WorldWideScience

Sample records for macrophage tumor cell

  1. Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors.

    Science.gov (United States)

    Wyckoff, Jeffrey B; Wang, Yarong; Lin, Elaine Y; Li, Jiu-feng; Goswami, Sumanta; Stanley, E Richard; Segall, Jeffrey E; Pollard, Jeffrey W; Condeelis, John

    2007-03-15

    Although the presence of macrophages in tumors has been correlated with poor prognosis, until now there was no direct observation of how macrophages are involved in hematogenous metastasis. In this study, we use multiphoton microscopy to show, for the first time, that tumor cell intravasation occurs in association with perivascular macrophages in mammary tumors. Furthermore, we show that perivascular macrophages of the mammary tumor are associated with tumor cell intravasation in the absence of local angiogenesis. These results show that the interaction between macrophages and tumor cells lying in close proximity defines a microenvironment that is directly involved in the intravasation of cancer cells in mammary tumors.

  2. Mimicking the tumor microenvironment to regulate macrophage phenotype and assessing chemotherapeutic efficacy in embedded cancer cell/macrophage spheroid models.

    Science.gov (United States)

    Tevis, Kristie M; Cecchi, Ryan J; Colson, Yolonda L; Grinstaff, Mark W

    2017-03-01

    Tumor associated macrophages (TAMs) are critical stromal components intimately involved with the progression, invasion, and metastasis of cancer cells. To address the need for an in vitro system that mimics the clinical observations of TAM localizations and subsequent functional performance, a cancer cell/macrophage spheroid model is described. The central component of the model is a triple negative breast cancer spheroid embedded in a three-dimensional collagen gel. Macrophages are incorporated in two different ways. The first is a heterospheroid, a spheroid containing both tumor cells and macrophages. The heterospheroid mimics the population of TAMs infiltrated into the tumor mass, thus being exposed to hypoxia and metabolic gradients. In the second model, macrophages are diffusely seeded in the collagen surrounding the spheroid, thus modeling TAMs in the cancer stroma. The inclusion of macrophages as a heterospheroid changes the metabolic profile, indicative of synergistic growth. In contrast, macrophages diffusely seeded in the collagen bear the same profile regardless of the presence of a tumor cell spheroid. The macrophages in the heterospheroid secrete EGF, a cytokine critical to tumor/macrophage co-migration, and an EGF inhibitor decreases the metabolic activity of the heterospheroid, which is not observed in the other systems. The increased secretion of IL-10 indicates that the heterospheroid macrophages follow an M2/TAM differentiation pathway. Lastly, the heterospheroid exhibits resistance to paclitaxel. In summary, the collagen embedded heterospheroid model promotes TAM-like characteristics, and will be of utility in cancer biology and drug discovery.

  3. Soluble factor from murine bladder tumor-2 cell elevates nitric oxide production in macrophages and enhances the taxol-mediated macrophage cytotoxicity on tumor cells.

    Science.gov (United States)

    Choi, Suck-Chei; Oh, Hyun-Mee; Park, Jae-Sung; Han, Weon-Cheol; Yoon, Kwon-Ha; Kim, Tae-Hyeon; Yun, Ki-Jung; Kim, Eun-Cheol; Nah, Yong-Ho; Cha, Young-Nam; Chung, Hun-Taeg; Jun, Chang-Duk

    2003-01-01

    The therapeutic mechanism of taxol is believed to reside primarily in its ability to stabilize microtubules and prevent cell progression through mitosis. Taxol also can activate macrophage-mediated antitumor mechanism through a nitric oxide (NO)-dependent pathway. To address whether any mechanisms account for superficial urinary bladder tumor cell killing, we evaluated the effects of taxol on the growth and viability of murine bladder tumor-2 (MBT-2) cells in vitro, both in the absence and presence of murine macrophages. In addition, we evaluated whether a soluble factor generated from MBT-2 cells could modulate the antitumor activity of the taxol-activated macrophages. Although taxol inhibited the growth of MBT-2 cells, it did not kill the tumor cells. However, preincubation of macrophages with taxol significantly decreased the viability of MBT-2 cells. Secretion of NO correlated with MBT-2 cell killing, and the activated macrophages failed to kill tumor cell targets in the presence of NG-monomethyl-L-arginine, a competitive inhibitor of NO synthase. By the co-culture of macrophages and MBT-2 cells, untreated macrophages also released modest amount of NO and this was synergistically augmented by the treatment with taxol, indicating that MBT-2 tumor cells released some unknown factor that activated the macrophages and enhanced NO production. We named this factor the tumor-derived macrophage activating factor (TMAF). The TMAF-mediated activation of macrophages to enhance the NO production was not blocked by treatment of macrophages with oxidized low-density lipoprotein (Ox-LDL), implying that the scavenger receptor of macrophages is not involved. Sodium nitroprusside (SNP), an NO donor given to the MBT-2 cells, increased the activities of c-Jun N-terminal kinase and caspase-3 in MBT-2 cells and associated with nucleosomal fragmentation or apoptosis, whereas taxol had no direct effect on these parameters. Collectively, our results strongly suggest that taxol kills

  4. Chemoattractant signaling between tumor cells and macrophages regulates cancer cell migration, metastasis and neovascularization.

    Directory of Open Access Journals (Sweden)

    Chad E Green

    Full Text Available Tumor-associated macrophages are known to influence cancer progression by modulation of immune function, angiogenesis, and cell metastasis, however, little is known about the chemokine signaling networks that regulate this process. Utilizing CT26 colon cancer cells and RAW 264.7 macrophages as a model cellular system, we demonstrate that treatment of CT26 cells with RAW 264.7 conditioned medium induces cell migration, invasion and metastasis. Inflammatory gene microarray analysis indicated CT26-stimulated RAW 264.7 macrophages upregulate SDF-1alpha and VEGF, and that these cytokines contribute to CT26 migration in vitro. RAW 264.7 macrophages also showed a robust chemotactic response towards CT26-derived chemokines. In particular, microarray analysis and functional testing revealed CSF-1 as the major chemoattractant for RAW 264.7 macrophages. Interestingly, in the chick CAM model of cancer progression, RAW 264.7 macrophages localized specifically to the tumor periphery where they were found to increase CT26 tumor growth, microvascular density, vascular disruption, and lung metastasis, suggesting these cells home to actively invading areas of the tumor, but not the hypoxic core of the tumor mass. In support of these findings, hypoxic conditions down regulated CSF-1 production in several tumor cell lines and decreased RAW 264.7 macrophage migration in vitro. Together our findings suggest a model where normoxic tumor cells release CSF-1 to recruit macrophages to the tumor periphery where they secrete motility and angiogenic factors that facilitate tumor cell invasion and metastasis.

  5. Macrophage Infiltration in Tumor Stroma is Related to Tumor Cell Expression of CD163 in Colorectal Cancer.

    Science.gov (United States)

    Shabo, Ivan; Olsson, Hans; Elkarim, Rihab; Sun, Xiao-Feng; Svanvik, Joar

    2014-08-01

    The scavenger receptor, CD163, is a macrophage-specific marker. Recent studies have shown that CD163 expression in breast and rectal cancer cells is associated with poor prognosis. This study was conducted to evaluate the relationship between CD163 expression as a macrophage trait in cancer cells, and macrophage infiltration and its clinical significance in colorectal cancer. Immunostaining of CD163 and macrophage infiltration were evaluated in paraffin-embedded specimens, earlier analyzed for CD31, D2-40 and S-phase fraction, from primary tumors and normal colorectal mucosa of 75 patients with colorectal carcinoma. The outcomes were analyzed in relation to clinical-pathological data. CD163 expression was positive in cancer cells in 20 % of colorectal cancer patients and was related to advanced tumor stages (P = 0.008) and unfavorable prognosis (p = 0.001). High macrophage infiltration was related to shorter survival and positive CD163 expression in tumor cells. The prognostic impact of macrophage infiltration was independent of tumor stage and CD163 expression in cancer cells (p = 0.034). The expression of macrophage phenotype in colorectal cancer cells is associated with macrophage density in tumor stroma and lower survival rates. Macrophage infiltration has an independent prognostic impact on mortality in colorectal cancer. In accordance with previous experimental studies, these findings provide new insights into the role of macrophages in colorectal cancer.

  6. Infiltration of M2 Tumor-Associated Macrophages in Oral Squamous Cell Carcinoma Correlates with Tumor Malignancy

    Directory of Open Access Journals (Sweden)

    Jun Shimada

    2011-09-01

    Full Text Available Tumor-associated macrophages (TAMs are a major cellular component in the tumor microenvironment of many solid tumors. The functional competence of TAMs varies depending on the type of tumors and their respective microenvironments. The classically activated M1 macrophages exhibit antitumor functions, whereas the alternatively activated M2 macrophages exhibit protumor functions that contribute to tumor development and progression. Although TAMs have been detected in oral squamous cell carcinoma (OSCC, little is known about their phenotype. In the present study, we performed an immunohistochemical analysis to identify TAMs in surgically resected specimens from 50 patients with OSCC and evaluated the relationship between infiltrated TAMs and the pathological grade of OSCC. Positive staining for CD163, which has been used as a marker for M2 macrophages, was observed in OSCC specimens, and the percentages of CD163+ cells were significantly increased based on the pathological grade. CD163+ cells were detected in the tumor stroma in grade I tumors, whereas an increase in the CD163+ cells in the tumor nest was observed in higher grades of tumors. Although infiltrated CD4+ and CD8+ T cells were detected in all pathological grades of OSCC, no correlation between the infiltrated T cells and the CD163+ TAMs was observed. These results indicate that the infiltrated TAMs in OSCC have an M2 phenotype and that the M2 macrophages may participate in the development of OSCC.

  7. Infiltration of M2 Tumor-Associated Macrophages in Oral Squamous Cell Carcinoma Correlates with Tumor Malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kazumasa [Division of Oral and Maxillofacial Surgery, Department of Diagnosis and Therapeutics, Meikai University of School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Hiroi, Miki [Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Shimada, Jun [Division of Oral and Maxillofacial Surgery, Department of Diagnosis and Therapeutics, Meikai University of School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Ohmori, Yoshihiro, E-mail: ohmori@dent.meikai.ac.jp [Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan)

    2011-09-28

    Tumor-associated macrophages (TAMs) are a major cellular component in the tumor microenvironment of many solid tumors. The functional competence of TAMs varies depending on the type of tumors and their respective microenvironments. The classically activated M1 macrophages exhibit antitumor functions, whereas the alternatively activated M2 macrophages exhibit protumor functions that contribute to tumor development and progression. Although TAMs have been detected in oral squamous cell carcinoma (OSCC), little is known about their phenotype. In the present study, we performed an immunohistochemical analysis to identify TAMs in surgically resected specimens from 50 patients with OSCC and evaluated the relationship between infiltrated TAMs and the pathological grade of OSCC. Positive staining for CD163, which has been used as a marker for M2 macrophages, was observed in OSCC specimens, and the percentages of CD163{sup +} cells were significantly increased based on the pathological grade. CD163{sup +} cells were detected in the tumor stroma in grade I tumors, whereas an increase in the CD163{sup +} cells in the tumor nest was observed in higher grades of tumors. Although infiltrated CD4{sup +} and CD8{sup +} T cells were detected in all pathological grades of OSCC, no correlation between the infiltrated T cells and the CD163{sup +} TAMs was observed. These results indicate that the infiltrated TAMs in OSCC have an M2 phenotype and that the M2 macrophages may participate in the development of OSCC.

  8. Phototherapy-treated apoptotic tumor cells induce pro-inflammatory cytokines production in macrophage

    Science.gov (United States)

    Lu, Cuixia; Wei, Yanchun; Xing, Da

    2014-09-01

    Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high fluence low-power laser irradiation (HF-LPLI) induces mitochondrial superoxide anion burst, resulting in oxidative damage to tumor cells. In this study, we further explored the immunological effects of HF-LPLI-induced apoptotic tumor cells. When macrophages were co-incubated with apoptotic cells induced by HF-LPLI, we observed the increased levels of TNF-α secretion and NO production in macrophages. Further experiments showed that NF-κB was activated in macrophages after co-incubation with HF-LPLI-induced apoptotic cells, and inhibition of NF-κB activity by pyrrolidinedithiocarbamic acid (PDTC) reduced the elevated levels of TNF-α secretion and NO production. These data indicate that HF-LPLI-induced apoptotic tumor cells induce the secretion of pro-inflammatory cytokines in macrophages, which may be helpful for better understanding the biological effects of cancer phototherapy.

  9. Role of tumor-associated macrophages in renal cell carcinoma pathogenesis

    Directory of Open Access Journals (Sweden)

    O. V. Kovaleva

    2017-01-01

    Full Text Available The role of tumor stroma in malignant tumor pathogenesis cannot be disputed. Macrophages are one of the crucial elements of tumor stroma. Tumor-associated macrophages (TAMs are type 2-activated macrophages (M2. They were first described in 1992. They carry CD206, CD163, FXIIIa, βIG-H3, stabilin 1, YKL-39, SI-CLP, tenascin С, LOX-1, fibronectin, MARCO, interleukin 1 receptor antagonist (IL-1RA and other markers. Unlike proinflammatory macrophages (M1, М2 display high anti-inflammatory activity and are responsible for inflammation reaction suppression and tissue recovery in inflamed area. TAMs significantly contribute to tumor progression by stimulating cell proliferation, angiogenesis, and suppression of antitumor immune response. Identification of macrophages in renal tumors involves a limited number of markers, which doesn’t allow making a conclusive answer about their function. However, a correlation between TAMs content and a negative disease prognosis can be considered proven. Studies of M1 and M2 using different markers have shown that renal tumors contain high levels of TAMs with mixed M1/M2 phenotype. TAMs in renal tumors are highly proangiogenic and immunosuppressive. TAMs density can be used as a prognostic marker, but development of an effective treatment strategy aimed at inhibition of TAMs antitumor activity requires systemic research involving a wide panel of M1 and M2 macrophage markers. 

  10. The Role of Tumor Associated Macrophage in Recurrent Growth of Tumor Stem Cell

    Science.gov (United States)

    2012-09-01

    Sica . Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23: 549-555...2002 3. Alberto Mantovani, Paola Allavena1, Antonio Sica and Frances Balkwill. Cancer-related inflammation. Nature. 454: 436-444, 2008 4. Karin E. de

  11. Tumor-promoting macrophages induce the expression of the macrophage-specific receptor CD163 in malignant cells.

    Science.gov (United States)

    Maniecki, Maciej Bogdan; Etzerodt, Anders; Ulhøi, Benedicte Parm; Steiniche, Torben; Borre, Michael; Dyrskjøt, Lars; Orntoft, Torben Falck; Moestrup, Søren Kragh; Møller, Holger Jon

    2012-11-15

    Tumor-associated macrophages (TAMs) represent a distinct malignancy-promoting phenotype suggested to play a key role in tumor formation and metastasis. We aimed to investigate the expression of the monocyte/macrophage-restricted receptor CD163 in bladder tumor biopsies and assess the potential mechanism inducing the CD163 expression in tumor cells. A high CD163 mRNA expression (n = 87) was significantly associated with a poor 13-year overall survival (log-rank test, χ(2) = 8.931; p = 0.0028). Moreover, CD163 mRNA expression was significantly increased in muscle invasive (T2-T4), p = 0.017, and aggressive (grade III/IV) cancers (p = 0.015). The expression strongly correlated with local expression of IL-6 (r = 0.72; p CD163 expression in vitro. CD163 immunostaining (n = 46) confirmed the association between dense TAM infiltration and histologically advanced disease. In 39% of the biopsies, CD163 immunoreactivity was also observed in tumor cells, and CD163-expressing metastatic cells were identified in lymph node biopsies (n = 8). Bladder cancer cell lines did not express CD163; however, when cocultured with macrophages the bladder cancer cell expression of CD163 was significantly induced in an IL-6/IL-10 independent manner. In conclusion, we show a strong association between CD163 mRNA expression in bladder cancer biopsies and poor patient outcome. CD163 expression was not confined to the infiltrating TAMs, but was also expressed by a significant portion of the malignant cells in both tumors and lymph nodes. CD163 expressing tumor cells may constitute a subpopulation of tumor cells with a phenotypic shift associated with epithelial-to-mesenchymal transition (EMT) and increased metastatic activity induced by TAMs. Copyright © 2012 UICC.

  12. M3 Macrophages Stop Division of Tumor Cells In Vitro and Extend Survival of Mice with Ehrlich Ascites Carcinoma.

    Science.gov (United States)

    Kalish, Sergey; Lyamina, Svetlana; Manukhina, Eugenia; Malyshev, Yuri; Raetskaya, Anastasiya; Malyshev, Igor

    2017-01-26

    BACKGROUND M1 macrophages target tumor cells. However, many tumors produce anti-inflammatory cytokines, which reprogram the anti-tumor M1 macrophages into the pro-tumor M2 macrophages. We have hypothesized that the problem of pro-tumor macrophage reprogramming could be solved by using a special M3 switch phenotype. The M3 macrophages, in contrast to the M1 macrophages, should respond to anti-inflammatory cytokines by increasing production of pro-inflammatory cytokines to retain its anti-tumor properties. Objectives of the study were to form an M3 switch phenotype in vitro and to evaluate the effect of M3 macrophages on growth of Ehrlich ascites carcinoma (EAC) in vitro and in vivo. MATERIAL AND METHODS Tumor growth was initiated by an intraperitoneal injection of EAC cells into C57BL/6J mice. RESULTS 1) The M3 switch phenotype can be programed by activation of M1-reprogramming pathways with simultaneous inhibition of the M2 phenotype transcription factors, STAT3, STAT6, and/or SMAD3. 2) M3 macrophages exerted an anti-tumor effect both in vitro and in vivo, which was superior to anti-tumor effects of cisplatin or M1 macrophages. 3) The anti-tumor effect of M3 macrophages was due to their anti-proliferative effect. CONCLUSIONS Development of new biotechnologies for restriction of tumor growth using in vitro reprogrammed M3 macrophages is very promising.

  13. M3 Macrophages Stop Division of Tumor Cells In Vitro and Extend Survival of Mice with Ehrlich Ascites Carcinoma

    Science.gov (United States)

    Kalish, Sergey; Lyamina, Svetlana; Manukhina, Eugenia; Malyshev, Yuri; Raetskaya, Anastasiya; Malyshev, Igor

    2017-01-01

    Background M1 macrophages target tumor cells. However, many tumors produce anti-inflammatory cytokines, which reprogram the anti-tumor M1 macrophages into the pro-tumor M2 macrophages. We have hypothesized that the problem of pro-tumor macrophage reprogramming could be solved by using a special M3 switch phenotype. The M3 macrophages, in contrast to the M1 macrophages, should respond to anti-inflammatory cytokines by increasing production of pro-inflammatory cytokines to retain its anti-tumor properties. Objectives of the study were to form an M3 switch phenotype in vitro and to evaluate the effect of M3 macrophages on growth of Ehrlich ascites carcinoma (EAC) in vitro and in vivo. Material/Methods Tumor growth was initiated by an intraperitoneal injection of EAC cells into C57BL/6J mice. Results 1) The M3 switch phenotype can be programed by activation of M1-reprogramming pathways with simultaneous inhibition of the M2 phenotype transcription factors, STAT3, STAT6, and/or SMAD3. 2) M3 macrophages exerted an anti-tumor effect both in vitro and in vivo, which was superior to anti-tumor effects of cisplatin or M1 macrophages. 3) The anti-tumor effect of M3 macrophages was due to their anti-proliferative effect. Conclusions Development of new biotechnologies for restriction of tumor growth using in vitro reprogrammed M3 macrophages is very promising. PMID:28123171

  14. Tumor-promoting macrophages induce the expression of the macrophage-specific receptor CD163 in malignant cells

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Etzerodt, Anders; Ulhøi, Benedicte Parm

    2012-01-01

    Tumor-associated macrophages (TAMs) represent a distinct malignancy-promoting phenotype suggested to play a key role in tumor formation and metastasis. We aimed to investigate the expression of the monocyte/macrophage-restricted receptor CD163 in bladder tumor biopsies and assess the potential...... mechanism inducing the CD163 expression in tumor cells. A high CD163 mRNA expression (n = 87) was significantly associated with a poor 13-year overall survival (log-rank test, χ(2) = 8.931; p = 0.0028). Moreover, CD163 mRNA expression was significantly increased in muscle invasive (T2-T4), p = 0.......017, and aggressive (grade III/IV) cancers (p = 0.015). The expression strongly correlated with local expression of IL-6 (r = 0.72; p CD163 expression in vitro. CD163 immunostaining (n = 46) confirmed the association between dense TAM infiltration...

  15. Targeted delivery of let-7b to reprogramme tumor-associated macrophages and tumor infiltrating dendritic cells for tumor rejection.

    Science.gov (United States)

    Huang, Zhen; Gan, Jingjing; Long, Ziyan; Guo, Guangxing; Shi, Xiafei; Wang, Chunming; Zang, Yuhui; Ding, Zhi; Chen, Jiangning; Zhang, Junfeng; Dong, Lei

    2016-06-01

    Both tumor associated macrophages (TAMs) and tumor infiltrating dendritic cells (TIDCs) are important components in the tumor microenvironment that mediate tumor immunosuppression and promote cancer progression. Targeting these cells and altering their phenotypes may become a new strategy to recover their anti-tumor activities and thereby restore the local immune surveillance against tumor. In this study, we constructed a nucleic acid delivery system for the delivery of let-7b, a synthetic microRNA mimic. Our carrier has an affinity for the mannose receptors on TAMs/TIDCs and is responsive to the low-pH tumor microenvironment. The delivery of let-7b could reactivate TAMs/TIDCs by acting as a TLR-7 agonist and suppressing IL-10 production in vitro. In a breast cancer mouse model, let-7b delivered by this system efficiently reprogrammed the functions of TAMs/TIDCs, reversed the suppressive tumor microenvironment, and inhibited tumor growth. Taken together, this strategy, designed based upon TAMs/TIDCs-targeting delivery and the dual biological functions of let-7b (TLR-7 ligand and IL-10 inhibitor), may provide a new approach for cancer immunotherapy.

  16. Tumor associated macrophage × cancer cell hybrids may acquire cancer stem cell properties in breast cancer.

    Directory of Open Access Journals (Sweden)

    Jingxian Ding

    Full Text Available Breast cancer is one of the most frequently diagnosed cancers among women, and metastasis makes it lethal. Tumor-associated macrophages (TAMs that acquire an alternatively activated macrophage (M2 phenotype may promote metastasis. However, the underlying mechanisms are still elusive. Here, we examined how TAMs interact with breast cancer cells to promote metastasis. Immunohistochemistry was used to examine the expression of the M2-specific antigen CD163 in paraffin-embedded mammary carcinoma blocks to explore fusion events in breast cancer patients. U937 cells were used as a substitute for human monocytes, and these cells differentiated into M2 macrophages following phorbol 12-myristate 13-acetate (PMA and M-CSF stimulation. M2 macrophages and the breast cancer cell lines MCF-7 and MDA-MB-231 fused in the presence of 50% polyethylene glycol. Hybrids were isolated by fluorescence-activated cell sorting, and the relevant cell biological properties were compared with their parental counterparts. Breast cancer stem cell (BCSC-related markers were quantified by immunofluorescence staining, RT-PCR, quantitative RT-PCR and/or western blotting. The tumor-initiating and metastatic capacities of the hybrids and their parental counterparts were assessed in NOD/SCID mice. We found that the CD163 expression rate in breast cancer tissues varied significantly and correlated with estrogen receptor status (p0.05. Characterization of the fusion hybrids revealed a more aggressive phenotype, including increased migration, invasion and tumorigenicity, but reduced proliferative ability, compared with the parental lines. The hybrids also gained a CD44(+CD24(-/low phenotype and over-expressed epithelial-mesenchymal transition-associated genes. These results indicate that TAMs may promote breast cancer metastasis through cell fusion, and the hybrids may gain a BCSC phenotype.

  17. Tumor associated macrophages protect colon cancer cells from TRAIL-induced apoptosis through IL-1beta-dependent stabilization of Snail in tumor cells.

    Directory of Open Access Journals (Sweden)

    Pawan Kaler

    Full Text Available BACKGROUND: We recently reported that colon tumor cells stimulate macrophages to release IL-1beta, which in turn inactivates GSK3beta and enhances Wnt signaling in colon cancer cells, generating a self-amplifying loop that promotes the growth of tumor cells. PRINCIPAL FINDINGS: Here we describe that macrophages protect HCT116 and Hke-3 colon cancer cells from TRAIL-induced apoptosis. Inactivation of IL-1beta by neutralizing IL-1beta antibody, or silencing of IL-1beta in macrophages inhibited their ability to counter TRAIL-induced apoptosis. Accordingly, IL-1beta was sufficient to inhibit TRAIL-induced apoptosis. TRAIL-induced collapse of the mitochondrial membrane potential (Delta psi and activation of caspases were prevented by macrophages or by recombinant IL-1beta. Pharmacological inhibition of IL-1beta release from macrophages by vitamin D(3, a potent chemopreventive agent for colorectal cancer, restored the ability of TRAIL to induce apoptosis of tumor cells cultured with macrophages. Macrophages and IL-1beta failed to inhibit TRAIL-induced apoptosis in HCT116 cells expressing dnIkappaB, dnAKT or dnTCF4, confirming that they oppose TRAIL-induced cell death through induction of Wnt signaling in tumor cells. We showed that macrophages and IL-1beta stabilized Snail in tumor cells in an NF-kappaB/Wnt dependent manner and that Snail deficient tumor cells were not protected from TRAIL-induced apoptosis by macrophages or by IL-1beta, demonstrating a crucial role of Snail in the resistance of tumor cells to TRAIL. SIGNIFICANCE: We have identified a positive feedback loop between tumor cells and macrophages that propagates the growth and promotes the survival of colon cancer cells: tumor cells stimulate macrophages to secrete IL-1beta, which in turn, promotes Wnt signaling and stabilizes Snail in tumor cells, conferring resistance to TRAIL. Vitamin D(3 halts this amplifying loop by interfering with the release of IL-1beta from macrophages

  18. Interactions between colon cancer cells and tumor-infiltrated macrophages depending on cancer cell-derived colony stimulating factor 1.

    Science.gov (United States)

    Wang, Huayang; Shao, Qianqian; Sun, Jintang; Ma, Chao; Gao, Wenjuan; Wang, Qingjie; Zhao, Lei; Qu, Xun

    2016-04-01

    Tumor-infiltrated macrophages were potential targets of the immune therapy for patients with colon cancer. Colony stimulating factor 1 (CSF1) is a primary chemoattractant and functional regulator for macrophages, and therefore would be a feasible intervention for the macrophage-targeting therapeutics. However, the expression of CSF1 in colon cancer microenvironment and its roles in cancer development is largely unknown. In the present study, we found that CSF1 was over-expressed exclusively in colon cancer cells and was correlated with macrophages infiltration. The high CSF1 expression and macrophages infiltration were related to the tumor-node-metastasis (TNM) stage of colon cancer, and suggested to be positively associated with survival of colon cancer patients. In the in vitro studies based on an indirect Transwell system, we found that co-culture with macrophage promoted CSF1 production in colon cancer cells. Further investigation on regulatory mechanisms suggested that CSF1 production in colon cancer cells was dependent on PKC pathway, which was activated by IL-8, mainly produced by macrophages. Moreover, colon cancer cell-derived CSF1 drove the recruitment of macrophages and re-educated their secretion profile, including the augment of IL-8 production. The mice tumor xenografts study also found that over-expression of CSF1 in colon cancer cells promoted intratumoral infiltration of macrophages, and partially suppressed tumor growth. In all, our results demonstrated that CSF1 was an important factor in the colon cancer microenvironment, involving in the interactions between colon cancer cells and tumor-infiltrated macrophages.

  19. Crosstalk between Tumor Cells and Macrophages in Stroma Renders Tumor Cells as the Primary Source of MCP-1/CCL2 in Lewis Lung Carcinoma.

    Science.gov (United States)

    Yoshimura, Teizo; Liu, Mingyong; Chen, Xin; Li, Liangzhu; Wang, Ji Ming

    2015-01-01

    The chemokine MCP-1/CCL2 is produced by a variety of tumors and plays an important role in cancer progression. We and others previously demonstrated that the primary source of MCP-1 in several mouse tumors, including 4T1 breast cancer, M5076 sarcoma, and B16 melanoma, was stromal cells. In the present study, we identified that tumor cells were the primary source of MCP-1 in Lewis lung carcinoma (LLC), because MCP-1 mRNA was highly expressed in tumors grown in both wild type (WT) and MCP-1(-/-) mice with elevated serum MCP-1 levels. Since LLC cells isolated from tumors expressed low levels of MCP-1 in vitro, it appeared that the tumor-stromal cell interaction in a tumor microenvironment increased MCP-1 expression in LLC cells. In fact, co-culture of LLC cells with normal mouse peritoneal macrophages or normal lung cells containing macrophages increased MCP-1 expression by LLC cells. Macrophages from TNFα(-/-) mice failed to activate LLC cells and anti-TNFα neutralizing antibody abolished the effect of WT macrophages on LLC cells. When LLC cells were transplanted into TNFα(-/-) mice, the levels of MCP-1 mRNA in tumors and serum MCP-1 levels were markedly lower as compared to WT mice, and importantly, tumors grew more slowly. Taken together, our results indicate that TNFα released by tumor cell-activated macrophages is critical for increased MCP-1 production by tumors cells. Thus, disruption of tumor-stromal cell interaction may inhibit tumor progression by reducing the production of tumor-promoting proinflammatory mediators, such as MCP-1.

  20. Crosstalk between Tumor Cells and Macrophages in Stroma Renders Tumor Cells as the Primary Source of MCP-1/CCL2 in Lewis Lung Carcinoma

    Directory of Open Access Journals (Sweden)

    Teizo eYoshimura

    2015-06-01

    Full Text Available The chemokine MCP-1/CCL2 is produced by a variety of tumors and plays an important role in cancer progression. We and others previously demonstrated that the primary source of MCP-1 in several mouse tumors, including 4T1 breast cancer, M5076 sarcoma and B16 melanoma, was stromal cells. In the present study, we identified that tumor cells were the primary source of MCP-1 in Lewis lung carcinoma (LLC, because MCP-1 mRNA was highly expressed in tumors grown in both WT and MCP-1-/- mice with elevated serum MCP-1 levels. Since LLC cells isolated from tumors expressed low levels of MCP-1 in vitro, it appeared that the tumor-stromal cell interaction in a tumor microenvironment increased MCP-1 expression in LLC cells. In fact, co-culture of LLC cells with normal mouse peritoneal macrophages or normal lung cells containing macrophages increased MCP-1 expression by LLC cells. Macrophages from TNFα-/- mice failed to activate LLC cells and anti-TNFα neutralizing antibody abolished the effect of WT macrophages on LLC cells. When LLC cells were transplanted into TNFα-/- mice, the levels of MCP-1 mRNA in tumors and serum MCP-1 levels were markedly lower as compared to WT mice, and importantly tumors grew more slowly. Taken together, our results indicate that TNFα released by tumor cell-activated macrophages is critical for increased MCP-1 production by tumors cells. Thus, disruption of tumor-stromal cell interaction may inhibit tumor progression by reducing the production of tumor-promoting proinflammatory mediators, such as MCP-1.

  1. The Role of Macrophages in Tumor Development

    Directory of Open Access Journals (Sweden)

    Gerben J. van der Bij

    2005-01-01

    Full Text Available Macrophages constitute a large proportion of the immune cell infiltrate, which is present in many tumors. Activation state of macrophages is greatly influenced by their environment, leading to different macrophage subsets with diverse functions. Although previously regarded as potent immune cells that are capable of destroying tumor cells, recent literature focuses on the ability of macrophages to promote tumor development due to secretion of mediators, like growth and angiogenic factors. It is now becoming increasingly clear that a complicated synergistic relationship exists between macrophages and malignant cells whereby tumor cells can affect macrophage phenotype, and vice versa. As such, macrophages and their contribution in cancer development are currently subject of debate.

  2. Placental growth factor is a survival factor for tumor endothelial cells and macrophages.

    Science.gov (United States)

    Adini, Avner; Kornaga, Tad; Firoozbakht, Farshid; Benjamin, Laura E

    2002-05-15

    The vascular endothelial growth factor (VEGF)-related factor, placental growth factor (PlGF),has been shown recently to play an important role in pathological VEGF-driven angiogenesis. In this study, we examine the effects of mPlGF/PlGF-2 overexpression in tumors grown from glioma cells containing a tetracycline-regulated mPlGF cDNA. Overexpression of mPlGF leads to increased tumor growth and vascular survival. When tetracycline is used to abruptly withdraw mPlGF overexpression, we see increased apoptosis in both vascular cells and macrophages. In addition, PlGF-2 induces survival gene expression and inhibits apoptosis in vitro. Thus, we propose that PlGF-2 contributes to tumor angiogenesis by providing increased survival function to endothelial cells and macrophages.

  3. Primary Tr1 cells from metastatic melanoma eliminate tumor-promoting macrophages through granzyme B- and perforin-dependent mechanisms.

    Science.gov (United States)

    Yan, Hongxia; Zhang, Ping; Kong, Xue; Hou, Xianglian; Zhao, Li; Li, Tianhang; Yuan, Xiaozhou; Fu, Hongjun

    2017-04-01

    In malignant melanoma, tumor-associated macrophages play multiple roles in promoting tumor growth, such as inducing the transformation of melanocytes under ultraviolet irradiation, increasing angiogenesis in melanomas, and suppressing antitumor immunity. Because granzyme B- and perforin-expressing Tr1 cells could specifically eliminate antigen-presenting cells of myeloid origin, we examined whether Tr1 cells in melanoma could eliminate tumor-promoting macrophages and how the interaction between Tr1 cells and macrophages could affect the growth of melanoma cells. Tr1 cells were characterized by high interleukin 10 secretion and low Foxp3 expression and were enriched in the CD4(+)CD49b(+)LAG-3(+) T-cell fraction. Macrophages derived from peripheral blood monocytes in the presence of modified melanoma-conditioned media demonstrated tumor-promoting capacity, exemplified by improving the proliferation of cocultured A375 malignant melanoma cells. But when primary Tr1 cells were present in the macrophage-A375 coculture, the growth of A375 cells was abrogated. The conventional CD25(+) Treg cells, however, were unable to inhibit macrophage-mediated increase in tumor cell growth. Further analyses showed that Tr1 cells did not directly eliminate A375 cells, but mediated the killing of tumor-promoting macrophages through the secretion of granzyme B and perforin. The tumor-infiltrating interleukin 10(+)Foxp3(-)CD4(+) T cells expressed very low levels of granzyme B and perforin, possibly suggested the downregulation of Tr1 cytotoxic capacity in melanoma tumors. Together, these data demonstrated an antitumor function of Tr1 cells through the elimination of tumor-promoting macrophages, which was not shared by conventional Tregs.

  4. Radiation Therapy Induces Macrophages to Suppress T-Cell Responses Against Pancreatic Tumors in Mice.

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Giao Ly, Nancy Ngoc; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-06-01

    The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcomes compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of preinvasive foci. We investigated the effects of radiation therapy in p48(Cre);LSL-Kras(G12D) (KC) and p48(Cre);LSLKras(G12D);LSL-Trp53(R172H) (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony-stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2 to 12 Gy and analyzed by flow cytometry. Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from radiation treated invasive and preinvasive pancreatic tumors had an immune-suppressive, M2-like phenotype compared with control mice. Pancreata from mice exposed to radiation had fewer CD8(+) T cells than controls, and greater numbers of CD4(+) T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. A neutralizing antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Radiation treatment causes macrophages

  5. Tumor cell-macrophage interactions increase angiogenesis through secretion of EMMPRIN

    Directory of Open Access Journals (Sweden)

    Bat-Chen eAmit-Cohen

    2013-07-01

    Full Text Available Tumor macrophages are generally considered to be alternatively/M2 activated to induce secretion of pro-angiogenic factors such as VEGF and MMPs. EMMPRIN (CD147, basigin is overexpressed in many tumor types, and has been shown to induce fibroblasts and endothelial cell expression of MMPs and VEGF. We first show that tumor cell interactions with macrophages resulted in increased expression of EMMPRIN and induction of MMP-9 and VEGF. Human A498 renal carcinoma or MCF-7 breast carcinoma cell lines were co-cultured with the U937 monocytic-like cell line in the presence of TNFalpha (1 ng/ml. Membranal EMMPRIN expression was increased in the co-cultures (by 3-4 folds, p<0.01, as was the secretion of MMP-9 and VEGF (by 2-5 folds for both MMP-9 and VEGF, p<0.01, relative to the single cultures with TNFalpha. Investigating the regulatory mechanisms, we show that EMMPRIN was post-translationally regulated by miR-146a, as no change was observed in the tumoral expression of EMMPRIN mRNA during co-culture, expression of miR-146a was increased and its neutralization by its antagomir inhibited EMMPRIN expression. The secretion of EMMPRIN was also enhanced (by 2-3 folds, p<0.05, only in the A498 co-culture via shedding off of the membranal protein by a serine protease that is yet to be identified, as demonstrated by the use of wide range protease inhibitors. Finally, soluble EMMPRIN enhanced monocytic secretion of MMP-9 and VEGF, as inhibition of its expression levels by neutralizing anti-EMMPRIN or siRNA in the tumor cells lead to subsequent decreased induction of these two pro-angiogenic proteins. These results reveal a mechanism whereby tumor cell-macrophage interactions promote angiogenesis via an EMMPRIN-mediated pathway.

  6. Tumor-Associated Macrophages and Neutrophils in Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Jaehong Kim

    2016-01-01

    Full Text Available Distinct tumor microenvironment forms in each progression step of cancer and has diverse capacities to induce both adverse and beneficial consequences for tumorigenesis. It is now known that immune cells can be activated to favor tumor growth and progression, most probably influenced by the tumor microenvironment. Tumor-associated macrophages and tumor-associated neutrophils can exert protumoral functions, enhancing tumor cell invasion and metastasis, angiogenesis, and extracellular matrix remodeling, while inhibiting the antitumoral immune surveillance. Considering that neutrophils in inflammatory environments recruit macrophages and that recruited macrophages affect neutrophil functions, there may be various degrees of interaction between tumor-associated macrophages and tumor-associated neutrophils. Platelets also play an important role in the recruitment and regulation of monocytic and granulocytic cells in the tumor tissues, suggesting that platelet function may be essential for generation of tumor-associated macrophages and tumor-associated neutrophils. In this review, we will explore the biology of tumor-associated macrophages and tumor-associated neutrophils and their possible interactions in the tumor microenvironment. Special attention will be given to the recruitment and activation of these tumor-associated cells and to the roles they play in maintenance of the tumor microenvironment and progression of tumors.

  7. Macrophages help NK cells to attack tumor cells by stimulatory NKG2D ligand but protect themselves from NK killing by inhibitory ligand Qa-1.

    Science.gov (United States)

    Zhou, Zhixia; Zhang, Cai; Zhang, Jian; Tian, Zhigang

    2012-01-01

    Natural killer (NK) cells and their crosstalk with other immune cells are important for innate immunity against tumor. To explore the role of the interaction between NK cells and macrophages in the regulation of anti-tumor activities of NK cells, we here demonstrate that poly I:C-treated macrophages increased NK cell-mediated cytotoxicity against target tumor cells in NKG2D-dependent manner. In addition, IL-15, IL-18, and IFN-β secreted by poly I:C-treated macrophages are also involved in NKG2D expression and NK cell activation. Interestingly, the increase in expression of NKG2D ligands on macrophages induced a highly NK cell-mediated cytotoxicity against tumor cells, but not against macrophages themselves. Notably, a high expression level of Qa-1, a NKG2A ligand, on macrophages may contribute to such protection of macrophages from NK cell-mediated killing. Furthermore, Qa-1 or NKG2A knockdown and Qa-1 antibody blockade caused the macrophages to be sensitive to NK cytolysis. These results suggested that macrophages may activate NK cells to attack tumor by NKG2D recognition whereas macrophages protect themselves from NK lysis via preferential expression of Qa-1.

  8. Macrophages help NK cells to attack tumor cells by stimulatory NKG2D ligand but protect themselves from NK killing by inhibitory ligand Qa-1.

    Directory of Open Access Journals (Sweden)

    Zhixia Zhou

    Full Text Available Natural killer (NK cells and their crosstalk with other immune cells are important for innate immunity against tumor. To explore the role of the interaction between NK cells and macrophages in the regulation of anti-tumor activities of NK cells, we here demonstrate that poly I:C-treated macrophages increased NK cell-mediated cytotoxicity against target tumor cells in NKG2D-dependent manner. In addition, IL-15, IL-18, and IFN-β secreted by poly I:C-treated macrophages are also involved in NKG2D expression and NK cell activation. Interestingly, the increase in expression of NKG2D ligands on macrophages induced a highly NK cell-mediated cytotoxicity against tumor cells, but not against macrophages themselves. Notably, a high expression level of Qa-1, a NKG2A ligand, on macrophages may contribute to such protection of macrophages from NK cell-mediated killing. Furthermore, Qa-1 or NKG2A knockdown and Qa-1 antibody blockade caused the macrophages to be sensitive to NK cytolysis. These results suggested that macrophages may activate NK cells to attack tumor by NKG2D recognition whereas macrophages protect themselves from NK lysis via preferential expression of Qa-1.

  9. Paracrine Interactions between Adipocytes and Tumor Cells Recruit and Modify Macrophages to the Mammary Tumor Microenvironment: The Role of Obesity and Inflammation in Breast Adipose Tissue

    Directory of Open Access Journals (Sweden)

    Ana M. Santander

    2015-01-01

    Full Text Available The relationship between obesity and breast cancer (BC has focused on serum factors. However, the mammary gland contains adipose tissue (AT which may enable the crosstalk between adipocytes and tumor cells contributing to tumor macrophage recruitment. We hypothesize that the breast AT (bAT is inflamed in obese females and plays a major role in breast cancer development. The effects of this interplay on macrophage chemotaxis were examined in vitro, using co-cultures of mouse macrophages, mammary tumor cells and adipocytes. Macrophages were exposed to the adipocyte and tumor paracrine factors leptin, CCL2 and lauric acid (alone or in combinations. In cell supernatants Luminex identified additional molecules with chemotactic and other pro-tumor functions. Focus on the adipokine leptin, which has been shown to have a central role in breast cancer pathogenesis, indicated it modulates macrophage phenotypes and functions. In vivo experiments demonstrate that mammary tumors from obese mice are larger and that bAT from obese tumor-bearers contains higher numbers of macrophages/CLS and hypertrophic adipocytes than bAT from lean tumor-bearers, thus confirming it is more inflamed. Also, bAT distal from the tumor is more inflamed in obese than in lean mice. Our results reveal that bAT plays a role in breast cancer development in obesity.

  10. Paracrine Interactions between Adipocytes and Tumor Cells Recruit and Modify Macrophages to the Mammary Tumor Microenvironment: The Role of Obesity and Inflammation in Breast Adipose Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Santander, Ana M.; Lopez-Ocejo, Omar; Casas, Olivia; Agostini, Thais; Sanchez, Lidia; Lamas-Basulto, Eduardo; Carrio, Roberto [Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136 (United States); Cleary, Margot P. [Hormel Institute, University of Minnesota, Austin, MN 55912 (United States); Gonzalez-Perez, Ruben R. [Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA 30314 (United States); Torroella-Kouri, Marta, E-mail: mtorroella@med.miami.edu [Department of Microbiology and Immunology, University of Miami Miller School of Medicine, 1600 NW 10th Ave, Miami, FL 33136 (United States); Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL 33136 (United States)

    2015-01-15

    The relationship between obesity and breast cancer (BC) has focused on serum factors. However, the mammary gland contains adipose tissue (AT) which may enable the crosstalk between adipocytes and tumor cells contributing to tumor macrophage recruitment. We hypothesize that the breast AT (bAT) is inflamed in obese females and plays a major role in breast cancer development. The effects of this interplay on macrophage chemotaxis were examined in vitro, using co-cultures of mouse macrophages, mammary tumor cells and adipocytes. Macrophages were exposed to the adipocyte and tumor paracrine factors leptin, CCL2 and lauric acid (alone or in combinations). In cell supernatants Luminex identified additional molecules with chemotactic and other pro-tumor functions. Focus on the adipokine leptin, which has been shown to have a central role in breast cancer pathogenesis, indicated it modulates macrophage phenotypes and functions. In vivo experiments demonstrate that mammary tumors from obese mice are larger and that bAT from obese tumor-bearers contains higher numbers of macrophages/CLS and hypertrophic adipocytes than bAT from lean tumor-bearers, thus confirming it is more inflamed. Also, bAT distal from the tumor is more inflamed in obese than in lean mice. Our results reveal that bAT plays a role in breast cancer development in obesity.

  11. In vivo inhibition of c-MYC in myeloid cells impairs tumor-associated macrophage maturation and pro-tumoral activities.

    Directory of Open Access Journals (Sweden)

    Oscar M Pello

    Full Text Available Although tumor-associated macrophages (TAMs are involved in tumor growth and metastasis, the mechanisms controlling their pro-tumoral activities remain largely unknown. The transcription factor c-MYC has been recently shown to regulate in vitro human macrophage polarization and be expressed in macrophages infiltrating human tumors. In this study, we exploited the predominant expression of LysM in myeloid cells to generate c-Myc(fl/fl LysM(cre/+ mice, which lack c-Myc in macrophages, to investigate the role of macrophage c-MYC expression in cancer. Under steady-state conditions, immune system parameters in c-Myc(fl/fl LysM(cre/+ mice appeared normal, including the abundance of different subsets of bone marrow hematopoietic stem cells, precursors and circulating cells, macrophage density, and immune organ structure. In a model of melanoma, however, TAMs lacking c-Myc displayed a delay in maturation and showed an attenuation of pro-tumoral functions (e.g., reduced expression of VEGF, MMP9, and HIF1α that was associated with impaired tissue remodeling and angiogenesis and limited tumor growth in c-Myc(fl/fl LysM(cre/+ mice. Macrophage c-Myc deletion also diminished fibrosarcoma growth. These data identify c-Myc as a positive regulator of the pro-tumoral program of TAMs and suggest c-Myc inactivation as an attractive target for anti-cancer therapy.

  12. Hsp70 confines tumor progression of rat histiocytoma and impedes the cytotoxicity induced by natural killer cells and peritoneal macrophages

    Institute of Scientific and Technical Information of China (English)

    Amere Subbarao Sreedhar

    2010-01-01

    Objective:To study the role of inducible form of heat shock protein 70 (Hsp70) in the host tumor regression of rat tumor model.Methods: We examined the role of Hsp70 in host tumorigenicity andin vitro cellular cytotoxicity using a rat histocytoma. The differential tumor growth and regression kinetics were studied and correlated with the expression of Hsp70, activation of macrophages and natural killer (NK) cells, and circulating or tumor infiltrating immune molecules in the host system.Results: The sub cuteaneous (s.c.) tumor regression was correlated with increased serum cytokines such as IL-12, TNFα,IFNγ and Hsp70. Despite of similar increase of Hsp70 in intraperitoneal (i.p.) tumor implanted animals, animals succumb to tumor growth, further, evidently, no immune molecule activation was observed. The viral promoter driven Hsp70 over expression in these tumor cells restrained solid tumor growth, however, failed to inhibit ascites growth. The NK cells from s.c. immunized animals induces cytotoxicity in the presence of anti-tumor antibody, which necessitated CD40-L expression, conversely, NK cells from i.p. immunized animals failed to induce cytotoxicity. The NK cells from s.c. or i.p. implanted animals with Hsp70 positive tumor cells failed to induce such cytotoxicity. The peritoneal macrophages isolated from s.c. tumor implanted animals when co-cultured with parental BC-8 cells lyses tumor cells, nevertheless entail macrophage specific TNFα expression. On the contrary, Hsp70 expressing BC-8 tumor cells were resistant to peritoneal macrophage induced cytolysis.Conclusions:This study brings out that Hsp70 possibly involved in regulating the host tumor response and cellular cytotoxicity.

  13. A novel photodynamic therapy targeting cancer cells and tumor-associated macrophages.

    Science.gov (United States)

    Hayashi, Noriyuki; Kataoka, Hiromi; Yano, Shigenobu; Tanaka, Mamoru; Moriwaki, Kazuhiro; Akashi, Haruo; Suzuki, Shugo; Mori, Yoshinori; Kubota, Eiji; Tanida, Satoshi; Takahashi, Satoru; Joh, Takashi

    2015-02-01

    Tumor-associated macrophages (TAM) in cancer stroma play important roles for cancer cell growth, invasion, angiogenesis, and metastases. We synthesized a novel photosensitizer, mannose-conjugated chlorin (M-chlorin), designed to bind mannose receptors highly expressed on TAMs. We evaluated the newly available photodynamic therapy (PDT) with M-chlorin against gastric and colon cancer. We evaluated PDT with M-chlorin for in vitro cytotoxicity and apoptosis induction in cancer cells compared with chlorin alone and glucose-conjugated chlorin (G-chlorin). The subcellular localization of M-chlorin was observed by confocal microscopy, and the M-chlorin PDT effects against TAMs including THP-1-induced M2-polarized macrophages were evaluated. Anticancer effects were also investigated in an allograft model where cytotoxic effects against TAMs in the cancer cell stroma were analyzed by immunohistochemistry. M-chlorin PDT strongly induced cell death in cancer cells to almost the same extent as G-chlorin PDT by inducing apoptosis. M-chlorin was incorporated into cancer cells where it localized mainly in lysosomes and endoplasmic reticula. M-chlorin PDT revealed strong cytotoxicity for M2 macrophages induced from THP-1 cell lines, and it induced stronger cytotoxicity than G-chlorin PDT in the allograft model through killing both cancer cells and TAMs in the cancer stroma. The M-chlorin PDT produced strong cytotoxicity against cancer tissue by inducing apoptosis of both cancer cells and TAMs in the cancer stroma. This novel PDT thus stands as a new candidate for very effective, next-generation PDT.

  14. Metformin Reduces Desmoplasia in Pancreatic Cancer by Reprogramming Stellate Cells and Tumor-Associated Macrophages.

    Directory of Open Access Journals (Sweden)

    Joao Incio

    Full Text Available Pancreatic ductal adenocarcinoma (PDAC is a highly desmoplastic tumor with a dismal prognosis for most patients. Fibrosis and inflammation are hallmarks of tumor desmoplasia. We have previously demonstrated that preventing the activation of pancreatic stellate cells (PSCs and alleviating desmoplasia are beneficial strategies in treating PDAC. Metformin is a widely used glucose-lowering drug. It is also frequently prescribed to diabetic pancreatic cancer patients and has been shown to associate with a better outcome. However, the underlying mechanisms of this benefit remain unclear. Metformin has been found to modulate the activity of stellate cells in other disease settings. In this study, we examine the effect of metformin on PSC activity, fibrosis and inflammation in PDACs.In overweight, diabetic PDAC patients and pre-clinical mouse models, treatment with metformin reduced levels of tumor extracellular matrix (ECM components, in particular hyaluronan (HA. In vitro, we found that metformin reduced TGF-ß signaling and the production of HA and collagen-I in cultured PSCs. Furthermore, we found that metformin alleviates tumor inflammation by reducing the expression of inflammatory cytokines including IL-1β as well as infiltration and M2 polarization of tumor-associated macrophages (TAMs in vitro and in vivo. These effects on macrophages in vitro appear to be associated with a modulation of the AMPK/STAT3 pathway by metformin. Finally, we found in our preclinical models that the alleviation of desmoplasia by metformin was associated with a reduction in ECM remodeling, epithelial-to-mesenchymal transition (EMT and ultimately systemic metastasis.Metformin alleviates the fibro-inflammatory microenvironment in obese/diabetic individuals with pancreatic cancer by reprogramming PSCs and TAMs, which correlates with reduced disease progression. Metformin should be tested/explored as part of the treatment strategy in overweight diabetic PDAC patients.

  15. Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells.

    Science.gov (United States)

    Sarkar, Susobhan; Döring, Axinia; Zemp, Franz J; Silva, Claudia; Lun, Xueqing; Wang, Xiuling; Kelly, John; Hader, Walter; Hamilton, Mark; Mercier, Philippe; Dunn, Jeff F; Kinniburgh, Dave; van Rooijen, Nico; Robbins, Stephen; Forsyth, Peter; Cairncross, Gregory; Weiss, Samuel; Yong, V Wee

    2014-01-01

    Brain tumor initiating cells (BTICs) contribute to the genesis and recurrence of gliomas. We examined whether the microglia and macrophages that are abundant in gliomas alter BTIC growth. We found that microglia derived from non-glioma human subjects markedly mitigated the sphere-forming capacity of glioma patient-derived BTICs in culture by inducing the expression of genes that control cell cycle arrest and differentiation. This sphere-reducing effect was mimicked by macrophages, but not by neurons or astrocytes. Using a drug screen, we validated amphotericin B (AmpB) as an activator of monocytoid cells and found that AmpB enhanced the microglial reduction of BTIC spheres. In mice harboring intracranial mouse or patient-derived BTICs, daily systemic treatment with non-toxic doses of AmpB substantially prolonged life. Notably, microglia and monocytes cultured from glioma patients were inefficient at reducing the sphere-forming capacity of autologous BTICs, but this was rectified by AmpB. These results provide new insights into the treatment of gliomas.

  16. Tumor cell alpha-N-acetylgalactosaminidase activity and its involvement in GcMAF-related macrophage activation.

    Science.gov (United States)

    Mohamad, Saharuddin B; Nagasawa, Hideko; Uto, Yoshihiro; Hori, Hitoshi

    2002-05-01

    Alpha-N-acetyl galactosaminidase (alpha-NaGalase) has been reported to accumulate in serum of cancer patients and be responsible for deglycosylation of Gc protein, which is a precursor of GcMAF-mediated macrophage activation cascade, finally leading to immunosuppression in advanced cancer patients. We studied the biochemical characterization of alpha-NaGalase from several human tumor cell lines. We also examined its effect on the potency of GcMAF to activate mouse peritoneal macrophage to produce superoxide in GcMAF-mediated macrophage activation cascade. The specific activity of alpha-NaGalases from human colon tumor cell line HCT116, human hepatoma cell line HepG2, and normal human liver cells (Chang liver cell line) were evaluated using two types of substrates; GalNAc-alpha-PNP (exo-type substrate) and Gal-beta-GalNAc-alpha-PNP (endo-type substrate). Tumor-derived alpha-NaGalase having higher activity than normal alpha-NaGalase, had higher substrate specificity to the exo-type substrate than to the endo-type substrate, and still maintained its activity at pH 7. GcMAF enhance superoxide production in mouse macrophage, and pre-treatment of GcMAF with tumor cell lysate reduce the activity. We conclude that tumor-derived alpha-NaGalase is different in biochemical characterization compared to normal alpha-NaGalase from normal Chang liver cells. In addition, tumor cell-derived alpha-NaGalase decreases the potency of GcMAF on macrophage activation.

  17. Cell surface syndecan-1 contributes to binding and function of macrophage migration inhibitory factor (MIF) on epithelial tumor cells.

    Science.gov (United States)

    Pasqualon, Tobias; Lue, Hongqi; Groening, Sabine; Pruessmeyer, Jessica; Jahr, Holger; Denecke, Bernd; Bernhagen, Jürgen; Ludwig, Andreas

    2016-04-01

    Surface expressed proteoglycans mediate the binding of cytokines and chemokines to the cell surface and promote migration of various tumor cell types including epithelial tumor cells. We here demonstrate that binding of the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) to epithelial lung and breast tumor cell lines A549 and MDA-MB231 is sensitive to enzymatic digestion of heparan sulphate chains and competitive inhibition with heparin. Moreover, MIF interaction with heparin was confirmed by chromatography and a structural comparison indicated a possible heparin binding site. These results suggested that proteoglycans carrying heparan sulphate chains are involved in MIF binding. Using shRNA-mediated gene silencing, we identified syndecan-1 as the predominant proteoglycan required for the interaction with MIF. MIF binding was decreased by induction of proteolytic shedding of syndecan-1, which could be prevented by inhibition of the metalloproteinases involved in this process. Finally, MIF induced the chemotactic migration of A549 cells, wound closure and invasion into matrigel without affecting cell proliferation. These MIF-induced responses were abrogated by heparin or by silencing of syndecan-1. Thus, our study indicates that syndecan-1 on epithelial tumor cells promotes MIF binding and MIF-mediated cell migration. This may represent a relevant mechanism through which MIF enhances tumor cell motility and metastasis.

  18. Tumor-associated macrophages favor C26 murine colon carcinoma cell proliferation in an oxidative stress-dependent manner.

    Science.gov (United States)

    Luput, Lavinia; Licarete, Emilia; Sesarman, Alina; Laura, Patras; Alupei, Marius Costel; Banciu, Manuela

    2017-02-17

    The role of tumor-associated macrophages (TAMs) in the development of colon carcinoma is still controversial. Therefore, the present study aimed to investigate the TAM‑driven processes that may affect colon cancer cell proliferation. To achieve this purpose, murine macrophages were co-cultured with C26 murine colon carcinoma cells at a cell density ratio that approximates physiological conditions for colon carcinoma development in vivo. In this respect, the effects of TAM-mediated angiogenesis, inflammation and oxidative stress on the proliferative capacity of C26 murine colon carcinoma cells were studied. To gain insight into the TAM-driven oxidative stress, NADPH oxidase, the main pro-oxidant enzyme in macrophages, was inhibited. Our data revealed that the stimulatory effects of TAMs on C26 cell proliferation may be related mainly to their pro-oxidant actions exerted by NADPH oxidase activity, which maintains the redox status and the angiogenic capacity of the tumor microenvironment. Additionally, the anti-inflammatory and pro-angiogenic effects of TAMs on tumor cells were found to create a favorable microenvironment for C26 colon carcinoma development and progression. In conclusion, our data confirmed the protumor role of TAMs in the development of colon carcinoma in an oxidative stress-dependent manner that potentiates the angiogenic capacity of the tumor microenvironment. These data may offer valuable information for future tumor-targeted therapies based on TAM 're-education' strategies.

  19. Effects of autophagy regulation of tumor-associated macrophages on radiosensitivity of colorectal cancer cells.

    Science.gov (United States)

    Shao, Le-Ning; Zhu, Bao-Song; Xing, Chun-Gen; Yang, Xiao-Dong; Young, Wu; Cao, Jian-Ping

    2016-03-01

    Tumor‑associated macrophages (TAMs), a major component of the tumor microenvironment, are crucial to the processes of tumor growth, infiltration and metastasis, and contribute to drug resistance. The importance of TAMs in radiation resistance of colorectal cancer remains unclear. To investigate the effects of autophagy regulation of TAMs on the radiosensitivity of colorectal cancer cells, the current study induced TAM formation from THP‑1 monocyte cells. Sequential treatment of THP‑1 cells with PMA for 72 h and human recombinant interleukin‑4 for 24 h was used to stimulate THP‑1 differentiation to TAMs. Expression of the cell surface markers CD68, CD204 and CD206, and changes to cell morphology were used to confirm successful differentiation. The TAMs were stimulated to promote or inhibit autophagy during co‑culture with LoVo colorectal adenocarcinoma cells. The cells were irradiated, with subsequent measurement of LoVo colony formation and apoptosis. Additionally, the expression of p53, Bcl‑2, survivin and Smac proteins was assessed by western blotting. Monodansylcadaverin staining was used to analyze the presence of autophagic vacuoles in TAM, and western blot analysis was used to assess the expression of Beclin‑1, LC3B I and II, ATG‑3, ‑5 and ‑7. The results demonstrated TAM autophagy to be markedly altered by rapamycin and bafilomycin A1 treatment. Following co‑culture with TAMs, the colony formation rate and survival fraction of LoVo cells were significantly higher than those in the control group (PLoVo colorectal cancer cells. Upregulation of TAM autophagy using rapamycin exhibited more effective inhibition of LoVo colony formation than autophagy downregulation. Notably, apoptosis was significantly increased in LoVo cells when co‑cultured with TAMs only, or with rapamycin‑mediated autophagy upregulated TAMs, compared with LoVo cells cultured alone (PLoVo cells co‑cultured with TAMs, compared with the control group (P<0

  20. Effects of eicosapentaenoic acid and docosahexaenoic acid on prostate cancer cell migration and invasion induced by tumor-associated macrophages.

    Directory of Open Access Journals (Sweden)

    Cheng-Chung Li

    Full Text Available Eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA are the major n-3 polyunsaturated fatty acids (PUFAs in fish oil that decrease the risk of prostate cancer. Tumor-associated macrophages (TAMs are the main leukocytes of intratumoral infiltration, and increased TAMs correlates with poor prostate cancer prognosis. However, the mechanism of n-3 PUFAs on prostate cancer cell progression induced by TAMs is not well understood. In this study, we investigated the effects of EPA and DHA on modulating of migration and invasion of prostate cancer cells induced by TAMs-like M2-type macrophages. PC-3 prostate cancer cells were pretreated with EPA, DHA, or the peroxisome proliferator-activated receptor (PPAR-γ antagonist, GW9662, before exposure to conditioned medium (CM. CM was derived from M2-polarized THP-1 macrophages. The migratory and invasive abilities of PC-3 cells were evaluated using a coculture system of M2-type macrophages and PC-3 cells. EPA/DHA administration decreased migration and invasion of PC-3 cells. The PPAR-γ DNA-binding activity and cytosolic inhibitory factor κBα (IκBα protein expression increased while the nuclear factor (NF-κB p65 transcriptional activity and nuclear NF-κB p65 protein level decreased in PC-3 cells incubated with CM in the presence of EPA/DHA. Further, EPA/DHA downregulated mRNA expressions of matrix metalloproteinase-9, cyclooxygenase-2, vascular endothelial growth factor, and macrophage colony-stimulating factor. Pretreatment with GW9662 abolished the favorable effects of EPA/DHA on PC-3 cells. These results indicate that EPA/DHA administration reduced migration, invasion and macrophage chemotaxis of PC-3 cells induced by TAM-like M2-type macrophages, which may partly be explained by activation of PPAR-γ and decreased NF-κB p65 transcriptional activity.

  1. Macrophage-mediated tumor cytotoxicity: role of macrophage surface sialic acid.

    Science.gov (United States)

    Cameron, D J

    1983-02-01

    Cell surface sialic acid levels were compared for monocytes and macrophages obtained from normal volunteers and breast cancer patients. Equal quantities of sialic acid were found on the monocytes obtained from normal volunteers and breast cancer patients. Approximately 60% more cell surface sialic acid was found on the macrophages from breast cancer patients than was found on the macrophages from normal volunteers. In order to determine whether cell surface sialic acid had any effect on macrophage-mediated cytotoxicity, macrophages were pretreated with neuraminidase (NANAse) prior to co-cultivation with tumor cells. The normal macrophages, after neuraminidase treatment, no longer retained their ability to kill tumor cells. However, when macrophages from breast cancer patients were treated with NANAse, no difference was observed in the ability of untreated and NANAse treated macrophages to kill tumor cells.

  2. Prognostic Impact of CD163+ Macrophages in Tumor Stroma and CD8+ T-Cells in Cancer Cell Nests in Invasive Extrahepatic Bile Duct Cancer.

    Science.gov (United States)

    Miura, Takuya; Yoshizawa, Tadashi; Hirai, Hideaki; Seino, Hiroko; Morohashi, Satoko; Wu, Yunyan; Wakiya, Taiichi; Kimura, Norihisa; Kudo, Daisuke; Ishido, Keinosuke; Toyoki, Yoshikazu; Kijima, Hiroshi; Hakamada, Kenichi

    2017-01-01

    The aim of this study was to examine the clinicopathological influence of tumor-infiltrating cluster of differentiation (CD) 163(+) macrophages and CD8(+) T-cells, and to clarify the prognostic effects of these cells in patients with invasive extrahepatic bile duct cancer (EHBC). The numbers of CD8(+) T-cells in cancer cell nests and CD163(+) macrophages in tumor stroma were evaluated using immunohistochemistry in 101 resected EHBC specimens. Correlations with clinicopathological variables and overall survival were analyzed. Perihilar EHBC and perineural invasion were significantly associated with a low number of tumor-infiltrating CD8(+) T-cells. Poorly- differentiated histology and nodal metastasis were significantly associated with a high number of tumor-infiltrating CD163(+) macrophages. A combination of high number of CD8(+) T-cells and low number of CD163(+) macrophages was independently related to better overall survival in the whole patient cohort (hazard ratio=0.127, pCD163(+) macrophages in tumor stroma and CD8(+) T-cells in cancer cell nests have a prognostic impact in patients with EHBC following resection and also after adjuvant chemotherapy. Copyright© 2017 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  3. Tumor-Associated Macrophages in Oncolytic Virotherapy: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Nicholas L. Denton

    2016-07-01

    Full Text Available Cancer therapy remains a challenge due to toxicity limitations of chemotherapy and radiation therapy. Oncolytic viruses that selectively replicate and destroy cancer cells are of increasing interest. In addition to direct cell lysis, these vectors stimulate an anti-tumor immune response. A key regulator of tumor immunity is the tumor-associated macrophage population. Macrophages can either support oncolytic virus therapy through pro-inflammatory stimulation of the anti-tumor response at the cost of hindering direct oncolysis or through immunosuppressive protection of virus replication at the cost of hindering the anti-tumor immune response. Despite similarities in macrophage interaction between adult and pediatric tumors and the abundance of research supporting macrophage modulation in adult tumors, there are few studies investigating macrophage modulation in pediatric cancers or modulation of immunotherapy. We review the current state of knowledge regarding macrophages in cancers and their influence on oncolytic virotherapy.

  4. TLR activation of tumor-associated macrophages from ovarian cancer patients triggers cytolytic activity of NK cells.

    Science.gov (United States)

    Bellora, Francesca; Castriconi, Roberta; Dondero, Alessandra; Pessino, Anna; Nencioni, Alessio; Liggieri, Giovanni; Moretta, Lorenzo; Mantovani, Alberto; Moretta, Alessandro; Bottino, Cristina

    2014-06-01

    We analyzed the functional outcome of the interaction between tumor-associated macrophages (TAMs) and natural killer (NK) cells. TAMs from ascites of ovarian cancer patients displayed an alternatively activated functional phenotype (M2) characterized by a remarkably high frequency and surface density of membrane-bound IL-18. Upon TLR engagement, TAMs acquired a classically activated functional phenotype (M1), released immunostimulatory cytokines (IL-12, soluble IL-18), and efficiently triggered the cytolytic activity of NK cells. TAMs also induced the release of IFN-γ from NK cells, which however was significantly lower compared with that induced by in vitro-polarized M2 cells. Most tumor-associated NK cells displayed a CD56(bright) , CD16(neg) or CD56(bright) , CD16(dim) phenotype, and very poor cytolytic activities, despite an increased expression of the activation marker CD69. They also showed downregulation of DNAM-1, 2B4, and NTB-A activating receptors, and an altered chemokine receptor repertoire. Importantly however, when appropriately stimulated, NK cells from the patients, including those cells isolated from ascites, efficiently killed autologous TAMs that expressed low, "nonprotective" levels of HLA class I molecules. Overall, our data show the existence of a complex tumor microenvironment in which poorly cytolytic/immature NK cells deal with immunosuppressive tumor-educated macrophages.

  5. Tumor suppressor ARF regulates tissue microenvironment and tumor growth through modulation of macrophage polarization.

    Science.gov (United States)

    Jiménez-García, Lidia; Herranz, Sandra; Higueras, María Angeles; Luque, Alfonso; Hortelano, Sonsoles

    2016-10-11

    Tumor microenvironment has been described to play a key role in tumor growth, progression, and metastasis. Macrophages are a major cellular constituent of the tumor stroma, and particularly tumor associated macrophages (TAMs or M2-like macrophages) exert important immunosuppressive activity and a pro-tumoral role within the tumor microenvironment. Alternative-reading frame (ARF) gene is widely inactivated in human cancer. We have previously demonstrated that ARF deficiency severely impairs inflammatory response establishing a new role for ARF in the regulation of innate immunity. On the basis of these observations, we hypothesized that ARF may also regulates tumor growth through recruitment and modulation of the macrophage phenotype in the tumor microenvironment. Xenograft assays of B16F10 melanoma cells into ARF-deficient mice resulted in increased tumor growth compared to those implanted in WT control mice. Tumors from ARF-deficient mice exhibited significantly increased number of TAMs as well as microvascular density. Transwell assays showed crosstalk between tumor cells and macrophages. On the one hand, ARF-deficient macrophages modulate migratory ability of the tumor cells. And on the other, tumor cells promote the skewing of ARF-/- macrophages toward a M2-type polarization. In conclusion, these results demonstrate that ARF deficiency facilitates the infiltration of macrophages into the tumor mass and favors their polarization towards a M2 phenotype, thus promoting tumor angiogenesis and tumor growth. This work provides novel information about the critical role of ARF in the modulation of tumor microenvironment.

  6. Loss of Sparc in p53-null Astrocytes Promotes Macrophage Activation and Phagocytosis Resulting in Decreased Tumor Size and Tumor Cell Survival.

    Science.gov (United States)

    Thomas, Stacey L; Schultz, Chad R; Mouzon, Ezekiell; Golembieski, William A; El Naili, Reima; Radakrishnan, Archanna; Lemke, Nancy; Poisson, Laila M; Gutiérrez, Jorge A; Cottingham, Sandra; Rempel, Sandra A

    2015-07-01

    Both the induction of SPARC expression and the loss of the p53 tumor suppressor gene are changes that occur early in glioma development. Both SPARC and p53 regulate glioma cell survival by inverse effects on apoptotic signaling. Therefore, during glioma formation, the upregulation of SPARC may cooperate with the loss of p53 to enhance cell survival. This study determined whether the loss of Sparc in astrocytes that are null for p53 would result in reduced cell survival and tumor formation and increased tumor immunogenicity in an in vivo xenograft brain tumor model. In vitro, the loss of Sparc in p53-null astrocytes resulted in an increase in cell proliferation, but a loss of tumorigenicity. At 7 days after intracranial implantation, Sparc-null tumors had decreased tumor cell survival, proliferation and reduced tumor size. The loss of Sparc promoted microglia/macrophage activation and phagocytosis of tumor cells. Our results indicate that the loss of p53 by deletion/mutation in the early stages of glioma formation may cooperate with the induction of SPARC to potentiate cancer cell survival and escape from immune surveillance.

  7. Quantifying tumor associated macrophages in breast cancer: a comparison of iron and fluorine-based MRI cell tracking

    Science.gov (United States)

    Makela, Ashley V.; Gaudet, Jeffrey M.; Foster, Paula J.

    2017-01-01

    Tumor associated macrophages (TAMs) are associated with tumor growth and metastasis. MRI can detect TAMs labeled with iron oxide (USPIO) or perfluorocarbon (PFC) agents. This study compared these two cell tracking approaches for imaging TAMs in vivo. 4T1 tumors were imaged with MRI at 4 days or 3 weeks post cell implantation after intravenous (i.v.) administration of either USPIO or PFC. Signal loss was detected within tumors at both time points post USPIO. Images acquired at 4 days demonstrated signal loss encompassing the entire tumor and around the periphery at 3 weeks. Number of black voxels suggested higher numbers of TAMs in the tumor at the later time point. After PFC administration, Fluorine-19 (19F) signal was detected in a similar spatial distribution as signal loss post USPIO. 19F signal quantification revealed that the number of 19F spins was not significantly different at the two time points, suggesting a similar number of TAMs were present in tumors but accumulated in different regions. 19F signal was higher centrally in tumors at 4 days and heterogenous around the periphery at 3 weeks. This study revealed that 19F-based cell tracking methods better represent TAM density and provides additional information not achievable with iron-based methods. PMID:28176853

  8. Macrophage migration inhibitory factor protects from nonmelanoma epidermal tumors by regulating the number of antigen-presenting cells in skin.

    Science.gov (United States)

    Brocks, Tania; Fedorchenko, Oleg; Schliermann, Nicola; Stein, Astrid; Moll, Ute M; Seegobin, Seth; Dewor, Manfred; Hallek, Michael; Marquardt, Yvonne; Fietkau, Katharina; Heise, Ruth; Huth, Sebastian; Pfister, Herbert; Bernhagen, Juergen; Bucala, Richard; Baron, Jens M; Fingerle-Rowson, Guenter

    2017-02-01

    The response of the skin to harmful environmental agents is shaped decisively by the status of the immune system. Keratinocytes constitutively express and secrete the chemokine-like mediator, macrophage migration inhibitory factor (MIF), more strongly than dermal fibroblasts, thereby creating a MIF gradient in skin. By using global and epidermis-restricted Mif-knockout (Mif(-/-) and K14-Cre(+/tg); Mif(fl/fl)) mice, we found that MIF both recruits and maintains antigen-presenting cells in the dermis/epidermis. The reduced presence of antigen-presenting cells in the absence of MIF was associated with accelerated and increased formation of nonmelanoma skin tumors during chemical carcinogenesis. Our results demonstrate that MIF is essential for maintaining innate immunity in skin. Loss of keratinocyte-derived MIF leads to a loss of control of epithelial skin tumor formation in chemical skin carcinogenesis, which highlights an unexpected tumor-suppressive activity of MIF in murine skin.-Brocks, T., Fedorchenko, O., Schliermann, N., Stein, A., Moll, U. M., Seegobin, S., Dewor, M., Hallek, M., Marquardt, Y., Fietkau, K., Heise, R., Huth, S., Pfister, H., Bernhagen, J., Bucala, R., Baron, J. M., Fingerle-Rowson, G. Macrophage migration inhibitory factor protects from nonmelanoma epidermal tumors by regulating the number of antigen-presenting cells in skin. © FASEB.

  9. CD163+ Tumor-Associated Macrophages Correlated with Poor Prognosis and Cancer Stem Cells in Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Ke-Fei He

    2014-01-01

    Full Text Available Tumor-associated macrophages (TAMs play an important role in the progression and prognostication of numerous cancers. However, the role and clinical significance of TAM markers in oral squamous cell carcinoma (OSCC has not been elucidated. The present study was designed to investigate the correlation between the expression of TAM markers and pathological features in OSCC by tissue microarray. Tissue microarrays containing 16 normal oral mucosa, 6 oral epithelial dysplasia, and 43 OSCC specimens were studied by immunohistochemistry. We observed that the protein expression of the TAM markers CD68 and CD163 as well as the cancer stem cell (CSC markers ALDH1, CD44, and SOX2 increased successively from the normal oral mucosa to OSCC. The expressions of CD68 and CD163 were significantly associated with lymph node status, and SOX2 was significantly correlated with pathological grade and lymph node status, whereas ALDH1 was correlated with tumor stage. Furthermore, CD68 was significantly correlated with CD163, SOX2, and ALDH1 (P<0.05. Kaplan-Meier analysis revealed that OSCC patients overexpressing CD163 had significantly worse overall survival (P<0.05. TAM markers are associated with cancer stem cell marker and OSCC overall survival, suggesting their potential prognostic value in OSCC.

  10. The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time

    Directory of Open Access Journals (Sweden)

    Dai Fuqiang

    2010-03-01

    Full Text Available Abstract Background Tumor-associated macrophages (TAMs play an important role in growth, progression and metastasis of tumors. In non-small cell lung cancer (NSCLC, TAMs' anti-tumor or pro-tumor role is not determined. Macrophages are polarized into M1 (with anti-tumor function and M2 (with pro-tumor function forms. This study was conducted to determine whether the M1 and M2 macrophage densities in NSCLC are associated with patient's survival time. Methods Fifty patients with an average of 1-year survival (short survival group and 50 patients with an average of 5-year survival (long survival group were included in this retrospective study. Paraffin-embedded NSCLC specimens and their clinicopathological data including up to 8-year follow-up information were used. Immunohistochemical double-staining of CD68/HLA-DR (markers for M1 macrophages and CD68/CD163 (markers for M2 macrophages was performed and evaluated in a blinded fashion. The M1 and M2 macrophage densities in the tumor islets, stroma, or islets and stroma were determined using computer-aided microscopy. Correlation of the macrophage densities and patient's survival time was analyzed using the Statistical Package for the Social Sciences. Results Approximately 70% of TAMs were M2 macrophages and the remaining 30% were M1 macrophages in NSCLC. The M2 macrophage densities (approximately 78 to 113 per mm2 in the tumor islets, stroma, or islets and stroma were not significantly different between the long survival and short survival groups. The M1 macrophage densities in the tumor islets (approximately 70/mm2 and stroma (approximately 34/mm2 of the long survival group were significantly higher than the M1 macrophage densities in the tumor islets (approximately 7/mm2 and stroma (13/mm2 of the short survival group (P Conclusions The M1 macrophage density in the tumor islets is an independent predictor of survival time in NSCLC patients.

  11. Nanomedicine engulfed by macrophages for targeted tumor therapy

    Science.gov (United States)

    Li, Siwen; Feng, Song; Ding, Li; Liu, Yuxi; Zhu, Qiuyun; Qian, Zhiyu; Gu, Yueqing

    2016-01-01

    Macrophages, exhibiting high intrinsic accumulation and infiltration into tumor tissues, are a novel drug vehicle for directional drug delivery. However, the low drug-loading (DL) capacity and the drug cytotoxicity to the cell vehicle have limited the application of macrophages in tumor therapy. In this study, different drugs involving small molecular and nanoparticle drugs were loaded into intrinsic macrophages to find a better way to overcome these limitations. Their DL capacity and cytotoxicity to the macrophages were first compared. Furthermore, their phagocytic ratio, dynamic distributions, and tumoricidal effects were also investigated. Results indicated that more lipid-soluble molecules and DL particles can be phagocytized by macrophages than hydrophilic ones. In addition, the N-succinyl-N′-octyl chitosan (SOC) DL particles showed low cytotoxicity to the macrophage itself, while the dynamic biodistribution of macrophages engulfed with different particles/small molecules showed similar profiles, mainly excreted from liver to intestine pathway. Furthermore, macrophages loaded with SOC–paclitaxel (PTX) particles exhibited greater therapeutic efficacies than those of macrophages directly carrying small molecular drugs such as doxorubicin and PTX. Interestingly, macrophages displayed stronger targeting ability to the tumor site hypersecreting chemokine in immunocompetent mice in comparison to the tumor site secreting low levels of chemokine in immunodeficiency mice. Finally, results demonstrated that macrophages carrying SOC–PTX are a promising pharmaceutical preparation for tumor-targeted therapy. PMID:27601898

  12. Metformin Reduces Desmoplasia in Pancreatic Cancer by Reprogramming Stellate Cells and Tumor-Associated Macrophages

    OpenAIRE

    Incio, Joao; Suboj, Priya; Chin, Shan M.; Vardam-Kaur, Trupti; Liu,Hao; Hato, Tai; Babykutty, Suboj; Chen, Ivy; Deshpande, Vikram; Jain, Rakesh K.; Fukumura, Dai

    2015-01-01

    Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly desmoplastic tumor with a dismal prognosis for most patients. Fibrosis and inflammation are hallmarks of tumor desmoplasia. We have previously demonstrated that preventing the activation of pancreatic stellate cells (PSCs) and alleviating desmoplasia are beneficial strategies in treating PDAC. Metformin is a widely used glucose-lowering drug. It is also frequently prescribed to diabetic pancreatic cancer patients and has been sho...

  13. Adoptive Immunotherapy for Epithelial Ovarian Cancer Using T-cells Simultaneously Targeted to Tumor and Tumor-Associated Macrophages

    Science.gov (United States)

    2013-12-01

    Figure   10   that   demonstrate   ring   enhancement   around   the   viable   circumference   of   the   tumor.   When...in head and neck cancer. Taken together, it is logical to build on this experience by developing the use of TiN-4+ T-cell immunotherapy for the

  14. Attenuated Listeria monocytogenes reprograms M2-polarized tumor-associated macrophages in ovarian cancer leading to iNOS-mediated tumor cell lysis.

    Science.gov (United States)

    Lizotte, Patrick H; Baird, Jason R; Stevens, Cynthia A; Lauer, Peter; Green, William R; Brockstedt, Dirk G; Fiering, Steven N

    2014-01-01

    A principal mechanism by which tumors evade immune-mediated elimination is through immunosuppression. Previous approaches to tumor immunotherapy have focused on modifying the immunosuppressive environment with immune checkpoint inhibitors, cytokine therapy, and other modalities with the intent to generate T-cell based anti-tumor immunity. We hypothesized that transformation of the suppressive ovarian cancer microenvironment could be achieved by introduction of the attenuated ΔactA/ΔinlB strain of Listeria monocytogenes. ΔactA/ΔinlB introduced into the microenvironment of the aggressive ID8-Defb29/Vegf-A murine ovarian carcinoma is preferentially phagocytosed by tumor-associated macrophages (TAMs) and reprograms that population from one of suppression to immunostimulation. TAMs in the peritoneum upregulated their co-stimulatory molecules CD80 and CD86, increased transcription of inflammatory cytokines, and downregulated transcription of suppressive effector molecules. Surprisingly, therapeutic benefit was not mediated by T- or NK-cell activity. ΔactA/ΔinlB-induced repolarization of TAMs activated direct tumor cell lysis via Nos2 production of nitric oxide. Modulation of the immunosuppressive nature of the ID8-Defb29/Vegf-A microenvironment, specifically by reprogramming of the TAM suppressive population from M2 to M1 polarization, is critical for our observed immune-mediated survival benefit.

  15. Multiple Myeloma Macrophages: Pivotal Players in the Tumor Microenvironment

    Directory of Open Access Journals (Sweden)

    Simona Berardi

    2013-01-01

    Full Text Available Tumor microenvironment is essential for multiple myeloma (MM growth, progression, and drug resistance through provision of survival signals and secretion of growth and proangiogenic factors. This paper examines the importance of macrophages within MM bone marrow (BM microenvironment, referred to as MM-associated macrophages, as a potential niche component that supports tumor plasma cells. These macrophages are derived from peripheral blood monocytes recruited into the tumor. Upon activation by MM plasma cells and mesenchymal stromal cells, macrophages can release growth factors, proteolytic enzymes, cytokines, and inflammatory mediators that promote plasma cell growth and survival. Macrophages promote tumor progression through several mechanisms including angiogenesis, growth, and drug resistance. Indeed, these macrophages are essential for the induction of an angiogenic response through vasculogenic mimicry, and this ability proceeds in step with progression of the plasma cell tumors. Data suggest that macrophages play an important role in the biology and survival of patients with MM, and they may be a target for the MM antivascular management.

  16. Nanomedicine engulfed by macrophages for targeted tumor therapy

    Directory of Open Access Journals (Sweden)

    Li S

    2016-08-01

    Full Text Available Siwen Li,1,* Song Feng,1,* Li Ding,1 Yuxi Liu,1 Qiuyun Zhu,1 Zhiyu Qian,2 Yueqing Gu1 1Department of Biomedical Engineering, China Pharmaceutical University, 2Department of Biomedical Engineering, School of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, People’s Republic of China *These authors contributed equally to this work Abstract: Macrophages, exhibiting high intrinsic accumulation and infiltration into tumor tissues, are a novel drug vehicle for directional drug delivery. However, the low drug-loading (DL capacity and the drug cytotoxicity to the cell vehicle have limited the application of macrophages in tumor therapy. In this study, different drugs involving small molecular and nanoparticle drugs were loaded into intrinsic macrophages to find a better way to overcome these limitations. Their DL capacity and cytotoxicity to the macrophages were first compared. Furthermore, their phagocytic ratio, dynamic distributions, and tumoricidal effects were also investigated. Results indicated that more lipid-soluble molecules and DL particles can be phagocytized by macrophages than hydrophilic ones. In addition, the N-succinyl-N'-octyl chitosan (SOC DL particles showed low cytotoxicity to the macrophage itself, while the dynamic biodistribution of macrophages engulfed with different particles/small molecules showed similar profiles, mainly excreted from liver to intestine pathway. Furthermore, macrophages loaded with SOC–paclitaxel (PTX particles exhibited greater therapeutic efficacies than those of macrophages directly carrying small molecular drugs such as doxorubicin and PTX. Interestingly, macrophages displayed stronger targeting ability to the tumor site hypersecreting chemokine in immunocompetent mice in comparison to the tumor site secreting low levels of chemokine in immunodeficiency mice. Finally, results demonstrated that macrophages carrying SOC–PTX are a promising pharmaceutical preparation

  17. Fibroblast growth factor receptor 1 activation in mammary tumor cells promotes macrophage recruitment in a CX3CL1-dependent manner.

    Directory of Open Access Journals (Sweden)

    Johanna R Reed

    Full Text Available Tumor formation is an extensive process requiring complex interactions that involve both tumor cell-intrinsic pathways and soluble mediators within the microenvironment. Tumor cells exploit the intrinsic functions of many soluble molecules, including chemokines and their receptors, to regulate pro-tumorigenic phenotypes that are required for growth and progression of the primary tumor. Previous studies have shown that activation of inducible FGFR1 (iFGFR1 in mammary epithelial cells resulted in increased proliferation, migration, and invasion in vitro and tumor formation in vivo. These studies also demonstrated that iFGFR1 activation stimulated recruitment of macrophages to the epithelium where macrophages contributed to iFGFR1-mediated epithelial cell proliferation and angiogenesis. The studies presented here further utilize this model to identify the mechanisms that regulate FGFR1-induced macrophage recruitment. Results from this study elucidate a novel role for the inflammatory chemokine CX3CL1 in FGFR1-induced macrophage migration. Specifically, we illustrate that activation of both the inducible FGFR1 construct in mouse mammary epithelial cells and endogenous FGFR in the triple negative breast cancer cell line, HS578T, leads to expression of the chemokine CX3CL1. Furthermore, we demonstrate that FGFR-induced CX3CL1 is sufficient to recruit CX3CR1-expressing macrophages in vitro. Finally, blocking CX3CR1 in vivo leads to decreased iFGFR1-induced macrophage recruitment, which correlates with decreased angiogenesis. While CX3CL1 is a known target of FGF signaling in the wound healing environment, these studies demonstrate that FGFR activation also leads to induction of CX3CL1 in a tumor setting. Furthermore, these results define a novel role for CX3CL1 in promoting macrophage recruitment during mammary tumor formation, suggesting that the CX3CL1/CX3CR1 axis may represent a potential therapeutic approach for targeting breast cancers associated

  18. miR-181a Induces Macrophage Polarized to M2 Phenotype and Promotes M2 Macrophage-mediated Tumor Cell Metastasis by Targeting KLF6 and C/EBPα

    Science.gov (United States)

    Bi, Jia; Zeng, Xianxin; Zhao, Lin; Wei, Qian; Yu, Lifeng; Wang, Xinnan; Yu, Zhaojin; Cao, Yaming; Shan, Fengping; Wei, Minjie

    2016-01-01

    Macrophages can acquire a variety of polarization status and functions: classically activated macrophages (M1 macrophages); alternatively activated macrophages (M2 macrophages). However, the molecular basis of the process is still unclear. Here, this study addresses that microRNA-181a (miR-181a) is a key molecule controlling macrophage polarization. We found that miR-181a is overexpressed in M2 macrophages than in M1 macrophages. miR-181a expression was decreased when M2 phenotype converted to M1, whereas it increased when M1 phenotype converted to M2. Overexpression of miR-181a in M1 macrophages diminished M1 phenotype expression while promoting polarization to the M2 phenotype. In contrast, knockdown of miR-181a in M2 macrophages promoted M1 polarization and diminished M2 phenotype expression. Mechanistically, Bioinformatic analysis revealed that Kruppel-like factor 6 (KLF6) and CCAAT/enhancer binding protein-α (C/EBPα) is a potential target of miR-181a and luciferase assay confirmed that KLF6 and C/EBPα translation is suppressed by miR-181a through interaction with the 3′UTR of KLF6 and C/EBPα mRNA. Further analysis showed that induction of miR-181a suppressed KLF6 and C/EBPα protein expression. Importantly, miR-181a also diminishes M2 macrophages-mediated migration and invasion capacity of tumor cells. Collectively, our results suggest that miR-181a plays a significant role in regulating macrophage polarization through directly target KLF6 and C/EBPα. PMID:27673564

  19. Tumor-Associated Macrophages as Major Players in the Tumor Microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Chanmee, Theerawut [Institute of Advanced Technology, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Ontong, Pawared [Division of Engineering (Biotechnology), Graduate School of Engineering, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Konno, Kenjiro [Department of Animal Medical Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Itano, Naoki, E-mail: itanon@cc.kyoto-su.ac.jp [Institute of Advanced Technology, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Division of Engineering (Biotechnology), Graduate School of Engineering, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan); Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto 603-8555 (Japan)

    2014-08-13

    During tumor progression, circulating monocytes and macrophages are actively recruited into tumors where they alter the tumor microenvironment to accelerate tumor progression. Macrophages shift their functional phenotypes in response to various microenvironmental signals generated from tumor and stromal cells. Based on their function, macrophages are divided broadly into two categories: classical M1 and alternative M2 macrophages. The M1 macrophage is involved in the inflammatory response, pathogen clearance, and antitumor immunity. In contrast, the M2 macrophage influences an anti-inflammatory response, wound healing, and pro-tumorigenic properties. Tumor-associated macrophages (TAMs) closely resemble the M2-polarized macrophages and are critical modulators of the tumor microenvironment. Clinicopathological studies have suggested that TAM accumulation in tumors correlates with a poor clinical outcome. Consistent with that evidence, experimental and animal studies have supported the notion that TAMs can provide a favorable microenvironment to promote tumor development and progression. In this review article, we present an overview of mechanisms responsible for TAM recruitment and highlight the roles of TAMs in the regulation of tumor angiogenesis, invasion, metastasis, immunosuppression, and chemotherapeutic resistance. Finally, we discuss TAM-targeting therapy as a promising novel strategy for an indirect cancer therapy.

  20. Potential differentiation of tumor bearing mouse CD11b+Gr-1+ immature myeloid cells into both suppressor macrophages and immunostimulatory dendritic cells.

    Science.gov (United States)

    Narita, Yoshinori; Wakita, Daiko; Ohkur, Takayuki; Chamoto, Kenji; Nishimura, Takashi

    2009-02-01

    Evaluation of immunosuppressive tumor-escape mechanisms in tumor-bearing hosts is of great importance for the development of an efficient tumor immunotherapy. We document here the functional characteristics of CD11b(+)Gr-1(+) immature myeloid cells (ImC), which increase abnormally in tumor-bearing mice. Although it has been reported that ImC exhibit a strong immunosuppressive activity against T cell responses, we demonstrate that ImC derived from tumor-bearing mouse spleens (TB-SPL) did not exhibit a strong inhibitory activity against CTL generation in MLR. However, ImC isolated from TB-SPL and induced to differentiate into CD11b(+)Gr-1(+)F4/80(+) suppressor macrophages (MPhi) under the influence of tumor-derived factors were immunosuppressive. Furthermore, we also demonstrate that ImC isolated from TB-SPL had a capability of differentiating into immunostimulatory dendritic cells (DC1) supportive of the generation of IFN-gamma producing CTL if the ImC were cultured with Th1 cytokines plus GM-CSF and IL-3. Thus, our findings indicate that tumor bearing mouse-derived CD11b(+)Gr-1(+) ImC are not committed to development into immunosuppressor cells but have dual differentiation ability into both immunosuppressive myeloid cells and immunostimulatory DC1.

  1. Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: A role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ajay; Kant, Shiva; Singh, Sukh Mahendra, E-mail: sukhmahendrasingh@yahoo.com

    2013-11-15

    Targeting of tumor metabolism is emerging as a novel therapeutic strategy against cancer. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been shown to exert a potent tumoricidal action against a variety of tumor cells. The main mode of its antineoplastic action implicates a shift of glycolysis to oxidative metabolism of glucose, leading to generation of cytotoxic reactive oxygen intermediates. However, the effect of DCA on tumor microenvironment, which in turn regulates tumor cell survival; remains speculative to a large extent. It is also unclear if DCA can exert any modulatory effect on the process of hematopoiesis, which is in a compromised state in tumor-bearing hosts undergoing chemotherapy. In view of these lacunas, the present study was undertaken to investigate the so far unexplored aspects with respect to the molecular mechanisms of DCA-dependent tumor growth retardation and chemosensitization. BALB/c mice were transplanted with Dalton's lymphoma (DL) cells, a T cell lymphoma of spontaneous origin, followed by administration of DCA with or without cisplatin. DCA-dependent tumor regression and chemosensitization to cisplatin was found to be associated with altered repertoire of key cell survival regulatory molecules, modulated glucose metabolism, accompanying reconstituted tumor microenvironment with respect to pH homeostasis, cytokine balance and alternatively activated TAM. Moreover, DCA administration also led to an alteration in the MDR phenotype of tumor cells and myelopoietic differentiation of macrophages. The findings of this study shed a new light with respect to some of the novel mechanisms underlying the antitumor action of DCA and thus may have immense clinical applications. - Highlights: • DCA modulates tumor progression and chemoresistance. • DCA alters molecules regulating cell survival, glucose metabolism and MDR. • DCA reconstitutes biophysical and cellular composition of tumor microenvironment.

  2. Altered macrophage differentiation and immune dysfunction in tumor development.

    Science.gov (United States)

    Sica, Antonio; Bronte, Vincenzo

    2007-05-01

    Tumors require a constant influx of myelomonocytic cells to support the angiogenesis and stroma remodeling needed for their growth. This is mediated by tumor-derived factors, which cause sustained myelopoiesis and the accumulation and functional differentiation of myelomonocytic cells, most of which are macrophages, at the tumor site. An important side effect of the accumulation and functional differentiation of these cells is that they can induce lymphocyte dysfunction. A complete understanding of the complex interplay between neoplastic and myelomonocytic cells might offer novel targets for therapeutic intervention aimed at depriving tumor cells of important growth support and enhancing the antitumor immune response.

  3. NF-kappaB Activity in Macrophages Determines Metastatic Potential of Breast Tumor Cells

    Science.gov (United States)

    2011-08-01

    inflammation, neonatal sepsis , and chronic lung disease: a 13-year hospital cohort study. Pe- diatrics 123: 1314–1319. 8. Paananen, R., A. K. Husa, R... neonatal period. The inducible cIKKb transgene allows macrophage activation at distinct stages of lung development, as compared with postnatal rodent...Shriver National Institute of Child Health and Human Development Neonatal Research Network. 2010. Neonatal outcomes of extremely preterm infants from

  4. Macrophage cytokines render WEHI-3B tumor cells susceptible to cytostasis by prostaglandins

    NARCIS (Netherlands)

    S. Ben-Efraim; C.J.A.M. Tak (Corné); I.L. Bonta

    1990-01-01

    markdownabstractAbstract The growth of the murine myelomonocytic leukemia tumor, WEHI-3B, has been shown to be inhibited by a two-step treatment: first, incubation for one hour with either interleukin-1 (human recombinant IL-1α or tumor necrosis factor (human recombinant TNF-α); second, subsequent

  5. CDDO-Me Redirects Activation of Breast Tumor Associated Macrophages.

    Directory of Open Access Journals (Sweden)

    Michael S Ball

    Full Text Available Tumor-associated macrophages can account for up to 50% of the tumor mass in breast cancer patients and high TAM density is associated with poor clinical prognosis. Because TAMs enhance tumor growth, development, and metastatic potential, redirection of TAM activation may have significant therapeutic benefit. Our studies in primary human macrophages and murine breast TAMs suggest that the synthetic oleanane triterpenoid CDDO-methyl ester (CDDO-Me reprograms the activation profile of TAMs from tumor-promoting to tumor-inhibiting. We show that CDDO-Me treatment inhibits expression of IL-10 and VEGF in stimulated human M2 macrophages and TAMs but increases expression of TNF-α and IL-6. Surface expression of CD206 and CD163, which are characteristic of M2 activation, is significantly attenuated by CDDO-Me. In contrast, CDDO-Me up-regulates surface expression of HLA-DR and CD80, which are markers of M1 activation, and importantly potentiates macrophage activation of autologous T cells but inhibits endothelial cell vascularization. These results show for the first time that CDDO-Me redirects activation of M2 macrophages and TAMs from immune-suppressive to immune-stimulatory, and implicate a role for CDDO-Me as an immunotherapeutic in the treatment of breast and potentially other types of cancer.

  6. CD163(+)CD204(+) tumor-associated macrophages contribute to T cell regulation via interleukin-10 and PD-L1 production in oral squamous cell carcinoma.

    Science.gov (United States)

    Kubota, Keigo; Moriyama, Masafumi; Furukawa, Sachiko; Rafiul, Haque A S M; Maruse, Yasuyuki; Jinno, Teppei; Tanaka, Akihiko; Ohta, Miho; Ishiguro, Noriko; Yamauchi, Masaaki; Sakamoto, Mizuki; Maehara, Takashi; Hayashida, Jun-Nosuke; Kawano, Shintaro; Kiyoshima, Tamotsu; Nakamura, Seiji

    2017-05-11

    Tumor-associated macrophages (TAMs) promote cancer cell proliferation, invasion, and metastasis by producing various mediators. Although preclinical studies demonstrated that TAMs preferentially express CD163 and CD204, the TAM subsets in oral squamous cell carcinoma (OSCC) remain unknown. In this study, we examined the expression and role of TAM subsets in OSCC. Forty-six patients with OSCC were analyzed for expression of TAMs in biopsy samples by immunohistochemistry. We examined TAM subsets and their production of immune suppressive molecules (IL-10 and PD-L1) in peripheral blood mononuclear cells from three OSCC patients by flow cytometry. CD163 was detected around the tumor or connective tissue, while CD204 was detected in/around the tumors. Flow cytometric analysis revealed that CD163(+)CD204(+) TAMs strongly produced IL-10 and PD-L1 in comparison with CD163(+)CD204(-) and CD163(-)CD204(+) TAMs. Furthermore, the number of activated CD3(+) T cells after co-culture with CD163(+)CD204(+) TAMs was significantly lower than that after co-culture with other TAM subsets. In clinical findings, the number of CD163(+)CD204(+) TAMs was negatively correlated with that of CD25(+) cells and 5-year progression-free survival. These results suggest that CD163(+)CD204(+) TAMs possibly play a key role in the invasion and metastasis of OSCC by T-cell regulation via IL-10 and PD-L1 production.

  7. Mesenchymal Stem Cells Promote Pancreatic Tumor Growth by Inducing Alternative Polarization of Macrophages

    Directory of Open Access Journals (Sweden)

    Esha Mathew

    2016-03-01

    Significance: Targeting the stroma is emerging as a new paradigm in pancreatic cancer; however, efforts to that effect are hampered by our limited understanding of the nature and function of stromal components. Here, we uncover previously unappreciated heterogeneity within the stroma and identify interactions among stromal components that promote tumor growth and could be targeted therapeutically.

  8. Breast Tumor Angiogenesis and Tumor-Associated Macrophages: Histopathologist's Perspective

    Directory of Open Access Journals (Sweden)

    Ewe Seng Ch'ng

    2011-01-01

    Full Text Available Much progress has been made since the conceptualization of tumor angiogenesis—the induction of growth of new blood vessels by tumor—as a salient feature of clinically significant primary or metastatic cancers. From a practicing histopathologist's point of view, we appraise the application of this concept in breast cancer with particular reference to the evaluation of proangiogenic factors and the assessment of new microvessels in histopathological examination. Recently, much focus has also been centered on the active roles played by tumor-associated macrophages in relation to tumor angiogenesis. We review the literature; many data supporting this facet of tumor angiogenesis were derived from the breast cancer models. We scrutinize the large body of clinical evidence exploring the link between the tumor-associated macrophages and breast tumor angiogenesis and discuss particularly the methodology and limitations of incorporating such an assessment in histopathological examination.

  9. Fabrication and Cytotoxicity of Fucoidan-Cisplatin Nanoparticles for Macrophage and Tumor Cells

    Directory of Open Access Journals (Sweden)

    Pai-An Hwang

    2017-03-01

    Full Text Available Fucoidan, an anionic, sulfated polysaccharide from brown seaweed, is known to exhibit antitumor and immunomodulatory functions. To develop an immune protection and chemotherapeutic agent, fucoidan-cisplatin nanoparticles (FCNPs were designed. FCNPs were prepared by mixing cisplatin with fucoidan solution or fucoidan with cisplatin solution, followed by dialysis to remove trace elements. The nanoparticles, comprising 10 mg of fucoidan and 2 mg of cisplatin, which exhibited the highest cisplatin content and loading efficiency during the production process, were named as Fu100Cis20. The cisplatin content, cisplatin loading efficiency, nanoparticle size, and zeta potential of Fu100Cis20 were 18.9% ± 2.7%, 93.3% ± 7.8%, 181.2 ± 21.0 nm, and −67.4 ± 2.3 mV, respectively. Immune protection assay revealed that Fu100Cis20-treated RAW264.7 cells were protected from the cytotoxicity of cisplatin. Furthermore, antitumor assay indicated that Fu100Cis20-treated HCT-8 cells showed stronger cytotoxicity than those treated with cisplatin alone. These results suggested that fucoidan-based nanoparticles exhibited suitable particle size and high drug encapsulation, and that Fu100Cis20 has potential application in both immunotherapy and chemotherapy.

  10. Distinctive role of activated tumor-associated macrophages in photosensitizer accumulation

    Science.gov (United States)

    Korbelik, Mladen; Krosl, Gorazd

    1995-05-01

    Cells dissociated from tumors (carcinomas and sarcomas) growing subcutaneously in mice that have been administered Photofrin or other photosensitizers were analyzed by flow cytometry. Monoclonal antibodies were used for identification of major cellular populations contained in these tumors. The results demonstrate that a subpopulation of tumor-associated macrophages (TAMs) is unique among tumor cell populations in that it excels in the accumulation of very high levels of photosensitizers. These macrophages showed an increased expression of interleukin 2 receptor, which is indicative of their activated state. since macrophages were reported to concentrate in the periphery of human neoplasms, it is suggested that activates TAMs are the determinants of tumor-localized photosensitizer fluorescence.

  11. Induction of bone-type alkaline phosphatase in human vascular smooth muscle cells: roles of tumor necrosis factor-alpha and oncostatin M derived from macrophages.

    Science.gov (United States)

    Shioi, Atsushi; Katagi, Miwako; Okuno, Yasuhisa; Mori, Katsuhito; Jono, Shuichi; Koyama, Hidenori; Nishizawa, Yoshiki

    2002-07-12

    Inflammatory cells such as macrophages and T lymphocytes play an important role in vascular calcification associated with atherosclerosis and cardiac valvular disease. In particular, macrophages activated with cytokines derived from T lymphocytes such as interferon-gamma (IFN-gamma) may contribute to the development of vascular calcification. Moreover, we have shown the stimulatory effect of 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3) on in vitro calcification through increasing the expression of alkaline phosphatase (ALP), an ectoenzyme indispensable for bone mineralization, in vascular smooth muscle cells. Therefore, we hypothesized that macrophages may induce calcifying phenotype, especially the expression of ALP in human vascular smooth muscle cells (HVSMCs) in the presence of IFN-gamma and 1,25(OH)2D3. To test this hypothesis, we used cocultures of HVSMCs with human monocytic cell line (THP-1) or peripheral blood monocytes (PBMCs) in the presence of IFN-gamma and 1,25(OH)2D3. THP-1 cells or PBMCs induced ALP activity and its gene expression in HVSMCs and the cells with high expression of ALP calcified their extracellular matrix by the addition of beta-glycerophosphate. Thermostability and immunoassay showed that ALP induced in HVSMCs was bone-specific enzyme. We further identified tumor necrosis factor-alpha (TNF-alpha) and oncostatin M (OSM) as major factors inducing ALP in HVSMCs in the culture supernatants of THP-1 cells. TNF-alpha and OSM, only when applied together, increased ALP activities and in vitro calcification in HVSMCs in the presence of IFN-gamma and 1,25(OH)2D3. These results suggest that macrophages may contribute to the development of vascular calcification through producing various inflammatory mediators, especially TNF-alpha and OSM.

  12. Inflammation and Cancer: Extra- and Intracellular Determinants of Tumor-Associated Macrophages as Tumor Promoters

    Science.gov (United States)

    Vizler, Csaba; Kitajka, Klara; Puskas, Laszlo G.

    2017-01-01

    One of the hallmarks of cancer-related inflammation is the recruitment of monocyte-macrophage lineage cells to the tumor microenvironment. These tumor infiltrating myeloid cells are educated by the tumor milieu, rich in cancer cells and stroma components, to exert functions such as promotion of tumor growth, immunosuppression, angiogenesis, and cancer cell dissemination. Our review highlights the ontogenetic diversity of tumor-associated macrophages (TAMs) and describes their main phenotypic markers. We cover fundamental molecular players in the tumor microenvironment including extra- (CCL2, CSF-1, CXCL12, IL-4, IL-13, semaphorins, WNT5A, and WNT7B) and intracellular signals. We discuss how these factors converge on intracellular determinants (STAT3, STAT6, STAT1, NF-κB, RORC1, and HIF-1α) of cell functions and drive the recruitment and polarization of TAMs. Since microRNAs (miRNAs) modulate macrophage polarization key miRNAs (miR-146a, miR-155, miR-125a, miR-511, and miR-223) are also discussed in the context of the inflammatory myeloid tumor compartment. Accumulating evidence suggests that high TAM infiltration correlates with disease progression and overall poor survival of cancer patients. Identification of molecular targets to develop new therapeutic interventions targeting these harmful tumor infiltrating myeloid cells is emerging nowadays. PMID:28197019

  13. Cell elasticity determines macrophage function.

    Directory of Open Access Journals (Sweden)

    Naimish R Patel

    Full Text Available Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function.

  14. Depletion of tumor associated macrophages slows the growth of chemically-induced mouse lung adenocarcinomas

    Directory of Open Access Journals (Sweden)

    Jason M. Fritz

    2014-11-01

    Full Text Available Chronic inflammation is a risk factor for lung cancer, and low dose aspirin intake reduces lung cancer risk. However, the roles that specific inflammatory cells and their products play in lung carcinogenesis have yet to be fully elucidated. In mice, alveolar macrophage numbers increase as lung tumors progress, and pulmonary macrophage programming changes within 2 weeks of carcinogen exposure. To examine how macrophages specifically affect lung tumor progression, they were depleted in mice bearing urethane-induced lung tumors using clodronate-encapsulated liposomes. Alveolar macrophage populations decreased to ≤ 50% of control levels after 4-6 weeks of liposomal clodronate treatment. Tumor burden decreased by 50% compared to vehicle treated mice, and tumor cell proliferation, as measured by Ki67 staining, was also attenuated. Pulmonary fluid levels of IGF-I, CXCL1, IL-6 and CCL2 diminished with clodronate liposome treatment. Tumor associated macrophages expressed markers of both M1 and M2 programming in vehicle and clodronate liposome treated mice. Mice lacking CCR2 (the receptor for macrophage chemotactic factor CCL2 had comparable numbers of alveolar macrophages and showed no difference in tumor growth rates when compared to similarly treated wild-type mice suggesting that while CCL2 may recruit macrophages to lung tumor microenvironments, redundant pathways can compensate when CCL2/CCR2 signaling is inactivated. Depletion of pulmonary macrophages rather than inhibition of their recruitment may be an advantageous strategy for attenuating lung cancer progression.

  15. Promotion of Tumor Invasion by Cooperation of Granulocytes and Macrophages Activated by Anti-tumor Antibodies

    Directory of Open Access Journals (Sweden)

    Emilio Barbera-Guillem

    1999-11-01

    Full Text Available We investigated the potential role of anti-tumor antibodies and tumor antigens in the formation of immune complexes which promote matrix degradation and angiogenesis. B-cell deficient or B-cell depleted mice showed a reduction in tumor invasion and metastasis. In vitro invasion assays and in vivo models of metastasis showed that anti-sTn antibodies and sTn tumor antigens form complexes which induce granulocytes and macrophages together to mediate tumor invasion and metastasis by processes including extracellular matrix degradation and angiogenesis. These results suggest the existence of a tumor promoting role of a B-cell immune response induced by shed tumor associated antigens of solid, nonlymphoid tumors.

  16. Prognostic impact of tumor-associated macrophage infiltration in non-small cell lung cancer: A systemic review and meta-analysis

    Science.gov (United States)

    Guo, Chenglin; Pu, Qiang; Ma, Lin; Liu, Chengwu; Lin, Feng; Liao, Hu; You, Zongbing; Liu, Lunxu

    2016-01-01

    Tumor-associated macrophages (TAMs) are important components of cancer microenvironment. In the present study, we searched PubMed, Embase, Cochrane library and Web of Science to perform a meta-analysis of 20 studies including a total of 2,572 non-small cell lung cancer (NSCLC) patients, in order to determine the association between TAMs and NSCLC prognosis. The combined hazard ratio (HR) of 9 studies showed that the density of total CD68+ TAMs in the tumor islet and stroma was not associated with overall survival (OS) of the patients. However, the pooled HR of 4 studies showed that high density of CD68+ TAMs in the tumor islet predicted better OS, while the pooled HR of 6 studies showed that high density of CD68+ TAMs in the tumor stroma was associated with poor OS. A high islet/stroma ratio of CD68+ TAMs was associated with better OS. A high density of M1 TAMs in the tumor islet was associated with better OS, while a high density of M2 TAMs in the tumor stroma predicted poor OS. These findings suggest that, although the density of total CD68+ TAMs is not associated with OS, the localization and M1/M2 polarization of TAMs are potential prognostic predictors of NSCLC. PMID:27144518

  17. Activated macrophages containing tumor marker in colon carcinoma: immunohistochemical proof of a concept.

    Science.gov (United States)

    Faber, T J E; Japink, D; Leers, M P G; Sosef, M N; von Meyenfeldt, M F; Nap, M

    2012-04-01

    The presence of carcinoembryonic antigen (CEA)-containing activated macrophages has been demonstrated in peripheral blood from patients with colorectal carcinoma. Macrophages migrate from the circulation into the tissue, phagocytose debris, and return to the bloodstream. Hence it seems likely that activated macrophages containing tumor debris, i.e., tumor marker, are present in the stroma of colorectal carcinoma. After phagocytosis, they could follow a hematogenic or lymphogenic route to the peripheral blood. The aim of this study is to assess the presence of tumor marker-containing activated macrophages in the stroma of colon carcinoma and in regional lymph nodes. From 10 cases of colon carcinoma, samples of tumor tissue and metastasis-free lymph nodes were cut in serial sections and stained for CD68 to identify macrophages and for CEA, cytokeratin, or M30 presence. Slides were digitalised and visually inspected using two monitors, comparing the CD68 stain to the tumor marker stain to evaluate the presence of tumor marker-positive macrophages. Macrophages containing tumor marker could be identified in tumor stroma and in metastasis-free regional lymph nodes. The distribution varied for the different markers, CEA-positive macrophages being most abundant. The presence of macrophages containing tumor marker in the tumor stroma and lymph nodes from patients with colon carcinoma could be confirmed in this series using serial immunohistochemistry. This finding supports the concept of activated macrophages, after phagocytosing cell debris, being transported or migrating through the lymphatic system. These results support the potential of tumor marker-containing macrophages to serve as a marker for diagnosis and follow-up of colon cancer patients.

  18. Human immunodeficiency virus infection alters tumor necrosis factor alpha production via Toll-like receptor-dependent pathways in alveolar macrophages and U1 cells.

    Science.gov (United States)

    Nicol, Marlynne Q; Mathys, Jean-Marie; Pereira, Albertina; Ollington, Kevin; Ieong, Michael H; Skolnik, Paul R

    2008-08-01

    Human immunodeficiency virus (HIV)-positive persons are predisposed to pulmonary infections, even after receiving effective highly active antiretroviral therapy. The reasons for this are unclear but may involve changes in innate immune function. HIV type 1 infection of macrophages impairs effector functions, including cytokine production. We observed decreased constitutive tumor necrosis factor alpha (TNF-alpha) concentrations and increased soluble tumor necrosis factor receptor type II (sTNFRII) in bronchoalveolar lavage fluid samples from HIV-positive subjects compared to healthy controls. Moreover, net proinflammatory TNF-alpha activity, as measured by the TNF-alpha/sTNFRII ratio, decreased as HIV-related disease progressed, as manifested by decreasing CD4 cell count and increasing HIV RNA (viral load). Since TNF-alpha is an important component of the innate immune system and is produced upon activation of Toll-like receptor (TLR) pathways, we hypothesized that the mechanism associated with deficient TNF-alpha production in the lung involved altered TLR expression or a deficit in the TLR signaling cascade. We found decreased Toll-like receptor 1 (TLR1) and TLR4 surface expression in HIV-infected U1 monocytic cells compared to the uninfected parental U937 cell line and decreased TLR message in alveolar macrophages (AMs) from HIV-positive subjects. In addition, stimulation with TLR1/2 ligand (Pam(3)Cys) or TLR4 ligand (lipopolysaccharide) resulted in decreased intracellular phosphorylated extracellular signal-regulated kinase and subsequent decreased transcription and expression of TNF-alpha in U1 cells compared to U937 cells. AMs from HIV-positive subjects also showed decreased TNF-alpha production in response to these TLR2 and TLR4 ligands. We postulate that HIV infection alters expression of TLRs with subsequent changes in mitogen-activated protein kinase signaling and cytokine production that ultimately leads to deficiencies of innate immune responses that

  19. Resident macrophages influence stem cell activity in the mammary gland

    NARCIS (Netherlands)

    Gyorki, D.E.; Asselin-Labat, M.L.; Rooijen, van N.; Lindeman, G.J.; Visvader, J.E.

    2009-01-01

    Introduction Macrophages in the mammary gland are essential for morphogenesis of the ductal epithelial tree and have been implicated in promoting breast tumor metastasis. Although it is well established that macrophages influence normal mammopoiesis, the mammary cell types that these accessory cells

  20. A Truncated form of CD200 (CD200S Expressed on Glioma Cells Prolonged Survival in a Rat Glioma Model by Induction of a Dendritic Cell-Like Phenotype in Tumor-Associated Macrophages

    Directory of Open Access Journals (Sweden)

    Kana Kobayashi

    2016-04-01

    Full Text Available CD200 induces immunosuppression in myeloid cells expressing its receptor CD200R, which may have consequences for tumor immunity. We found that human carcinoma tissues express not only full-length CD200 (CD200L but also its truncated form, CD200S. Although CD200S is reported to antagonize the immunosuppressive actions of CD200L, the role of CD200S in tumor immunity has never been investigated. We established rat C6 glioma cell lines that expressed either CD200L or CD200S; the original C6 cell line did not express CD200 molecules. The cell lines showed no significant differences in growth. Upon transplantation into the neonatal Wistar rat forebrain parenchyma, rats transplanted with C6-CD200S cells survived for a significantly longer period than those transplanted with the original C6 and C6-CD200L cells. The C6-CD200S tumors were smaller than the C6-CD200L or C6-original tumors, and many apoptotic cells were found in the tumor cell aggregates. Tumor-associated macrophages (TAMs in C6-CD200S tumors displayed dendritic cell (DC-like morphology with multiple processes and CD86 expression. Furthermore, CD3+, CD4+ or CD8+ cells were more frequently found in C6-CD200S tumors, and the expression of DC markers, granzyme, and perforin was increased in C6-CD200S tumors. Isolated TAMs from original C6 tumors were co-cultured with C6-CD200S cells and showed increased expression of DC markers. These results suggest that CD200S activates TAMs to become DC-like antigen presenting cells, leading to the activation of CD8+ cytotoxic T lymphocytes, which induce apoptotic elimination of tumor cells. The findings on CD200S action may provide a novel therapeutic modality for the treatment of carcinomas.

  1. CD163-Positive Macrophages Within the Tumor Stroma Are Associated With Lymphangiogenesis and Lymph Node Metastasis in Oral Squamous Cell Carcinoma.

    Science.gov (United States)

    Yamagata, Yuko; Tomioka, Hirofumi; Sakamoto, Kei; Sato, Kiyoshi; Harada, Hiroyuki; Ikeda, Tohru; Kayamori, Kou

    2017-03-18

    Increasing evidence shows that tumor stromal components, particularly tumor-associated macrophages (TAMs), play an important role in the tumor progression of various solid malignant tumor types. However, their roles in oral squamous cell carcinoma (OSCC) have not been fully elucidated. Seventy human tongue OSCC samples were analyzed in the present study. Immunohistochemistry was used to investigate the correlations between the densities of CD68-, CD163-, and CD204-positive TAMs and clinicopathologic parameters. Lymphatic vessel density (LVD) was estimated using the D2-40 antibody. In vitro studies also were conducted to investigate the effect of conditioned medium (CM) derived from OSCC cell lines on cytokine and chemokine expression in RAW264.7 mouse monocytic leukemia cells. Increased densities of CD68-, CD163-, and CD204-positive TAMs were significantly correlated with lymph node metastasis (P = .035, .0082, and .038, respectively). Higher LVD occurred considerably more frequently in patients with nodal metastasis than in those without such metastasis. Moreover, LVD was considerably increased in patients with higher CD163-positive TAM densities. Studies using immunofluorescence showed that vascular endothelial growth factor (VEGF)-C was expressed in 52 of 70 patients with CD163-positive TAMs (74.2%). Moreover, CM derived from OSCC cell lines stimulated the expression of Il-10, Ccl22, Vegf-a, and Vegf-c in RAW264.7 cells; however, Il-12p35 expression levels were not changed. CD163-positive TAMs promote lymphangiogenesis through VEGF-C expression, which contributes to regional lymph node metastasis in OSCC. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  2. Tumor-derived interleukin-1 promotes lymphangiogenesis and lymph node metastasis through M2-type macrophages.

    Directory of Open Access Journals (Sweden)

    Kosuke Watari

    Full Text Available Tumors formed by a highly metastatic human lung cancer cell line are characterized by activated signaling via vascular endothelial growth factor (VEGF-C through its receptor (VEGFR-3 and aggressive lymph node metastasis. In this study, we examined how these highly metastatic cancers acquired aggressive lymph node metastasis. Compared with their lower metastatic counterparts, the highly metastatic tumors formed by this cell line expressed higher amounts of interleukin (IL-1α, with similarly augmented expression of IL-1α and IL-1β by tumor stromal cells and of VEGF-A and VEGF-C by tumor-associated macrophages. These tumor-associated macrophages were mainly of the M2 type. Administration of a macrophage-targeting drug suppressed the production of these potent angiogenic and lymphangiogenic factors, resulting in decreased tumor growth, angiogenesis, lymphangiogenesis, and lymph node metastasis. In Matrigel plug assays, the highly metastatic cells formed tumors that were extensively infiltrated by M2-type macrophages and exhibited enhanced angiogenesis and lymphangiogenesis. All of these responses were suppressed by the IL-1 receptor (IL-1R antagonist anakinra. Thus, the IL-1α-driven inflammatory activation of angiogenesis and lymphangiogenesis seems to provide a highly metastatic tumor microenvironment favorable for lymph node metastasis through cross-talk with macrophages. Accordingly, the IL-1R/M2-type macrophage axis may be a good therapeutic target for patients with this form of lung cancer.

  3. Tumor-derived interleukin-1 promotes lymphangiogenesis and lymph node metastasis through M2-type macrophages.

    Science.gov (United States)

    Watari, Kosuke; Shibata, Tomohiro; Kawahara, Akihiko; Sata, Ken-ichi; Nabeshima, Hiroshi; Shinoda, Ai; Abe, Hideyuki; Azuma, Koichi; Murakami, Yuichi; Izumi, Hiroto; Takahashi, Takashi; Kage, Masayoshi; Kuwano, Michihiko; Ono, Mayumi

    2014-01-01

    Tumors formed by a highly metastatic human lung cancer cell line are characterized by activated signaling via vascular endothelial growth factor (VEGF)-C through its receptor (VEGFR-3) and aggressive lymph node metastasis. In this study, we examined how these highly metastatic cancers acquired aggressive lymph node metastasis. Compared with their lower metastatic counterparts, the highly metastatic tumors formed by this cell line expressed higher amounts of interleukin (IL)-1α, with similarly augmented expression of IL-1α and IL-1β by tumor stromal cells and of VEGF-A and VEGF-C by tumor-associated macrophages. These tumor-associated macrophages were mainly of the M2 type. Administration of a macrophage-targeting drug suppressed the production of these potent angiogenic and lymphangiogenic factors, resulting in decreased tumor growth, angiogenesis, lymphangiogenesis, and lymph node metastasis. In Matrigel plug assays, the highly metastatic cells formed tumors that were extensively infiltrated by M2-type macrophages and exhibited enhanced angiogenesis and lymphangiogenesis. All of these responses were suppressed by the IL-1 receptor (IL-1R) antagonist anakinra. Thus, the IL-1α-driven inflammatory activation of angiogenesis and lymphangiogenesis seems to provide a highly metastatic tumor microenvironment favorable for lymph node metastasis through cross-talk with macrophages. Accordingly, the IL-1R/M2-type macrophage axis may be a good therapeutic target for patients with this form of lung cancer.

  4. Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft.

    Science.gov (United States)

    Gazzaniga, Silvina; Bravo, Alicia I; Guglielmotti, Angelo; van Rooijen, Nico; Maschi, Fabricio; Vecchi, Annunciata; Mantovani, Alberto; Mordoh, José; Wainstok, Rosa

    2007-08-01

    Chemokines such as monocyte chemoattractant protein (MCP)-1 are key agonists that attract macrophages to tumors. In melanoma, it has been previously shown that variable levels of MCP-1/CCL2 appear to correlate with infiltrating macrophages and tumor fate, with low to intermediate levels of the chemokine contributing to melanoma development. To work under such conditions, a poorly tumorigenic human melanoma cell line was transfected with an expression vector encoding MCP-1. We found that M2 macrophages are associated to MCP-1+ tumors, triggering a profuse vascular network. To target the protumoral macrophages recruitment and reverting tumor growth promotion, clodronate-laden liposomes (Clod-Lip) or bindarit were administered to melanoma-bearing mice. Macrophage depletion after Clod-Lip treatment induced development of smaller tumors than in untreated mice. Immunohistochemical analysis with an anti-CD31 antibody revealed scarce vascular structures mainly characterized by narrow vascular lights. Pharmacological inhibition of MCP-1 with bindarit also reduced tumor growth and macrophage recruitment, rendering necrotic tumor masses. We suggest that bindarit or Clod-Lip abrogates protumoral-associated macrophages in human melanoma xenografts and could be considered as complementary approaches to antiangiogenic therapy.

  5. Macrophages promote benzopyrene-induced tumor transformation of human bronchial epithelial cells by activation of NF-κB and STAT3 signaling in a bionic airway chip culture and in animal models.

    Science.gov (United States)

    Li, Encheng; Xu, Zhiyun; Zhao, Hui; Sun, Zhao; Wang, Lei; Guo, Zhe; Zhao, Yang; Gao, Zhancheng; Wang, Qi

    2015-04-20

    We investigated the role of macrophages in promoting benzopyrene (BaP)-induced malignant transformation of human bronchial epithelial cells using a BaP-induced tumor transformation model with a bionic airway chip in vitro and in animal models. The bionic airway chip culture data showed that macrophages promoted BaP-induced malignant transformation of human bronchial epithelial cells, which was mediated by nuclear factor (NF)-κB and STAT3 pathways to induce cell proliferation, colony formation in chip culture, and tumorigenicity in nude mice. Blockage of interleukin (IL)-6 or tumor necrosis factor (TNF)-α signaling or inhibition of NF-κB, STAT3, or cyclinD1 expression abrogated the effect of macrophages on malignant transformation in the bionic airway chip culture. In vivo, macrophages promoted lung tumorigenesis in a carcinogen-induced animal model. Similarly, blockage of NF-κB, STAT3, or cyclinD1 using siRNA transfection decreased the carcinogen-induced tumorigenesis in rats. We demonstrated that macrophages are critical in promoting lung tumorigenesis and that the macrophage-initiated TNF-α/NF-κB/cyclinD1 and IL-6/STAT3/cyclinD1 pathways are primarily responsible for promoting lung tumorigenesis.

  6. Metastasis Suppressors Regulate the Tumor Microenvironment by Blocking Recruitment of Prometastatic Tumor-Associated Macrophages.

    Science.gov (United States)

    Frankenberger, Casey; Rabe, Daniel; Bainer, Russell; Sankarasharma, Devipriya; Chada, Kiran; Krausz, Thomas; Gilad, Yoav; Becker, Lev; Rosner, Marsha Rich

    2015-10-01

    Triple-negative breast cancer (TNBC) patients have the highest risk of recurrence and metastasis. Because they cannot be treated with targeted therapies, and many do not respond to chemotherapy, they represent a clinically underserved group. TNBC is characterized by reduced expression of metastasis suppressors such as Raf kinase inhibitory protein (RKIP), which inhibits tumor invasiveness. Mechanisms by which metastasis suppressors alter tumor cells are well characterized; however, their ability to regulate the tumor microenvironment and the importance of such regulation to metastasis suppression are incompletely understood. Here, we use species-specific RNA sequencing to show that RKIP expression in tumors markedly reduces the number and metastatic potential of infiltrating tumor-associated macrophages (TAM). TAMs isolated from nonmetastatic RKIP(+) tumors, relative to metastatic RKIP(-) tumors, exhibit a reduced ability to drive tumor cell invasion and decreased secretion of prometastatic factors, including PRGN, and shed TNFR2. RKIP regulates TAM recruitment by blocking HMGA2, resulting in reduced expression of numerous macrophage chemotactic factors, including CCL5. CCL5 overexpression in RKIP(+) tumors restores recruitment of prometastatic TAMs and intravasation, whereas treatment with the CCL5 receptor antagonist Maraviroc reduces TAM infiltration. These results highlight the importance of RKIP as a regulator of TAM recruitment through chemokines such as CCL5. The clinical significance of these interactions is underscored by our demonstration that a signature comprised of RKIP signaling and prometastatic TAM factors strikingly separates TNBC patients based on survival outcome. Collectively, our findings identify TAMs as a previously unsuspected mechanism by which the metastasis-suppressor RKIP regulates tumor invasiveness, and further suggest that TNBC patients with decreased RKIP activity and increased TAM infiltration may respond to macrophage

  7. Initiative action of tumor-associated macrophage during tumor metastasis

    Directory of Open Access Journals (Sweden)

    Saroj Singh

    2017-06-01

    In this review article, we present an overview of mechanisms responsible for TAMs recruitment and highlight the roles of TAMs in the regulation of tumor angiogenesis, invasion, metastasis, immunosuppression, and chemotherapeutic resistance. We describe the interplay between Th17 cells and other immune cells in the tumor microenvironment, and we assess both the potential antitumorigenic and pro-tumorigenic activities of Th17 cells and their associated cytokines. Understanding the nature of Th17 cell responses in the tumor microenvironment will be important for the design of more efficacious cancer immunotherapies. Finally, we discuss TAM-targeting therapy as a promising novel strategy for an indirect cancer therapy.

  8. Reciprocal Supportive Interplay between Glioblastoma and Tumor-Associated Macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Wenchao; Bao, Shideng, E-mail: baos@ccf.org [Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 (United States)

    2014-03-26

    Glioblastoma multiforme (GBM) is the most lethal and aggressive type of primary brain malignancy. Failures of the traditional therapies in treating GBMs raise the urgent requirement to develop new approaches with more responsive targets. The phenomenon of the high infiltration of tumor-associated macrophages (TAMs) into GBMs has been observed for a long time. Regardless of the limited knowledge about TAMs, the high percentage of supportive TAM in GBM tumor mass makes it possible to be a good target for GBM treatment. In this review, we discussed the unique features of TAMs in GBMs, including their origin, the tumor-supportive properties, the secreted cytokines, and the relevant mechanisms. In addition, we tried to interpret the current understandings about the interplay between GBM cancer cells and TAMs. Finally, the translational studies of targeting TAMs were also described.

  9. ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages

    Institute of Scientific and Technical Information of China (English)

    Yan Zhang; Swati Choksi; Kun Chen; Yelena Pobezinskaya; Ilona Linnoila; Zheng-Gang Liu

    2013-01-01

    Differentiation to different types of macrophages determines their distinct functions.Tumor-associated macrophages (TAMs) promote tumorigenesis owing to their proangiogenic and immune-suppressive functions similar to those of alternatively activated (M2) macrophages.We report that reactive oxygen species (ROS) production is critical for macrophage differentiation and that inhibition of superoxide (O2-) production specifically blocks the differentiation of M2 macrophages.We found that when monocytes are triggered to differentiate,O2-is generated and is needed for the biphasic ERK activation,which is critical for macrophage differentiation.We demonstrated that ROS elimination by butylated hydroxyanisole (BHA) and other ROS inhibitors blocks macrophage differentiation.However,the inhibitory effect of ROS elimination on macrophage differentiation is overcome when cells are polarized to classically activated (M1),but not M2,macrophages.More importantly,the continuous administration of the ROS inhibitor BHA efficiently blocked the occurrence of TAMs and markedly suppressed tumorigenesis in mouse cancer models.Targeting TAMs by blocking ROS can be a potentially effective method for cancer treatment.

  10. Macrophages Mediate a Switch between Canonical and Non-Canonical Wnt Pathways in Canine Mammary Tumors

    Science.gov (United States)

    Król, Magdalena; Mucha, Joanna; Majchrzak, Kinga; Homa, Agata; Bulkowska, Małgorzata; Majewska, Alicja; Gajewska, Małgorzata; Pietrzak, Marta; Perszko, Mikołaj; Romanowska, Karolina; Pawłowski, Karol; Manuali, Elisabetta; Hellmen, Eva; Motyl, Tomasz

    2014-01-01

    Objective According to the current hypothesis, tumor-associated macrophages (TAMs) are “corrupted” by cancer cells and subsequently facilitate, rather than inhibit, tumor metastasis. Because the molecular mechanisms of cancer cell–TAM interactions are complicated and controversial we aimed to better define this phenomenon. Methods and Results Using microRNA microarrays, Real-time qPCR and Western blot we showed that co-culture of canine mammary tumor cells with TAMs or treatment with macrophage-conditioned medium inhibited the canonical Wnt pathway and activated the non-canonical Wnt pathway in tumor cells. We also showed that co-culture of TAMs with tumor cells increased expression of canonical Wnt inhibitors in TAMs. Subsequently, we demonstrated macrophage-induced invasive growth patterns and epithelial–mesenchymal transition of tumor cells. Validation of these results in canine mammary carcinoma tissues (n = 50) and xenograft tumors indicated the activation of non-canonical and canonical Wnt pathways in metastatic tumors and non-metastatic malignancies, respectively. Activation of non-canonical Wnt pathway correlated with number of TAMs. Conclusions We demonstrated that TAMs mediate a “switch” between canonical and non-canonical Wnt signaling pathways in canine mammary tumors, leading to increased tumor invasion and metastasis. Interestingly, similar changes in neoplastic cells were observed in the presence of macrophage-conditioned medium or live macrophages. These observations indicate that rather than being “corrupted” by cancer cells, TAMs constitutively secrete canonical Wnt inhibitors that decrease tumor proliferation and development, but as a side effect, they induce the non-canonical Wnt pathway, which leads to tumor metastasis. These data challenge the conventional understanding of TAM–cancer cell interactions. PMID:24404146

  11. Modulation of transglutaminase activity in mononuclear phagocytes and macrophage-like tumor cell lines by differentiation agents

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, R.

    1987-01-01

    The effect of glucocorticosteroids, retinoids, 1,25-dihydroxyvitamin D/sub 3/ (1,25(OH)/sub 2/D/sub 3/) and the tumor promoter phorbol myristate acetate (TPA) on the expression of transglutaminase activity in in vitro differentiating bone marrow-derived mouse and rat mononuclear phagocytes (BMDMP) and mouse and human myeloid leukemia cell lines was assessed. Dexamethasone was found to induce an increase of about 100% in transglutaminase activity in mouse and rat BMDMP. The effect was time- and dose-dependent, and specific for steroids with glucocorticoid activity. Retinoic acid (RA) suppressed transglutaminase activity in mouse BMDMP and enhanced it in rat BMDMP. In murine and human myeloid leukemia cell lines, dexamethasone enhanced transglutaminase activity to a varying degree, RA suppressed it in P388D1 cells and enhanced it in the other cell lines. 1,25(OH)/sub 2/D/sub 3/ induced a rather small augmentation of enzyme expression, whereas TPA suppressed enzyme expression (70-100%). The species-specific differences previously observed by the authors for the effect of RA, dexamethasone and 1,25(OH)/sub 2/D/sub 3/ on the formation of BMDMP from mouse and rat bone marrow progenitor cells are now shown to extend also to effects on expression of transglutaminase activity. From a mechanistic point of view it is of interest that dexamethasone uniformly enhanced transglutaminase activity, whereas TPA suppressed it. The data suggest that modulation of transglutaminase activity by the four agents occurs via disparate mechanisms.

  12. Multiple myeloma cells recruit tumor-supportive macrophages through the CXCR4/CXCL12 axis and promote their polarization toward the M2 phenotype.

    Science.gov (United States)

    Beider, Katia; Bitner, Hanna; Leiba, Merav; Gutwein, Odit; Koren-Michowitz, Maya; Ostrovsky, Olga; Abraham, Michal; Wald, Hanna; Galun, Eithan; Peled, Amnon; Nagler, Arnon

    2014-11-30

    Multiple myeloma (MM) cells specifically attract peripheral-blood monocytes, while interaction of MM with bone marrow stromal cells (BMSCs) significantly increased monocyte recruitment (p<0.01). The CXCL12 chemokine, produced by both the MM and BMSCs, was found to be a critical regulator of monocyte migration. CXCL12 production was up-regulated under MM-BMSCs co-culture conditions, whereas blockage with anti-CXCR4 antibodies significantly abrogated monocyte recruitment toward a MM-derived conditioned medium (p<0.01). Furthermore, elevated levels of CXCL12 were detected in MM, but not in normal BM samples, whereas malignant MM cells often represented the source of increased CXCL12 in the BM. Blood-derived macrophages effectively supported MM cells proliferation and protected them from chemotherapy-induced apoptosis. Importantly, MM cells affected macrophage polarization, elevating the expression of M2-related scavenger receptor CD206 in macrophages and blocking LPS-induced TNFα secretion (a hallmark of M1 response). Of note, MM-educated macrophages suppressed T-cell proliferation and IFNγ production in response to activation. Finally, increased numbers of CXCR4-expressing CD163+CD206+ macrophages were detected in the BM of MM patients (n=25) in comparison to MGUS (n=11) and normal specimens (n=8). Taken together, these results identify macrophages as important players in MM tumorogenicity, and recognize the CXCR4/CXCL12 axis as a critical regulator of MM-stroma interactions and microenvironment formation.

  13. Histological perspective on the effects of tumor-associated macrophages in the tumor microenvironment surrounding papillary thyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Nuray Y. Can

    2017-02-01

    Full Text Available Tumor-associated macrophages (TAMs are one of the most noticeable elements of the tumor microenvironment. The present study investigated the relationships between the density of CD163 immunolabeled M2-like TAMs with other histological properties of the tumor microenvironment and clinipathological features in 90 patients with papillary thyroid carcinomas (PTC. The percentage of TAMs was higher in tumors with significant lymphocytic tumor response (p = 0.020, in tumors with a significant degree of stromal tumor response (p = 0.014, those with infiltrative tumor borders (p = 0.029, in conventional variant papillary carcinoma (p = 0.032, and in patients with autoantibodies for thyroid peroxidase (p = 0.014. The tumors associated with lymphocytic thyroiditis had lower numbers of TAMs (p = 0.027. In conclusion, for the first time, the present study attempts to establish a full assessment of interactions of CD163 expressing M2-like TAMs with the triad of primary tumor- tumor microenvironment- tumor behavior and above all, with markers of autoimmunity. Thus, these alternatively polarized macrophages may act in tumor progression and dissemination according to their various products, which may be ordered by tumor cells or neighboring immune cells. The molecular studies may reveal their roles in various tumors and may improve the therapy strategies targeting TAMs in various malignant tumors, including PTCs.

  14. New Mechanisms of Tumor-Associated Macrophages on Promoting Tumor Progression: Recent Research Advances and Potential Targets for Tumor Immunotherapy

    Directory of Open Access Journals (Sweden)

    Qiujun Guo

    2016-01-01

    Full Text Available The majority of basic and clinical studies have shown a protumor function of tumor-associated macrophages (TAMs, which represent a large proportion of matrix cells. TAMs promote tumorigenesis, and their number is related to the malignancy degree and poor prognosis of many kinds of tumors. Macrophage plasticity makes it possible to change the tumor microenvironment and remodel antitumor immunity during cancer immunotherapy. Increasing numbers of studies have revealed the effects of TAMs on the tumor microenvironment, for example, via promotion of tumor growth and tumorigenesis and through an increase in the number of cancer stem cells or via facilitation of angiogenesis, lymphangiogenesis, and metastasis. Investigators also proposed tumor-immunological treatments targeting TAMs by inhibiting TAM recruitment and differentiation, by regulating TAM polarization, and by blocking factors and pathways associated with the protumor function of TAMs. This comprehensive review presents recent research on TAMs in relation to prediction of poor outcomes, remodeling of the tumor immune microenvironment, and immunological targeted therapies.

  15. Macrophage biology plays a central role during ionizing radiation-elicited tumor response

    Directory of Open Access Journals (Sweden)

    Qiuji Wu

    2017-08-01

    Full Text Available Radiation therapy is one of the major therapeutic modalities for most solid tumors. The anti-tumor effect of radiation therapy consists of the direct tumor cell killing, as well as the modulation of tumor microenvironment and the activation of immune response against tumors. Radiation therapy has been shown to promote immunogenic cells death, activate dendritic cells and enhance tumor antigen presentation and anti-tumor T cell activation. Radiation therapy also programs innate immune cells such as macrophages that leads to either radiosensitization or radioresistance, according to different tumors and different radiation regimen studied. The mechanisms underlying radiation-induced macrophage activation remain largely elusive. Various molecular players such as NF-κB, MAPKs, p53, reactive oxygen species, inflammasomes have been involved in these processes. The skewing to a pro-inflammatory phenotype thus results in the activation of anti-tumor immune response and enhanced radiotherapy effect. Therefore, a comprehensive understanding of the mechanism of radiation-induced macrophage activation and its role in tumor response to radiation therapy is crucial for the development of new therapeutic strategies to enhance radiation therapy efficacy.

  16. TNF Counterbalances the Emergence of M2 Tumor Macrophages

    Directory of Open Access Journals (Sweden)

    Franz Kratochvill

    2015-09-01

    Full Text Available Cancer can involve non-resolving, persistent inflammation where varying numbers of tumor-associated macrophages (TAMs infiltrate and adopt different activation states between anti-tumor M1 and pro-tumor M2 phenotypes. Here, we resolve a cascade causing differential macrophage phenotypes in the tumor microenvironment. Reduction in TNF mRNA production or loss of type I TNF receptor signaling resulted in a striking pattern of enhanced M2 mRNA expression. M2 gene expression was driven in part by IL-13 from eosinophils co-recruited with inflammatory monocytes, a pathway that was suppressed by TNF. Our data define regulatory nodes within the tumor microenvironment that balance M1 and M2 populations. Our results show macrophage polarization in cancer is dynamic and dependent on the balance between TNF and IL-13, thus providing a strategy for manipulating TAMs.

  17. TNF counterbalances the emergence of M2 tumor macrophages

    Science.gov (United States)

    Kratochvill, Franz; Neale, Geoffrey; Haverkamp, Jessica M.; de Velde, Lee-Ann Van; Smith, Amber M.; Kawauchi, Daisuke; McEvoy, Justina; Roussel, Martine F.; Dyer, Michael A.; Qualls, Joseph E.; Murray, Peter J.

    2015-01-01

    Cancer is a form of non-resolving, persistent inflammation where varying numbers of tumor-associated macrophages (TAMs) infiltrate and adopt different activation states between anti-tumor M1 and pro-tumor M2 phenotypes. Here we resolve a cascade causing differential macrophage phenotypes in the tumor microenvironment. Reduction in TNF mRNA production or loss of Type I TNF receptor signaling resulted in a striking pattern of enhanced M2 mRNA expression. M2 gene expression was driven in part by IL-13 from eosinophils co-recruited with inflammatory monocytes, a pathway that was suppressed by TNF. Our data define regulatory nodes within the tumor microenvironment that balance M1 and M2 populations. Our results show macrophage polarization in cancer is dynamic and dependent on the balance between TNF and IL-13, thus providing a strategy for manipulating TAMs. PMID:26365184

  18. Novel interactions between erythroblast macrophage protein and cell migration.

    Science.gov (United States)

    Javan, Gulnaz T; Can, Ismail; Yeboah, Fred; Lee, Youngil; Soni, Shivani

    2016-09-01

    Erythroblast macrophage protein is a novel protein known to mediate attachment of erythroid cells to macrophages to form erythroblastic islands in bone marrow during erythropoiesis. Emp-null macrophages are small with round morphologies, and lack cytoplasmic projections which imply immature structure. The role of Emp in macrophage development and function is not fully elucidated. Macrophages perform varied functions (e.g. homeostasis, erythropoiesis), and are implicated in numerous pathophysiological conditions such as cellular malignancy. The objective of the current study is to investigate the interaction of Emp with cytoskeletal- and cell migration-associated proteins involved in macrophage functions. A short hairpin RNA lentiviral system was use to down-regulate the expression of Emp in macrophage cells. A cell migration assay revealed that the relocation of macrophages was significantly inhibited when Emp expression was decreased. To further analyze changes in gene expression related to cell motility, PCR array was performed by down-regulating Emp expression. The results indicated that expression of mitogen-activated protein kinase 1 and thymoma viral proto-oncogene 1 were significantly higher when Emp was down-regulated. The results implicate Emp in abnormal cell motility, thus, warrants to assess its role in cancer where tumor cell motility is required for invasion and metastasis.

  19. Macrophages eat cancer cells using their own calreticulin as a guide: roles of TLR and Btk.

    Science.gov (United States)

    Feng, Mingye; Chen, James Y; Weissman-Tsukamoto, Rachel; Volkmer, Jens-Peter; Ho, Po Yi; McKenna, Kelly M; Cheshier, Samuel; Zhang, Michael; Guo, Nan; Gip, Phung; Mitra, Siddhartha S; Weissman, Irving L

    2015-02-17

    Macrophage-mediated programmed cell removal (PrCR) is an important mechanism of eliminating diseased and damaged cells before programmed cell death. The induction of PrCR by eat-me signals on tumor cells is countered by don't-eat-me signals such as CD47, which binds macrophage signal-regulatory protein α to inhibit phagocytosis. Blockade of CD47 on tumor cells leads to phagocytosis by macrophages. Here we demonstrate that the activation of Toll-like receptor (TLR) signaling pathways in macrophages synergizes with blocking CD47 on tumor cells to enhance PrCR. Bruton's tyrosine kinase (Btk) mediates TLR signaling in macrophages. Calreticulin, previously shown to be an eat-me signal on cancer cells, is activated in macrophages for secretion and cell-surface exposure by TLR and Btk to target cancer cells for phagocytosis, even if the cancer cells themselves do not express calreticulin.

  20. Functional TRAIL receptors in monocytes and tumor-associated macrophages: A possible targeting pathway in the tumor microenvironment

    Science.gov (United States)

    Liguori, Manuela; Buracchi, Chiara; Pasqualini, Fabio; Bergomas, Francesca; Pesce, Samantha; Sironi, Marina; Grizzi, Fabio; Mantovani, Alberto

    2016-01-01

    Despite the accepted dogma that TRAIL kills only tumor cells and spares normal ones, we show in this study that mononuclear phagocytes are susceptible to recombinant TRAIL via caspase-dependent apoptosis. Human resting monocytes and in vitro-differentiated macrophages expressed substantial levels of the functional TRAIL receptors (TRAIL-R1 and TRAIL-R2), while neutrophils and lymphocytes mostly expressed the non-signaling decoy receptor (TRAIL-R3). Accordingly, exclusively monocytes and macrophages activated caspase-8 and underwent apoptosis upon recombinant TRAIL treatment. TRAIL-Rs were up-regulated by anti-inflammatory agents (IL-10, glucocorticoids) and by natural compounds (Apigenin, Quercetin, Palmitate) and their treatment resulted in increased TRAIL-induced apoptosis. In mice, the only signaling TRAIL-R (DR5) was preferentially expressed by blood monocytes rather than neutrophils or lymphocytes. In both mice and humans, Tumor-Associated Macrophages (TAM) expressed functional TRAIL-R, while resident macrophages in normal tissues did not. As a proof of principle, we treated mice bearing a murine TRAIL-resistant fibrosarcoma with recombinant TRAIL. We observed significant decrease of circulating monocytes and infiltrating TAM, as well as reduced tumor growth and lower metastasis formation. Overall, these findings demonstrate that human and murine monocytes/macrophages are, among leukocytes, uniquely susceptible to TRAIL-mediated killing. This differential susceptibility to TRAIL could be exploited to selectively target macrophages in tumors. PMID:27191500

  1. Modulation of macrophage antitumor potential by apoptotic lymphoma cells.

    Science.gov (United States)

    Voss, Jorine J L P; Ford, Catriona A; Petrova, Sofia; Melville, Lynsey; Paterson, Margaret; Pound, John D; Holland, Pam; Giotti, Bruno; Freeman, Tom C; Gregory, Christopher D

    2017-06-01

    In aggressive non-Hodgkin's lymphoma (NHL), constitutive apoptosis of a proportion of the tumor cell population can promote net tumor growth. This is associated with the accumulation of tumor-associated macrophages (TAMs) that clear apoptotic cells and exhibit pro-oncogenic transcriptional activation profiles characteristic of reparatory, anti-inflammatory and angiogenic programs. Here we consider further the activation status of these TAMs. We compare their transcriptomic profile with that of a range of other macrophage types from various tissues noting especially their expression of classically activated (IFN-γ and LPS) gene clusters - typically antitumor - in addition to their previously described protumor phenotype. To understand the impact of apoptotic cells on the macrophage activation state, we cocultured apoptotic lymphoma cells with classically activated macrophages (M(IFN-γ/LPS), also known as M1, macrophages). Although untreated and M(IFN-γ/LPS) macrophages were able to bind apoptotic lymphoma cells equally well, M(IFN-γ/LPS) macrophages displayed enhanced ability to phagocytose them. We found that direct exposure of M(IFN-γ/LPS) macrophages to apoptotic lymphoma cells caused switching towards a protumor activation state (often referred to as M2-like) with concomitant inhibition of antitumor activity that was a characteristic feature of M(IFN-γ/LPS) macrophages. Indeed, M(IFN-γ/LPS) macrophages exposed to apoptotic lymphoma cells displayed increased lymphoma growth-promoting activities. Antilymphoma activity by M(IFN-γ/LPS) macrophages was mediated, in part, by galectin-3, a pleiotropic glycoprotein involved in apoptotic cell clearance that is strongly expressed by lymphoma TAMs but not lymphoma cells. Intriguingly, aggressive lymphoma growth was markedly impaired in mice deficient in galectin-3, suggesting either that host galectin-3-mediated antilymphoma activity is required to sustain net tumor growth or that additional functions of galectin-3

  2. Comparative activation states of tumor-associated and peritoneal macrophages from mice bearing an induced fibrosarcoma.

    Science.gov (United States)

    Valdez, J C; de Alderete, N; Meson, O E; Sirena, A; Perdigon, G

    1990-11-01

    Balb/c mice bearing a methylcholanthrene-induced fibrosarcoma were used to compare the activation levels of tumor-associated and peritoneal macrophages. Two stages of tumor growth were examined, namely "small" and "large" tumors, with average diameters of 10 and 30 mm, respectively. The activation state, determined by measurement of both phagocytic index and beta-glucuronidase content, was found to be markedly higher in tumor-associated macrophages than in their peritoneal counterparts and it was, in addition, independent of tumor progression. The percentage of tumor-associated macrophages, which were detected on the basis of Fc receptor expression, remained constant in the growing neoplasm, at approximately 23% of total cell population. None of these parameters were affected by inoculation with an immunopotentiating dose of heat-killed Candida albicans which, on the other hand, seemed not to alter the course of the tumor. These data suggest that within the tumor microenvironment macrophages would somehow be maintained at a constant proportion and at a highly activated state, while outside the tumor they would be at a lower activation level. Our results also suggest that TAM would not possess antitumor activity in vivo, although we have found this activity in vitro.

  3. Prognostic Implication of M2 Macrophages Are Determined by the Proportional Balance of Tumor Associated Macrophages and Tumor Infiltrating Lymphocytes in Microsatellite-Unstable Gastric Carcinoma

    Science.gov (United States)

    Kim, Kyung-Ju; Wen, Xian-Yu; Yang, Han Kwang; Kim, Woo Ho; Kang, Gyeong Hoon

    2015-01-01

    Tumor associated macrophages are major inflammatory cells that play an important role in the tumor microenvironment. In this study, we investigated the prognostic significance of tumor associated macrophages (TAMs) in MSI-high gastric cancers using immunohistochemistry. CD68 and CD163 were used as markers for total infiltrating macrophages and M2-polarized macrophages, respectively. The density of CD68+ or CD163+ TAMs in four different areas (epithelial and stromal compartments of both the tumor center and invasive front) were analyzed in 143 cases of MSI-high advanced gastric cancers using a computerized image analysis system. Gastric cancers were scored as “0” or “1” in each area when the density of CD68+ and CD163+ TAMs was below or above the median value. Low density of CD68+ or CD163+ macrophages in four combined areas was closely associated with more frequent low-grade histology and the intestinal type tumor of the Lauren classification. In survival analysis, the low density of CD163+ TAMs was significantly associated with poor disease-free survival. In multivariate survival analysis, CD163+ TAMs in four combined areas, stromal and epithelial compartments of both tumor center and invasive front were independent prognostic indicator in MSI-high gastric cancers. In addition, the density of CD163+ TAMs correlated with tumor infiltrating lymphocytes (TILs). Our results indicate that the high density of CD163+ TAMs is an independent prognostic marker heralding prolonged disease-free survival and that the prognostic implication of CD163+ TAMs might be determined by the proportional balance of TAMs and TILs in MSI-high gastric cancers. PMID:26714314

  4. Prognostic Implication of M2 Macrophages Are Determined by the Proportional Balance of Tumor Associated Macrophages and Tumor Infiltrating Lymphocytes in Microsatellite-Unstable Gastric Carcinoma.

    Directory of Open Access Journals (Sweden)

    Kyung-Ju Kim

    Full Text Available Tumor associated macrophages are major inflammatory cells that play an important role in the tumor microenvironment. In this study, we investigated the prognostic significance of tumor associated macrophages (TAMs in MSI-high gastric cancers using immunohistochemistry. CD68 and CD163 were used as markers for total infiltrating macrophages and M2-polarized macrophages, respectively. The density of CD68+ or CD163+ TAMs in four different areas (epithelial and stromal compartments of both the tumor center and invasive front were analyzed in 143 cases of MSI-high advanced gastric cancers using a computerized image analysis system. Gastric cancers were scored as "0" or "1" in each area when the density of CD68+ and CD163+ TAMs was below or above the median value. Low density of CD68+ or CD163+ macrophages in four combined areas was closely associated with more frequent low-grade histology and the intestinal type tumor of the Lauren classification. In survival analysis, the low density of CD163+ TAMs was significantly associated with poor disease-free survival. In multivariate survival analysis, CD163+ TAMs in four combined areas, stromal and epithelial compartments of both tumor center and invasive front were independent prognostic indicator in MSI-high gastric cancers. In addition, the density of CD163+ TAMs correlated with tumor infiltrating lymphocytes (TILs. Our results indicate that the high density of CD163+ TAMs is an independent prognostic marker heralding prolonged disease-free survival and that the prognostic implication of CD163+ TAMs might be determined by the proportional balance of TAMs and TILs in MSI-high gastric cancers.

  5. β-elemene inhibits tumor-promoting effect of M2 macrophages in lung cancer.

    Science.gov (United States)

    Yu, Xiaomu; Xu, Maoyi; Li, Na; Li, Zongjuan; Li, Hongye; Shao, Shujuan; Zou, Kun; Zou, Lijuan

    2017-08-19

    Macrophages in tumor are mostly M2-polarized and have been reported to promote tumorigenesis, which are also defined as tumor-associated macrophages (TAMs). β-elemene has therapeutic effects against several cancers, however, it remains unknown whether β-elemene could inhibit cancer by targeting TAMs. Herein, we examined the effect of β-elemene on macrophages to elucidate a novel mechanism of β-elemene in tumor therapy. We showed that the conditioned medium of M2 macrophages promoted lung cancer cells to migration, invasion and epithelial mesenchymal transition, which could be inhibited by β-elemene. Moreover, β-elemene regulated the polarization of macrophages from M2 to M1. β-elemene also inhibited the proliferation, migration, invasion of lung cancer cells and enhanced its radiosensitivity. These results indicate β-elemene suppresses lung cancer by regulating both macrophages and lung cancer cells, it is a promising drug for combination with chemotherapy or radiotherapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Shigella mediated depletion of macrophages in a murine breast cancer model is associated with tumor regression.

    Directory of Open Access Journals (Sweden)

    Katharina Galmbacher

    Full Text Available A tumor promoting role of macrophages has been described for a transgenic murine breast cancer model. In this model tumor-associated macrophages (TAMs represent a major component of the leukocytic infiltrate and are associated with tumor progression. Shigella flexneri is a bacterial pathogen known to specificly induce apotosis in macrophages. To evaluate whether Shigella-induced removal of macrophages may be sufficient for achieving tumor regression we have developed an attenuated strain of S. flexneri (M90TDeltaaroA and infected tumor bearing mice. Two mouse models were employed, xenotransplantation of a murine breast cancer cell line and spontanous breast cancer development in MMTV-HER2 transgenic mice. Quantitative analysis of bacterial tumor targeting demonstrated that attenuated, invasive Shigella flexneri primarily infected TAMs after systemic administration. A single i.v. injection of invasive M90TDeltaaroA resulted in caspase-1 dependent apoptosis of TAMs followed by a 74% reduction in tumors of transgenic MMTV-HER-2 mice 7 days post infection. TAM depletion was sustained and associated with complete tumor regression.These data support TAMs as useful targets for antitumor therapy and highlight attenuated bacterial pathogens as potential tools.

  7. Adiponectin deficiency promotes tumor growth in mice by reducing macrophage infiltration.

    Science.gov (United States)

    Sun, Yutong; Lodish, Harvey F

    2010-08-05

    Adiponectin is an adipocyte-derived plasma protein that has been implicated in regulating angiogenesis, but the role of adiponectin in regulating this process is still controversial. In this study, in order to determine whether adiponectin affects tumor growth and tumor induced vascularization, we implanted B16F10 melanoma and Lewis Lung Carcinoma cells subcutaneously into adiponectin knockout and wild-type control mice, and found that adiponectin deficiency markedly promoted the growth of both tumors. Immunohistochemical analyses indicated that adiponectin deficiency reduced macrophage recruitment to the tumor, but did not affect cancer cell mitosis, apoptosis, or tumor-associated angiogenesis. In addition, treatment with recombinant adiponectin did not affect the proliferation of cultured B16F10 tumor cells. Importantly, the restoration of microphage infiltration at an early stage of tumorigenesis by means of co-injection of B16F10 cells and macrophages reversed the increased tumor growth in adiponectin knockout mice. Thus, we conclude that the enhanced tumor growth observed in adiponectin deficient mice is likely due to the reduction of macrophage infiltration rather than enhanced angiogenesis.

  8. Adiponectin deficiency promotes tumor growth in mice by reducing macrophage infiltration.

    Directory of Open Access Journals (Sweden)

    Yutong Sun

    Full Text Available Adiponectin is an adipocyte-derived plasma protein that has been implicated in regulating angiogenesis, but the role of adiponectin in regulating this process is still controversial. In this study, in order to determine whether adiponectin affects tumor growth and tumor induced vascularization, we implanted B16F10 melanoma and Lewis Lung Carcinoma cells subcutaneously into adiponectin knockout and wild-type control mice, and found that adiponectin deficiency markedly promoted the growth of both tumors. Immunohistochemical analyses indicated that adiponectin deficiency reduced macrophage recruitment to the tumor, but did not affect cancer cell mitosis, apoptosis, or tumor-associated angiogenesis. In addition, treatment with recombinant adiponectin did not affect the proliferation of cultured B16F10 tumor cells. Importantly, the restoration of microphage infiltration at an early stage of tumorigenesis by means of co-injection of B16F10 cells and macrophages reversed the increased tumor growth in adiponectin knockout mice. Thus, we conclude that the enhanced tumor growth observed in adiponectin deficient mice is likely due to the reduction of macrophage infiltration rather than enhanced angiogenesis.

  9. The Bruton's tyrosine kinase inhibitor ibrutinib exerts immunomodulatory effects through regulation of tumor-infiltrating macrophages.

    Science.gov (United States)

    Ping, Lingyan; Ding, Ning; Shi, Yunfei; Feng, Lixia; Li, Jiao; Liu, Yalu; Lin, Yufu; Shi, Cunzhen; Wang, Xing; Pan, Zhengying; Song, Yuqin; Zhu, Jun

    2017-06-13

    The Bruton's tyrosine kinase (Btk) inhibitor ibrutinib has demonstrated promising efficacy in a variety of hematologic malignancies. However, the precise mechanism of action of the drug remains to be fully elucidated. Tumor-infiltrating macrophages presented in the tumor microenvironment have been shown to promote development and progression of B-cell lymphomas through crosstalk mediated by secreted cytokines and chemokines. Because Btk has been implicated in Toll-like receptor (TLR) signaling pathways that regulate macrophage activation and production of proinflammatory cytokines, we investigated the immunomodulatory effects of Btk inhibitor on macrophages. Our results demonstrate that Btk inhibition efficiently suppresses production of CXCL12, CXCL13, CCL19, and VEGF by macrophages. Furthermore, attenuated secretion of homeostatic chemokines from Btk inhibitor-treated macrophages significantly compromise adhesion, invasion, and migration of lymphoid malignant cells and even those not driven by Btk expression. The supernatants from Btk inhibitor-treated macrophages also impair the ability of endothelial cells to undergo angiogenic tube formation. Mechanistic analysis revealed that Btk inhibitors treatment downregulates secretion of homeostatic chemokines and cytokines through inactivation of Btk signaling and the downstream transcription factors, NF-κB, STAT3, and AP-1. Taken together, these results suggest that the encouraging therapeutic efficacy of Btk inhibitor may be due to both direct cytotoxic effects on malignant B cells and immunomodulatory effects on macrophages present in the tumor microenvironment. This novel mechanism of action suggests that, in addition to B-cell lymphomas, Btk inhibitor may also have therapeutic value in lymphatic malignancies and solid tumors lacking Btk expression.

  10. Monocyte to macrophage differentiation-associated (MMD) targeted by miR-140-5p regulates tumor growth in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weina, E-mail: liweina228@163.com [Department of Biomedical Engineering, Fourth Military Medical University, Xi’an 710032 (China); He, Fei, E-mail: hesili1027@163.com [Department of Hepatic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032 (China)

    2014-07-18

    Highlights: • Expression of MMD is increased in lung cancer tissues. • Knockdown of MMD inhibits growth of A549 and LLC cells in vitro and in vivo. • MMD is a direct functional target of miR-140-5p. • MiR-140-5p/MMD axis regulates Erk1/2 signaling. - Abstract: Monocyte to macrophage differentiation-associated (MMD) is identified in macrophages as a gene associated with the differentiation from monocytes to macrophages. Recent microarray analysis for non-small cell lung cancer (NSCLC) suggests that MMD is an important signature associated with relapse and survival among patients with NSCLC. Therefore, we speculate that MMD likely plays a role in lung cancer. In this study, we found that the protein level of MMD was increased in lung cancer compared to benign lung tissues, and knockdown of MMD inhibited the growth of A549 and Lewis lung cancer cells (LLC) in vitro and in vivo. Integrated analysis demonstrated that MMD was a direct functional target of miR-140-5p. Furthermore, we found that miR-140-5p/MMD axis could affect the cell proliferation of lung cancer cells by regulating Erk signaling. Together, our results highlight the significance of miR-140-5p/MMD axis in lung cancer, and miR-140-5p/MMD axis could serve as new molecular targets for the therapy against lung cancer.

  11. Evaluation of in vitro anti-inflammatory effects of crude ginger and rosemary extracts obtained through supercritical CO2 extraction on macrophage and tumor cell line: the influence of vehicle type.

    Science.gov (United States)

    Justo, Oselys Rodriguez; Simioni, Patricia Ucelli; Gabriel, Dirce Lima; Tamashiro, Wirla Maria da Silva Cunha; Rosa, Paulo de Tarso Vieira; Moraes, Ângela Maria

    2015-10-29

    Numerous plants from have been investigated due to their anti-inflammatory activity and, among then, extracts or components of ginger (Zingiber officinale Roscoe) and rosemary (Rosmarinus officinalis L.), sources of polyphenolic compounds. 6-gingerol from ginger rhizome and carnosic acid and carnosol from rosemary leaves present anti-tumor, anti-inflammatory and antioxidant activities. However, the evaluation of the mechanisms of action of these and other plant extracts is limited due to their high hydrophobicity. Dimethylsulfoxide (DMSO) is commonly used as a vehicle of liposoluble materials to mammalian cells in vitro, presenting enhanced cell penetration. Liposomes are also able to efficiently deliver agents to mammalian cells, being capable to incorporate in their structure not only hydrophobic molecules, but also hydrophilic and amphiphilic compounds. Another strategy is based on the use of Pluronic F-68, a biocompatible low-foaming, non-ionic surfactant, to disperse hydrophobic components. Here, these three delivery approaches were compared to analyze their influence on the in vitro anti-inflammatory effects of ginger and rosemary extracts, at different concentrations, on primary mammalian cells and on a tumor cell line. Ginger and rosemary extracts free of organic solvents were obtained by supercritical fluid extraction and dispersed in DMSO, Pluronic F-68 or liposomes, in variable concentrations. Cell viability, production of inflammatory mediators and nitric oxide (NO) release were measured in vitro on J774 cell line and murine macrophages primary culture stimulated with bacterial lipopolysaccharide and interferon-γ after being exposed or not to these extracts. Ginger and rosemary extracts obtained by supercritical CO2 extraction inhibited the production of pro-inflammatory cytokines and the release of NO by peritoneal macrophages and J774 cells. The delivery vehicles influenced the anti-inflammatory effects. Comparatively, the ginger extract showed the

  12. Behavior of Endogenous Tumor-Associated Macrophages Assessed In Vivo Using a Functionalized Nanoparticle

    Directory of Open Access Journals (Sweden)

    Antoine Leimgruber

    2009-05-01

    Full Text Available Tumor-associated macrophages (TAMs invade the tumor stroma in many cancers, yet their role is incompletely understood. To visualize and better understand these critical cells in tumor progression, we screened a portfolio of rationally selected, injectable agents to image endogenous TAMs ubiquitously in three different cancer models (colon carcinoma, lung adenocarcinoma, and soft tissue sarcoma. AMTA680, a functionally derivatized magneto-fluorescent nanoparticle, labeled a subset of myeloid cells with an “M2” macrophage phenotype, whereas other neighboring cells, including tumor cells and a variety of other leukocytes, remained unlabeled. We further show that AMTA680-labeled endogenous TAMs are not altered and can be tracked noninvasively at different resolutions and using various imaging modalities, e.g., fluorescence molecular tomography, magnetic resonance imaging, and multiphoton and confocal intravital microscopy. Quantitative assessment of TAM distribution and activity in vivo identified that these cells cluster in delimited foci within tumors, show relatively low motility, and extend cytoplasmic protrusions for prolonged physical interactions with neighboring tumor cells. Noninvasive imaging can also be used to monitor TAM-depleting regimen quantitatively. Thus, AMTA680 or related cell-targeting agents represent appropriate injectable vehicles for in vivo analysis of the tumor microenvironment.

  13. IL-1α and IL-1β-producing macrophages populate lung tumor lesions in mice.

    Science.gov (United States)

    Terlizzi, Michela; Colarusso, Chiara; Popolo, Ada; Pinto, Aldo; Sorrentino, Rosalinda

    2016-09-06

    Macrophages highly populate tumour microenvironment and are referred to as tumor-associated macrophages (TAMs). The inflammasome is a multiprotein complex responsible of IL-1 like cytokines release, which biology has been widely studied by using bone-marrow-derived macrophages to mimic a physiological and/or host defense condition. To understand the role of this complex in lung tumor-associated macrophages (TAMs), we isolated and cultured broncho-alveolar lavage (BAL)-derived cells of lung tumor-bearing mice. The stimulation of lung TAMs with LPS+ATP increased the release of IL-1β. The inhibition of NLRP3 by means of glybenclamide significantly reduced IL-1β release. Similarly, C3H-derived, caspase-1 ko and caspase-11 ko TAMs released significantly reduced levels of IL-1β. Moreover, the stimulation of lung TAMs with the sole LPS induced a significant release of IL-1α, which was significantly reduced after caspase-1 pharmacological inhibition, and in TAMs genetically lacking caspase-1 and caspase-11. The inhibition of calpain I/II by means of MDL28170 did not alter IL-1α release after LPS treatment of lung TAMs. To note, the inoculation of LPS-treated bone marrow-derived macrophages into carcinogen-exposed mice increased lung tumor formation. In contrast, the depletion of TAMs by means of clodronate liposomes reduced lung tumorigenesis, associated to lower in vivo release of IL-1α and IL-1β.In conclusion, our data imply lung tumor lesions are populated by macrophages which pro-tumor activity is regulated by the activation of the NLRP3 inflammasome that leads to the release of IL-1α and IL-1β in a caspase-11/caspase-1-dependent manner.

  14. Tumor necrosis factor-α and receptor activator of nuclear factor-κB ligand augment human macrophage foam-cell destruction of extracellular matrix through protease-mediated processes

    DEFF Research Database (Denmark)

    Skjøt-Arkil, Helene; Barascuk, Natasha; Larsen, Lise;

    2012-01-01

    component of extracellular matrix (ECM) in plaques, and to establish whether the pro-inflammatory molecules, tumor necrosis factor (TNF)-alpha, and receptor activator of nuclear factor-κB ligand (RANK-L) increase this degradation. CD14+ monocytes isolated from peripheral blood were differentiated......% and 72%, respectively. This is, to our knowledge, the first data describing a simple in vitro system in which macrophage foam cells degradation of matrix proteins can be monitored. This degradation can be enhanced by cytokines since TNF-alpha and RANK-L significantly increased the matrix degradation...

  15. Macrophages, Inflammation, and Tumor Suppressors: ARF, a New Player in the Game

    Directory of Open Access Journals (Sweden)

    Paqui G. Través

    2012-01-01

    Full Text Available The interaction between tumor progression and innate immune system has been well established in the last years. Indeed, several lines of clinical evidence indicate that immune cells such as tumor-associated macrophages (TAMs interact with tumor cells, favoring growth, angiogenesis, and metastasis of a variety of cancers. In most tumors, TAMs show properties of an alternative polarization phenotype (M2 characterized by the expression of a series of chemokines, cytokines, and proteases that promote immunosuppression, tumor proliferation, and spreading of the cancer cells. Tumor suppressor genes have been traditionally linked to the regulation of cancer progression; however, a growing body of evidence indicates that these genes also play essential roles in the regulation of innate immunity pathways through molecular mechanisms that are still poorly understood. In this paper, we provide an overview of the immunobiology of TAMs as well as what is known about tumor suppressors in the context of immune responses. Recent advances regarding the role of the tumor suppressor ARF as a regulator of inflammation and macrophage polarization are also reviewed.

  16. Macrophages, inflammation, and tumor suppressors: ARF, a new player in the game.

    Science.gov (United States)

    Través, Paqui G; Luque, Alfonso; Hortelano, Sonsoles

    2012-01-01

    The interaction between tumor progression and innate immune system has been well established in the last years. Indeed, several lines of clinical evidence indicate that immune cells such as tumor-associated macrophages (TAMs) interact with tumor cells, favoring growth, angiogenesis, and metastasis of a variety of cancers. In most tumors, TAMs show properties of an alternative polarization phenotype (M2) characterized by the expression of a series of chemokines, cytokines, and proteases that promote immunosuppression, tumor proliferation, and spreading of the cancer cells. Tumor suppressor genes have been traditionally linked to the regulation of cancer progression; however, a growing body of evidence indicates that these genes also play essential roles in the regulation of innate immunity pathways through molecular mechanisms that are still poorly understood. In this paper, we provide an overview of the immunobiology of TAMs as well as what is known about tumor suppressors in the context of immune responses. Recent advances regarding the role of the tumor suppressor ARF as a regulator of inflammation and macrophage polarization are also reviewed.

  17. Selective decrease in cell surface expression and mRNA level of the 55-kDa tumor necrosis factor receptor during differentiation of HL-60 cells into macrophage-like but not granulocyte-like cells

    DEFF Research Database (Denmark)

    Winzen, R; Wallach, D; Engelmann, H;

    1992-01-01

    Expression of the two known receptors for TNF was studied in the promyelocytic leukemia cell line HL-60 before and after differentiation of the cells along the granulocyte lineage (induced by incubation with retinoic acid), or along the macrophage lineage (induced by incubation with the phorbol d...

  18. Semaphorin7A promotes tumor growth and exerts a pro-angiogenic effect in macrophages of mammary tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Ramon eGarcia-Areas

    2014-02-01

    Full Text Available Semaphorins, a large family of molecules involved in the axonal guidance and development of the nervous system, have been recently shown to have both angiogenic and anti-angiogenic properties. Specifically, semaphorin 7A (SEMA7A has been reported to have a chemotactic activity in neurogenesis, and to be an immune modulator via it binding to α1β1integrins. Additionally, SEMA7A has been shown to promote chemotaxis of monocytes, inducing them to produce proinflammatory mediators. In this study we explored the role of SEMA7A in the tumoral context. We show that SEMA7A is highly expressed by DA-3 murine mammary tumor cells in comparison to normal mammary cells (EpH4, and that peritoneal macrophages from mammary tumor-bearing mice also express SEMA7A at higher levels compared to peritoneal macrophages derived from normal control mice. We also show that murine macrophages treated with recombinant murine SEMA7A significantly increased their expression of proangiogenic molecules, such as CXCL2/MIP-2. Gene silencing of SEMA7A in peritoneal elicited macrophages from DA-3 tumor-bearing mice resulted in decreased CXCL2 expression. Mice implanted with SEMA7A silenced tumor cells showed decreased angiogenesis in the tumors compared to the wild type tumors. Furthermore, peritoneal elicited macrophages from mice bearing SEMA7A-silenced tumors produce significantly (p< 0.01 lower levels of angiogenic proteins, such as MIP-2, CXCL1 and MMP-9, compared to macrophages from control DA-3 mammary tumors. We postulate that SEMA7A derived from mammary carcinomas may serve as a monocyte chemoattractant and skew monocytes into a pro-tumorigenic phenotype. A putative relationship between tumor-derived SEMA7A and monocytes could prove valuable in establishing new research avenues towards unraveling important tumor-host immune interactions in breast cancer patients.

  19. The Relationship between Obesity, Prostate Tumor Infiltrating Lymphocytes and Macrophages, and Biochemical Failure.

    Science.gov (United States)

    Zeigler-Johnson, Charnita; Morales, Knashawn H; Lal, Priti; Feldman, Michael

    2016-01-01

    Obesity reflects a chronic inflammatory environment that may contribute to prostate cancer progression and poor treatment outcomes. However, it is not clear which mechanisms drive this association within the tumor microenvironment. The aim of this pilot study was to examine prostatic inflammation via tumor infiltrating lymphocytes and macrophages characterized by obesity and cancer severity. We studied paraffin-embedded prostatectomy tissue from 99 participants (63 non-obese and 36 obese) from the Study of Clinical Outcomes, Risk and Ethnicity (University of Pennsylvania). Pathologists analyzed the tissue for type and count of lymphocytes and macrophages, including CD3, CD8, FOXP3, and CD68. Pathology data were linked to clinical and demographic variables. Statistical analyses included frequency tables, Kruskal-Wallis tests, Spearman correlations, and multivariable models. We observed positive univariate associations between the number of CD68 cells and tumor grade (p = 0.019). In multivariable analysis, CD8 counts were associated with time to biochemical failure (HR = 1.09, 95% CI = 1.004-1.192, p-value = 0.041.) There were no differences in lymphocytes or macrophages by obesity status or BMI. The number of lymphocytes and macrophages in the tumor microenvironment did not differ by obesity status. However, these inflammation markers were associated with poor prostate cancer outcomes. Further examination of underlying mechanisms that influence obesity-related effects on prostate cancer outcomes is warranted. Such research will guide immunotherapy protocols and weight management as they apply to diverse patient populations and phenotypes.

  20. Tumor-associated macrophages in glioblastoma multiforme-a suitable target for somatostatin receptor-based imaging and therapy?

    Directory of Open Access Journals (Sweden)

    Constantin Lapa

    Full Text Available Glioblastoma multiforme (GBM is the most common primary brain tumor in adults. Tumor-associated macrophages (TAM have been shown to promote malignant growth and to correlate with poor prognosis. [1,4,7,10-tetraazacyclododecane-NN',N″,N'″-tetraacetic acid]-d-Phe1,Tyr3-octreotate (DOTATATE labeled with Gallium-68 selectively binds to somatostatin receptor 2A (SSTR2A which is specifically expressed and up-regulated in activated macrophages. On the other hand, the role of SSTR2A expression on the cell surface of glioma cells has not been fully elucidated yet. The aim of this study was to non-invasively assess SSTR2A expression of both glioma cells as well as macrophages in GBM.15 samples of patient-derived GBM were stained immunohistochemically for macrophage infiltration (CD68, proliferative activity (Ki67 as well as expression of SSTR2A. Anti-CD45 staining was performed to distinguish between resident microglia and tumor-infiltrating macrophages. In a subcohort, positron emission tomography (PET imaging using 68Ga-DOTATATE was performed and the semiquantitatively evaluated tracer uptake was compared to the results of immunohistochemistry.The amount of microglia/macrophages ranged from 50% in the tumor samples with the vast majority being resident microglial cells. A strong SSTR2A immunostaining was observed in endothelial cells of proliferating vessels, in neurons and neuropile. Only faint immunostaining was identified on isolated microglial and tumor cells. Somatostatin receptor imaging revealed areas of increased tracer accumulation in every patient. However, retention of the tracer did not correlate with immunohistochemical staining patterns.SSTR2A seems not to be overexpressed in GBM samples tested, neither on the cell surface of resident microglia or infiltrating macrophages, nor on the surface of tumor cells. These data suggest that somatostatin receptor directed imaging and treatment strategies are less promising in GBM.

  1. Uterine NK cells and macrophages in pregnancy

    NARCIS (Netherlands)

    Faas, Marijke M.; de Vos, Paul

    The presence of immune cells in the placental bed is important for both mother and child. Although various immune cells can be found in the placental bed, such as regulatory T cells and dendritic cells, uterine NK cells and macrophages are the most prominent immune cells in the placental bed in

  2. Uterine NK cells and macrophages in pregnancy

    NARCIS (Netherlands)

    Faas, Marijke M; de Vos, Paul

    2017-01-01

    The presence of immune cells in the placental bed is important for both mother and child. Although various immune cells can be found in the placental bed, such as regulatory T cells and dendritic cells, uterine NK cells and macrophages are the most prominent immune cells in the placental bed in earl

  3. In vitro generation of monocyte-derived macrophages under serum-free conditions improves their tumor promoting functions.

    Directory of Open Access Journals (Sweden)

    Flora Rey-Giraud

    Full Text Available The tumor promoting role of M2 macrophages has been described in in vivo models and the presence of macrophages in certain tumor types has been linked to a poor clinical outcome. In light of burgeoning activities to clinically develop new therapies targeting tumor-associated macrophages (TAMs, reliable in vitro models faithfully mimicking the tumor promoting functions of TAMs are required. Generation and activation of human monocyte-derived macrophages (MDM in vitro, described as M1 or M2 macrophages attributed with tumoricidal or tumor-promoting functions, respectively, has been widely reported using mainly serum containing culture methods. In this study, we compared the properties of macrophages originating from monocytes cultured either in media containing serum together with M-CSF for M2 and GM-CSF for M1 macrophages or in serum-free media supplemented with M-CSF or GM-CSF and cytokines such as IL-4, IL-10 to induce activated M2 or LPS together with IFN-γ to generate activated M1 phenotype. We observed differences in cell morphology as well as increased surface receptor expression levels in serum-containing culture whereas similar or higher cytokine production levels were detected under serum-free culture conditions. More importantly, MDM differentiated under serum-free conditions displayed enhanced tumoricidal activity for M1 and tumor promoting property for M2 macrophages in contrast to MDM differentiated in the presence of serum. Moreover, evaluation of MDM phagocytic activity in serum free condition resulted in greater phagocytic properties of M2 compared to M1. Our data therefore confirm the tumor promoting properties of M2 macrophages in vitro and encourage the targeting of TAMs for cancer therapy.

  4. Radiation Therapy Induces Macrophages to Suppress Immune Responses Against Pancreatic Tumors in Mice

    Science.gov (United States)

    Seifert, Lena; Werba, Gregor; Tiwari, Shaun; Ly, Nancy Ngoc Giao; Nguy, Susanna; Alothman, Sara; Alqunaibit, Dalia; Avanzi, Antonina; Daley, Donnele; Barilla, Rocky; Tippens, Daniel; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R.; Hajdu, Cristina; Pellicciotta, Ilenia; Oh, Philmo; Du, Kevin; Miller, George

    2016-01-01

    Background & Aims The role of radiation therapy in the treatment of patients with pancreatic ductal adenocarcinoma (PDA) is controversial. Randomized controlled trials investigating the efficacy of radiation therapy in patients with locally advanced unresectable PDA have reported mixed results, with effects ranging from modest benefit to worse outcome, compared with control therapies. We investigated whether radiation causes inflammatory cells to acquire an immune-suppressive phenotype that limits the therapeutic effects of radiation on invasive PDAs and accelerates progression of pre-invasive foci. Methods We investigated the effects of radiation in p48Cre;LSL-KrasG12D (KC) and p48Cre;LSLKrasG12D;LSL-Trp53R172H (KPC) mice, as well as in C57BL/6 mice with orthotopic tumors grown from FC1242 cells derived from KPC mice. Some mice were given neutralizing antibodies against macrophage colony stimulating factor 1 (CSF1 or MCSF) or F4/80. Pancreata were exposed to doses of radiation ranging from 2–12 Gy and analyzed by flow cytometry. Results Pancreata of KC mice exposed to radiation had a higher frequency of advanced pancreatic intraepithelial lesions and more foci of invasive cancer than pancreata of unexposed mice (controls); radiation reduced survival time by more than 6 months. A greater proportion of macrophages from invasive and pre-invasive pancreatic tumors had an immune-suppressive, M2-like phenotype, compared with control mice. Pancreata from mice exposed to radiation had fewer CD8+ T cells than controls and greater numbers of CD4+ T cells of T-helper 2 and T-regulatory cell phenotypes. Adoptive transfer of T cells from irradiated PDA to tumors of control mice accelerated tumor growth. Radiation induced production of MCSF by PDA cells. An antibody against MCSF prevented radiation from altering the phenotype of macrophages in tumors, increasing the anti-tumor T-cell response and slowing tumor growth. Conclusions Radiation exposure causes macrophages in PDAs

  5. Tumor-associated macrophages as an emerging target against tumors: Creating a new path from bench to bedside.

    Science.gov (United States)

    Jinushi, Masahisa; Komohara, Yoshihiro

    2015-04-01

    Tumor-associated macrophages are a critical component of tumor microenvironments, which affect tumor growth, tumor angiogenesis, immune suppression, metastasis and chemoresistance. There is emerging evidence that many anticancer modalities currently used in the clinic have unique and distinct properties that modulate the recruitment, polarization and tumorigenic activities of macrophages in the tumor microenvironments. Educated tumor-associated macrophages significantly impact the clinical efficacies of and resistance to these anticancer modalities. Moreover, the development of drugs targeting tumor-associated macrophages, especially c-Fms kinase inhibitors and humanized antibodies targeting colony-stimulating factor-1 receptor, are in early clinical stages and show promising benefit for cancer patients. These experimental and clinical findings prompted us to further evaluate the potential targets that exhibit tumorigenic and immunosuppressive potential in a manner specific for tumor associated macrophages. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Macrophages and Dendritic Cells: Partners in Atherogenesis.

    Science.gov (United States)

    Cybulsky, Myron I; Cheong, Cheolho; Robbins, Clinton S

    2016-02-19

    Atherosclerosis is a complex chronic disease. The accumulation of myeloid cells in the arterial intima, including macrophages and dendritic cells (DCs), is a feature of early stages of disease. For decades, it has been known that monocyte recruitment to the intima contributes to the burden of lesion macrophages. Yet, this paradigm may require reevaluation in light of recent advances in understanding of tissue macrophage ontogeny, their capacity for self-renewal, as well as observations that macrophages proliferate throughout atherogenesis and that self-renewal is critical for maintenance of macrophages in advanced lesions. The rate of atherosclerotic lesion formation is profoundly influenced by innate and adaptive immunity, which can be regulated locally within atherosclerotic lesions, as well as in secondary lymphoid organs, the bone marrow and the blood. DCs are important modulators of immunity. Advances in the past decade have cemented our understanding of DC subsets, functions, hematopoietic origin, gene expression patterns, transcription factors critical for differentiation, and provided new tools for study of DC biology. The functions of macrophages and DCs overlap to some extent, thus it is important to reassess the contributions of each of these myeloid cells taking into account strict criteria of cell identification, ontogeny, and determine whether their key roles are within atherosclerotic lesions or secondary lymphoid organs. This review will highlight key aspect of macrophage and DC biology, summarize how these cells participate in different stages of atherogenesis and comment on complexities, controversies, and gaps in knowledge in the field.

  7. Antitumor Activity of Liposomal Prednisolone Phosphate Depends on the Presence of Functional Tumor-Associated Macrophages in Tumor Tissue

    Directory of Open Access Journals (Sweden)

    Manuela Banciu

    2008-02-01

    Full Text Available Prednisolone phosphate (PLP encapsulated in long-circulating liposomes (LCLs (LCL-PLP exerts antitumor activity through the inhibition of tumor angiogenesis. It is known that tumor-associated macrophages (TAMs play a crucial role in tumor growth as they are actively involved in promoting and maintaining tumor angiogenesis. To gain more insight into the antiangiogenic mechanisms of LCL-PLP, this study aimed to investigate the role of TAM in the antitumor mode of action of LCL-PLP in B16.F10 melanoma-bearing mice. Our results show that TAMs have a pivotal function in the growth of B16.F10 melanoma through the production of pro-angiogenic/pro-inflammatory factors. One of the major inhibitory actions of LCL-PLP on tumor growth is the reduction of the TAM-mediated production of pro-angiogenic factors, whereas production of anti-angiogenic factors by these cells is hardly affected.

  8. Fucoidan reduced the invasion of oral squamous cell carcinoma cells and modified their effects to macrophages.

    Science.gov (United States)

    Lin, Junda; Wang, Ketao; Wang, Huayang; Shao, Qianqian; Luan, Yijun; Xu, Yan; Song, Xiaobin; Tan, Wanye; Liu, Shaohua; Wei, Fengcai; Qu, Xun

    2017-01-01

    Fucoidan is a complex of polysaccharides showing antitumor and immunomodulation properties. Our previous studies found its regulation to myeloid immune cells, including macrophages. Aberrant infiltration and functions of macrophages are commonly found in oral squamous cell carcinoma (OSCC). In this study, we analyzed the effects of fucoidan on invasion of OSCC cells, and their regulation to macrophages, trying to evaluate its role as a potential therapy for OSCC. CAL27 and THP-1-derived macrophages were used as models for OSCC cells and tumor-infiltrated macrophages in the in vitro study, respectively. The effects of fucoidan on invasion of OSCC cells and their recruitment to macrophages were analyzed by transwell assay. KIF4A siRNA transfection was performed to investigate its role in fucoidan-modulated OSCC cells invasion. CCL3-neutralizing antibody was added into the conditioned medium of OSCC cells to evaluate its role in fucoidan-mediated macrophages recruitment and re-education. Fucoidan reduced the invasive potential of CAL27 cells with a decrease of MMP-2 and KIF4A transcription. KIF4A knockdown in CAL27 cells led to decreased invasion and MMP-2 expression. The conditioned medium of fucoidan-treated CAL27 cells promoted recruitment and inflammatory cytokines secretion on THP-1-derived macrophages. Further analysis found that fucoidan increased CCL3 production in CAL27 cells. Blocking CCL3 expression reversed the effects of fucoidan on macrophage recruitment and re-education. Our study found that fucoidan regulated the invasion of OSCC cells and also their recruiting and re-educating effects on macrophages, suggesting it could be a complementary approach in the treatment of OSCC.

  9. Small gold nanorods laden macrophages for enhanced tumor coverage in photothermal therapy.

    Science.gov (United States)

    Li, Zhibin; Huang, Hao; Tang, Siying; Li, Yong; Yu, Xue-Feng; Wang, Huaiyu; Li, Penghui; Sun, Zhengbo; Zhang, Han; Liu, Chenli; Chu, Paul K

    2016-01-01

    One of the challenges to adopt photothermal ablation clinically is optimization of the agent delivery in vivo. Herein, a cell-mediated delivery and therapy system by employing macrophage vehicles to transport 7 nm diameter Au nanorods (sAuNRs) is described. Owing to the small size, the sAuNRs exhibit much higher macrophage uptake and negligible cytotoxicity in comparison with commonly used 14 nm diameter AuNRs to achieve healthy BSA-coated sAuNRs-laden-macrophages. By delivering BSA-coated sAuNRs to the entire tumor after intratumoral injection, the BSA-coated sAuNRs-laden-macrophages show greatly improved photothermal conversion almost everywhere in the tumor, resulting in minimized tumor recurrence rates compared to free BSA-coated sAuNRs. Our findings not only provide a desirable approach to improve the photothermal therapy efficiency by optimizing the intratumoral distribution of the agents, but also expedite clinical application of nanotechnology to cancer treatment.

  10. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells

    Directory of Open Access Journals (Sweden)

    Lin Ling

    2011-09-01

    Full Text Available Abstract Background Tumor-associated macrophages (TAMs are alternatively activated cells induced by interleukin-4 (IL-4-releasing CD4+ T cells. TAMs promote breast cancer invasion and metastasis; however, the mechanisms underlying these interactions between macrophages and tumor cells that lead to cancer metastasis remain elusive. Previous studies have found microRNAs (miRNAs circulating in the peripheral blood and have identified microvesicles, or exosomes, as mediators of cell-cell communication. Therefore, one alternative mechanism for the promotion of breast cancer cell invasion by TAMs may be through macrophage-secreted exosomes, which would deliver invasion-potentiating miRNAs to breast cancer cells. Results We utilized a co-culture system with IL-4-activated macrophages and breast cancer cells to verify that miRNAs are transported from macrophages to breast cancer cells. The shuttling of fluorescently-labeled exogenous miRNAs from IL-4-activated macrophages to co-cultivated breast cancer cells without direct cell-cell contact was observed. miR-223, a miRNA specific for IL-4-activated macrophages, was detected within the exosomes released by macrophages and was significantly elevated in the co-cultivated SKBR3 and MDA-MB-231 cells. The invasiveness of the co-cultivated breast cancer cells decreased when the IL-4-activated macrophages were treated with a miR-223 antisense oligonucleotide (ASO that would inhibit miR-223 expression. Furthermore, results from a functional assay revealed that miR-223 promoted the invasion of breast cancer cells via the Mef2c-β-catenin pathway. Conclusions We conclude that macrophages regulate the invasiveness of breast cancer cells through exosome-mediated delivery of oncogenic miRNAs. Our data provide insight into the mechanisms underlying the metastasis-promoting interactions between macrophages and breast cancer cells.

  11. Role of tumor-associated macrophages in epithelial-mesenchymal transition of human hepatocellular carcinoma cells%肿瘤相关巨噬细胞在肝癌上皮细胞间质转型中的作用

    Institute of Scientific and Technical Information of China (English)

    王皓; 李霞; 王超; 李国盛; 郭春; 朱法良; 张利宁; 石永玉

    2014-01-01

    Objective To explore the effect and mechanism of tumor-associated macrophages on human hepatocellular carcinoma ( HCC) cells.Methods The HCC cells were cocultured with macrophages from PMA-treated THP-1 cells and cell migration was detected by transwell migration test and wound-healing assay.The expressions of E-cadherin and N-cadherin were measured by RT-PCR.Results The ability of cell migration was significantly increased after being cocultured with mocrophages from PMA-treated THP-1 cells.A transition from epithelial morphology to mesenchymal morphology was observed.The expression of E-cadherin decreased and the expression of N-cadherin increased.Conclu-sion Our findings suggest that tumor-associated macrophages may promote the cell migration through epithelial-mesen-chymal transition.%目的:检测肿瘤相关巨噬细胞对肝癌细胞迁移能力的作用及机制。方法将肝癌细胞与THP-1细胞来源的巨噬细胞共培养,利用Transwell细胞迁移实验与细胞划痕实验检测肝癌细胞迁移能力的变化情况,观察肝癌细胞形态变化,并用RT-PCR检测上皮细胞间充质转化相关分子E-cadherin与N-cadherin的变化。结果与THP-1细胞来源的巨噬细胞共培养后,肝癌细胞的迁移能力明显增强,由上皮细胞形态向间质细胞形态转变,E-cadherin表达降低,而N-cadherin表达则升高。结论在肝癌中,肿瘤相关巨噬细胞可能通过EMT增强肝癌细胞的迁移能力。

  12. Hydrazinocurcumin Encapsuled nanoparticles "re-educate" tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression.

    Directory of Open Access Journals (Sweden)

    Xiwen Zhang

    Full Text Available Tumor-associated macrophages (TAMs are essential cellular components within tumor microenvironment (TME. TAMs are educated by TME to transform to M2 polarized population, showing a M2-like phenotype, IL-10(high, IL-12(low, TGF-β(high. STAT3 signaling triggers crosstalk between tumor cells and TAMs, and is crucial for the regulation of malignant progression. In our study, legumain-targeting liposomal nanoparticles (NPs encapsulating HC were employed to suppress STAT3 activity and "re-educate" TAMs, and to investigate the effects of suppression of tumor progression in vivo. The results showed that TAMs treated by HC encapsuled NPs could switch to M1-like phenotype, IL-10(low, IL-12(high, TGF-β(low, and the "re-educated" macrophages (M1-like macrophages considerably demonstrated opposite effect of M2-like macrophages, especially the induction of 4T1 cells migration and invasion in vitro, and suppression of tumor growth, angiogenesis and metastasis in vivo. These data indicated that inhibition of STAT3 activity of TAMs by HC-NPs was able to reverse their phenotype and could regulate their crosstalk between tumor cells and TAMs in order to suppress tumor progression.

  13. Immunostimulatory effect of spinach aqueous extract on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages.

    Science.gov (United States)

    Ishida, Momoko; Ose, Saya; Nishi, Kosuke; Sugahara, Takuya

    2016-07-01

    We herein report the immunostimulatory effect of spinach aqueous extract (SAE) on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages. SAE significantly enhanced the production of interleukin (IL)-6 and tumor necrosis factor-α by both J774.1 cells and peritoneal macrophages by enhancing the expression levels of these cytokine genes. In addition, the phagocytosis activity of J774.1 cells was facilitated by SAE. Immunoblot analysis revealed that SAE activates mitogen-activated protein kinase and nuclear factor-κB cascades. It was found that SAE activates macrophages through not only TLR4, but also other receptors. The production of IL-6 was significantly enhanced by peritoneal macrophages from SAE-administered BALB/c mice, suggesting that SAE has a potential to stimulate macrophage activity in vivo. Taken together, these data indicate that SAE would be a beneficial functional food with immunostimulatory effects on macrophages.

  14. 巨噬细胞对卵巢癌细胞SKOV3生物学功能的影响%Influence of tumor associated macrophages on biological function of SKOV3 cell

    Institute of Scientific and Technical Information of China (English)

    朱亚飞; 高国兰; 杨小荣

    2012-01-01

    Objective: To investigate the influence of tumor-associated macrophages (TAMs) on the biological function of human ovarian cell line SKOV3. Methods: Macrophage was induced into M2 subtype macrophage form with interleukin(IL)-4 plus PMA,M1 subtype with LPS plus PMA respectively, macrophage scarenger receptor ( CD163) were analyzed with flow cytometry. SKOV3 was co-cultured with TAMs in the transwell. Apoptosis and proliferation of SKOV3 were detected with MTT and Annexin V-PI flow cytometry,. Migration and invasion capability were measured by transwell assay respectively. Results: Coculturing with SKOV3 induced M2 subtype macrophage with elevated expression of CD 163. After co-cultured with M2 macrophage, the activity of apoptotic rates decreased and the proliferation, the migration and invasion capability increased for cocultured SKOV3. Conclusion:Cocultured with SKOV3,macrophages tended to polarized into a M2 subtype, M2 macrophage may contribute to cancer progression by inhibiting the apoptosis while promoting the proliferation, migration and invasion capability of SKOV3. While Ml macrophage plays an opposing effect.%目的:研究巨噬细胞对卵巢癌细胞株SKOV3生物学功能的影响.方法:(1)体外采用IL-4和佛波醇酯(PMA)分别诱导M2和M1型巨噬细胞,流式细胞仪鉴定分型;(2) Tranwell小室建立巨噬细胞与卵巢癌细胞SKOV3体外非接触式共培养模型.比较共培养后,SKOV3的增殖和凋亡、迁移和侵袭的变化.MTT法检测增殖;流式细胞仪Annexin V-FITC/PI双染检测凋亡;Transwell检测侵袭和迁移.结果:(1)IL-4诱导的巨噬细胞高表达CD163,为M2型,PMA诱导组高表达HLA-DR,为M1型.SKOV3和普通巨噬细胞共培养后,巨噬细胞CD163高表达.(2) SKOV3的增殖和凋亡:M2共培养组SKOV3的增殖活性显著高于M1共培养组和普通共培养组(P<0.05).M2共培养组SKOV3的凋亡率显著低于M1共培养组和普通共培养组(P<0.05).(3)SKOV3的迁移和侵袭:M2

  15. Metaphyseal giant cell tumor

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, L.F.; Hemais, P.M.P.G.; Aymore, I.L.; Carmo, M.C.R. do; Cunha, M.E.P.R. da; Resende, C.M.C.

    Three cases of metaphyseal giant cell tumor are presented. A review of the literature is done, demostrating the lesion is rare and that there are few articles about it. Age incidence and characteristics of the tumor are discussed.

  16. Effect of tumor cells and tumor microenvironment on NK-cell function.

    Science.gov (United States)

    Vitale, Massimo; Cantoni, Claudia; Pietra, Gabriella; Mingari, Maria Cristina; Moretta, Lorenzo

    2014-06-01

    The ability of tumors to manage an immune-mediated attack has been recently included in the "next generation" of cancer hallmarks. In solid tumors, the microenvironment that is generated during the first steps of tumor development has a pivotal role in immune regulation. An intricate net of cross-interactions occurring between tumor components, stromal cells, and resident or recruited immune cells skews the possible acute inflammatory response toward an aberrant ineffective chronic inflammatory status that favors the evasion from the host's defenses. Natural killer (NK) cells have powerful cytotoxic activity, but their activity may be eluded by the tumor microenvironment. Immunosubversion, immunoediting or immunoselection of poorly immunogenic tumor cells and interference with tumor infiltration play a major role in evading NK-cell responses to tumors. Tumor cells, tumor-associated fibroblasts and tumor-induced aberrant immune cells (i.e. tolerogenic or suppressive macrophages, dendritic cells (DCs) and T cells) can interfere with NK-cell activation pathways or the complex receptor array that regulate NK-cell activation and antitumor activity. Thus, the definition of tumor microenvironment-related immunosuppressive factors, along with the identification of new classes of tissue-residing NK-like innate lymphoid cells, represent key issues to design effective NK-cell-based therapies of solid tumors.

  17. Tumor-promoting function of apoptotic caspases by an amplification loop involving ROS, macrophages and JNK in Drosophila.

    Science.gov (United States)

    Pérez, Ernesto; Lindblad, Jillian L; Bergmann, Andreas

    2017-08-30

    Apoptosis and its molecular mediators, the caspases, have long been regarded as tumor suppressors and one hallmark of cancer is 'Evading Apoptosis'. However, recent work has suggested that apoptotic caspases can also promote proliferation and tumor growth under certain conditions. How caspases promote proliferation and how cells are protected from the potentially harmful action of apoptotic caspases is largely unknown. Here, we show that although caspases are activated in a well-studied neoplastic tumor model in Drosophila, oncogenic mutations of the proto-oncogene Ras (Ras(V12)) maintain tumorous cells in an 'undead'-like condition and transform caspases from tumor suppressors into tumor promotors. Instead of killing cells, caspases now promote the generation of intra- and extracellular reactive oxygen species (ROS). One function of the ROS is the recruitment and activation of macrophage-like immune cells which in turn signal back to tumorous epithelial cells to activate oncogenic JNK signaling. JNK further promotes and amplifies caspase activity, thereby constituting a feedback amplification loop. Interfering with the amplification loop strongly reduces the neoplastic behavior of these cells and significantly improves organismal survival. In conclusion, Ras(V12)-modified caspases initiate a feedback amplification loop involving tumorous epithelial cells and macrophage-like immune cells that is necessary for uncontrolled tumor growth and invasive behavior.

  18. Myelopotentiating effect of curcumin in tumor-bearing host: Role of bone marrow resident macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Vishvakarma, Naveen Kumar; Kumar, Anjani; Kumar, Ajay; Kant, Shiva [School of Biotechnology, Banaras Hindu University, Varanasi-221 005, U.P. (India); Bharti, Alok Chandra [Division of Molecular Oncology, Institute of Cytology and Preventive Oncology, Noida, UP (India); Singh, Sukh Mahendra, E-mail: sukhmahendrasingh@yahoo.com [School of Biotechnology, Banaras Hindu University, Varanasi-221 005, U.P. (India)

    2012-08-15

    The present investigation was undertaken to study if curcumin, which is recognized for its potential as an antineoplastic and immunopotentiating agent, can also influence the process of myelopoiesis in a tumor-bearing host. Administration of curcumin to tumor-bearing host augmented count of bone marrow cell (BMC) accompanied by an up-regulated BMC survival and a declined induction of apoptosis. Curcumin administration modulated expression of cell survival regulatory molecules: Bcl2, p53, caspase-activated DNase (CAD) and p53-upregulated modulator of apoptosis (PUMA) along with enhanced expression of genes of receptors for M-CSF and GM-CSF in BMC. The BMC harvested from curcumin-administered hosts showed an up-regulated colony forming ability with predominant differentiation into bone marrow-derived macrophages (BMDM), responsive for activation to tumoricidal state. The number of F4/80 positive bone marrow resident macrophages (BMM), showing an augmented expression of M-CSF, was also augmented in the bone marrow of curcumin-administered host. In vitro reconstitution experiments indicated that only BMM of curcumin-administered hosts, but not in vitro curcumin-exposed BMM, augmented BMC survival. It suggests that curcumin-dependent modulation of BMM is of indirect nature. Such prosurvival action of curcumin is associated with altered T{sub H1}/T{sub H2} cytokine balance in serum. Augmented level of serum-borne IFN-γ was found to mediate modulation of BMM to produce enhanced amount of monokines (IL-1, IL-6, TNF-α), which are suggested to augment the BMC survival. Taken together the present investigation indicates that curcumin can potentiate myelopoiesis in a tumor-bearing host, which may have implications in its therapeutic utility. Highlights: ► Curcumin augments myelopoiesis in tumor-bearing host. ► Bone marrow resident macrophages mediate curcumin-dependent augmented myelopoiesis. ► Serum borne cytokine are implicated in modulation of bone marrow resident

  19. Effect of cyhalothrin on Ehrlich tumor growth and macrophage activity in mice

    Directory of Open Access Journals (Sweden)

    W.M. Quinteiro-Filho

    2009-10-01

    Full Text Available Cyhalothrin, a pyrethroid insecticide, induces stress-like symptoms, increases c-fos immunoreactivity in the paraventricular nucleus of the hypothalamus, and decreases innate immune responses in laboratory animals. Macrophages are key elements in cellular immune responses and operate at the tumor-host interface. This study investigated the relationship among cyhalothrin effects on Ehrlich tumor growth, serum corticosterone levels and peritoneal macrophage activity in mice. Three experiments were done with 10 experimental (single gavage administration of 3.0 mg/kg cyhalothrin daily for 7 days and 10 control (single gavage administration of 1.0 mL/kg vehicle of cyhalothrin preparation daily for 7 days isogenic BALB/c mice in each experiment. Cyhalothrin i increased Ehrlich ascitic tumor growth after ip administration of 5.0 x 106 tumor cells, i.e., ascitic fluid volume (control = 1.97 ± 0.39 mL and experimental = 2.71 ± 0.92 mL; P < 0.05, concentration of tumor cells/mL in the ascitic fluid (control = 111.95 ± 16.73 x 106 and experimental = 144.60 ± 33.18 x 106; P < 0.05, and total number of tumor cells in the ascitic fluid (control = 226.91 ± 43.22 x 106 and experimental = 349.40 ± 106.38 x 106; P < 0.05; ii increased serum corticosterone levels (control = 200.0 ± 48.3 ng/mL and experimental = 420.0 ± 75.5 ng/mL; P < 0.05, and iii decreased the intensity of macrophage phagocytosis (control = 132.3 ± 19.7 and experimental = 116.2 ± 4.6; P < 0.05 and oxidative burst (control = 173.7 ± 40.8 and experimental= 99.58 ± 41.7; P < 0.05 in vitro in the presence of Staphylococcus aureus. These data provide evidence that cyhalothrin simultaneously alters host resistance to Ehrlich tumor growth, hypothalamic-pituitary-adrenocortical (HPA axis function, and peritoneal macrophage activity. The results are discussed in terms of data suggesting a link between stress, HPA axis activation and resistance to tumor growth.

  20. Reciprocal interactions between endothelial cells and macrophages in angiogenic vascular niches

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Caroline; Squadrito, Mario Leonardo [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Iruela-Arispe, M. Luisa, E-mail: arispe@mcdb.ucla.edu [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland); Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles 90095, CA (United States); De Palma, Michele, E-mail: michele.depalma@epfl.ch [The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne (Switzerland)

    2013-07-01

    The ability of macrophages to promote vascular growth has been associated with the secretion and local delivery of classic proangiogenic factors (e.g., VEGF-A and proteases). More recently, a series of studies have also revealed that physical contact of macrophages with growing blood vessels coordinates vascular fusion of emerging sprouts. Interestingly, the interactions between macrophages and vascular endothelial cells (ECs) appear to be bidirectional, such that activated ECs also support the expansion and differentiation of proangiogenic macrophages from myeloid progenitors. Here, we discuss recent findings suggesting that dynamic angiogenic vascular niches might also exist in vivo, e.g. in tumors, where sprouting blood vessels and immature myeloid cells like monocytes engage in heterotypic interactions that are required for angiogenesis. Finally, we provide an account of emerging mechanisms of cell-to-cell communication that rely on secreted microvesicles, such as exosomes, which can offer a vehicle for the rapid exchange of molecules and genetic information between macrophages and ECs engaged in angiogenesis. -- Highlights: • Macrophages promote angiogenesis by secreting proangiogenic factors. • Macrophages modulate angiogenesis via cell-to-cell contacts with endothelial cells. • Endothelial cells promote the differentiation of proangiogenic macrophages. • Macrophages and endothelial cells may cooperate to form angiogenic vascular niches.

  1. Macrophages, Dendritic Cells, and Regression of Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Jonathan E. Feig

    2012-07-01

    Full Text Available Atherosclerosis is the number one cause of death in the Western world. It results from the interaction between modified lipoproteins and monocyte-derived cells such as macrophages, dendritic cells, T cells, and other cellular elements of the arterial wall. This inflammatory process can ultimately lead to the development of complex lesions, or plaques, that protrude into the arterial lumen. Ultimately, plaque rupture and thrombosis can occur leading to the clinical complications of myocardial infarction or stroke. Although each of the cell types plays roles in the pathogenesis of atherosclerosis, in this review, the focus will be primarily on the monocyte derived cells- macrophages and dendritic cells. The roles of these cell types in atherogenesis will be highlighted. Finally, the mechanisms of atherosclerosis regression as it relates to these cells will be discussed.

  2. Tumor cell metabolism

    Science.gov (United States)

    Romero-Garcia, Susana; Lopez-Gonzalez, Jose Sullivan; B´ez-Viveros, José Luis; Aguilar-Cazares, Dolores

    2011-01-01

    Cancer is a genetic disease that is caused by mutations in oncogenes, tumor suppressor genes and stability genes. The fact that the metabolism of tumor cells is altered has been known for many years. However, the mechanisms and consequences of metabolic reprogramming have just begun to be understood. In this review, an integral view of tumor cell metabolism is presented, showing how metabolic pathways are reprogrammed to satisfy tumor cell proliferation and survival requirements. In tumor cells, glycolysis is strongly enhanced to fulfill the high ATP demands of these cells; glucose carbons are the main building blocks in fatty acid and nucleotide biosynthesis. Glutaminolysis is also increased to satisfy NADPH regeneration, whereas glutamine carbons replenish the Krebs cycle, which produces metabolites that are constantly used for macromolecular biosynthesis. A characteristic feature of the tumor microenvironment is acidosis, which results from the local increase in lactic acid production by tumor cells. This phenomenon is attributed to the carbons from glutamine and glucose, which are also used for lactic acid production. Lactic acidosis also directs the metabolic reprogramming of tumor cells and serves as an additional selective pressure. Finally, we also discuss the role of mitochondria in supporting tumor cell metabolism. PMID:22057267

  3. Effects of parathyroid hormone-related protein and macrophage inflammatory protein-1α in Jurkat T-cells on tumor formation in vivo and expression of apoptosis regulatory genes in vitro.

    Science.gov (United States)

    Shu, Sherry T; Dirksen, Wessel P; Lanigan, Lisa G; Martin, Chelsea K; Thudi, Nanda K; Werbeck, Jillian L; Fernandez, Soledad A; Hildreth, Blake E; Rosol, Thomas J

    2012-04-01

    Parathyroid hormone-related protein (PTHrP) and macrophage inflammatory protein-1α (MIP-1α) have been implicated in the pathogenesis of adult T-cell leukemia/lymphoma, but their effects on T-cells have not been well studied. Here we analyzed the functions of PTHrP and MIP-1α on T-cell growth and death both in vitro and in vivo by overexpressing either factor in human Jurkat T-cells. PTHrP or MIP-1α did not affect Jurkat cell growth in vitro, but PTHrP increased their sensitivity to apoptosis. Importantly, PTHrP and MIP-1α decreased both tumor incidence and growth in vivo. To investigate possible mechanisms, polymerase chain reaction (PCR) arrays and real-time reverse transcription (RT)-PCR assays were performed. Both PTHrP and MIP-1α increased the expression of several factors including signal transducer and activator of transcription 4, tumor necrosis factor α, receptor activator of nuclear factor κB ligand and death-associated protein kinase 1, and decreased the expression of inhibitor of DNA binding 1, interferon γ and CD40 ligand in Jurkat cells. In addition, MIP-1α also increased the expression of transcription factor AP-2α and PTHrP increased expression of the vitamin D3 receptor. These data demonstrate that PTHrP and MIP-1α exert a profound antitumor effect presumably by increasing the sensitivity to apoptotic signals through modulation of transcription and apoptosis factors in T-cells.

  4. Telomere profiles and tumor-associated macrophages with different immune signatures affect prognosis in glioblastoma.

    Science.gov (United States)

    Hung, Noelyn A; Eiholzer, Ramona A; Kirs, Stenar; Zhou, Jean; Ward-Hartstonge, Kirsten; Wiles, Anna K; Frampton, Chris M; Taha, Ahmad; Royds, Janice A; Slatter, Tania L

    2016-03-01

    Telomere maintenance is a hallmark of cancer and likely to be targeted in future treatments. In glioblastoma established methods of identifying telomerase and alternative lengthening of telomeres leave a significant proportion of tumors with no defined telomere maintenance mechanism. This study investigated the composition of these tumors using RNA-Seq. Glioblastomas with an indeterminate telomere maintenance mechanism had an increased immune signature compared with alternative lengthening of telomeres and telomerase-positive tumors. Immunohistochemistry for CD163 confirmed that the majority (80%) of tumors with an indeterminate telomere maintenance mechanism had a high presence of tumor-associated macrophages. The RNA-Seq and immunostaining data separated tumors with no defined telomere maintenance mechanism into three subgroups: alternative lengthening of telomeres like tumors with a high presence of tumor-associated macrophages and telomerase like tumors with a high presence of tumor-associated macrophages. The third subgroup had no increase in tumor-associated macrophages and may represent a distinct category. The presence of tumor-associated macrophages conferred a worse prognosis with reduced patient survival times (alternative lengthening of telomeres with and without macrophages P=0.0004, and telomerase with and without macrophages P=0.013). The immune signatures obtained from RNA-Seq were significantly different between telomere maintenance mechanisms. Alternative lengthening of telomeres like tumors with macrophages had increased expression of interferon-induced proteins with tetratricopeptide repeats (IFIT1-3). Telomerase-positive tumors with macrophages had increased expression of macrophage receptor with collagenous structure (MARCO), CXCL12 and sushi-repeat containing protein x-linked 2 (SRPX2). Telomerase-positive tumors with macrophages were also associated with a reduced frequency of total/near total resections (44% vs >76% for all other subtypes

  5. Tumor-Associated Macrophages as Incessant Builders and Destroyers of the Cancer Stroma

    Energy Technology Data Exchange (ETDEWEB)

    Liguori, Manuela; Solinas, Graziella; Germano, Giovanni [Department of Immunology and Inflammation Istituto Clinico Humanitas, Via Manzoni 113, Rozzano-Milano 20089 (Italy); Mantovani, Alberto [Department of Immunology and Inflammation Istituto Clinico Humanitas, Via Manzoni 113, Rozzano-Milano 20089 (Italy); Department of Translational Medicine, University of Milano, Milano 20089 (Italy); Allavena, Paola, E-mail: paola.allavena@humanitasresearch.it [Department of Immunology and Inflammation Istituto Clinico Humanitas, Via Manzoni 113, Rozzano-Milano 20089 (Italy)

    2011-09-28

    Tumor-Associated Macrophages (TAM) are key components of the reactive stroma of tumors. In most, although not all cancers, their presence is associated with poor patient prognosis. In addition to releasing cytokines and growth factors for tumor and endothelial cells, a distinguished feature of TAM is their high-rate degradation of the extra-cellular matrix. This incessant stroma remodelling favours the release of matrix-bound growth factors and promotes tumor cell motility and invasion. In addition, TAM produce matrix proteins, some of which are typical of the neoplastic tissues. The gene expression profile of TAM isolated from human tumors reveals a matrix-related signature with the up-regulation of genes coding for different matrix proteins, as well as several proteolytic enzymes. Among ECM components are: osteopontin, osteoactivin, collagens and fibronectin, including also a truncated isoform of fibronectin termed migration stimulation factor. In addition to serve as structural proteins, these matrix components have key functions in the regulation of the vessel network, in the inductionof tumor cell motility and degradation of cellular debris. Among proteolytic enzymes are: matrix metalloproteases, cathepsins, lysosomal and ADAM proteases, and the urokinase-type plasminogen activator. The degrading activity of TAM, coupled to the production of bio-active ECM proteins, co-operate to the build-up and maintenance of an inflammatory micro-environment which eventually promotes tumor progression.

  6. Targeted Imaging of Tumor-Associated Macrophages by Cyanine 7-Labeled Mannose in Xenograft Tumors

    Directory of Open Access Journals (Sweden)

    Chong Jiang MD

    2017-01-01

    Full Text Available Mannose receptor is considered as a hallmark of M2-oriented tumor-associated macrophages (TAMs, but its utility in TAMs was rarely reported. Therefore, deoxymannose (DM, a high-affinity ligand of mannose receptor, was labeled with near-infrared dye cyanine 7 (Cy7, and its feasibility of targeted imaging on TAMs was evaluated in vitro and in vivo. The Cy7-DM was synthesized, and its binding affinity with induced TAMs in vitro, whole-body imaging in xenograft tumor mouse model in vivo, and the cellular localization in dissected tissues were evaluated. We demonstrated a high uptake of Cy7-DM by induced M2 macrophages and TAMs in tumor tissues. In vivo near-infrared live imaging visualized abundant TAMs in tumor lesions instead of inflammatory sites by Cy7-DM imaging, and the quantity of Cy7-DM signals in tumors was significantly higher than that shown in inflammatory sites from 1 to 8 hours of imaging. Our results suggest that mannose could rapidly and specifically target TAMs and is a promising candidate for targeted diagnosis of tumor with rich TAMs.

  7. Dentinogenic ghost cell tumor

    Directory of Open Access Journals (Sweden)

    Singhaniya Shikha

    2009-01-01

    Full Text Available Dentinogenic ghost cell tumor (DGCT is a rare tumorous form of calcifying odontogenic cyst and only a small number of cases have been described. It is a locally invasive neoplasm that is characterized by ameloblastoma-like epithelial islands, ghost cells and dentinoid. The present report describes a case of a 21-year-old male with a tumor in the posterior region of the mandible, showing features of DGCT.

  8. Olfactory ensheathing cell tumor

    Directory of Open Access Journals (Sweden)

    Ippili Kaushal

    2009-01-01

    Full Text Available Olfactory ensheathing cells (OECs are found in the olfactory bulb and olfactory nasal mucosa. They resemble Schwann cells on light and electron microscopy, however, immunohistochemical staining can distinguish between the two. There are less than 30 cases of olfactory groove schwannomas reported in the literature while there is only one reported case of OEC tumor. We report an OEC tumor in a 42-year-old male and discuss the pathology and origin of this rare tumor.

  9. A Novel Strategy for Inducing the Antitumor Effects of Triterpenoid Compounds: Blocking the Protumoral Functions of Tumor-Associated Macrophages via STAT3 Inhibition

    Directory of Open Access Journals (Sweden)

    Yukio Fujiwara

    2014-01-01

    Full Text Available There are many types of nontumor cells, including leukocytes, fibroblasts, and endothelial cells, in the tumor microenvironment. Among these cells, infiltrating macrophages have recently received attention as novel target cells due to their protumoral functions. Infiltrating macrophages are called tumor-associated macrophages (TAMs. TAMs polarized to the M2 phenotype are involved in tumor development and are associated with a poor clinical prognosis. Therefore, the regulation of TAM activation or M2 polarization is a new strategy for antitumor therapy. We screened natural compounds possessing an inhibitory effect on the M2 polarization of human macrophages. Among 200 purified natural compounds examined, corosolic acid (CA and oleanolic acid (OA, both are categorized in triterpenoid compounds, inhibited macrophage polarization to M2 phenotype by suppressing STAT3 activation. CA and OA also directly inhibited tumor cell proliferation and sensitized tumor cells to anticancer drugs, such as adriamycin and cisplatin. The in vivo experiments showed that CA significantly suppressed subcutaneous tumor development and lung metastasis in a murine sarcoma model. The application of triterpenoid compounds, such as CA and OA, is a potential new anticancer therapy targeting macrophage activation, with synergistic effects with anticancer agents.

  10. Induction of Monocyte Chemoattractant Proteins in Macrophages via the Production of Granulocyte-macrophage Colony Stimulating Factor by Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Teizo eYoshimura

    2016-01-01

    Full Text Available Monocyte chemoattractant protein-1 (MCP-1/CCL2 plays an important role in the initiation and progression of cancer. We previously reported that in 4T1 murine breast cancer, non-tumor stromal cells, including macrophages, were the major source of MCP-1. In the present study, we analyzed the potential mechanisms by which MCP-1 is upregulated in macrophages infiltrating 4T1 tumors. We found that cell-free culture supernatants of 4T1 cells (4T1-sup markedly upregulated MCP-1 production by peritoneal inflammatory macrophages. 4T1-sup also upregulated other MCPs, such as MCP-3/CCL7 and MCP-5/CCL12, but modestly neutrophil chemotactic chemokines, such as KC/CXCL1 or MIP-2/CXCL2. Physicochemical analysis indicated that an approximately 2 to 3 kDa 4T1 cell product was responsible for the capacity of 4T1-sup to upregulate MCP-1 expression by macrophages. A neutralizing antibody against granulocyte-macrophage-colony stimulating factor (GM-CSF, but not macrophage-colony stimulating factor, almost completely abrogated MCP-1-inducing activity of 4T1-sup, and recombinant GM-CSF potently up-regulated MCP-1 production by macrophages. The expression levels of GM-CSF in 4T1 tumors in vivo were higher than other tumors, such as Lewis lung carcinoma. Treatment of mice with anti-GM-CSF antibody significantly reduced the growth of 4T1 tumors at the injection sites but did not reduce MCP-1 production or lung metastasis in tumor-bearing mice. These results indicate that 4T1 cells have the capacity to directly up-regulate MCP-1 production by macrophages by releasing GM-CSF; however, other mechanisms are also involved in increased MCP-1 levels in the 4T1 tumor microenvironment.

  11. Antitumor effect of vitamin D-binding protein-derived macrophage activating factor on Ehrlich ascites tumor-bearing mice.

    Science.gov (United States)

    Koga, Y; Naraparaju, V R; Yamamoto, N

    1999-01-01

    Cancerous cells secrete alpha-N-acetylgalactosaminidase (NaGalase) into the blood stream, resulting in deglycosylation of serum vitamin D3-binding protein (known as Gc protein), which is a precursor for macrophage activating factor (MAF). Incubation of Gc protein with immobilized beta-galactosidase and sialidase generates the most potent macrophage activating factor (designated GcMAF). Administration of GcMAF to cancer-bearing hosts can bypass the inactivated MAF precursor and act directly on macrophages for efficient activation. Therapeutic effects of GcMAF on Ehrlich ascites tumor-bearing mice were assessed by survival time and serum NaGalase activity, because serum NaGalase activity was proportional to tumor burden. A single administration of GcMAF (100 pg/mouse) to eight mice on the same day after transplantation of the tumor (5 x 10(5) cells) showed a mean survival time of 21 +/- 3 days for seven mice, with one mouse surviving more than 60 days, whereas tumor-bearing controls had a mean survival time of 13 +/- 2 days. Six of the eight mice that received two GcMAF administrations, at Day 0 and Day 4 after transplantation, survived up to 31 +/- 4 days whereas, the remaining two mice survived for more than 60 days. Further, six of the eight mice that received three GcMAF administrations with 4-day intervals showed an extended survival of at least 60 days, and serum NaGalase levels were as low as those of control mice throughout the survival period. The cure with subthreshold GcMAF-treatments (administered once or twice) of tumor-bearing mice appeared to be a consequence of sustained macrophage activation by inflammation resulting from the macrophage-mediated tumoricidal process. Therefore, a protracted macrophage activation induced by a few administrations of minute amounts of GcMAF eradicated the murine ascites tumor.

  12. Melanoma cell-derived exosomes alter macrophage and dendritic cell functions in vitro.

    Science.gov (United States)

    Marton, Annamaria; Vizler, Csaba; Kusz, Erzsebet; Temesfoi, Viktoria; Szathmary, Zsuzsa; Nagy, Krisztina; Szegletes, Zsolt; Varo, Gyorgy; Siklos, Laszlo; Katona, Robert L; Tubak, Vilmos; Howard, O M Zack; Duda, Erno; Minarovits, Janos; Nagy, Katalin; Buzas, Krisztina

    2012-01-01

    To clarify controversies in the literature of the field, we have purified and characterized B16F1 melanoma cell derived exosomes (mcd-exosomes) then we attempted to dissect their immunological activities. We tested how mcd-exosomes influence CD4+ T cell proliferation induced by bone marrow derived dendritic cells; we quantified NF-κB activation in mature macrophages stimulated with mcd-exosomes, and we compared the cytokine profile of LPS-stimulated, IL-4 induced, and mcd-exosome treated macrophages. We observed that mcd-exosomes helped the maturation of dendritic cells, enhancing T cell proliferation induced by the treated dendritic cells. The exosomes also activated macrophages, as measured by NF-κB activation. The cytokine and chemokine profile of macrophages treated with tumor cell derived exosomes showed marked differences from those induced by either LPS or IL-4, and it suggested that exosomes may play a role in the tumor progression and metastasis formation through supporting tumor immune escape mechanisms.

  13. Macrophage inflammatory protein-2 contributes to liver resection-induced acceleration of hepatic metastatic tumor growth

    Institute of Scientific and Technical Information of China (English)

    Otto Kollmar; Michael D Menger; Martin K Schilling

    2006-01-01

    AIM: To study the role of macrophage inflammatory protein (MIP)-2 in liver resection-induced acceleration of tumor growth in a mouse model of hepatic metastasis.METHODS: After a 50% hepatectomy, 1×105 CT26.WT cells were implanted into the left liver lobe of syngeneic balb/c mice (PHx). Additional animals were treated with a monoclonal antibody (MAB452) neutralizing MIP-2(PHx+mAB). Non-resected and non-mAB-treated mice (Con) served as controls. After 7 d, tumor angiogenesis and microcirculation as well as cell proliferation, tumor growth, and CXCR-2 expression were analyzed using intravital fluorescence microscopy, histology, immunohistochemistry, and flow cytometry.RESULTS: Partial hepatectomy increased (P<0.05) the expression of the MIP-2 receptor CXCR-2 on tumor cells when compared with non-resected controls, and markedly accelerated (P<0.05) angiogenesis and metastatic tumor growth. Neutralization of MIP-2 by MAB452 treatment significantly (P<0.05) depressed CXCR-2 expression. Further, the blockade of MIP-2 reduced the angiogenic response (P<0.05) and inhibited tumor growth (P< 0.05). Of interest, liver resection-induced hepatocyte proliferation was not effected by anti-MIP-2 treatment.CONCLUSION: MIP-2 significantly contributes to liver resection-induced acceleration of colorectal CT26.WT hepatic metastasis growth.

  14. Merkel cell tumor.

    Science.gov (United States)

    Kitazawa, M; Watanabe, H; Kobayashi, H; Ohnishi, Y; Shitara, A; Nitto, H

    1987-06-01

    A Merkel cell tumor appeared on the left cheek of an 83-year-old female was reported. The tumor was located mainly in the dermis and infiltrated to the subcutaneous adipose tissue with an involvement of the blood vessels and lymphatics at the periphery. Electron-microscopically, few of the dense-cored granules and the single globular aggregates of intermediate filaments at the nuclear indentations were observed. Electron-microscopic uranaffin reaction proved positive reaction on the dense-cored granules. Half of the cytoplasmic border was smooth, while the rest had short projections. Desmosomes or junctional complexes were not detected among the tumor cells. Immunohistochemically, the cytoplasm of tumor cell showed positive reaction to both neuron-specific enolase (NSE) and keratin. The single globular positive spots of the latter were localized in accordance with the aggregates of intermediate filaments. These findings suggested a neurogenic origin with double differentiation, epithelial and neuroendocrine, of the Merkel cell tumor.

  15. Anti-tumor effects of lycium barbarum polysaccharide on pancreatic cancer cells by polarization of macrophages%枸杞多糖通过诱导巨噬细胞极化抗胰腺癌的研究

    Institute of Scientific and Technical Information of China (English)

    杨青; 白光; 王巍; 包翠芬; 翟振华

    2015-01-01

    Objective To explore the effects of lycium barbarum polysaccharide (LBP) on restraining the mouse pancre⁃atic cancer cells LTPA by the polarization of macrophages to type 1 macrophages (M1). Methods LTPA tumor model of the subcutaneous CB-17SCID mice was constructed. Model mice were randomly divided into tumor-bearing model group (n=10) and LBP treatment group (n=10). The LBP treatment group was fed 10mg/kg LBP every day, and the tumor-bearing model group was fed the same dose of normal saline. The same amount of macrophages Raw264.7 was randomly divided into the control group and experimental groups (different concentrations of LBP). MTT assay was used to detect the optical density (OD) of Raw264.7 in experimental groups and control group. ELISA was used to detect the levels of the interleukin (IL)-12 and IL-10 in experimental group (LBP was 100 mg/L) and the control group. Flow cytometry was used to test the levels of the membrane protein CD16/32 and CD206 in experimental group (LBP was 100 mg/L) and the control group. The tumor mass was weighted and the volume was calculated after three weeks. The effects of LBP on the growth of subcutaneous tumor were detected. HE staining and KI-67 staining were used to detect the microscopic changes of tumor and the proliferation of the LTPA. Results The dose of 100 mg/L LBP can promote the growth of the macrophages Raw264.7 (P<0.01), and induced the high expression of CD16/32 and low expression of CD206, high secretion of IL-12 and low secretion of IL-10. The weight, volume of the tumor and the expression of KI-67 were significantly lower in experimental group than those in the con⁃trol group (P<0.01). The microscopic necrosis area range of tumor was larger than that of control group. Conclusion The LBP has the effect of restraining LTPA by the polarization of macrophages to M1.%目的:探讨枸杞多糖(LBP)通过诱导巨噬细胞极化成一型巨噬细胞(M1)抗小鼠胰腺癌细胞LTPA的

  16. Pharmacologic or Genetic Targeting of Glutamine Synthetase Skews Macrophages toward an M1-like Phenotype and Inhibits Tumor Metastasis

    Directory of Open Access Journals (Sweden)

    Erika M. Palmieri

    2017-08-01

    Full Text Available Glutamine-synthetase (GS, the glutamine-synthesizing enzyme from glutamate, controls important events, including the release of inflammatory mediators, mammalian target of rapamycin (mTOR activation, and autophagy. However, its role in macrophages remains elusive. We report that pharmacologic inhibition of GS skews M2-polarized macrophages toward the M1-like phenotype, characterized by reduced intracellular glutamine and increased succinate with enhanced glucose flux through glycolysis, which could be partly related to HIF1α activation. As a result of these metabolic changes and HIF1α accumulation, GS-inhibited macrophages display an increased capacity to induce T cell recruitment, reduced T cell suppressive potential, and an impaired ability to foster endothelial cell branching or cancer cell motility. Genetic deletion of macrophagic GS in tumor-bearing mice promotes tumor vessel pruning, vascular normalization, accumulation of cytotoxic T cells, and metastasis inhibition. These data identify GS activity as mediator of the proangiogenic, immunosuppressive, and pro-metastatic function of M2-like macrophages and highlight the possibility of targeting this enzyme in the treatment of cancer metastasis.

  17. Visualization of the Biological Behavior of Tumor-Associated Macrophages in Living Mice with Colon Cancer Using Multimodal Optical Reporter Gene Imaging

    Directory of Open Access Journals (Sweden)

    Yun Ju Choi

    2016-03-01

    Full Text Available We sought to visualize the migration of tumor-associated macrophages (TAMs to tumor lesions and to evaluate the effects of anti-inflammatory drugs on TAM-modulated tumor progression in mice with colon cancer using a multimodal optical reporter gene system. Murine macrophage Raw264.7 cells expressing an enhanced firefly luciferase (Raw/effluc and murine colon cancer CT26 cells coexpressing Rluc and mCherry (CT26/Rluc-mCherry, CT26/RM were established. CT26/RM tumor-bearing mice received Raw/effluc via their tail veins, and combination of bioluminescence imaging (BLI and fluorescence imaging (FLI was conducted for in vivo imaging of TAMs migration and tumor progression. Dexamethasone (DEX, a potent anti-inflammatory drug, was administered intraperitoneally to tumor-bearing mice following the intravenous transfer of Raw/effluc cells. The migration of TAMs and tumor growth was monitored by serial FLI and BLI. The migration of Raw/effluc cells to tumor lesions was observed at day 1, and BLI signals were still distinct at tumor lesions on day 4. Localization of BLI signals from migrated Raw/effluc cells corresponded to that of FLI signals from CT26/RM tumors. In vivo FLI of tumors demonstrated enhanced tumor growth associated with macrophage migration to tumor lesions. Treatment with DEX inhibited the influx of Raw/effluc cells to tumor lesions and abolished the enhanced tumor growth associated with macrophage migration. These findings suggest that molecular imaging approach for TAM tracking is a valuable tool for evaluating the role of TAMs in the tumor microenvironment as well as for the development of new drugs to control TAM involvement in the modulation of tumor progression.

  18. Interactions between neutrophils and macrophages promote macrophage killing of rat muscle cells in vitro

    Science.gov (United States)

    Nguyen, Hal X.; Tidball, James G.

    2003-01-01

    Current evidence indicates that the physiological functions of inflammatory cells are highly sensitive to their microenvironment, which is partially determined by the inflammatory cells and their potential targets. In the present investigation, interactions between neutrophils, macrophages and muscle cells that may influence muscle cell death are examined. Findings show that in the absence of macrophages, neutrophils kill muscle cells in vitro by superoxide-dependent mechanisms, and that low concentrations of nitric oxide (NO) protect against neutrophil-mediated killing. In the absence of neutrophils, macrophages kill muscle cells through a NO-dependent mechanism, and the presence of target muscle cells causes a three-fold increase in NO production by macrophages, with no change in the concentration of inducible nitric oxide synthase. Muscle cells that are co-cultured with both neutrophils and macrophages in proportions that are observed in injured muscle show cytotoxicity through a NO-dependent, superoxide-independent mechanism. Furthermore, the concentration of myeloid cells that is necessary for muscle killing is greatly reduced in assays that use mixed myeloid cell populations, rather than uniform populations of neutrophils or macrophages. These findings collectively show that the magnitude and mechanism of muscle cell killing by myeloid cells are modified by interactions between muscle cells and neutrophils, between muscle cells and macrophages and between macrophages and neutrophils.

  19. Effects of compounds from Kaempferia parviflora on nitric oxide, prostaglandin E2 and tumor necrosis factor-alpha productions in RAW264.7 macrophage cells.

    Science.gov (United States)

    Tewtrakul, Supinya; Subhadhirasakul, Sanan

    2008-10-30

    Kaempferia parviflora Wall. ex Baker, is one of the plants in the Zingiberaceae family, locally known in Thai as kra-chai-dam. The rhizome of this plant has been used for treatment of gout, apthous ulcer and abscesses. Since K. parviflora rhizomes have long been used for treatment of inflammation and possessed marked nitric oxide (NO) inhibitory activity (IC(50)=7.8microg/ml), we thus investigated the inhibitory activity of compounds isolated from this plant against lipopolysaccharide (LPS)-induced NO release in RAW264.7 cells. From bioassay-guided fractionation of K. parviflora, seven methoxyflavones were isolated from the hexane fraction and were tested for their anti-inflammatory effects. Among the isolated compounds, compound 5 (5-hydroxy-3,7,3',4'-tetramethoxyflavone) exhibited the highest activity against NO release with an IC(50) value of 16.1microM, followed by 4 (IC(50)=24.5microM) and 3 (IC(50)=30.6microM). Compound 5 was also tested on LPS-induced prostaglandin E(2) (PGE(2)) and tumor necrosis factor-alpha (TNF-alpha) releases from RAW264.7 cells. It was revealed that 5 showed appreciable inhibitory effect on PGE(2) release (IC(50)=16.3microM), but inactive on TNF-alpha (IC(50)>100microM). These findings may support the use in Thai traditional medicine of K. parviflora for treatment of inflammatory-related diseases through the inhibition of NO and PGE(2) releases but partly due to that of TNF-alpha.

  20. Melanoma Cells Can Adopt the Phenotype of Stromal Fibroblasts and Macrophages by Spontaneous Cell Fusion in Vitro.

    Science.gov (United States)

    Kemény, Lajos V; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B

    2016-06-02

    After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells' nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma-stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments.

  1. An inflammatory gene signature distinguishes neurofibroma Schwann cells and macrophages from cells in the normal peripheral nervous system

    Science.gov (United States)

    Choi, Kwangmin; Komurov, Kakajan; Fletcher, Jonathan S.; Jousma, Edwin; Cancelas, Jose A.; Wu, Jianqiang; Ratner, Nancy

    2017-01-01

    Neurofibromas are benign peripheral nerve tumors driven by NF1 loss in Schwann cells (SCs). Macrophages are abundant in neurofibromas, and macrophage targeted interventions may have therapeutic potential in these tumors. We generated gene expression data from fluorescence-activated cell sorted (FACS) SCs and macrophages from wild-type and mutant nerve and neurofibroma to identify candidate pathways involved in SC-macrophage cross-talk. While in 1-month-old Nf1 mutant nerve neither SCs nor macrophages significantly differed from their normal counterparts, both macrophages and SCs showed significantly altered cytokine gene expression in neurofibromas. Computationally reconstructed SC-macrophage molecular networks were enriched for inflammation-associated pathways. We verified that neurofibroma SC conditioned medium contains macrophage chemo-attractants including colony stimulation factor 1 (CSF1). Network analysis confirmed previously implicated pathways and predict novel paracrine and autocrine loops involving cytokines, chemokines, and growth factors. Network analysis also predicted a central role for decreased type-I interferon signaling. We validated type-I interferon expression in neurofibroma by protein profiling, and show that treatment of neurofibroma-bearing mice with polyethylene glycolyated (PEGylated) type-I interferon-α2b reduces the expression of many cytokines overexpressed in neurofibroma. These studies reveal numerous potential targetable interactions between Nf1 mutant SCs and macrophages for further analyses. PMID:28256556

  2. Liposomal phosphatidylserine inhibits tumor cytotoxicity of liver macrophages induced by muramyl dipeptide and lipopolysaccharide

    NARCIS (Netherlands)

    Daemen, T; Regts, J; Scherphof, GL

    1996-01-01

    Liposomes can very efficiently deliver immunomodulators to macrophages so as to induce tumor cytotoxicity. Liposomes most widely used for that purpose contain negatively charged lipids, in particular phosphatidylserine (PS), to enhance liposome uptake by the macrophages. We investigated the effect o

  3. Macrophage PPARγ inhibits Gpr132 to mediate the anti-tumor effects of rosiglitazone

    Science.gov (United States)

    Cheng, Wing Yin; Huynh, HoangDinh; Chen, Peiwen; Peña-Llopis, Samuel; Wan, Yihong

    2016-01-01

    Tumor-associated macrophage (TAM) significantly contributes to cancer progression. Human cancer is enhanced by PPARγ loss-of-function mutations, but inhibited by PPARγ agonists such as TZD diabetes drugs including rosiglitazone. However, it remains enigmatic whether and how macrophage contributes to PPARγ tumor-suppressive functions. Here we report that macrophage PPARγ deletion in mice not only exacerbates mammary tumor development but also impairs the anti-tumor effects of rosiglitazone. Mechanistically, we identify Gpr132 as a novel direct PPARγ target in macrophage whose expression is enhanced by PPARγ loss but repressed by PPARγ activation. Functionally, macrophage Gpr132 is pro-inflammatory and pro-tumor. Genetic Gpr132 deletion not only retards inflammation and cancer growth but also abrogates the anti-tumor effects of PPARγ and rosiglitazone. Pharmacological Gpr132 inhibition significantly impedes mammary tumor malignancy. These findings uncover macrophage PPARγ and Gpr132 as critical TAM modulators, new cancer therapeutic targets, and essential mediators of TZD anti-cancer effects. DOI: http://dx.doi.org/10.7554/eLife.18501.001

  4. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice.

    Science.gov (United States)

    Watari, Kosuke; Shibata, Tomohiro; Nabeshima, Hiroshi; Shinoda, Ai; Fukunaga, Yuichi; Kawahara, Akihiko; Karasuyama, Kazuyuki; Fukushi, Jun-Ichi; Iwamoto, Yukihide; Kuwano, Michihiko; Ono, Mayumi

    2016-01-18

    N-myc downstream regulated gene 1 (NDRG1) is a responsible gene for a hereditary motor and sensory neuropathy-Lom (Charcot-Marie-Tooth disease type 4D). This is the first study aiming to assess the contribution of NDRG1 to differentiation of macrophage lineage cells, which has important implications for bone remodeling and inflammatory angiogenesis. Ndrg1 knockout (KO) mice exhibited abnormal curvature of the spine, high trabecular bone mass, and reduced number of osteoclasts. We observed that serum levels of macrophage colony-stimulating factor (M-CSF) and macrophage-related cytokines were markedly decreased in KO mice. Differentiation of bone marrow (BM) cells into osteoclasts, M1/M2-type macrophages and dendritic cells was all impaired. Furthermore, KO mice also showed reduced tumor growth and angiogenesis by cancer cells, accompanied by decreased infiltration of tumor-associated macrophages. The transfer of BM-derived macrophages from KO mice into BM-eradicated wild type (WT) mice induced much less tumor angiogenesis than observed in WT mice. Angiogenesis in corneas in response to inflammatory stimuli was also suppressed with decreased infiltration of macrophages. Taken together, these results indicate that NDRG1 deficiency attenuates the differentiation of macrophage lineage cells, suppressing bone remodeling and inflammatory angiogenesis. This study strongly suggests the crucial role of NDRG1 in differentiation process for macrophages.

  5. Mouse Leydig Tumor Cells

    Directory of Open Access Journals (Sweden)

    Bo-Syong Pan

    2011-01-01

    Full Text Available Cordycepin is a natural pure compound extracted from Cordyceps sinensis (CS. We have demonstrated that CS stimulates steroidogenesis in primary mouse Leydig cell and activates apoptosis in MA-10 mouse Leydig tumor cells. It is highly possible that cordycepin is the main component in CS modulating Leydig cell functions. Thus, our aim was to investigate the steroidogenic and apoptotic effects with potential mechanism of cordycepin on MA-10 mouse Leydig tumor cells. Results showed that cordycepin significantly stimulated progesterone production in dose- and time-dependent manners. Adenosine receptor (AR subtype agonists were further used to treat MA-10 cells, showing that A1, A 2A , A 2B , and A3, AR agonists could stimulate progesterone production. However, StAR promoter activity and protein expression remained of no difference among all cordycepin treatments, suggesting that cordycepin might activate AR, but not stimulated StAR protein to regulate MA-10 cell steroidogenesis. Meanwhile, cordycepin could also induce apoptotic cell death in MA-10 cells. Moreover, four AR subtype agonists induced cell death in a dose-dependent manner, and four AR subtype antagonists could all rescue cell death under cordycepin treatment in MA-10 cells. In conclusion, cordycepin could activate adenosine subtype receptors and simultaneously induce steroidogenesis and apoptosis in MA-10 mouse Leydig tumor cells.

  6. Nonislet Cell Tumor Hypoglycemia

    Directory of Open Access Journals (Sweden)

    Johnson Thomas

    2013-01-01

    Full Text Available Nonislet cell tumor hypoglycemia (NICTH is a rare cause of hypoglycemia. It is characterized by increased glucose utilization by tissues mediated by a tumor resulting in hypoglycemia. NICTH is usually seen in large mesenchymal tumors including tumors involving the GI tract. Here we will discuss a case, its pathophysiology, and recent advances in the management of NICTH. Our patient was diagnosed with poorly differentiated squamous cell carcinoma of esophagus. He continued to be hypoglycemic even after starting continuous tube feeds and D5W. General workup for hypoglycemia was negative and insulin-like growth factor II (IGF II was in the normal range. Hypoglycemia secondary to “big” IGF II was considered, and patient was started on steroids. His hypoglycemia resolved within a day of treatment with steroids. Initially patient had hypoglycemia unawareness, which he regained after maintaining euglycemia for 48 hours.

  7. The Interaction of Adrenomedullin and Macrophages Induces Ovarian Cancer Cell Migration via Activation of RhoA Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Xiaoyan Pang

    2013-01-01

    Full Text Available Tumor-associated macrophages (TAMs are correlated with poor prognosis in many human cancers; however, the mechanism by which TAMs facilitate ovarian cancer cell migration and invasion remains unknown. This study was aimed to examine the function of adrenomedullin (ADM in macrophage polarization and their further effects on the migration of ovarian cancer cells. Exogenous ADM antagonist and small interfering RNA (siRNA specific for ADM expression were treated to macrophages and EOC cell line HO8910, respectively. Then macrophages were cocultured with HO8910 cells without direct contact. Flow cytometry, Western blot and real-time PCR were used to detect macrophage phenotype and cytokine production. The migration ability and cytoskeleton rearrangement of ovarian cancer cells were determined by Transwell migration assay and phalloidin staining. Western blot was performed to evaluate the activity status of signaling molecules in the process of ovarian cancer cell migration. The results showed that ADM induced macrophage phenotype and cytokine production similar to TAMs. Macrophages polarized by ADM promoted the migration and cytoskeleton rearrangement of HO8910 cells. The expression of RhoA and its downstream effector, cofilin, were upregulated in macrophage-induced migration of HO8910 cells. In conclusion, ADM could polarize macrophages similar to TAMs, and then polarized macrophages promote the migration of ovarian cancer cells via activation of RhoA signaling pathway in vitro.

  8. Adipocytes and Macrophages Interplay in the Orchestration of Tumor Microenvironment: New Implications in Cancer Progression

    Science.gov (United States)

    Corrêa, Luís Henrique; Corrêa, Rafael; Farinasso, Cecília Menezes; de Sant’Ana Dourado, Lívia Pimentel; Magalhães, Kelly Grace

    2017-01-01

    Inflammation has been known as one of the main keys to the establishment and progression of cancers. Chronic low-grade inflammation is also a strategic condition that underlies the causes and development of metabolic syndrome and obesity. Moreover, obesity has been largely related to poor prognosis of tumors by modulating tumor microenvironment with secretion of several inflammatory mediators by tumor-associated adipocytes (TAAs), which can modulate and recruit tumor-associated macrophages. Thus, the understanding of cellular and molecular mechanisms that underlay and link inflammation, obesity, and cancer is crucial to identify potential targets that interfere with this important route. Knowledge about the exact role of each component of the tumor microenvironment is not yet fully understood, but the new insights in literature highlight the essential role of adipocytes and macrophages interplay as key factor to determine the fate of cancer progression. In this review article, we focus on the functions of adipocytes and macrophages orchestrating cellular and molecular mechanisms that lead to inflammatory modulation in tumor microenvironment, which will be crucial to cancer establishment. We also emphasized the mechanisms by which the tumor promotes itself by recruiting and polarizing macrophages, discussing the role of adipocytes in this process. In addition, we discuss here the newest possible anticancer therapeutic treatments aiming to retard the development of the tumor based on what is known about cancer, adipocyte, and macrophage polarization. PMID:28970834

  9. Adipocytes and Macrophages Interplay in the Orchestration of Tumor Microenvironment: New Implications in Cancer Progression

    Directory of Open Access Journals (Sweden)

    Luís Henrique Corrêa

    2017-09-01

    Full Text Available Inflammation has been known as one of the main keys to the establishment and progression of cancers. Chronic low-grade inflammation is also a strategic condition that underlies the causes and development of metabolic syndrome and obesity. Moreover, obesity has been largely related to poor prognosis of tumors by modulating tumor microenvironment with secretion of several inflammatory mediators by tumor-associated adipocytes (TAAs, which can modulate and recruit tumor-associated macrophages. Thus, the understanding of cellular and molecular mechanisms that underlay and link inflammation, obesity, and cancer is crucial to identify potential targets that interfere with this important route. Knowledge about the exact role of each component of the tumor microenvironment is not yet fully understood, but the new insights in literature highlight the essential role of adipocytes and macrophages interplay as key factor to determine the fate of cancer progression. In this review article, we focus on the functions of adipocytes and macrophages orchestrating cellular and molecular mechanisms that lead to inflammatory modulation in tumor microenvironment, which will be crucial to cancer establishment. We also emphasized the mechanisms by which the tumor promotes itself by recruiting and polarizing macrophages, discussing the role of adipocytes in this process. In addition, we discuss here the newest possible anticancer therapeutic treatments aiming to retard the development of the tumor based on what is known about cancer, adipocyte, and macrophage polarization.

  10. CD8+ Tumor-Infiltrating T Cells Are Trapped in the Tumor-Dendritic Cell Network

    Directory of Open Access Journals (Sweden)

    Alexandre Boissonnas

    2013-01-01

    Full Text Available Chemotherapy enhances the antitumor adaptive immune T cell response, but the immunosuppressive tumor environment often dominates, resulting in cancer relapse. Antigen-presenting cells such as tumor-associated macrophages (TAMs and tumor dendritic cells (TuDCs are the main protagonists of tumor-infiltrating lymphocyte (TIL immuno-suppression. TAMs have been widely investigated and are associated with poor prognosis, but the immuno-suppressive activity of TuDCs is less well understood. We performed two-photon imaging of the tumor tissue to examine the spatiotemporal interactions between TILs and TuDCs after chemotherapy. In a strongly immuno-suppressive murine tumor model, cyclophosphamide-mediated chemotherapy transiently enhanced the antitumor activity of adoptively transferred ovalbumin-specific CD8+ T cell receptor transgenic T cells (OTI but barely affected TuDC compartment within the tumor. Time lapse imaging of living tumor tissue showed that TuDCs are organized as a mesh with dynamic interconnections. Once infiltrated into the tumor parenchyma, OTI T cells make antigen-specific and long-lasting contacts with TuDCs. Extensive analysis of TIL infiltration on histologic section revealed that after chemotherapy the majority of OTI T cells interact with TuDCs and that infiltration is restricted to TuDC-rich areas. We propose that the TuDC network exerts antigen-dependent unproductive retention that trap T cells and limit their antitumor effectiveness.

  11. 肿瘤相关巨噬细胞与肿瘤关系的研究进展%The role of tumor associated macrophages in tumor progression

    Institute of Scientific and Technical Information of China (English)

    吴红梅; 齐蕾; 单丽辉; 柴翠翠(综述); 王立峰(审校)

    2014-01-01

    Tumor associate macrophages ( TAMs) play a significant role in the interaction of tumor inflam-mative microenvironment and tumor cells .TAMs originate from monocytic precursors ,recruiting into tumor tissue by colony stimulating factor ( CSF) .This review summarized that TAMs promote tumor progression and metastasis though angiogenesis ,lymphogenesis , immunosuppression , matrix remodeling and affecting cancer stem cells .The article pointed that targeting TAMs is a new strategy for future tumor therapy .%肿瘤相关巨噬细胞( Tumor associate macrophages ,TAMs)是肿瘤的炎症微环境与肿瘤细胞间的重要信使。它是从血液中的单核细胞演变而来,主要通过集落刺激因子( Colony -stimulating factor , CSF)趋化至肿瘤组织中。本文简述了TAMs通过影响血管生成和淋巴管生成,抑制免疫,调节基质,与干细胞相互作用等方面促进肿瘤的进展。分析表明靶向于TAMs的治疗策略是未来治疗肿瘤的一个新方向。

  12. Tumor-associated macrophages%肿瘤相关巨噬细胞研究进展

    Institute of Scientific and Technical Information of China (English)

    吴琼; 姜祎群; 孙建方

    2015-01-01

    肿瘤相关巨噬细胞是肿瘤相关慢性炎症中的关键细胞,促进肿瘤生长、增殖、血管生成、侵袭、转移及化疗抵抗.巨噬细胞根据环境不同大致可极化为经典活化型巨噬细胞(M1型)及替代活化型巨噬细胞(M2型).环氧酶2、核因子κB、Toll样受体信号途径、缺氧、原癌基因MYC、Notch信号通路及细胞因子等参与肿瘤相关巨噬细胞发生M1-M2型别转化.巨噬细胞的表型及功能随着肿瘤进展的不同阶段而变化,针对巨噬细胞的抗肿瘤药物治疗,应取决于肿瘤所处的阶段.%Tumor-associated macrophages (TAMs) are key cells in tumor-associated chronic inflammation,and can promote tumor growth,proliferation,angiogenesis,invasion,metastasis and chemotherapy resistance.Under different circumstances,macrophages can be polarized into classically activated macrophages (M1) and alternatively activated macrophages (M2).Cyclooxygenase 2,nuclear factorκB,Toll like receptor (TLR) signaling pathway,anoxia,the protooncogene MYC,Notch signaling pathway and cytokines are all involved in the transition of TAMs from M1 to M2 phenotype.The phenotype and function of TAMs vary with tumor progression,so antitumor drug therapies targeting macrophages should depend on the stage of tumors.

  13. Inflamed tumor-associated adipose tissue is a depot for macrophages that stimulate tumor growth and angiogenesis

    NARCIS (Netherlands)

    Wagner, Marek; Bjerkvig, Rolf; Wiig, Helge; Melero-Martin, Juan M.; Lin, Ruei-Zeng; Klagsbrun, Michael; Dudley, Andrew C.

    2012-01-01

    Tumor-associated stroma is typified by a persistent, non-resolving inflammatory response that enhances tumor angiogenesis, growth and metastasis. Inflammation in tumors is instigated by heterotypic interactions between malignant tumor cells, vascular endothelium, fibroblasts, immune and inflammatory

  14. Butylated Hydroxyanisole Blocks the Occurrence of Tumor Associated Macrophages in Tobacco Smoke Carcinogen-Induced Lung Tumorigenesis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan; Choksi, Swati; Liu, Zheng-Gang, E-mail: zgliu@helix.nih.gov [Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 (United States)

    2013-12-04

    Tumor-associated macrophages (TAMs) promote tumorigenesis because of their proangiogenic and immune-suppressive functions. Here, we report that butylated hydroxyanisole (BHA) blocks occurrence of tumor associated macrophages (TAMs) in tobacco smoke carcinogen-induced lung tumorigenesis. Continuous administration of butylated hydroxyanisole (BHA), a ROS inhibitor, before or after NNK treatment significantly blocked tumor development, although less effectively when BHA is administered after NNK treatment. Strikingly, BHA abolished the occurrence of F4/80{sup +} macrophages with similar efficiency no matter whether it was administered before or after NNK treatment. Detection of cells from bronchioalveolar lavage fluid (BALF) confirmed that BHA markedly inhibited the accumulation of macrophages while slightly reducing the number of lymphocytes that were induced by NNK. Immunohistological staining showed that BHA specifically abolished the occurrence of CD206{sup +} TAMs when it was administered before or after NNK treatment. Western blot analysis of TAMs markers, arginase I and Ym-1, showed that BHA blocked NNK-induced TAMs accumulation. Our study clearly demonstrated that inhibiting the occurrence of TAMs by BHA contributes to the inhibition of tobacco smoke carcinogen-induced tumorigenesis, suggesting ROS inhibitors may serve as a therapeutic target for treating smoke-induced lung cancer.

  15. Role of the tumor suppressor ARF in macrophage polarization

    Science.gov (United States)

    Herranz, Sandra; Través, Paqui G.; Luque, Alfonso; Hortelano, Sonsoles

    2012-01-01

    The ARF locus is frequently inactivated in human cancer. The oncosuppressor ARF has indeed been described as a general sensor for different situation of cellular stress. We have previously demonstrated that ARF deficiency severely impairs inflammatory responses in vitro and in vivo, establishing a role for ARF in the regulation of innate immunity. The aim of the present work was to get further insights into the immune functions of ARF and to evaluate its possible contribution to the polarization of macrophages toward the M1 or M2 phenotype. Our results demonstrate that resting Arf−/− macrophages express high levels of Ym1 and Fizz-1, two typical markers of alternatively-activated macrophages (M2). Additionally, Arf−/− peritoneal macrophages showed an impaired response to lipopolysaccharide (a classical inducer of M1 polaryzation) and a reduced production of pro-inflammatory cytokines/chemokines. Moreover, upon stimulation with interleukin-4 (IL-4), an inducer of the M2 phenotype, well established M2 markers such as Fizz-1, Ym1 and arginase-1 were upregulated in Arf−/− as compared with wild type macrophages. Accordingly, the cytokine and chemokine profile associated with the M2 phenotype was significantly overexpressed in Arf−/− macrophages responding to IL-4. In addition, multiple pro-angiogenic factors such as VEGF and MMP-9 were also increased. In summary, these results indicate that ARF contributes to the polarization and functional plasticity of macrophages. PMID:23243586

  16. Ghost Cell Tumors.

    Science.gov (United States)

    Sheikh, Jason; Cohen, Molly D; Ramer, Naomi; Payami, Ali

    2017-04-01

    Ghost cell tumors are a family of lesions that range in presentation from cyst to solid neoplasm and in behavior from benign to locally aggressive or metastatic. All are characterized by the presence of ameloblastic epithelium, ghost cells, and calcifications. This report presents the cases of a 14-year-old girl with a calcifying cystic odontogenic tumor (CCOT) and a 65-year-old woman with a peripheral dentinogenic ghost cell tumor (DGCT) with dysplastic changes, a rare locally invasive tumor of odontogenic epithelium. The first patient presented with a 1-year history of slowly progressing pain and swelling at the left body of the mandible. Initial panoramic radiograph displayed a mixed radiolucent and radiopaque lesion. An incisional biopsy yielded a diagnosis of CCOT. Decompression of the mass was completed; after 3 months, it was enucleated and immediately grafted with bone harvested from the anterior iliac crest. The second patient presented with a 3-month history of slowly progressing pain and swelling at the left body of the mandible. Initial panoramic radiograph depicted a mixed radiolucent and radiopaque lesion with saucerization of the buccal mandibular cortex. An incisional biopsy examination suggested a diagnosis of DGCT because of the presence of ghost cells, dentinoid, and islands of ameloblastic epithelium. Excision of the mass with peripheral ostectomy was completed. At 6 and 12 months of follow-up, no evidence of recurrence was noted.

  17. Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation

    Directory of Open Access Journals (Sweden)

    Alexander R. Pinto

    2014-11-01

    Full Text Available Macrophages are an immune cell type found in every organ of the body. Classically, macrophages are recognised as housekeeping cells involved in the detection of foreign antigens and danger signatures, and the clearance of tissue debris. However, macrophages are increasingly recognised as a highly versatile cell type with a diverse range of functions that are important for tissue homeostasis and injury responses. Recent research findings suggest that macrophages contribute to tissue regeneration and may play a role in the activation and mobilisation of stem cells. This review describes recent advances in our understanding of the role played by macrophages in cardiac tissue maintenance and repair following injury. We examine the involvement of exogenous and resident tissue macrophages in cardiac inflammatory responses and their potential activity in regulating cardiac regeneration.

  18. Myelopoietic Efficacy of Orlistat in Murine Hosts Bearing T Cell Lymphoma: Implication in Macrophage Differentiation and Activation

    OpenAIRE

    2013-01-01

    Orlistat, an inhibitor of fatty acid synthase (FASN), acts as an antitumor agent by blocking de novo fatty acid synthesis of tumor cells. Although, myelopoiesis also depends on de novo fatty acid synthesis, the effect of orlistat on differentiation of macrophages, which play a central role in host's antitumor defence, remains unexplored in a tumor-bearing host. Therefore, the present investigation was undertaken to examine the effect of orlistat administration on macrophage differentiation in...

  19. Benign notochordal cell tumors.

    Science.gov (United States)

    Martínez Gamarra, C; Bernabéu Taboada, D; Pozo Kreilinger, J J; Tapia Viñé, M

    2017-08-01

    Benign notochordal cell tumors (TBCN) are lesions with notochordal differentiation which affect the axial skeleton. They are characterized by asymptomatic or non-specific symptomatology and are radiologically unnoticed because of their small size, or because they are mistaken with other benign bone lesions, such as vertebral hemangiomas. When they are large, or symptomatic, can be differential diagnosis with metastases, primary bone tumors and chordomas. We present a case of a TBCN in a 50-year-old woman, with a sacral lesion seen in MRI. A CT-guided biopsy was scheduled to analyze the lesion, finding that the tumor was not clearly recognizable on CT, so the anatomical references of MRI were used to select the appropriate plane. The planning of the approach and the radio-pathological correlation were determinant to reach the definitive diagnosis. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Beryllium-stimulated apoptosis in macrophage cell lines.

    Science.gov (United States)

    Sawyer, R T; Fadok, V A; Kittle, L A; Maier, L A; Newman, L S

    2000-08-21

    In vitro stimulation of bronchoalveolar lavage cells from patients with chronic beryllium disease (CBD) induces the production of TNF-alpha. We tested the hypothesis that beryllium (Be)-stimulated TNF-alpha might induce apoptosis in mouse and human macrophage cell lines. These cell lines were selected because they produce a range of Be-stimulated TNF-alpha. The mouse macrophage cell line H36.12j produces high levels of Be-stimulated TNF-alpha. The mouse macrophage cell line P388D.1 produces low, constitutive, levels of TNF-alpha and does not up-regulate Be-stimulated TNF-alpha production. The DEOHS-1 human CBD macrophage cell line does not produce constitutive or Be-stimulated TNF-alpha. Apoptosis was determined by microscopic observation of propidium iodide stained fragmented nuclei in unstimulated and BeSO(4)-stimulated macrophage cell lines. BeSO(4) induced apoptosis in all macrophage cell lines tested. Beryllium-stimulated apoptosis was dose-responsive and maximal after 24 h of exposure to 100 microM BeSO(4). In contrast, unstimulated and Al(2)(SO(4))(3)-stimulated macrophage cell lines did not undergo apoptosis. The general caspase inhibitor BD-fmk inhibited Be-stimulated macrophage cell line apoptosis at concentrations above 50 microM. Our data show that Be-stimulated macrophage cell line apoptosis was caspase-dependent and not solely dependent on Be-stimulated TNF-alpha levels. We speculate that the release of Be-antigen from apoptotic macrophages may serve to re-introduce Be material back into the lung microenvironment, make it available for uptake by new macrophages, and thereby amplify Be-stimulated cytokine production, promoting ongoing inflammation and granuloma maintenance in CBD.

  1. Extraovarian granulosa cell tumor

    Directory of Open Access Journals (Sweden)

    Paul Prabir

    2009-04-01

    Full Text Available Extraovarian granulosa cell tumor (GCT is a very uncommon tumor, assumed to arise from the ectopic gonadal tissue along the embryonal route of the genital ridge. One such rare case of extraovarian GCT was encountered in a 58-year-old female who presented with a large intraabdominal lump. Computerized tomography revealed one large retroperitoneal mass measuring 15cm x 16cm and another mesenteric mass of 8cm x 5cm size. The patient had a history of hysterectomy with bilateral salpingooophorectomy 20 years ago for uterine leiomyoma. Ultrasonography-guided aspiration smears revealed cytological features suggestive of GCT. Histopathological examination of the excised masses showed features of adult-type GCT. Because metastatic epithelial tumors, particularly from the ovaries, may show identical morphology, immunostains for inhibin and epithelial membrane antigen (EMA were performed. The tumor showed positivity for inhibin while EMA was negative thus confirming the diagnosis of GCT. As this patient had no previous history of GCT and was oophorectomized 20 years ago, the tumor was considered as extraovarian. A diagnosis of extraovarian GCT should be carried out after excluding any previous history of GCT of the ovary. Immunostains help to differentiate GCTs from other neoplasms.

  2. Tumor-associated Tn-MUC1 glycoform is internalized through the macrophage galactose-type C-type lectin and delivered to the HLA class I and II compartments in dendritic cells

    DEFF Research Database (Denmark)

    Napoletano, Chiara; Rughetti, Aurelia; Agervig Tarp, Mads P

    2007-01-01

    The type of interaction between tumor-associated antigens and specialized antigen-presenting cells such as dendritic cells (DCs) is critical for the type of immunity that will be generated. MUC1, a highly O-glycosylated mucin, is overexpressed and aberrantly glycosylated in several tumor histotyp...

  3. Tumor-associated macrophages%肿瘤相关巨噬细胞研究进展

    Institute of Scientific and Technical Information of China (English)

    李彬; 朱迅

    2010-01-01

    单核巨噬细胞是一种多功能细胞,对不同的微环境信号应答表现出不同的功能.而极化的M1和M2巨噬细胞是巨噬细胞功能表现的两个极端.其中侵润到肿瘤组织的巨噬细胞受肿瘤诱导产生的细胞因子的影响使巨噬细胞表现出巨噬细胞M2型表型,这些极化的巨噬细胞在破坏适应性免疫反应和促进肿瘤生长与进展方面具有重要作用.肿瘤相关巨噬细胞(TAM)可以促进肿瘤进展包括促进肿瘤生长、侵润、转移,促进血管生长和免疫抑制等,因而研究TAM具有重要意义.%Mononuclear phagocytes are versatile cells that can express different functional programs in response to microenvironmental signals. Fully polarized Ml and M2 macrophages are the extremes of a continuum of functional states. Macrophages that infiltrate tumor tissues are driven by tumor-derived cytokines to acquire a polarized M2 phenotype. These functionally polarized cells play a key role in subversion of adaptive immunity and in inflammatory circuits that promote tumor growth and progression. It is notable that tumor-associated macrophages promote the proliferation, invasiveness and metastasis of tumor cells ,and participate in neovas-cularization, and immunosuppression of the tumor.

  4. Myeloid cells contribute to tumor lymphangiogenesis.

    Science.gov (United States)

    Zumsteg, Adrian; Baeriswyl, Vanessa; Imaizumi, Natsuko; Schwendener, Reto; Rüegg, Curzio; Christofori, Gerhard

    2009-09-17

    The formation of new blood vessels (angiogenesis) and lymphatic vessels (lymphangiogenesis) promotes tumor outgrowth and metastasis. Previously, it has been demonstrated that bone marrow-derived cells (BMDC) can contribute to tumor angiogenesis. However, the role of BMDC in lymphangiogenesis has largely remained elusive. Here, we demonstrate by bone marrow transplantation/reconstitution and genetic lineage-tracing experiments that BMDC integrate into tumor-associated lymphatic vessels in the Rip1Tag2 mouse model of insulinoma and in the TRAMP-C1 prostate cancer transplantation model, and that the integrated BMDC originate from the myelomonocytic lineage. Conversely, pharmacological depletion of tumor-associated macrophages reduces lymphangiogenesis. No cell fusion events are detected by genetic tracing experiments. Rather, the phenotypical conversion of myeloid cells into lymphatic endothelial cells and their integration into lymphatic structures is recapitulated in two in vitro tube formation assays and is dependent on fibroblast growth factor-mediated signaling. Together, the results reveal that myeloid cells can contribute to tumor-associated lymphatic vessels, thus extending the findings on the previously reported role of hematopoietic cells in lymphatic vessel formation.

  5. Myeloid cells contribute to tumor lymphangiogenesis.

    Directory of Open Access Journals (Sweden)

    Adrian Zumsteg

    Full Text Available The formation of new blood vessels (angiogenesis and lymphatic vessels (lymphangiogenesis promotes tumor outgrowth and metastasis. Previously, it has been demonstrated that bone marrow-derived cells (BMDC can contribute to tumor angiogenesis. However, the role of BMDC in lymphangiogenesis has largely remained elusive. Here, we demonstrate by bone marrow transplantation/reconstitution and genetic lineage-tracing experiments that BMDC integrate into tumor-associated lymphatic vessels in the Rip1Tag2 mouse model of insulinoma and in the TRAMP-C1 prostate cancer transplantation model, and that the integrated BMDC originate from the myelomonocytic lineage. Conversely, pharmacological depletion of tumor-associated macrophages reduces lymphangiogenesis. No cell fusion events are detected by genetic tracing experiments. Rather, the phenotypical conversion of myeloid cells into lymphatic endothelial cells and their integration into lymphatic structures is recapitulated in two in vitro tube formation assays and is dependent on fibroblast growth factor-mediated signaling. Together, the results reveal that myeloid cells can contribute to tumor-associated lymphatic vessels, thus extending the findings on the previously reported role of hematopoietic cells in lymphatic vessel formation.

  6. Neutrophil-tumor cell cannibalism in oral squamous cell carcinoma.

    Science.gov (United States)

    Sarode, Sachin C; Sarode, Gargi S

    2014-07-01

    Cannibalism was recognized as a phenomenon seen mainly with the tumor cells ingesting other tumor cells. Recent reports have shown tumor cell engulfing other cells (xeno-cannibalism) as well, such as neutrophils, lymphocytes and erythrocytes. But no such finding has been reported in oral squamous cell carcinoma (OSCC) in the literature till date. Retrospective histopathological analysis of OSCC for identification of neutrophil-tumor cell cannibalism (NTCC) and its correlation with clinico-pathological parameters. The hematoxylin and eosin stained tissue sections of 500 OSCC cases were thoroughly screened at high power magnification (400X) for NTCC. Cases showing only frank NTCC were selected. Cases were subjected to immunohistochemical analysis using CD68 and lysozyme. Seven (1.4%) cases of OSCC which showed classical features of extreme NTCC on histopathological examination. Seventeen Cases (3.4%) showing occasional isolated NTCC were excluded. All the cases were poorly differentiated and showed cervical lymph node metastasis. Immunohistochemical analysis showed mild (+) to moderate (++) positivity in tumor cells for CD68 and lysozyme markers. NTCC in OSCC can predict the biological behavior and could serve as a useful prognostic marker in future. Tumor cell displaying macrophage phenotype and cell digestion could be mediated through lysosomal enzyme activity. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Co-evolution of tumor-associated macrophages and tumor neo-vessels during cervical cancer invasion

    Science.gov (United States)

    Jiang, Shuting; Yang, Yuehong; Fang, Min; Li, Xianglang; Yuan, Xiuxue; Yuan, Jingping

    2016-01-01

    Considering the crucial significance of the tumor microenvironment in cancer development and progression, the present study aimed to investigate the changes in macrophages and angiogenesis during the cervical cancer (CC) progression process from chronic cervicitis to cervical intraepithelial neoplasia grades I–III (CIN I–III) to CC. This investigation included quantitative analysis and assessment of the spatial associations between tumor-associated macrophages (TAMs) and tumor neo-vessels. The conventional immunohistochemistry staining technique was used to detect cluster of differentiation (CD)68 and CD105 biomarker expression for TAMs and tumor neo-vessels, respectively. In addition, with the assistance of quantum dot (QD)-based two-component in situ imaging technology, the expression of the TAMs and tumor neo-vessels could be observed simultaneously. The quantitative analysis and co-evolution of the TAMs and tumor neo-vessels could then be processed. During the progression process from chronic cervicitis to cervical CIN I–III, and ultimately to invasive CC, the expression of the macrophages and neo-vessels in the tumor microenvironment increased synchronously. According to the quantitative analysis results, the median value of the TAM density was higher in the CC group (5,540.14) than in the CIN I–III group (2,502.17) and the chronic cervicitis group (1,403.31), with statistical significance in all three groups (Pbiology of cancer invasion. PMID:27698836

  8. Tumor-Associated Macrophages Provide Significant Prognostic Information in Urothelial Bladder Cancer.

    Directory of Open Access Journals (Sweden)

    Minna M Boström

    Full Text Available Inflammation is an important feature of carcinogenesis. Tumor-associated macrophages (TAMs can be associated with either poor or improved prognosis, depending on their properties and polarization. Current knowledge of the prognostic significance of TAMs in bladder cancer is limited and was investigated in this study. We analyzed 184 urothelial bladder cancer patients undergoing transurethral resection of a bladder tumor or radical cystectomy. CD68 (pan-macrophage marker, MAC387 (polarized towards type 1 macrophages, and CLEVER-1/Stabilin-1 (type 2 macrophages and lymphatic/blood vessels were detected immunohistochemically. The median follow-up time was 6.0 years. High macrophage counts associated with a higher pT category and grade. Among patients undergoing transurethral resection, all studied markers apart from CLEVER-1/Stabilin-1 were associated with increased risk of progression and poorer disease-specific and overall survival in univariate analyses. High levels of two macrophage markers (CD68/MAC387+/+ or CD68/CLEVER-1+/+ groups had an independent prognostic role after transurethral resection in multivariate analyses. In the cystectomy cohort, MAC387, alone and in combination with CD68, was associated with poorer survival in univariate analyses, but none of the markers were independent predictors of outcome in multivariate analyses. In conclusion, this study demonstrates that macrophage phenotypes provide significant independent prognostic information, particularly in bladder cancers undergoing transurethral resection.

  9. CCL18 from Tumor-Associated Macrophages Promotes Breast Cancer Metastasis via PITPNM3

    Science.gov (United States)

    Chen, Jingqi; Yao, Yandan; Gong, Chang; Yu, Fengyan; Su, Shicheng; Chen, Jianing; Liu, Bodu; Deng, Hui; Wang, Fengsong; Lin, Ling; Yao, Herui; Su, Fengxi; Anderson, Karen S.; Liu, Qiang; Ewen, Mark E.; Yao, Xuebiao; Song, Erwei

    2011-01-01

    SUMMARY Tumor-associated macrophages (TAMs) can influence cancer progression and metastasis, but the mechanism remains unclear. Here, we show that breast TAMs abundantly produce CCL18, and its expression in blood or cancer stroma is associated with metastasis and reduced patient survival. CCL18 released by breast TAMs promotes the invasiveness of cancer cells by triggering integrin clustering and enhancing their adherence to extracellular matrix. Furthermore, we identify PITPNM3 as a functional receptor for CCL18 that mediates CCL18 effect and activates intracellular calcium signaling. CCL18 promotes the invasion and metastasis of breast cancer xenografts, whereas suppressing PITPNM3 abrogates these effects. These findings indicate that CCL18 derived from TAMs plays a critical role in promoting breast cancer metastasis via its receptor, PITPNM3. PMID:21481794

  10. Characterization of the tumor microenvironment in primary cutaneous CD30-positive lymphoproliferative disorders: a predominance of CD163-positive M2 macrophages.

    Science.gov (United States)

    De Souza, Aieska; Tinguely, Marianne; Burghart, Daniel R; Berisha, Arbeneshe; Mertz, Kirsten D; Kempf, Werner

    2016-07-01

    The tumor microenvironment is essential for tumor survival, growth and progression. There are only a few studies on the tumor microenvironment in cutaneous CD30-positive lymphoproliferative disorders. We assessed the composition of the tumor microenvironment using immunohistochemistry studies in skin biopsies from cases diagnosed with lymphomatoid papulosis (LyP: 18 specimens), primary cutaneous anaplastic large-cell lymphoma (PC-ALCL: 8 specimens), and reactive diseases harboring CD30-positive cells (18 specimens). The predominant cells present in LyP and PC-ALCL were CD163+ M2 macrophages (44.7%, 35%), followed by CD8+ tumor infiltrating lymphocytes (11%, 15%), FOXP3+ T-regulatory cells (9%, 4.5%) and programmed cell death 1(PD-1) + lymphocytes (2.2%, 6.8%). In contrast, CD30-positive reactive inflammatory and infectious disorders were characterized by higher numbers of CD123+ plasmacytoid dendritic cells (6.3%) when compared to LyP (1%), and PC-ALCL (1.1%). Key differences exist between the microenvironment of CD30-positive lymphoproliferative disorders and reactive conditions harboring CD30-positive lymphocytes. The high number of tumor associated macrophages, and the close vicinity of these immune cells to the CD30-positive tumor cells might suggest that tumor associated macrophages have direct influence on tumorigenesis in LyP and ALCL. Therefore, modulation of M2 macrophages may represent a new therapeutic strategy in cutaneous CD30-positive lymphoproliferative disorders. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Garlic (Allium sativum) stimulates lipopolysaccharide-induced tumor necrosis factor-alpha production from J774A.1 murine macrophages.

    Science.gov (United States)

    Sung, Jessica; Harfouche, Youssef; De La Cruz, Melissa; Zamora, Martha P; Liu, Yan; Rego, James A; Buckley, Nancy E

    2015-02-01

    Garlic (Allium sativum) is known to have many beneficial attributes such as antimicrobial, antiatherosclerotic, antitumorigenetic, and immunomodulatory properties. In the present study, we investigated the effects of an aqueous garlic extract on macrophage cytokine production by challenging the macrophage J774A.1 cell line with the garlic extract in the absence or presence of lipopolysaccharide (LPS) under different conditions. The effect of allicin, the major component of crushed garlic, was also investigated. Using enzyme-linked immunosorbent assay and reverse transcriptase-quantitative polymerase chain reaction, it was found that garlic and synthetic allicin greatly stimulated tumor necrosis factor-alpha (TNF-α) production in macrophages treated with LPS. The TNF-α secretion levels peaked earlier and were sustained for a longer time in cells treated with garlic and LPS compared with cells treated with LPS alone. Garlic acted in a time-dependent manner. We suggest that garlic, at least partially via its allicin component, acts downstream from LPS to stimulate macrophage TNF-α secretion.

  12. Pericytes limit tumor cell metastasis

    DEFF Research Database (Denmark)

    Xian, Xiaojie; Håkansson, Joakim; Ståhlberg, Anders

    2006-01-01

    Previously we observed that neural cell adhesion molecule (NCAM) deficiency in beta tumor cells facilitates metastasis into distant organs and local lymph nodes. Here, we show that NCAM-deficient beta cell tumors grew leaky blood vessels with perturbed pericyte-endothelial cell-cell interactions...... and deficient perivascular deposition of ECM components. Conversely, tumor cell expression of NCAM in a fibrosarcoma model (T241) improved pericyte recruitment and increased perivascular deposition of ECM molecules. Together, these findings suggest that NCAM may limit tumor cell metastasis by stabilizing...... the microvessel wall. To directly address whether pericyte dysfunction increases the metastatic potential of solid tumors, we studied beta cell tumorigenesis in primary pericyte-deficient Pdgfb(ret/ret) mice. This resulted in beta tumor cell metastases in distant organs and local lymph nodes, demonstrating a role...

  13. Sertoli-Leydig cell tumor

    Science.gov (United States)

    Sertoli-stromal cell tumor; Arrhenoblastoma; Androblastoma; Ovarian cancer - Sertoli-Leydig cell tumor ... The exact cause of this tumor is not known. Changes (mutations) in genes may play a role. SLCT occur most often in young women 20 to 30 ...

  14. Tumor development in murine ulcerative colitis depends on MyD88 signaling of colonic F4/80+CD11bhighGr1low macrophages

    Science.gov (United States)

    Schiechl, Gabriela; Bauer, Bernhard; Fuss, Ivan; Lang, Sven A.; Moser, Christian; Ruemmele, Petra; Rose-John, Stefan; Neurath, Markus F.; Geissler, Edward K.; Schlitt, Hans-Jürgen; Strober, Warren; Fichtner-Feigl, Stefan

    2011-01-01

    Patients with prolonged ulcerative colitis (UC) frequently develop colorectal adenocarcinoma for reasons that are not fully clear. To analyze inflammation-associated colonic tumorigenesis, we developed a chronic form of oxazolone-induced colitis in mice that, similar to UC, was distinguished by the presence of IL-13–producing NKT cells. In this model, the induction of tumors using azoxymethane was accompanied by the coappearance of F4/80+CD11bhighGr1low M2 macrophages, cells that undergo polarization by IL-13 and are absent in tumors that lack high level IL-13 production. Importantly, this subset of macrophages was a source of tumor-promoting factors, including IL-6. Similar to dextran sodium sulfate–induced colitis, F4/80+CD11bhighGr1intermediate macrophages were present in the mouse model of chronic oxazolone-induced colitis and may influence tumor development through production of TGF-β1, a cytokine that inhibits tumor immunosurveillance. Finally, while robust chronic oxazolone-induced colitis developed in myeloid differentiation primary response gene 88–deficient (Myd88–/–) mice, these mice did not support tumor development. The inhibition of tumor development in Myd88–/– mice correlated with cessation of IL-6 and TGF-β1 production by M2 and F4/80+CD11bhighGr1intermediate macrophages, respectively, and was reversed by exogenous IL-6. These data show that an UC-like inflammation may facilitate tumor development by providing a milieu favoring development of MyD88-dependent tumor-supporting macrophages. PMID:21519141

  15. Of macrophages and red blood cells; a complex love story.

    Directory of Open Access Journals (Sweden)

    Djuna Zoe de Back

    2014-01-01

    Full Text Available Macrophages tightly control the production and clearance of red blood cells (RBC. During steady state haematopoiesis, approximately 1010 red blood cells are produced per hour within erythroblastic islands in humans. In these erythroblastic islands, resident bone marrow macrophages provide erythroblasts with interactions that are essential for erythroid development. New evidence suggests that not only under homeostasis but also under stress conditions, macrophages play an important role in promoting erythropoiesis. Once RBC have matured, these cells remain in circulation for about 120 days. At the end of their life span, RBC are cleared by macrophages residing in the spleen and the liver. Current theories about the removal of senescent RBC and the essential role of macrophages will be discussed as well as the role of macrophages in facilitating the removal of damaged cellular content from the RBC. In this review we will provide an overview on the role of macrophages in the regulation of RBC production, maintenance and clearance. In addition, we will discuss the interactions between these two cell types during transfer of immune complexes and pathogens from RBC to macrophages.

  16. Unique proteomic signatures distinguish macrophages and dendritic cells.

    Directory of Open Access Journals (Sweden)

    Lev Becker

    Full Text Available Monocytes differentiate into heterogeneous populations of tissue macrophages and dendritic cells (DCs that regulate inflammation and immunity. Identifying specific populations of myeloid cells in vivo is problematic, however, because only a limited number of proteins have been used to assign cellular phenotype. Using mass spectrometry and bone marrow-derived cells, we provided a global view of the proteomes of M-CSF-derived macrophages, classically and alternatively activated macrophages, and GM-CSF-derived DCs. Remarkably, the expression levels of half the plasma membrane proteins differed significantly in the various populations of cells derived in vitro. Moreover, the membrane proteomes of macrophages and DCs were more distinct than those of classically and alternatively activated macrophages. Hierarchical cluster and dual statistical analyses demonstrated that each cell type exhibited a robust proteomic signature that was unique. To interrogate the phenotype of myeloid cells in vivo, we subjected elicited peritoneal macrophages harvested from wild-type and GM-CSF-deficient mice to mass spectrometric and functional analysis. Unexpectedly, we found that peritoneal macrophages exhibited many features of the DCs generated in vitro. These findings demonstrate that global analysis of the membrane proteome can help define immune cell phenotypes in vivo.

  17. Oval cell response is attenuated by depletion of liver resident macrophages in the 2-AAF/partial hepatectomy rat.

    Directory of Open Access Journals (Sweden)

    Shuai Xiang

    Full Text Available BACKGROUND/AIMS: Macrophages are known to play an important role in hepatocyte mediated liver regeneration by secreting inflammatory mediators. However, there is little information available on the role of resident macrophages in oval cell mediated liver regeneration. In the present study we aimed to investigate the role of macrophages in oval cell expansion induced by 2-acetylaminofluorene/partial hepatectomy (2-AAF/PH in rats. METHODOLOGY/PRINCIPAL FINDINGS: We depleted macrophages in the liver of 2-AAF/PH treated rats by injecting liposome encapsulated clodronate 48 hours before PH. Regeneration of remnant liver mass, as well as proliferation and differentiation of oval cells were measured. We found that macrophage-depleted rats suffered higher mortality and liver transaminase levels. We also showed that depletion of macrophages yielded a significant decrease of EPCAM and PCK positive oval cells in immunohistochemical stained liver sections 9 days after PH. Meanwhile, oval cell differentiation was also attenuated as a result of macrophage depletion, as large foci of small basophilic hepatocytes were observed by day 9 following hepatectomy in control rats whereas they were almost absent in macrophage depleted rats. Accordingly, real-time polymerase chain reaction analysis showed lower expression of albumin mRNA in macrophage depleted livers. Then we assessed whether macrophage depletion may affect hepatic production of stimulating cytokines for liver regeneration. We showed that macrophage-depletion significantly inhibited hepatic expression of tumor necrosis factor-α and interleukin-6, along with a lack of signal transducer and activator of transcription 3 phosphorylation during the early period following hepatectomy. CONCLUSIONS: These data indicate that macrophages play an important role in oval cell mediated liver regeneration in the 2-AAF/PH model.

  18. Mushroom β-Glucan May Immunomodulate the Tumor-Associated Macrophages in the Lewis Lung Carcinoma

    Directory of Open Access Journals (Sweden)

    Wan-Jhen Wang

    2015-01-01

    Full Text Available The present study showed that oral mushroom beta-glucan treatment significantly increased IFN-γ mRNA expression but significantly reduced COX-2 mRNA expression within the lung. For LLC tumor model, oral Ganoderma lucidum or Antrodia camphorata polysaccharides treatments significantly reduced TGF-β production in serum. In addition, IL-12 and IFN-γ mRNA expression were significantly increased, but IL-6, IL-10, COX-2, and TGF-β mRNA expression were substantially following oral mushroom polysaccharides treatments. The study highlights the efficacious effect of mushroom polysaccharides for ameliorating the immune suppression in the tumor microenvironment. Increased M1 phenotype of tumor-associated macrophages and attenuated M2 phenotype of tumor-associated macrophages could be achieved by ingesting mushroom polysaccharides.

  19. Occurrence of thymosin beta4 in human breast cancer cells and in other cell types of the tumor microenvironment

    DEFF Research Database (Denmark)

    Larsson, L.-I.; Holck, Susanne

    2007-01-01

    that there is a considerable heterogeneity in the cellular distribution of thymosin beta4 in breast cancer. In most tumors examined, cancer cells showed low or intermediate reactivity for thymosin beta4, whereas leukocytes and macrophages showed intense reactivity. In addition, endothelial cells showed variable reactivity...... the tumor microenvironment produce thymosin beta4 and that such expression varies from tumor to tumor. Such heterogeneity of expression should be taken into account when the role of thymosin beta4 in tumor biology is assessed....

  20. Dengue tropism for macrophages and dendritic cells : the host cell effect

    NARCIS (Netherlands)

    Flipse, Jacky; Torres, Silvia; Diosa-Toro, Mayra; van der Ende-Metselaar, Heidi; Herrera-Rodriguez, Jose; Urcuqui-Inchima, Silvio; Huckriede, Anke; Rodenhuis-Zybert, Izabela A; Smit, Jolanda M

    2016-01-01

    Dengue virus infects immune cells, including monocytes, macrophages and dendritic cells (DC). We compared virus infectivity in macrophages and DC, and found that the virus-origin determined the cell tropism of progeny virus. The highest efficiency of re-infection was seen for macrophage-derived deng

  1. Macrophages in T cell/histiocyte rich large B cell lymphoma strongly express metal-binding proteins and show a bi-activated phenotype.

    Science.gov (United States)

    Hartmann, Sylvia; Tousseyn, Thomas; Döring, Claudia; Flüchter, Patricia; Hackstein, Holger; Herreman, An; Ponzoni, Maurilio; de Wolf-Peeters, Chris; Facchetti, Fabio; Gascoyne, Randy D; Küppers, Ralf; Steidl, Christian; Hansmann, Martin-Leo

    2013-12-01

    Abundant macrophage infiltration in tumors often correlates with a poor prognosis. T cell/histiocyte rich large B cell lymphoma (THRLBCL) is a distinct aggressive B cell lymphoma entity showing a high macrophage content. To further elucidate the role of tumor-associated macrophages in THRLBCL, we performed gene expression profiling of microdissected histiocyte subsets of THRLBCL, nodular lymphocyte predominant Hodgkin lymphoma (NLPHL), Piringer lymphadenitis, sarcoidosis, nonspecific lymphadenitis and monocytes from peripheral blood. In a supervised principal component analysis, histiocytes from THRLBCL were most closely related to epithelioid cells from NLPHL, with both types of cells expressing genes related to proinflammatory and regulatory macrophage activity. Moreover, histiocytes from THRLBCL strongly expressed metal-binding proteins like MT2A, by which histiocytes of THRLBCL can be distinguished from the other histiocyte subsets investigated. Interestingly, the validation at the protein level showed a strong expression of TXN, CXCL9, MT2A and SOD2 not only in macrophages of THRLBCL but also in the tumor cells of NLPHL and classical Hodgkin lymphoma (cHL). Overall, the present findings indicate that macrophages in the microenvironment of THRLBCL have acquired a distinct gene expression pattern that is characterized by a mixed M1/M2 phenotype and a strong expression of several metal binding proteins. The microenvironments in NLPHL and THRLBCL appear to have a similar influence on the macrophage phenotype. The high expression of metal binding proteins in histiocytes of THRLBCL may be diagnostically useful, but a potential pathophysiological role remains to be identified.

  2. Fusion between Intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming.

    Science.gov (United States)

    Powell, Anne E; Anderson, Eric C; Davies, Paige S; Silk, Alain D; Pelz, Carl; Impey, Soren; Wong, Melissa H

    2011-02-15

    The most deadly phase in cancer progression is attributed to the inappropriate acquisition of molecular machinery leading to metastatic transformation and spread of disease to distant organs. Although it is appreciated that metastasis involves epithelial-mesenchymal interplay, the underlying mechanism defining this process is poorly understood. Specifically, how cancer cells evade immune surveillance and gain the ability to navigate the circulatory system remains a focus. One possible mechanism underlying metastatic conversion is fusion between blood-derived immune cells and cancer cells. While this notion is a century old, in vivo evidence that cell fusion occurs within tumors and imparts genetic or physiologic changes remains controversial. We have previously demonstrated in vivo cell fusion between blood cells and intestinal epithelial cells in an injury setting. Here, we hypothesize that immune cells, such as macrophages, fuse with tumor cells imparting metastatic capabilities by transferring their cellular identity. We used parabiosis to introduce fluorescent-labeled bone marrow-derived cells to mice with intestinal tumors, finding that fusion between circulating blood-derived cells and tumor epithelium occurs during the natural course of tumorigenesis. Moreover, we identify the macrophage as a key cellular partner for this process. Interestingly, cell fusion hybrids retain a transcriptome identity characteristic of both parental derivatives, while also expressing a unique subset of transcripts. Our data supports the novel possibility that tumorigenic cell fusion may impart physical behavior attributed to migratory macrophages, including navigation of circulation and immune evasion. As such, cell fusion may represent a promising novel mechanism underlying the metastatic conversion of cancer cells.

  3. Anti-tumor and macrophage activation induced by alkali-extracted polysaccharide from Pleurotus ostreatus.

    Science.gov (United States)

    Kong, Fanli; Li, Feng-E; He, Zhongmei; Jiang, Yong; Hao, Ruoyi; Sun, Xin; Tong, Haibin

    2014-08-01

    Pleurotus ostreatus is popularly consumed as traditional medicine and health food for enhancing immune function in China. Polysaccharides from mushroom have been demonstrated to possess a wide range of health beneficial properties. This study was carried out to elucidate the immunomodulating effects and molecular mechanism involved in the in vivo and in vitro anti-tumor activities of alkali-extracted polysaccharide (WPOP-N1) from the fruiting bodies of P. ostreatus. The results showed that WPOP-N1 significantly inhibited the tumor growth of Sarcoma 180 tumor-bearing mice, and markedly increased the secretion level of TNF-α in serum. In addition, WPOP-N1 enhanced the phagocytic capability of peritoneal macrophages in vitro. Furthermore, the secretion of TNF-α and NO and the amount of TNF-α and iNOS transcript were increased significantly when the peritoneal macrophages were exposed to WPOP-N1. Meanwhile, Western blot analysis revealed that the stimulation of peritoneal macrophages by WPOP-N1 induced the phosphorylation of p65 and a marked decrease of IκB expression. These results suggest that WPOP-N1 could activate macrophages through NF-κB signaling pathway, and the anti-tumor effects of WPOP-N1 can be achieved by its immunostimulating property. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Tumor associated osteoclast-like giant cells promote tumor growth and lymphangiogenesis by secreting vascular endothelial growth factor-C

    Energy Technology Data Exchange (ETDEWEB)

    Hatano, Yu [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Department of Cardivascular Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Nakahama, Ken-ichi, E-mail: nakacell@tmd.ac.jp [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Isobe, Mitsuaki [Department of Cardivascular Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan); Morita, Ikuo [Department of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510 (Japan)

    2014-03-28

    Highlights: • M-CSF and RANKL expressing HeLa cells induced osteoclastogenesis in vitro. • We established OGC-containing tumor model in vivo. • OGC-containing tumor became larger independent of M-CSF or RANKL effect. • VEGF-C secreted from OGCs was a one of candidates for OGC-containing tumor growth. - Abstract: Tumors with osteoclast-like giant cells (OGCs) have been reported in a variety of organs and exert an invasive and prometastatic phenotype, but the functional role of OGCs in the tumor environment has not been fully clarified. We established tumors containing OGCs to clarify the role of OGCs in tumor phenotype. A mixture of HeLa cells expressing macrophage colony-stimulating factor (M-CSF, HeLa-M) and receptor activator of nuclear factor-κB ligand (RANKL, HeLa-R) effectively supported the differentiation of osteoclast-like cells from bone marrow macrophages in vitro. Moreover, a xenograft study showed OGC formation in a tumor composed of HeLa-M and HeLa-R. Surprisingly, the tumors containing OGCs were significantly larger than the tumors without OGCs, although the growth rates were not different in vitro. Histological analysis showed that lymphangiogenesis and macrophage infiltration in the tumor containing OGCs, but not in other tumors were accelerated. According to quantitative PCR analysis, vascular endothelial growth factor (VEGF)-C mRNA expression increased with differentiation of osteoclast-like cells. To investigate whether VEGF-C expression is responsible for tumor growth and macrophage infiltration, HeLa cells overexpressing VEGF-C (HeLa-VC) were established and transplanted into mice. Tumors composed of HeLa-VC mimicked the phenotype of the tumors containing OGCs. Furthermore, the vascular permeability of tumor microvessels also increased in tumors containing OGCs and to some extent in VEGF-C-expressing tumors. These results suggest that macrophage infiltration and vascular permeability are possible mediators in these tumors. These

  5. Tumor-altered dendritic cell function: implications for anti-tumor immunity

    Directory of Open Access Journals (Sweden)

    Kristian Michael Hargadon

    2013-07-01

    Full Text Available Dendritic cells are key regulators of both innate and adaptive immunity, and the array of immunoregulatory functions exhibited by these cells is dictated by their differentiation, maturation, and activation status. Although a major role for these cells in the induction of immunity to pathogens has long been appreciated, data accumulated over the last several years has demonstrated that DC are also critical regulators of anti-tumor immune responses. However, despite the potential for stimulation of robust anti-tumor immunity by DC, tumor-altered DC function has been observed in many cancer patients and tumor-bearing animals and is often associated with tumor immune escape. Such dysfunction has significant implications for both the induction of natural anti-tumor immune responses as well as the efficacy of immunotherapeutic strategies that target endogenous DC in situ or that employ exogenous DC as part of anti-cancer immunization maneuvers. In this review, the major types of tumor-altered DC function will be described, with emphasis on recent insights into the mechanistic bases for the inhibition of DC differentiation from hematopoietic precursors, the altered programming of DC precursors to differentiate into myeloid-derived suppressor cells or tumor-associated macrophages, the suppression of DC maturation and activation, and the induction of immunoregulatory DC by tumors, tumor-derived factors, and tumor-associated cells within the milieu of the tumor microenvironment. The impact of these tumor-altered cells on the quality of the overall anti-tumor immune response will also be discussed. Finally, this review will also highlight questions concerning tumor-altered DC function that remain unanswered, and it will address factors that have limited advances in the study of this phenomenon in order to focus future research efforts in the field on identifying strategies for interfering with tumor-associated DC dysfunction and improving DC-mediated anti-tumor

  6. Interactions between macrophage/Kupffer cells and hepatocytes in surgical sepsis

    Energy Technology Data Exchange (ETDEWEB)

    West, M.A.

    1988-01-01

    Experiments were performed to investigate the role of Kupffer cell/macrophage interactions with hepatocytes in modulating liver function during infections using direct in vitro cocultivation of rat macrophages or Kupffer cells with rat hepatocytes. Protein synthesis was assayed as a sensitive indicator of integrated hepatocellular function by measuring {sup 3}H-leucine incorporation into hepatocyte protein. Septic stimuli such as lipoploysaccharide and killed bacteria were added to cocultures of hepatocytes and macrophages or Kupffer cells and the responses compared to hepatocytes alone. Information about the types of proteins synthesized by hepatocytes under various culture conditions was determined using polyacrylamide gel electrophoresis and autoradiography. These experiments showed that septic stimuli alter the amount and type of protein synthesized by hepatocytes and had no direct effect on hepatocytes in the absence of macrophages or Kupffer cells. The mediator(s) appears to be a heat labile, soluble monokine(s) which is distinct from interleukin-1 or tumor necrosis factor. The important role of Kupffer cells/macrophages in mediating alterations in hepatocellular function in sepsis may ultimately improve patient care.

  7. Myelopoietic efficacy of orlistat in murine hosts bearing T cell lymphoma: implication in macrophage differentiation and activation.

    Science.gov (United States)

    Kant, Shiva; Kumar, Ajay; Singh, Sukh Mahendra

    2013-01-01

    Orlistat, an inhibitor of fatty acid synthase (FASN), acts as an antitumor agent by blocking de novo fatty acid synthesis of tumor cells. Although, myelopoiesis also depends on de novo fatty acid synthesis, the effect of orlistat on differentiation of macrophages, which play a central role in host's antitumor defence, remains unexplored in a tumor-bearing host. Therefore, the present investigation was undertaken to examine the effect of orlistat administration on macrophage differentiation in a T cell lymphoma bearing host. Administration of orlistat (240 mg/kg/day/mice) to tumor-bearing mice resulted in a decline of tumor load accompanied by an augmentation of bone marrow cellularity and survival of bone marrow cells (BMC). The expression of apoptosis regulatory caspase-3, Bax and Bcl2 was modulated in the BMC of orlistat-administered tumor-bearing mice. Orlistat administration also resulted in an increase in serum level of IFN-γ along with decreased TGF-β and IL-10. BMC of orlistat-administered tumor-bearing mice showed augmented differentiation into macrophages accompanied by enhanced expression of macrophage colony stimulating factor (M-CSF) and its receptor (M-CSFR). The macrophages differentiated from BMC of orlistat-administered mice showed characteristic features of M1 macrophage phenotype confirmed by expression of CD11c, TLR-2, generation of reactive oxygen species, phagocytosis, tumor cell cytotoxicity, production of IL-1,TNF-α and nitric oxide. These novel findings indicate that orlistat could be useful to support myelopoesis in a tumor-bearing host.

  8. Networked T cell death following macrophage infection by Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Stephen H-F Macdonald

    Full Text Available BACKGROUND: Depletion of T cells following infection by Mycobacterium tuberculosis (Mtb impairs disease resolution, and interferes with clinical test performance that relies on cell-mediated immunity. A number of mechanisms contribute to this T cell suppression, such as activation-induced death and trafficking of T cells out of the peripheral circulation and into the diseased lungs. The extent to which Mtb infection of human macrophages affects T cell viability however, is not well characterised. METHODOLOGY/PRINCIPAL FINDINGS: We found that lymphopenia (<1.5 × 10(9 cells/l was prevalent among culture-positive tuberculosis patients, and lymphocyte counts significantly improved post-therapy. We previously reported that Mtb-infected human macrophages resulted in death of infected and uninfected bystander macrophages. In the current study, we sought to examine the influence of infected human alveolar macrophages on T cells. We infected primary human alveolar macrophages (the primary host cell for Mtb or PMA-differentiated THP-1 cells with Mtb H37Ra, then prepared cell-free supernatants. The supernatants of Mtb-infected macrophages caused dose-dependent, caspase-dependent, T cell apoptosis. This toxic effect of infected macrophage secreted factors did not require TNF-α or Fas. The supernatant cytotoxic signal(s were heat-labile and greater than 50 kDa in molecular size. Although ESAT-6 was toxic to T cells, other Mtb-secreted factors tested did not influence T cell viability; nor did macrophage-free Mtb bacilli or broth from Mtb cultures. Furthermore, supernatants from Mycobacterium bovis Bacille de Calmette et Guerin (BCG- infected macrophages also elicited T cell death suggesting that ESAT-6 itself, although cytotoxic, was not the principal mediator of T cell death in our system. CONCLUSIONS: Mtb-Infected macrophages secrete heat-labile factors that are toxic to T cells, and may contribute to the immunosuppression seen in tuberculosis as well as

  9. A think tank of TINK/TANKs: tumor-infiltrating/tumor-associated natural killer cells in tumor progression and angiogenesis.

    Science.gov (United States)

    Bruno, Antonino; Ferlazzo, Guido; Albini, Adriana; Noonan, Douglas M

    2014-08-01

    Tumor-infiltrating leukocytes are often induced by the cancer microenvironment to display a protumor, proangiogenic phenotype. This "polarization" has been described for several myeloid cells, in particular macrophages. Natural killer (NK) cells represent another population of innate immune cells able to infiltrate tumors. The role of NK in tumor progression and angiogenesis has not yet been fully investigated. Several studies have shown that tumor-infiltrating NK (here referred to as "TINKs") and tumor-associated NK (altered peripheral NK cells, which here we call "TANKs") are compromised in their ability to lysew tumor cells. Recent data have suggested that they are potentially protumorigenic and can also acquire a proangiogenic phenotype. Here we review the properties of TINKs and TANKs and compare their activities to that of NK cells endowed with a physiological proangiogenic phenotype, in particular decidual NK cells. We speculate on the potential origins of TINKs and TANKs and on the immune signals involved in their differentiation and polarization. The TINK and TANK phenotype has broad implications in the immune response to tumors, ranging from a deficient control of cancer and cancer stem cells to an altered crosstalk with other relevant players of the immune response, such as dendritic cells, to induction of cancer angiogenesis. With this recently acquired knowledge that has not yet been put into perspective, we point out new potential avenues for therapeutic intervention involving NK cells as a target or an ally in oncology.

  10. A Think Tank of TINK/TANKs: Tumor-Infiltrating/Tumor-Associated Natural Killer Cells in Tumor Progression and Angiogenesis

    Science.gov (United States)

    Bruno, Antonino; Ferlazzo, Guido; Albini, Adriana; Noonan, Douglas M.

    2014-01-01

    Tumor-infiltrating leukocytes are often induced by the cancer microenvironment to display a protumor, proangiogenic phenotype. This “polarization” has been described for several myeloid cells, in particular macrophages. Natural killer (NK) cells represent another population of innate immune cells able to infiltrate tumors. The role of NK in tumor progression and angiogenesis has not yet been fully investigated. Several studies have shown that tumor-infiltrating NK (here referred to as “TINKs”) and tumor-associated NK (altered peripheral NK cells, which here we call “TANKs”) are compromised in their ability to lysew tumor cells. Recent data have suggested that they are potentially protumorigenic and can also acquire a proangiogenic phenotype. Here we review the properties of TINKs and TANKs and compare their activities to that of NK cells endowed with a physiological proangiogenic phenotype, in particular decidual NK cells. We speculate on the potential origins of TINKs and TANKs and on the immune signals involved in their differentiation and polarization. The TINK and TANK phenotype has broad implications in the immune response to tumors, ranging from a deficient control of cancer and cancer stem cells to an altered crosstalk with other relevant players of the immune response, such as dendritic cells, to induction of cancer angiogenesis. With this recently acquired knowledge that has not yet been put into perspective, we point out new potential avenues for therapeutic intervention involving NK cells as a target or an ally in oncology. PMID:25178695

  11. Macrophage peroxisome proliferator-activated receptor γ deficiency delays skin wound healing through impairing apoptotic cell clearance in mice.

    Science.gov (United States)

    Chen, H; Shi, R; Luo, B; Yang, X; Qiu, L; Xiong, J; Jiang, M; Liu, Y; Zhang, Z; Wu, Y

    2015-01-15

    Skin wound macrophages are key regulators of skin repair and their dysfunction causes chronic, non-healing skin wounds. Peroxisome proliferator-activated receptor gamma (PPARγ) regulates pleiotropic functions of macrophages, but its contribution in skin wound healing is poorly defined. We observed that macrophage PPARγ expression was upregulated during skin wound healing. Furthermore, macrophage PPARγ deficiency (PPARγ-knock out (KO)) mice exhibited impaired skin wound healing with reduced collagen deposition, angiogenesis and granulation formation. The tumor necrosis factor alpha (TNF-α) expression in wounds of PPARγ-KO mice was significantly increased and local restoration of TNF-α reversed the healing deficit in PPARγ-KO mice. Wound macrophages produced higher levels of TNF-α in PPARγ-KO mice compared with control. In vitro, the higher production of TNF-α by PPARγ-KO macrophages was associated with impaired apoptotic cell clearance. Correspondingly, increased apoptotic cell accumulation was found in skin wound of PPARγ-KO mice. Mechanically, peritoneal and skin wound macrophages expressed lower levels of various phagocytosis-related molecules. In addition, PPARγ agonist accelerated wound healing and reduced local TNF-α expression and wound apoptotic cells accumulation in wild type but not PPARγ-KO mice. Therefore, PPARγ has a pivotal role in controlling wound macrophage clearance of apoptotic cells to ensure efficient skin wound healing, suggesting a potential new therapeutic target for skin wound healing.

  12. Ovarian Germ Cell Tumors Treatment

    Science.gov (United States)

    ... ovarian germ cell tumor are swelling of the abdomen or vaginal bleeding after menopause. Ovarian germ cell ... if you have either of the following: Swollen abdomen without weight gain in other parts of the ...

  13. 4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses

    OpenAIRE

    Laurence Madera; Anna Greenshields; Power Coombs, Melanie R.; Hoskin, David W.

    2015-01-01

    Tumor progression and the immune response are intricately linked. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, little is known regarding how cancers affect macrophage-dependent innate host defense. In this study, murine bone-marrow-derived macrophages (BMDM) were exposed to murine carcinoma-conditioned media prior to assessment of the macrophage inflammatory response. BMDMs exposed to 4T1 mammary carcinoma-conditioned medium demonstrated...

  14. Signaling Circuits and Regulation of Immune Suppression by Ovarian Tumor-Associated Macrophages

    Directory of Open Access Journals (Sweden)

    Martin J. Cannon

    2015-05-01

    Full Text Available The barriers presented by immune suppression in the ovarian tumor microenvironment present one of the biggest challenges to development of successful tumor vaccine strategies for prevention of disease recurrence and progression following primary surgery and chemotherapy. New insights gained over the last decade have revealed multiple mechanisms of immune regulation, with ovarian tumor-associated macrophages/DC likely to fulfill a central role in creating a highly immunosuppressive milieu that supports disease progression and blocks anti-tumor immunity. This review provides an appraisal of some of the key signaling pathways that may contribute to immune suppression in ovarian cancer, with a particular focus on the potential involvement of the c-KIT/PI3K/AKT, wnt/β-catenin, IL-6/STAT3 and AhR signaling pathways in regulation of indoleamine 2,3-dioxygenase expression in tumor-associated macrophages. Knowledge of intercellular and intracellular circuits that shape immune suppression may afford insights for development of adjuvant treatments that alleviate immunosuppression in the tumor microenvironment and enhance the clinical efficacy of ovarian tumor vaccines.

  15. Biomaterials approaches to modeling macrophage-extracellular matrix interactions in the tumor microenvironment.

    Science.gov (United States)

    Springer, Nora L; Fischbach, Claudia

    2016-08-01

    Tumors are characterized by aberrant extracellular matrix (ECM) remodeling and chronic inflammation. While advances in biomaterials and tissue engineering strategies have led to important new insights regarding the role of ECM composition, structure, and mechanical properties in cancer in general, the functional link between these parameters and macrophage phenotype is poorly understood. Nevertheless, increasing experimental evidence suggests that macrophage behavior is similarly controlled by physicochemical properties of the ECM and consequential changes in mechanosignaling. Here, we will summarize the current knowledge of macrophage biology and ECM-mediated differences in mechanotransduction and discuss future opportunities of biomaterials and tissue engineering platforms to interrogate the functional relationship between these parameters and their relevance to cancer.

  16. Tumor infiltrating immune cells in gliomas and meningiomas.

    Science.gov (United States)

    Domingues, Patrícia; González-Tablas, María; Otero, Álvaro; Pascual, Daniel; Miranda, David; Ruiz, Laura; Sousa, Pablo; Ciudad, Juana; Gonçalves, Jesús María; Lopes, María Celeste; Orfao, Alberto; Tabernero, María Dolores

    2016-03-01

    Tumor-infiltrating immune cells are part of a complex microenvironment that promotes and/or regulates tumor development and growth. Depending on the type of cells and their functional interactions, immune cells may play a key role in suppressing the tumor or in providing support for tumor growth, with relevant effects on patient behavior. In recent years, important advances have been achieved in the characterization of immune cell infiltrates in central nervous system (CNS) tumors, but their role in tumorigenesis and patient behavior still remain poorly understood. Overall, these studies have shown significant but variable levels of infiltration of CNS tumors by macrophage/microglial cells (TAM) and to a less extent also lymphocytes (particularly T-cells and NK cells, and less frequently also B-cells). Of note, TAM infiltrate gliomas at moderate numbers where they frequently show an immune suppressive phenotype and functional behavior; in contrast, infiltration by TAM may be very pronounced in meningiomas, particularly in cases that carry isolated monosomy 22, where the immune infiltrates also contain greater numbers of cytotoxic T and NK-cells associated with an enhanced anti-tumoral immune response. In line with this, the presence of regulatory T cells, is usually limited to a small fraction of all meningiomas, while frequently found in gliomas. Despite these differences between gliomas and meningiomas, both tumors show heterogeneous levels of infiltration by immune cells with variable functionality. In this review we summarize current knowledge about tumor-infiltrating immune cells in the two most common types of CNS tumors-gliomas and meningiomas-, as well as the role that such immune cells may play in the tumor microenvironment in controlling and/or promoting tumor development, growth and control.

  17. Aminopeptidase N (CD13 Is Involved in Phagocytic Processes in Human Dendritic Cells and Macrophages

    Directory of Open Access Journals (Sweden)

    Mónica I. Villaseñor-Cardoso

    2013-01-01

    Full Text Available Aminopeptidase N (APN or CD13 is a membrane ectopeptidase expressed by many cell types, including myelomonocytic lineage cells: monocytes, macrophages, and dendritic cells. CD13 is known to regulate the biological activity of various peptides by proteolysis, and it has been proposed that CD13 also participates in several functions such as angiogenesis, cell adhesion, metastasis, and tumor invasion. We had previously reported that, in human monocytes and macrophages, CD13 modulates the phagocytosis mediated by receptors for the Fc portion of IgG antibodies (FcγRs. In this work, we analyzed the possible interaction of CD13 with other phagocytic receptors. We found out that the cross-linking of CD13 positively modulates the phagocytosis mediated by receptors of the innate immune system, since a significant increase in the phagocytosis of zymosan particles or heat-killed E. coli was observed when CD13 was cross-linked using anti-CD13 antibodies, in both macrophages and dendritic cells. Also, we observed that, during the phagocytosis of zymosan, CD13 redistributes and is internalized into the phagosome. These findings suggest that, besides its known functions, CD13 participates in phagocytic processes in dendritic cells and macrophages.

  18. Galectin-3 determines tumor cell adaptive strategies in stressed tumor microenvironments

    Directory of Open Access Journals (Sweden)

    Ana Carolina Ferreira Cardoso

    2016-05-01

    Full Text Available Galectin-3 is a member of the b-galactoside binding lectin family, whose expression is often dysregulated in cancers. While galectin-3 is usually an intracellular protein, found in the nucleus and in the cytoplasm; under certain conditions, galectin-3 can be secreted by an yet unknown mechanism. Under stressing conditions (hypoxia and nutrient deprivation, e.g. galectin-3 is upregulated, through the activity of transcription factors such as HIF-1a and NF-kB. Here we review evidence that indicates a positive role for galectin-3 in MAPK family signal transduction, leading to cell proliferation and cell survival. Galectin-3 serves as a scaffold protein, which favors the spatial organization of signaling proteins as K-RAS. Upon secretion, extracellular galectin-3 interacts with a variety of cell surface glycoproteins, such as growth factor receptors, integrins, cadherins and members of the Notch family, among other glycoproteins, besides different extracellular matrix molecules. Through its ability to oligomerize, galectin-3 forms lectin lattices that act as scaffolds that sustain the spatial organization of signaling receptors on the cell surface, dictating its maintenance on the plasma membrane or their endocytosis. Galectin-3 induces tumor cell, endothelial cell and leukocyte migration, favoring either the exit of tumor cells from a stressed microenvironment or the entry of endothelial cells and leukocytes, such as monocyte/macrophages into the tumor organoid. Therefore, galectin-3 plays homeostatic roles in tumors, besides its effects in different elements of the immune system, as (i it favors tumor cell adaptation for survival in stressed conditions; (ii upon secretion, galectin-3 induces tumor cell detachment and migration; (iii it attracts endothelial cells and monocytes/macrophages to the tumor mass, inducing both directly and indirectly the process of angiogenesis. These activities are potentially targetable and specific interventions may

  19. Galectin-3 Determines Tumor Cell Adaptive Strategies in Stressed Tumor Microenvironments

    Science.gov (United States)

    Cardoso, Ana Carolina Ferreira; Andrade, Luciana Nogueira de Sousa; Bustos, Silvina Odete; Chammas, Roger

    2016-01-01

    Galectin-3 is a member of the β-galactoside-binding lectin family, whose expression is often dysregulated in cancers. While galectin-3 is usually an intracellular protein found in the nucleus and in the cytoplasm, under certain conditions, galectin-3 can be secreted by an yet unknown mechanism. Under stressing conditions (e.g., hypoxia and nutrient deprivation) galectin-3 is upregulated, through the activity of transcription factors, such as HIF-1α and NF-κB. Here, we review evidence that indicates a positive role for galectin-3 in MAPK family signal transduction, leading to cell proliferation and cell survival. Galectin-3 serves as a scaffold protein, which favors the spatial organization of signaling proteins as K-RAS. Upon secretion, extracellular galectin-3 interacts with a variety of cell surface glycoproteins, such as growth factor receptors, integrins, cadherins, and members of the Notch family, among other glycoproteins, besides different extracellular matrix molecules. Through its ability to oligomerize, galectin-3 forms lectin lattices that act as scaffolds that sustain the spatial organization of signaling receptors on the cell surface, dictating its maintenance on the plasma membrane or their endocytosis. Galectin-3 induces tumor cell, endothelial cell, and leukocyte migration, favoring either the exit of tumor cells from a stressed microenvironment or the entry of endothelial cells and leukocytes, such as monocytes/macrophages into the tumor organoid. Therefore, galectin-3 plays homeostatic roles in tumors, as (i) it favors tumor cell adaptation for survival in stressed conditions; (ii) upon secretion, galectin-3 induces tumor cell detachment and migration; and (iii) it attracts monocyte/macrophage and endothelial cells to the tumor mass, inducing both directly and indirectly the process of angiogenesis. The two latter activities are potentially targetable, and specific interventions may be designed to counteract the protumoral role of extracellular

  20. Oncogenic Properties of Apoptotic Tumor Cells in Aggressive B Cell Lymphoma

    Science.gov (United States)

    Ford, Catriona A.; Petrova, Sofia; Pound, John D.; Voss, Jorine J.L.P.; Melville, Lynsey; Paterson, Margaret; Farnworth, Sarah L.; Gallimore, Awen M.; Cuff, Simone; Wheadon, Helen; Dobbin, Edwina; Ogden, Carol Anne; Dumitriu, Ingrid E.; Dunbar, Donald R.; Murray, Paul G.; Ruckerl, Dominik; Allen, Judith E.; Hume, David A.; van Rooijen, Nico; Goodlad, John R.; Freeman, Tom C.; Gregory, Christopher D.

    2015-01-01

    Summary Background Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. Results Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased “in situ transcriptomics” analysis—gene expression profiling of laser-captured TAMs to establish their activation signature in situ—we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. Conclusions In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy. PMID:25702581

  1. Occurrence of thymosin ß4 in human breast cancer cells and in other cell types of the tumor microenvironment

    DEFF Research Database (Denmark)

    Larsson, Lars-Inge; Holck, Susanne

    2007-01-01

    that there is a considerable heterogeneity in the cellular distribution of thymosin ß4 in breast cancer. In most tumors examined, cancer cells showed low or intermediate reactivity for thymosin ß4, whereas leukocytes and macrophages showed intense reactivity. In addition, endothelial cells showed variable reactivity...... microenvironment produce thymosin ß4 and that such expression varies from tumor to tumor. Such heterogeneity of expression should be taken into account when the role of thymosin ß4 in tumor biology is assessed....

  2. Mycobacterium leprae-Infected Macrophages Preferentially Primed Regulatory T Cell Responses and Was Associated with Lepromatous Leprosy.

    Directory of Open Access Journals (Sweden)

    Degang Yang

    2016-01-01

    Full Text Available The persistence of Mycobacterium leprae (M. leprae infection is largely dependent on the types of host immune responses being induced. Macrophage, a crucial modulator of innate and adaptive immune responses, could be directly infected by M. leprae. We therefore postulated that M. leprae-infected macrophages might have altered immune functions.Here, we treated monocyte-derived macrophages with live or killed M. leprae, and examined their activation status and antigen presentation. We found that macrophages treated with live M. leprae showed committed M2-like function, with decreased interleukin 1 beta (IL-1beta, IL-6, tumor necrosis factor alpha (TNF-alpha and MHC class II molecule expression and elevated IL-10 and CD163 expression. When incubating with naive T cells, macrophages treated with live M. leprae preferentially primed regulatory T (Treg cell responses with elevated FoxP3 and IL-10 expression, while interferon gamma (IFN-gamma expression and CD8+ T cell cytotoxicity were reduced. Chromium release assay also found that live M. leprae-treated macrophages were more resistant to CD8+ T cell-mediated cytotoxicity than sonicated M. leprae-treated monocytes. Ex vivo studies showed that the phenotype and function of monocytes and macrophages had clear differences between L-lep and T-lep patients, consistent with the in vitro findings.Together, our data demonstrate that M. leprae could utilize infected macrophages by two mechanisms: firstly, M. leprae-infected macrophages preferentially primed Treg but not Th1 or cytotoxic T cell responses; secondly, M. leprae-infected macrophages were more effective at evading CD8+ T cell-mediated cytotoxicity.

  3. Macrophages as APC and the dendritic cell myth.

    Science.gov (United States)

    Hume, David A

    2008-11-01

    Dendritic cells have been considered an immune cell type that is specialized for the presentation of Ag to naive T cells. Considerable effort has been applied to separate their lineage, pathways of differentiation, and effectiveness in Ag presentation from those of macrophages. This review summarizes evidence that dendritic cells are a part of the mononuclear phagocyte system and are derived from a common precursor, responsive to the same growth factors (including CSF-1), express the same surface markers (including CD11c), and have no unique adaptation for Ag presentation that is not shared by other macrophages.

  4. Modulation of macrophage cytokine profiles during solid tumor progression: susceptibility to Candida albicans infection

    Directory of Open Access Journals (Sweden)

    Venturini James

    2009-06-01

    Full Text Available Abstract Background In order to attain a better understanding of the interactions between opportunist fungi and their hosts, we investigated the cytokine profile associated with the inflammatory response to Candida albicans infection in mice with solid Ehrlich tumors of different degrees. Methods Groups of eight animals were inoculated intraperitoneally with 5 × 106 C. albicans 7, 14 or 21 days after tumor implantation. After 24 or 72 hours, the animals were euthanized and intraperitoneal lavage fluid was collected. Peritoneal macrophages were cultivated and the levels of IFN-γ, TNF-α, IL-12, IL-10 and IL-4 released into the supernatants were measured by ELISA. Kidney, liver and spleen samples were evaluated for fungal dissemination. Tumor-free animals and animals that had only been subjected to C. albicans infection were used as control groups. Results Our results demonstrated that the mice produced more IFN-γ and TNF-α and less IL-10, and also exhibited fungal clearance, at the beginning of tumor evolution. With the tumor progression, this picture changed: IL-10 production increased and IFN-γ and TNF-α release decreased; furthermore, there was extensive fungal dissemination. Conclusion Our results indicate that solid tumors can affect the production of macrophage cytokines and, in consequence, affect host resistance to opportunistic infections.

  5. Sesamin inhibits macrophage-induced vascular endothelial growth factor and matrix metalloproteinase-9 expression and proangiogenic activity in breast cancer cells.

    Science.gov (United States)

    Lee, Chun-Chung; Liu, Ko-Jiunn; Wu, Yu-Chen; Lin, Sue-Jane; Chang, Ching-Chun; Huang, Tze-Sing

    2011-06-01

    Sesamin is a sesame component with antihypertensive and antioxidative activities and has recently aroused much interest in studying its potential anticancer application. Macrophage is one of the infiltrating inflammatory cells in solid tumor and may promote tumor progression via enhancement of tumor angiogenesis. In this study, we investigated whether sesamin inhibited macrophage-enhanced proangiogenic activity of breast cancer cell lines MCF-7 and MDA-MB-231. Using vascular endothelial cell capillary tube and network formation assays, both breast cancer cell lines exhibited elevated proangiogenic activities after coculture with macrophages or pretreatment with macrophage-conditioned medium. This elevation of proangiogenic activity was drastically suppressed by sesamin. Vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) induced by macrophages in both cell lines were also inhibited by sesamin. Nuclear levels of HIF-1α and NF-κB, important transcription factors for VEGF and MMP-9 expression, respectively, were obviously reduced by sesamin. VEGF induction by macrophage in MCF-7 cells was shown to be via ERK, JNK, phosphatidylinositol 3-kinase, and NF-κB-mediated pathways. These signaling molecules and additional p38(MAPK) were also involved in macrophage-induced MMP-9 expression. Despite such diverse pathways were induced by macrophage, only Akt and p38(MAPK) activities were potently inhibited by sesamin. Expression of interleukin (IL)-6, IL-8, and tumor necrosis factor-α were substantially increased and involved in macrophage-induced VEGF and MMP-9 mRNA expression in MCF-7 cells. Sesamin effectively inhibited the expression of these cytokines to avoid the reinforced induction of VEGF and MMP-9. In conclusion, sesamin potently inhibited macrophage-enhanced proangiogenic activity of breast cancer cells via inhibition of VEGF and MMP-9 induction.

  6. Genetic Analysis of Ets-2 in Tumor-Associated Macrophages During Breast Cancer Progression

    Science.gov (United States)

    2007-10-01

    The lung lesions were qualitatively analyzed and scored for peripheral macrophage distribution ( pie - chart shown in right) Tahera Zabuawala...similar to that of the controls. Interestingly, the area of the lung lesions is significantly less in the experimentals as compared to those of the...environment cause smaller lung metastatic lesions while having no effects in the primary tumor progression. However, it is not yet clear whether ets-2 is

  7. Blood vessel endothelium-directed tumor cell streaming in breast tumors requires the HGF/C-Met signaling pathway.

    Science.gov (United States)

    Leung, E; Xue, A; Wang, Y; Rougerie, P; Sharma, V P; Eddy, R; Cox, D; Condeelis, J

    2016-11-28

    During metastasis to distant sites, tumor cells migrate to blood vessels. In vivo, breast tumor cells utilize a specialized mode of migration known as streaming, where a linear assembly of tumor cells migrate directionally towards blood vessels on fibronectin-collagen I-containing extracellular matrix (ECM) fibers in response to chemotactic signals. We have successfully reconstructed tumor cell streaming in vitro by co-plating tumors cells, macrophages and endothelial cells on 2.5 μm thick ECM-coated micro-patterned substrates. We found that tumor cells and macrophages, when plated together on the micro-patterned substrates, do not demonstrate sustained directional migration in only one direction (sustained directionality) but show random bi-directional walking. Sustained directionality of tumor cells as seen in vivo was established in vitro when beads coated with human umbilical vein endothelial cells were placed at one end of the micro-patterned 'ECM fibers' within the assay. We demonstrated that these endothelial cells supply the hepatocyte growth factor (HGF) required for the chemotactic gradient responsible for sustained directionality. Using this in vitro reconstituted streaming system, we found that directional streaming is dependent on, and most effectively blocked, by inhibiting the HGF/C-Met signaling pathway between endothelial cells and tumor cells. Key observations made with the in vitro reconstituted system implicating C-Met signaling were confirmed in vivo in mammary tumors using the in vivo invasion assay and intravital multiphoton imaging of tumor cell streaming. These results establish HGF/C-Met as a central organizing signal in blood vessel-directed tumor cell migration in vivo and highlight a promising role for C-Met inhibitors in blocking tumor cell streaming and metastasis in vivo, and for use in human trials.Oncogene advance online publication, 28 November 2016; doi:10.1038/onc.2016.421.

  8. Macrophages and Leydig Cells in Testicular Biopsies of Azoospermic Men

    Directory of Open Access Journals (Sweden)

    Trpimir Goluža

    2014-01-01

    Full Text Available A number of studies have indicated that testicular macrophages play an important role in regulating steroidogenesis of Leydig cells and maintain homeostasis within the testis. The current paper deals with macrophages (CD68 positive cells and Leydig cells in patients with nonobstructive azoospermia (NOA. Methods employed included histological analysis on semi- and ultrathin sections, immunohistochemistry, morphometry, and hormone analysis in the blood serum. Histological analysis pointed out certain structural changes of macrophages and Leydig cells in NOA group of patients when compared to controls. In the testis interstitium, an increased presence of CD68 positive cells has been noted. Leydig cells in NOA patients displayed a kind of a mosaic picture across the same bioptic sample: both normal and damaged Leydig cells with pronounced vacuolisation and various intensity of expression of testosterone have been observed. Stereological analysis indicated a significant increase in volume density of both CD68 positive and vacuolated Leydig cells and a positive correlation between the volume densities of these cell types. The continuous gonadotropin overstimulation of Leydig cells, together with a negative paracrine action of macrophages, could result in the damage of steroidogenesis and deficit of testosterone in situ.

  9. Macrophages: supportive cells for tissue repair and regeneration.

    Science.gov (United States)

    Chazaud, Bénédicte

    2014-03-01

    Macrophages, and more broadly inflammation, have been considered for a long time as bad markers of tissue homeostasis. However, if it is indisputable that macrophages are associated with many diseases in a deleterious way, new roles have emerged, showing beneficial properties of macrophages during tissue repair and regeneration. This discrepancy is likely due to the high plasticity of macrophages, which may exhibit a wide range of phenotypes and functions depending on their environment. Therefore, regardless of their role in immunity, macrophages play a myriad of roles in the maintenance and recovery of tissue homeostasis. They take a major part in the resolution of inflammation. They also exert various effects of parenchymal cells, including stem and progenitor cell, of which they regulate the fate. In the present review, few examples from various tissues are presented to illustrate that, beyond their specific properties in a given tissue, common features have been described that sustain a role of macrophages in the recovery and maintenance of tissue homeostasis.

  10. Stimulation of macrophages with the β-glucan produced by aureobasidium pullulans promotes the secretion of tumor necrosis factor-related apoptosis inducing ligand (TRAIL.

    Directory of Open Access Journals (Sweden)

    Koji Kawata

    Full Text Available A β-glucan produced by Aureobasidium pullulans (AP-PG is consisting of a β-(1,3-linked main chain with β-(1,6-linked glucose side residues. Various β-glucans consisting of β-(1,3-linked main chain including AP-PG are believed to exhibit anti-tumor activities, and actually, anti-tumor activities of AP-PG in mice have been demonstrated. In this study, we demonstrate that stimulation with AP-PG induces TRAIL expression in mouse and human macrophage-like cell lines. TRAIL is known to be a cytokine which specifically induces apoptosis in transformed cells, but not in untransformed cells. The expression of TRAIL mRNA after stimulation with AP-PG was increased in RAW264.7 cells, Mono Mac 6 cells, and macrophage-differentiated THP-1 cells. The mRNA expression of TNF-α and FasL is only weakly increased after stimulation with AP-PG. The induction activity of TRAIL by curdlan, a bacterial β-glucan, was very similar to that by AP-PG in RAW264.7 cells, but weaker in macrophage-differentiated THP-1 cells. Activation of caspases was found in HeLa cells after treatment with the supernatant of cultured medium from AP-PG-stimulated Mono Mac 6 cells, and was inhibited by the anti-TRAIL neutralizing antibody. These findings suggest that the stimulation with AP-PG effectively induces TRAIL in macrophages, and that it may be related to apoptosis induction of tumor cells.

  11. Stimulation of neoplastic mouse lung cell proliferation by alveolar macrophage-derived, insulin-like growth factor-1 can be blocked by inhibiting MEK and PI3K activation

    Directory of Open Access Journals (Sweden)

    Malkinson Alvin M

    2011-06-01

    Full Text Available Abstract Background Worldwide, lung cancer kills more people than breast, colon and prostate cancer combined. Alterations in macrophage number and function during lung tumorigenesis suggest that these immune effector cells stimulate lung cancer growth. Evidence from cancer models in other tissues suggests that cancer cells actively recruit growth factor-producing macrophages through a reciprocal signaling pathway. While the levels of lung macrophages increase during tumor progression in mouse models of lung cancer, and high pulmonary macrophage content correlates with a poor prognosis in human non-small cell lung cancer, the specific role of alveolar macrophages in lung tumorigenesis is not clear. Methods After culturing either an immortalized lung macrophage cell line or primary murine alveolar macrophages from naïve and lung-tumor bearing mice with primary tumor isolates and immortalized cell lines, the effects on epithelial proliferation and cellular kinase activation were determined. Insulin-like growth factor-1 (IGF-1 was quantified by ELISA, and macrophage conditioned media IGF-1 levels manipulated by IL-4 treatment, immuno-depletion and siRNA transfection. Results Primary macrophages from both naïve and lung-tumor bearing mice stimulated epithelial cell proliferation. The lungs of tumor-bearing mice contained 3.5-times more IGF-1 than naïve littermates, and media conditioned by freshly isolated tumor-educated macrophages contained more IGF-1 than media conditioned by naïve macrophages; IL-4 stimulated IGF-1 production by both macrophage subsets. The ability of macrophage conditioned media to stimulate neoplastic proliferation correlated with media IGF-1 levels, and recombinant IGF-1 alone was sufficient to induce epithelial proliferation in all cell lines evaluated. Macrophage-conditioned media and IGF-1 stimulated lung tumor cell growth in an additive manner, while EGF had no effect. Macrophage-derived factors increased p-Erk1/2, p

  12. Nuclear DAMP complex-mediated RAGE-dependent macrophage cell death

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ruochan [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Fu, Sha; Fan, Xue-Gong [Department of Infectious Diseases and State Key Lab of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, Hunan 410008 (China); Lotze, Michael T.; Zeh, Herbert J. [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Tang, Daolin, E-mail: tangd2@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States); Kang, Rui, E-mail: kangr@upmc.edu [Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 (United States)

    2015-03-13

    High mobility group box 1 (HMGB1), histone, and DNA are essential nuclear components involved in the regulation of chromosome structure and function. In addition to their nuclear function, these molecules act as damage-associated molecular patterns (DAMPs) alone or together when released extracellularly. The synergistic effect of these nuclear DNA-HMGB1-histone complexes as DAMP complexes (nDCs) on immune cells remains largely unexplored. Here, we demonstrate that nDCs limit survival of macrophages (e.g., RAW264.7 and peritoneal macrophages) but not cancer cells (e.g., HCT116, HepG2 and Hepa1-6). nDCs promote production of inflammatory tumor necrosis factor α (TNFα) release, triggering reactive oxygen species-dependent apoptosis and necrosis. Moreover, the receptor for advanced glycation end products (RAGE), but not toll-like receptor (TLR)-4 and TLR-2, was required for Akt-dependent TNFα release and subsequent cell death following treatment with nDCs. Genetic depletion of RAGE by RNAi, antioxidant N-Acetyl-L-cysteine, and TNFα neutralizing antibody significantly attenuated nDC-induced cell death. These findings provide evidence supporting novel signaling mechanisms linking nDCs and inflammation in macrophage cell death. - Highlights: • Nuclear DAMP complexes (nDCs) selectively induce cell death in macrophages, but not cancer cells. • TNFα-mediated oxidative stress is required for nDC-induced death. • RAGE-mediated Akt activation is required for nDC-induced TNFα release. • Blocking RAGE and TNFα inhibits nDC-induced macrophage cell death.

  13. Infantile pericardial round cell tumor

    Directory of Open Access Journals (Sweden)

    K H Sridevi

    2015-01-01

    Full Text Available Cardiac malignancies presenting in infancy are rare. Desmoplastic small round cell tumor (DSRCT is a rare occurrence in this age group. No case of intrapericardial DSRCT has been reported in the literature in infants.

  14. Manipulating the NF-κB pathway in macrophages using mannosylated, siRNA-delivering nanoparticles can induce immunostimulatory and tumor cytotoxic functions

    Directory of Open Access Journals (Sweden)

    Ortega RA

    2016-05-01

    Full Text Available Ryan A Ortega,1–3 Whitney Barham,3 Kavya Sharman,4 Oleg Tikhomirov,3 Todd D Giorgio,1–3 Fiona E Yull3 1Department of Biomedical Engineering, Vanderbilt University, 2Vanderbilt Institute for Nanoscale Science and Engineering, 3Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, 4Department of Neuroscience, Vanderbilt University, Nashville, TN, USA Abstract: Tumor-associated macrophages (TAMs are critically important in the context of solid tumor progression. Counterintuitively, these host immune cells can often support tumor cells along the path from primary tumor to metastatic colonization and growth. Thus, the ability to transform protumor TAMs into antitumor, immune-reactive macrophages would have significant therapeutic potential. However, in order to achieve these effects, two major hurdles would need to be overcome: development of a methodology to specifically target macrophages and increased knowledge of the optimal targets for cell-signaling modulation. This study addresses both of these obstacles and furthers the development of a therapeutic agent based on this strategy. Using ex vivo macrophages in culture, the efficacy of mannosylated nanoparticles to deliver small interfering RNA specifically to TAMs and modify signaling pathways is characterized. Then, selective small interfering RNA delivery is tested for the ability to inhibit gene targets within the canonical or alternative nuclear factor-kappaB pathways and result in antitumor phenotypes. Results confirm that the mannosylated nanoparticle approach can be used to modulate signaling within macrophages. We also identify appropriate gene targets in critical regulatory pathways. These findings represent an important advance toward the development of a novel cancer therapy that would minimize side effects because of the targeted nature of the intervention and that has rapid translational potential. Keywords: nanotechnology, targeted nanoparticles, cancer immunology, RNAi

  15. Flt3+ macrophage precursors commit sequentially to osteoclasts, dendritic cells and microglia

    Directory of Open Access Journals (Sweden)

    Hanau Daniel

    2002-10-01

    Full Text Available Abstract Background Macrophages, osteoclasts, dendritic cells, and microglia are highly specialized cells that belong to the mononuclear phagocyte system. Functional and phenotypic heterogeneity within the mononuclear phagocyte system may reveal differentiation plasticity of a common progenitor, but developmental pathways leading to such diversity are still unclear. Results Mouse bone marrow cells were expanded in vitro in the presence of Flt3-ligand (FL, yielding high numbers of non-adherent cells exhibiting immature monocyte characteristics. Cells expanded for 6 days, 8 days, or 11 days (day 6-FL, day 8-FL, and day 11-FL cells, respectively exhibited constitutive potential towards macrophage differentiation. In contrast, they showed time-dependent potential towards osteoclast, dendritic, and microglia differentiation that was detected in day 6-, day 8-, and day 11-FL cells, in response to M-CSF and receptor activator of NFκB ligand (RANKL, granulocyte-macrophage colony stimulating-factor (GM-CSF and tumor necrosis factor-α (TNFα, and glial cell-conditioned medium (GCCM, respectively. Analysis of cell proliferation using the vital dye CFSE revealed homogenous growth in FL-stimulated cultures of bone marrow cells, demonstrating that changes in differential potential did not result from sequential outgrowth of specific precursors. Conclusions We propose that macrophages, osteoclasts, dendritic cells, and microglia may arise from expansion of common progenitors undergoing sequential differentiation commitment. This study also emphasizes differentiation plasticity within the mononuclear phagocyte system. Furthermore, selective massive cell production, as shown here, would greatly facilitate investigation of the clinical potential of dendritic cells and microglia.

  16. Prostaglandin E2 in tick saliva regulates macrophage cell migration and cytokine profile

    Science.gov (United States)

    2013-01-01

    -inflammatory cytokines regulated and normal T cell expressed and secreted (RANTES/CCL5), tumor necrosis factor-alpha (TNF-α), and soluble TNF receptor I (sTNFRI) through a PGE2-dependent mechanism mediated by cAMP. Saliva had similar effects on lipopolysaccharide (LPS) stimulated macrophages. Conclusions Our data show that ticks utilize salivary PGE2 to subvert the ability of macrophages to secrete pro-inflammatory mediators and recruit fibroblasts to the feeding lesion, therefore inhibiting wound healing. PMID:24025197

  17. Therapeutic T cells induce tumor-directed chemotaxis of innate immune cells through tumor-specific secretion of chemokines and stimulation of B16BL6 melanoma to secrete chemokines

    Directory of Open Access Journals (Sweden)

    Fox Bernard A

    2007-11-01

    Full Text Available Abstract Background The mechanisms by which tumor-specific T cells induce regression of established metastases are not fully characterized. In using the poorly immunogenic B16BL6-D5 (D5 melanoma model we reported that T cell-mediated tumor regression can occur independently of perforin, IFN-γ or the combination of both. Characterization of regressing pulmonary metastases identified macrophages as a major component of the cells infiltrating the tumor after adoptive transfer of effector T cells. This led us to hypothesize that macrophages played a central role in tumor regression following T-cell transfer. Here, we sought to determine the factors responsible for the infiltration of macrophages at the tumor site. Methods These studies used the poorly immunogenic D5 melanoma model. Tumor-specific effector T cells, generated from tumor vaccine-draining lymph nodes (TVDLN, were used for adoptive immunotherapy and in vitro analysis of chemokine expression. Cellular infiltrates into pulmonary metastases were determined by immunohistochemistry. Chemokine expression by the D5 melanoma following co-culture with T cells, IFN-γ or TNF-α was determined by RT-PCR and ELISA. Functional activity of chemokines was confirmed using a macrophage migration assay. T cell activation of macrophages to release nitric oxide (NO was determined using GRIES reagent. Results We observed that tumor-specific T cells with a type 1 cytokine profile also expressed message for and secreted RANTES, MIP-1α and MIP-1β following stimulation with specific tumor. Unexpectedly, D5 melanoma cells cultured with IFN-γ or TNF-α, two type 1 cytokines expressed by therapeutic T cells, secreted Keratinocyte Chemoattractant (KC, MCP-1, IP-10 and RANTES and expressed mRNA for MIG. The chemokines released by T cells and cytokine-stimulated tumor cells were functional and induced migration of the DJ2PM macrophage cell line. Additionally, tumor-specific stimulation of wt or perforin

  18. Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells.

    Science.gov (United States)

    Mahamed, Deeqa; Boulle, Mikael; Ganga, Yashica; Mc Arthur, Chanelle; Skroch, Steven; Oom, Lance; Catinas, Oana; Pillay, Kelly; Naicker, Myshnee; Rampersad, Sanisha; Mathonsi, Colisile; Hunter, Jessica; Wong, Emily B; Suleman, Moosa; Sreejit, Gopalkrishna; Pym, Alexander S; Lustig, Gila; Sigal, Alex

    2017-01-28

    A hallmark of pulmonary tuberculosis is the formation of macrophage-rich granulomas. These may restrict Mycobacterium tuberculosis (Mtb) growth, or progress to central necrosis and cavitation, facilitating pathogen growth. To determine factors leading to Mtb proliferation and host cell death, we used live cell imaging to track Mtb infection outcomes in individual primary human macrophages. Internalization of Mtb aggregates caused macrophage death, and phagocytosis of large aggregates was more cytotoxic than multiple small aggregates containing similar numbers of bacilli. Macrophage death did not result in clearance of Mtb. Rather, it led to accelerated intracellular Mtb growth regardless of prior activation or macrophage type. In contrast, bacillary replication was controlled in live phagocytes. Mtb grew as a clump in dead cells, and macrophages which internalized dead infected cells were very likely to die themselves, leading to a cell death cascade. This demonstrates how pathogen virulence can be achieved through numbers and aggregation states.

  19. Tumor-associated macrophages in oral premalignant lesions coexpress CD163 and STAT1 in a Th1-dominated microenvironment.

    Science.gov (United States)

    Mori, Kazumasa; Haraguchi, Shigeki; Hiori, Miki; Shimada, Jun; Ohmori, Yoshihiro

    2015-08-05

    Tumor-associated macrophages (TAMs) are implicated in the growth, invasion and metastasis of various solid tumors. However, the phenotype of TAMs in premalignant lesions of solid tumors has not been clarified. In the present study, we identify the phenotype of TAMs in leukoplakia, an oral premalignant lesion, by immunohistochemical analysis and investigate the involvement of infiltrated T cells that participate in the polarization of TAMs. The subjects included 30 patients with oral leukoplakia and 10 individuals with normal mucosa. Hematoxylin and eosin slides were examined for the histological grades, and immunohistochemical analysis was carried out using antibodies against CD68 (pan-MΦ), CD80 (M1 MΦ), CD163 (M2 MΦ), CD4 (helper T cells: Th), CD8 (cytotoxic T cells), CXCR3, CCR5 (Th1), CCR4 (Th2), signal transducer and activator of transcription (STAT1), phosphorylated STAT1 (pSTAT1) and chemokine CXCL9. The differences in the numbers of positively stained cells among the different histological grades were tested for statistical significance using the Kruskal-Wallis test. Correlations between different types of immune cells were determined using Spearman's rank analysis. An increase in the rate of CD163(+) TAM infiltration was observed in mild and moderate epithelial dysplasia, which positively correlated with the rate of intraepithelial CD4(+) Th cell infiltration. Although CCR4(+) cells rarely infiltrated, CXCR3(+) and CCR5(+) cells were observed in these lesions. Cells positive for STAT1 and chemokine CXCL9, interferon- (IFN)-induced gene products, and pSTAT1 were also observed in the same lesions. Double immunofluorescence staining demonstrated that the cells that were positive for CD163 were also positive for STAT1. CD163(+) TAMs in oral premalignant lesions coexpress CD163 and STAT1, suggesting that the TAMs in oral premalignant lesions possess an M1 phenotype in a Th1-dominated micromilieu.

  20. Genomic Analysis of Immune Cell Infiltrates Across 11 Tumor Types.

    Science.gov (United States)

    Iglesia, Michael D; Parker, Joel S; Hoadley, Katherine A; Serody, Jonathan S; Perou, Charles M; Vincent, Benjamin G

    2016-11-01

    Immune infiltration of the tumor microenvironment has been associated with improved survival for some patients with solid tumors. The precise makeup and prognostic relevance of immune infiltrates across a broad spectrum of tumors remain unclear. Using mRNA sequencing data from The Cancer Genome Atlas (TCGA) from 11 tumor types representing 3485 tumors, we evaluated lymphocyte and macrophage gene expression by tissue type and by genomic subtypes defined within and across tumor tissue of origin (Cox proportional hazards, Pearson correlation). We investigated clonal diversity of B-cell infiltrates through calculating B-cell receptor (BCR) repertoire sequence diversity. All statistical tests were two-sided. High expression of T-cell and B-cell signatures predicted improved overall survival across many tumor types including breast, lung, and melanoma (breast CD8_T_Cells hazard ratio [HR] = 0.36, 95% confidence interval [CI] = 0.16 to 0.81, P = .01; lung adenocarcinoma B_Cell_60gene HR = 0.71, 95% CI = 0.58 to 0.87, P = 7.80E-04; melanoma LCK HR = 0.86, 95% CI = 0.79 to 0.94, P = 6.75E-04). Macrophage signatures predicted worse survival in GBM, as did B-cell signatures in renal tumors (Glioblastoma Multiforme [GBM]: macrophages HR = 1.62, 95% CI = 1.17 to 2.26, P = .004; renal: B_Cell_60gene HR = 1.17, 95% CI = 1.04 to 1.32, P = .009). BCR diversity was associated with survival beyond gene segment expression in melanoma (HR = 2.67, 95% CI = 1.32 to 5.40, P = .02) and renal cell carcinoma (HR = 0.36, 95% CI = 0.15 to 0.87, P = .006). These data support existing studies suggesting that in diverse tissue types, heterogeneous immune infiltrates are present and typically portend an improved prognosis. In some tumor types, BCR diversity was also associated with survival. Quantitative genomic signatures of immune cells warrant further testing as prognostic markers and potential biomarkers of response to cancer immunotherapy.

  1. Macrophages overexpressing Aire induce CD4+Foxp3+ T cells.

    Science.gov (United States)

    Sun, Jitong; Fu, Haiying; Wu, Jing; Zhu, Wufei; Li, Yi; Yang, Wei

    2013-01-01

    Aire plays an important role in central immune tolerance by regulating the transcription of thousands of genes. However, the role of Aire in the peripheral immune system is poorly understood. Regulatory T (Treg) cells are considered essential for the maintenance of peripheral tolerance, but the effect of Aire on Treg cells in the peripheral immune system is currently unknown. In this study, we investigated the effects of macrophages overexpressing Aire on CD4+Foxp3+ Treg cells by co-culturing Aire-overexpressing RAW264.7 cells or their supernatant with splenocytes. The results show that macrophages overexpressing Aire enhanced the expression of Foxp3 mRNA and induced different subsets of Treg cells in splenocytes through cell-cell contact or a co-culture supernatants. TGF-β is a key molecule in the increases of CD4+CD45RA+Foxp3hi T cell and activating Treg (aTreg) levels observed following cell‑supernatant co-culturing. Subsets of Treg cells were induced by Aire-overexpressing macrophages, and the manipulation of Treg cells by the targeting of Aire may provide a method for the treatment of inflammatory or autoimmune diseases.

  2. The irradiated tumor microenvironment: role of tumor-associated macrophages in vascular recovery

    OpenAIRE

    2013-01-01

    Radiotherapy is an important modality used in the treatment of more than 50% of cancer patients in the US. However, despite sophisticated techniques for radiation delivery as well as the combination of radiation with chemotherapy, tumors can recur. Thus, any method of improving the local control of the primary tumor by radiotherapy would produce a major improvement in the curability of cancer patients. One of the challenges in the field is to understand how the tumor vasculature can regrow af...

  3. The irradiated tumor microenvironment: Role of tumor-associated macrophages in vascular recovery

    OpenAIRE

    2013-01-01

    Radiotherapy is an important modality used in the treatment of more than 50% of cancer patients in the US. However, despite sophisticated techniques for radiation delivery as well as the combination of radiation with chemotherapy, tumors can recur. Thus, any method of improving the local control of the primary tumor by radiotherapy would produce a major improvement in the curability of cancer patients. One of the challenges in the field is to understand how the tumor vasculature can regrow af...

  4. p47phox Directs Murine Macrophage Cell Fate Decisions

    Science.gov (United States)

    Yi, Liang; Liu, Qi; Orandle, Marlene S.; Sadiq-Ali, Sara; Koontz, Sherry M.; Choi, Uimook; Torres-Velez, Fernando J.; Jackson, Sharon H.

    2012-01-01

    Macrophage differentiation and function are pivotal for cell survival from infection and involve the processing of microenvironmental signals that determine macrophage cell fate decisions to establish appropriate inflammatory balance. NADPH oxidase 2 (Nox2)–deficient chronic granulomatous disease (CGD) mice that lack the gp91phox (gp91phox−/−) catalytic subunit show high mortality rates compared with wild-type mice when challenged by infection with Listeria monocytogenes (Lm), whereas p47phox-deficient (p47phox−/−) CGD mice show survival rates that are similar to those of wild-type mice. We demonstrate that such survival results from a skewed macrophage differentiation program in p47phox−/− mice that favors the production of higher levels of alternatively activated macrophages (AAMacs) compared with levels of either wild-type or gp91phox−/− mice. Furthermore, the adoptive transfer of AAMacs from p47phox−/− mice can rescue gp91phox−/− mice during primary Lm infection. Key features of the protective function provided by p47phox−/− AAMacs against Lm infection are enhanced production of IL-1α and killing of Lm. Molecular analysis of this process indicates that p47phox−/− macrophages are hyperresponsive to IL-4 and show higher Stat6 phosphorylation levels and signaling coupled to downstream activation of AAMac transcripts in response to IL-4 stimulation. Notably, restoring p47phox protein expression levels reverts the p47phox-dependent AAMac phenotype. Our results indicate that p47phox is a previously unrecognized regulator for IL-4 signaling pathways that are important for macrophage cell fate choice. PMID:22222227

  5. Coxiella burnetii Infects Primary Bovine Macrophages and Limits Their Host Cell Response.

    Science.gov (United States)

    Sobotta, Katharina; Hillarius, Kirstin; Mager, Marvin; Kerner, Katharina; Heydel, Carsten; Menge, Christian

    2016-06-01

    Although domestic ruminants have long been recognized as the main source of human Q fever, little is known about the lifestyle that the obligate intracellular Gram-negative bacterium Coxiella burnetii adopts in its animal host. Because macrophages are considered natural target cells of the pathogen, we established primary bovine monocyte-derived macrophages (MDM) as an in vitro infection model to study reservoir host-pathogen interactions at the cellular level. In addition, bovine alveolar macrophages were included to take cell type peculiarities at a host entry site into account. Cell cultures were inoculated with the virulent strain Nine Mile I (NMI; phase I) or the avirulent strain Nine Mile II (NMII; phase II). Macrophages from both sources internalized NMI and NMII. MDM were particularly permissive for NMI internalization, but NMI and NMII replicated with similar kinetics in these cells. MDM responded to inoculation with a general upregulation of Th1-related cytokines such as interleukin-1β (IL-1β), IL-12, and tumor necrosis factor alpha (TNF-α) early on (3 h postinfection). However, inflammatory responses rapidly declined when C. burnetii replication started. C. burnetii infection inhibited translation and release of IL-1β and vastly failed to stimulate increased expression of activation markers, such as CD40, CD80, CD86, and major histocompatibility complex (MHC) molecules. Such capability of limiting proinflammatory responses may help Coxiella to protect itself from clearance by the host immune system. The findings provide the first detailed insight into C. burnetii-macrophage interactions in ruminants and may serve as a basis for assessing the virulence and the host adaptation of C. burnetii strains. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  6. Staining of Langerhans Cells with Monoclonal Antibodies to Macrophages and Lymphoid Cells

    Science.gov (United States)

    Haines, Kathleen A.; Flotte, Thomas J.; Springer, Timothy A.; Gigli, Irma; Thorbecke, G. Jeanette

    1983-06-01

    Langerhans cells are Ia-bearing antigen-presenting cells in the epidermis that share many functions with macrophages. We have used monoclonal antibodies to the macrophage antigens, Mac-2 and -3, Ia antigen, Fc fragment receptor, and the common leukocyte antigen CLA to compare the cell surface antigens of these cells with those of interdigitating and follicular dendritic cells and of macrophages in lymphoid tissues. Immunoperoxidase staining was carried out with epidermal sheets from BALB/c mice and epidermal cell suspensions enriched for Langerhans cells by Fc rosetting. Langerhans cells stained for all of these antigens. Comparison with the staining properties of other dendritic cells and macrophages, in combination with previous observations, indicates a close relationship of Langerhans cells to the interdigitating cells of lymphoid tissues.

  7. Vascular endothelial growth factor enhances macrophage clearance of apoptotic cells

    Science.gov (United States)

    Dalal, Samay; Horstmann, Sarah A.; Richens, Tiffany R.; Tanaka, Takeshi; Doe, Jenna M.; Boe, Darren M.; Voelkel, Norbert F.; Taraseviciene-Stewart, Laimute; Janssen, William J.; Lee, Chun G.; Elias, Jack A.; Bratton, Donna; Tuder, Rubin M.; Henson, Peter M.; Vandivier, R. William

    2012-01-01

    Efficient clearance of apoptotic cells from the lung by alveolar macrophages is important for the maintenance of tissue structure and function. Lung tissue from humans with emphysema contains increased numbers of apoptotic cells and decreased levels of vascular endothelial growth factor (VEGF). Mice treated with VEGF receptor inhibitors have increased numbers of apoptotic cells and develop emphysema. We hypothesized that VEGF regulates apoptotic cell clearance by alveolar macrophages (AM) via its interaction with VEGF receptor 1 (VEGF R1). Our data show that the uptake of apoptotic cells by murine AMs and human monocyte-derived macrophages is inhibited by depletion of VEGF and that VEGF activates Rac1. Antibody blockade or pharmacological inhibition of VEGF R1 activity also decreased apoptotic cell uptake ex vivo. Conversely, overexpression of VEGF significantly enhanced apoptotic cell uptake by AMs in vivo. These results indicate that VEGF serves a positive regulatory role via its interaction with VEGF R1 to activate Rac1 and enhance AM apoptotic cell clearance. PMID:22307908

  8. Preliminary analysis of cellular sociology of co-cultured glioma initiating cells and macrophages in vitro

    Institute of Scientific and Technical Information of China (English)

    Mingxia Zhang; Xingliang Dai; Xiaonan Li; Qiang Huang; Jun Dong; Junjie Chen; Lin Wang; Xiaoyan Ji; Lin Yang; Yujing Sheng; Hairui Liu; Haiyang Wang; Aidong Wang

    2016-01-01

    Objective:Real-time monitoring of cytokine secretion at the single immunocyte level, based on the concept of immune cells, sociology has been recently reported. However, the relationships between glioma-initiating cells (GICs) and host immune cells and their mutual interactions in the tumor microenvironment have not been directly observed and remain unclear. Methods:The dual fluorescence tracing technique was applied to label the co-cultured GICs and host macrophages (Mø), and the interactions between the two types of cells were observed using a live cell imaging system. Fusion cells in the co-culture system were monocloned and proliferated in vitro and their social interactions were observed and recorded. Results:Using real-time dynamic observation of target cells, 6 types of intercellular conjunction microtubes were found to function in the transfer of intercellular information between GICs and Mø;GICs and host Mø can fuse into hybrid cells after several rounds of mutual interactions, and then these fusion cells fused with each other;Fusion cells generated offspring cells through symmetrical and asymmetrical division or underwent apoptosis. A“cell in cell” phenomenon was observed in the fusion cells, which was often followed by cell release, namely entosis. Conclusions:Preliminary studies revealed the patterns of cell conjunction via microtubes between GICs and host Mø and the processes of cell fusion, division, and entosis. The results revealed malignant transformation of host Mø, induced by GICs, suggesting complex social relationships among tumor-immune cells in gliomas.

  9. BIGH3 protein and macrophages in retinal endothelial cell apoptosis.

    Science.gov (United States)

    Mondragon, Albert A; Betts-Obregon, Brandi S; Moritz, Robert J; Parvathaneni, Kalpana; Navarro, Mary M; Kim, Hong Seok; Lee, Chi Fung; LeBaron, Richard G; Asmis, Reto; Tsin, Andrew T

    2015-01-01

    Diabetes is a pandemic disease with a higher occurrence in minority populations. The molecular mechanism to initiate diabetes-associated retinal angiogenesis remains largely unknown. We propose an inflammatory pathway of diabetic retinopathy in which macrophages in the diabetic eye provide TGFβ to retinal endothelial cells (REC) in the retinal microvasculature. In response to TGFβ, REC synthesize and secrete a pro-apoptotic BIGH3 (TGFβ-Induced Gene Human Clone 3) protein, which acts in an autocrine loop to induce REC apoptosis. Rhesus monkey retinal endothelial cells (RhREC) were treated with dMCM (cell media of macrophages treated with high glucose and LDL) and assayed for apoptosis (TUNEL), BIGH3 mRNA (qPCR), and protein (Western blots) expressions. Cells were also treated with ΤGFβ1 and 2 for BIGH3 mRNA and protein expression. Inhibition assays were carried out using antibodies for TGFβ1 and for BIGH3 to block apoptosis and mRNA expression. BIGH3 in cultured RhREC cells were identified by immunohistochemistry (IHC). Distribution of BIGH3 and macrophages in the diabetic mouse retina was examined with IHC. RhRECs treated with dMCM or TGFβ showed a significant increase in apoptosis and BIGH3 protein expression. Recombinant BIGH3 added to RhREC culture medium led to a dose-dependent increase in apoptosis. Antibodies (Ab) directed against BIGH3 and TGFβ, as well as TGFβ receptor blocker resulted in a significant reduction in apoptosis induced by either dMCM, TGFβ or BIGH3. IHC showed that cultured RhREC constitutively expressed BIGH3. Macrophage and BIGH3 protein were co-localized to the inner retina of the diabetic mouse eye. Our results support a novel inflammatory pathway for diabetic retinopathy. This pathway is initiated by TGFβ released from macrophages, which promotes synthesis and release of BIGH3 protein by REC and REC apoptosis.

  10. Efficient replication of pneumonia virus of mice (PVM in a mouse macrophage cell line

    Directory of Open Access Journals (Sweden)

    Martin Brittany V

    2007-06-01

    Full Text Available Abstract Pneumonia virus of mice (PVM; family Paramyxoviridae, subfamily Pneumovirinae is a natural respiratory pathogen of rodent species and an important new model for the study of severe viral bronchiolitis and pneumonia. However, despite high virus titers typically detected in infected mouse lung tissue in vivo, cell lines used routinely for virus propagation in vitro are not highly susceptible to PVM infection. We have evaluated several rodent and primate cell lines for susceptibility to PVM infection, and detected highest virus titers from infection of the mouse monocyte-macrophage RAW 264.7 cell line. Additionally, virus replication in RAW 264.7 cells induces the synthesis and secretion of proinflammatory cytokines relevant to respiratory virus disease, including tumor necrosis factor-α (TNF-α, interferon-β (IFN-β, macrophage inflammatory proteins 1α and 1β (MIP-1α and MIP-1β and the functional homolog of human IL-8, mouse macrophage inflammatory peptide-2 (MIP-2. Identification and characterization of a rodent cell line that supports the replication of PVM and induces the synthesis of disease-related proinflammatory mediators will facilitate studies of molecular mechanisms of viral pathogenesis that will complement and expand on findings from mouse model systems.

  11. The effect of phosphoethanolamine intake on mortality and macrophage activity in mice with solid ehrlich tumors

    Directory of Open Access Journals (Sweden)

    Maria Sueli Parreira de Arruda

    2011-12-01

    Full Text Available The aim of the present study was to examine the effect of a diet rich in synthetic PEtn on the metabolism macrophages of tumor-bearing mice. The results demonstrated that PEtn increased the animals' survival time. In addition, the treated animals released smaller amounts of hydrogen peroxide (H2O2 and nitric oxide (NO than the non-treated animals, particularly after day 14. From the results it could be concluded that H2O2 and NO were important in the modulation of neoplastic growth, and pointed to a promising role of PEtn in the control of human neoplasms.

  12. Parathymic lymph nodes during growth and rejection of intraperitoneally inoculated tumor cells

    NARCIS (Netherlands)

    Dullens, H F; Rademakers, L H; Cluistra, S; Van Os, R; Dux, K; Den Besten, P J; Den Otter, W

    1991-01-01

    The omental lymphoid organ (OLO) is a part of the greater omentum composed of vascularized milky spots situated between fat cells and containing lymphocytes, plasma cells and macrophages. We analysed the disappearance of intraperitoneally injected tumor cells from the peritoneal cavity and their

  13. Immunotherapy of BALB/c mice bearing Ehrlich ascites tumor with vitamin D-binding protein-derived macrophage activating factor.

    Science.gov (United States)

    Yamamoto, N; Naraparaju, V R

    1997-06-01

    Vitamin D3-binding protein (DBP; human DBP is known as Gc protein) is the precursor of macrophage activating factor (MAF). Treatment of mouse DBP with immobilized beta-galactosidase or treatment of human Gc protein with immobilized beta-galactosidase and sialidase generated a remarkably potent MAF, termed DBPMAF or GcMAF, respectively. The domain of Gc protein responsible for macrophage activation was cloned and enzymatically converted to the cloned MAF, designated CdMAF. In Ehrlich ascites tumor-bearing mice, tumor-specific serum alpha-N-acetylgalactosaminidase (NaGalase) activity increased linearly with time as the transplanted tumor cells grew in the peritoneal cavity. Therapeutic effects of DBPMAF, GcMAF, and CdMAF on mice bearing Ehrlich ascites tumor were assessed by survival time, the total tumor cell count in the peritoneal cavity, and serum NaGalase activity. Mice that received a single administration of DBPMAF or GcMAF (100 pg/mouse) on the same day after transplantation of tumor (1 x 10(5) cells) showed a mean survival time of 35 +/- 4 days, whereas tumor-bearing controls had a mean survival time of 16 +/- 2 days. When mice received the second DBPMAF or GcMAF administration at day 4, they survived more than 50 days. Mice that received two DBPMAF administrations, at days 4 and 8 after transplantation of 1 x 10(5) tumor cells, survived up to 32 +/- 4 days. At day 4 posttransplantation, the total tumor cell count in the peritoneal cavity was approximately 5 x 10(5) cells. Mice that received two DBPMAF administrations, at days 0 and 4 after transplantation of 5 x 10(5) tumor cells, also survived up to 32 +/- 4 days, while control mice that received the 5 x 10(5) ascites tumor cells only survived for 14 +/- 2 days. Four DBPMAF, GcMAF, or CdMAF administrations to mice transplanted with 5 x 10(5) Ehrlich ascites tumor cells with 4-day intervals showed an extended survival of at least 90 days and an insignificantly low serum NaGalase level between days 30 and 90.

  14. File list: His.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 Histone Blood Granulocyte-Macrophage...edbc.jp/kyushu-u/mm9/assembled/His.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  15. File list: His.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 Histone Blood Granulocyte-Macrophage...edbc.jp/kyushu-u/mm9/assembled/His.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  16. Signaling events in pathogen-induced macrophage foam cell formation.

    Science.gov (United States)

    Shaik-Dasthagirisaheb, Yazdani B; Mekasha, Samrawit; He, Xianbao; Gibson, Frank C; Ingalls, Robin R

    2016-08-01

    Macrophage foam cell formation is a key event in atherosclerosis. Several triggers induce low-density lipoprotein (LDL) uptake by macrophages to create foam cells, including infections with Porphyromonas gingivalis and Chlamydia pneumoniae, two pathogens that have been linked to atherosclerosis. While gene regulation during foam cell formation has been examined, comparative investigations to identify shared and specific pathogen-elicited molecular events relevant to foam cell formation are not well documented. We infected mouse bone marrow-derived macrophages with P. gingivalis or C. pneumoniae in the presence of LDL to induce foam cell formation, and examined gene expression using an atherosclerosis pathway targeted plate array. We found over 30 genes were significantly induced in response to both pathogens, including PPAR family members that are broadly important in atherosclerosis and matrix remodeling genes that may play a role in plaque development and stability. Six genes mainly involved in lipid transport were significantly downregulated. The response overall was remarkably similar and few genes were regulated in a pathogen-specific manner. Despite very divergent lifestyles, P. gingivalis and C. pneumoniae activate similar gene expression profiles during foam cell formation that may ultimately serve as targets for modulating infection-elicited foam cell burden, and progression of atherosclerosis.

  17. Neutrophils and macrophages: The main partners of phagocyte cell systems

    Directory of Open Access Journals (Sweden)

    Manuel T. Silva

    2012-07-01

    Full Text Available Biological cellular systems are groups of cells sharing a set of characteristics, mainly key function and origin. Phagocytes are crucial in the host defense against microbial infection. The previously proposed phagocyte cell systems including the most recent and presently prevailing one, the Mononuclear Phagocyte System (MPS, grouped mononuclear cells but excluded neutrophils, creating an unacceptable situation. As neutrophils are archetypical phagocytes that must be members of comprehensive phagocyte systems, M. T. Silva recently proposed the creation of a Myeloid Phagocyte System (MYPS that adds neutrophils to the MPS. The phagocytes grouped in the MYPS include the leukocytes neutrophils, inflammatory monocytes, macrophages and immature myeloid DCs. Here the justifications behind the inclusion of neutrophils in a phagocyte system is expanded and the MYPS are further characterized as a group of dedicated phagocytic cells that function in an interacting and cooperative way in the host defense against microbial infection. Neutrophils and macrophages are considered the main arms of this system.

  18. Metabolic and Epigenetic Coordination of T Cell and Macrophage Immunity.

    Science.gov (United States)

    Phan, Anthony T; Goldrath, Ananda W; Glass, Christopher K

    2017-05-16

    Recognition of pathogens by innate and adaptive immune cells instructs rapid alterations of cellular processes to promote effective resolution of infection. To accommodate increased bioenergetic and biosynthetic demands, metabolic pathways are harnessed to maximize proliferation and effector molecule production. In parallel, activation initiates context-specific gene-expression programs that drive effector functions and cell fates that correlate with changes in epigenetic landscapes. Many chromatin- and DNA-modifying enzymes make use of substrates and cofactors that are intermediates of metabolic pathways, providing potential cross talk between metabolism and epigenetic regulation of gene expression. In this review, we discuss recent studies of T cells and macrophages supporting a role for metabolic activity in integrating environmental signals with activation-induced gene-expression programs through modulation of the epigenome and speculate as to how this may influence context-specific macrophage and T cell responses to infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Macrophage-elicited osteoclastogenesis in response to bacterial stimulation requires Toll-like receptor 2-dependent tumor necrosis factor-alpha production.

    Science.gov (United States)

    Ukai, Takashi; Yumoto, Hiromichi; Gibson, Frank C; Genco, Caroline Attardo

    2008-02-01

    The receptor activator of NF-kappaB ligand (RANKL) and the proinflammatory cytokines are believed to play important roles in osteoclastogenesis. We recently reported that the innate immune recognition receptor, Toll-like receptor 2 (TLR2), is crucial for inflammatory bone loss in response to infection by Porphyromonas gingivalis, the primary organism associated with chronic inflammatory periodontal disease. However, the contribution of macrophage-expressed TLRs to osteoclastogenesis has not been defined. In this study, we defined a requirement for TLR2 in tumor necrosis factor-alpha (TNF-alpha)-elicited osteoclastogenesis in response to exposure to P. gingivalis. Culture supernatant (CS) fluids from P. gingivalis-stimulated macrophages induced bone marrow macrophage-derived osteoclastogenesis. This activity was dependent on TNF-alpha and occurred independently of RANKL, interleukin-1beta (IL-1beta), and IL-6. CS fluids from P. gingivalis-stimulated TLR2(-/-) macrophages failed to express TNF-alpha, and these fluids induced significantly less osteoclast formation compared with that of the wild-type or the TLR4(-/-) macrophages. In addition, P. gingivalis exposure induced up-regulation of TLR2 expression on the cell surface of macrophages, which was demonstrated to functionally react to reexposure to P. gingivalis, as measured by a further increase in TNF-alpha production. These results demonstrate that macrophage-dependent TLR2 signaling is crucial for TNF-alpha-dependent/RANKL-independent osteoclastogenesis in response to P. gingivalis infection. Furthermore, the ability of P. gingivalis to induce the cell surface expression of TLR2 may contribute to the chronic inflammatory state induced by this pathogen.

  20. Functional Imaging of Proteolysis: Stromal and Inflammatory Cells Increase Tumor Proteolysis

    Directory of Open Access Journals (Sweden)

    Mansoureh Sameni

    2003-07-01

    Full Text Available The underlying basement membrane is degraded during progression of breast and colon carcinoma. Thus, we imaged degradation of a quenched fluorescent derivative of basement membrane type IV collagen (DQ-collagen IV by living human breast and colon tumor spheroids. Proteolysis of DQ-collagen IV by HCT 116 and HKh-2 human colon tumor spheroids was both intracellular and pericellular. In contrast, proteolysis of DQ-collagen IV by BT20 human breast tumor spheroids was pericellular. As stromal elements can contribute to proteolytic activities associated with tumors, we also examined degradation of DQ-collagen IV by human monocytes/macrophages and colon and breast fibroblasts. Fibroblasts themselves exhibited a modest amount of pericellular degradation. Degradation was increased 4–17-fold in cocultures of fibroblasts and tumor cells as compared to either cell type alone. Inhibitors of matrix metalloproteinases, plasmin, and the cysteine protease, cathepsin B, all reduced degradation in the cocultures. Monocytes did not degrade DQ-collagen IV; however, macrophages degraded DQ-collagen IV intracellularly. In coculture of tumor cells, fibroblasts, and macrophages, degradation of DQ-collagen IV was further increased. Imaging of living tumor and stromal cells has, thus, allowed us to establish that tumor proteolysis occurs pericellularly and intracellularly and that tumor, stromal, and inflammatory cells all contribute to degradative processes.

  1. Removal of hematopoietic cells and macrophages from mouse bone marrow cultures: isolation of fibroblastlike stromal cells.

    Science.gov (United States)

    Modderman, W E; Vrijheid-Lammers, T; Löwik, C W; Nijweide, P J

    1994-02-01

    A method is described that permits the removal of hematopoietic cells and macrophages from mouse bone marrow cultures. The method is based on the difference in effect of extracellular ATP4- ions (ATP in the absence of divalent, complexing cations) on cells of hematopoietic origin, including macrophages, and of nonhematopoietic origin, such as fibroblastlike stromal cells. In contrast to fibroblastlike cells, hematopoietic cells and macrophages form under the influence of ATP4- lesions in their plasma membranes, which allows the entrance of molecules such as ethidium bromide (EB) and potassium thiocyanate (KSCN), which normally do not easily cross the membrane. The lesions can be rapidly closed by the addition of Mg2+ to the incubation medium, leaving the EB or KSCN trapped in the cell. This method allows the selective introduction of cell-toxic substances such as KSCN into hematopoietic cells and macrophages. By using this method, fibroblastlike stromal cells can be isolated from mouse bone marrow cultures.

  2. Oncocytic pleomorphic adenoma of palatal salivary gland with macrophages and giant cells associated with cholesterol crystals

    Directory of Open Access Journals (Sweden)

    Gargi S. Sarode

    2016-10-01

    Full Text Available Pleomorphic adenoma (PA is the most common salivary gland tumor characterized by histo-morphological diversity in the form of myxoid, hyalinized, chondroid, osseous, and squamous areas. In this paper, we report a rare case of predominantly oncocytic variant of PA in a 45-year-old male patient on the posterior palatal region. Microscopic examination showed homogenous eosinophilic cellular mass composed of epithelial components arranged in the form of tubular and solid patterns. The polygonal and oval cells showed abundant dark eosinophilic granular cytoplasm. The cell borders were distinct with a central nucleus showing prominent nucleoli. Interestingly at few places, cholesterol clefts were seen surrounded by macrophages and giant cells. The tumor was surgically excised with no evidence of recurrence after 2 years.

  3. Circulating tumor cells in melanoma patients.

    Directory of Open Access Journals (Sweden)

    Gary A Clawson

    Full Text Available Circulating tumor cells (CTCs are of recognized importance for diagnosis and prognosis of cancer patients. With melanoma, most studies do not show any clear relationship between CTC levels and stage of disease. Here, CTCs were enriched (∼400X from blood of melanoma patients using a simple centrifugation device (OncoQuick, and 4 melanocyte target RNAs (TYR, MLANA, MITF, and MIF were quantified using QPCR. Approximately one-third of melanoma patients had elevated MIF and MLANA transcripts (p<0.0001 and p<0.001, respectively compared with healthy controls. In contrast, healthy controls had uniformly higher levels of TYR and MITF than melanoma patients (p<0.0001. There was a marked shift of leukocytes into the CTC-enriched fractions (a 430% increase in RNA recovery, p<0.001, and no relationship between CTC levels and stage of disease was found. CTCs were captured on microfabricated filters and cultured. Captured melanoma CTCs were large cells, and consisted of 2 subpopulations, based on immunoreactivity. One subpopulation (∼50% stained for both pan-cytokeratin (KRT markers and the common leukocyte marker CD-45, whereas the second subpopulation stained for only KRT. Since similar cells are described in many cancers, we also examined blood from colorectal and pancreatic cancer patients. We observed analogous results, with most captured CTCs staining for both CD-45/KRT markers (and for the monocyte differentiation marker CD-14. Our results suggest that immature melanocyte-related cells (expressing TYR and MITF RNA may circulate in healthy controls, although they are not readily detectable without considerable enrichment. Further, as early-stage melanomas develop, immature melanocyte migration into the blood is somehow curtailed, whereas a significant proportion of patients develop elevated CTC levels (based on MIF and MLANA RNAs. The nature of the captured CTCs is consistent with literature describing leukocyte/macrophage-tumor cell fusion hybrids

  4. “Marker of Self” CD47 on lentiviral vectors decreases macrophage-mediated clearance and increases delivery to SIRPA-expressing lung carcinoma tumors

    Science.gov (United States)

    Sosale, Nisha G; Ivanovska, Irena I; Tsai, Richard K; Swift, Joe; Hsu, Jake W; Alvey, Cory M; Zoltick, Philip W; Discher, Dennis E

    2016-01-01

    Lentiviruses infect many cell types and are now widely used for gene delivery in vitro, but in vivo uptake of these foreign vectors by macrophages is a limitation. Lentivectors are produced here from packaging cells that overexpress “Marker of Self” CD47, which inhibits macrophage uptake of cells when prophagocytic factors are also displayed. Single particle analyses show “hCD47-Lenti” display properly oriented human-CD47 for interactions with the macrophage’s inhibitory receptor SIRPA. Macrophages derived from human and NOD/SCID/Il2rg−/− (NSG) mice show a SIRPA-dependent decrease in transduction, i.e., transgene expression, by hCD47-Lenti compared to control Lenti. Consistent with known “Self” signaling pathways, macrophage transduction by control Lenti is decreased by drug inhibition of Myosin-II to the same levels as hCD47-Lenti. In contrast, human lung carcinoma cells express SIRPA and use it to enhance transduction by hCD47-Lenti- as illustrated by more efficient gene deletion using CRISPR/Cas9. Intravenous injection of hCD47-Lenti into NSG mice shows hCD47 prolongs circulation, unless a blocking anti-SIRPA is preinjected. In vivo transduction of spleen and liver macrophages also decreases for hCD47-Lenti while transduction of lung carcinoma xenografts increases. hCD47 could be useful when macrophage uptake is limiting on other viral vectors that are emerging in cancer treatments (e.g., Measles glycoprotein-pseudotyped lentivectors) and also in targeting various SIRPA-expressing tumors such as glioblastomas. PMID:28053997

  5. Cell Mediated Photothermal Therapy of Brain Tumors.

    Science.gov (United States)

    Hirschberg, Henry; Madsen, Steen J

    2017-03-01

    Gold based nanoparticles with strong near infra-red (NIR) absorption are ideally suited for photothermal therapy (PTT) of brain tumors. The goal of PTT is to induce rapid heating in tumor tissues while minimizing thermal diffusion to normal brain. PTT efficacy is sensitively dependent on both nanoparticle concentration and distribution in tumor tissues. Nanoparticle delivery via passive approaches such as the enhanced permeability and retention (EPR) effect is unlikely to achieve sufficient nanoparticle concentrations throughout tumor volumes required for effective PTT. A simple approach for improving tumor biodsitribution of nanoparticles is the use of cellular delivery vehicles. Specifically, this review focuses on the use of monocytes/macrophages (Mo/Ma) as gold nanoparticle delivery vectors for PTT of brain tumors. Although the efficacy of this delivery approach has been demonstrated in both in vitro and animal PTT studies, its clinical potential for the treatment of brain tumors remains uncertain.

  6. Urokinase-type plasminogen activator receptor (uPAR) on tumor-associated macrophages is a marker of poor prognosis in colorectal cancer

    DEFF Research Database (Denmark)

    Illemann, Martin; Laerum, Ole Didrik; Hasselby, Jane Preuss

    2014-01-01

    Patients were identified from a population-based prospective study of 4990 individuals with symptoms associated with colorectal cancer (CRC). A total of 244 CRC tissue samples were available for immunohistochemical staining of uPAR, semiquantitatively scored at the invasive front, and in the tumor...... core on cancer cells, macrophages, and myofibroblasts. In addition, the levels of the intact and cleaved uPAR-forms in blood from the same patients are evaluated in this study. In a univariate analysis, the number of uPAR-positive versus uPAR-negative macrophages (HR = 2.26, [95% CI: 1.39-3.66, P = 0.......0009]) and cancer cells (HR=1.49, [95% CI: 1.01-2.20, P = 0.047]) located in the tumor core were significantly associated to overall survival. In a multivariate analysis, uPAR-positive versus uPAR-negative macrophages located in the tumor core showed the best separation of patients with positive score associated...

  7. A common carp (Cyprinus carpio L.) leucocyte cell line shares morphological and functional characteristics with macrophages.

    NARCIS (Netherlands)

    Weyts, F.A.A.; Rombout, J.H.W.M.; Flik, G.; Verburg-van Kemenade, B.M.L.

    1997-01-01

    A carp leucocyte cell line (CLC), originating from peripheral blood, was characterised to assess its suitability for studies into carp macrophage functions. The cells reacted with a monoclonal antibody raised against carp head kidney macrophages. Other macrophage characteristics observed were: bindi

  8. Rat natural killer cell, T cell and macrophage functions after intracerebroventricular injection of SNC 80.

    Science.gov (United States)

    Nowak, J E; Gomez-Flores, R; Calderon, S N; Rice, K C; Weber, R J

    1998-08-01

    We investigated the effects of (+)-4-[(alpha R)-alpha-((2S, 5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-methoxybenzyl]-N, N-diethylbenzamide (SNC 80), a nonpeptidic delta-opioid receptor-selective agonist, on rat leukocyte functions. Intracerebroventricular injection of SNC 80 (20 nmol) in Fischer 344N male rats did not affect splenic natural killer cell activity compared with intracerebroventricular saline-injected controls. SNC 80 also had no effect on concanavalin A-, anti-T cell receptor-, interleukin-2- and anti-T cell receptor + interleukin-2-induced splenic and thymic lymphocyte proliferation in most experiments. In some experiments, however, SNC 80 significantly (P SNC 80 did not significantly affect splenic T cell or natural killer cell populations as measured by the expression of T cell receptoralphabeta, and T helper (CD4), T suppressor/cytotoxic (CD8) and natural killer cell surface markers. Finally, SNC 80 did not affect interferon-gamma- or lipopolysaccharide (LPS)-induced splenic nitric oxide, and LPS-induced tumor necrosis factor-alpha production by splenic macrophages. These results suggest that SNC 80 could be useful in the treatment of pain without suppressing immune function. However, the potential immunoenhancing properties of SNC 80 may be also valuable in immunocompromised individuals.

  9. The cytology of a thyroid granular cell tumor.

    Science.gov (United States)

    Chang, Shu-Mei; Wei, Chang-Kuo; Tseng, Chih-En

    2009-01-01

    Granular cell tumor (GCT) of the thyroid is rare. Before this report, only four cases of thyroid GCT have been reported, none of which presented a cytopathological examination. In this paper, we report the fine needle aspiration cytology and pathological analysis of a thyroid GCT from a 12-year-old girl who presented with a painless neck mass. The tumor cells were single, in syncytial clusters, or pseudofollicles, contained small round, oval, or spindle nuclei, indistinct nucleoli, and a large amount of grayish, granular fragile cytoplasm. The background contained granular debris and naked nuclei. A differential diagnosis of thyroid GCT with more frequent thyroid lesions containing cytoplasmic granules, including Hurthle cells, macrophages, follicular cells, and cells of black thyroid syndrome, was also performed.

  10. Different effect of glutamine on macrophage tumor necrosis factor-alpha release and heat shock protein 72 expression in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Mengfan Liang; Xuemin Wang; Yuan Yuan; Quanhong Zhou; Chuanyao Tong; Wei Jiang

    2009-01-01

    Macrophage plays a vital role in sepsis. However, the modulatory effect of glutamine (Gln) on macrophage/ monocyte-mediate cytokines release is still controver-sial. Thus, we investigated the effect of Gin on macro-phage tumor necrosis factor (TNF)-α release and heat shock protein (HSP) 72 expression in vivo and in vitro. Data from our study indicated that the increase of HSP72 expression was significant at 8 mM of Gln 4 h after lipopolysaccharide (LPS) stimulation and became independent of Gin concentrations at 24 h, whereas TNF-α release was dose- and time-dependent on Gln. Heat stress (HS) induced more HSP72 and less TNF-α production compared with the non-HS group. However, the production of TNF-α in cells pretreated with HS was increased with increasing concentrations of Gln. Treatment with various concentrations of Gin for 1 h and then 0.5 mM Gin for 4h led to an increase in HSP72 expression, but not in TNF-α production. In sepsis model mice, Gin treatment led to a significantly lower intracellular TNF-α level and an increase in HSP72 expression in mouse peritoneal macrophages. Our results demonstrate that Gin directly increases TNF-α release of LPS-stimulated RAW264.7 macro-phages in a dose-dependent manner, and also decreases mouse peritoneal macrophages TNF-α release in the sepsis model. Taken together, our data suggest that there may be more additional pathways by which Gln modulates cytokine production besides HSP72 expression in macrophage during sepsis.

  11. Tumor-produced versican V1 enhances hCAP18/LL-37 expression in macrophages through activation of TLR2 and vitamin D3 signaling to promote ovarian cancer progression in vitro.

    Directory of Open Access Journals (Sweden)

    Dong Li

    Full Text Available Tumor-associated macrophages have been shown to promote tumor growth. They may have an obligatory function in angiogenesis, invasion, and metastasis through release of inflammatory mediators. Their presence in ovarian cancer has been correlated with poor prognosis in these patients. The human cationic antimicrobial protein-18 (hCAP18/LL-37 was originally identified as an effector molecule of the innate immune system. It is released by innate immune cells, such as macrophages, to combat microorganisms. Previous studies have characterized the hCAP18/LL-37 as a growth factor that has been shown to promote ovarian tumor progression. However, the role hCAP18/LL-37 has in macrophage-promoted ovarian tumor development and how its expression is controlled in this context remains poorly understood. Here, we demonstrate in co-culture experiments of macrophages and ovarian cancer cells a significant increase in the in vitro proliferation and invasiveness of the tumor cells is observed. These enhanced growth and invasion properties correlated with hCAP18/LL-37 induction. HCAP18/LL-37 expression was diminished by addition of two neutralizing antibodies, TLR2 or TLR6, as well as Cyp27B1 or VDR inhibitors. Furthermore, either the TLR2 or TLR6 antibody reduced vitamin D3 signaling and tumor cell progression in vitro. Addition of Cyp27B1 or VDR inhibitors abrogated TLR2/6 activation-induced expression of hCAP18/LL-37 in macrophages. Knockdown of tumor-produced versican V1 by RNAi in these tumor cells led to a decreased induction of hCAP18/LL-37 in macrophages. Versican V1 knockdown also inhibited TLR2 and vitamin D3 signaling, as well as growth and invasiveness of these tumor cells in the in vitro co-culture. In summary, we have found that versican V1 enhances hCAP18/LL-37 expression in macrophages through activation of TLR2 and subsequent vitamin D-dependent mechanisms which promote ovarian tumor progression in vitro.

  12. Microenvironments Dictating Tumor Cell Dormancy

    Science.gov (United States)

    Bragado, Paloma; Sosa, Maria Soledad; Keely, Patricia; Condeelis, John

    2012-01-01

    The mechanisms driving dormancy of disseminated tumor cells (DTCs) remain largely unknown. Here, we discuss experimental evidence and theoretical frameworks that support three potential scenarios contributing to tumor cell dormancy. The first scenario proposes that DTCs from invasive cancers activate stress signals in response to the dissemination process and/or a growth suppressive target organ microenvironment inducing dormancy. The second scenario asks whether therapy and/or micro-environmental stress conditions (e.g. hypoxia) acting on primary tumor cells carrying specific gene signatures prime new DTCs to enter dormancy in a matching target organ microenvironment that can also control the timing of DTC dormancy. The third and final scenario proposes that early dissemination contributes a population of DTCs that are unfit for immediate expansion and survive mostly in an arrested state well after primary tumor surgery, until genetic and/or epigenetic mechanisms activate their proliferation. We propose that DTC dormancy is ultimately a survival strategy that when targeted will eradicate dormant DTCs preventing metastasis. For these non-mutually exclusive scenarios we review experimental and clinical evidence in their support. PMID:22527492

  13. Mechanisms of tumor cell necrosis.

    Science.gov (United States)

    Proskuryakov, Sergey Y; Gabai, Vladimir L

    2010-01-01

    Until recently, necrosis, unlike apoptosis, was considered as passive and unregulated form of cell death. However, during the last decade a number of experimental data demonstrated that, except under extreme conditions, necrosis may be a well-regulated process activated by rather specific physiological and pathological stimuli. In this review, we consider mechanisms and the role of necrosis in tumor cells. It became recently clear that the major player in necrotic cascade is a protein kinase RIP1, which can be activated by number of stumuli including TNF, TRAIL, and LPS, oxidative stress, or DNA damage (via poly-ADP-ribose polymerase). RIP1 kinase directly (or indirectly via another kinase JNK) transduces signal to mitochondria and causes specific damage (mitochondrial permeability transition). Mitochondrial collapse activates various proteases (e.g., calpains, cathepsin) and phospholipases, and eventually leads to plasma membrane destruction, a hallmark of necrotic cell death. Necrosis, in contrast to apoptosis, usually evokes powerful inflammatory response, which may participate in tumor regression during anticancer therapy. On the other hand, excessive spontaneous necrosis during tumor development may lead to more aggressive tumors due to stimulatory role of necrosis-induced inflammation on their growth.

  14. Tumor-associated myeloid cells as guiding forces of cancer cell stemness.

    Science.gov (United States)

    Sica, Antonio; Porta, Chiara; Amadori, Alberto; Pastò, Anna

    2017-08-01

    Due to their ability to differentiate into various cell types and to support tissue regeneration, stem cells simultaneously became the holy grail of regenerative medicine and the evil obstacle in cancer therapy. Several studies have investigated niche-related conditions that favor stemness properties and increasingly emphasized their association with an inflammatory environment. Tumor-associated macrophages (TAMs) and myeloid-derived suppressor cells (MDSCs) are major orchestrators of cancer-related inflammation, able to dynamically express different polarized inflammatory programs that promote tumor outgrowth, including tumor angiogenesis, immunosuppression, tissue remodeling and metastasis formation. In addition, these myeloid populations support cancer cell stemness, favoring tumor maintenance and progression, as well as resistance to anticancer treatments. Here, we discuss inflammatory circuits and molecules expressed by TAMs and MDSCs as guiding forces of cancer cell stemness.

  15. A Natural CCR2 Antagonist Relieves Tumor-associated Macrophage-mediated Immunosuppression to Produce a Therapeutic Effect for Liver Cancer

    Directory of Open Access Journals (Sweden)

    Wenbo Yao

    2017-08-01

    Full Text Available Hepatocellular carcinoma (HCC is a common malignant tumor in the digestive tract with limited therapeutic choices. Although sorafenib, an orally administered multikinase inhibitor, has produced survival benefits for patients with advanced HCC, favorable clinical outcomes are limited due to individual differences and resistance. The application of immunotherapy, a promising approach for HCC is urgently needed. Macrophage infiltration, mediated by the CCL2/CCR2 axis, is a potential immunotherapeutic target. Here, we report that a natural product from Abies georgei, named 747 and related in structure to kaempferol, exhibits sensitivity and selectivity as a CCR2 antagonist. The specificity of 747 on CCR2 was demonstrated via calcium flux, the binding domain of CCR2 was identified in an extracellular loop by chimera binding assay, and in vivo antagonistic activity of 747 was confirmed through a thioglycollate-induced peritonitis model. In animals, 747 elevated the number of CD8+ T cells in tumors via blocking tumor-infiltrating macrophage-mediated immunosuppression and inhibited orthotopic and subcutaneous tumor growth in a CD8+ T cell-dependent manner. Further, 747 enhanced the therapeutic efficacy of low-dose sorafenib without obvious toxicity, through elevating the numbers of intra-tumoral CD8+ T cells and increasing death of tumor cells. Thus, we have discovered a natural CCR2 antagonist and have provided a new perspective on development of this antagonist for treatment of HCC. In mouse models of HCC, 747 enhanced the tumor immunosuppressive microenvironment and potentiated the therapeutic effect of sorafenib, indicating that the combination of an immunomodulator with a chemotherapeutic drug could be a new approach for treating HCC.

  16. Multiparametric classification links tumor microenvironments with tumor cell phenotype.

    Directory of Open Access Journals (Sweden)

    Bojana Gligorijevic

    2014-11-01

    Full Text Available While it has been established that a number of microenvironment components can affect the likelihood of metastasis, the link between microenvironment and tumor cell phenotypes is poorly understood. Here we have examined microenvironment control over two different tumor cell motility phenotypes required for metastasis. By high-resolution multiphoton microscopy of mammary carcinoma in mice, we detected two phenotypes of motile tumor cells, different in locomotion speed. Only slower tumor cells exhibited protrusions with molecular, morphological, and functional characteristics associated with invadopodia. Each region in the primary tumor exhibited either fast- or slow-locomotion. To understand how the tumor microenvironment controls invadopodium formation and tumor cell locomotion, we systematically analyzed components of the microenvironment previously associated with cell invasion and migration. No single microenvironmental property was able to predict the locations of tumor cell phenotypes in the tumor if used in isolation or combined linearly. To solve this, we utilized the support vector machine (SVM algorithm to classify phenotypes in a nonlinear fashion. This approach identified conditions that promoted either motility phenotype. We then demonstrated that varying one of the conditions may change tumor cell behavior only in a context-dependent manner. In addition, to establish the link between phenotypes and cell fates, we photoconverted and monitored the fate of tumor cells in different microenvironments, finding that only tumor cells in the invadopodium-rich microenvironments degraded extracellular matrix (ECM and disseminated. The number of invadopodia positively correlated with degradation, while the inhibiting metalloproteases eliminated degradation and lung metastasis, consistent with a direct link among invadopodia, ECM degradation, and metastasis. We have detected and characterized two phenotypes of motile tumor cells in vivo, which

  17. Palifosfamide in Treating Patients With Recurrent Germ Cell Tumors

    Science.gov (United States)

    2015-06-11

    Adult Central Nervous System Germ Cell Tumor; Adult Teratoma; Malignant Extragonadal Germ Cell Tumor; Malignant Extragonadal Non-Seminomatous Germ Cell Tumor; Extragonadal Seminoma; Recurrent Malignant Testicular Germ Cell Tumor; Recurrent Ovarian Germ Cell Tumor; Stage IV Extragonadal Non-Seminomatous Germ Cell Tumor; Stage IV Extragonadal Seminoma; Stage IV Ovarian Germ Cell Tumor

  18. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Marc Daigneault

    Full Text Available Differentiated macrophages are the resident tissue phagocytes and sentinel cells of the innate immune response. The phenotype of mature tissue macrophages represents the composite of environmental and differentiation-dependent imprinting. Phorbol-12-myristate-13-acetate (PMA and 1,25-dihydroxyvitamin D3 (VD(3 are stimuli commonly used to induce macrophage differentiation in monocytic cell lines but the extent of differentiation in comparison to primary tissue macrophages is unclear. We have compared the phenotype of the promonocytic THP-1 cell line after various protocols of differentiation utilising VD(3 and PMA in comparison to primary human monocytes or monocyte-derived macrophages (MDM. Both stimuli induced changes in cell morphology indicative of differentiation but neither showed differentiation comparable to MDM. In contrast, PMA treatment followed by 5 days resting in culture without PMA (PMAr increased cytoplasmic to nuclear ratio, increased mitochondrial and lysosomal numbers and altered differentiation-dependent cell surface markers in a pattern similar to MDM. Moreover, PMAr cells showed relative resistance to apoptotic stimuli and maintained levels of the differentiation-dependent anti-apoptotic protein Mcl-1 similar to MDM. PMAr cells retained a high phagocytic capacity for latex beads, and expressed a cytokine profile that resembled MDM in response to TLR ligands, in particular with marked TLR2 responses. Moreover, both MDM and PMAr retained marked plasticity to stimulus-directed polarization. These findings suggest a modified PMA differentiation protocol can enhance macrophage differentiation of THP-1 cells and identify increased numbers of mitochondria and lysosomes, resistance to apoptosis and the potency of TLR2 responses as important discriminators of the level of macrophage differentiation for transformed cells.

  19. TGF-β1-ROS-ATM-CREB signaling axis in macrophage mediated migration of human breast cancer MCF7 cells.

    Science.gov (United States)

    Singh, Rajshri; Shankar, Bhavani S; Sainis, Krishna B

    2014-07-01

    Macrophages in the tumor microenvironment play an important role in tumor cell survival. They influence the tumor cell to proliferate, invade into surrounding normal tissues and metastasize to local and distant sites. In this study, we evaluated the effect of conditioned medium from monocytes and macrophages on growth and migration of breast cancer cells. Macrophage conditioned medium (MϕCM) containing elevated levels of cytokines TNF-α, IL-1β and IL-6 had a differential effect on non-invasive (MCF7) and highly invasive (MDA-MB-231) breast cancer cell lines. MϕCM induced the secretion of TGF-β1 in MCF7 cells. This was associated with apoptosis in a fraction of cells and generation of reactive oxygen and nitrogen species (ROS and RNS) and DNA damage in the remaining cells. This, in turn, increased expression of cAMP response element binding protein (CREB) and vimentin resulting in migration of cells. These effects were inhibited by neutralization of TNF-α, IL-1β and IL-6, inhibition of ROS and RNS, DNA damage and siRNA mediated knockdown of ATM. In contrast, MDA-MB-231 cells which had higher basal levels of pCREB were not affected by MϕCM. In summary, we have found that pro-inflammatory cytokines secreted by macrophages induce TGF-β1 in tumor cells, which activate pCREB signaling, epithelial-mesenchymal-transition (EMT) responses and enhanced migration.

  20. Hypoxia-inducible factor-1α and semaphorin4D genes involved with tumor-associated macrophage-induced metastatic behavior and clinical significance in colon cancer.

    Science.gov (United States)

    Mu, Linjun; Wang, Jinshen; Chen, Yuezhi; Li, Leping; Guo, Xiaobo; Zheng, Sheng; Jing, Changqing

    2014-01-01

    Hypoxia promotes tumor angiogenesis and hypoxia-inducible factor-1 alpha (HIF-1α) plays a pivotal role in this process. Recently identified pro-angiogenic factor, semaphorin4D (Sema4D) also promotes angiogenesis and enhances invasive proliferation in some tumors. Furthermore, tumor-associated macrophages (TAMs) can increase the expression of HIF-1α and Sema4D in cancer cells and thus influence tumor growth and progression. The purpose of this study was to evaluate the effect of TAMs on the expression of Sema4D and HIF-1α and the impact of biologic behavior in colon cancer cells. Immunohistochemistry was used to analyze HIF-1α and Sema4D expression in 86 curatively resected colon cancer samples and 52 normal colon tissues samples. The relationship between their expression and clinicopathological factors was analyzed. Furthermore, macrophage-tumor cell interactions, such as metastasis, angiogenesis, were also studied using in vitro co-culture systems. Statistical analysis was performed using SPSS 17.0 software (SPSS Inc., USA). Differences between two groups were analyzed with Student's t test. HIF-1α (58%) and Sema4D (60%) were expressed at a significantly higher level in tumors than in normal tissues (P TNM stages (P 0.05). Sema4D expression was correlated with that of HIF-1α (r = 0.567, P colon cancer cells and subsequently increased their migration and invasion. HIF-1α and Sema4D expression are closely related to lymphatic metastasis, specific histological types and TNM stages in colon cancer. Furthermore, TAMs promote migration and invasion of colon cancer cells and endothelial tube formation, possibly through up-regulation of HIF-1α and Sema4D.

  1. Patient-Derived Antibody Targets Tumor Cells

    Science.gov (United States)

    An NCI Cancer Currents blog on an antibody derived from patients that killed tumor cells in cell lines of several cancer types and slowed tumor growth in mouse models of brain and lung cancer without evidence of side effects.

  2. Treatment Option Overview (Extragonadal Germ Cell Tumors)

    Science.gov (United States)

    ... Germ Cell Tumors Treatment Extragonadal Germ Cell Tumors Treatment (PDQ®)–Patient Version General Information About Extragonadal Germ ... Certain factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment ...

  3. Dendritic cells are stressed out in tumor.

    Science.gov (United States)

    Maj, Tomasz; Zou, Weiping

    2015-09-01

    A recently paper published in Cell reports that dendritic cells (DCs) are dysfunctional in the tumor environment. Tumor impairs DC function through induction of endoplasmic reticulum stress response and subsequent disruption of lipid metabolic homeostasis.

  4. Cell-to-cell spread and massive vacuole formation after Cryptococcus neoformans infection of murine macrophages

    OpenAIRE

    Casadevall Arturo; Alvarez Mauricio

    2007-01-01

    Abstract Background The interaction between macrophages and Cryptococcus neoformans (Cn) is critical for containing dissemination of this pathogenic yeast. However, Cn can either lyse macrophages or escape from within them through a process known as phagosomal extrusion. Both events result in live extracellular yeasts capable of reproducing and disseminating in the extracellular milieu. Another method of exiting the intracellular confines of cells is through host cell-to-cell transfer of the ...

  5. Stromal cells and integrins: conforming to the needs of the tumor microenvironment.

    Science.gov (United States)

    Alphonso, Aimee; Alahari, Suresh K

    2009-12-01

    The microenvironment of a tumor is constituted of a heterogenous population of stromal cells, extracellular matrix components, and secreted factors, all of which make the tumor microenvironment distinct from that of normal tissue. Unlike healthy cells, tumor cells require these unique surroundings to metastasize, spread, and form a secondary tumor at a distant site. In this review, we discuss that stromal cells such as fibroblasts and immune cells including macrophages, their secreted factors, such as vascular endothelial growth factor, transforming growth factor beta, and various chemokines, and the integrins that connect the various cell types play a particularly vital role in the survival of a growing tumor mass. Macrophages and fibroblasts are uniquely plastic cells because they are not only able to switch from tumor suppressing to tumor supporting phenotypes but also able to adopt various tumor-supporting functions based on their location within the microenvironment. Integrins serve as the backbone for all of these prometastatic operations because their function as cell-cell and cell-matrix signal transducers are important for the heterogenous components of the microenvironment to communicate.

  6. Inhibitory effect of vitamin D-binding protein-derived macrophage activating factor on DMBA-induced hamster cheek pouch carcinogenesis and its derived carcinoma cell line.

    Science.gov (United States)

    Toyohara, Yukiyo; Hashitani, Susumu; Kishimoto, Hiromitsu; Noguchi, Kazuma; Yamamoto, Nobuto; Urade, Masahiro

    2011-07-01

    This study investigated the inhibitory effect of vitamin D-binding protein-derived macrophage-activating factor (GcMAF) on carcinogenesis and tumor growth, using a 9,10-dimethyl-1,2-benzanthracene (DMBA)-induced hamster cheek pouch carcinogenesis model, as well as the cytocidal effect of activated macrophages against HCPC-1, a cell line established from DMBA-induced cheek pouch carcinoma. DMBA application induced squamous cell carcinoma in all 15 hamsters of the control group at approximately 10 weeks, and all 15 hamsters died of tumor burden within 20 weeks. By contrast, 2 out of the 14 hamsters with GcMAF administration did not develop tumors and the remaining 12 hamsters showed a significant delay of tumor development for approximately 3.5 weeks. The growth of tumors formed was significantly suppressed and none of the hamsters died within the 20 weeks during which they were observed. When GcMAF administration was stopped at the 13th week of the experiment in 4 out of the 14 hamsters in the GcMAF-treated group, tumor growth was promoted, but none of the mice died within the 20-week period. On the other hand, when GcMAF administration was commenced after the 13th week in 5 out of the 15 hamsters in the control group, tumor growth was slightly suppressed and all 15 hamsters died of tumor burden. However, the mean survival time was significantly extended. GcMAF treatment activated peritoneal macrophages in vitro and in vivo, and these activated macrophages exhibited a marked cytocidal effect on HCPC-1 cells. Furthermore, the cytocidal effect of activated macrophages was enhanced by the addition of tumor-bearing hamster serum. These findings indicated that GcMAF possesses an inhibitory effect on tumor development and growth in a DMBA-induced hamster cheek pouch carcinogenesis model.

  7. Human neutrophils facilitate tumor cell transendothelial migration.

    LENUS (Irish Health Repository)

    Wu, Q D

    2012-02-03

    Tumor cell extravasation plays a key role in tumor metastasis. However, the precise mechanisms by which tumor cells migrate through normal vascular endothelium remain unclear. In this study, using an in vitro transendothelial migration model, we show that human polymorphonuclear neutrophils (PMN) assist the human breast tumor cell line MDA-MB-231 to cross the endothelial barrier. We found that tumor-conditioned medium (TCM) downregulated PMN cytocidal function, delayed PMN apoptosis, and concomitantly upregulated PMN adhesion molecule expression. These PMN treated with TCM attached to tumor cells and facilitated tumor cell migration through different endothelial monolayers. In contrast, MDA-MB-231 cells alone did not transmigrate. FACScan analysis revealed that these tumor cells expressed high levels of intercellular adhesion molecule-1 (ICAM-1) but did not express CD11a, CD11b, or CD18. Blockage of CD11b and CD18 on PMN and of ICAM-1 on MDA-MB-231 cells significantly attenuated TCM-treated, PMN-mediated tumor cell migration. These tumor cells still possessed the ability to proliferate after PMN-assisted transmigration. These results indicate that TCM-treated PMN may serve as a carrier to assist tumor cell transendothelial migration and suggest that tumor cells can exploit PMN and alter their function to facilitate their extravasation.

  8. Peripheral dentinogenic ghost cell tumor

    Directory of Open Access Journals (Sweden)

    Sushant S Kamat

    2013-01-01

    Full Text Available Dentinogenic ghost cell tumors (DGCT are uncommon lesions mainly with rare peripheral types. This report presents a case of peripheral DGCT on the left side of the mandibular alveolar ridge of a heavy smoker, a 68-year-old man, with main presenting feature as a mild pain. Submandibular lymphadenopathy and radiological "saucerization" were evident. Differential diagnosis included fibroma, neurofibroma, peripheral ameloblastoma, peripheral odontogenic fibroma, and peripheral giant cell granuloma. Histologically, ameloblastoma-like epithelial elements were seen in association with grouped ghost cells. Proliferating polyhedral cells and stellate reticulum-like cells with various densities were spread over a wide range of the field. The lesion was curetted and after 2 years of follow up, it did not recur.

  9. Apoptotic neutrophils containing Staphylococcus epidermidis stimulate macrophages to release the proinflammatory cytokines tumor necrosis factor-alpha and interleukin-6.

    Science.gov (United States)

    Wilsson, Asa; Lind, Sara; Ohman, Lena; Nilsdotter-Augustinsson, Asa; Lundqvist-Setterud, Helen

    2008-06-01

    Staphylococcus epidermidis infections are usually nosocomial and involve colonization of biomaterials. The immune defense system cannot efficiently control the bacteria during these infections, which often results in protracted chronic inflammation, in which a key event is disturbed removal of neutrophils by tissue macrophages. While ingesting uninfected apoptotic neutrophils, macrophages release anti-inflammatory cytokines that lead to resolution of inflammation. In clinical studies, we have previously found elevated levels of the proinflammatory cytokines tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 in synovial fluid from prostheses infected with coagulase negative staphylococci. We show that macrophages phagocytosing apoptotic neutrophils containing S. epidermidis released TNF-alpha and interleukin-6, whereas macrophages phagocytosing spontaneously apoptotic neutrophils did not. This difference was not due to dissimilar phagocytic capacities, because macrophages ingested both types of neutrophils to the same extent. The activation was induced mainly by the apoptotic neutrophils themselves, not by the few remaining extracellular bacteria. Macrophages were not activated by apoptotic neutrophils that contained paraformaldehyde-killed S. epidermidis. Proinflammatory reactions induced by clearance of apoptotic neutrophils containing S. epidermidis might represent an important mechanism to combat the infective agent. This activation of macrophages may contribute to the development of chronic inflammation instead of inflammation resolution.

  10. Mycelial Extract of Phellinus linteus Induces Cell Death in A549 Lung Cancer Cells and Elevation of Nitric Oxide in Raw 264.7 Macrophage Cells.

    Science.gov (United States)

    Lee, Jong-Jin; Kwon, Ho-Kyun; Lee, Dong-Soo; Lee, Seung-Woo; Lee, Kye-Kwan; Kim, Kyu-Joong; Kim, Jong-Lae

    2006-09-01

    In the present study, in order to investigate the anti-proliferative phenomenon of PLME, the effects of mycelial extract of Phellinus linteus (PLME) on the growth of human lung carcinoma cell line A549 was examined. We studied on the effects of PLME on the release of nitric oxide (NO) in mouse macrophage Raw 264.7 cells. Treatment of PLME to A549 cells resulted in the growth inhibition, morphological change and induction of apoptotic cell death in a dose-dependent manner as measured by MTT assay. We found that PLME stimulated a dose-dependent increase in NO production. These findings suggest that PLME enhances the anti-tumoral activity of macrophage and may be a potential therapeutic agent for the control of human lung carcinoma cells.

  11. Generation of dendritic cells and macrophages from human induced pluripotent stem cells aiming at cell therapy.

    Science.gov (United States)

    Senju, S; Haruta, M; Matsumura, K; Matsunaga, Y; Fukushima, S; Ikeda, T; Takamatsu, K; Irie, A; Nishimura, Y

    2011-09-01

    This report describes generation of dendritic cells (DCs) and macrophages from human induced pluripotent stem (iPS) cells. iPS cell-derived DC (iPS-DC) exhibited the morphology of typical DC and function of T-cell stimulation and antigen presentation. iPS-DC loaded with cytomegalovirus (CMV) peptide induced vigorous expansion of CMV-specific autologous CD8+ T cells. Macrophages (iPS-MP) with activity of zymosan phagocytosis and C5a-induced chemotaxis were also generated from iPS cells. Genetically modified iPS-MPs were generated by the introduction of expression vectors into undifferentiated iPS cells, isolation of transfectant iPS cell clone and subsequent differentiation. By this procedure, we generated iPS-MP expressing a membrane-bound form of single chain antibody (scFv) specific to amyloid β (Aβ), the causal protein of Alzheimer's disease. The scFv-transfectant iPS-MP exhibited efficient Aβ-specific phagocytosis activity. iPS-MP expressing CD20-specific scFv engulfed and killed BALL-1 B-cell leukemia cells. Anti-BALL-1 effect of iPS-MP in vivo was demonstrated in a xeno-transplantation model using severe combined immunodeficient mice. In addition, we established a xeno-free culture protocol to generate iPS-DC and iPS-MP. Collectively, we demonstrated the possibility of application of iPS-DC and macrophages to cell therapy.

  12. Prostaglandin E2 receptor EP4 as the common target on cancer cells and macrophages to abolish angiogenesis, lymphangiogenesis, metastasis, and stem-like cell functions.

    Science.gov (United States)

    Majumder, Mousumi; Xin, Xiping; Liu, Ling; Girish, Gannareddy V; Lala, Peeyush K

    2014-09-01

    We previously established that COX-2 overexpression promotes breast cancer progression and metastasis. As long-term use of COX-2 inhibitors (COX-2i) can promote thrombo-embolic events, we tested an alternative target, prostaglandin E2 receptor EP4 subtype (EP4), downstream of COX-2. Here we used the highly metastatic syngeneic murine C3L5 breast cancer model to test the role of EP4-expressing macrophages in vascular endothelial growth factor (VEGF)-C/D production, angiogenesis, and lymphangiogenesis in situ, the role of EP4 in stem-like cell (SLC) functions of tumor cells, and therapeutic effects of an EP4 antagonist RQ-15986 (EP4A). C3L5 cells expressed all EP receptors, produced VEGF-C/D, and showed high clonogenic tumorsphere forming ability in vitro, functions inhibited with COX-2i or EP4A. Treating murine macrophage RAW 264.7 cell line with COX-2i celecoxib and EP4A significantly reduced VEGF-A/C/D production in vitro, measured with quantitative PCR and Western blots. Orthotopic implants of C3L5 cells in C3H/HeJ mice showed rapid tumor growth, angiogenesis, lymphangiogenesis (CD31/LYVE-1 and CD31/PROX1 immunostaining), and metastasis to lymph nodes and lungs. Tumors revealed high incidence of EP4-expressing, VEGF-C/D producing macrophages identified with dual immunostaining of F4/80 and EP4 or VEGF-C/D. Celecoxib or EP4A therapy at non-toxic doses abrogated tumor growth, lymphangiogenesis, and metastasis to lymph nodes and lungs. Residual tumors in treated mice revealed markedly reduced VEGF-A/C/D and phosphorylated Akt/ERK proteins, VEGF-C/D positive macrophage infiltration, and proliferative/apoptotic cell ratios. Knocking down COX-2 or EP4 in C3L5 cells or treating cells in vitro with celecoxib or EP4A and treating tumor-bearing mice in vivo with the same drug reduced SLC properties of tumor cells including preferential co-expression of COX-2 and SLC markers ALDH1A, CD44, OCT-3/4, β-catenin, and SOX-2. Thus, EP4 is an excellent therapeutic target to block

  13. Glioma Stem Cells but Not Bulk Glioma Cells Upregulate IL-6 Secretion in Microglia/Brain Macrophages via Toll-like Receptor 4 Signaling.

    Science.gov (United States)

    a Dzaye, Omar Dildar; Hu, Feng; Derkow, Katja; Haage, Verena; Euskirchen, Philipp; Harms, Christoph; Lehnardt, Seija; Synowitz, Michael; Wolf, Susanne A; Kettenmann, Helmut

    2016-05-01

    Peripheral macrophages and resident microglia constitute the dominant glioma-infiltrating cells. The tumor induces an immunosuppressive and tumor-supportive phenotype in these glioma-associated microglia/brain macrophages (GAMs). A subpopulation of glioma cells acts as glioma stem cells (GSCs). We explored the interaction between GSCs and GAMs. Using CD133 as a marker of stemness, we enriched for or deprived the mouse glioma cell line GL261 of GSCs by fluorescence-activated cell sorting (FACS). Over the same period of time, 100 CD133(+ )GSCs had the capacity to form a tumor of comparable size to the ones formed by 10,000 CD133(-) GL261 cells. In IL-6(-/-) mice, only tumors formed by CD133(+ )cells were smaller compared with wild type. After stimulation of primary cultured microglia with medium from CD133-enriched GL261 glioma cells, we observed an selective upregulation in microglial IL-6 secretion dependent on Toll-like receptor (TLR) 4. Our results show that GSCs, but not the bulk glioma cells, initiate microglial IL-6 secretion via TLR4 signaling and that IL-6 regulates glioma growth by supporting GSCs. Using human glioma tissue, we could confirm the finding that GAMs are the major source of IL-6 in the tumor context.

  14. Cell-to-cell spread and massive vacuole formation after Cryptococcus neoformans infection of murine macrophages

    Directory of Open Access Journals (Sweden)

    Casadevall Arturo

    2007-08-01

    Full Text Available Abstract Background The interaction between macrophages and Cryptococcus neoformans (Cn is critical for containing dissemination of this pathogenic yeast. However, Cn can either lyse macrophages or escape from within them through a process known as phagosomal extrusion. Both events result in live extracellular yeasts capable of reproducing and disseminating in the extracellular milieu. Another method of exiting the intracellular confines of cells is through host cell-to-cell transfer of the pathogen, and this commonly occurs with the human immuno-deficiency virus (HIV and CD4+ T cells and macrophages. In this report we have used time-lapse imaging to determine if this occurs with Cn. Results Live imaging of Cryptococcus neoformans interactions with murine macrophages revealed cell-to-cell spread of yeast cells from infected donor cells to uninfected cells. Although this phenomenon was relatively rare its occurrence documents a new capacity for this pathogen to infect adjacent cells without exiting the intracellular space. Cell-to-cell spread appeared to be an actin-dependent process. In addition, we noted that cryptococcal phagosomal extrusion was followed by the formation of massive vacuoles suggesting that intracellular residence is accompanied by long lasting damage to host cells. Conclusion C. neoformans can escape the intracellular confines of macrophages in an actin dependent manner by cell-to-cell transfer of the yeast leading to infection of adjacent cells. In addition, complete extrusion of internalized Cn cells can lead to the formation of a massive vacuole which may be a sign of damage to the host macrophage. These observations document new outcomes for the interaction of C. neoformans with host cells that provide precedents for cell biological effects that may contribute to the pathogenesis of cryptococcal infections.

  15. Macrophage polarization in nerve injury:do Schwann cells play a role?

    Institute of Scientific and Technical Information of China (English)

    Jo Anne Stratton; Prajay T Shah

    2016-01-01

    In response to peripheral nerve injury, the inlfammatory response is almost entirely comprised of inifltrat-ing macrophages. Macrophages are a highly plastic, heterogenic immune cell, playing an indispensable role in peripheral nerve injury, clearing debris and regulating the microenvironment to allow for efifcient regen-eration. There are several cells within the microenvironment that likely interact with macrophages to support their function –most notably the Schwann cell, the glial cell of the peripheral nervous system. Schwann cells express several ligands that are known to interact with receptors expressed by macrophages, yet the effects of Schwann cells in regulating macrophage phenotype remains largely unexplored. This review discusses macrophages in peripheral nerve injury and how Schwann cells may regulate their behavior.

  16. The macrophages in rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Laria A

    2016-02-01

    Full Text Available Antonella Laria, Alfredomaria Lurati , Mariagrazia Marrazza , Daniela Mazzocchi, Katia Angela Re, Magda Scarpellini Rheumatology Unit, Fornaroli Hospital, Magenta, Italy Abstract: Macrophages belong to the innate immune system giving us protection against pathogens. However it is known that they are also involved in rheumatic diseases. Activated macrophages have two different phenotypes related to different stimuli: M1 (classically activated and M2 (alternatively activated. M1 macrophages release high levels of pro-inflammatory cytokines, reactive nitrogen and oxygen intermediates killing microorganisms and tumor cells; while M2 macrophages are involved in resolution of inflammation through phagocytosis of apoptotic neutrophils, reduced production of pro-inflammatory cytokines, and increased synthesis of mediators important in tissue remodeling, angiogenesis, and wound repair. The role of macrophages in the different rheumatic diseases is different according to their M1/M2 macrophages phenotype. Keywords: macrophage, rheumatic diseases

  17. Microglia and macrophages express tumor necrosis factor receptor p75 following middle cerebral artery occlusion in mice

    DEFF Research Database (Denmark)

    Lambertsen, Kate Lykke; Clausen, Bettina Hjelm; Fenger, Claus

    2007-01-01

    The proinflammatory and potential neurotoxic cytokine tumor necrosis factor (TNF) is produced by activated CNS resident microglia and infiltrating blood-borne macrophages in infarct and peri-infarct areas following induction of focal cerebral ischemia. Here, we investigated the expression of the ...

  18. Tumor necrosis factor-α accelerates the resolution of established pulmonary fibrosis in mice by targeting profibrotic lung macrophages.

    Science.gov (United States)

    Redente, Elizabeth F; Keith, Rebecca C; Janssen, William; Henson, Peter M; Ortiz, Luis A; Downey, Gregory P; Bratton, Donna L; Riches, David W H

    2014-04-01

    Idiopathic pulmonary fibrosis (IPF) is a relentless, fibrotic parenchymal lung disease in which alternatively programmed macrophages produce profibrotic molecules that promote myofibroblast survival and collagen synthesis. Effective therapies to treat patients with IPF are lacking, and conventional therapy may be harmful. We tested the hypothesis that therapeutic lung delivery of the proinflammatory cytokine tumor necrosis factor (TNF)-α into wild-type fibrotic mice would reduce the profibrotic milieu and accelerate the resolution of established pulmonary fibrosis. Fibrosis was assessed in bleomycin-instilled wild-type and TNF-α(-/-) mice by measuring hydroxyproline levels, static compliance, and Masson's trichrome staining. Macrophage infiltration and programming status was assessed by flow cytometry of enzymatically digested lung and in situ immunostaining. Pulmonary delivery of TNF-α to wild-type mice with established pulmonary fibrosis was found to reduce their fibrotic burden, to improve lung function and architecture, and to reduce the number and programming status of profibrotic alternatively programmed macrophages. In contrast, fibrosis and alternative macrophage programming were prolonged in bleomycin-instilled TNF-α(-/-) mice. To address the role of the reduced numbers of alternatively programmed macrophages in the TNF-α-induced resolution of established pulmonary fibrosis, we conditionally depleted macrophages in MAFIA (MAcrophage Fas-Induced Apoptosis) mice. Conditional macrophage depletion phenocopied the resolution of established pulmonary fibrosis observed after therapeutic TNF-α delivery. Taken together, our results show for the first time that TNF-α is involved in the resolution of established pulmonary fibrosis via a mechanism involving reduced numbers and programming status of profibrotic macrophages. We speculate that pulmonary delivery of TNF-α or augmenting its signaling pathway represent a novel therapeutic strategy to resolve

  19. Location of tumor affects local and distant immune cell type and number.

    Science.gov (United States)

    Hensel, Jonathan A; Khattar, Vinayak; Ashton, Reading; Lee, Carnellia; Siegal, Gene P; Ponnazhagan, Selvarangan

    2017-03-01

    Tumors comprise heterogeneous populations of cells, including immune infiltrates that polarize during growth and metastasis. Our preclinical studies on breast cancer (BCa) identified functional differences in myeloid-derived suppressor cells based on tumor microenvironment (TME), prompting variations in host immune response to tumor growth, and dissemination based on tissue type. In order to understand if such variations existed among other immune cells, and if such alteration occurs in response to tumor growth at the primary site or due to bone dissemination, we characterized immune cells, examining localized growth and in the tibia. In addition, immune cells from the spleen were examined from animals of both tumor locations by flow cytometry. The study demonstrates that location of tumor, and not simply the tumor itself, has a definitive role in regulating immune effectors. Among all immune cells characterized, macrophages were decreased and myeloid dendritic cell were increased in both tumor locations. This difference was more evident in subcutaneous tumors. Additionally, spleens from mice with subcutaneous tumors contained greater increases in both macrophages and myeloid dendritic cells than in mice with bone tumors. Furthermore, in subcutaneous tumors there was an increase in CD4(+) and CD8(+) T-cell numbers, which was also observed in their spleens. These data indicate that alterations in tumor-reactive immune cells are more pronounced at the primary site, and exert a similar change at the major secondary lymphoid organ than in the bone TME. These findings could provide translational insight into designing therapeutic strategies that account for location of metastatic foci.

  20. Iron oxide nanoparticles surface coating and cell uptake affect biocompatibility and inflammatory responses of endothelial cells and macrophages

    Science.gov (United States)

    Orlando, Antonina; Colombo, Miriam; Prosperi, Davide; Gregori, Maria; Panariti, Alice; Rivolta, Ilaria; Masserini, Massimo; Cazzaniga, Emanuela

    2015-09-01

    Engineered iron oxide nanoparticles (IONP) offer the possibility of a wide range of medical uses, from clinical imaging to magnetically based hyperthermia for tumor treatment. These applications require their systemic administration in vivo. An important property of nanoparticles is their stability in biological media. For this purpose, a multicomponent nanoconstruct combining high colloidal stability and improved physical properties was synthesized and characterized. IONP were coated with an amphiphilic polymer (PMA), which confers colloidal stability, and were pegylated in order to obtain the nanoconstruct PEG-IONP-PMA. The aim of this study was to utilize cultured human endothelial cells (HUVEC) and murine macrophages, taken as model of cells exposed to NP after systemic administration, to assess the biocompatibility of PEG-IONP-PMA (23.1 ± 1.4 nm) or IONP-PMA (15.6 ± 3.4 nm). PEG-IONP-PMA, tested at different concentrations as high as 20 μg mL-1, exhibited no cytotoxicity or inflammatory responses. By contrast, IONP-PMA showed a concentration-dependent increase of cytotoxicity and of TNF-α production by macrophages and NO production by HUVECs. Cell uptake analysis suggested that after PEGylation, IONP were less internalized either by macrophages or by HUVEC. These results suggest that the choice of the polymer and the chemistry of surface functionalization are a crucial feature to confer to IONP biocompatibility.

  1. Iron oxide nanoparticles surface coating and cell uptake affect biocompatibility and inflammatory responses of endothelial cells and macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, Antonina [University of Milano-Bicocca, Department of Health Sciences (Italy); Colombo, Miriam; Prosperi, Davide [University of Milano-Bicocca, Department of Biotechnology and Biosciences (Italy); Gregori, Maria; Panariti, Alice; Rivolta, Ilaria; Masserini, Massimo; Cazzaniga, Emanuela, E-mail: emanuela.cazzaniga@unimib.it [University of Milano-Bicocca, Department of Health Sciences (Italy)

    2015-09-15

    Engineered iron oxide nanoparticles (IONP) offer the possibility of a wide range of medical uses, from clinical imaging to magnetically based hyperthermia for tumor treatment. These applications require their systemic administration in vivo. An important property of nanoparticles is their stability in biological media. For this purpose, a multicomponent nanoconstruct combining high colloidal stability and improved physical properties was synthesized and characterized. IONP were coated with an amphiphilic polymer (PMA), which confers colloidal stability, and were pegylated in order to obtain the nanoconstruct PEG-IONP-PMA. The aim of this study was to utilize cultured human endothelial cells (HUVEC) and murine macrophages, taken as model of cells exposed to NP after systemic administration, to assess the biocompatibility of PEG-IONP-PMA (23.1 ± 1.4 nm) or IONP-PMA (15.6 ± 3.4 nm). PEG-IONP-PMA, tested at different concentrations as high as 20 μg mL{sup −1}, exhibited no cytotoxicity or inflammatory responses. By contrast, IONP-PMA showed a concentration-dependent increase of cytotoxicity and of TNF-α production by macrophages and NO production by HUVECs. Cell uptake analysis suggested that after PEGylation, IONP were less internalized either by macrophages or by HUVEC. These results suggest that the choice of the polymer and the chemistry of surface functionalization are a crucial feature to confer to IONP biocompatibility.

  2. Short Communication: HIV Controller T Cells Effectively Inhibit Viral Replication in Alveolar Macrophages.

    Science.gov (United States)

    Walker-Sperling, Victoria E; Merlo, Christian A; Buckheit, Robert W; Lambert, Allison; Tarwater, Patrick; Kirk, Greg D; Drummond, M Bradley; Blankson, Joel N

    Macrophages are targets of HIV-1 infection, and control of viral replication within these cells may be an important component of a T-cell-based vaccine. Although several studies have analyzed the ability of CD8(+) T cells to inhibit viral replication in monocyte-derived macrophages, the effect of T cells on HIV-1-infected tissue macrophages is less clear. We demonstrate here that both CD4(+) and CD8(+) T-cell effectors from HIV controllers are capable of suppressing viral replication in bronchoalveolar lavage-derived alveolar macrophages. These findings have implications for HIV-1 vaccine and eradication strategies.

  3. Dynamics of Salmonella infection of macrophages at the single cell level.

    Science.gov (United States)

    Gog, Julia R; Murcia, Alicia; Osterman, Natan; Restif, Olivier; McKinley, Trevelyan J; Sheppard, Mark; Achouri, Sarra; Wei, Bin; Mastroeni, Pietro; Wood, James L N; Maskell, Duncan J; Cicuta, Pietro; Bryant, Clare E

    2012-10-07

    Salmonella enterica causes a range of diseases. Salmonellae are intracellular parasites of macrophages, and the control of bacteria within these cells is critical to surviving an infection. The dynamics of the bacteria invading, surviving, proliferating in and killing macrophages are central to disease pathogenesis. Fundamentally important parameters, however, such as the cellular infection rate, have not previously been calculated. We used two independent approaches to calculate the macrophage infection rate: mathematical modelling of Salmonella infection experiments, and analysis of real-time video microscopy of infection events. Cells repeatedly encounter salmonellae, with the bacteria often remain associated with the macrophage for more than ten seconds. Once Salmonella encounters a macrophage, the probability of that bacterium infecting the cell is remarkably low: less than 5%. The macrophage population is heterogeneous in terms of its susceptibility to the first infection event. Once infected, a macrophage can undergo further infection events, but these reinfection events occur at a lower rate than that of the primary infection.

  4. Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages

    DEFF Research Database (Denmark)

    Raggi, Chiara; Correnti, Margherita; Sica, Antonio

    2017-01-01

    providing a rationale for a synergistic therapeutic strategy for CCA-disease. LAY SUMMARY: Immune plasticity represents an important hallmark of tumor outcome. Since cancer stem cells are able to manipulate stromal cells to their needs, a better definition of key deregulated immune subtype responsible...

  5. Comparative study of nanosecond electric fields in vitro and in vivo on hepatocellular carcinoma indicate macrophage infiltration contribute to tumor ablation in vivo.

    Directory of Open Access Journals (Sweden)

    Xinhua Chen

    Full Text Available BACKGROUND AND AIM: Recurrence and metastasis are associated with poor prognosis in hepatocellular carcinoma even in the patients who have undergone radical resection. Therefore, effective treatment is urgently needed for improvement of patients' survival. Previously, we reported that nanosecond pulse electric fields (nsPEFs can ablate melanoma by induction of apoptosis and inhibition of angiogenesis. This study aims to investigate the in vivo ablation strategy by comparing the dose effect of nanosecond electric fields in vitro and in vivo on hepatocellular carcinoma. MATERIALS AND METHODS: Four hepatocellular carcinoma cell lines HepG2, SMMC7721, Hep1-6, and HCCLM3 were pulsed to test the anti-proliferation and anti-migration ability of 100 ns nsPEFs in vitro. The animal model of human subdermal xenograft HCCLM3 cells into BALB/c nude mouse was used to test the anti-tumor growth and macrophage infiltration in vivo. RESULTS: In vitro assays showed anti-tumor effect of nsPEFs is dose-dependant. But the in vivo study showed the strategy of low dose and multiple treatments is superior to high dose single treatment. The macrophages infiltration significantly increased in the tumors which were treated by multiple low dose nsPEFs. CONCLUSION: The low dose multiple nsPEFs application is more efficient than high dose single treatment in inhibiting the tumor volume in vivo, which is quite different from the dose-effect relationship in vitro. Beside the electric field strength, the macrophage involvement must be considered to account for effect variability and toxicology in vivo.

  6. Chrysin, Apigenin and Acacetin Inhibit Tumor Necrosis Factor-Related Apoptosis—Inducing Ligand Receptor-1 (TRAIL-R1 on Activated RAW264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Monika Warat

    2014-06-01

    Full Text Available Expression level of Tumor Necrosis Factor—related apoptosis—inducing ligand (TRAIL receptors is one of the most important factors of TRAIL-mediated apoptosis in cancer cells. We here report for the first time data concerning TRAIL-R1 and TRAIL-R2 receptor expression on RAW264.7 macrophages. Three substances belonging to flavones: chrysin, apigenin and acacetin which differ from their substituents at the 4' position in the phenyl ring were used in assays because of the variety of biological activities (e.g., anticancer activity of the polyphenol compounds. The expression of TRAIL-R1 and TRAIL-R2 death receptors on non-stimulated and LPS (lipopolysaccharide-stimulated macrophages was determined using flow cytometry. We demonstrate that RAW264.7 macrophages exhibit TRAIL-R1 surface expression and that the tested compounds: chrysin, apigenin and acacetin can inhibit TRAIL-R1 death receptor expression level on macrophages.

  7. DMPD: A role for caspases in the differentiation of erythroid cells and macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17905508 A role for caspases in the differentiation of erythroid cells and macropha...;90(2):416-22. Epub 2007 Sep 2. (.png) (.svg) (.html) (.csml) Show A role for caspases in the differentiatio...n of erythroid cells and macrophages. PubmedID 17905508 Title A role for caspases

  8. Nimbolide Inhibits Nuclear Factor-КB Pathway in Intestinal Epithelial Cells and Macrophages and Alleviates Experimental Colitis in Mice.

    Science.gov (United States)

    Seo, Ji Yeon; Lee, Changhyun; Hwang, Sung Wook; Chun, Jaeyoung; Im, Jong Pil; Kim, Joo Sung

    2016-10-01

    Nimbolide is a limonoid extracted from neem tree (Azadirachta indica) that has antiinflammatory properties. The effect of nimbolide on the nuclear factor-kappa B (NF-κB) pathway in intestinal epithelial cells (IECs), macrophages and in murine colitis models was investigated. The IEC COLO 205, the murine macrophage cell line RAW 264.7, and peritoneal macrophages from interleukin-10-deficient (IL-10(-/-) ) mice were preconditioned with nimbolide and then stimulated with tumor necrosis factor-α (TNF-α) or lipopolysaccharide. Dextran sulfate sodium-induced acute colitis model and chronic colitis model in IL-10(-/-) mice were used for in vivo experiments. Nimbolide significantly suppressed the expression of inflammatory cytokines (IL-6, IL-8, IL-12, and TNF-α) and inhibited the phosphorylation of IκBα and the DNA-binding affinity of NF-κB in IECs and macrophages. Nimbolide ameliorated weight loss, colon shortening, disease activity index score, and histologic scores in dextran sulfate sodium colitis. It also improved histopathologic scores in the chronic colitis of IL-10(-/-) mice. Staining for phosphorylated IκBα was significantly decreased in the colon tissue after treatment with nimbolide in both models. Nimbolide inhibits NF-κB signaling in IECs and macrophages and ameliorates experimental colitis in mice. These results suggest nimbolide could be a potentially new treatment for inflammatory bowel disease. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Dendrosomal curcumin suppresses metastatic breast cancer in mice by changing m1/m2 macrophage balance in the tumor microenvironment.

    Science.gov (United States)

    Shiri, Sadaf; Alizadeh, Ali Mohammad; Baradaran, Behzad; Farhanghi, Baharak; Shanehbandi, Dariush; Khodayari, Saeed; Khodayari, Hamid; Tavassoli, Abbas

    2015-01-01

    Curcumin, a lipid-soluble compound extracted from the plant Curcuma Longa, has been found to exert immunomodulatory effects via macrophages. However, most studies focus on the low bioavailability issue of curcumin by nano and microparticles, and thus the role of macrophages in the anticancer mechanism of curcumin has received little attention so far. We have previously shown the potential biocompatibility, biodegradability and anti-cancer effects of dendrosomal curcumin (DNC). In this study, twenty-seven BALB/c mice were equally divided into control as well as 40 and 80 mg/kg groups of DNC to investigate the involvement of macrophages in the antitumor effects of curcumin in a typical animal model of metastatic breast cancer. At the end of intervention, the tumor volume and weight were significantly reduced in DNC groups compared to control (PDNC increased the expression of STAT4 and IL-12 genes in tumor and spleen tissues in comparison with control (PDNC decreased STAT3, IL-10 and arginase I gene expression (P<0.05), indicating low levels of M2 macrophage. The results confirm the role of macrophages in the protective effects of dendrosomal curcumin against metastatic breast cancer in mice.

  10. ATF-2 regulates lipopolysaccharide-induced transcription in macrophage cells.

    Science.gov (United States)

    Hirose, Noriyuki; Maekawa, Toshio; Shinagawa, Toshie; Ishii, Shunsuke

    2009-07-17

    The transcription factor ATF-2, a member of the ATF/CREB family, is a target of p38 that are involved in stress-induced apoptosis and in Toll-like receptor (TLR)-mediated signaling. Phosphorylation of ATF-2 at Thr-71 was enhanced by treating of RAW264.7 macrophage cells with either LPS, MALP-2, or CpG-ODN. LPS treatment enhanced the trans-activation capacity of ATF-2. Among multiple LPS-induced genes, the LPS-induced expression of Socs-3 was significantly reduced by the treatment of RAW264.7 cells with an Atf-2 siRNA. Transcription from the Socs-3 promoter was synergistically stimulated by ATF-2 and LPS, whereas it was suppressed by Atf-2 siRNA. Histone deacetylase 1 (HDAC1) interacted with ATF-2 after LPS treatment, but not before treatment. Treatment of RAW264.7 cells with trichostatin A, an inhibitor of HDAC, suppressed the LPS-induced Socs-3 expression, suggesting that HDAC1 positively regulates the LPS-induced transcription of Socs-3. Thus, ATF-2 plays an important role in TLR-mediated transcriptional control in macrophage cells.

  11. Intracellular growth of Mycobacterium tuberculosis after macrophage cell death leads to serial killing of host cells

    Science.gov (United States)

    Mahamed, Deeqa; Boulle, Mikael; Ganga, Yashica; Mc Arthur, Chanelle; Skroch, Steven; Oom, Lance; Catinas, Oana; Pillay, Kelly; Naicker, Myshnee; Rampersad, Sanisha; Mathonsi, Colisile; Hunter, Jessica; Sreejit, Gopalkrishna; Pym, Alexander S; Lustig, Gila; Sigal, Alex

    2017-01-01

    A hallmark of pulmonary tuberculosis is the formation of macrophage-rich granulomas. These may restrict Mycobacterium tuberculosis (Mtb) growth, or progress to central necrosis and cavitation, facilitating pathogen growth. To determine factors leading to Mtb proliferation and host cell death, we used live cell imaging to track Mtb infection outcomes in individual primary human macrophages. Internalization of Mtb aggregates caused macrophage death, and phagocytosis of large aggregates was more cytotoxic than multiple small aggregates containing similar numbers of bacilli. Macrophage death did not result in clearance of Mtb. Rather, it led to accelerated intracellular Mtb growth regardless of prior activation or macrophage type. In contrast, bacillary replication was controlled in live phagocytes. Mtb grew as a clump in dead cells, and macrophages which internalized dead infected cells were very likely to die themselves, leading to a cell death cascade. This demonstrates how pathogen virulence can be achieved through numbers and aggregation states. DOI: http://dx.doi.org/10.7554/eLife.22028.001 PMID:28130921

  12. Physiological Role of TNF in MucosalImmunology: Regulation of Macrophage/Dendritic Cell Function

    DEFF Research Database (Denmark)

    Rivollier, Aymeric Marie Christian; Marsal, J.; Agace, William Winston

    2015-01-01

    to the pathogenesis of inflammatory bowel disease. In this review, we discuss the role of tumor necrosis factor-α (TNF) in regulating multiple aspects of intestinal Mϕ and DC physiology, including their differentiation, migration, maturation, survival and effector functions. In inflammatory bowel disease, TNF...... signaling has been implicated in reprogramming monocyte differentiation from the anti-inflammatory Mϕ lineage towards the pro-inflammatory mononuclear phagocyte lineage.These cells become a major source of TNF and, thus,may contribute to the chronic inflammatory process. Finally,we highlight some......Intestinal mononuclear phagocytes, comprising macrophages(Mϕs) and dendritic cells (DCs), play important roles in the generation and the regulation of immune responses to intestinal antigens, and alterations in the development and/or the function of these cells are thought to contribute...

  13. Hyphal growth of phagocytosed Fusarium oxysporum causes cell lysis and death of murine macrophages.

    Science.gov (United States)

    Schäfer, Katja; Bain, Judith M; Di Pietro, Antonio; Gow, Neil A R; Erwig, Lars P

    2014-01-01

    Fusarium oxysporum is an important plant pathogen and an opportunistic pathogen of humans. Here we investigated phagocytosis of F. oxysporum by J774.1 murine cell line macrophages using live cell video microscopy. Macrophages avidly migrated towards F. oxysporum germlings and were rapidly engulfed after cell-cell contact was established. F. oxysporum germlings continued hyphal growth after engulfment by macrophages, leading to associated macrophage lysis and escape. Macrophage killing depended on the multiplicity of infection. After engulfment, F. oxysporum inhibited macrophages from completing mitosis, resulting in large daughter cells fused together by means of a F. oxysporum hypha. These results shed new light on the initial stages of Fusarium infection and the innate immune response of the mammalian host.

  14. Location of tumor affects local and distant immune cell type and number

    Science.gov (United States)

    Hensel, Jonathan A.; Khattar, Vinayak; Ashton, Reading; Lee, Carnellia; Siegal, Gene P.

    2017-01-01

    Abstract Introduction Tumors comprise heterogeneous populations of cells, including immune infiltrates that polarize during growth and metastasis. Our preclinical studies on breast cancer (BCa) identified functional differences in myeloid‐derived suppressor cells based on tumor microenvironment (TME), prompting variations in host immune response to tumor growth, and dissemination based on tissue type. Methods In order to understand if such variations existed among other immune cells, and if such alteration occurs in response to tumor growth at the primary site or due to bone dissemination, we characterized immune cells, examining localized growth and in the tibia. In addition, immune cells from the spleen were examined from animals of both tumor locations by flow cytometry. Results The study demonstrates that location of tumor, and not simply the tumor itself, has a definitive role in regulating immune effectors. Among all immune cells characterized, macrophages were decreased and myeloid dendritic cell were increased in both tumor locations. This difference was more evident in subcutaneous tumors. Additionally, spleens from mice with subcutaneous tumors contained greater increases in both macrophages and myeloid dendritic cells than in mice with bone tumors. Furthermore, in subcutaneous tumors there was an increase in CD4+ and CD8+ T‐cell numbers, which was also observed in their spleens. Conclusions These data indicate that alterations in tumor‐reactive immune cells are more pronounced at the primary site, and exert a similar change at the major secondary lymphoid organ than in the bone TME. These findings could provide translational insight into designing therapeutic strategies that account for location of metastatic foci. PMID:28250928

  15. NK cells in the tumor microenvironment

    DEFF Research Database (Denmark)

    Larsen, Stine K; Gao, Yanhua; Basse, Per H

    2014-01-01

    The presence of natural killer (NK) cells in the tumor microenvironment correlates with outcome in a variety of cancers. However, the role of intratumoral NK cells is unclear. Preclinical studies have shown that, while NK cells efficiently kill circulating tumor cells of almost any origin...

  16. Macrophages and mast cells in dystrophic masseter muscle: a light and electron microscopic study

    DEFF Research Database (Denmark)

    Kirkeby, S; Mikkelsen, H

    1988-01-01

    Macrophages and mast cells in masseter muscle from normal and dystrophic mice were studied by light and electron microscopy. Acid phosphatase activity and FITC-dextran were used to identify and describe macrophages. Toluidine blue was used as a marker for mast cells. In dystrophic muscle, the num......Macrophages and mast cells in masseter muscle from normal and dystrophic mice were studied by light and electron microscopy. Acid phosphatase activity and FITC-dextran were used to identify and describe macrophages. Toluidine blue was used as a marker for mast cells. In dystrophic muscle...

  17. Imaging Tumor Cell Movement In Vivo

    OpenAIRE

    Entenberg, David; Kedrin, Dmitriy; Wyckoff, Jeffrey; Sahai, Erik; Condeelis, John; Segall, Jeffrey E

    2013-01-01

    This unit describes the methods that we have been developing for analyzing tumor cell motility in mouse and rat models of breast cancer metastasis. Rodents are commonly used both to provide a mammalian system for studying human tumor cells (as xenografts in immunocompromised mice) as well as for following the development of tumors from a specific tissue type in transgenic lines. The Basic Protocol in this unit describes the standard methods used for generation of mammary tumors and imaging th...

  18. Endothelial cells undergo morphological, biomechanical, and dynamic changes in response to tumor necrosis factor-α

    OpenAIRE

    Stroka, Kimberly M.; Vaitkus, Janina A.; Aranda-Espinoza, Helim

    2012-01-01

    The immune response triggers a complicated sequence of events, one of which is release of the cytokine tumor necrosis factor-α (TNF-α) from stromal cells such as monocytes and macrophages. In this work we explored the biophysical effects of TNF-α on endothelial cells (ECs), including changes in cell morphology, biomechanics, migration, and cytoskeletal dynamics. We found that TNF-α induces a wide distribution of cell area and aspect ratio, with these properties increasing on average during tr...

  19. How do CD4+ T cells detect and eliminate tumor cells that either lack or express MHC class II molecules?

    Directory of Open Access Journals (Sweden)

    Ole Audun Werner Haabeth

    2014-04-01

    Full Text Available CD4+ T cells contribute to tumor eradication, even in the absence of CD8+ T cells. Cytotoxic CD4+ T cells can directly kill MHC class II positive tumor cells. More surprisingly, CD4+ T cells can indirectly eliminate tumor cells that lack MHC class II expression. Here, we review the mechanisms of direct and indirect CD4+ T cell-mediated elimination of tumor cells. An emphasis is put on T cell receptor (TCR transgenic models, where anti-tumor responses of naïve CD4+ T cells of defined specificity can be tracked. Some generalizations can tentatively be made. For both MHCIIPOS and MHCIINEG tumors, presentation of tumor specific antigen by host antigen presenting cells (APCs appears to be required for CD4+ T cell priming. This has been extensively studied in a myeloma model (MOPC315, where host APCs in tumor-draining lymph nodes are primed with secreted tumor antigen. Upon antigen recognition, naïve CD4+ T cells differentiate into Th1 cells and migrate to the tumor. At the tumor site, the mechanisms for elimination of MHCIIPOS and MHCIINEG tumor cells differ. In a TCR transgenic B16 melanoma model, MHCIIPOS melanoma cells are directly killed by cytotoxic CD4+ T cells in a perforin/granzyme B-dependent manner. By contrast, MHCIINEG myeloma cells are killed by IFN-g stimulated M1-like macrophages. In summary, while the priming phase of CD4+ T cells appears similar for MHCIIPOS and MHCIINEG tumors, the killing mechanisms are different. Unresolved issues and directions for future research are addressed.

  20. Comparative analysis of the internalization of the macrophage receptor sialoadhesin in human and mouse primary macrophages and cell lines.

    Science.gov (United States)

    De Schryver, Marjorie; Leemans, Annelies; Pintelon, Isabel; Cappoen, Davie; Maes, Louis; Caljon, Guy; Cos, Paul; Delputte, Peter L

    2016-11-21

    Sialoadhesin (Sn) is a surface receptor expressed on resident macrophages with the ability to bind with sialic acids. During inflammation, an upregulation of Sn is observed. Upon binding of monoclonal antibodies to Sn, the receptor becomes internalized and this has been observed in multiple species. The latter characteristic, combined with the strong upregulation of Sn on inflammatory macrophages and the fact that Sn-positive macrophages contribute to certain inflammatory diseases, makes Sn an interesting entry portal for phenotype-modulating or cytotoxic drugs. Such drugs or toxins can be linked to Sn-specific antibodies which should enable their targeted uptake by macrophages. However, the activity of such drugs depends not only on their internalization but also on the intracellular trafficking and final fate in the endolysosomal system. Although information is available for porcine Sn, the detailed mechanisms of human and mouse Sn internalization and subsequent intracellular trafficking are currently unknown. To allow development of Sn-targeted therapies, differences across species and cellular background need to be characterized in more detail. In the current report, we show that internalization of human and mouse Sn is dynamin-dependent and clathrin-mediated, both in primary macrophages and CHO cell lines expressing a recombinant Sn. In primary macrophages, internalized Sn-specific F(ab')2 fragments are located mostly in the early endosomes. With Fc containing Sn-specific antibodies, there is a slight shift towards lysosomal localization in mouse macrophages, possibly because of an interaction with Fc receptors. Surprisingly, in CHO cell lines expressing Sn, there is a predominant lysosomal localization. Our results show that the mechanism of Sn internalization and intracellular trafficking is concurrent in the tested species. The cellular background in which Sn is expressed and the type of antibody used can affect the intracellular fate, which in turn can

  1. Paeoniflorin inhibits macrophage-mediated lung cancer metastasis.

    Science.gov (United States)

    Wu, Qi; Chen, Gang-Ling; Li, Ya-Juan; Chen, Yang; Lin, Fang-Zhen

    2015-12-01

    Alternatively activated macrophages are more frequently involved in tumor growth, angiogenesis, and immunosuppression. A previous study showed that paeoniflorin, the major active constituent of Paeonia lactiflora Pallas, can inhibit tumor growth and lung metastases of Lewis lung tumor-bearing mice. This study tried to investigate whether paeoniflorin inhibited lung cancer metastasis by inhibiting the alternative activation of macrophages (M2 macrophage). Using a viability assay, the cytotoxicity of paeoniflorin on Lewis lung cancer cells and peritoneal macrophages were investigated. In vitro scratch wound and in vivo lung metastasis experiments were used to test the ability to inhibit the migration of paeoniflorin and the function of M2 macrophages. Flow cytometry was performed to test the cell cycle of Lewis lung cancer cells, and to test the M2 macrophages in peritoneal macrophages and subcutaneous transplantable tumor. It was found that paeoniflorin showed no inhibitory effect on the growth of Lewis lung cancer cells and peritoneal macrophages of mouse in vitro. Paeoniflorin could attenuate the migration of LLC stimulated by alternatively activated macrophages (stimulated for 24 h and 48 h, paeoniflorin 1, 3, 10, 30, 100 μmol·L(-1), P lung cancer cells (paeoniflorin 100 μmol·L(-1), P lung metastasis of Lewis lung cancer cells xenograft and decrease the numbers of M2 macrophages in subcutaneous xenograft tumour in vivo (paeoniflorin 20, 40 mg·kg(-1), P lung metastasis of Lewis lung cancer cells xenograft partly through inhibiting the alternative activation of macrophages.

  2. Chaperone-rich tumor cell lysate-mediated activation of antigen-presenting cells resists regulatory T cell suppression.

    Science.gov (United States)

    Larmonier, Nicolas; Cantrell, Jessica; Lacasse, Collin; Li, Gang; Janikashvili, Nona; Situ, Elaine; Sepassi, Marjan; Andreansky, Samita; Katsanis, Emmanuel

    2008-04-01

    CD4(+)CD25(+) regulatory T lymphocytes (Tregs) critically contribute to the mechanisms of cancer-induced tolerance. These cells suppress anti-tumoral CD8(+) and CD4(+) T lymphocytes and can also restrain the function of APCs. We have previously documented the immunostimulatory effects of a chaperone-rich cell lysate (CRCL) anti-cancer vaccine. Tumor-derived CRCL induces tumor immunity in vivo, partly by promoting dendritic cell (DC) and macrophage activation. In the current study, we evaluated the effects of CD4(+)CD25(+)forkhead box P3(+) Tregs isolated from mice bearing 12B1 bcr-abl(+) leukemia on DC and macrophages that had been activated by 12B1-derived CRCL. CRCL-activated DC and macrophages resisted Treg suppression, as the production of proinflammatory cytokines, the activation of transcription factor NF-kappaB, and their immunostimulatory potential was unaffected by Tregs. Our results thus highlight CRCL as a powerful adjuvant endowed with the capacity to overcome tumor-induced Treg-inhibitory effects on APCs.

  3. Clinical significance of tumor-associated macrophage infiltration in supraglottic laryngeal carcinoma

    Institute of Scientific and Technical Information of China (English)

    Jia-Ying Lin; Xiao-Yan Li; Nakashima Tadashi; Ping Dong

    2011-01-01

    Tumor-associated macrophages (TAMs) can elicit contrasting effects on tumor progression, depending on different tumor microenvironment. This study aimed to explore the correlation between TAM infiltration and clinicopathologic characteristics, metastasis, and prognosis of supraglottic laryngeal carcinoma. TAMs in intratumoral and peritumoral regions of 84 specimens of supraglottic laryngeal carcinoma tissues were detected by immunohistochemical staining with monoclonal CD68 antibody. The density of peritumoral CD68+ TAMs in recurrence cases (9/11) and in dead cases (17/23) were significantly higher than those in non-recurrence cases (33/73) and in survival cases (25/61), with significant differences (P = 0.024 and 0.007, respectively). The Kaplan-Meier survival analysis showed a significant relationship between the infiltration of both intratumoral and peritumoral CD68+ TAMs and the overall survival of patients. The 5year survival rate was significantly lower in the group with a high density of intratumoral CD68+ TAMs than in the group with a low density (39.6% vs. 82.5%, P < 0.05). Similarly, the 5-year survival rate was significantly lower in the group with a high density of peritumoral CD68+ TAMs than in the group with a low density (50.6% vs. 73.1%, P < 0.05). Cox regression analysis revealed that T classification, distant metastasis, and intratumoral or peritumoral CD68+ TAMs were independent factors for disease-free survival, whereas T classification and intratumoral CD68+ TAMs were independent factors for overall survival. The results indicate that TAM infiltration in supraglottic laryngeal caminoma can be used to predict metastasis and prognosis and is an independent factor for prognosis.

  4. Systematic Pan-Cancer Analysis Reveals Immune Cell Interactions in the Tumor Microenvironment.

    Science.gov (United States)

    Varn, Frederick S; Wang, Yue; Mullins, David W; Fiering, Steven; Cheng, Chao

    2017-03-15

    With the recent advent of immunotherapy, there is a critical need to understand immune cell interactions in the tumor microenvironment in both pan-cancer and tissue-specific contexts. Multidimensional datasets have enabled systematic approaches to dissect these interactions in large numbers of patients, furthering our understanding of the patient immune response to solid tumors. Using an integrated approach, we inferred the infiltration levels of distinct immune cell subsets in 23 tumor types from The Cancer Genome Atlas. From these quantities, we constructed a coinfiltration network, revealing interactions between cytolytic cells and myeloid cells in the tumor microenvironment. By integrating patient mutation data, we found that while mutation burden was associated with immune infiltration differences between distinct tumor types, additional factors likely explained differences between tumors originating from the same tissue. We concluded this analysis by examining the prognostic value of individual immune cell subsets as well as how coinfiltration of functionally discordant cell types associated with patient survival. In multiple tumor types, we found that the protective effect of CD8(+) T cell infiltration was heavily modulated by coinfiltration of macrophages and other myeloid cell types, suggesting the involvement of myeloid-derived suppressor cells in tumor development. Our findings illustrate complex interactions between different immune cell types in the tumor microenvironment and indicate these interactions play meaningful roles in patient survival. These results demonstrate the importance of personalized immune response profiles when studying the factors underlying tumor immunogenicity and immunotherapy response. Cancer Res; 77(6); 1271-82. ©2017 AACR.

  5. Krebs cycle rewired for macrophage and dendritic cell effector functions.

    Science.gov (United States)

    Ryan, Dylan Gerard; O'Neill, Luke A J

    2017-07-07

    The Krebs cycle is an amphibolic pathway operating in the mitochondrial matrix of all eukaryotic organisms. In response to proinflammatory stimuli, macrophages and dendritic cells undergo profound metabolic remodelling to support the biosynthetic and bioenergetic requirements of the cell. Recently, it has been discovered that this metabolic shift also involves the rewiring of the Krebs cycle to regulate cellular metabolic flux and the accumulation of Krebs cycle intermediates, notably, citrate, succinate and fumarate. Interestingly, a new role for Krebs cycle intermediates as signalling molecules and immunomodulators that dictate the inflammatory response has begun to emerge. This review will discuss the latest developments in Krebs cycle rewiring and immune cell effector functions, with a particular focus on the regulation of cytokine production. © 2017 Federation of European Biochemical Societies.

  6. Characterization of macrophage-like cells in the external layers of human small and large intestine

    DEFF Research Database (Denmark)

    Mikkelsen, H B; Rumessen, J J

    1992-01-01

    -DR-positive (expressing the MHC class-II antigen), in contrast to macrophage-like cells in the subserosa and submucosa. Macrophage-like cells in the external muscle layer were mostly acid phosphatase-negative, and at the electron-microscopic level they were found to have features of macrophages: primary lysosomes, coated...... vesicles and pits. However, very few secondary lysosomes were present. Birbeck granules were not observed. It is concluded that in the external muscle layer of human small and large intestine numerous macrophages of a special type are present. It is discussed whether this cell type plays a role...

  7. Prognostic significance of tumor-associated macrophages in solid tumor: a meta-analysis of the literature.

    Directory of Open Access Journals (Sweden)

    Qiong-wen Zhang

    Full Text Available PURPOSE: Tumor associated macrophages (TAMs are considered with the capacity to have both negative and positive effects on tumor growth. The prognostic value of TAM for survival in patients with solid tumor remains controversial. EXPERIMENTAL DESIGN: We conducted a meta-analysis of 55 studies (n = 8,692 patients that evaluated the correlation between TAM (detected by immunohistochemistry and clinical staging, overall survival (OS and disease free survival (DFS. The impact of M1 and M2 type TAM (n = 5 on survival was also examined. RESULTS: High density of TAM was significantly associated with late clinical staging in patients with breast cancer [risk ratio (RR  = 1.20 (95% confidence interval (CI, 1.14-1.28] and bladder cancer [RR = 3.30 (95%CI, 1.56-6.96] and with early clinical staging in patients with ovarian cancer [RR = 0.52 (95%CI, 0.35-0.77]. Negative effects of TAM on OS was shown in patients with gastric cancer [RR = 1.64 (95%CI, 1.24-2.16], breast cancer [RR = 8.62 (95%CI, 3.10-23.95], bladder cancer [RR = 5.00 (95%CI, 1.98-12.63], ovarian cancer [RR = 2.55 (95%CI, 1.60-4.06], oral cancer [RR = 2.03 (95%CI, 1.47-2.80] and thyroid cancer [RR = 2.72 (95%CI, 1.26-5.86],and positive effects was displayed in patients with colorectal cancer [RR = 0.64 (95%CI, 0.43-0.96]. No significant effect was showed between TAM and DFS. There was also no significant effect of two phenotypes of TAM on survival. CONCLUSIONS: Although some modest bias cannot be excluded, high density of TAM seems to be associated with worse OS in patients with gastric cancer, urogenital cancer and head and neck cancer, with better OS in patients with colorectal cancer.

  8. Effects of tumor-associated macrophages on the biological behavior of A375 human malignant melanoma cells%肿瘤相关巨噬细胞对皮肤恶性黑素瘤细胞A375生物学行为的影响

    Institute of Scientific and Technical Information of China (English)

    殷芳; 吴飞; 陈佳; 章楚光; 宋宁静

    2014-01-01

    Objective To evaluate the effects of tumor-associated macrophages on the proliferation,invasion and migration of human cutaneous malignant melanoma cells.Methods Cultured U937 human monocytic cells at logarithmic phase were classified into three groups to be pretreated with phorbol ester for 48 hours followed by 48-hour activation by phorbol ester (M polarization),lipopolysaccharide (LPS) at 25 mg/L (M1 polarization),and interleukin (IL)-4 at 15 μg/L (M2 polarization) respectively.Then,enzyme-linked immunosorbent assay (ELISA) was performed to determine the levels of IL-12p70 and IL-10 in the supernatant of these activated cells.A375 human malignant melanoma cells were divided into four groups to be cultured alone or with M-,M1-and M2-polarized macrophages respectively.After additional culture for different durations (24,48 and 72 hours),methyl thiazolyl tetrazolium (MTT) assay was conducted to estimate the proliferative activity,and Transwell assay to evaluate the invasion and migration activity,of the A375 cells.Results The proliferation of A375 cells was accelerated by coculture with M-and M2-polarized macrophages,but inhibited by that with M1-polarized macrophages,with significant differences among the four groups in the proliferative activity at 48 and 72 hours (all P < 0.05),but not at 24 hours (P > 0.05).Invasion assay showed that the number of A375 cells that migrated through Transwell chambers was significantly larger in M2 and M groups (147.00 ± 7.92 and 113.22 ± 8.15 respectively),but smaller in the M1 group (56.44 ± 7.55),than in the control group (84.11 ± 6.07,all P < 0.05).Similarly,migration assay revealed a significant increase in the number of A375 cells that migrated through Transwell chambers in the M2 and M(p) groups (198.33 ± 8.22 and 156.00 ± 8.83 respectively),but a significant decrease in the M1 group (97.11 ± 6.75) as compared with the control group (123.89 ± 7.01,all P< 0.05).Conclusions The proliferation,invasion and

  9. La mala educación of tumor-associated macrophages: Diverse pathways and new players.

    Science.gov (United States)

    Mantovani, Alberto

    2010-02-17

    Inflammation is a key component of the tumor microenvironment. Two reports published in this issue of Cancer Cell, Andreu et al. and Erez et al., shed new light on pathways and players involved in the orchestration of cancer-related inflammation.

  10. Robo-Enabled Tumor Cell Extrusion.

    Science.gov (United States)

    Richardson, Helena E; Portela, Marta

    2016-12-19

    How aberrant cells are removed from a tissue to prevent tumor formation is a key question in cancer biology. Reporting in this issue of Developmental Cell, Vaughen and Igaki (2016) show that a pathway with an important role in neural guidance also directs extrusion of tumor cells from epithelial tissues.

  11. Evolution of cooperation among tumor cells.

    Science.gov (United States)

    Axelrod, Robert; Axelrod, David E; Pienta, Kenneth J

    2006-09-01

    The evolution of cooperation has a well established theoretical framework based on game theory. This approach has made valuable contributions to a wide variety of disciplines, including political science, economics, and evolutionary biology. Existing cancer theory suggests that individual clones of cancer cells evolve independently from one another, acquiring all of the genetic traits or hallmarks necessary to form a malignant tumor. It is also now recognized that tumors are heterotypic, with cancer cells interacting with normal stromal cells within the tissue microenvironment, including endothelial, stromal, and nerve cells. This tumor cell-stromal cell interaction in itself is a form of commensalism, because it has been demonstrated that these nonmalignant cells support and even enable tumor growth. Here, we add to this theory by regarding tumor cells as game players whose interactions help to determine their Darwinian fitness. We marshal evidence that tumor cells overcome certain host defenses by means of diffusible products. Our original contribution is to raise the possibility that two nearby cells can protect each other from a set of host defenses that neither could survive alone. Cooperation can evolve as by-product mutualism among genetically diverse tumor cells. Our hypothesis supplements, but does not supplant, the traditional view of carcinogenesis in which one clonal population of cells develops all of the necessary genetic traits independently to form a tumor. Cooperation through the sharing of diffusible products raises new questions about tumorigenesis and has implications for understanding observed phenomena, designing new experiments, and developing new therapeutic approaches.

  12. Therapeutic Trial for Patients With Ewing Sarcoma Family of Tumor and Desmoplastic Small Round Cell Tumors

    Science.gov (United States)

    2016-08-25

    Desmoplastic Small Round Cell Tumor; Ewing Sarcoma of Bone or Soft Tissue; Localized Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor; Metastatic Ewing Sarcoma/Peripheral Primitive Neuroectodermal Tumor

  13. Cancer Stem Cells and Pediatric Solid Tumors

    Directory of Open Access Journals (Sweden)

    Gregory K. Friedman

    2011-01-01

    Full Text Available Recently, a subpopulation of cells, termed tumor-initiating cells or tumor stem cells (TSC, has been identified in many different types of solid tumors. These TSC, which are typically more resistant to chemotherapy and radiation compared to other tumor cells, have properties similar to normal stem cells including multipotency and the ability to self-renew, proliferate, and maintain the neoplastic clone. Much of the research on TSC has focused on adult cancers. With considerable differences in tumor biology between adult and pediatric cancers, there may be significant differences in the presence, function and behavior of TSC in pediatric malignancies. We discuss what is currently known about pediatric solid TSC with specific focus on TSC markers, tumor microenvironment, signaling pathways, therapeutic resistance and potential future therapies to target pediatric TSC.

  14. Alginic acid cell entrapment: a novel method for measuring in vivo macrophage cholesterol homeostasis

    Science.gov (United States)

    Sontag, Timothy J.; Chellan, Bijoy; Bhanvadia, Clarissa V.; Getz, Godfrey S.; Reardon, Catherine A.

    2015-01-01

    Macrophage conversion to atherosclerotic foam cells is partly due to the balance of uptake and efflux of cholesterol. Cholesterol efflux from cells by HDL and its apoproteins for subsequent hepatic elimination is known as reverse cholesterol transport. Numerous methods have been developed to measure in vivo macrophage cholesterol efflux. Most methods do not allow for macrophage recovery for analysis of changes in cellular cholesterol status. We describe a novel method for measuring cellular cholesterol balance using the in vivo entrapment of macrophages in alginate, which retains incorporated cells while being permeable to lipoproteins. Recipient mice were injected subcutaneously with CaCl2 forming a bubble into which a macrophage/alginate suspension was injected, entrapping the macrophages. Cells were recovered after 24 h. Cellular free and esterified cholesterol mass were determined enzymatically and normalized to cellular protein. Both normal and cholesterol loaded macrophages undergo measureable changes in cell cholesterol when injected into WT and apoA-I-, LDL-receptor-, or apoE-deficient mice. Cellular cholesterol balance is dependent on initial cellular cholesterol status, macrophage cholesterol transporter expression, and apolipoprotein deficiency. Alginate entrapment allows for the in vivo measurement of macrophage cholesterol homeostasis and is a novel platform for investigating the role of genetics and therapeutic interventions in atherogenesis. PMID:25465389

  15. Lurbinectedin induces depletion of tumor-associated macrophages, an essential component of its in vivo synergism with gemcitabine, in pancreatic adenocarcinoma mouse models.

    Science.gov (United States)

    Céspedes, María Virtudes; Guillén, María José; López-Casas, Pedro Pablo; Sarno, Francesca; Gallardo, Alberto; Álamo, Patricia; Cuevas, Carmen; Hidalgo, Manuel; Galmarini, Carlos María; Allavena, Paola; Avilés, Pablo; Mangues, Ramón

    2016-12-01

    We explored whether the combination of lurbinectedin (PM01183) with the antimetabolite gemcitabine could result in a synergistic antitumor effect in pancreatic ductal adenocarcinoma (PDA) mouse models. We also studied the contribution of lurbinectedin to this synergism. This drug presents a dual pharmacological effect that contributes to its in vivo antitumor activity: (i) specific binding to DNA minor grooves, inhibiting active transcription and DNA repair; and (ii) specific depletion of tumor-associated macrophages (TAMs). We evaluated the in vivo antitumor activity of lurbinectedin and gemcitabine as single agents and in combination in SW-1990 and MIA PaCa-2 cell-line xenografts and in patient-derived PDA models (AVATAR). Lurbinectedin-gemcitabine combination induced a synergistic effect on both MIA PaCa-2 [combination index (CI)=0.66] and SW-1990 (CI=0.80) tumor xenografts. It also induced complete tumor remissions in four out of six patient-derived PDA xenografts. This synergism was associated with enhanced DNA damage (anti-γ-H2AX), cell cycle blockage, caspase-3 activation and apoptosis. In addition to the enhanced DNA damage, which is a consequence of the interaction of the two drugs with the DNA, lurbinectedin induced TAM depletion leading to cytidine deaminase (CDA) downregulation in PDA tumors. This effect could, in turn, induce an increase of gemcitabine-mediated DNA damage that was especially relevant in high-density TAM tumors. These results show that lurbinectedin can be used to develop 'molecularly targeted' combination strategies.

  16. The dynamic changes of myeloid derived suppressor cells and tumor associated macrophages in Panc02 pancreatic cancer bearing immunocompetent mice%免疫健全小鼠Panc02胰腺癌发展过程中髓系来源抑制细胞与肿瘤相关巨噬细胞动态变化

    Institute of Scientific and Technical Information of China (English)

    刘乔飞; 廖泉; 宗毅; 牛哲禹; 王梦一; 李媛; 卢朝辉; 赵玉沛

    2014-01-01

    Objective To establish an immunocompetent pancreatic cancer bearing mice model and clarify the dynamic changes of the CD11b+ GR-1 + myeloid derived suppressor cells (MDSC),CD11 b + Ly6Clow Ly6G + polymorphonuclear myeloid derived suppressor cells (PMN-MDSC) and CD1 1b + Ly6C + Ly6G-monocytic myeloid derived suppressor cells (Mo-MDSC),F4/80+ tumor associated macrophages (TAM) and F4/80 + CD16/32 + CD206-classical activated macrophages (M1),F4/80 + CD16/32-CD206 + adaptive activated macrophages (M2) in pancreatic cancer bearing mice.Methods The C57B6/J mice syngeneic pancreatic adenocarcinoma cell line Panc02 ceils were subcutaneously implanted to establish the immunocompetent murine pancreatic cancer bearing model.According to the tumor size,it was divided into four stages,named T1-T4.The flow cytometry (FCM) was performed to identify the different cell populations.Results With tumor progression,the MDSC population was consistently increased [for peripheral blood,T1 vs.T4,(4.95 ±1.03)% vs.(36.45 ±6.43)%,P<0.01; for tumor tissue,T1 vs.T4,(2.95 ± 2.95) % vs.(18.17 ± 3.30) %,P < 0.01],and the PMN-MDSC was the main subpopulation and dramatically increased [for peripheral blood,T1 vs.T4,(29.73 ± 10.30) % vs.(66.40 ± 12.10)%,P<0.01; for tumor tissue,T1 vs.T4,(24.73±10.81)% vs.(73.17±10.81)%,P< 0.01],but the other subtype Mo-MDSC did not significantly change [for peripheral blood,T1 vs.T4,(10.30 ± 1.90) % vs.(9.87 ± 1.91) %,P > 0.05 ; for tumor tissue,T1 vs.T4,(9.10 ± 1.01) % vs.(9.90 ±2.21)%,P >0.05].The TAM in peripheral blood in T1-T3 stages was consistently increased,including both M1 and M2 [for M1,T1 vs.T3,(6.30 ± 1.25) % vs.(20.17 ±2.31) %,P <0.01 ; for M2,(0.87 ± 0.21) % vs.(5.40 ± 0.85) %,P < 0.01],but the M2/M1 ratio became bigger.The peripheral blood macrophages in T4 stage were dramatically declined [T3 vs.T4,(20.17 ± 2.31) % vs.(10.77 ± 1.52) %,P <0.01],but M2 was still increased [T3 vs.T4

  17. Macrophage-like cells in the muscularis externa of mouse small intestine

    DEFF Research Database (Denmark)

    Mikkelsen, H B; Thuneberg, L; Rumessen, J J;

    1985-01-01

    In muscularis externa of mouse small intestine, cells with ultrastructural features of macrophages were invariably observed in three layers: in the subserosal layer, between the circular and longitudinal muscle layers, and in association with the deep circular plexus. These macrophage-like cells...

  18. CTL Induction of Tumoricidal Nitric Oxide Production by Intratumoral Macrophages Is Critical for Tumor Elimination

    OpenAIRE

    Vicetti Miguel, Rodolfo D.; Cherpes, Thomas L.; Watson, Leah J.; McKenna, Kyle C.

    2010-01-01

    To characterize mechanisms of CTL inhibition within an ocular tumor microenvironment, tumor-specific CTLs were transferred into mice with tumors developing within the anterior chamber of the eye or skin. Ocular tumors were resistant to CTL transfer therapy whereas skin tumors were sensitive. CTLs infiltrated ocular tumors at higher CTL/tumor ratios than in skin tumors and demonstrated comparable ex vivo effector function to CTLs within skin tumors indicating that ocular tumor progression was ...

  19. Macrophage Cell Membrane Camouflaged Au Nanoshells for in Vivo Prolonged Circulation Life and Enhanced Cancer Photothermal Therapy.

    Science.gov (United States)

    Xuan, Mingjun; Shao, Jingxin; Dai, Luru; Li, Junbai; He, Qiang

    2016-04-20

    Macrophage cell membrane (MPCM)-camouflaged gold nanoshells (AuNS) that can serve as a new generation of photothermal conversion agents for in vivo photothermal cancer therapy are presented. They are constructed by the fusion of biocompatible AuNSs and MPCM vesicles. The resulting MPCM-coated AuNSs exhibited good colloidal stability and kept the original near-infrared (NIR) adsorption of AuNSs. Because AuNS carried high-density coverage of MPCMs, the totally functional portions of macrophage cells membrane were grafted onto the surface of AuNSs. This surface functionalization provided active targeting ability by recognizing tumor endothelium and thus improved tumoritropic accumulation compared to the red blood cell membrane-coating approach. These biomimetic nanoparticles significantly enhance in vivo blood circulation time and local accumulation at the tumor when administered systematically. Upon NIR laser irradiation, local heat generated by the MPCM-coated AuNS achieves high efficiency to suppress tumor growth and selectively ablate cancerous cells within the illuminated zone. Therefore, MPCM-coated AuNSs remained the natural properties of their source cells, which may improve the efficacy of photothermal therapy modulated by AuNSs and other noble-metal nanoparticles.

  20. Non invasive imaging assessment of the biodistribution of GSK2849330, an ADCC and CDC optimized anti HER3 mAb, and its role in tumor macrophage recruitment in human tumor-bearing mice.

    Science.gov (United States)

    Alsaid, Hasan; Skedzielewski, Tinamarie; Rambo, Mary V; Hunsinger, Kristen; Hoang, Bao; Fieles, William; Long, Edward R; Tunstead, James; Vugts, Danielle J; Cleveland, Matthew; Clarke, Neil; Matheny, Christopher; Jucker, Beat M

    2017-01-01

    The purpose of this work was to use various molecular imaging techniques to non-invasively assess GSK2849330 (anti HER3 ADCC and CDC enhanced 'AccretaMab' monoclonal antibody) pharmacokinetics and pharmacodynamics in human xenograft tumor-bearing mice. Immuno-PET biodistribution imaging of radiolabeled 89Zr-GSK2849330 was assessed in mice with HER3 negative (MIA-PaCa-2) and positive (CHL-1) human xenograft tumors. Dose dependency of GSK2849330 disposition was assessed using varying doses of unlabeled GSK2849330 co-injected with 89Zr-GSK2849330. In-vivo NIRF optical imaging and ex-vivo confocal microscopy were used to assess the biodistribution of GSK2849330 and the HER3 receptor occupancy in HER3 positive xenograft tumors (BxPC3, and CHL-1). Ferumoxytol (USPIO) contrast-enhanced MRI was used to investigate the effects of GSK2849330 on tumor macrophage content in CHL-1 xenograft bearing mice. Immuno-PET imaging was used to monitor the whole body drug biodistribution and CHL-1 xenograft tumor uptake up to 144 hours post injection of 89Zr-GSK2849330. Both hepatic and tumor uptake were dose dependent and saturable. The optical imaging data in the BxPC3 xenograft tumor confirmed the tumor dose response finding in the Immuno-PET study. Confocal microscopy showed a distinguished cytoplasmic punctate staining pattern within individual CHL-1 cells. GSK2849330 inhibited tumor growth and this was associated with a significant decrease in MRI signal to noise ratio after USPIO injection and with a significant increase in tumor macrophages as confirmed by a quantitative immunohistochemistry analysis. By providing both dose response and time course data from both 89Zr and fluorescently labeled GSK2849330, complementary imaging studies were used to characterize GSK2849330 biodistribution and tumor uptake in vivo. Ferumoxytol-enhanced MRI was used to monitor aspects of the immune system response to GSK2849330. Together these approaches potentially provide clinically translatable

  1. Metastasis and circulating tumor cells

    NARCIS (Netherlands)

    Dalum, van G.; Holland, L.; Terstappen, L.W.M.M.

    2012-01-01

    Cancer is a prominent cause of death worldwide. In most cases, it is not the primary tumor which causes death, but the metastases. Metastatic tumors are spread over the entire human body and are more difficult to remove or treat than the primary tumor. In a patient with metastatic disease, circulati

  2. Macrophage-Mediated Lymphangiogenesis: The Emerging Role of Macrophages as Lymphatic Endothelial Progenitors

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Sophia, E-mail: sran@siumed.edu; Montgomery, Kyle E. [Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, 801 N. Rutledge, Springfield, IL 62794 (United States)

    2012-06-27

    It is widely accepted that macrophages and other inflammatory cells support tumor progression and metastasis. During early stages of neoplastic development, tumor-infiltrating macrophages (TAMs) mount an immune response against transformed cells. Frequently, however, cancer cells escape the immune surveillance, an event that is accompanied by macrophage transition from an anti-tumor to a pro-tumorigenic type. The latter is characterized by high expression of factors that activate endothelial cells, suppress immune response, degrade extracellular matrix, and promote tumor growth. Cumulatively, these products of TAMs promote tumor expansion and growth of both blood and lymphatic vessels that facilitate metastatic spread. Breast cancers and other epithelial malignancies induce the formation of new lymphatic vessels (i.e., lymphangiogenesis) that leads to lymphatic and subsequently, to distant metastasis. Both experimental and clinical studies have shown that TAMs significantly promote tumor lymphangiogenesis through paracrine and cell autonomous modes. The paracrine effect consists of the expression of a variety of pro-lymphangiogenic factors that activate the preexisting lymphatic vessels. The evidence for cell-autonomous contribution is based on the observed tumor mobilization of macrophage-derived lymphatic endothelial cell progenitors (M-LECP) that integrate into lymphatic vessels prior to sprouting. This review will summarize the current knowledge of macrophage-dependent growth of new lymphatic vessels with specific emphasis on an emerging role of macrophages as lymphatic endothelial cell progenitors (M-LECP)

  3. File list: His.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 Histone Blood Granulocyte-Macrop...edbc.jp/kyushu-u/mm9/assembled/His.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  4. File list: His.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 Histone Blood Granulocyte-Mac...edbc.jp/kyushu-u/mm9/assembled/His.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  5. RG7212 anti-TWEAK mAb inhibits tumor growth through inhibition of tumor cell proliferation and survival signaling and by enhancing the host antitumor immune response.

    Science.gov (United States)

    Yin, Xuefeng; Luistro, Leopoldo; Zhong, Hua; Smith, Melissa; Nevins, Tom; Schostack, Kathleen; Hilton, Holly; Lin, Tai-An; Truitt, Theresa; Biondi, Denise; Wang, Xiaoqian; Packman, Kathryn; Rosinski, Jim; Berkofsky-Fessler, Windy; Tang, Jian-Ping; Pant, Saumya; Geho, David; Vega-Harring, Suzana; Demario, Mark; Levitsky, Hy; Simcox, Mary

    2013-10-15

    To explore the role of TWEAK in tumor growth and antitumor immune response and the activity and mechanism of RG7212, an antagonistic anti-TWEAK antibody, in tumor models. TWEAK-induced signaling and gene expression were explored in tumor cell lines and inhibition of these effects and antitumor efficacy with RG7212 treatment was assessed in human tumor xenograft-, patient-derived xenograft, and syngeneic tumor models and phase I patients. Genetic features correlated with antitumor activity were characterized. In tumor cell lines, TWEAK induces proliferation, survival, and NF-κB signaling and gene expression that promote tumor growth and suppress antitumor immune responses. TWEAK-inducible CD274, CCL2, CXCL-10 and -11 modulate T-cell and monocyte recruitment, T-cell activation, and macrophage differentiation. These factors and TWEAK-induced signaling were decreased, and tumor, blood, and spleen immune cell composition was altered with RG7212 treatment in mice. RG7212 inhibits tumor growth in vivo in models with TWEAK receptor, Fn14, expression, and markers of pathway activation. In phase I testing, signs of tumor shrinkage and stable disease were observed without dose-limiting toxicity. In a patient with advanced, Fn14-positive, malignant melanoma with evidence of tumor regression, proliferation markers were dramatically reduced, tumor T-cell infiltration increased, and tumor macrophage content decreased. Antitumor activity, a lack of toxicity in humans and animals and no evidence of antagonism with standard of care or targeted agents in mice, suggests that RG7212 is a promising agent for use in combination therapies in patients with Fn14-positive tumors. ©2013 AACR.

  6. SYNOVIAL GIANT CELL TUMOR OF THE KNEE.

    Science.gov (United States)

    Abdalla, Rene Jorge; Cohen, Moisés; Nóbrega, Jezimar; Forgas, Andrea

    2009-01-01

    Synovial giant cell tumor is a benign neoplasm, rarely reported in the form of malignant metastasis. Synovial giant cell tumor most frequently occurs on the hand, and, most uncommon, on the ankle and knee. In the present study, the authors describe a rare case of synovial giant cell tumor on the knee as well as the treatment approach. Arthroscopy has been shown, in this case, to be the optimal method for treating this kind of lesion, once it allowed a less aggressive approach, while providing good visualization of all compartments of knee joint and full tumor resection.

  7. [Granular cell tumor of the larynx].

    Science.gov (United States)

    Modrzyński, M; Wróbel, B; Zawisza, E; Drozd, K

    1999-09-01

    Granular cell tumor is an unusual growth of probably neuroectodermal histogenesis, first reported by Abrikossoff in 1926 with the name of myoblastenmyoma. Authors described a case of a 54 year man with laryngeal seat of granular-cell myoblastoma. In this case Abrikossoff tumor was located in the right vocal chord. The tumor was treated successfully surgically by microlaryngoscopy. The etiology, clinical features and diagnostic difficulties are discussed.

  8. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Hankey, Pamela [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Mishin, Vladimir; Francis, Mary [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Yu, Shan [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-07-15

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup −/−} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup −/−} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup −/−} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup −/−} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup −/−} mice

  9. Activated human mast cells induce LOX-1-specific scavenger receptor expression in human monocyte-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Mervi Alanne-Kinnunen

    Full Text Available Activated mast cells in atherosclerotic lesions degranulate and release bioactive compounds capable of regulating atherogenesis. Here we examined the ability of activated human primary mast cells to regulate the expression of the major scavenger receptors in cultured human primary monocyte-derived macrophages (HMDMs.Components released by immunologically activated human primary mast cells induced a transient expression of lectin-like oxidized LDL receptor (LOX-1 mRNA in HMDMs, while the expression of two other scavenger receptors, MSR1 and CD36, remained unaffected. The LOX-1-inducing secretory components were identified as histamine, tumor necrosis factor alpha (TNF-α, and transforming growth factor beta (TGF-β1, which exhibited a synergistic effect on LOX-1 mRNA expression. Histamine induced a transient expression of LOX-1 protein. Mast cell -induced increase in LOX-1 expression was not associated with increased uptake of oxidized LDL by the macrophages.Mast cell-derived histamine, TNF-α, and TGF-β1 act in concert to induce a transient increase in LOX-1 expression in human primary monocyte-derived macrophages. The LOX-1-inducing activity potentially endows mast cells a hitherto unrecognized role in the regulation of innate immune reactions in atherogenesis.

  10. Granular cell tumors of the tracheobronchial tree.

    NARCIS (Netherlands)

    Maten, van der J; Blaauwgeers, JL; Sutedja, G.; Kwa, HB; Postmus, P.E.; Wagenaar, SS

    2003-01-01

    OBJECTIVE: To describe the population-based incidence and clinical characteristics of granular cell tumors of the tracheobronchial tree. METHODS: All newly registered tracheobronchial granular cell tumors in the Dutch Network and National Database for Pathology for 10 consecutive years (1990-1999) w

  11. Treatment Option Overview (Ovarian Germ Cell Tumors)

    Science.gov (United States)

    ... ovarian germ cell tumor are swelling of the abdomen or vaginal bleeding after menopause. Ovarian germ cell ... if you have either of the following: Swollen abdomen without weight gain in other parts of the ...

  12. General Information about Ovarian Germ Cell Tumors

    Science.gov (United States)

    ... ovarian germ cell tumor are swelling of the abdomen or vaginal bleeding after menopause. Ovarian germ cell ... if you have either of the following: Swollen abdomen without weight gain in other parts of the ...

  13. Immune Cells in Blood Recognize Tumors

    Science.gov (United States)

    NCI scientists have developed a novel strategy for identifying immune cells circulating in the blood that recognize specific proteins on tumor cells, a finding they believe may have potential implications for immune-based therapies.

  14. Macrophages: Regulators of the Inflammatory Microenvironment during Mammary Gland Development and Breast Cancer.

    Science.gov (United States)

    Brady, Nicholas J; Chuntova, Pavlina; Schwertfeger, Kathryn L

    2016-01-01

    Macrophages are critical mediators of inflammation and important regulators of developmental processes. As a key phagocytic cell type, macrophages evolved as part of the innate immune system to engulf and process cell debris and pathogens. Macrophages produce factors that act directly on their microenvironment and also bridge innate immune responses to the adaptive immune system. Resident macrophages are important for acting as sensors for tissue damage and maintaining tissue homeostasis. It is now well-established that macrophages are an integral component of the breast tumor microenvironment, where they contribute to tumor growth and progression, likely through many of the mechanisms that are utilized during normal wound healing responses. Because macrophages contribute to normal mammary gland development and breast cancer growth and progression, this review will discuss both resident mammary gland macrophages and tumor-associated macrophages with an emphasis on describing how macrophages interact with their surrounding environment during normal development and in the context of cancer.

  15. Primary macrophages and J774 cells respond differently to infection with Mycobacterium tuberculosis

    Science.gov (United States)

    Andreu, Nuria; Phelan, Jody; de Sessions, Paola F.; Cliff, Jacqueline M.; Clark, Taane G.; Hibberd, Martin L.

    2017-01-01

    Macrophages play an essential role in the early immune response to Mycobacterium tuberculosis and are the cell type preferentially infected in vivo. Primary macrophages and macrophage-like cell lines are commonly used as infection models, although the physiological relevance of cell lines, particularly for host-pathogen interaction studies, is debatable. Here we use high-throughput RNA-sequencing to analyse transcriptome dynamics of two macrophage models in response to M. tuberculosis infection. Specifically, we study the early response of bone marrow-derived mouse macrophages and cell line J774 to infection with live and γ-irradiated (killed) M. tuberculosis. We show that infection with live bacilli specifically alters the expression of host genes such as Rsad2, Ifit1/2/3 and Rig-I, whose potential roles in resistance to M. tuberculosis infection have not yet been investigated. In addition, the response of primary macrophages is faster and more intense than that of J774 cells in terms of number of differentially expressed genes and magnitude of induction/repression. Our results point to potentially novel processes leading to immune containment early during M. tuberculosis infection, and support the idea that important differences exist between primary macrophages and cell lines, which should be taken into account when choosing a macrophage model to study host-pathogen interactions. PMID:28176867

  16. Tumor Evasion from T Cell Surveillance

    Directory of Open Access Journals (Sweden)

    Katrin Töpfer

    2011-01-01

    Full Text Available An intact immune system is essential to prevent the development and progression of neoplastic cells in a process termed immune surveillance. During this process the innate and the adaptive immune systems closely cooperate and especially T cells play an important role to detect and eliminate tumor cells. Due to the mechanism of central tolerance the frequency of T cells displaying appropriate arranged tumor-peptide-specific-T-cell receptors is very low and their activation by professional antigen-presenting cells, such as dendritic cells, is frequently hampered by insufficient costimulation resulting in peripheral tolerance. In addition, inhibitory immune circuits can impair an efficient antitumoral response of reactive T cells. It also has been demonstrated that large tumor burden can promote a state of immunosuppression that in turn can facilitate neoplastic progression. Moreover, tumor cells, which mostly are genetically instable, can gain rescue mechanisms which further impair immune surveillance by T cells. Herein, we summarize the data on how tumor cells evade T-cell immune surveillance with the focus on solid tumors and describe approaches to improve anticancer capacity of T cells.

  17. Cell mediated therapeutics for cancer treatment: Tumor homing cells as therapeutic delivery vehicles

    Science.gov (United States)

    Balivada, Sivasai

    Many cell types were known to have migratory properties towards tumors and different research groups have shown reliable results regarding cells as delivery vehicles of therapeutics for targeted cancer treatment. Present report discusses proof of concept for 1. Cell mediated delivery of Magnetic nanoparticles (MNPs) and targeted Magnetic hyperthermia (MHT) as a cancer treatment by using in vivo mouse cancer models, 2. Cells surface engineering with chimeric proteins for targeted cancer treatment by using in vitro models. 1. Tumor homing cells can carry MNPs specifically to the tumor site and tumor burden will decrease after alternating magnetic field (AMF) exposure. To test this hypothesis, first we loaded Fe/Fe3O4 bi-magnetic NPs into neural progenitor cells (NPCs), which were previously shown to migrate towards melanoma tumors. We observed that NPCs loaded with MNPs travel to subcutaneous melanoma tumors. After alternating magnetic field (AMF) exposure, the targeted delivery of MNPs by the NPCs resulted in a mild decrease in tumor size (Chapter-2). Monocytes/macrophages (Mo/Ma) are known to infiltrate tumor sites, and also have phagocytic activity which can increase their uptake of MNPs. To test Mo/Ma-mediated MHT we transplanted Mo/Ma loaded with MNPs into a mouse model of pancreatic peritoneal carcinomatosis. We observed that MNP-loaded Mo/Ma infiltrated pancreatic tumors and, after AMF treatment, significantly prolonged the lives of mice bearing disseminated intraperitoneal pancreatic tumors (Chapter-3). 2. Targeted cancer treatment could be achieved by engineering tumor homing cell surfaces with tumor proteases cleavable, cancer cell specific recombinant therapeutic proteins. To test this, Urokinase and Calpain (tumor specific proteases) cleavable; prostate cancer cell (CaP) specific (CaP1 targeting peptide); apoptosis inducible (Caspase3 V266ED3)- rCasp3V266ED3 chimeric protein was designed in silico. Hypothesized membrane anchored chimeric protein (rCasp3V

  18. Role of cellular density, in vitro, in anti-tumor activity of CFA-treated and immunized cells.

    Science.gov (United States)

    Uyeki, E M; Truitt, G A; Bisel, T U

    1976-11-01

    Incorporation of tritiated deoxythymidine (3HdT) into DNA was used to measure growth, in vitro, of P815 tumor cells admixed with spleen and peritoneal effector cells. At a high tumor cell density ((1x10(5) cells per dish), using anti-theta and anti-macrophage sera, T-cells and macrophages from the peritoneum of immunized mice could be identified as cells possessing anti-tumor activity. A nonspecific inhibition by normal effector cells, which occurred at the high tumor cell density, did not occur at a lower tumor cell density (1x10(4) cells per dish). Therefore, the effects of immunization and Freund's adjuvant treatment on the anti-tumor activity of effector cells were determined more accurately when normal cells were no longer inhibitory. Thus, experimental variables dealing with cellular density (cells/mm2 of the culture vessel surface) and effector:tumor cell ratios play an important role in the anti-proliferative capacity of effector cells.

  19. File list: Pol.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 RNA polymerase Blood Granulocyte-Macrophage... Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  20. File list: NoD.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 No description Blood Granulocyte-Macrophage... Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  1. File list: Unc.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 Unclassified Blood Granulocyte-Macrophage... Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  2. File list: Unc.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 Unclassified Blood Granulocyte-Macrophage... Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  3. File list: NoD.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 No description Blood Granulocyte-Macrophage... Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  4. File list: Oth.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 TFs and others Blood Granulocyte-Macrophage... Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  5. File list: Unc.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 Unclassified Blood Granulocyte-Macrophage... Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Unc.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  6. File list: NoD.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 No description Blood Granulocyte-Macrophage... Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  7. File list: Oth.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 TFs and others Blood Granulocyte-Macrophage... Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  8. File list: Pol.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 RNA polymerase Blood Granulocyte-Macrophage... Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  9. File list: DNS.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 DNase-seq Blood Granulocyte-Macrophage... Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  10. File list: DNS.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 DNase-seq Blood Granulocyte-Macrophage... Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  11. File list: Oth.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 TFs and others Blood Granulocyte-Macrophage... Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  12. File list: DNS.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available DNS.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 DNase-seq Blood Granulocyte-Macrophage... Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/DNS.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  13. File list: NoD.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 No description Blood Granulocyte-Macrophage... Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  14. File list: InP.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 Input control Blood Granulocyte-Macrophage... Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.20.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  15. File list: Pol.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 RNA polymerase Blood Granulocyte-Macrophage... Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  16. File list: Oth.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 TFs and others Blood Granulocyte-Macrophage... Progenitor Cells http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  17. The Role of Selected Flavonols in Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Receptor–1 (TRAIL-R1 Expression on Activated RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Monika Warat

    2015-01-01

    Full Text Available Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Receptors (TRAIL-R are an important factor of apoptosis in cancer cells. There are no data about the effect of flavonols on the receptor expression on a surface of macrophage like cells. In this study, the expression level of TRAIL-R1 on murine RAW264.7 macrophages in the presence of selected flavonols: galangin, kaempferol, kaempferide and quercetin, which differ from their phenyl ring substituents, were studied. The expression of TRAIL-R1 death receptors on non-stimulated and lipopolysaccharide (LPS-stimulated macrophages was determined using flow cytometry. The results suggested that compounds being tested can modulate TRAIL-R1 expression and can enhance TRAIL-mediated apoptosis.

  18. MicroRNA-155 Regulates Inflammatory Cytokine Production in Tumor-associated Macrophages via Targeting C/EBPβ

    Institute of Scientific and Technical Information of China (English)

    Min He; Zhenqun Xu; Tong Ding; Dong-Ming Kuang; Limin Zheng

    2009-01-01

    Macrophages (Mψ) are prominent components of solid tumors and exhibit distinct phenotypes in different microenvironments. We have recently found that tumors can alter the normal developmental process of Mψ to trigger transient activation of monocytes, but the underlying regulatory mechanisms are incompletely understood. Here, we showed that the protein expression of transcription factor C/EBPβ was markedly elevated in tumor-associated Mψ both in vitro and human tumors in situ. The expression of C/EBPβ protein correlated with cytokine production in tumor-activated monocytes. Moreover, we found that C/EBPβ expression was regulated at the post-transcriptional level and correlated with sustained reduction of microRNA-155 (miR-155) in tumor-activated monocytes. Bioinformatic analysis revealed that C/EBPβ is a potential target of miR-155 and luciferase assay confirmed that C/EBPβ translation is suppressed by miR-155 through interaction with the 3'UTR of C/EBPβ mRNA. Further analysis showed that induction of miR-155 suppressed C/EBPβ protein expression as well as cytokine production in tumor-activated monocytes, an effect which could be mimicked by silencing of C/EBPβ. These results indicate that tumor environment causes a sustained reduction of miR-155 in monocytes/Mψ, which in turn regulates the functional activities of monocytes/Mψ by releasing the translational inhibition of transcription factor C/EBPβ. Cellular & Molecular Immunology. 2009;6(5):343-352.

  19. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells

    Directory of Open Access Journals (Sweden)

    Tozeren Aydin

    2006-11-01

    Full Text Available Abstract Background Cell lines are used in experimental investigation of cancer but their capacity to represent tumor cells has yet to be quantified. The aim of the study was to identify significant alterations in pathway usage in cell lines in comparison with normal and tumor tissue. Methods This study utilized a pathway-specific enrichment analysis of publicly accessible microarray data and quantified the gene expression differences between cell lines, tumor, and normal tissue cells for six different tissue types. KEGG pathways that are significantly different between cell lines and tumors, cell lines and normal tissues and tumor and normal tissue were identified through enrichment tests on gene lists obtained using Significance Analysis of Microarrays (SAM. Results Cellular pathways that were significantly upregulated in cell lines compared to tumor cells and normal cells of the same tissue type included ATP synthesis, cell communication, cell cycle, oxidative phosphorylation, purine, pyrimidine and pyruvate metabolism, and proteasome. Results on metabolic pathways suggested an increase in the velocity nucleotide metabolism and RNA production. Pathways that were downregulated in cell lines compared to tumor and normal tissue included cell communication, cell adhesion molecules (CAMs, and ECM-receptor interaction. Only a fraction of the significantly altered genes in tumor-to-normal comparison had similar expressions in cancer cell lines and tumor cells. These genes were tissue-specific and were distributed sparsely among multiple pathways. Conclusion Significantly altered genes in tumors compared to normal tissue were largely tissue specific. Among these genes downregulation was a major trend. In contrast, cell lines contained large sets of significantly upregulated genes that were common to multiple tissue types. Pathway upregulation in cell lines was most pronounced over metabolic pathways including cell nucleotide metabolism and oxidative

  20. Tumor's other immune targets: dendritic cells.

    Science.gov (United States)

    Esche, C; Lokshin, A; Shurin, G V; Gastman, B R; Rabinowich, H; Watkins, S C; Lotze, M T; Shurin, M R

    1999-08-01

    The induction of apoptosis in T cells is one of several mechanisms by which tumors escape immune recognition. We have investigated whether tumors induce apoptosis in dendritic cells (DC) by co-culture of murine or human DC with different tumor cell lines for 4-48 h. Analysis of DC morphological features, JAM assay, TUNEL, caspase-3-like and transglutaminase activity, Annexin V binding, and DNA fragmentation assays revealed a time- and dose-dependent induction of apoptosis in DC by tumor-derived factors. This finding is both effector and target specific. The mechanism of tumor-induced DC apoptosis involved regulation of Bcl-2 and Bax expression. Double staining of both murine and human tumor tissues confirmed that tumor-associated DC undergo apoptotic death in vivo. DC isolated from tumor tissue showed significantly higher levels of apoptosis as determined by TUNEL assay when compared with DC isolated from spleen. These findings demonstrate that tumors induce apoptosis in DC and suggest a new mechanism of tumor escape from immune recognition. DC protection from apoptosis will lead to improvement of DC-based immunotherapies for cancer and other immune diseases.

  1. Macrophage Recruitment and Epithelial Repair Following Hair Cell Injury in the Mouse Utricle

    Directory of Open Access Journals (Sweden)

    Tejbeer eKaur

    2015-04-01

    Full Text Available The sensory organs of the inner ear possess resident populations of macrophages, but the function of those cells is poorly understood. In many tissues, macrophages participate in the removal of cellular debris after injury and can also promote tissue repair. The present study examined injury-evoked macrophage activity in the mouse utricle. Experiments used transgenic mice in which the gene for the human diphtheria toxin receptor (huDTR was inserted under regulation of the Pou4f3 promoter. Hair cells in such mice can be selectively lesioned by systemic treatment with diphtheria toxin (DT. In order to visualize macrophages, Pou4f3-huDTR mice were crossed with a second transgenic line, in which one or both copies of the gene for the fractalkine receptor CX3CR1 were replaced with a gene for GFP. Such mice expressed GFP in all macrophages, and mice that were CX3CR1GFP/GFP lacked the necessary receptor for fractalkine signaling. Treatment with DT resulted in the death of ~70% of utricular hair cells within seven days, which was accompanied by increased numbers of macrophages within the utricular sensory epithelium. Many of these macrophages appeared to be actively engulfing hair cell debris, indicating that macrophages participate in the process of ‘corpse removal’ in the mammalian vestibular organs. However, we observed no apparent differences in injury-evoked macrophage numbers in the utricles of CX3CR1+/GFP mice vs. CX3CR1GFP/GFP mice, suggesting that fractalkine signaling is not necessary for macrophage recruitment in these sensory organs. Finally, we found that repair of sensory epithelia at short times after DT-induced hair cell lesions was mediated by relatively thin cables of F-actin. After 56 days recovery, however, all cell-cell junctions were characterized by very thick actin cables.

  2. Ganoderma lucidum Polysaccharides Induce Macrophage-Like Differentiation in Human Leukemia THP-1 Cells via Caspase and p53 Activation

    Directory of Open Access Journals (Sweden)

    Jia-Wei Hsu

    2011-01-01

    Full Text Available Differentiation therapy by induction of tumor cells is an important method in the treatment of hematological cancers such as leukemia. Tumor cell differentiation ends cancer cells' immortality, thus stopping cell growth and proliferation. In our previous study, we found that fucose-containing polysaccharide fraction F3 extracted from Ganoderma lucidum can bring about cytokine secretion and cell death in human leukemia THP-1 cells. This prompted us to further investigate on how F3 induces the differentiation in human leukemia cells. We integrated time-course microarray analysis and network modeling to study the F3-induced effects on THP-1 cells. In addition, we determined the differentiation effect using Liu's staining, nitroblue tetrazolium (NBT reduction assay, flow cytometer, western blotting and Q-PCR. We also examined the modulation and regulation by F3 during the differentiation process. Dynamic gene expression profiles showed that cell differentiation was induced in F3-treated THP-1 cells. Furthermore, F3-treated THP-1 cells exhibited enhanced macrophage differentiation, as demonstrated by changes in cell adherence, cell cycle arrest, NBT reduction and expression of differentiation markers including CD11b, CD14, CD68, matrix metalloproteinase-9 and myeloperoxidase. In addition, caspase cleavage and p53 activation were found to be significantly enhanced in F3-treated THP-1 cells. We unraveled the role of caspases and p53 in F3-induced THP-1 cells differentiation into macrophages. Our results provide a molecular explanation for the differentiation effect of F3 on human leukemia THP-1 cells and offer a prospect for a potential leukemia differentiation therapy.

  3. Macropinocytosis contributes to the macrophage foam cell formation in RAW264.7 cells

    Institute of Scientific and Technical Information of China (English)

    Wenqi Yao; Ke Li; Kan Liao

    2009-01-01

    The key event in the atherosclerosis development is the lipids uptake by macrophage and the formation of foam cell in subendothelial arterial space. Besides the uptake of modified low-density lipoprotein (LDL) by scavenger receptor-mediated endocytosis, macrophages possess constitutive macropinocytosis, which is capable of taking up a large quantity of solute. Macrophage foam cell formation could be induced in RAW264.7 cells by increasing the serum concentration in the culture medium. Foam cell formation induced by serum could be blocked by phosphoinositide 3-kinase inhibi-tor, LY294002 or wortmannin, which inhibited macro-pinocytosis but not receptor-mediated endocytosis. Further analysis indicated that macropinocytosis took place at the gangliosides-enriched membrane area. Cholesterol depletion by β-methylcyclodextrin-blocked macropinocytosis without affecting scavenger receptor-mediated endocytosis of modified LDLs. These results suggested that macropinocytosis might be one of the important mechanisms for lipid uptake in macrophage. And it made significant contribution to the lipid accumulation and foam cell formation.

  4. Mycobacterium bovis Bacillus Calmette-Guérin-Induced Macrophage Cytotoxicity against Bladder Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yi Luo

    2010-01-01

    Full Text Available Many details of the molecular and cellular mechanisms involved in Mycobacterium bovis bacillus Calmette-Guérin (BCG immunotherapy of bladder cancer have been discovered in the past decades. However, information on a potential role for macrophage cytotoxicity as an effector mechanism is limited. Macrophages play pivotal roles in the host innate immunity and serve as a first line of defense in mycobacterial infection. In addition to their function as professional antigen-presenting cells, the tumoricidal activity of macrophages has also been studied with considerable interest. Studies have shown that activated macrophages are potent in killing malignant cells of various tissue origins. This review summarizes the current understanding of the BCG-induced macrophage cytotoxicity toward bladder cancer cells with an intention to inspire investigation on this important but underdeveloped research field.

  5. Safrole suppresses murine myelomonocytic leukemia WEHI-3 cells in vivo, and stimulates macrophage phagocytosis and natural killer cell cytotoxicity in leukemic mice.

    Science.gov (United States)

    Yu, Fu-Shun; Yang, Jai-Sing; Yu, Chun-Shu; Chiang, Jo-Hua; Lu, Chi-Cheng; Chung, Hsiung-Kwang; Yu, Chien-Chih; Wu, Chih-Chung; Ho, Heng-Chien; Chung, Jing-Gung

    2013-11-01

    Many anticancer drugs are obtained from phytochemicals and natural products. However, some phytochemicals have mutagenic effects. Safrole, a component of Piper betle inflorescence, has been reported to be a carcinogen. We have previously reported that safrole induced apoptosis in human oral cancer cells in vitro and inhibited the human oral tumor xenograft growth in vivo. Until now, there is no information addressing if safrole promotes immune responses in vivo. To evaluate whether safrole modulated immune function, BALB/c mice were intraperitoneally injected with murine myelomonocytic WEHI-3 leukemia cells to establish leukemia and then were treated with or without safrole at 4 and 16 mg/kg. Animals were sacrificed after 2 weeks post-treatment with safrole for examining the immune cell populations, phagocytosis of macrophages and the natural killer (NK) cells' cytotoxicity. Results indicated that safrole increased the body weight, and decreased the weights of spleen and liver in leukemic mice. Furthermore, safrole promoted the activities of macrophages phagocytosis and NK cells' cytotoxicity in leukemic mice when compared with untreated leukemic mice. After determining the cell marker population, we found that safrole promoted the levels of CD3 (T cells), CD19 (B cells) and Mac-3 (macrophages), but it did not affect CD11b (monocytes) in leukemic mice. In conclusion, safrole altered the immune modulation and inhibited the leukemia WEHI-3 cells in vivo.

  6. Embryonic stem cell-derived M2-like macrophages delay cutaneous wound healing.

    Science.gov (United States)

    Dreymueller, Daniela; Denecke, Bernd; Ludwig, Andreas; Jahnen-Dechent, Willi

    2013-01-01

    In adults, repair of deeply injured skin wounds results in the formation of scar tissue, whereas in embryos wounds heal almost scar-free. Macrophages are important mediators of wound healing and secrete cytokines and tissue remodeling enzymes. In contrast to host defense mediated by inflammatory M1 macrophages, wound healing and tissue repair involve regulatory M2/M2-like macrophages. Embryonic/fetal macrophages are M2-like, and this may promote scar-free wound healing. In the present study, we asked whether atopical application of ex vivo generated, embryonic stem cell-derived macrophages (ESDM) improve wound healing in mice. ESDM were tested side by side with bone marrow-derived macrophages (BMDM). Compared to BMDM, ESDM resembled a less inflammatory and more M2-like macrophage subtype as indicated by their reduced responsiveness to lipopolysaccharide, reduced expression of Toll-like receptors, and reduced bacterial phagocytosis. Despite this anti-inflammatory phenotype in cell culture, ESDM prolonged the healing of deep skin wounds even more than BMDM. Healed wounds had more scar formation compared to wounds receiving BMDM or cell-free treatment. Our data indicate that atopical application of ex vivo generated macrophages is not a suitable cell therapy of dermal wounds.

  7. Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing.

    Directory of Open Access Journals (Sweden)

    Liwen Chen

    Full Text Available Bone marrow derived mesenchymal stem cells (BM-MSCs have been shown to enhance wound healing; however, the mechanisms involved are barely understood. In this study, we examined paracrine factors released by BM-MSCs and their effects on the cells participating in wound healing compared to those released by dermal fibroblasts. Analyses of BM-MSCs with Real-Time PCR and of BM-MSC-conditioned medium by antibody-based protein array and ELISA indicated that BM-MSCs secreted distinctively different cytokines and chemokines, such as greater amounts of VEGF-alpha, IGF-1, EGF, keratinocyte growth factor, angiopoietin-1, stromal derived factor-1, macrophage inflammatory protein-1alpha and beta and erythropoietin, compared to dermal fibroblasts. These molecules are known to be important in normal wound healing. BM-MSC-conditioned medium significantly enhanced migration of macrophages, keratinocytes and endothelial cells and proliferation of keratinocytes and endothelial cells compared to fibroblast-conditioned medium. Moreover, in a mouse model of excisional wound healing, where concentrated BM-MSC-conditioned medium was applied, accelerated wound healing occurred compared to administration of pre-conditioned or fibroblast-conditioned medium. Analysis of cell suspensions derived from the wound by FACS showed that wounds treated with BM-MSC-conditioned medium had increased proportions of CD4/80-positive macrophages and Flk-1-, CD34- or c-kit-positive endothelial (progenitor cells compared to wounds treated with pre-conditioned medium or fibroblast-conditioned medium. Consistent with the above findings, immunohistochemical analysis of wound sections showed that wounds treated with BM-MSC-conditioned medium had increased abundance of macrophages. Our results suggest that factors released by BM-MSCs recruit macrophages and endothelial lineage cells into the wound thus enhancing wound healing.

  8. Interstitial cells of Cajal, macrophages and mast cells in the gut musculature: morphology, distribution, spatial and possible functional interactions

    DEFF Research Database (Denmark)

    Mikkelsen, Hanne B

    2010-01-01

    Interstitial cells of Cajal (ICC) are recognized as pacemaker cells for gastrointestinal movement and are suggested to be mediators of neuromuscular transmission. Intestinal motility disturbances are often associated with a reduced number of ICC and/or ultrastructural damage, sometimes associated...... with immune cells. Macrophages and mast cells in the intestinal muscularis externa of rodents can be found in close spatial contact with ICC. Macrophages are a constant and regularly distributed cell population in the serosa and at the level of Auerbach's plexus (AP). In human colon, ICC are in close contact...... with macrophages at the level of AP, suggesting functional interaction. It has therefore been proposed that ICC and macrophages interact. Macrophages and mast cells are considered to play important roles in the innate immune defence by producing pro-inflammatory mediators during classical activation, which may...

  9. Crosstalk between medulloblastoma cells and endothelium triggers a strong chemotactic signal recruiting T lymphocytes to the tumor microenvironment.

    Directory of Open Access Journals (Sweden)

    Vita S Salsman

    Full Text Available Cancer cells can live and grow if they succeed in creating a favorable niche that often includes elements from the immune system. While T lymphocytes play an important role in the host response to tumor growth, the mechanism of their trafficking to the tumor remains poorly understood. We show here that T lymphocytes consistently infiltrate the primary brain cancer, medulloblastoma. We demonstrate, both in vitro and in vivo, that these T lymphocytes are attracted to tumor deposits only after the tumor cells have interacted with tumor vascular endothelium. Macrophage Migration Inhibitory Factor (MIF" is the key chemokine molecule secreted by tumor cells which induces the tumor vascular endothelial cells to secrete the potent T lymphocyte attractant "Regulated upon Activation, Normal T-cell Expressed, and Secreted (RANTES." This in turn creates a chemotactic gradient for RANTES-receptor bearing T lymphocytes. Manipulation of this pathway could have important therapeutic implications.

  10. Optimizing parameters for clinical-scale production of high IL-12 secreting dendritic cells pulsed with oxidized whole tumor cell lysate

    OpenAIRE

    Chiang Cheryl L-L; Maier Dawn A; Kandalaft Lana E; Brennan Andrea L; Lanitis Evripidis; Ye Qunrui; Levine Bruce L; Czerniecki Brian J; Powell Jr Daniel J; Coukos George

    2011-01-01

    Abstract Background Dendritic cells (DCs) are the most potent antigen-presenting cell population for activating tumor-specific T cells. Due to the wide range of methods for generating DCs, there is no common protocol or defined set of criteria to validate the immunogenicity and function of DC vaccines. Methods Monocyte-derived DCs were generated during 4 days of culture with recombinant granulocyte-macrophage colony stimulating factor and interleukin-4, and pulsed with tumor lysate produced b...

  11. CellTracks cytometer for detection of circulating tumor cells

    NARCIS (Netherlands)

    Tibbe, A.G.J.; Kooi, van der A.; Groot, de M.R.; Vermes, I.

    2003-01-01

    Introduction: In patients with carcinomas, tumor cells are shed into the circulation. The number of the circulating tumor cells is low and technology is needed that has sufficient sensitivity and specificity to enumerate and characterize these cells. The CellTracks system was developed to provide an

  12. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    Institute of Scientific and Technical Information of China (English)

    Guanqun Qiao; Qingquan Li; Gang Peng; Jun Ma; Hongwei Fan; Yingbin Li

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are stil unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cel s and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cel s were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibril ary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibril ary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibril ary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cel s. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.

  13. Giant cell tumor in adipose package Hoffa

    Science.gov (United States)

    Etcheto, H. Rivarola; Escobar, G.; Blanchod, C. Collazo; Palanconi, M.; Zordan, J.; Salinas, E. Alvarez; Autorino₁, Carlos

    2017-01-01

    Tumors of adipose Hoffa package are very uncommon, with isolated cases reported in the literature. His presentation in pediatric patients knee is exceptional. The most frequently described tumors are benign including vellonodular synovitis. The extra-articular localized variant there of is known as giant cell tumor of the tendon sheath. It is characterized by locally aggressive nature, and has been described in reports of isolated cases. Objective: A case of giant cell tumor of the tendon sheath in adipose presentation package Hoffa in pediatric patients is presented in this paper. Methods: male patient eleven years with right knee pain after sports practice was evaluated. Physical examination, showed limited extension -30º, joint effusion, stable negative Lachman maneuver without peripheral knee laxity. MRI hyperintense on tumor is observed in T2 and hypointense on T1 homogeneous and defined edges content displayed prior to LCA related to adipose Hoffa package. Results: The tumor specimen was obtained and histopathology is defined as densely cellular tissue accumulation of xantomisados fibrocollagenous with histiocytes and multinucleated giant cells, compatible with giant cell tumor of tendon sheath. Conclusion: The presentation of giant cell tumors of the tendon sheath in Hoffa fat pad is exceptional. However, his suspicion allows adequate preoperative surgical planning, as a whole resection is the only procedure that has been shown to decrease the rate of recurrence of this disease.

  14. Autocrine interferon priming in macrophages but not dendritic cells results in enhanced cytokine and chemokine production after coronavirus infection.

    Science.gov (United States)

    Zhou, Haixia; Zhao, Jincun; Perlman, Stanley

    2010-10-19

    Coronaviruses efficiently inhibit interferon (IFN) induction in nonhematopoietic cells and conventional dendritic cells (cDC). However, IFN is produced in infected macrophages, microglia, and plasmacytoid dendritic cells (pDC). To begin to understand why IFN is produced in infected macrophages, we infected bone marrow-derived macrophages (BMM) and as a control, bone marrow-derived DC (BMDC) with the coronavirus mouse hepatitis virus (MHV). As expected, BMM but not BMDC expressed type I IFN. IFN production in infected BMM was nearly completely dependent on signaling through the alpha/beta interferon (IFN-α/β) receptor (IFNAR). Several IFN-dependent cytokines and chemokines showed the same expression pattern, with enhanced production in BMM compared to BMDC and dependence upon signaling through the IFNAR. Exogenous IFN enhanced IFN-dependent gene expression in BMM at early times after infection and in BMDC at all times after infection but did not stimulate expression of molecules that signal through myeloid differentiation factor 88 (MyD88), such as tumor necrosis factor (TNF). Collectively, our results show that IFN is produced at early times postinfection (p.i.) in MHV-infected BMM, but not in BMDC, and primes expression of IFN and IFN-responsive genes. Further, our results also show that BMM are generally more responsive to MHV infection, since MyD88-dependent pathways are also activated to a greater extent in these cells than in BMDC.

  15. Fisetin antagonizes cell fusion, cytoskeletal organization and bone resorption in RANKL-differentiated murine macrophages.

    Science.gov (United States)

    Kim, Yun-Ho; Kim, Jung-Lye; Lee, Eun-Jung; Park, Sin-Hye; Han, Seon-Young; Kang, Soon Ah; Kang, Young-Hee

    2014-03-01

    Osteoclastogenesis is comprised of several stage s including progenitor survival, differentiation to mononuclear preosteoclasts, cell fusion to multinuclear mature osteoclasts, and activation to osteoclasts with bone resorbing activity. Botanical antioxidants are now being increasingly investigated for their health-promoting effects on bone. This study investigated that fisetin, a flavonol found naturally in many fruits and vegetables, suppressed osteoclastogenesis by disturbing receptor activator of nuclear factor (NF)-κB ligand (RANKL)-mediated signaling pathway and demoting osteoclastogenic protein induction. Nontoxic fisetin at ≤10 μM inhibited the induction of RANK, tumor necrosis factor receptor associated factor 6 (TRAF6) and the activation of NF-κB in RANKL-stimulated RAW 264.7 macrophages. In RANKL-differentiated osteoclasts cell fusion protein of E-cadherin was induced, which was dampened by fisetin. The formation of tartrate-resistance acid phosphatase-positive multinucleated osteoclasts was suppressed by adding fisetin to RANKL-exposed macrophages. It was also found that fisetin reduced actin ring formation and gelsolin induction of osteclasts enhanced by RANKL through disturbing c-Src-proline-rich tyrosine kinase 2 signaling. Fisetin deterred preosteoclasts from the cell-cell fusion and the organization of the cytoskeleton to seal the resorbing area and to secret protons for bone resorption. Consistently, the 5 day-treatment of fisetin diminished RANKL-induced cellular expression of carbonic anhydrase II and integrin β3 concurrently with a reduction of osteoclast bone-resorbing activity. Therefore, fisetin was a natural therapeutic agent retarding osteoclast fusion and cytoskeletal organization such as actin rings and ruffled boarder, which is a property of mature osteoclasts and is required for osteoclasts to resorb bone. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Specific Inhibition of the VEGFR-3 Tyrosine Kinase by SAR131675 Reduces Peripheral and Tumor Associated Immunosuppressive Myeloid Cells

    Energy Technology Data Exchange (ETDEWEB)

    Espagnolle, Nicolas [UMR5273 INSERM U1031/CNRS/EFS StromaLab, Toulouse 31432 (France); Barron, Pauline; Mandron, Marie; Blanc, Isabelle; Bonnin, Jacques [Sanofi Recherche et Développement, Early to Candidate DPU, Toulouse 31036 (France); Agnel, Magali; Kerbelec, Erwan [Molecular Biology Unit, Biologics Department, Sanofi, Vitry-sur-Seine 94400 (France); Herault, Jean Pascal; Savi, Pierre; Bono, Françoise; Alam, Antoine, E-mail: antoine.alam@sanofi.com [Sanofi Recherche et Développement, Early to Candidate DPU, Toulouse 31036 (France)

    2014-02-28

    Myeloid derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) represent prominent components in cancer progression. We previously showed that inhibition of the VEGFR-3 pathway by SAR131675 leads to reduction of TAM infiltration and tumor growth. Here, we found that treatment with SAR131675 prevents the accumulation of immunosuppressive blood and splenic MDSCs which express VEGFR-3, in 4T1 tumor bearing mice. Moreover we showed that soluble factors secreted by tumor cells promote MDSCs proliferation and differentiation into M2 polarized F4/80+ macrophages. In addition, cell sorting and transcriptomic analysis of tumor infiltrating myeloid cells revealed the presence of a heterogeneous population that could be divided into 3 subpopulations: (i) immature cells with a MDSC phenotype (GR1+/CD11b+/F4/80{sup −}); (ii) “immuno-incompetent” macrophages (F4/80{sup high}/CD86{sup neg}/MHCII{sup Low}) strongly expressing M2 markers such as Legumain, CD206 and Mgl1/2 and (iii) “immuno-competent”-M1 like macrophages (F4/80{sup Low}/CD86{sup +}/MHCII{sup High}). SAR131675 treatment reduced MDSCs in lymphoid organs as well as F4/80{sup High} populations in tumors. Interestingly, in the tumor SAR131675 was able to increase the immunocompetent M1 like population (F4/80{sup low}). Altogether these results demonstrate that the specific VEGFR-3 inhibitor SAR131675 exerts its anti tumoral activity by acting on different players that orchestrate immunosuppression and cancer progression in a tumoral context: MDSCs in peripheral lymphoid organs and TAMs infiltrating the tumor.

  17. Herceptin conjugates linked by EDC boost direct tumor cell death via programmed tumor cell necrosis.

    Directory of Open Access Journals (Sweden)

    Jiemiao Hu

    Full Text Available Tumor-targeted antibody therapy is one of the safest biological therapeutics for cancer patients, but it is often ineffective at inducing direct tumor cell death and is ineffective against resistant tumor cells. Currently, the antitumor efficacy of antibody therapy is primarily achieved by inducing indirect tumor cell death, such as antibody-dependent cell cytotoxicity. Our study reveals that Herceptin conjugates, if generated via the crosslinker EDC (1-ethyl-3-(3-dimethylaminopropyl carbodiimide hydrochloride, are capable of engendering human epidermal growth factor receptor 2 (Her2 positive tumor cells death. Using a high-performance liquid chromatography (HPLC system, three peaks with estimated molecular weights of antibody monomer, dimer, and trimer were isolated. Both Herceptin trimer and dimer separated by HPLC induced significant levels of necrotic tumor cell death, although the trimer was more effective than the dimer. Notably, the Herceptin trimer also induced Herceptin-resistant tumor cell death. Surprisingly different from the known cell death mechanism that often results from antibody treatment, the Herceptin trimer elicited effective and direct tumor cell death via a novel mechanism: programmed cell necrosis. In Her2-positive cells, inhibition of necrosis pathways significantly reversed Herceptin trimer-induced cell death. In summary, the Herceptin trimer reported herein harbors great potential for overcoming tumor cell resistance to Herceptin treatment.

  18. Suprasellar/pineal bifocal germ cell tumors.

    Science.gov (United States)

    Cuccia, Vicente; Alderete, Daniel

    2010-08-01

    Intracranial germ cell tumors (GCT) arise from embryonal rests of germinal cells. The aim of this report is to analyze a small group of GCT located simultaneously in the suprasellar and pineal regions without seeding either between both tumors or to other places. We named this group as suprasellar/pineal bifocal germ cell tumors (SPBT). A retrospective review of a series of 25 GCT showed a) 16 cases of unifocal non-disseminated pineal or sellar GCT, b) one case of unifocal disseminated pineal GCT, c) three cases with suprasellar and pineal double tumors with dissemination, and d) five cases with SPBT. The analysis is focused on the latter group. The series includes four pure germinomas and one germinal non-germinoma. MRI and endoscopic exploration were necessary to define SPBT. Endocrine, ocular, and increased intracranial pressure syndromes were identified and related to the size of the tumors. Chemotherapy and radiotherapy were performed in all SPBT. Radical or partial resection of SPBT offered no benefits over biopsy. Prognosis for bifocal groups was similar to unifocal tumors of the same histological type. Complete remission without recurrence and mortality were achieved in all cases. SPBT seem to be an entity defined by a) one tumor in the suprasellar and another in the pineal region, b) GCT with predominance of PG, but not exclusively, and c) MRI and endoscopy without any dissemination. The presence of two tumors does not indicate dissemination; SPBT were non-disseminated but focal tumors, and spinal radiotherapy was not necessary.

  19. Destruction of solid tumors by immune cells

    Science.gov (United States)

    López, Álvaro G.; Seoane, Jesús M.; Sanjuán, Miguel A. F.

    2017-03-01

    The fractional cell kill is a mathematical expression describing the rate at which a certain population of cells is reduced to a fraction of itself. In order to investigate the fractional cell kill that governs the rate at which a solid tumor is lysed by a cell population of cytotoxic CD8+ T cells (CTLs), we present several in silico simulations and mathematical analyses. When the CTLs eradicate efficiently the tumor cells, the models predict a correlation between the morphology of the tumors and the rate at which they are lysed. However, when the effectiveness of the immune cells is decreased, the mathematical function fails to reproduce the process of lysis. This limit is thoroughly discussed and a new fractional cell kill is proposed.

  20. Harnessing Dendritic Cells for Tumor Antigen Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Nierkens, Stefan [Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 28, Nijmegen 6525 GA (Netherlands); Janssen, Edith M., E-mail: edith.janssen@cchmc.org [Division of Molecular Immunology, Cincinnati Children' s Hospital Research Foundation, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229 (United States)

    2011-04-26

    Dendritic cells (DC) are professional antigen presenting cells that are crucial for the induction of anti-tumor T cell responses. As a consequence, research has focused on the harnessing of DCs for therapeutic interventions. Although current strategies employing ex vivo-generated and tumor-antigen loaded DCs have been proven feasible, there are still many obstacles to overcome in order to improve clinical trial successes and offset the cost and complexity of customized cell therapy. This review focuses on one of these obstacles and a pivotal step for the priming of tumor-specific CD8{sup +} and CD4{sup +} T cells; the in vitro loading of DCs with tumor antigens.

  1. REACTIVE MILIEU OF HODGKIN LYMPHOMA WITH EMPHASIS ON MAST CELLS AND MACROPHAGES

    Directory of Open Access Journals (Sweden)

    Nidhish Kumar

    2016-08-01

    Full Text Available AIM OF STUDY To study the clinical importance of reactive microenvironment inHodgkin Lymphoma (HL with special reference to macrophages and mast cells. MATERIALS AND METHODS The present prospective and retrospective study was undertaken for a period ranging from January 2011 to June 2015 at the Department of Pathology, Kasturba Medical College, Mangalore. The Haematoxylin and Eosin (H and E stained slides were reviewed and classified using WHO (2008 classification. Six immuno-histochemical markers were used in the study. CD 68 was for the macrophage count. Giemsa stain was done to highlight the mast cells. RESULTS AND ANALYSIS Thirty cases of HL were studied. Out of the 5 cases of Lymphocyte Depleted (LD Classical Hodgkin Lymphoma (cHL, all cases showed high macrophage count. Out of 30 cases of HL, only 6 cases showed increased mast cell count. DISCUSSION Mast cells act actively in various types of cancers. They can either have a pro-tumorigenic function or an anti-tumorigenic function depending on the type of cancer. Four (80% cases of LD-cHL showed macrophage count between 25-50% and 1 (20% case showed macrophage count >50% correlating with the aggressive nature and advanced stage of the disease. CONCLUSION In this study of microenvironment of HL mast cells and macrophages were analysed in each subtype. Though the mast cells were seen in all cases, an increased count of >10/10 (High power field HPF was observed only in 6 cases. The macrophage count was highest in LD-cHL and was statistically significant and thus correlated with this aggressive subtype of HL. The mast cell and macrophage count did not correlate with B-symptoms and stage of the disease a conclusion on survival versus the macrophage count and mast cell count was not possible in this study because of shorter follow up. A longer follow up and more number of cases are needed for a significant outcome.

  2. File list: ALL.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 All antigens Blood Granulocyte-Macrophage...ciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.50.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  3. File list: ALL.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 All antigens Blood Granulocyte-Macrophage...ciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.05.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  4. File list: ALL.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells mm9 All antigens Blood Granulocyte-Macrophage...ciencedbc.jp/kyushu-u/mm9/assembled/ALL.Bld.10.AllAg.Granulocyte-Macrophage_Progenitor_Cells.bed ...

  5. Cytokine treatment of macrophage suppression of T cell activation.

    Science.gov (United States)

    Silberman, Daniel; Bucknum, Amanda; Kozlowski, Megan; Matlack, Robin; Riggs, James

    2010-01-01

    High Mphi:T cell ratios suppress the immune response to the retroviral superantigen Mls by IFNgamma-triggered production of the arg- and trp-consuming enzymes iNOS and IDO. Attempts to reverse suppression by treatment with pro-inflammatory cytokines revealed that IL-6 improved the T cell response to Mls and the pro-hematopoietic cyokines IL-3 and GM-CSF increased suppression. GM-CSF treatment increased Mphi expression of CD80, a ligand for the immune suppressive B7H1 and CTLA-4 receptors. These results illustrate potential strategies for reversing the suppression of cell-mediated immunity characteristic of the high Mphi:T cell ratios found in many tumors.

  6. NPFF2 receptor is involved in the modulatory effects of neuropeptide FF for macrophage cell line.

    Science.gov (United States)

    Sun, Yu-long; Sun, Tao; Zhang, Xiao-yuan; He, Ning; Zhuang, Yan; Li, Jing-yi; Fang, Quan; Wang, Kai-rong; Wang, Rui

    2014-05-01

    Neuropeptide FF (NPFF) interacts with specific receptors to regulate diverse biological processes. Its modulatory effect in the immune field, however, has not been fully explored yet. Here, we report that NPFF2 receptors may be functionally expressed in two immune cell models, the primary peritoneal macrophage and RAW 264.7 macrophage. Firstly, the mRNA levels of NPFF2 receptor were up-regulated in macrophages when treated with LPS for 24 to 72 h. Subsequently, our data hinted that NPFF regulates the viability of both kinds of macrophages. After treatment with RF9, a reported antagonist for both NPFF receptors, delayed or inhibited the NPFF-induced macrophages viability augmentation, suggesting the involvement of NPFF2 receptor. Furthermore, down-regulation of nitric oxide (NO) synthases (NOSs) partially significantly inhibited the viability augmentation of macrophages induced by NPFF, implying a nitric oxide synthases- dependent pathway is involved. However, the NOSs are not the only route by which NPFF affects the viability of macrophages. Pharmacological inhibitors of NF-κB signal pathway also blocked the NPFF-induced macrophages growth, suggesting the involvement of the NF-κB signal pathway. The regulation activity of NPFF for macrophages suggests that NPFF could act as a potential hormone in the control of immune system. Collectively, our data provide new evidence about the immune modulatory effect of NPFF, which will be helpful in extending the scope of NPFF functions.

  7. Structural environment built by AKAP12+ colon mesenchymal cells drives M2 macrophages during inflammation recovery

    Science.gov (United States)

    Yang, Jun-Mo; Lee, Hye Shin; Seo, Ji Hae; Park, Ji-Hyeon; Gelman, Irwin H.; Lo, Eng H.; Kim, Kyu-Won

    2017-01-01

    Macrophages exhibit phenotypic plasticity, as they have the ability to switch their functional phenotypes during inflammation and recovery. Simultaneously, the mechanical environment actively changes. However, how these dynamic alterations affect the macrophage phenotype is unknown. Here, we observed that the extracellular matrix (ECM) constructed by AKAP12+ colon mesenchymal cells (CMCs) generated M2 macrophages by regulating their shape during recovery. Notably, rounded macrophages were present in the linear and loose ECM of inflamed colons and polarized to the M1 phenotype. In contrast, ramified macrophages emerged in the contracted ECM of recovering colons and mainly expressed M2 macrophage markers. These contracted structures were not observed in the inflamed colons of AKAP12 knockout (KO) mice. Consequently, the proportion of M2 macrophages in inflamed colons was lower in AKAP12 KO mice than in WT mice. In addition, clinical symptoms and histological damage were more severe in AKAP12 KO mice than in WT mice. In experimentally remodeled collagen gels, WT CMCs drove the formation of a more compacted structure than AKAP12 KO CMCs, which promoted the polarization of macrophages toward an M2 phenotype. These results demonstrated that tissue contraction during recovery provides macrophages with the physical cues that drive M2 polarization. PMID:28205544

  8. Action of the anti-tumoral zinc(II)phthalocyanine in solution or encapsulated into nanoparticles of poly-ɛ-caprolactone internalized by peritoneal macrophages

    Science.gov (United States)

    da Silva Abe, Amanda Santos Franco; Ricci-Júnior, Eduardo; Teixeira Lima Castelo Branco, Morgana; de Brito Gitirana, Lycia

    2016-09-01

    Nanoparticles (NPs) have been used as drug delivery systems (DDS) exhibiting high cell penetration power. As an antitumor photosensitizer, zinc(II) phthalocyanine (ZnPc) was applied in photodynamic therapy (PDT) since its phototoxic activity promotes death of tumor cells in the presence of laser light. Since drugs do not interact only with tumor cells in living organisms, this study aimed to analyze the action of ZnPc-loaded in nanoparticles (ZnPc-NPs) and in solution (free ZnPc) using peritoneal macrophages as a model of non-neoplastic cells that inhabit the tumoral stroma. NPs were produced by emulsion and evaporation of solvent and characterized by dynamic light scattering and transmission electron microscopy. Assays as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, light microscopy and laser scanning confocal microscopy were performed to evaluate the drug effects in the presence or absence of laser light applied in PDT. NPs exhibited dimensions between 290 and 350 nm and rounded shape. Empty NP did not affect cell viability, showing that these nanocarriers are biocompatible DDS. Free ZnPc was randomly distributed in the cytoplasm, while ZnPc-NP was preferably located near the nucleus. At 5 μg ml-1, free ZnPc caused greater loss of cell viability in the absence of laser when compared to ZnPc-NPs, in the presence or absence of irradiation. In contrast, free ZnPc and ZnPc-NPs (0.5 μg ml-1) promoted cell death to the same extent in cells treated with laser light or not. This demonstrates that the performance of this drug is dose dependent in its free form, but not in its nanoencapsulated form. Cells irradiated with laser (100 mW) and treated with free ZnPc or with ZnPc-NPs showed morphological changes. These observations show that both free ZnPc and ZnPc-NPs irradiated with laser light cause cell damage in peritoneal macrophages.

  9. Polarized CD163+ tumor-associated macrophages are associated with increased angiogenesis and CXCL12 expression in gastric cancer.

    Science.gov (United States)

    Park, Jae-Young; Sung, Ji-Youn; Lee, Juhie; Park, Yong-Koo; Kim, Youn Wha; Kim, Gou Young; Won, Kyu Yeoun; Lim, Sung-Jig

    2016-06-01

    Tumor-associated macrophages (TAMs) play a significant role in tumor progression and angiogenesis. However, the prognostic value of TAMs in different histologic locations of gastric cancer (GC) is still unknown. We evaluated the distribution of TAMs in different histologic locations to investigate its importance in predicting prognosis and the relationship with angiogenesis and CXCL12 expression in GC. The distribution of TAMs and microvessel density (MVD) in 113 GC samples were evaluated by immunohistochemical staining of CD163 and CD105, respectively. The extent of TAM distribution in the tumor was categorized into three groups: infiltrated TAMs in the tumor nest (TN), tumor stroma (TS) and invasive tumor margin (TM). The expression of CXCL12 in GC were evaluated by immunohistochemical staining of tissues from 88 GC samples. The increased CD163+ TAMs in TS and TM were closely correlated with tumor size, depth of invasion, TNM stage, lymph node metastasis, and lymphovascular invasion. TAMs in TN was not related with any clinicopathologic characteristics except histologic differentiation. The high infiltration of CD163+ TAMs in TS and TM were significantly correlated with poor overall survival. Regardless of location, CD163+ TAMs were significantly correlated with increased MVD. CXCL12 expression was significantly associated with increased CD163+ TAMs in TS and TM. TAMs in different histologic locations in GC were related to distinct aspects of tumor progression. CD163+ TAMs in TS and TM are associated with tumor progression and CXCL12 expression in GC. TAMs may be involved in tumor progression through the angiogenesis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  10. A matrix of cholesterol crystals, but not cholesterol alone, primes human monocytes/macrophages for excessive endotoxin-induced production of tumor necrosis factor-alpha. Role in atherosclerotic inflammation?

    DEFF Research Database (Denmark)

    Bendtzen, Klaus; Christensen, Ole; Nielsen, Claus Henrik

    2014-01-01

    When exposed to small amounts of bacterial endotoxin, matrices of cholesterol crystals, but not cholesterol itself, primed human monocytes/macrophages to a highly augmented (>10-fold) production of inflammatory tumor necrosis factor-α. Priming also sensitized the cells, as 10- to 100-fold lower...... suggest that cholesterol matrix formation may play a pathogenic role in atherosclerotic inflammation, and they indicate a mechanism by which bacteria and/or bacterial products may play a role in processes leading to arteriosclerosis....

  11. ADAM12 produced by tumor cells rather than stromal cells accelerates breast tumor progression

    DEFF Research Database (Denmark)

    Frohlich, Camilla; Nehammer, Camilla; Albrechtsen, Reidar

    2011-01-01

    Expression of ADAM12 is low in most normal tissues, but is markedly increased in numerous human cancers, including breast carcinomas. We have previously shown that overexpression of ADAM12 accelerates tumor progression in a mouse model of breast cancer (PyMT). In the present study, we found...... that ADAM12 deficiency reduces breast tumor progression in the PyMT model. However, the catalytic activity of ADAM12 appears to be dispensable for its tumor-promoting effect. Interestingly, we demonstrate that ADAM12 endogenously expressed in tumor-associated stroma in the PyMT model does not influence...... tumor progression, but that ADAM12 expression by tumor cells is necessary for tumor progression in these mice. This finding is consistent with our observation that in human breast carcinoma ADAM12 is almost exclusively located in tumor cells and only rarely seen in the tumor-associated stroma. We...

  12. microRNA-150 inhibits the formation of macrophage foam cells through targeting adiponectin receptor 2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [Department of Geratory, Linzi District People’s Hospital of Zibo City, Zibo, Shandong (China); Zhang, Suhua, E-mail: drsuhuangzhang@qq.com [Department of HealthCare, Qilu Hospital of Shandong University (Qingdao), Qingdao City, Qingdao (China)

    2016-08-05

    Transformation of macrophages into foam cells plays a critical role in the pathogenesis of atherosclerosis. The aim of this study was to determine the expression and biological roles of microRNA (miR)-150 in the formation of macrophage foam cells and to identify its functional target(s). Exposure to 50 μg/ml oxidized low-density lipoprotein (oxLDL) led to a significant upregulation of miR-150 in THP-1 macrophages. Overexpression of miR-150 inhibited oxLDL-induced lipid accumulation in THP-1 macrophages, while knockdown of miR-150 enhanced lipid accumulation. apoA-I- and HDL-mediated cholesterol efflux was increased by 66% and 43%, respectively, in miR-150-overexpressing macrophages relative to control cells. In contrast, downregulation of miR-150 significantly reduced cholesterol efflux from oxLDL-laden macrophages. Bioinformatic analysis and luciferase reporter assay revealed adiponectin receptor 2 (AdipoR2) as a direct target of miR-150. Small interfering RNA-mediated downregulation of AdipoR2 phenocopied the effects of miR-150 overexpression, reducing lipid accumulation and facilitating cholesterol efflux in oxLDL-treated THP-1 macrophages. Knockdown of AdipoR2 induced the expression of proliferator-activated receptor gamma (PPARγ), liver X receptor alpha (LXRα), ABCA1, and ABCG1. Moreover, pharmacological inhibition of PPARγ or LXRα impaired AdipoR2 silencing-induced upregulation of ABCA1 and ABCG1. Taken together, our results indicate that miR-150 can attenuate oxLDL-induced lipid accumulation in macrophages via promotion of cholesterol efflux. The suppressive effects of miR-150 on macrophage foam cell formation are mediated through targeting of AdipoR2. Delivery of miR-150 may represent a potential approach to prevent macrophage foam cell formation in atherosclerosis. -- Highlights: •miR-150 inhibits macrophage foam cell formation. •miR-150 accelerates cholesterol efflux from oxLDL-laden macrophages. •miR-150 suppresses macrophage foam cell

  13. Characterization of cell suspensions from solid tumors

    Energy Technology Data Exchange (ETDEWEB)

    Pallavicini, M.

    1985-07-10

    The desirable features of cells in suspension will necessarily be dependent upon the use for which the cells were prepared. Adequate cell yield or recovery is defined by the measurement to be performed. Retention of cellular morphology is important for microscopic identification of cell types in a heterogenous cell suspension, and may be used to determine whether the cells in suspension are representative of those in the tumor in situ. Different dispersal protocols may yield cells with different degrees of clonogenicity, as well as altered biochemical features, such as loss of cellular proteins, surface antigens, nucleotide pools, etc. The quality of the cell suspension can be judged by the degree of cell clumping and level of cellular debris, both of which impact on flow cytometric measurements and studies in which the number of cells be known accurately. Finally, if the data measured on the cells in suspension are to be extrapolated to phenomena occurring in the tumor in situ, it is desirable that the cells in suspension are representative of those in the solid tumor in vivo. This report compares characteristics of tumor cell suspensions obtained by different types of selected disaggregation methods. 33 refs., 2 figs., 4 tabs.

  14. Stages of Childhood Extracranial Germ Cell Tumors

    Science.gov (United States)

    ... tumors include the following: Having certain genetic syndromes : Klinefelter syndrome may increase the risk of germ cell ... and procedures may be used: Physical exam and history : An exam of the body to check general ...

  15. Proteasomal inhibition sensitizes cervical cancer cells to mitomycin C-induced bystander effect: the role of tumor microenvironment.

    Science.gov (United States)

    Singh, S V; Ajay, A K; Mohammad, N; Malvi, P; Chaube, B; Meena, A S; Bhat, M K

    2015-10-22

    Inaccessibility of drugs to poorly vascularized strata of tumor is one of the limiting factors in cancer therapy. With the advent of bystander effect (BE), it is possible to perpetuate the cellular damage from drug-exposed cells to the unexposed ones. However, the role of infiltrating tumor-associated macrophages (TAMs), an integral part of the tumor microenvironment, in further intensifying BE remains obscure. In the present study, we evaluated the effect of mitomycin C (MMC), a chemotherapeutic drug, to induce BE in cervical carcinoma. By using cervical cancer cells and differentiated macrophages, we demonstrate that MMC induces the expression of FasL via upregulation of PPARγ in both cell types (effector cells) in vitro, but it failed to induce bystander killing in cervical cancer cells. This effect was primarily owing to the proteasomal degradation of death receptors in the cervical cancer cells. Pre-treatment of cervical cancer cells with MG132, a proteasomal inhibitor, facilitates MMC-mediated bystander killing in co-culture and condition medium transfer experiments. In NOD/SCID mice bearing xenografted HeLa tumors administered with the combination of MMC and MG132, tumor progression was significantly reduced in comparison with those treated with either agent alone. FasL expression was increased in TAMs, and the enhanced level of Fas was observed in these tumor sections, thereby causing increased apoptosis. These findings suggest that restoration of death receptor-mediated apoptotic pathway in tumor cells with concomitant activation of TAMs could effectively restrict tumor growth.

  16. Ovarian steroid cell tumors: sonographic characteristics.

    Science.gov (United States)

    Monteagudo, A; Heller, D; Husami, N; Levine, R U; McCaffrey, R; Timor-Tritsch, I E

    1997-10-01

    The goal of the gynecologist is to detect ovarian tumors in their earliest stages. Small virilizing tumors, which barely affect the size of the ovaries, are such lesions. Since the introduction of transvaginal sonography it is technically possible to detect small intraovarian neoplasms. Three cases of virilizing steroid cell tumors in postmenopausal women with ovarian volumes just exceeding the normal sizes for age are presented. High-frequency transvaginal ultrasound and color Doppler studies to measure flow parameters were used. These small tumors had different echogenicity from the surrounding ovarian tissue and two had low impedance-to-flow values. Gray-scale transvaginal sonography combined with color Doppler studies can make the diagnosis of small steroid cell tumors easier and, at times, better than other, more costly imaging modalities.

  17. Effects of everolimus on macrophage-derived foam cell behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Steven, E-mail: steven.hsu@av.abbott.com [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States); Koren, Eugen; Chan, Yen; Koscec, Mirna; Sheehy, Alexander [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States); Kolodgie, Frank; Virmani, Renu [CVPath Institute, Inc., 19 Firstfield Road, Gaithersburg, MD 20878 (United States); Feder, Debra [Abbott Vascular, 3200 Lakeside Drive, Santa Clara, CA 95054 (United States)

    2014-07-15

    Purpose: The purpose of this study was to investigate the effects of everolimus on foam cell (FC) viability, mRNA levels, and inflammatory cytokine production to better understand its potential inhibitory effects on atheroma progression. Methods and materials: Human THP1 macrophage-derived FC were formed using acetylated LDL (acLDL, 100 μg/mL) for 72 hours, followed by everolimus treatment (10{sup -5}–10{sup -11} M) for 24 hours. FC viability was quantified using fluorescent calcein AM/DAPI staining. FC lysates and media supernatants were analyzed for apoptosis and necrosis using a Cell Death ELISA{sup PLUS} assay. FC lysates and media supernatants were also analyzed for inflammatory cytokine (IL1β, IL8, MCP1, TNFα) mRNA levels and protein expression using quantitative reverse transcription real-time polymerase chain reaction (QPCR) and a Procarta® immunoassay, respectively. mRNA levels of autophagy (MAP1LC3), apoptosis (survivin, clusterin), and matrix degradation (MMP1, MMP9) markers were evaluated by Quantigene® Plex assay and verified with QPCR. Additionally, hypercholesterolemic rabbits received everolimus-eluting stents (EES) for 28 or 60 days. RAM-11 immunohistochemical staining was performed to compare %RAM-11 positive area between stented sections and unstented proximal sections. Statistical significance was calculated using one-way ANOVA (p ≤ 0.05). Results: Calcein AM/DAPI staining showed that FC exposed to everolimus (10{sup -5} M) had significantly decreased viability compared to control. FC apoptosis was significantly increased at a high dose of everolimus (10{sup -5} M), with no necrotic effects at any dose tested. Everolimus did not affect endothelial (HUVEC) and smooth muscle (HCASMC) cell apoptosis or necrosis. Everolimus (10{sup -5} M) significantly increased MAP1LC3, caused an increased trend in clusterin (p = 0.10), and significantly decreased survivin and MMP1 mRNA levels in FC. MCP1 cytokine mRNA levels and secreted protein

  18. Direct Effects of Activin A on the Activation of Mouse Macrophage RAW264.7 Cells

    Institute of Scientific and Technical Information of China (English)

    Jingyan Ge; Yinan Wang; Ye Feng; Haiyan Liu; Xueling Cui; Fangfang Chen; Guixiang Tai; Zhonghui Liu

    2009-01-01

    Macrophages play critical roles in innate immune and acquired immune via secreting pro-inflammatory mediators, phagocytosing microorganisms and presenting antigens. Activin A, a member of transforming growth factor β (TGF-β) superfamily, is produced by macrophages and microglia cells. In this study, we reported a direct effect of activin A as a pro-inflammatory factor on mouse macrophage cell line RAW264.7 cells. Our data revealed that activin A could not only increase IL-1v and IL-6 production from RAW264.7 cells, but also promote pinocytic and phagocytic activities of RAW264.7 cells. In addition, activin A obviously up-regulated MHC Ⅱ expression on the surface of RAW264.7 cells, whereas did not influence MHC I expression. Activin A also enhanced CD80 expression, which is a marker of activated macrophages, but did not influence RAW264.7 cell proliferation. These data suggest that activin A may regulate primary macrophage-mediated innate and acquired immune response via promoting the activation of rest macrophages. Cellular & Molecular Immunology.

  19. Energy and Redox Homeostasis in Tumor Cells

    Directory of Open Access Journals (Sweden)

    Marcus Fernandes de Oliveira

    2012-01-01

    Full Text Available Cancer cells display abnormal morphology, chromosomes, and metabolism. This review will focus on the metabolism of tumor cells integrating the available data by way of a functional approach. The first part contains a comprehensive introduction to bioenergetics, mitochondria, and the mechanisms of production and degradation of reactive oxygen species. This will be followed by a discussion on the oxidative metabolism of tumor cells including the morphology, biogenesis, and networking of mitochondria. Tumor cells overexpress proteins that favor fission, such as GTPase dynamin-related protein 1 (Drp1. The interplay between proapoptotic members of the Bcl-2 family that promotes Drp 1-dependent mitochondrial fragmentation and fusogenic antiapoptotic proteins such as Opa-1 will be presented. It will be argued that contrary to the widespread belief that in cancer cells, aerobic glycolysis completely replaces oxidative metabolism, a misrepresentation of Warburg’s original results, mitochondria of tumor cells are fully viable and functional. Cancer cells also carry out oxidative metabolism and generally conform to the orthodox model of ATP production maintaining as well an intact electron transport system. Finally, data will be presented indicating that the key to tumor cell survival in an ROS rich environment depends on the overexpression of antioxidant enzymes and high levels of the nonenzymatic antioxidant scavengers.

  20. Different cell death modes of pancreatic acinar cells on macrophage activation in rats

    Institute of Scientific and Technical Information of China (English)

    LIANG Tao; LIU Tie-fu; XUE Dong-bo; SUN Bei; SHI Li-jun

    2008-01-01

    Background The pathogenesis of acute pancreatitis is complex and largely unclear. The aim of this study was to explore the relationship between modes of cell death in pancreatic acinar cells, the release of cell contents and the inflammatory response of macrophagas.Methods Our experiment included four groups: group A (the control group), group B (AR42J cells overstimulated by caerulein), group C (AR42J cells treated with lipopolysaccharide and caerulein), and group D (AR42J cells treated with octreotide and caerulein). Apoptosis and oncosis, and the release of amylase and lactate dehydrogenase (LDH) from AR42J cells were detected. Rat macrophages were stimulated by 1 ml supematant of culture medium of AR42J cells.Finally, NF-кB activation and TNF-α and IL-1β secretion by macrophages were detected.Results Oncotlc cells in group C increased while apoptctic cells decreased (P <0.05); cells in group D had the inverse reaction. The release of amylase and LDH changed directly with the occurrence of oncosis. The transcription factor NF-кB was activated and secretion of TNF-α and IL-1β were significantly higher in group C than in group B (P <0.05); in group D, these actions were significantly lower than in group B (P<0.05). This trend was in line with changes in amylase and LDH production.Conclusion There is a close relationship between modes of pancreatic acinar cell death, the release of cell contents and the inflammatory reaction of macrophages.

  1. 极化型肿瘤相关巨噬细胞及其与卵巢癌的相关性%Development of Relativity between M2-Tumor Associated Macrophage and Ovarian Cancer

    Institute of Scientific and Technical Information of China (English)

    张洪秀; 陈燕

    2013-01-01

    肿瘤相关巨噬细胞(TAM)与肿瘤发生发展的关系一直以来都是肿瘤的病因及治疗的研究热点,实验及临床研究表明不同类型肿瘤的发生发展与TAM有密切关系.TAM是参与肿瘤相关性炎症的重要调节细胞,而在肿瘤微环境中表现促肿瘤生长的亚型主要为极化型(M2-TAM).M2-TAM通过趋化因子18(CCL-18)、血管内皮生长因子(VEGF)和基质金属蛋白酶9(MMP-9)等抑制T细胞的抗肿瘤活性并促进血管生成.因此,M2-TAM在肿瘤组织中的浸润情况可能是肿瘤发生、发展、转移及判断预后的一个重要指标,并为卵巢癌的治疗提供新的途径.综述M2-TAM在卵巢癌发生发展中的重要作用,并为卵巢癌的治疗及早期诊断提供新的方向.%Tumor-related inflammation including lymphocyte infiltration into tumor tissue. Tumor-associated macrophages (TAM) are important regulator of cells,mainly involved in tumor-associated inflammatory. While M2-tumor associated macrophage is the main subtype macrophages which expression in the tumor microenvironment, promote and coordinate neo-plastic growth. M2-type TAM inhibite the anti-tumor activity of T cells and promote angiogenesis by over expressing CCL-18, VEGF, and MMP-9. M2-type TAM infiltration in tumor tissue might be an important indicator of tumor development, metastasis and prognosis, and providing a new approach to treatment of ovarian cancer. Polarization-type tumor-associated macrophages play an important role in the development of ovarian cancer and provide a new direction in early diagnosis and treatment of ovarian cancer.

  2. Escape from Tumor Cell Dormancy

    Science.gov (United States)

    2012-10-01

    Pouliot, K. L. Stanley, J. Chia , J. M. Moseley, D. K. Hards and R. L. Anderson: Tumor-specific expression of alphavbeta3 integrin promotes...deep, measured by confocal imaging of microwells filled with 20-mm-diameter fluores - cent beads (Fig. 1). Evaluation of mechanical properties of PEG...

  3. [Sertoli cell tumor of the testis].

    Science.gov (United States)

    Hita Rosino, E; López Hidalgo, J; Mellado Mesa, P; Olivar Buera, M

    2001-01-01

    Sertoli cell tumors (TCS) derivated from sex-cord estroma cells, are an uncommon variety of testicles neoplasms. A 66 year-old patient that came to the consultation for an increased scrotum of size present. Ultrasound viewed a hipoecoic nodule capable with testicular tumor, more secondary hidrocele. After undergoing the standard treatment, by means of groin radical orchiectomy, its pathologic analysis identified the lesion as Sertoli cell tumor conventional. The pathologic features that best correlate with a clinically benign course are as follows: a lower size tumor to 5 cm, mild nuclear atypia, a mitotic rate of less than 5 mitosis per 10 high power fields, and absent necrosis. Our case presented with these features. Follow-up of these neoplasms should be prolonged by the unusual of its presentation and a small percentage of cases are clinically malignant.

  4. MicroRNA targeting to modulate tumor microenvironment

    NARCIS (Netherlands)

    Kuninty, Praneeth R.; Schnittert, Jonas; Storm, G|info:eu-repo/dai/nl/073356328; Prakash, Jai

    2016-01-01

    Communication between stromal cells and tumor cells initiates tumor growth, angiogenesis, invasion, and metastasis. Stromal cells include cancer-associated fibroblasts, tumor-associated macrophages, pericytes, endothelial cells, and infiltrating immune cells. MicroRNAs (miRNAs) in the tumor

  5. MicorRNA targeting to modulate tumor microenvironment

    NARCIS (Netherlands)

    Kuninty, Praneeth Reddy; Schnittert, Jonas; Storm, Gerrit; Prakash, Jai

    2016-01-01

    Communication between stromal cells and tumor cells initiates tumor growth, angiogenesis, invasion, and metastasis. Stromal cells include cancer-associated fibroblasts, tumor-associated macrophages, pericytes, endothelial cells, and infiltrating immune cells. MicroRNAs (miRNAs) in the tumor

  6. MicroRNA targeting to modulate tumor microenvironment

    NARCIS (Netherlands)

    Kuninty, Praneeth R.; Schnittert, Jonas; Storm, G; Prakash, Jai

    2016-01-01

    Communication between stromal cells and tumor cells initiates tumor growth, angiogenesis, invasion, and metastasis. Stromal cells include cancer-associated fibroblasts, tumor-associated macrophages, pericytes, endothelial cells, and infiltrating immune cells. MicroRNAs (miRNAs) in the tumor microenv

  7. Macrophage specific overexpression of the human macrophage scavenger receptor in transgenic mice, using a 180-kb yeast artificial chromosome, leads to enhanced foam cell formation of isolated peritoneal macrophages

    NARCIS (Netherlands)

    Winther, M.P.J. de; Dijk, K.W. van; Vlijmen, B.J.M. van; Gijbels, M.J.J.; Heus, J.J.; Wijers, E.R.; Bos, A.C. van den; Breuer, M.; Frants, R.R.; Havekes, L.M.; Hofker, M.H.

    1999-01-01

    Macrophage scavenger receptors class A (MSR) are thought to play an important role in atherogenesis by mediating the unrestricted uptake of modified lipoproteins by macrophages in the vessel wall leading to foam cell formation. To investigate the in vivo role of the MSR in this process, a transgenic

  8. Folate-conjugated immunoglobulin targets melanoma tumor cells for NK cell effector functions

    Science.gov (United States)

    Skinner, Cassandra C.; McMichael, Elizabeth L.; Jaime-Ramirez, Alena C.; Abrams, Zachary B.; Lee, Robert J.; Carson, William E.

    2016-01-01

    The folate receptor (FR) is over-expressed on the vascular side of cancerous cells including those of the breast, ovaries, testes, and cervix. We hypothesized that a folate-conjugated immunoglobulin (F-IgG) would bind to the FR that is over-expressed on melanoma tumor cells to target these cells for lysis by natural killer (NK) cells. Folate receptor expression was confirmed in the Mel-39 (human melanoma) cell line by flow cytometry and immunoblot analysis, using KB (human oral epithelial) and F01 (human melanoma) as a positive and negative control, respectively. FR-positive and negative cell lines were treated with F-IgG or control immunoglobulin G (C-IgG) in the presence or absence of cytokines in order to determine NK cell ability to lyse FR-positive cell lines. NK cell activation was significantly upregulated and lysis of Mel 39 tumor cells enhanced following treatment with F-IgG, as compared to C-IgG at all effector:target (E:T) ratios (p<0.01). This trend was further enhanced by NK cell stimulation with the activating cytokine interleukin-12 (IL-12). NK cell production of cytokines such as interferon-gamma (IFN-γ), macrophage inflammatory protein 1 alpha (MIP-1α), and regulated on activation normal T-cell expressed and secreted (RANTES) were also significantly increased in response to co-stimulation with IL-12 stimulation and F-IgG-coated Mel 39 target cells, as compared to controls (p<0.01). In contrast, F-IgG did not bind to the FR-negative cell line F01 and had no significant effect on NK cell lysis or cytokine production. This research indicates the potential use of F-IgG for its ability to induce an immune response from NK cells against FR-positive melanoma tumor cells which can be further enhanced by the addition of cytokines. PMID:27035691

  9. Radiosensitivity of tumor cells. Oncogenes and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Peltenburg, L. T. C. [Leiden Univ., Leiden (Netherlands). Dept. of Clinical Oncology

    2000-12-01

    The success of treatment of cancer patients by radiotherapy largely depends on tumor radiosensitivity. Several molecular factors that determine the sensitivity of tumor cells to ionizing radiation have been identified during the last couple of years. Some of these factors are known as oncogenes and tumor suppressor genes. This review focuses on the influence of some of these molecular factors on a major determinant of radiosensitivity: i. e. programmed cell death or apoptosis. The crucial molecular step in ionizing radiation-induced apoptosis is the release of mitochondrial cytochrome c into the cell's cytosol. The ways the tumor suppressor protein p53, as well as the oncogenes ras and raf, c-myc and Bcl-2 can influence this process at different stages are presented. As will be discussed, the result of activation of an oncoprotein on tumor radiosensitivity depends on its mechanism of action and on the presence of other (oncogenic) factors, since complex interactions among many molecular factors determine the delicate balance between cell proliferation and cell death. The ongoing identification and characterization of factors influencing apoptosis will eventually make it possible to predict tumor radiosensitivity and thereby improve cancer treatment.

  10. Disruption of Lipid Rafts Interferes with the Interaction of Toxoplasma gondii with Macrophages and Epithelial Cells

    Science.gov (United States)

    Cruz, Karla Dias; Cruz, Thayana Araújo; Veras de Moraes, Gabriela; Paredes-Santos, Tatiana Christina; Attias, Marcia; de Souza, Wanderley

    2014-01-01

    The intracellular parasite Toxoplasma gondii can penetrate any warm-blooded animal cell. Conserved molecular assemblies of host cell plasma membranes should be involved in the parasite-host cell recognition. Lipid rafts are well-conserved membrane microdomains that contain high concentrations of cholesterol, sphingolipids, glycosylphosphatidylinositol, GPI-anchored proteins, and dually acylated proteins such as members of the Src family of tyrosine kinases. Disturbing lipid rafts of mouse peritoneal macrophages and epithelial cells of the lineage LLC-MK2 with methyl-beta cyclodextrin (MβCD) and filipin, which interfere with cholesterol or lidocaine, significantly inhibited internalization of T. gondii in both cell types, although adhesion remained unaffected in macrophages and decreased only in LLC-MK2 cells. Scanning and transmission electron microscopy confirmed these observations. Results are discussed in terms of the original role of macrophages as professional phagocytes versus the LLC-MK2 cell lineage originated from kidney epithelial cells. PMID:24734239

  11. The interplay between monocytes/macrophages and CD4+ T cell subsets in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Ceri A. Roberts

    2015-11-01

    Full Text Available Rheumatoid arthritis (RA is a chronic inflammatory disease characterized by inflammation of the synovial lining (synovitis. The inflammation in the RA joint is associated with and driven by immune cell infiltration, synovial hyperproliferation and excessive production of pro-inflammatory mediators, such as TNFα, IFNγ, IL-1β, IL-6 and IL-17, eventually resulting in damage to the cartilage and underlying bone. The RA joint harbors a wide range of immune cell types, including monocytes, macrophages and CD4+ T cells (both pro-inflammatory and regulatory. The interplay between CD14+ myeloid cells and CD4+ T cells can significantly influence CD4+ T cell function and conversely, effector vs. regulatory CD4+ T cell subsets can exert profound effects on monocyte/macrophage function. In this review, we will discuss how the interplay between CD4+ T cells and monocytes/macrophages may contribute to the immunopathology of RA.

  12. Cellular uptake of a dexamethasone palmitate-low density lipoprotein complex by macrophages and foam cells.

    Science.gov (United States)

    Tauchi, Yoshihiko; Chono, Sumio; Morimoto, Kazuhiro

    2003-04-01

    To evaluate the utility of a dexamethasone palmitate (DP)-low density lipoprotein (LDL) complex to transport drug into foam cells, the cellular uptake of DP-LDL complex by macrophages and foam cells was examined. The DP-LDL complex was prepared by incubation with DP and LDL, and the DP-LDL complex and murine macrophages were incubated. No cellular uptake of the DP-LDL complex by macrophages was found until 6 h after the start of incubation, but this gradually increased from 12 to 48 h. On the other hand, the cellular uptake of the oxidized DP-LDL complex was already apparent at 3 h after the start incubation, and then markedly increased until 48 h incubation along with that of the lipid emulsion (LE) containing DP (DP-LE). The cellular uptake of DP-LE by foam cells was significantly lower than that by macrophages. However, the cellular uptake of DP-LDL complex by foam cells was similar to that by macrophages. These findings suggest that the DP-LDL complex is oxidatively modified, and then incorporated into macrophages and foam cells through the scavenger receptor pathway. Since selective delivery of drugs into foam cells in the early stage of atherosclerosis is a useful protocol for antiatherosclerosis treatment, the DP-LDL complex appears to be a potentially useful drug-carrier complex for future antiatherosclerotic therapy.

  13. The Escape of Cancer from T Cell-Mediated Immune Surveillance: HLA Class I Loss and Tumor Tissue Architecture

    Science.gov (United States)

    Garrido, Federico; Perea, Francisco; Bernal, Mónica; Sánchez-Palencia, Abel; Aptsiauri, Natalia; Ruiz-Cabello, Francisco

    2017-01-01

    Tumor immune escape is associated with the loss of tumor HLA class I (HLA-I) expression commonly found in malignant cells. Accumulating evidence suggests that the efficacy of immunotherapy depends on the expression levels of HLA class I molecules on tumors cells. It also depends on the molecular mechanism underlying the loss of HLA expression, which could be reversible/“soft” or irreversible/“hard” due to genetic alterations in HLA, β2-microglobulin or IFN genes. Immune selection of HLA-I negative tumor cells harboring structural/irreversible alterations has been demonstrated after immunotherapy in cancer patients and in experimental cancer models. Here, we summarize recent findings indicating that tumor HLA-I loss also correlates with a reduced intra-tumor T cell infiltration and with a specific reorganization of tumor tissue. T cell immune selection of HLA-I negative tumors results in a clear separation between the stroma and the tumor parenchyma with leucocytes, macrophages and other mononuclear cells restrained outside the tumor mass. Better understanding of the structural and functional changes taking place in the tumor microenvironment may help to overcome cancer immune escape and improve the efficacy of different immunotherapeutic strategies. We also underline the urgent need for designing strategies to enhance tumor HLA class I expression that could improve tumor rejection by cytotoxic T-lymphocytes (CTL). PMID:28264447

  14. The Escape of Cancer from T Cell-Mediated Immune Surveillance: HLA Class I Loss and Tumor Tissue Architecture

    Directory of Open Access Journals (Sweden)

    Federico Garrido

    2017-02-01

    Full Text Available Tumor immune escape is associated with the loss of tumor HLA class I (HLA-I expression commonly found in malignant cells. Accumulating evidence suggests that the efficacy of immunotherapy depends on the expression levels of HLA class I molecules on tumors cells. It also depends on the molecular mechanism underlying the loss of HLA expression, which could be reversible/“soft” or irreversible/“hard” due to genetic alterations in HLA, β2-microglobulin or IFN genes. Immune selection of HLA-I negative tumor cells harboring structural/irreversible alterations has been demonstrated after immunotherapy in cancer patients and in experimental cancer models. Here, we summarize recent findings indicating that tumor HLA-I loss also correlates with a reduced intra-tumor T cell infiltration and with a specific reorganization of tumor tissue. T cell immune selection of HLA-I negative tumors results in a clear separation between the stroma and the tumor parenchyma with leucocytes, macrophages and other mononuclear cells restrained outside the tumor mass. Better understanding of the structural and functional changes taking place in the tumor microenvironment may help to overcome cancer immune escape and improve the efficacy of different immunotherapeutic strategies. We also underline the urgent need for designing strategies to enhance tumor HLA class I expression that could improve tumor rejection by cytotoxic T-lymphocytes (CTL.

  15. Lurbinectedin induces depletion of tumor-associated macrophages, an essential component of its in vivo synergism with gemcitabine, in pancreatic adenocarcinoma mouse models

    Directory of Open Access Journals (Sweden)

    María Virtudes Céspedes

    2016-12-01

    Full Text Available We explored whether the combination of lurbinectedin (PM01183 with the antimetabolite gemcitabine could result in a synergistic antitumor effect in pancreatic ductal adenocarcinoma (PDA mouse models. We also studied the contribution of lurbinectedin to this synergism. This drug presents a dual pharmacological effect that contributes to its in vivo antitumor activity: (i specific binding to DNA minor grooves, inhibiting active transcription and DNA repair; and (ii specific depletion of tumor-associated macrophages (TAMs. We evaluated the in vivo antitumor activity of lurbinectedin and gemcitabine as single agents and in combination in SW-1990 and MIA PaCa-2 cell-line xenografts and in patient-derived PDA models (AVATAR. Lurbinectedin-gemcitabine combination induced a synergistic effect on both MIA PaCa-2 [combination index (CI=0.66] and SW-1990 (CI=0.80 tumor xenografts. It also induced complete tumor remissions in four out of six patient-derived PDA xenografts. This synergism was associated with enhanced DNA damage (anti-γ-H2AX, cell cycle blockage, caspase-3 activation and apoptosis. In addition to the enhanced DNA damage, which is a consequence of the interaction of the two drugs with the DNA, lurbinectedin induced TAM depletion leading to cytidine deaminase (CDA downregulation in PDA tumors. This effect could, in turn, induce an increase of gemcitabine-mediated DNA damage that was especially relevant in high-density TAM tumors. These results show that lurbinectedin can be used to develop ‘molecularly targeted’ combination strategies.

  16. Lurbinectedin induces depletion of tumor-associated macrophages, an essential component of its in vivo synergism with gemcitabine, in pancreatic adenocarcinoma mouse models

    Science.gov (United States)

    Céspedes, María Virtudes; Guillén, María José; López-Casas, Pedro Pablo; Sarno, Francesca; Gallardo, Alberto; Álamo, Patricia; Cuevas, Carmen; Hidalgo, Manuel; Galmarini, Carlos María; Allavena, Paola; Avilés, Pablo; Mangues, Ramón

    2016-01-01

    ABSTRACT We explored whether the combination of lurbinectedin (PM01183) with the antimetabolite gemcitabine could result in a synergistic antitumor effect in pancreatic ductal adenocarcinoma (PDA) mouse models. We also studied the contribution of lurbinectedin to this synergism. This drug presents a dual pharmacological effect that contributes to its in vivo antitumor activity: (i) specific binding to DNA minor grooves, inhibiting active transcription and DNA repair; and (ii) specific depletion of tumor-associated macrophages (TAMs). We evaluated the in vivo antitumor activity of lurbinectedin and gemcitabine as single agents and in combination in SW-1990 and MIA PaCa-2 cell-line xenografts and in patient-derived PDA models (AVATAR). Lurbinectedin-gemcitabine combination induced a synergistic effect on both MIA PaCa-2 [combination index (CI)=0.66] and SW-1990 (CI=0.80) tumor xenografts. It also induced complete tumor remissions in four out of six patient-derived PDA xenografts. This synergism was associated with enhanced DNA damage (anti-γ-H2AX), cell cycle blockage, caspase-3 activation and apoptosis. In addition to the enhanced DNA damage, which is a consequence of the interaction of the two drugs with the DNA, lurbinectedin induced TAM depletion leading to cytidine deaminase (CDA) downregulation in PDA tumors. This effect could, in turn, induce an increase of gemcitabine-mediated DNA damage that was especially relevant in high-density TAM tumors. These results show that lurbinectedin can be used to develop ‘molecularly targeted’ combination strategies. PMID:27780828

  17. Matrix metalloproteinase-9 and cell division in neuroblastoma cells and bone marrow macrophages.

    Science.gov (United States)

    Sans-Fons, M Gloria; Sole, Sonia; Sanfeliu, Coral; Planas, Anna M

    2010-12-01

    Matrix metalloproteinases (MMPs) degrade the extracellular matrix and carry out key functions in cell development, cancer, injury, and regeneration. In addition to its well recognized extracellular action, functional intracellular MMP activity under certain conditions is supported by increasing evidence. In this study, we observed higher gelatinase activity by in situ zymography and increased MMP-9 immunoreactivity in human neuroblastoma cells and in bone marrow macrophages undergoing mitosis compared with resting cells. We studied the pattern of immunoreactivity at the different stages of cell division by confocal microscopy. Immunostaining with different monoclonal antibodies against MMP-9 revealed a precise, dynamic, and well orchestrated localization of MMP-9 at the different stages of cell division. The cellular distribution of MMP-9 staining was studied in relation to that of microtubules. The spatial pattern of MMP-9 immunoreactivity suggested some participation in both the reorganization of the nuclear content and the process of chromatid segmentation. We then used several MMP-9 inhibitors to find out whether MMP-9 might be involved in the cell cycle. These drugs impaired the entry of cells into mitosis, as revealed by flow cytometry, and reduced cell culture growth. In addition, the silencing of MMP-9 expression with small interfering RNA also reduced cell growth. Taken together, these results suggest that intracellular MMP-9 is involved in the process of cell division in neuroblastoma cells and in primary cultures of macrophages.

  18. Treatment of tenosynovial giant cell tumor and pigmented villonodular synovitis.

    Science.gov (United States)

    Ravi, Vinod; Wang, Wei-Lien; Lewis, Valerae O

    2011-07-01

    To review recent developments in the molecular pathogenesis of tenosynovial giant cell tumor (TGCT) or pigmented villonodular synovitis (PVNS) and its therapeutic implications. TGCT or PVNS is a benign clonal neoplastic proliferation arising from the synovium characterized by a minor population of intratumoral cells that harbor a recurrent translocation. These cells overexpress CSF1, resulting in recruitment of CSF1R-bearing macrophages that are polyclonal and make up the bulk of the tumor. Inhibition of CSF1R using small molecule inhibitors such as imatinib, nilotinib or sunitinib can result in clinical, radiological and functional improvement in the affected joint. Currently, surgery remains the treatment of choice for patients with TGCT/PVNS. Localized TGCT/PVNS is managed by marginal excision. Recurrences occur in 8-20% of patients and are easily managed by re-excision. Diffuse TGCT/PVNS tends to recur more often (33-50%) and has a much more aggressive clinical course. Patients are often symptomatic and require multiple surgical procedures during their lifetime. For patients with unresectable disease or multiple recurrences, systemic therapy using CSF1R inhibitors may help delay or avoid surgical procedures and improve functional outcomes.

  19. Peroxiredoxin-1, a possible target in modulating inflammatory cytokine production in macrophage like cell line RAW264.7.

    Science.gov (United States)

    Tae Lim, Young; Sup Song, Dong; Joon Won, Tae; Lee, Yun-Jung; Yoo, Jong-Sun; Eun Hyung, Kyeong; Won Yoon, Joo; Park, So-Young; Woo Hwang, Kwang

    2012-06-01

    Peroxiredoxin (PRX), a scavenger of H(2) O(2) and alkyl hydroperoxides in living organisms, protects cells from oxidative stress. Contrary to its known anti-oxidant roles, the involvement of PRX-1 in the regulation of lipopolysaccharide (LPS) signaling is poorly understood, possible immunological functions of PRX-1 having been uncovered only recently. In the present study, it was discovered that the PRX-1 deficient macrophage like cell line (RAW264.7) has anti-inflammatory activity when stimulated by LPS. Treatment with LPS for 3 hrs resulted in increased gene expression of an anti-inflammatory cytokine, interleukin-10 (IL-10), in PRX-1 knock down RAW264.7 cells. Gene expression of pro-inflammatory cytokines IL-1β and tumor necrosis fac