassantins for HIF-1 inhibition, we prepared and evaluated a series of manassantin analogues. Our SAR studies examined key regions of manassantin's structure in order to understand the impact of these regions on biological activity and to define modifications that can lead to improved performance and drug-like properties. Our efforts identified several manassantin analogues with reduced structural complexity as potential lead compounds for further development. Analogues MA04, MA07, and MA11 down-regulated hypoxia-induced expression of the HIF-1α protein and reduced the levels of HIF-1 target genes, including cyclin-dependent kinase 6 (Cdk6) and vascular endothelial growth factor (VEGF). These findings provide an important framework to design potent and selective HIF-1α inhibitors, which is necessary to aid translation of manassantin-derived natural products to the clinic as novel therapeutics for cancers.

  18. Nerve growth factor protects against palmitic acid-induced injury in retinal ganglion cells

    Institute of Scientific and Technical Information of China (English)

    Pan-shi Yan; Shu Tang; Hai-feng Zhang; Yuan-yuan Guo; Zhi-wen Zeng; Qiang Wen

    2016-01-01

    Accumulating evidence supports an important role for nerve growth factor (NGF) in diabetic retinopathy. We hypothesized that NGF has a protective effect on rat retinal ganglion RGC-5 cells injured by palmitic acid (PA), a metabolic factor implicated in the development of dia-betes and its complications. Our results show that PA exposure caused apoptosis of RGC-5 cells, while NGF protected against PA insult in a concentration-dependent manner. Additionally, NGF signiifcantly attenuated the levels of reactive oxygen species (ROS) and malondialde-hyde (MDA) in RGC-5 cells. Pathway inhibitor tests showed that the protective effect of NGF was completely reversed by LY294002 (PI3K inhibitor), Akt VIII inhibitor, and PD98059 (ERK1/2 inhibitor). Western blot analysis revealed that NGF induced the phosphorylation of Akt/FoxO1 and ERK1/2 and reversed the PA-evoked reduction in the levels of these proteins. These results indicate that NGF protects RGC-5 cells against PA-induced injury through anti-oxidation and inhibition of apoptosis by modulation of the PI3K/Akt and ERK1/2 sig-naling pathways.

  19. Hypoxia-inducible factor directs POMC gene to mediate hypothalamic glucose sensing and energy balance regulation.

    Science.gov (United States)

    Zhang, Hai; Zhang, Guo; Gonzalez, Frank J; Park, Sung-Min; Cai, Dongsheng

    2011-07-01

    Hypoxia-inducible factor (HIF) is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance.

  20. Hypoxia-inducible factor directs POMC gene to mediate hypothalamic glucose sensing and energy balance regulation.

    Directory of Open Access Journals (Sweden)

    Hai Zhang

    2011-07-01

    Full Text Available Hypoxia-inducible factor (HIF is a nuclear transcription factor that responds to environmental and pathological hypoxia to induce metabolic adaptation, vascular growth, and cell survival. Here we found that HIF subunits and HIF2α in particular were normally expressed in the mediobasal hypothalamus of mice. Hypothalamic HIF was up-regulated by glucose to mediate the feeding control of hypothalamic glucose sensing. Two underlying molecular pathways were identified, including suppression of PHDs by glucose metabolites to prevent HIF2α degradation and the recruitment of AMPK and mTOR/S6K to regulate HIF2α protein synthesis. HIF activation was found to directly control the transcription of POMC gene. Genetic approach was then employed to develop conditional knockout mice with HIF inhibition in POMC neurons, revealing that HIF loss-of-function in POMC neurons impaired hypothalamic glucose sensing and caused energy imbalance to promote obesity development. The metabolic effects of HIF in hypothalamic POMC neurons were independent of leptin signaling or pituitary ACTH pathway. Hypothalamic gene delivery of HIF counteracted overeating and obesity under conditions of nutritional excess. In conclusion, HIF controls hypothalamic POMC gene to direct the central nutrient sensing in regulation of energy and body weight balance.

  1. Surgical treatment of denture-induced fibrous hyperplasia with plasma rich in growth factors.

    Science.gov (United States)

    Mozzati, Marco; Mortellaro, Carmen; Gallesio, Giorgia; Ruggiero, Tiziana; Pol, Renato

    2015-05-01

    Denture-induced fibrous hyperplasia is a fibrous connective tissue lesion that commonly occurs in oral mucosa in patients showing important alveolar ridge atrophy. In this study, we propose Plasma Rich in Growth Factors (PRGF) to overcome constrains of traditional surgical treatment. Herein, we demonstrated that PRGF represents an autologous source of growth factors able to reduce the healing time of the alveolar mucosa and the discomfort of those patients. These properties are the result of PRGF's precise biological features that result in the following: reduction of duration and intensity of postsurgical pain, acceleration of re-epithelialization of the wound, and reduction of bleeding events and of edema. In conclusion, we showed that using PRGF on patients affected by denture-induced fibrous hyperplasia allows a short healing time, thereby reducing complications and overall improving their quality of life. The aims of this study were to evaluate the influence of PRGF-ENDORET on secondary re-epithelialization in vestibuloplasty after excision of denture irritation fibrous hyperplasia, with an explorative randomized case control trial with 10 patients, 5 patients treated with PRGF and 5 patients with traditional hemostasis, and to analyze differences with simple surgery, considering postoperative rapidity of re-epithelialization, comfort, and discomfort of patients, pain, swelling, and infections.

  2. An inducible transcription factor activates expression of human immunodeficiency virus in T cells

    Science.gov (United States)

    Nabel, Gary; Baltimore, David

    1987-04-01

    Human immunodeficiency virus (HIV) production from latently infected T lymphocytes can be induced with compounds that activate the cells to secrete lymphokines1,2. The elements in the HIV genome which control activation are not known but expression might be regulated through a variety of DNA elements. The cis-acting control elements of the viral genome are enhancer and promoter regions. The virus also encodes trans-acting factors specified by the tat-III (refs 3-6) and art genes7. We have examined whether products specific to activated T cells might stimulate viral transcription by binding to regions on viral DNA. Activation of T cells, which increases HIV expression up to 50-fold, correlated with induction of a DNA binding protein indistinguishable from a recognized transcription factor, called NF-κB (ref. 8), with binding sites in the viral enhancer. Mutation of these binding sites abolished inducibility. That NF-κB acts in synergy with the viral tat-III gene product to enhance HIV expression in T cells may have implications for the pathogenesis of AIDS (acquired immune deficiency syndrome).

  3. Hypoxia inducible factors are dispensable for myeloid cell migration into the inflamed mouse eye

    Science.gov (United States)

    Gardner, Peter J.; Liyanage, Sidath E.; Cristante, Enrico; Sampson, Robert D.; Dick, Andrew D.; Ali, Robin R.; Bainbridge, James W.

    2017-01-01

    Hypoxia inducible factors (HIFs) are ubiquitously expressed transcription factors important for cell homeostasis during dynamic oxygen levels. Myeloid specific HIFs are crucial for aspects of myeloid cell function, including their ability to migrate into inflamed tissues during autoimmune disease. This contrasts with the concept that accumulation of myeloid cells at ischemic and hypoxic sites results from a lack of chemotactic responsiveness. Here we seek to address the role of HIFs in myeloid trafficking during inflammation in a mouse model of human uveitis. We show using mice with myeloid-specific Cre-deletion of HIFs that myeloid HIFs are dispensable for leukocyte migration into the inflamed eye. Myeloid-specific deletion of Hif1a, Epas1, or both together, had no impact on the number of myeloid cells migrating into the eye. Additionally, stabilization of HIF pathways via deletion of Vhl in myeloid cells had no impact on myeloid trafficking into the inflamed eye. Finally, we chemically induce hypoxemia via hemolytic anemia resulting in HIF stabilization within circulating leukocytes to demonstrate the dispensable role of HIFs in myeloid cell migration into the inflamed eye. These data suggest, contrary to previous reports, that HIF pathways in myeloid cells during inflammation and hypoxia are dispensable for myeloid cell tissue trafficking. PMID:28112274

  4. Activation of hypoxia inducible factor 1 is a general phenomenon in infections with human pathogens.

    Directory of Open Access Journals (Sweden)

    Nadine Werth

    Full Text Available BACKGROUND: Hypoxia inducible factor (HIF-1 is the key transcriptional factor involved in the adaptation process of cells and organisms to hypoxia. Recent findings suggest that HIF-1 plays also a crucial role in inflammatory and infectious diseases. METHODOLOGY/PRINCIPAL FINDINGS: Using patient skin biopsies, cell culture and murine infection models, HIF-1 activation was determined by immunohistochemistry, immunoblotting and reporter gene assays and was linked to cellular oxygen consumption. The course of a S. aureus peritonitis was determined upon pharmacological HIF-1 inhibition. Activation of HIF-1 was detectable (i in all ex vivo in biopsies of patients suffering from skin infections, (ii in vitro using cell culture infection models and (iii in vivo using murine intravenous and peritoneal S. aureus infection models. HIF-1 activation by human pathogens was induced by oxygen-dependent mechanisms. Small colony variants (SCVs of S. aureus known to cause chronic infections did not result in cellular hypoxia nor in HIF-1 activation. Pharmaceutical inhibition of HIF-1 activation resulted in increased survival rates of mice suffering from a S. aureus peritonitis. CONCLUSIONS/SIGNIFICANCE: Activation of HIF-1 is a general phenomenon in infections with human pathogenic bacteria, viruses, fungi and protozoa. HIF-1-regulated pathways might be an attractive target to modulate the course of life-threatening infections.

  5. Hypoxia-inducible factor-1a restricts the anabolic actions of parathyroid hormone

    Institute of Scientific and Technical Information of China (English)

    Julie L Frey; David P Stonko; Marie-Claude Faugere; Ryan C Riddle

    2014-01-01

    The hypoxia inducible factors (Hifs) are evolutionarily conserved transcriptional factors that control homeostatic responses to low oxygen. In developing bone, Hif-1 generated signals induce angiogenesis necessary for osteoblast specification, but in mature bone, loss of Hif-1 in osteoblasts resulted in a more rapid accumulation of bone. These findings suggested that Hif-1 exerts distinct developmental functions and acts as a negative regulator of bone formation. To investigate the function of Hif-1a in osteoanabolic signaling, we assessed the effect of Hif-1a loss-of-function on bone formation in response to intermittent parathyroid hormone (PTH). Mice lacking Hif-1a in osteoblasts and osteocytes form more bone in response to PTH, likely through a larger increase in osteoblast activity and increased sensitivity to the hormone. Consistent with this effect, exposure of primary mouse osteoblasts to PTH resulted in the rapid induction of Hif-1a protein levels via a post-transcriptional mechanism. The enhanced anabolic response appears to result from the removal of Hif-1a-mediated suppression of b-catenin transcriptional activity. Together, these data indicate that Hif-1a functions in the mature skeleton to restrict osteoanabolic signaling. The availability of pharmacological agents that reduce Hif-1a function suggests the value in further exploration of this pathway to optimize the therapeutic benefits of PTH.

  6. WNK4 is an Adipogenic Factor and Its Deletion Reduces Diet-Induced Obesity in Mice

    Directory of Open Access Journals (Sweden)

    Daiei Takahashi

    2017-04-01

    Full Text Available The with-no-lysine kinase (WNK 4 gene is a causative gene in pseudohypoaldosteronism type II. Although WNKs are widely expressed in the body, neither their metabolic functions nor their extrarenal role is clear. In this study, we found that WNK4 was expressed in mouse adipose tissue and 3T3-L1 adipocytes. In mouse primary preadipocytes and in 3T3-L1 adipocytes, WNK4 was markedly induced in the early phase of adipocyte differentiation. WNK4 expression preceded the expression of key transcriptional factors PPARγ and C/EBPα. WNK4-siRNA-transfected 3T3-L1 cells and human mesenchymal stem cells showed reduced expression of PPARγ and C/EBPα and lipid accumulation. WNK4 protein affected the DNA-binding ability of C/EBPβ and thereby reduced PPARγ expression. In the WNK4−/− mice, PPARγ and C/EBPα expression were decreased in adipose tissues, and the mice exhibited partial resistance to high-fat diet-induced adiposity. These data suggest that WNK4 may be a proadipogenic factor, and offer insights into the relationship between WNKs and energy metabolism.

  7. Monocyte chemoattractant protein-1 but not tumor necrosis factor-alpha is correlated with monocyte infiltration in mouse lipid lesions

    Energy Technology Data Exchange (ETDEWEB)

    Reckless, Jill; Rubin, Edward M.; Verstuyft, Judy B.; Metcalfe, James C.; Grainger, David J.

    1999-01-11

    The infiltration of monocytes into the vascular wall and their transformation into lipid-laden foam cells characterize early atherogenesis. This focal accumulation of lipids, together with smooth muscle cell proliferation and migration, and the synthesis of extracellular matrix in the intima of large arteries result in the formation of an atherosclerotic plaque. The extent to which the plaque is infiltrated with monocytes appears to be an important determinant of plaque stability. It has been proposed that macrophages secrete an excess of matrix-degrading enzymes over their inhibitors, resulting in conversion of a stable plaque into anunstable plaque that is likely to rupture, resulting in acutemyocardial infarction. Macrophages and T cells constitute {approx}40 percent of the total population of cells in the lipid core region of atherosclerotic plaques. Their recruitment to the lesion may depend on alterations in the adhesive properties of the endothelial surface. Increased endothelial cell permeability and endothelial cell activation are among the earliest changes associated with developing lesions of atherosclerosis. Many of the cell adhesion molecules involved in monocyte recruitment are expressed at low or undetectable levels on normal endothelium but are substantially elevated on the endothelium overlaying atherosclerotic lesions In addition to endothelial cell activation, numerous chemotactic cytokines have also been postulated to be involved in monocyte recruitment. For example, interleukin (IL)-1 and tumor necrosis factor-a (TNF-a) are direct chemoattractants for human monocytes but additionally induce cytoskeletal changes in the endothelium that result in increased permeability. This increased permeability, together with stimulated expression of adhesion molecules such as E-selectin, plays an important part in the local inflammation mediated by TNF-a and IL-1. In addition, a large number of other proinflammatory cytokines, including macrophage

  8. Fibroblast Growth Factor 21 Deficiency Attenuates Experimental Colitis-Induced Adipose Tissue Lipolysis

    Directory of Open Access Journals (Sweden)

    Liming Liu

    2017-01-01

    Full Text Available Aims. Nutrient deficiencies are common in patients with inflammatory bowel disease (IBD. Adipose tissue plays a critical role in regulating energy balance. Fibroblast growth factor 21 (FGF21 is an important endocrine metabolic regulator with emerging beneficial roles in lipid homeostasis. We investigated the impact of FGF21 in experimental colitis-induced epididymal white adipose tissue (eWAT lipolysis. Methods. Mice were given 2.5% dextran sulfate sodium (DSS ad libitum for 7 days to induce colitis. The role of FGF21 was investigated using antibody neutralization or knockout (KO mice. Lipolysis index and adipose lipolytic enzymes were determined. In addition, 3T3-L1 cells were pretreated with IL-6, followed by recombinant human FGF21 (rhFGF21 treatment; lipolysis was assessed. Results. DSS markedly decreased eWAT/body weight ratio and increased serum concentrations of free fatty acid (FFA and glycerol, indicating increased adipose tissue lipolysis. eWAT intracellular lipolytic enzyme expression/activation was significantly increased. These alterations were significantly attenuated in FGF21 KO mice and by circulating FGF21 neutralization. Moreover, DSS treatment markedly increased serum IL-6 and FGF21 levels. IL-6 pretreatment was necessary for the stimulatory effect of FGF21 on adipose lipolysis in 3T3-L1 cells. Conclusions. Our results demonstrate that experimental colitis induces eWAT lipolysis via an IL-6/FGF21-mediated signaling pathway.

  9. Anti-Inflammatory Cytokines: Important Immunoregulatory Factors Contributing to Chemotherapy-Induced Gastrointestinal Mucositis

    Directory of Open Access Journals (Sweden)

    Masooma Sultani

    2012-01-01

    Full Text Available “Mucositis” is the clinical term used to describe ulceration and damage of the mucous membranes of the entire gastrointestinal tract (GIT following cytotoxic cancer chemotherapy and radiation therapy common symptoms include abdominal pain, bloating, diarrhoea, vomiting, and constipation resulting in both a significant clinical and financial burden. Chemotherapeutic drugs cause upregulation of stress response genes including NFκB, that in turn upregulate the production of proinflammatory cytokines such as interleukin-1β (IL-1β, Interleukin-6 (IL-6, and tumour necrosis factor-α (TNF-α. These proinflammatory cytokines are responsible for initiating inflammation in response to tissue injury. Anti-inflammatory cytokines and specific cytokine inhibitors are also released to limit the sustained or excessive inflammatory reactions. In the past decade, intensive research has determined the role of proinflammatory cytokines in development of mucositis. However, a large gap remains in the knowledge of the role of anti-inflammatory cytokines in the setting of chemotherapy-induced mucositis. This critical paper will highlight current literature available relating to what is known regarding the development of mucositis, including the molecular mechanisms involved in inducing inflammation particularly with respect to the role of proinflammatory cytokines, as well as provide a detailed discussion of why it is essential to consider extensive research in the role of anti-inflammatory cytokines in chemotherapy-induced mucositis so that effective targeted treatment strategies can be developed.

  10. Zinc acexamate reduces gastric damage induced by platelet-activating factor.

    Science.gov (United States)

    Escolar, G; Navarro, C; Galmés, J L; Casanovas, L I; Bulbena, O

    1989-10-01

    We have tested the ability of zinc acexamate (ZAC) to prevent platelet-activating-factor (Paf) induced gastric damage in rats. Lesions were characterized by a vascular congestion affecting the entire mucosa, oedema, haemorrhage and frequent necrosis of the more superficial areas. The gastric damage appearing after Paf was accompanied by degranulation of gastric mast cells. Leukocytes were often seen at the submucosal level. Oral pretreatment with ZAC reduced in a dose-dependent manner both gastric damage and mast cell degranulation observed after Paf. ZAC administered orally at a dose of 100 mg kg-1 statistically inhibited (p less than 0.01) gastric damage and mast cell degranulation. ZAC did not affect the hypotension induced by Paf confirming that gastric damage and hypotension appearing in rats after Paf administration are two independent phenomena. The present findings indicate that the inhibitory effect of ZAC upon gastric lesions induced by Paf may be related to the different protective actions exhibited by this zinc compound in a wide variety of experimental models of gastric ulcer.

  11. Ultraviolet Radiation and the Slug Transcription Factor Induce Proinflammatory and Immunomodulatory Mediator Expression in Melanocytes

    Directory of Open Access Journals (Sweden)

    Stephanie H. Shirley

    2012-01-01

    Full Text Available Despite extensive investigation, the precise contribution of the ultraviolet radiation (UVR component of sunlight to melanoma etiology remains unclear. UVR induces keratinocytes to secrete proinflammatory and immunomodulatory mediators that promote inflammation and skin tumor development; expression of the slug transcription factor in keratinocytes is required for maximal production of these mediators. In the present studies we examined the possibility that UVR-exposed melanocytes also produce proinflammatory mediators and that Slug is important in this process. Microarray studies revealed that both UVR exposure and Slug overexpression altered transcription of a variety of proinflammatory mediators by normal human melanocytes; some of these mediators are also known to stimulate melanocyte growth and migration. There was little overlap in the spectra of cytokines produced by the two stimuli. However IL-20 was similarly induced by both stimuli and the NFκB pathway appeared to be important in both circumstances. Further exploration of UVR-induced and Slug-dependent pathways of cytokine induction in melanocytes may reveal novel targets for melanoma therapy.

  12. Stromal cell-derived factor-1 potentiates bone morphogenetic protein-2 induced bone formation.

    Science.gov (United States)

    Higashino, Kosaku; Viggeswarapu, Manjula; Bargouti, Maggie; Liu, Hui; Titus, Louisa; Boden, Scott D

    2011-02-01

    The mechanisms driving bone marrow stem cell mobilization are poorly understood. A recent murine study found that circulating bone marrow-derived osteoprogenitor cells (MOPCs) were recruited to the site of recombinant human bone morphogenetic protein-2 (BMP-2)-induced bone formation. Stromal cell-derived factor-1α (SDF-1α) and its cellular receptor CXCR4 have been shown to mediate the homing of stem cells to injured tissues. We hypothesized that chemokines, such as SDF-1, are also involved with mobilization of bone marrow cells. The CD45(-) fraction is a major source of MOPCs. In this report we determined that the addition of BMP-2 or SDF-1 to collagen implants increased the number of MOPCs in the peripheral blood. BMP-2-induced mobilization was blocked by CXCR4 antibody, confirming the role of SDF-1 in mobilization. We determined for the first time that addition of SDF-1 to implants containing BMP-2 enhances mobilization, homing of MOPCs to the implant, and ectopic bone formation induced by suboptimal BMP-2 doses. These results suggest that SDF-1 increases the number of osteoprogenitor cells that are mobilized from the bone marrow and then home to the implant. Thus, addition of SDF-1 to BMP-2 may improve the efficiency of BMPs in vivo, making their routine use for orthopaedic applications more affordable and available to more patients.

  13. Tumor Necrosis Factor-α-Induced Ototoxicity in Mouse Cochlear Organotypic Culture.

    Directory of Open Access Journals (Sweden)

    Qian Wu

    Full Text Available Tumor necrosis factor (TNF-α is a cytokine involved in acute inflammatory phase reactions, and is the primary upstream mediator in the cochlear inflammatory response. Treatment of the organ of Corti with TNF-α can induce hair cell damage. However, the resulting morphological changes have not been systematically examined. In the present study, cochlear organotypic cultures from neonatal mice were treated with various concentrations and durations of TNF-α to induce inflammatory responses. Confocal microscopy was used to evaluate the condition of hair cells and supporting cells following immunohistochemical staining. In addition, the ultrastructure of the stereocilia bundle, hair cells, and supporting cells were examined by scanning and transmission electron microscopy. TNF-α treatment resulted in a fusion and loss of stereocilia bundles in hair cells, swelling of mitochondria, and vacuolation and degranulation of the endoplasmic reticulum. Disruption of tight junctions between hair cells and supporting cells was also observed at high concentrations. Hair cell loss was preceded by apoptosis of Deiters' and pillar cells. Taken together, these findings detail the morphological changes in the organ of Corti after TNF-α treatment, and provide an in vitro model of inflammatory-induced ototoxicity.

  14. Induced second trimester abortion and associated factors in Amhara region referral hospitals.

    Science.gov (United States)

    Mulat, Amlaku; Bayu, Hinsermu; Mellie, Habtamu; Alemu, Amare

    2015-01-01

    Although the vast majority of abortions are performed in the first trimester, still 10-15% of terminations of pregnancies have taken place in the second trimester period globally. As compared to first trimester, second trimester abortions are disproportionately contribute for maternal morbidity and mortality especially in low-resource countries where access to safe second trimester abortion is limited. The main aim of this study was to assess the prevalence and associated factors of induced second trimester abortion in Amhara region referral hospitals, northwest Ethiopia. Institution based cross-sectional study was conducted in Amhara region referral hospitals among 416 women who sought abortion services. Participants were selected using systematic sampling technique. Data were collected using pretested structured questionnaire through interviewing. After the data were entered and analyzed; variables which have P value abortion was 19.2%. Being rural (AOR = 1.86 [95% CI = 1.11-3.14]), having irregular menstrual cycle (AOR = 1.76 [95% CI = 1.03-2.98]), not recognizing their pregnancy at early time (AOR = 2.05 [95% CI = 1.21-3.48]), and having logistics related problems (AOR = 2.37 [95% CI = 1.02-5.53]) were found to have statistically significant association with induced second trimester abortion. Induced second trimester abortion is high despite the availability of first trimester abortion services. Therefore, increase accessibility and availability of safe second trimester abortion services below referral level, counseling and logistical support are helpful to minimize late abortions.

  15. Amyloid beta-induced nerve growth factor dysmetabolism in Alzheimer disease.

    Science.gov (United States)

    Bruno, Martin A; Leon, Wanda C; Fragoso, Gabriela; Mushynski, Walter E; Almazan, Guillermina; Cuello, A Claudio

    2009-08-01

    We previously reported that the precursor form of nerve growth factor (pro-NGF) and not mature NGF is liberated in the CNS in an activity-dependent manner, and that its maturation and degradation occur in the extracellular space by the coordinated action of proteases.Here, we present evidence of diminished conversion of pro-NGF to its mature form and of greater NGF degradation in Alzheimer disease (AD) brain samples compared with controls. These alterations of the NGF metabolic pathway likely resulted in the increased pro-NGF levels. The pro-NGF was largely in a peroxynitrited form in the AD samples. Intrahippocampal injection of amyloid-beta oligomers provoked similar upregulation of pro-NGF in naive rats that was accompanied by evidence of microglial activation (CD40), increased levels of inducible nitric oxide synthase, and increased activity of the NGF-degrading enzyme matrix metalloproteinase 9. The elevated inducible nitric oxide synthase provoked the generation of biologically inactive, peroxynitrite-modified pro-NGF in amyloid-beta oligomer-injected rats. These parameters were corrected by minocycline treatment. Minocycline also diminished altered matrix metalloproteinase 9, inducible nitric oxide synthase, and microglial activation (CD40); improved cognitive behavior; and normalized pro-NGF levels in a transgenic mouse AD model. The effects of amyloid-beta amyloid CNS burden on NGF metabolism may explain the paradoxical upregulation of pro-NGF in AD accompanied by atrophy of forebrain cholinergic neurons.

  16. Saururus cernuus lignans--potent small molecule inhibitors of hypoxia-inducible factor-1.

    Science.gov (United States)

    Hossain, Chowdhury Faiz; Kim, Yong-Pil; Baerson, Scott R; Zhang, Lei; Bruick, Richard K; Mohammed, Kaleem A; Agarwal, Ameeta K; Nagle, Dale G; Zhou, Yu-Dong

    2005-08-05

    Hypoxia-inducible factor-1 (HIF-1) represents an important tumor-selective therapeutic target for solid tumors. In search of novel small molecule HIF-1 inhibitors, 5400 natural product-rich extracts from plants, marine organisms, and microbes were examined for HIF-1 inhibitory activities using a cell-based reporter assay. Bioassay-guided fractionation and isolation, followed by structure elucidation, yielded three potent natural product-derived HIF-1 inhibitors and two structurally related inactive compounds. In a T47D cell-based reporter assay, manassantin B1, manassantin A, and 4-O-methylsaucerneol inhibited hypoxia-induced HIF-1 activation with IC50 values of 3, 3, and 20 nM, respectively. All three compounds are relatively hypoxia-specific inhibitors of HIF-1 activation, in comparison to other stimuli. The hypoxic induction of HIF-1 target genes CDKN1A, VEGF, and GLUT-1 were also inhibited. These compounds inhibit HIF-1 by blocking hypoxia-induced nuclear HIF-1alpha protein accumulation without affecting HIF-1alpha mRNA levels. In addition, preliminary structure-activity studies suggest specific structural requirements for this class of HIF-1 inhibitors.

  17. Saururus cernuus Lignans - Potent Small Molecule Inhibitors of Hypoxia-Inducible Factor-1

    Science.gov (United States)

    Hossain, Chowdhury Faiz; Kim, Yong-Pil; Baerson, Scott R.; Zhang, Lei; Bruick, Richard K.; Mohammed, Kaleem A.; Agarwal, Ameeta K.; Nagle, Dale G.; Zhou, Yu-Dong

    2010-01-01

    Hypoxia-inducible factor-1 (HIF-1) represents an important tumor-selective therapeutic target for solid tumors. In search of novel small molecule HIF-1 inhibitors, 5400 natural product-rich extracts from plants, marine organisms, and microbes were examined for HIF-1 inhibitory activities using a cell-based reporter assay. Bioassay-guided fractionation and isolation, followed by structure elucidation, yielded three potent natural product-derived HIF-1 inhibitors and two structurally related inactive compounds. In a T47D cell-based reporter assay, manassantin B1, manassantin A, and 4-O-methylsaucerneol inhibited hypoxia-induced HIF-1 activation with IC50 values of 3, 3, and 20 nM, respectively. All three compounds are relatively hypoxia-specific inhibitors of HIF-1 activation, in comparison to other stimuli. The hypoxic induction of HIF-1 target genes CDKN1A, VEGF and GLUT-1 were also inhibited. These compounds inhibit HIF-1 by blocking hypoxia-induced nuclear HIF-1α protein accumulation without affecting HIF-1α mRNA levels. In addition, preliminary structure-activity studies suggest specific structural requirements for this class of HIF-1 inhibitors. PMID:15967416

  18. Exchange factors directly activated by cAMP mediate melanocortin 4 receptor-induced gene expression

    Science.gov (United States)

    Glas, Evi; Mückter, Harald; Gudermann, Thomas; Breit, Andreas

    2016-01-01

    Gs protein-coupled receptors regulate many vital body functions by activation of cAMP response elements (CRE) via cAMP-dependent kinase A (PKA)-mediated phosphorylation of the CRE binding protein (CREB). Melanocortin 4 receptors (MC4R) are prototypical Gs-coupled receptors that orchestrate the hypothalamic control of food-intake and metabolism. Remarkably, the significance of PKA for MC4R-induced CRE-dependent transcription in hypothalamic cells has not been rigorously interrogated yet. In two hypothalamic cell lines, we observed that blocking PKA activity had only weak or no effects on reporter gene expression. In contrast, inhibitors of exchange factors directly activated by cAMP-1/2 (EPAC-1/2) mitigated MC4R-induced CRE reporter activation and mRNA induction of the CREB-dependent genes c-fos and thyrotropin-releasing hormone. Furthermore, we provide first evidence that extracellular-regulated kinases-1/2 (ERK-1/2) activated by EPACs and not PKA are the elusive CREB kinases responsible for MC4R-induced CREB/CRE activation in hypothalamic cells. Overall, these data emphasize the pivotal role of EPACs rather than PKA in hypothalamic gene expression elicited by a prototypical Gs-coupled receptor. PMID:27612207

  19. Regulation of hypoxia-inducible factor-1α in human buccal mucosal fibroblasts stimulated with arecoline

    Directory of Open Access Journals (Sweden)

    Yung-Chuan Ho

    2017-06-01

    Full Text Available Hypoxia-inducible factor (HIF-1α is consistently and dramatically upregulated in a variety of fibrotic diseases. The aim of this study was to compare HIF-1α expression from fibroblasts derived from human normal buccal mucosa and oral submucous fibrosis (OSF specimens and further to explore the potential mechanisms that may lead to induce HIF-1α expression. OSF buccal mucosal fibroblasts (BMFs demonstrated significantly higher HIF-1α mRNA expression than normal BMFs (p<0.005. Arecoline, the major areca nut alkaloid, was also found to elevate HIF-1α mRNA expression in a dose-dependent manner (p<0.05. Moreover, arecoline-induced HIF-1α expression was downregulated by mitogen-activated protein kinase inhibitor U0126, phosphatidylinositol 3-kinase inhibitor LY294002, p38 inhibitor SB203580, cyclooxygenase-2 inhibitor NS-398, and glutathione precursor N-acetyl-L-cysteine (p<0.05. Taken together, hypoxia plays an important role in the pathogenesis of areca quid chewing-associated OSF. These pharmacological agents may be further used as chemoprevention agents for OSF.

  20. Platelet activating factor-induced expression of p21 is correlated with histone acetylation

    Science.gov (United States)

    Damiani, Elisabetta; Puebla-Osorio, Nahum; Lege, Bree M.; Liu, Jingwei; Neelapu, Sattva S.; Ullrich, Stephen E.

    2017-01-01

    Ultraviolet (UV)-irradiated keratinocytes secrete the lipid mediator of inflammation, platelet-activating factor (PAF). PAF plays an essential role in UV-induced immune suppression and skin cancer induction. Dermal mast cell migration from the skin to the draining lymph nodes plays a prominent role in activating systemic immune suppression. UV-induced PAF activates mast cell migration by up-regulating mast cell CXCR4 surface expression. Recent findings indicate that PAF up-regulates CXCR4 expression via histone acetylation. UV-induced PAF also activates cell cycle arrest and disrupts DNA repair, in part by increasing p21 expression. Do epigenetic alterations play a role in p21 up-regulation? Here we show that PAF increases Acetyl-CREB-binding protein (CBP/p300) histone acetyltransferase expression in a time and dose-dependent fashion. Partial deletion of the HAT domain in the CBP gene, blocked these effects. Chromatin immunoprecipitation assays indicated that PAF-treatment activated the acetylation of the p21 promoter. PAF-treatment had no effect on other acetylating enzymes (GCN5L2, PCAF) indicating it is not a global activator of histone acetylation. This study provides further evidence that PAF activates epigenetic mechanisms to affect important cellular processes, and we suggest this bioactive lipid can serve as a link between the environment and the epigenome. PMID:28157211

  1. Eicosapentaenoic acid inhibits tumour necrosis factor-α-induced lipolysis in murine cultured adipocytes.

    Science.gov (United States)

    Lorente-Cebrián, Silvia; Bustos, Matilde; Marti, Amelia; Fernández-Galilea, Marta; Martinez, J Alfredo; Moreno-Aliaga, Maria J

    2012-03-01

    Eicosapentaenoic acid (EPA) is an omega-3 polyunsaturated fatty acid with beneficial effects in obesity and insulin resistance. High levels of proinflammatory cytokine tumour necrosis factor-α (TNF-α) in obesity promote lipolysis in adipocytes, leading to the development of insulin resistance. Thus, the aims of the present study were to analyze the potential antilipolytic properties of EPA on cytokine-induced lipolysis and to investigate the possible mechanisms involved. The EPA effects on basal and TNF-α-induced lipolysis were determined in both primary rat and 3T3-L1 adipocytes. Treatment of primary rat adipocytes with EPA (100 and 200 μM) significantly decreased basal glycerol release (Plipolysis in a dose-dependent manner (Padipocytes. However, oral supplementation with EPA for 35 days was able to partially reverse the down-regulation of HSL and ATGL messenger RNA observed in retroperitoneal adipose tissue of high-fat-diet-fed rats. These findings suggest that EPA inhibits proinflammatory cytokine-induced lipolysis in adipocytes. This effect might contribute to explain the insulin-sensitizing properties of EPA. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Analysis of factors related to man-induced hazard for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Soon; Jung, Jea Hee; Lee, Keun O; Son, Ki Sang; Wang, Sang Chul; Lee, Chang Jin; Ku, Min Ho; Park, Nam Young [Seoul National Univ. of Technology, Seoul (Korea, Republic of)

    2003-03-15

    This study is to show a guide for installing hazardous facilities adjoined atomic power plant after finding out how much these facilities could impact to the atomic plant. Nuclear power plant is an important facility which is closely connected with public life, industrial activity, and the conduct of public business, so it should not be damaged. Therefore, if there are hazardous and harmful facilities near the plant, then they must be evaluated by the size, the type, and the shape. First of all, any factors that could cause man induced accident must be investigated. And they must be exactly evaluated from how much it will damage the plant facilities. The purpose of this study is to set a technical standard for the installation of these facilities by evaluating the man induced accident. Also, it is to make out the evaluation methods by investigating the hazardous facilities which are placed near the plant. Our country is now using CFR standard : reg. guide and IAEA safety series. However, not only the standard of technology which is related to man induced accident but also the evaluation methods for facilities are not yet layed down. As It was mentioned above, we should evaluate these facilities adequately, and these methods must be made out.

  3. Allograft inflammatory factor-1 in the pathogenesis of bleomycin-induced acute lung injury.

    Science.gov (United States)

    Nagahara, Hidetake; Yamamoto, Aihiro; Seno, Takahiro; Obayashi, Hiroshi; Kida, Takashi; Nakabayashi, Amane; Kukida, Yuji; Fujioka, Kazuki; Fujii, Wataru; Murakami, Ken; Kohno, Masataka; Kawahito, Yutaka

    2016-02-01

    Allograft inflammatory factor-1 (AIF-1) is a protein expressed by macrophages infiltrating the area around the coronary arteries of rats with an ectopic cardiac allograft. Some studies have shown that expression of AIF-1 increased in a mouse model of trinitrobenzene sulfonic acid-induced acute colitis and in acute cellular rejection of human cardiac allografts. These results suggest that AIF-1 is related to acute inflammation. The current study used bleomycin-induced acute lung injury to analyze the expression of AIF-1 and to examine its function in acute lung injury. Results showed that AIF-1 was significantly expressed in lung macrophages and increased in bronchoalveolar lavage fluid from mice with bleomycin-induced acute lung injury in comparison to control mice. Recombinant AIF-1 increased the production of IL-6 and TNF-α from RAW264.7 (a mouse macrophage cell line) and primary lung fibroblasts, and it also increased the production of KC (CXCL1) from lung fibroblasts. These results suggest that AIF-1 plays an important role in the mechanism underlying acute lung injury.

  4. Gc-protein-derived macrophage activating factor counteracts the neuronal damage induced by oxaliplatin.

    Science.gov (United States)

    Morucci, Gabriele; Branca, Jacopo J V; Gulisano, Massimo; Ruggiero, Marco; Paternostro, Ferdinando; Pacini, Alessandra; Di Cesare Mannelli, Lorenzo; Pacini, Stefania

    2015-02-01

    Oxaliplatin-based regimens are effective in metastasized advanced cancers. However, a major limitation to their widespread use is represented by neurotoxicity that leads to peripheral neuropathy. In this study we evaluated the roles of a proven immunotherapeutic agent [Gc-protein-derived macrophage activating factor (GcMAF)] in preventing or decreasing oxaliplatin-induced neuronal damage and in modulating microglia activation following oxaliplatin-induced damage. The effects of oxaliplatin and of a commercially available formula of GcMAF [oleic acid-GcMAF (OA-GcMAF)] were studied in human neurons (SH-SY5Y cells) and in human microglial cells (C13NJ). Cell density, morphology and viability, as well as production of cAMP and expression of vascular endothelial growth factor (VEGF), markers of neuron regeneration [neuromodulin or growth associated protein-43 (Gap-43)] and markers of microglia activation [ionized calcium binding adaptor molecule 1 (Iba1) and B7-2], were determined. OA-GcMAF reverted the damage inflicted by oxaliplatin on human neurons and preserved their viability. The neuroprotective effect was accompanied by increased intracellular cAMP production, as well as by increased expression of VEGF and neuromodulin. OA-GcMAF did not revert the effects of oxaliplatin on microglial cell viability. However, it increased microglial activation following oxaliplatin-induced damage, resulting in an increased expression of the markers Iba1 and B7-2 without any concomitant increase in cell number. When neurons and microglial cells were co-cultured, the presence of OA-GcMAF significantly counteracted the toxic effects of oxaliplatin. Our results demonstrate that OA-GcMAF, already used in the immunotherapy of advanced cancers, may significantly contribute to neutralizing the neurotoxicity induced by oxaliplatin, at the same time possibly concurring to an integrated anticancer effect. The association between these two powerful anticancer molecules would probably produce

  5. Potassium inhibits dietary salt-induced transforming growth factor-beta production.

    Science.gov (United States)

    Ying, Wei-Zhong; Aaron, Kristal; Wang, Pei-Xuan; Sanders, Paul W

    2009-11-01

    Human and animal studies demonstrate an untoward effect of excess dietary NaCl (salt) intake on cardiovascular function and life span. The endothelium in particular augments the production of transforming growth factor (TGF)-beta, a fibrogenic growth factor, in response to excess dietary salt intake. This study explored the initiating mechanism that regulates salt-induced endothelial cell production of TGF-beta. Male Sprague-Dawley rats were given diets containing different amounts of NaCl and potassium for 4 days. A bioassay for TGF-beta demonstrated increased (35.2%) amounts of active TGF-beta in the medium of aortic ring segments from rats on the high-salt diet compared with rats maintained on a 0.3% NaCl diet. Inhibition of the large-conductance, calcium-activated potassium channel inhibited dietary salt-induced vascular production of TGF-beta but did not affect production of TGF-beta by ring segments from rats on the low-salt diet. Immunohistochemical and Western analyses demonstrated the alpha subunit of the calcium-activated potassium channel in endothelial cells. Increasing medium [K+] inhibited production of dietary salt-induced vascular production levels of total and active TGF-beta but did not alter TGF-beta production by aortic rings from rats on the 0.3% NaCl diet. Increasing dietary potassium content decreased urinary active TGF-beta in animals receiving the high-salt diet but did not change urinary active TGF-beta in animals receiving the low-salt diet. The findings demonstrated an interesting interaction between the dietary intake of potassium and excess NaCl and further showed the fundamental role of the endothelial calcium-activated potassium channel in the vascular response to excess salt intake.

  6. Therapeutic treatment with a novel hypoxia-inducible factor hydroxylase inhibitor (TRC160334) ameliorates murine colitis

    Science.gov (United States)

    Gupta, Ram; Chaudhary, Anita R; Shah, Binita N; Jadhav, Avinash V; Zambad, Shitalkumar P; Gupta, Ramesh Chandra; Deshpande, Shailesh; Chauthaiwale, Vijay; Dutt, Chaitanya

    2014-01-01

    Background and aim Mucosal healing in inflammatory bowel disease (IBD) can be achieved by improvement of intestinal barrier protection. Activation of hypoxia-inducible factor (HIF) has been identified as a critical factor for barrier protection during mucosal insult and is linked with improvement in symptoms of colitis. Although prophylactic efficacy of HIF hydroxylase inhibitors in murine colitis have been established, its therapeutic efficacy in clinically relevant therapeutic settings have not been established. In the present study we aim to establish therapeutic efficacy of TRC160334, a novel HIF hydroxylase inhibitor, in animal models of colitis. Methods The efficacy of TRC160334 was evaluated in two different mouse models of colitis by oral route. A prophylactic efficacy study was performed in a 2,4,6-trinitrobenzene sulfonic acid-induced mouse model of colitis representing human Crohn’s disease pathology. Additionally, a therapeutic efficacy study was performed in a dextran sulfate sodium-induced mouse model of colitis, a model simulating human ulcerative colitis. Results TRC160334 treatment resulted in significant improvement in disease end points in both models of colitis. TRC160334 treatment resulted into cytoprotective heatshock protein 70 induction in inflamed colon. TRC160334 successfully attenuated the rate of fall in body weight, disease activity index, and macroscopic and microscopic scores of colonic damage leading to overall improvement in study outcome. Conclusion Our findings are the first to demonstrate that therapeutic intervention with a HIF hydroxylase inhibitor ameliorates IBD in disease models. These findings highlight the potential of TRC160334 for its clinical application in the treatment of IBD. PMID:24493931

  7. Phaleria macrocarpa reduces glomerular growth factor expression in alloxan-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Evy Sulistyoningrum

    2013-08-01

    Full Text Available Background Diabetic nephropathy (DN is the most serious complication of diabetes, causing end-stage renal disease throughout the world. Recent studies have reported a direct role of vascular endothelial growth factor (VEGF and transforming growth factor-â (TGF-â in DN pathogenesis. VEGF and TGF-â are expressed early in glomeruli in response to hyperglycemia. Active substances of Phaleria macrocarpa (PM pericarp are known to have nephroprotective effects. This study aimed to evaluate the effects of Phaleria macrocarpa (Scheff. Boerl pericarp extract on VEGF and TGF-â expression in alloxan-induced diabetic rats. Methods An experimental study was conducted on twenty five male albino (Sprague Dawley rats divided into five groups (of five each: normal control; diabetic; diabetic + metformin 100 mg/kgBW; diabetic + methanolic PM extract 250 mg/kgBW; and diabetic + aqueous PM extract 250 mg/kgBW. Diabetes was induced by alloxan monohydrate 150 mg/BW intraperitoneally. Treatment was given for 3 weeks. VEGF and TGF-â expression analysis was performed by means of immunohistochemical technique. Differences between groups were assessed by one-way ANOVA. Results VEGF expression in the PM extract group was significantly lower than that in the diabetic group and even metformin group (p<0.01. TGF-â expression in methanolic PM extract group was significantly lower than in diabetic and metformin group (p<0.01, but aqueous PM extract group only showed significancy when compared with diabetic group (p< 0.01. Conclusions Phaleria macrocarpa pericarp extract reduces glomerular expression of TGF-â and VEGF in alloxan-induced diabetic rats.

  8. Retinal hypoxia induces vascular endothelial growth factor through induction of estrogen-related receptor γ

    Energy Technology Data Exchange (ETDEWEB)

    Do, Ji Yeon; Choi, Young Keun [Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University School of Medicine, Kyungpook National University, Daegu (Korea, Republic of); Kook, Hyun [Department of Pharmacology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Suk, Kyoungho [Department of Pharmacology, Brain Science & Engineering Institute, Kyungpook National University School of Medicine, Daegu (Korea, Republic of); Lee, In-Kyu [Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University School of Medicine, Kyungpook National University, Daegu (Korea, Republic of); Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu (Korea, Republic of); Park, Dong Ho, E-mail: sarasate2222@gmail.com [Department of Ophthalmology, Kyungpook National University School of Medicine, Daegu (Korea, Republic of)

    2015-05-01

    Ischemic retinopathies causing overexpression of pro-angiogenic factors, including vascular endothelial growth factor (VEGF), are the most common cause of blindness. Thus, understanding the pathophysiology of targetable pathways that regulate retinal VEGF is of great interest. A conserved binding site for estrogen-related receptor γ (ERRγ) has been identified in the promoter of the Vegfa gene. ERRγ is a constitutively active orphan nuclear receptor and its expression is increased by hypoxic stimuli in metabolically active tissues. This study evaluated the role of ERRγ in the ischemic retina and the anti-VEGF potential of GSK5182, a selective inverse agonist of ERRγ. In an oxygen-induced retinopathy (OIR) mouse model, immunohistochemistry showed significantly increased ERRγ expression in the ganglion cell layer at postnatal day (P) 17. In a ganglion cell line (RGC-5), mRNA and protein levels of ERRγ were increased by desferrioxamine treatment and hypoxic conditions (1% O{sub 2}). Transient transfection of RGC-5 cells revealed that ERRγ regulated Vegfa expression and this was inhibited by GSK5182. Intravitreal injection of GSK5182 into the OIR model at P14 inhibited retinal Vegfa mRNA expression at P17. GSK5182 suppresses hypoxia-induced VEGF expression via ERRγ; therefore, ERRγ could be a treatment target for ischemic retinopathies. - Highlights: • OIR mice exhibited increased ERRγ expression in the ganglion cell layer. • Hypoxia-induced ERRγ expression was observed in retinal ganglion cells. • ERRγ overexpression increased VEGFA expression in retinal ganglion cells. • An ERRγ inverse agonist suppressed VEGFA expression in retinal ganglion cells. • Intravitreal injection of an ERRγ inverse agonist suppressed VEGFA in OIR mice.

  9. Hepatocyte Nuclear Factor-1β Induces Redifferentiation of Dedifferentiated Tubular Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Mitsugu Omata

    Full Text Available Tubular epithelial cells (TECs can be dedifferentiated by repetitive insults, which activate scar-producing cells generated from interstitial cells such as fibroblasts, leading to the accumulation and deposition of extracellular matrix molecules. The dedifferentiated TECs play a crucial role in the development of renal fibrosis. Therefore, renal fibrosis may be attenuated if dedifferentiated TECs are converted back to their normal state (re-epithelialization. However, the mechanism underlying the re-epithelialization remains to be elucidated. In the present study, TGF-β1, a profibrotic cytokine, induced dedifferentiation of cultured TECs, and the dedifferentiated TECs were re-epithelialized by the removal of TGF-β1 stimulation. In the re-epithelialization process, transcription factor hepatocyte nuclear factor 1, beta (HNF-1β was identified as a candidate molecule involved in inducing re-epithelialization by means of DNA microarray and biological network analysis. In functional validation studies, the re-epithelialization by TGF-β1 removal was abolished by HNF-1β knockdown. Furthermore, the ectopic expression of HNF-1β in the dedifferentiated TECs induced the re-epithelialization without the inhibition of TGF-β/Smad signaling, even in the presence of TGF-β1 stimulation. In mouse renal fibrosis model, unilateral ureteral obstruction model, HNF-1β expression in the TECs of the kidney was suppressed with fibrosis progression. Furthermore, the HNF-1β downregulated TECs resulted in dedifferentiation, which was characterized by expression of nestin. In conclusion, HNF-1β suppression in TECs is a crucial event for the dedifferentiation of TECs, and the upregulation of HNF-1β in TECs has a potential to restore the dedifferentiated TECs into their normal state, leading to the attenuation of renal fibrosis.

  10. Macrophage Migration Inhibitory Factor Induces Inflammation and Predicts Spinal Progression in Ankylosing Spondylitis.

    Science.gov (United States)

    Ranganathan, Vidya; Ciccia, Francesco; Zeng, Fanxing; Sari, Ismail; Guggino, Guiliana; Muralitharan, Janogini; Gracey, Eric; Haroon, Nigil

    2017-09-01

    To investigate the role of macrophage migration inhibitory factor (MIF) in the pathogenesis of ankylosing spondylitis (AS). Patients who met the modified New York criteria for AS were recruited for the study. Healthy volunteers, rheumatoid arthritis patients, and osteoarthritis patients were included as controls. Based on the annual rate of increase in modified Stoke AS Spine Score (mSASSS), AS patients were classified as progressors or nonprogressors. MIF levels in serum and synovial fluid were quantitated by enzyme-linked immunosorbent assay. Predictors of AS progression were evaluated using logistic regression analysis. Immunohistochemical analysis of ileal tissue was performed to identify MIF-producing cells. Flow cytometry was used to identify MIF-producing subsets, expression patterns of the MIF receptor (CD74), and MIF-induced tumor necrosis factor (TNF) production in the peripheral blood. MIF-induced mineralization of osteoblast cells (SaOS-2) was analyzed by alizarin red S staining, and Western blotting was used to quantify active β-catenin levels. Baseline serum MIF levels were significantly elevated in AS patients compared to healthy controls and were found to independently predict AS progression. MIF levels were higher in the synovial fluid of AS patients, and MIF-producing macrophages and Paneth cells were enriched in their gut. MIF induced TNF production in monocytes, activated β-catenin in osteoblasts, and promoted the mineralization of osteoblasts. Our findings indicate an unexplored pathogenic role of MIF in AS and a link between inflammation and new bone formation. © 2017, American College of Rheumatology.

  11. Role of apoptosis-inducing factor, proline dehydrogenase, and NADPH oxidase in apoptosis and oxidative stress

    Directory of Open Access Journals (Sweden)

    Becker DF

    2012-02-01

    Full Text Available Sathish Kumar Natarajan, Donald F BeckerDepartment of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NEAbstract: Flavoproteins catalyze a variety of reactions utilizing flavin mononucleotide or flavin adenine dinucleotide as cofactors. The oxidoreductase properties of flavoenzymes implicate them in redox homeostasis, oxidative stress, and various cellular processes, including programmed cell death. Here we explore three critical flavoproteins involved in apoptosis and redox signaling, ie, apoptosis-inducing factor (AIF, proline dehydrogenase, and NADPH oxidase. These proteins have diverse biochemical functions and influence apoptotic signaling by unique mechanisms. The role of AIF in apoptotic signaling is two-fold, with AIF changing intracellular location from the inner mitochondrial membrane space to the nucleus upon exposure of cells to apoptotic stimuli. In the mitochondria, AIF enhances mitochondrial bioenergetics and complex I activity/assembly to help maintain proper cellular redox homeostasis. After translocating to the nucleus, AIF forms a chromatin degrading complex with other proteins, such as cyclophilin A. AIF translocation from the mitochondria to the nucleus is triggered by oxidative stress, implicating AIF as a mitochondrial redox sensor. Proline dehydrogenase is a membrane-associated flavoenzyme in the mitochondrion that catalyzes the rate-limiting step of proline oxidation. Upregulation of proline dehydrogenase by the tumor suppressor, p53, leads to enhanced mitochondrial reactive oxygen species that induce the intrinsic apoptotic pathway. NADPH oxidases are a group of enzymes that generate reactive oxygen species for oxidative stress and signaling purposes. Upon activation, NADPH oxidase 2 generates a burst of superoxide in neutrophils that leads to killing of microbes during phagocytosis. NADPH oxidases also participate in redox signaling that involves hydrogen peroxide-mediated activation of

  12. Rapid detection of hypoxia-inducible factor-1-active tumours: pretargeted imaging with a protein degrading in a mechanism similar to hypoxia-inducible factor-1{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Masashi [Kyoto University, Radioisotopes Research Laboratory, Kyoto University Hospital, Faculty of Medicine, Kyoto (Japan); Kyoto University, Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Kudo, Takashi; Konishi, Hiroaki; Miyano, Azusa; Ono, Masahiro; Saji, Hideo [Kyoto University, Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Kuge, Yuji [Kyoto University, Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto (Japan); Hokkaido University, Central Institute of Isotope Science, Sapporo (Japan); Mukai, Takahiro [Kyushu University, Department of Biomolecular Recognition Chemistry, Graduate School of Pharmaceutical Sciences, Fukuoka (Japan); Tanaka, Shotaro; Kizaka-Kondoh, Shinae; Hiraoka, Masahiro [Kyoto University, Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto (Japan)

    2010-08-15

    Hypoxia-inducible factor-1 (HIF-1) plays an important role in malignant tumour progression. For the imaging of HIF-1-active tumours, we previously developed a protein, POS, which is effectively delivered to and selectively stabilized in HIF-1-active cells, and a radioiodinated biotin derivative, (3-{sup 123}I-iodobenzoyl)norbiotinamide ({sup 123}I-IBB), which can bind to the streptavidin moiety of POS. In this study, we aimed to investigate the feasibility of the pretargeting method using POS and {sup 123}I-IBB for rapid imaging of HIF-1-active tumours. Tumour-implanted mice were pretargeted with POS. After 24 h, {sup 125}I-IBB was administered and subsequently, the biodistribution of radioactivity was investigated at several time points. In vivo planar imaging, comparison between {sup 125}I-IBB accumulation and HIF-1 transcriptional activity, and autoradiography were performed at 6 h after the administration of {sup 125}I-IBB. The same sections that were used in autoradiographic analysis were subjected to HIF-1{alpha} immunohistochemistry. {sup 125}I-IBB accumulation was observed in tumours of mice pretargeted with POS (1.6%ID/g at 6 h). This result is comparable to the data derived from {sup 125}I-IBB-conjugated POS-treated mice (1.4%ID/g at 24 h). In vivo planar imaging provided clear tumour images. The tumoral accumulation of {sup 125}I-IBB significantly correlated with HIF-1-dependent luciferase bioluminescence (R=0.84, p<0.01). The intratumoral distribution of {sup 125}I-IBB was heterogeneous and was significantly correlated with HIF-1{alpha}-positive regions (R=0.58, p<0.0001). POS pretargeting with {sup 123}I-IBB is a useful technique in the rapid imaging and detection of HIF-1-active regions in tumours. (orig.)

  13. Potential mechanisms for hypoalgesia induced by anti-nerve growth factor immunoglobulin are identified using autoimmune nerve growth factor deprivation

    Science.gov (United States)

    Hoffman, E. Matthew; Zhang, Zijia; Anderson, Michael B.; Schechter, Ruben; Miller, Kenneth E.

    2011-01-01

    Nerve growth factor (NGF) antagonism has long been proposed as a chronic pain treatment. In 2010, the FDA suspended clinical trials using tanezumab, a humanized monoclonal anti-NGF antibody, to treat osteoarthritis due to worsening joint damage in 16 patients. Increased physical activity in the absence of acute pain which normally prevents self harm was purported as a potential cause. Such an adverse effect is consistent with an extension of tanezumab's primary mechanism of action by decreasing pain sensitivity below baseline levels. In animal inflammatory pain models, NGF antagonism decreases intraepidermal nerve fiber (IENF) density and attenuates increases in expression of nociception related proteins, such as calcitonin gene-related peptide (CGRP) and substance P (SP). Little is known of the effects of NGF antagonism in noninflamed animals and the hypoalgesia that ensues. In the current study, we immunized rats with NGF or cytochrome C (cytC) and examined 1) nocifensive behaviors with thermal latencies, mechanical thresholds, the hot plate test, and the tail flick test, 2) IENF density, and 3) expression of CGRP, SP, voltage-gated sodium channel 1.8 (Nav1.8), and glutaminase in subpopulations of dorsal root ganglion (DRG) neurons separated by size and isolectin B4 (IB4) labeling. Rats with high anti-NGF titers had delayed responses on the hot plate test but no other behavioral abnormalities. Delayed hot plate responses correlated with lower IENF density. CGRP and SP expression was decreased principally in medium (400-800 μm2) and small neurons (<400 μm2), respectively, regardless of IB4 labeling. Expression of Nav1.8 was only decreased in small and medium IB4 negative neurons. NGF immunization appears to result in a more profound antagonism of NGF than tanezumab therapy, but we hypothesize that decreases in IENF density and nociception related protein expression are potential mechanisms for tanezumab induced hypoalgesia. PMID:21802499

  14. Cisplatin Induces Cytotoxicity through the Mitogen-Activated Protein Kinase Pathways ana Activating Transcription Factor 3

    Directory of Open Access Journals (Sweden)

    Carly St. Germain

    2010-07-01

    Full Text Available The mechanisms underlying the proapoptotic effect of the chemotherapeutic agent, cisplatin, are largely undefined. Understanding the mechanisms regulating cisplatin cytotoxicity may uncover strategies to enhance the efficacy of this important therapeutic agent. This study evaluates the role of activating transcription factor 3 (ATF3 as a mediator of cisplatin-induced cytotoxicity. Cytotoxic doses of cisplatin and carboplatin treatments consistently induced ATF3 expression in five tumor-derived cell lines. Characterization of this induction revealed a p53, BRCA1, and integrated stress response-independent mechanism, all previously implicated in stress-mediated ATF3 induction. Analysis of mitogenactivated protein kinase (MAPK pathway involvement in ATF3 induction by cisplatin revealed a MAPK-dependent mechanism. Cisplatin treatment combined with specific inhibitors to each MAPK pathway (c-Jun N-terminal kinase, extracellularsignal-regulated kinase, and p38 resulted in decreasedATF3 induction at the protein level. MAPK pathway inhibition led to decreased ATF3 messenger RNA expression and reduced cytotoxic effects of cisplatin as measured by the 3-(4,5-dimethylthiazol-2-ylF2,5-diphenyltetrazolium bromide cell viability assay. In A549 lung carcinoma cells, targeting ATF3 with specific small hairpin RNA also attenuated the cytotoxic effects of cisplatin. Similarly, ATF3-/murine embryonic fibroblasts (MEFs were shown to be less sensitive to cisplatin-induced cytotoxicity compared with ATF3+/+ MEFs. This study identifies cisplatin as a MAPK pathway-dependent inducer of ATF3, whose expression influences cisplatin’s cytotoxic effects.

  15. Role of nuclear factor-kappaB in interleukin-1-induced collagen degradation by corneal fibroblasts.

    Science.gov (United States)

    Lu, Ying; Fukuda, Ken; Li, Qin; Kumagai, Naoki; Nishida, Teruo

    2006-09-01

    The proinflammatory cytokine interleukin (IL)-1 is implicated in corneal ulceration. The role of nuclear factor (NF)-kappaB in the IL-1-induced degradation of collagen by corneal fibroblasts that underlies corneal ulceration was investigated. Rabbit corneal fibroblasts were cultured in three-dimensional gels of type I collagen with or without IL-1 and sulfasalazine, an inhibitor of NF-kappaB activation. Collagen degradation was assessed from the amount of hydroxyproline generated by acid-heat hydrolysis of culture supernatants. The release of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) into culture supernatants was examined by immunoblot analysis and gelatin zymography, and the cellular abundance of MMP and TIMP mRNAs was determined by reverse transcription and real-time polymerase chain reaction analysis. The phosphorylation and degradation of the NF-kappaB-inhibitory protein IkappaB-alpha were examined by immunoblot analysis. The subcellular localization and DNA binding activity of the p65 subunit of NF-kappaB were evaluated by immunofluorescence analysis and with a colorimetric assay, respectively. The transactivation activity of NF-kappaB was assessed with a reporter gene assay. Sulfasalazine inhibited IL-1-induced collagen degradation by corneal fibroblasts in a concentration-dependent manner. It also inhibited the stimulatory effects of IL-1 on the synthesis or activation of various MMPs in a concentration-dependent manner. IL-1 induced the phosphorylation and degradation of IkappaB-alpha, the nuclear translocation and up-regulation of the DNA binding activity of the p65 subunit of NF-kappaB, and the activation of NF-kappaB in a manner sensitive to sulfasalazine. These results suggest that NF-kappaB contributes to the IL-1-induced degradation of collagen by corneal fibroblasts and is therefore a potential therapeutic target for treatment of corneal ulcers.

  16. Some Factors Controlling the Seismic Hazard due to Earthquakes Induced by Fluid Injection at Depth

    Science.gov (United States)

    McGarr, A.

    2012-12-01

    The maximum seismic moment (or moment magnitude) is an important measure of the seismic hazard associated with earthquakes induced by deep fluid injection. Although it would be advantageous to be able to predict the induced earthquake outcome, including the maximum seismic moment, of a specified fluid injection project in advance, this capability has, to date, proved to be elusive because the geomechanical and hydrological factors that control the seismic response to injection are too poorly understood. Fortunately, the vast majority of activities involving the injection of fluids into deep aquifers do not cause earthquakes that are large enough to be of any consequence. There have been, however, significant exceptions during the past 50 years, starting with the earthquakes induced by injection of wastewater at the Rocky Mountain Arsenal Well, during the 1960s, that caused extensive damage in the Denver, CO, area. Results from numerous case histories of earthquakes induced by injection activities, including wastewater disposal at depth and the development of enhanced geothermal systems, suggest that it may be feasible to estimate bounds on maximum magnitudes based on the volume of injected liquid. For these cases, volumes of injected liquid ranged from approximately 11.5 thousand to 5 million cubic meters and resulted in main shock moment magnitudes from 3.4 to 5.3. Because the maximum seismic moment appears to be linearly proportional to the total volume of injected fluid, this upper bound is expected to increase with time as long as a given injection well remains active. For example, in the Raton Basin, southern Colorado and northern New Mexico, natural gas is produced from an extensive coal bed methane field. The deep injection of wastewater associated with this gas production has induced a sequence of earthquakes starting in August 2001, shortly after the beginning of major injection activities. Most of this seismicity defines a northeast striking plane dipping

  17. EXPRESSION OF HYPOXIA INDUCIBLE FACTOR-1α AND ITS REGULATORY ROLE IN DEVELOPING VERTEBRAE

    Institute of Scientific and Technical Information of China (English)

    ZHU Xun-bing; DENG Lian-fu; XIAO Yu-zhou

    2009-01-01

    Objective To explore the expression pattern and possible role of hypoxia inducible factor-1α(HIF-1α) in fetal vertebrae development of mouse.Methods The developmental stages of mice fetal vertebrae were observed from embryonic days 13.5 to 18.5 (E13.5 to E18.5) by stereoscopic and light microscopes respectively, and the expressions of HIF-1α at various times were also detected at levels of mRNA and protein by using methods of RT-PCR and Western blotting. Distribution of HIF-1α in the vertebrae was examined by immunohistochemical assay. Vascular endothelia growth factor (VEGF) mRNA and other chondro-osteoblast marker genes as type Ⅱ collagen a1 (Coll2a1) and osteocalcin (OCN) were detected by RT-PCR too.Results The cartilaginous spine column began to form at E13.5, followed by the arising of the primary ossification center in vertebrae at E15.5, then the osteogenesis expanded and extended to both sides of the vertebrae. HIF-1α mRNA began to express at E13.5, and showed significantly higher level at E14.5 (P<0.05), then declined to a low level. VEGF mRNA expressed coincidently with HIF-1α. While HIF-1α protein expression was observed at E14.5 and lasted at low level till to birth. The expression pattern of Coll2a1 and OCN elucidated the cell evolution from chondrocyte to osteoblast.Conclusion The developmental pattern of vertebrae appears to be an endochondral osteogenesis process. Existed hypoxia microenviroment in the vertebrae may increase HIF-1α mRNA and protein contents thus activate VEGF expression, as may be related to the activation of other downstream genes of hypoxia inducible factor-1α and initiate the cascade of endochondral osteogenesis.

  18. Study of Risk Factors of Perinatal Death in Pregnancy Induced Hypertension (PIH

    Directory of Open Access Journals (Sweden)

    Mehul T Parmar, Harsha M Solanki, Vibha V Gosalia

    2012-01-01

    Full Text Available Background: Hypertensive disorders are common complication occurring during pregnancy responsible for maternal & fetal mortality & morbidity. Though the condition is on decline, still stands a public health problem. Objectives: To determine risk factors of perinatal death in women with pregnancy induced hypertension. Materials & Method: A cross-sectional study was conducted over period of one year in the department of Obstetrics & Gynecology in NHL municipal college, Ahmadabad. A total of 100 pregnant women with PIH were enrolled in the study. A pre-tested structured Performa was prepared & women were interviewed to collect necessary information such as detailed history, clinical examination findings & investigations performed. Results were analyzed using MS Excel & Epi Info. Results: In the present study, 29%, 21% & 50 % were of mild PIH, moderate PIH & severe PIH respectively. The incidence of PIH was found more among teenage pregnancy, among primigravidas, those from low socio-economic status, those with history of PIH in previous pregnancy, having family history of PIH & those who were found obese. Emergency delivery, having diastolic blood pressure > 90 mm Hg, higher degree of proteinuria & low birth weight among PIH cases had an adverse perinatal outcome in terms of higher perinatal death. The findings were statistically significant On Univariate analysis; diastolic blood pressure & degree of proteinuria were found to be significant risk factors responsible for perinatal mortality among PIH women. Conclusion: Pregnancy induced hypertension is a common medical disorder associated with pregnancy. In the present study, PIH cases who delivered in emergency, with raised diastolic blood pressure & more proteinuria & neonate with low birth weight were found risk factors for perinatal death. Fetal morbidity & mortality can be reduced by early recognition & institutional management.

  19. Deletion of the Mitochondrial Flavoprotein Apoptosis Inducing Factor (AIF) Induces β-Cell Apoptosis and Impairs β-Cell Mass

    Science.gov (United States)

    Schulthess, Fabienne T.; Katz, Sophie; Ardestani, Amin; Kawahira, Hiroshi; Georgia, Senta; Bosco, Domenico; Bhushan, Anil; Maedler, Kathrin

    2009-01-01

    Background Apoptosis is a hallmark of β-cell death in both type 1 and type 2 diabetes mellitus. Understanding how apoptosis contributes to β-cell turnover may lead to strategies to prevent progression of diabetes. A key mediator of apoptosis, mitochondrial function, and cell survival is apoptosis inducing factor (AIF). In the present study, we investigated the role of AIF on β-cell mass and survival using the Harlequin (Hq) mutant mice, which are hypomorphic for AIF. Methodology/Principal Findings Immunohistochemical evaluation of pancreata from Hq mutant mice displayed much smaller islets compared to wild-type mice (WT). Analysis of β-cell mass in these mice revealed a greater than 4-fold reduction in β-cell mass together with an 8-fold increase in β-cell apoptosis. Analysis of cell cycle dynamics, using BrdU pulse as a marker for cells in S-phase, did not detect significant differences in the frequency of β-cells in S-phase. In contrast, double staining for phosphorylated Histone H3 and insulin showed a 3-fold increase in β-cells in the G2 phase in Hq mutant mice, but no differences in M-phase compared to WT mice. This suggests that the β-cells from Hq mutant mice are arrested in the G2 phase and are unlikely to complete the cell cycle. β-cells from Hq mutant mice display increased sensitivity to hydrogen peroxide-induced apoptosis, which was confirmed in human islets in which AIF was depleted by siRNA. AIF deficiency had no effect on glucose stimulated insulin secretion, but the impaired effect of hydrogen peroxide on β-cell function was potentiated. Conclusions/Significance Our results indicate that AIF is essential for maintaining β-cell mass and for oxidative stress response. A decrease in the oxidative phosphorylation capacity may counteract the development of diabetes, despite its deleterious effects on β-cell survival. PMID:19197367

  20. Deletion of the mitochondrial flavoprotein apoptosis inducing factor (AIF induces beta-cell apoptosis and impairs beta-cell mass.

    Directory of Open Access Journals (Sweden)

    Fabienne T Schulthess

    Full Text Available BACKGROUND: Apoptosis is a hallmark of beta-cell death in both type 1 and type 2 diabetes mellitus. Understanding how apoptosis contributes to beta-cell turnover may lead to strategies to prevent progression of diabetes. A key mediator of apoptosis, mitochondrial function, and cell survival is apoptosis inducing factor (AIF. In the present study, we investigated the role of AIF on beta-cell mass and survival using the Harlequin (Hq mutant mice, which are hypomorphic for AIF. METHODOLOGY/PRINCIPAL FINDINGS: Immunohistochemical evaluation of pancreata from Hq mutant mice displayed much smaller islets compared to wild-type mice (WT. Analysis of beta-cell mass in these mice revealed a greater than 4-fold reduction in beta-cell mass together with an 8-fold increase in beta-cell apoptosis. Analysis of cell cycle dynamics, using BrdU pulse as a marker for cells in S-phase, did not detect significant differences in the frequency of beta-cells in S-phase. In contrast, double staining for phosphorylated Histone H3 and insulin showed a 3-fold increase in beta-cells in the G2 phase in Hq mutant mice, but no differences in M-phase compared to WT mice. This suggests that the beta-cells from Hq mutant mice are arrested in the G2 phase and are unlikely to complete the cell cycle. beta-cells from Hq mutant mice display increased sensitivity to hydrogen peroxide-induced apoptosis, which was confirmed in human islets in which AIF was depleted by siRNA. AIF deficiency had no effect on glucose stimulated insulin secretion, but the impaired effect of hydrogen peroxide on beta-cell function was potentiated. CONCLUSIONS/SIGNIFICANCE: Our results indicate that AIF is essential for maintaining beta-cell mass and for oxidative stress response. A decrease in the oxidative phosphorylation capacity may counteract the development of diabetes, despite its deleterious effects on beta-cell survival.

  1. No amplifications of hypoxia-inducible factor-1α gene in invasive breast cancer: A tissue microarray study

    NARCIS (Netherlands)

    Vleugel, M.M.; Bos, R.; Buerger, Horst; Groep, P. van der; Saramäki, O.R.; Visakorpi, T.; Wall, E. van der; Diest, P.J. van

    2004-01-01

    OBJECTIVE: Hypoxia Inducible Factor-1 (HIF-1) is an important transcription factor that stimulates tumour growth and metastases via several pathways, including angiogenesis and altered metabolism. Activation of HIF-1 depends on the levels of its α-subunit, which increase during hypoxia. Recent

  2. Inducing goat pluripotent stem cells with four transcription factor mRNAs that activate endogenous promoters.

    Science.gov (United States)

    Chen, Hao; Zuo, Qisheng; Wang, Yingjie; Song, Jiuzhou; Yang, Huilin; Zhang, Yani; Li, Bichun

    2017-02-13

    Traditional approaches for generating goat pluripotent stem cells (iPSCs) suffer from complexity and low preparation efficiency. Therefore, we tried to derive goat iPSCs with a new method by transfecting exogenous Oct4, Sox2, Klf4 and c-Myc mRNAs into goat embryonic fibroblasts (GEFs), and explore the mechanisms regarding the transcription regulation of the reprogramming factors in goat iPSCs induction. mRNAs of the four reprogramming factors were transfected into GEFs, and were localized in nucleus with approximately 90% transfection efficiency. After five consecutive transfections, GEFs tended to aggregate by day 10. Clones appeared on day 15-18, and typical embryonic stem cell -like clones formed on day 20. One thousand AKP staining positive clones were achieved in 10(4) GEFs, with approximately 1.0% induction efficiency. Immunofluorescence staining and qRT-PCR detection of the ESCs markers confirmed the properties of the goat iPSCs. The achieved goat iPSCs could be cultured to 22nd passage, which showed normal karyotype. The goat iPSCs were able to differentiate into embryoid bodies with three germ layers. qRT-PCR and western blot showed activated endogenous pluripotent factors expression in the later phase of mRNA-induced goat iPSCs induction. Epigenetic analysis of the endogenous pluripotent gene Nanog revealed its demethylation status in derived goat iPSCs. Core promoter regions of the four reprogramming factors were determined. Transcription factor binding sites, including Elf-1, AP-2, SP1, C/EBP and MZF1, were identified to be functional in the core promoter regions of these reprogramming genes. Demethylation and deacetylation of the promoters enhanced their transcription activities. We successfully generated goat iPSCs by transfection of Oct4, Sox2, Klf4 and c-Myc mRNAs into GEFs, which initiated the endogenous reprogramming network and altered the methylation status of pluripotent genes. Core promoter regions and functional transcription binding sites of

  3. Relationship of Climatic and Forest Factors to Drought- and Heat-Induced Tree Mortality

    Science.gov (United States)

    Zhang, Qingyin; Shao, Ming’an; Jia, Xiaoxu; Wei, Xiaorong

    2017-01-01

    Tree mortality due to warming and drought is a critical aspect of forest ecosystem in responding to climate change. Spatial patterns of tree mortality induced by drought and its influencing factors, however, have yet to be documented at the global scale. We collected observations from 248 sites globally where trees have died due to drought and then assessed the effects of climatic and forest factors on the rate of tree mortality. The global mean annual mortality rate was 5.5%. The rate of tree mortality was significantly and negatively correlated with mean annual precipitation (P 2000 mm and was severe in regions with mean annual precipitation gymnosperms (7.1%) than angiosperms (4.8%) but did not differ significantly between evergreen (6.2%) and deciduous (6.1%) species. Stand age and wood density affected the mortality rate. Saplings (4.6%) had a higher mortality rate than mature trees (3.2%), and mortality rates significantly decreased with increasing wood density for all species (P < 0.01). We therefore concluded that the tree mortality around the globe varied with climatic and forest factors. The differences between tree species, wood density, stand density, and stand age should be considered when evaluating tree mortality at a large spatial scale during future climatic extremes. PMID:28095437

  4. Hypoxia-inducible factor-2α is an essential catabolic regulator of inflammatory rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Je-Hwang Ryu

    2014-06-01

    Full Text Available Rheumatoid arthritis (RA is a systemic autoimmune disorder that manifests as chronic inflammation and joint tissue destruction. However, the etiology and pathogenesis of RA have not been fully elucidated. Here, we explored the role of the hypoxia-inducible factors (HIFs, HIF-1α (encoded by HIF1A and HIF-2α (encoded by EPAS1. HIF-2α was markedly up-regulated in the intimal lining of RA synovium, whereas HIF-1α was detected in a few cells in the sublining and deep layer of RA synovium. Overexpression of HIF-2α in joint tissues caused an RA-like phenotype, whereas HIF-1α did not affect joint architecture. Moreover, a HIF-2α deficiency in mice blunted the development of experimental RA. HIF-2α was expressed mainly in fibroblast-like synoviocytes (FLS of RA synovium and regulated their proliferation, expression of RANKL (receptor activator of nuclear factor-κB ligand and various catabolic factors, and osteoclastogenic potential. Moreover, HIF-2α-dependent up-regulation of interleukin (IL-6 in FLS stimulated differentiation of TH17 cells-crucial effectors of RA pathogenesis. Additionally, in the absence of IL-6 (Il6-/- mice, overexpression of HIF-2α in joint tissues did not cause an RA phenotype. Thus, our results collectively suggest that HIF-2α plays a pivotal role in the pathogenesis of RA by regulating FLS functions, independent of HIF-1α.

  5. Relationship of Climatic and Forest Factors to Drought- and Heat-Induced Tree Mortality.

    Science.gov (United States)

    Zhang, Qingyin; Shao, Ming'an; Jia, Xiaoxu; Wei, Xiaorong

    2017-01-01

    Tree mortality due to warming and drought is a critical aspect of forest ecosystem in responding to climate change. Spatial patterns of tree mortality induced by drought and its influencing factors, however, have yet to be documented at the global scale. We collected observations from 248 sites globally where trees have died due to drought and then assessed the effects of climatic and forest factors on the rate of tree mortality. The global mean annual mortality rate was 5.5%. The rate of tree mortality was significantly and negatively correlated with mean annual precipitation (P Tree mortality was lowest in tropical rainforests with mean annual precipitation >2000 mm and was severe in regions with mean annual precipitation trees (3.2%), and mortality rates significantly decreased with increasing wood density for all species (P tree mortality around the globe varied with climatic and forest factors. The differences between tree species, wood density, stand density, and stand age should be considered when evaluating tree mortality at a large spatial scale during future climatic extremes.

  6. Flavonoids as Putative Inducers of the Transcription Factors Nrf2, FoxO, and PPARγ

    Directory of Open Access Journals (Sweden)

    Kathrin Pallauf

    2017-01-01

    Full Text Available Dietary flavonoids have been shown to extend the lifespan of some model organisms and may delay the onset of chronic ageing-related diseases. Mechanistically, the effects could be explained by the compounds scavenging free radicals or modulating signalling pathways. Transcription factors Nrf2, FoxO, and PPARγ possibly affect ageing by regulating stress response, adipogenesis, and insulin sensitivity. Using Hek-293 cells transfected with luciferase reporter constructs, we tested the potency of flavonoids from different subclasses (flavonols, flavones, flavanols, and isoflavones to activate these transcription factors. Under cell-free conditions (ABTS and FRAP assays, we tested their free radical scavenging activities and used α-tocopherol and ascorbic acid as positive controls. Most of the tested flavonoids, but not the antioxidant vitamins, stimulated Nrf2-, FoxO-, and PPARγ-dependent promoter activities. Flavonoids activating Nrf2 also tended to induce a FoxO and PPARγ response. Interestingly, activation patterns of cellular stress response by flavonoids were not mirrored by their activities in ABTS and FRAP assays, which depended mostly on hydroxylation in the flavonoid B ring and, in some cases, extended that of the vitamins. In conclusion, the free radical scavenging properties of flavonoids do not predict whether these molecules can stimulate a cellular response linked to activation of longevity-associated transcription factors.

  7. Caffeic acid phenethyl ester inhibits 3-MC-induced CYP1A1 expression through induction of hypoxia-inducible factor-1α

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Gyun [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Han, Eun Hee [Division of Life Science, Korea Basic Science Institute, Daejeon (Korea, Republic of); Im, Ji Hye; Lee, Eun Ji; Jin, Sun Woo [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of); Jeong, Hye Gwang, E-mail: hgjeong@cnu.ac.kr [Department of Toxicology, College of Pharmacy, Chungnam National University, Daejeon (Korea, Republic of)

    2015-09-25

    Caffeic acid phenethyl ester (CAPE), a natural component of propolis, is reported to have anticarcinogenic properties, although its precise chemopreventive mechanism remains unclear. In this study, we examined the effects of CAPE on 3-methylcholanthrene (3-MC)-induced CYP1A1 expression and activities. CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. Moreover, CAPE inhibited 3-MC-induced CYP1A1 activity, mRNA expression, protein level, and promoter activity. CAPE treatment also decreased 3-MC-inducible xenobiotic-response element (XRE)-linked luciferase, aryl hydrocarbons receptor (AhR) transactivation and nuclear localization. CAPE induced hypoxia inducible factor-1α (HIF-1α) protein level and HIF-1α responsible element (HRE) transcriptional activity. CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 protein expression. Taken together, CAPE decreases 3-MC-mediated CYP1A1 expression, and this inhibitory response is associated with inhibition of AhR and HIF-1α induction. - Highlights: • CAPE reduced the formation of the benzo[a]pyrene-DNA adduct. • CAPE inhibited 3-MC-induced CYP1A1 expression. • CAPE induced HIF-1α induction. • CAPE-mediated HIF-1α reduced 3-MC-inducible CYP1A1 expression.

  8. Pathways involved in gut mucosal barrier dysfunction induced in adult rats by maternal deprivation: corticotrophin-releasing factor and nerve growth factor interplay

    OpenAIRE

    2007-01-01

    Neonatal maternal deprivation (NMD) increases gut paracellular permeability (GPP) through mast cells and nerve growth factor (NGF), and modifies corticotrophin-releasing factor (CRF) and corticosterone levels. CRF, corticosterone and mast cells are involved in stress-induced mucosal barrier impairment. Consequently, this study aimed to specify whether corticosteronaemia and colonic expression of both preproCRF and CRF are modified by NMD, and to determine if altered expression may participate...

  9. Evidence that tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits angiogenesis by inducing vascular endothelial cell apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pei-Lin, E-mail: pchen@dal.ca [Department of Pathology, Dalhousie University, Halifax, Nova Scotia (Canada); Easton, Alexander S., E-mail: alexander.easton@dal.ca [Department of Pathology, Dalhousie University, Halifax, Nova Scotia (Canada); Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia (Canada); Division of Neurosurgery, Department of Surgery, Dalhousie University, Halifax, Nova Scotia (Canada)

    2010-01-01

    Tumor necrosis factor (TNF) and its related ligands TNF-related apoptosis inducing ligand (TRAIL) and Fas ligand (FasL) play roles in the regulation of vascular responses, but their effect on the formation of new blood vessels (angiogenesis) is unclear. Therefore, we have examined the effects of these ligands on angiogenesis modeled with primary cultures of human umbilical vein endothelial cells (HUVEC). To examine angiogenesis in the context of the central nervous system, we have also modeled cerebral angiogenesis with the human brain endothelial cell line hCMEC/D3. Parameters studied were bromodeoxyuridine (BrdU) incorporation and cell number (MTT) assay (to assess endothelial proliferation), scratch assay (migration) and networks on Matrigel (tube formation). In our hands, neither TRAIL nor FasL (1, 10, and 100 ng/ml) had an effect on parameters of angiogenesis in the HUVEC model. In hCMEC/D3 cells by contrast, TRAIL inhibited all parameters (10-100 ng/ml, 24 h). This was due to apoptosis, since its action was blocked by the pan-caspase inhibitor zVADfmk (5 x 10{sup -5} mol/l) and TRAIL increased caspase-3 activity 1 h after application. However FasL (100 ng/ml) increased BrdU uptake without other effects. We conclude that TRAIL has different effects on in vitro angiogenesis depending on which model is used, but that FasL is generally ineffective when applied in vitro. The data suggest that TRAIL primarily influences angiogenesis by the induction of vascular endothelial apoptosis, leading to vessel regression.

  10. Indoxyl Sulfate Downregulates Mas Receptor via Aryl Hydrocarbon Receptor/Nuclear Factor-kappa B, and Induces Cell Proliferation and Tissue Factor Expression in Vascular Smooth Muscle Cells.

    Science.gov (United States)

    Ng, Hwee-Yeong; Bolati, Wulaer; Lee, Chien-Te; Chien, Yu-Shu; Yisireyili, Maimaiti; Saito, Shinichi; Pei, Sung-Nan; Nishijima, Fuyuhiko; Niwa, Toshimitsu

    2016-01-01

    Angiotensin converting enzyme-related carboxypeptidase 2/angiotensin (Ang)-(1-7)/Mas receptor axis is protective in the development of chronic kidney disease and cardiovascular disease. This study is aimed at investigating whether indoxyl sulfate (IS) affects Mas receptor expression, cell proliferation and tissue factor expression in vascular smooth muscle cells, and if Ang-(1-7), an activator of Mas receptor, counteracts the IS-induced effects. IS was administered to normotensive and hypertensive rats. Human aortic smooth muscle cells (HASMCs) were cultured with IS. IS reduced the expression of Mas receptor in the aorta of normotensive and hypertensive rats. IS downregulated the Mas receptor expression in a time- and dose-dependent manner in HASMCs. Knockdown of aryl hydrocarbon receptor (AhR) and nuclear factor-kappa B (NF-x03BA;B) inhibited IS-induced downregulation of Mas receptor. Further, IS stimulated cell proliferation and tissue factor expression in HASMCs. Ang-(1-7) attenuated IS-induced cell proliferation and tissue factor expression in HASMCs. Ang-(1-7) suppressed phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and NF-x03BA;B in HASMCs. IS downregulated the expression of Mas receptor via AhR/NF-x03BA;B, and induced cell proliferation and tissue factor expression in HASMCs. Ang-(1-7) inhibited IS-induced cell proliferation and tissue factor expression by suppressing the phosphorylation of ERK1/2 and NF-x03BA;B p65. © 2016 S. Karger AG, Basel.

  11. Fibroblast growth factor-1 attenuates TGF-β1-induced lung fibrosis.

    Science.gov (United States)

    Shimbori, Chiko; Bellaye, Pierre-Simon; Xia, Jiaji; Gauldie, Jack; Ask, Kjetil; Ramos, Carlos; Becerril, Carina; Pardo, Annie; Selman, Moises; Kolb, Martin

    2016-10-01

    Idiopathic pulmonary fibrosis (IPF) is characterized by progressive fibroblast and myofibroblast proliferation, and extensive deposition of extracellular matrix (ECM). Fibroblast growth factor-1 (FGF-1) belongs to the FGF family and has been shown to inhibit fibroblast collagen production and differentiation into myofibroblasts, and revert epithelial-mesenchymal transition by inhibiting TGF-β1 signalling pathways. However, the precise role of FGF-1 in pulmonary fibrosis has not yet been elucidated. In this study, we explore the mechanisms underlying the anti-fibrogenic effect of FGF-1 in pulmonary fibrosis in vitro and in vivo by prolonged transient overexpression of FGF-1 (AdFGF-1) and TGF-β1 (AdTGF-β1) using adenoviral vectors. In vivo, FGF-1 overexpression markedly attenuated TGF-β1-induced pulmonary fibrosis in rat lungs when given both concomitantly, or delayed, by enhancing proliferation and hyperplasia of alveolar epithelial cells (AECs). AdFGF-1 also attenuated the TGF-β1 signalling pathway and induced FGFR1 expression in AECs. In vitro, AdFGF-1 prevented the increase in α-SMA and the decrease in E-cadherin induced by AdTGF-β1 in normal human lung fibroblasts, primary human pulmonary AECs, and A549 cells. Concomitantly, AdTGF-β1-induced Smad2 phosphorylation was significantly reduced by AdFGF-1 in both cell types. AdFGF-1 also attenuated the increase in TGFβR1 protein and mRNA levels in fibroblasts. In AECs, AdFGF-1 decreased TGFβR1 protein by favouring TGFβR1 degradation through the caveolin-1/proteasome pathway. Furthermore, FGFR1 expression was increased in AECs, whereas it was decreased in fibroblasts. In serum of IPF patients, FGF-1 levels were increased compared to controls. Interestingly, FGF-1 expression was restricted to areas of AEC hyperplasia, but not α-SMA-positive areas in IPF lung tissue. Our results demonstrate that FGF-1 may have preventative and therapeutic effects on TGF-β1-driven pulmonary fibrosis via inhibiting

  12. Factors associated with induced abortion among female entertainment workers: a cross-sectional study in Cambodia

    Science.gov (United States)

    Yi, Siyan; Tuot, Sovannary; Chhoun, Pheak; Pal, Khuondyla; Tith, Khimuy; Brody, Carinne

    2015-01-01

    Objective To explore risk factors associated with induced abortion among sexually active female entertainment workers (FEWs) in Cambodia. Design Cross-sectional study. Setting Phnom Penh and Siem Reap, Cambodia. Participants This study included 556 FEWs aged 18–47 years randomly selected from entertainment establishments in the two cities in 2014 using a two-stage cluster sampling method. Data were collected through face-to-face interviews using a structured questionnaire. Primary outcome measure History of induced abortion during the time working as a FEW. Results Of the total sample, 45.6% reported currently using a contraceptive method with condom (42.4%) being the most common method, followed by pills (25.6%). One-fourth (25%) of the respondents reported having been pregnant at least once, and 21.4% reported having at least one induced abortion during the time working as a FEW. After controlling for other covariates in a multivariate logistic regression model, FEWs with a history of induced abortion remained significantly more likely to be currently working in a karaoke bar (AOR=1.75, 95% CI 1.10 to 2.78), to have worked longer as a FEW (AOR=1.42, 95% CI 1.06 to 1.43), to have had a greater number of sexual partners in the past 12 months (AOR=1.86, 95% CI 1.02 to 1.54), to be currently using a contraceptive method (AOR=1.52, 95% CI 1.01 to 2.29), to be able to find condoms when they needed them (AOR=2.03, 95% CI 1.09 to 3.82), and to report inconsistent condom use with non-commercial partners in the past 3 months (AOR=1.62, 95% CI 1.06 to 3.44). Conclusions This study highlights the high rates of unwanted pregnancies that ended in induced abortions among FEWs in Cambodia. Access of FEWs to quality sexual and reproductive healthcare services is deemed a high priority. Integrated interventions to improve sexual and reproductive health among these vulnerable women should be tailored to reach the most-at-risk groups. PMID:26231754

  13. Factors associated with induced abortion among female entertainment workers: a cross-sectional study in Cambodia.

    Science.gov (United States)

    Yi, Siyan; Tuot, Sovannary; Chhoun, Pheak; Pal, Khuondyla; Tith, Khimuy; Brody, Carinne

    2015-07-31

    To explore risk factors associated with induced abortion among sexually active female entertainment workers (FEWs) in Cambodia. Cross-sectional study. Phnom Penh and Siem Reap, Cambodia. This study included 556 FEWs aged 18-47 years randomly selected from entertainment establishments in the two cities in 2014 using a two-stage cluster sampling method. Data were collected through face-to-face interviews using a structured questionnaire. History of induced abortion during the time working as a FEW. Of the total sample, 45.6% reported currently using a contraceptive method with condom (42.4%) being the most common method, followed by pills (25.6%). One-fourth (25%) of the respondents reported having been pregnant at least once, and 21.4% reported having at least one induced abortion during the time working as a FEW. After controlling for other covariates in a multivariate logistic regression model, FEWs with a history of induced abortion remained significantly more likely to be currently working in a karaoke bar (AOR=1.75, 95% CI 1.10 to 2.78), to have worked longer as a FEW (AOR=1.42, 95% CI 1.06 to 1.43), to have had a greater number of sexual partners in the past 12 months (AOR=1.86, 95% CI 1.02 to 1.54), to be currently using a contraceptive method (AOR=1.52, 95% CI 1.01 to 2.29), to be able to find condoms when they needed them (AOR=2.03, 95% CI 1.09 to 3.82), and to report inconsistent condom use with non-commercial partners in the past 3 months (AOR=1.62, 95% CI 1.06 to 3.44). This study highlights the high rates of unwanted pregnancies that ended in induced abortions among FEWs in Cambodia. Access of FEWs to quality sexual and reproductive healthcare services is deemed a high priority. Integrated interventions to improve sexual and reproductive health among these vulnerable women should be tailored to reach the most-at-risk groups. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go

  14. Effect of antioxidants on amelioration of high-risk factors inducing hypertensive disorders in pregnancy

    Institute of Scientific and Technical Information of China (English)

    LIN Jian-hua; YANG Yi-ke; LIU Hua; LIN Qi-de; ZHANG Wei-yuan

    2010-01-01

    Background This is a prospective clinical study based on a large sample gathered from multiple centers in China,subordinating to 10th Five-Year Plan of National Science & Technology Progression. We analyzed the high-risk factors inducing hypertensive disorders in pregnancy (HDP) and estimated the potential effect of anti-oxidants administration,including vitamin C (VC), vitamin E (VE) and Salvia Miltiorrhiza L (SML), a Chinese herb medicine, in amelioration of the high-risk factors in pregnancy.Methods From April 2005 to July 2006, 4814 pregnant women from 24 national wide cooperative hospitals were involved in this prospective research. The participants were randomly divided into two groups: 1607 cases were in anti-oxidants group with administration of vitamins and SML; 3207 cases were in control group without any medicine given. Every participant was under monitoring for the morbidity of HDP and the high-risk factors were investigated in HDP cases in each group.Results (1)The morbidity of HDP was 3.55% in anti-oxidants group vs. 4.18% in control group. No statistical difference existed between the two groups (P>0.05). (2) In anti-oxidants group, the HDP morbidities among three subgroups: VC +VE + SML, VC + VE and SML only, were 5.51%, 3.05% and 5% respectively. It showed no statistical difference among three remedies (P>0.05). (3) The related index of factors affecting HDP showed in intensity sequence as follows: family HDP history > profession > education level > age > body weight. The incidence of HDP in normal population was 3.51%,and the incidence of HDP in high-risk pregnant women (family HDP history, heavy physical labor, low education level (middle school and below), age >40, body mass index ≥24) was 5.84%, which was obviously higher than that in normal population (P <0.01). In anti-oxidants group, the probability of HDP in women with high-risk factors was 3.81%, which was obviously lower than that in control group with high-risk factors at 7.14% (P<0

  15. Endotoxin-induced endothelial fibrosis is dependent on expression of transforming growth factors β1 and β2.

    Science.gov (United States)

    Echeverría, César; Montorfano, Ignacio; Tapia, Pablo; Riedel, Claudia; Cabello-Verrugio, Claudio; Simon, Felipe

    2014-09-01

    During endotoxemia-induced inflammatory disease, bacterial endotoxins circulate in the bloodstream and interact with endothelial cells (ECs), inducing dysfunction of the ECs. We previously reported that endotoxins induce the conversion of ECs into activated fibroblasts. Through endotoxin-induced endothelial fibrosis, ECs change their morphology and their protein expression pattern, thereby suppressing endothelial markers and upregulating fibrotic proteins. The most commonly used fibrotic inducers are transforming growth factor β1 (TGF-β1) and TGF-β2. However, whether TGF-β1 and TGF-β2 participate in endotoxin-induced endothelial fibrosis remains unknown. We have shown that the endotoxin-induced endothelial fibrosis process is dependent on the TGF-β receptor, ALK5, and the activation of Smad3, a protein that is activated by ALK5 activation, thus suggesting that endotoxin elicits TGF-β production to mediate endotoxin-induced endothelial fibrosis. Therefore, we investigated the dependence of endotoxin-induced endothelial fibrosis on the expression of TGF-β1 and TGF-β2. Endotoxin-treated ECs induced the expression and secretion of TGF-β1 and TGF-β2. TGF-β1 and TGF-β2 downregulation inhibited the endotoxin-induced changes in the endothelial marker VE-cadherin and in the fibrotic proteins α-SMA and fibronectin. Thus, endotoxin induces the production of TGF-β1 and TGF-β2 as a mechanism to promote endotoxin-induced endothelial fibrosis. To the best of our knowledge, this is the first report showing that endotoxin induces endothelial fibrosis via TGF-β secretion, which represents an emerging source of vascular dysfunction. These findings contribute to understanding the molecular mechanism of endotoxin-induced endothelial fibrosis, which could be useful in the treatment of inflammatory diseases.

  16. Adipocyte-Specific Hypoxia-Inducible Factor 2α Deficiency Exacerbates Obesity-Induced Brown Adipose Tissue Dysfunction and Metabolic Dysregulation

    OpenAIRE

    García-Martín, Rubén; Alexaki, Vasileia I.; Qin, Nan; Rubín de Celis, María F.; Economopoulou, Matina; Ziogas, Athanasios; Gercken, Bettina; Kotlabova, Klara; Phieler, Julia; Ehrhart-Bornstein, Monika; Bornstein, Stefan R.; Eisenhofer, Graeme; BREIER, GEORG; Blüher, Matthias; Hampe, Jochen

    2016-01-01

    Angiogenesis is a central regulator for white (WAT) and brown (BAT) adipose tissue adaptation in the course of obesity. Here we show that deletion of hypoxia-inducible factor 2α (HIF2α) in adipocytes (by using Fabp4-Cre transgenic mice) but not in myeloid or endothelial cells negatively impacted WAT angiogenesis and promoted WAT inflammation, WAT dysfunction, hepatosteatosis, and systemic insulin resistance in obesity. Importantly, adipocyte HIF2α regulated vascular endothelial growth factor ...

  17. Factors associated with the use of preventive care for contrast-induced acute kidney injury.

    Science.gov (United States)

    Weisbord, Steven D; Mor, Maria K; Kim, Sunghee; Hartwig, Kathryn C; Sonel, Ali F; Palevsky, Paul M; Fine, Michael J

    2009-03-01

    The factors that affect the implementation of preventive care for contrast-induced acute kidney injury (CIAKI) are unknown. To assess patient and provider factors associated with the use of preventive care for CIAKI. Prospective cohort study. Patients with kidney disease undergoing procedures with intravascular iodinated radiocontrast. We recorded the use of preventive care defined as the administration of: (1) pre- and post-procedure isotonic intravenous (IV) fluid, (2) N-acetylcysteine, and (3) iso-osmolal radiocontrast. We surveyed patients' providers to assess their knowledge, experience, and training on CIAKI and used multiple logistic regression to assess the independent associations of patient and provider factors with the use of these preventive interventions. We enrolled 660 patients and 87 providers. Patient factors associated with use of IV fluid and N-acetylcysteine were higher baseline serum creatinine (OR 1.5 and 5.0, p < 0.05) and inpatient status (OR 3.0 and 6.3, p < 0.05), while higher baseline serum creatinine was associated with the use of iso-osmolal contrast (OR = 13.4, p < 0.01). The primary provider characteristics associated with the use of IV fluid and N-acetylcysteine were a greater degree of prior training on CIAKI (OR 1.9 and 2.8, p < 0.05) and higher number of prior patients with CIAKI (OR 2.7 and 2.6, p < 0.05). Patient baseline kidney function and provider training and experience with CIAKI are independently associated with the use of preventive care. Efforts to increase and intensify the training providers receive on CIAKI may help decrease the incidence of this costly iatrogenic condition.

  18. Study of Clinical and Genetic Risk Factors for Aspirin-induced Gastric Mucosal Injury

    Directory of Open Access Journals (Sweden)

    Yun Wu

    2016-01-01

    Full Text Available Background: Current knowledge about clinical and genetic risk factors for aspirin-induced gastric mucosal injury is not sufficient to prevent these gastric mucosal lesions. Methods: We recruited aspirin takers as the exposed group and healthy volunteers as the control group. The exposed group was categorized into two subgroups such as subgroup A as gastric mucosal injury diagnosed by gastroscopy, including erosion, ulcer or bleeding of the esophagus, stomach, or duodenum; subgroup B as no injury of the gastric mucosa was detected by gastroscopy. Clinical information was collected, and 53 single nucleotide polymorphisms were evaluated. Results: Among 385 participants, 234 were in the aspirin-exposed group. According to gastroscopy, 82 belonged to subgroup A, 91 belonged to subgroup B, and gastroscopic results of 61 participants were not available. Using the Chi-square test and logistic regression, we found that peptic ulcer history (odds ratio [OR] = 5.924, 95% confidence intervals [CI]: 2.115-16.592, dual anti-platelet medication (OR = 3.443, 95% CI: 1.154-10.271, current Helicobacter pylori infection (OR = 2.242, 95% CI: 1.032-4.870, male gender (OR = 2.211, 95% CI: 1.027-4.760, GG genotype of rs2243086 (OR = 4.516, 95% CI: 1.180-17.278, and AA genotype of rs1330344 (OR = 2.178, 95% CI: 1.016-4.669 were more frequent in subgroup A than subgroup B. In aspirin users who suffered from upper gastrointestinal bleeding, the frequency of the TT genotype of rs2238631 and TT genotype of rs2243100 was higher than in those without upper gastrointestinal bleeding. Conclusions: Peptic ulcer history, dual anti-platelet medication, H. pylori current infection, and male gender were possible clinical risk factors for aspirin-induced gastric mucosal injury. GG genotype of rs2243086 and AA genotype of rs1330344 were possible genetic risk factors. TT genotype of rs2238631 and TT genotype of rs2243100 may be risk factors for upper gastrointestinal bleeding in

  19. Study of Clinical and Genetic Risk Factors for Aspirin-induced Gastric Mucosal Injury

    Institute of Scientific and Technical Information of China (English)

    Yun Wu; Ying Hu; Peng You; Yu-Jing Chi; Jian-Hua Zhou; Yuan-Yuan Zhang; Yu-Lan Liu

    2016-01-01

    Background:Current knowledge about clinical and genetic risk factors for aspirin-induced gastric mucosal injury is not sufficient to prevent these gastric mucosal lesions.Methods:We recruited aspirin takers as the exposed group and healthy volunteers as the control group.The exposed group was categorized into two subgroups such as subgroup A as gastric mucosal injury diagnosed by gastroscopy,including erosion,ulcer or bleeding of the esophagus,stomach,or duodenum;subgroup B as no injury of the gastric mucosa was detected by gastroscopy.Clinical information was collected,and 53 single nucleotide polymorphisms were evaluated.Results:Among 385 participants,234 were in the aspirin-exposed group.According to gastroscopy,82 belonged to subgroup A,91 belonged to subgroup B,and gastroscopic results of 61 participants were not available.Using the Chi-square test and logistic regression,we found that peptic ulcer history (odds ratio [OR] =5.924,95% confidence intervals [CI]:2.115-16.592),dual anti-platelet medication (OR =3.443,95% CI:1.154-10.271),current Helicobacterpylori infection (OR =2.242,95% CI:1.032-4.870),male gender (OR =2.211,95% CI:1.027-4.760),GG genotype ofrs2243086 (OR =4.516,95% CI:1.180-17.278),and AA genotype ofrs 1330344 (OR =2.178,95% CI:1.016-4.669) were more frequent in subgroup A than subgroup B.In aspirin users who suffered from upper gastrointestinal bleeding,the frequency of the TT genotype ofrs2238631 and TT genotype ofrs2243100 was higher than in those without upper gastrointestinal bleeding.Conclusions:Peptic ulcer history,dual anti-platelet medication,H.pylori current infection,and male gender were possible clinical risk factors for aspirin-induced gastric mucosal injury.GG genotype of rs2243086 and AA genotype of rs 1330344 were possible genetic risk factors.TT genotype ofrs2238631 and TT genotype of rs2243100 may be risk factors for upper gastrointestinal bleeding in aspirin users.

  20. Generation of induced pluripotent stem cells from buffalo (Bubalus bubalis) fetal fibroblasts with buffalo defined factors.

    Science.gov (United States)

    Deng, Yanfei; Liu, Qingyou; Luo, Chan; Chen, Shibei; Li, Xiangping; Wang, Caizhu; Liu, Zhenzhen; Lei, Xiaocan; Zhang, Huina; Sun, Hongliang; Lu, Fenghua; Jiang, Jianrong; Shi, Deshun

    2012-09-01

    Ectopically, expression of defined factors could reprogram mammalian somatic cells into induced pluripotent stem cells (iPSCs), which initiates a new strategy to obtain pluripotent stem cell lines. Attempts have been made to generate buffalo pluripotent stem cells by culturing primary germ cells or inner cell mass, but the efficiency is extremely low. Here, we report a successful method to reprogram buffalo fetal fibroblasts (BFFs) into pluripotent stem cells [buffalo induced pluripotent stem cell (biPSCs)] by transduction of buffalo defined factors (Oct4, Sox2, Klf4, and c-Myc) using retroviral vectors. The established biPSCs displayed typical morphological characteristics of pluripotent stem cells, normal karyotype, positive staining of alkaline phosphatase, and expressed pluripotent markers including Oct4, Sox2, Nanog, Lin28, E-Cadherin, SSEA-1, SSEA-4, TRA-1-81, STAT3, and FOXD3. They could form embryoid bodies (EBs) in vitro and teratomas after injecting into the nude BALB/C mice, and 3 germ layers were identified in the EBs and teratomas. Methylation assay revealed that the promoters of Oct4 and Nanog were hypomethylated in biPSCs compared with BFFs and pre-biPSCs, while the promoters of Sox2 and E-Cadherin were hypomethylated in both BFFs and biPSCs. Further, inhibiting p53 expression by coexpression of SV40 large T antigen and buffalo defined factors in BFFs or treating BFFs with p53 inhibitor pifithrin-a (PFT) could increase the efficiency of biPSCs generation up to 3-fold, and nuclear transfer embryos reconstructed with biPSCs could develop to blastocysts. These results indicate that BFFs can be reprogrammed into biPSCs by buffalo defined factors, and the generation efficiency of biPSCs can be increased by inhibition of p53 expression. These efforts will provide a feasible approach for investigating buffalo stem cell signal pathways, establishing buffalo stem cell lines, and producing genetic modification buffaloes in the future.

  1. Sequential changes of hypoxia- inducible factor 1 alpha in experimental spinal cord injury and its significance

    Institute of Scientific and Technical Information of China (English)

    鞠延; 贺民; 毛伯镛

    2002-01-01

    Objective: To study the sequential changes of HIF-1α(hypoxia-inducible factor 1 alpha) in experimental spinalcord injury in rats and to analyze its potential effects inSCI.Methods: A static compression model of SCI wasemployed in this study. Expressions of HIF-1α weremeasured with immunohistochemical staining, while flowcytometry was used to determine the apoptotic ratio andbcl-2 expressions.Results: HIF-1α began to increase 1 day after injury,and reached the peak at 3-7 days. Two weeks later, itdeclined significantly. The sequential changes of HIF-1αcoincided well with the alterations of apoptotic ratio andcontents of bel-2.Conclusions: HIF-1α possibly participates in thesecondary ischemic and hypoxic procedures after spinalcord injury, and may mediate the traumatic apoptosis.Further understanding of HIF-1α may provide newtherapeutic regimens for SCI.

  2. Quercetin induces human colon cancer cells apoptosis by inhibiting the nuclear factor-kappa B Pathway.

    Science.gov (United States)

    Zhang, Xiang-An; Zhang, Shuangxi; Yin, Qing; Zhang, Jing

    2015-01-01

    Quercetin can inhibit the growth of cancer cells with the ability to act as chemopreventers. Its cancer-preventive effect has been attributed to various mechanisms, including the induction of cell-cycle arrest and/or apoptosis as well as the antioxidant functions. Nuclear factor kappa-B (NF-κB) is a signaling pathway that controls transcriptional activation of genes important for tight regulation of many cellular processes and is aberrantly expressed in many types of cancer. Inhibitors of NF-κB pathway have shown potential anti-tumor activities. However, it is not fully elucidated in colon cancer. In this study, we demonstrate that quercetin induces apoptosis in human colon cancer CACO-2 and SW-620 cells through inhibiting NF-κB pathway, as well as down-regulation of B-cell lymphoma 2 and up-regulation of Bax, thus providing basis for clinical application of quercetin in colon cancer cases.

  3. Structural requirements for inducible shedding of the p55 tumor necrosis factor receptor

    DEFF Research Database (Denmark)

    Brakebusch, C; Varfolomeev, E E; Batkin, M

    1994-01-01

    Induced shedding of the p55 tumor necrosis factor receptor (p55-R) was previously shown to be independent of the amino acid sequence properties of the intracellular domain of this receptor. We now find it also independent of the sequence properties of the transmembrane domain and of the cysteine......-rich region that constitutes most of the extracellular domain of the receptor. The shedding is shown to depend solely on the sequence properties of a small region within the spacer that links the cysteine-rich region in the extracellular domain to the transmembrane domain. Detailed tests of effects......, however, by some mutations that seem to change the conformation of the spacer region. These findings suggest that a short amino acid sequence in the p55-R is essential and sufficient for its shedding and that the shedding is mediated either by a protease with limited sequence specificity or by several...

  4. Therapeutic angiogenesis induced by human hepatocyte growth factor (HGF) gene in rat myocardial ischemia models

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In order to investigate the feasibility of myocardial ischemia gene therapy, we cloned human hepatocyte growth factor gene from human placenta cDNA library by the RT-PCR method. Recombination adenovirus Ad-HGF was constructed by the method of co-transfection and homologous recombination of plasmids in 293 cells. Ad-HGF was amplified in 293 cells and purified through CsCl density gradient centrifugation. Ad-HGF could be expressed in rat primary myocardial cells and HGF secreted into the culture media, which was tested by ELISA. The distribution and persistence of adenovirus in rat were investigated by green fluorescence protein as a report gene. In vivo we found that intramyocardial administration of Ad-HGF could induce angiogenesis in rat myocardium after ligation of coronary artery. The results suggested that Ad-HGF was effective in vitro and in vivo, and the data for designing human trial of gene therapy-- mediated cardiac angiogenesis were provided.

  5. Are plant endogenous factors like ethylene modulators of the early oxidative stress induced by mercury?

    Directory of Open Access Journals (Sweden)

    M Belén eMontero-Palmero

    2014-08-01

    Full Text Available The induction of oxidative stress is one of the quickest symptoms appearing in plants subjected to metal stress. A transcriptional analysis of the early responses of alfalfa (Medicago sativa seedlings to mercury (Hg; 3 µM for 3, 6 and 24 h showed that up-regulation of genes responding to ethylene were up-regulated, a phytohormone known to mediate in the cellular redox homeostasis. In this mini-review we have compared these quick responses with two other concurrent transcriptomic analysis in Barrel medic (Medicago truncatula and barley (Hordeum vulgare under Hg stress. Besides ethylene, ABA and jasmonate related genes were up-regulated, all of them are endogenous factors known to intervene in oxidative stress responses. The information obtained may target future work to understand the cellular mechanisms triggered by Hg, enabling biotechnological approaches to diminish Hg-induced phytotoxicity.

  6. Hypoxia Inducible Factor-1α (HIF-1 α and its Role in Tumour Progression to Malignancy

    Directory of Open Access Journals (Sweden)

    Gaurav Mrinal Sharma

    2008-07-01

    Full Text Available Hypoxia is a condition in which an area of the body or a tissue is deprived of sufficient supply of oxygen. The lack of nutrients in a hypoxic tissue generally causes apoptosis but some cells are able to adapt to this hypoxic environment and resist apoptosis. This adaptation occurs as a result of gene activation. Hypoxia is a characteristic feature of many cancers and is the stimulus for overexpression of HIF-1α - a basic loop-helix PAS protein family subunit of HIF, which allows the cell to adapt and survive in hostile environment. The presence of hypoxia and HIF-1α is correlated with an increased risk of metastasis and techniques that can inhibit hypoxia inducible factor may be instrumental in finding a cure for cancer.

  7. neutrino induced threshold production of two pions and N^*(1440) electroweak form factors

    CERN Document Server

    Hernández, E; Singh, S K; Valverde, M; Vicente-Vacas, M J

    2007-01-01

    We study the threshold production of two pions induced by neutrinos in nucleon targets. The contribution of nucleon, pion and contact terms are calculated using a chiral Lagrangian. The contribution of the Roper resonance, neglected in earlier studies, has also been taken into account. The numerical results for the cross sections are presented and compared with the available experimental data. It has been found that in the two pion channels with $\\pi^+\\pi^-$ and $\\pi^0\\pi^0$ in the final state, the contribution of the $N^*(1440)$ is quite important and could be used to determine the $N^*(1440)$ electroweak transition form factors if experimental data with better statistics become available in the future.

  8. A sorghum MYB transcription factor induces 3-deoxyanthocyanidins and enhances resistance against leaf blights in maize.

    Science.gov (United States)

    Ibraheem, Farag; Gaffoor, Iffa; Tan, Qixian; Shyu, Chi-Ren; Chopra, Surinder

    2015-01-30

    Sorghum responds to the ingress of the fungal pathogen Colletotrichum sublineolum through the biosynthesis of 3-deoxyanthocyanidin phytoalexins at the site of primary infection. Biosynthesis of 3-deoxyanthocyanidins in sorghum requires a MYB transcription factor encoded by yellow seed1 (y1), an orthologue of the maize gene pericarp color1 (p1). Maize lines with a functional p1 and flavonoid structural genes do not produce foliar 3-deoxyanthocyanidins in response to fungal ingress. To perform a comparative metabolic analysis of sorghum and maize 3-deoxyanthocyanidin biosynthetic pathways, we developed transgenic maize lines expressing the sorghum y1 gene. In maize, the y1 transgene phenocopied p1-regulated pigment accumulation in the pericarp and cob glumes. LC-MS profiling of fungus-challenged Y1-maize leaves showed induction of 3-deoxyanthocyanidins, specifically luteolinidin. Y1-maize plants also induced constitutive and higher levels of flavonoids in leaves. In response to Colletotrichum graminicola, Y1-maize showed a resistance response.

  9. Analysis of human transforming growth factor β-induced gene mutation in corneal dystrophy

    Institute of Scientific and Technical Information of China (English)

    李杨; 孙旭光; 任慧媛; 董冰; 王智群; 孙秀英

    2004-01-01

    Background Corneal dystrophy is a group of inherited blinding diseases of the cornea. This study was to identify the mutations of the keratoepithelin (KE) gene for proper diagnosis of corneal dystrophy. Methods Three families with corneal dystrophy were analysed. Thirteen individuals at risk for corneal dystrophy in family A, the proband and her son in family B, and the proband in family C were examined after their blood samples were obtained. Mutation screening of human transforming growth factor β-induced gene (BIGH3 gene) was performed. Results Five individuals in family A were found by clinical evaluation to be affected with granular corneal dystrophy and carried the BIGH3 mutation W555R. However, both probands in families B and C, also diagnosed with granular corneal dystrophy, harboured the BIGH3 mutation R124H. Conclusion Molecular genetic analysis can improve accurate diagnosis of corneal dystrophy.

  10. Understanding the Dr. Jekyll and Mr. Hyde nature of apoptosis-inducing factor: future perspectives.

    Science.gov (United States)

    Preta, Giulio

    2017-08-01

    Apoptosis-inducing factor (AIF) is emerging as a key protein in regulation of basic physiological processes including phagocytosis, mitophagy and regulation of the redox state. Recent evidences suggest that the enzymatic activity of AIF may play an active role in tumor progression controlling energy metabolism and redox balance. The present manuscript briefly describes the story of this protein from its initial discovery as caspase-independent apoptotic protein, throughout its role in oxidative phosphorylation and lately involvement in tumor progression. Understanding the dualistic nature of AIF is a critical starting point to clarify its contribution in tumor metabolic balance and to develop new AIF-specific therapeutic strategies. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  11. Recent Advances in Developing Inhibitors for Hypoxia-Inducible Factor Prolyl Hydroxylases and Their Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    So Yeon Kim

    2015-11-01

    Full Text Available Hypoxia-inducible factor (HIF prolyl hydroxylases (PHDs are members of the 2-oxoglutarate dependent non-heme iron dioxygenases. Due to their physiological roles in regulation of HIF-1α stability, many efforts have been focused on searching for selective PHD inhibitors to control HIF-1α levels for therapeutic applications. In this review, we first describe the structure of PHD2 as a molecular basis for structure-based drug design (SBDD and various experimental methods developed for measuring PHD activity. We further discuss the current status of the development of PHD inhibitors enabled by combining SBDD approaches with high-throughput screening. Finally, we highlight the clinical implications of small molecule PHD inhibitors.

  12. [Factors inducing transition from growth to dormancy in rhizobacteria Azospirillum brasilense].

    Science.gov (United States)

    Kushneruk, M A; Tugarova, A V; Il'chukova, A V; Slavkina, E A; Starichkova, N I; Bogatyrev, V A; Antoniuk, L P

    2013-01-01

    The factors suppressing division of the cells of the rhizobacterium Azospirillum brasilense and inducing their transition to a dormant state were analyzed. These included the presence of hexylresorcinol or heavy metals (Cu and Co) in the medium, oxygen stress, and transfer of the cells into the physiological saline or phosphate buffer solution. The results were used to develop a protocol for obtaining of uncultured cells of A. brasilense Sp245, a natural symbiont of wheat. The cells lost their ability to grow on synthetic agar medium, but could revert to growth when incubated in freshly prepared liquid medium. Needle-shaped crystals differing from struvite, which has been previously reported for this strain, were found in the dormant culture of A. brasilense Sp245.

  13. Umbelliferone and daphnetin ameliorate carbon tetrachloride-induced hepatotoxicity in rats via nuclear factor erythroid 2-related factor 2-mediated heme oxygenase-1 expression.

    Science.gov (United States)

    Mohamed, Mohamed R; Emam, Manal A; Hassan, Nahla S; Mogadem, Abeer I

    2014-09-01

    Among various phytochemicals, coumarins comprise a very large class of plant phenolic compounds that have good nutritive value, in addition to their antioxidant effects. The purpose of the present study was to investigate the protective effects of two coumarin derivatives, umbelliferone and daphnetin, against carbon tetrachloride (CCl4)-induced hepatotoxicity in rats and elucidate the underlying mechanism. Treatment of rats with either umbelliferone or daphnetin significantly improved the CCl4-induced biochemical alterations. In addition, both compounds alleviated the induced-lipid peroxidation and boosted the antioxidant defense system. Moreover, the investigated compounds attenuated CCl4-induced histopathological alterations of the liver. Finally, umbelliferone and daphnetin induced the nuclear translocation of the nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), thereby inducing the expression and activity of the cytoprotective heme oxygenase-1 (HO-1). These results suggest that umbelliferone and daphnetin ameliorate oxidative stress-related hepatotoxicity via their ability to augment cellular antioxidant defenses by activating Nrf2-mediated HO-1 expression.

  14. Roles of cyclooxygenase-2 in microvascular endothelial cell proliferation induced by basic fibroblast growth factor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Background The level of basic fibroblast growth factor (bFGF) increases rapidly after cerebral ischemia. However, the molecular mechanisms for the effects of bFGF on cerebral microvascular endothelial cells (cMVECs) have not yet been fully elucidated. In this study, a murine cMVEC line, bend.3, was employed to study the effects of bFGF on cyclooxygenase (COX) expression and its downstream effects in cMVECs. Methods After treatment with bFGF, RT-PCR and Western blotting analyses were carried out to evaluate the changes in COX-2 mRNA and protein expression, respectively. Ml-r assays were performed to measure cell proliferation. The prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) concentrations in the culture medium were measured by enzyme-linked immunosorbent assay (ELISA). Results COX-2 mRNA and protein expressions in bEnd.3 cells were induced by bFGF in time- and dose-dependent manners. The bFGF-induced COX-2 upregulation led to enhanced PGE2 production by bEnd.3 cells, and this effect was abolished by the selective COX-2 inhibitor NS-398. bFGF also increased VEGF production by bend.3 cells, and this effect was blocked by NS-398 and the EP1/2 (PGE2 receptors) antagonist AH6809. Furthermore, exogenous PGE2 increased VEGF production in bend.3 cells, and AH6809 blocked this effect. Conclusion bFGF increases VEGF production in an autocrine manner by increasing COX-2-generated PGE2 in cMVECs and subsequently stimulates MVEC proliferation and angiogenesis.

  15. Obesity-induced endoplasmic reticulum stress suppresses nuclear factor-Y expression.

    Science.gov (United States)

    Liu, Yulan; Zhang, Yuwei; Zhang, Yanjie; Zhang, Jinlong; Liu, Yin; Feng, Peiqun; Su, Zhiguang

    2017-02-01

    Nuclear transcription factor Y (NF-Y) is an evolutionarily conserved transcription factor composed of three subunits, NF-YA, NF-YB, and NF-YC. NF-Y plays crucial roles in pre-adipocyte maintenance and/or commitment to adipogenesis. NF-YA dysfunction in adipocyte resulted in an age-dependent progressive loss of adipose tissue associated with metabolic complications. Endoplasmic reticulum (ER) stress has emerged as an important mediator in the pathogenesis of obesity. However, it is not known if NF-YA is involved in the ER stress-mediated pathogenesis of obesity. We first examined the effects of ER stress on the NF-YA expression in cultured 3T3-L1 adipocytes; then in ob/ob genetic obesity mice, we tested the effect of chemical chaperones alleviating ER stress on the expression levels of NF-YA. Subsequently, we inhibited the new mRNA synthesis using actinomycin D in 3T3-L1 cells to explore the mechanism modulating NF-YA expression. Finally, we evaluated the involvement of PPARg in the regulation of NF-YA expression by ER stress. We demonstrated that both obesity- and chemical chaperone -induced ER stress suppressed NF-YA expression and alleviation of ER stress by chemical chaperone could recover NF-YA expression in ob/ob mice. Moreover, we showed that ER stress suppressed NF-YA mRNA transcription through the involvement of peroxisome proliferator-activated receptor gamma (PPARg). Activation of PPARg ameliorates the ER stress-induced NF-YA suppression. Our findings may point to a possible role of NF-YA in stress conditions that occur in chronic obesity, ER stress might be involved in the pathogenesis of obesity through NF-YA depletion.

  16. Overexpression of ERβ is sufficient to inhibit hypoxia-inducible factor-1 transactivation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Choa; Lee, YoungJoo, E-mail: yjlee@sejong.ac.kr

    2014-07-18

    Highlights: • We examined the effect of ERβ specific ligand on HIF-1 inhibition. • DPN down-regulates the ARNT protein levels in PC3 cells. • DPN did not show additional effect in ERβ transfected MCF-7 cells. • Our study shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression. - Abstract: Estrogen receptor (ER) β is predicted to play an important role in the prevention of breast cancer development and progression. We have previously shown that ERβ suppresses hypoxia inducible factor (HIF)-1-mediated transcription through aryl hydrocarbon receptor nuclear translocator (ARNT) degradation via ubiquitination processes. In this study, we attempted to examine the effect of ERβ specific ligand on HIF-1 inhibition in ERβ positive PC3 cells and ERβ transfected MCF-7 cells. ERβ specific agonist diarylpropionitrile (DPN) stimulated estrogen response element (ERE)-luciferase activity in a similar fashion to estradiol in PC3 cells. We observed that DPN down-regulates the ARNT protein levels leading to an attenuation of hypoxia-induced hypoxia response element (HRE)-driven luciferase reporter gene activation in PC3 cells. Treatment of DPN reduced vascular endothelial growth factor (VEGF) expression and co-treatment with ERβ specific antagonist PHTPP abrogated the effect in PC3 cells. We then examined the effect of DPN in ERβ transfected MCF-7 cells. HIF-1 transcriptional activity repression by ERβ was not further reduced by DPN, as examined by HRE-driven luciferase assays. Expression of ERβ significantly decreased VEGF secretion and ARNT expression under hypoxic conditions. However, DPN did not additionally affect this suppression in MCF-7 cells transfected with ERβ. This result shows that unliganded ERβ is sufficient to inhibit HIF-1 in systems of overexpression.

  17. Hypoxia inducible factor-1α mediates protective effects of ischemic preconditioning on ECV-304 endothelial cells

    Institute of Scientific and Technical Information of China (English)

    Liu-Bin Shi; Jian-Hua Huang; Bao-San Han

    2007-01-01

    AIM: To investigate whether hypoxia inducible factor-1α (HIF-1α) is linked to the protective effects of ischemic preconditioning (IP) on sinusoidal endothelial cells against ischemia/reperfusion injury.METHODS: Sinusoidal endothelial cell lines ECV-304 were cultured and divided into four groups: control group, cells were cultured in complete DMEM medium; cold anoxia/warm reoxygenation (A/R) group, cells were preserved in a 4℃ UW solution in a mixture of 95% N2 and 5% CO2 for 24 h; anoxia-preconditioning (ARC) group, cells were treated with 4 cycles of short anoxia and reoxygenation before prolonged anoxia-preconditioning treatment; and anoxia-preconditioning and hypoxia inducible factor-1α (HIF-1α) inhibitor (I-HIF-1) group, cells were pretreated with 5 μm of HIF-1α inhibitor NS398 in DMEM medium before subjected to the same treatment as group ARC. After the anoxia treatment, each group was reoxygenated in a mixture of 95% air and 5% CO2 incubator for 6 h. Cytoprotections were evaluated by cell viabilities from Trypan blue, lactate dehydrogenase (LDH) release rates, and intracellular cell adhesion molecule-1 (ICAM-1) expressions. Expressions of HIF-1α mRNA and HIF-1α protein from each group were determined by the RT-PCR method and Western blotting, respectively.RESULTS: Ischemia preconditioning increased cell viability, and reduced LDH release and ICAM-1 expressions. Ischemia preconditioning also upregulated the HIF-1α mRNA level and HIF-1α protein expression. However, all of these changes were reversed by HIF-1α inhibitor NS398.CONCLUSION: Ischemia preconditioning effectively inhibited cold hypoxia/warm reoxygenation injury to endothelial cells, and the authors showed for the first time HIF-1α is causally linked to the protective effects of ischemic preconditioning on endothelial cells.

  18. Clinical significance of connective tissue growth factor in hepatitis B virus-induced hepatic fibrosis

    Institute of Scientific and Technical Information of China (English)

    Rong-Li Piao; David R Brigstock; Jie Zhu; Man-Li Zhang; Run-Ping Gao

    2012-01-01

    AIM:To determine the utility of connective tissue growth factor (CCN2/CTGF) for assessing hepatic fibrosis in hepatitis B virus (HBV)-induced chronic liver diseases (CLD-B).METHODS:Enzyme-linked immunosorbent assay was used to measure CCN2 in sera from 107 patients with chronic hepatitis B (CHB) and 39 patients with HBVinduced active liver cirrhosis and 30 healthy individuals.Liver samples from 31 patients with CHB,8 patients with HBV-induced liver cirrhosis and 8 HBV carriers with normal liver histology were examined for transforming growth factor β-1 (TGF-β1) or CCN2 mRNA levels by in situ hybridization,and computer image analysis was performed to measure integrated optimal density (IOD) of CCN2 mRNA-positive cells in liver tissues.Histological inflammation grading and fibrosis staging were evaluated by H and E staining and Van Gieson's method.RESULTS:Serum CCN2 concentrations were,respectively,4.0-or 4.9-fold higher in patients with CHB or active liver cirrhosis as compared to healthy individuals (P < 0.01).There was good consistency between the levels of CCN2 in sera and CCN2 mRNA expression in liver tissues (r =0.87,P < 0.01).The levels of CCN2 in sera were increased with the enhancement of histological fibrosis staging in patients with CLD-B (r =0.85,P < 0.01).Serum CCN2 was a reliable marker for the assessment of liver fibrosis,with areas under the receiver operating characteristic (ROC) curves (AUC) of 0.94 or 0.85 for,respectively,distinguishing normal liver controls from patients with F1 stage liver fibrosis or discriminating between mild and significant fibrosis.CONCLUSION:Detection of serum CCN2 in patients with CLD-B may have clinical significance for assessment of severity of hepatic fibrosis.

  19. Erythropoietin decreases carbon tetrachloride-induced hepatic fibrosis by inhibiting transforming growth factor-beta

    Institute of Scientific and Technical Information of China (English)

    Soo Young Park; Joo Young Lee; Won Young Tak; Young Oh Kweon; Mi Suk Lee

    2012-01-01

    Background In addition to hematopoietic effect,the erythropoietin is known as a multifunctional cytokine with anti-fibrosis and organ-protective activities.The purpose of this study was to evaluate the effect of recombinant human erythropoietin (rhEPO) on hepatic fibrosis and hepatic stellate cells (HSCs).Methods Carbon tetrachloride (CCl4) induced hepatic fibrosis mice models were used for in vivo study and HSCs line for in vitro study.CCl4 and rhEPO (0,200 or 1000 U/kg) was injected intraperitoneally in BALB/c mice three times a week for 4 weeks.Immunohistochemistry and immunoblotting were performed to evaluate expressions of transforming growth factor-β31 (TGF-β1),α-smooth muscle actin (α-SMA),and fibronectin in explanted liver.Immunoblotting of α-SMA,phophorylated Smad-2 and Smad-2/3 was performed in HSCs treated with TGF-β1 and/or rhEPO.Results Expressions of TGF-β1,α-SMA,and fibronectin were increased in CCl4 injected mice livers,but significantly attenuated by co-treatment with CCl4 and rhEPO.Co-treatment of rhEPO markedly suppressed fibrosis in Masson's trichrome compared with treatment of only CCl4.TGF-β1 increased phosphorylated α-SMA,Smad-2 expressions in HSCs,which were decreased by rhEPO co-treatment.Conclusions Treatment of rhEPO effectively suppressed fibrosis in CCl4-induced liver fibrosis mice models.Anti-fibrosis effect of rhEPO could be related to inhibition of TGF-β1 induced activation of HSCs.

  20. Lack of Transcription Factor p53 Exacerbates Elastase-Induced Emphysema in Mice.

    Science.gov (United States)

    Chrusciel, Sandra; Zysman, Maéva; Caramelle, Philippe; Tiendrebeogo, Arnaud; Baskara, Indoumady; Le Gouvello, Sabine; Chabot, François; Giraudier, Stéphane; Boczkowski, Jorge; Boyer, Laurent

    2016-02-01

    The transcription factor p53 is overexpressed in the lung of patients with emphysema, but it remains unclear if it has a deleterious or protective effect in disease progression. We investigated the role of p53 in the elastase-induced emphysema model and the molecular underlining mechanisms. Wild-type (WT) and p53(-/-) mice were instilled with pancreatic porcine elastase. We quantified emphysema (morphometric analysis), chemokine (C-C motif) ligand 2 (CCL2), and TNF-α in bronchoalveolar lavage (BAL) (ELISA), oxidative stress markers [heme oxygenase 1 (HO1), NAD(P)H dehydrogenase quinone 1 (NQO1), and quantitative RT-PCR], matrix metalloproteinase 12 (MMP12) expression, and macrophage apoptosis (cleaved caspase-3, immunofluorescence). p53 gene expression was up-regulated in the lung of elastase-instilled mice. p53 deletion aggravated elastase-induced emphysema severity, pulmonary inflammation (macrophage and neutrophil numbers and CCL2 and TNF-α levels in BAL), and lung oxidative stress. These findings, except for the increase in CCL2, were reproduced in WT mice transplanted with p53(-/-) bone marrow cells. The increased number of macrophages in p53(-/-) mice was not a consequence of reduced apoptosis or an excess of chemotaxis toward CCL2. Macrophage expression of MMP12 was higher in p53(-/-) mice compared with WT mice after elastase instillation. These findings provide evidence that p53(-/-) mice and WT mice grafted with p53(-/-) bone marrow cells are more prone to developing elastase-induced emphysema, supporting a protective role of p53, and more precisely p53 expressed in macrophages, against emphysema development. The pivotal role played by macrophages in this phenomenon may involve the MMP12-TNF-α pathway.

  1. Little effects of Insulin-like Growth Factor-I on testicular atrophy induced by hypoxia

    Directory of Open Access Journals (Sweden)

    Casares Amelia

    2006-02-01

    Full Text Available Abstract Background Insulin-like Growth Factor-I (IGF-I supplementation restores testicular atrophy associated with advanced liver cirrhosis that is a condition of IGF-I deficiency. The aim of this work was to evaluate the effect of IGF-I in rats with ischemia-induced testicular atrophy (AT without liver disease and consequently with normal serum level of IGF-I. Methods Testicular atrophy was induced by epinephrine (1, 2 mg/Kg intra-scrotal injection five times per week during 11 weeks. Then, rats with testicular atrophy (AT were divided into two groups (n = 10 each: untreated rats (AT receiving saline sc, and AT+IGF, which were treated with IGF-I (2 μg.100 g b.w.-1.day-1, sc. for 28d. Healthy controls (CO, n = 10 were studied in parallel. Animals were sacrificed on day 29th. Hypophyso-gonadal axis, IGF-I and IGFBPs levels, testicular morphometry and histopathology, immuno-histochemical studies and antioxidant enzyme activity phospholipid hydroperoxide glutathione peroxidase (PHGPx were assessed. Results Compared to controls, AT rats displayed a reduction in testicular size and weight, with histological testicular atrophy, decreased cellular proliferation and transferrin expression, and all of these alterations were slightly improved by IGF-I at low doses. IGF-I therapy increased signifincantly steroidogenesis and PHGPx activity (p Conclusion In testicular atrophy by hypoxia, condition without IGF-I deficiency, IGF-treatment induces only partial effects. These findings suggest that IGF-I therapy appears as an appropriate treatment in hypogonadism only when this is associated to conditions of IGF-I deficiency (such as Laron Syndrom or liver cirrhosis.

  2. Eosinophil resistance to glucocorticoid-induced apoptosis is mediated by the transcription factor NFIL3.

    Science.gov (United States)

    Pazdrak, Konrad; Moon, Young; Straub, Christof; Stafford, Susan; Kurosky, Alexander

    2016-04-01

    The mainstay of asthma therapy, glucocorticoids (GCs) exert their therapeutic effects through the inhibition of inflammatory signaling and induction of eosinophil apoptosis. However, laboratory and clinical observations of GC-resistant asthma suggest that GCs' effects on eosinophil viability may depend on the state of eosinophil activation. In the present study we demonstrate that eosinophils stimulated with IL-5 show impaired pro-apoptotic response to GCs. We sought to determine the contribution of GC-mediated transactivating (TA) and transrepressing (TR) pathways in modulation of activated eosinophils' response to GC by comparing their response to the selective GC receptor (GR) agonist Compound A (CpdA) devoid of TA activity to that upon treatment with Dexamethasone (Dex). IL-5-activated eosinophils showed contrasting responses to CpdA and Dex, as IL-5-treated eosinophils showed no increase in apoptosis compared to cells treated with Dex alone, while CpdA elicited an apoptotic response regardless of IL-5 stimulation. Proteomic analysis revealed that both Nuclear Factor IL-3 (NFIL3) and Map Kinase Phosphatase 1 (MKP1) were inducible by IL-5 and enhanced by Dex; however, CpdA had no effect on NFIL3 and MKP1 expression. We found that inhibiting NFIL3 with specific siRNA or by blocking the IL-5-inducible Pim-1 kinase abrogated the protective effect of IL-5 on Dex-induced apoptosis, indicating crosstalk between IL-5 anti-apoptotic pathways and GR-mediated TA signaling occurring via the NFIL3 molecule. Collectively, these results indicate that (1) GCs' TA pathway may support eosinophil viability in IL-5-stimulated cells through synergistic upregulation of NFIL3; and (2) functional inhibition of IL-5 signaling (anti-Pim1) or the use of selective GR agonists that don't upregulate NFIL3 may be effective strategies for the restoring pro-apoptotic effect of GCs on IL-5-activated eosinophils.

  3. Homolog of allograft inflammatory factor-1 induces macrophage migration during innate immune response in leech.

    Science.gov (United States)

    Schorn, Tilo; Drago, Francesco; Tettamanti, Gianluca; Valvassori, Roberto; de Eguileor, Magda; Vizioli, Jacopo; Grimaldi, Annalisa

    2015-03-01

    Allograft inflammatory factor-1 (AIF-1) is a 17-kDa cytokine-inducible calcium-binding protein that, in vertebrates, plays an important role in the allograft immune response. Its expression is mostly limited to the monocyte/macrophage lineage. Until recently, AIF-1 was assumed to be a novel molecule involved in inflammatory responses. To clarify this aspect, we have investigated the expression of AIF-1 after bacterial challenge and its potential role in regulating the innate immune response in an invertebrate model, the medicinal leech (Hirudo medicinalis). Analysis of an expressed sequence tag library from the central nervous system of Hirudo revealed the presence of the gene Hmaif-1/alias Hmiba1, showing high homology with vertebrate aif-1. Immunohistochemistry with an anti-HmAIF-1 polyclonal antibody revealed the constitutive presence of this protein in spread CD68(+) macrophage-like cells. A few hours after pathogen (bacterial) injection into the body wall, the amount of these immunopositive cells co-expressing HmAIF-1 and the common leucocyte marker CD45 increased at the injected site. Moreover, the recombinant protein HmAIF-1 induced massive angiogenesis and was a potent chemoattractant for macrophages. Following rHmAIF-1 stimulation, macrophage-like cells co-expressed the macrophage marker CD68 and the surface glycoprotein CD45, which, in vertebrates, seems to have a role in the integrin-mediated adhesion of macrophages and in the regulation of the functional responsiveness of cells to chemoattractants. CD45 is therefore probably involved in leech macrophage-like cell activation and migration towards an inflammation site. We have also examined its potential effect on HmAIF-1-induced signalling.

  4. Role of hypusinated eukaryotic translation initiation factor 5A in polyamine depletion-induced cytostasis.

    Science.gov (United States)

    Hyvönen, Mervi T; Keinänen, Tuomo A; Cerrada-Gimenez, Marc; Sinervirta, Riitta; Grigorenko, Nikolay; Khomutov, Alex R; Vepsäläinen, Jouko; Alhonen, Leena; Jänne, Juhani

    2007-11-30

    We have earlier shown that alpha-methylated spermidine and spermine analogues rescue cells from polyamine depletion-induced growth inhibition and maintain pancreatic integrity under severe polyamine deprivation. However, because alpha-methylspermidine can serve as a precursor of hypusine, an integral part of functional eukaryotic translation initiation factor 5A required for cell proliferation, and because alpha, omega-bismethylspermine can be converted to methylspermidine, it is not entirely clear whether the restoration of cell growth is actually attributable to hypusine formed from these polyamine analogues. Here, we have used optically active isomers of methylated spermidine and spermine and show that polyamine depletion-induced acute cytostasis in cultured cells could be reversed by all the isomers of the methylpolyamines irrespective of whether they served or not as precursors of hypusine. In transgenic rats with activated polyamine catabolism, all the isomers similarly restored liver regeneration and reduced plasma alpha-amylase activity associated with induced pancreatitis. Under the above experimental conditions, the (S, S)- but not the (R, R)-isomer of bismethylspermine was converted to methylspermidine apparently through the action of spermine oxidase strongly preferring the (S, S)-isomer. Of the analogues, however, only (S)-methylspermidine sustained cell growth during prolonged (more than 1 week) inhibition of polyamine biosynthesis. It was also the only isomer efficiently converted to hypusine, indicating that deoxyhypusine synthase likewise possesses hidden stereospecificity. Taken together, the results show that growth inhibition in response to polyamine depletion involves two phases, an acute and a late hypusine-dependent phase.

  5. Risk factors for cisplatin-induced nephrotoxicity and potential of magnesium supplementation for renal protection.

    Directory of Open Access Journals (Sweden)

    Yasuhiro Kidera

    Full Text Available Nephrotoxicity remains a problem for patients who receive cisplatin chemotherapy. We retrospectively evaluated potential risk factors for cisplatin-induced nephrotoxicity as well as the potential impact of intravenous magnesium supplementation on such toxicity.We reviewed clinical data for 401 patients who underwent chemotherapy including a high dose (≥60 mg/m2 of cisplatin in the first-line setting. Nephrotoxicity was defined as an increase in the serum creatinine concentration of at least grade 2 during the first course of cisplatin chemotherapy, as assessed on the basis of National Cancer Institute Common Terminology Criteria for Adverse Events version 4.0. The severity of nephrotoxicity was evaluated on the basis of the mean change in the serum creatinine level. Magnesium was administered intravenously to 67 patients (17%.Cisplatin-induced nephrotoxicity was observed in 127 patients (32%. Multivariable analysis revealed that an Eastern Cooperative Oncology Group performance status of 2 (risk ratio, 1.876; P = 0.004 and the regular use of nonsteroidal anti-inflammatory drugs (NSAIDs (risk ratio, 1.357; P = 0.047 were significantly associated with an increased risk for cisplatin nephrotoxicity, whereas intravenous magnesium supplementation was associated with a significantly reduced risk for such toxicity (risk ratio, 0.175; P = 0.0004. The development of hypomagnesemia during cisplatin treatment was significantly associated with a greater increase in serum creatinine level (P = 0.0025. Magnesium supplementation therapy was also associated with a significantly reduced severity of renal toxicity (P = 0.012.A relatively poor performance status and the regular use of NSAIDs were significantly associated with cisplatin-induced nephrotoxicity, although the latter association was marginal. Our findings also suggest that the ability of magnesium supplementation to protect against the renal toxicity of cisplatin warrants further

  6. Effect of brain-derived neurotrophic factor haploinsufficiency on stress-induced remodeling of hippocampal neurons.

    Science.gov (United States)

    Magariños, A M; Li, C J; Gal Toth, J; Bath, K G; Jing, D; Lee, F S; McEwen, B S

    2011-03-01

    Chronic restraint stress (CRS) induces the remodeling (i.e., retraction and simplification) of the apical dendrites of hippocampal CA3 pyramidal neurons in rats, suggesting that intrahippocampal connectivity can be affected by a prolonged stressful challenge. Since the structural maintenance of neuronal dendritic arborizations and synaptic connectivity requires neurotrophic support, we investigated the potential role of brain derived neurotrophic factor (BDNF), a neurotrophin enriched in the hippocampus and released from neurons in an activity-dependent manner, as a mediator of the stress-induced dendritic remodeling. The analysis of Golgi-impregnated hippocampal sections revealed that wild type (WT) C57BL/6 male mice showed a similar CA3 apical dendritic remodeling in response to three weeks of CRS to that previously described for rats. Haploinsufficient BDNF mice (BDNF(±) ) did not show such remodeling, but, even without CRS, they presented shorter and simplified CA3 apical dendritic arbors, like those observed in stressed WT mice. Furthermore, unstressed BDNF(±) mice showed a significant decrease in total hippocampal volume. The dendritic arborization of CA1 pyramidal neurons was not affected by CRS or genotype. However, only in WT mice, CRS induced changes in the density of dendritic spine shape subtypes in both CA1 and CA3 apical dendrites. These results suggest a complex role of BDNF in maintaining the dendritic and spine morphology of hippocampal neurons and the associated volume of the hippocampal formation. The inability of CRS to modify the dendritic structure of CA3 pyramidal neurons in BDNF(±) mice suggests an indirect, perhaps permissive, role of BDNF in mediating hippocampal dendritic remodeling.

  7. Blocking brain-derived neurotrophic factor inhibits injury-induced hyperexcitability of hippocampal CA3 neurons.

    Science.gov (United States)

    Gill, Raminder; Chang, Philip K-Y; Prenosil, George A; Deane, Emily C; McKinney, Rebecca A

    2013-12-01

    Brain trauma can disrupt synaptic connections, and this in turn can prompt axons to sprout and form new connections. If these new axonal connections are aberrant, hyperexcitability can result. It has been shown that ablating tropomyosin-related kinase B (TrkB), a receptor for brain-derived neurotrophic factor (BDNF), can reduce axonal sprouting after hippocampal injury. However, it is unknown whether inhibiting BDNF-mediated axonal sprouting will reduce hyperexcitability. Given this, our purpose here was to determine whether pharmacologically blocking BDNF inhibits hyperexcitability after injury-induced axonal sprouting in the hippocampus. To induce injury, we made Schaffer collateral lesions in organotypic hippocampal slice cultures. As reported by others, we observed a 50% reduction in axonal sprouting in cultures treated with a BDNF blocker (TrkB-Fc) 14 days after injury. Furthermore, lesioned cultures treated with TrkB-Fc were less hyperexcitable than lesioned untreated cultures. Using electrophysiology, we observed a two-fold decrease in the number of CA3 neurons that showed bursting responses after lesion with TrkB-Fc treatment, whereas we found no change in intrinsic neuronal firing properties. Finally, evoked field excitatory postsynaptic potential recordings indicated an increase in network activity within area CA3 after lesion, which was prevented with chronic TrkB-Fc treatment. Taken together, our results demonstrate that blocking BDNF attenuates injury-induced hyperexcitability of hippocampal CA3 neurons. Axonal sprouting has been found in patients with post-traumatic epilepsy. Therefore, our data suggest that blocking the BDNF-TrkB signaling cascade shortly after injury may be a potential therapeutic target for the treatment of post-traumatic epilepsy.

  8. Sleep Loss as a Factor to Induce Cellular and Molecular Inflammatory Variations

    Science.gov (United States)

    Hurtado-Alvarado, Gabriela; Castillo-García, Stephanie Ariadne; Hernández, María Eugenia; Domínguez-Salazar, Emilio; Velázquez-Moctezuma, Javier; Gómez-González, Beatriz

    2013-01-01

    A reduction in the amount of time spent sleeping occurs chronically in modern society. Clinical and experimental studies in humans and animal models have shown that immune function is impaired when sleep loss is experienced. Sleep loss exerts a strong regulatory influence on peripheral levels of inflammatory mediators of the immune response. An increasing number of research projects support the existence of reciprocal regulation between sleep and low-intensity inflammatory response. Recent studies show that sleep deficient humans and rodents exhibit a proinflammatory component; therefore, sleep loss is considered as a risk factor for developing cardiovascular, metabolic, and neurodegenerative diseases (e.g., diabetes, Alzheimer's disease, and multiple sclerosis). Circulating levels of proinflammatory mediators depend on the intensity and duration of the method employed to induce sleep loss. Recognizing the fact that the concentration of proinflammatory mediators is different between acute and chronic sleep-loss may expand the understanding of the relationship between sleep and the immune response. The aim of this review is to integrate data from recent published reports (2002–2013) on the effects of sleep loss on the immune response. This review may allow readers to have an integrated view of the mechanisms involved in central and peripheral deficits induced by sleep loss. PMID:24367384

  9. Apoptosis of Human Trabecular Meshwork Cells Induced by Transforming Growth Factor-p2 in vitro

    Institute of Scientific and Technical Information of China (English)

    CAO Yang(曹 阳); WEI Houren(魏厚仁); Pfaffl Michael; DA Banghong(笪邦红); LI Zhongyu(李忠玉)

    2004-01-01

    Summary: Whether transforming growth factor-β2 (TGF-β2) induces apoptosis of human trabecular meshwork cells was investigated in vitro. Cultured 3-5 passage human trabecular meshwork cells were treated with 0 (control), 0.32, 1, 3.2 ng/ml TGF-β2 for 48 h and divided into control group and experimental group. The apoptosis of human trabecular meshwork cells was examined by transmisson electron microscopy, TUNEL technique and flow cytometry. The results showed characteristic morphologic changes of apoptotic cells were observed under transmission electron microscopy.DNA fragmentation of human trabecular meshwork cells was found by TUNEL technique. Quantitative analysis of flow cytometry showed that percentages of apoptotic human trabecular meshwork cells were (2.79±0.44) %, (4.43±1.17) % and (9. 60±2.05) % respectively with different concentrations [1 ng/ml (P<0. 05), 3.2 ng/ml (P<0.01)] of TGF-β2 with the difference being significant between experimental group and control group[(1. 41±0.34) %]. It was concluded that TGF-β2 can induce apoptosis of human trabecular meshwork cells in vitro and may be involved in the decrease of trabecular meshwork cells in the patients with primary open angle glaucoma and aging of normal people.

  10. Brain-derived neurotrophic factor mediates estradiol-induced dendritic spine formation in hippocampal neurons.

    Science.gov (United States)

    Murphy, D D; Cole, N B; Segal, M

    1998-09-15

    Dendritic spines are of major importance in information processing and memory formation in central neurons. Estradiol has been shown to induce an increase of dendritic spine density on hippocampal neurons in vivo and in vitro. The neurotrophin brain-derived neurotrophic factor (BDNF) recently has been implicated in neuronal maturation, plasticity, and regulation of GABAergic interneurons. We now demonstrate that estradiol down-regulates BDNF in cultured hippocampal neurons to 40% of control values within 24 hr of exposure. This, in turn, decreases inhibition and increases excitatory tone in pyramidal neurons, leading to a 2-fold increase in dendritic spine density. Exogenous BDNF blocks the effects of estradiol on spine formation, and BDNF depletion with a selective antisense oligonucleotide mimics the effects of estradiol. Addition of BDNF antibodies also increases spine density, and diazepam, which facilitates GABAergic neurotransmission, blocks estradiol-induced spine formation. These observations demonstrate a functional link between estradiol, BDNF as a potent regulator of GABAergic interneurons, and activity-dependent formation of dendritic spines in hippocampal neurons.

  11. Proliferative and Invasive Effects of Progesterone-Induced Blocking Factor in Human Glioblastoma Cells

    Science.gov (United States)

    Hansberg-Pastor, Valeria

    2017-01-01

    Progesterone-induced blocking factor (PIBF) is a progesterone (P4) regulated protein expressed in different types of high proliferative cells including astrocytomas, the most frequent and aggressive brain tumors. It has been shown that PIBF increases the number of human astrocytoma cells. In this work, we evaluated PIBF regulation by P4 and the effects of PIBF on proliferation, migration, and invasion of U87 and U251 cells, both derived from human glioblastomas. PIBF mRNA expression was upregulated by P4 (10 nM) from 12 to 24 h. Glioblastoma cells expressed two PIBF isoforms, 90 and 57 kDa. The content of the shorter isoform was increased by P4 at 24 h, while progesterone receptor antagonist RU486 (10 μM) blocked this effect. PIBF (100 ng/mL) increased the number of U87 cells on days 4 and 5 of treatment and induced cell proliferation on day 4. Wound-healing assays showed that PIBF increased the migration of U87 (12–48 h) and U251 (24 and 48 h) cells. Transwell invasion assays showed that PIBF augmented the number of invasive cells in both cell lines at 24 h. These data suggest that PIBF promotes proliferation, migration, and invasion of human glioblastoma cells. PMID:28168193

  12. Eosinophil peroxidase signals via epidermal growth factor-2 to induce cell proliferation.

    LENUS (Irish Health Repository)

    Walsh, Marie-Therese

    2011-11-01

    Eosinophils exert many of their inflammatory effects in allergic disorders through the degranulation and release of intracellular mediators, including a set of cationic granule proteins that include eosinophil peroxidase. Studies suggest that eosinophils are involved in remodeling. In previous studies, we showed that eosinophil granule proteins activate mitogen-activated protein kinase signaling. In this study, we investigated the receptor mediating eosinophil peroxidase-induced signaling and downstream effects. Human cholinergic neuroblastoma IMR32 and murine melanoma B16.F10 cultures, real-time polymerase chain reaction, immunoprecipitations, and Western blotting were used in the study. We showed that eosinophil peroxidase caused a sustained increase in both the expression of epidermal growth factor-2 (HER2) and its phosphorylation at tyrosine 1248, with the consequent activation of extracellular-regulated kinase 1\\/2. This, in turn, promoted a focal adhesion kinase-dependent egress of the cyclin-dependent kinase inhibitor p27(kip) from the nucleus to the cytoplasm. Eosinophil peroxidase induced a HER2-dependent up-regulation of cell proliferation, indicated by an up-regulation of the nuclear proliferation marker Ki67. This study identifies HER2 as a novel mediator of eosinophil peroxidase signaling. The results show that eosinophil peroxidase, at noncytotoxic levels, can drive cell-cycle progression and proliferation, and contribute to tissue remodeling and cell turnover in airway disease. Because eosinophils are a feature of many cancers, these findings also suggest a role for eosinophils in tumorigenesis.

  13. Change and significance of nuclear factor-κB in adriamycin induced cardiomyopathy in rats

    Institute of Scientific and Technical Information of China (English)

    LI Hong-li; LIU Bin; ZHOU Ling-wang; YU Wei-han

    2005-01-01

    Background This study aimed at investigating the change and significance of nuclear factor-κB (NF-κB) in cardiomyopathy induced by adriamycin (ADR) in rats.Methods Sixty male Wistar rats were randomly divided into three groups: control, ADR and ADR+pyrrolidine dithiocarbamate (PDTC) groups. After 30-day experiment, myocardial histopathological observation was performed. Location and distribution of NF-κB p50 was examined by immunohistochemical assay. Expression of NF-κB p50 protein was examined by immunobolt assay. Electrophoretic Mobility Shift Assay examined activity of NF-κB; Myocardium p53 gene expression was examined by RT-PCR analysis. Results The myocardial lesions of rats were less pronounced in ADR +PDTC group than in ADR group. Compared with control group, there were many myocardium nucleuses, which expressed NF-κB p50 and distribute under epicardium. Expression of NF-κB p50 protein in nucleus increased significantly in ADR group. The NF-κB binding activity increased significantly in ADR group. Myocardium expressions of p53 mRNA increased in ADR group. Conclusions The NF-κB binding activity increased significantly in cardiomyopathy induced by ADR in rats. Moreover, NF-κB plays an important role in causing degeneration of myocardial tissue and regulating expression of related-apoptosis genes.

  14. Tumor Necrosis Factor Induces Developmental Stage-Dependent Structural Changes in the Immature Small Intestine

    Directory of Open Access Journals (Sweden)

    Kathryn S. Brown

    2014-01-01

    Full Text Available Background. Premature infants are commonly subject to intestinal inflammation. Since the human small intestine does not reach maturity until term gestation, premature infants have a unique challenge, as either acute or chronic inflammation may alter the normal development of the intestinal tract. Tumor necrosis factor (TNF has been shown to acutely alter goblet cell numbers and villus length in adult mice. In this study we tested the effects of TNF on villus architecture and epithelial cells at different stages of development of the immature small intestine. Methods. To examine the effects of TNF-induced inflammation, we injected acute, brief, or chronic exposures of TNF in neonatal and juvenile mice. Results. TNF induced significant villus blunting through a TNF receptor-1 (TNFR1 mediated mechanism, leading to loss of villus area. This response to TNFR1 signaling was altered during intestinal development, despite constant TNFR1 protein expression. Acute TNF-mediated signaling also significantly decreased Paneth cells. Conclusions. Taken together, the morphologic changes caused by TNF provide insight as to the effects of inflammation on the developing intestinal tract. Additionally, they suggest a mechanism which, coupled with an immature immune system, may help to explain the unique susceptibility of the immature intestine to inflammatory diseases such as NEC.

  15. Transforming growth factor-β2 induces morphological alteration of human corneal endothelial cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Jing; Wang; Ting-Jun; Fan; Xiu-Xia; Yang; Shi-Min; Chang

    2014-01-01

    AIM:To investigate the morphological altering effect of transforming growth factor-β2(TGF-β2) on untransfected human corneal endothelial cells(HCECs)in vitro.METHODS:After untransfected HCECs were treated with TGF-β2 at different concentrations, the morphology,cytoskeleton distribution, and type IV collagen expression of the cells were examined with inverted contrast light microscopy, fluorescence microscopy,immunofluorescence or Western Blot.RESULTS:TGF-β2 at the concentration of 3-15 μg/L had obviously alterative effects on HCECs morphology in dose and time-dependent manner, and 9 μg/L was the peak concentration. TGF-β2(9 μg/L) altered HCE cell morphology after treatment for 36 h, increased the mean optical density(P <0.01) and the length of F-actin,reduced the mean optical density(P <0.01) of the collagen type IV in extracellular matrix(ECM) and induced the rearrangement of F-actin, microtubule in cytoplasm and collagen type IV in ECM after treatment for 72 h.·CONCLUTION: TGF-β2 has obviously alterative effect on the morphology of HCECs from polygonal phenotype to enlarged spindle-shaped phenotype, in dose and time-dependence manner by inducing more, elongation and alignment of F-actin, rearrangement of microtubule and larger spread area of collagen type IV.

  16. Hepatocyte growth factor gene therapy prevents radiation-induced liver damage

    Institute of Scientific and Technical Information of China (English)

    Chau-Hua Chi; I-Li Liu; Wei-Yu Lo; Bor-Song Liaw; Yu-Shan Wang; Kwan-Hwa Chi

    2005-01-01

    AIM: To transfer human HGF gene into the liver of rats by direct electroporation as a means to prevent radiationinduced liver damage.METHODS: Rat whole liver irradiation model was accomplished by intra-operative approach. HGF plasmid was injected into liver and transferred by electroporation using a pulse generator. Control rats (n = 8) received electrogene therapy (EGT) vehicle plasmid and another 8rats received HGF-EGT 100 μg 48 h before WLIR.Expression of HGF in liver was examined by RT-PCR and ELISA methods. Apoptosis was determined by TUNEL assay. Histopathology was evaluated 10 wk after whole liver irradiation.RESULTS: Marked decrease of apoptotic cells and downregulation of transforming growth factor-beta 1 (TGF-β1)mRNA were observed in the HGF-EGT group 2 d after liver irradiation compared to control animals. Less evidence of radiation-induced liver damage was observed morphologically in liver specimen 10 wk after liver irradiation and longer median survival time was observed from HGF-EGT group (14 wk) compared to control rats (5 wk). (P = 0.031).CONCLUSION: For the first time it has been demonstrated that HGF-EGT would prevent liver from radiation-induced liver damage by preventing apoptosis and down-regulation of TGF-β1.

  17. Dietary moderately oxidized oil induces expression of fibroblast growth factor 21 in the liver of pigs

    Directory of Open Access Journals (Sweden)

    Varady Juliane

    2012-03-01

    Full Text Available Abstract Background Fibroblast growth factor 21 (FGF21, whose expression is induced by peroxisome proliferator-activated receptor α (PPARα, has been recently identified as a novel metabolic regulator which plays a crucial role in glucose homeostasis, lipid metabolism, insulin sensitivity and obesity. Previous studies have shown that administration of oxidized fats leads to an activation of PPARα in the liver. Therefore, the present study investigated the hypothesis that feeding of oxidized fats causes an induction of FGF21 in the liver. Methods Twenty four crossbred pigs were allocated to two groups of 12 pigs each and fed nutritionally adequate diets with either fresh rapeseed oil or oxidized rapeseed oil prepared by heating at a temperature of 175°C for 72 h. Results In pigs fed the oxidized fat mRNA abundance and protein concentrations of FGF21 in liver were significantly increased (P P P Conclusion The present study shows for the first time that administration of an oxidized fat induces the expression of FGF21 in the liver, probably mediated by activation of PPARα. Induction of FGF21 could be involved in several effects observed in animals administered an oxidized fat.

  18. Yersinia virulence factor YopM induces sustained RSK activation by interfering with dephosphorylation.

    Directory of Open Access Journals (Sweden)

    Moritz Hentschke

    Full Text Available BACKGROUND: Pathogenic yersiniae inject several effector proteins (Yops into host cells, which subverts immune functions and enables the bacteria to survive within the host organism. YopM, whose deletion in enteropathogenic yersiniae results in a dramatic loss of virulence, has previously been shown to form a complex with and activate the multifunctional kinases PKN2 and RSK1 in transfected cells. METHODOLOGY/PRINCIPAL FINDINGS: In a near physiological approach with double-affinity-tagged YopM being translocated into the macrophage cell line J774A.1 via the natural type three secretion system of Yersinia we verified the interaction of YopM with PKN2 and RSK1 and detected association with additional PKN and RSK isoforms. In transfected and infected cells YopM induced sustained phosphorylation of RSK at its activation sites serine-380 and serine-221 even in the absence of signalling from its upstream kinase ERK1/2, suggesting inhibition of dephosphorylation. ATP-depletion and in vitro assays using purified components directly confirmed that YopM shields RSK isoforms from phosphatase activity towards serines 380 and 221. CONCLUSIONS/SIGNIFICANCE: Our study suggests that during Yersinia infection YopM induces sustained activation of RSK by blocking dephosphorylation of its activatory phosphorylation sites. This may represent a novel mode of action of a bacterial virulence factor.

  19. Cancer drug troglitazone stimulates the growth and response of renal cells to hypoxia inducible factors

    Energy Technology Data Exchange (ETDEWEB)

    Taub, Mary, E-mail: biochtau@buffalo.edu

    2016-03-11

    Troglitazone has been used to suppress the growth of a number of tumors through apoptosis and autophagy. However, previous in vitro studies have employed very high concentrations of troglitazone (≥10{sup −5} M) in order to elicit growth inhibitory effects. In this report, when employing lower concentrations of troglitazone in defined medium, troglitazone was observed to stimulate the growth of primary renal proximal tubule (RPT) cells. Rosiglitazone, like troglitazone, is a thiazolidinedione (TZD) that is known to activate Peroxisome Proliferator Activated Receptor Υ (PPARΥ). Notably, rosiglitazone also stimulates RPT cell growth, as does Υ-linolenic acids, another PPARΥ agonist. The PPARΥ antagonist GW9662 inhibited the growth stimulatory effect of troglitazone. In addition, troglitazone stimulated transcription by a PPAR Response Element/Luciferase construct. These results are consistent with the involvement of PPARΥ as a mediator of the growth stimulatory effect of troglitazone. In a number of tumor cells, the expression of hypoxia inducible factor (HIF) is increased, promoting the expression of HIF inducible genes, and vascularization. Troglitazone was observed to stimulate transcription by a HIF/luciferase construct. These observations indicate that troglitazone not only promotes growth, also the survival of RPT cells under conditions of hypoxia. - Highlights: • Troglitazone and rosiglitazone stimulate renal proximal tubule cell growth. • Troglitazone and linolenic acid stimulate growth via PPARϒ. • Linolenic acid stimulates growth in the presence of fatty acid free serum albumin. • Rosiglitazone stimulates transcription by a HRE luciferase construct.

  20. Hypoxia inducible factor-1 alpha stabilization for regenerative therapy in traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Mushfiquddin Khan

    2017-01-01

    Full Text Available Mild traumatic brain injury (TBI, also called concussion, initiates sequelae leading to motor deficits, cognitive impairments and subtly compromised neurobehaviors. While the acute phase of TBI is associated with neuroinflammation and nitroxidative burst, the chronic phase shows a lack of stimulation of the neurorepair process and regeneration. The deficiency of nitric oxide (NO, the consequent disturbed NO metabolome, and imbalanced mechanisms of S-nitrosylation are implicated in blocking the mechanisms of neurorepair processes and functional recovery in the both phases. Hypoxia inducible factor-1 alpha (HIF-1α, a master regulator of hypoxia/ischemia, stimulates the process of neurorepair and thus aids in functional recovery after brain trauma. The activity of HIF-1α is regulated by NO via the mechanism of S-nitrosylation of HIF-1α. S-nitrosylation is dynamically regulated by NO metabolites such as S-nitrosoglutathione (GSNO and peroxynitrite. GSNO stabilizes, and peroxynitrite destabilizes HIF-1α. Exogenously administered GSNO was found not only to stabilize HIF-1α and to induce HIF-1α-dependent genes but also to stimulate the regeneration process and to aid in functional recovery in TBI animals.

  1. Epidermal growth factor receptor inhibition with erlotinib partially prevents cisplatin-induced nephrotoxicity in rats.

    Directory of Open Access Journals (Sweden)

    Yukihiro Wada

    Full Text Available The effects of blocking the epidermal growth factor receptor (EGFR in acute kidney injury (AKI are controversial. Here we investigated the renoprotective effect of erlotinib, a selective tyrosine kinase inhibitor that can block EGFR activity, on cisplatin (CP-induced AKI. Groups of animals were given either erlotinib or vehicle from one day before up to Day 3 following induction of CP-nephrotoxicity (CP-N. In addition, we analyzed the effects of erlotinib on signaling pathways involved in CP-N by using human renal proximal tubular cells (HK-2. Compared to controls, rats treated with erlotinib exhibited significant improvement of renal function and attenuation of tubulointerstitial injury, and reduced the number of apoptotic and proliferating cells. Erlotinib-treated rats had a significant reduction of renal cortical mRNA for profibrogenic genes. The Bax/Bcl-2 mRNA and protein ratios were significantly reduced by erlotinib treatment. In vitro, we observed that erlotinib significantly reduced the phosphorylation of MEK1 and Akt, processes that were induced by CP in HK-2. Taken together, these data indicate that erlotinib has renoprotective properties that are likely mediated through decreases in the apoptosis and proliferation of tubular cells, effects that reflect inhibition of downstream signaling pathways of EGFR. These results suggest that erlotinib may be useful for preventing AKI in patients receiving CP chemotherapy.

  2. Increased expression of receptors for orexigenic factors in nodose ganglion of diet-induced obese rats.

    Science.gov (United States)

    Paulino, Gabriel; Barbier de la Serre, Claire; Knotts, Trina A; Oort, Pieter J; Newman, John W; Adams, Sean H; Raybould, Helen E

    2009-04-01

    The vagal afferent pathway is important in short-term regulation of food intake, and decreased activation of this neural pathway with long-term ingestion of a high-fat diet may contribute to hyperphagic weight gain. We tested the hypothesis that expression of genes encoding receptors for orexigenic factors in vagal afferent neurons are increased by long-term ingestion of a high-fat diet, thus supporting orexigenic signals from the gut. Obesity-prone (DIO-P) rats fed a high-fat diet showed increased body weight and hyperleptinemia compared with low-fat diet-fed controls and high-fat diet-induced obesity-resistant (DIO-R) rats. Expression of the type I cannabinoid receptor and growth hormone secretagogue receptor 1a in the nodose ganglia was increased in DIO-P compared with low-fat diet-fed controls or DIO-R rats. Shifts in the balance between orexigenic and anorexigenic signals within the vagal afferent pathway may influence food intake and body weight gain induced by high fat diets.

  3. Effects of a Tumor Necrosis Factor-α Antagonist on Experimentally Induced Rhinosinusitis

    Directory of Open Access Journals (Sweden)

    Dong-Hyun Kim

    2011-01-01

    Full Text Available This prospective, randomized, and controlled study examined the effects of tumor necrosis factor soluble receptor type I (sTNFRI, a TNF-α antagonist on experimentally induced rhinosinusitis in rats. The experimental groups received an instillation of lipopolysaccharide (LPS plus an intramuscular injection of amoxicillin/clavulanate (antibiotic group, an instillation of sTNFRI (sTNFRI group, an instillation of sTNFRI and an injection of amoxicillin/clavulanate (sTNFRI/antibiotic group, or no additional treatment (LPS group. Histopathological changes were determined using hematoxylin-eosin and periodic acid-Schiff (PAS staining. Leakage of exudate was determined using fluorescence microscopy. Vascular permeability was measured using the Evans blue dye technique. Expression of MUC5AC was measured using reverse transcriptase PCR. The sTNFRI, antibiotic, and sTNFRI/antibiotic groups had significantly less capillary permeability, mucosal edema, PAS staining, and expression of MUC5AC than the LPS group. There were no differences in capillary permeability, mucosal edema, PAS staining, and MUC5AC expression between the sTNFRI and sTNFRI/antibiotic groups. The antibiotic group had PAS staining similar to that of the sTNFRI and sTNFRI/antibiotic groups but had a greater increase in capillary permeability, mucosal edema, and MUC5AC expression. This study shows that sTNFRI reduces inflammatory activity and mucus hypersecretion in LPS-induced rhinosinusitis in rats.

  4. Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines

    Science.gov (United States)

    Yamamizu, Kohei; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Yu, Hong; Nishiyama, Akira; Dudekula, Dawood B.; Schlessinger, David; Ko, Minoru S. H.

    2016-01-01

    Mouse embryonic stem cells (ESCs) can differentiate into a wide range – and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this “NIA Mouse ESC Bank,” we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs. PMID:27150017

  5. Altered nuclear factor-kappaB inducing kinase expression in insulin-resistant mice

    Institute of Scientific and Technical Information of China (English)

    SU Lei; XIU Ling-ling; WEI Guo-hong; ZHONG Xing; LIU Yuan-yuan; CAO Xiao-pei; LI Yan-bing; XIAO Hai-peng

    2011-01-01

    Background Insulin resistance is an underlying feature of both type 2 diabetes and metabolic syndrome.Currently,it is unclear whether nuclear factor (NF)-κB inducing kinase (NIK) plays a role in the development of insulin resistance.The present in vivo study investigated the roles of NIK and IKB kinase α (IKKα) in obesity-induced insulin resistance using animal models.Methods NIK expression was evaluated by Westem blotting in male Lepob mice and C57BL/6J mice fed a high-fat diet (HFD) (45% fat).After metformin and sulfasalazine treatment,NIK expression was investigated during the improvement of insulin resistance.Results NIK was increased by about 1-fold in the renal tissues of Lepob mice and C57BL/6J mice fed a HFD for 12 weeks.After 1 and 3 weeks of high-fat feeding,we observed an almost 50% decrease in NIK and IKKα expression in the liver and renal tissues of C57BL/6J mice.NIK expression was significantly lower in the liver and renal tissues of HFD-fed mice that were treated with insulin sensitizers,metformin and sulfasalazine.However,IKKα expression was increased after metformin treatment in both tissues.Conclusion These results suggest a possible role of NIK in the liver and renal tissues of insulin-resistant mice.

  6. The role of epidermal growth factor receptor (EGFR) signaling in SARS coronavirus-induced pulmonary fibrosis.

    Science.gov (United States)

    Venkataraman, Thiagarajan; Frieman, Matthew B

    2017-07-01

    Many survivors of the 2003 outbreak of severe acute respiratory syndrome (SARS) developed residual pulmonary fibrosis with increased severity seen in older patients. Autopsies of patients that died from SARS also showed fibrosis to varying extents. Pulmonary fibrosis can be occasionally seen as a consequence to several respiratory viral infections but is much more common after a SARS coronavirus (SARS-CoV) infection. Given the threat of future outbreaks of severe coronavirus disease, including Middle East respiratory syndrome (MERS), it is important to understand the mechanisms responsible for pulmonary fibrosis, so as to support the development of therapeutic countermeasures and mitigate sequelae of infection. In this article, we summarize pulmonary fibrotic changes observed after a SARS-CoV infection, discuss the extent to which other respiratory viruses induce fibrosis, describe available animal models to study the development of SARS-CoV induced fibrosis and review evidence that pulmonary fibrosis is caused by a hyperactive host response to lung injury mediated by epidermal growth factor receptor (EGFR) signaling. We summarize work from our group and others indicating that inhibiting EGFR signaling may prevent an excessive fibrotic response to SARS-CoV and other respiratory viral infections and propose directions for future research. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Proliferative and Invasive Effects of Progesterone-Induced Blocking Factor in Human Glioblastoma Cells

    Directory of Open Access Journals (Sweden)

    Araceli Gutiérrez-Rodríguez

    2017-01-01

    Full Text Available Progesterone-induced blocking factor (PIBF is a progesterone (P4 regulated protein expressed in different types of high proliferative cells including astrocytomas, the most frequent and aggressive brain tumors. It has been shown that PIBF increases the number of human astrocytoma cells. In this work, we evaluated PIBF regulation by P4 and the effects of PIBF on proliferation, migration, and invasion of U87 and U251 cells, both derived from human glioblastomas. PIBF mRNA expression was upregulated by P4 (10 nM from 12 to 24 h. Glioblastoma cells expressed two PIBF isoforms, 90 and 57 kDa. The content of the shorter isoform was increased by P4 at 24 h, while progesterone receptor antagonist RU486 (10 μM blocked this effect. PIBF (100 ng/mL increased the number of U87 cells on days 4 and 5 of treatment and induced cell proliferation on day 4. Wound-healing assays showed that PIBF increased the migration of U87 (12–48 h and U251 (24 and 48 h cells. Transwell invasion assays showed that PIBF augmented the number of invasive cells in both cell lines at 24 h. These data suggest that PIBF promotes proliferation, migration, and invasion of human glioblastoma cells.

  8. Sleep Loss as a Factor to Induce Cellular and Molecular Inflammatory Variations

    Directory of Open Access Journals (Sweden)

    Gabriela Hurtado-Alvarado

    2013-01-01

    Full Text Available A reduction in the amount of time spent sleeping occurs chronically in modern society. Clinical and experimental studies in humans and animal models have shown that immune function is impaired when sleep loss is experienced. Sleep loss exerts a strong regulatory influence on peripheral levels of inflammatory mediators of the immune response. An increasing number of research projects support the existence of reciprocal regulation between sleep and low-intensity inflammatory response. Recent studies show that sleep deficient humans and rodents exhibit a proinflammatory component; therefore, sleep loss is considered as a risk factor for developing cardiovascular, metabolic, and neurodegenerative diseases (e.g., diabetes, Alzheimer's disease, and multiple sclerosis. Circulating levels of proinflammatory mediators depend on the intensity and duration of the method employed to induce sleep loss. Recognizing the fact that the concentration of proinflammatory mediators is different between acute and chronic sleep-loss may expand the understanding of the relationship between sleep and the immune response. The aim of this review is to integrate data from recent published reports (2002–2013 on the effects of sleep loss on the immune response. This review may allow readers to have an integrated view of the mechanisms involved in central and peripheral deficits induced by sleep loss.

  9. Transforming growth factor β-activated kinase 1 negatively regulates interleukin-1α-induced stromal-derived factor-1 expression in vascular smooth muscle cells

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Bin [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Li, Wei [Department of Gerontology, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Zheng, Qichang [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Qin, Tao [Department of Hepatobiliary Pancreatic Surgery, People' s Hospital of Zhengzhou University, School of Medicine, Zhengzhou University, Zhengzhou 450003 (China); Wang, Kun; Li, Jinjin; Guo, Bing; Yu, Qihong; Wu, Yuzhe; Gao, Yang; Cheng, Xiang; Hu, Shaobo; Kumar, Stanley Naveen [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China); Liu, Sanguang, E-mail: sanguang1998@sina.com [Department of Hepatobiliary Surgery, The Second Hospital, Hebei Medical University, Shijiazhuang 050000 (China); Song, Zifang, E-mail: zsong@hust.edu.cn [Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huangzhong University of Science and Technology, Wuhan 430022 (China)

    2015-07-17

    Stromal-derived Factor-1 (SDF-1) derived from vascular smooth muscle cells (VSMCs) contributes to vascular repair and remodeling in various vascular diseases. In this study, the mechanism underlying regulation of SDF-1 expression by interleukin-1α (IL-1α) was investigated in primary rat VSMCs. We found IL-1α promotes SDF-1 expression by up-regulating CCAAT-enhancer-binding protein β (C/EBPβ) in an IκB kinase β (IKKβ) signaling-dependent manner. Moreover, IL-1α-induced expression of C/EBPβ and SDF-1 was significantly potentiated by knockdown of transforming growth factor β-activated kinase 1 (TAK1), an upstream activator of IKKβ signaling. In addition, we also demonstrated that TAK1/p38 mitogen-activated protein kinase (p38 MAPK) signaling exerted negative effect on IL-1α-induced expression of C/EBPβ and SDF-1 through counteracting ROS-dependent up-regulation of nuclear factor erythroid 2-related factor 2 (NRF2). In conclusion, TAK1 acts as an important regulator of IL-1α-induced SDF-1 expression in VSMCs, and modulating activity of TAK1 may serve as a potential strategy for modulating vascular repair and remodeling. - Highlights: • IL-1α induces IKKβ signaling-dependent SDF-1 expression by up-regulating C/EBPβ. • Activation of TAK1 by IL-1α negatively regulates C/EBPβ-dependent SDF-1 expression. • IL-1α-induced TAK1/p38 MAPK signaling counteracts ROS-dependent SDF-1 expression. • TAK1 counteracts IL-1α-induced SDF-1 expression by attenuating NRF2 up-regulation.

  10. Insulin-Like Growth Factor-1 (IGF-1 Reduces ischemic changes and increases circulating angiogenic factors in experimentally - induced myocardial infarction in rats

    Directory of Open Access Journals (Sweden)

    Lisa Mathews

    2011-06-01

    Full Text Available Abstract Background Coronary artery disease is a global health concern in the present day with limited therapies. Extensive efforts have been devoted to find molecular therapies to enhance perfusion and function of the ischemic myocardium. Aim of the present study was to look into the effects of insulin like growth factor -1 (IGF-1 on circulating angiogenic factors after myocardial ischemia in rats. Methods Adult male Sprague-Dawley rats were randomly divided into 10-days control, myocardial infarction, IGF-1 alone (2 μg/rat/day and ISO+IGF-1 groups. Isoproterenol (ISO, a synthetic catecholamine was used to induce myocardial infarction. Serum transforming growth factor-β (TGF-β and vascular endothelial growth factor (VEGF levels were checked after 10-days of IGF-1 administration. Results There was a significant increase in heart weight after IGF-1 treatment. A significant increase in cardiac enzyme level (CK-MB and LDH was seen in isoproterenol treated rats when compared to control group. IGF-1treatment induced a significant increase in serum angiogenic factors, IGF-1, VEGF and TGF beta levels. IGF-1 also reduced the ischemic changes in the myocardium when compared to the isoproterenol alone treated group. Conclusions In conclusion, treatment with insulin-like growth factor-1 (IGF-1 in myocardial infarction significantly increased circulating angiogenic growth factors like IGF-1, VEGF and TGF beta thus, protecting against myocardial ischemia.

  11. Chronic nerve growth factor exposure increases apoptosis in a model of in vitro induced conjunctival myofibroblasts.

    Directory of Open Access Journals (Sweden)

    Alessandra Micera

    Full Text Available In the conjunctiva, repeated or prolonged exposure to injury leads to tissue remodeling and fibrosis associated with dryness, lost of corneal transparency and defect of ocular function. At the site of injury, fibroblasts (FB migrate and differentiate into myofibroblasts (myoFB, contributing to the healing process together with other cell types, cytokines and growth factors. While the physiological deletion of MyoFB is necessary to successfully end the healing process, myoFB prolonged survival characterizes the pathological process of fibrosis. The reason for myoFB persistence is poorly understood. Nerve Growth Factor (NGF, often increased in inflamed stromal conjunctiva, may represent an important molecule both in many inflammatory processes characterized by tissue remodeling and in promoting wound-healing and well-balanced repair in humans. NGF effects are mediated by the specific expression of the NGF neurotrophic tyrosine kinase receptor type 1 (trkA(NGFR and/or the pan-neurotrophin glycoprotein receptor (p75(NTR. Therefore, a conjunctival myoFB model (TGFβ1-induced myoFB was developed and characterized for cell viability/proliferation as well as αSMA, p75(NTR and trkA(NGFR expression. MyoFB were exposed to acute and chronic NGF treatment and examined for their p75(NTR/trkA(NGFR, αSMA/TGFβ1 expression, and apoptosis. Both NGF treatments significantly increased the expression of p75(NTR, associated with a deregulation of both αSMA/TGFβ1 genes. Acute and chronic NGF exposures induced apoptosis in p75(NTR expressing myoFB, an effect counteracted by the specific trkA(NGFR and/or p75(NTR inhibitors. Focused single p75(NTR and double trkA(NGFR/p75(NTR knocking-down experiments highlighted the role of p75(NTR in NGF-induced apoptosis. Our current data indicate that NGF is able to trigger in vitro myoFB apoptosis, mainly via p75(NTR. The trkA(NGFR/p75(NTR ratio in favor of p75(NTR characterizes this process. Due to the lack of effective

  12. Interplay between sirtuins, MYC and hypoxia-inducible factor in cancer-associated metabolic reprogramming

    Directory of Open Access Journals (Sweden)

    Bernadette M. M. Zwaans

    2014-09-01

    Full Text Available In the early twentieth century, Otto Heinrich Warburg described an elevated rate of glycolysis occurring in cancer cells, even in the presence of atmospheric oxygen (the Warburg effect. Despite the inefficiency of ATP generation through glycolysis, the breakdown of glucose into lactate provides cancer cells with a number of advantages, including the ability to withstand fluctuations in oxygen levels, and the production of intermediates that serve as building blocks to support rapid proliferation. Recent evidence from many cancer types supports the notion that pervasive metabolic reprogramming in cancer and stromal cells is a crucial feature of neoplastic transformation. Two key transcription factors that play major roles in this metabolic reprogramming are hypoxia inducible factor-1 (HIF1 and MYC. Sirtuin-family deacetylases regulate diverse biological processes, including many aspects of tumor biology. Recently, the sirtuin SIRT6 has been shown to inhibit the transcriptional output of both HIF1 and MYC, and to function as a tumor suppressor. In this Review, we highlight the importance of HIF1 and MYC in regulating tumor metabolism and their regulation by sirtuins, with a main focus on SIRT6.

  13. 7-Ketocholesterol Induces Cell Apoptosis by Activation of Nuclear Factor kappa B in Mouse Macrophages

    Directory of Open Access Journals (Sweden)

    Huang,Zhenyu

    2010-04-01

    Full Text Available

    We investigated the molecular mechanisms responsible for the induction of apoptosis in mouse monocytic macrophage cell line J774A.1 stimulated by 7-ketocholesterol (7-KC. Cell apoptosis was detected by Annexin V-propidium iodide (PI staining. The DNA-binding activity of nuclear factor kappa B (NF-kappaB was assessed by electrophoretic mobility shift assay (EMSA. Results showed that 7-KC-stimulation in J774A.1 cells activated NF-kappaB, which is involved in cell apoptosis, in a time- and dose-dependent manners. 7-KC was also found to increase the binding activity of NF-kappaB to specific DNA binding sites, a possible mechanism for the induction of the cell apoptosis. Moreover, these effects were partially inhibited by pyrrolidine dithiocarbamate (PDTC, an NF-kappaB inhibitor. Taken together, 7-KC may be an important factor in atherosclerosis due to the ability of 7-KC to induce cell apoptosis, which is at least partially mediated through the activation of NF-kappaB.

  14. A model for genetic and epigenetic regulatory networks identifies rare pathways for transcription factor induced pluripotency

    Science.gov (United States)

    Artyomov, Maxim; Meissner, Alex; Chakraborty, Arup

    2010-03-01

    Most cells in an organism have the same DNA. Yet, different cell types express different proteins and carry out different functions. This is because of epigenetic differences; i.e., DNA in different cell types is packaged distinctly, making it hard to express certain genes while facilitating the expression of others. During development, upon receipt of appropriate cues, pluripotent embryonic stem cells differentiate into diverse cell types that make up the organism (e.g., a human). There has long been an effort to make this process go backward -- i.e., reprogram a differentiated cell (e.g., a skin cell) to pluripotent status. Recently, this has been achieved by transfecting certain transcription factors into differentiated cells. This method does not use embryonic material and promises the development of patient-specific regenerative medicine, but it is inefficient. The mechanisms that make reprogramming rare, or even possible, are poorly understood. We have developed the first computational model of transcription factor-induced reprogramming. Results obtained from the model are consistent with diverse observations, and identify the rare pathways that allow reprogramming to occur. If validated, our model could be further developed to design optimal strategies for reprogramming and shed light on basic questions in biology.

  15. Molecular characterisation, evolution and expression of hypoxia-inducible factor in Aurelia sp.1.

    Science.gov (United States)

    Wang, Guoshan; Yu, Zhigang; Zhen, Yu; Mi, Tiezhu; Shi, Yan; Wang, Jianyan; Wang, Minxiao; Sun, Song

    2014-01-01

    The maintenance of physiological oxygen homeostasis is mediated by hypoxia-inducible factor (HIF), a key transcriptional factor of the PHD-HIF system in all metazoans. However, the molecular evolutionary origin of this central physiological regulatory system is not well characterized. As the earliest eumetazoans, Cnidarians can be served as an interesting model for exploring the HIF system from an evolutionary perspective. We identified the complete cDNA sequence of HIF-1α (ASHIF) from the Aurelia sp.1, and the predicted HIF-1α protein (pASHIF) was comprised of 674 amino acids originating from 2,025 bp nucleotides. A Pairwise comparison revealed that pASHIF not only possessed conserved basic helix-loop-helix (bHLH) and Per-Arnt-Sim (PAS) domains but also contained the oxygen dependent degradation (ODD) and the C-terminal transactivation domains (C-TAD), the key domains for hypoxia regulation. As indicated by sequence analysis, the ASHIF gene contains 8 exons interrupted by 7 introns. Western blot analysis indicated that pASHIF that existed in the polyps and medusa of Aurelia. sp.1 was more stable for a hypoxic response than normoxia.

  16. DIFFERENTIATION AND MALIGNANT SUPPRESSION INDUCED BY MOUSE ERYTHROID DIFFERENTIATION AND DENUCLEATION FACTOR ON MOUSE ERYTHROLEUKEMIA CELLS

    Institute of Scientific and Technical Information of China (English)

    韩代书; 赵青; 葛晔华; 周建平; 马静; 陈克铨; 薛社普

    2002-01-01

    Objective. To investigate the roles of mouse erythroid differentiation and denueleation factor (MEDDF), a novel factor cloned in our laboratory recently, in erythroid terminal differentiation.Methods. Mouse erythroleukemia (MEL) cells were transfected with eukaryotic expression plasmid pcD-NA-MEDDF. Then we investigated the changes on characteristics of cell growth by analyzing cells growth rate,mitotic index and colony-forming rate in semi-solid medium. The expressions of c-myc and β-globin genes were analysed by semi-quantitative RT-PCR.Results. MEL ceils transfected with pcDNA-MEDDF showed significant lower growth rate, mitotic index,and colony-forming rate in semi-solid medium ( P<0.01 ). The percentage of benzidine-positive cells was 32.8% after transfection. The expression of β-globin in cells transfected with pcDNA-MEDDF was 3.43 times higher than that of control (MEL transfected with blank vector, pcDNA3. 1 ), and the expression of c-myc decreased by 66.3%.Conclusions. MEDDF can induce differentiation of MEL cell and suppress its malignancy.

  17. Model-independent determination of the astrophysical S-factor in laser-induced fusion plasmas

    CERN Document Server

    Lattuada, D; Bonasera, A; Bang, W; Quevedo, H J; Warren, M; Consoli, F; De Angelis, R; Andreoli, P; Kimura, S; Dyer, G; Bernstein, A C; Hagel, K; Barbui, M; Schmidt, K; Gaul, E; Donovan, M E; Natowitz, J B; Ditmire, T

    2016-01-01

    In this work, we present a new and general method for measuring the astrophysical S-factor of nuclear reactions in laser-induced plasmas and we apply it to d(d,n)$^{3}$He. The experiment was performed with the Texas Petawatt laser, which delivered 150-270 fs pulses of energy ranging from 90 to 180 J to D$_{2}$ or CD$_{4}$ molecular clusters. After removing the background noise, we used the measured time-of-flight data of energetic deuterium ions to obtain their energy distribution. We derive the S-factor using the measured energy distribution of the ions, the measured volume of the fusion plasma and the measured fusion yields. This method is model-independent in the sense that no assumption on the state of the system is required, but it requires an accurate measurement of the ion energy distribution especially at high energies and of the relevant fusion yields. In the d(d,n)$^{3}$He and $^{3}$He(d,p)$^{4}$He cases discussed here, it is very important to apply the background subtraction for the energetic ions ...

  18. Myeloid translocation gene-16 co-repressor promotes degradation of hypoxia-inducible factor 1.

    Directory of Open Access Journals (Sweden)

    Parveen Kumar

    Full Text Available The myeloid translocation gene 16 (MTG16 co-repressor down regulates expression of multiple glycolytic genes, which are targets of the hypoxia-inducible factor 1 (HIF1 heterodimer transcription factor that is composed of oxygen-regulated labile HIF1α and stable HIF1β subunits. For this reason, we investigated whether MTG16 might regulate HIF1 negatively contributing to inhibition of glycolysis and stimulation of mitochondrial respiration. A doxycycline Tet-On system was used to control levels of MTG16 in B-lymphoblastic Raji cells. Results from co-association studies revealed MTG16 to interact with HIF1α. The co-association required intact N-terminal MTG16 residues including Nervy Homology Region 1 (NHR1. Furthermore, electrophoretic mobility shift assays demonstrated an association of MTG16 with hypoxia response elements (HREs in PFKFB3, PFKFB4 and PDK1 promoters in-vitro. Results from chromatin immunoprecipitation assays revealed co-occupancy of these and other glycolytic gene promoters by HIF1α, HIF1β and MTG16 in agreement with possible involvement of these proteins in regulation of glycolytic target genes. In addition, MTG16 interacted with prolyl hydroxylase D2 and promoted ubiquitination and proteasomal degradation of HIF1α. Our findings broaden the area of MTG co-repressor functions and reveal MTG16 to be part of a protein complex that controls the levels of HIF1α.

  19. Phenobarbitone-induced haematological abnormalities in idiopathic epileptic dogs: prevalence, risk factors, clinical presentation and outcome.

    Science.gov (United States)

    Bersan, E; Volk, H A; Ros, C; De Risio, L

    2014-09-13

    The aim of this retrospective study was to assess prevalence, risk factors, clinical presentation and outcome of phenobarbitone induced haematological abnormalities (PBIHA) in dogs. The medical records of two veterinary referral institutions were searched for dogs diagnosed with idiopathic epilepsy and treated with PB as monotherapy or polytherapy between March 2003 and September 2010. Sixteen dogs had PBIHA; the median age at diagnosis was 69.5 months. Phenobarbitone was administered at a median dose of 3 mg/kg twice a day for a median period of 100.5 days and the median serum phenobarbitone level was 19 μg/ml. Two dogs had neutropenia, three had anaemia and thrombocytopenia, two had anaemia and neutropenia; the remaining nine had pancytopenia. All dogs were referred for non-specific clinical signs. Phenobarbitone was discontinued after diagnosis, and the median time to resolution of PBIHA was 17 days. The prevalence and risk factors for PBIHA were evaluated from a questionnaire survey of referring practices to obtain more detailed follow-up on cases diagnosed with idiopathic epilepsy. The prevalence rate of PBIHA was 4.2%, and the condition occurred in dogs treated with standard therapeutic doses often within the first three months after starting treatment. Serial haematological evaluations should be therefore considered from the beginning of phenobarbitone therapy to allow early diagnosis and treatment of PBIHA.

  20. Myeloid derived hypoxia inducible factor 1-alpha is required for protection against pulmonary Aspergillus fumigatus infection.

    Directory of Open Access Journals (Sweden)

    Kelly M Shepardson

    2014-09-01

    Full Text Available Hypoxia inducible factor 1α (HIF1α is the mammalian transcriptional factor that controls metabolism, survival, and innate immunity in response to inflammation and low oxygen. Previous work established that generation of hypoxic microenvironments occurs within the lung during infection with the human fungal pathogen Aspergillus fumigatus. Here we demonstrate that A. fumigatus stabilizes HIF1α protein early after pulmonary challenge that is inhibited by treatment of mice with the steroid triamcinolone. Utilizing myeloid deficient HIF1α mice, we observed that HIF1α is required for survival and fungal clearance early following pulmonary challenge with A. fumigatus. Unlike previously reported research with bacterial pathogens, HIF1α deficient neutrophils and macrophages were surprisingly not defective in fungal conidial killing. The increase in susceptibility of the myeloid deficient HIF1α mice to A. fumigatus was in part due to decreased early production of the chemokine CXCL1 (KC and increased neutrophil apoptosis at the site of infection, resulting in decreased neutrophil numbers in the lung. Addition of recombinant CXCL1 restored neutrophil survival and numbers, murine survival, and fungal clearance. These results suggest that there are unique HIF1α mediated mechanisms employed by the host for protection and defense against fungal pathogen growth and invasion in the lung. Additionally, this work supports the strategy of exploring HIF1α as a therapeutic target in specific immunosuppressed populations with fungal infections.

  1. Case Characterization, Clinical Features and Risk Factors in Drug-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Aida Ortega-Alonso

    2016-05-01

    Full Text Available Idiosyncratic drug-induced liver injury (DILI caused by xenobiotics (drugs, herbals and dietary supplements presents with a range of both phenotypes and severity, from acute hepatitis indistinguishable of viral hepatitis to autoimmune syndromes, steatosis or rare chronic vascular syndromes, and from asymptomatic liver test abnormalities to acute liver failure. DILI pathogenesis is complex, depending on the interaction of drug physicochemical properties and host factors. The awareness of risk factors for DILI is arising from the analysis of large databases of DILI cases included in Registries and Consortia networks around the world. These networks are also enabling in-depth phenotyping with the identification of predictors for severe outcome, including acute liver failure and mortality/liver transplantation. Genome wide association studies taking advantage of these large cohorts have identified several alleles from the major histocompatibility complex system indicating a fundamental role of the adaptive immune system in DILI pathogenesis. Correct case definition and characterization is crucial for appropriate phenotyping, which in turn will strengthen sample collection for genotypic and future biomarkers studies.

  2. Myeloid derived hypoxia inducible factor 1-alpha is required for protection against pulmonary Aspergillus fumigatus infection.

    Science.gov (United States)

    Shepardson, Kelly M; Jhingran, Anupam; Caffrey, Alayna; Obar, Joshua J; Suratt, Benjamin T; Berwin, Brent L; Hohl, Tobias M; Cramer, Robert A

    2014-09-01

    Hypoxia inducible factor 1α (HIF1α) is the mammalian transcriptional factor that controls metabolism, survival, and innate immunity in response to inflammation and low oxygen. Previous work established that generation of hypoxic microenvironments occurs within the lung during infection with the human fungal pathogen Aspergillus fumigatus. Here we demonstrate that A. fumigatus stabilizes HIF1α protein early after pulmonary challenge that is inhibited by treatment of mice with the steroid triamcinolone. Utilizing myeloid deficient HIF1α mice, we observed that HIF1α is required for survival and fungal clearance early following pulmonary challenge with A. fumigatus. Unlike previously reported research with bacterial pathogens, HIF1α deficient neutrophils and macrophages were surprisingly not defective in fungal conidial killing. The increase in susceptibility of the myeloid deficient HIF1α mice to A. fumigatus was in part due to decreased early production of the chemokine CXCL1 (KC) and increased neutrophil apoptosis at the site of infection, resulting in decreased neutrophil numbers in the lung. Addition of recombinant CXCL1 restored neutrophil survival and numbers, murine survival, and fungal clearance. These results suggest that there are unique HIF1α mediated mechanisms employed by the host for protection and defense against fungal pathogen growth and invasion in the lung. Additionally, this work supports the strategy of exploring HIF1α as a therapeutic target in specific immunosuppressed populations with fungal infections.

  3. Effects of Orlistat-induced Weight Loss on Cardiovascular Risk Factors in Obese Chinese Subjects

    Institute of Scientific and Technical Information of China (English)

    徐明彤; 吴木潮; 黎锋; 周淑娴; 程桦; 傅祖植

    2003-01-01

    Objectives To observe the influence of weight loss induced by orlistat onseveral cardiovascular diseases risk factors in obeseChinese subjects. Methods Sixty obese Chinesepatients participated in a 24 week clinical trial. Par-ticipants were prescribed a slightly hypocaloric diet andexercise, then they were randomly assigned double-blind treatment with either orlistat 120 mg three times aday or placebo. Their body weight, blood pressure,fasting glucose, insulin, HbA1c, and serum lipid pro-file were performed before and after the weight lossintervention. Results After 24 weeks, orlistat-treated group lost more of their body weight thanplacebo group (6.66 ± 0.52 kg, 8.44 ± 4.08 % and1.98±0.44 kg, 2.44±1.74%, respectively, P <0.05) Moreover, after treatment, orlistat - treatedpatients showed significant decreases in serum levels oftotal cholesterol, low density lipoprotein-cholesteroland high density lipoprotein - cholesterol ( P <0.01), but in placebo group we found no change.Both systolic blood pressure and diastolic blood pres-sure fell significantly in orlistat-treated group.Fasting glucose and HOMA- IR in orlistat- treatedgroup was distinctly reduced if compared with placebogroup. Conclusions Weight loss resulting fromorlistat treatment and slightly hypocaloric diet hasproduced favorable effects on several cardiovascularrisk factors in obese Chinese subjects.

  4. Fluorescent nanodiamond tracking reveals intraneuronal transport abnormalities induced by brain-disease-related genetic risk factors

    Science.gov (United States)

    Haziza, Simon; Mohan, Nitin; Loe-Mie, Yann; Lepagnol-Bestel, Aude-Marie; Massou, Sophie; Adam, Marie-Pierre; Le, Xuan Loc; Viard, Julia; Plancon, Christine; Daudin, Rachel; Koebel, Pascale; Dorard, Emilie; Rose, Christiane; Hsieh, Feng-Jen; Wu, Chih-Che; Potier, Brigitte; Herault, Yann; Sala, Carlo; Corvin, Aiden; Allinquant, Bernadette; Chang, Huan-Cheng; Treussart, François; Simonneau, Michel

    2017-05-01

    Brain diseases such as autism and Alzheimer's disease (each inflicting >1% of the world population) involve a large network of genes displaying subtle changes in their expression. Abnormalities in intraneuronal transport have been linked to genetic risk factors found in patients, suggesting the relevance of measuring this key biological process. However, current techniques are not sensitive enough to detect minor abnormalities. Here we report a sensitive method to measure the changes in intraneuronal transport induced by brain-disease-related genetic risk factors using fluorescent nanodiamonds (FNDs). We show that the high brightness, photostability and absence of cytotoxicity allow FNDs to be tracked inside the branches of dissociated neurons with a spatial resolution of 12 nm and a temporal resolution of 50 ms. As proof of principle, we applied the FND tracking assay on two transgenic mouse lines that mimic the slight changes in protein concentration (∼30%) found in the brains of patients. In both cases, we show that the FND assay is sufficiently sensitive to detect these changes.

  5. Regulation of Hippo pathway transcription factor TEAD by p38 MAPK-induced cytoplasmic translocation.

    Science.gov (United States)

    Lin, Kimberly C; Moroishi, Toshiro; Meng, Zhipeng; Jeong, Han-Sol; Plouffe, Steven W; Sekido, Yoshitaka; Han, Jiahuai; Park, Hyun Woo; Guan, Kun-Liang

    2017-07-28

    The Hippo pathway controls organ size and tissue homeostasis, with deregulation leading to cancer. The core Hippo components in mammals are composed of the upstream serine/threonine kinases Mst1/2, MAPK4Ks and Lats1/2. Inactivation of these upstream kinases leads to dephosphorylation, stabilization, nuclear translocation and thus activation of the major functional transducers of the Hippo pathway, YAP and its paralogue TAZ. YAP/TAZ are transcription co-activators that regulate gene expression primarily through interaction with the TEA domain DNA-binding family of transcription factors (TEAD). The current paradigm for regulation of this pathway centres on phosphorylation-dependent nucleocytoplasmic shuttling of YAP/TAZ through a complex network of upstream components. However, unlike other transcription factors, such as SMAD, NF-κB, NFAT and STAT, the regulation of TEAD nucleocytoplasmic shuttling has been largely overlooked. In the present study, we show that environmental stress promotes TEAD cytoplasmic translocation via p38 MAPK in a Hippo-independent manner. Importantly, stress-induced TEAD inhibition predominates YAP-activating signals and selectively suppresses YAP-driven cancer cell growth. Our data reveal a mechanism governing TEAD nucleocytoplasmic shuttling and show that TEAD localization is a critical determinant of Hippo signalling output.

  6. Growth factors induce monocyte binding to vascular smooth muscle cells: implications for monocyte retention in atherosclerosis.

    Science.gov (United States)

    Cai, Qiangjun; Lanting, Linda; Natarajan, Rama

    2004-09-01

    Adhesive interactions between monocytes and vascular smooth muscle cells (VSMC) may contribute to subendothelial monocyte-macrophage retention in atherosclerosis. We investigated the effects of angiotensin II (ANG II) and platelet-derived growth factor (PDGF)-BB on VSMC-monocyte interactions. Treatment of human aortic VSMC (HVSMC) with ANG II or PDGF-BB significantly increased binding to human monocytic THP-1 cells and to peripheral blood monocytes. This was inhibited by antibodies to monocyte beta(1)- and beta(2)-integrins. The binding was also attenuated by blocking VSMC arachidonic acid (AA) metabolism by inhibitors of 12/15-lipoxygenase (12/15-LO) or cyclooxygenase-2 (COX-2). Conversely, binding was enhanced by overexpression of 12/15-LO or COX-2. Direct treatment of HVSMC with AA or its metabolites also increased binding. Furthermore, VSMC derived from 12/15-LO knockout mice displayed reduced binding to mouse monocytic cells relative to genetic control mice. Using specific signal transduction inhibitors, we demonstrated the involvement of Src, phosphoinositide 3-kinase, and MAPKs in ANG II- or PDGF-BB-induced binding. Interestingly, after coculture with HVSMC, THP-1 cell surface expression of the scavenger receptor CD36 was increased. These results show for the first time that growth factors may play additional roles in atherosclerosis by increasing monocyte binding to VSMC via AA metabolism and key signaling pathways. This can lead to monocyte subendothelial retention, CD36 expression, and foam cell formation.

  7. Autoantibodies in dilated cardiomyopathy induce vascular endothelial growth factor expression in cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Saygili, Erol, E-mail: erol.saygili@med.uni-duesseldorf.de [Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf (Germany); Noor-Ebad, Fawad; Schröder, Jörg W.; Mischke, Karl [Department of Cardiology, University RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen (Germany); Saygili, Esra [Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf (Germany); Rackauskas, Gediminas [Department of Cardiovascular Medicine, Vilnius University Hospital Santariskiu Klinikos, Vilnius University (Lithuania); Marx, Nikolaus [Department of Cardiology, University RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen (Germany); Kelm, Malte; Rana, Obaida R. [Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf (Germany)

    2015-09-11

    Background: Autoantibodies have been identified as major predisposing factors for dilated cardiomyopathy (DCM). Patients with DCM show elevated serum levels of vascular endothelial growth factor (VEGF) whose source is unknown. Besides its well-investigated effects on angiogenesis, evidence is present that VEGF signaling is additionally involved in fibroblast proliferation and cardiomyocyte hypertrophy, hence in cardiac remodeling. Whether autoimmune effects in DCM impact cardiac VEGF signaling needs to be elucidated. Methods: Five DCM patients were treated by the immunoadsorption (IA) therapy on five consecutive days. The eluents from the IA columns were collected and prepared for cell culture. Cardiomyocytes from neonatal rats (NRCM) were incubated with increasing DCM-immunoglobulin-G (IgG) concentrations for 48 h. Polyclonal IgG (Venimmun N), which was used to restore IgG plasma levels in DCM patients after the IA therapy was additionally used for control cell culture purposes. Results: Elevated serum levels of VEGF decreased significantly after IA (Serum VEGF (ng/ml); DCM pre-IA: 45 ± 9.1 vs. DCM post–IA: 29 ± 6.7; P < 0.05). In cell culture, pretreatment of NRCM by DCM-IgG induced VEGF expression in a time and dose dependent manner. Biologically active VEGF that was secreted by NRCM significantly increased BNP mRNA levels in control cardiomyocytes and induced cell-proliferation of cultured cardiac fibroblast (Fibroblast proliferation; NRCM medium/HC-IgG: 1 ± 0.0 vs. NRCM medium/DCM-IgG 100 ng/ml: 5.6 ± 0.9; P < 0.05). Conclusion: The present study extends the knowledge about the possible link between autoimmune signaling in DCM and VEGF induction. Whether this observation plays a considerable role in cardiac remodeling during DCM development needs to be further elucidated. - Highlights: • Mechanisms of remodeling in dilated cardiomyopathy (DCM) are not fully understood. • Autoantibodies have been identified as major predisposing factors

  8. Nasal administration of interleukin-33 induces airways angiogenesis and expression of multiple angiogenic factors in a murine asthma surrogate.

    Science.gov (United States)

    Shan, Shan; Li, Yan; Wang, Jingjing; Lv, Zhe; Yi, Dawei; Huang, Qiong; Corrigan, Chris J; Wang, Wei; Quangeng, Zhang; Ying, Sun

    2016-05-01

    The T-helper cell type 2-promoting cytokine interleukin-33 (IL-33) has been implicated in asthma pathogenesis. Angiogenesis is a feature of airways remodelling in asthma. We hypothesized that IL-33 induces airways angiogenesis and expression of angiogenic factors in an established murine surrogate of asthma. In the present study, BALB/c mice were subjected to serial intranasal challenge with IL-33 alone for up to 70 days. In parallel, ovalbumin (OVA) -sensitized mice were subjected to serial intranasal challenge with OVA or normal saline to serve as positive and negative controls, respectively. Immunohistochemical analysis of expression of von Willebrand factor and erythroblast transformation-specific-related gene, both blood vessel markers, and angiogenic factors angiogenin, insulin-like growth factor-1, endothelin-1, epidermal growth factor and amphiregulin was performed in lung sections ex vivo. An established in-house assay was used to test whether IL-33 was able to induce microvessel formation by human vascular endothelial cells. Results showed that serial intranasal challenge of mice with IL-33 or OVA resulted in proliferation of peribronchial von Willebrand factor-positive blood vessels to a degree closely related to the total expression of the angiogenic factors amphiregulin, angiogenin, endothelin-1, epidermal growth factor and insulin-like growth factor-1. IL-33 also induced microvessel formation by human endothelial cells in a concentration-dependent fashion in vitro. Our data are consistent with the hypothesis that IL-33 has the capacity to induce angiogenesis at least partly by increasing local expression of multiple angiogenic factors in an allergen-independent murine asthma surrogate, and consequently that IL-33 or its receptor is a potential novel molecular target for asthma therapy.

  9. Type I Insulin-like Growth Factor Receptor Induces Pulmonary Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Nicolle M. Linnerth

    2009-07-01

    Full Text Available Despite the type I insulin-like growth factor receptor (IGF-IR being highly expressed in more than 80% of human lung tumors, a transgenic model of IGF-IR overexpression in the lung has not been created. We produced two novel transgenic mouse models in which IGF-IR is overexpressed in either lung type II alveolar cells (surfactant protein C [SPC]-IGFIR or Clara cells (CCSP-IGFIR in a doxycycline-inducible manner. Overexpression of IGF-IR in either cell type caused multifocal adenomatous alveolar hyperplasia with papillary and solid adenomas. These tumors expressed thyroid transcription factor 1 and Kruppel-like factor 5 in most tumor cells. Similar to our previous work with lung tumors that developed in the mouse mammary tumor virus-IGF-II transgenic mice, the lung tumors that develop in the SPC-IGFIR and CCSP-IGFIR transgenic mice expressed high levels of the cyclic adenosine monophosphate response element binding protein that was localized primarily to the nucleus. Although elevated IGF-IR expression can initiate lung tumor development, tumors can become independent of IGF-IR signaling as IGF-IR down-regulation in established tumors produced tumor regression in some, but not all, of the tumors. These findings implicate IGF-IR as an important initiator of lung tumorigenesis and suggest that the SPC-IGFIR and CCSP-IGFIR transgenic mice can be used to further our understanding of human lung cancer and the role IGF-IR plays in this disease.

  10. Osteogenic Differentiation of Adipose-Derived Stem Cells Is Hypoxia-Inducible Factor-1 Independent

    Science.gov (United States)

    Sahai, Suchit; Williams, Amanda; Skiles, Matthew L.

    2013-01-01

    Tissue engineering is a promising approach to repair critical-size defects in bone. Damage to vasculature at the defect site can create a lower O2 environment compared with healthy bone. Local O2 levels influence stem cell behavior, as O2 is not only a nutrient, but also a signaling molecule. The hypoxia-inducible factor-1 (HIF-1) is a transcription factor that regulates a wide range of O2-related genes and its contribution in bone repair/formation is an important area that can be exploited. In this study, we examined the effect of low O2 environments (1% and 2% O2) on the osteogenic differentiation of adipose-derived stem cells in both two-dimensional (2-D) and three-dimensional (3-D) culture systems. To determine the role of HIF-1 in the differentiation process, an inhibitor was used to block the HIF-1 activity. The samples were examined for osteogenesis markers as measured by quantification of the alkaline phosphatase (ALP) activity, mineral deposition, and expression of osteonectin (ON) and osteopontin (OPN). Results show a downregulation of the osteogenic markers (ALP activity, mineralization, ON, OPN) in both 1% and 2% O2 when compared to 20% O2 in both 2-D and 3-D culture. Vascular endothelial growth factor secretion over 28 days was significantly higher in low O2 environments and HIF-1 inhibition reduced this effect. The inhibition of the HIF-1 activity did not have a significant impact on the expression of the osteogenic markers, suggesting HIF-1-independent inhibition of osteogenic differentiation in hypoxic conditions. PMID:23394201

  11. Expression of hypoxia-inducible factor-1α and erythropoietin at corneal neovascularization in rats

    Directory of Open Access Journals (Sweden)

    Ji-Min Wang

    2014-12-01

    Full Text Available AIM: To describe the expression of hypoxia-inducible factor-1α(HIF-1αand erythropoietin(EPOin rats' corneal and evaluate its potential effect on corneal neovascularization(CNVgrowth. METHODS: The young SD rats(3mowas chosen and randomly divided into 2 groups, which were experimental group and normal control group. CNV model was established by alkali burn, and the length and area of CNV was observed everyday after operation by slit lamp. After that, the expression of HIF-1α and EPO was measured by SABC and RT-PCR methods at 1, 3, 5, 7, and 14d after alkali burn. The data was analyzed by SPSS 20.0. RESULTS: The area of CNV was increasing at 1, 3, 5, 7, and 14d after alkali burn, and the peak point appear at 7d. The growth speed was decreased after 14d. SABC method told us that no HIF-1α and very tiny amount EPO was detected at normal rats' corneal. The expression of the two factors increased at 1d after alkali burn in corneal epithelium and endoderm. The results of RT-PCR showed that a few amounts of HIF-1α and EPO mRNA were detected at normal group. The expression of the two factors was increased at 3d after alkali burn, and the peak value was found at 7d, however, it was decreased at 14d. Statistical difference was found at different time(PCONCLUSION: HIF-1α and EPO is closely related to CNV.

  12. Stress-induced nuclear RNA degradation pathways regulate yeast bromodomain factor 2 to promote cell survival.

    Directory of Open Access Journals (Sweden)

    Kevin Roy

    2014-09-01

    Full Text Available Bromodomain proteins are key regulators of gene expression. How the levels of these factors are regulated in specific environmental conditions is unknown. Previous work has established that expression of yeast Bromodomain factor 2 (BDF2 is limited by spliceosome-mediated decay (SMD. Here we show that BDF2 is subject to an additional layer of post-transcriptional control through RNase III-mediated decay (RMD. We found that the yeast RNase III Rnt1p cleaves a stem-loop structure within the BDF2 mRNA to down-regulate its expression. However, these two nuclear RNA degradation pathways play distinct roles in the regulation of BDF2 expression, as we show that the RMD and SMD pathways of the BDF2 mRNA are differentially activated or repressed in specific environmental conditions. RMD is hyper-activated by salt stress and repressed by hydroxyurea-induced DNA damage while SMD is inactivated by salt stress and predominates during DNA damage. Mutations of cis-acting signals that control SMD and RMD rescue numerous growth defects of cells lacking Bdf1p, and show that SMD plays an important role in the DNA damage response. These results demonstrate that specific environmental conditions modulate nuclear RNA degradation pathways to control BDF2 expression and Bdf2p-mediated gene regulation. Moreover, these results show that precise dosage of Bromodomain factors is essential for cell survival in specific environmental conditions, emphasizing their importance for controlling chromatin structure and gene expression in response to environmental stress.

  13. A PLS model based on dominant factor for coal analysis using laser-induced breakdown spectroscopy.

    Science.gov (United States)

    Feng, Jie; Wang, Zhe; West, Logan; Li, Zheng; Ni, Weidou

    2011-07-01

    Thirty-three bituminous coal samples were utilized to test the application of laser-induced breakdown spectroscopy technique for coal elemental concentration measurement in the air. The heterogeneity of the samples and the pyrolysis or combustion of coal during the laser-sample interaction processes were analyzed to be the main reason for large fluctuation of detected spectra and low calibration quality. Compared with the generally applied normalization with the whole spectral area, normalization with segmental spectral area was found to largely improve the measurement precision and accuracy. The concentrations of major element C in coal were determined by a novel partial least squares (PLS) model based on dominant factor. Dominant C concentration information was taken from the carbon characteristic line intensity since it contains the most-related information, even if not accurately. This dominant factor model was further improved by inducting non-linear relation by partially modeling the inter-element interference effect. The residuals were further corrected by PLS with the full spectrum information. With the physical-principle-based dominant factor to calculate the main quantitative information and to partially explicitly include the non-linear relation, the proposed PLS model avoids the overuse of unrelated noise to some extent and becomes more robust over a wider C concentration range. Results show that RMSEP in the proposed PLS model decreased to 4.47% from 5.52% for the conventional PLS with full spectrum input, while R(2) remained as high as 0.999, and RMSEC&P was reduced from 3.60% to 2.92%, showing the overall improvement of the proposed PLS model.

  14. ROP6 is involved in root hair deformation induced by Nod factors in Lotus japonicus.

    Science.gov (United States)

    Ke, Danxia; Li, Xiangyong; Han, Yapeng; Cheng, Lin; Yuan, Hongyu; Wang, Lei

    2016-11-01

    Roots of leguminous plants perceive Nod factor signals, and then root hair deformation responses such as swelling and curling are activated. However, very little is known about the molecular mechanisms of such root hair deformation. We have previously shown that LjROP6, a member of the Rho family of small GTPases, was identified as an NFR5 (Nod Factor Receptor 5)-interacting protein and participated in symbiotic nodulation in Lotus japonicus. In this study, we identified ten LjROP GTPases including LjROP6, and they were distributed into groups II, III, IV but not group I by phylogenetic analysis. The expression profiles of ten LjROP genes during nodulation were examined. LjROP6 belonged to group IV and interacted with NFR5 in a GTP-dependent manner. Overexpression of either wild-type ROP6 or a constitutively active mutant (ROP6-CA) generated root hair tip growth depolarization, while overexpression of a dominant negative mutant (ROP6-DN) exhibited normal root hair growth. After inoculating with Mesorhizobium loti or adding Nod factors to hairy roots, overexpression of ROP6 and ROP6-CA exhibited extensive root hair deformation, while overexpression of ROP6-DN inhibited root hair deformation. The infection event and nodule number were increased in ROP6 and ROP6-CA overexpressing transgenic plants; but decreased in ROP6-DN overexpressing transgenic plants. These studies provide strong evidence that ROP6 GTPase, which binds NFR5 in a GTP-dependent manner, is involved in root hair development as well as root hair deformation responses induced by NFs in the early stage of symbiotic interaction in L. japonicus.

  15. Physiological and Therapeutic Vascular Remodeling Mediated by Hypoxia-Inducible Factor 1

    Science.gov (United States)

    Sarkar, Kakali; Semenza, Gregg L.

    Angiogenesis along with arteriogenesis and vasculogenesis is a fundamental process in ischemic repair in adult animals including humans. Hypoxia-inducible factor 1 (HIF-1) plays a central role in mediating adaptive responses to hypoxia/ischemia by expressing angiogenic cytokines/growth factors and their cognate receptors. Angiogenic growth factors are the homing signal for circulating angiogenic cells (CACs), which are mobilized to peripheral blood from bone marrow, recruited to target tissues, and promote vascularization. Impairment of HIF-1-mediated gene transcription contributes to the impaired vascular responses in peripheral vascular disease that are associated with aging and diabetes. Promoting neovascularization in ischemic tissues is a promising strategy for the treatment of peripheral vascular disease when surgical or catheter-based revascularization is not possible. Intramuscular injection of an adenovirus encoding a constitutively active form of HIF-1α (AdCA5), into the ischemic limb of diabetic mice increases the recovery of limb perfusion and function, rescues the diabetes-associated impairment of CACs, and increases vascularization. Administration of AdCA5 overcomes the effect of aging on recovery of blood flow in middle-aged mice following femoral artery ligation in a mouse model of age-dependent critical limb ischemia. Intramuscular injection of AdCA5 along with intravenous injection of bone-marrow-derived angiogenic cells cultured in the presence of prolyl-4-hydroxylase inhibitor dimethyloxalylglycine, increases blood flow and limb salvage in old mice following femoral artery ligation. HIF-1α gene therapy increases homing of bone-marrow-derived cells, whereas induction of HIF-1 in these cells increases their retention in the ischemic tissue by increasing their adhesion to endothelium leading to synergistic effects of combined therapy on improving blood flow.

  16. Inhibitory Effect of Memantine on Streptozotocin-Induced Insulin Receptor Dysfunction, Neuroinflammation, Amyloidogenesis, and Neurotrophic Factor Decline in Astrocytes.

    Science.gov (United States)

    Rajasekar, N; Nath, Chandishwar; Hanif, Kashif; Shukla, Rakesh

    2016-12-01

    Our earlier studies showed that insulin receptor (IR) dysfunction along with neuroinflammation and amyloidogenesis played a major role in streptozotocin (STZ)-induced toxicity in astrocytes. N-methyl-D-aspartate (NMDA) receptor antagonist-memantine shows beneficial effects in Alzheimer's disease (AD) pathology. However, the protective molecular and cellular mechanism of memantine in astrocytes is not properly understood. Therefore, the present study was undertaken to investigate the effect of memantine on insulin receptors, neurotrophic factors, neuroinflammation, and amyloidogenesis in STZ-treated astrocytes. STZ (100 μM) treatment for 24 h in astrocytes resulted significant decrease in brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and insulin-degrading enzyme (IDE) expression in astrocytes. Treatment with memantine (1-10 μM) improved STZ-induced neurotrophic factor decline (BDNF, GDNF) along with IR dysfunction as evidenced by a significant increase in IR protein expression, phosphorylation of IRS-1, Akt, and GSK-3 α/β in astrocytes. Further, memantine attenuated STZ-induced amyloid precursor protein (APP), β-site APP-cleaving enzyme-1 and amyloid-β1-42 expression and restored IDE expression in astrocytes. In addition, memantine also displays protective effects against STZ-induced astrocyte activation showed by reduction of inflammatory markers, nuclear factor kappa-B translocation, glial fibrillary acidic protein, cyclooxygenase-2, tumor necrosis factor-α level, and oxidative-nitrostative stress. The results suggest that besides the NMDA receptor antagonisic activity, effect on astroglial IR and neurotrophic factor may also be an important factor in the beneficial effect of memantine in AD pathology. Graphical Abstract Novel neuroprotective mechanisms of memenatine in streptozotocin-induced toxicity in astrocytes.

  17. Suppressor of cytokine signalling-3 inhibits Tumor necrosis factor-alpha induced apoptosis and signalling in beta cells

    DEFF Research Database (Denmark)

    Bruun, Christine; Heding, Peter E; Rønn, Sif G

    2009-01-01

    Tumor necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine involved in the pathogenesis of several diseases including type 1 diabetes mellitus (T1DM). TNFalpha in combination with interleukin-1-beta (IL-1beta) and/or interferon-gamma (IFNgamma) induces specific destruction of the pancr......Tumor necrosis factor-alpha (TNFalpha) is a pro-inflammatory cytokine involved in the pathogenesis of several diseases including type 1 diabetes mellitus (T1DM). TNFalpha in combination with interleukin-1-beta (IL-1beta) and/or interferon-gamma (IFNgamma) induces specific destruction...... in INSr3#2 cells and in primary rat islets. Furthermore, SOCS-3 repressed TNFalpha-induced degradation of IkappaB, NFkappaB DNA binding and transcription of the NFkappaB-dependent MnSOD promoter. Finally, expression of Socs-3 mRNA was induced by TNFalpha in rat islets in a transient manner with maximum...

  18. Effect of four factors in the calculation of induced voltages on a tree-shaped distribution line

    Energy Technology Data Exchange (ETDEWEB)

    Torres, Horacio; Perez, Ernesto; Herrera, Javier; Younes, Camilo; Salgado, Milton; Quintana, Carlos; Rondon, Daniel; Gallego, Luis; Montana, Johny; Vargas, Mauricio [Universidad Nacional de Colombia, Bogota (Colombia). Research Program on Acquisition and Analysis of Signals - PAAS]. E-mail: paas@paas.unal.edu.co

    2001-07-01

    The main objective of this paper is to show a sensibility analysis of four different factors: current waveform, return stroke velocity, lightning current amplitude and network configuration in the calculation of induced voltages on a tree-shaped distribution line. In order to calculate distribution line. In order to calculate the induced voltages it was used the EMTP/ATP program with the inclusion of Rusck's Coupling Model into the MODELS routine. (author)

  19. Role of tumour necrosis factor receptor-1 and nuclear factor-κB in production of TNF-α-induced pro-inflammatory microparticles in endothelial cells.

    Science.gov (United States)

    Lee, S K; Yang, S-H; Kwon, I; Lee, O-H; Heo, J H

    2014-09-02

    Tumour necrosis factor-α (TNF-α) is upregulated in many inflammatory diseases and is also a potent agent for microparticle (MP) generation. Here, we describe an essential role of TNF-α in the production of endothelial cell-derived microparticles (EMPs) in vivo and the function of TNF-α-induced EMPs in endothelial cells. We found that TNF-α rapidly increased blood levels of EMPs in mice. Treatment of human umbilical vein endothelial cells (HUVECs) with TNF-α also induced EMP formation in a time-dependent manner. Silencing of TNF receptor (TNFR)-1 or inhibition of the nuclear factor-κB (NF-κB) in HUVECs impaired the production of TNF-α-induced EMP. Incubation of HUVECs with PKH-67-stained EMPs showed that endothelial cells readily engulfed EMPs, and the engulfed TNF-α-induced EMPs promoted the expression of pro-apoptotic molecules and upregulated intercellular adhesion molecule-1 level on the cell surface, which led to monocyte adhesion. Collectively, our findings indicate that the generation of TNF-α-induced EMPs was mediated by TNFR1 or NF-κB and that EMPs can contribute to apoptosis and inflammation of endothelial cells.

  20. Role of nuclear factor kappa B and reactive oxygen species in the tumor necrosis factor-a-induced epithelial-mesenchymal transition of MCF-7 cells

    Directory of Open Access Journals (Sweden)

    R. Dong

    2007-08-01

    Full Text Available The microenvironment of the tumor plays an important role in facilitating cancer progression and activating dormant cancer cells. Most tumors are infiltrated with inflammatory cells which secrete cytokines such as tumor necrosis factor-a (TNF-a. To evaluate the role of TNF-a in the development of cancer we studied its effects on cell migration with a migration assay. The migrating cell number in TNF-a -treated group is about 2-fold of that of the control group. Accordingly, the expression of E-cadherin was decreased and the expression of vimentin was increased upon TNF-a treatment. These results showed that TNF-a can promote epithelial-mesenchymal transition (EMT of MCF-7 cells. Further, we found that the expression of Snail, an important transcription factor in EMT, was increased in this process, which is inhibited by the nuclear factor kappa B (NFkB inhibitor aspirin while not affected by the reactive oxygen species (ROS scavenger N-acetyl cysteine. Consistently, specific inhibition of NFkB by the mutant IkBa also blocked the TNF-a-induced upregulation of Snail promoter activity. Thus, the activation of NFkB, which causes an increase in the expression of the transcription factor Snail is essential in the TNF-a-induced EMT. ROS caused by TNF-a seemed to play a minor role in the TNF-a-induced EMT of MCF-7 cells, though ROS per se can promote EMT. These findings suggest that different mechanisms might be responsible for TNF-a - and ROS-induced EMT, indicating the need for different strategies for the prevention of tumor metastasis induced by different stimuli.

  1. Chronic administration of epidermal growth factor to pigs induces growth, especially of the urinary tract with accumulation of epithelial glycoconjugates

    DEFF Research Database (Denmark)

    Vinter-Jensen, Lars; Juhl, C O; Poulsen, Steen Seier;

    1995-01-01

    of developmental processes like incisor eruption, inhibition of gastric acid secretion, morphologic changes in the pancreas resembling pancreatitis, and malignancies in mammary glands and the liver. The present investigation was initiated to explore the effects of systemic EGF administration to the mature organism......Epidermal growth factor (EGF) receptor hyperstimulation induced by systemically administered EGF or by the development of transgenic mice overexpressing transforming growth factor alpha (TGF alpha) or other EGF-related ligands is known to induce various effects, such as acceleration...

  2. Glucocorticoid-induced tumor necrosis factor receptor expression in patients with cervical human papillomavirus infection

    Directory of Open Access Journals (Sweden)

    Cacilda Tezelli Junqueira Padovani

    2013-06-01

    Full Text Available Introduction The progression of human papillomavirus (HPV infection in the anogenital tract has been associated with the involvement of cells with regulatory properties. Evidence has shown that glucocorticoid-induced tumor necrosis factor receptor (GITR is an important surface molecule for the characterization of these cells and proposes that GITR ligand may constitute a rational treatment for many cancer types. We aimed to detect the presence of GITR and CD25 in cervical stroma cells with and without pathological changes or HPV infection to better understand the immune response in the infected tissue microenvironment. Methods We subjected 49 paraffin-embedded cervical tissue samples to HPV DNA detection and histopathological analysis, and subsequently immunohistochemistry to detect GITR and CD25 in lymphocytes. Results We observed that 76.9% of all samples with high GITR expression were HPV-positive regardless of histopathological findings. High GITR expression (77.8% was predominant in samples with ≥1,000 RLU/PCB. Of the HPV-positive samples negative for intraepithelial lesion and malignancy, 62.5% had high GITR expression. High GITR expression was observed in both carcinoma and high-grade squamous intraepithelial lesion (HSIL samples (p = 0.16. CD25 was present in great quantities in all samples. Conclusions The predominance of high GITR expression in samples with high viral load that were classified as HSIL and carcinoma suggests that GITR+ cells can exhibit regulatory properties and may contribute to the progression of HPV-induced cervical neoplasia, emphasizing the importance of GITR as a potential target for immune therapy of cervical cancer and as a disease evolution biomarker.

  3. Role of tissue factor in Mycobacterium tuberculosis-induced inflammation and disease pathogenesis.

    Directory of Open Access Journals (Sweden)

    Hema Kothari

    Full Text Available Tuberculosis (TB is a chronic lung infectious disease characterized by severe inflammation and lung granulomatous lesion formation. Clinical manifestations of TB include hypercoagulable states and thrombotic complications. We previously showed that Mycobacterium tuberculosis (M.tb infection induces tissue factor (TF expression in macrophages in vitro. TF plays a key role in coagulation and inflammation. In the present study, we investigated the role of TF in M.tb-induced inflammatory responses, mycobacterial growth in the lung and dissemination to other organs. Wild-type C57BL/6 and transgenic mice expressing human TF, either very low levels (low TF or near to the level of wild-type (HTF, in place of murine TF were infected with M.tb via aerosol exposure. Levels of TF expression, proinflammatory cytokines and thrombin-antithrombin complexes were measured post M.tb infection and mycobacterial burden in the tissue homogenates were evaluated. Our results showed that M.tb infection did not increase the overall TF expression in lungs. However, macrophages in the granulomatous lung lesions in all M.tb-infected mice, including low TF mice, showed increased levels of TF expression. Conspicuous fibrin deposition in the granuloma was detected in wild-type and HTF mice but not in low TF mice. M.tb infection significantly increased expression levels of cytokines IFN-γ, TNF-α, IL-6 and IL-1ß in lung tissues. However, no significant differences were found in proinflammatory cytokines among the three experimental groups. Mycobacterial burden in lungs and dissemination into spleen and liver were essentially similar in all three genotypes. Our data indicate, in contrast to that observed in acute bacterial infections, that TF-mediated coagulation and/or signaling does not appear to contribute to the host-defense in experimental tuberculosis.

  4. Transforming growth factor-β1 induces intestinal myofibroblast differentiation and modulates their migration

    Institute of Scientific and Technical Information of China (English)

    Julia Brenmoehl; Sandra Nicole Miller; Claudia Hofmann; Daniela Vogl; Werner Falk; Jürgen Scholmerich; Gerhard Rogler

    2009-01-01

    AIM:To investigate the effects of transforming growth factor β1 (TGF-β1) on the differentiation of colonic lamina propria fibroblasts (CLPF) into myofibroblasts in vitro. METHODS:Primary CLPF cultures were incubated with TGF-β1 and analyzed for production of α-smooth muscle actin (α-SMA), fibronectin (FN) and FN isoforms. Migration assays were performed in a modified 48-well Boyden chamber. Levels of total and phosphorylated focal adhesion kinase (FAK) in CLPF were analyzed after induction of migration. RESULTS:Incubation of CLPF with TGF-β1 for 2 d did not change α-SMA levels, while TGF-β1 treatment for 6 d significantly increased α-SMA production. Short term incubation (6 h) with TGF-β1 enhanced CLPF migration, while long term treatment (6 d) of CLPF with TGF-β1 reduced migration to 15%-37% compared to untreated cells. FN and FN isoform mRNA expression were increased after short term incubation with TGF-β1 (2 d) in contrast to long term incubation with TGF-β1 for 6 d. After induction of migration, TGF-β1-preincubated CLPF showed higher amounts of FN and its isoforms and lower levels of total and phosphorylated FAK than untreated cells. CONCLUSION:Long term incubation of CLPF with TGF-β1 induced differentiation into myofibroblasts with enhanced α-SMA, reduced migratory potential and FAK phosphorylation, and increased FN production. In contrast, short term contact (6 h) of fibroblasts with TGF-β1 induced a dose-dependent increase of cell migration and FAK phosphorylation without induction of α-SMA production.

  5. Norepinephrine-induced nerve growth factor depletion causes cardiac sympathetic denervation in severe heart failure.

    Science.gov (United States)

    Kimura, Kensuke; Kanazawa, Hideaki; Ieda, Masaki; Kawaguchi-Manabe, Haruko; Miyake, Yoshiko; Yagi, Takashi; Arai, Takahide; Sano, Motoaki; Fukuda, Keiichi

    2010-08-25

    In severe congestive heart failure (CHF), sympathetic overactivity correlates with the exacerbation of cardiac performance. To test the hypothesis that the cardiac sympathetic nerve density dramatically changes with the acceleration of circulating norepinephrine (NE) concentration, we investigated the temporal association of nerve growth factor (NGF) expression in the heart and cardiac sympathetic nerve density during the development of CHF in the continuous NE-infused rats. The animals were analyzed at 0-, 1-, 3-, 7-, 14-, and 28-day after implantation of osmotic pump at a rate of 0.05 mg/kg/hr. The cardiac performance was temporally facilitated in NE-exposed rats at 3-day in accordance with the sympathetic hyper-innervation induced by the augmentation of NGF mRNA expression in the heart. In NE-treated rats, left ventricular end-diastolic pressure was significantly increased after 7-day and marked left ventricular hypertrophy and systemic fluid retention were observed at 28-day. CHF-induced sympathetic overactivity further increased plasma NE concentration in NE-treated rats and finally reached to 16.1+/-5.6 ng/ml at 28-day (control level was 0.39+/-0.1 ng/ml, pcardiac performance. The cardiac sympathetic fiber loss was also confirmed in NE-exposed DBH (dopamine beta-hydroxylase)-Cre/Floxed-EGFP (enhanced green fluorescent protein) mice with severe CHF, in which sympathetic nerve could be traced by EGFP. Our results suggest that the cardiac sympathetic nerve density is strictly regulated by the NGF expression in the heart and long-exposure of high plasma NE concentration caused myocardial NGF reduction, following sympathetic fiber loss in severe CHF animals.

  6. Hypoxia Inducible Factor 1α Promotes Endogenous Adaptive Response in Rat Model of Chronic Cerebral Hypoperfusion

    Directory of Open Access Journals (Sweden)

    Ying Yang

    2017-01-01

    Full Text Available Hypoxia inducible factor 1α (HIF-1α, a pivotal regulator of gene expression in response to hypoxia and ischemia, is now considered to regulate both pro-survival and pro-death responses depending on the duration and severity of the stress. We previously showed that chronic global cerebral hypoperfusion (CCH triggered long-lasting accumulation of HIF-1α protein in the hippocampus of rats. However, the role of the stabilized HIF-1α in CCH is obscure. Here, we knock down endogenous HIF-1α to determine whether and how HIF-1α affects the disease processes and phenotypes of CCH. Lentivirus expressing HIF-1α small hairpin RNA was injected into the bilateral hippocampus and bilateral ventricles to knock down HIF-1α gene expression in the hippocampus and other brain areas. Permanent bilateral common carotid artery occlusions, known as 2-vessel occlusions (2VOs, were used to induce CCH in rats. Angiogenesis, oxidative stress, histopathological changes of the brain, and cognitive function were tested. Knockdown of HIF-1α prior to 2VO significantly exacerbates the impairment of learning and memory after four weeks of CCH. Mechanically, reduced cerebral angiogenesis, increased oxidative damage, and increased density of astrocytes and microglia in the cortex and some subregions of hippocampus are also shown after four weeks of CCH. Furthermore, HIF-1α knockdown also disrupts upregulation of regulated downstream genes. Our findings suggest that HIF-1α-protects the brain from oxidative stress and inflammation response in the disease process of CCH. Accumulated HIF-1α during CCH mediates endogenous adaptive processes to defend against more severe hypoperfusion injury of the brain, which may provide a therapeutic benefit.

  7. DNA lesions, inducible DNA repair, and cell division: Three key factors in mutagenesis and carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ames, B.N.; Shigenaga, M.K. [Univ. of California, Berkeley, CA (United States); Gold, L.S. [Lawrence Berkeley National Lab., CA (United States)

    1993-12-01

    DNA lesions that escape repair have a certain probability of giving rise to mutations when the cell divides. Endogenous DNA damage is high: 10{sup 6} oxidative lesions are present per rat cell. An exogenous mutagen produces an increment in lesions over the background rate of endogenous lesions. The effectiveness of a particular lesion depends on whether it is excised by a DNA repair system and the probability that it gives rise to a mutation when the cell divides. When the cell divides, an unrepaired DNA lesion has a certain probability of giving rise to a mutation. Thus, an important factor in the mutagenic effect of an exogenous agent whether it is genotoxic or non-genotoxic, is the increment it causes over the background cell division rate (mitogenesis) in cells that appear to matter most in cancer, the stem cells, which are not on their way to being discarded. Increasing their cell division rate increases by high doses of chemicals. If both the rate of DNA lesions and cell division are increased, then there will be a multiplicative effect on mutagenesis (and carcinogenesis), for example, by high doses of a mutagen that also increases mitogenesis through cell killing. The defense system against reactive electrophilic mutagens, such as the glutathione transferases, are also almost all inducible and buffer cells against increments in active forms of chemicals that can cause DNA lesions. A variety of DNA repair defense systems, almost all inducible, buffer the cell against any increment in DNA lesions. Therefore, the effect of a particular chemical insult depends on the level of each defense, which in turn depends on the past history of exposure. Exogenous agents can influence the induction and effectiveness of these defenses. Defenses can be partially disabled by lack of particular micronutrients in the diet (e.g., antioxidants).

  8. Heterogeneous nuclear ribonucleoprotein K inhibits heat shock-induced transcriptional activity of heat shock factor 1.

    Science.gov (United States)

    Kim, Hee-Jung; Lee, Jae-Jin; Cho, Jin-Hwan; Jeong, Jaeho; Park, A Young; Kang, Wonmo; Lee, Kong-Joo

    2017-08-04

    When cells are exposed to heat shock and various other stresses, heat shock factor 1 (HSF1) is activated, and the heat shock response (HSR) is elicited. To better understand the molecular regulation of the HSR, we used 2D-PAGE-based proteome analysis to screen for heat shock-induced post-translationally modified cellular proteins. Our analysis revealed that two protein spots typically present on 2D-PAGE gels and containing heterogeneous nuclear ribonucleoprotein K (hnRNP K) with trioxidized Cys(132) disappeared after the heat shock treatment and reappeared during recovery, but the total amount of hnRNP K protein remained unchanged. We next tested whether hnRNP K plays a role in HSR by regulating HSF1 and found that hnRNP K inhibits HSF1 activity, resulting in reduced expression of hsp70 and hsp27 mRNAs. hnRNP K also reduced binding affinity of HSF1 to the heat shock element by directly interacting with HSF1 but did not affect HSF1 phosphorylation-dependent activation or nuclear localization. hnRNP K lost its ability to induce these effects when its Cys(132) was substituted with Ser, Asp, or Glu. These findings suggest that hnRNP K inhibits transcriptional activity of HSF1 by inhibiting its binding to heat shock element and that the oxidation status of Cys(132) in hnRNP K is critical for this inhibition. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Assessment of Serum Vascular Endothelial Growth Factor Levels in Pregnancy-Induced Hypertension Patients

    Science.gov (United States)

    Tandon, Vibha; Hiwale, Swati; Amle, Dnyanesh; Nagaria, Tripti

    2017-01-01

    Objective. The objective of the study was to assess the serum vascular endothelial growth factor (VEGF) levels in peripheral blood of patients with pregnancy-induced hypertension (PIH) and find association between serum VEGF levels and PIH. Methods. Thirty-five PIH subjects, 35 normal pregnant females, and 20 normal healthy females were included in the study. Detailed history, clinical examination, and relevant biochemical parameters were assessed; serum VEGF levels were estimated using Double-antibody enzyme-linked immunosorbent assay. Results. The study groups were found to be age matched (p = 0.38). VEGF level in the pregnancy-induced hypertensive group (median = 109.19 (3.38 ± 619)) was significantly higher than the normal pregnant (median = 20.82 (1.7–619)) and control (median = 4.92 (1.13–13.07)) group and the difference between these three groups was significant (p < 0.0001). The 3 groups are found to be significantly different in terms of RBS (p = 0.01), urea (p < 0.0001), creatinine (p = 0.0005), AST (p = 0.0032), ALT (p = 0.0007), total protein (p = 0.0004), albumin (p < 0.0001), calcium (p = 0.001), and sodium (p = 0.02), while no statistically significant difference was found between total bilirubin (p = 0.167), direct bilirubin (p = 0.07), uric acid (p = 0.16), and potassium (p = 0.14). Conclusion. Significantly higher levels of serum VEGF were noted in PIH subjects compared to normal pregnant and control subjects. PMID:28133548

  10. PLEIOTROPHIN, A MULTIFUNCTIONAL CYTOKINE AND GROWTH FACTOR, INDUCES LEUKOCYTE RESPONSES THROUGH THE INTEGRIN MAC-1.

    Science.gov (United States)

    Shen, Di; Podolnikova, Nataly P; Yakubenko, Valentin P; Ardell, Christopher L; Balabiyev, Arnat; Ugarova, Tatiana P; Wang, Xu

    2017-09-22

    Pleiotrophin (PTN) is a multifunctional, cationic, glycosaminoglycan-binding cytokine and growth factor involved in numerous physiological and pathological processes, including tissue repair and inflammation-related diseases. PTN has been shown to promote leukocyte responses by inducing their migration and expression of inflammatory cytokines. However, the mechanisms through which PTN mediates these responses remain unclear. Here, we identified the integrin Mac-1 (αMβ2, CD11b/CD18) as the receptor mediating macrophage adhesion and migration to PTN. We also found that expression of Mac-1 on the surface of human embryonic kidney (HEK) 293 cells induced their adhesion and migration to PTN. Accordingly, PTN promoted Mac-1-dependent cell spreading and initiated intracellular signaling manifested in phosphorylation of Erk1/2. While binding to PTN, Mac-1 on Mac-1-expressing HEK293 cells appear to cooperate with cell-surface proteoglycans, since both anti-Mac-1 function-blocking mAb and heparin were required to block adhesion. Moreover, biolayer interferometry and NMR indicated a direct interaction between the αMI domain, the major ligand-binding region of Mac-1, and PTN. Using peptide libraries, we found that in PTN, the αMI domain bound sequences enriched in basic and hydrophobic residues, indicating that PTN conforms to the general principle of ligand-recognition specificity of the αMI domain toward cationic proteins/peptides. Finally, using recombinant PTN-derived fragments, we show that PTN contains two distinct Mac-1-binding sites in each of its constitutive domains. Collectively, these results identify PTN as a ligand for the integrin Mac-1 on the surface of leukocytes and suggest that this interaction may play a role in inflammatory responses. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  11. Biochemical isolation and purification of ovulation-inducing factor (OIF in seminal plasma of llamas

    Directory of Open Access Journals (Sweden)

    Pierson Roger A

    2011-02-01

    Full Text Available Abstract Background The objective of the present study was to isolate and purify the protein fraction(s of llama seminal plasma responsible for the ovulation-inducing effect of the ejaculate. Methods Semen collected from male llamas by artificial vagina was centrifuged and the seminal plasma was harvested and stored frozen. Seminal plasma was thawed and loaded onto a Type 1 macro-prep ceramic hydroxylapatite column and elution was carried out using a lineal gradient with 350 mM sodium phosphate. Three protein fractions were identified clearly (Fractions A, B, and C, where a prominent protein band with a mass of 14 kDa was identified in Fraction C. Fraction C was loaded into a sephacryl gel filtration column for further purification using fast protein liquid chromatography (FPLC. Isocratic elution resulted in 2 distinct protein fractions (Fractions C1 and C2. An in vivo bioassay (n = 10 to 11 llamas per group was used to determine the ovarian effect of each fraction involving treatment with saline (negative control, whole seminal plasma (positive control, or seminal plasma Fractions A, B or C2. Ultrasonography was done to detect ovulation and CL formation, and blood samples were taken to measure plasma progesterone and LH concentrations. Results Ovulation and CL formation was detected in 0/10, 10/11, 0/10, 2/11, and 10/11 llamas treated with saline, whole seminal plasma, Fractions A, B and C2 respectively (P Conclusion Ovulation-inducing factor was isolated from llama seminal plasma as a 14 kDa protein molecule that elicits a preovulatory LH surge followed by ovulation and CL formation in llamas, suggesting an endocrine effect at the level of the hypothalamus (release of GnRH or the pituitary (gonadotrophs.

  12. Hypoxia Inducible Factor 1α Promotes Endogenous Adaptive Response in Rat Model of Chronic Cerebral Hypoperfusion.

    Science.gov (United States)

    Yang, Ying; Ju, Jieyang; Deng, Min; Wang, Jing; Liu, Hui; Xiong, Li; Zhang, Junjian

    2017-01-17

    Hypoxia inducible factor 1α (HIF-1α), a pivotal regulator of gene expression in response to hypoxia and ischemia, is now considered to regulate both pro-survival and pro-death responses depending on the duration and severity of the stress. We previously showed that chronic global cerebral hypoperfusion (CCH) triggered long-lasting accumulation of HIF-1α protein in the hippocampus of rats. However, the role of the stabilized HIF-1α in CCH is obscure. Here, we knock down endogenous HIF-1α to determine whether and how HIF-1α affects the disease processes and phenotypes of CCH. Lentivirus expressing HIF-1α small hairpin RNA was injected into the bilateral hippocampus and bilateral ventricles to knock down HIF-1α gene expression in the hippocampus and other brain areas. Permanent bilateral common carotid artery occlusions, known as 2-vessel occlusions (2VOs), were used to induce CCH in rats. Angiogenesis, oxidative stress, histopathological changes of the brain, and cognitive function were tested. Knockdown of HIF-1α prior to 2VO significantly exacerbates the impairment of learning and memory after four weeks of CCH. Mechanically, reduced cerebral angiogenesis, increased oxidative damage, and increased density of astrocytes and microglia in the cortex and some subregions of hippocampus are also shown after four weeks of CCH. Furthermore, HIF-1α knockdown also disrupts upregulation of regulated downstream genes. Our findings suggest that HIF-1α-protects the brain from oxidative stress and inflammation response in the disease process of CCH. Accumulated HIF-1α during CCH mediates endogenous adaptive processes to defend against more severe hypoperfusion injury of the brain, which may provide a therapeutic benefit.

  13. Flavonoids Induce the Synthesis and Secretion of Neurotrophic Factors in Cultured Rat Astrocytes: A Signaling Response Mediated by Estrogen Receptor

    Directory of Open Access Journals (Sweden)

    Sherry L. Xu

    2013-01-01

    Full Text Available Neurotrophic factors are playing vital roles in survival, growth, and function of neurons. Regulation of neurotrophic factors in the brain has been considered as one of the targets in developing drug or therapy against neuronal disorders. Flavonoids, a family of multifunctional natural compounds, are well known for their neuronal beneficial effects. Here, the effects of flavonoids on regulating neurotrophic factors were analyzed in cultured rat astrocytes. Astrocyte is a major secreting source of neurotrophic factors in the brain. Thirty-three flavonoids were screened in the cultures, and calycosin, isorhamnetin, luteolin, and genistein were identified to be highly active in inducing the synthesis and secretion of neurotrophic factors, including nerve growth factor (NGF, glial-derived neurotrophic factor (GDNF, and brain-derived neurotrophic factor (BDNF. The inductions were in time- and dose-dependent manners. In cultured astrocytes, the phosphorylation of estrogen receptor was triggered by application of flavonoids. The phosphorylation was blocked by an inhibitor of estrogen receptor, which in parallel reduced the flavonoid-induced expression of neurotrophic factors. The results proposed the role of flavonoids in protecting brain diseases, and therefore these flavonoids could be developed for health food supplement for patients suffering from neurodegenerative diseases.

  14. Early expressions of hypoxia-inducible factor 1alpha and vascular endothelial growth factor increase the neuronal plasticity of activated endogenous neural stem cells after focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    Seung Song; Jong-Tae Park; Joo Young Na; Man-Seok Park; Jeong-Kil Lee; Min-Cheol Lee; Hyung-Seok Kim

    2014-01-01

    Endogenous neural stem cells become “activated” after neuronal injury, but the activation sequence and fate of endogenous neural stem cells in focal cerebral ischemia model are little known. We evaluated the relationships between neural stem cells and hypoxia-inducible fac-tor-1α and vascular endothelial growth factor expression in a photothromobotic rat stroke model using immunohistochemistry and western blot analysis. We also evaluated the chrono-logical changes of neural stem cells by 5-bromo-2′-deoxyuridine (BrdU) incorporation. Hypoxia-inducible factor-1α expression was initially increased from 1 hour after ischemic injury, followed by vascular endothelial growth factor expression. Hypoxia-inducible factor-1αimmunoreactivity was detected in the ipsilateral cortical neurons of the infarct core and peri-in-farct area. Vascular endothelial growth factor immunoreactivity was detected in bilateral cortex, but ipsilateral cortex staining intensity and numbers were greater than the contralateral cortex. Vascular endothelial growth factor immunoreactive cells were easily found along the peri-infarct area 12 hours after focal cerebral ischemia. The expression of nestin increased throughout the microvasculature in the ischemic core and the peri-infarct area in all experimental rats after 24 hours of ischemic injury. Nestin immunoreactivity increased in the subventricular zone during 12 hours to 3 days, and prominently increased in the ipsilateral cortex between 3-7 days. Nes-tin-labeled cells showed dual differentiation with microvessels near the infarct core and reactive astrocytes in the peri-infarct area. BrdU-labeled cells were increased gradually from day 1 in the ipsilateral subventricular zone and cortex, and numerous BrdU-labeled cells were observed in the peri-infarct area and non-lesioned cortex at 3 days. BrdU-labeled cells rather than neu-rons, were mainly co-labeled with nestin and GFAP. Early expressions of hypoxia-inducible factor-1α and

  15. Identification of key transcription factors in caerulein-induced pancreatitis through expression profiling data.

    Science.gov (United States)

    Qi, Dachuan; Wu, Bo; Tong, Danian; Pan, Ye; Chen, Wei

    2015-08-01

    The current study aimed to isolate key transcription factors (TFs) in caerulein-induced pancreatitis, and to identify the difference between wild type and Mist1 knockout (KO) mice, in order to elucidate the contribution of Mist1 to pancreatitis. The gene profile of GSE3644 was downloaded from the Gene Expression Omnibus database then analyzed using the t-test. The isolated differentially expressed genes (DEGs) were mapped into a transcriptional regulatory network derived from the Integrated Transcription Factor Platform database and in the network, the interaction pairs involving at least one DEG were screened. Fisher's exact test was used to analyze the functional enrichment of the target genes. A total of 1,555 and 3,057 DEGs were identified in the wild type and Mist1KO mice treated with caerulein, respectively. DEGs screened in Mist1KO mice were predominantly enriched in apoptosis, mitogen-activated protein kinase signaling and other cancer-associated pathways. A total of 188 and 51 TFs associated with pathopoiesis were isolated in Mist1KO and wild type mice, respectively. Out of the top 10 TFs (ranked by P-value), 7 TFs, including S-phase kinase-associated protein 2 (Skp2); minichromosome maintenance complex component 3 (Mcm3); cell division cycle 6 (Cdc6); cyclin B1 (Ccnb1); mutS homolog 6 (Msh6); cyclin A2 (Ccna2); and cyclin B2 (Ccnb2), were expressed in the two types of mouse. These TFs were predominantly involved in phosphorylation, DNA replication, cell division and DNA mismatch repair. In addition, specific TFs, including minichromosome maintenance complex component 7 (Mcm7); lymphoid-specific helicase (Hells); and minichromosome maintenance complex component 6 (Mcm6), that function in the unwinding of DNA were identified to participate in Mist1KO pancreatitis. The DEGs, including Cdc6, Mcm6, Msh6 and Wdr1 are closely associated with the regulation of caerulein-induced pancreatitis. Furthermore, other identified TFs were also involved in this type of

  16. Apolipoprotein E expression is elevated by interleukin 1 and other interleukin 1-induced factors

    Directory of Open Access Journals (Sweden)

    Liu Ling

    2011-12-01

    Full Text Available Abstract Background We have previously outlined functional interactions, including feedback cycles, between several of the gene products implicated in the pathogenesis of Alzheimer's disease. A number of Alzheimer-related stressors induce neuronal expression of apolipoprotein E (ApoE, β-amyloid precursor protein (βAPP, and fragments of the latter such as amyloid β-peptide (Aβ and secreted APP (sAPP. These stressors include interleukin-1 (IL-1-mediated neuroinflammation and glutamate-mediated excitotoxicity. Such circumstances are especially powerful when they transpire in the context of an APOE ε4 allele. Methods Semi-quantitative immunofluorescence imaging was used to analyze rat brains implanted with IL-1β slow-release pellets, sham pellets, or no pellets. Primary neuronal or NT2 cell cultures were treated with IL-1β, glutamate, Aβ, or sAPP; relative levels of ApoE mRNA and protein were measured by RT-PCR, qRT-PCR, and western immunoblot analysis. Cultures were also treated with inhibitors of multi-lineage kinases--in particular MAPK-p38 (SB203580, ERK (U0126, or JNK (SP600125--prior to exposure of cultures to IL-1β, Aβ, sAPP, or glutamate. Results Immunofluorescence of tissue sections from pellet-implanted rats showed that IL-1β induces expressio