WorldWideScience

Sample records for macrophage tnf production

  1. Tristetraprolin mediates radiation-induced TNFproduction in lung macrophages.

    Science.gov (United States)

    Ray, Dipankar; Shukla, Shirish; Allam, Uday Sankar; Helman, Abigail; Ramanand, Susmita Gurjar; Tran, Linda; Bassetti, Michael; Krishnamurthy, Pranathi Meda; Rumschlag, Matthew; Paulsen, Michelle; Sun, Lei; Shanley, Thomas P; Ljungman, Mats; Nyati, Mukesh K; Zhang, Ming; Lawrence, Theodore S

    2013-01-01

    The efficacy of radiation therapy for lung cancer is limited by radiation-induced lung toxicity (RILT). Although tumor necrosis factor-alpha (TNF-α) signaling plays a critical role in RILT, the molecular regulators of radiation-induced TNFproduction remain unknown. We investigated the role of a major TNF-α regulator, Tristetraprolin (TTP), in radiation-induced TNFproduction by macrophages. For in vitro studies we irradiated (4 Gy) either a mouse lung macrophage cell line, MH-S or macrophages isolated from TTP knockout mice, and studied the effects of radiation on TTP and TNF-α levels. To study the in vivo relevance, mouse lungs were irradiated with a single dose (15 Gy) and assessed at varying times for TTP alterations. Irradiation of MH-S cells caused TTP to undergo an inhibitory phosphorylation at Ser-178 and proteasome-mediated degradation, which resulted in increased TNF-α mRNA stabilization and secretion. Similarly, MH-S cells treated with TTP siRNA or macrophages isolated from ttp (-/-) mice had higher basal levels of TNF-α, which was increased minimally after irradiation. Conversely, cells overexpressing TTP mutants defective in undergoing phosphorylation released significantly lower levels of TNF-α. Inhibition of p38, a known kinase for TTP, by either siRNA or a small molecule inhibitor abrogated radiation-induced TNF-α release by MH-S cells. Lung irradiation induced TTP(Ser178) phosphorylation and protein degradation and a simultaneous increase in TNFproduction in C57BL/6 mice starting 24 h post-radiation. In conclusion, irradiation of lung macrophages causes TTP inactivation via p38-mediated phosphorylation and proteasome-mediated degradation, leading to TNFproduction. These findings suggest that agents capable of blocking TTP phosphorylation or stabilizing TTP after irradiation could decrease RILT.

  2. Tristetraprolin mediates radiation-induced TNFproduction in lung macrophages.

    Directory of Open Access Journals (Sweden)

    Dipankar Ray

    Full Text Available The efficacy of radiation therapy for lung cancer is limited by radiation-induced lung toxicity (RILT. Although tumor necrosis factor-alpha (TNF-α signaling plays a critical role in RILT, the molecular regulators of radiation-induced TNFproduction remain unknown. We investigated the role of a major TNF-α regulator, Tristetraprolin (TTP, in radiation-induced TNFproduction by macrophages. For in vitro studies we irradiated (4 Gy either a mouse lung macrophage cell line, MH-S or macrophages isolated from TTP knockout mice, and studied the effects of radiation on TTP and TNF-α levels. To study the in vivo relevance, mouse lungs were irradiated with a single dose (15 Gy and assessed at varying times for TTP alterations. Irradiation of MH-S cells caused TTP to undergo an inhibitory phosphorylation at Ser-178 and proteasome-mediated degradation, which resulted in increased TNF-α mRNA stabilization and secretion. Similarly, MH-S cells treated with TTP siRNA or macrophages isolated from ttp (-/- mice had higher basal levels of TNF-α, which was increased minimally after irradiation. Conversely, cells overexpressing TTP mutants defective in undergoing phosphorylation released significantly lower levels of TNF-α. Inhibition of p38, a known kinase for TTP, by either siRNA or a small molecule inhibitor abrogated radiation-induced TNF-α release by MH-S cells. Lung irradiation induced TTP(Ser178 phosphorylation and protein degradation and a simultaneous increase in TNFproduction in C57BL/6 mice starting 24 h post-radiation. In conclusion, irradiation of lung macrophages causes TTP inactivation via p38-mediated phosphorylation and proteasome-mediated degradation, leading to TNFproduction. These findings suggest that agents capable of blocking TTP phosphorylation or stabilizing TTP after irradiation could decrease RILT.

  3. EFFECT OF USNIC ACID ON TNF-α AND NO PRODUCTION IN LIPOPOLYSACCHARIDE-STIMULATED MACROPHAGES

    Institute of Scientific and Technical Information of China (English)

    Jin Juqing; He Langchong; Li Cuiqin

    2006-01-01

    Objective To investigate the molecular mechanisms that are responsible for anti-inflammatory effect of usnic acid (UA), the effects of UA from usnea longissm on tumor necrosis factor-α(TNF-α) and nitric oxide (NO) production in peritoneal macrophages has been examined. Methods The different concentrations of UA were added to peritoneal macrophages. The TNF-α and NO production in peritoneal macrophages were examined with mouse TNF-α ELISA kit and NO content by measuring the amount of nitrite (NO-2μmol/L) formed in the medium using Griess reaction. The activity of inducible nitric oxide synthase (i-NOS) was determined using i-NOS detection kit and the TNF-α mRNA expression was tested by reverse transcriptase polymerase chain reaction (RT-PCR). Results UA decreased the TNF-α and NO level in LPS-stimulated peritoneal macrophages in dose-dependent manner, the IC50 values were 12.8μmol/L and 5.7μmol/L respectively. RT-PCR analysis indicated that UA could inhibit TNF-α mRNA expression; the activity analysis of i-NOS indicated that UA could inhibit the activity of i-NOS. Conclusion UA could inhibit the TNF-α and NO production in peritoneal macrophages, it may be associated with the anti-inflammatory activity of UA.

  4. Contrary to BCG, MLM fails to induce the production of TNF alpha and NO by macrophages.

    Science.gov (United States)

    Rojas-Espinosa, Oscar; Wek-Rodríguez, Kendy; Arce-Paredes, Patricia; Aguilar-Torrentera, Fabiola; Truyens, Carine; Carlier, Yves

    2002-06-01

    Pathogenic mycobacteria must possess efficient survival mechanisms to resist the harsh conditions of the intraphagosomal milieu. In this sense, Mycobacterium lepraemurium (MLM) is one of the most evolved intracellular parasites of murine macrophages; this microorganism has developed a series of properties that allows it not only to resist, but also to multiply within the inhospitable environment of the phagolysosome. Inside the macrophages, MLM appears surrounded by a thick lipid-envelope that protects the microorganism from the digestive effect of the phagosomal hydrolases and the acid pH. MLM produces a disease in which the loss of specific cell-mediated immunity ensues, thus preventing activation of macrophages. In vitro, and possibly also in vivo, MLM infects macrophages without triggering the oxidative (respiratory burst) response of these cells, thus preventing the production of the toxic reactive oxygen intermediaries (ROI). Supporting the idea that MLM is within the most evolved pathogenic microorganisms, in the present study we found, that contrary to BCG, M. lepraemurium infects macrophages without stimulating these cells to produce meaningful levels of tumor necrosis factor alpha (TNF alpha) or nitric oxide (NO). Thus, the ability of the microorganisms to stimulate in their cellular hosts, the production of ROI and RNI (reactive nitrogen intermediates), seems to be an inverse correlate of their pathogenicity; the lesser their ability, the greater their pathogenicity.

  5. Antibodies Against Sporothrix schenckii Enhance TNFProduction and Killing by Macrophages.

    Science.gov (United States)

    Franco, D de Lima; Nascimento, R C; Ferreira, K S; Almeida, S R

    2012-02-01

    Sporotrichosis is a chronic granulomatous mycosis caused by the dimorphic fungus Sporothrix schenckii. The immunological mechanisms involved in the prevention and control of sporotrichosis suggest that cell-mediated immunity plays an important role in protecting the host against S. schenckii. Nonetheless, recent data strongly support the existence of protective Abs against this pathogenic fungus. In a previous study, we showed that passive Ab therapy led to a significant reduction in the number of colony forming unit in the organs of mice when the MAb was injected before and during S. schenckii infection. The ability of opsonization to enhance macrophage damage to S. schenckii and subsequent cytokine production was investigated in this work. Here we show that the fungicidal characteristics of macrophages are increased when the fungus is phagocytosed in the presence of inactivated serum from mice infected with S. schenckii or mAb anti-gp70. Additionally, we show an increase in the levels of pro-inflammatory cytokines such as TNF-α and IL-1β. This study provides additional support for the importance of antibodies in protecting against S. schenckii and concludes that opsonization is an important process to increase TNFproduction and fungus killing by macrophages in experimental sporotrichosis.

  6. Atorvastatin Attenuates TNF-alpha Production via Heme Oxygenase-1 Pathway in LPS-stimulated RAW264.7 Macrophages

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao Qiao; LUO Nian Sang; CHEN Zhong Qing; LIN Yong Qing; GU Miao Ning; CHEN Yang Xin

    2014-01-01

    ObjectiveTo assess the effect of atorvastatin on lipopolysaccharide(LPS)-inducedTNFproduction in RAW264.7 macrophages. MethodsRAW264.7 macrophageswere treated in different LPS concentrations oratdifferent time points with or without atorvastatin. TNF-α level in supernatant was measured. Expressions of TNF-αmRNA and protein and heme oxygenase-1 (HO-1) were detected by ELISA, PCR, and Western blot, respectively. HOactivity was assayed. ResultsLPS significantly increased the TNF-α expression and secretion in a dose- and time-dependent manner. The HO-1activity and HO-1 expression level were significantly higher after atorvastatin treatment than before atorvastatin treatment and attenuated by SB203580 and PD98059 but not by SP600125, suggesting that the ERK and p38 mitogen-activated protein kinase (MAPK) pathways participate inregulating the above-mentioned effects of atorvastatin. Moreover, the HO-1 activity suppressed by SnPP or the HO-1 expression inhibited by siRNA significantly attenuated the effect of atorvastatin onTNF-α expression and production in LPS-stimulated macrophages. ConclusionAtorvastatin can attenuate LPS-induced TNF-α expression and production by activating HO-1 via the ERK and p38 MAPK pathways,suggesting that atorvastatin can be used in treatment of inflammatory diseases such as sepsis, especially in those with atherosclerotic diseases.

  7. Pathogenic bacteria and TNF do not induce production of macrophage migration inhibitory factor (MIF) by human monocytes.

    Science.gov (United States)

    Temple, Suzanna E L; Cheong, Karey Y; Price, Patricia; Waterer, Grant W

    2009-06-01

    Elevated serum macrophage migration inhibitory factor (MIF) is associated with severe sepsis, but it is not clear whether bacteria stimulate synthesis of MIF by blood leukocytes directly or via induction of TNF. Here we assess production of MIF mRNA and protein by blood leukocytes from healthy human subjects (n=28) following exposure to bacteria commonly associated with sepsis (Escherichia coli and Streptococcus pneumoniae). Bacteria did not increase levels of MIF mRNA or secreted protein. CD14(+) monocytes were the main cell type producing MIF before and after stimulation. Exposure of leukocytes to TNF did not induce MIF. Hence elevated levels of serum MIF observed in sepsis may not reflect MIF produced by blood leukocytes stimulated directly by bacteria or TNF.

  8. The influence of aging and estradiol to progesterone ratio on rat macrophage phenotypic profile and NO and TNFproduction.

    Science.gov (United States)

    Dimitrijević, Mirjana; Stanojević, Stanislava; Kuštrimović, Nataša; Mitić, Katarina; Vujić, Vesna; Aleksić, Iva; Radojević, Katarina; Leposavić, Gordana

    2013-11-01

    The phenotype and function of tissue macrophages substantially depend on the cellular milieu and biological effector molecules, such as steroid hormones, to which they are exposed. Furthermore, in female rats, aging is associated with the altered macrophage functioning and the increased estrogen level is followed by a decrease in that of progesterone. Therefore, the present study aimed to investigate the influence of estradiol/progesterone balance on rat macrophage function and phenotype throughout whole adult lifespan. We ovariectomized rats at the late prepubertal age or at the very end of reproductive lifespan, and examined the expression of ED2 (CD163, a marker of mature resident macrophages related to secretion of inflammatory mediators) on peritoneal macrophages and their ability to produce TNF-α and NO upon LPS-stimulation at different age points. In addition, to delineate direct and indirect effects of estrogen, we assessed the in vitro influence of different concentrations of 17β-estradiol on LPS-induced macrophage TNF-α and NO production. Results showed that: (a) the low frequency of ED2(high) cells amongst peritoneal macrophages of aged rats was accompanied with the reduced TNF-α, but not NO production; (b) estradiol level gradually increased following ovariectomy; (c) macrophage ED2 expression and TNFproduction were dependent on estradiol/progesterone balance and they changed in the same direction; (d) changes in estradiol/progesterone balance differentially affected macrophages TNF-α and NO production; and (e) estradiol exerted pro-inflammatory and anti-inflammatory effects on macrophages in vivo and in vitro, respectively. Overall, our study discloses that estradiol/progesterone balance contributes to the fine-tuning of rat macrophage secretory capacity, and adds to a better understanding of the ovarian steroid hormone role in the regulation of macrophage function, and its significance for the age-associated changes in innate immunity.

  9. Blueberries inhibit proinflammatory cytokine TNF-alpha and IL-6 production in macrophages

    Science.gov (United States)

    Blueberries (BB) have been reported to attenuate atherosclerosis in apoE deficient (ApoE-/-) mice. However, the underlying mechanisms are not fully understood. In this study, the effect of BB on proinflammatory cytokine production in macrophages was investigated. ApoE-/- mice were fed AIN-93G diet (...

  10. The Effects of Molecular Hydrogen and Suberoylanilide Hydroxamic Acid on Paraquat-Induced Production of Reactive Oxygen Species and TNF-α in Macrophages.

    Science.gov (United States)

    Li, Jiaoyang; Wu, Xizi; Chen, Yao; Zeng, Renqing; Zhao, Yangzi; Chang, Panpan; Wang, Danna; Zhao, Qianwen; Deng, Yunlei; Li, Yongqing; Alam, Hasan B; Chong, Wei

    2016-12-01

    The aim of this study is to investigate the effects of molecular hydrogen (H2) and suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, on paraquat (PQ)-stimulated production of reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF-α) in macrophages. First, the PQ optimal concentration was determined in RAW264.7 macrophage by treating serum-starved cells with PQ at 0, 0.001, 0.01, 0.1, 1, and 10 mM. We evaluated at 1, 2 and 8 h (1) cell viability (by means of trypan blue exclusion method), (2) intracellular ROS levels (with a fluorescent DCFH-DA probe), and (3) TNF-α level in the culture media (determined by enzyme-linked immunosorbent assay, ELISA). Subsequently, mouse RAW267.4 macrophages were treated with PQ in combination with SAHA and/or H2 for 8 h. PQ exerted a significant stimulatory but nontoxic effect on RAW267.4 macrophages at 0.1 mM. This PQ concentration was used in the subsequent experiments. H2 and H2 combined with SAHA evoked a greater reduction in PQ-induced ROS production than SAHA alone, especially at 2 and 8 h. At 1 and 2 h, treatments involving H2 caused a greater decrease in PQ-induced production of TNF-α than the corresponding treatments without H2. However, at 8 h, treatment with SAHA evoked more pronounced effects on TNF-α than treatment without SAHA. H2 decreases PQ-induced ROS production and attenuates early PQ-induced TNFproduction whereas SAHA reduces the late phase of the PQ-induced TNFproduction in macrophages. The effects are enhanced by the combination of H2 and SAHA.

  11. A Novel Strategy for TNF-Alpha Production by 2-APB Induced Downregulated SOCE and Upregulated HSP70 in O. tsutsugamushi-Infected Human Macrophages.

    Science.gov (United States)

    Wu, Ching-Ying; Hsu, Wen-Li; Wang, Chun-Hsiung; Liang, Jui-Lin; Tsai, Ming-Hsien; Yen, Chia-Jung; Li, Hsiu-Wen; Chiu, Siou-Jin; Chang, Chung-Hsing; Huang, Yaw-Bin; Lin, Ming-Wei; Yoshioka, Tohru

    2016-01-01

    Orientia (O.) tsutsugamushi-induced scrub typhus is endemic across many regions of Asia and the Western Pacific, where an estimated 1 million cases occur each year; the majority of patients infected with O. tsutsugamushi end up with a cytokine storm from a severe inflammatory response. Previous reports have indicated that blocking tumor necrosis factor (TNF)-α reduced cell injury from a cytokine storm. Since TNFproduction is known to be associated with intracellular Ca2+ elevation, we examined the effect of store-operated Ca2+ entry (SOCE) inhibitors on TNFproduction in O. tsutsugamushi-infected macrophages. We found that 2-aminoethoxydiphenyl borate (2-APB), but not SKF96365, facilitates the suppression of Ca2+ mobilization via the interruption of Orai1 expression in O. tsutsugamushi-infected macrophages. Due to the decrease of Ca2+ elevation, the expression of TNF-α and its release from macrophages was repressed by 2-APB. In addition, a novel role of 2-APB was found in macrophages that causes the upregulation of heat shock protein 70 (HSP70) expression associated with ERK activation; upregulated TNFproduction in the case of knockdown HSP70 was inhibited with 2-APB treatment. Furthermore, elevated HSP70 formation unexpectedly did not help the cell survival of O. tsutsugamushi-infected macrophages. In conclusion, the parallelism between downregulated Ca2+ mobilization via SOCE and upregulated HSP70 after treatment with 2-APB against TNFproduction was found to efficiently attenuate an O. tsutsugamushi-induced severe inflammatory response.

  12. Production of TNF-α, nitric oxide and hydrogen peroxide by macrophages from mice with paracoccidioidomycosis that were fed a linseed oil-enriched diet

    Directory of Open Access Journals (Sweden)

    Sheisa Cyléia Sargi

    2012-05-01

    Full Text Available Omega-3 polyunsaturated fatty acids (n-3 PUFA can modulate the immune system and their primary effect is on macrophage function. Paracoccidioidomycosis (PCM is an endemic systemic mycosis in Latin America that is caused by the dimorphic fungus Paracoccidioides brasiliensis (Pb. Macrophages are the main defence against this pathogen and have microbicidal activity that is dependent on interferon-Γ and tumour necrosis factor (TNF-α. These cytokines stimulate the synthesis of nitric oxide (NO and hydrogen peroxide (H2O2, leading to the death of the fungus. To study the effect of n-3 PUFA on the host immune response during experimental PCM, macrophages that were obtained from animals infected with Pb18 and fed a diet enriched by linseed (LIN oil were cultured and challenged with the fungus in vitro. The macrophage function was analysed based on the concentrations of TNF-α, NO and H2O2. LIN oil seems to influence the production of TNF-α during the development of disease. A diet enriched with LIN oil influences the microbicidal activity of the macrophages by inducing the production of cytokines and metabolites such as NO and H2O2, predominantly in the chronic phase of infection.

  13. EFFECT OF USNIC ACID ON TNF-α AND NO PRODUCTION IN LIPOPO-LYSACCHARIDE-STIMULATED MACROPHAGES

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Macrophage-derived tumor necrosis factor-α(TNF-α)and nitric oxide(NO)plays a pivotal roleininflammation and host defense.Persistent or in-appropriately highTNF-αand NO expression con-tributes to the inflammatory conditions,includingseptic shock,rheumatoid arthritis,multiple sclerosisand AIDS[1-2].NOis produced by t wo types of ni-tric oxide synthase(NOS).Aconstitutive NOS(c-NOS)is Ca2+-dependent and releases s mall amountsof NOrequired for physiological functions,where-as the other for m,inducible NOS(i-NOS...

  14. TNF Counterbalances the Emergence of M2 Tumor Macrophages

    Directory of Open Access Journals (Sweden)

    Franz Kratochvill

    2015-09-01

    Full Text Available Cancer can involve non-resolving, persistent inflammation where varying numbers of tumor-associated macrophages (TAMs infiltrate and adopt different activation states between anti-tumor M1 and pro-tumor M2 phenotypes. Here, we resolve a cascade causing differential macrophage phenotypes in the tumor microenvironment. Reduction in TNF mRNA production or loss of type I TNF receptor signaling resulted in a striking pattern of enhanced M2 mRNA expression. M2 gene expression was driven in part by IL-13 from eosinophils co-recruited with inflammatory monocytes, a pathway that was suppressed by TNF. Our data define regulatory nodes within the tumor microenvironment that balance M1 and M2 populations. Our results show macrophage polarization in cancer is dynamic and dependent on the balance between TNF and IL-13, thus providing a strategy for manipulating TAMs.

  15. TNF counterbalances the emergence of M2 tumor macrophages

    Science.gov (United States)

    Kratochvill, Franz; Neale, Geoffrey; Haverkamp, Jessica M.; de Velde, Lee-Ann Van; Smith, Amber M.; Kawauchi, Daisuke; McEvoy, Justina; Roussel, Martine F.; Dyer, Michael A.; Qualls, Joseph E.; Murray, Peter J.

    2015-01-01

    Cancer is a form of non-resolving, persistent inflammation where varying numbers of tumor-associated macrophages (TAMs) infiltrate and adopt different activation states between anti-tumor M1 and pro-tumor M2 phenotypes. Here we resolve a cascade causing differential macrophage phenotypes in the tumor microenvironment. Reduction in TNF mRNA production or loss of Type I TNF receptor signaling resulted in a striking pattern of enhanced M2 mRNA expression. M2 gene expression was driven in part by IL-13 from eosinophils co-recruited with inflammatory monocytes, a pathway that was suppressed by TNF. Our data define regulatory nodes within the tumor microenvironment that balance M1 and M2 populations. Our results show macrophage polarization in cancer is dynamic and dependent on the balance between TNF and IL-13, thus providing a strategy for manipulating TAMs. PMID:26365184

  16. Role of protein tyrosine phosphatase non-receptor type 7 in the regulation of TNFproduction in RAW 264.7 macrophages.

    Science.gov (United States)

    Seo, Huiyun; Lee, In-Seon; Park, Jae Eun; Park, Sung Goo; Lee, Do Hee; Park, Byoung Chul; Cho, Sayeon

    2013-01-01

    Protein tyrosine phosphatases play key roles in a diverse range of cellular processes such as differentiation, cell proliferation, apoptosis, immunological signaling, and cytoskeletal function. Protein tyrosine phosphatase non-receptor type 7 (PTPN7), a member of the phosphatase family, specifically inactivates mitogen-activated protein kinases (MAPKs). Here, we report that PTPN7 acts as a regulator of pro-inflammatory TNFproduction in RAW 264.7 cells that are stimulated with lipopolysaccharide (LPS) that acts as an endotoxin and elicits strong immune responses in animals. Stimulation of RAW 264.7 cells with LPS leads to a transient decrease in the levels of PTPN7 mRNA and protein. The overexpression of PTPN7 inhibits LPS-stimulated production of TNF-α. In addition, small interfering RNA (siRNA) analysis showed that knock-down of PTPN7 in RAW 264.7 cells increased TNFproduction. PTPN7 has a negative regulatory function to extracellular signal regulated kinase 1/2 (ERK1/2) and p38 that increase LPS-induced TNFproduction in macrophages. Thus, our data presents PTPN7 as a negative regulator of TNF-α expression and the inflammatory response in macrophages.

  17. Role of protein tyrosine phosphatase non-receptor type 7 in the regulation of TNFproduction in RAW 264.7 macrophages.

    Directory of Open Access Journals (Sweden)

    Huiyun Seo

    Full Text Available Protein tyrosine phosphatases play key roles in a diverse range of cellular processes such as differentiation, cell proliferation, apoptosis, immunological signaling, and cytoskeletal function. Protein tyrosine phosphatase non-receptor type 7 (PTPN7, a member of the phosphatase family, specifically inactivates mitogen-activated protein kinases (MAPKs. Here, we report that PTPN7 acts as a regulator of pro-inflammatory TNFproduction in RAW 264.7 cells that are stimulated with lipopolysaccharide (LPS that acts as an endotoxin and elicits strong immune responses in animals. Stimulation of RAW 264.7 cells with LPS leads to a transient decrease in the levels of PTPN7 mRNA and protein. The overexpression of PTPN7 inhibits LPS-stimulated production of TNF-α. In addition, small interfering RNA (siRNA analysis showed that knock-down of PTPN7 in RAW 264.7 cells increased TNFproduction. PTPN7 has a negative regulatory function to extracellular signal regulated kinase 1/2 (ERK1/2 and p38 that increase LPS-induced TNFproduction in macrophages. Thus, our data presents PTPN7 as a negative regulator of TNF-α expression and the inflammatory response in macrophages.

  18. Activation of ERK1/2 and TNFproduction are regulated by calcium/calmodulin signaling pathway during Penicillium marneffei infection within human macrophages.

    Science.gov (United States)

    Chen, Renqiong; Ji, Guangquan; Wang, Ling; Ren, Hong; Xi, Liyan

    2016-04-01

    Previous study have shown that Penicillium marneffei (P. marneffei)-induced TNFproduction via an extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase-dependent mechanism is an important host defence mechanism against P. marneffei in human macrophages. Therefore, we explore signaling pathway that regulates TNF-α secretion and activation of ERK1/2 by intracellular signaling mechanisms during P. marneffei infection. We found that ERK1/2 activation was dependent on the calcium/calmodulin/calmodulin kinase Ⅱ pathway in P. marneffei-infected human macrophages. In contrast, P. marneffei-induced p38 MAPK activation was negatively regulated by calcium/calmodulin/calmodulin kinase Ⅱ signaling pathway. Furthermore, TNFproduction in P. marneffei-infected human macrophages was also dependent on Ca(2+)/calmodulin/calmodulin kinase Ⅱ pathway. These data suggest that Ca(2+)/calmodulin/calmodulin kinase Ⅱ pathway plays vital regulatory roles in macrophage activation and subsequent cytokine production during P. marneffei infection.

  19. Ganoderic acid C1 isolated from the anti-asthma formula, ASHMI™ suppresses TNFproduction by mouse macrophages and peripheral blood mononuclear cells from asthma patients.

    Science.gov (United States)

    Liu, Changda; Yang, Nan; Song, Ying; Wang, Lixin; Zi, Jiachen; Zhang, Shuwei; Dunkin, David; Busse, Paula; Weir, David; Tversky, Jody; Miller, Rachel L; Goldfarb, Joseph; Zhan, Jixun; Li, Xiu-Min

    2015-08-01

    Asthma is a heterogeneous airway inflammatory disease, which is associated with Th2 cytokine-driven inflammation and non-Th2, TNF-α mediated inflammation. Unlike Th2 mediated inflammation, TNF-α mediated asthma inflammation is generally insensitive to inhaled corticosteroids (ICS). ASHMITM, aqueous extract of three medicinal herbs-Ganoderma lucidum (G. lucidum), Sophora flavescens Ait (S. flavescens) and Glycyrrhiza uralensis Fischer (G. uralensis), showed a high safety profile and was clinically beneficial in asthma patients. It also suppresses both Th2 and TNF-α associated inflammation in murine asthma models. We previously determined that G. uralensis flavonoids are the key active compounds responsible for ASHMITM suppression of Th2 mediated inflammation. Until now, there are limited studies on anti-TNF-α compounds presented in ASHMITM. The objective of this study was to isolate and identify TNF-α inhibitory compounds in ASHMITM. Here we report that G. lucidum, but not the other two herbal extracts, S. flavescens or G. uralensis inhibited TNFproduction by murine macrophages; and that the methylene chloride (MC)-triterpenoid-enriched fraction, but not the polysaccharide-enriched fraction, contained the inhibitory compounds. Of the 15 triterpenoids isolated from the MC fraction, only ganoderic acid C1 (GAC1) significantly reduced TNFproduction by murine macrophages (RAW 264.7 cells) and peripheral blood mononuclear cells (PBMCs) from asthma patients. Inhibition was associated with down-regulation of NF-κB expression, and partial suppression of MAPK and AP-1 signaling pathways. Ganoderic acid C1 may have potential for treating TNF-α mediated inflammation in asthma and other inflammatory diseases.

  20. Ascorbic acid pre-treated quartz stimulates TNF-α release in RAW 264.7 murine macrophages through ROS production and membrane lipid peroxidation

    Directory of Open Access Journals (Sweden)

    Benvenuto Federica

    2009-03-01

    Full Text Available Abstract Background Inhalation of crystalline silica induces a pulmonary fibrotic degeneration called silicosis caused by the inability of alveolar macrophages to dissolve the crystalline structure of phagocytosed quartz particles. Ascorbic acid is capable of partially dissolving quartz crystals, leading to an increase of soluble silica concentration and to the generation of new radical sites on the quartz surface. The reaction is specific for the crystalline forms of silica. It has been already demonstrated an increased cytotoxicity and stronger induction of pro-inflammatory cyclooxygenase-2 (COX-2 by ascorbic acid pre-treated quartz (QA compared to untreated quartz (Q in the murine macrophage cell line RAW 264.7. Methods Taking advantage of the enhanced macrophage response to QA as compared to Q particles, we investigated the first steps of cell activation and the contribution of early signals generated directly from the plasma membrane to the production of TNF-α, a cytokine that activates both inflammatory and fibrogenic pathways. Results Here we demonstrate that TNF-α mRNA synthesis and protein secretion are significantly increased in RAW 264.7 macrophages challenged with QA as compared to Q particles, and that the enhanced response is due to an increase of intracellular ROS. Plasma membrane-particle contact, in the absence of phagocytosis, is sufficient to trigger TNFproduction through a mechanism involving membrane lipid peroxidation and this appears to be even more detrimental to macrophage survival than particle phagocytosis itself. Conclusion Taken together these data suggest that an impairment of pulmonary macrophage phagocytosis, i.e. in the case of alcoholic subjects, could potentiate lung disease in silica-exposed individuals.

  1. Inhibition of LPS-induced TNF-α and NO production in mouse macrophage and inflammatory response in rat animal models by a novel Ayurvedic formulation, BV-9238.

    Science.gov (United States)

    Dey, Debendranath; Chaskar, Sunetra; Athavale, Nitin; Chitre, Deepa

    2014-10-01

    Rheumatoid arthritis is a chronic crippling disease, where protein-based tumor necrosis factor-alpha (TNF-α) inhibitors show significant relief, but with potentially fatal side effects. A need for a safe, oral, cost-effective small molecule or phyto-pharmaceutical is warranted. BV-9238 is an Ayurvedic poly-herbal formulation containing specialized standardized extracts of Withania somnifera, Boswellia serrata, Zingiber officinale and Curcuma longa. The anti-inflammatory and anti-arthritic effects of BV-9238 were evaluated for inhibition of TNF-α and nitric oxide (NO) production, in lipopolysaccharide-stimulated, RAW 264.7, mouse macrophage cell line. BV-9238 reduced TNF-α and NO production, without any cytotoxic effects. Subsequently, the formulation was tested in adjuvant-induced arthritis (AIA) and carrageenan-induced paw edema (CPE) rat animal models. AIA was induced in rats by injecting Freund's complete adjuvant intra-dermally in the paw, and BV-9238 and controls were administered orally for 21 days. Arthritic scores in AIA study and inflamed paw volume in CPE study were significantly reduced upon treatment with BV-9238. These results suggest that the anti-inflammatory and anti-arthritic effects of BV-9238 are due to its inhibition of TNF-α, and NO, and this formulation shows promise as an alternate therapy for inflammatory disorders where TNF-α and NO play important roles.

  2. Role of transforming growth factor-β1 in down-regulating TNF production by alveolar macrophages during asbestos-induced pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Irma Lemaire

    1996-01-01

    Full Text Available Activation of alveolar macrophages (AM for tumour necrosis factor production is suppressed initially during the inflammatory response to fibrogenic dusts. We investigated the mechanisms involved in TNF suppression, notably the role of other AM-derived mediators including prostaglandin E2 (PGE2, transforming growth factor-β1 (TGF-β1, and interleukin 6 (IL-6. The action of PGE2 and TGF-β1, on AM was different. At physiologically relevant doses (25–300 pg/ml, PGE2 did not cause significant inhibition of Hpopolysaccharide (Lps-induced TNF release by AM in vitro but stimulated IL-6 (up to six fold, an inhibitor of AM-derived TNT. In contrast, TGF-β1 (0.5–50 ng/ml inhibited both LPS-induced TNT and IL-6 release by 50% but had no effect on PGE2 production by AM. To determine the respective contribution of these different inhibitors in TNF suppression, AM from rats exposed to fibrogenic asbestos for weeks were treated with neutralizing antibody against TGF-β1 or indomethacin, an inhibitor of PGE2 synthesis. Treatment of rat AM with anti-TGF-β1 but not indomethacin, abrogated the observed TNT suppression. These results suggest that an autocrine, TGF-β1-dependent mechanism is involved in the down-regulation of TNF production by rat AM from animals with lung fibrosis.

  3. Inhibitory effects of the flavonoids isolated from Waltheria indica on the production of NO, TNF-alpha and IL-12 in activated macrophages.

    Science.gov (United States)

    Rao, Yerra Koteswara; Fang, Shih-Hua; Tzeng, Yew-Min

    2005-05-01

    Three flavonoids were isolated from the whole plants of Waltheria indica and biological properties investigated. On the basis of their spectroscopic data, these compounds were identified as (-)-epicatechin, quercetin, and tiliroside. These flavonoids significantly and dose-dependently inhibited the production of the inflammatory mediator nitric oxide (NO), and the cytokines (tumor necrosis factor (TNF)-alpha and interleukin (IL)-12), in lipopolysaccharide (LPS) and interferon (IFN)-gamma activated murine peritoneal macrophages, without displaying cytotoxicity. The order of inhibitory activity was quercetin>tiliroside>(-)-epicatechin. Furthermore, peritoneal macrophages were pre-activated with LPS/IFN-gamma for 24 h, and the inhibitory effects of the above mentioned isolates on the production of NO were determined after a further 24 h, to address the possible mechanisms of their action. The present study supports the use of W. indica for the treatment of inflammatory diseases in traditional medicine.

  4. TNF gene expression in macrophage activation and endotoxin tolerance

    OpenAIRE

    Chow, Nancy Ann-Marie

    2013-01-01

    TNF is an inflammatory cytokine that plays a critical role in the acute phase response to infection, and its dysregulation has been implicated in the pathology of several inflammatory and autoimmune disorders. TNF gene expression is regulated in a cell type- and inducer-specific manner that involves chromatin alterations at both the TNF promoter and distal DNase I hypersensitive (DH) sites within the TNF/LT locus. While the mechanisms underlying TNF gene activation in monocytes/macrophages an...

  5. Wool and grain dusts stimulate TNF secretion by alveolar macrophages in vitro.

    Science.gov (United States)

    Brown, D M; Donaldson, K

    1996-01-01

    OBJECTIVE: The aim of the study was to investigate the ability of two organic dusts, wool and grain, and their soluble leachates to stimulate secretion of tumour necrosis factor (TNF) by rat alveolar macrophages with special reference to the role of lipopolysaccharide (LPS). METHODS: Rat alveolar macrophages were isolated by bronchoalveolar lavage (BAL) and treated in vitro with whole dust, dust leachates, and a standard LPS preparation. TNF production was measured in supernatants with the L929 cell line bioassay. RESULTS: Both wool and grain dust samples were capable of stimulating TNF release from rat alveolar macrophages in a dose-dependent manner. The standard LPS preparation caused a dose-dependent secretion of TNF. Leachates prepared from the dusts contained LPS and also caused TNF release but leachable LPS could not account for the TNF release and it was clear that non-LPS leachable activity was present in the grain dust and that wool dust particles themselves were capable of causing release of TNF. The role of LPS in wool dust leachates was further investigated by treating peritoneal macrophages from two strains of mice, LPS responders (C3H) and LPS non-responders (C3H/HEJ), with LPS. The non-responder mouse macrophages produced very low concentrations of TNF in response to the wool dust leachates compared with the responders. CONCLUSIONS: LPS and other unidentified leachable substances present on the surface of grain dust, and to a lesser extent on wool dust, are a trigger for TNF release by lung macrophages. Wool dust particles themselves stimulate TNF. TNF release from macrophages could contribute to enhancement of inflammatory responses and symptoms of bronchitis and breathlessness in workers exposed to organic dusts such as wool and grain. PMID:8758033

  6. TNF and PGE2 in human monocyte-derived macrophages infected with Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    E. Manor

    1993-01-01

    Full Text Available In this study levels of prostaglandin E2 (PGE2, tumour necrosis factor (TNF and interleukin-1 (IL-1 alpha in medium from monocyte derived macrophages (MdM infected with Chlamydia trachomatis (L2/434/Bu or K biovars. TNF and PGE2 were found in both cases while IL-1 alpha was not detected. Both TNF and PGE2 levels were higher in the medium of the MdM infected with K biovars. TNF reached maximum levels 24 h postinfection, and then declined, while PGE2 levels increased continuously during the infection time up to 96 h post-infection. Addition of dexamethasone inhibited production of TNF and PGE2. Inhibition of PGE2 production by indomethacin resulted in increased production of TNF, while addition of PGE2 caused partial inhibition of TNF production from infected MdM.

  7. 重组人生长激素对人巨噬细胞分泌IL-1、IL-6和TNF-α的影响%Effect of recombinant human growth hormone on production of IL-1, IL-6, and TNF-α from human macrophages

    Institute of Scientific and Technical Information of China (English)

    丁培杰; 段长恩; 张世杰; 赵国强

    2011-01-01

    Aim: To investigate the effects of recombinant human growth hormone ( rhCH) on the production of IL-1, IL-6, and TNF-α from human macrophages. Methods: The mononuclear cells were obtained from human peripheral blood and induced to macrophages by granulocyte and monocyte colony stimulating factor,and identified by flow cytometry. Then the macrophages were allocated into 6 groups and stimulated by lipopolysaccharide and 0,1,4,20, and 50 μg/L rhGH, respectively. The production of IL-1, IL-6, and TNF-α from macrophages were detected by ELISA. Results;The macrophages were obtained and identified. It was showed that rhGH could promote macrophages to secrete IL-1, IL-6, and TNF-α, and the contents of IL-1,IL-6,and TNF-α increased with culture time. Conclusion:rhGH could promote the production of IL-1,IL-6 and TNF-α by macrophages, suggesting that it may be involved in immune regulation.%目的:观察重组人生长激素( rhGH)对人巨噬细胞分泌IL-1、IL-6和TNF-α的影响.方法:以粒细胞-巨噬细胞集落刺激因子体外诱导从人外周血中分离的单个核细胞,使其分化为巨噬细胞,并用流式细胞术鉴定;诱导获得细胞分为6组,分别用l mg/L脂多糖和0、1、4、20及50 μg/L的rhCH培养4、8和12h,采用ELISA法测定各组巨噬细胞上清液中IL-1、IL-6和TNF-α的分泌情况.结果:诱导的细胞经鉴定为巨噬细胞.不同质量浓度的rhGH均可促进所诱导的巨噬细胞分泌IL-1、IL-6和TNF-α;随培养时间的延长,各组巨噬细胞以上细胞因子的分泌量增加.结论:rhGH对人单核巨噬细胞分泌IL-1、IL-6和TNF-α有促进作用,提示其可能参与免疫调节作用.

  8. TNF-alpha, produced by feline infectious peritonitis virus (FIPV)-infected macrophages, upregulates expression of type II FIPV receptor feline aminopeptidase N in feline macrophages.

    Science.gov (United States)

    Takano, Tomomi; Hohdatsu, Tsutomu; Toda, Ayako; Tanabe, Maki; Koyama, Hiroyuki

    2007-07-20

    The pathogenicity of feline infectious peritonitis virus (FIPV) is known to depend on macrophage tropism, and this macrophage infection is enhanced by mediation via anti-S antibody (antibody-dependent enhancement, ADE). In this study, we found that TNF-alpha production was increased with viral replication in macrophages inoculated with a mixture of FIPV and anti-S antibody, and demonstrated that this culture supernatant had feline PBMC apoptosis-inducing activity. We also demonstrated that the expression level of the FIPV virus receptor, feline aminopeptidase N (fAPN), was increased in macrophages of FIP cats. For upregulation of TNF-alpha and fAPN in macrophages, viral replication in macrophages is necessary, and their expressions were increased by ADE of FIPV infection. It was demonstrated that a heat-resistant fAPN-inducing factor was present in the culture supernatant of FIPV-infected macrophages, and this factor was TNF-alpha: fAPN expression was upregulated in recombinant feline TNF-alpha-treated macrophages, and FIPV infectivity was increased in these macrophages. These findings suggested that FIPV replication in macrophages increases TNF-alpha production in macrophages, and the produced TNF-alpha acts and upregulates fAPN expression, increasing FIPV sensitivity.

  9. Decreased inducibility of TNF expression in lipid-loaded macrophages

    Directory of Open Access Journals (Sweden)

    Kallin Bengt

    2002-10-01

    Full Text Available Abstract Background Inflammation and immune responses are considered to be very important in the pathogenesis of atherosclerosis. Lipid accumulation in macrophages of the arterial intima is a characteristic feature of atherosclerosis which can influence the inflammatory potential of macrophages. We studied the effects of lipid loading on the regulation of TNF expression in human monocyte-derived macrophages. Results In macrophages incubated with acetylated low density lipoprotein (ac-LDL for 2 days, mRNA expression of TNF in cells stimulated with TNF decreased by 75%. In cell cultures stimulated over night with IL-1β, lipid loading decreased secretion of TNF into culture medium by 48%. These results suggest that lipid accumulation in macrophages makes them less responsive to inflammatory stimuli. Decreased basal activity and inducibility of transcription factor AP-1 was observed in lipid-loaded cells, suggesting a mechanism for the suppression of cytokine expression. NF-κB binding activity and inducibility were only marginally affected by ac-LDL. LDL and ac-LDL did not activate PPARγ. In contrast, oxidized LDL stimulated AP-1 and PPARγ but inhibited NF-κB, indicating that the effects of lipid loading with ac-LDL were not due to oxidation of lipids. Conclusions Accumulation of lipid, mainly cholesterol, results in down-regulation of TNF expression in macrophages. Since monocytes are known to be activated by cell adhesion, these results suggest that foam cells in atherosclerotic plaques may contribute less potently to an inflammatory reaction than newly arrived monocytes/macrophages.

  10. The influence of molecular weight, crosslinking and counterface roughness on TNF-alpha production by macrophages in response to ultra high molecular weight polyethylene particles.

    Science.gov (United States)

    Ingram, Joanne Helen; Stone, Martin; Fisher, John; Ingham, Eileen

    2004-08-01

    The response of murine macrophages to clinically relevant polyethylene wear particles generated from different polyethylenes at various time points and volumetric doses in vitro was evaluated. Clinically relevant ultra high molecular weight polyethylene (UHMWPE) wear debris was generated in vitro in a lubricant of RPMI 1640 supplemented with 25% (v/v) foetal calf serum using a multi-directional pin-on-plate wear rig under sterile conditions. Wear debris was cultured with C3H murine peritoneal macrophages at various particle volume (microm(3)): cell number ratios. The secretion of TNF-alpha was determined by ELISA. Initially the effect of molecular weight of UHMWPE was considered. Higher molecular weight GUR415HP was shown to have a lower wear rate than the lower molecular weight GUR1120, however a greater volume of the wear debris produced by the high molecular weight GUR415HP was in the 0.1-1.0 microm size range. Wear debris from GUR415HP produced significant levels of TNF-alpha at a concentration of 1 microm(3)/cell while at least 10 microm(3)/cell of GUR1120 wear debris per cell was needed to produce significant levels of TNF-alpha. Secondly the effects of crosslinking GUR1050 was examined when worn against a scratched counterface. The wear rate of the material was shown to decrease as the level of crosslinking increased. However the materials crosslinked with 5 and 10 Mrad of gamma irradiation produced higher percentages of 0.1-1.0 microm size wear particles than the non-crosslinked material. While the crosslinked material was able to stimulate cells to produce significantly elevated TNF-alpha levels at a particle concentration of just 0.1 microm(3)/cell only concentrations of 10 microm(3)/cell and above of the non-crosslinked wear debris were stimulatory. When the counterface was changed from scratched to smooth the wear rate for all three GUR1050 materials was further reduced. For the first time nanometre size wear particles were observed from polyethylene

  11. Blueberries reduce pro-inflammatory cytokine TNF-alpha and IL-6 production in mouse macrophages by inhibiting NF Kappa B activation and the MAPK pathway

    Science.gov (United States)

    Blueberries (BB) have been reported to attenuate atherosclerosis in apoE deficient (ApoE-/-) mice. The aim of this study was to evaluate the effects of BB in reducing pro-inflammatory cytokine production in mouse macrophages. ApoE-/- mice were fed AIN-93G diet (CD) or CD formulated to contain 1% fre...

  12. Alveolar macrophages play a key role in cockroach-induced allergic inflammation via TNF-α pathway.

    Directory of Open Access Journals (Sweden)

    Joo Young Kim

    Full Text Available The activity of the serine protease in the German cockroach allergen is important to the development of allergic disease. The protease-activated receptor (PAR-2, which is expressed in numerous cell types in lung tissue, is known to mediate the cellular events caused by inhaled serine protease. Alveolar macrophages express PAR-2 and produce considerable amounts of tumor necrosis factor (TNF-α. We determined whether the serine protease in German cockroach extract (GCE enhances TNFproduction by alveolar macrophages through the PAR-2 pathway and whether the TNFproduction affects GCE-induced pulmonary inflammation. Effects of GCE on alveolar macrophages and TNFproduction were evaluated using in vitro MH-S and RAW264.6 cells and in vivo GCE-induced asthma models of BALB/c mice. GCE contained a large amount of serine protease. In the MH-S and RAW264.7 cells, GCE activated PAR-2 and thereby produced TNF-α. In the GCE-induced asthma model, intranasal administration of GCE increased airway hyperresponsiveness (AHR, inflammatory cell infiltration, productions of serum immunoglobulin E, interleukin (IL-5, IL-13 and TNFproduction in alveolar macrophages. Blockade of serine proteases prevented the development of GCE induced allergic pathologies. TNF-α blockade also prevented the development of such asthma-like lesions. Depletion of alveolar macrophages reduced AHR and intracellular TNF-α level in pulmonary cell populations in the GCE-induced asthma model. These results suggest that serine protease from GCE affects asthma through an alveolar macrophage and TNF-α dependent manner, reflecting the close relation of innate and adaptive immune response in allergic asthma model.

  13. Macrophage-specific TLR2 signaling mediates pathogen-induced TNF-dependent inflammatory oral bone loss.

    Science.gov (United States)

    Papadopoulos, George; Weinberg, Ellen O; Massari, Paola; Gibson, Frank C; Wetzler, Lee M; Morgan, Elise F; Genco, Caroline A

    2013-02-01

    Porphyromonas gingivalis is a primary etiological agent of chronic periodontal disease, an infection-driven chronic inflammatory disease that leads to the resorption of tooth-supporting alveolar bone. We previously reported that TLR2 is required for P. gingivalis-induced alveolar bone loss in vivo, and our in vitro work implicated TNF as a key downstream mediator. In this study, we show that TNF-deficient (Tnf(-/-)) mice are resistant to alveolar bone loss following oral infection with P. gingivalis, and thus establish a central role for TNF in experimental periodontal disease. Using bone marrow-derived macrophages (BMDM) from wild-type and gene-specific knockout mice, we demonstrate that the initial inflammatory response to P. gingivalis in naive macrophages is MyD88 dependent and requires cooperative signaling of TLR2 and TLR4. The ability of P. gingivalis to activate cells via TLR2 or TLR4 was confirmed in TLR2- or TLR4-transformed human embryonic kidney cells. Additional studies using bacterial mutants demonstrated a role for fimbriae in the modulation of TLR-mediated activation of NF-κB. Whereas both TLR2 and TLR4 contributed to TNF production in naive macrophages, P. gingivalis preferentially exploited TLR2 in endotoxin-tolerant BMDM to trigger excessive TNF production. We found that TNF induced surface TLR2 expression and augmented TLR-induced cytokine production in P. gingivalis-stimulated BMDM, establishing a previously unidentified TNF-dependent feedback loop. Adoptive transfer of TLR2-expressing macrophages to TLR2-deficient mice restored the ability of P. gingivalis to induce alveolar bone loss in vivo. Collectively, our results identify a TLR2- and TNF-dependent macrophage-specific mechanism underlying pathogen-induced inflammatory bone loss in vivo.

  14. EFFECTS OF POLYSAVONE ON PHAGOCYTIC ACTIVITY AND NO, IL-6, AND TNFPRODUCTION OF MACROPHAGES%苜草素对巨噬细胞吞噬活性和NO、IL-6、TNF-α分泌的影响

    Institute of Scientific and Technical Information of China (English)

    翟钦辉; 荣岳光; 董晓芳; 佟建明

    2012-01-01

    Objective To investigate the effects of polysavone on phagocytic activity and NO, IL-6, and TNFproduction of macrophage RAW264.7 in vitro. Method Macrophages were treated with different concentration of polysavone and LPS (10 μg/ml) respectively. The phagocytic activity of macrophage was detected by neutral red. TNF-α in culture supernatants was measured by ELISA. NO and IL-6 production were detected by Griess and EL1SA respectively. The iNOS, IL-6, and TNF-α mRNA levels of macrophage were measured with RT-PCR. Results The phagocytic activity of macrophage in the polysavone group (0.4, 0.6, 0.8 or 1.0 mg/ml) was significantly greater than that of the control (P<0.05). The production of TNF-a was increased significantly, but LPS-induced NO production was decreased significantly by polysavone (0.6, 0.8 and 1.0 mg/ml, P<0.01,P<0.05). Polysavone caused significant inhibition on LPS-induced IL-6 production (0.2, 0.4, 0.6, 0.8 or 1.0 mg/ml, P<0.01). Polysavone inhibited LPS-induced production of iNOS and IL-6 mRNAs, and increased production of TNF-α mRNA. Conclusion Polysavone appears to exert immune modulating effect by regulating the phagocytic activity of macrophage RAW 264.7, the expression of IL-6, iNOS and TNF-a, as well as the production of NO.%目的 研究苜草素对小鼠巨噬细胞RAW264.7吞噬活性和NO、IL-6、TNF-α的影响,探讨苜草素对巨噬细胞免疫功能的影响机制.方法 以不同浓度的苜草素和10 μg/ml的脂多糖(LPS)分别处理巨噬细胞RAW264.7,采用中性红法测定巨噬细胞的吞噬活性,ELISA检测TNF-α分泌量.以不同浓度的苜草素处理LPS诱导的巨噬细胞RAW264.7,采用Griess分析法测定NO含量,ELISA检测IL-6分泌量,半定量RT-PCR方法测定巨噬细胞中iNOS、IL-6、TNF-α mRNA水平.结果 苜草素在0.4、0.6、0.8和1.0 mg/ml时能显著提高巨噬细胞RAW264.7的吞噬活性(P<0.05);在0.6、0.8和1.0 mg/ml时显著增加TNF-α的分泌量(P<0.01),显著降低LPS

  15. 2,4-Decadienal downregulates TNF-alpha gene expression in THP-1 human macrophages.

    Science.gov (United States)

    Girona, J; Vallvé, J C; Ribalta, J; Heras, M; Olivé, S; Masana, L

    2001-09-01

    Oxidized lipoproteins inhibit TNF-alpha secretion by human THP-1 macrophages due, at least in part, to aldehydes derived from the oxidation of polyunsaturated fatty acids. This study extends these findings by investigating the effect of three aldehydes (2,4-decadienal (2,4-DDE), hexanal and 4-hydroxynonenal (4-HNE)) on TNF-alpha and IL-1beta mRNA expression. The 2,4-DDE and 4-HNE showed considerable biological activity which induced cytotoxicity on THP-1 macrophages at concentration of 50 microM. Hexanal, on the other hand, had a lower cytotoxic capacity and concentration of 1000 microM was needed for the effect to be observed. Exposure of THP-1 macrophages to aldehydes for 24 h inhibited TNF-alpha mRNA expression but increased or did not affect IL-1beta mRNA levels. The inhibitory action of 2,4-DDE was dose dependent and began at 5 microM (46%, P<0.001). The effect of 4-HNE was less inhibitory than 4-DDE but only when cytotoxic concentrations were used (50 microM). Very high concentrations of hexanal (200 microM) were needed to inhibit TNF-alpha expression (23%, P<0.001). This downregulation of TNF-alpha gene expression by 2,4-DDE was parallel to a lower protein production. These data indicate that low levels of 2,4-DDE may modulate inflammatory action by inhibiting TNF-alpha mRNA gene expression and that the biological activity of 2,4-DDE may be involved in the development of atherosclerosis.

  16. Hepatitis B Virus X Protein Up-regulates TNF-α and IL-1β Secretion of Macrophages

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective: To provide the experimental basis for further studying the molecular transformation mechanism of Hepatitis B virus (HBV) X protein (HBx) on hepatocellular carcinoma. Methods: Reconstructed plasmid pcDNA3.1(+)-HBx was transfected into THP-1 macrophages. Expression of HBx was assayed in macrophages lysate by Western-blotting, and TNF-α and IL-1β contents were detected respectively by ELISA. All the data were analyzed by SPSS13.0. Results: In THP-1 macrophages, the pcDNA3.1(+)-HBx plasmid expressed HBx with a molecular weight of about 17 KDa demonstrated by Western-blotting. The secreted TNF-α and IL-1β from macrophages were determined by ELISA, the results from analysis of all groups showed as following: control group was different from LPS group and pcDNA3.1(+) group (P<0.01), and so was pcDNA3.1(+)-HBx group; but there was no obvious difference between pcDNA3.1(+) group and LPS group (P>0.05), all of which indicated that transient overexpression of HBx enhanced LPS-induced production of TNF-α and IL-1β by macrophages.Conclusion: Transient overexpression of HBx up-regulates LPS-induced TNF-α and IL-1β secretion of macrophages.

  17. [Screening of phagocyte activators in plants; enhancement of TNF production by flavonoids].

    Science.gov (United States)

    Kunizane, H; Ueda, H; Yamazaki, M

    1995-09-01

    The tumor necrosis factor (TNF) was first discovered as a substance that induced necrosis of transplanted tumors. Recently, TNF has been recognized as an important and endogenous mediator in host defense mechanisms. To prove the fact that plant foods contain substances which activate the host defense mechanisms, we first examined if the administration of flavonoids could induce TNF production in mice. Some selected flavonoids such as naringin, apiin, poncirin and rutin were shown to amplify TNF release from murine macrophages in vivo in response to OK-432 as a second stimulus. However, their aglycone forms were not effective. The differences in the saccharide-chain of flavonoids induced the variety of TNF production.

  18. 粗根荨麻水提取部分对佐剂性关节炎大鼠腹腔巨噬细胞分泌TNF-α及PGE2的影响%The Effects of Aqueous Fraction of Urtica macrorrhiza Hand-Mazz on Production of TNF-α, PGE2 Release from Peritoneal Macrophages Induced by LPS in Adjuvant Arthritis Rats

    Institute of Scientific and Technical Information of China (English)

    李晓红; 赵永娜; 邵晓霞; 李顺英; 张荣平

    2008-01-01

    To investigate the effects of aqueous fraction of Urtica macrorrhiza Hand-Mazz(Ur) on modulating tumor nec- rosis factor-alpha (TNF-α)and prostaglandin E2 (PGE2) production induced by lipopolysaceharide (LPS) in peritoneal macrophages in adjuvant arthritis rats and elucidate the possible mechanisms of anti-inflammatory and antirheumatoid effects of Ur, adjuvant arthritis (AA) rat was used as the model. The PMψ samples were taken at different time after medication. TNF-α, PGE2 levels were :measured by ELISA method. Production of TNF-α, and PGE2 increased in the cul-ture supematant of PMψ in AA model rats. Ur(400 and 200 mg/kg) could inhibit TNF-α and PGE2 release induced by LPS from PMψ in AA rats. The anti-inflaramatory mechanisms of Ur in AA rats might be reIated to its inhibitory effects on the level of TNF-α and PGE2 from PMψ in vivo.%观察滇产粗根荨麻水提取部分对佐剂性关节炎(adjuvant arthritis,AA)大鼠腹腔巨噬细胞(peritoneal macrophages,PMcp)分泌肿瘤坏死因子-α(tumor necrosis factor-alpha,TNF-α)及前列腺素E2(prostaglandin E2,PGE2)的影响.建立大鼠佐剂性关节炎模型,Ur水提取部分连续灌胃给药14或21 d后分次获取大鼠腹腔巨噬细胞,脂多糖(lipopolysacehafide,LPS)诱导大鼠腹腔巨噬细胞,用酶联免疫吸附法检测培养上清液中TNF-α及PGE2水平.从大鼠腹腔巨噬细胞TNF-α及PGE2分泌较正常组升高,Ur水提取部分(400,200 mg/kg)对LPS诱导的AA大鼠腹腔巨噬细胞分泌TNF-α及PGE2水平有明显抑制作用.滇产粗根荨麻水提取部分对佐剂性关节炎的治疗作用可能与其抑制腹腔巨噬细胞分泌TNF-α及PGE2有关.

  19. Single-walled carbon nanotubes induce cell death and transcription of TNF-α in macrophages without affecting nitric oxide production.

    Science.gov (United States)

    Kim, Kyong Hoon; Yeon, Seung-min; Kim, Hyun Gyung; Lee, Hwanbum; Kim, Sun Kyung; Han, Seung Hyun; Min, Kyung-Jin; Byun, Youngjoo; Lee, Eun Hee; Lee, Kenneth Sung; Yuk, Soon Hong; Ha, Un-Hwan; Jung, Yong Woo

    2014-02-01

    Single-walled carbon nanotubes (SWCNTs) are potent nanomaterials that have diverse shapes and features. The utilization of these molecules for drug delivery is being investigated; thus, it is important to determine whether they alter immune responses against pathogens. In this study, we show that macrophages treated with a mixture of lipopolysaccharide and SWCNTs produced normal levels of nitric oxide and inducible nitric oxide synthase mRNA. However, these treatments induced cell death, presumably via necrosis. In addition, treating cells with SWCNTs induced the expression of tumor necrosis factor-α mRNA, a potent pro-inflammatory cytokine. These results suggest that SWCNTs may influence immune responses, which could result in unexpected effects following their administration for the purpose of drug delivery.

  20. Transmembrane TNF-alpha reverse signaling leading to TGF-beta production is selectively activated by TNF targeting molecules: Therapeutic implications.

    Science.gov (United States)

    Szondy, Zsuzsa; Pallai, Anna

    2017-01-01

    Tumor necrosis factor (TNF)-α is a potent pro-inflammatory cytokine exerting pleiotropic effects on various cell types. It is synthesized in a precursor form called transmembrane TNF-α (mTNF-α) which, after being processed by metalloproteinases, is released in a soluble form to mediate its biological activities through Type 1 and 2 TNF receptors in TNF receptor expressing cells. In addition to acting in soluble form, TNF-α also acts in the transmembrane form both as a ligand by activating TNF receptors, as well as a receptor that transmits outside-to-inside (reverse) signals back into mTNF-α bearing cells. Since the discovery that TNF-α plays a determining role in the pathogenesis of several chronic inflammatory diseases, anti-TNF agents are increasingly being used in the treatment of a rapidly expanding number of rheumatic and systemic autoimmune diseases, such as rheumatoid arthritis, Crohn's disease, psoriasis, psoriatic arthritis, ankyloting spondylitis, Wegener granulomatosis and sarcoidosis. There are 5 TNF antagonists currently available: etanercept, a soluble TNF receptor construct; infliximab, a chimeric monoclonal antibody; adalimumab and golimumab, fully human antibodies; and certolizumab pegol, an Fab' fragment of a humanized anti-TNF-α antibody. Though each compound can efficiently neutralize TNF-α, increasing evidence suggests that they show different efficacy in the treatment of these diseases. These observations indicate that in addition to neutralizing TNF-α, other biological effects induced by TNF-α targeting molecules dictate the success of the therapy. Recently, we found that mTNF-α reverse signaling leads to transforming growth factor (TGF)-β production in macrophages and anti-TNF agents selectively trigger this pathway. In this review we will focus on the potential contribution of the activation of the mTNF-α signaling pathway to the success of the anti-TNF therapy.

  1. Activation of AMPA receptor promotes TNF-α release via the ROS-cSrc-NFκB signaling cascade in RAW264.7 macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Xiu-Li [Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing (China); Ding, Fan [Office of Scientific R& D, Tsinghua University, Beijing (China); Li, Hui; Tan, Xiao-Qiu [Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing (China); Liu, Xiao [Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing (China); Cao, Ji-Min, E-mail: caojimin@126.com [Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing (China); Gao, Xue, E-mail: longlongnose@163.com [Department of Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing (China)

    2015-05-29

    The relationship between glutamate signaling and inflammation has not been well defined. This study aimed to investigate the role of AMPA receptor (AMPAR) in the expression and release of tumor necrosis factor-alpha (TNF-α) from macrophages and the underlying mechanisms. A series of approaches, including confocal microscopy, immunofluorescency, flow cytometry, ELISA and Western blotting, were used to estimate the expression of AMPAR and downstream signaling molecules, TNF-α release and reactive oxygen species (ROS) generation in the macrophage-like RAW264.7 cells. The results demonstrated that AMPAR was expressed in RAW264.7 cells. AMPA significantly enhanced TNF-α release from RAW264.7 cells, and this effect was abolished by CNQX (AMPAR antagonist). AMPA also induced elevation of ROS production, phosphorylation of c-Src and activation of nuclear factor (NF)-κB in RAW264.7 cells. Blocking c-Src by PP2, scavenging ROS by glutathione (GSH) or inhibiting NF-κB activation by pyrrolidine dithiocarbamate (PDTC) decreased TNFproduction from RAW264.7 cells. We concluded that AMPA promotes TNF-α release in RAW264.7 macrophages likely through the following signaling cascade: AMPAR activation → ROS generation → c-Src phosphorylation → NF-κB activation → TNF-α elevation. The study suggests that AMPAR may participate in macrophage activation and inflammation. - Highlights: • AMPAR is expressed in RAW264.7 macrophages and is upregulated by AMPA stimulation. • Activation of AMPAR stimulates TNF-α release in macrophages through the ROS-cSrc-NFκB signaling cascade. • Macrophage AMPAR signaling may play an important role in inflammation.

  2. Transmembrane TNF-α Reverse Signaling Inhibits Lipopolysaccharide-Induced Proinflammatory Cytokine Formation in Macrophages by Inducing TGF-β: Therapeutic Implications.

    Science.gov (United States)

    Pallai, Anna; Kiss, Beáta; Vereb, György; Armaka, Marietta; Kollias, George; Szekanecz, Zoltán; Szondy, Zsuzsa

    2016-02-01

    TNF-α, a potent proinflammatory cytokine, is generated in a precursor form called transmembrane (m)TNF-α that is expressed as a type II polypeptide on the surface of certain cells. mTNF-α was shown to act both as a ligand by binding to TNF-α receptors, as well as a receptor that transmits outside-to-inside (reverse) signals back into the mTNF-α-bearing cells. In this study, we show that nonactivated macrophages express basal levels of mTNF-α and respond to anti-TNF-α Abs by triggering the MAPK kinase 4 signaling pathway. The pathway induces TGF-β. Based on inhibitory experiments, the production of TGF-β1 is regulated via Jun kinases, whereas that of other TGF-βs is regulated via p38 MAPKs. Exposure to LPS further induced the expression of mTNF-α, and triggering of mTNF-α strongly suppressed the LPS-induced proinflammatory response. Neutralizing TGF-β by Abs prevented the mTNF-α-mediated suppression of LPS-induced proinflammatory cytokine formation, indicating that the immune-suppressive effect of mTNF-α is mediated via TGF-β. Although apoptotic cells are also known to suppress LPS-induced proinflammatory cytokine formation in macrophages by upregulating TGF-β, we show that they do not use the mTNF-α signaling pathway. Because TGF-β possesses a wide range of immune-suppressive effects, our data indicate that upregulation of TGF-β synthesis by those TNF-α-targeting molecules, which are able to trigger mTNF-α, might contribute to their therapeutic effect in the treatment of certain inflammatory diseases such as Crohn's disease, Wegener's granulomatosis, or sarcoidosis. Additionally, none of the TNF-α-targeting molecules is expected to interfere with the immune-silencing effects of apoptotic cells.

  3. Strong inhibition of TNF-alpha production and inhibition of IL-8 and COX-2 mRNA expression in monocyte-derived macrophages by RWJ 67657, a p38 mitogen-activated protein kinase (MAPK) inhibitor

    NARCIS (Netherlands)

    Westra, J; Doornbos-van der Meer, B; de Boer, Peter; van Leeuwen, MA; van Rijswijk, Martin; Limburg, PC

    2004-01-01

    In inflammatory processes, the p38 mitogen-activated protein kinase ( MAPK) signal transduction route regulates production and expression of cytokines and other inflammatory mediators. Tumor necrosis factor alpha (TNF-alpha) is a pivotal cytokine in rheumatoid arthritis and its production in macroph

  4. 三甲氧基二苯乙烯对小鼠巨噬细胞产肿瘤坏死因子-α及细胞核因子-κB 活性的作用研究%Effects of 3,5,4' - Trimethoxystilbene on TNF - α Production and NF - κB Activity in Murine Macrophages

    Institute of Scientific and Technical Information of China (English)

    曾清华; 饶慧; 高洁生

    2014-01-01

    Objective To study the regulating effects of 3,5,4' - trimethoxystilbene(BTM)on the TNF - α production and the NF - κB activation in murine macrophages activated by LPS. Methods The murine macrophage cell line RAW264. 7 cells were cultured and dif-ferent concentrations of BTM or resveratrol were added,then LPS activated cells were added. The cellular supernatant was collected for detecting the TNF - α activity by the L929 cell crystal violet staining and the cell climbing slides were prepared for detecting the NF - κB expression in macrophages by immunocytochemistry method. Results BTM and resveratrol had no cytotoxicity to L929 cells. After processing by different concentrations of BTM and resveratrol,the TNF - α production level and the positive rate of NF - κB expression in macrophages showed the dose - dependent decrease. The ability of BTM for inhibiting the TNF - α production level and NF - κB expressing in macrophages was greater than that of resveratrol. The activity of macrophages for producing TNF - α and the pos-itive cell rate of NF - κB were negatively correlated with the drug concentration,while the TNF - α activity was positively correlated with the positive cell rate of NF - κB. Conclusion BTM and resveratrol in the concentration range of 5 - 80 μmol / L inhibit TNF - αproduction with a concentration dependent manner by inhibiting NF - κB activation. The ability of BTM for inhibiting TNF - α production and the NF - κB activation in macrophages is greater than that of resveratrol.%目的:研究三甲氧基二苯乙烯(BTM)对小鼠巨噬细胞经脂多糖(LPS)诱导后产生肿瘤坏死因子-α(TNF -α)及细胞核因子-κB (NF -κB)活化的调控作用。方法培养 RAW246.7小鼠巨噬细胞,加入不同浓度的 BTM 或白藜芦醇,再加入 LPS 活化细胞,收集细胞上清液用 L929细胞结晶紫染色法检测 TNF -α的活性,制作细胞爬片用免疫细胞化学法检测巨噬细胞中 NF -κB

  5. 蓝玉簪颗粒抑制脂多糖诱导大鼠肺泡巨噬细胞TNF-α产生及相关机制研究%Gentiana veitchiorum particles inhibited LPS induced pulmonary alveolar macrophages(AM)TNFproduction and the underlying mechanism

    Institute of Scientific and Technical Information of China (English)

    侯颖; 曹蔚; 李涛; 刘水冰; 张晓楠; 李旭波; 田琼; 尤福生

    2011-01-01

    AIM: To investigate the effect of Gentiana veitchiorum particles on the expression of TNF-α in pulmonary alveolar macrophages (AM) which induced by LPS, to explain the mechanism about anti-inflammatory action of Gentiana veitchiorum particles. METHODS: Purification of rat AM, TNF-α level in AM culture supematant was detected by ELISA. Western blot method for detecting the expression of TNF-α and pERK in the AM. While application of ERK antagonist (PD98059) in rat AM and the expression of TNFα was observed by Western blot. RESULTS: Gentiana veitchiorum particles can reduce the LPS induced AM TNF-α increase in dose dependent manner. Gentiana veitchiorum particles (100 mg/L) can significantly reduce the LPS induc ed pERK and TNF-α protein expression in AM. compared with LPS stimulation group, we found that ERK inhibitor ( PD98059 30 mol/L), Gentiana veitchiorum particles intervention and Gentiana veitchiorum particles + PD98059 groups' TNF-α expression were significantly reduced in rat AM. CONCLUSION: Gentiana veitchiorum particles can inhibit the LPS induced pulmonary AM TNF-α expression, one of the possible mechanism is to inhibit the extracailular signal transduction pathway.%目的:探讨蓝玉簪颗粒对脂多糖(LPS)诱导大鼠肺泡巨噬细胞(AM)内TNF-α表达及可能作用机制.方法:分离纯化AM,应用ELISA法检测蓝玉簪颗粒对LPS诱导的大鼠AM培养上清中的TNF-α水平的影响,应用Western blot方法检测大鼠AM内TNF-α及pERK蛋白表达水平,同时应用ERK拮抗剂(PD98059)观察AM内TNF-α蛋白表达.结果:蓝玉簪颗粒可剂量依赖的降低由于LPS刺激导致的AM培养上清内TNF-α含量升高;蓝玉簪(100 mg/L)颗粒可显著降低由于LPS刺激导致的AM细胞内pERK及TNF-α蛋白表达升高;ERK特异性抑制剂(PD98059 30 mol/L)及蓝玉簪颗粒干预,蓝玉簪颗粒+PD98059干预后,我们发现与LPS刺激组相比,大鼠AM中TNF-α表达显著降低.结论:蓝玉

  6. Ceramide and ceramide 1-phosphate are negative regulators of TNFproduction induced by lipopolysaccharide.

    Science.gov (United States)

    Józefowski, Szczepan; Czerkies, Maciej; Łukasik, Anna; Bielawska, Alicja; Bielawski, Jacek; Kwiatkowska, Katarzyna; Sobota, Andrzej

    2010-12-01

    LPS is a constituent of cell walls of Gram-negative bacteria that, acting through the CD14/TLR4 receptor complex, causes strong proinflammatory activation of macrophages. In murine peritoneal macrophages and J774 cells, LPS at 1-2 ng/ml induced maximal TNF-α and MIP-2 release, and higher LPS concentrations were less effective, which suggested a negative control of LPS action. While studying the mechanism of this negative regulation, we found that in J774 cells, LPS activated both acid sphingomyelinase and neutral sphingomyelinase and moderately elevated ceramide, ceramide 1-phosphate, and sphingosine levels. Lowering of the acid sphingomyelinase and neutral sphingomyelinase activities using inhibitors or gene silencing upregulated TNF-α and MIP-2 production in J774 cells and macrophages. Accordingly, treatment of those cells with exogenous C8-ceramide diminished TNF-α and MIP-2 production after LPS stimulation. Exposure of J774 cells to bacterial sphingomyelinase or interference with ceramide hydrolysis using inhibitors of ceramidases also lowered the LPS-induced TNFproduction. The latter result indicates that ceramide rather than sphingosine suppresses TNF-α and MIP-2 production. Of these two cytokines, only TNF-α was negatively regulated by ceramide 1-phosphate as was indicated by upregulated TNFproduction after silencing of ceramide kinase gene expression. None of the above treatments diminished NO or RANTES production induced by LPS. Together the data indicate that ceramide negatively regulates production of TNF-α and MIP-2 in response to LPS with the former being sensitive to ceramide 1-phosphate as well. We hypothesize that the ceramide-mediated anti-inflammatory pathway may play a role in preventing endotoxic shock and in limiting inflammation.

  7. Physiological Role of TNF in MucosalImmunology: Regulation of Macrophage/Dendritic Cell Function

    DEFF Research Database (Denmark)

    Rivollier, Aymeric Marie Christian; Marsal, J.; Agace, William Winston

    2015-01-01

    to the pathogenesis of inflammatory bowel disease. In this review, we discuss the role of tumor necrosis factor-α (TNF) in regulating multiple aspects of intestinal Mϕ and DC physiology, including their differentiation, migration, maturation, survival and effector functions. In inflammatory bowel disease, TNF...... signaling has been implicated in reprogramming monocyte differentiation from the anti-inflammatory Mϕ lineage towards the pro-inflammatory mononuclear phagocyte lineage.These cells become a major source of TNF and, thus,may contribute to the chronic inflammatory process. Finally,we highlight some......Intestinal mononuclear phagocytes, comprising macrophages(Mϕs) and dendritic cells (DCs), play important roles in the generation and the regulation of immune responses to intestinal antigens, and alterations in the development and/or the function of these cells are thought to contribute...

  8. Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-alpha dependent up-regulation of matrix metalloproteases.

    Science.gov (United States)

    Hagemann, Thorsten; Robinson, Stephen C; Schulz, Matthias; Trümper, Lorenz; Balkwill, Frances R; Binder, Claudia

    2004-08-01

    Apart from the neoplastic cells, malignant tumours consist of the extracellular matrix (ECM) and normal cells, in particular tumour-associated macrophages (TAM). To understand the mechanisms by which TAM can influence tumour cell invasion we co-cultured the human breast cancer cell lines MCF-7, SK-BR-3 and the benign mammary epithelial cell line hTERT-HME1 with macrophages. Co-incubation enhanced invasiveness of the tumour cells, while hTERT-HME1 remained non-invasive. Addition of the broad-spectrum matrix metalloprotease (MMP)-inhibitor FN 439, neutralizing MMP-9 or tumour necrosis factor-alpha (TNF-alpha) antibodies reduced invasiveness to basal levels. As shown by zymography, all cell lines produced low amounts of MMP-2, -3, -7 and -9 under control conditions. Basal MMP production by macrophages was significantly higher. Upon co-incubation, supernatant levels of MMPs -2, -3, -7 and -9 increased significantly, paralleled by an increase of MMP-2 activation. MMP-2 and -9 induction could be blocked by TNF-alpha antibodies. Co-culture of macrophages and hTERT-HME1 did not lead to MMP induction. In the co-cultures, mRNAs for MMPs and TNF-alpha were significantly up-regulated in macrophages, while the mRNA concentrations in the tumour cells remained unchanged. In summary, we have found that co-cultivation of tumour cells with macrophages leads to enhanced invasiveness of the malignant cells due to TNF-alpha dependent MMP induction in the macrophages.

  9. IL-12、IL-18和TNF-α在外源性过敏性肺泡炎发病中的作用%Production of IL-12, IL-18 and TNF-α by Alveolar Macrophages in Extrinsic Allergic Alveolitis

    Institute of Scientific and Technical Information of China (English)

    童朝辉; 陈宝敏; 王辰; Guzman; Josune; Costabel; Ulrich

    2006-01-01

    目的从临床的角度出发、评价肺泡巨噬细胞(alveolar macrophages,AM)的产物白介素-12(IL-12)、白介素-18(IL-18)和肿瘤坏死因子-α(TNF-α)在外源性过敏性肺泡炎(extrinsic allergic alveolitis, EAA)炎症形成及发病中的作用.方法收集11例EAA 患者和10例正常对照的AM,以10%RPMI(含有10%热灭活胎牛血清、2 mmol/L L-谷氨酰胺、200 kU/L青霉素及200 mg/L链霉素) 为培养液,加或不加内毒素(LPS,100 μg/L)进行AM培养24 h.用ELISA方法测定培养上清液中细胞因子含量.结果与对照组相比,无论有无内毒素刺激,IL-18和TNF-α的水平在EAA患者中均明显增加(P<0.05或P<0.01).EAA 患者自发释放的IL-12的水平很低,内毒素刺激后明显升高(P<0.01).结论 IL-12、IL-18和TNF-α可能参与EAA炎症和肉芽肿形成过程,在其发病中起重要作用.

  10. Synergistic effects of mineral fibres and cigarette smoke on the production of tumour necrosis factor by alveolar macrophages of rats.

    Science.gov (United States)

    Morimoto, Y; Kido, M; Tanaka, I; Fujino, A; Higashi, T; Yokosaki, Y

    1993-10-01

    The objective of this study was to evaluate the combined effects of mineral fibres and cigarette smoke on the production of tumour necrosis factor (TNF) by alveolar macrophages. Rats were exposed to cigarette smoke in vivo, and production of TNF by alveolar macrophages was measured in the presence of mineral fibres in vitro. For smoke exposure, rats were divided into two groups. Five were exposed to a daily concentration of 10 mg/m3 of cigarette smoke for an eight hour period, and five rats (controls) were not exposed to smoke. Bronchoalveolar lavage was performed after exposure to smoke and the recovered alveolar macrophages were incubated with either chrysotile or ceramic fibres on a microplate for 24 hours. Activity of TNF in the supernatant was determined by the L-929 fibroblast cell bioassay. When alveolar macrophages were not stimulated by mineral fibres, production of TNF by rats exposed to smoke and unexposed rats was essentially the same. When alveolar macrophages were stimulated in vitro by chrysotile or ceramic fibres, production of TNF by alveolar macrophages from rats exposed to smoke was higher than that by alveolar macrophages from unexposed rats. The findings suggest that cigarette smoke and mineral fibres have a synergistic effect on TNF production by alveolar macrophages.

  11. Role of TGF-β in Survival of Phagocytizing Microglia: Autocrine Suppression of TNFProduction and Oxidative Stress.

    Science.gov (United States)

    Ryu, Keun-Young; Cho, Geum-Sil; Piao, Hua Zi; Kim, Won-Ki

    2012-12-01

    Microglia are recognized as residential macrophageal cells in the brain. Activated microglia play a critical role in removal of dead or damaged cells through phagocytosis activity. During phagocytosis, however, microglia should survive under the harmful condition of self-producing ROS and pro-inflammatory mediators. TGF-β has been known as a classic anti-inflammatory cytokine and controls both initiation and resolution of inflammation by counter-acting inflammatory cytokines. In the present study, to understand the self-protective mechanism, we studied time-dependent change of TNF-α and TGF-β production in microglia phagocytizing opsonized-beads (i.e., polystyrene microspheres). We found that microglia phagocytized opsonized-bead in a time-dependent manner and simultaneously produced both TNF-α and TGF-β. However, while TNFproduction gradually decreased after 6 h, TGF-β production remained at increased level. Microglial cells pre-treated with lipopolysaccharides (a strong immunostimulant, LPS) synergistically increased the production of TNF-α and TGF-β both. However, LPS-pretreated microglia produced TNF-α in a more sustained manner and became more vulnerable, probably due to the marked and sustained production of TNF-α and reduced TGF-β. Intracellular oxidative stress appears to change in parallel with the microglial production of TNF-α. These results indicate TGF-β contributes for the survival of phagocytizing microglia through autocrine suppression of TNFproduction and oxidative stress.

  12. NFAT regulates calcium-sensing receptor-mediated TNF production

    Energy Technology Data Exchange (ETDEWEB)

    abdullah, huda ismail; Pedraza, Paulina L.; Hao, Shoujin; Rodland, Karin D.; McGiff, John C.; Ferreri, Nicholas R.

    2006-05-01

    Because nuclear factor of activated T cells (NFAT) has been implicated in TNF production as well as osmoregulation and salt and water homeostasis, we addressed whether calcium-sensing receptor (CaR)-mediated TNF production in medullary thick ascending limb (mTAL) cells was NFAT dependent. TNF production in response to addition of extracellular Ca2+ (1.2 mM) was abolished in mTAL cells transiently transfected with a dominant-negative CaR construct (R796W) or pretreated with the phosphatidylinositol phospholipase C (PI-PLC) inhibitor U-73122. Cyclosporine A (CsA), an inhibitor of the serine/threonine phosphatase calcineurin, and a peptide ligand, VIVIT, that selectively inhibits calcineurin-NFAT signaling, also prevented CaR-mediated TNF production. Increases in calcineurin activity in cells challenged with Ca2+ were inhibited after pretreatment with U-73122 and CsA, suggesting that CaR activation increases calcineurin activity in a PI-PLC-dependent manner. Moreover, U-73122, CsA, and VIVIT inhibited CaR-dependent activity of an NFAT construct that drives expression of firefly luciferase in transiently transfected mTAL cells. Collectively, these data verify the role of calcineurin and NFAT in CaR-mediated TNF production by mTAL cells. Activation of the CaR also increased the binding of NFAT to a consensus oligonucleotide, an effect that was blocked by U-73122 and CsA, suggesting that a calcineurin- and NFAT-dependent pathway increases TNF production in mTAL cells. This mechanism likely regulates TNF gene transcription as U-73122, CsA, and VIVIT blocked CaR-dependent activity of a TNF promoter construct. Elucidating CaR-mediated signaling pathways that regulate TNF production in the mTAL will be crucial to understanding mechanisms that regulate extracellular fluid volume and salt balance.

  13. NFAT regulates calcium-sensing receptor-mediated TNF production.

    Science.gov (United States)

    Abdullah, Huda Ismail; Pedraza, Paulina L; Hao, Shoujin; Rodland, Karin D; McGiff, John C; Ferreri, Nicholas R

    2006-05-01

    Because nuclear factor of activated T cells (NFAT) has been implicated in TNF production as well as osmoregulation and salt and water homeostasis, we addressed whether calcium-sensing receptor (CaR)-mediated TNF production in medullary thick ascending limb (mTAL) cells was NFAT dependent. TNF production in response to addition of extracellular Ca(2+) (1.2 mM) was abolished in mTAL cells transiently transfected with a dominant-negative CaR construct (R796W) or pretreated with the phosphatidylinositol phospholipase C (PI-PLC) inhibitor U-73122. Cyclosporine A (CsA), an inhibitor of the serine/threonine phosphatase calcineurin, and a peptide ligand, VIVIT, that selectively inhibits calcineurin-NFAT signaling, also prevented CaR-mediated TNF production. Increases in calcineurin activity in cells challenged with Ca(2+) were inhibited after pretreatment with U-73122 and CsA, suggesting that CaR activation increases calcineurin activity in a PI-PLC-dependent manner. Moreover, U-73122, CsA, and VIVIT inhibited CaR-dependent activity of an NFAT construct that drives expression of firefly luciferase in transiently transfected mTAL cells. Collectively, these data verify the role of calcineurin and NFAT in CaR-mediated TNF production by mTAL cells. Activation of the CaR also increased the binding of NFAT to a consensus oligonucleotide, an effect that was blocked by U-73122 and CsA, suggesting that a calcineurin- and NFAT-dependent pathway increases TNF production in mTAL cells. This mechanism likely regulates TNF gene transcription as U-73122, CsA, and VIVIT blocked CaR-dependent activity of a TNF promoter construct. Elucidating CaR-mediated signaling pathways that regulate TNF production in the mTAL will be crucial to understanding mechanisms that regulate extracellular fluid volume and salt balance.

  14. Characterisation of TNF block haplotypes affecting the production of TNF and LTA.

    Science.gov (United States)

    Tan, J H; Temple, S E L; Kee, C; Waterer, G W; Tan, C R T; Gut, I; Price, P

    2011-02-01

    Polymorphisms in the central major histocompatibility complex (MHC) (particularly TNF and adjacent genes) associate with several immunopathological diseases and with susceptibility to pneumonia. The MHC is characterised by strong linkage disequilibrium (LD), so identification of loci affecting disease must be based on haplotypes. We have defined 31 tumour necrosis factor (TNF) block haplotypes (denoted FV1-31) in Caucasians, Asians and Australian Aboriginals. This study correlates the carriage of TNF block haplotypes with TNF and lymphotoxin alpha (LTA) protein production by peripheral blood mononuclear cells from 205 healthy Caucasian subjects, following in vitro stimulation with Streptococcus pneumoniae (S. pneumoniae; gram-positive bacteria), Escherichia coli (E. coli; gram-negative bacteria) or TNF over 4, 8 and 24 h. Fifteen haplotypes were present at >1%, accounting for 94.5% of the cohort. The haplotypes were grouped into five families based on common alleles. Following stimulation, cells from carriers of the FV10 haplotype (family 2) produced less LTA compared with non-FV10 carriers. Carriers of the FV18 haplotype (family 4) produced more LTA than other donors. Induction of TNF by S. pneumoniae following 24 h stimulation was also greater in donors with FV18. The FV18 haplotype associated with the 44.1 MHC ancestral haplotype (HLA-A2, -C5, -B44, -DRB1*0401 and -DQB1*0301) that has few disease associations. FV16 occurred in the 8.1 MHC haplotype (HLA-A2, B8, DR3) that is associated with multiple immunopathological diseases. FV16 did not affect TNF or LTA levels. The findings suggest that many genetic variations critical in vivo are not effectively modelled by short-term cultures.

  15. Rab6a/a’ Are Important Golgi Regulators of Pro-Inflammatory TNF Secretion in Macrophages

    Science.gov (United States)

    Micaroni, Massimo; Stanley, Amanda C.; Khromykh, Tatiana; Venturato, Juliana; Wong, Colin X. F.; Lim, Jet P.; Marsh, Brad J.; Storrie, Brian; Gleeson, Paul A.; Stow, Jennifer L.

    2013-01-01

    Lipopolysaccharide (LPS)-activated macrophages secrete pro-inflammatory cytokines, including tumor necrosis factor (TNF) to elicit innate immune responses. Secretion of these cytokines is also a major contributing factor in chronic inflammatory disease. In previous studies we have begun to elucidate the pathways and molecules that mediate the intracellular trafficking and secretion of TNF. Rab6a and Rab6a' (collectively Rab6) are trans-Golgi-localized GTPases known for roles in maintaining Golgi structure and Golgi-associated trafficking. We found that induction of TNF secretion by LPS promoted the selective increase of Rab6 expression. Depletion of Rab6 (via siRNA and shRNA) resulted in reorganization of the Golgi ribbon into more compact structures that at the resolution of electron microcopy consisted of elongated Golgi stacks that likely arose from fusion of smaller Golgi elements. Concomitantly, the delivery of TNF to the cell surface and subsequent release into the media was reduced. Dominant negative mutants of Rab6 had similar effects in disrupting TNF secretion. In live cells, Rab6–GFP were localized on trans-Golgi network (TGN)-derived tubular carriers demarked by the golgin p230. Rab6 depletion and inactive mutants altered carrier egress and partially reduced p230 membrane association. Our results show that Rab6 acts on TNF trafficking at the level of TGN exit in tubular carriers and our findings suggest Rab6 may stabilize p230 on the tubules to facilitate TNF transport. Both Rab6 isoforms are needed in macrophages for Golgi stack organization and for the efficient post-Golgi transport of TNF. This work provides new insights into Rab6 function and into the role of the Golgi complex in cytokine secretion in inflammatory macrophages. PMID:23437303

  16. Rab6a/a' are important Golgi regulators of pro-inflammatory TNF secretion in macrophages.

    Science.gov (United States)

    Micaroni, Massimo; Stanley, Amanda C; Khromykh, Tatiana; Venturato, Juliana; Wong, Colin X F; Lim, Jet P; Marsh, Brad J; Storrie, Brian; Gleeson, Paul A; Stow, Jennifer L

    2013-01-01

    Lipopolysaccharide (LPS)-activated macrophages secrete pro-inflammatory cytokines, including tumor necrosis factor (TNF) to elicit innate immune responses. Secretion of these cytokines is also a major contributing factor in chronic inflammatory disease. In previous studies we have begun to elucidate the pathways and molecules that mediate the intracellular trafficking and secretion of TNF. Rab6a and Rab6a' (collectively Rab6) are trans-Golgi-localized GTPases known for roles in maintaining Golgi structure and Golgi-associated trafficking. We found that induction of TNF secretion by LPS promoted the selective increase of Rab6 expression. Depletion of Rab6 (via siRNA and shRNA) resulted in reorganization of the Golgi ribbon into more compact structures that at the resolution of electron microcopy consisted of elongated Golgi stacks that likely arose from fusion of smaller Golgi elements. Concomitantly, the delivery of TNF to the cell surface and subsequent release into the media was reduced. Dominant negative mutants of Rab6 had similar effects in disrupting TNF secretion. In live cells, Rab6-GFP were localized on trans-Golgi network (TGN)-derived tubular carriers demarked by the golgin p230. Rab6 depletion and inactive mutants altered carrier egress and partially reduced p230 membrane association. Our results show that Rab6 acts on TNF trafficking at the level of TGN exit in tubular carriers and our findings suggest Rab6 may stabilize p230 on the tubules to facilitate TNF transport. Both Rab6 isoforms are needed in macrophages for Golgi stack organization and for the efficient post-Golgi transport of TNF. This work provides new insights into Rab6 function and into the role of the Golgi complex in cytokine secretion in inflammatory macrophages.

  17. Insights into deregulated TNF and IL-10 production in malaria

    DEFF Research Database (Denmark)

    Boeuf, Philippe S; Loizon, Séverine; Awandare, Gordon A

    2012-01-01

    ABSTRACT: BACKGROUND: Severe malarial anaemia (SMA) is a major life-threatening complication of paediatric malaria. Protracted production of pro-inflammatory cytokines promoting erythrophagocytosis and depressing erythropoiesis is thought to play an important role in SMA, which is characterized...... by a high TNF/IL-10 ratio. Whether this TNF/IL-10 imbalance results from an intrinsic incapacity of SMA patients to produce IL-10 or from an IL-10 unresponsiveness to infection is unknown. Monocytes and T cells are recognized as the main sources of TNF and IL-10 in vivo, but little is known about...... the activation status of those cells in SMA patients. METHODS: The IL-10 and TNF production capacity and the activation phenotype of monocytes and T cells were compared in samples collected from 332 Ghanaian children with non-overlapping SMA (n = 108), cerebral malaria (CM) (n = 144) or uncomplicated malaria (UM...

  18. Phototherapy-treated apoptotic tumor cells induce pro-inflammatory cytokines production in macrophage

    Science.gov (United States)

    Lu, Cuixia; Wei, Yanchun; Xing, Da

    2014-09-01

    Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high fluence low-power laser irradiation (HF-LPLI) induces mitochondrial superoxide anion burst, resulting in oxidative damage to tumor cells. In this study, we further explored the immunological effects of HF-LPLI-induced apoptotic tumor cells. When macrophages were co-incubated with apoptotic cells induced by HF-LPLI, we observed the increased levels of TNF-α secretion and NO production in macrophages. Further experiments showed that NF-κB was activated in macrophages after co-incubation with HF-LPLI-induced apoptotic cells, and inhibition of NF-κB activity by pyrrolidinedithiocarbamic acid (PDTC) reduced the elevated levels of TNF-α secretion and NO production. These data indicate that HF-LPLI-induced apoptotic tumor cells induce the secretion of pro-inflammatory cytokines in macrophages, which may be helpful for better understanding the biological effects of cancer phototherapy.

  19. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages.

    Science.gov (United States)

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-13

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD(+) has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD(+) homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD(+) levels and expression levels of NAD(+) homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD(+) levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD(+) synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD(+) homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD(+) levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD(+). The agonist-induced rise in NAD(+) shows striking parallels to well-known second messengers and raises the possibility that NAD(+) is acting in a similar manner in this model.

  20. Reduced transcript stabilization restricts TNF-alpha expression in RAW264.7 macrophages infected with pathogenic mycobacteria: evidence for an involvement of lipomannan.

    Science.gov (United States)

    Basler, Tina; Holtmann, Helmut; Abel, Jens; Eckstein, Torsten; Baumer, Wolfgang; Valentin-Weigand, Peter; Goethe, Ralph

    2010-01-01

    Despite the critical role that TNF-alpha plays in the containment of mycobacterial infection, the mechanisms involved in regulation of its expression by mycobacteria are poorly defined. We addressed this question by studying MAP, which causes a chronic enteritis in ruminants and is linked to human Crohn's disease. We found that in MAP infected macrophages, TNF-alpha gene expression was substantially lower than in macrophages infected with nonpathogenic MS or stimulated with LPS. TNF-alpha transcriptional one could not fully explain the differential TNF-alpha mRNA expression, suggesting that there must be a substantial contribution by post-transcriptional mechanisms.Accordingly, we found reduced TNF-alpha mRNA stability in MAP-infected macrophages. Further comparison of MAP- and MS-infected macrophages revealed that lower TNF-alpha mRNA stability combined with lower mRNA and protein expression in MAP-infected macrophages correlated with lower p38 MAPK phosphorylation. These findings were independent of viability of MAP and MS. We demonstrate that the major mycobacterial cell-wall lipoglycan LM of MAP and MS induced TNF-alpha mRNA transcription,but only the MS-LM induced p38 MAPK-dependent transcript stabilization. Overall, our data suggest that pathogenic mycobacteria cause weak p38 and TNF-alpha mRNA stabilization as a result of their structural cell-wall components such as LM and thereby, restrict TNF-alpha expression in macrophages.

  1. Activation of α7nAChR Promotes Diabetic Wound Healing by Suppressing AGE-Induced TNFProduction.

    Science.gov (United States)

    Dong, Miao-Wu; Li, Ming; Chen, Jie; Fu, Tong-Tong; Lin, Ke-Zhi; Ye, Guang-Hua; Han, Jun-Ge; Feng, Xiang-Ping; Li, Xing-Biao; Yu, Lin-Sheng; Fan, Yan-Yan

    2016-04-01

    Diabetes frequently presents accumulation of advanced glycation end products (AGEs), which might induce excessive TNFproduction from macrophages to cause impaired wound healing. Recent studies have shown that activation of α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages efficiently suppressed TNF-α synthesis. The aim of this study was to investigate the accumulation of AGEs in the wounds and determine whether PNU282987, an α7nAChR agonist, can improve wound repair by inhibiting AGE-mediated TNFproduction in a streptozotocin (STZ)-induced diabetic mouse model. Animals were assigned into four groups: wounded control group, wounded diabetic group, wounded diabetic group treated intraperitoneally with PNU282987, or wounded diabetic group treated intraperitoneally with vehicle. Compared with the non-diabetic control mice, the diabetic mice exhibited delayed wound healing that was characterized by elevated accumulation of AGEs, increased TNF-α level and macrophage infiltration, and decreased fibroblast number and collagen deposition at the late stage of repair. Besides, macrophages of diabetic wounds showed expression of α7nAChR. During late repair, PNU282987 treatment of diabetic mice significantly reduced the level of TNF-α, accelerated wound healing, and elevated fibroblast number and collagen deposition. To investigate the cellular mechanism of these observations, RAW 264.7 cells, a macrophage cell line, were incubated with AGEs in the presence or absence of PNU282987. TNFproduction from AGE-stimulated macrophages was significantly decreased by PNU282987 in a dose-dependent manner. Furthermore, PNU282987 significantly inhibited AGE-induced nuclear factor-κB (NF-κB) activation and receptor for AGE (RAGE) expression. These results strongly suggest that activating α7nAChR can promote diabetic wound healing by suppressing AGE-induced TNFproduction, which may be closely associated with the blockage of NF-κB activation in macrophages.

  2. Trametinib, a novel MEK kinase inhibitor, suppresses lipopolysaccharide-induced tumor necrosis factor (TNF)-α production and endotoxin shock.

    Science.gov (United States)

    Du, Shi-lin; Yuan, Xue; Zhan, Sun; Tang, Luo-jia; Tong, Chao-yang

    2015-03-13

    Lipopolysaccharide (LPS), one of the most prominent pathogen-associated molecular patterns (PAMPs), activates macrophages, causing release of toxic cytokines (i.e. tumor necrosis factor (TNF)-α) that may provoke inflammation and endotoxin shock. Here, we tested the potential role of trametinib, a novel and highly potent MAPK/ERK kinase (MEK) inhibitor, against LPS-induced TNF-α response in monocytes, and analyzed the underlying mechanisms. We showed that trametinib, at nM concentrations, dramatically inhibited LPS-induced TNF-α mRNA expression and protein secretion in transformed (RAW 264.7 cells) and primary murine macrophages. In ex-vivo cultured human peripheral blood mononuclear cells (PBMCs), this MEK inhibitor similarly suppressed TNFproduction by LPS. For the mechanism study, we found that trametinib blocked LPS-induced MEK-ERK activation in above monocytes, which accounted for the defective TNF-α response. Macrophages or PBMCs treated with a traditional MEK inhibitor PD98059 or infected with MEK1/2-shRNA lentivirus exhibited a similar defect as trametinib, and nullified the activity of trametinib. On the other hand, introducing a constitutively-active (CA) ERK1 restored TNFproduction by LPS in the presence of trametinib. In vivo, mice administrated with trametinib produced low levels of TNF-α after LPS stimulation, and these mice were protected from LPS-induced endotoxin shock. Together, these results show that trametinib inhibits LPS-induced TNF-α expression and endotoxin shock probably through blocking MEK-ERK signaling.

  3. Opposing regulation of the late phase TNF response by mTORC1-IL-10 signaling and hypoxia in human macrophages

    OpenAIRE

    Linda Huynh; Anthony Kusnadi; Sung Ho Park; Koichi Murata; Kyung-Hyun Park-Min; Ivashkiv, Lionel B.

    2016-01-01

    Tumor necrosis factor (TNF) is best known for inducing a rapid but transient NF-κB-mediated inflammatory response. We investigated later phases of TNF signaling, after the initial transient induction of inflammatory genes has subsided, in primary human macrophages. TNF signaling induced expression of late response genes, including inhibitors of NF-κB and TLR signaling, with delayed and sustained kinetics 6–24 hr after TNF stimulation. A subset of late phase genes was expressed in rheumatoid a...

  4. ROS-mediated TNF-α and MIP-2 gene expression in alveolar macrophages exposed to pine dust

    Directory of Open Access Journals (Sweden)

    Husgafvel-Pursiainen Kirsti

    2004-12-01

    Full Text Available Abstract Background Respiratory symptoms, impaired lung function, and asthma have been reported in workers exposed to wood dust in a number of epidemiological studies. The underlying pathomechanisms, however, are not well understood. Here, we studied the effects of dust from pine (PD and heat-treated pine (HPD on the release of reactive oxygen species (ROS and inflammatory mediators in rat alveolar macrophages. Methods Tumour necrosis factor-alpha (TNF-α and macrophage inflammatory protein-2 (MIP-2 protein release, TNF-α and MIP-2 mRNA expression, and generation of ROS were studied as end points after treatment of rat alveolar macrophages with PD or HPD. In a separate series of experiments, the antioxidants glutathione and N-acetyl-L-cysteine were included in combination with wood dust. To determine the endogenous oxidative and antioxidant capacity of wood dusts, electron spin resonance (ESR spectroscopy was used. Results After 4 h incubation, both PD and HPD elicited a significantly (p Conclusion These results indicate that pine dust is able to induce expression of TNF-α and MIP-2 in rat alveolar macrophages by a mechanism that is, at least in part, mediated by ROS.

  5. ROS-mediated TNF-alpha and MIP-2 gene expression in alveolar macrophages exposed to pine dust.

    Science.gov (United States)

    Long, Huayan; Shi, Tingming; Borm, Paul J; Määttä, Juha; Husgafvel-Pursiainen, Kirsti; Savolainen, Kai; Krombach, Fritz

    2004-12-13

    BACKGROUND: Respiratory symptoms, impaired lung function, and asthma have been reported in workers exposed to wood dust in a number of epidemiological studies. The underlying pathomechanisms, however, are not well understood. Here, we studied the effects of dust from pine (PD) and heat-treated pine (HPD) on the release of reactive oxygen species (ROS) and inflammatory mediators in rat alveolar macrophages. METHODS: Tumour necrosis factor-alpha (TNF-alpha) and macrophage inflammatory protein-2 (MIP-2) protein release, TNF-alpha and MIP-2 mRNA expression, and generation of ROS were studied as end points after treatment of rat alveolar macrophages with PD or HPD. In a separate series of experiments, the antioxidants glutathione and N-acetyl-L-cysteine were included in combination with wood dust. To determine the endogenous oxidative and antioxidant capacity of wood dusts, electron spin resonance (ESR) spectroscopy was used. RESULTS: After 4 h incubation, both PD and HPD elicited a significantly (p dust sample. CONCLUSION: These results indicate that pine dust is able to induce expression of TNF-alpha and MIP-2 in rat alveolar macrophages by a mechanism that is, at least in part, mediated by ROS.

  6. Inhibition of ceramide production reverses TNF-induced insulin resistance.

    Science.gov (United States)

    Grigsby, R J; Dobrowsky, R T

    2001-10-12

    Ceramide has been implicated as a mediator of insulin resistance induced by tumor necrosis factor-alpha (TNF) in adipocytes. Adipocytes contain numerous caveolae, sphingolipid and cholesterol-enriched lipid microdomains, that are also enriched in insulin receptor (IR). Since caveolae may be important sites for crosstalk between tyrosine kinase and sphingolipid signaling pathways, we examined the role of increased caveolar pools of ceramide in regulating tyrosine phosphorylation of the IR and its main substrate, insulin receptor substrate-1 (IRS-1). Neither exogenous short-chain ceramide analogs nor pharmacologic increases in endogenous caveolar pools of ceramide inhibited insulin-induced tyrosine phosphorylation of the IR and IRS-1. However, inhibition of TNF-induced caveolar ceramide production reversed the decrease in IR tyrosine phosphorylation in response to TNF. These results suggest that TNF-independent increases in caveolar pools of ceramide are not sufficient to inhibit insulin signaling but that in conjunction with other TNF-dependent signals, caveolar pools of ceramide are a critical component for insulin resistance by TNF.

  7. EFFECTS OF LEFLUNOMIDE AND ITS ACTIVE METABOLITE ON THE PRODUCTION AND mRNA EXPRESSION OF TNF-α IN PERITONEAL MACROPHAGES AND SYNOVIAL CELLS WITH ADJUVANT ARTHRITIS IN RATS%来氟米特及其活性代谢物对关节炎模型大鼠TNF-α分泌及mRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    李卫东; 林志彬

    2002-01-01

    目的观察免疫抑制剂来氟米特(leflunomide,LEF)及其活性代谢产物A771726(A77)对佐剂性关节炎(AA)模型大鼠TNF-α分泌活性及mRNA表达的影响.方法 TNF-α活性及mRNA表达用ELISA法和RT-PCR方法.结果 AA大鼠腹腔巨噬细胞(PMφ)呈高度活化状态,TNF-α分泌水平明显升高.LEF明显抑制LPS诱导的大鼠PMφ TNF-α释放且呈剂量依赖关系.体外用A77后TNF-α mRNA表达量降低.结论 LEF和A77对AA模型大鼠TNF-α分泌活性及mRNA表达有抑制作用,此可能为其抗炎和免疫抑制作用的机制之一.

  8. DMPD: Is HIV infection a TNF receptor signalling-driven disease? [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18178131 Is HIV infection a TNF receptor signalling-driven disease? Herbein G, Khan... KA. Trends Immunol. 2008 Feb;29(2):61-7. (.png) (.svg) (.html) (.csml) Show Is HIV infection a TNF receptor sig...nalling-driven disease? PubmedID 18178131 Title Is HIV infection a TNF receptor signalling-driven diseas

  9. Degranulating Neutrophils Promote Leukotriene B4 Production by Infected Macrophages To Kill Leishmania amazonensis Parasites.

    Science.gov (United States)

    Tavares, Natália; Afonso, Lilian; Suarez, Martha; Ampuero, Mariana; Prates, Deboraci Brito; Araújo-Santos, Théo; Barral-Netto, Manoel; DosReis, George A; Borges, Valéria Matos; Brodskyn, Cláudia

    2016-02-15

    Neutrophils mediate early responses against pathogens, and they become activated during endothelial transmigration toward the inflammatory site. In the current study, human neutrophils were activated in vitro with immobilized extracellular matrix proteins, such as fibronectin (FN), collagen, and laminin. Neutrophil activation by FN, but not other extracellular matrix proteins, induces the release of the granules' contents, measured as matrix metalloproteinase 9 and neutrophil elastase activity in culture supernatant, as well as reactive oxygen species production. Upon contact with Leishmania amazonensis-infected macrophages, these FN-activated neutrophils reduce the parasite burden through a mechanism independent of cell contact. The release of granule proteases, such as myeloperoxidase, neutrophil elastase, and matrix metalloproteinase 9, activates macrophages through TLRs, leading to the production of inflammatory mediators, TNF-α and leukotriene B4 (LTB4), which are involved in parasite killing by infected macrophages. The pharmacological inhibition of degranulation reverted this effect, abolishing LTB4 and TNF production. Together, these results suggest that FN-driven degranulation of neutrophils induces the production of LTB4 and TNF by infected macrophages, leading to the control of Leishmania infection.

  10. Mechanisms underlying Actinobacillus pleuropneumoniae exotoxin ApxI induced expression of IL-1β, IL-8 and TNF-α in porcine alveolar macrophages

    Directory of Open Access Journals (Sweden)

    Chen Zeng-Weng

    2011-02-01

    Full Text Available Abstract Actinobacillus pleuropneumoniae (A. pleuropneumoniae causes fibrino-hemorrhagic necrotizing pleuropneumonia in pigs. Production of proinflammatory mediators in the lungs is an important feature of A. pleuropneumoniae infection. However, bacterial components other than lipopolysaccharide involved in this process remain unidentified. The goals of this study were to determine the role of A. pleuropneumoniae exotoxin ApxI in cytokine induction and to delineate the underlying mechanisms. Using real-time quantitative PCR analysis, we found native ApxI stimulated porcine alveolar macrophages (PAMs to transcribe mRNAs of IL-1β, IL-8 and TNF-α in a concentration- and time-dependent manner. Heat-inactivation or pre-incubation of ApxI with a neutralizing antiserum attenuated ApxI bioactivity to induce cytokine gene expression. The secretion of IL-1β, IL-8 and TNF-α protein from PAMs stimulated with ApxI was also confirmed by quantitative ELISA. In delineating the underlying signaling pathways contributing to cytokine expression, we observed mitogen-activated protein kinases (MAPKs p38 and cJun NH2-terminal kinase (JNK were activated upon ApxI stimulation. Administration of an inhibitor specific to p38 or JNK resulted in varying degrees of attenuation on ApxI-induced cytokine expression, suggesting the differential regulatory roles of p38 and JNK in IL-1β, IL-8 and TNFproduction. Further, pre-incubation of PAMs with a CD18-blocking antibody prior to ApxI stimulation significantly reduced the activation of p38 and JNK, and subsequent expression of IL-1β, IL-8 or TNF-α gene, indicating a pivotal role of β2 integrins in the ApxI-mediated effect. Collectively, this study demonstrated ApxI induces gene expression of IL-1β, IL-8 and TNF-α in PAMs that involves β2 integrins and downstream MAPKs.

  11. Efficient capture of Candida albicans and zymosan by SIGNR1 augments TLR2-dependent TNFproduction.

    Science.gov (United States)

    Takahara, Kazuhiko; Tokieda, Sumika; Nagaoka, Koji; Inaba, Kayo

    2012-02-01

    SIGNR1, a mouse C-type lectin, binds various pathogens, including Candida albicans. In this study, we explore the impact of SIGNR1 in the recognition of C. albicans/zymosan and the subsequent tumor necrosis factor (TNF)-α production using SIGNR1-transfected RAW264.7 (RAW-SIGNR1) cells and resident peritoneal macrophages. Compared with RAW-control cells, RAW-SIGNR1 cells dramatically enhanced TNFproduction upon the stimulation with heat-killed C. albicans and zymosan. Recognition of microbes via carbohydrate recognition domain (CRD) of SIGNR1 was crucial for the enhanced TNFproduction. Consistently, such an enhancement was significantly decreased by anti-SIGNR1 mAb. Laminarin, antagonistic Dectin-1 ligand, cooperated to further diminish the response, although no effect was observed by itself in RAW-SIGNR1 cells. However, it moderately reduced the response of RAW-control cells. Zymosan depleted of toll-like receptor (TLR) ligands decreased the response, even though it was recognized by SIGNR1 and Dectin-1. Moreover, antagonistic anti-TLR2 abolished the response, suggesting that TNFproduction largely relies on TLR2-mediated signaling. Resident peritoneal macrophages expressing SIGNR1 predominantly captured zymosan injected intra-peritoneally and produced TNF-α, which was dependent on TLR2 and partly inhibited by anti-SIGNR1 mAb. Finally, physical association of SIGNR1 with the extracellular portion of TLR2 through CRD was confirmed by immunoprecipitation using various deletion mutants. These results suggest that SIGNR1 recognizing microbes participates in the enhanced TNFproduction by Mϕ in cooperation with TLR2.

  12. Pseuderanthemum palatiferum leaf extract inhibits the proinflammatory cytokines, TNF-α and IL-6 expression in LPS-activated macrophages.

    Science.gov (United States)

    Sittisart, Patcharawan; Chitsomboon, Benjamart; Kaminski, Norbert E

    2016-11-01

    The anti-inflammatory potential and underlying mechanisms of an ethanol extract of Pseuderanthemum palatiferum (EEP) leaves was investigated using LPS-activated macrophages. Our results show EEP produced a concentration-dependent suppression of TNF-α and IL-6 secretion by LPS-activated mouse peritoneal macrophages. EEP also suppressed LPS-induced TNF-α and IL-6 protein and mRNA levels in mouse-derived myeloid cell line RAW264.7. To further elucidate the molecular mechanisms responsible for impaired TNF-α and IL-6 regulation by EEP, the activation of transcription factors, NF-κB, C/EBP, and AP-1, was monitored using electrophoretic mobility shift assays. EEP suppressed LPS-induced NF-κB DNA binding activity within both the TNF-α and IL-6 promoters in RAW264.7 cells with impairment being more pronounced in the IL-6 promoter. In addition, EEP exhibited a concentration-dependent suppression of C/EBP and AP-1 DNA binding activity within the IL-6 promoter. Concordantly, IL-6 luciferase promoter reporter activity was also suppressed by EEP in transiently transfected RAW264.7 cells, upon LPS activation. EEP analysis by GC-MS and HPLC DAD-MSD revealed the presence of β-sitosterol and various polyphenols, respectively, which are known to possess anti-inflammatory activity. Collectively, these results suggest that the anti-inflammatory effects of EEP are mediated, at least in part, by modulating TNF-α and IL-6 expression through impairment of NF-κB, C/EBP, and AP-1 activity.

  13. Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-alpha expression.

    Science.gov (United States)

    Lai, Jiann-Jyh; Lai, Kuo-Pao; Chuang, Kuang-Hsiang; Chang, Philip; Yu, I-Chen; Lin, Wen-Jye; Chang, Chawnshang

    2009-12-01

    Cutaneous wounds heal more slowly in elderly males than in elderly females, suggesting a role for sex hormones in the healing process. Indeed, androgen/androgen receptor (AR) signaling has been shown to inhibit cutaneous wound healing. AR is expressed in several cell types in healing skin, including keratinocytes, dermal fibroblasts, and infiltrating macrophages, but the exact role of androgen/AR signaling in these different cell types remains unclear. To address this question, we generated and studied cutaneous wound healing in cell-specific AR knockout (ARKO) mice. General and myeloid-specific ARKO mice exhibited accelerated wound healing compared with WT mice, whereas keratinocyte- and fibroblast-specific ARKO mice did not. Importantly, the rate of wound healing in the general ARKO mice was dependent on AR and not serum androgen levels. Interestingly, although dispensable for wound closure, keratinocyte AR promoted re-epithelialization, while fibroblast AR suppressed it. Further analysis indicated that AR suppressed wound healing by enhancing the inflammatory response through a localized increase in TNF-alpha expression. Furthermore, AR enhanced local TNF-alpha expression via multiple mechanisms, including increasing the inflammatory monocyte population, enhancing monocyte chemotaxis by upregulating CCR2 expression, and enhancing TNF-alpha expression in macrophages. Finally, targeting AR by topical application of a compound (ASC-J9) that degrades AR protein resulted in accelerated healing, suggesting a potential new therapeutic approach that may lead to better treatment of wound healing.

  14. Neutrophil and Alveolar Macrophage-Mediated Innate Immune Control of Legionella pneumophila Lung Infection via TNF and ROS.

    Directory of Open Access Journals (Sweden)

    Pascal Ziltener

    2016-04-01

    Full Text Available Legionella pneumophila is a facultative intracellular bacterium that lives in aquatic environments where it parasitizes amoeba. However, upon inhalation of contaminated aerosols it can infect and replicate in human alveolar macrophages, which can result in Legionnaires' disease, a severe form of pneumonia. Upon experimental airway infection of mice, L. pneumophila is rapidly controlled by innate immune mechanisms. Here we identified, on a cell-type specific level, the key innate effector functions responsible for rapid control of infection. In addition to the well-characterized NLRC4-NAIP5 flagellin recognition pathway, tumor necrosis factor (TNF and reactive oxygen species (ROS are also essential for effective innate immune control of L. pneumophila. While ROS are essential for the bactericidal activity of neutrophils, alveolar macrophages (AM rely on neutrophil and monocyte-derived TNF signaling via TNFR1 to restrict bacterial replication. This TNF-mediated antibacterial mechanism depends on the acidification of lysosomes and their fusion with L. pneumophila containing vacuoles (LCVs, as well as caspases with a minor contribution from cysteine-type cathepsins or calpains, and is independent of NLRC4, caspase-1, caspase-11 and NOX2. This study highlights the differential utilization of innate effector pathways to curtail intracellular bacterial replication in specific host cells upon L. pneumophila airway infection.

  15. Induction of matrix metalloproteinase-9 in alveolar macrophages by TNF-α through NF-κB signal pathway

    Institute of Scientific and Technical Information of China (English)

    Yaqing Li; Zhenxiang Zhang; Yongjian Xu; Wang Ni; Shixin Chen

    2006-01-01

    Objective: To explore the effect of tumor necrosis factor (TNF)-α on matrix metalloproteinase-9 (MMP-9)expression and activity in alveolar macrophages (AM) from patients with chronic obstructive pulmonary disease (COPD) and study its associated signal pathway. Methods: AM were collected from bronchoalveolar lavage fluid in patients with COPD. The AM were incubated for 1.5 h with pyrrolidine dithiocarbamate(PDTC)at concentrations from 0 μmol/L to 50 μmol/L and then stimulated for 24 h by TNF-α at 10 ng/ml. MMP-9 expression and activity were respectively detected by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), Western blotting and Zymography. NF-κB activity was investigated by electrophoretic mobility shift assay (EMSA).Results: Both the mRNA and protein levels of MMP-9 induced by TNF-α in AM were significantly elevated in a dose dependent manner (P < 0.05). The level of MMP-9 activity was also correspondingly significantly elevated in the induction ( P < 0.05), which was possibly related with the over-expression of MMP-9. NF-κB activity was significantly increased when AM were stimulated by 10 ng/mL TNF-α (P <0.05). The expression of MMP-9 induced by TNF-α could be significantly inhibited by PDTC ( P < 0.05). Conclusion: The expression and activity of MMP-9 from AM could be induced by TNF-α, and NF-κB signal pathway played an important role in the induction.

  16. Opposing regulation of the late phase TNF response by mTORC1-IL-10 signaling and hypoxia in human macrophages.

    Science.gov (United States)

    Huynh, Linda; Kusnadi, Anthony; Park, Sung Ho; Murata, Koichi; Park-Min, Kyung-Hyun; Ivashkiv, Lionel B

    2016-08-25

    Tumor necrosis factor (TNF) is best known for inducing a rapid but transient NF-κB-mediated inflammatory response. We investigated later phases of TNF signaling, after the initial transient induction of inflammatory genes has subsided, in primary human macrophages. TNF signaling induced expression of late response genes, including inhibitors of NF-κB and TLR signaling, with delayed and sustained kinetics 6-24 hr after TNF stimulation. A subset of late phase genes was expressed in rheumatoid arthritis synovial macrophages, confirming their expression under chronic inflammatory conditions in vivo. Expression of a subset of late phase genes was mediated by autocrine IL-10, which activated STAT3 with delayed kinetics. Hypoxia, which occurs at sites of infection or inflammation where TNF is expressed, suppressed this IL-10-STAT3 autocrine loop and expression of late phase genes. TNF-induced expression of IL-10 and downstream genes was also dependent on signaling by mTORC1, which senses the metabolic state of cells and is modulated by hypoxia. These results reveal an mTORC1-dependent IL-10-mediated late phase response to TNF by primary human macrophages, and identify suppression of IL-10 responses as a new mechanism by which hypoxia can promote inflammation. Thus, hypoxic and metabolic pathways may modulate TNF responses during chronic inflammation.

  17. Tumour necrosis factor-α production in fibrosing alveolitis is macrophage subset specific

    Science.gov (United States)

    Pantelidis, Panos; McGrath, Deirdre S; Southcott, Anne Marie; Black, Carol M; du Bois, Roland M

    2001-01-01

    Background Previous studies have revealed that tumour necrosis factor (TNF)-α is upregulated in fibrosing alveolitis (FA) in humans. The aim of this study was to compare the TNF-α secretory profile of alveolar macrophages (AMs) and peripheral blood monocytes (Mos) of patients with cryptogenic FA and systemic sclerosis (SSc), a rheumatological disorder in which lung fibrosis can occur. In particular, we wished to assess whether TNF-α levels differ between SSc patients with FA (FASSc) and a nonfibrotic group. Methods The reverse haemolytic plaque assay was used to evaluate the secretion of cytokine at a single cell level while immunostaining allowed subtyping of AMs and Mos. Results This study demonstrated a difference in total TNF-α levels produced by AMs when the levels in subjects with FA (cryptogenic FA and FASSc) were compared to levels in either SSc patients without FA (P = 0.0002) or normal healthy controls (P < 0.001). In addition, AMs from patients with FASSc secreted more TNF-α than those of patients with no FA (P = 0.003). In contrast, there were no significant differences in Mo TNF-α secretion between the groups. A positive correlation was found between total TNF-α level and number of neutrophils obtained by bronchoalveolar lavage from patients with FA (r = 0.49, P < 0.04). Finally, it was demonstrated that there was significant heterogeneity of TNF-α secretion and that a numerically significant subset of mononuclear phagocytes, RFD7, was responsible for more than 80% of TNFproduction. Conclusion By demonstrating the primary cell source of TNF-α in FASSc, more accurately targeted, possibly localized, anti-TNF strategies might be employed with success in the future. PMID:11737936

  18. Effect of Tityus serrulatus venom on cytokine production and the activity of murine macrophages

    Directory of Open Access Journals (Sweden)

    Vera L. Petricevich

    2002-01-01

    Full Text Available The purpose of this study was to investigate the effects of Tityus serrulatus venom (TSV on murine peritoneal macrophages evaluated in terms of activation. The effects of crude TSV were analysed by detection of cytokines, oxygen intermediate metabolites (H2O2 and nitric oxide (NO in supernatants of peritoneal macrophages. Several functional bioassays were employed including an in vitro model for envenomating: cytotoxicity of TSV was assessed using the lyses percentage. Tumor necrosis factor (TNF activity was assayed by measuring its cytotoxic activity on L-929 cells, and interleukin-6 (IL-6 and interferon-γ (IFN-γ were assayed by enzyme-linked immunosorbent assay, whereas NO levels were detected by Griess colorimetric reactions in culture supernatant of macrophages incubated with TSV and subsequently exposed to either lipopolysaccharide or IFN-γ. Incubation of macrophages with TSV increased production of IL-6 and IFN-γ in a dose-dependent manner. TNF production was not detected in supernatants treated with TSV at any concentration. The increase in IL-6 secretion was not associated with concentration-dependent cytoxicity of TSV on these cells. These data suggest that the cytotoxicity does not appear to be the main cause of an increased cytokine production by these cells. Although NO is an important effector molecule in macrophage microbicidal activity, the inducing potential of the test compounds for its release was found to be very moderate, ranging from 125 to 800 mM. Interestingly, NO levels of peritoneal macrophages were increased after IFN-γ. Moreover, NO production had an apparent effect on macrophage activity. The results obtained here also shown that the TSV induces an important elevation in H2O2 release. These results combined with NO production suggest that TSV possesses significant immunomodulatory activities capable of stimulating immune functions in vitro.

  19. Extracellular vesicles from Leishmania-infected macrophages confer an anti-infection cytokine-production profile to naïve macrophages.

    Directory of Open Access Journals (Sweden)

    André Cronemberger-Andrade

    2014-09-01

    Full Text Available Extracellular vesicles (EVs are structures with phospholipid bilayer membranes and 100-1000 nm diameters. These vesicles are released from cells upon activation of surface receptors and/or apoptosis. The production of EVs by dendritic cells, mast cells, macrophages, and B and T lymphocytes has been extensively reported in the literature. EVs may express MHC class II and other membrane surface molecules and carry antigens. The aim of this study was to investigate the role of EVs from Leishmania-infected macrophages as immune modulatory particles.In this work it was shown that BALB/c mouse bone marrow-derived macrophages, either infected in vitro with Leishmania amazonensis or left uninfected, release comparable amounts of 50-300 nm-diameter extracellular vesicles (EVs. The EVs were characterized by flow cytometry and electron microscopy. The incubation of naïve macrophages with these EVs for 48 hours led to a statistically significant increase in the production of the cytokines IL-12, IL-1β, and TNF-α.EVs derived from macrophages infected with L. amazonensis induce other macrophages, which in vivo could be bystander cells, to produce the proinflammatory cytokines IL-12, IL-1β and TNF-α. This could contribute both to modulate the immune system in favor of a Th1 immune response and to the elimination of the Leishmania, leading, therefore, to the control the infection.

  20. OMP31 of Brucella melitensis 16M impairs the apoptosis of macrophages triggered by TNF

    Science.gov (United States)

    Zhang, Ke; Wang, Hui; Guo, Fei; Yuan, Li; Zhang, Wanjiang; Wang, Yuanzhi; Chen, Chuangfu

    2016-01-01

    Outer membrane proteins (OMPs) of microorganisms play important roles in directly interacting with host cells. Brucella species inhibit the apoptosis of host cells to benefit their own intracellular survival and replication. However, the association between OMP31 of Brucella and host cell apoptosis, and the underlying mechanism are unclear. In this study, an OMP31 gene deletion mutant based on B. melitensis 16M was constructed. Following the infection of RAW264.7 cells with B. melitensis 16M or the mutant strain, colony formation, apoptosis, tumor necrosis factor (TNF)-α levels and the levels of key downstream factors of the apoptosis pathways triggered by TNF-α, namely caspase-3, −8 and −9, cytochrome c, B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were detected. The mutant strain was shown to have the same phenotype as the parent strain using traditional microbiological tests. However, the mutant strain had impaired intracellular survival, with higher levels of apoptosis and TNF-α expression in infected RAW164.7 macrophages than the parent strain. The downstream factors of apoptosis triggered by TNF-α, including increased caspase-8, −3 and −9, cytochrome c and Bax, and decreased Bcl-2, indicated that the classical and mitochondrial cell death pathways were involved. It may be concluded that OMP31 from Brucella inhibited apoptosis and benefitted the intracellular survival of this microorganism. Furthermore, TNF-α may have served as a switch triggering classical death and mitochondrial cell death pathways. PMID:27698784

  1. Elevated COX2 expression and PGE2 production by downregulation of RXRα in senescent macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huimin, E-mail: huiminchen.jq@gmail.com [Department of Geratology, Liaoning Jinqiu Hospital, Shenyang 110015 (China); Ma, Feng [Institute of Immunology, Zhejiang University of Medicine, Hangzhou 310058 (China); Hu, Xiaona; Jin, Ting; Xiong, Chuhui [Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001 (China); Teng, Xiaochun, E-mail: tengxiaochun@126.com [Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001 (China)

    2013-10-11

    Highlights: •Downregulation of RXRα in senescent macrophage. •RXRα suppresses NF-κB activity and COX2 expression. •Increased PGE2 production due to downregulation of RXRα. -- Abstract: Increased systemic level of inflammatory cytokines leads to numerous age-related diseases. In senescent macrophages, elevated prostaglandin E2 (PGE2) production contributes to the suppression of T cell function with aging, which increases the susceptibility to infections. However, the regulation of these inflammatory cytokines and PGE2 with aging still remains unclear. We have verified that cyclooxygenase (COX)-2 expression and PGE2 production are higher in LPS-stimulated macrophages from old mice than that from young mice. Downregulation of RXRα, a nuclear receptor that can suppress NF-κB activity, mediates the elevation of COX2 expression and PGE2 production in senescent macrophages. We also have found less induction of ABCA1 and ABCG1 by RXRα agonist in senescent macrophages, which partially accounts for high risk of atherosclerosis in aged population. Systemic treatment with RXRα antagonist HX531 in young mice increases COX2, TNF-α, and IL-6 expression in splenocytes. Our study not only has outlined a mechanism of elevated NF-κB activity and PGE2 production in senescent macrophages, but also provides RXRα as a potential therapeutic target for treating the age-related diseases.

  2. O-glycosylation in cell wall proteins in Scedosporium prolificans is critical for phagocytosis and inflammatory cytokines production by macrophages.

    Directory of Open Access Journals (Sweden)

    Mariana I D S Xisto

    Full Text Available In this study, we analyze the importance of O-linked oligosaccharides present in peptidorhamnomannan (PRM from the cell wall of the fungus Scedosporium prolificans for recognition and phagocytosis of conidia by macrophages. Adding PRM led to a dose-dependent inhibition of conidia phagocytosis, whereas de-O-glycosylated PRM did not show any effect. PRM induced the release of macrophage-derived antimicrobial compounds. However, O-linked oligosaccharides do not appear to be required for such induction. The effect of PRM on conidia-induced macrophage killing was examined using latex beads coated with PRM or de-O-glycosylated PRM. A decrease in macrophage viability similar to that caused by conidia was detected. However, macrophage killing was unaffected when beads coated with de-O-glycosylated PRM were used, indicating the toxic effect of O-linked oligosaccharides on macrophages. In addition, PRM triggered TNF-α release by macrophages. Chemical removal of O-linked oligosaccharides from PRM abolished cytokine induction, suggesting that the O-linked oligosaccharidic chains are important moieties involved in inflammatory responses through the induction of TNF-α secretion. In summary, we show that O-glycosylation plays a role in the recognition and uptake of S. prolificans by macrophages, killing of macrophages and production of pro- inflammatory cytokines.

  3. O-Glycosylation in Cell Wall Proteins in Scedosporium prolificans Is Critical for Phagocytosis and Inflammatory Cytokines Production by Macrophages

    Science.gov (United States)

    Xisto, Mariana I. D. S.; Bittencourt, Vera C. B.; Liporagi-Lopes, Livia Cristina; Haido, Rosa M. T.; Mendonça, Morena S. A.; Sassaki, Guilherme; Figueiredo, Rodrigo T.; Romanos, Maria Teresa V.; Barreto-Bergter, Eliana

    2015-01-01

    In this study, we analyze the importance of O-linked oligosaccharides present in peptidorhamnomannan (PRM) from the cell wall of the fungus Scedosporium prolificans for recognition and phagocytosis of conidia by macrophages. Adding PRM led to a dose-dependent inhibition of conidia phagocytosis, whereas de-O-glycosylated PRM did not show any effect. PRM induced the release of macrophage-derived antimicrobial compounds. However, O-linked oligosaccharides do not appear to be required for such induction. The effect of PRM on conidia-induced macrophage killing was examined using latex beads coated with PRM or de-O-glycosylated PRM. A decrease in macrophage viability similar to that caused by conidia was detected. However, macrophage killing was unaffected when beads coated with de-O-glycosylated PRM were used, indicating the toxic effect of O-linked oligosaccharides on macrophages. In addition, PRM triggered TNF-α release by macrophages. Chemical removal of O-linked oligosaccharides from PRM abolished cytokine induction, suggesting that the O-linked oligosaccharidic chains are important moieties involved in inflammatory responses through the induction of TNF-α secretion. In summary, we show that O-glycosylation plays a role in the recognition and uptake of S. prolificans by macrophages, killing of macrophages and production of pro- inflammatory cytokines. PMID:25875427

  4. Soluble immune complexes shift the TLR-induced cytokine production of distinct polarized human macrophage subsets towards IL-10.

    Directory of Open Access Journals (Sweden)

    Carmen A Ambarus

    Full Text Available BACKGROUND: Costimulation of murine macrophages with immune complexes (ICs and TLR ligands leads to alternative activation. Studies on human myeloid cells, however, indicate that ICs induce an increased pro-inflammatory cytokine production. This study aimed to clarify the effect of ICs on the pro- versus anti-inflammatory profile of human polarized macrophages. MATERIALS AND METHODS: Monocytes isolated from peripheral blood of healthy donors were polarized for four days with IFN-γ, IL-4, IL-10, GM-CSF, M-CSF, or LPS, in the presence or absence of heat aggregated gamma-globulins (HAGGs. Phenotypic polarization markers were measured by flow cytometry. Polarized macrophages were stimulated with HAGGs or immobilized IgG alone or in combination with TLR ligands. TNF, IL-6, IL-10, IL-12, and IL-23 were measured by Luminex and/or RT-qPCR. RESULTS: HAGGs did not modulate the phenotypic polarization and the cytokine production of macrophages. However, HAGGs significantly altered the TLR-induced cytokine production of all polarized macrophage subsets, with the exception of MΦ(IL-4. In particular, HAGGs consistently enhanced the TLR-induced IL-10 production in both classically and alternatively polarized macrophages (M1 and M2. The effect of HAGGs on TNF and IL-6 production was less pronounced and depended on the polarization status, while IL-23p19 and IL-12p35 expression was not affected. In contrast with HAGGs, immobilized IgG induced a strong upregulation of not only IL-10, but also TNF and IL-6. CONCLUSION: HAGGs alone do not alter the phenotype and cytokine production of in vitro polarized human macrophages. In combination with TLR-ligands, however, HAGGs but not immobilized IgG shift the cytokine production of distinct macrophage subsets toward IL-10.

  5. CD14 mediates binding of high doses of LPS but is dispensable for TNFproduction.

    Science.gov (United States)

    Borzęcka, Kinga; Płóciennikowska, Agnieszka; Björkelund, Hanna; Sobota, Andrzej; Kwiatkowska, Katarzyna

    2013-01-01

    Activation of macrophages with lipopolysaccharide (LPS) involves a sequential engagement of serum LPS-binding protein (LBP), plasma membrane CD14, and TLR4/MD-2 signaling complex. We analyzed participation of CD14 in TNFproduction stimulated with 1-1000 ng/mL of smooth or rough LPS (sLPS or rLPS) and in sLPS binding to RAW264 and J744 cells. CD14 was indispensable for TNF-α generation induced by a low concentration, 1 ng/mL, of sLPS and rLPS. At higher doses of both LPS forms (100-1000 ng/mL), TNF-α release required CD14 to much lower extent. Among the two forms of LPS, rLPS-induced TNFproduction was less CD14-dependent and could proceed in the absence of serum as an LBP source. On the other hand, the involvement of CD14 was crucial for the binding of 1000 ng/mL of sLPS judging from an inhibitory effect of the anti-CD14 antibody. The binding of sLPS was also strongly inhibited by dextran sulfate, a competitive ligand of scavenger receptors (SR). In the presence of dextran sulfate, sLPS-induced production of TNF-α was upregulated about 1.6-fold. The data indicate that CD14 together with SR participates in the binding of high doses of sLPS. However, CD14 contribution to TNF α production induced by high concentrations of sLPS and rLPS can be limited.

  6. Role of ICAM-1 in the aggregation and adhesion of human alveolar macrophages in response to TNF-α and INF-γ

    Directory of Open Access Journals (Sweden)

    Masahiro Sasaki

    2001-01-01

    Full Text Available Intracellular adhesion molecule-1 (ICAM-1-mediated cell-cell adhesion is thought to play an important role at sites of inflammation. Recent evidence suggests that ICAM-1 surface expression on alveolar macrophages is increased in pulmonary sarcoidosis and that inflammatory granuloma formation is characterized by the aggregation of macrophages. The present study shows that ICAM-1 expression is significantly elevated on alveolar macrophages from patients with sarcoidosis in response to tumor necrosis factor-α (TNF-α and interferon- γ (INF-γ compared with healthy controls. Aggregation and adhesion were significantly increased in alveolar macrophages treated with TNF-α and INF-γ, and significantly inhibited in those pretreated with a monoclonal antibody to ICAM-1. Similarly, aggregation and adhesion were inhibited in macrophages treated with heparin, which then exhibited a wide range of biological activities relevant to inflammation. These results suggested that the surface expression of ICAM-1 on alveolar macrophages in response to TNF-α and INF-γ is important in mediating aggregation and adhesion. Additionally, heparin may be useful for developing novel therapeutic agents for fibrotic lung disease.

  7. Effect of apigenin, kaempferol and resveratrol on the gene expression and protein secretion of tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) in RAW-264.7 macrophages.

    Science.gov (United States)

    Palacz-Wrobel, Marta; Borkowska, Paulina; Paul-Samojedny, Monika; Kowalczyk, Malgorzata; Fila-Danilow, Anna; Suchanek-Raif, Renata; Kowalski, Jan

    2017-09-01

    Polyphenols such as apigenin, kaempferol or resveratrol are typically found in plants, including fruits, vegetables, herbs and spices, which have a wide range of biological functions such as antioxidative, anti-inflammatory, vasodilative, anticoagulative and proapoptotic. Discovering such multifunctional compounds in widely consumed plant-based products - ones that both inhibit the release of TNF-α from tissue macrophages and at the same time enhance the secretion of IL-10 - would be an important signpost in the quest for effective pharmacological treatment of numerous diseases that have an inflammatory etiology. The aim of the study is to investigate the impact of biologically active polyphenols such as apigenin, resveratrol and kaempferol on gene expression and protein secretion of IL-10 and TNF-α in line RAW-264.7. Cells were cultured under standard conditions. IL-10 and TNF-α genes expression were examined using QRT-PCR and to assess cytokines concentration ELISA have been used. Apigenin, kaempferol and resveratrol at a dose 30μM significantly decrease the TNF-α expression and secretion. Apigenin decrease the IL-10 expression and secretion. Furthermore, increase in IL-10 secretion after administration of kaempferol and resveratrol were observed. In the process of administration of tested compounds before LPS, which activate macrophages, decrease of TNF-α secretion after apigenin and kaempferol and increase of IL-10 secretion after resveratrol were observed. The results of present work indicate that 1) apigenin, resveratrol and kaempferol may reduce the intensity of inflammatory processes by inhibiting the secretion of proinflammatory cytokine TNF-α, and resveratrol and kaempferol additionally by increasing the secretion of anti-inflammatory cytokine IL-10 2) the studies indicate the potentially beneficial - anti-inflammatory - impact of diet rich in products including apigenin, resveratrol and kaempferol. Copyright © 2017 Elsevier Masson SAS. All rights

  8. Effect of pentoxifylline on the expression level of TNF-α induced by respiratory syncytial virus-infected human alveolar macrophages%己酮可可碱对呼吸道合胞病毒感染的人肺泡巨噬细胞TNF-α表达水平的影响

    Institute of Scientific and Technical Information of China (English)

    陶晓南; 彭毅; 付薇; 向敏; 张瑞祥; 杨业金

    2001-01-01

    目的 观察己酮可可碱(PTX)对呼吸道合胞病毒(RSV)所诱导的人肺泡灌洗液巨噬细胞肿瘤坏死因子(TNF-α)含量及TNF-α mRNA表达水平的影响。方法 收集咳嗽患者正常镜像的支气管肺泡灌洗液巨噬细胞,随机分成三组:(1)对照组(NOR组);(2)感染组(RSV组)加入106 pfu的RSV;(3)己酮可可碱组(PTX组)RSV感染后加入PTX(1 mg/ml)。每组于RSV感染20 h后,用ELISA法测定培养细胞上清中TNF-α含量的变化,用逆转录聚合酶链反应(RT-PCR) 测定各组巨噬细胞TNF-α mRNA表达水平。结果 感染组中TNF-α mRNA表达水平与对照组相比明显增多。PTX组TNF-α mRNA的表达和感染组相比明显降低。TNF-α的含量也有相应的变化:与对照组比较,感染组明显升高(P<0.01); 而PTX组与感染组比较明显下降(P<0.01)。结论 PTX能抑制RSV所诱导的人肺泡巨噬细胞TNF-α的基因表达,并减少TNF-α的产生。%Objective To investigate the effect of pentoxifylline (PTX) on the expression of the TNF-α mRNA and the amount of TNF-α induced by RSV-infected human bronchoalveolar flruid (BALF) macrophages.Methods Human BALF macrophages were collected and divided into the following three groups:(1)control group; (2) infected group,with 106 pfu RSV in the culture medium; (3) PTX group,in which 1 mg/ml of PTX was added after RSV infection. Twenty hours after the RSV infection, the mRNA expression level of TNF-α gene was analysed by RT-PCR and the TNF-α protein level was measured by the ELISA.Results In comparison with the control group,the expression of TNF-α mRNA was increased in the infected group,while this induction was inhibited in the PTX group.Similar results were also obtained when the content of TNF-α protein was studied by ELISA:PTX could reduce the high levels of TNF-α in the infected group (P<0.01).Conclusion PTX exerts an inhibitory effect on the expression of the TNF-α mRNA,as well as

  9. A pseudopterane diterpene isolated from the octocoral Pseudopterogorgia acerosa inhibits the inflammatory response mediated by TLR-ligands and TNF-alpha in macrophages.

    Science.gov (United States)

    González, Yisett; Doens, Deborah; Santamaría, Ricardo; Ramos, Marla; Restrepo, Carlos M; Barros de Arruda, Luciana; Lleonart, Ricardo; Gutiérrez, Marcelino; Fernández, Patricia L

    2013-01-01

    Several diterpenoids isolated from terrestrial and marine environments have been identified as important anti-inflammatory agents. Although considerable progress has been made in the area of anti-inflammatory treatment, the search for more effective and safer compounds is a very active field of research. In this study we investigated the anti-inflammatory effects of a known pseudopterane diterpene (referred here as compound 1) isolated from the octocoral Pseudopterogorgia acerosa on the tumor necrosis factor- alpha (TNF-α) and TLRs- induced response in macrophages. Compound 1 inhibited the expression and secretion of the inflammatory mediators TNF-α, interleukin (IL)-6, IL-1β, nitric oxide (NO), interferon gamma-induced protein 10 (IP-10), ciclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) and monocyte chemoattractant protein-1 (MCP-1) induced by LPS in primary murine macrophages. This effect was associated with the inhibition of IκBα degradation and subsequent activation of NFκB. Compound 1 also inhibited the expression of the co-stimulatory molecules CD80 and CD86, which is a hallmark of macrophage activation and consequent initiation of an adaptive immune response. The anti-inflammatory effect was not exclusive to LPS because compound 1 also inhibited the response of macrophages to TNF-α and TLR2 and TLR3 ligands. Taken together, these results indicate that compound 1 is an anti-inflammatory molecule, which modulates a variety of processes occurring in macrophage activation.

  10. A pseudopterane diterpene isolated from the octocoral Pseudopterogorgia acerosa inhibits the inflammatory response mediated by TLR-ligands and TNF-alpha in macrophages.

    Directory of Open Access Journals (Sweden)

    Yisett González

    Full Text Available Several diterpenoids isolated from terrestrial and marine environments have been identified as important anti-inflammatory agents. Although considerable progress has been made in the area of anti-inflammatory treatment, the search for more effective and safer compounds is a very active field of research. In this study we investigated the anti-inflammatory effects of a known pseudopterane diterpene (referred here as compound 1 isolated from the octocoral Pseudopterogorgia acerosa on the tumor necrosis factor- alpha (TNF-α and TLRs- induced response in macrophages. Compound 1 inhibited the expression and secretion of the inflammatory mediators TNF-α, interleukin (IL-6, IL-1β, nitric oxide (NO, interferon gamma-induced protein 10 (IP-10, ciclooxygenase (COX-2, inducible nitric oxide synthase (iNOS and monocyte chemoattractant protein-1 (MCP-1 induced by LPS in primary murine macrophages. This effect was associated with the inhibition of IκBα degradation and subsequent activation of NFκB. Compound 1 also inhibited the expression of the co-stimulatory molecules CD80 and CD86, which is a hallmark of macrophage activation and consequent initiation of an adaptive immune response. The anti-inflammatory effect was not exclusive to LPS because compound 1 also inhibited the response of macrophages to TNF-α and TLR2 and TLR3 ligands. Taken together, these results indicate that compound 1 is an anti-inflammatory molecule, which modulates a variety of processes occurring in macrophage activation.

  11. A Pseudopterane Diterpene Isolated From the Octocoral Pseudopterogorgia acerosa Inhibits the Inflammatory Response Mediated by TLR-Ligands and TNF-Alpha in Macrophages

    Science.gov (United States)

    González, Yisett; Doens, Deborah; Santamaría, Ricardo; Ramos, Marla; Restrepo, Carlos M.; Barros de Arruda, Luciana; Lleonart, Ricardo; Gutiérrez, Marcelino; Fernández, Patricia L.

    2013-01-01

    Several diterpenoids isolated from terrestrial and marine environments have been identified as important anti-inflammatory agents. Although considerable progress has been made in the area of anti-inflammatory treatment, the search for more effective and safer compounds is a very active field of research. In this study we investigated the anti-inflammatory effects of a known pseudopterane diterpene (referred here as compound 1) isolated from the octocoral Pseudopterogorgia acerosa on the tumor necrosis factor- alpha (TNF-α) and TLRs- induced response in macrophages. Compound 1 inhibited the expression and secretion of the inflammatory mediators TNF-α, interleukin (IL)-6, IL-1β, nitric oxide (NO), interferon gamma-induced protein 10 (IP-10), ciclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) and monocyte chemoattractant protein-1 (MCP-1) induced by LPS in primary murine macrophages. This effect was associated with the inhibition of IκBα degradation and subsequent activation of NFκB. Compound 1 also inhibited the expression of the co-stimulatory molecules CD80 and CD86, which is a hallmark of macrophage activation and consequent initiation of an adaptive immune response. The anti-inflammatory effect was not exclusive to LPS because compound 1 also inhibited the response of macrophages to TNF-α and TLR2 and TLR3 ligands. Taken together, these results indicate that compound 1 is an anti-inflammatory molecule, which modulates a variety of processes occurring in macrophage activation. PMID:24358331

  12. LPS刺激后小鼠巨噬细胞Toll样受体(TLR)4及肿瘤坏死因子α表达的变化%Expressions of Toll-Like Receptor 4(TLR4)and TNFProduction in Macrophages Induced by Lipopolysaccharidein Vitro

    Institute of Scientific and Technical Information of China (English)

    郭菲; 汪泱; 王共先; 李国辉; 胡靓

    2008-01-01

    Background Gram-negative septic shock is characterized by tissue and organ damage resulting from hyperproduction of cytokines and inflammatory mediators by the immune system in response to bacteria and LPS.One of the Toll-like receptors(TLRs.the family of mammalian proteins homologues of Drosophila Toll,play important roles in host defense),TLR4,mediates the responsiveness to LPS.It responds to consened structures within pathogens and actives macrophages,monocytes,and neutrophils to produce cytokines and inflammatory mediators.Here we investigated the expression of TLR4 and production of TNFα one of the most important inflammatory cytokines,in macrophages from peritoneal eavit of mice(Mφ)induced by LPS in vitro.Methods Mφ obtained from peritoneal cavity of BALB/C mice routinely were divided into six groups,where the cells were incubated with 0,0.001,0.01,0.1,1 and 10μg/ml of LPS(final concentrations)at 37℃ in 5%CO2/95% air respectively for 2h and cell-surface TLR4 was measured by flow cytometry.Simultaneously.TNFαin culture supernatant was detected by ELIsA.The experiments were repeated 3 times.Results ① The positive percentage of,TLR4 on the surface of Mφ stimulated with 0.01μg/ml of LPS was significantly higher than that of 0μg/nd group(P<0.05=.Except this,there was no difference between 0μg/ml group and other groups.However,the mean fluorescence intensity(MFIs) of TLR4 on the surface of Mφ were intensified with the increasing concentrations of LPS.Except that of 10μg/ml group.the MFIs of the treated groups were all significantly higher than that of 0μg/nrt group.② LPS induced a notable dose-dependent increase in TNFα secretion from Mφ and the production also decreased when LPS concentration was 10μg/m1.Conclusions Mφ respond to treatment of increasing concentrations of LPS by increased TLR4 expression and TNFα production.%革兰阴性菌败血症休克的发生主要是因为免疫系统对细菌LPS应答,产生过量细胞因

  13. IL-32θ gene expression in acute myeloid leukemia suppresses TNFproduction.

    Science.gov (United States)

    Kim, Man Sub; Kang, Jeong-Woo; Jeon, Jae-Sik; Kim, Jae Kyung; Kim, Jong Wan; Hong, Jintae; Yoon, Do-Young

    2015-12-01

    The proinflammatory cytokine TNF-α is highly expressed in patients with acute myeloid leukemia (AML) and has been demonstrated to induce rapid proliferation of leukemic blasts. Thus suppressing the production of TNF-α is important because TNF-α can auto-regulate own expression through activation of NF-κB and p38 mitogen-activated protein kinase (MAPK). In this study, we focused on the inhibitory effect of IL-32θ on TNFproduction in acute myeloid leukemia. Approximately 38% of patients with AML express endogenous IL-32θ, which is not expressed in healthy individuals. Furthermore, plasma samples were classified into groups with or without IL-32θ; then, we measured proinflammatory cytokine TNF-α, IL-1β, and IL-6 levels. TNFproduction was not increased in patients with IL-32θ expression than that in the no-IL-32θ group. Using an IL-32θ stable expression system in leukemia cell lines, we found that IL-32θ attenuated phorbol 12-myristate 13-acetate (PMA)-induced TNFproduction. IL-32θ inhibited phosphorylation of p38 MAPK, inhibitor of κB (IκB), and nuclear factor κB (NF-κB), which are key positive regulators of TNF-α expression, and inhibited nuclear translocation of NF-κB. Moreover, the presence of IL-32θ attenuated TNF-α promoter activity and the binding of NF-κB with the TNF-α promoter. In addition, IL-32γ-induced TNFproduction has no correlation with inhibition of TNF-α via IL-32θ expression. Thus, IL-32θ may serve as a potent inhibitor of TNF-α in patients with AML.

  14. Therapeutic and prophylactic thalidomide in TNBS-induced colitis: Synergistic effects on TNF-α, IL-12 and VEGF production

    Institute of Scientific and Technical Information of China (English)

    Ana Teresa Carvalho; Cláudio Tortori; Ilana Dines; Jane Carvalho; Eduardo Rocha; Celeste Elia; Heitor Souza; Antonio Jose Carneiro; Morgana Castelo-Branco; Kalil Madi; Alberto Schanaider; Flavia Silva; Fernando Antonio Pereira Jú'nior; Márcia G Pereira

    2007-01-01

    AIM: To evaluated the therapeutic and prophylactic effect of thalidomide on 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis. Thalidomide has been reported to downregulate the expression of tumor necrosis factor α (TNF-α), IL-12, and vascular endothelial growth factor (VEGF), hallmarks of intestinal inflammation in Crohn's disease (CD).METHODS: Male Wistar rats were divided in five groups of ten animals each. Four groups received a rectal infusion of TNBS in ethanol. The first group was sacrificed 7 d after colitis induction. The second and third groups received either thalidomide or placebo by gavage and were sacrificed at 14 d. The fourth group received thalidomide 6 h before TNBS administration, and was sacrificed 7 d after induction. The fifth group acted as the control group and colitis was not induced. Histological inflammatory scores of the colon were performed and lamina propria CD4+ T cells, macrophages, and VEGF+ cells were detected by immunohistochemistry. TNF-α and IL-12 were quantified in the supernatant of organ cultures by ELISA.RESULTS: Significant reduction in the inflammatory score and in the percentage of VEGF+ cells was observed in the group treated with thalidomide compared with animals not treated with thalidomide. Both TNF-α and IL-12 levels were significantly reduced among TNBS induced colitis animals treated with thalidomide compared with animals that did not receive thalidomide.TNF-α levels were also significantly reduced among the animals receiving thalidomide prophylaxis compared with untreated animals with TNBS-induced colitis. Intestinal levels of TNF-α and IL-12 were significantly correlated with the inflammatory score and the number of VEGF+ cells.CONCLUSION: Thalidomide significantly attenuates TNBS-induced colitis by inhibiting the intestinal production of TNF-α, IL-12, and VEGF. This effect may support the use of thalidomide as an alternate approach in selected patients with CD.

  15. Inhibitory Effect of Astragalus Polysaccharides on Lipopolysaccharide-Induced TNF-a and IL-1β Production in THP-1 Cells

    Directory of Open Access Journals (Sweden)

    Aiping Lu

    2012-03-01

    Full Text Available Astragalus polysaccharides (APS, one of main bioactive components in Astragalus membranaceus Bunge, has been reported to possess anti-inflammatory activities, but the molecular mechanisms behind this activity are largely unknown. This study aimed to investigate expression of inflammatory cytokines and the MAPK/NF-κB pathway in human THP-1 macrophages induced by lipopolysaccharide (LPS. The results showed that the concentrations of TNF-a and IL-1β released from LPS stimulated THP-1 cells increased significantly compared to control (p < 0.01. After treatment with APS, the TNF-a and IL-1β levels were significantly lower than those in the LPS group (p < 0.05. The mRNA expression of TNF-a and IL-1β were also inhibited. Mechanistic studies indicated that APS strongly suppressed NF-κB activation and down-regulated the phosphorylation of ERK and JNK, which are important signaling pathways involved in the production of TNF-a and IL-1β, demonstrating that APS could suppress the production of TNF-a and IL-1β by LPS stimulated macrophages by inhibiting NF-κB activation and ERK and JNK phosphorylation.

  16. BRIEF HYPOXIA PRECEDING E. COLI BACTEREMIA DOWNREGULATES HEPATIC TNFPRODUCTION

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Hepatic TNFproduction following gram-negative bacteremia or hypovolemic shock predisposes to acute lung injury. However, TNF-α expression may be modified by the manner in which the hepatic O2 supply is reduced and equally important, its timing relative to bacteremia. Brief secondary hypoxic stress of buffer-perfused rat livers downregulates E. Coli (EC)-induced TNF-α expression whereas low-flow ischemia preceding EC increases subsequent TNFproduction owing to reactive O2 species (ROS). Here we determined whether 30 min of constant-flow hypoxia preceding 109 intraportal EC likewise increases antigenic and bioactive TNF-α protein concentrations during reoxygenation via production of ROS. Multiple groups (n=38) were studied over 180 minutes, circulation antigenic TNF-α decreased in H/R+EC vs. EC controls (1 939±640 vs. 12 407±2 476 μg/L at t=180 min; P<0.01, along with TNF-α bioactivity). TNF-α protein were not restored to control levels in ALLO+H/R+EC. Thus, EC-induced hepatic TNFproduction and export is strongly O2-dependent in intact liver regardless of the generation of ROS or the sequence of bacteremia and modest hypoxic stress.

  17. Necroptosis suppresses inflammation via termination of TNF- or LPS-induced cytokine and chemokine production.

    Science.gov (United States)

    Kearney, C J; Cullen, S P; Tynan, G A; Henry, C M; Clancy, D; Lavelle, E C; Martin, S J

    2015-08-01

    TNF promotes a regulated form of necrosis, called necroptosis, upon inhibition of caspase activity in cells expressing RIPK3. Because necrosis is generally more pro-inflammatory than apoptosis, it is widely presumed that TNF-induced necroptosis may be detrimental in vivo due to excessive inflammation. However, because TNF is intrinsically highly pro-inflammatory, due to its ability to trigger the production of multiple cytokines and chemokines, rapid cell death via necroptosis may blunt rather than enhance TNF-induced inflammation. Here we show that TNF-induced necroptosis potently suppressed the production of multiple TNF-induced pro-inflammatory factors due to RIPK3-dependent cell death. Similarly, necroptosis also suppressed LPS-induced pro-inflammatory cytokine production. Consistent with these observations, supernatants from TNF-stimulated cells were more pro-inflammatory than those from TNF-induced necroptotic cells in vivo. Thus necroptosis attenuates TNF- and LPS-driven inflammation, which may benefit intracellular pathogens that evoke this mode of cell death by suppressing host immune responses.

  18. Globular Adiponectin Causes Tolerance to LPS-Induced TNF-α Expression via Autophagy Induction in RAW 264.7 Macrophages: Involvement of SIRT1/FoxO3A Axis.

    Science.gov (United States)

    Pun, Nirmala Tilija; Subedi, Amit; Kim, Mi Jin; Park, Pil-Hoon

    2015-01-01

    Adiponectin, an adipokine predominantly produced from adipose tissue, exhibited potent anti-inflammatory properties. In particular, it inhibits production of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In the present study, we investigated the role of autophagy induction in the suppression of Lipopolysaccharide (LPS) -induced TNF-α expression by globular adiponectin (gAcrp) and its potential mechanisms. Herein, we found that gAcrp treatment increased expression of genes related with autophagy, including Atg5 and microtubule-associated protein light chain (LC3B), induced autophagosome formation and autophagy flux in RAW 264.7 macrophages. Similar results were observed in primary macrophages isolated peritoneum of mice. Interestingly, inhibition of autophagy by pretreatment with Bafilomycin A1 or knocking down of LC3B gene restored suppression of TNF-α expression, tumor necrosis factor receptor- associated factor 6 (TRAF6) expression and p38MAPK phosphorylation by gAcrp, implying a critical role of autophagy induction in the development of tolerance to LPS-induced TNF-α expression by gAcrp. We also found that knocking-down of FoxO3A, a forkhead box O member of transcription factor, blocked gAcrp-induced expression of LC3II and Atg5. Moreover, gene silencing of Silent information regulator 1 (SIRT1) blocked both gAcrp-induced nuclear translocation of FoxO3A and LC3II expression. Finally, pretreatment with ROS inhibitors, prevented gAcrp-induced SIRT1 expression and further generated inhibitory effects on gAcrp-induced autophagy, indicating a role of ROS production in gAcrp-induced SIRT1 expression and subsequent autophagy induction. Taken together, these findings indicate that globular adiponectin suppresses LPS-induced TNF-α expression, at least in part, via autophagy activation. Furthermore, SIRT1-FoxO3A

  19. Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation

    Science.gov (United States)

    Kaushik, Nagendra Kumar; Kaushik, Neha; Min, Booki; Choi, Ki Hong; Hong, Young June; Miller, Vandana; Fridman, Alexander; Choi, Eun Ha

    2016-03-01

    The present study aims at studying the anticancer role of cold plasma-activated immune cells. The direct anti-cancer activity of plasma-activated immune cells against human solid cancers has not been described so far. Hence, we assessed the effect of plasma-treated RAW264.7 macrophages on cancer cell growth after co-culture. In particular, flow cytometer analysis revealed that plasma did not induce any cell death in RAW264.7 macrophages. Interestingly, immunofluorescence and western blot analysis confirmed that TNF-α released from plasma-activated macrophages acts as a tumour cell death inducer. In support of these findings, activated macrophages down-regulated the cell growth in solid cancer cell lines and induced cell death in vitro. Together our findings suggest plasma-induced reactive species recruit cytotoxic macrophages to release TNF-α, which blocks cancer cell growth and can have the potential to contribute to reducing tumour growth in vivo in the near future.

  20. Garlic (Allium sativum) stimulates lipopolysaccharide-induced tumor necrosis factor-alpha production from J774A.1 murine macrophages.

    Science.gov (United States)

    Sung, Jessica; Harfouche, Youssef; De La Cruz, Melissa; Zamora, Martha P; Liu, Yan; Rego, James A; Buckley, Nancy E

    2015-02-01

    Garlic (Allium sativum) is known to have many beneficial attributes such as antimicrobial, antiatherosclerotic, antitumorigenetic, and immunomodulatory properties. In the present study, we investigated the effects of an aqueous garlic extract on macrophage cytokine production by challenging the macrophage J774A.1 cell line with the garlic extract in the absence or presence of lipopolysaccharide (LPS) under different conditions. The effect of allicin, the major component of crushed garlic, was also investigated. Using enzyme-linked immunosorbent assay and reverse transcriptase-quantitative polymerase chain reaction, it was found that garlic and synthetic allicin greatly stimulated tumor necrosis factor-alpha (TNF-α) production in macrophages treated with LPS. The TNF-α secretion levels peaked earlier and were sustained for a longer time in cells treated with garlic and LPS compared with cells treated with LPS alone. Garlic acted in a time-dependent manner. We suggest that garlic, at least partially via its allicin component, acts downstream from LPS to stimulate macrophage TNF-α secretion.

  1. 来氟米特对佐剂性关节炎大鼠腹腔巨噬细胞IL-1,IL-6和TNF-α产生的动态影响%Dynamic effects of leflunomide on IL-1, IL-6,and TNF-α activity produced from peritoneal macrophages in adjuvant arthritis rats

    Institute of Scientific and Technical Information of China (English)

    李卫东; 冉国霞; 滕慧玲; 林志彬

    2002-01-01

    目的:探讨来氟米特(1eflunomide,LEF)对佐剂性关节炎大鼠腹腔巨噬细胞IL-1,IL-6和TNF-α分泌的影响及其抗炎、抗类风湿的可能作用机制.方法:大鼠足跖皮下注射Freund完全佐剂诱导关节炎模型;LEF灌胃后分次获取腹腔巨噬细胞,其培养上清液中IL-1,IL-6和TNF-α活性采用ELISA法或生物法测定.结果:佐剂性关节炎大鼠腹腔巨噬细胞IL-1,IL-6和TNF-α分泌较正常对照组明显升高;LEF对由LPS诱导产生的IL-1和TNF-α有明显的抑制作用,作用产生快;LEF(10,25 mg/kg)在应用21天后对IL-6的分泌也有明显抑制作用.结论:来氟米特具有抑制佐剂性关节炎大鼠腹腔巨噬细胞IL-1,IL-6和TNF-α分泌水平的作用.%AIM: To investigate the effects ofleflunomide (LEF) on modulating interleukin-1 (IL-l), interleukin-6 (IL-6), and tumor necrosis factor- alpha (TNF-α) production induced by lipopolysaccharide (LPS) in peritoneal macrophages (PMq) in adjuvant arthritis rats and elucidate the possible mechanisms of antiinflammatory and antirheumatoid effects of LEF. METHODS: Freund's complete adjuvant was injected in the hind footpad of rats to induce adjuvant arthritis (AA) rat model. The PMψ samples were taken at different time after medication. IL-1, IL-6, and TNF-α activities released from PMψ were measured by ELISA method or bioassay method. RESULTS: Production of IL-1, IL-6, and TNF-α was increased in the culture supematant of PMψ in AA model rat. LEF could inhibit LPS induced release of IL-1 and TNF-α from PMψ of the AA rats and the inhibitory effects were extremely rapid. LEF (10, 25 mg/kg) administrated for 21d could inhibit IL-6 release from PMψ in AA rats. CONCLUSION: The antiinflammatory mechanisms of LEF in AA rats might be related to inhibitory level of IL- 1, IL-6, and TNF-α from PMψ in vivo.

  2. Cordycepin Inhibits Lipopolysaccharide (LPS-Induced Tumor Necrosis Factor (TNFProduction via Activating AMP-Activated Protein Kinase (AMPK Signaling

    Directory of Open Access Journals (Sweden)

    Jian-Li Zhang

    2014-07-01

    Full Text Available Tumor necrosis factor (TNF-α is elevated during the acute phase of Kawasaki disease (KD, which damages vascular endothelial cells to cause systemic vasculitis. In the current study, we investigated the potential role of cordycepin on TNFα expression in both lipopolysaccharide (LPS-stimulated macrophages and ex vivo cultured peripheral blood mononuclear cells (PBMCs of KD patients. We found that cordycepin significantly suppressed LPS-induced TNFα expression and production in mouse macrophages (RAW 264.7 cells and bone marrow-derived macrophages (BMDMs. Meanwhile, cordycepin alleviated TNFα production in KD patients’ PBMCs. PBMCs from healthy controls had a much lower level of basal TNF-α content than that of KD patients. LPS-induced TNFproduction in healthy controls’ PBMCs was also inhibited by cordycepin. For the mechanism study, we discovered that cordycepin activated AMP-activated protein kinase (AMPK signaling in both KD patients’ PBMCs and LPS-stimulated macrophages, which mediated cordycepin-induced inhibition against TNFα production. AMPK inhibition by its inhibitor (compound C or by siRNA depletion alleviated cordycepin’s effect on TNFα production. Further, we found that cordycepin inhibited reactive oxygen species (ROS production and nuclear factor kappa B (NF-κB activation in LPS-stimulate RAW 264.7 cells or healthy controls’ PBMCs. PBMCs of KD patients showed higher basal level of ROS and NF-κB activation, which was also inhibited by cordycepin co-treatment. In conclusion, our data showed that cordycepin inhibited TNFα production, which was associated with AMPK activation as well as ROS and NF-κB inhibition. The results of this study should have significant translational relevance in managing this devastating disease.

  3. Cordycepin inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α production via activating amp-activated protein kinase (AMPK) signaling.

    Science.gov (United States)

    Zhang, Jian-Li; Xu, Ying; Shen, Jie

    2014-07-08

    Tumor necrosis factor (TNF)-α is elevated during the acute phase of Kawasaki disease (KD), which damages vascular endothelial cells to cause systemic vasculitis. In the current study, we investigated the potential role of cordycepin on TNFα expression in both lipopolysaccharide (LPS)-stimulated macrophages and ex vivo cultured peripheral blood mononuclear cells (PBMCs) of KD patients. We found that cordycepin significantly suppressed LPS-induced TNFα expression and production in mouse macrophages (RAW 264.7 cells and bone marrow-derived macrophages (BMDMs)). Meanwhile, cordycepin alleviated TNFα production in KD patients' PBMCs. PBMCs from healthy controls had a much lower level of basal TNF-α content than that of KD patients. LPS-induced TNFproduction in healthy controls' PBMCs was also inhibited by cordycepin. For the mechanism study, we discovered that cordycepin activated AMP-activated protein kinase (AMPK) signaling in both KD patients' PBMCs and LPS-stimulated macrophages, which mediated cordycepin-induced inhibition against TNFα production. AMPK inhibition by its inhibitor (compound C) or by siRNA depletion alleviated cordycepin's effect on TNFα production. Further, we found that cordycepin inhibited reactive oxygen species (ROS) production and nuclear factor kappa B (NF-κB) activation in LPS-stimulate RAW 264.7 cells or healthy controls' PBMCs. PBMCs of KD patients showed higher basal level of ROS and NF-κB activation, which was also inhibited by cordycepin co-treatment. In conclusion, our data showed that cordycepin inhibited TNFα production, which was associated with AMPK activation as well as ROS and NF-κB inhibition. The results of this study should have significant translational relevance in managing this devastating disease.

  4. TNF-α Up-regulates Matrix Metalloproteinase-9 Expression and Activity in Alveolar Macrophages from Patients with Chronic Obstructive Pulmonary Disease

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To study the effects of tumor necrosis factor (TNF)-α on matrix metalloproteinase (MMP)-9 expression and activity in alveolar macrophages (AM) and to investigate the role of NF-κB in the induction, AM were collected from bronchoalveolar lavage fluid (BALF) of healthy subjects and patients with chronic obstructive pulmonary disease (COPD). MMP-9 expression and activity were detected by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), Western blotting and zymography. NF-κB activity was detected by electrophoretic mobility shift assay (EMSA). MMP-9 expression and activity induced by TNF-α in AM from healthy subjects or patients with COPD were significantly increased in a dose-dependent manner (P<0.05). NF-κB activity induced by TNF-α was significantly increased in AM from patients with COPD, and pyrrolidine dithiocarbamate (PDTC) and N-acetyl-L-cysteine (NAC) significantly inhibited the activation of NF-κB induced by TNF-α (P<0.05). The presents study suggested that the expression and activity of MMP-9 from AM can be induced by TNF-α, and TNF-α/NF-κB signal pathway may play an important role in the induction.

  5. Soluble CD163, a specific macrophage activation marker, is decreased by anti-TNF-α antibody treatment in active inflammatory bowel disease.

    Science.gov (United States)

    Dige, A; Støy, S; Thomsen, K L; Hvas, C L; Agnholt, J; Dahlerup, J F; Møller, H J; Grønbaek, H

    2014-12-01

    Activated macrophages shed the haemoglobin-haptoglobin scavenger receptor CD163 into the circulation as soluble(s)-CD163. We measured sCD163 as an in vivo macrophage activation marker in patients with Crohn's disease (CD) or ulcerative colitis (UC) receiving antitumour necrosis factor (TNF)-α antibody or prednisolone treatment. We also investigated the CD163 expression on circulating monocytes. 58 patients with CD, 40 patients with UC and 90 healthy controls (HC) were included. All patients had active disease at inclusion and were followed for 6 weeks of anti-TNF-α antibody or prednisolone treatment. We measured plasma sCD163 levels at baseline, 1 day, 1 week and 6 weeks after initiating treatment. CD163 expression on circulating CD14(+) monocytes was measured in 21 patients with CD receiving anti-TNF-α antibody treatment. Baseline sCD163 levels were elevated in patients with CD [1.99 (1.80-2.18) mg/l] and in patients with UC [2.07 (1.82-2.32) mg/l] compared with HC [1.51 (1.38-1.63) mg/l] (P CD163 expression on CD14(+) monocytes was increased compared with HC. This study highlights that active CD and UC are associated with increased macrophage activation, as indicated by elevated sCD163 levels and monocytic CD163 expression. Anti-TNF-α antibody treatment induced a rapid decrease in sCD163 levels, suggesting a specific effect on macrophage activation in inflammatory bowel diseases. © 2014 John Wiley & Sons Ltd.

  6. Sympathetic Nerve Activity Maintains an Anti-Inflammatory State in Adipose Tissue in Male Mice by Inhibiting TNF-α Gene Expression in Macrophages.

    Science.gov (United States)

    Tang, Lijun; Okamoto, Shiki; Shiuchi, Tetsuya; Toda, Chitoku; Takagi, Kazuyo; Sato, Tatsuya; Saito, Kumiko; Yokota, Shigefumi; Minokoshi, Yasuhiko

    2015-10-01

    Adipose tissue macrophages (ATMs) play an important role in the inflammatory response in obese animals. How ATMs are regulated in lean animals has remained elusive, however. We now show that the sympathetic nervous system (SNS) is necessary to maintain the abundance of the mRNA for the proinflammatory cytokine TNF-α at a low level in ATMs of lean mice. Intracerebroventricular injection of agouti-related neuropeptide increased the amount of TNF-α mRNA in epididymal (epi) white adipose tissue (WAT), but not in interscapular brown adipose tissue (BAT), through inhibition of sympathetic nerve activity in epiWAT. The surgical denervation and β-adrenergic antagonist propranolol up-regulated TNF-α mRNA in both epiWAT and BAT in vivo. Signaling by the β2-adrenergic receptor (AR) and protein kinase A down-regulated TNF-α mRNA in epiWAT explants and suppressed lipopolysaccharide-induced up-regulation of TNF-α mRNA in the stromal vascular fraction of this tissue. β-AR-deficient (β-less) mice manifested an increased plasma TNF-α concentration and increased TNF-α mRNA abundance in epiWAT and BAT. TNF-α mRNA abundance was greater in ATMs (CD11b(+) cells of the stromal vascular fraction) from epiWAT or BAT of wild-type mice than in corresponding CD11b(-) cells, and β2-AR mRNA abundance was greater in ATMs than in CD11b(-) cells of epiWAT. Our results show that the SNS and β2-AR-protein kinase A pathway maintain an anti-inflammatory state in ATMs of lean mice in vivo, and that the brain melanocortin pathway plays a role in maintaining this state in WAT of lean mice via the SNS.

  7. Circulating dendritic cell number and intracellular TNFproduction in women with type 2 diabetes.

    Science.gov (United States)

    Blank, Sally E; Johnson, Emily Carolyn; Weeks, Debra K; Wysham, Carol H

    2012-12-01

    Human dendritic cell (DC) subsets perform specialized functions for surveillance against bacterial and viral infections essential for the management of type 2 diabetes (T2D). Production of tumor necrosis factor-alpha (TNF-α) by DCs acts in autocrine fashion to regulate DC maturation and promotes the inflammatory response. This study was designed to compare circulating DC number and intracellular TNFproduction between post-menopausal women with T2D and healthy women. Blood samples were obtained (n = 21/group) and examined for plasma glucose and TNF-α concentrations, and dendritic cell subset immunophenotype (plasmacytoid, pDC, CD85k(ILT-3)(+)CD123(+)CD16(-)CD14(-) and myeloid, mDC, CD85k(ILT-3)(+)CD33(+)CD123(dim to neg)CD16(-)CD14(dim to neg)). Intracellular production of TNF-α was determined in unstimulated and stimulated DCs. Women with T2D had significantly (P TNF-α concentrations when compared to healthy women. Women with T2D having poor glycemic control (T2D Poor Control, HbA1c ≥ 7%) had fewer circulating pDCs than women with T2D having good glycemic control (T2D Good Control, HbA1c TNF-α in stimulated pDCs. Intracellular production of TNF-α in pDCs was significantly greater in healthy vs. T2D Poor Control (P production of TNF-α did not differ between groups. These findings indicate that TNFproduction by pDCs was reduced in women with T2D and circulating number of pDCs was associated with glycemic control.

  8. The effects of propolis on cytokine production in lipopolysaccharide-stimulated macrophages

    Directory of Open Access Journals (Sweden)

    Hatice Özbilge

    2011-12-01

    Full Text Available Objectives: Propolis, a bee-product, has attracted researchers’ interest in recent years because of several biological and pharmacological properties. Lipopolysaccharide (LPS is a component of the outer membrane of Gram-negative bacteria and has an important role in the pathogenesis of septic shock and several inflammatory diseases by causing excessive release of inflammatory cytokines. The aim of this study was to investigate the effects of ethanol extract of propolis collected in Kayseri and its surroundings on production of pro-inflammatory cytokines in LPS-stimulated macrophages.Materials and methods: In vitro, U937 human macrophage cells were grown in RPMI-1640 medium supplemented with fetal bovine serum (10% and penicillin-streptomycin (2% and divided into: control, LPS treated, and propolis+LPS treated cell groups. After incubation in an atmosphere of 5% CO2 and at 37°C of cells, interleukin (IL-1β, IL-6 and tumor necrosis factor (TNF-α levels were measured in cell-free supernatants by ELISA.Results: IL-1β, IL-6 and TNF-α levels increased in LPS treated cell group according to control, statistically significant. Each cytokine levels significantly decreased in LPS and propolis treated cell group according to only LPS treated cell group (p<0.05.Conclusion: Propolis is a natural product to be examined for usage when needed the suppression of pro-inflammatory cytokines. J Clin Exp Invest 2011; 2 (4: 366-370

  9. (-)-Epigallocatechin gallate inhibits TNF-α-induced PAI-1 production in vascular endothelial cells.

    Science.gov (United States)

    Cao, Yanli; Wang, Difei; Wang, Xiaoli; Zhang, Jin; Shan, Zhongyan; Teng, Weiping

    2013-11-01

    : (-)-Epigallocatechin gallate (EGCG), the major catechin derived from green tea, reduces the incidence of cardiovascular diseases such as atherosclerosis. Plasminogen activator inhibitor-1 (PAI-1) accelerates thrombus formation upon ruptured atherosclerotic plaques. However, it is not known whether or not EGCG inhibits PAI-1 production induced by tumor necrosis factor-α (TNF-α) in endothelial cells. This study tested the hypothesis that EGCG might have an inhibitory effect on PAI-1 production induced by TNF-α. Human umbilical vein endothelial cells were cultured and incubated with TNF-α and/or EGCG. The expression of p-extracellular regulated protein kinases (p-ERK1/2) and tumor necrosis factor receptor (TNFR1) protein was quantified by Western blotting, and PAI-1 levels were measured by enzyme-linked immunosorbent assay. The results showed that TNF-α increased PAI-1 production in both a dose-dependent and time-dependent manner, and EGCG prevented TNF-α-mediated PAI-1 production and reduced phosphorylation of ERK1/2. The ERK1/2 inhibitor, PD98059 (20 μmol/L), downregulated TNF-α-induced PAI-1 expression 57.69 ± 2.46% (P TNF-α stimulation resulted in a significant decrease in TNFR1, an effect that was abolished by pretreatment with EGCG. These results suggest that EGCG could provide vascular benefits in inflammatory cardiovascular diseases such as decreased thrombus formation associated with ruptured atherosclerotic plaques.

  10. LPS-induced production of TNF-α and IL-6 in mast cells is dependent on p38 but independent of TTP.

    Science.gov (United States)

    Hochdörfer, Thomas; Tiedje, Christopher; Stumpo, Deborah J; Blackshear, Perry J; Gaestel, Matthias; Huber, Michael

    2013-06-01

    The production of the proinflammatory cytokines TNF-α and IL-6 is regulated by various mRNA-binding proteins, influencing stability and translation of the respective transcripts. Research in macrophages has shown the importance of the p38-MK2-tristetraprolin (TTP) axis for regulation of TNF-α mRNA stability and translation. In the current study we examined a possible involvement of p38 and TTP in LPS-induced cytokine production in bone marrow-derived mast cells (BMMCs). Using pharmacological inhibitors we initially found a strong dependence of LPS-induced TNF-α and IL-6 production on p38 activation, whereas activation of the Erk pathway appeared dispensable. LPS treatment also induced p38-dependent expression of the TTP gene. This prompted us to analyze the proinflammatory cytokine response in BMMCs generated from TTP-deficient mice. Unexpectedly, there were no significant differences in cytokine production between TTP-deficient and WT BMMCs in response to LPS. Gene expression and cytokine production of TNF-α and IL-6 as well as stability of the TNF-α transcript were comparable between TTP-deficient and WT BMMCs. In contrast to TTP mRNA expression, TTP protein expression could not be detected in BMMCs. While we successfully precipitated and detected TTP from lysates of LPS-stimulated RAW 264.7 macrophages, this was not accomplished from BMMC lysates. In contrast, we found mRNA and protein expressions of the other TIS11 family members connected to regulation of mRNA stability, BRF1 and BRF2, and detected their interaction with 14-3-3 proteins. These data suggest that control of cytokine mRNA stability and translation in MCs is exerted by proteins different from TTP.

  11. serrulatus Venom on Murine Macrophage Functions in Vitro

    Directory of Open Access Journals (Sweden)

    Vera L. Petricevich

    2005-01-01

    highest levels of IL-1α, IL-β, and TNF were observed after 12 hours and that (b the maximum levels of IFN-γ and NO were observed after 72 hours. Taken together, these data indicate that fractions have a differential immunomodulating effect on macrophage secretion, and that FII is a potent activator of TNF production of macrophages.

  12. Inhibitory Effect of Oxymatrine on Quartz-induced Secretion of TNF-α by the Pulmonary Alveolar Macrophages in the Fibroblast Proliferation

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To study the inhibitory effect of oxymatrine (OM) on quartz-induced secretion of TNF-α in the fibroblast proliferation, a given amount of quartz powder and OM of different concentrations were put into the media of pure culture containing macrophages. After 24 h of the culture, the TNF-α in the media was measured by double-antibody sandwich ELISA. The TNF-α (10 ng/mL) and OM of different concentrations were added into the media containing the fibroblasts of the 4th generations from neonate rats. The γ values of cAMP and cGMP in fibroblasts were determined by the radioimmunoassay and the concentrations of cAMP and cGMP were calculated according to standard curve.The intracellular Ca2+ was determined by flow cytometry and cell proliferation was detected by MTT.Our results showed that at the concentrations between 200 μg/mL-1600 μg/mL, OM inhibited the secretion of TNF-α by alveolar macrophages (AM) in a dose-dependent manner. Especially, there were significant differences, to various degrees, in the inhibitory effect of OM between the concentration range of 800 μg/mL-1600 μg/mL and the concentration of 10 ng/mL TNF-α. When compared with 10 ng/mL TNF-α, OM of different concentrations could dose-independently increased the level of intracellular cAMP and decreased the level of cGMP, thereby raising the ratio of cAMP/cGMP and lowering the concentrations of intracellular Ca2+. Moreover, OM of 800 μg/mL had the strongest inhibitory effect on cell proliferation and at this concentration, the cAMP/cGMP was highest and Ca2+was at the lowest level. We are led to conclude that OM can antagonize the damaging effect of quartz on the membrane of AM and the effect of TNF-α promoting the proliferation of fibroblasts. It achieves its inhibitory effect on the promoting effect of TNF-α on fibroblast proliferation by elevating the cAMP level and decreasing the release of Ca2+.

  13. An ethyl acetate fraction of Moringa oleifera Lam. Inhibits human macrophage cytokine production induced by cigarette smoke.

    Science.gov (United States)

    Kooltheat, Nateelak; Sranujit, Rungnapa Pankla; Chumark, Pilaipark; Potup, Pachuen; Laytragoon-Lewin, Nongnit; Usuwanthim, Kanchana

    2014-02-18

    Moringa oleifera Lam. (MO) has been reported to harbor anti-oxidation and anti-inflammatory activity and useful in the treatment of inflammatory diseases. However, despite these findings there has been little work done on the effects of MO on immune cellular function. Since macrophages, TNF and related cytokines play an important pathophysiologic role in lung damage induced by cigarette smoke, we examined the effects of MO on cigarette smoke extract (CSE)-induced cytokine production by human macrophages. An ethyl acetate fraction of MO (MOEF) was prepared from fresh leaves extract of Moringa and shown to consist of high levels of phenolic and antioxidant activities. Human monocyte derived macrophages (MDM) pre-treated with varying concentrations of MOEF showed decreased production of TNF, IL-6 and IL-8 in response to both LPS and CSE. The decrease was evident at both cytokine protein and mRNA levels. Furthermore, the extract inhibited the expression of RelA, a gene implicated in the NF-κB p65 signaling in inflammation. The findings highlight the ability of MOEF to inhibit cytokines (IL-8) which promote the infiltration of neutrophils into the lungs and others (TNF, IL-6) which mediate tissue disease and damage.

  14. An Ethyl Acetate Fraction of Moringa oleifera Lam. Inhibits Human Macrophage Cytokine Production Induced by Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Nateelak Kooltheat

    2014-02-01

    Full Text Available Moringa oleifera Lam. (MO has been reported to harbor anti-oxidation and anti-inflammatory activity and useful in the treatment of inflammatory diseases. However, despite these findings there has been little work done on the effects of MO on immune cellular function. Since macrophages, TNF and related cytokines play an important pathophysiologic role in lung damage induced by cigarette smoke, we examined the effects of MO on cigarette smoke extract (CSE—induced cytokine production by human macrophages. An ethyl acetate fraction of MO (MOEF was prepared from fresh leaves extract of Moringa and shown to consist of high levels of phenolic and antioxidant activities. Human monocyte derived macrophages (MDM pre-treated with varying concentrations of MOEF showed decreased production of TNF, IL-6 and IL-8 in response to both LPS and CSE. The decrease was evident at both cytokine protein and mRNA levels. Furthermore, the extract inhibited the expression of RelA, a gene implicated in the NF-κB p65 signaling in inflammation. The findings highlight the ability of MOEF to inhibit cytokines (IL-8 which promote the infiltration of neutrophils into the lungs and others (TNF, IL-6 which mediate tissue disease and damage.

  15. Macrophage-elicited osteoclastogenesis in response to bacterial stimulation requires Toll-like receptor 2-dependent tumor necrosis factor-alpha production.

    Science.gov (United States)

    Ukai, Takashi; Yumoto, Hiromichi; Gibson, Frank C; Genco, Caroline Attardo

    2008-02-01

    The receptor activator of NF-kappaB ligand (RANKL) and the proinflammatory cytokines are believed to play important roles in osteoclastogenesis. We recently reported that the innate immune recognition receptor, Toll-like receptor 2 (TLR2), is crucial for inflammatory bone loss in response to infection by Porphyromonas gingivalis, the primary organism associated with chronic inflammatory periodontal disease. However, the contribution of macrophage-expressed TLRs to osteoclastogenesis has not been defined. In this study, we defined a requirement for TLR2 in tumor necrosis factor-alpha (TNF-alpha)-elicited osteoclastogenesis in response to exposure to P. gingivalis. Culture supernatant (CS) fluids from P. gingivalis-stimulated macrophages induced bone marrow macrophage-derived osteoclastogenesis. This activity was dependent on TNF-alpha and occurred independently of RANKL, interleukin-1beta (IL-1beta), and IL-6. CS fluids from P. gingivalis-stimulated TLR2(-/-) macrophages failed to express TNF-alpha, and these fluids induced significantly less osteoclast formation compared with that of the wild-type or the TLR4(-/-) macrophages. In addition, P. gingivalis exposure induced up-regulation of TLR2 expression on the cell surface of macrophages, which was demonstrated to functionally react to reexposure to P. gingivalis, as measured by a further increase in TNF-alpha production. These results demonstrate that macrophage-dependent TLR2 signaling is crucial for TNF-alpha-dependent/RANKL-independent osteoclastogenesis in response to P. gingivalis infection. Furthermore, the ability of P. gingivalis to induce the cell surface expression of TLR2 may contribute to the chronic inflammatory state induced by this pathogen.

  16. Fibronectin inhibits cytokine production induced by CpG DNA in macrophages without direct binding to DNA.

    Science.gov (United States)

    Yoshida, Hiroyuki; Nishikawa, Makiya; Yasuda, Sachiyo; Toyota, Hiroyasu; Kiyota, Tsuyoshi; Takahashi, Yuki; Takakura, Yoshinobu

    2012-10-01

    Fibronectin (FN) is known to have four DNA-binding domains although their physiological significance is unknown. Primary murine peritoneal macrophages have been shown to exhibit markedly lower responsiveness to CpG motif-replete plasmid DNA (pDNA), Toll-like receptor-9 (TLR9) ligand, compared with murine macrophage-like cell lines. The present study was conducted to examine whether FN having DNA-binding domains is involved in this phenomenon. The expression of FN was significantly higher in primary macrophages than in a macrophage-like cell line, RAW264.7, suggesting that abundant FN might suppress the responsiveness in the primary macrophages. However, electrophoretic analysis revealed that FN did not bind to pDNA in the presence of a physiological concentration of divalent cations. Surprisingly, marked tumor necrosis factor - (TNF-)α production from murine macrophages upon CpG DNA stimulation was significantly reduced by exogenously added FN in a concentration-dependent manner but not by BSA, laminin or collagen. FN did not affect apparent pDNA uptake by the cells. Moreover, FN reduced TNFproduction induced by polyI:C (TLR3 ligand), and imiquimod (TLR7 ligand), but not by LPS (TLR4 ligand), or a non-CpG pDNA/cationic liposome complex. The confocal microscopic study showed that pDNA was co-localized with FN in the same intracellular compartment in RAW264.7, suggesting that FN inhibits cytokine signal transduction in the endosomal/lysosomal compartment. Taken together, the results of the present study has revealed, for the first time, a novel effect of FN whereby the glycoprotein modulates cytokine signal transduction via CpG-DNA/TLR9 interaction in macrophages without direct binding to DNA through its putative DNA-binding domains.

  17. The Role of the p38-MNK-eIF4E Signaling Axis in TNF Production Downstream of the NOD1 Receptor.

    Science.gov (United States)

    Pashenkov, Mikhail V; Balyasova, Lyudmila S; Dagil, Yulia A; Pinegin, Boris V

    2017-02-15

    Activation of nucleotide-binding oligomerization domain (NOD) 1 and NOD2 by muropeptides triggers a complex transcriptional program in innate immune cells. However, little is known about posttranscriptional regulation of NOD1- and NOD2-dependent responses. When stimulated with a prototypic NOD1 agonist, N-acetylglucosaminyl-N-acetylmuramyl-l-alanyl-d-isoglutamyl-meso-diaminopimelic acid (GM-triDAP), human monocyte-derived macrophages (MDM) produced an order of magnitude more TNF, IL-6, and pro-IL-1β than did monocyte-derived dendritic cells (MDDC), despite similar NOD1 expression, similar cytokine mRNA kinetics, and comparable responses to LPS. TNF production by GM-triDAP-activated MDM was independent of autocrine IL-1. However, GM-triDAP-activated MDM translated TNF mRNA more efficiently than did MDDC. As an underlying mechanism, NOD1 triggering in MDM caused a more potent and long-lasting activation of the signaling axis involving p38 MAPK, MAPK-interacting kinase (MNK), and eukaryotic translation initiation factor 4E, which is a critical regulator of translation. Furthermore, MNK controlled TNF mRNA abundance in MDDC and MDM upon NOD1 triggering. NOD1-dependent responses were more sensitive to MNK inhibition than were TLR4-dependent responses. These results demonstrate the importance of the p38-MNK-eukaryotic translation initiation factor 4E axis in TNF production downstream of NOD1.

  18. Gender affects macrophage cytokine and prostaglandin E2 production and PGE2 receptor expression after trauma.

    Science.gov (United States)

    Stapleton, Philip P; Strong, Vivian E Mack; Freeman, Tracy A; Winter, Jordan; Yan, Zhaoping; Daly, John M

    2004-11-01

    Gender influences morbidity and mortality after injury. Hormonal differences are important; however, the role of prostaglandins as mediators in immune dysfunction relating to gender differences after trauma is unclear. We hypothesized that gender-dependent differences in PGE(2) receptor expression and signaling may be involved in immune-related differences. This study determined prostaglandin receptor subtype (EP1-EP4) expression following injury and determined whether gender differences influence EP receptor expression. BALB/c male and female mice (estrus and pro-estrus) (n = 6 per group) were subjected to femur fracture and 40% hemorrhage (trauma) or sham injury (anesthesia). Seven days later, the splenic macrophages were harvested and stimulated with lipopolysaccharide (Escherichia coli serotype O55:B5). After 6 h mRNA samples were collected for EP receptor mRNA expression and at 24 h supernatants were collected for PGE(2), TNF-alpha, and IL-6 production. The expression of EP2-4 receptors was higher in female pro-estrus mice compared with male mice. EP1 receptor expression was higher in males than pro-estrus females. There was decreased expression of all four receptors after trauma in female estrus compared with control estrus mice. Macrophage PGE(2), TNF-alpha, and IL-6 production was significantly increased in injured female mice compared with female controls but there were no differences in injured male mice compared with male controls. PGE(2) and TNF-alpha production by traumatized male mice were significantly less than that produced by traumatized pro-estrus females. These data suggest gender-related differences in response to traumatic injury and that alterations in specific EP receptor subtypes may be involved in immune dysfunction after injury. Studies to evaluate targeted modulation of these receptor subtypes may provide further insights to gender-specific differences in the immune response after injury.

  19. Type I interferons and interferon regulatory factors regulate TNF-related apoptosis-inducing ligand (TRAIL in HIV-1-infected macrophages.

    Directory of Open Access Journals (Sweden)

    Yunlong Huang

    Full Text Available TNF-related apoptosis-inducing ligand (TRAIL is a member of the TNF family that participates in HIV-1 pathogenesis through the depletion of CD4+ T cells. TRAIL is expressed on the cell membrane of peripheral immune cells and can be cleaved into a soluble, secreted form. The regulation of TRAIL in macrophages during HIV-1 infection is not completely understood. In this study, we investigated the mechanism(s of TRAIL expression in HIV-1-infected macrophages, an important cell type in HIV-1 pathogenesis. A human monocyte-derived macrophage (MDM culture system was infected with macrophage-tropic HIV-1(ADA, HIV-1(JR-FL, or HIV-1(BAL strains. TRAIL, predominantly the membrane-bound form, increased following HIV-1 infection. We found that HIV-1 infection also induced interferon regulatory factor (IRF-1, IRF-7 gene expression and signal transducers and activators of transcription 1 (STAT1 activation. Small interfering RNA knockdown of IRF-1 or IRF-7, but not IRF-3, reduced STAT1 activation and TRAIL expression. Furthermore, the upregulation of IRF-1, IRF-7, TRAIL, and the activation of STAT1 by HIV-1 infection was reduced by the treatment of type I interferon (IFN-neutralizing antibodies. In addition, inhibition of STAT1 by fludarabine abolished IRF-1, IRF-7, and TRAIL upregulation. We conclude that IRF-1, IRF-7, type I IFNs, and STAT1 form a signaling feedback loop that is critical in regulating TRAIL expression in HIV-1-infected macrophages.

  20. Discovering a new analogue of thalidomide which may be used as a potent modulator of TNF-alpha production.

    Science.gov (United States)

    Fernández Braña, Miguel; Acero, Nuria; Añorbe, Loreto; Muñoz Mingarro, Dolores; Llinares, Francisco; Domínguez, Gema

    2009-09-01

    A new series of imide derivatives related to thalidomide were synthesized and evaluated as modulators of TNF-alpha production. These derivatives enhance TNF-alpha production using human leukemia HL-60 cells induced with 12-O-tetradecanoylphorbol 13-acetate (TPA), while inhibiting TNF-alpha production induced with okadaic acid (OA) in the same cell line. The diphenylmaleimide derivative 2f, was found to be the most active product, producing a strong modulation of the cytokine level.

  1. Influence of phthalates on cytokine production in monocytes and macrophages

    DEFF Research Database (Denmark)

    Frohnert, Juliana; Bendtzen, Klaus; Boas, Malene;

    2015-01-01

    BACKGROUND: Phthalates are a group of endocrine disrupting chemicals suspected to influence the immune system. The aim of this systematic review is to summarise the present knowledge on the influence of phthalates on monocyte and macrophage production and secretion of cytokines, an influence which......-α secretion/production from monocytes or macrophages. A summary of cytokine measurements was not possible since few studies were comparable in study design and due to insufficient reporting of raw data for most of the included studies. CONCLUSION: Results from this review have suggested that at least one...

  2. Perifosine inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α production via regulation multiple signaling pathways: new implication for Kawasaki disease (KD) treatment.

    Science.gov (United States)

    Shen, Jie; Liang, Li; Wang, Chunlin

    2013-07-26

    Kawasaki disease (KD) is a multisystem vasculitis of unknown etiology, with coronary artery aneurysms occurring in majority of untreated cases. Tumor necrosis factor (TNF)-α is the pleiotropic inflammatory cytokine elevated during the acute phase of KD, which induces damage to vascular endothelial cells to cause systemic vasculitis. We here investigated the potential role of perifosine, a novel Akt inhibitor, on TNFα expression in LPS-stimulated macrophages and in ex-vivo cultured peripheral blood mononuclear cells (PBMCs) of acute KD patients. Here, we found that perifosine inhibited LPS-induced TNFα expression and production in mouse macrophages (RAW 264.7 cells and bone marrow-derived macrophages (BMDMs)). Meanwhile, perifosine administration down-regulated TNFα production in PBMCs isolated from acute KD patients. For the mechanism study, we found that perifosine significantly inhibited Akt and ERK/mitogen-activated protein kinases (MAPK) signaling, while activating AMP-activated protein kinase (AMPK) signaling in both patients' PBMCs and LPS-stimulated macrophages. Interestingly, although perifosine is generally known as an Akt inhibitor, our data suggested that ERK inhibition and AMPK activation, but not Akt inactivation were possibly involved in perifosine-mediated inhibition against TNFα production in monocytes. In conclusion, our data suggested that perifosine significantly inhibited TNFα production via regulation multiple signaling pathways. The results of this study should have significant translational relevance in managing this devastating disease.

  3. Taurine chloramine inhibits NO and TNFproduction in zymosan plus interferon-γ activated RAW 264.7 cells.

    Science.gov (United States)

    Kim, Bo Sook; Cho, In Soo; Park, Seung Yong; Schuller-Levis, Georgia; Levis, William; Park, Eunkyue

    2011-06-01

    Taurine is present abundantly in various tissues, especially in leukocytes embattled to foreign invaders such as microorganisms or oxidants. Taurine-chloramine (Tau-Cl) is produced from taurine at the site of inflammation via the myeloperoxidase-halide pathway in leukocytes induced by oxidants and/or infectious materials. Previously, our data demonstrated that Tau-Cl inhibited nitric oxide (NO) production and TNF-α secretion induced by lipopolysaccharide (LPS), a Toll-like receptor 4 (TLR-4) ligand or lipoarabinomannan (LAM), a TLR-2 ligand plus interferon-γ (IFN-γ) in peritoneal macrophages or RAW 264.7 cells. Zymosan, a β-glucan of yeast cell wall, is a ligand for TLR-2 and dectin-1 and stimulates macrophages to produce proinflammatory mediators such as NO and TNF-α. Based on our previous data, we examined the effect of zymosan and IFN-γ induced production of NO and TNF-α in the absence or presence of Tau-Cl or taurine using RAW 264.7 cells. Production of NO and secretion of TNF-α is increased when zymosan is combined with IFN-γ. Tau-Cl inhibited production of NO and secretion of TNF-α in zymosan plus IFN-γ activated RAW 264.7 cells in a dose-dependent manner (99% vs. 48% using 0.8mM Tau-Cl). Taurine was without effect. Nitric oxide synthase protein (iNOS), induced by zymosan plus IFN-γ, was inhibited by Tau-Cl (0.8mM) as measured using western blot analysis. NOS mRNA was inhibited by Tau-Cl at four, eight and 16 hours post activation, but not at 24 hours. TNF-α mRNA was inhibited at four hours and eight hours, but not at 16 and 24 hours. These data suggest that expression of both iNOS and TNF-α mRNAs are inhibited by treatment with Tau-Cl within four and eight hours, but not at later time points. Transient suppression of activation of RAW 264.7 cells induced by zymosan may play a critical physiological role for taurine in protecting against tissue injury from initial overt inflammation. This study indicates that tropical treatment of taurine may

  4. Estrogen-induced nongenomic calcium signaling inhibits lipopolysaccharide-stimulated tumor necrosis factor α production in macrophages.

    Directory of Open Access Journals (Sweden)

    Limin Liu

    Full Text Available Estrogen is traditionally thought to exert genomic actions through members of the nuclear receptor family. Here, we investigated the rapid nongenomic effects of 17β-estradiol (E2 on tumor necrosis factor α (TNFproduction following lipopolysaccharide (LPS stimulation in mouse bone marrow-derived macrophages (BMMs. We found that LPS induced TNFproduction in BMMs via phosphorylation of p38 mitogen-activated protein kinase (MAPK. E2 itself did not affect the MAPK pathway, although it attenuated LPS-induced TNFproduction through suppression of p38 MAPK activation. Recently, G protein-coupled receptor 30 (GPR30 was suggested to be a membrane estrogen receptor (mER that can mediate nongenomic estradiol signaling. We found that BMMs expressed both intracellular estrogen receptors (iER and mER GPR30. The specific GPR30 antagonist G-15 significantly blocked effects of estradiol on LPS-induced TNFproduction, whereas an iER antagonist did not. Moreover, E2 induced a rapid rise in intracellular free Ca(2+ that was due to the influx of extracellular Ca(2+ and was not inhibited by an iER antagonist or silencing of iER. Ca(2+ influx was also induced by an impermeable E2 conjugated to BSA (E2-BSA, which has been used to investigate the nongenomic effects of estrogen. Consequently, Ca(2+, a pivotal factor in E2-stimulated nongenomic action, was identified as the key mediator. The inhibitory effects of E2 on LPS-induced TNFproduction and p38 MAPK phosphorylation were dependent on E2-triggered Ca(2+ influx because BAPTA, an intracellular Ca(2+ chelator, prevented these effects. Taken together, these data indicate that E2 can down-regulate LPS-induced TNFproduction via blockade of p38 MAPK phosphorylation through the mER-mediated nongenomic Ca(2+ signaling pathway in BMMs.

  5. Rothia dentocariosa induces TNF-alpha production in a TLR2-dependent manner.

    Science.gov (United States)

    Kataoka, Hideo; Taniguchi, Makoto; Fukamachi, Haruka; Arimoto, Takafumi; Morisaki, Hirobumi; Kuwata, Hirotaka

    2014-06-01

    Previous work suggested that Rothia dentocariosa is associated with periodontal inflammatory disease. However, little is known about the pathogenicity of this bacterium. To characterize host response to this bacterium, we measured (via ELISA) the amount of TNF-α in the culture supernatant following the stimulation of THP-1 cells (a human acute monocytic leukemia cell line) with R. dentocariosa cells (ATCC14189 and ATCC14190). Exposure to bacterial cells induced the production of TNF-α in a dose-dependent manner. The bacterial induction of TNF-α in THP-1 cells was mediated by the Toll-like receptor 2 (TLR2), as demonstrated by gene-specific knockdown via siRNA, which successfully suppressed TLR2 expression and significantly inhibited the production of TNF-α in the culture supernatant. To confirm the role of TLR2, we examined TLR2-dependent NF-κB activation by R. dentocariosa cells in a distinct cell line. Specifically, HEK293 cells were transiently cotransfected with the human TLR2 gene and an NF-κB-dependent luciferase-encoding reporter gene. The bacterial cells induced NF-κB activation in the transfected HEK293 cells in a dose-dependent manner. In contrast, bacterial cells failed to induce NF-κB activation in cells transfected with pEF6 control vector. Taken together, these results suggest that R. dentocariosa induces host TNFproduction by a TLR2-dependent mechanism.

  6. Production of inflammatory mediators by human macrophages obtained from ascites

    NARCIS (Netherlands)

    W.M. Pruimboom (Wanda); A.P.J. van Dijk (Arie); C.J.A.M. Tak (Corné); I.L. Bonta; J.H.P. Wilson (Paul); F.J. Zijlstra (Freek)

    1994-01-01

    textabstractAscites is a readily available source of human macrophages (Mø), which can be used to study Mø functions in vitro. We characterized the mediators of inflammation produced by human peritoneal Mø (hp-Mø) obtained from patients with portal hypertension and ascites. The production of the cy

  7. Macrophage recognition of toxic advanced glycosylation end products through the macrophage surface-receptor nucleolin.

    Science.gov (United States)

    Miki, Yuichi; Dambara, Hikaru; Tachibana, Yoshihiro; Hirano, Kazuya; Konishi, Mio; Beppu, Masatoshi

    2014-01-01

    Advanced glycosylation end-products (AGEs) are non-enzymatically glycosylated proteins that play an important role in several diseases and aging processes, including angiopathy, renal failure, diabetic complications, and some neurodegenerative diseases. In particular, glyceraldehyde (GCA)- and glycolaldehyde (GOA)-derived AGEs are deemed toxic AGEs, due to their cytotoxicity. Recently, the shuttling-protein nucleolin has been shown to possess scavenger receptor-activity. Here, we investigated whether or not macrophages recognize toxic AGEs through nucleolin receptors expressed on their surface. Free amino acid groups and arginine residues found in bovine serum albumin (BSA) were time-dependently modified by incubation with GCA and GOA. In addition, average molecular size was increased by incubation with GCA and GOA. While GCA-treated BSA (GCA-BSA) and GOA-treated BSA (GOA-BSA) were recognized by thioglycollate-elicited mouse peritoneal macrophages in proportion to their respective aldehyde-modification ratios, aldehyde-untreated control-BSA was not. Surface plasmon-resonance analysis revealed that nucleolin strongly associated with GCA-BSA and GOA-BSA, but not with control-BSA. Further, pretreating macrophages with anti-nucleolin antibody, but not control-Immunoglobulin G, inhibited recognition of GCA-BSA and GOA-BSA by macrophages. Additionally, AGRO, a nucleolin-specific oligonucleotide aptamer, inhibited recognition of GCA-BSA and GOA-BSA. Moreover, nucleolin-transfected HEK293 cells recognized more GCA-BSA and GOA-BSA than control HEK cells did. Binding of nucleolin and GCA-BSA/GOA-BSA was also blocked by anti-nucleolin antibody at molecular level. These results indicate that nucleolin is a receptor that allows macrophages to recognize toxic AGEs.

  8. Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology

    Science.gov (United States)

    Montes de Oca, Marcela; Kumar, Rajiv; de Labastida Rivera, Fabian; Amante, Fiona H; Sheel, Meru; Faleiro, Rebecca J.; Bunn, Patrick T.; Best, Shannon E.; Beattie, Lynette; Ng, Susanna S.; Edwards, Chelsea L.; Muller, Werner; Cretney, Erika; Nutt, Stephen L.; Smyth, Mark J.; Haque, Ashraful; Hill, Geoffrey R.; Sundar, Shyam; Kallies, Axel; Engwerda, Christian R.

    2016-01-01

    Tumor necrosis factor (TNF) is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1) cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL) patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation. PMID:26765224

  9. Blimp-1-Dependent IL-10 Production by Tr1 Cells Regulates TNF-Mediated Tissue Pathology.

    Science.gov (United States)

    Montes de Oca, Marcela; Kumar, Rajiv; de Labastida Rivera, Fabian; Amante, Fiona H; Sheel, Meru; Faleiro, Rebecca J; Bunn, Patrick T; Best, Shannon E; Beattie, Lynette; Ng, Susanna S; Edwards, Chelsea L; Muller, Werner; Cretney, Erika; Nutt, Stephen L; Smyth, Mark J; Haque, Ashraful; Hill, Geoffrey R; Sundar, Shyam; Kallies, Axel; Engwerda, Christian R

    2016-01-01

    Tumor necrosis factor (TNF) is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1) cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL) patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation.

  10. TLR and TNF-R1 activation of the MKK3/MKK6-p38α axis in macrophages is mediated by TPL-2 kinase.

    Science.gov (United States)

    Pattison, Michael J; Mitchell, Olivia; Flynn, Helen R; Chen, Chao-Sheng; Yang, Huei-Ting; Ben-Addi, Hakem; Boeing, Stefan; Snijders, Ambrosius P; Ley, Steven C

    2016-09-15

    Previous studies suggested that Toll-like receptor (TLR) stimulation of the p38α MAP kinase (MAPK) is mediated by transforming growth factor-β-activated kinase 1 (TAK1) activation of MAPK kinases, MKK3, MKK4 and MKK6. We used quantitative mass spectrometry to monitor tumour progression locus 2 (TPL-2)-dependent protein phosphorylation following TLR4 stimulation with lipopolysaccharide, comparing macrophages from wild-type mice and Map3k8(D270A/D270A) mice expressing catalytically inactive TPL-2 (MAP3K8). In addition to the established TPL-2 substrates MKK1/2, TPL-2 kinase activity was required to phosphorylate the activation loops of MKK3/6, but not of MKK4. MKK3/6 activation required IκB kinase (IKK) phosphorylation of the TPL-2 binding partner nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB1) p105, similar to MKK1/2 activation. Tumour necrosis factor (TNF) stimulation of MKK3/6 phosphorylation was similarly dependent on TPL-2 catalytic activity and IKK phosphorylation of NF-κB1 p105. Owing to redundancy of MKK3/6 with MKK4, Map3k8(D270A) mutation only fractionally decreased lipopolysaccharide activation of p38α. TNF activation of p38α, which is mediated predominantly via MKK3/6, was substantially reduced. TPL-2 catalytic activity was also required for MKK3/6 and p38α activation following macrophage stimulation with Mycobacterium tuberculosis and Listeria monocytogenes Our experiments demonstrate that the IKK/NF-κB1 p105/TPL-2 signalling pathway, downstream of TAK1, regulates MKK3/6 and p38α activation in macrophages in inflammation.

  11. Inhibitory effects of devil's claw (secondary root of Harpagophytum procumbens) extract and harpagoside on cytokine production in mouse macrophages.

    Science.gov (United States)

    Inaba, Kazunori; Murata, Kazuya; Naruto, Shunsuke; Matsuda, Hideaki

    2010-04-01

    Successive oral administration (50 mg/kg) of a 50% ethanolic extract (HP-ext) of devil's claw, the secondary root of Harpagophytum procumbens, showed a significant anti-inflammatory effect in the rat adjuvant-induced chronic arthritis model. HP-ext dose-dependently suppressed the lipopolysaccharide (LPS)-induced production of inflammatory cytokines [interleukin-1beta (IL-1beta), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha)] in mouse macrophage cells (RAW 264.7). Harpagoside, a major iridoid glycoside present in devil's claw, was found to be one of the active agents in HP-ext and inhibited the production of IL-1beta, IL-6, and TNF-alpha by RAW 264.7.

  12. Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Claudia A. [Universite catholique de Louvain, Louvain Drug Research Institute (LDRI), Pharmaceutics and Drug Delivery Research Group, Brussels B-1200 (Belgium); Fievez, Laurence [University of Liege, GIGA-Research, Laboratory of Cellular and Molecular Immunology, Liege B-4000 (Belgium); Neyrinck, Audrey M.; Delzenne, Nathalie M. [Universite catholique de Louvain, LDRI, Metabolism and Nutrition Research Group, Brussels B-1200 (Belgium); Bureau, Fabrice [University of Liege, GIGA-Research, Laboratory of Cellular and Molecular Immunology, Liege B-4000 (Belgium); Vanbever, Rita, E-mail: rita.vanbever@uclouvain.be [Universite catholique de Louvain, Louvain Drug Research Institute (LDRI), Pharmaceutics and Drug Delivery Research Group, Brussels B-1200 (Belgium)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer Lipopolysaccharide-stimulated macrophages were treated with cambinol and sirtinol. Black-Right-Pointing-Pointer Cambinol and sirtinol decreased lipopolysaccharide-induced cytokines. Black-Right-Pointing-Pointer Cambinol decreased NF-{kappa}B activity but had no impact on p38 MAPK activation. Black-Right-Pointing-Pointer Sirtuins are an interesting target for the treatment of inflammatory diseases. -- Abstract: In several inflammatory conditions such as rheumatoid arthritis or sepsis, the regulatory mechanisms of inflammation are inefficient and the excessive inflammatory response leads to damage to the host. Sirtuins are class III histone deacetylases that modulate the activity of several transcription factors that are implicated in immune responses. In this study, we evaluated the impact of sirtuin inhibition on the activation of lipopolysaccharide (LPS)-stimulated J774 macrophages by assessing the production of inflammatory cytokines. The pharmacologic inhibition of sirtuins decreased the production of tumour necrosis factor-alpha (TNF-{alpha}) interleukin 6 (IL-6) and Rantes. The reduction of cytokine production was associated with decreased nuclear factor kappa B (NF-{kappa}B) activity and inhibitor kappa B alpha (I{kappa}B{alpha}) phosphorylation while no impact was observed on the phosphorylation status of p38 mitogen-activated kinase (p38 MAPK). This work shows that sirtuin pharmacologic inhibitors are a promising tool for the treatment of inflammatory conditions.

  13. Beryllium-stimulated apoptosis in macrophage cell lines.

    Science.gov (United States)

    Sawyer, R T; Fadok, V A; Kittle, L A; Maier, L A; Newman, L S

    2000-08-21

    In vitro stimulation of bronchoalveolar lavage cells from patients with chronic beryllium disease (CBD) induces the production of TNF-alpha. We tested the hypothesis that beryllium (Be)-stimulated TNF-alpha might induce apoptosis in mouse and human macrophage cell lines. These cell lines were selected because they produce a range of Be-stimulated TNF-alpha. The mouse macrophage cell line H36.12j produces high levels of Be-stimulated TNF-alpha. The mouse macrophage cell line P388D.1 produces low, constitutive, levels of TNF-alpha and does not up-regulate Be-stimulated TNF-alpha production. The DEOHS-1 human CBD macrophage cell line does not produce constitutive or Be-stimulated TNF-alpha. Apoptosis was determined by microscopic observation of propidium iodide stained fragmented nuclei in unstimulated and BeSO(4)-stimulated macrophage cell lines. BeSO(4) induced apoptosis in all macrophage cell lines tested. Beryllium-stimulated apoptosis was dose-responsive and maximal after 24 h of exposure to 100 microM BeSO(4). In contrast, unstimulated and Al(2)(SO(4))(3)-stimulated macrophage cell lines did not undergo apoptosis. The general caspase inhibitor BD-fmk inhibited Be-stimulated macrophage cell line apoptosis at concentrations above 50 microM. Our data show that Be-stimulated macrophage cell line apoptosis was caspase-dependent and not solely dependent on Be-stimulated TNF-alpha levels. We speculate that the release of Be-antigen from apoptotic macrophages may serve to re-introduce Be material back into the lung microenvironment, make it available for uptake by new macrophages, and thereby amplify Be-stimulated cytokine production, promoting ongoing inflammation and granuloma maintenance in CBD.

  14. 甲型副伤寒沙门氏菌cdtB亚基的原核表达及对巨噬细胞IL-6、IL-8、TNF-α分泌的影响%Cloning and expression of recombinant Salmonella paratyphi A cytolethal distending toxin proteins and its effect on cytokine production by human monocyte-derived macrophages

    Institute of Scientific and Technical Information of China (English)

    陈鸿鹄; 吴圆圆; 占利; 梅玲玲

    2016-01-01

    目的 研究甲型副伤寒沙门氏菌感染过程中,cdtB对宿主巨噬细胞分泌促炎细胞因子的影响.NF-κB信号通路阻断剂对cdtB诱导的巨噬细胞分泌细胞因子的影响.方法 对甲型副伤寒沙门氏菌cdtB亚基进行原核表达,制备并模型纯化重组蛋白,建立其刺激人THP-1巨噬细胞模型,ELISA检测THP-1分泌IL-6,IL-8和TNF-α等细胞因子.在共培养体系中加入NF-κB信号通路阻断剂,ELISA检测THP-1分泌IL-6,IL-8和TNF-α等细胞因子.结果 成功构建甲型副伤寒沙门氏菌cdtB原核表达系统,表达并纯化重组cdtB蛋白,与空白对照相比,受到cdtB刺激的THP-1细胞上清中的IL-6,IL-8和TNF-α浓度显著上升,而在THP-1细胞培养基中加入NF-κB信号通路阻断剂SN50可以显著抑制重组cdtB诱导的IL-6、IL-8、TNF-α分泌.结论 甲型副伤寒沙门氏菌cdtB能够通过NF-κB信号通路诱导巨噬细胞分泌IL-6、IL-8和TNF-α,在甲型副伤寒相关的炎症反应中发挥促进作用.

  15. Increased Proinflammatory Cytokine Production and Decreased Cholesterol Efflux Due to Downregulation of ABCG1 in Macrophages Exposed to Indoxyl Sulfate

    Directory of Open Access Journals (Sweden)

    Koji Matsuo

    2015-08-01

    Full Text Available One of the possible causes of enhanced atherosclerosis in patients with chronic kidney disease (CKD is the accumulation of uremic toxins. Since macrophage foam cell formation is a hallmark of atherosclerosis, we examined the direct effect of indoxyl sulfate (IS, a representative uremic toxin, on macrophage function. Macrophages differentiated from THP-1 cells were exposed to IS in vitro. IS decreased the cell viability of THP-1 derived macrophages but promoted the production of inflammatory cytokines (IL-1β, IS 1.0 mM: 101.8 ± 21.8 pg/mL vs. 0 mM: 7.0 ± 0.3 pg/mL, TNF-α, IS 1.0 mM: 96.6 ± 11.0 pg/mL vs. 0 mM: 15.1 ± 3.1 pg/mL and reactive oxygen species. IS reduced macrophage cholesterol efflux (IS 0.5 mM: 30.3% ± 7.3% vs. 0 mM: 43.5% ± 1.6% and decreased ATP-binding cassette transporter G1 expression. However, lipid uptake into cells was not enhanced. A liver X receptor (LXR agonist, T0901317, improved IS-induced production of inflammatory cytokines as well as reduced cholesterol efflux. In conclusion, IS induced inflammatory reactions and reduced cholesterol efflux in macrophages. Both effects of IS were improved with activation of LXR. Direct interactions of uremic toxins with macrophages may be a major cause of atherosclerosis acceleration in patients with CKD.

  16. GM-CSF and IL-3 Modulate Human Monocyte TNFProduction and Renewal in In Vitro Models of Trained Immunity.

    Science.gov (United States)

    Borriello, Francesco; Iannone, Raffaella; Di Somma, Sarah; Loffredo, Stefania; Scamardella, Eloise; Galdiero, Maria Rosaria; Varricchi, Gilda; Granata, Francescopaolo; Portella, Giuseppe; Marone, Gianni

    2016-01-01

    GM-CSF and IL-3 are hematopoietic cytokines that also modulate the effector functions of several immune cell subsets. In particular, GM-CSF and IL-3 exert a significant control on monocyte and macrophage effector functions, as assessed in experimental models of inflammatory and autoimmune diseases and also in human studies. Here, we sought to investigate the mechanisms and the extent to which GM-CSF and IL-3 modulate the pro-inflammatory, LPS-mediated, activation of human CD14(+) monocytes taking into account the new concept of trained immunity (i.e., the priming stimulus modulates the response to subsequent stimuli mainly by inducing chromatin remodeling and increased transcription at relevant genetic loci). We demonstrate that GM-CSF and IL-3 priming enhances TNFproduction upon subsequent LPS stimulation (short-term model of trained immunity) in a p38- and SIRT2-dependent manner without increasing TNF primary transcript levels (a more direct measure of transcription), thus supporting a posttranscriptional regulation of TNF-α in primed monocytes. GM-CSF and IL-3 priming followed by 6 days of resting also results in increased TNFproduction upon LPS stimulation (long-term model of trained immunity). In this case, however, GM-CSF and IL-3 priming induces a c-Myc-dependent monocyte renewal and increase in cell number that is in turn responsible for heightened TNFproduction. Overall, our results provide insights to understand the biology of monocytes in health and disease conditions in which the hematopoietic cytokines GM-CSF and IL-3 play a role and also extend our knowledge of the cellular and molecular mechanisms of trained immunity.

  17. GM-CSF and IL-3 Modulate Human Monocyte TNFProduction and Renewal in In Vitro Models of Trained Immunity

    Science.gov (United States)

    Borriello, Francesco; Iannone, Raffaella; Di Somma, Sarah; Loffredo, Stefania; Scamardella, Eloise; Galdiero, Maria Rosaria; Varricchi, Gilda; Granata, Francescopaolo; Portella, Giuseppe; Marone, Gianni

    2017-01-01

    GM-CSF and IL-3 are hematopoietic cytokines that also modulate the effector functions of several immune cell subsets. In particular, GM-CSF and IL-3 exert a significant control on monocyte and macrophage effector functions, as assessed in experimental models of inflammatory and autoimmune diseases and also in human studies. Here, we sought to investigate the mechanisms and the extent to which GM-CSF and IL-3 modulate the pro-inflammatory, LPS-mediated, activation of human CD14+ monocytes taking into account the new concept of trained immunity (i.e., the priming stimulus modulates the response to subsequent stimuli mainly by inducing chromatin remodeling and increased transcription at relevant genetic loci). We demonstrate that GM-CSF and IL-3 priming enhances TNFproduction upon subsequent LPS stimulation (short-term model of trained immunity) in a p38- and SIRT2-dependent manner without increasing TNF primary transcript levels (a more direct measure of transcription), thus supporting a posttranscriptional regulation of TNF-α in primed monocytes. GM-CSF and IL-3 priming followed by 6 days of resting also results in increased TNFproduction upon LPS stimulation (long-term model of trained immunity). In this case, however, GM-CSF and IL-3 priming induces a c-Myc-dependent monocyte renewal and increase in cell number that is in turn responsible for heightened TNFproduction. Overall, our results provide insights to understand the biology of monocytes in health and disease conditions in which the hematopoietic cytokines GM-CSF and IL-3 play a role and also extend our knowledge of the cellular and molecular mechanisms of trained immunity. PMID:28138327

  18. Effect of HSV-2 Infected Monocytes on the Production of TNF- α and IL-6

    Institute of Scientific and Technical Information of China (English)

    敖俊红; 周礼义; 陈兴平; 杨蓉娅; 王文玲

    2003-01-01

    Objectiwe: In order to detect the role of monocytes in HSV-2 infection, we studied the effect of herpes sim-plex Virus-2 infection on the production of tumor ne-crosis factor (TNF- α ), interleukin-6 (IL-6) secreted by monocytes. Methods: Monocytes were infected by HSV-2 (333 Strain). Culture supernatants were collected at 1, 3,5, 7 days post-infection. The levels of TNF- α, IL-6 were measured by enzyme-linked immunosorbent as-say (ELISA). Results: The levels of TNF- α secretion by mono-cytes significantly decreased on first day post-infection. The levels of IL-6 significantly decreased on first and third days post-infection, and then gradu-ally increased to the control on seventh day post-infection.Conclusions: TNF- α and IL-6 production by mono-cytes was inhibited during HSV-2 infection. The pro-duction of cytokines may play an important role in herpes simplex viurs-2 pathogenicity and immunity.

  19. Peroxiredoxin-1, a possible target in modulating inflammatory cytokine production in macrophage like cell line RAW264.7.

    Science.gov (United States)

    Tae Lim, Young; Sup Song, Dong; Joon Won, Tae; Lee, Yun-Jung; Yoo, Jong-Sun; Eun Hyung, Kyeong; Won Yoon, Joo; Park, So-Young; Woo Hwang, Kwang

    2012-06-01

    Peroxiredoxin (PRX), a scavenger of H(2) O(2) and alkyl hydroperoxides in living organisms, protects cells from oxidative stress. Contrary to its known anti-oxidant roles, the involvement of PRX-1 in the regulation of lipopolysaccharide (LPS) signaling is poorly understood, possible immunological functions of PRX-1 having been uncovered only recently. In the present study, it was discovered that the PRX-1 deficient macrophage like cell line (RAW264.7) has anti-inflammatory activity when stimulated by LPS. Treatment with LPS for 3 hrs resulted in increased gene expression of an anti-inflammatory cytokine, interleukin-10 (IL-10), in PRX-1 knock down RAW264.7 cells. Gene expression of pro-inflammatory cytokines IL-1β and tumor necrosis factor- α (TNF-α) did not show notable changes under the same conditions. However, production of these cytokines significantly decreased in PRX-1 knock down RAW264.7 cells with 12 hrs of stimulation. Production of IL-10 was also increased in PRX-1 knock down RAW264.7 cells with 12 hrs of stimulation. We predicted that higher concentrations of IL-10 would result in decreased expression of IL-1β and TNF-α in PRX-1 knock-down cells. This was confirmed by blocking IL-10, which reestablished IL-1β and TNF-α secretion. We also observed that increased concentrations of IL-10 do not affect the NF-κB pathway. Interestingly, STAT3 phosphorylation by LPS stimulation was significantly increased in PRX-1 knockdown RAW264.7 cells. Up-regulation of IL-10 in PRX-1 knockdown cells and the resulting downregulation of proinflammatory cytokine production seem to involve the STAT3 pathway in macrophages. Thus, down-regulation of PRX-1 may contribute to the suppression of adverse effects caused by excessive activation of macrophages through affecting the STAT3 signaling pathway.

  20. Involvement of the TNF and FasL produced by CD11b Kupffer cells/macrophages in CCl4-induced acute hepatic injury.

    Directory of Open Access Journals (Sweden)

    Atsushi Sato

    Full Text Available We previously reported that F4/80(+ Kupffer cells are subclassified into CD68(+ Kupffer cells with phagocytic and ROS producing capacity, and CD11b(+ Kupffer cells with cytokine-producing capacity. Carbon tetrachloride (CCl4-induced hepatic injury is a well-known chemical-induced hepatocyte injury. In the present study, we investigated the immunological role of Kupffer cells/macrophages in CCl4-induced hepatitis in mice. The immunohistochemical analysis of the liver and the flow cytometry of the liver mononuclear cells showed that clodronate liposome (c-lipo treatment greatly decreased the spindle-shaped F4/80(+ or CD68(+ cells, while the oval-shaped F4/80+ CD11b(+ cells increased. Notably, severe hepatic injury induced by CCl4 was further aggravated by c-lipo-pretreatment. The population of CD11b(+ Kupffer cells/macrophages dramatically increased 24 hour (h after CCl4 administration, especially in c-lipo-pretreated mice. The CD11b(+ Kupffer cells expressed intracellular TNF and surface Fas-ligand (FasL. Furthermore, anti-TNF Ab pretreatment (which decreased the FasL expression of CD11b(+ Kupffer cells, anti-FasL Ab pretreatment or gld/gld mice attenuated the liver injury induced by CCl4. CD1d-/- mouse and cell depletion experiments showed that NKT cells and NK cells were not involved in the hepatic injury. The adoptive transfer and cytotoxic assay against primary cultured hepatocytes confirmed the role of CD11b(+ Kupffer cells in CCl4-induced hepatitis. Interestingly, the serum MCP-1 level rapidly increased and peaked at six h after c-lipo pretreatment, suggesting that the MCP-1 produced by c-lipo-phagocytized CD68(+ Kupffer cells may recruit CD11b(+ macrophages from the periphery and bone marrow. The CD11b(+ Kupffer cells producing TNF and FasL thus play a pivotal role in CCl4-induced acute hepatic injury.

  1. Human immunodeficiency virus infection alters tumor necrosis factor alpha production via Toll-like receptor-dependent pathways in alveolar macrophages and U1 cells.

    Science.gov (United States)

    Nicol, Marlynne Q; Mathys, Jean-Marie; Pereira, Albertina; Ollington, Kevin; Ieong, Michael H; Skolnik, Paul R

    2008-08-01

    Human immunodeficiency virus (HIV)-positive persons are predisposed to pulmonary infections, even after receiving effective highly active antiretroviral therapy. The reasons for this are unclear but may involve changes in innate immune function. HIV type 1 infection of macrophages impairs effector functions, including cytokine production. We observed decreased constitutive tumor necrosis factor alpha (TNF-alpha) concentrations and increased soluble tumor necrosis factor receptor type II (sTNFRII) in bronchoalveolar lavage fluid samples from HIV-positive subjects compared to healthy controls. Moreover, net proinflammatory TNF-alpha activity, as measured by the TNF-alpha/sTNFRII ratio, decreased as HIV-related disease progressed, as manifested by decreasing CD4 cell count and increasing HIV RNA (viral load). Since TNF-alpha is an important component of the innate immune system and is produced upon activation of Toll-like receptor (TLR) pathways, we hypothesized that the mechanism associated with deficient TNF-alpha production in the lung involved altered TLR expression or a deficit in the TLR signaling cascade. We found decreased Toll-like receptor 1 (TLR1) and TLR4 surface expression in HIV-infected U1 monocytic cells compared to the uninfected parental U937 cell line and decreased TLR message in alveolar macrophages (AMs) from HIV-positive subjects. In addition, stimulation with TLR1/2 ligand (Pam(3)Cys) or TLR4 ligand (lipopolysaccharide) resulted in decreased intracellular phosphorylated extracellular signal-regulated kinase and subsequent decreased transcription and expression of TNF-alpha in U1 cells compared to U937 cells. AMs from HIV-positive subjects also showed decreased TNF-alpha production in response to these TLR2 and TLR4 ligands. We postulate that HIV infection alters expression of TLRs with subsequent changes in mitogen-activated protein kinase signaling and cytokine production that ultimately leads to deficiencies of innate immune responses that

  2. Water extract isolated from Chelidonium majus enhances nitric oxide and tumour necrosis factor-alpha production via nuclear factor-kappaB activation in mouse peritoneal macrophages.

    Science.gov (United States)

    Chung, Hwan-Suck; An, Hyo-Jin; Jeong, Hyun-Ja; Won, Jin-Hee; Hong, Seung-Heon; Kim, Hyung-Min

    2004-01-01

    Chelidonium majus is used to treat several inflammatory diseases and tumours. We have examined the effect of C. majus on nitric oxide (NO) production using mouse peritoneal macrophages. When C. majus was used in combination with recombinant interferon-gamma (rIFN-gamma, 10 U mL(-1)), there was a marked cooperative induction of NO production. Treatment of rIFN-gamma plus C. majus (1 mgmL(-1)) in macrophages caused a significant increase in tumour necrosis factor-alpha (TNF-alpha) production. The increased production of NO and TNF-alpha from rIFN-gamma plus C. majus-stimulated cells was almost completely inhibited by nuclear factor-kappaB (NF-kappaB) inhibitor, pyrrolidine dithiocarbamate (100 microM). These findings demonstrated that C. majus increased the production of NO and TNF-alpha by rIFN-gamma-primed macrophages and suggested that NF-kappaB played a critical role in mediating the effects of C. majus.

  3. Granulocyte-macrophage colony-stimulating factor primes interleukin-13 production by macrophages via protease-activated receptor-2.

    Science.gov (United States)

    Aoki, Manabu; Yamaguchi, Rui; Yamamoto, Takatoshi; Ishimaru, Yasuji; Ono, Tomomichi; Sakamoto, Arisa; Narahara, Shinji; Sugiuchi, Hiroyuki; Hirose, Eiji; Yamaguchi, Yasuo

    2015-04-01

    Chronic inflammation is often linked to the presence of type 2-polarized macrophages, which are induced by the T helper type 2 cytokines interleukin-4 and interleukin-13 (IL-13). IL-13 is a key mediator of tissue fibrosis caused by T helper type 2-based inflammation. Human neutrophil elastase (HNE) plays a pivotal role in the pathogenesis of pulmonary fibrosis. This study investigated the priming effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on IL-13 expression by macrophages stimulated with HNE. Adherent macrophages were obtained from primary cultures of human mononuclear cells. Expression of IL-13 mRNA and protein by GM-CSF-dependent macrophages was investigated after stimulation with HNE, using the polymerase chain reaction and enzyme-linked immunosorbent assay. GM-CSF had a priming effect on IL-13 mRNA and protein expression by macrophages stimulated with HNE, while this effect was not observed for various other cytokines. GM-CSF-dependent macrophages showed a significant increase in the expression of protease activated receptor-2 (PAR-2) mRNA and protein. The response of IL-13 mRNA to HNE was significantly decreased by pretreatment with alpha1-antitrypsin, a PAR-2 antibody (SAM11), or a PAR-2 antagonist (ENMD-1068). These findings suggest that stimulation with HNE can induce IL-13 production by macrophages, especially GM-CSF-dependent macrophages. Accordingly, neutrophil elastase may have a key role in fibrosis associated with chronic inflammation.

  4. Microglial production of TNF-alpha is a key element of sustained fear memory.

    Science.gov (United States)

    Yu, Zhiqian; Fukushima, Hotaka; Ono, Chiaki; Sakai, Mai; Kasahara, Yoshiyuki; Kikuchi, Yoshie; Gunawansa, Nicole; Takahashi, Yuta; Matsuoka, Hiroo; Kida, Satoshi; Tomita, Hiroaki

    2017-01-01

    The proinflammatory cytokine productions in the brain are altered in a process of fear memory formation, indicating a possibility that altered microglial function may contribute to fear memory formation. We aimed to investigate whether and how microglial function contributes to fear memory formation. Expression levels of M1- and M2-type microglial marker molecules in microglia isolated from each conditioned mice group were assessed by real-time PCR and immunohistochemistry. Levels of tumor necrosis factor (TNF)-α, but not of other proinflammatory cytokines produced by M1-type microglia, increased in microglia from mice representing retention of fear memory, and returned to basal levels in microglia from mice representing extinction of fear memory. Administration of inhibitors of TNFproduction facilitated extinction of fear memory. On the other hand, expression levels of M2-type microglia-specific cell adhesion molecules, CD206 and CD209, were decreased in microglia from mice representing retention of fear memory, and returned to basal levels in microglia from mice representing extinction of fear memory. Our findings indicate that microglial TNF-α is a key element of sustained fear memory and suggest that TNF-α inhibitors can be candidate molecules for mitigating posttraumatic reactions caused by persistent fear memory.

  5. Do mechanical strain and TNF-α interact to amplify pro-inflammatory cytokine production in human annulus fibrosus cells?

    Science.gov (United States)

    Likhitpanichkul, Morakot; Torre, Olivia M; Gruen, Jadry; Walter, Benjamin A; Hecht, Andrew C; Iatridis, James C

    2016-05-03

    During intervertebral disc (IVD) injury and degeneration, annulus fibrosus (AF) cells experience large mechanical strains in a pro-inflammatory milieu. We hypothesized that TNF-α, an initiator of IVD inflammation, modifies AF cell mechanobiology via cytoskeletal changes, and interacts with mechanical strain to enhance pro-inflammatory cytokine production. Human AF cells (N=5, Thompson grades 2-4) were stretched uniaxially on collagen-I coated chambers to 0%, 5% (physiological) or 15% (pathologic) strains at 0.5Hz for 24h under hypoxic conditions with or without TNF-α (10ng/mL). AF cells were treated with anti-TNF-α and anti-IL-6. ELISA assessed IL-1β, IL-6, and IL-8 production and immunocytochemistry measured F-actin, vinculin and α-tubulin in AF cells. TNF-α significantly increased AF cell pro-inflammatory cytokine production compared to basal conditions (IL-1β:2.0±1.4-84.0±77.3, IL-6:10.6±9.9-280.9±214.1, IL-8:23.9±26.0-5125.1±4170.8pg/ml for basal and TNF-α treatment, respectively) as expected, but mechanical strain did not. Pathologic strain in combination with TNF-α increased IL-1β, and IL-8 but not IL-6 production of AF cells. TNF-α treatment altered F-actin and α-tubulin in AF cells, suggestive of altered cytoskeletal stiffness. Anti-TNF-α (infliximab) significantly inhibited pro-inflammatory cytokine production while anti-IL-6 (atlizumab) did not. In conclusion, TNF-α altered AF cell mechanobiology with cytoskeletal remodeling that potentially sensitized AF cells to mechanical strain and increased TNF-α-induced pro-inflammatory cytokine production. Results suggest an interaction between TNF-α and mechanical strain and future mechanistic studies are required to validate these observations.

  6. Modulation of lipopolysaccharide-induced proinflammatory cytokine production by satratoxins and other macrocyclic trichothecenes in the murine macrophage.

    Science.gov (United States)

    Chung, Yong-Joo; Jarvis, Bruce; Pestka, James

    2003-02-28

    The satratoxins and other macrocyclic trichothecene mycotoxins are produced by Stachybotrys, a mold that is often found in water-damaged dwellings and office buildings. To test the potential immunomodulatory effects of these mycotoxins, RAW 264.7 murine macrophage cells were treated with various concentrations of satratoxin G (SG), isosatratoxin F (iSF), satratoxin H (SH), roridin A (RA), and verrucarin A (VA) for 48 h in the presence or absence of suboptimal concentra-tion of lipopolysaccharide (LPS, 50 ng/ml), and tumor necrosis factor-alpha (TNF-alpha ) and interleukin-6 (IL-6) production were assayed by enzyme-linked immunosorbent assay (ELISA). In LPS-stimulated cultures, TNF-alpha supernatant concentrations were significantly increased in the presence of 2.5, 2.5, and 1 ng/ml of SG, SH, and RA, respectively, whereas IL-6 concentrations were not affected by the same concentrations these macrocyclic trichothecenes. When cells that were treated with LPS and SG (2.5 ng/ml) were evaluated by real-time polymerase chain reaction (PCR),TNF-alpha mRNA was found to increase at 24, 36, and 48 h compared to control cells. At higher concentrations, cytokine production and cell viability were markedly impaired in LPS-stimulated cells. Without LPS stimulation, neither TNF-alpha, nor IL-6 was induced. These results indicate that low concentrations of macrocyclic trichothecenes superinduce expression of TNF-alpha, whereas higher concentrations of these toxins are cytotoxic and concurrently reduce cytokine production. The capacity of satratoxins and other macrocyclic trichothecenes to alter cytokine production may play an etiologic role in outbreaks of Stachybotrys-associated human illnesses.

  7. Differential S1P Receptor Profiles on M1- and M2-Polarized Macrophages Affect Macrophage Cytokine Production and Migration

    Science.gov (United States)

    Müller, Jan; von Bernstorff, Wolfram; Heidecke, Claus-Dieter

    2017-01-01

    Introduction. Macrophages are key players in complex biological processes. In response to environmental signals, macrophages undergo polarization towards a proinflammatory (M1) or anti-inflammatory (M2) phenotype. Sphingosine 1-phosphate (S1P) is a bioactive lysophospholipid that acts via 5 G-protein coupled receptors (S1P1–5) in order to influence a broad spectrum of biological processes. This study assesses S1P receptor expression on macrophages before and after M1 and M2 polarization and performs a comparative analysis of S1P signalling in the two activational states of macrophages. Methods. Bone marrow derived macrophages (BMDM) from C57 BL/6 mice were cultured under either M1- or M2-polarizing conditions. S1P-receptor expression was determined by quantitative RT-PCR. Influence of S1P on macrophage activation, migration, phagocytosis, and cytokine secretion was assessed in vitro. Results. All 5 S1P receptor subclasses were expressed in macrophages. Culture under both M1- and M2-polarizing conditions led to significant downregulation of S1P1. In contrast, M1-polarized macrophages significantly downregulated S1P4. The expression of the remaining three S1P receptors did not change. S1P increased expression of iNOS under M2-polarizing conditions. Furthermore, S1P induced chemotaxis in M1 macrophages and changed cytokine production in M2 macrophages. Phagocytosis was not affected by S1P-signalling. Discussion. The expression of different specific S1P receptor profiles may provide a possibility to selectively influence M1- or M2-polarized macrophages.

  8. Astragalus mongholicus polysaccharide inhibits lipopolysaccharide-induced production of TNF-α and interleukin-8

    Institute of Scientific and Technical Information of China (English)

    Yuan Yuan; Mei Sun; Ke-Shen Li

    2009-01-01

    AIM: To explore the effect of Astragalus mongholicus polysaccharide (APS) on gene expression and mitogenactivated protein kinase (MAPK) transcriptional activity in intestinal epithelial cells (IEC). METHODS: IEC were divided into control group, lipopolysaccharide (LPS) group, LPS+ 50 μg/mL APS group, LPS+ 100 μg/mL APS group, LPS+ 200 μg/mL APS group, and LPS+ 500 μg/mL APS group. Levels of mRNAs in LPS-induced inflammatory factors, tumor necrosis factor (TNF)-α and interleukin (IL)-8, were measured by reverse transcription-polymerase chain reaction. MAPK protein level was measured by Western blotting. RESULTS: The levels of TNF-α and IL-8 mRNAs were significantly higher in IEC with LPS-induced damage than in control cells. APS significantly abrogated the LPS-induced expression of the TNF-α and IL-8 genes. APS did not block the activation of extracellular signalregulated kinase or c Jun amino-terminal kinase, but inhibited the activation of p38, suggesting that APS inhibits LPS-induced production of TNF-α and IL-8 mRNAs, possibly by suppressing the p38 signaling pathway. CONCLUSION: APS-modulated bacterial productmediated p38 signaling represents an attractive strategy for prevention and treatment of intestinal inflammation.

  9. Collagen I-induced dendritic cells activation is regulated by TNF- production through down-regulation of IRF4

    Indian Academy of Sciences (India)

    Barun Poudel; Hyeon-Hui Ki; Young-Mi Lee; Dae-Ki Kim

    2015-03-01

    Previously we have shown that collagen I enhances the maturation and function of dendritic cells (DCs). Inflammatory mediators such as tumour necrosis factor (TNF)-, interleukin (IL)-1 and lipopolysaccharide (LPS) are also known to activate DCs. Here we investigated the involvement of TNF- on the collagen I-induced DCs activation. TNF-a neutralization inhibited collagen I-induced IL-12 secretions by DCs. Additionally, we observed suppression of collagen I-induced costimulatory molecules expression along with down-regulation of genes involved in DCs activation pathway. Furthermore, TNF- inhibition upon collagen Istimulation up-regulated the expression of interferon regulatory transcription factor IRF4, when compared to collagen I only treated cells. Collectively, our data demonstrate that collagen I induce TNF- production, which is crucial for the activation and function of DCs, through down-regulation of IRF4, and implicates the importance in development of anti- TNF- therapeutics for several inflammatory diseases.

  10. Asian dust particles induce macrophage inflammatory responses via mitogen-activated protein kinase activation and reactive oxygen species production.

    Science.gov (United States)

    Higashisaka, Kazuma; Fujimura, Maho; Taira, Mayu; Yoshida, Tokuyuki; Tsunoda, Shin-ichi; Baba, Takashi; Yamaguchi, Nobuyasu; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Nasu, Masao; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2014-01-01

    Asian dust is a springtime meteorological phenomenon that originates in the deserts of China and Mongolia. The dust is carried by prevailing winds across East Asia where it causes serious health problems. Most of the information available on the impact of Asian dust on human health is based on epidemiological investigations, so from a biological standpoint little is known of its effects. To clarify the effects of Asian dust on human health, it is essential to assess inflammatory responses to the dust and to evaluate the involvement of these responses in the pathogenesis or aggravation of disease. Here, we investigated the induction of inflammatory responses by Asian dust particles in macrophages. Treatment with Asian dust particles induced greater production of inflammatory cytokines interleukin-6 and tumor necrosis factor- α (TNF- α ) compared with treatment with soil dust. Furthermore, a soil dust sample containing only particles ≤10  μ m in diameter provoked a greater inflammatory response than soil dust samples containing particles >10  μ m. In addition, Asian dust particles-induced TNF- α production was dependent on endocytosis, the production of reactive oxygen species, and the activation of nuclear factor- κ B and mitogen-activated protein kinases. Together, these results suggest that Asian dust particles induce inflammatory disease through the activation of macrophages.

  11. Asian Dust Particles Induce Macrophage Inflammatory Responses via Mitogen-Activated Protein Kinase Activation and Reactive Oxygen Species Production

    Directory of Open Access Journals (Sweden)

    Kazuma Higashisaka

    2014-01-01

    Full Text Available Asian dust is a springtime meteorological phenomenon that originates in the deserts of China and Mongolia. The dust is carried by prevailing winds across East Asia where it causes serious health problems. Most of the information available on the impact of Asian dust on human health is based on epidemiological investigations, so from a biological standpoint little is known of its effects. To clarify the effects of Asian dust on human health, it is essential to assess inflammatory responses to the dust and to evaluate the involvement of these responses in the pathogenesis or aggravation of disease. Here, we investigated the induction of inflammatory responses by Asian dust particles in macrophages. Treatment with Asian dust particles induced greater production of inflammatory cytokines interleukin-6 and tumor necrosis factor-α (TNF-α compared with treatment with soil dust. Furthermore, a soil dust sample containing only particles ≤10 μm in diameter provoked a greater inflammatory response than soil dust samples containing particles >10 μm. In addition, Asian dust particles-induced TNFproduction was dependent on endocytosis, the production of reactive oxygen species, and the activation of nuclear factor-κB and mitogen-activated protein kinases. Together, these results suggest that Asian dust particles induce inflammatory disease through the activation of macrophages.

  12. Suppression of TNF-alpha production by S-adenosylmethionine in human mononuclear leukocytes is not mediated by polyamines

    DEFF Research Database (Denmark)

    Yu, J.; Parlesak, Alexandr; Sauter, S.

    2006-01-01

    precursors or metabolites [phosphatidylcholine, choline, betaine, S-adenosylmethionine (SAM)] have a modulating effect on tumor necrosis factor alpha (TNF-alpha) production by endotoxin-stimulated human mononuclear leukocytes and whether SAM-dependent polyamines (spermidine, spermine) are mediators of SAM......-induced inhibition of TNF-alpha synthesis. Methionine and betaine had a moderate stimulatory effect on TNF-alpha production, whereas phosphatidylcholine (ID(50) 5.4 mM), SAM (ID(50) 131 microM), spermidine (ID(50) 4.5 microM) and spermine (ID(50) 3.9 microM) had a predominantly inhibitory effect. Putrescine did...... not alter TNF-alpha release. Inhibitors of polyamine synthesis that blocked either putrescine (difluoromethylornithine) or spermine (CGP48664A) production did not affect TNF-alpha synthesis. Endotoxin stimulation of leukocytes did not alter the intracellular levels of polyamines. In addition...

  13. Relationship between Single Nucleotide Polymorphism in TNF-α Gene Promoter Region and Inhibitory Effects of Triptolide on TNFProduction in Peripheral Blood Mononuclear Cells of Healthy Humans

    Institute of Scientific and Technical Information of China (English)

    TU Shenghao; CHEN Hongbo; SHENG Dongyun; HU Yonghong; LIU Peilin

    2006-01-01

    The relationship between tumour necrosis factor-α (TNF-α) gene polymorphism and inhibitory effects of triptolide on TNFproduction from peripheral blood mononuclear cells (PBMC)of healthy humans was investigated. Genomic DNA from 41 healthy people was typed for TNF-α-308 polymorphism by allele-specific polymorphism chain reaction (AS-PCR). The TNF-α concentration in the supernatant was measured by ELISA. The results showed that the production of TNF-α from TNF-α -308 non-G/G genotype PBMC was higher than that from TNF-α-308 G/G genotype PBMC after stimulated by LPS. Triptolide could lower the production of TNF-α from G/G genotype PBMC, but had no effect on the level of TNF-α from non-G/G genotype PBMC. It was concluded that TNF-α gene polymorphism was related to the TNFproduction from triptolide-inhibited PBMC culture in healthy humans.

  14. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans

    DEFF Research Database (Denmark)

    Starkie, Rebecca; Ostrowski, Sisse Rye; Jauffred, Sune

    2003-01-01

    During "nondamaging" exercise, skeletal muscle markedly releases interleukin (IL)-6, and it has been suggested that one biological role of this phenomenon is to inhibit the production of tumor necrosis factor (TNF)- alpha, which is known to cause pathogenesis such as insulin resistance and athero......During "nondamaging" exercise, skeletal muscle markedly releases interleukin (IL)-6, and it has been suggested that one biological role of this phenomenon is to inhibit the production of tumor necrosis factor (TNF)- alpha, which is known to cause pathogenesis such as insulin resistance...... and atherosclerosis. To test this hypothesis, we performed three experiments in which eight healthy males either rested (CON), rode a bicycle for 3 h (EX), or were infused with recombinant human IL-6 (rhIL-6) for 3 h while they rested. After 2.5 h, the volunteers received a bolus of Escherichia coli...... exercise and rhIL-6 infusion at physiological concentrations inhibit endotoxin-induced TNF-alpha production in humans. Hence, these data provide the first experimental evidence that physical activity mediates antiinflammatory activity and suggest that the mechanism include IL-6, which is produced...

  15. Surfactant, but not the size of solid lipid nanoparticles (SLN) influences viability and cytokine production of macrophages.

    Science.gov (United States)

    Schöler, N; Olbrich, C; Tabatt, K; Müller, R H; Hahn, H; Liesenfeld, O

    2001-06-19

    After intravenous (i.v.) injection, solid lipid nanoparticles (SLN) interact with mononuclear cells. Murine peritoneal macrophages were incubated with SLN formulations consisting of Dynasan 114 coated with different surfactants. The present study was performed to examine the impact of surfactants, which are important surface defining components of SLN, on viability and cytokine production by macrophages. Cytotoxicity, as assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) test, was strongly influenced by the surfactant used being marked with cetylpyridinium chloride- (CPC-) coated SLN at a concentration of 0.001% and further increased at SLN concentrations of 0.01 and 0.1%. All other SLN formulations -- containing Poloxamine 908 (P908), Poloxamer 407 (P407), Poloxamer 188 (P188), Solutol HS15 (HS15), Tween 80 (T80), Lipoid S75 (S75), sodium cholate (SC), or sodium dodecylsulfate (SDS) -- when used at the same concentrations reduced cell viability only slightly. None of the SLN formulations tested induced cytokine production but a concentration-dependent decrease of IL-6 production was observed, which appeared to be associated with cytotoxic effects. IL-12 and TNF-alpha were detected neither in supernatants of macrophages treated with SLN at any concentration nor in those of untreated cells. In contrast to the type of surfactant, the size of SLN was found neither to affect cytotoxicity of SLN nor to result in induction or digression of cytokine production by macrophages. In conclusion, testing the effects of surfactants on SLN on activity of macrophages is a prerequisite prior to in vivo use of SLN.

  16. Tumour necrosis factor-α production in fibrosing alveolitis is macrophage subset specific

    Directory of Open Access Journals (Sweden)

    Black Carol M

    2001-10-01

    Full Text Available Abstract Background Previous studies have revealed that tumour necrosis factor (TNF-α is upregulated in fibrosing alveolitis (FA in humans. The aim of this study was to compare the TNF-α secretory profile of alveolar macrophages (AMs and peripheral blood monocytes (Mos of patients with cryptogenic FA and systemic sclerosis (SSc, a rheumatological disorder in which lung fibrosis can occur. In particular, we wished to assess whether TNF-α levels differ between SSc patients with FA (FASSc and a nonfibrotic group. Methods The reverse haemolytic plaque assay was used to evaluate the secretion of cytokine at a single cell level while immunostaining allowed subtyping of AMs and Mos. Results This study demonstrated a difference in total TNF-α levels produced by AMs when the levels in subjects with FA (cryptogenic FA and FASSc were compared to levels in either SSc patients without FA (P = 0.0002 or normal healthy controls (P P = 0.003. In contrast, there were no significant differences in Mo TNF-α secretion between the groups. A positive correlation was found between total TNF-α level and number of neutrophils obtained by bronchoalveolar lavage from patients with FA (r = 0.49, P Conclusion By demonstrating the primary cell source of TNF-α in FASSc, more accurately targeted, possibly localized, anti-TNF strategies might be employed with success in the future.

  17. Identification of BCAP-{sub L} as a negative regulator of the TLR signaling-induced production of IL-6 and IL-10 in macrophages by tyrosine phosphoproteomics

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Takayuki [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku-ku, Tokyo 162-0041 (Japan); Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480 (Japan); Oyama, Masaaki; Kozuka-Hata, Hiroko [Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Ishikawa, Kosuke; Inoue, Takafumi [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku-ku, Tokyo 162-0041 (Japan); Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480 (Japan); Muta, Tatsushi [Laboratory of Cell Recognition and Response, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578 (Japan); Semba, Kentaro, E-mail: ksemba@waseda.jp [Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku-ku, Tokyo 162-0041 (Japan); Department of Life Science and Medical Bio-Science, Waseda University, Shinjuku-ku, Tokyo 162-8480 (Japan); Inoue, Jun-ichiro, E-mail: jun-i@ims.u-tokyo.ac.jp [Medical Proteomics Laboratory, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan); Division of Cellular and Molecular Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo 108-8639 (Japan)

    2010-09-17

    Research highlights: {yields} Twenty five tyrosine-phosphorylated proteins in LPS-stimulated macrophages were determined. {yields} BCAP is a novel tyrosine-phosphorylated protein in LPS-stimulated macrophages. {yields} BCAP-{sub L} inhibits IL-6 and IL-10 production in LPS-stimulated macrophages. -- Abstract: Toll-like receptor (TLR) signaling in macrophages is essential for anti-pathogen responses such as cytokine production and antigen presentation. Although numerous reports suggest that protein tyrosine kinases (PTKs) are involved in cytokine induction in response to lipopolysaccharides (LPS; TLR4 ligand) in macrophages, the PTK-mediated signal transduction pathway has yet to be analyzed in detail. Here, we carried out a comprehensive and quantitative dynamic tyrosine phosphoproteomic analysis on the TLR4-mediated host defense system in RAW264.7 macrophages using stable isotope labeling by amino acids in cell culture (SILAC). We determined the temporal profiles of 25 proteins based on SILAC-encoded peptide(s). Of these, we focused on the tyrosine phosphorylation of B-cell adaptor for phosphatidylinositol 3-kinase (BCAP) because the function of BCAP remains unknown in TLR signaling in macrophages. Furthermore, Bcap has two distinct transcripts, a full-length (Bcap-{sub L}) and an alternatively initiated or spliced (Bcap-{sub S}) mRNA, and little is known about the differential functions of the BCAP-{sub L} and BCAP-{sub S} proteins. Our study showed, for the first time, that RNAi-mediated selective depletion of BCAP-{sub L} enhanced IL-6 and IL-10 production but not TNF-{alpha} production in TLR ligand-stimulated macrophages. We propose that BCAP-{sub L} (but not BCAP-{sub S}) is a negative regulator of the TLR-mediated host defense system in macrophages.

  18. TNFR2 maintains adequate IL-12 production by dendritic cells in inflammatory responses by regulating endogenous TNF levels.

    Science.gov (United States)

    Martin, Elisabeth M; Remke, Annika; Pfeifer, Eva; Polz, Johannes; Pietryga-Krieger, Anne; Steffens-Weber, Dorothea; Freudenberg, Marina A; Mostböck, Sven; Männel, Daniela N

    2014-10-01

    Sepsis-induced immune reactions are reduced in TNF receptor 2 (TNFR2)-deficient mice as previously shown. In order to elucidate the underlying mechanisms, the functional integrity of myeloid cells of TNFR2-deficient mice was analyzed and compared to wild type (WT) mice. The capacity of dendritic cells to produce IL-12 was strongly impaired in TNF-deficient mice, mirroring impaired production of IL-12 by WT dendritic cells in sepsis or after LPS or TNF pre-treatment. In addition, TNFR2-deficient mice were refractory to LPS pre-treatment and also to hyper-sensitization by inactivated Propionibacterium acnes, indicating habituation to inflammatory stimuli by the immune response when TNFR2 is lacking. Constitutive expression of TNF mRNA in kidney, liver, spleen, colon and lung tissue, and the presence of soluble TNFR2 in urine of healthy WT mice supported the conclusion that TNF is continuously present in naïve mice and controlled by soluble TNFR2. In TNFR2-deficient mice endogenous TNF levels cannot be balanced and the continuous exposure to enhanced TNF levels impairs dendritic cell function. In conclusion, TNF pre-exposure suppresses secondary inflammatory reactions of myeloid cells; therefore, continuous control of endogenous TNF by soluble TNFR2 seems to be essential for the maintenance of adequate sensitivity to inflammatory stimuli.

  19. The role of the galU gene of uropathogenic Escherichia coli in modulating macrophage TNF-α response.

    Science.gov (United States)

    Meyer, Christian; Hoffmann, Christiane; Haas, Rainer; Schubert, Sören

    2015-12-01

    Uropathogenic Escherichia coli (UPEC) are the major cause of urinary tract infections (UTI). These bacteria are equipped with an arsenal of virulence factors, such as siderophores and adhesins enabling UPECs to sufficiently colonize the urinary tract of humans and animals. Such virulence factors manipulate and impair the recognition of UPECs by the host's innate immune system. Among those, factors like the TIR domain containing proteins in E. coli (TcpC) have been described to interfere with the Toll-like receptor 4 signaling cascade. Nevertheless, some UPECs such as strain UTI89 lack TcpC, but also manipulate the innate immune response. By a random mutant-library approach we identified the galU gene of strain UTI89 to be responsible for a reduced immune response of macrophages. Consequently, we created a site directed knockout mutant of the galU gene in strain UTI89. This mutant caused a significantly increased cytokine response when co-incubated with J774A.1 macrophages. This phenotype could be recomplemented in trans by insertion of a galU-expressing plasmid. No differences in the viability of macrophages co-incubated with either the wild-type (WT) or the ΔgalU mutant strain could be observed. Nor could any growth impairment be detected in the ΔgalU mutant compared to WT strain. Hence, the increased cytokine response was not due to differences in the bacterial cytotoxicity or bacterial counts in the assay. Our results also demonstrated a reduction of intracellular counts of UTI89ΔgalU in the infection model. We were able to show a loss of the O-polysaccharide side chain of the ΔgalU mutant LPS. A comparable LPS structure could be generated by the deletion of the waaL gene in the UTI89. This also caused an impaired immune modulation. In contrast, purified LPS was not sufficient to impair cytokine release of macrophages. Moreover, no differences could be detected by applying bacteria inactivated with heat or formalin treatment. From this, we assume that the

  20. Anti-arthritis effect of a novel quinazoline derivative through inhibiting production of TNF-α mediated by TNF-α converting enzyme in murine collagen-induced arthritis model.

    Science.gov (United States)

    Pu, Yuzhi; Cao, Dong; Xie, Caifeng; Pei, Heying; Li, Dan; Tang, Minghai; Chen, Lijuan

    2015-07-10

    TNF-α is a dominant inflammatory mediator in the pathogenesis of inflammatory diseases including rheumatoid arthritis. In our research, we discovered 2-chloro-N-(4-(2-morpholinoethoxy)phenyl)quinazolin-4-amine (9c) exhibited an outstanding anti-inflammatory activity on inhibiting TNFproduction with an IC50 of 8.86 μM in RAW264.7 cells. Interestingly, 9c had no effect on mRNA level of TNF-α but up-regulated the precursor of TNF-α (pro-TNF-α). Then, we studied TNF-α converting enzyme (TACE), which is the most important proteases responsible for the release of TNF-α from pro-TNF-α to soluble TNF-α. The results showed 9c reduced TACE both on the levels of mRNA and protein in a dose-dependent manner. In vivo study, collagen-induced arthritis (CIA) mice were treated by 9c orally. 9c exhibited significant anti-arthritis effect by ameliorating arthritic score, reducing inflammatory cell infiltration, protecting joints from destruction and decreasing the production of systemic TNF-α, IL-6, IL-1β. The underlying mechanism of 9c on CIA was coincided with the in vitro, which was mediated by TACE. In conclusion, we discovered a novel quinazoline derivative which ameliorates arthritis through inhibiting production of TNF-α mediated by TACE for the first time.

  1. DMPD: The atrial natriuretic peptide regulates the production of inflammatorymediators in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11890659 The atrial natriuretic peptide regulates the production of inflammatorymedia...tml) (.csml) Show The atrial natriuretic peptide regulates the production of inflammatorymediators in macrop...hages. PubmedID 11890659 Title The atrial natriuretic peptide regulates the production of inflammatorymedi

  2. Both Nsp1β and Nsp11 are responsible for differential TNFproduction induced by porcine reproductive and respiratory syndrome virus strains with different pathogenicity in vitro.

    Science.gov (United States)

    He, Qing; Li, Yan; Zhou, Lei; Ge, Xinna; Guo, Xin; Yang, Hanchun

    2015-04-02

    Porcine reproductive and respiratory syndrome virus (PRRSV) has been recognized to be one of the most important pathogens severely affecting global swine industry. An increasingly number of studies have paid much attention to the diverse roles of its nonstructural proteins (Nsps) in regulating the innate immune response of host upon PRRSV infection. In the present study, we first discovered that highly pathogenic PRRSV (HP-PRRSV) and low pathogenic PRRSV (LP-PRRSV) infection exhibited a differential TNF-α expression in pulmonary alveolar macrophages (PAMs), showing that HP-PRRSV infection induces lower TNFproduction at protein level in PAMs, compared with LP-PRRSV. Next, HP-PRRSV was confirmed to strongly suppress TNFproduction by inhibiting ERK signaling pathway. Finally, both Nsp1β and Nsp11 were demonstrated to be responsible for the inhibitory effect on TNFproduction induced by HP-PRRSV and the differential TNFproduction in PAMs. These findings contribute to the understanding of the pathogenesis of the Chinese HP-PRRSV.

  3. Heparan sulfate proteoglycan induces the production of NO and TNF-α by murine microglia

    Directory of Open Access Journals (Sweden)

    Bresolin Nereo

    2005-07-01

    Full Text Available Abstract Background A common feature of Alzheimer's disease (AD pathology is the abundance of activated microglia in neuritic plaques containing amyloid-beta protein (Aβ and associated molecules including heparan sulfate proteoglycan (HSPG. Besides the role as pathological chaperone favouring amyloidogenesis, little is known about whether or not HSPG can induce microglial activation. Cultures of primary murine microglia were used to assess the effect of HSPG on production of proinflammatory molecules that are known to be present in neuritic plaques of AD. Results HSPG stimulated up-regulation of tumor necrosis factor-alpha (TNF-α, production of inducible nitric oxide synthase (iNOS mRNA and accumulation of TNF-α protein and nitrite (NO2- in a time- and concentration-dependent manner. The effects of HSPG were primarily due to the property of the protein core as indicated by the lack of microglial accumulation of TNF-α and NO2- in response to denaturated HSPG or heparan sulfate GAG chains (HS. Conclusion These data demonstrate that HSPG may contribute to chronic microglial activation and neurodegeneration seen in neuritic plaques of AD.

  4. Niacin attenuates the production of pro-inflammatory cytokines in LPS-induced mouse alveolar macrophages by HCA2 dependent mechanisms.

    Science.gov (United States)

    Zhou, Ershun; Li, Yimeng; Yao, Minjun; Wei, Zhengkai; Fu, Yunhe; Yang, Zhengtao

    2014-11-01

    Niacin has been reported to have potent anti-inflammatory effects in LPS-induced acute lung injury. However, the molecular mechanism of niacin has not been fully understood. The aim of the present study was to investigate the effects of niacin on the production of pro-inflammatory cytokines TNF-α, IL-6 and IL-1β in LPS-induced mouse alveolar macrophages and explore its underlying mechanism. Mouse alveolar macrophages were incubated in the presence or absence of various concentrations of niacin (1, 10, 100 μmol/l) 1h before LPS (1 μg/ml) challenge. The results showed that niacin reduced the levels of TNF-α, IL-6 and IL-1β in LPS-challenged alveolar macrophages. Furthermore, NF-κB activation was inhibited by niacin through blocking the phosphorylation of NF-κB p65 and IκBα. In addition, silencing HCA2 abrogated the effect of niacin on the production of pro-inflammatory cytokines. These findings suggested that niacin attenuated the LPS-induced pro-inflammatory cytokines possibly mediated by HCA2 in LPS-challenged alveolar macrophages.

  5. Autocrine interferon priming in macrophages but not dendritic cells results in enhanced cytokine and chemokine production after coronavirus infection.

    Science.gov (United States)

    Zhou, Haixia; Zhao, Jincun; Perlman, Stanley

    2010-10-19

    Coronaviruses efficiently inhibit interferon (IFN) induction in nonhematopoietic cells and conventional dendritic cells (cDC). However, IFN is produced in infected macrophages, microglia, and plasmacytoid dendritic cells (pDC). To begin to understand why IFN is produced in infected macrophages, we infected bone marrow-derived macrophages (BMM) and as a control, bone marrow-derived DC (BMDC) with the coronavirus mouse hepatitis virus (MHV). As expected, BMM but not BMDC expressed type I IFN. IFN production in infected BMM was nearly completely dependent on signaling through the alpha/beta interferon (IFN-α/β) receptor (IFNAR). Several IFN-dependent cytokines and chemokines showed the same expression pattern, with enhanced production in BMM compared to BMDC and dependence upon signaling through the IFNAR. Exogenous IFN enhanced IFN-dependent gene expression in BMM at early times after infection and in BMDC at all times after infection but did not stimulate expression of molecules that signal through myeloid differentiation factor 88 (MyD88), such as tumor necrosis factor (TNF). Collectively, our results show that IFN is produced at early times postinfection (p.i.) in MHV-infected BMM, but not in BMDC, and primes expression of IFN and IFN-responsive genes. Further, our results also show that BMM are generally more responsive to MHV infection, since MyD88-dependent pathways are also activated to a greater extent in these cells than in BMDC.

  6. T-cell activation is enhanced by targeting IL-10 cytokine production in toll-like receptor- stimulated macrophages

    Directory of Open Access Journals (Sweden)

    Walk RM

    2012-11-01

    Full Text Available Ryan M Walk,1,2 Steven T Elliott,2 Felix C Blanco,2 Jason A Snyder,2 Ashley M Jacobi,3 Scott D Rose,3 Mark A Behlke,3 Aliasger K Salem,4 Stanislav Vukmanovic,2 Anthony D Sandler21Department of Surgery, Walter Reed Army Medical Center, Washington, DC, USA; 2Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, DC, USA; 3Integrated DNA Technologies, Coralville, IA, USA; 4Division of Pharmaceutics, University of Iowa, Iowa City, IA, USAAbstract: Toll-like receptor (TLR agonists represent potentially useful cancer vaccine adjuvants in their ability to stimulate antigen-presenting cells (APCs and subsequently amplify the cytotoxic T-cell response. The purpose of this study was to characterize APC responses to TLR activation and to determine the subsequent effect on lymphocyte activation. We exposed murine primary bone marrow-derived macrophages to increasing concentrations of agonists to TLRs 2, 3, 4, and 9. This resulted in a dose-dependent increase in production of not only tumor necrosis factor–alpha (TNF-α, a surrogate marker of the proinflammatory response, but also interleukin 10 (IL-10, a well-described inhibitory cytokine. Importantly, IL-10 secretion was not induced by low concentrations of TLR agonists that readily produced TNF-α. We subsequently stimulated lymphocytes with anti-CD3 antibody in the presence of media from macrophages activated with higher doses of TLR agonists and observed suppression of interferon gamma release. Use of both IL-10 knockout macrophages and IL-10 small-interfering RNA (siRNA ablated this suppressive effect. Finally, IL-10 siRNA was successfully used to suppress CpG-induced IL-10 production in vivo. We conclude that TLR-mediated APC stimulation can induce a paradoxical inhibitory effect on T-cell activation mediated by IL-10.Keywords: toll-like receptors, innate immunity, IL-10

  7. Z-100, extracted from Mycobacterium tuberculosis strain Aoyama B, promotes TNFproduction via nucleotide-binding oligomerization domain containing 2 (Nod2)-dependent NF-κB activation in RAW264.7 cells.

    Science.gov (United States)

    Katsunuma, Kokichi; Yoshinaga, Koji; Ohira, Yuta; Eta, Runa; Sato, Takanori; Horii, Takayuki; Tanaka, Takao; Takei, Mineo; Seto, Koichi

    2015-03-01

    Macrophages are a major component of the innate immune system, and the cytokines they secrete are involved in antitumor responses. Z-100 is obtained from hot-water extract of human-type Mycobacterium tuberculosis strain Aoyama B and activates the innate immune response. However, while Z-100 is known to modulate macrophage activity, the mechanism behind this modulation is not fully understood. We evaluated the effects of Z-100 on the murine macrophage cell line RAW264.7. Tumor necrosis factor-alpha (TNF-α) production from RAW264.7 cells was strongly induced by Z-100 and interferon-gamma (IFN-γ) stimulation but only weakly induced by Z-100 alone. Quantitative gene expression analysis showed that nucleotide-binding oligomerization domain containing 2 (Nod2) expression was up-regulated by IFN-γ treatment in RAW264.7 cells while Z-100-induced TNFproduction was attenuated by Nod2 gene silencing. Further, componential analysis demonstrated that muramic acid and amino acids distinctive of muramyl dipeptide (MDP) were contained within Z-100 and Z-100Fr I, the low-molecular-weight fraction containing components Z-100Fr I enhanced TNFproduction in RAW264.7 cells and promoted NOD2-dependent nuclear factor-kappa B (NF-κB) activation in murine NOD2-expressing SEAP reporter HEK293 (HEK-Blue-mNOD2) cells. Taken together, these results suggest that Z-100 contains MDP-like molecules and augments NF-κB signaling via the direct activation of Nod2 in macrophages, which might be one mechanism driving the innate immune responses induced by Z-100 in cancer immunotherapy.

  8. Influence of TNF-α gene polymorphisms on TNFproduction and disease%TNF-α基因多态性对TNF-α产物的影响及其与疾病的关系

    Institute of Scientific and Technical Information of China (English)

    郭芮兵; 陈仕林; 景华

    2003-01-01

    肿瘤坏死因子α(TNF-α) 是一种致炎因子.人类TNF-α基因位于染色体6p21.3区,这是个具有高度多态性的主要组织相容性复合体(MHC)区域.TNF基因族含有许多多态性,如微卫星(microsatellite)及单核苷酸多态性(SNPs).许多多态性与HLAⅠ、Ⅱ等位基因连锁不平衡,其中一些影响了如-308SNP 这样的TNF-α在体外的表达.许多研究表明,SNP及TNF-α基因中的其他多态性与不同炎症状态相关.这种现象是否由SNP直接作用所抑制或是与TNF基因或HLA系统的其他多态性所致,研究者们对此尚有争议.

  9. Macrophage colony-stimulating factor (CSF1) controls monocyte production and maturation and the steady-state size of the liver in pigs.

    Science.gov (United States)

    Sauter, Kristin A; Waddell, Lindsey A; Lisowski, Zofia M; Young, Rachel; Lefevre, Lucas; Davis, Gemma M; Clohisey, Sara M; McCulloch, Mary; Magowan, Elizabeth; Mabbott, Neil A; Summers, Kim M; Hume, David A

    2016-09-01

    Macrophage colony-stimulating factor (CSF1) is an essential growth and differentiation factor for cells of the macrophage lineage. To explore the role of CSF1 in steady-state control of monocyte production and differentiation and tissue repair, we previously developed a bioactive protein with a longer half-life in circulation by fusing pig CSF1 with the Fc region of pig IgG1a. CSF1-Fc administration to pigs expanded progenitor pools in the marrow and selectively increased monocyte numbers and their expression of the maturation marker CD163. There was a rapid increase in the size of the liver, and extensive proliferation of hepatocytes associated with increased macrophage infiltration. Despite the large influx of macrophages, there was no evidence of liver injury and no increase in circulating liver enzymes. Microarray expression profiling of livers identified increased expression of macrophage markers, i.e., cytokines such as TNF, IL1, and IL6 known to influence hepatocyte proliferation, alongside cell cycle genes. The analysis also revealed selective enrichment of genes associated with portal, as opposed to centrilobular regions, as seen in hepatic regeneration. Combined with earlier data from the mouse, this study supports the existence of a CSF1-dependent feedback loop, linking macrophages of the liver with bone marrow and blood monocytes, to mediate homeostatic control of the size of the liver. The results also provide evidence of safety and efficacy for possible clinical applications of CSF1-Fc.

  10. Detection of Endotoxin Contamination of Graphene Based Materials Using the TNF-α Expression Test and Guidelines for Endotoxin-Free Graphene Oxide Production

    Science.gov (United States)

    Del Rio-Castillo, Antonio E.; Newman, Leon; Vázquez, Ester; Kostarelos, Kostas; Wick, Peter; Fadeel, Bengt

    2016-01-01

    Nanomaterials may be contaminated with bacterial endotoxin during production and handling, which may confound toxicological testing of these materials, not least when assessing for immunotoxicity. In the present study, we evaluated the conventional Limulus amebocyte lysate (LAL) assay for endotoxin detection in graphene based material (GBM) samples, including graphene oxide (GO) and few-layered graphene (FLG). Our results showed that some GO samples interfered with various formats of the LAL assay. To overcome this problem, we developed a TNF-α expression test (TET) using primary human monocyte-derived macrophages incubated in the presence or absence of the endotoxin inhibitor, polymyxin B sulfate, and found that this assay, performed with non-cytotoxic doses of the GBM samples, enabled unequivocal detection of endotoxin with a sensitivity that is comparable to the LAL assay. FLG also triggered TNFproduction in the presence of the LPS inhibitor, pointing to an intrinsic pro-inflammatory effect. Finally, we present guidelines for the preparation of endotoxin-free GO, validated by using the TET. PMID:27880838

  11. 烧伤小鼠腹腔巨噬细胞肌醇脂质信号系统变化的实验研究%Changes of Inositol Lipid Signal System and Its Effect on the Secretion of TNF of Peritoneal Macrophage Following Severe Scald in Mice

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Purpose:To further study on the mechanism of abnormal macrophages functional changes postburn, insositol lipid signal system and its effects on TNF secretion by peritoneal macrophages (PM() were observed in severely scalded mice. Method: The activity of PL C (phospholipase C), DAG (diacylglycerol), PKC (protein kinase C), and the alternations of IP3 (inositol-1, 4, 5,-triphosphate), Ca2+ and TNF (tumor necrosis factor) in PM( were measured, and the effects of H-7 (1-(5-isoquinolineslfony1)-2-methylpierazine, a specific PKC inhibitor) and W-7 (N-6-amino-hexyl-5-chloro-1-naphthalenesulfonamide, CaM antagonist) on the production of TNF were also observed. Result: It showed that all above-mentioned parameters changes significantly at 6h,12h,24h postburn. There were remarkable decreases of TNF by using H-7. Conclusion: The results suggested that the inositol lipid signal system of PM( is one of the main signal systems participating in the secretion of TNF, and in this system the DAG-PKC signal pathway showed closer relationship than IP3-Ca2+ in the TNF production.%目的:探讨烧伤导致巨噬细胞功能异常的发生机制。方法:测定了严重烧伤小鼠腹腔巨噬细胞(PMΦ)磷酯酶C(PLC)、甘油二酯(DAG)、蛋白激酶C(PKC)的活性,三磷酸肌醇(IP3)、钙离子(Ca2+)、TNF的变化,以及PKC抑制剂H-7和钙调素(CaM)拮抗剂W-7对TNF产生的影响。结果:上述所观察的指标在严重烧伤后6hr、12hr、24hr、都发生了非常明显的变化,PKC抑制剂H-7能够显著地抑制TNF的产生。结论:腹腔巨噬细胞肌醇脂质信号系统是促使TNF分泌的主要信号途径之一,在肌醇脂质信号系统中以DAG-PKC的信号途径与TNF分泌关系更为密切。

  12. Nafamostat Mesilate Inhibits TNF-α-Induced Vascular Endothelial Cell Dysfunction by Inhibiting Reactive Oxygen Species Production.

    Science.gov (United States)

    Kang, Min-Woong; Song, Hee-Jung; Kang, Shin Kwang; Kim, Yonghwan; Jung, Saet-Byel; Jee, Sungju; Moon, Jae Young; Suh, Kwang-Sun; Lee, Sang Do; Jeon, Byeong Hwa; Kim, Cuk-Seong

    2015-05-01

    Nafamostat mesilate (NM) is a serine protease inhibitor with anticoagulant and anti-inflammatory effects. NM has been used in Asia for anticoagulation during extracorporeal circulation in patients undergoing continuous renal replacement therapy and extra corporeal membrane oxygenation. Oxidative stress is an independent risk factor for atherosclerotic vascular disease and is associated with vascular endothelial function. We investigated whether NM could inhibit endothelial dysfunction induced by tumor necrosis factor-α (TNF-α). Human umbilical vein endothelial cells (HUVECs) were treated with TNF-α for 24 h. The effects of NM on monocyte adhesion, vascular cell adhesion molecule-1 (VCAM-1) and intracellular adhesion molecule-1 (ICAM-1) protein expression, p38 mitogen-activated protein kinase (MAPK) activation, and intracellular superoxide production were then examined. NM (0.01~100 µg/mL) did not affect HUVEC viability; however, it inhibited the increases in reactive oxygen species (ROS) production and p66shc expression elicited by TNF-α (3 ng/mL), and it dose dependently prevented the TNF-α-induced upregulation of endothelial VCAM-1 and ICAM-1. In addition, it mitigated TNF-α-induced p38 MAPK phosphorylation and the adhesion of U937 monocytes. These data suggest that NM mitigates TNF-α-induced monocyte adhesion and the expression of endothelial cell adhesion molecules, and that the anti-adhesive effect of NM is mediated through the inhibition of p66shc, ROS production, and p38 MAPK activation.

  13. Macrophage secretory products induce an inflammatory phenotype in hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Michelle Melino; Gethin P Thomas; Andrew D Clouston; Julie R Jonsson; Elizabeth E Powell; Victoria L Gadd; Gene V Walker; Richard Skoien; Helen D Barrie; Dinesh Jothimani; Leigh Horsfall; Alun Jones; Matthew J Sweet

    2012-01-01

    AIM:To investigate the influence of macrophages on hepatocyte phenotype and function.METHODS:Macrophages were differentiated from THP-1 monocytes via phorbol myristate acetate stimulation and the effects of monocyte or macrophageconditioned medium on HepG2 mRNA and protein expression determined.The in vivo relevance of these findings was confirmed using liver biopsies from 147patients with hepatitis C virus (HCV) infection.RESULTS:Conditioned media from macrophages,but not monocytes,induced a transient morphological change in hepatocytes associated with upregulation of vimentin (7.8 ± 2.5-fold,P =0.045) and transforming growth factor (TGF)-β1 (2.6 ± 0.2-fold,P < 0.001) and downregulation of epithelial cadherin (1.7 ± 0.02-fold,P =0.017) mRNA expression.Microarray analysis revealed significant upregulation of lipocalin-2 (17-fold,P < 0.001) and pathways associated with inflammation,and substantial downregulation of pathways related to hepatocyte function.In patients with chronic HCV,realtime polymerase chain reaction and immunohistochemistry confirmed an increase in lipocalin-2 mRNA (F0 1.0± 0.3,F1 2.2 ± 0.2,F2 3.0 ± 9.3,F3/4 4.0 ± 0.8,P =0.003) and protein expression (F1 1.0 ± 0.5,F2 1.3 ±0.4,F3/4 3.6 ± 0.4,P =0.014) with increasing liver injury.High performance liquid chromatography-tandem mass spectrometry analysis identified elevated levels of matrix metalloproteinase (MMP)-9 in macrophageconditioned medium,and a chemical inhibitor of MMP-9attenuated the change in morphology and mRNA expression of TGF-β1 (2.9 ± 0.2 vs 1.04 ± 0.1,P < 0.001)in macrophage-conditioned media treated HepG2 cells.In patients with chronic HCV infection,hepatic mRNA expression of CD163 (F0 1.0 ± 0.2,F1/2 2.8 ± 0.3,F3/4 5.3 ± 1.0,P =0.001) and MMP-9 (F0 1.0 ± 0.4,F1/2 2.8 ± 0.3,F3/4 4.1 ± 0.8,P =0.011) was significantly associated with increasing stage of fibrosis.CONCLUSION:Secreted macrophage products alter the phenotype and function of hepatocytes

  14. Effect of TNF antagonists on the productivity of daily work of patients with rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Furuya H

    2013-01-01

    Full Text Available Hidekazu Furuya,1 Tsuyoshi Kasama,1 Takeo Isozaki,1,2 Masayu Umemura,1 Kumiko Otsuka,1 Sakiko Isojima,1 Hiroyuki Tsukamoto,1 TakehiroTokunaga,1 Ryo Yanai,1 Ryo Takahashi11Division of Rheumatology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan; 2Department of Rheumatology,University of Michigan Medical School, Ann Arbor, MI, USAAbstract: Rheumatoid arthritis (RA is a significant cause of work disability and job loss. The resulting economic burden experienced by patients has received considerable research attention. This research assesses the effect of tumor necrosis factor (TNF antagonists (infliximab, etanercept on the ability of RA patients living in Japan to work and participate in society. A total of 42 patients with active RA were enrolled and given biological therapy for 12 months (mo. Of these patients, 14 were employed full-time, 6 were employed part-time, and 22 were not employed. Twenty-six patients were given infliximab, and sixteen were given etanercept. The amount of domestic labor performed before the biologics served as a baseline and was assigned a value of 0%. After treatment with biologics, the productivity was evaluated using the visual analog scale (VAS; −100 to +100 mm. The administration of TNF antagonists to RA patients who exhibited an insufficient response to medical treatment significantly improved the Disease Activity Score 28 (DAS 28 after both 6 mo and 12 mo (P < 0.0001. A significant correlation was found between the improvement in their DAS 28 and improvements in their work situation (Productivity VAS (P < 0.05. Of particular interest is the significant correlation between the values of baseline mHAQ and the percent changes of Productivity VAS that was observed after 6 mo and 12 mo (P < 0.05. Our findings indicate that medical treatment of RA with TNF antagonists improves the patients' ability to perform their jobs and housekeeping. Because loss of productivity is an important

  15. Inflammation and exercise: Inhibition of monocytic intracellular TNF production by acute exercise via β2-adrenergic activation.

    Science.gov (United States)

    Dimitrov, Stoyan; Hulteng, Elaine; Hong, Suzi

    2017-03-01

    Regular exercise is shown to exert anti-inflammatory effects, yet the effects of acute exercise on cellular inflammatory responses and its mechanisms remain unclear. We tested the hypothesis that sympathoadrenergic activation during a single bout of exercise has a suppressive effect on monocytic cytokine production mediated by β2 adrenergic receptors (AR). We investigated the effects of 20-min moderate (65-70% VO2 peak) exercise-induced catecholamine production on LPS-stimulated TNF production by monocytes in 47 healthy volunteers and determined AR subtypes involved. We also examined the effects of β-agonist isoproterenol and endogenous β- and α-agonists epinephrine and norepinephrine, and receptor-subtype-specific β- and α-antagonists on TNF production in a series of in vitro investigations. LPS-stimulated TNF production by peripheral blood monocytes was determined intracellularly by flow cytometry, using an intracellular protein transport inhibitor. Percent TNF-producing monocytes and per-cell TNF production with and without LPS was suppressed by exercise with moderate to large effects, which was reversed by a β2-AR antagonist in spite that plasma TNF levels did not change. This inhibitory response in TNF production by exercise was mirrored by β-AR agonists in an agonist-specific and dose-dependent manner in vitro: similar isoproterenol (EC50=2.1-4.7×10(-10)M) and epinephrine (EC50=4.4-10×10(-10)M) potency and higher norepinephrine concentrations (EC50=2.6-4.3×10(-8)M) needed for the effects. Importantly, epinephrine levels observed during acute exercise in vivo significantly inhibited TNF production in vitro. The inhibitory effect of the AR agonists was abolished by β2-, but not by β1- or α-AR blockers. We conclude that the downregulation of monocytic TNF production during acute exercise is mediated by elevated epinephrine levels through β2-ARs. Decreased inflammatory responses during acute exercise may protect against chronic conditions with low

  16. IGFBP-3 inhibits TNFproduction and TNFR-2 signaling to protect against retinal endothelial cell apoptosis.

    Science.gov (United States)

    Zhang, Qiuhua; Steinle, Jena J

    2014-09-01

    In models of diabetic retinopathy, insulin-like growth factor binding protein-3 (IGFBP-3) protects against tumor necrosis factors-alpha (TNF-α)-mediated apoptosis of retinal microvascular endothelial cells (REC), but the underlying mechanisms are unclear. Our current findings suggest that at least two discrete but complimentary pathways contribute to the protective effects of IGFBP-3; 1) IGFBP-3 directly activates the c-Jun kinase/tissue inhibitor of metalloproteinase-3/TNF-α converting enzyme (c-Jun/TIMP-3/TACE), pathway, which in turn inhibits TNFproduction; 2) IGFBP-3 acts through the IGFBP-3 receptor, low-density lipoprotein receptor-related protein 1 (LRP1), to inhibit signaling of TNF-α receptor 2 (TNFR2). Combined, these two IGFBP-3 pathways substantially reduce REC apoptosis and offer potential targets for the treatment of diabetic retinopathy.

  17. Role of TNF-alpha and its receptors in pericoronitis.

    Science.gov (United States)

    Beklen, A; Laine, M; Ventä, I; Hyrkäs, T; Konttinen, Y T

    2005-12-01

    The classic stimulus for cellular cytokine production is bacterial lipopolysaccharide (endotoxin). It was therefore hypothesized that tumor necrosis factor-alpha (TNF-alpha) may be responsible for pericoronitis. TNF-alpha and its receptors were detected by immunohistochemical staining in third molar pericoronitis in ten patients and ten healthy control samples. The percentage of TNF-alpha positive cells was high in pericoronitis (p = 0.0317). TNF receptors TNF-R1 and TNF-R2 were found in macrophage- and fibroblast-like cells, vascular endothelial cells in post-capillary venules, and basal epithelial cells in pericoronitis, but were only weakly expressed in controls. Increased expression of interleukin-1beta and vascular cell adhesion molecule-1 was found as a biological indicator of TNF-alpha ligand-receptor interaction. Explanted tissues acquired destructive potential upon TNF-alpha stimulation, whereas TNF-alpha blockers controlled it in inflamed tissues. These findings suggest that, in pericoronitis, inflammatory and resident cells produce and respond to potent pro-inflammatory cytokine TNF-alpha, with pathogenic and potential therapeutic relevance.

  18. Dopamine Burden Triggers Neurodegeneration via Production and Release of TNF-α from Astrocytes in Minimal Hepatic Encephalopathy.

    Science.gov (United States)

    Ding, Saidan; Wang, Weikan; Wang, Xuebao; Liang, Yong; Liu, Leping; Ye, Yiru; Yang, Jianjing; Gao, Hongchang; Zhuge, Qichuan

    2016-10-01

    Dopamine (DA)-induced learning and memory impairment is well documented in minimal hepatic encephalopathy (MHE), but the contribution of DA to neurodegeneration and the involved underlying mechanisms are not fully understood. In this study, the effect of DA on neuronal apoptosis was initially detected. The results showed that MHE/DA (10 μg)-treated rats displayed neuronal apoptosis. However, we found that DA (10 μM) treatment did not induce evident apoptosis in primary cultured neurons (PCNs) but did produce TNF-α in primary cultured astrocytes (PCAs). Furthermore, co-cultures between PCAs and PCNs exposed to DA exhibited increased astrocytic TNF-α levels and neuronal apoptosis compared with co-cultures exposed to the vehicle, indicating the attribution of the neuronal apoptosis to astrocytic TNF-α. We also demonstrated that DA enhanced TNFproduction from astrocytes by activation of the TLR4/MyD88/NF-κB pathway, and secreted astrocytic TNF-α-potentiated neuronal apoptosis through inactivation of the PI3K/Akt/mTOR pathway. Overall, the findings from this study suggest that DA stimulates substantial production and secretion of astrocytic TNF-α, consequently and indirectly triggering progressive neurodegeneration, resulting in cognitive decline and memory loss in MHE.

  19. Transmembrane TNF-α: structure, function and interaction with anti-TNF agents

    OpenAIRE

    Horiuchi, Takahiko; Mitoma, Hiroki; Harashima, Shin-ichi; Tsukamoto, Hiroshi; Shimoda, Terufumi

    2010-01-01

    Transmembrane TNF-α, a precursor of the soluble form of TNF-α, is expressed on activated macrophages and lymphocytes as well as other cell types. After processing by TNF-α-converting enzyme (TACE), the soluble form of TNF-α is cleaved from transmembrane TNF-α and mediates its biological activities through binding to Types 1 and 2 TNF receptors (TNF-R1 and -R2) of remote tissues. Accumulating evidence suggests that not only soluble TNF-α, but also transmembrane TNF-α is involved in the inflamm...

  20. TREM-1 is a positive regulator of TNF-α and IL-8 production in U937 foam cells.

    Science.gov (United States)

    Wang, Yu-Shi; Li, Xiang-Jun; Zhao, Wai-Ou

    2012-05-01

    The purpose of our study was to investigate the expression levels of TREM-1 (triggering receptor expressed on myeloid cells-1) in U937 foam cells and determine whether TREM-1 regulates the production of tumor necrosis factor-alpha and interleukin-8 in these cells. Human U937 cells were incubated with phorbol 12-myristate 13-acetate and then oxidized human low-density lipoprotein to induce foam cell formation. Oil red O staining was used to identify the foam cells. The production of IL-8 and TNF-α by U937 foam cells was assayed by enzyme-linked immunosorbent assay. The expression of TREM-1 mRNA in U937 foam cells was detected by reverse transcription-polymerase chain reaction. Moreover, U937 foam cells were transfected by small interfering RNA using Lipofectamine 2000 to knockdown TREM-1. Western blot was performed to assay protein expression of TREM-1 and ELISA was used to examine the effect of TREM-1 knockdown on IL-8 and TNFproduction. PMA and ox-LDL induced U937 cells to form foam cells. The production of TNF-α and IL-8 was found to be significantly elevated in U937 foam cells, concomitant with a significant up-regulation of TREM-1 mRNA. TREM-1 siRNA was able to partially silence the expression of TREM-1 protein and remarkably inhibited TNF-α and IL-8 production in U937 foam cells, suggesting that TREM-1 is a positive regulator of TNF-α and IL-8 production in U937 foam cells. Our finding that TREM-1 controls the production of IL-8 and TNF-α in U937 foam cells defines a potentially critical role of TREM-1 in the pathogenesis of atherosclerosis and implicates TREM-1 as a potential therapeutic target for the disease.

  1. The β-adrenoceptor agonist clenbuterol is a potent inhibitor of the LPS-induced production of TNF-α and IL-6 in vitro and in vivo

    NARCIS (Netherlands)

    Izeboud, C.A.; Monshouwer, M.; Miert, A.S.J.P.A.M. van; Witkamp, R.F.

    1999-01-01

    Objective and Design: To investigate the suppressive effects of the β-agonist clenbuterol on the release of TNF-α and IL-6 in a lipopolysaccharide (LPS)-model of inflammation, both in vitro and in vivo. Material and Subjects: Human U-937 cell line (monocyte-derived macrophages), and male Wistar rats

  2. Rebeccamycin Attenuates TNF-α-Induced Intestinal Epithelial Barrier Dysfunction by Inhibiting Myosin Light Chain Kinase Production

    Directory of Open Access Journals (Sweden)

    Akihiro Watari

    2017-04-01

    Full Text Available Background/Aims: Although proinflammatory cytokine–induced disruption of intestinal epithelial barrier integrity is associated with intestinal inflammatory disease, effective treatment for barrier dysfunction is lacking. Previously, we demonstrated that rebeccamycin alleviates epithelial barrier dysfunction induced by inflammatory cytokines in Caco-2 cell monolayers; however, the underlying mechanism remained unclear. Here, we investigated the mechanism by which rebeccamycin protects the epithelial barrier function of Caco-2 cells exposed to TNF-α. Methods: To confirm the epithelial barrier function of Caco-2 cell monolayers, transepithelial electrical resistance (TER and paracellular permeability were measured. Production levels and localization of tight junction (TJ proteins were analyzed by immunoblot and immunofluorescence, respectively. Phosphorylated myosin light chain (pMLC and MLC kinase (MLCK mRNA expression levels were determined by immunoblot and quantitative RT-PCR, respectively. Results: Rebeccamycin attenuated the TNF-α-induced reduction in TER and increase in paracellular permeability. Rebeccamycin increased claudin-5 expression, but not claudin-1, -2, -4, occludin or ZO-1 expression, and prevented the TNF-α-induced changes in ZO-1 and occludin localization. Rebeccamycin suppressed the TNF-α-induced increase in MLCK mRNA expression, thus suppressing MLC phosphorylation. The rebeccamycin-mediated reduction in MLCK production and protection of epithelial barrier function were alleviated by Chk1 inhibition. Conclusion: Rebeccamycin attenuates TNF-α-induced disruption of intestinal epithelial barrier integrity by inducing claudin-5 expression and suppressing MLCK production via Chk1 activation.

  3. Rebeccamycin Attenuates TNF-α-Induced Intestinal Epithelial Barrier Dysfunction by Inhibiting Myosin Light Chain Kinase Production.

    Science.gov (United States)

    Watari, Akihiro; Sakamoto, Yuta; Hisaie, Kota; Iwamoto, Kazuki; Fueta, Miho; Yagi, Kiyohito; Kondoh, Masuo

    2017-01-01

    Although proinflammatory cytokine-induced disruption of intestinal epithelial barrier integrity is associated with intestinal inflammatory disease, effective treatment for barrier dysfunction is lacking. Previously, we demonstrated that rebeccamycin alleviates epithelial barrier dysfunction induced by inflammatory cytokines in Caco-2 cell monolayers; however, the underlying mechanism remained unclear. Here, we investigated the mechanism by which rebeccamycin protects the epithelial barrier function of Caco-2 cells exposed to TNF-α. To confirm the epithelial barrier function of Caco-2 cell monolayers, transepithelial electrical resistance (TER) and paracellular permeability were measured. Production levels and localization of tight junction (TJ) proteins were analyzed by immunoblot and immunofluorescence, respectively. Phosphorylated myosin light chain (pMLC) and MLC kinase (MLCK) mRNA expression levels were determined by immunoblot and quantitative RT-PCR, respectively. Rebeccamycin attenuated the TNF-α-induced reduction in TER and increase in paracellular permeability. Rebeccamycin increased claudin-5 expression, but not claudin-1, -2, -4, occludin or ZO-1 expression, and prevented the TNF-α-induced changes in ZO-1 and occludin localization. Rebeccamycin suppressed the TNF-α-induced increase in MLCK mRNA expression, thus suppressing MLC phosphorylation. The rebeccamycin-mediated reduction in MLCK production and protection of epithelial barrier function were alleviated by Chk1 inhibition. Rebeccamycin attenuates TNF-α-induced disruption of intestinal epithelial barrier integrity by inducing claudin-5 expression and suppressing MLCK production via Chk1 activation. © 2017 The Author(s)Published by S. Karger AG, Basel.

  4. NKCC2A and NFAT5 regulate renal TNF production induced by hypertonic NaCl intake.

    Science.gov (United States)

    Hao, Shoujin; Bellner, Lars; Ferreri, Nicholas R

    2013-03-01

    Pathways that contribute to TNF production by the kidney are not well defined. Mice given 1% NaCl in the drinking water for 3 days exhibited a 2.5-fold increase in urinary, but not plasma, TNF levels compared with mice given tap water. Since furosemide attenuated the increase in TNF levels, we hypothesized that hypertonic NaCl intake increases renal TNF production by a pathway involving the Na(+)-K(+)-2Cl(-) cotransporter (NKCC2). A 2.5-fold increase in NKCC2A mRNA accumulation was observed in medullary thick ascending limb (mTAL) tubules from mice given 1% NaCl; a concomitant 2-fold increase in nuclear factor of activated T cells 5 (NFAT5) mRNA and protein expression was observed in the outer medulla. Urinary TNF levels were reduced in mice given 1% NaCl after an intrarenal injection of a lentivirus construct designed to specifically knockdown NKCC2A (EGFP-N2A-ex4); plasma levels of TNF did not change after injection of EGFP-N2A-ex4. Intrarenal injection of EGFP-N2A-ex4 also inhibited the increase of NFAT5 mRNA abundance in the outer medulla of mice given 1% NaCl. TNF production by primary cultures of mTAL cells increased approximately sixfold in response to an increase in osmolality to 400 mosmol/kgH2O produced with NaCl and was inhibited in cells transiently transfected with a dnNFAT5 construct. Transduction of cells with EGFP-N2A-ex4 also prevented increases in TNF mRNA and protein production in response to high NaCl concentration and reduced transcriptional activity of a NFAT5 promoter construct. Since NKCC2A expression is restricted to the TAL, NKCC2A-dependent activation of NFAT5 is part of a pathway by which the TAL produces TNF in response to hypertonic NaCl intake.

  5. Alantolactone from Saussurea lappa Exerts Antiinflammatory Effects by Inhibiting Chemokine Production and STAT1 Phosphorylation in TNF-α and IFN-γ-induced in HaCaT cells.

    Science.gov (United States)

    Lim, Hye-Sun; Jin, Sung-Eun; Kim, Ohn-Soon; Shin, Hyeun-Kyoo; Jeong, Soo-Jin

    2015-07-01

    Skin inflammation is the most common condition seen in dermatology practice and can be caused by various allergic reactions and certain toxins or chemicals. In the present study, we investigated the antiinflammatory effects of Saussurea lappa, a medicinal herb, and its marker compounds alantolactone, caryophyllene, costic acid, costunolide, and dehydrocostuslactone in the HaCaT human keratinocyte cell line. HaCaT cells were stimulated with tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), and treated with S. lappa or each of five marker compounds. Chemokine production and expression were analyzed by enzyme-linked immunosorbent assay and reverse transcription-polymerase chain reaction, respectively. Phosphorylation of signal transducer and activator of transcription (STAT) 1 was determined by immunoblotting. Stimulation with TNF-α and IFN-γ significantly increased the production of the following chemokines: thymus-regulated and activation-regulated chemokine (TARC): regulated on activation, normal T-cell expressed and secreted (RANTES): macrophage-derived chemokine (MDC): and interleukin-8 (IL-8). By contrast, S. lappa and the five marker compounds significantly reduced the production of these chemokines by TNF-α and IFN-γ-treated cells. S. lappa and alantolactone suppressed the TNF-α and IFN-γ-stimulated increase in the phosphorylation of STAT1. Our results demonstrate that alantolactone from S. lappa suppresses TNF-α and IFN-γ-induced production of RANTES and IL-8 by blocking STAT1 phosphorylation in HaCaT cells.

  6. Substrate Stiffness Regulates Proinflammatory Mediator Production through TLR4 Activity in Macrophages

    Science.gov (United States)

    Previtera, Michelle L.; Sengupta, Amitabha

    2015-01-01

    Clinical data show that disease adversely affects tissue elasticity or stiffness. While macrophage activity plays a critical role in driving disease pathology, there are limited data available on the effects of tissue stiffness on macrophage activity. In this study, the effects of substrate stiffness on inflammatory mediator production by macrophages were investigated. Bone marrow–derived macrophages were grown on polyacrylamide gels that mimicked the stiffness of a variety of soft biological tissues. Overall, macrophages grown on soft substrates produced less proinflammatory mediators than macrophages grown on stiff substrates when the endotoxin LPS was added to media. In addition, the pathways involved in stiffness–regulated proinflammation were investigated. The TLR4 signaling pathway was examined by evaluating TLR4, p–NF–κB p65, MyD88, and p–IκBα expression as well as p–NF–κB p65 translocation. Expression and translocation of the various signaling molecules were higher in macrophages grown on stiff substrates than on soft substrates. Furthermore, TLR4 knockout experiments showed that TLR4 activity enhanced proinflammation on stiff substrates. In conclusion, these results suggest that proinflammatory mediator production initiated by TLR4 is mechanically regulated in macrophages. PMID:26710072

  7. Targeting cytokines: production and characterization of anti-TNF-α scFvs by phage display technology.

    Science.gov (United States)

    Abdolalizadeh, Jalal; Nouri, Mohammad; Zolbanin, Jafar Majidi; Barzegari, Abolfazl; Baradaran, Behzad; Barar, Jaleh; Coukos, George; Omidi, Yadollah

    2013-01-01

    The antibody display technology (ADT) such as phage display (PD) has substantially improved the production of monoclonal antibodies (mAbs) and Ab fragments through bypassing several limitations associated with the traditional approach of hybridoma technology. In the current study, we capitalized on the PD technology to produce high affinity single chain variable fragment (scFv) against tumor necrosis factor-alpha (TNF- α), which is a potent pro-inflammatory cytokine and plays important role in various inflammatory diseases and malignancies. To pursue production of scFv antibody fragments against human TNF- α, we performed five rounds of biopanning using stepwise decreased amount of TNF-α (1 to 0.1 μ g), a semi-synthetic phage antibody library (Tomlinson I + J) and TG1 cells. Antibody clones were isolated and selected through enzyme-linked immunosorbent assay (ELISA) screening. The selected scFv antibody fragments were further characterized by means of ELISA, PCR, restriction fragment length polymorphism (RFLP) and Western blot analyses as well as fluorescence microscopy and flow cytometry. Based upon binding affinity to TNF-α , 15 clones were selected out of 50 positive clones enriched from PD in vitro selection. The selected scFvs displayed high specificity and binding affinity with Kd values at nm range to human TNF-α . The immunofluorescence analysis revealed significant binding of the selected scFv antibody fragments to the Raji B lymphoblasts. The effectiveness of the selected scFv fragments was further validated by flow cytometry analysis in the lipopolysaccharide (LPS) treated mouse fibroblast L929 cells. Based upon these findings, we propose the selected fully human anti-TNF-α scFv antibody fragments as potential immunotherapy agents that may be translated into preclinical/clinical applications.

  8. In vitro and in vivo dependency of chemokine generation on C5a and TNF-alpha

    DEFF Research Database (Denmark)

    Czermak, B J; Sarma, V; Bless, N M

    1999-01-01

    Under a variety of conditions, alveolar macrophages can generate early response cytokines (TNF-alpha, IL-1), complement components, and chemotactic cytokines (chemokines). In the current studies, we determined the requirements for TNF-alpha and the complement activation product C5a in chemokine...... production in vitro and in vivo. Two rat CXC chemokines (macrophage inflammatory protein (MIP)-2 and cytokine-induced neutrophil chemoattractant (CINC)) as well as three rat CC chemokines (MIP-1alpha, MIP-1beta, and monocyte chemoattractant protein (MCP)-1) were investigated. Chemokine generation in vitro...... was studied in rat alveolar macrophages stimulated with IgG immune complexes in the absence or presence of Abs to TNF-alpha or C5a. The rat lung injury model induced by IgG immune complex deposition was employed for in vivo studies. Abs to TNF-alpha or C5a were administered intratracheally or i...

  9. Epigallocatechin-3-gallate suppresses TNF-alpha -induced production of MMP-1 and -3 in rheumatoid arthritis synovial fibroblasts.

    Science.gov (United States)

    Yun, Hee-Jin; Yoo, Wan-Hee; Han, Myung-Kwan; Lee, Young-Rae; Kim, Jong-Suk; Lee, Sang-Il

    2008-11-01

    Rheumatoid arthritis (RA) synovial fibroblasts produce matrix metaloproteinases (MMPs), which destroy cartilage and bone in RA joint. Tumor necrosis factor-alpha (TNF-alpha) is one of the most important mediator leading to MMP production in RA synovial fibroblasts. Here we show that epigallocatechin-3-Gallate (EGCG) suppresses TNF-alpha-induced production of MMP-1 and MMP-3 in RA synovial fibroblasts, which was accompanied by inhibition of mitogen activated protein kinase (MAPK) and activator protein-1 (AP-1) pathways. EGCG treatment resulted in dose-dependent inhibition of TNF-alpha-induced production of MMP-1 and MMP-3 at the protein and mRNA levels in RA synovial fibroblast. EGCG treatment also inhibited TNF-alpha-induced phosphorylation of MAPKs, such as ERK1/2, p38, JNK. Electrophoretic mobility shift assay revealed that EGCG inhibits binding of AP-1 proteins to its response elements in synovial fibroblast treated. Thus, EGCG may play a role in regulating inflammation and bone destruction in RA patients.

  10. Ascofuranone inhibits lipopolysaccharide-induced inflammatory response via NF-kappaB and AP-1, p-ERK, TNF-α, IL-6 and IL-1β in RAW 264.7 macrophages.

    Science.gov (United States)

    Park, Jun-Young; Chung, Tae-Wook; Jeong, Yun-Jeong; Kwak, Choong-Hwan; Ha, Sun-Hyung; Kwon, Kyung-Min; Abekura, Fukushi; Cho, Seung-Hak; Lee, Young-Choon; Ha, Ki-Tae; Magae, Junji; Chang, Young-Chae; Kim, Cheorl-Ho

    2017-01-01

    The natural fungal compound ascofuranone (5-chloro-3-[(2E,6E)-7-[(2S)-5,5-dimethyl-4-oxo-tetrahydrofuran-2-yl]-3-methyl-octa-2,6-dienyl]-2,4-dihydroxy-6-methyl-benzaldehyde, MW 420.93) (AF) isolated from Ascochyta viciae has been known to promote cell cycle arrest and inhibit invasion of tumor cells. We have previously studied a structurally similar compound ascochlorin (ASC; MW 404.93) with regard to its anti-inflammatory activity in LPS- stimulated RAW 264.7 macrophages. In order to examine the relationship between the anti-inflammatory activities and the molecular differences between AF and ASC, the activity of AF is herein studied, because ASC has a unique trimethyl oxocyclohexyl structure, while AF has a unique dimethyl-oxo-tetrahydrofuran structure. AF dose-dependently inhibited the production of NO and iNOS and the COX-2 mRNA and protein levels in RAW 264.7 cells. In addition, AF suppressed mRNA expression levels of inflammatory cytokines such as TNF-α, IL-6, and IL-1β, as assessed by RT-PCR. AF (30-50 μg/ml) treatment clearly inhibited the nuclear translocation of NF-κB, AP-1 (p-c-Jun) from the cytosolic space. Phosphorylation of IκB, which functions to maintain the activity of NF-κB, was decreased by AF treatment. Moreover, AF suppressed the binding of NF-κB (p65). Inhibition of IkBa phosphorylation and degradation inhibits nuclear translocation of p65. Immunofluorescence confocal microscopy analysis also revealed that translocation of NF-κB and AP-1 (p-c-Jun) was decreased upon AF treatment. AF specifically decreased the expression level of p-ERK, but not the expression level of p-p38 or p-JNK. Given these results, we suggest that AF suppresses the inflammatory response by targeting p-ERK. This indicates that AF is a negative regulator of LPS-stimulated nuclear translocation of NF-κB and AP-1 (p-c-Jun) in RAW 264.7 macrophages, and specifically it targets p-ERK. Therefore, AF and ASC exert their effects in different ways, most probably because

  11. Effects of Panax Notoginseng Saponins on Expression of TNF-α mRNA in Alveolar Macrophage of Rabbits with Sea Water Drowning%三七总皂苷对海水淹溺兔肺泡巨噬细胞TNF-αmRNA表达的影响

    Institute of Scientific and Technical Information of China (English)

    顾兴; 金发光; 刘同刚

    2011-01-01

    目的 观察海水淹溺后家兔肺组织光镜下变化,并探讨三七总皂苷干预对海水淹溺后家兔肺泡巨噬细胞内TNF-α mRNA表达的影响.方法采用气管切开插入塑料导管、向气管内灌海水4mL/kg,双肺自主通气的方法模拟海水淹溺造成急性肺损伤模型,随机分为对照组、海水淹溺组、三七总皂苷治疗组.于淹溺后进行血气分析,采集支气管肺泡灌洗液,分离和培养肺泡巨噬细胞,并采集肺组织进行病理学分析,逆转录-聚合酶链反应(RT-PCR)检测肺泡巨噬细胞中TNF-α mRNA的表达.结果光镜下,海水淹溺兔肺组织炎症细胞大量浸润,经三七总皂苷治疗后肺组织损伤程度减轻.RT-PCR分析示淹溺后TNF-α mRNA表达显著增高,90min后达最高峰,而三七总皂苷可使之降低.结论海水淹溺急性肺损伤可能与肺泡巨噬细胞内TNF-αmRNA高表达有关.三七总皂苷可降低TNF-α mRNA的高表达,减轻肺损伤程度.%Objective :To observe the histopathology changes of rabbits drowned by sea water and to explore the effect of panax notoginseng saponins on TNF-a mRNA expression. Methods:The drowning model was established with inserting plastic tube to the trachea of rabbits and sea water(4ml7 kg) was poured into air tube with the both of lung auto ventilated to simulate the process of drowning. Rabbits were randomly divided into the control group, the drowning group and the panax notoginseng saponins group. Then the expression of TNF-α mRNA in the alveolar macrophage of rabbits was determined by reverse-transcription polymerase chain reaction (RT-PCR) after drawing. The infiltration of PMN was examined by histopathologic,while the blood gas analysis was determinated. Results: After drowning,the infiltration of PMN and the expression of TNF -α mRNA were significantly increased. However,Panax notoginseng saponins could inhibit the expression in TG and extenuate the degree of acute lung injury. Conclusion:For sea

  12. STAT3 regulates monocyte TNF-alpha production in systemic inflammation caused by cardiac surgery with cardiopulmonary bypass.

    Directory of Open Access Journals (Sweden)

    Petrus R de Jong

    Full Text Available BACKGROUND: Cardiopulmonary bypass (CPB surgery initiates a controlled systemic inflammatory response characterized by a cytokine storm, monocytosis and transient monocyte activation. However, the responsiveness of monocytes to Toll-like receptor (TLR-mediated activation decreases throughout the postoperative course. The purpose of this study was to identify the major signaling pathway involved in plasma-mediated inhibition of LPS-induced tumor necrosis factor (TNFproduction by monocytes. METHODOLOGY/PRINCIPAL FINDINGS: Pediatric patients that underwent CPB-assisted surgical correction of simple congenital heart defects were enrolled (n = 38. Peripheral blood mononuclear cells (PBMC and plasma samples were isolated at consecutive time points. Patient plasma samples were added back to monocytes obtained pre-operatively for ex vivo LPS stimulations and TNF-α and IL-6 production was measured by flow cytometry. LPS-induced p38 mitogen-activated protein kinase (MAPK and nuclear factor (NF-κB activation by patient plasma was assessed by Western blotting. A cell-permeable peptide inhibitor was used to block STAT3 signaling. We found that plasma samples obtained 4 h after surgery, regardless of pre-operative dexamethasone treatment, potently inhibited LPS-induced TNF-α but not IL-6 synthesis by monocytes. This was not associated with attenuation of p38 MAPK activation or IκB-α degradation. However, abrogation of the IL-10/STAT3 pathway restored LPS-induced TNFproduction in the presence of suppressive patient plasma. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that STAT3 signaling plays a crucial role in the downregulation of TNF-α synthesis by human monocytes in the course of systemic inflammation in vivo. Thus, STAT3 might be a potential molecular target for pharmacological intervention in clinical syndromes characterized by systemic inflammation.

  13. Macrophage activation induced by Brucella DNA suppresses bacterial intracellular replication via enhancing NO production.

    Science.gov (United States)

    Liu, Ning; Wang, Lin; Sun, Changjiang; Yang, Li; Tang, Bin; Sun, Wanchun; Peng, Qisheng

    2015-12-01

    Brucella DNA can be sensed by TLR9 on endosomal membrane and by cytosolic AIM2-inflammasome to induce proinflammatory cytokine production that contributes to partially activate innate immunity. Additionally, Brucella DNA has been identified to be able to act as a major bacterial component to induce type I IFN. However, the role of Brucella DNA in Brucella intracellular growth remains unknown. Here, we showed that stimulation with Brucella DNA promote macrophage activation in TLR9-dependent manner. Activated macrophages can suppresses wild type Brucella intracellular replication at early stage of infection via enhancing NO production. We also reported that activated macrophage promotes bactericidal function of macrophages infected with VirB-deficient Brucella at the early or late stage of infection. This study uncovers a novel function of Brucella DNA, which can help us further elucidate the mechanism of Brucella intracellular survival.

  14. Tumour necrosis factor production and natural killer cell activity in peripheral blood during treatment with recombinant tumour necrosis factor

    OpenAIRE

    Männel, Daniela N.; Kist, A.; Ho, A D; Räth, U.; Reichardt, P; Wiedenmann, B; Schlick, E.; Kirchner, H.

    1989-01-01

    Tumour necrosis factor (TNF) has been found to be an important immunomodulator. Among other functions TNF activates natural killer (NK) cells and stimulates monocytes/macrophages in an autocrine fashion. TNF production and NK activity in peripheral blood mononuclear cells were determined in a clinical phase I study in which recombinant human (rh) TNF was administered as a continuous infusion weekly for a period of 8 weeks. Even though TNF production and NK activity were significantly reduced ...

  15. Notch Signaling Mediates TNF-α-Induced IL-6 Production in Cultured Fibroblast-Like Synoviocytes from Rheumatoid Arthritis

    Directory of Open Access Journals (Sweden)

    Zhijun Jiao

    2012-01-01

    Full Text Available It has been reported that Notch family proteins are expressed in synovium tissue and involved in the proliferation of synoviocyte from rheumatoid arthritis (RA. The aim of this paper was to investigate whether Notch signaling mediated TNF-α-induced cytokine production of cultured fibroblast-like synoviocytes (FLSs from RA. Exposure of RA FLSs to TNF-α (10 ng/ml led to increase of Hes-1, a target gene of Notch signaling, and a marked upregulation of Notch 2, Delta-like 1, and Delta-like 3 mRNA levels. Blockage of Notch signaling by a γ-secretase inhibitor (DAPT inhibited IL-6 secretion of RA FLSs in response to TNF-α while treatment with recombinant fusion protein of Notch ligand Delta-like 1 promoted such response. TNF-α stimulation also induced IL-6 secretion in OA FLSs; however, the Hes-1 level remained unaffected. Our data confirm the functional involvement of Notch pathway in the pathophysiology of RA FLSs which may provide a new target for RA therapy.

  16. Role of tumour necrosis factor receptor-1 and nuclear factor-κB in production of TNF-α-induced pro-inflammatory microparticles in endothelial cells.

    Science.gov (United States)

    Lee, S K; Yang, S-H; Kwon, I; Lee, O-H; Heo, J H

    2014-09-02

    Tumour necrosis factor-α (TNF-α) is upregulated in many inflammatory diseases and is also a potent agent for microparticle (MP) generation. Here, we describe an essential role of TNF-α in the production of endothelial cell-derived microparticles (EMPs) in vivo and the function of TNF-α-induced EMPs in endothelial cells. We found that TNF-α rapidly increased blood levels of EMPs in mice. Treatment of human umbilical vein endothelial cells (HUVECs) with TNF-α also induced EMP formation in a time-dependent manner. Silencing of TNF receptor (TNFR)-1 or inhibition of the nuclear factor-κB (NF-κB) in HUVECs impaired the production of TNF-α-induced EMP. Incubation of HUVECs with PKH-67-stained EMPs showed that endothelial cells readily engulfed EMPs, and the engulfed TNF-α-induced EMPs promoted the expression of pro-apoptotic molecules and upregulated intercellular adhesion molecule-1 level on the cell surface, which led to monocyte adhesion. Collectively, our findings indicate that the generation of TNF-α-induced EMPs was mediated by TNFR1 or NF-κB and that EMPs can contribute to apoptosis and inflammation of endothelial cells.

  17. A matrix of cholesterol crystals, but not cholesterol alone, primes human monocytes/macrophages for excessive endotoxin-induced production of tumor necrosis factor-alpha. Role in atherosclerotic inflammation?

    DEFF Research Database (Denmark)

    Bendtzen, Klaus; Christensen, Ole; Nielsen, Claus Henrik

    2014-01-01

    When exposed to small amounts of bacterial endotoxin, matrices of cholesterol crystals, but not cholesterol itself, primed human monocytes/macrophages to a highly augmented (>10-fold) production of inflammatory tumor necrosis factor-α. Priming also sensitized the cells, as 10- to 100-fold lower...... levels of endotoxin were needed for TNFproduction equivalent to that of unprimed cells. The pro-inflammatory effect was selective as endotoxin-induced production of other pro-inflammatory cytokines was unaffected while production of anti-inflammatory interleukin-10 was diminished. These findings...

  18. Hepatocyte growth factor modulates interleukin-6 production in bone marrow derived macrophages: implications for inflammatory mediated diseases.

    Directory of Open Access Journals (Sweden)

    Gina M Coudriet

    Full Text Available The generation of the pro-inflammatory cytokines IL-6, TNF-α, and IL-1β fuel the acute phase response (APR. To maintain body homeostasis, the increase of inflammatory proteins is resolved by acute phase proteins via presently unknown mechanisms. Hepatocyte growth factor (HGF is transcribed in response to IL-6. Since IL-6 production promotes the generation of HGF and induces the APR, we posited that accumulating HGF might be a likely candidate for quelling excess inflammation under non-pathological conditions. We sought to assess the role of HGF and how it influences the regulation of inflammation utilizing a well-defined model of inflammatory activation, lipopolysaccharide (LPS-stimulation of bone marrow derived macrophages (BMM. BMM were isolated from C57BL6 mice and were stimulated with LPS in the presence or absence of HGF. When HGF was present, there was a decrease in production of the pro-inflammatory cytokine IL-6, along with an increase in the anti-inflammatory cytokine IL-10. Altered cytokine production correlated with an increase in phosphorylated GSK3β, increased retention of the phosphorylated NFκB p65 subunit in the cytoplasm, and an enhanced interaction between CBP and phospho-CREB. These changes were a direct result of signaling through the HGF receptor, MET, as effects were reversed in the presence of a selective inhibitor of MET (SU11274 or when using BMM from macrophage-specific conditional MET knockout mice. Combined, these data provide compelling evidence that under normal circumstances, HGF acts to suppress the inflammatory response.

  19. TNF — EDRN Public Portal

    Science.gov (United States)

    TNF (tumor necrosis factor) is a cytokine involved in many biological processes including cell proliferation, differentiation, apoptosis, lipid metabolism, and coagulation. TNF belongs to the TNF superfamily. It is mainly secreted by macrophages and can induce cell death of certain tumor cell lines. TNF binds to its receptors TNFRSF1A/TNFR1 and TNFRSF1B/TNFBR, through which it functions. It is involved in cellular responses to stimuli such as cytokines and stress and plays a key role in regulating the immune response to infection. This cytokine is a pyrogen, causing fever by direct action or by stimulation of interleukin-1 secretion and is implicated in the induction of cachexia. TNF has been implicated in a variety of diseases, including autoimmune diseases, insulin resistance, and cancer. Knockout studies in mice also suggest this cytokine has a neuroprotective function. TNF is cleaved into two chains, tumor necrosis factor, membrane form and tumor necrosis factor, soluble form.

  20. Inhibition of CDKS by roscovitine suppressed LPS-induced *NO production through inhibiting NFkappaB activation and BH4 biosynthesis in macrophages.

    Science.gov (United States)

    Du, Jianhai; Wei, Na; Guan, Tongju; Xu, Hao; An, Jianzhong; Pritchard, Kirkwood A; Shi, Yang

    2009-09-01

    In inflammatory diseases, tissue damage is critically associated with nitric oxide ((*)NO) and cytokines, which are overproduced in response to cellular release of endotoxins. Here we investigated the inhibitory effect of roscovitine, a selective inhibitor of cyclin-dependent kinases (CDKs) on (*)NO production in mouse macrophages. In RAW264.7 cells, we found that roscovitine abolished the production of (*)NO induced by lipopolysaccharide (LPS). Moreover, roscovitine significantly inhibited LPS-induced inducible nitric oxide synthase (iNOS) mRNA and protein expression. Our data also showed that roscovitine attenuated LPS-induced phosphorylation of IkappaB kinase beta (IKKbeta), IkappaB, and p65 but enhanced the phosphorylation of ERK, p38, and c-Jun NH(2)-terminal kinase (JNK). In addition, roscovitine dose dependently inhibited LPS-induced expression of cyclooxygenase-2 (COX)-2, IL-1beta, and IL-6 but not tumor necrosis factor (TNF)-alpha. Tetrahydrobiopterin (BH(4)), an essential cofactor for iNOS, is easily oxidized to 7,8-dihydrobiopterin (BH(2)). Roscovitine significantly inhibited LPS-induced BH(4) biosynthesis and decreased BH(4)-to-BH(2) ratio. Furthermore, roscovitine greatly reduced the upregulation of GTP cyclohydrolase-1 (GCH-1), the rate-limiting enzyme for BH(4) biosynthesis. Using other CDK inhibitors, we found that CDK1, CDK5, and CDK7, but not CDK2, significantly inhibited LPS-induced (*)NO production in macrophages. Similarly, in isolated peritoneal macrophages, roscovitine strongly inhibited (*)NO production, iNOS, and COX-2 upregulation, activation of NFkappaB, and induction of GCH-1 by LPS. Together, our data indicate that roscovitine abolishes LPS-induced (*)NO production in macrophages by suppressing nuclear factor-kappaB activation and BH(4) biosynthesis, which might be mediated by CDK1, CDK5, and CDK7. Our results also suggest that roscovitine may inhibit inflammation and that CDKs may play important roles in the mechanisms by which

  1. Soluble factor from murine bladder tumor-2 cell elevates nitric oxide production in macrophages and enhances the taxol-mediated macrophage cytotoxicity on tumor cells.

    Science.gov (United States)

    Choi, Suck-Chei; Oh, Hyun-Mee; Park, Jae-Sung; Han, Weon-Cheol; Yoon, Kwon-Ha; Kim, Tae-Hyeon; Yun, Ki-Jung; Kim, Eun-Cheol; Nah, Yong-Ho; Cha, Young-Nam; Chung, Hun-Taeg; Jun, Chang-Duk

    2003-01-01

    The therapeutic mechanism of taxol is believed to reside primarily in its ability to stabilize microtubules and prevent cell progression through mitosis. Taxol also can activate macrophage-mediated antitumor mechanism through a nitric oxide (NO)-dependent pathway. To address whether any mechanisms account for superficial urinary bladder tumor cell killing, we evaluated the effects of taxol on the growth and viability of murine bladder tumor-2 (MBT-2) cells in vitro, both in the absence and presence of murine macrophages. In addition, we evaluated whether a soluble factor generated from MBT-2 cells could modulate the antitumor activity of the taxol-activated macrophages. Although taxol inhibited the growth of MBT-2 cells, it did not kill the tumor cells. However, preincubation of macrophages with taxol significantly decreased the viability of MBT-2 cells. Secretion of NO correlated with MBT-2 cell killing, and the activated macrophages failed to kill tumor cell targets in the presence of NG-monomethyl-L-arginine, a competitive inhibitor of NO synthase. By the co-culture of macrophages and MBT-2 cells, untreated macrophages also released modest amount of NO and this was synergistically augmented by the treatment with taxol, indicating that MBT-2 tumor cells released some unknown factor that activated the macrophages and enhanced NO production. We named this factor the tumor-derived macrophage activating factor (TMAF). The TMAF-mediated activation of macrophages to enhance the NO production was not blocked by treatment of macrophages with oxidized low-density lipoprotein (Ox-LDL), implying that the scavenger receptor of macrophages is not involved. Sodium nitroprusside (SNP), an NO donor given to the MBT-2 cells, increased the activities of c-Jun N-terminal kinase and caspase-3 in MBT-2 cells and associated with nucleosomal fragmentation or apoptosis, whereas taxol had no direct effect on these parameters. Collectively, our results strongly suggest that taxol kills

  2. Inhibiting TNF-α signaling does not attenuate induction of endotoxin tolerance

    Directory of Open Access Journals (Sweden)

    Loosbroock C

    2014-12-01

    Full Text Available Christopher Loosbroock, Kenneth W Hunter Department of Microbiology and Immunology, University of Nevada School of Medicine, Reno, NV, USA Abstract: Tumor necrosis factor-alpha (TNF-α is a central mediator of inflammatory responses elicited by Toll-like receptor agonists, such as the Gram-negative bacterial outer membrane antigen lipopolysaccharide (LPS. TNF-α is responsible for altering vascular permeability and activating infiltrating inflammatory cells, such as monocytes and neutrophils. Interestingly, TNF-α has also demonstrated the ability to induce tolerance to subsequent challenges with TNF-α or LPS in monocyte and macrophage cell populations. Tolerance is characterized by the inability to mount a typical inflammatory response during subsequent challenges following the initial exposure to an inflammatory mediator such as LPS. The ability of TNF-α to induce a tolerant-like state with regard to LPS is most likely a regulatory mechanism to prevent excessive inflammation. We hypothesized that the induction of tolerance or the degree of tolerance is dependent upon the production of TNF-α during the primary response to LPS. To investigate TNF-α-dependent tolerance, human monocytic THP-1 cells were treated with TNF-α-neutralizing antibodies or antagonistic TNF-α receptor antibodies before primary LPS stimulation and then monitored for the production of TNF-α during the primary and challenge stimulation. During the primary stimulation, anti-TNF-α treatment effectively attenuated the production of TNF-α and interleukin-1β; however, this reduced production did not impact the induction of endotoxin tolerance. These results demonstrate that interfering with TNF-α signaling attenuates production of inflammatory cytokines without affecting the induction of tolerance. Keywords: endotoxin tolerance, lipopolysaccharide, tumor necrosis factor-alpha, anti-tumor necrosis factor-alpha, THP-1 cells

  3. Production, purification, and characterization of scFv TNF ligand fusion proteins.

    Science.gov (United States)

    Fick, Andrea; Wyzgol, Agnes; Wajant, Harald

    2012-01-01

    Single-chain variable fragments (scFvs) specific for tumor-associated cell surface antigens are the most broadly used reagents to direct therapeutic or diagnostic effector molecules, such as toxins, radioisotopes, and CD3-stimulating scFvs, to tumors. One novel class of effector molecules that can be targeted to tumors by scFvs are ligands of the tumor necrosis factor (TNF) family. Typically, these molecules have apoptosis inducing and/or immune stimulating properties and are therefore highly attractive for cancer treatment. N-terminal fusion of scFvs does not interfere with the receptor binding capabilities of TNF ligands and thus allows the straightforward generation of scFv TNF ligand fusion proteins. We report here a protocol for the purification of eukaryotically produced scFv TNF ligand fusion proteins based on affinity chromatography on anti-Flag agarose and further describe assays for the determination of the targeting index of this type of scFv-targeted proteins.

  4. Effect of TNFproduction inhibitors on the production of pro-inflammatory cytokines by peripheral blood mononuclear cells from HTLV-1-infected individuals.

    Science.gov (United States)

    Luna, T; Santos, S B; Nascimento, M; Porto, M A F; Muniz, A L; Carvalho, E M; Jesus, A R

    2011-11-01

    Human T lymphotropic virus type 1 (HTLV-1) is the causal agent of myelopathy/tropical spastic paraparesis (HAM/TSP), a disease mediated by the immune response. HTLV-1 induces a spontaneous proliferation and production of pro-inflammatory cytokines by T cells, and increasing interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) levels are potentially involved in tissue damage in diseases related to HTLV-1. This exaggerated immune response is also due to an inability of the natural regulatory mechanisms to down-modulate the immune response in this group of patients. TNF-α inhibitors reduce inflammation and have been shown to improve chronic inflammatory diseases in clinical trials. The aim of this study was to evaluate the ability of pentoxifylline, forskolin, rolipram, and thalidomide to decrease in vitro production of TNF-α and IFN-γ in cells of HTLV-1-infected subjects. Participants of the study included 19 patients with HAM/TSP (mean age, 53 ± 11; male:female ratio, 1:1) and 18 HTLV-1 carriers (mean age, 47 ± 11; male:female ratio, 1:2.6). Cytokines were determined by ELISA in supernatants of mononuclear cell cultures. Pentoxifylline inhibited TNF-α and IFN-γ synthesis with the minimum dose used (50 µM). The results with forskolin were similar to those observed with pentoxifylline. The doses of rolipram used were 0.01-1 µM and the best inhibition of TNFproduction was achieved with 1 µM and for IFN-γ production it was 0.01 µM. The minimum dose of thalidomide used (1 µM) inhibited TNFproduction but thalidomide did not inhibit IFN-γ production even when the maximum dose (50 µM) was used. All drugs had an in vitro inhibitory effect on TNFproduction and, with the exception of thalidomide, all of them also decreased IFN-γ production.

  5. Arecoline induces TNF-alpha production and Zonula Occludens-1 redistribution in mouse Sertoli TM4 cells.

    Science.gov (United States)

    Kuo, Tzer-Min; Luo, Shun-Yuan; Chiang, Shang-Lun; Lee, Chi-Pin; Liu, Yu-Fan; Chang, Jan-Gowth; Tsai, Ming-Hsui; Ko, Ying-Chin

    2014-09-09

    Arecoline, a major alkaloid in Areca nut has the ability to induce oxidative stress. The effect of Areca nut, arecoline on reducing sperm quality and quantity were documented previously using several animal models. Junction disruption by down-regulation of the junction-adhesive protein via oxidative stress is an important route mediating abnormal spermatogenesis. Therefore, in this present study, we investigated the functional role of arecoline on junctional proteins. To analyze direct effects of arecoline on testis cells, confluent mouse testicular Sertoli cell line TM4 was exposed to arecoline. Arecoline decreased insoluble zonula occludens-1 (ZO-1) protein expression in TM4 cells, however, arecoline treatment increased TNF-alpha production in both TM4 and monocytic THP1 cells. In addition, ERK1/2 inhibitor PD98059 reversed arecoline effects on TNF-alpha and ZO-1. Arecoline increases the production of TNF-alpha and induces protein redistribution of ZO-1. All these results explain the role of arecoline in male reproductive dysfunction, besides its cytotoxic induction.

  6. Inhibition of Osthole on TNF-a Production and Its Mechanism%蛇床子素抑制TNF-a表达及作用机制初探

    Institute of Scientific and Technical Information of China (English)

    梁正; 郝文龙

    2016-01-01

    目的:研究蛇床子素抗类风湿关节炎作用,并初步探索其作用机制.方法:基于肿瘤坏死因子(TNF-a)在类风湿关节炎发病中的作用,设计一种抑制TNF-a产生的抗类风湿关节炎小分子药物高通量筛选新方法.结果:与DMSO对照组相比,蛇床子素(N8)能显著抑制脾脏细胞中TNF-a的产生(P<0.001),减少TNF-a基因的表达,降低p38磷酸化水平.结论:蛇床子素通过抑制p38的磷酸化,抑制TNF-a基因的表达,其具有开发成为治疗类风湿性关节炎药物的潜力.

  7. RNAi-mediated silencing of TNF-α converting enzyme to down-regulate soluble TNFproduction for treatment of acute and chronic colitis.

    Science.gov (United States)

    Song, Yoonsung; Kim, Ye-Ram; Kim, So Mi; Ul Ain, Qurrat; Jang, Kiseok; Yang, Chul-Su; Kim, Yong-Hee

    2016-10-10

    Elevated level of tumor necrosis factor-α (TNF-α), one of the inflammatory cytokines, is considered to be a potential target for the inflammatory bowel disease (IBD) therapy. Recently, TNF-α converting enzyme (TACE), a sheddase playing an important role in cleaving and releasing bioactive soluble TNF-α, has been challenged with inhibitors to treat inflammatory diseases. Here, we report a novel anti-TNF-α strategy using a short hairpin RNA silencing TACE (shTACE) to prevent and treat colitis. The shTACE formed stable complexes with nona-arginine-based bio-cleavable disulfide bond-linked poly (arginine) (PAs-s) for enhanced gene delivery. Systemically administered shTACE/PAs-s peptoplexes efficiently decreased TNF-α levels, increased survival and alleviated pathophysiological parameters representing colitis severity. Our results demonstrate effectiveness and safety of shTACE/PAs-s peptoplexes with the capacity of overcoming acute and chronic ulcerative colitis through modulation of excessive inflammatory responses in the colon, providing a strong potential as a therapeutic agent for a broad variety of inflammatory diseases.

  8. Inhibitor of apoptosis proteins (IAPs) and their antagonists regulate spontaneous and tumor necrosis factor (TNF)-induced proinflammatory cytokine and chemokine production.

    Science.gov (United States)

    Kearney, Conor J; Sheridan, Clare; Cullen, Sean P; Tynan, Graham A; Logue, Susan E; Afonina, Inna S; Vucic, Domagoj; Lavelle, Ed C; Martin, Seamus J

    2013-02-15

    Inhibitor of apoptosis proteins (IAPs) play a major role in determining whether cells undergo apoptosis in response to TNF as well as other stimuli. However, TNF is also highly proinflammatory through its ability to trigger the secretion of multiple inflammatory cytokines and chemokines, which is arguably the most important role of TNF in vivo. Indeed, deregulated production of TNF-induced cytokines is a major driver of inflammation in several autoimmune conditions such as rheumatoid arthritis. Here, we show that IAPs are required for the production of multiple TNF-induced proinflammatory mediators. Ablation or antagonism of IAPs potently suppressed TNF- or RIPK1-induced proinflammatory cytokine and chemokine production. Surprisingly, IAP antagonism also led to spontaneous production of chemokines, particularly RANTES, in vitro and in vivo. Thus, IAPs play a major role in influencing the production of multiple inflammatory mediators, arguing that these proteins are important regulators of inflammation in addition to apoptosis. Furthermore, small molecule IAP antagonists can modulate spontaneous as well as TNF-induced inflammatory responses, which may have implications for use of these agents in therapeutic settings.

  9. Induction of Monocyte Chemoattractant Proteins in Macrophages via the Production of Granulocyte-macrophage Colony Stimulating Factor by Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Teizo eYoshimura

    2016-01-01

    Full Text Available Monocyte chemoattractant protein-1 (MCP-1/CCL2 plays an important role in the initiation and progression of cancer. We previously reported that in 4T1 murine breast cancer, non-tumor stromal cells, including macrophages, were the major source of MCP-1. In the present study, we analyzed the potential mechanisms by which MCP-1 is upregulated in macrophages infiltrating 4T1 tumors. We found that cell-free culture supernatants of 4T1 cells (4T1-sup markedly upregulated MCP-1 production by peritoneal inflammatory macrophages. 4T1-sup also upregulated other MCPs, such as MCP-3/CCL7 and MCP-5/CCL12, but modestly neutrophil chemotactic chemokines, such as KC/CXCL1 or MIP-2/CXCL2. Physicochemical analysis indicated that an approximately 2 to 3 kDa 4T1 cell product was responsible for the capacity of 4T1-sup to upregulate MCP-1 expression by macrophages. A neutralizing antibody against granulocyte-macrophage-colony stimulating factor (GM-CSF, but not macrophage-colony stimulating factor, almost completely abrogated MCP-1-inducing activity of 4T1-sup, and recombinant GM-CSF potently up-regulated MCP-1 production by macrophages. The expression levels of GM-CSF in 4T1 tumors in vivo were higher than other tumors, such as Lewis lung carcinoma. Treatment of mice with anti-GM-CSF antibody significantly reduced the growth of 4T1 tumors at the injection sites but did not reduce MCP-1 production or lung metastasis in tumor-bearing mice. These results indicate that 4T1 cells have the capacity to directly up-regulate MCP-1 production by macrophages by releasing GM-CSF; however, other mechanisms are also involved in increased MCP-1 levels in the 4T1 tumor microenvironment.

  10. Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Lee, Yi Sle; Seo, Kyo Won; Bae, Jin Ung; Kim, Gyu Hee; Park, So Youn; Kim, Chi Dae, E-mail: chidkim@pusan.ac.kr

    2012-04-01

    Homocysteine (Hcy) at elevated levels is an independent risk factor of cardiovascular diseases, including atherosclerosis. In the present study, we investigated the effect of Hcy on the production of matrix metalloproteinases (MMP) in murine macrophages. Among the MMP known to regulate the activities of collagenase and gelatinase, Hcy exclusively increased the gelatinolytic activity of MMP-9 in J774A.1 cells as well as in mouse peritoneal macrophages. Furthermore, this activity was found to be correlated with Western blot findings in J774A.1 cells, which showed that MMP-9 expression was concentration- and time-dependently increased by Hcy. Inhibition of the ERK and Akt pathways led to a significant decrease in Hcy-induced MMP-9 expression, and combined treatment with inhibitors of the ERK and Akt pathways showed an additive effects. Activity assays for ERK and Akt showed that Hcy increased the phosphorylation of both, but these phosphorylation were not affected by inhibitors of the Akt and ERK pathways. In line with these findings, the molecular inhibition of ERK and Akt using siRNA did not affect the Hcy-induced phosphorylation of Akt and ERK, respectively. Taken together, these findings suggest that Hcy enhances MMP-9 production in murine macrophages by separately activating the ERK and Akt signaling pathways. -- Highlights: ► Homocysteine (Hcy) induced MMP-9 production in murine macrophages. ► Hcy induced MMP-9 production through ERK and Akt signaling pathways. ► ERK and Akt signaling pathways were activated by Hcy in murine macrophages. ► ERK and Akt pathways were additively act on Hcy-induced MMP-9 production. ► Hcy enhances MMP-9 production in macrophages via activation of ERK and Akt signaling pathways in an independent manner.

  11. Metabolism of phenol and hydroquinone to reactive products by macrophage peroxidase or purified prostaglandin H synthase

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, M.J.; Shurina, R.D.; Kalf, G.F. (Thomas Jefferson Univ., Philadelphia, PA (USA))

    1989-07-01

    Macrophages, an important cell-type of the bone marrow stroma, are possible targets of benzene toxicity because they contain relatively large amounts of prostaglandin H synthase (PHS), which is capable of metabolizing phenolic compounds to reactive species. PHS also catalyzes the production of prostaglandins, negative regulators of myelopoiesis. Studies indicate that the phenolic metabolites of benzene are oxidized in bone marrow to reactive products via peroxidases. With respect to macrophages, PHS peroxidase is implicated, as in vivo benzene-induced myelotoxicity is prevented by low doses of nonsteroidal anti-inflammatory agents, drugs that inhibit PHS. Incubations of either 14C-phenol or 14C-hydroquinone with a lysate of macrophages collected from mouse peritoneum (greater than 95% macrophages), resulted in an irreversible binding to protein that was dependent upon H2O2, incubation time, and concentration of radiolabel. Production of protein-bound metabolites from phenol or hydroquinone was inhibited by the peroxidase inhibitor aminotriazole. Protein binding from 14C-phenol also was inhibited by 8 microM hydroquinone, whereas binding from 14C-hydroquinone was stimulated by 5 mM phenol. The nucleophile cysteine inhibited protein binding of both phenol and hydroquinone and increased the formation of radiolabeled water-soluble metabolites. Similar to the macrophage lysate, purified PHS also catalyzed the conversion of phenol to metabolites that bound to protein and DNA; this activation was both H2O2- and arachidonic acid-dependent. These results indicate a role for macrophage peroxidase, possibly PHS peroxidase, in the conversion of phenol and hydroquinone to reactive metabolites and suggest that the macrophage should be considered when assessing the hematopoietic toxicity of benzene.

  12. Administration of PDE4 Inhibitors Suppressed the Pannus-Like Inflammation by Inhibition of Cytokine Production by Macrophages and Synovial Fibroblast Proliferation

    Directory of Open Access Journals (Sweden)

    Ichiro Miki

    2007-09-01

    Full Text Available A marked proliferation of synovial fibroblasts in joints leads to pannus formation in rheumatoid arthritis (RA. Various kinds of cytokines are produced in the pannus. The purpose of this study is to elucidate the effects of phosphodiesterase 4 (PDE4 inhibitors in a new animal model for the evaluation of pannus formation and cytokine production in the pannus. Mice sensitized with methylated bovine serum albumin (mBSA were challenged by subcutaneous implantation of a membrane filter soaked in mBSA solution in the back of the mice. Drugs were orally administered for 10 days. The granuloma formed around the filter was collected on day 11. It was chopped into pieces and cultured in vitro for 24 hr. The cytokines were measured in the supernatants. The type of cytokines produced in the granuloma was quite similar to those produced in pannus in RA. Both PDE4 inhibitors, KF66490 and SB207499, suppressed the production of IL-1β, TNF-α, and IL-12, and the increase in myeloperoxidase activity, a marker enzyme for neutrophils and hydroxyproline content. Compared to leflunomide, PDE4 inhibitors more strongly suppressed IL-12 production and the increase in myeloperoxidase activity. PDE4 inhibitors also inhibited lipopolysaccharide-induced TNF-α and IL-12 production from thioglycolate-induced murine peritoneal macrophages and the proliferation of rat synovial fibroblasts. These results indicate this model makes it easy to evaluate the effect of drugs on various cytokine productions in a granuloma without any purification step and may be a relevant model for evaluating novel antirheumatic drugs on pannus formation in RA. PDE4 inhibitors could have therapeutic effects on pannus formation in RA by inhibition of cytokine production by macrophages and synovial fibroblast proliferation.

  13. Mce4A protein of Mycobacterium tuberculosis induces pro inflammatory cytokine response leading to macrophage apoptosis in a TNF-α dependent manner.

    Science.gov (United States)

    Saini, Neeraj Kumar; Sinha, Rajesh; Singh, Pooja; Sharma, Monika; Pathak, Rakesh; Rathor, Nisha; Varma-Basil, Mandira; Bose, Mridula

    2016-11-01

    Mycobacterium tuberculosis subverts the host immune response through numerous immune-evasion strategies. Apoptosis has been identified as one such mechanism and has been well studied in M. tuberculosis infection. Here, we demonstrate that the Mce4A protein of mce4 operon is involved in the induction of host cell apoptosis. Earlier we have shown that the Mce4A was required for the invasion and survival of M. tuberculosis. In this report we present evidence to establish a role for Mce4A in the modulation of THP-1 cell survival. Recombinant Mce4A was expressed and purified from Escherichia coli as inclusion bodies and then refolded. Viability of THP-1 cells decreased in a dose-dependent manner when treated with Mce4A. The secretion of pro-inflammatory cytokines like tumor necrosis factor (TNF-α) or interferon gamma (IFN-γ), and enhanced nitric oxide release was observed when the THP-1 cells, were treated with Mce4A protein. The Mce4A induced apoptosis of the THP-1 cells was TNF-α dependent since blocking with anti TNF-α antibody abrogated this phenomenon. Collectively, these data suggest that Mce4A can induce the THP-1 cells to undergo apoptosis which primarily follows a TNF- α dependent pathway.

  14. Antibiotics and production of granulocyte-macrophage colony-stimulating factor by human bronchial epithelial cells in vitro. A comparison of cefodizime and ceftriaxone.

    Science.gov (United States)

    Pacheco, Y; Hosni, R; Dagrosa, E E; Gormand, F; Guibert, B; Chabannes, B; Lagarde, M; Perrin-Fayolle, M

    1994-04-01

    Cultured human bronchial epithelial cells (HBEC) produce both granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 8 (IL-8). The influence of cefodizime (CAS 69739-16-8), a new broad spectrum cephalosporin with immunostimulatory effects, and ceftriaxone on the production of GM-CSF and IL-8 in HBEC primary cultures was investigated. HBEC were isolated from biopsy specimens obtained during fibreoptic bronchoscopy in 12 patients (most frequent diagnosis: chronic bronchitis). Confluent monolayers of HBEC cultured on collagen were incubated for 24 h in a medium without study drugs (spontaneous production) or containing cefodizime or ceftriaxone at the clinically relevant concentrations of 1, 10 and 100 mg/l, with or without tumor necrosis factor alpha (TNF alpha, 100 U/ml). GM-CSF and IL-8 were measured in supernatant by ELISA technique. TNF alpha alone led to a significant (p ceftriaxone had no influence on cytokine production. This is the first report of a stimulatory effect of a beta-lactam antibiotic on cytokine production by epithelial cells. GM-CSF production by epithelial cells is an important immunological step for neutrophil and monocyte recruitment and cell priming during lung defence. Previous studies with cefodizime in immunodepressed subjects have shown activation of phagocytosis and phagocytosis-related functions in non-lung phagocytes. An indirect mechanism of action, similar to that indicated by our results, may have been responsible for these stimulatory effects.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. Ethylacetate extract from Draconis Resina inhibits LPS-induced inflammatory responses in vascular smooth muscle cells and macrophages via suppression of ROS production.

    Science.gov (United States)

    Heo, Sook-Kyoung; Yi, Hyo-Seung; Yun, Hyun-Jeong; Ko, Chang-Hyun; Choi, Jae-Woo; Park, Sun-Dong

    2010-05-01

    Draconis Resina (DR) is a type of dragon's blood resin obtained from Daemomorops draco BL. (Palmae). DR has long been used as a traditional Korean herbal medicine, and is currently used in traditional clinics to treat wounds, tumors, diarrhea, and rheumatism, insect bites and other conditions. In this study, we evaluated fractionated extracts of DR to determine if they inhibited the production of interleukin-1beta (IL-1beta) and the expression of cyclooxygenase (COX)-2. The results of this analysis revealed that the ethylacetate extract of Draconis Resina (DREA) was more potent than that of other extracts. Moreover, DREA inhibited the production of nitric oxide (NO), reactive oxygen species (ROS), prostaglandin E(2) (PGE(2)), tumor necrosis factor-alpha (TNF-alpha), IL-8 and IL-6 in lipopolysaccharide (LPS)-treated human aortic smooth muscle cells (HASMC) and RAW 264.7 macrophages. Furthermore, treatment with an NADPH oxidase assembly inhibitor, AEBSF, efficiently blocked LPS-induced mitogen-activated protein kinases (MAPKs) activation, as did DREA. These findings indicate that DREA inhibits the production of NO, PGE(2), TNF-alpha, IL-8, and IL-6 by LPS via the inhibition of ROS production, which demonstrates that DREA inhibits LPS-induced inflammatory responses via the suppression of ROS production. Taken together, these results indicate that DREA has the potential for use as an anti-atherosclerosis agent.

  16. Macrophages - silent enemies in juvenile idiopathic arthritis.

    Science.gov (United States)

    Świdrowska-Jaros, Joanna; Orczyk, Krzysztof; Smolewska, Elżbieta

    2016-07-06

    The inflammatory response by secretion of cytokines and other mediators is postulated as one of the most significant factors in the pathophysiology of juvenile idiopathic arthritis (JIA). The effect of macrophage action depends on the type of their activation. Classically activated macrophages (M1) are responsible for release of molecules crucial for joint inflammation. Alternatively activated macrophages (M2) may recognize self antigens by scavenger receptors and induce the immunological reaction leading to autoimmune diseases such as JIA. Molecules essential for JIA pathophysiology include: TNF-α, the production of which precedes synovial inflammation in rheumatoid arthritis; IL-1 as a key mediator of synovial damage; chemotactic factors for macrophages IL-8 and MCP-1; IL6, the level of which correlates with the radiological joint damage; MIF, promoting the secretion of TNF-α and IL-6; CCL20 and HIF, significant for the hypoxic synovial environment in JIA; GM-CSF, stimulating the production of macrophages; and IL-18, crucial for NK cell functions. Recognition of the role of macrophages creates the potential for a new therapeutic approach.

  17. Interaction with extracellular matrix proteins influences Lsh/Ity/Bcg (candidate Nramp) gene regulation of macrophage priming/activation for tumour necrosis factor-alpha and nitrite release.

    Science.gov (United States)

    Formica, S; Roach, T I; Blackwell, J M

    1994-05-01

    The murine resistance gene Lsh/Ity/Bcg regulates activation of macrophages for tumour necrosis factor-alpha (TNF-alpha)-dependent production of nitric oxide mediating antimicrobial activity against Leishmania, Salmonella and Mycobacterium. As Lsh is differentially expressed in macrophages from different tissue sites, experiments were performed to determine whether interaction with extracellular matrix (ECM) proteins would influence the macrophage TNF-alpha response. Plating of bone marrow-derived macrophages onto purified fibrinogen or fibronectin-rich L929 cell-derived matrices, but not onto mannan, was itself sufficient to stimulate TNF-alpha release, with significantly higher levels released from congenic B10.L-Lshr compared to C57BL/10ScSn (Lshs) macrophages. Only macrophages plated onto fibrinogen also released measurable levels of nitrites, again higher in Lshr compared to Lshs macrophages. Addition of interferon-gamma (IFN-gamma), but not bacterial lipopolysaccharide or mycobacterial lipoarabinomannan, as a second signal enhanced the TNF-alpha and nitrite responses of macrophages plated onto fibrinogen, particularly in the Lshr macrophages. Interaction with fibrinogen and fibronectin also primed macrophages for an enhanced TNF-alpha response to leishmanial parasites, but this was only translated into enhanced nitrite responses in the presence of IFN-gamma. In these experiments, Lshr macrophages remained superior in their TNF-alpha responses throughout, but to a degree which reflected the magnitude of the difference observed on ECM alone. Hence, the specificity for the enhanced TNF-alpha responses of Lshr macrophages lay in their interaction with fibrinogen and fibronectin ECM, while a differential nitrite response was only observed with fibrinogen and/or IFN-gamma. The results are discussed in relation to the possible function of the recently cloned candidate gene Nramp, which has structural identity to eukaryote transporters and an N-terminal cytoplasmic

  18. Study of Nitric Oxide production by murine peritoneal macrophages induced by Brucella Lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Kavoosi G

    2001-07-01

    Full Text Available Brueclla is a gram negative bacteria that causes Brucellosis. Lipopolysaccharide (LPS ", the pathogenic agent of Brucella is composed of O-chain, core oligosaccharide and lipid A. in addition, the structural and biological properties of different LPS extracted from different strains are not identical. The first defense system against LPS is nonspecific immunity that causes macrophage activation. Activated macrophages produce oxygen and nitrogen radicals that enhance the protection against intracellular pathogens.In this experiment LPS was extracted by hot phenol- water procedure and the effect of various LPSs on nitric oxide prodution by peritoneal mouse macrophages was examined.Our results demonstrated that the effect of LPS on nitric oxide production is concentration-dependent we observed the maximum response in concentration of 10-20 microgram per milliliter. Also our results demonstrate that LPS extracted from vaccine Brucella abortus (S 19 had a highe effect on nitric oxide production than the LPS from other strains

  19. Flavonoid myricetin inhibits TNF-α-stimulated production of inflammatory mediators by suppressing the Akt, mTOR and NF-κB pathways in human keratinocytes.

    Science.gov (United States)

    Lee, Da Hee; Lee, Chung Soo

    2016-08-05

    Flavonoid myricetin has been shown to exhibit anti-inflammatory and anti-oxidant effects. Nevertheless, the effect of myricetin on the TNF-α-stimulated production of inflammatory mediators in keratinocytes has not been studied. Using human keratinocytes, we examined the effect of myricetin on the TNF-α-stimulated production of inflammatory mediators in relation to the Akt, mTOR and NF-κB pathways, which regulate the transcription genes involved in immune and inflammatory responses. TNF-α stimulated production of the inflammatory mediators and reactive oxygen species in keratinocytes, and activation of the Akt, mTOR and NF-κB pathways in HaCaT cells and primary keratinocytes. Myricetin, Akt inhibitor, Bay 11-7085 (an inhibitor of NF-κB activation), rapamycin (mTOR inhibitor) and N-acetylcysteine attenuated TNF-α-induced activation of Akt, mTOR and NF-κB. Myricetin and N-acetylcysteine attenuated the TNF-α-stimulated production of cytokines and chemokines, and production of reactive oxygen species in keratinocytes. The results show that myricetin may reduce TNF-α-stimulated inflammatory mediator production in keratinocytes by suppressing the activation of the Akt, mTOR and NF-κB pathways. The effect of myricetin appears to be associated with inhibition of the production of reactive oxygen species. Further, myricetin appears to attenuate the proinflammatory mediator-induced inflammatory skin diseases.

  20. Macrophage peroxisome proliferator-activated receptor γ deficiency delays skin wound healing through impairing apoptotic cell clearance in mice.

    Science.gov (United States)

    Chen, H; Shi, R; Luo, B; Yang, X; Qiu, L; Xiong, J; Jiang, M; Liu, Y; Zhang, Z; Wu, Y

    2015-01-15

    Skin wound macrophages are key regulators of skin repair and their dysfunction causes chronic, non-healing skin wounds. Peroxisome proliferator-activated receptor gamma (PPARγ) regulates pleiotropic functions of macrophages, but its contribution in skin wound healing is poorly defined. We observed that macrophage PPARγ expression was upregulated during skin wound healing. Furthermore, macrophage PPARγ deficiency (PPARγ-knock out (KO)) mice exhibited impaired skin wound healing with reduced collagen deposition, angiogenesis and granulation formation. The tumor necrosis factor alpha (TNF-α) expression in wounds of PPARγ-KO mice was significantly increased and local restoration of TNF-α reversed the healing deficit in PPARγ-KO mice. Wound macrophages produced higher levels of TNF-α in PPARγ-KO mice compared with control. In vitro, the higher production of TNF-α by PPARγ-KO macrophages was associated with impaired apoptotic cell clearance. Correspondingly, increased apoptotic cell accumulation was found in skin wound of PPARγ-KO mice. Mechanically, peritoneal and skin wound macrophages expressed lower levels of various phagocytosis-related molecules. In addition, PPARγ agonist accelerated wound healing and reduced local TNF-α expression and wound apoptotic cells accumulation in wild type but not PPARγ-KO mice. Therefore, PPARγ has a pivotal role in controlling wound macrophage clearance of apoptotic cells to ensure efficient skin wound healing, suggesting a potential new therapeutic target for skin wound healing.

  1. Regulation of tumour necrosis factor (TNF) induced apoptosis by soluble TNF receptors in Helicobacter pylori infection

    OpenAIRE

    Shibata, J; Goto, H.; Arisawa, T.; Niwa, Y.; Hayakawa, T.; Nakayama, A.; Mori, N.

    1999-01-01

    BACKGROUND—Tumour necrosis factor (TNF) is a predominant cytokine produced in the gastric mucosa of patients with Helicobacter pylori infection. TNF induces apoptosis in a variety of cells. The soluble TNF receptors (sTNF-Rs) can be divided into sTNF-RI and sTNF-RII, both of which inhibit TNF activity. However, their precise mechanisms remain unclear.
AIM—To investigate the role of sTNF-Rs in H pylori infection.
METHODS—In 40 patients, production of TNF and sTNF-Rs in gastric mucosa was measu...

  2. Cytokine-induced sleep: Neurons respond to TNF with production of chemokines and increased expression of Homer1a in vitro.

    Science.gov (United States)

    Karrer, Maureen; Lopez, Martin Alexander; Meier, Daniel; Mikhail, Cyril; Ogunshola, Omolara O; Müller, Andreas Felix; Strauss, Laura; Tafti, Mehdi; Fontana, Adriano

    2015-07-01

    Interactions of neurons with microglia may play a dominant role in sleep regulation. TNF may exert its somnogeneic effects by promoting attraction of microglia and their processes to the vicinity of dendrites and synapses. We found TNF to stimulate neurons (i) to produce CCL2, CCL7 and CXCL10, chemokines acting on mononuclear phagocytes and (ii) to stimulate the expression of the macrophage colony stimulating factor (M-CSF/Csf1), which leads to elongation of microglia processes. TNF may also act on neurons by affecting the expression of genes essential in sleep-wake behavior. The neuronal expression of Homer1a mRNA, increases during spontaneous and enforced periods of wakefulness. Mice with a deletion of Homer1a show a reduced wakefulness with increased non-rapid eye movement (NREM) sleep during the dark period. Recently the TNF-dependent increase of NREM sleep in the dark period of mice with CD40-induced immune activation was found to be associated with decreased expression of Homer1a. In the present study we investigated the effects of TNF and IL-1β on gene expression in cultures of the neuronal cell line HT22 and cortical neurons. TNF slightly increased the expression of Homer1a and IL-1β profoundly enhanced the expression of Early growth response 2 (Egr2). The data presented here indicate that the decreased expression of Homer1a, which was found in the dark period of mice with CD40-induced increase of NREM sleep is not due to inhibitory effects of TNF and IL-1β on the expression of Homer1a in neurons.

  3. Seasonal and pandemic influenza H1N1 viruses induce differential expression of SOCS-1 and RIG-I genes and cytokine/chemokine production in macrophages.

    Science.gov (United States)

    Ramírez-Martínez, Gustavo; Cruz-Lagunas, Alfredo; Jiménez-Alvarez, Luis; Espinosa, Enrique; Ortíz-Quintero, Blanca; Santos-Mendoza, Teresa; Herrera, María Teresa; Canché-Pool, Elsy; Mendoza, Criselda; Bañales, José L; García-Moreno, Sara A; Morán, Juan; Cabello, Carlos; Orozco, Lorena; Aguilar-Delfín, Irma; Hidalgo-Miranda, Alfredo; Romero, Sandra; Suratt, Benjamin T; Selman, Moisés; Zúñiga, Joaquín

    2013-04-01

    Infection with pandemic (pdm) A/H1N1 virus induces high levels of pro-inflammatory mediators in blood and lungs of experimental animals and humans. To compare the involvement of seasonal A/PR/8/34 and pdm A/H1N1 virus strains in the regulation of inflammatory responses, we analyzed the changes in the whole-genome expression induced by these strains in macrophages and A549 epithelial cells. We also focused on the functional implications (cytokine production) of the differential induction of suppressors of cytokine signaling (SOCS)-1, SOCS-3, retinoid-inducible gene (RIG)-I and interferon receptor 1 (IFNAR1) genes by these viral strains in early stages of the infection. We identified 130 genes differentially expressed by pdm A/H1N1 and A/PR/8/34 infections in macrophages. mRNA levels of SOCS-1 and RIG-I were up-regulated in macrophages infected with the A/PR/8/34 but not with pdm A/H1N1 virus. mRNA levels of SOCS-3 and IFNAR1 induced by A/PR/8/34 and pdm A/H1N1 strains in macrophages, as well as in A549 cells were similar. We found higher levels of IL-6, TNF-α, IL-10, CCL3, CCL5, CCL4 and CXCL8 (p < 0.05) in supernatants from cultures of macrophages infected with the pdm A/H1N1 virus compared to those infected with the A/PR/8/34 strain, coincident with the lack of SOCS-1 and RIG-I expression. In contrast, levels of INF-α were higher in cultures of macrophages 48h after infection with the A/PR/8/34 strain than with the pdm A/H1N1 virus. These findings suggest that factors inherent to the pdm A/H1N1 viral strain may increase the production of inflammatory mediators by inhibiting SOCS-1 and modifying the expression of antiviral immunity-related genes, including RIG-I, in human macrophages. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Transcriptomic Analysis of THP-1 Macrophages Exposed to Lipoprotein Hydrolysis Products Generated by Lipoprotein Lipase.

    Science.gov (United States)

    Thyagarajan, Narmadaa; Marshall, Jenika D; Pickett, Arthur T; Schumacher, Clemens; Yang, Yanbo; Christian, Sherri L; Brown, Robert J

    2017-03-01

    Macrophage lipoprotein lipase (LPL) induces lipid accumulation and promotes atherosclerosis. However, the effects of lipoprotein hydrolysis products generated by LPL on macrophage-derived foam cell formation are not clearly understood. Thus, we analyzed the transcriptomic response to hydrolysis products via microarray analyses on RNA isolated from human THP-1 macrophages incubated with total lipoprotein hydrolysis products generated by LPL. The expression of 183 transcripts was significantly upregulated and 133 transcripts were significantly downregulated. Bioinformatics analyses revealed that there was a significant over-representation of genes involved in cell cycling, stress response, type I interferon signaling, cellular metal ion homeostasis, sterol metabolism, and nuclease activity. Interestingly, transcripts for 63 small nucleolar RNA were significantly upregulated. We verified the microarray data by quantitative real-time PCR and found that the expression of SNORA56, as well as the expression of genes associated with the cell cycle (PCNA and DKC1 variant 3), stress response (ATF3), type I interferon signaling (IFITM1), and lipid metabolism (CD36 and PLIN2) were significantly affected by LPL hydrolysis products. To determine if the free fatty acid (FFA) component of total lipoprotein hydrolysis products is sufficient to alter the expression of these genes, THP-1 macrophages were also incubated with the total FFA or individual classes of the FFA component. The gene regulation by the FFA component did not mimic that of the hydrolysis products, suggesting that the regulation of gene expression in THP-1 macrophages depends on the specific combination and concentration of lipid species present in the hydrolysis products, and not solely on FFA.

  5. Gentiolactone, a secoiridoid dilactone from Gentiana triflora, inhibits TNF-α, iNOS and Cox-2 mRNA expression and blocks NF-κB promoter activity in murine macrophages.

    Directory of Open Access Journals (Sweden)

    Hidetoshi Yamada

    Full Text Available Gentian roots have been used as a herbal medicine because of their anti-inflammatory activities. However, the molecular mechanisms of these anti-inflammatory effects remain to be completely explained.Here, we investigated anti-inflammatory effects of gentian roots and showed that root extracts from Gentiana triflora inhibited lipopolysaccharide (LPS-induced expression of TNF-α in RAW264.7 cells. The extracts also contained swertiamarin and gentiopicroside, which are the major active compounds of gentian roots; however, neither compound had any effect on LPS-induced TNFproduction in our test system. We isolated gentiolactone as an inhibitor of TNFproduction from the extracts. Gentiolactone also inhibited LPS-induced inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (Cox-2 expression at the mRNA level. Moreover, gentiolactone suppressed NF-κB transcriptional activity without inhibition of IκB degradation or NF-κB nuclear transport.Our results indicate that inhibition of TNF-α, iNOS and Cox-2 expression by gentiolactone is one of the mechanisms of the anti-inflammatory properties of gentian roots.

  6. Investigation of Macrophage Differentiation and Cytokine Production in an Undergraduate Immunology Laboratory

    Science.gov (United States)

    Berkes, Charlotte; Chan, Leo Li-Ying

    2015-01-01

    We have developed a semester-long laboratory project for an undergraduate immunology course in which students study multiple aspects of macrophage biology including differentiation from progenitors in the bone marrow, activation upon stimulation with microbial ligands, expression of cell surface markers, and modulation of cytokine production. In…

  7. Exhaustive exercise increases the TNFproduction in response to flagellin via the upregulation of toll-like receptor 5 in the large intestine in mice.

    Science.gov (United States)

    Uchida, Masataka; Oyanagi, Eri; Kawanishi, Noriaki; Iemitsu, Motoyuki; Miyachi, Motohiko; Kremenik, Michael J; Onodera, Sho; Yano, Hiromi

    2014-01-01

    Although intense exercise may induce temporary immune depression, it is unclear whether exercise stimulates tumor necrosis factor-alpha (TNF-α) production in response to flagella protein flagellin (FG), which binds to toll-like receptor 5 (TLR5) and induces the production of pro-inflammatory cytokines. Male C3H/HeN mice were administered FG (1mg/kg, i.v.) after exhaustive exercise (EX), and the plasma TNF-α concentrations were examined. The production of TNF-α and the TLR5 expression in both RAW264 and Caco2 cells were measured under FG conditions in vitro. Although the plasma TNF-α concentrations were observed to significantly increase in both the EX and non-EX (N-EX) mice (pTNF-α levels in the EX mice were significantly higher than those observed in the N-EX mice (pTNFproduction and TLR5 expression on the Caco2, but not RAW264 cells. Interestingly, a high Ep-induced TLR5 expression was observed on the Caco2 cell surface, which was inhibited by an inhibitor of phosphoinositide3-kinase (PI3K), Ly294002, as well as a β-adrenergic blocker, propranolol. In addition, the EX-induced TNFproduction observed in response to FG was also attenuated by pretreatment with propranolol. Our findings suggest that exhaustive exercise upregulates the production of TNF-α in response to FG via a high expression of TLR5 on the intestinal cell surface following the stimulation of β-adrenergic receptors with exercise.

  8. Involvement of PI3K/AKT and MAPK Pathways for TNFProduction in SiHa Cervical Mucosal Epithelial Cells Infected with Trichomonas vaginalis.

    Science.gov (United States)

    Yang, Jung-Bo; Quan, Juan-Hua; Kim, Ye-Eun; Rhee, Yun-Ee; Kang, Byung-Hyun; Choi, In-Wook; Cha, Guang-Ho; Yuk, Jae-Min; Lee, Young-Ha

    2015-08-01

    Trichomonas vaginalis; induces proinflammation in cervicovaginal mucosal epithelium. To investigate the signaling pathways in TNFproduction in cervical mucosal epithelium after T. vaginalis infection, the phosphorylation of PI3K/AKT and MAPK pathways were evaluated in T. vaginalis-infected SiHa cells in the presence and absence of specific inhibitors. T. vaginalis increased TNFproduction in SiHa cells, in a parasite burden-dependent and incubation time-dependent manner. In T. vaginalis-infected SiHa cells, AKT, ERK1/2, p38 MAPK, and JNK were phosphorylated from 1 hr after infection; however, the phosphorylation patterns were different from each other. After pretreatment with inhibitors of the PI3K/AKT and MAPK pathways, TNFproduction was significantly decreased compared to the control; however, TNF-α reduction patterns were different depending on the type of PI3K/MAPK inhibitors. TNFproduction was reduced in a dose-dependent manner by treatment with wortmannin and PD98059, whereas it was increased by SP600125. These data suggested that PI3K/AKT and MAPK signaling pathways are important in regulation of TNFproduction in cervical mucosal epithelial SiHa cells. However, activation patterns of each pathway were different from the types of PI3K/MAPK pathways.

  9. Pemphigus vulgaris: accumulation of apoptotic cells in dermis and epidermis possibly relates to pathophysiology through TNF-alpha production by phagocytes.

    Science.gov (United States)

    Chiapa-Labastida, Mariana; Zentella-Dehesa, Alejandro; León-Dorantes, Gladys; Becker, Ingeborg

    2011-01-01

    Apoptotic cells are present in the epidermis of pemphigus vulgaris (PV) patients and their accumulation has been linked to chronic inflammatory disorders. TNF-α is elevated in sera of PV patients and has only been detected in acantholytic and periacantholytic keratinocytes (KC), therefore another TNF-α source might exist. We analyzed, in lesional and perilesional skin of 5 active untreated PV patients, the presence of apoptotic cells, TNF-α and phagocytic infiltrate. In vitro, we analyzed whether phagocytosis of apoptotic KCs by monocytes causes TNF-α release. We found a significant increase of apoptotic cells in the epidermis and dermis of PV patients, by TUNEL, and activated caspase-3. TNF-α was present in the skin of PV patients, especially in the dermis. Phagocytic CD14+ cells were increased, mostly in the dermis of PV patients. In vitro phagocytosis of apoptotic KCs by monocytes caused enhanced TNFproduction, which correlated with the number of apoptotic KCs in the co-culture. Thus, accumulation of apoptotic cells in PV could promote TNFproduction by monocytes, which could, in turn, cause further apoptosis, closing a vicious circle.

  10. Lutzomyia longipalpis saliva triggers lipid body formation and prostaglandin E₂ production in murine macrophages.

    Directory of Open Access Journals (Sweden)

    Théo Araújo-Santos

    Full Text Available BACKGROUND: Sand fly saliva contains molecules that modify the host's hemostasis and immune responses. Nevertheless, the role played by this saliva in the induction of key elements of inflammatory responses, such as lipid bodies (LB, also known as lipid droplets and eicosanoids, has been poorly investigated. LBs are cytoplasmic organelles involved in arachidonic acid metabolism that form eicosanoids in response to inflammatory stimuli. In this study, we assessed the role of salivary gland sonicate (SGS from Lutzomyia (L. longipalpis, a Leishmania infantum chagasi vector, in the induction of LBs and eicosanoid production by macrophages in vitro and ex vivo. METHODOLOGY/PRINCIPAL FINDINGS: Different doses of L. longipalpis SGS were injected into peritoneal cavities of C57BL/6 mice. SGS induced increased macrophage and neutrophil recruitment into the peritoneal cavity at different time points. Sand fly saliva enhanced PGE₂ and LTB₄ production by harvested peritoneal leukocytes after ex vivo stimulation with a calcium ionophore. At three and six hours post-injection, L. longipalpis SGS induced more intense LB staining in macrophages, but not in neutrophils, compared with mice injected with saline. Moreover, macrophages harvested by peritoneal lavage and stimulated with SGS in vitro presented a dose- and time-dependent increase in LB numbers, which was correlated with increased PGE₂ production. Furthermore, COX-2 and PGE-synthase co-localized within the LBs induced by L. longipalpis saliva. PGE₂ production by macrophages induced by SGS was abrogated by treatment with NS-398, a COX-2 inhibitor. Strikingly, SGS triggered ERK-1/2 and PKC-α phosphorylation, and blockage of the ERK-1/2 and PKC-α pathways inhibited the SGS effect on PGE₂ production by macrophages. CONCLUSION: In sum, our results show that L. longipalpis saliva induces lipid body formation and PGE₂ production by macrophages ex vivo and in vitro via the ERK-1/2 and PKC

  11. Effects of Thyme Extract Oils (from Thymus vulgaris, Thymus zygis, and Thymus hyemalis) on Cytokine Production and Gene Expression of oxLDL-Stimulated THP-1-Macrophages.

    Science.gov (United States)

    Ocaña, A; Reglero, G

    2012-01-01

    Properties of thyme extracts from three different species (Thymus vulgaris, Thymus zygis, and Thymus hyemalis) were examined. Two oil fractions from each species were obtained by CO(2) supercritical fluid extraction. Main compounds presented in the supercritical extracts of the three thyme varieties were 1,8 cineole, thymol, camphor, borneol, and carvacrol. As a cellular model of inflammation/atherogenesis, we use human macrophages derived from THP-1 monocytes and activated by oxidized LDLs. These cells were incubated with the thyme fraction oils, and the productions and gene expressions of the inflammatory mediators TNF-α, IL-1B, IL-6, and IL-10 were determined. Thyme extracts significantly reduced production and gene expression of the proinflammatory mediators TNF-α, IL-1B, and IL-6 and highly increased these parameters on the anti-inflammatory IL-10 cytokine. Changes on production and gene expressions were dose dependent and according to the thyme content of each species. Taken together, these results may suggest that thyme extracts could have anti-inflammatory effects.

  12. Effects of Thyme Extract Oils (from Thymus vulgaris, Thymus zygis, and Thymus hyemalis on Cytokine Production and Gene Expression of oxLDL-Stimulated THP-1-Macrophages

    Directory of Open Access Journals (Sweden)

    A. Ocaña

    2012-01-01

    Full Text Available Properties of thyme extracts from three different species (Thymus vulgaris, Thymus zygis, and Thymus hyemalis were examined. Two oil fractions from each species were obtained by CO2 supercritical fluid extraction. Main compounds presented in the supercritical extracts of the three thyme varieties were 1,8 cineole, thymol, camphor, borneol, and carvacrol. As a cellular model of inflammation/atherogenesis, we use human macrophages derived from THP-1 monocytes and activated by oxidized LDLs. These cells were incubated with the thyme fraction oils, and the productions and gene expressions of the inflammatory mediators TNF-α, IL-1B, IL-6, and IL-10 were determined. Thyme extracts significantly reduced production and gene expression of the proinflammatory mediators TNF-α, IL-1B, and IL-6 and highly increased these parameters on the anti-inflammatory IL-10 cytokine. Changes on production and gene expressions were dose dependent and according to the thyme content of each species. Taken together, these results may suggest that thyme extracts could have anti-inflammatory effects.

  13. The antagonist activity of lipid IVa on the stimulation by lipid A of TNF-alpha production from canine blood mononuclear cells.

    Science.gov (United States)

    Takasawa, Kenji; Kano, Rui; Maruyama, Haruhiko; Hasegawa, Atsuhiko; Kamata, Hiroshi

    2011-09-15

    Lipid A, the active component of lipopolysaccharide (LPS), exists in the outer membrane of Gram-negative bacteria and binds to the Toll-like receptor 4 (TLR4) and MD-2 complex. On the other hand, the synthetic precursor of Escherichia coli lipid A, tetraacylated lipid IVa, is an agonist for TLR4 and MD-2 complex in murine, equine and feline cells but is an antagonist for lipid A in human cells. The aim of the study was to examine the function of canine Toll-like receptor 4 (TLR4) and MD-2 complex on canine blood mononuclear cells (BMC), by analyzing lipid A- or lipid IVa-induction of TNFproduction from these cells in order to understand canine innate immune system. After 5-h culture of canine BMC with lipid A (lipid A culture) or lipid IVa (lipid IVa culture), the TNF-α, as determined by ELISA, had increased in the supernatants of the lipid A cultures in a dose-dependent manner, whereas the TNF-α was undetectable in supernatant of lipid IVa-treated cultures. The TNF-α was statistically significantly different between the lipid A and lipid IVa cultures (100 and 1000 ng/ml). TNFproduction from canine BMC was inhibited, in a lipid IVa-dose-dependent manner, when the BMC were pre-cultured with lipid IVa for 60 min and then cultured with lipid A for 5h, while in control BMC cultures production if TNF-α was unchanged. These results indicate that the TNFproduction stimulated by lipid A was competed out by pre-exposing the BMC to lipid IVa. Thus, lipid A is an agonist for TNFproduction in canine BMC, whereas lipid IVa appears to be an antagonist against this lipid A stimulation of canine BMC. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Gene expression profiling of human alveolar macrophages infected by B. anthracis spores demonstrates TNF-α and NF-κb are key components of the innate immune response to the pathogen

    Directory of Open Access Journals (Sweden)

    Hurst Robert E

    2009-09-01

    Full Text Available Abstract Background Bacillus anthracis, the etiologic agent of anthrax, has recently been used as an agent of bioterrorism. The innate immune system initially appears to contain the pathogen at the site of entry. Because the human alveolar macrophage (HAM plays a key role in lung innate immune responses, studying the HAM response to B. anthracis is important in understanding the pathogenesis of the pulmonary form of this disease. Methods In this paper, the transcriptional profile of B. anthracis spore-treated HAM was compared with that of mock-infected cells, and differentially expressed genes were identified by Affymetrix microarray analysis. A portion of the results were verified by Luminex protein analysis. Results The majority of genes modulated by spores were upregulated, and a lesser number were downregulated. The differentially expressed genes were subjected to Ingenuity Pathway analysis, the Database for Annotation, Visualization and Integrated Discovery (DAVID analysis, the Promoter Analysis and Interaction Network Toolset (PAINT and Oncomine analysis. Among the upregulated genes, we identified a group of chemokine ligand, apoptosis, and, interestingly, keratin filament genes. Central hubs regulating the activated genes were TNF-α, NF-κB and their ligands/receptors. In addition to TNF-α, a broad range of cytokines was induced, and this was confirmed at the level of translation by Luminex multiplex protein analysis. PAINT analysis revealed that many of the genes affected by spores contain the binding site for c-Rel, a member of the NF-κB family of transcription factors. Other transcription regulatory elements contained in many of the upregulated genes were c-Myb, CP2, Barbie Box, E2F and CRE-BP1. However, many of the genes are poorly annotated, indicating that they represent novel functions. Four of the genes most highly regulated by spores have only previously been associated with head and neck and lung carcinomas. Conclusion The

  15. Photoperiodic stress on nitrite production by splenic macrophages in fresh-water snake Natrix piscator

    Directory of Open Access Journals (Sweden)

    Tripathi Manish Kumar

    2012-05-01

    Full Text Available Changes in day length enhance or suppress component of immune function in individuals of several species. The purpose of the present experiment was to study the role of photoperiodic manipulation on the nitric oxide production by splenic macrophages in the fresh-water snake, Natrix piscator. To study effect of photoperiod, animals were subjected to 24 hour continuous light and continuous dark for 30 days. Animals kept in natural day length served as control. At termination of experiments, animals were sacrificed, and spleen was excised. Macrophages were incubated for 24 hours and nitric oxide production was measured by measuring the nitrite concentration. Nitrite production was significantly decreased to the cultures obtained from the animals kept under continuous light. No change in nitrite concentration was found in animals kept under continuous dark, when compared to the animals kept under natural day length. The possible role of decreased melatonin synthesis in light is suggested to decrease the nitric oxide production.

  16. 雷公藤甲素对健康人外周血单个核细胞分泌TNF-α的抑制作用与TNF-α基因多态性的关系%Relationship between inhibition of triptolide on TNFproduction from peripheral blood mononuclear cells in healthy humans and TNF-α gene polymorphism

    Institute of Scientific and Technical Information of China (English)

    涂胜豪; 陈红波; 盛冬云; 胡永红; 刘沛霖

    2006-01-01

    目的探讨雷公藤甲素对外周血单个核细胞(PBMC)分泌肿瘤坏死因子-α(TNF-α)的抑制作用与TNF-α基因多态性之间的关系.方法采用等位基因特异引物PCR法对健康人TNF-α基因启动子区-308位点基因多态性进行检测,ELISA法检测TNF-α的量.结果TNF-α-308非G/G纯合子基因型健康志愿者PBMC经脂多糖(LPS)刺激后TNF-α的分泌量明显较TNF-α-308 G/G纯合子基因型的志愿者高;雷公藤甲素能够抑制TNF-α-308 G/G纯合子基因型健康志愿者PBMC分泌TNF-α,而对TNF-α-308非G/G纯合子基因型健康志愿者PBMC分泌TNF-α没有明显的抑制作用.结论雷公藤甲素抑制外周血单个核细胞分泌TNF-α的量与TNF-α基因多态性有关.

  17. α₁ adrenoceptor activation by norepinephrine inhibits LPS-induced cardiomyocyte TNFproduction via modulating ERK1/2 and NF-κB pathway.

    Science.gov (United States)

    Yu, Xiaohui; Jia, Baoyin; Wang, Faqiang; Lv, Xiuxiu; Peng, Xuemei; Wang, Yiyang; Li, Hongmei; Wang, Yanping; Lu, Daxiang; Wang, Huadong

    2014-02-01

    Cardiomyocyte tumour necrosis factor α (TNF-α) production contributes to myocardial depression during sepsis. This study was designed to observe the effect of norepinephrine (NE) on lipopolysaccharide (LPS)-induced cardiomyocyte TNF-α expression and to further investigate the underlying mechanisms in neonatal rat cardiomyocytes and endotoxaemic mice. In cultured neonatal rat cardiomyocytes, NE inhibited LPS-induced TNFproduction in a dose-dependent manner. α₁- adrenoceptor (AR) antagonist (prazosin), but neither β₁- nor β₂-AR antagonist, abrogated the inhibitory effect of NE on LPS-stimulated TNFproduction. Furthermore, phenylephrine (PE), an α₁-AR agonist, also suppressed LPS-induced TNFproduction. NE inhibited p38 phosphorylation and NF-κB activation, but enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and c-Fos expression in LPS-treated cardiomyocytes, all of which were reversed by prazosin pre-treatment. To determine whether ERK1/2 regulates c-Fos expression, p38 phosphorylation, NF-κB activation and TNFproduction, cardiomyocytes were also treated with U0126, a selective ERK1/2 inhibitor. Treatment with U0126 reversed the effects of NE on c-Fos expression, p38 mitogen-activated protein kinase (MAPK) phosphorylation and TNFproduction, but not NF-κB activation in LPS-challenged cardiomyocytes. In addition, pre-treatment with SB202190, a p38 MAPK inhibitor, partly inhibited LPS-induced TNFproduction in cardiomyocytes. In endotoxaemic mice, PE promoted myocardial ERK1/2 phosphorylation and c-Fos expression, inhibited p38 phosphorylation and IκBα degradation, reduced myocardial TNFproduction and prevented LPS-provoked cardiac dysfunction. Altogether, these findings indicate that activation of α₁-AR by NE suppresses LPS-induced cardiomyocyte TNF-α expression and improves cardiac dysfunction during endotoxaemia via promoting myocardial ERK phosphorylation and suppressing NF-κB activation.

  18. Synergistic effect of DDT and its metabolites in lipopolysaccharide-mediated TNFproduction is inhibited by progesterone in peripheral blood mononuclear cells.

    Science.gov (United States)

    Dominguez-Lopez, Pablo; Diaz-Cueto, Laura; Aguilar-Rojas, Arturo; Arechavaleta-Velasco, Fabian

    2017-02-26

    Increased TNF-α levels have been associated with adverse pregnancy outcomes. Lipopolysaccharide (LPS), 1,1,1-trichloro-2,2-bis-(chlorophenyl)ethane (DDT), 1,1-bis-(chlorophenyl)-2,2-dichloroethene (DDE), and 1,1-dichloro-2,2-bis(chlorophenyl)ethane (DDD) induce TNF-α release in peripheral blood mononuclear cells (PBMC). Conversely, progesterone (P4) inhibits TNF-α secretion. Pregnant women in malaria endemic areas may be co-exposure to these compounds. Thus, this study was to investigate the synergistic effect of LPS and these pesticides in PBMC and to assess P4 influence on this synergy. Cultured PBMC were exposed to each pesticide in the presence of LPS, P4, or their combination. TNF-α was measured by ELISA. All pesticides enhanced TNF-α synthesis in PBMC. Co-exposure with LPS synergizes TNFproduction, which is blocked by progesterone. These results indicate that these organochlorines act synergistically with LPS to induce TNF-α secretion in PBMC. This effect is blocked by P4.

  19. Evaluation of inhibitory activities of plant extracts on production of LPS-stimulated pro-inflammatory mediators in J774 murine macrophages.

    Science.gov (United States)

    Verma, Nandini; Tripathi, Subhash K; Sahu, Debasis; Das, Hasi R; Das, Rakha H

    2010-03-01

    Whole plant methanolic extracts of 14 traditionally used medicinal herbs were evaluated for their anti-inflammatory activity. Extracts of Grindelia robusta, Salix nigra, Arnica montana, and Quassia amara showed up to 4.5-fold inhibition of nitric oxide (NO) production in the J774 murine macrophage cells challenged with LPS without cytotoxicity. These four selected extracts significantly reduced the protein levels of inducible NO synthase (iNOS) and the cyclooxygenase-2 (COX-2) as observed by Western blot analysis. Culture supernatants from cells treated with these extracts indicated 3-5-fold reduction of tumor necrosis factor-alpha (TNF-alpha). However, only G. robusta and Q. amara extracts significantly inhibited (by 50%) IL-1beta and IL-12 secretions. Furthermore, all these plant extracts were shown to prevent the LPS-mediated nuclear translocation of nuclear factor-kappaB (NF-kappaB). All the above observations indicate the anti-inflammatory potential of these plant extracts.

  20. Mycobacterium tuberculosis Upregulates TNF-α Expression via TLR2/ERK Signaling and Induces MMP-1 and MMP-9 Production in Human Pleural Mesothelial Cells.

    Directory of Open Access Journals (Sweden)

    Wei-Lin Chen

    Full Text Available Tumor necrosis factor (TNF-α and matrix metalloproteinases (MMPs are elevated in pleural fluids of tuberculous pleuritis (TBP where pleural mesothelial cells (PMCs conduct the first-line defense against Mycobacterium tuberculosis (MTB. However, the clinical implication of TNF-α and MMPs in TBP and the response of PMCs to MTB infection remain unclear.We measured pleural fluid levels of TNF-α and MMPs in patients with TBP (n = 18 or heart failure (n = 18 as controls. Radiological scores for initial effusion amount and residual pleural fibrosis at 6-month follow-up were assessed. In vitro human PMC experiments were performed to assess the effect of heat-killed M. tuberculosis H37Ra (MTBRa on the expression of TNF-α and MMPs.As compared with controls, the effusion levels of TNF-α, MMP-1 and MMP-9 were significantly higher and correlated positively with initial effusion amount in patients with TBP, while TNF-α and MMP-1, but not MMP-9, were positively associated with residual pleural fibrosis of TBP. Moreover, effusion levels of TNF-α had positive correlation with those of MMP-1 and MMP-9 in TBP. In cultured PMCs, MTBRa enhanced TLR2 and TLR4 expression, activated ERK signaling, and upregulated TNF-α mRNA and protein expression. Furthermore, knockdown of TLR2, but not TLR4, significantly inhibited ERK phosphorylation and TNF-α expression. Additionally, both MTBRa and TNF-α markedly induced MMP-1 and MMP-9 synthesis in human PMCs, and TNF-α neutralization substantially reduced the production of MMP-1, but not MMP-9, in response to MTBRa stimulation.MTBRa activates TLR2/ERK signalings to induce TNF-α and elicit MMP-1 and MMP-9 in human PMCs, which are associated with effusion volume and pleural fibrosis and may contribute to pathogenesis of TBP. Further investigation of manipulation of TNF-α and MMP expression in pleural mesothelium may provide new insights into the mechanisms and rational treatment strategies for TBP.

  1. Activation of macrophages by silicones: phenotype and production of oxidant metabolites

    Directory of Open Access Journals (Sweden)

    Sodero Natalia

    2002-07-01

    Full Text Available Abstract Background The effect of silicones on the immune function is not fully characterized. In clinical and experimental studies, immune alterations associated with silicone gel seem to be related to macrophage activation. In this work we examined in vivo, phenotypic and functional changes on peritoneal macrophages early (24 h or 48 h and late (45 days after the intraperitoneal (i.p. injection of dimethylpolysiloxane (DMPS (silicone. We studied the expression of adhesion and co-stimulatory molecules and both the spontaneous and the stimulated production of reactive oxygen intermediates and nitric oxide (NO. Results The results presented here demonstrate that the fluid compound DMPS induced a persistent cell recruitment at the site of the injection. Besides, cell activation was still evident 45 days after the silicone injection: activated macrophages exhibited an increased expression of adhesion (CD54 and CD44 and co-stimulatory molecules (CD86 and an enhanced production of oxidant metabolites and NO. Conclusions Silicones induced a persistent recruitment of leukocytes at the site of the injection and macrophage activation was still evident 45 days after the injection.

  2. Imbalance between HAT and HDAC activities in the PBMCs of patients with ankylosing spondylitis or rheumatoid arthritis and influence of HDAC inhibitors on TNF alpha production.

    Directory of Open Access Journals (Sweden)

    Eric Toussirot

    Full Text Available OBJECTIVE: Acetylation or deacetylation of histone proteins may modulate cytokine gene transcription such as TNF alpha (TNF. We evaluated the balance between histone deacetytlase (HDAC and histone acetyltransferase (HAT in patients with rheumatoid arthritis (RA or ankylosing spondylitis (AS compared to healthy controls (HC and determined the influence of HDAC inhibitors (trichostatin A -TSA- or Sirtinol -Sirt- on these enzymatic activities and on the PBMC production of TNF. METHODS: 52 patients with RA, 21 with AS and 38 HC were evaluated. HAT and HDAC activities were measured on nuclear extracts from PBMC using colorimetric assays. Enzymatic activities were determined prior to and after ex vivo treatment of PBMC by TSA or Sirt. TNF levels were evaluated in PBMC culture supernatants in the absence or presence of TSA or Sirt. RESULTS: HAT and HDAC activities were significantly reduced in AS, while these activities reached similar levels in RA and HC. Ex vivo treatment of PBMC by HDACi tended to decrease HDAC expression in HC, but Sirt significantly reduced HAT in RA. TNF production by PBMC was significantly down-regulated by Sirt in HC and AS patients. CONCLUSION: HAT and HDAC were disturbed in AS while no major changes were found in RA. HDACi may modulate HDAC and HAT PBMC expression, especially Sirt in RA. Sirtinol was able to down regulate TNF production by PBMC in HC and AS. An imbalance between HAT and HDAC activities might provide the rationale for the development of HDACi in the therapeutic approach to inflammatory rheumatic diseases.

  3. Effect of some Indian herbs on macrophage functions in ochratoxin A treated mice.

    Science.gov (United States)

    Dhuley, J N

    1997-09-01

    The effect of Indian herbs namely, Asparagus racemosus, Tinospora cordifolia, Withania somnifera and Picrorhiza kurrooa on the functions of macrophages obtained from mice treated with the carcinogen ochratoxin A (OTA) was investigated. The chemotactic activity of murine macrophages was significantly decreased by 17 weeks of treatment with OTA compared with controls. Production of interleukin-1 (IL-1) and tumor necrosis factor (TNF) was also markedly reduced. Treatment with Asparagus racemosus, Tinospora cordifolia, Withania somnifera and Picrorhiza kurrooa significantly inhibited OTA-induced suppression of chemotactic activity and production of IL-1 and TNF-alpha by macropahges. Moreover, we found that Withania somnifera treated macrophage chemotaxis and that Asparagus racemosus induced excess production of TNF-alpha when compared with controls.

  4. Fucoidan modulates cytokine production and migration of THP‑1‑derived macrophages via colony‑stimulating factor‑1.

    Science.gov (United States)

    Li, Peng; Wang, Huayang; Shao, Qianqian; Kong, Beihua; Qu, Xun

    2017-04-01

    Fucoidan is known for its various biological activities, including immunomodulatory effects on immune cells. However, the effect of fucoidan on the functions of macrophages remains to be elucidated. The present study examined the effects of fucoidan on cytokine production and migration of THP‑1‑derived macrophages and its potential mechanisms. Fucoidan was added during the differentiation process of THP‑1‑derived macrophages along with lipopolysaccharide and interferon‑γ for 42 h, and then macrophages were harvested for functional assays. Fucoidan altered the morphology of THP‑1‑derived macrophages, and also attenuated their migration activity and pro‑inflammatory cytokine production. Additionally, THP‑1‑derived macrophages intensively produced colony‑stimulating factor‑1 (CSF‑1), which was significantly decreased by fucoidan. CSF‑1 neutralizing antibody attenuated the basic production level of pro‑inflammatory cytokines in macrophages. Furthermore, when recombinant human CSF‑1 was added along with fucoidan, the attenuating effects of fucoidan on migration and cytokine production were significantly reversed. In conclusion, the present study suggests that macrophages appear to be a potential target in the immunomodulatory action of fucoidan, and CSF‑1 may be involved in this modulation.

  5. Essential involvement of cross-talk between IFN-gamma and TNF-alpha in CXCL10 production in human THP-1 monocytes.

    Science.gov (United States)

    Qi, Xu-Feng; Kim, Dong-Heui; Yoon, Yang-Suk; Jin, Dan; Huang, Xue-Zhu; Li, Jian-Hong; Deung, Young-Kun; Lee, Kyu-Jae

    2009-09-01

    Interferon (IFN)-gamma-induced protein 10 (IP-10/CXCL10), a CXC chemokine, has been documented in several inflammatory and autoimmune disorders including atopic dermatitis and bronchial asthma. Although CXCL10 could be induced by IFN-gamma depending on cell type, the mechanisms regulating CXCL10 production following treatment with combination of IFN-gamma and TNF-alpha have not been adequately elucidated in human monocytes. In this study, we showed that TNF-alpha had more potential than IFN-gamma to induce CXCL10 production in THP-1 monocytes. Furthermore, IFN-gamma synergistically enhanced the production of CXCL10 in parallel with the activation of NF-kappaB in TNF-alpha-stimulated THP-1 cells. Blockage of STAT1 or NF-kappaB suppressed CXCL10 production. JAKs inhibitors suppressed IFN-gamma plus TNF-alpha-induced production of CXCL10 in parallel with activation of STAT1 and NF-kappaB, while ERK inhibitor suppressed production of CXCL10 as well as activation of NF-kappaB, but not that of STAT1. IFN-gamma-induced phosphorylation of JAK1 and JAK2, whereas TNF-alpha induced phosphorylation of ERK1/2. Interestingly, IFN-gamma alone had no effect on phosphorylation and degradation of IkappaB-alpha, whereas it significantly promoted TNF-alpha-induced phosphorylation and degradation of IkappaB-alpha. These results suggest that TNF-alpha induces CXCL10 production by activating NF-kappaB through ERK and that IFN-gamma induces CXCL10 production by increasing the activation of STAT1 through JAKs pathways. Of note, TNF-alpha-induced NF-kappaB may be the primary pathway contributing to CXCL10 production in THP-1 cells. IFN-gamma potentiates TNF-alpha-induced CXCL10 production in THP-1 cells by increasing the activation of STAT1 and NF-kappaB through JAK1 and JAK2.

  6. Production of anti TNF-α antibodies in eukaryotic cells using different combinations of vectors carrying heavy and light chains.

    Science.gov (United States)

    Balabashin, Dmitriy; Kovalenko, Elena; Toporova, Viktoria; Aliev, Teimur; Panina, Anna; Svirshchevskaya, Elena; Dolgikh, Dmitry; Kirpichnikov, Mikhail

    2015-10-01

    Tumor necrosis factor-α (TNF-α) plays a key role in rheumatoid arthritis and some other autoimmune diseases. Therapy with anti-TNF-α recombinant antibodies (Ab) appears to be highly effective. Production of new hyper-producing eukaryotic cell lines can decrease the treatment cost, which currently is very high. However, due to the complexity of protein transcription, translation, processing, and secretion in mammalian cells, the stages at which antibody expression is affected are still poorly determined. The aim of this work was to compare the productivity of two cell lines developed in CHO DG44 cells, deficient in dihydrofolate reductase, transfected with vectors carrying either heavy (H) or light (L) chains of chimeric antibody under different combinations of selective elements. Both H and L chains were cloned either in pOptiVEC or pcDNA3.3 vectors and different combinations were used to produce HL and LH cell lines. We have shown that Ab production has been low and comparable between HL and LH cells until selection on methotrexate (MTX) when LH but not HL cells have responded with 3.5 times increased productivity. Flow cytometry analysis has demonstrated that intracellular concentration of full size Abs in LH cells was 5.6 times higher than in HL ones due to higher amount of H chain synthesis. No differences in viability between HL and LH cells have been found. We have concluded that the expression of H chain in the pOptiVEC vector, which is responsible for MTX resistance, has led to the suppression of H chain synthesis and limitation in full Ab assembly.

  7. Cytotoxicity studies of Dynasan 114 solid lipid nanoparticles (SLN) on RAW 264.7 macrophages-impact of phagocytosis on viability and cytokine production.

    Science.gov (United States)

    Olbrich, Carsten; Schöler, Nadja; Tabatt, Kerstin; Kayser, Oliver; Müller, Rainer Helmut

    2004-07-01

    Solid lipid nanoparticles (SLN) based on Dynasan 114 (D114) were tested using RAW 264.7 cells. The influence of different surfactants on the cytotoxicity of this type of SLN was examined, expressed as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) viability and the production of cytokines such as interleukin 6 (IL-6), IL-12 and tumour necrosis factor-alpha (TNF-alpha). Results were compared with previously obtained data when peritoneal mouse macrophages were used. SLN produced with stabilizers/surfactants such as poloxamer 188, sodium cholate, Lipoid S75, Tween 80, Poloxamine 908 and sodium dodecylsulfate were shown to be nontoxic towards RAW 264.7 cells. Cytokine production was reduced and stimulation, expressed in elevated cytokine levels, could not be found. Using cetylpyridinium chloride (CPC) as stabilizing surfactant, SLN became cytotoxic in a concentration-dependent manner. Not only were the viabilities reduced but also cytokine production. Cytotoxic effects of CPC stabilized SLN could be antagonized using cytochalasin B to block phagocytosis. D114-SLN produced with pharmaceutically accepted surfactants for intravenous injection (poloxamer 188, Lipoid S75, sodium cholate, Tween 80) were very well tolerated by the cells. Even sodium dodecylsulfate-stabilized D114-SLN did not exert toxic effects. Comparison of the RAW 264.7 data with previously obtained data from toxicity studies of D114-SLN towards peritoneal mouse macrophages showed similar results. This offers the possibility of using the RAW 264.7 cell line for cytotoxicity studies of colloidal drug carrier systems, rather than using laboratory animals as source of macrophages for these kinds of studies.

  8. TL1A induces TCR independent IL-6 and TNFproduction and growth of PLZF+ leukocytes

    DEFF Research Database (Denmark)

    Reichwald, Kirsten; Jørgensen, Tina Z.; Tougaard, Peter

    2014-01-01

    An elevated level of the cytokine TL1A is known to be associated with several autoimmune diseases, e.g. rheumatoid arthritis and inflammatory bowel disease. However, the mode of action of TL1A remains elusive. In this study, we investigated the role of TL1A in a pro-inflammatory setting, using...... human leukocytes purified from healthy donors. We show that TL1A, together with IL-12, IL-15 and IL-18, directly induces the production of IL-6 and TNF-α from leukocytes. Interestingly, TL1A-induced IL-6 was not produced by CD14(+) monocytes. We further show that the produced IL-6 is fully functional......, as measured by its ability to signal through the IL-6 receptor, and that the induction of IL-6 is independent of TCR stimulation. Furthermore, the transcription factor PLZF was induced in stimulated cells. These results offer a substantial explanation for the role of TL1A, since TNF-α and IL-6 are directly...

  9. Soluble ICAM-1 activates lung macrophages and enhances lung injury

    DEFF Research Database (Denmark)

    Schmal, H; Czermak, B J; Lentsch, A B

    1998-01-01

    Because of the important role of rat ICAM-1 in the development of lung inflammatory injury, soluble recombinant rat ICAM-1 (sICAM-1) was expressed in bacteria, and its biologic activities were evaluated. Purified sICAM-1 did bind to rat alveolar macrophages in a dose-dependent manner and induced...... of the proteosome inhibitor and by genistein. Alveolar macrophages showed adherence to immobilized sICAM-1 in a CD18-dependent manner. Finally, airway instillation of sICAM-1 intensified lung injury produced by intrapulmonary deposition of IgG immune complexes in a manner associated with enhanced lung production...... of TNF-alpha and MIP-2 and increased neutrophil recruitment. Therefore, through engagement of beta2 integrins, sICAM-1 enhances alveolar macrophage production of MIP-2 and TNF-alpha, the result of which is intensified lung injury after intrapulmonary disposition of immune complexes....

  10. Nitric oxide production by chicken macrophages activated by Acemannan, a complex carbohydrate extracted from Aloe vera.

    Science.gov (United States)

    Karaca, K; Sharma, J M; Nordgren, R

    1995-03-01

    Cultures of normal chicken spleen cells and HD11 line cells produce nitric oxide (NO) in response to Acemannan, a complex carbohydrate derived from the Aloe vera plant. Neither cell type produced detectable amounts of NO in response to similar concentrations of yeast mannan, another complex carbohydrate. Nitric oxide production was dose dependent and inhibitable by the nitric oxide synthase inhibitor NG-methyl-L-arginine. In addition, the production of NO was inhibited by preincubation of ACM with concanavalin A in a dose-dependent manner. These results suggest that ACM-induced NO synthesis may be mediated through macrophage mannose receptors, and macrophage activation may be accountable for some of the immunomodulatory effects of ACM in chickens.

  11. A Commercial Preparation of Catalase Inhibits Nitric Oxide Production by Activated Murine Macrophages: Role of Arginase

    OpenAIRE

    Tian, Y.; Xing, Y.; Magliozzo, R.; Yu, K.; Bloom, B R; Chan, J

    2000-01-01

    Catalase is widely used as a pharmacological probe to evaluate the role of hydrogen peroxide in antimicrobial activities of phagocytic cells. This report demonstrates that the ability of a commercial preparation of catalase to inhibit concomitantly macrophage antimycobacterial activity and production of reactive nitrogen intermediates can be attributed, at least in part, to the depletion of l-arginine by contaminating arginase. In experimental systems that employ pharmacological probes, the e...

  12. Photoperiodic stress on nitrite production by splenic macrophages in fresh-water snake Natrix piscator

    OpenAIRE

    Tripathi Manish Kumar; Singh Ramesh

    2012-01-01

    Changes in day length enhance or suppress component of immune function in individuals of several species. The purpose of the present experiment was to study the role of photoperiodic manipulation on the nitric oxide production by splenic macrophages in the fresh-water snake, Natrix piscator. To study effect of photoperiod, animals were subjected to 24 hour continuous light and continuous dark for 30 days. Animals kept in natural day length served as control. At termination of experiments, ani...

  13. A crucial role for TNF-alpha in mediating neutrophil influx induced by endogenously generated or exogenous chemokines, KC/CXCL1 and LIX/CXCL5.

    Science.gov (United States)

    Vieira, S M; Lemos, H P; Grespan, R; Napimoga, M H; Dal-Secco, D; Freitas, A; Cunha, T M; Verri, W A; Souza-Junior, D A; Jamur, M C; Fernandes, K S; Oliver, C; Silva, J S; Teixeira, M M; Cunha, F Q

    2009-10-01

    Chemokines orchestrate neutrophil recruitment to inflammatory foci. In the present study, we evaluated the participation of three chemokines, KC/CXCL1, MIP-2/CXCL2 and LIX/CXCL5, which are ligands for chemokine receptor 2 (CXCR2), in mediating neutrophil recruitment in immune inflammation induced by antigen in immunized mice. Neutrophil recruitment was assessed in immunized mice challenged with methylated bovine serum albumin, KC/CXCL1, LIX/CXCL5 or tumour necrosis factor (TNF)-alpha. Cytokine and chemokine levels were determined in peritoneal exudates and in supernatants of macrophages and mast cells by elisa. CXCR2 and intercellular adhesion molecule 1 (ICAM-1) expression was determined using immunohistochemistry and confocal microscopy. Antigen challenge induced dose- and time-dependent neutrophil recruitment and production of KC/CXCL1, LIX/CXCL5 and TNF-alpha, but not MIP-2/CXCL2, in peritoneal exudates. Neutrophil recruitment was inhibited by treatment with reparixin (CXCR1/2 antagonist), anti-KC/CXCL1, anti-LIX/CXCL5 or anti-TNF-alpha antibodies and in tumour necrosis factor receptor 1-deficient mice. Intraperitoneal injection of KC/CXCL1 and LIX/CXCL5 induced dose- and time-dependent neutrophil recruitment and TNF-alpha production, which were inhibited by reparixin or anti-TNF-alpha treatment. Macrophages and mast cells expressed CXCR2 receptors. Increased macrophage numbers enhanced, while cromolyn sodium (mast cell stabilizer) diminished, LIX/CXCL5-induced neutrophil recruitment. Macrophages and mast cells from immunized mice produced TNF-alpha upon LIX/CXCL5 stimulation. Methylated bovine serum albumin induced expression of ICAM-1 on mesenteric vascular endothelium, which was inhibited by anti-TNF-alpha or anti-LIX/CXCL5. Following antigen challenge, CXCR2 ligands are produced and act on macrophages and mast cells triggering the production of TNF-alpha, which synergistically contribute to neutrophil recruitment through induction of the expression of ICAM

  14. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan (China); Tang, Ming-Chi [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China); Kuo, Liang-Mou [Department of General Surgery, Chang Gung Memorial Hospital at Chia-Yi, Taiwan (China); Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching [Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan (China)

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ► YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ► The combination of YC-1 and PGE1 increased CREB but not NFκB activation.

  15. Upregulating Nonneuronal Cholinergic Activity Decreases TNF Release from Lipopolysaccharide-Stimulated RAW264.7 Cells

    Directory of Open Access Journals (Sweden)

    Yi Lv

    2014-01-01

    Full Text Available Nonneuronal cholinergic system plays a primary role in maintaining homeostasis. It has been proved that endogenous neuronal acetylcholine (ACh could play an anti-inflammatory role, and exogenous cholinergic agonists could weaken macrophages inflammatory response to lipopolysaccharide (LPS stimulation through activation of α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR. We assumed that nonneuronal cholinergic system existing in macrophages could modulate inflammation through autocrine ACh and expressed α7nAChR on the cells. Therefore, we explored whether LPS continuous stimulation could upregulate the nonneuronal cholinergic activity in macrophages and whether increasing autocrine ACh could decrease TNF release from the macrophages. The results showed that, in RAW264.7 cells incubated with LPS for 20 hours, the secretion of ACh was significantly decreased at 4 h and then gradually increased, accompanied with the enhancement of α7nAChR expression level. The release of TNF was greatly increased from RAW264.7 cells at 4 h and 8 h exposure to LPS; however, it was suppressed at 20 h. Upregulating choline acetyltransferase (ChAT expression through ChAT gene transfection could enhance ACh secretion and reduce TNF release from the infected RAW264. 7cells. The results indicated that LPS stimulation could modulate the activity of nonneuronal cholinergic system of RAW264.7 cells. Enhancing autocrine ACh production could attenuate TNF release from RAW264.7 cells.

  16. Inhibitory effects of coumarin and acetylene constituents from the roots of Angelica furcijuga on D-galactosamine/lipopolysaccharide-induced liver injury in mice and on nitric oxide production in lipopolysaccharide-activated mouse peritoneal macrophages.

    Science.gov (United States)

    Yoshikawa, Masayuki; Nishida, Norihisa; Ninomiya, Kiyofumi; Ohgushi, Teruki; Kubo, Mizuho; Morikawa, Toshio; Matsuda, Hisashi

    2006-01-15

    The methanolic extract (200 mg/kg, p.o. and i.p.), principal coumarin constituents (isoepoxypteryxin, anomalin, and praeroside IV), and a polyacetylene constituent (falcarindiol) (25 mg/kg, i.p.) from the roots of Angelica furcijuga protected the liver injury induced by D-galactosamine (D-GalN)/lipopolysaccharide (LPS) in mice. In in vitro experiments, coumarin constituents (hyuganins A-D, anomalin, pteryxin, isopteryxin, and suksdorfin) and polyacetylene constituents [(-)-falcarinol and falcarindiol] substantially inhibited LPS-induced NO and/or TNF-alpha production in mouse peritoneal macrophages, and isoepoxypteryxin inhibited D-GalN-induced cytotoxicity in primary cultured rat hepatocytes. Furthermore, hyuganin A, anomalin, and isopteryxin inhibited the decrease in cell viability by TNF-alpha in L929 cells.

  17. Different effect of glutamine on macrophage tumor necrosis factor-alpha release and heat shock protein 72 expression in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Mengfan Liang; Xuemin Wang; Yuan Yuan; Quanhong Zhou; Chuanyao Tong; Wei Jiang

    2009-01-01

    Macrophage plays a vital role in sepsis. However, the modulatory effect of glutamine (Gln) on macrophage/ monocyte-mediate cytokines release is still controver-sial. Thus, we investigated the effect of Gin on macro-phage tumor necrosis factor (TNF)-α release and heat shock protein (HSP) 72 expression in vivo and in vitro. Data from our study indicated that the increase of HSP72 expression was significant at 8 mM of Gln 4 h after lipopolysaccharide (LPS) stimulation and became independent of Gin concentrations at 24 h, whereas TNF-α release was dose- and time-dependent on Gln. Heat stress (HS) induced more HSP72 and less TNFproduction compared with the non-HS group. However, the production of TNF-α in cells pretreated with HS was increased with increasing concentrations of Gln. Treatment with various concentrations of Gin for 1 h and then 0.5 mM Gin for 4h led to an increase in HSP72 expression, but not in TNFproduction. In sepsis model mice, Gin treatment led to a significantly lower intracellular TNF-α level and an increase in HSP72 expression in mouse peritoneal macrophages. Our results demonstrate that Gin directly increases TNF-α release of LPS-stimulated RAW264.7 macro-phages in a dose-dependent manner, and also decreases mouse peritoneal macrophages TNF-α release in the sepsis model. Taken together, our data suggest that there may be more additional pathways by which Gln modulates cytokine production besides HSP72 expression in macrophage during sepsis.

  18. Acanthamoeba castellanii Genotype T4 Stimulates the Production of Interleukin-10 as Well as Proinflammatory Cytokines in THP-1 Cells, Human Peripheral Blood Mononuclear Cells, and Human Monocyte-Derived Macrophages.

    Science.gov (United States)

    Mattana, Antonella; Sanna, Manuela; Cano, Antonella; Delogu, Giuseppe; Erre, Giuseppe; Roberts, Craig W; Henriquez, Fiona L; Fiori, Pier Luigi; Cappuccinelli, Piero

    2016-10-01

    Free-living amoebae of the genus Acanthamoeba can cause severe and chronic infections in humans, mainly localized in immune privileged sites, such as the brain and the eye. Monocytes/macrophages are thought to be involved in Acanthamoeba infections, but little is known about how these facultative parasites influence their functions. The aim of this work was to investigate the effects of Acanthamoeba on human monocytes/macrophages during the early phase of infection. Here, THP-1 cells, primary human monocytes isolated from peripheral blood, and human monocyte-derived macrophages were either coincubated with trophozoites of a clinical isolate of Acanthamoeba (genotype T4) or stimulated with amoeba-derived cell-free conditioned medium. Production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], and IL-12), anti-inflammatory cytokine (IL-10), and chemokine (IL-8) was evaluated at specific hours poststimulation (ranging from 1.5 h to 23 h). We showed that both Acanthamoeba trophozoites and soluble amoebic products induce an early anti-inflammatory monocyte-macrophage phenotype, characterized by significant production of IL-10; furthermore, challenge with either trophozoites or their soluble metabolites stimulate both proinflammatory cytokines and chemokine production, suggesting that this protozoan infection results from the early induction of coexisting, opposed immune responses. Results reported in this paper confirm that the production of proinflammatory cytokines and chemokines by monocytes and macrophages can play a role in the development of the inflammatory response during Acanthamoeba infections. Furthermore, we demonstrate for the first time that Acanthamoeba stimulates IL-10 production in human innate immune cells, which might both promote the immune evasion of Acanthamoeba and limit the induced inflammatory response.

  19. Acanthamoeba castellanii Genotype T4 Stimulates the Production of Interleukin-10 as Well as Proinflammatory Cytokines in THP-1 Cells, Human Peripheral Blood Mononuclear Cells, and Human Monocyte-Derived Macrophages

    Science.gov (United States)

    Sanna, Manuela; Cano, Antonella; Delogu, Giuseppe; Erre, Giuseppe; Roberts, Craig W.; Henriquez, Fiona L.; Fiori, Pier Luigi; Cappuccinelli, Piero

    2016-01-01

    Free-living amoebae of the genus Acanthamoeba can cause severe and chronic infections in humans, mainly localized in immune privileged sites, such as the brain and the eye. Monocytes/macrophages are thought to be involved in Acanthamoeba infections, but little is known about how these facultative parasites influence their functions. The aim of this work was to investigate the effects of Acanthamoeba on human monocytes/macrophages during the early phase of infection. Here, THP-1 cells, primary human monocytes isolated from peripheral blood, and human monocyte-derived macrophages were either coincubated with trophozoites of a clinical isolate of Acanthamoeba (genotype T4) or stimulated with amoeba-derived cell-free conditioned medium. Production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], and IL-12), anti-inflammatory cytokine (IL-10), and chemokine (IL-8) was evaluated at specific hours poststimulation (ranging from 1.5 h to 23 h). We showed that both Acanthamoeba trophozoites and soluble amoebic products induce an early anti-inflammatory monocyte-macrophage phenotype, characterized by significant production of IL-10; furthermore, challenge with either trophozoites or their soluble metabolites stimulate both proinflammatory cytokines and chemokine production, suggesting that this protozoan infection results from the early induction of coexisting, opposed immune responses. Results reported in this paper confirm that the production of proinflammatory cytokines and chemokines by monocytes and macrophages can play a role in the development of the inflammatory response during Acanthamoeba infections. Furthermore, we demonstrate for the first time that Acanthamoeba stimulates IL-10 production in human innate immune cells, which might both promote the immune evasion of Acanthamoeba and limit the induced inflammatory response. PMID:27481240

  20. Collagen I-induced dendritic cells activation is regulated by TNF-alpha production through down-regulation of IRF4.

    Science.gov (United States)

    Poudel, Barun; Ki, Hyeon-Hui; Lee, Young-Mi; Kim, Dae-Ki

    2015-03-01

    Previously we have shown that collagen I enhances the maturation and function of dendritic cells (DCs). Inflammatory mediators such as tumour necrosis factor (TNF)- alpha, interleukin (IL)-1 beta and lipopolysaccharide (LPS) are also known to activate DCs. Here we investigated the involvement of TNF-alpha on the collagen I-induced DCs activation. TNF-a neutralization inhibited collagen I-induced IL-12 secretions by DCs. Additionally, we observed suppression of collagen I-induced costimulatory molecules expression along with down-regulation of genes involved in DCs activation pathway. Furthermore, TNF- alpha inhibition upon collagen Istimulation up-regulated the expression of interferon regulatory transcription factor IRF4, when compared to collagen I only treated cells. Collectively, our data demonstrate that collagen I induce TNF- alpha production, which is crucial for the activation and function of DCs, through down-regulation of IRF4, and implicates the importance in development of anti- TNF-alpha therapeutics for several inflammatory diseases.

  1. Mycobacterium avium complex augments macrophage HIV-1 production and increases CCR5 expression.

    Science.gov (United States)

    Wahl, S M; Greenwell-Wild, T; Peng, G; Hale-Donze, H; Doherty, T M; Mizel, D; Orenstein, J M

    1998-10-13

    Infection with HIV-1 results in pronounced immune suppression and susceptibility to opportunistic infections (OI). Reciprocally, OI augment HIV-1 replication. As we have shown for Mycobacterium avium complex (MAC) and Pneumocystis carinii, macrophages infected with opportunistic pathogens and within lymphoid tissues containing OI, exhibit striking levels of viral replication. To explore potential underlying mechanisms for increased HIV-1 replication associated with coinfection, blood monocytes were exposed to MAC antigens (MAg) or viable MAC and their levels of tumor necrosis factor alpha (TNFalpha) and HIV-1 coreceptors monitored. MAC enhanced TNFalpha production in vitro, consistent with its expression in coinfected lymph nodes. Using a polyclonal antibody to the CCR5 coreceptor that mediates viral entry of macrophage tropic HIV-1, a subset of unstimulated monocytes was shown to be CCR5-positive by fluorescence-activated cell sorter analysis. After stimulation with MAg or infection with MAC, CCR5 expression was increased at both the mRNA level and on the cell surface. Up-regulation of CCR5 by MAC was not paralleled by an increase in the T cell tropic coreceptor, CXCR4. Increases in NF-kappaB, TNFalpha, and CCR5 were consistent with the enhanced production of HIV-1 in MAg-treated adherent macrophage cultures as measured by HIV-1 p24 levels. Increased CCR5 was also detected in coinfected lymph nodes as compared with tissues with only HIV-1. The increased production of TNFalpha, together with elevated expression of CCR5, provide potential mechanisms for enhanced infection and replication of HIV-1 by macrophages in OI-infected cells and tissues. Consequently, treating OI may inhibit not only the OI-induced pathology, but also limit the viral burden.

  2. Influence of phthalates on cytokine production in monocytes and macrophages: a systematic review of experimental trials.

    Directory of Open Access Journals (Sweden)

    Juliana Frohnert Hansen

    Full Text Available Phthalates are a group of endocrine disrupting chemicals suspected to influence the immune system. The aim of this systematic review is to summarise the present knowledge on the influence of phthalates on monocyte and macrophage production and secretion of cytokines, an influence which could affect both pro- and anti-inflammatory abilities of these cells.A systematic search was performed in Medline, Embase and Toxline in June 2013, last updated 3rd of August 2014. Criteria used to select studies were described and published beforehand online on Prospero (http://www.crd.york.ac.uk/NIHR_PROSPERO, registration number CRD42013004236. In vivo, ex vivo and in vitro studies investigating the influence of phthalates on cytokine mRNA expression and cytokine secretion in animals and humans were included. A total of 11 reports, containing 12 studies, were found eligible for inclusion. In these, a total of four different phthalate diesters, six primary metabolites (phthalate monoesters and seven different cytokines were investigated. Though all studies varied greatly in study design and species sources, four out of five studies that investigated di-2-ethylhexyl phthalate found an increased tumour necrosis factor-α secretion/production from monocytes or macrophages. A summary of cytokine measurements was not possible since few studies were comparable in study design and due to insufficient reporting of raw data for most of the included studies.Results from this review have suggested that at least one phthalate (di-2-ethylhexyl phthalate has the ability to enhance tumour necrosis factor-α production/secretion from monocytes/macrophages in vitro, but also observed ex vivo. Influence of other phthalates on other cytokines has only been investigated in few studies. Thus, in vitro studies on primary human monocytes/macrophages as well as more in vivo studies are needed to confirm or dispute these findings.

  3. Evaluation of the Effects of Some Brazilian Medicinal Plants on the Production of TNF-α and CCL2 by THP-1 Cells

    Directory of Open Access Journals (Sweden)

    Grasielle S. Gusman

    2015-01-01

    Full Text Available Several plant species are traditionally used in Brazil to treat various inflammatory diseases. Tumor necrosis factor- (TNF- α and chemokine (C-C motif ligand 2 (CCL2 are key inflammatory mediators in diseases like rheumatoid arthritis and atherosclerosis, respectively; nevertheless, only a few extracts have been assayed against these targets. We herein report the effect of 19 plant extracts on TNF-α and CCL2 release by lipopolysaccharide- (LPS- stimulated THP-1 cells, a human monocytic leukemia cell line, along with their radical scavenging activity on DPPH. The extracts of Caryocar brasiliense, Casearia sylvestris, Coccoloba cereifera, and Terminalia glabrescens inhibited TNFproduction in a concentration-dependent manner. Fractionation of these extracts potentiated the anti-TNF-α effect, which was shown to concentrate in polar fractions, mainly composed by polyphenols. Significant CCL2 inhibition was elicited by Lippia sidoides and Terminalia glabrescens extracts, whose fractionation resulted in highly active low polar fractions. All assayed extracts showed strong radical scavenging activity, but antioxidant activity did not correlate with inhibition of TNF-α or CCL2 production. Our results allowed identifying extracts with selective capacity to block cytokine production; therefore, further purification of these extracts may yield molecules that could be useful in the treatment of chronic inflammatory diseases.

  4. Evaluation of the Effects of Some Brazilian Medicinal Plants on the Production of TNF- α and CCL2 by THP-1 Cells.

    Science.gov (United States)

    Gusman, Grasielle S; Campana, Priscilla R V; Castro, Luciano C; Castilho, Rachel O; Teixeira, Mauro M; Braga, Fernão C

    2015-01-01

    Several plant species are traditionally used in Brazil to treat various inflammatory diseases. Tumor necrosis factor- (TNF-) α and chemokine (C-C motif) ligand 2 (CCL2) are key inflammatory mediators in diseases like rheumatoid arthritis and atherosclerosis, respectively; nevertheless, only a few extracts have been assayed against these targets. We herein report the effect of 19 plant extracts on TNF-α and CCL2 release by lipopolysaccharide- (LPS-) stimulated THP-1 cells, a human monocytic leukemia cell line, along with their radical scavenging activity on DPPH. The extracts of Caryocar brasiliense, Casearia sylvestris, Coccoloba cereifera, and Terminalia glabrescens inhibited TNFproduction in a concentration-dependent manner. Fractionation of these extracts potentiated the anti-TNF-α effect, which was shown to concentrate in polar fractions, mainly composed by polyphenols. Significant CCL2 inhibition was elicited by Lippia sidoides and Terminalia glabrescens extracts, whose fractionation resulted in highly active low polar fractions. All assayed extracts showed strong radical scavenging activity, but antioxidant activity did not correlate with inhibition of TNF-α or CCL2 production. Our results allowed identifying extracts with selective capacity to block cytokine production; therefore, further purification of these extracts may yield molecules that could be useful in the treatment of chronic inflammatory diseases.

  5. Delineation of diverse macrophage activation programs in response to intracellular parasites and cytokines.

    Directory of Open Access Journals (Sweden)

    Shuyi Zhang

    Full Text Available BACKGROUND: The ability to reside and proliferate in macrophages is characteristic of several infectious agents that are of major importance to public health, including the intracellular parasites Trypanosoma cruzi (the etiological agent of Chagas disease and Leishmania species (etiological agents of Kala-Azar and cutaneous leishmaniasis. Although recent studies have elucidated some of the ways macrophages respond to these pathogens, the relationships between activation programs elicited by these pathogens and the macrophage activation programs elicited by bacterial pathogens and cytokines have not been delineated. METHODOLOGY/PRINCIPAL FINDINGS: To provide a global perspective on the relationships between macrophage activation programs and to understand how certain pathogens circumvent them, we used transcriptional profiling by genome-wide microarray analysis to compare the responses of mouse macrophages following exposure to the intracellular parasites T. cruzi and Leishmania mexicana, the bacterial product lipopolysaccharide (LPS, and the cytokines IFNG, TNF, IFNB, IL-4, IL-10, and IL-17. We found that LPS induced a classical activation state that resembled macrophage stimulation by the Th1 cytokines IFNG and TNF. However, infection by the protozoan pathogen L. mexicana produced so few transcriptional changes that the infected macrophages were almost indistinguishable from uninfected cells. T. cruzi activated macrophages produced a transcriptional signature characterized by the induction of interferon-stimulated genes by 24 h post-infection. Despite this delayed IFN response by T. cruzi, the transcriptional response of macrophages infected by the kinetoplastid pathogens more closely resembled the transcriptional response of macrophages stimulated by the cytokines IL-4, IL-10, and IL-17 than macrophages stimulated by Th1 cytokines. CONCLUSIONS/SIGNIFICANCE: This study provides global gene expression data for a diverse set of biologically

  6. Coffee and Maillard products activate NF-kappaB in macrophages via H2O2 production.

    Science.gov (United States)

    Muscat, Sonja; Pelka, Joana; Hegele, Jörg; Weigle, Bernd; Münch, Gerald; Pischetsrieder, Monika

    2007-05-01

    In this study, we investigated the immunomodulatory activity of coffee and Maillard reaction products on macrophages in vitro. Stimulation of macrophages with coffee, but not with raw coffee extract in PBS, led to a 13-fold increased nuclear NF-kappaB translocation. A Maillard reaction mixture (25 mM D-ribose/L-lysine, 30 min at 120 degrees C) increased NF-kappaB translocation 18-fold (in PBS) or six-fold (in medium). MRPs also induced a two-fold increased NF-kappaB translocation in untransfected human embryonic kidney (HEK) cells as well as in HEK cells stably transfected with the receptor for advanced glycation endproducts (RAGE), indicating that the effect was not RAGE mediated. On the other hand, catalase totally abolished coffee- and MRP-induced NF-kappaB translocation. Consequently, up to 366 microM hydrogen peroxide was measured in the coffee preparation and Maillard mixtures used for cell stimulation. Stimulation of macrophages with MRPs did not lead to significantly increased IL-6 or NO release. Thus, it can be concluded that coffee and MRPs induce NF-kappaB translocation in macrophages via the generation of hydrogen peroxide.

  7. Molecular regulation of Trypanosoma congolense-induced nitric oxide production in macrophages.

    Directory of Open Access Journals (Sweden)

    Rani Singh

    Full Text Available BALB/c mice are highly susceptible while C57BL/6 mice are relatively resistant to experimental Trypanosoma congolense infection. Several reports show that an early interferon-gamma (IFN-γ response in infected mice is critically important for resistance via the activation of macrophages and production of nitric oxide (NO. NO is a pivotal effector molecule and possesses both cytostatic and cytolytic properties for the parasite. However, the molecular mechanisms leading to T. congolense (TC-induced NO release from macrophages are not known. In this study, we investigated the signaling pathways induced by trypanosomes in immortalized macrophage cell lines from the highly susceptible BALB/c (BALB.BM and relatively resistant C57Bl/6 (ANA-1 mice. We found that T. congolense whole cell extract (TC-WCE induces significantly higher levels of NO production in IFN-γ-primed ANA-1 than BALB.BM cells, which was further confirmed in primary bone marrow-derived macrophage (BMDM cultures. NO production was dependent on mitogen-activated protein kinase (MAPK, including p38, Erk1/2, and JNK phosphorylation and was significantly inhibited by specific MAPK inhibitors in BALB.BM, but not in ANA-1 cells. In addition, T. congolense- and IFN-γ-induced NO production in ANA-1 and BALB.BM cells was dependent on STAT1 phosphorylation and was totally suppressed by the use of fludarabine (a specific STAT1 inhibitor. We further show that T. congolense induces differential iNOS transcriptional promoter activation in IFN-γ-primed cells, which is dependent on the activation of both GAS1 and GAS2 transcription factors in BALB.BM but only on GAS1 in ANA-1 cells. Taken together, our findings show the existence of differential signalling events that lead to NO production in macrophages from the highly susceptible and relatively resistant mice following treatment with IFN-γ and T. congolense. Understanding these pathways may help identify immunomodulatory mechanisms that regulate

  8. Inhibition of CDKS by roscovitine suppressed LPS-induced ·NO production through inhibiting NFκB activation and BH4 biosynthesis in macrophages

    Science.gov (United States)

    Wei, Na; Guan, Tongju; Xu, Hao; An, Jianzhong; Pritchard, Kirkwood A.

    2009-01-01

    In inflammatory diseases, tissue damage is critically associated with nitric oxide (·NO) and cytokines, which are overproduced in response to cellular release of endotoxins. Here we investigated the inhibitory effect of roscovitine, a selective inhibitor of cyclin-dependent kinases (CDKs) on ·NO production in mouse macrophages. In RAW264.7 cells, we found that roscovitine abolished the production of ·NO induced by lipopolysaccharide (LPS). Moreover, roscovitine significantly inhibited LPS-induced inducible nitric oxide synthase (iNOS) mRNA and protein expression. Our data also showed that roscovitine attenuated LPS-induced phosphorylation of IκB kinase β (IKKβ), IκB, and p65 but enhanced the phosphorylation of ERK, p38, and c-Jun NH2-terminal kinase (JNK). In addition, roscovitine dose dependently inhibited LPS-induced expression of cyclooxygenase-2 (COX)-2, IL-1β, and IL-6 but not tumor necrosis factor (TNF)-α. Tetrahydrobiopterin (BH4), an essential cofactor for iNOS, is easily oxidized to 7,8-dihydrobiopterin (BH2). Roscovitine significantly inhibited LPS-induced BH4 biosynthesis and decreased BH4-to-BH2 ratio. Furthermore, roscovitine greatly reduced the upregulation of GTP cyclohydrolase-1 (GCH-1), the rate-limiting enzyme for BH4 biosynthesis. Using other CDK inhibitors, we found that CDK1, CDK5, and CDK7, but not CDK2, significantly inhibited LPS-induced ·NO production in macrophages. Similarly, in isolated peritoneal macrophages, roscovitine strongly inhibited ·NO production, iNOS, and COX-2 upregulation, activation of NFκB, and induction of GCH-1 by LPS. Together, our data indicate that roscovitine abolishes LPS-induced ·NO production in macrophages by suppressing nuclear factor-κB activation and BH4 biosynthesis, which might be mediated by CDK1, CDK5, and CDK7. Our results also suggest that roscovitine may inhibit inflammation and that CDKs may play important roles in the mechanisms by which roscovitine attenuates inflammation. PMID:19553566

  9. Role of JNK signal transduction pathway in IL-8 and TNF-α secretion from alveolar macrophages induced by mechanical ventilation with large-tidal volume in rabbits%JNK信号转导通路在大潮气量机械通气诱发兔肺泡巨噬细胞分泌IL-8和TNF-α中的作用

    Institute of Scientific and Technical Information of China (English)

    童瑾; Juliy M.Perelman; Victor P.Kolosov

    2010-01-01

    Objective To investigate the role of c-Jun N-terminal kinase (JNK) signal transduction pathway in IL-8 and TNF-α secretion from alveolar macrophages induced by mechanical ventilation with large-tidal volume in rabbits. Methods Thirty male New Zealand white rabbits weighing 210-260 g were randomly divided into 330-40 bpm, PEEP 0), and SB203580 group (group S). The animals were anesthetized with iv pentobarbital sodium 40 mg/kg, traeheostomized and mechanically ventilated. Group C received no mechanical ventilation. The animals were mechanically ventilated for 3 days in group V. The animals were mechanically ventilated for 3 days and SB203580 (a specific JNK inhibitor) 6 mg/kg was injected via the ear vein every day during ventilation (the ventilation parameters were the same as those in group V). The animals were then sacrificed by exsanguination. The concentrations of IL-8 and TNF-α in bronchoalveolar lavage fluid (BALF) were determined by ELISA and the alveolar macrophages were collected. After the macrophages were cultured for 2 h in vitro, the expression of IL-8 mRNA and TNF-α mRNA was determined by RT-PCR. Results Compared with group C, the levels of IL-8 , TNF-α,IL-8 mRNA and TNF-α mRNA were significantly increased in group V (P<0.05). Compared with group V, the levels of TNF-α and TNF-α mRNA were significantly decreased ( P < 0.01 ), but no significant change was found in the levels of IL-8 and IL-8 mRNA in group S ( P > 0.05). Conclusion JNK signal transduction pathway plays an important role in TNF-α secretion from alveolar macrophages induced by mechanical ventilation with large-tidal volume in rabbits, but is not involved the secretion of TNF-α.%目的 评价c-Jun氨基末端激酶(JNK)在大潮气量机械通气诱发兔肺泡巨噬细胞分泌IL-8和TNF-α中的作用.方法 清洁级雄性新西兰白兔30只,体重210~260 g,随机分为3组(n=10):正常对照组(C组)不予任何刺激;机械通气组(V组)大潮气量机械通气3 d

  10. SARM regulates CCL5 production in macrophages by promoting the recruitment of transcription factors and RNA polymerase II to the Ccl5 promoter.

    Science.gov (United States)

    Gürtler, Claudia; Carty, Michael; Kearney, Jay; Schattgen, Stefan A; Ding, Aihao; Fitzgerald, Katherine A; Bowie, Andrew G

    2014-05-15

    The four Toll/IL-1R domain-containing adaptor proteins MyD88, MAL, TRIF, and TRAM are well established as essential mediators of TLR signaling and gene induction following microbial detection. In contrast, the function of the fifth, most evolutionarily conserved Toll/IL-1R adaptor, sterile α and HEAT/Armadillo motif-containing protein (SARM), has remained more elusive. Recent studies of Sarm(-/-) mice have highlighted a role for SARM in stress-induced neuronal cell death and immune responses in the CNS. However, whether SARM has a role in immune responses in peripheral myeloid immune cells is less clear. Thus, we characterized TLR-induced cytokine responses in SARM-deficient murine macrophages and discovered a requirement for SARM in CCL5 production, whereas gene induction of TNF, IL-1β, CCL2, and CXCL10 were SARM-independent. SARM was not required for TLR-induced activation of MAPKs or of transcription factors implicated in CCL5 induction, namely NF-κB and IFN regulatory factors, nor for Ccl5 mRNA stability or splicing. However, SARM was critical for the recruitment of transcription factors and of RNA polymerase II to the Ccl5 promoter. Strikingly, the requirement of SARM for CCL5 induction was not restricted to TLR pathways, as it was also apparent in cytosolic RNA and DNA responses. Thus, this study identifies a new role for SARM in CCL5 expression in macrophages.

  11. Pirfenidone ameliorates murine chronic GVHD through inhibition of macrophage infiltration and TGF-β production.

    Science.gov (United States)

    Du, Jing; Paz, Katelyn; Flynn, Ryan; Vulic, Ante; Robinson, Tara M; Lineburg, Katie E; Alexander, Kylie A; Meng, Jingjing; Roy, Sabita; Panoskaltsis-Mortari, Angela; Loschi, Michael; Hill, Geoffrey R; Serody, Jonathan S; Maillard, Ivan; Miklos, David; Koreth, John; Cutler, Corey S; Antin, Joseph H; Ritz, Jerome; MacDonald, Kelli P; Schacker, Timothy W; Luznik, Leo; Blazar, Bruce R

    2017-03-02

    Allogeneic hematopoietic stem cell transplantation is hampered by chronic graft-versus-host disease (cGVHD) resulting in multi-organ fibrosis and diminished function. Fibrosis in lung and skin leads to progressive bronchiolitis obliterans (BO) and scleroderma, respectively, for which new treatments are needed. We evaluated pirfenidone, a FDA approved drug for idiopathic pulmonary fibrosis, for its therapeutic effect in cGVHD mouse models with distinct pathophysiology. In a full MHC-mismatched, multi-organ system model with BO, donor T cell responses that support pathogenic antibody production are required for cGVHD development. Pirfenidone treatment beginning one month post-transplant restored pulmonary function and reversed lung fibrosis, which was associated with reduced macrophage infiltration and TGF-β production. Pirfenidone dampened splenic germinal center B cell and T follicular helper cell frequencies that collaborate to produce antibody. In both a minor histocompatibility antigen-mismatched as well as a MHC-haploidentical model of sclerodermatous cGVHD, pirfenidone significantly reduced macrophages in the skin, although clinical improvement of scleroderma was only seen in one model. In vitro chemotaxis assays demonstrated that pirfenidone impaired macrophage migration to MCP-1 as well as IL-17A, that has been linked to cGVHD generation. Taken together, our data suggest that pirfenidone is a potential therapeutic agent to ameliorate fibrosis in cGVHD.

  12. Polo-like kinase 1 (PLK1) is involved in toll-like receptor (TLR)-mediated TNFproduction in monocytic THP-1 cells.

    Science.gov (United States)

    Hu, Jinyue; Wang, Guihua; Liu, Xueting; Zhou, Lina; Jiang, Manli; Yang, Li

    2013-01-01

    Polo-like kinases (PLKs) have been reported to be essential components of anti-viral pathways. However, the role of PLKs in the production of pro-inflammatory cytokines induced by TLR activation is uncertain. We report here that monocytic THP-1 cells expressed PLK1, PLK2, PLK3 and PLK4. When THP-1 cells were treated with GW843682X, an inhibitor of PLK1 and PLK3, the results showed that GW843682X down-regulated Pam3CSK4- and LPS-induced TNF-α at both the gene and protein levels. GW843682X did not impact Pam3CSK4-induced IL-1β and IL-8 or LPS-induced IL-1β, but it down-regulated LPS-induced IL-8 significantly. Moreover, western blot results showed that TLRs activated PLK1, and PLK1 inhibition by RNA interference down-regulated Pam3CSK4-induced TNFproduction, suggesting the involvement of PLK1 in TNF-α up-regulation. In addition, GW843682X treatment for 12 to 24 h induced cell death and down-regulated MyD88, but neither of these roles contributed to the down-regulation of TNF-α, as TNF-α gene expression was up-regulated at 1 h. Furthermore, GW843682X inhibited Pam3CSK4-induced activation of ERK and NF-κB, which contributed to Pam3CSK4-induced up-regulation of TNF-α. GW843682X also inhibited LPS-induced activation of ERK, p38 and NF-κB, which contributed to LPS-induced up-regulation of TNF-α. Taken together, these results suggested that PLK1 is involved in TLR2- and TLR4-induced inflammation, and GW843682X may be valuable for the regulation of the inflammatory response.

  13. Metformin Inhibits the Production of Reactive Oxygen Species from NADH:Ubiquinone Oxidoreductase to Limit Induction of Interleukin-1β (IL-1β) and Boosts Interleukin-10 (IL-10) in Lipopolysaccharide (LPS)-activated Macrophages.

    Science.gov (United States)

    Kelly, Beth; Tannahill, Gillian M; Murphy, Michael P; O'Neill, Luke A J

    2015-08-14

    Metformin, a frontline treatment for type II diabetes mellitus, decreases production of the pro-form of the inflammatory cytokine IL-1β in response to LPS in macrophages. We found that it specifically inhibited pro-IL-1β production, having no effect on TNF-α. Furthermore, metformin boosted induction of the anti-inflammatory cytokine IL-10 in response to LPS. We ruled out a role for AMP-activated protein kinase (AMPK) in the effect of metformin because activation of AMPK with A769662 did not mimic metformin here. Furthermore, metformin was still inhibitory in AMKPα1- or AMPKβ1-deficient cells. The activity of NADH:ubiquinone oxidoreductase (complex I) was inhibited by metformin. Another complex I inhibitor, rotenone, mimicked the effect of metformin on pro-IL-1β and IL-10. LPS induced reactive oxygen species production, an effect inhibited by metformin or rotenone pretreatment. MitoQ, a mitochondrially targeted antioxidant, decreased LPS-induced IL-1β without affecting TNF-α. These results, therefore, implicate complex I in LPS action in macrophages.

  14. Therapeutic effect of anti-feline TNF-alpha monoclonal antibody for feline infectious peritonitis.

    Science.gov (United States)

    Doki, Tomoyoshi; Takano, Tomomi; Kawagoe, Kohei; Kito, Akihiko; Hohdatsu, Tsutomu

    2016-02-01

    Feline infectious peritonitis virus (FIPV) replication in macrophages/monocytes induced tumor necrosis factor (TNF)-alpha production, and that the TNF-alpha produced was involved in aggravating the pathology of FIP. We previously reported the preparation of a feline TNF-alpha (fTNF-alpha)-neutralizing mouse monoclonal antibody (anti-fTNF-alpha mAb). This anti-fTNF-alpha mAb 2-4 was confirmed to inhibit the following fTNF-alpha-induced conditions in vitro. In the present study, we investigated whether mAb 2-4 improved the FIP symptoms and survival rate of experimentally FIPV-inoculated SPF cats. Progression to FIP was prevented in 2 out of 3 cats treated with mAb 2-4, whereas all 3 cats developed FIP in the placebo control group. Plasma alpha1-glycoprotein and vascular endothelial growth factor levels were improved by the administration of mAb 2-4, and the peripheral lymphocyte count also recovered. These results strongly suggested that the anti-fTNF-alpha antibody is effective for the treatment of FIP.

  15. Tanshinone IIA inhibits endothelin-1 production in TNF-α-induced brain microvascular endothelial cells through suppression of endothelin-converting enzyme-1 synthesis

    Institute of Scientific and Technical Information of China (English)

    Chao TANG; An-hua WU; Hong-li XUE; Yun-jie WANG

    2007-01-01

    Aim: To investigate the effects of tanshinone ⅡA (Tan ⅡA) on the regulation of the production of endothelin (ET)-1 (including large ET-1), mRNA levels of ET-1,endothelin-converting enzyme- 1 (ECE- 1), endothelin-A receptor (ETA) and endothelin-B receptor (ETB) induced by TNF-α in rat brain microvascular endo-thelial cells (BMVEC). Methods: The ET-1 release (including large ET-1) into the culture medium was determined by enzyme immunoassay. The levels of ET-1,ECE- 1, ETA, and ETB mRNA were measured by RT-PCR. Endothelin receptor bind-ing was also tested. Results: The induction of ET- 1 release by TNF-α from cul-tured BMVEC was dose-dependently reduced by Tan IIA, but large ET-1 levels progressively increased in response to Tan IIA; the mRNA expression of ET-1 was unaffected. Tan ⅡA also caused a decrease in ETA receptor mRNA and ECE-1expression in a dose-dependent manner. Endothelin receptor binding was unal-tered in BMVEC stimulated with TNF-α alone or a combination of TNF-α and Tan ⅡA. Conclusion: These findings suggest that Tan ⅡA may inhibit ET-1 produc-tion in TNF-α-induced BMVEC through the suppression of ECE-1 synthesis.

  16. Injury-induced GR-1+ macrophage expansion and activation occurs independently of CD4 T-cell influence.

    Science.gov (United States)

    O'Leary, Fionnuala M; Tajima, Goro; Delisle, Adam J; Ikeda, Kimiko; Dolan, Sinead M; Hanschen, Marc; Mannick, John A; Lederer, James A

    2011-08-01

    Burn injury initiates an enhanced inflammatory condition referred to as the systemic inflammatory response syndrome or the two-hit response phenotype. Prior reports indicated that macrophages respond to injury and demonstrate a heightened reactivity to Toll-like receptor stimulation. Since we and others observed a significant increase in splenic GR-1 F4/80 CD11b macrophages in burn-injured mice, we wished to test if these macrophages might be the primary macrophage subset that shows heightened LPS reactivity. We report here that burn injury promoted higher level TNF-α expression in GR-1, but not GR-1 macrophages, after LPS activation both in vivo and ex vivo. We next tested whether CD4 T cells, which are known to suppress injury-induced inflammatory responses, might control the activation and expansion of GR-1 macrophages. Interestingly, we found that GR-1 macrophage expansion and LPS-induced TNF-α expression were not significantly different between wild-type and CD4 T cell-deficient CD4(-/-) mice. However, further investigations showed that LPS-induced TNFproduction was significantly influenced by CD4 T cells. Taken together, these data indicate that GR-1 F4/80 CD11b macrophages represent the primary macrophage subset that expands in response to burn injury and that CD4 T cells do not influence the GR-1 macrophage expansion process, but do suppress LPS-induced TNFproduction. These data suggest that modulating GR-1 macrophage activation as well as CD4 T cell responses after severe injury may help control the development of systemic inflammatory response syndrome and the two-hit response phenotype.

  17. MFG-E8 Reprogramming of Macrophages Promotes Wound Healing by Increased bFGF Production and Fibroblast Functions.

    Science.gov (United States)

    Laplante, Patrick; Brillant-Marquis, Frédéric; Brissette, Marie-Joëlle; Joannette-Pilon, Benjamin; Cayrol, Romain; Kokta, Victor; Cailhier, Jean-François

    2017-09-01

    Macrophages are essential for tissue repair. They have a crucial role in cutaneous wound healing, participating actively in the inflammation phase of the process. Unregulated macrophage activation may, however, represent a source of excessive inflammation, leading to abnormal wound healing and hypertrophic scars. Our research group has shown that apoptotic endothelial and epithelial cells secrete MFG-E8, which has the ability to reprogram macrophages from an M1 (proinflammatory) to an M2 (anti-inflammatory, pro-repair) phenotype. Hence, we tested whether modulation of macrophage reprogramming would promote tissue repair. Using a mouse model of wound healing, we showed that the presence and/or addition of MFG-E8 favors wound closure associated with an increase in CD206-positive cells and basic fibroblast growth factor production in healing tissues. More importantly, adoptive transfer of ex vivo MFG-E8-treated macrophages promoted wound closure. We also observed that MFG-E8-treated macrophages produced basic fibroblast growth factor that is responsible for fibroblast migration and proliferation. Taken together, our results strongly suggest that MFG-E8 plays a key role in macrophage reprogramming in tissue healing through induction of an anti-inflammatory M2 phenotype and basic fibroblast growth factor production, leading to fibroblast migration and wound closure. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Production of macrophage migration inhibitory factor by human and murine neuroblastoma.

    Science.gov (United States)

    Bin, Qian; Johnson, Bryon D; Schauer, Dennis W; Casper, James T; Orentas, Rimas J

    2002-01-01

    Tumor cells avoid immune recognition by subverting the ability of the immune system to mount an inflammatory response that generates cytotoxic effector cells. This can be achieved through cytokine production by the tumor itself. Our objective was to determine the cytokine profile of neuroblastoma (NB) lesions in tumor vaccine models. We found that the murine NB cell line, Neuro2a, secretes macrophage migration inhibitory factor, MIF, a multifunctional cytokine with the potential to block effective immune responses to a tumor. Patient-derived NB cell lines were also found to produce MIF. MIF production by NB was documented at the level of RNA by RNAse protection, soluble cytokine production by ELISA, and in a macrophage migration assay. Our studies also confirmed reports of IL-6 production by human NB cell lines. NB culture-derived MIF was also shown to activate tumor cell migration. This supports the hypothesis that MIF is a tumor-derived cytokine that may play a role in NB aggressiveness and evasion of immune recognition. Copyright 2002 S. Karger AG, Basel

  19. Trans-10, cis-12 conjugated linoleic acid and the PPAR-γ agonist rosiglitazone attenuate lipopolysaccharide-induced TNFproduction by bovine immune cells.

    Science.gov (United States)

    Perdomo, M C; Santos, J E; Badinga, L

    2011-10-01

    Lipopolysaccharide (LPS) modulates innate immunity through alteration of cytokine production by immune cells. The objective of this study was to examine the effect of exogenous conjugated linoleic acid (CLA) and PPAR-γ agonist, rosiglitazone, on LPS-induced tumor necrosis factor α (TNF-α) production by cultured whole blood from prepubertal Holstein heifers (mean age, 5.5 mo). Compared with unstimulated cells, addition of LPS (10 μg/mL) to the culture medium increased (PTNF-α concentration in cultured whole blood in a dose- and time-dependent manner. The greatest TNF-α stimulation occurred after 12 h of exposure to 1 μg/mL LPS. Coincubation with trans-10, cis-12 CLA isomer (100 μM) or rosiglitazone (10 μM), a PPAR-γ agonist, decreased (PTNF-α production by 13% and 29%, respectively. Linoleic acid and cis-9, trans-11 CLA isomer had no detectable effects on LPS-induced TNFproduction in cultured bovine blood. The PPAR-γ agonist-induced TNF-α attenuation was reversed when blood was treated with both rosiglitazone and GW9662, a selective PPAR-γ antagonist. Addition of rosiglitazone to the culture medium tended to reduce nuclear factor-κ Bp65 concentration in nuclear and cytosolic extracts isolated from cultured peripheral blood mononuclear cells. Results show that LPS is a potent inducer of TNFproduction in bovine blood cells and that trans-10, cis-12 CLA and PPAR-γ agonists may attenuate the pro-inflammatory response induced by LPS in growing dairy heifers. Additional studies are needed to fully characterize the involvement of nuclear factor-κ B in LPS signaling in bovine blood cells.

  20. Paclitaxel-induced activation of murine peritoneal macrophage in vitro

    Institute of Scientific and Technical Information of China (English)

    Li Zhongxiang; Wang Fufeng; Qiao Yuhuan

    2004-01-01

    Objective: To study the effects of paclitaxel on macrophage activation. Methods:Mouse macrophages were isolated by peritoneal lavage and cultured in RPMI 1640 medium according to the following groups: paclitaxel (5μmol/L) group, IFN-γ (5U/L) group, paclitaxel (5μmol/L) and IFN-γ (5U/L) combination group, and control group(without paclitaxel and IFNγ) .24 hours later, supematants were collected for nitric oxide(NO) assessment using the Griess reagent, and ttanor necrosis factor-α(TNF-α) assessment using the enzyme linked immunosorbent assay. Antibody-dependent cell-mediated cytotoxicity(ADCC) of the macrophages was assessed using the method of hemoglobin-enzyme release assay (Hb-ERA). Results: Paclitaxel induced the production of higher levels of NO(8.86 ± 1.16μmol/L) and TNF-α(120.2 ± 10.2pg/ml) ,and enhanced the ADCC of macrophages[ (20.61 + 1.13)% ]. The differences were significant compared with the control group[no NO and TNF-α detected,ADCC (15.37 + 1.93)% ](P < 0.01). Paclitaxel and IFN-γ in combination induced the production of higher levels of NO(22.85 ± 0.91μmol/L) and TNF-α(358.6 ± 27 .5pg/ml), and enhanced the ADCC of macrophages[ (42.49 + 3.09) % ]. The differences were significant compared with paclitaxel or IFN-γ[NO 8.09 ± 1.13μmol/L, TNF-α1 24.8 + 9.6pg/ml, ADCC(23.32 ± 2.63) % ] alone (P<0.01). Conclusion: These findings indicate that paclitaxel can promote NO and TNFproduction,enhance ADCC of macrophages, and induce macrophage activation. The active effects are more significant with paclitaxel and IFN-γcombination.

  1. Activation of Nrf2 by the dengue virus causes an increase in CLEC5A, which enhances TNFproduction by mononuclear phagocytes.

    Science.gov (United States)

    Cheng, Yi-Lin; Lin, Yee-Shin; Chen, Chia-Ling; Tsai, Tsung-Ting; Tsai, Cheng-Chieh; Wu, Yan-Wei; Ou, Yi-Dan; Chu, Yu-Yi; Wang, Ju-Ming; Yu, Chia-Yi; Lin, Chiou-Feng

    2016-08-26

    Infection by the dengue virus (DENV) threatens global public health due to its high prevalence and the lack of effective treatments. Host factors may contribute to the pathogenesis of DENV; herein, we investigated the role of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which is activated by DENV in mononuclear phagocytes. DENV infection selectively activates Nrf2 following nuclear translocation. Following endoplasmic reticular (ER) stress, protein kinase R-like ER kinase (PERK) facilitated Nrf2-mediated transcriptional activation of C-type lectin domain family 5, member A (CLEC5A) to increase CLEC5A expression. Signaling downstream of the Nrf2-CLEC5A interaction enhances Toll-like receptor 3 (TLR3)-independent tumor necrosis factor (TNF)-α production following DENV infection. Forced expression of the NS2B3 viral protein induces Nrf2 nuclear translocation/activation and CLEC5A expression which increases DENV-induced TNFproduction. Animal studies confirmed Nrf2-induced CLEC5A and TNF-α in brains of DENV-infected mice. These results demonstrate that DENV infection causes Nrf2-regulated TNFproduction by increasing levels of CLEC5A.

  2. Counteracting effect of TRPC1-associated Ca2+ influx on TNF-α-induced COX-2-dependent prostaglandin E2 production in human colonic myofibroblasts.

    Science.gov (United States)

    Hai, Lin; Kawarabayashi, Yasuhiro; Imai, Yuko; Honda, Akira; Inoue, Ryuji

    2011-08-01

    TNF-α-NF-κB signaling plays a central role in inflammation, apoptosis, and neoplasia. One major consequence of this signaling in the gut is increased production of prostaglandin E(2) (PGE(2)) via cyclooxygenase-2 (COX-2) induction in myofibroblasts, which has been reported to be dependent on Ca(2+). In this study, we explored a potential role of canonical transient receptor potential (TRPC) proteins in this Ca(2+)-mediated signaling using a human colonic myofibroblast cell line CCD-18Co. In CCD-18Co cell, treatment with TNF-α greatly enhanced Ca(2+) influx induced by store depletion along with increased cell-surface expression of TRPC1 protein (but not of the other TRPC isoforms) and induction of a Gd(3+)-sensitive nonselective cationic conductance. Selective inhibition of TRPC1 expression by small interfering RNA (siRNA) or functionally effective TRPC1 antibody targeting the near-pore region of TRPC1 (T1E3) antagonized the enhancement of store-dependent Ca(2+) influx by TNF-α, whereas potentiated TNF-α induced PGE(2) production. Overexpression of TRPC1 in CCD-18Co produced opposite consequences. Inhibitors of NF-κB (curcumin, SN-50) attenuated TNF-α-induced enhancement of TRPC1 expression, store-dependent Ca(2+) influx, and COX-2-dependent PGE(2) production. In contrast, inhibition of calcineurin-nuclear factor of activated T-cell proteins (NFAT) signaling by FK506 or NFAT Activation Inhibitor III enhanced the PGE(2) production without affecting TRPC1 expression and the Ca(2+) influx. Finally, the suppression of store-dependent Ca(2+) influx by T1E3 antibody or siRNA knockdown significantly facilitated TNF-α-induced NF-κB nuclear translocation. In aggregate, these results strongly suggest that, in colonic myofibroblasts, NF-κB and NFAT serve as important positive and negative transcriptional regulators of TNF-α-induced COX-2-dependent PGE(2) production, respectively, at the downstream of TRPC1-associated Ca(2+) influx.

  3. Quercetin-3-O-(2″-galloyl)-α-l-rhamnopyranoside inhibits TNF-α-activated NF-κB-induced inflammatory mediator production by suppressing ERK activation.

    Science.gov (United States)

    Lee, Chung Soo; Jeong, Eun Byul; Kim, Yun Jeong; Lee, Min Sung; Seo, Seong Jun; Park, Kwan Hee; Lee, Min Won

    2013-08-01

    Quercetin and its derivatives have anti-inflammatory and anti-oxidant effects. However, the effect of quercetin-3-O-(2″-galloyl)-α-l-rhamnopyranoside (QGR), a new quercetin derivative, on the tumor necrosis factor (TNF)-α-stimulated production of inflammatory mediators in keratinocytes is unclear. In addition, the effect of QGR on the ERK and NF-κB-mediated inflammatory process has not been studied. In human keratinocyte HaCat cells, we investigated the effect of QGR on the TNF-α-stimulated production of inflammatory mediators in relation to the nuclear factor (NF)-κB, which regulates the transcription genes involved in immune and inflammatory responses. QGR inhibited the TNF-α-stimulated production of cytokines and chemokines in HaCaT cells. QGR, dexamethasone, cyclosporine A, Bay 11-7085 (an inhibitor of NF-κB activation) and cell signaling ERK inhibitor attenuated the TNF-α-induced formation of inflammatory mediators and activation of the NF-κB and ERK. Unlike other compounds, dexamethasone and cyclosporine A did not reduce formation of reactive oxygen species. The results show that QGR may attenuate TNF-α-stimulated inflammatory mediator production in HaCaT cells by suppressing the activation of the ERK-mediated NF-κB pathway that is mediated by reactive oxygen species. Additionally, QGR may exhibit a preventive effect against the proinflammatory mediator-induced skin diseases by inhibiting the activation of the ERK and NF-κB pathways.

  4. Group IVA phospholipase A2-associated production of MMP-9 in macrophages and formation of atherosclerotic lesions.

    Science.gov (United States)

    Ii, Hiromi; Hontani, Naoya; Toshida, Issei; Oka, Mayuko; Sato, Takashi; Akiba, Satoshi

    2008-03-01

    Matrix metalloproteinase-9 (MMP-9) is involved in atherogenesis, and the production of MMP-9 in macrophages is considered to be mediated by the arachidonic acid cascade. The present study examined the possible involvement of group IVA phospholipase A2 (IVA-PLA2), a key enzyme in the arachidonic acid cascade, in the production of MMP-9 induced by oxidized low-density lipoprotein (oxLDL) in macrophages and high-fat diet-induced formation of atherosclerotic lesions using IVA-PLA2-deficient mice (C57BL/6 background). In wild-type mouse peritoneal macrophages, oxLDL induced an increase in MMP-9 in the culture medium. The oxLDL-promoted production of MMP-9 was markedly reduced in IVA-PLA2-deficient macrophages compared to wild-type macrophages. Feeding of wild-type mice with a high-fat diet caused the formation of early atherosclerotic lesions in the aortic root with increases in MMP-9 and macrophages in the lesions and with higher serum levels of total cholesterol. Such lesions were apparently less severe in IVA-PLA2-deficient mice fed a high-fat diet, despite higher total cholesterol levels. Under the conditions, a high-fat diet reduced the serum levels of high-density lipoprotein-cholesterol (HDL-C) in wild-type mice. However, IVA-PLA2-deficient mice fed a high-fat diet were protected against the decrease in HDL-C levels. The present results suggest that IVA-PLA2 is involved in the oxLDL-induced production of MMP-9 in macrophages and the high-fat diet-induced formation of early atherosclerotic lesions. The protection against the lesions in IVA-PLA2-deficient mice may be ascribable, in part, to the impaired production of MMP-9 and/or the maintained levels of HDL-C.

  5. Focal adhesion kinase activation is required for TNF-α-induced production of matrix metalloproteinase-2 and proinflammatory cytokines in cultured human periodontal ligament fibroblasts.

    Science.gov (United States)

    Zhang, Peng; Li, Ya-jing; Guo, Liu-yun; Wang, Guo-fang; Lu, Ke; Yue, Er-li

    2015-08-01

    Since focal adhesion kinase (FAK) was proposed as a mediator of the inflammatory response, we have investigated the role of this molecule in the release of inflammatory cytokines by cultured human periodontal ligament fibroblasts (HPDLFs), cells that are thought to be important in the patient's response to periodontal infection. Human periodontal ligament fibroblasts were stimulated by tumor necrosis factor alpha (TNF-α) and its effects on interleukin (IL)-6 and IL-8 release were measured by ELISA. Expression of matrix metalloproteinase 2 (MMP-2) protein was analysed by western blotting. The levels of IL6, IL8, and MMP2 mRNA were evaluated by real-time PCR. Tumor necrosis factor alpha dose-dependently induced the phosphorylation of FAK, whereas small interfering FAK (siFAK) inhibited TNF-α-induced FAK phosphorylation. Tumor necrosis factor alpha also stimulated the production of IL-6, IL-8, and MMP-2 in a dose-dependent manner. Knockdown of FAK significantly suppressed TNF-α-induced expression of IL6 and IL8 mRNA and release of IL-6 and IL-8 protein in HPDLFs. Similarly, MMP-2 down-regulation was significantly prevented by siFAK. Our results strongly suggest that knockdown of FAK can decrease the production of TNF-α-induced IL-6, IL-8, and MMP-2 in HPDLFs. These effects may help in understanding the mechanisms that control expression of inflammatory cytokines in the pathogenesis of periodontitis.

  6. Baicalein inhibits IL-1β- and TNF-α-induced inflammatory cytokine production from human mast cells via regulation of the NF-κB pathway

    Directory of Open Access Journals (Sweden)

    Krishnaswamy Guha

    2007-11-01

    Full Text Available Abstract Background Human mast cells are multifunctional cells capable of a wide variety of inflammatory responses. Baicalein (BAI, isolated from the traditional Chinese herbal medicine Huangqin (Scutellaria baicalensis Georgi, has been shown to have anti-inflammatory effects. We examined its effects and mechanisms on the expression of inflammatory cytokines in an IL-1β- and TNF-α-activated human mast cell line, HMC-1. Methods HMC-1 cells were stimulated either with IL-1β (10 ng/ml or TNF-α (100 U/ml in the presence or absence of BAI. We assessed the expression of IL-6, IL-8, and MCP-1 by ELISA and RT-PCR, NF-κB activation by electrophoretic mobility shift assay (EMSA, and IκBα activation by Western blot. Results BAI (1.8 to 30 μM significantly inhibited production of IL-6, IL-8, and MCP-1 in a dose-dependent manner in IL-1β-activated HMC-1. BAI (30 μM also significantly inhibited production of IL-6, IL-8, and MCP-1 in TNF-α-activated HMC-1. Inhibitory effects appear to involve the NF-κB pathway. BAI inhibited NF-κB activation in IL-1β- and TNF-α-activated HMC-1. Furthermore, BAI increased cytoplasmic IκBα proteins in IL-1β- and TNF-α-activated HMC-1. Conclusion Our results showed that BAI inhibited the production of inflammatory cytokines through inhibition of NF-κB activation and IκBα phosphorylation and degradation in human mast cells. This inhibitory effect of BAI on the expression of inflammatory cytokines suggests its usefulness in the development of novel anti-inflammatory therapies.

  7. Abnormal production of tumor necrosis factor (TNF) -- alpha and clinical efficacy of the TNF inhibitor etanercept in a patient with PAPA syndrome [corrected].

    Science.gov (United States)

    Cortis, Elisabetta; De Benedetti, Fabrizio; Insalaco, Antonella; Cioschi, Stefania; Muratori, Flaminia; D'Urbano, Leila E; Ugazio, Alberto G

    2004-12-01

    We report a family with pyogenic sterile arthritis, pyoderna and acne syndrome (PAPA). The proband presented several episodes of sterile pyogenic arthritis and became unresponsive to glucocorticoids. After treatment with the tumor necrosis factor inhibitor etanercept, the disease underwent rapid and sustained clinical remission. Production of tumor necrosis factor-alpha by mononuclear cells of the proband and of the affected relatives was abnormally elevated.

  8. Carnosol and Related Substances Modulate Chemokine and Cytokine Production in Macrophages and Chondrocytes

    Directory of Open Access Journals (Sweden)

    Joseph Schwager

    2016-04-01

    Full Text Available Phenolic diterpenes present in Rosmarinus officinalis and Salvia officinalis have anti-inflammatory and chemoprotective effects. We investigated the in vitro effects of carnosol (CL, carnosic acid (CA, carnosic acid-12-methylether (CAME, 20-deoxocarnosol and abieta-8,11,13-triene-11,12,20-triol (ABTT in murine macrophages (RAW264.7 cells and human chondrocytes. The substances concentration-dependently reduced nitric oxide (NO and prostaglandin E2 (PGE2 production in LPS-stimulated macrophages (i.e., acute inflammation. They significantly blunted gene expression levels of iNOS, cytokines/interleukins (IL-1α, IL-6 and chemokines including CCL5/RANTES, CXCL10/IP-10. The substances modulated the expression of catabolic and anabolic genes in chondrosarcoma cell line SW1353 and in primary human chondrocytes that were stimulated by IL-1β (i.e., chronic inflammation In SW1353, catabolic genes like MMP-13 and ADAMTS-4 that contribute to cartilage erosion were down-regulated, while expression of anabolic genes including Col2A1 and aggrecan were shifted towards pre-pathophysiological homeostasis. CL had the strongest overall effect on inflammatory mediators, as well as on macrophage and chondrocyte gene expression. Conversely, CAME mainly affected catabolic gene expression, whereas ABTT had a more selectively altered interleukin and chemokine gene exprssion. CL inhibited the IL-1β induced nuclear translocation of NF-κBp65, suggesting that it primarily regulated via the NF-κB signalling pathway. Collectively, CL had the strongest effects on inflammatory mediators and chondrocyte gene expression. The data show that the phenolic diterpenes altered activity pattern of genes that regulate acute and chronic inflammatory processes. Since the substances affected catabolic and anabolic gene expression in cartilage cells in vitro, they may beneficially act on the aetiology of osteoarthritis.

  9. Involvement of NF-κB in regulation of Actinobacillus pleuropneumoniae exotoxin ApxI-induced proinflammatory cytokine production in porcine alveolar macrophages.

    Science.gov (United States)

    Hsu, Chiung-Wen; Li, Siou-Cen; Chang, Nai-Yun; Chen, Zeng-Weng; Liao, Jiunn-Wang; Chen, Ter-Hsin; Wang, Jyh-Perng; Lin, Jiunn-Horng; Hsuan, Shih-Ling

    2016-11-15

    Actinobacillus pleuropneumoniae is a crucial respiratory pathogen that causes fibrinous, hemorrhagic, necrotizing pleuropneumonia in pigs. A. pleuropneumoniae exotoxins (ApxI to IV) are the major virulence factors contributing to A. pleuropneumoniae pathogenesis. Previously, we demonstrated that ApxI induces the expression of proinflammatory cytokines in porcine alveolar macrophages (PAMs) via the mitogen-activated protein kinases (MAPKs) p38 and cJun NH2-terminal kinase (JNK). Nonetheless, the role of nuclear factor (NF)-κB-a transcription factor widely implicated in immune and inflammatory responses-in ApxI-elicited cytokine production has yet to be defined. In the present study, we examined the involvement of NF-κB in ApxI-elicited production of interleukin (IL)-1β, IL-8, and tumor necrosis factor (TNF)-α in PAMs and investigated the correlation between NF-κB and MAPK (p38 and JNK) pathways in this event. The results of Western blot analysis, confocal microscopy, and a DNA binding activity assay revealed that the classical NF-κB pathway was activated by ApxI, as evidenced by the decreased levels of IκB and subsequent NF-κB translocation and activation in ApxI-stimulated PAMs. Moreover, the blocking of ApxI-induced NF-κB activation significantly attenuated the levels of mRNA and protein secretion of IL-1β, IL-8, and TNF-α in PAMs. Notably, the attenuation of JNK activation by a specific inhibitor (SP600125) reduced ApxI-induced NF-κB activation, whereas a p38 blocker (SB203580) had no effect on the NF-κB pathway. Further examination revealed that the level of phosphorylation at serine 536 on the NF-κB p65 subunit was dependent on JNK activity. Collectively, this study, for the first time, demonstrates a pivotal role of NF-κB in ApxI-induced IL-1β, IL-8, and TNFproduction; JNK, but not p38, may positively affect the activation of the classical NF-κB pathway. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Effect of silica and gold nanoparticles on macrophage proliferation, activation markers, cytokine production, and phagocytosis in vitro.

    Science.gov (United States)

    Bancos, Simona; Stevens, David L; Tyner, Katherine M

    2015-01-01

    The accumulation of durable nanoparticles (NPs) in macrophages following systemic administration is well described. The ultimate biological impact of this accumulation on macrophage function, however, is not fully understood. In this study, nontoxic doses of two durable NPs, SiO2 and Au, at particle sizes of ~10 nm and 300 nm were used to evaluate the effect of bioaccumulation on macrophage function in vitro using RAW 264.7 mouse macrophage-like cells as a model system. Cell proliferation, cell cycle, cytokine production, surface marker activation, and phagocytosis responses were evaluated through a panel of assays using flow cytometry and confocal microscopy. The most dramatic change in RAW 264.7 cell function was a reduction in phagocytosis as monitored by the uptake of Escherichia coli. Cells exposed to both 10 nm Au NPs and 10 nm SiO2 NPs showed ~50% decrease in phagocytosis, while the larger NPs caused a less dramatic reduction. In addition to modifying phagocytosis profiles, 10 nm SiO2 NPs caused changes in proliferation, cell cycle, and cell morphology. Au NPs had no effect on cell cycle, cytokine production, or surface markers and caused interference in phagocytosis in the form of quenching when the assay was performed via flow cytometry. Confocal microscopy analysis was used to minimize this interference and demonstrated that both sizes of Au NPs decreased the phagocytosis of E. coli. Overall, our results demonstrate that Au and SiO2 NP uptake by macrophages can influence macrophage phagocytosis in vitro without altering surface markers and cytokine production in vitro. While the biological impact of these findings remains unclear, our results indicate that bioaccumulation of durable NPs within the macrophages may lead to a suppression of bacterial uptake and possibly impair bactericidal activity.

  11. C-Geranylated Flavanones from Paulownia tomentosa Fruits as Potential Anti-inflammatory Compounds Acting via Inhibition of TNFProduction.

    Science.gov (United States)

    Hanáková, Zuzana; Hošek, Jan; Babula, Petr; Dall'Acqua, Stefano; Václavík, Jiří; Šmejkal, Karel

    2015-04-24

    Eleven new C-geranylated flavonoids, tomentodiplacones L, M, and N (1, 2, 10), tomentodiplacol B (3), 3',4'-O-dimethyl-5'-hydroxydiplacone (4), mimulones F, G, and H (5, 6, 7), paulowniones A (8) and B (9), tomentone (11), and 3',4',5'-trimethoxyflavanone (12), together with 11 known flavonoids (13-23), were isolated from fruits of Paulownia tomentosa. The structures of the compounds isolated were determined by spectroscopic data interpretation. The ability of compounds 1-23, together with the nonprenylated flavanones eriodictyol (24) and naringenin (25), to reduce the production of the pro-inflammatory cytokine TNF-α in THP-1 cells after bacterial lipopolysaccharide stimulation was evaluated using an in vitro screening test. The preliminary structure-activity relationships of these derivatives were also studied, and the correlation of their TNF-α inhibitory activity with their lipophilicity was investigated. The mechanism of action of compounds with significant antiphlogistic potential (4, 7, 10, 14, 22) was investigated. These compounds reduced both the secretion of TNF-α and the level of its corresponding mRNA. Compounds 4, 7, 10, 14, and 22 inhibited the nuclear translocation of NF-κB, which controls the expression of TNF-α, by blocking the degradation of IκB.

  12. Production of IL-10, TNF and IL-12 by peripheral blood mononuclear cells in Mexican workers exposed to a mixture of benzene-toluene-xylene.

    Science.gov (United States)

    Haro-García, Luis Cuauhtémoc; Juárez-Pérez, Cuauhtémoc Arturo; Aguilar-Madrid, Guadalupe; Vélez-Zamora, Nadia Mayola; Muñoz-Navarro, Sergio; Chacón-Salinas, Rommel; González-Bonilla, César Raúl; Iturbe-Haro, Claudia Rosa; Estrada-García, Iris; Borja-Aburto, Víctor Hugo

    2012-01-01

    Occupational exposure to low-level benzene and the joint action of toluene-xylene probably cause effects on circulating monocytes immune response. We undertook this study to determine relationship between occupational exposure to benzene-toluene-xylene mixture (BTX) and IL-10, TNF and IL-12 production by peripheral blood mononuclear cells. Exposure was estimated in 54 workers from a paint company in Mexico City through BTX accumulated potential dose (BTX-APD). Two exposure groups were formed: high and low BTX-APD established with a cutoff point at ≥1.0 of BTX-APD, as a function of the geometric mean of the estimator's value distribution and the higher agreement between BTX-APD ≥1.0 and the areas referred as using (or not) organic solvents in the work process. IL-10, TNF and IL-12 concentrations were measured with ELISA. Through multiple linear regression models, the production of each of the proposed cytokines and of the whole set was assessed. Workers with high BTX-APD showed a significant reduction in TNF production (β = -1,196.0 pg/mL; p = 0.01); a reduction for IL-10 (β = -520.3; p = 0.13) and IL-12 (β = -843.3; p = 0.09) was also observed, although without statistical significance. TNF production assessed in workers with a high BTX-APD is lower than in those with a low BTX-APD, but not in IL-10 and IL-12 production. Copyright © 2012 IMSS. Published by Elsevier Inc. All rights reserved.

  13. IFN-γ and TNF-α are involved during Alzheimer disease progression and correlate with nitric oxide production: a study in Algerian patients.

    Science.gov (United States)

    Belkhelfa, Mourad; Rafa, Hayet; Medjeber, Oussama; Arroul-Lammali, Amina; Behairi, Nassima; Abada-Bendib, Myriam; Makrelouf, Mohamed; Belarbi, Soreya; Masmoudi, Ahmed Nacer; Tazir, Meriem; Touil-Boukoffa, Chafia

    2014-11-01

    Alzheimer's disease (AD) is a neurodegenerative disease leading to a progressive and irreversible loss of mental functions. It is characterized by 3 stages according to the evolution and the severity of the symptoms. This disease is associated with an immune disorder, which appears with significant rise in the inflammatory cytokines and increased production of free radicals such as nitric oxide (NO). Our study aims to investigate interferon (IFN)-γ and tumor necrosis factor-α (TNF-α) involvement in NO production, in vivo and ex vivo, in peripheral blood mononuclear cells from Algerian patients (n=25), according to the different stages of the disease (mild Alzheimer's, moderate Alzheimer's, and severe Alzheimer's) in comparison to mild cognitive impairment (MCI) patients. Interestingly, we observed that in vivo IFN-γ and TNF-α levels assessed in patients with AD in mild and severe stages, respectively, are higher than those observed in patients with moderate stage and MCI. Our in vivo and ex vivo results show that NO production is related to the increased levels of IFN-γ and TNF-α, in mild and severe stages of AD. Remarkably, significant IFN-γ level is only detected in mild stage of AD. Our study suggests that NO production is IFN-γ dependent both in MCI and mild Alzheimer's patients. Further, high levels of NO are associated with an elevation of TNF-α levels in severe stage of AD. Collectively, our data indicate that the proinflammatory cytokine production seems, in part, to be involved in neurological deleterious effects observed during the development of AD through NO pathway.

  14. Immunological impact of magnetic nanoparticles (Ferucarbotran) on murine peritoneal macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Chen-Hao [National Taiwan University, Department of Horticulture (China); Hsiao, Jong-Kai [National Taiwan University Hospital and College of Medicine, Department of Medical Imaging (China); Wang, Jaw-Lin [National Taiwan University, Institute of Biomedical Engineering (China); Sheu, Fuu, E-mail: fsheu@ntu.edu.t [National Taiwan University, Department of Horticulture (China)

    2010-01-15

    Ferucarbotran, a clinically used superparamagnetic iron oxide, is widely developed as a magnetic resonance imaging (MRI) contrast agent and has the potential to improve the monitoring of macrophage recirculation in vivo. However, the biological effect of Ferucarbotran or magnetic nanoparticles (MNPs) on macrophage is not clearly understood yet. This study is aimed to examine the immunological impact of Ferucarbotran toward murine peritoneal macrophages. Cells treated with Ferucarbotran demonstrated a dose-responsive increase of granularity in the cytoplasm. After 24 h of incubation, viability and cytotoxicity in macrophages treated with 200 {mu}g Fe/mL of Ferucarbotran were not affected. Macrophages loaded with Ferucarbotran above 100 {mu}g Fe/mL showed a significant (p < 0.01) increase in cytokine (TNF-{alpha}, IL-1{beta}, IL-6) secretion and mRNA expression, followed by nitric oxide (NO) secretion and iNOS mRNA expression. Chemotactic responses of Ferucarbotran-preloaded macrophages toward CX3CL1 were significantly (p < 0.05) lower than those of untreated macrophages. Taking together, Ferucarbotran at high dose (100 {mu}g Fe/mL) could induce murine peritoneal macrophages activation in pro-inflammatory cytokine secretion and NO production.

  15. TLR2 and TLR4 signaling pathways are required for recombinant Brucella abortus BCSP31-induced cytokine production, functional upregulation of mouse macrophages, and the Th1 immune response in vivo and in vitro.

    Science.gov (United States)

    Li, Jia-Yun; Liu, Yuan; Gao, Xiao-Xue; Gao, Xiang; Cai, Hong

    2014-09-01

    Brucella abortus is a zoonotic Gram-negative pathogen that causes brucelosis in ruminants and humans. Toll-like receptors (TLRs) recognize Brucella abortus and initiate antigen-presenting cell activities that affect both innate and adaptive immunity. In this study, we focused on recombinant Brucella cell-surface protein 31 (rBCSP31) to determine its effects on mouse macrophages. Our results demonstrated that rBCSP31 induced TNF-α, IL-6 and IL-12p40 production, which depended on the activation of mitogen-activated protein kinases (MAPKs) by stimulating the rapid phosphorylation of p38 and JNK and the activation of transcription factor NF-κB in macrophages. In addition, continuous exposure (>24 h) of RAW264.7 cells to rBCSP31 significantly enhanced IFN-γ-induced expression of MHC-II and the ability to present rBCSP31 peptide to CD4(+) T cells. Furthermore, we found that rBCSP31 could interact with both TLR2 and TLR4. The rBCSP31-induced cytokine production by macrophages from TLR2(-/-) and TLR4(-/-) mice was lower than that from C57BL/6 macrophages, and the activation of NF-κB and MAPKs was attenuated in macrophages from TLR2(-/-) and TLR4(-/-) mice. In addition, CD4(+) T cells from C57BL/6 mice immunized with rBCSP31 produced higher levels of IFN-γ and IL-2 compared with CD4(+) T cells from TLR2(-/-) and TLR4(-/-) mice. Macrophages from immunized C57BL/6 mice produced higher levels of IL-12p40 than those from TLR2(-/-) and TLR4(-/-) mice. Furthermore, immunization with rBCSP31 provided better protection in C57BL/6 mice than in TLR2(-/-) and TLR4(-/-) mice after B. abortus 2308 challenge. These results indicate that rBCSP31 is a TLR2 and TLR4 agonist that induces cytokine production, upregulates macrophage function and induces the Th1 immune response.

  16. Aging Enhances Production of Reactive Oxygen Species and Bactericidal Activity in Peritoneal Macrophages by Up-Regulating Classical Activation Pathways

    Science.gov (United States)

    Smallwood, Heather S.; López-Ferrer, Daniel; Squier, Thomas C.

    2011-01-01

    Maintenance of macrophages in their basal state and their rapid activation in response to pathogen detection is central to the innate immune system, acting to limit nonspecific oxidative damage and promote pathogen killing following infection. To identify possible age-related alterations in macrophage function, we have assayed the function of peritoneal macrophages from young (3–4 mo) and aged (14–15 mo) Balb/c mice. In agreement with prior suggestions, we observe age-dependent increases in macrophage recruitment into the peritoneum, as well as ex vivo functional changes involving enhanced nitric oxide production under resting conditions that contribute to a reduction in the time needed for full activation of senescent macrophages following exposure to LPS. Further, we observe enhanced bactericidal activity following Salmonella uptake by macrophages isolated from aged Balb/c mice in comparison with those isolated from young animals. Pathways responsible for observed phenotypic changes were interrogated using tandem mass spectrometry, which identified age-dependent increases in proteins linked to immune cell pathways under both basal conditions and following LPS activation. Immune pathways up-regulated in macrophages isolated from aged mice include proteins critical to formation of the immunoproteasome. Detection of these latter proteins are dramatically enhanced following LPS exposure for macrophages isolated from aged animals; in comparison, the identification of immunoproteasome subunits is insensitive to LPS exposure for macrophages isolated from young animals. Consistent with observed global changes in the proteome, quantitative proteomic measurements indicate that there are age-dependent abundance changes involving specific proteins linked to immune cell function under basal conditions. LPS exposure selectively increases many proteins involved in immune cell function in aged Balb/c mice. Collectively these results indicate that macrophages isolated from

  17. Aging Enhances the Production of Reactive Oxygen Species and Bactericidal Activity in Peritoneal Macrophages by Upregulating Classical Activation Pathways

    Energy Technology Data Exchange (ETDEWEB)

    Smallwood, Heather S.; López-Ferrer, Daniel; Squier, Thomas C.

    2011-10-07

    Maintenance of macrophages in their basal state and their rapid activation in response to pathogen detection are central to the innate immune system, acting to limit nonspecific oxidative damage and promote pathogen killing following infection. To identify possible age-related alterations in macrophage function, we have assayed the function of peritoneal macrophages from young (3–4 months) and aged (14–15 months) Balb/c mice. In agreement with prior suggestions, we observe age-dependent increases in the extent of recruitment of macrophages into the peritoneum, as well as ex vivo functional changes involving enhanced nitric oxide production under resting conditions that contribute to a reduction in the time needed for full activation of senescent macrophages following exposure to lipopolysaccharides (LPS). Further, we observe enhanced bactericidal activity following Salmonella uptake by macrophages isolated from aged Balb/c mice in comparison with those isolated from young animals. Pathways responsible for observed phenotypic changes were interrogated using tandem mass spectrometry, which identified age-dependent increases in levels of proteins linked to immune cell pathways under basal conditions and following LPS activation. Immune pathways upregulated in macrophages isolated from aged mice include proteins critical to the formation of the immunoproteasome. Detection of these latter proteins is dramatically enhanced following LPS exposure for macrophages isolated from aged animals; in comparison, the identification of immunoproteasome subunits is insensitive to LPS exposure for macrophages isolated from young animals. Consistent with observed global changes in the proteome, quantitative proteomic measurements indicate that there are age-dependent abundance changes involving specific proteins linked to immune cell function under basal conditions. LPS exposure selectively increases the levels of many proteins involved in immune cell function in aged Balb/c mice

  18. Glutathione prevents preterm parturition and fetal death by targeting macrophage-induced reactive oxygen species production in the myometrium.

    Science.gov (United States)

    Hadi, Tarik; Bardou, Marc; Mace, Guillaume; Sicard, Pierre; Wendremaire, Maeva; Barrichon, Marina; Richaud, Sarah; Demidov, Oleg; Sagot, Paul; Garrido, Carmen; Lirussi, Frédéric

    2015-06-01

    Preterm birth is an inflammatory process resulting from the massive infiltration of innate immune cells and the production of proinflammatory cytokines in the myometrium. However, proinflammatory cytokines, which induce labor in vivo, fail to induce labor-associated features in human myometrial cells (MCs). We thus aimed to investigate if reactive oxygen species (ROS) production could be the missing step between immune cell activation and MC response. Indeed, we found that ROS production is increased in the human preterm laboring myometrium (27% ROS producing cells, respectively, versus 2% in nonlaboring controls), with 90% ROS production in macrophages. Using LPS-stimulated myometrial samples and cell coculture experiments, we demonstrated that ROS production is required for labor onset. Furthermore, we showed that ROS are required first in the NADPH oxidase (NADPHox)-2/NF-κB-dependent macrophage response to inflammatory stimuli but, more importantly, to trigger macrophage-induced MCs transactivation. Remarkably, in a murine model of LPS-induced preterm labor (inducing delivery within 17 hours, with no pup survival), cotreatment with glutathione delayed labor onset up to 94 hours and prevented in utero fetal distress, allowing 46% pups to survive. These results suggest that targeting ROS production with the macrophage-permeable antioxidant glutathione could constitute a promising strategy to prevent preterm birth. © FASEB.

  19. Macrophage Activation by Ursolic and Oleanolic Acids during Mycobacterial Infection

    Directory of Open Access Journals (Sweden)

    Sonia López-García

    2015-08-01

    Full Text Available Oleanolic (OA and ursolic acids (UA are triterpenes that are abundant in vegetables, fruits and medicinal plants. They have been described as active moieties in medicinal plants used for the treatment of tuberculosis. In this study, we analyzed the effects of these triterpenes on macrophages infected in vitro with Mycobacterium tuberculosis (MTB. We evaluated production of nitric oxide (NO, reactive oxygen species (ROS, and cytokines (TNF-α and TGF-β as well as expression of cell membrane receptors (TGR5 and CD36 in MTB-infected macrophages following treatment with OA and UA. Triterpenes caused reduced MTB growth in macrophages, stimulated production of NO and ROS in the early phase, stimulated TNF-α, suppressed TGF-β and caused over-expression of CD36and TGR5 receptors. Thus, our data suggest immunomodulatory properties of OA and UA on MTB infected macrophages. In conclusion, antimycobacterial effects induced by these triterpenes may be attributable to the conversion of macrophages from stage M2 (alternatively activated to M1 (classically activated.

  20. Rhinovirus infection induces interleukin-13 production from CD11b-positive, M2-polarized exudative macrophages.

    Science.gov (United States)

    Chung, Yutein; Hong, Jun Young; Lei, Jing; Chen, Qiang; Bentley, J Kelley; Hershenson, Marc B

    2015-02-01

    Rhinovirus (RV) causes asthma exacerbations. Previously, we showed that adherent bronchoalveolar cells from allergen-treated mice produce IL-13 when stimulated with RV ex vivo, implicating cells of the monocyte/macrophage lineage in viral-induced airway inflammation. In this study, we hypothesized that RV infection of allergen-treated mice results in IL-13 production by CD11b+ exudative macrophages in vivo. We sensitized and challenged BALB/c mice with ovalbumin (OVA), after which mice were inoculated with RV or sham HeLa cell lysate. After 1 day, lungs were harvested, and cell suspensions were analyzed by flow cytometry. We repeated this process in IL-13 reporter mice, CD11b-DTR mice in which diphtheria toxin selectively depletes CD11b+ cells, and chemokine receptor 2 (CCR2) null mice. We found that lungs of mice infected with RV alone showed increases in CD45+, CD68+, F4/80+, Ly6C+, and CD11b(high) cells, indicating an influx of inflammatory monocytes and exudative macrophages. The combination of OVA and RV had synergistic effects on the exudative macrophage number. However, CD11b+ cells from OVA-treated, RV-infected mice showed M2 polarization, including expression of CD206 and CD301 and production of IL-13. Similar results were obtained in IL-13 reporter mice. Diphtheria toxin depleted CD11b+, IL-13-producing cells in OVA-treated, RV-infected, CD11b-DTR mice, decreasing airway inflammation and responsiveness. CD11b+, Ly6C+ cells were reduced in CCR2 knockout mice. We conclude that, in contrast to naive mice, RV infection of mice with allergic airways disease induces an influx of IL-13-producing CD11b+ exudative macrophages bearing M2 macrophage markers. This finding further implicates alternatively activated macrophages in RV-induced asthma exacerbations.

  1. Effects of Benzalkonium Chloride on THP-1 Differentiated Macrophages In Vitro

    Science.gov (United States)

    Michée, Sylvain; Brignole-Baudouin, Françoise; Riancho, Luisa; Rostene, William; Baudouin, Christophe; Labbé, Antoine

    2013-01-01

    Purpose To characterize the effects of benzalkonium chloride (BAK) in THP-1 differentiated cells in vitro. Methods Macrophages were obtained after differentiation of THP-1 cells, a human monocytic leukemia cell line. Macrophages were exposed for 24 h to 33 nM (10−5%) benzalkonium chloride (BAK), 10 nM dinitrochlorobenzene (DNCB), 100 ng/mL lipopolysaccharide (LPS), 5 ng/mL tumor necrosis factor alpha (TNF-α) or phosphate buffered saline (PBS) as controls. The expression of CD11b, CD11c, CD33 and CD54 was evaluated using immunohistochemistry and flow cytometry (FCM). Phagocytosis function was analyzed using carboxylate-modified fluorescent microspheres and quantified by FCM. Migration was evaluated in cocultures with conjunctival epithelial cells. Cytokine production was detected and quantified in culture supernatants using a human cytokine array. Results Stimulation of THP-1-derived macrophages with a low concentration of BAK increased CD11b and CD11c expression and decreased CD33. Macrophages exposed to BAK, LPS and TNF-α had increased phagocytosis. In contrast to LPS, BAK and TNF-α increased macrophage migration. Cytokines in supernatants of macrophages exposed to BAK revealed an increased release of CCL1, CCL4/MIP-1β, TNF-α, soluble CD54/ICAM-1 and IL-1β. Conclusion In vitro, BAK has a direct stimulating effect on macrophages, increasing phagocytosis, cytokine release, migration and expression of CD11b and CD11c. Long-term exposure to low concentrations of BAK should be considered as a stimulating factor responsible for inflammation through macrophage activation. PMID:23991114

  2. Effects of benzalkonium chloride on THP-1 differentiated macrophages in vitro.

    Directory of Open Access Journals (Sweden)

    Sylvain Michée

    Full Text Available PURPOSE: To characterize the effects of benzalkonium chloride (BAK in THP-1 differentiated cells in vitro. METHODS: Macrophages were obtained after differentiation of THP-1 cells, a human monocytic leukemia cell line. Macrophages were exposed for 24 h to 33 nM (10(-5% benzalkonium chloride (BAK, 10 nM dinitrochlorobenzene (DNCB, 100 ng/mL lipopolysaccharide (LPS, 5 ng/mL tumor necrosis factor alpha (TNF-α or phosphate buffered saline (PBS as controls. The expression of CD11b, CD11c, CD33 and CD54 was evaluated using immunohistochemistry and flow cytometry (FCM. Phagocytosis function was analyzed using carboxylate-modified fluorescent microspheres and quantified by FCM. Migration was evaluated in cocultures with conjunctival epithelial cells. Cytokine production was detected and quantified in culture supernatants using a human cytokine array. RESULTS: Stimulation of THP-1-derived macrophages with a low concentration of BAK increased CD11b and CD11c expression and decreased CD33. Macrophages exposed to BAK, LPS and TNF-α had increased phagocytosis. In contrast to LPS, BAK and TNF-α increased macrophage migration. Cytokines in supernatants of macrophages exposed to BAK revealed an increased release of CCL1, CCL4/MIP-1β, TNF-α, soluble CD54/ICAM-1 and IL-1β. CONCLUSION: In vitro, BAK has a direct stimulating effect on macrophages, increasing phagocytosis, cytokine release, migration and expression of CD11b and CD11c. Long-term exposure to low concentrations of BAK should be considered as a stimulating factor responsible for inflammation through macrophage activation.

  3. Mast cells play a key role in Th2 cytokine-dependent asthma model through production of adhesion molecules by liberation of TNF-α.

    Science.gov (United States)

    Chai, Ok Hee; Han, Eui-Hyeog; Lee, Hern-Ku; Song, Chang Ho

    2011-01-31

    Mast cells are well recognized as key cells in allergic reactions, such as asthma and allergic airway diseases. However, the effects of mast cells and TNF-α on T-helper type 2 (Th2) cytokine-dependent asthma are not clearly understood. Therefore, an aim of this study was to investigate the role of mast cells on Th2 cytokine-dependent airway hyperresponsiveness and inflammation. We used genetically mast cell-deficient WBB6F1/J-Kitw/Kitw-v (W/Wv), congenic normal WBB6F1/J-Kit+/Kit+ (+/+), and mast cell-reconstituted W/Wv mouse models of allergic asthma to investigate the role of mast cells in Th2 cytokine-dependent asthma induced by ovalbumin (OVA). And we investigated whether the intratracheal injection of TNF-α directly induce the expression of ICAM-1 and VCAM-1 in W/Wv mice. This study, with OVA-sensitized and OVA-challenged mice, revealed the following typical histopathologic features of allergic diseases: increased inflammatory cells of the airway, airway hyperresponsiveness, and increased levels of TNF-α, intercellular adhesion molecule (ICAM)-1, and vascular cellular adhesion molecule (VCAM)-1. However, the histopathologic features and levels of ICAM-1 and VCAM-1 proteins in W/Wv mice after OVA challenges were significantly inhibited. Moreover, mast cell-reconstituted W/Wv mice showed restoration of histopathologic features and recovery of ICAM-1 and VCAM-1 protein levels that were similar to those found in +/+ mice. Intratracheal administration of TNF-α resulted in increased ICAM-1 and VCAM-1 protein levels in W/Wv mice. These results suggest that mast cells play a key role in a Th2 cytokine-dependent asthma model through production of adhesion molecules, including ICAM-1 and VCAM-1, by liberation of TNF-α.

  4. Impaired NK cell functionality and increased TNFproduction as biomarkers of chronic chikungunya arthritis and rheumatoid arthritis.

    Science.gov (United States)

    Thanapati, Subrat; Ganu, Mohini; Giri, Prashant; Kulkarni, Shruti; Sharma, Meenal; Babar, Prasad; Ganu, Ashok; Tripathy, Anuradha S

    2017-04-01

    The chronic chikungunya arthritis symptoms closely mimic the rheumatoid arthritis (RA) symptoms, thus making it difficult to distinguish between these two clinical entities. The current comparative study characterizes NK (CD3(-)CD56(+)) and NK-like T (CD3(+)CD56(+)) cell responses in patients with chronic chikungunya arthritis and RA. Phenotype and functions of NK and NK-like T cells repertoire were assessed in 56 chronic chikungunya arthritis, 26 RA patients and 82 controls using flow cytometry. TNF-α and IFN-γ-secreting NK-like T cells were high in both chronic arthritis patients than in controls. Percentage of TNF-α(+) NK cells was higher in RA patients than in controls. Percentage of perforin(+) NK cells was low in both chronic arthritis patient groups. Among the patient groups, expressions of perforin(+) and IFN-γ(+) NK-like T cells were higher in RA. Overall, our data show reduced frequency of NK-like T cells, lower expression of perforin(+) NK, higher expression of TNF-α(+) NK-like T and IFN-γ(+) NK-like T cells as the markers of chronic arthritic diseases. In the absence of any specific treatment for chronic chikungunya induced arthritis and promising results of anti-TNF-α therapy against RA, current data may form the basis for future in vivo studies and has scope as possible therapeutics against chikungunya.

  5. Suppression of nitric oxide production in mouse macrophages by soybean flavonoids accumulated in response to nitroprusside and fungal elicitation

    Directory of Open Access Journals (Sweden)

    Tamashiro Wirla MSC

    2004-04-01

    Full Text Available Abstract Background The anti-inflammatory properties of some flavonoids have been attributed to their ability to inhibit the production of NO by activated macrophages. Soybean cotyledons accumulate certain flavonoids following elicitation with an extract of the fungal pathogen Diaporthe phaseolorum f. sp. meridionalis (Dpm. Sodium nitroprusside (SNP, a nitric oxide donor, can substitute for Dpm in inducing flavonoid production. In this study, we investigated the effect of flavonoid-containing diffusates obtained from Dpm- and SNP-elicited soybean cotyledons on NO production by lipopolysaccharide (LPS- and LPS plus interferon-γ (IFNγ-activated murine macrophages. Results Significant inhibition of NO production, measured as nitrite formation, was observed when macrophages were activated in the presence of soybean diffusates from Dpm- or SNP-elicited cotyledons. This inhibition was dependent on the duration of exposure to the elicitor. Daidzein, genistein, luteolin and apigenin, the main flavonoids present in diffusates of elicited cotyledons, suppressed the NO production by LPS + IFNγ activated macrophages in a concentration-dependent manner, with IC50 values of 81.4 μM, 34.5 μM, 38.6 μM and 10.4 μM respectively. For macrophages activated with LPS alone, the IC50 values were 40.0 μM, 16.6 μM, 10.4 μM and 2.8 μM, respectively. Western blot analysis showed that iNOS expression was not affected by daidzein, was reduced by genistein, and was abolished by apigenin, luteolin and Dpm- and SNP-soybean diffusates at concentrations that significantly inhibited NO production by activated macrophages. Conclusions These results suggest that the suppressive effect of flavonoids on iNOS expression could account for the potent inhibitory effect of Dpm- and SNP-diffusates on NO production by activated macrophages. Since the physiological concentration of flavonoids in plants is normally low, the treatment of soybean tissues with SNP may provide a simple

  6. EFFECT OF KANGLEMYCIN C ON LYMPHOKIN A PRODUCTION AND GENE EXPRESSION OF MOUSE SPLENOCYTE AND MACROPHAGE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Ain. To study the effect of kanglemycin C (KC) on production and gene transcription of lymphokins. Methods. Cell proliferation and lymphokin activities were quantified with MTT colorimetry and ELISA, and genetranscripdons of lymphokins semi-quantified with RT-PCR. Restlts. Suppression of KC on proliferation of enriched T-and B-cell respectively mediated by Con A and LPS was declined by addition of exogenous IL-1, IL-2, and IL-6. KC 80 nmol/L markedly inhibited IL-2 and IL-6 pro-duction and mRNA transcription of incubated mouse splenocytes induced by Con A. Additionally, KC had some sup-pression on IL-1β and IL-6 productions of peritoneal macrophage stimulated by LPS (5 μg/mL), whereas cyclosporine(CS) had not. Condusion. Immunosuppression of KC came true partially through the decrease of IL-1β, -2 and -6 productions,especially of IL-2. However, CS's immunosuppression was mainly through the decrease of IL-2 procduction.

  7. TNF-alpha expression by resident microglia and infiltrating leukocytes in the central nervous system of mice with experimental allergic encephalomyelitis

    DEFF Research Database (Denmark)

    Renno, T; Krakowski, M; Piccirillo, C

    1995-01-01

    , the majority of which were identified as microglia and macrophages by their Mac-1 phenotype. Microglia could be discriminated by their low expression of CD45. Incubation of freshly derived, adult microglia from normal, uninfiltrated, CNS with activated Th1 supernatant induced the production of TNF-alpha m......RNA. Therefore, TNF-alpha is made by both CNS-resident microglia and infiltrating macrophages during EAE, and this production is tightly controlled by cytokines secreted by infiltrating CD4+ T cells.......The inflammatory cytokines IFN-gamma and TNF-alpha have been demonstrated in various autoimmune diseases, and are thought to participate in the induction and pathogenesis of disease. TFN-alpha is a cytopathic cytokine that is cytotoxic for oligodendrocytes in vitro and has been implicated...

  8. Up-regulation of T lymphocyte and antibody production by inflammatory cytokines released by macrophage exposure to multi-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Grecco, Ana Carolina P; Mizutani, Erica; Peterlevitz, Alfredo C; Ceragioli, Helder J; Baranauskas, Vitor [Faculdade de Engenharia Eletrica e Computacao, Universidade de Campinas, Campinas, SP (Brazil); Paula, Rosemeire F O; Sartorelli, Juliana C; Milani, Ana M; Longhini, Ana Leda F; Oliveira, Elaine C; Pradella, Fernando; Silva, Vania D R; Moraes, Adriel S; Farias, Alessandro S; Santos, Leonilda M B, E-mail: leonilda@unicamp.br [Laboratorio de Neuroimunologia, Departamento Genetica, Evolucao e Bioagentes, Instituto de Biologia, Universidade de Campinas, Campinas, SP (Brazil)

    2011-07-01

    Our data demonstrate that multi-walled carbon nanotubes (MWCNTs) are internalized by macrophages, subsequently activating them to produce interleukin (IL)-12 (IL-12). This cytokine induced the proliferative response of T lymphocytes to a nonspecific mitogen and to ovalbumin (OVA). This increase in the proliferative response was accompanied by an increase in the expression of pro-inflammatory cytokines, such as interferon-gamma (IFN{gamma}), tumor necrosis factor-alpha (TNF{alpha}) and IL-6, in mice inoculated with MWCNTs, whether or not they had been immunized with OVA. A decrease in the expression of transforming growth factor-beta (TGF{beta}) was observed in the mice treated with MWCNTs, whereas the suppression of the expression of both TGF{beta} and IL-10 was observed in mice that had been both treated and immunized. The activation of the T lymphocyte response by the pro-inflammatory cytokines leads to an increase in antibody production to OVA, suggesting the important immunostimulatory effect of carbon nanotubes.

  9. Inhibitory effect of Jeju endemic seaweeds on the production of pro-inflammatory mediators in mouse macrophage cell line RAW 264.7*

    Science.gov (United States)

    Yang, Eun-Jin; Moon, Ji-Young; Kim, Min-Jin; Kim, Dong Sam; Kim, Chan-Shick; Lee, Wook Jae; Lee, Nam Ho; Hyun, Chang-Gu

    2010-01-01

    Seaweed has been used in traditional cosmetics and as a herbal medicine in treatments for cough, boils, goiters, stomach ailments, and urinary diseases, and for reducing the incidence of tumors, ulcers, and headaches. Despite the fact that seaweeds are frequently used in the practice of human health, little is known about the role of seaweed in the context of inflammation. This study aimed to investigate the influence of Jeju endemic seaweed on a mouse macrophage cell line (RAW 264.7) under the stimulation of lipopolysaccharide (LPS). Ethyl acetate extracts obtained from 14 different kinds of Jeju seaweeds were screened for inhibitory effects on pro-inflammatory mediators. Our results revealed that extracts from five seaweeds, Laurencia okamurae, Grateloupia elliptica, Sargassum thunbergii, Gloiopeltis furcata, and Hizikia fusiformis, were potent inhibitors of the production of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α). Based on these results, the anti-inflammatory effects and low cell toxicity of these seaweed extracts suggest potential therapeutic applications in the regulation of the inflammatory response. PMID:20443209

  10. Cytokine overproduction and crosslinker hypersensitivity are unlinked in Fanconi anemia macrophages.

    Science.gov (United States)

    Garbati, Michael R; Hays, Laura E; Rathbun, R Keaney; Jillette, Nathaniel; Chin, Kathy; Al-Dhalimy, Muhsen; Agarwal, Anupriya; Newell, Amy E Hanlon; Olson, Susan B; Bagby, Grover C

    2016-03-01

    The Fanconi anemia proteins participate in a canonical pathway that repairs cross-linking agent-induced DNA damage. Cells with inactivated Fanconi anemia genes are universally hypersensitive to such agents. Fanconi anemia-deficient hematopoietic stem cells are also hypersensitive to inflammatory cytokines, and, as importantly, Fanconi anemia macrophages overproduce such cytokines in response to TLR4 and TLR7/8 agonists. We questioned whether TLR-induced DNA damage is the primary cause of aberrantly regulated cytokine production in Fanconi anemia macrophages by quantifying TLR agonist-induced TNFproduction, DNA strand breaks, crosslinker-induced chromosomal breakage, and Fanconi anemia core complex function in Fanconi anemia complementation group C-deficient human and murine macrophages. Although both M1 and M2 polarized Fanconi anemia cells were predictably hypersensitive to mitomycin C, only M1 macrophages overproduced TNF-α in response to TLR-activating signals. DNA damaging agents alone did not induce TNFproduction in the absence of TLR agonists in wild-type or Fanconi anemia macrophages, and mitomycin C did not enhance TLR responses in either normal or Fanconi anemia cells. TLR4 and TLR7/8 activation induced cytokine overproduction in Fanconi anemia macrophages. Also, although TLR4 activation was associated with induced double strand breaks, TLR7/8 activation was not. That DNA strand breaks and chromosome breaks are neither necessary nor sufficient to account for the overproduction of inflammatory cytokines by Fanconi anemia cells suggests that noncanonical anti-inflammatory functions of Fanconi anemia complementation group C contribute to the aberrant macrophage phenotype and suggests that suppression of macrophage/TLR hyperreactivity might prevent cytokine-induced stem cell attrition in Fanconi anemia.

  11. Ginger extract inhibits LPS induced macrophage activation and function

    Directory of Open Access Journals (Sweden)

    Bruch David

    2008-01-01

    Full Text Available Abstract Background Macrophages play a dual role in host defence. They act as the first line of defence by mounting an inflammatory response to antigen exposure and also act as antigen presenting cells and initiate the adaptive immune response. They are also the primary infiltrating cells at the site of inflammation. Inhibition of macrophage activation is one of the possible approaches towards modulating inflammation. Both conventional and alternative approaches are being studied in this regard. Ginger, an herbal product with broad anti inflammatory actions, is used as an alternative medicine in a number of inflammatory conditions like rheumatic disorders. In the present study we examined the effect of ginger extract on macrophage activation in the presence of LPS stimulation. Methods Murine peritoneal macrophages were stimulated by LPS in presence or absence of ginger extract and production of proinflammatory cytokines and chemokines were observed. We also studied the effect of ginger extract on the LPS induced expression of MHC II, B7.1, B7.2 and CD40 molecules. We also studied the antigen presenting function of ginger extract treated macrophages by primary mixed lymphocyte reaction. Results We observed that ginger extract inhibited IL-12, TNF-α, IL-1β (pro inflammatory cytokines and RANTES, MCP-1 (pro inflammatory chemokines production in LPS stimulated macrophages. Ginger extract also down regulated the expression of B7.1, B7.2 and MHC class II molecules. In addition ginger extract negatively affected the antigen presenting function of macrophages and we observed a significant reduction in T cell proliferation in response to allostimulation, when ginger extract treated macrophages were used as APCs. A significant decrease in IFN-γ and IL-2 production by T cells in response to allostimulation was also observed. Conclusion In conclusion ginger extract inhibits macrophage activation and APC function and indirectly inhibits T cell activation.

  12. Shikonin inhibits TNFproduction through suppressing PKC-NF-κB-dependent decrease of IL-10 in rheumatoid arthritis-like cell model.

    Science.gov (United States)

    Sun, Wen-Xiao; Liu, Yan; Zhou, Wei; Li, He-Wei; Yang, Jian; Chen, Zhen-Bing

    2017-04-01

    Shikonin, a major effective component in the Chinese herbal medicine Lithospermum erythrorhizon Sieb., exhibits an anti-inflammatory property towards rheumatoid arthritis (RA), but the potential mechanism is unclear. Our aim was to investigate the mechanism of shikonin on the lipopolysaccharide (LPS)-induced fibroblast-like synoviocyte (LiFLS) inflammation model. Fibroblast-like synoviocytes (FLSs) were treated with 200 μg/ml of LPS for 24 h to establish the RA-like model, LiFLS. FLSs were pretreated with shikonin (0.1-1 μM) for 30 min in the treatment groups. Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assays were used to detect mRNA and protein levels of interleukin (IL)-10 and tumor necrosis factor (TNF)-α. Signal proteins involved in IL-10 production were analyzed by Western blotting. Shikonin significantly reversed the inhibitory effects of LPS on IL-10 expression in FLSs by inactivating the PKC-NF-κB pathway. In addition, shikonin inhibited LPS-induced TNF-α expression in FLSs, and this effect was markedly diminished by IL-10-neutralizing antibody. The IL-10-mediated suppression of TNF-α transcription was demonstrated by no response to the protein synthesis inhibitor cyclohexamide and no mRNA decay. Shikonin inhibits LPS-induced TNFproduction in FLSs through suppressing the PKC-NF-κB-dependent decrease in IL-10, and this study also highlights the potential application of shikonin in the treatment of RA.

  13. Mitochondrial Ca2+ and ROS take center stage to orchestrate TNF-α–mediated inflammatory responses

    OpenAIRE

    Dada, Laura A.; Sznajder, Jacob I.

    2011-01-01

    Proinflammatory stimuli induce inflammation that may progress to sepsis or chronic inflammatory disease. The cytokine TNF-α is an important endotoxin-induced inflammatory glycoprotein produced predominantly by macrophages and lymphocytes. TNF-α plays a major role in initiating signaling pathways and pathophysiological responses after engaging TNF receptors. In this issue of JCI, Rowlands et al. demonstrate that in lung microvessels, soluble TNF-α (sTNF-α) promotes the shedding of the TNF-α re...

  14. Nitric oxide production by peritoneal macrophages from aged rats: A short term and direct modulation by citrulline.

    Science.gov (United States)

    Breuillard, Charlotte; Curis, Emmanuel; Le Plénier, Servane; Cynober, Luc; Moinard, Christophe

    2017-02-01

    Citrulline has anti-inflammatory properties and exerts beneficial effects on various impaired functions in aging. However, there are few data on citrulline action on immune function in aged populations. The objective of the study was to evaluate citrulline ability, after in vivo and in vitro administration, to modulate macrophage functions in aged rats and the possible pathways involved. Twenty-one-month-old Sprague-Dawley rats (n = 27) received a citrulline supplementation at 5 g/kg/d for 5 days, or an isonitrogenous diet, and peritoneal macrophages were cultured with or without LPS. In the in vitro study, macrophages from 22-month-old rats (n = 16) were cultured with or without LPS, citrulline and inhibitors of different inflammatory pathways (n = 8/conditions). Nitric oxide (NO) and tumor necrosis factor α (TNFα) production were measured in both in vivo and in vitro studies. Citrulline decreased NO production variability by peritoneal macrophages after in vivo administration (p = 0.0034) and downregulated NO production by 22% after in vitro administration (95% CI: [6%; 35%]; p = 0.0394), without any direct effect on TNFα production. None of the transductional pathways explored seem to be involved. Citrulline slightly modulates NO production in vivo and in vitro, suggesting a possible action through modulation of arginine metabolism in macrophages rather than a direct transductional effect. The pleiotropic effects of citrulline in aging could be due, at least in part, to the anti-inflammatory effect of citrulline. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  15. Role of intracellular free calcium in killing Penicillium marneffei within human macrophages.

    Science.gov (United States)

    Chen, Renqiong; Ji, Guangquan; Ma, Tuan; Huang, Xiaowen; Ren, Hong; Xi, Liyan

    2015-01-01

    Increases in cytosolic Ca(2+) concentration ([Ca(2+)]c) promote phagocyte antimicrobial responses. Here, we investigated macrophages stimulated by Penicillium marneffei (P. marneffei). [Ca(2+)]c was determined in macrophages loaded with the fluorescent calcium probe Fura 2/AM as they were stimulated by P. marneffei. We found that P. marneffei induced an increase in [Ca(2+)]c in human macrophages. Further, increased [Ca(2+)]c with the ionophore A23187 promoted phagosomal acidification and maturation and reduced intracellular replication of P. marneffei in P. marneffei-infected human macrophages, whereas decreased [Ca(2+)]c with the chelation MAPTAM decreased TNFproduction, inhibited phagosomal acidification and maturation and increased intracellular replication of P. marneffei. These data indicate that Ca(2+) signaling may play an important role in controlling the replication of P. marneffei within macrophages.

  16. Activation effect of Ganoderma lucidum polysaccharides liposomes on murine peritoneal macrophages.

    Science.gov (United States)

    Liu, Zhenguang; Xing, Jie; Huang, Yee; Bo, Ruonan; Zheng, Sisi; Luo, Li; Niu, Yale; Zhang, Yan; Hu, Yuanliang; Liu, Jiaguo; Wu, Yi; Wang, Deyun

    2016-01-01

    The activation of murine peritoneal macrophages by Ganoderma lucidum polysaccharides liposomes (GLPL) was investigated in vitro. After treatment with GLPL, the changes of the nitric oxide (NO) secretion and iNOS (inducible nitric oxide synthase) activity were evaluated. The results showed that NO production and iNOS activity of macrophages were enhanced compared to GLP and BL group. In addition, both the phagocytic activity and levels of cytokines IL-1β, TNF-α and IFN-γ were enhanced in the peritoneal macrophages of mice by stimulation of GLPL. The expression of the major histocompatibility complex class II molecule (MHC II) on the surface of peritoneal macrophages significantly increased. These indicated that GLPL could enhance the activation of peritoneal macrophages and their potential for use as a delivery system of GLP.

  17. Effects of polymyxin-B on TNFproduction in equine whole blood stimulated with three different bacterial toxins.

    Science.gov (United States)

    Bauquier, J R; Tennent-Brown, B S; Tudor, E; Bailey, S R

    2017-08-14

    Polymyxin-B is used to treat equine systemic inflammation. Bacterial toxins other than lipopolysaccharide (LPS) contribute to systemic inflammation but the effects of polymyxin-B on these are poorly defined. Whole blood aliquots from six healthy horses diluted 1:1 with RPMI were incubated for 21 hr with 1 μg/ml of LPS, lipoteichoic acid (LTA) or peptidoglycan (PGN) in the presence of increasing concentrations of polymyxin-B (10-3000 μg/ml). A murine L929 fibroblast bioassay was used to measure TNF-α activity. Polymyxin-B significantly inhibited the effects of all three bacterial toxins. Analysis of variance showed the IC50 value for polymyxin-B for TNF-α inhibition caused by LTA (11.19 ± 2.89 μg/ml polymyxin-B) was significantly lower (p = .009) than the values for LPS (46.48 ± 9.93 μg/ml) and PGN (54.44 ± 8.97 μg/ml). There was no significant difference in IC50 values between LPS and PGN (p > .05). Maximum inhibition of TNF-α was 77.4%, 73.0% and 82.7% for LPS, PGN and LTA, respectively and was not significantly different between toxins. At the two highest concentrations of polymyxin-B, TNF-α began to increase. These data suggest that polymyxin-B may inhibit the effects of bacterial toxins other than LPS and might be a more potent inhibitor of LTA than LPS or PGN. © 2017 John Wiley & Sons Ltd.

  18. The effect of valsartan on TNFproduction in patients with congestive heart failure%缬沙坦在体外对充血性心力衰竭患者血清TNF-α的影响

    Institute of Scientific and Technical Information of China (English)

    陈齐红; 覃数; 汪华玲

    2004-01-01

    目的:检测充血性心力衰竭(CHF)患者血清肿瘤坏死因子-α(TNF-α)、一氧化氮(NO)的浓度变化;观察缬沙坦对CHF患者外周血单个核细胞(PBMC)分泌TNF-α、NO的影响,探讨缬沙坦治疗CHF的细胞因子机制.方法:12例Ⅲ一Ⅳ级的CHF患者静脉血离心取PBMC,分别加入缬沙坦和脂多糖,使缬沙坦终浓度为(0、0.01、0.1、1)μmol/L,经24h孵化后,检测培养上清液中TNF-α、NO的浓度.结果:CHF患者血清TNF-α、NO显著高于对照组(P<0.01).心功能Ⅳ级组明显高于心功能Ⅲ级(P<0.01).不同病因CHF患者之间TNF-α、NO差异无显著性.不同浓度的缬沙坦对正常人和CHF组PBMC分泌TNF-α、NO均有抑制作用,且随着缬沙坦浓度的升高,TNF-α、NO的分泌呈下降趋势.结论:CHF的程度与TNF-α、NO浓度的相关程度提示TNF-α、NO在CHF的发生和发展中起重要作用,缬沙坦能够直接抑制PBMC分泌TNF-α、NO,可能是血管紧张素Ⅱ受体拮抗剂治疗CHF的细胞因子机制之一.

  19. Neisseria gonorrhoeae survives within and modulates apoptosis and inflammatory cytokine production of human macrophages.

    Science.gov (United States)

    Château, Alice; Seifert, H Steven

    2016-04-01

    The human-adapted organism Neisseria gonorrhoeae is the causative agent of gonorrhoea, a sexually transmitted infection. It readily colonizes the genital, rectal and nasalpharyngeal mucosa during infection. While it is well established that N. gonorrhoeae recruits and modulates the functions of polymorphonuclear leukocytes during infection, how N. gonorrhoeae interacts with macrophages present in infected tissue is not fully defined. We studied the interactions of N. gonorrhoeae with two human monocytic cell lines, THP-1 and U937, and primary monocytes, all differentiated into macrophages. Most engulfed bacteria were killed in the phagolysosome, but a subset of bacteria was able to survive and replicate inside the macrophages suggesting that those cells may be an unexplored cellular reservoir for N. gonorrhoeae during infection. N. gonorrhoeae was able to modulate macrophage apoptosis: N. gonorrhoeae induced apoptosis in THP-1 cells whereas it inhibited induced apoptosis in U937 cells and primary human macrophages. Furthermore, N. gonorrhoeae induced expression of inflammatory cytokines in macrophages, suggesting a role for macrophages in recruiting polymorphonuclear leukocytes to the site of infection. These results indicate macrophages may serve as a significant replicative niche for N. gonorrhoeae and play an important role in gonorrheal pathogenesis.

  20. Constitutive expression of MC1R in HaCaT keratinocytes inhibits basal and UVB-induced TNF-alpha production.

    Science.gov (United States)

    Garcin, Geneviève; Le Gallic, Lionel; Stoebner, Pierre-Emmanuel; Guezennec, Anne; Guesnet, Joelle; Lavabre-Bertrand, Thierry; Martinez, Jean; Meunier, Laurent

    2009-01-01

    Alpha-melanocyte stimulating hormone (alpha-MSH) binds to melanocortin-1 receptor (MC1R) on melanocytes to stimulate pigmentation and modulate various cutaneous inflammatory responses. MC1R expression is not restricted to melanocytic cells and may be induced in keratinocytes after UVB exposure. We hypothesized that MC1R signaling in keratinocytes, wherein basal conditions are barely expressed, may modulate mediators of inflammation, such as nuclear factor-kappa B (NF-kappaB) and tumor necrosis factor-alpha (TNF-alpha). Therefore, we generated HaCaT cells that stably express human MC1R or the Arg151Cys (R151C) nonfunctional variant. We demonstrate that: (1) the constitutive activity of MC1R results in elevated intracellular cAMP level, reduced NF-kappaB activity and decreased TNF-alpha transcription; (2) binding of alpha-MSH to MC1R and the subsequent increase in cAMP production do not inhibit TNFalpha-mediated NF-kappaB activation; (3) MC1R signaling is sufficient to strongly inhibit UVB-induced TNF-alpha expression and this inhibitory effect is further enhanced by alpha-MSH stimulation. Our findings suggest that the constitutive activity of the G-protein-coupled MC1R in keratinocytes may contribute to the modulation of inflammatory events and immune response induced by UV light.

  1. Gelam Honey Inhibits the Production of Proinflammatory, Mediators NO, PGE2, TNF-α, and IL-6 in Carrageenan-Induced Acute Paw Edema in Rats

    Directory of Open Access Journals (Sweden)

    Saba Zuhair Hussein

    2012-01-01

    Full Text Available Natural honey is well known for its therapeutic value and has been used in traditional medicine of different cultures throughout the world. The aim of this study was to investigate the anti-inflammatory effect of Malaysian Gelam honey in inflammation-induced rats. Paw edema was induced by a subplantar injection of 1% carrageenan into the rat right hind paw. Rats were treated with the nonsteroidal anti-inflammatory drug (NSAID Indomethacin (10 mg/kg, p.o. or Gelam honey at different doses (1 or 2 g/kg, p.o.. The increase in footpad thickness was considered to be edema, which was measured using a dial caliper. Plasma and paw tissue were collected to analyze the production of inflammatory mediators, such as NO, PGE2, TNF-α, and IL-6, as well as iNOS and COX-2. The results showed that Gelam honey could reduce edema in a dose-dependent fashion in inflamed rat paws, decrease the production of NO, PGE2, TNF-α, and IL-6 in plasma, and suppress the expression of iNOS, COX-2, TNF-α, and IL-6 in paw tissue. Oral pretreatment of Gelam honey at 2 g/kg of body weight at two time points (1 and 7 days showed a significantly decreased production of proinflammatory cytokines, which was similar to the effect of the anti-inflammatory drug Indomethacin (NSAID, both in plasma and tissue. Thus, our results suggest that Gelam honey has anti-inflammatory effects by reducing the rat paw edema size and inhibiting the production of proinflammatory mediators. Gelam honey is potentially useful for treating inflammatory conditions.

  2. Gelam Honey Inhibits the Production of Proinflammatory, Mediators NO, PGE(2), TNF-α, and IL-6 in Carrageenan-Induced Acute Paw Edema in Rats.

    Science.gov (United States)

    Hussein, Saba Zuhair; Mohd Yusoff, Kamaruddin; Makpol, Suzana; Mohd Yusof, Yasmin Anum

    2012-01-01

    Natural honey is well known for its therapeutic value and has been used in traditional medicine of different cultures throughout the world. The aim of this study was to investigate the anti-inflammatory effect of Malaysian Gelam honey in inflammation-induced rats. Paw edema was induced by a subplantar injection of 1% carrageenan into the rat right hind paw. Rats were treated with the nonsteroidal anti-inflammatory drug (NSAID) Indomethacin (10 mg/kg, p.o.) or Gelam honey at different doses (1 or 2 g/kg, p.o.). The increase in footpad thickness was considered to be edema, which was measured using a dial caliper. Plasma and paw tissue were collected to analyze the production of inflammatory mediators, such as NO, PGE(2), TNF-α, and IL-6, as well as iNOS and COX-2. The results showed that Gelam honey could reduce edema in a dose-dependent fashion in inflamed rat paws, decrease the production of NO, PGE(2), TNF-α, and IL-6 in plasma, and suppress the expression of iNOS, COX-2, TNF-α, and IL-6 in paw tissue. Oral pretreatment of Gelam honey at 2 g/kg of body weight at two time points (1 and 7 days) showed a significantly decreased production of proinflammatory cytokines, which was similar to the effect of the anti-inflammatory drug Indomethacin (NSAID), both in plasma and tissue. Thus, our results suggest that Gelam honey has anti-inflammatory effects by reducing the rat paw edema size and inhibiting the production of proinflammatory mediators. Gelam honey is potentially useful for treating inflammatory conditions.

  3. TL1A increased IL-6 production on fibroblast-like synoviocytes by preferentially activating TNF receptor 2 in rheumatoid arthritis.

    Science.gov (United States)

    Ma, Zijian; Wang, Bing; Wang, Miaomiao; Sun, Xiaotong; Tang, Yawei; Li, Ming; Li, Fang; Li, Xia

    2016-07-01

    TNF-like protein 1A (TL1A), a member of tumor necrosis factor family, recognized as a ligand of death receptor 3 (DR3) and decoy receptor 3 (DcR3). The interaction of TL1A and DR3 may participate in the pathogenesis of some autoimmune diseases including rheumatoid arthritis (RA). Our previous results showed that high concentrations of TL1A could be found in synovial and serum in RA patients, and it was correlated with disease severity. In addition, TL1A could promote Th17 differentiation induced by TGF-β and IL-6 and increased the production of IL-17A. In the present study, we found that TL1A could promote the expression of IL-6 on fibroblast-like synoviocytes (FLS) of RA patients via NF-κB and JNK signaling pathway. TL1A-stimulated FLS increased the percentage of Th17 of peripheral blood mononuclear cells (PBMC) in RA via the production of IL-6, a critical cytokine involved in the differentiation of Th17. Moreover, the blocking of tumor necrosis factor receptor 2 (TNFR2) decreased TL1A-stimulated IL-6 production by RA FLS. Our results suggest that TL1A was capable of acting on RA FLS to elevate IL-6 expression, which promoted the production of Th17. More importantly, we showed that TL1A could influence RA FLS through binding to TNFR2 rather than DR3 on FLS, which indicated that the treatment of TNF inhibitors not only blocked the TNF but also suppressed the TL1A in RA patients.

  4. Transcription of innate immunity genes and cytokine secretion by canine macrophages resistant or susceptible to intracellular survival of Leishmania infantum.

    Science.gov (United States)

    Turchetti, Andréia Pereira; da Costa, Luciana Fachini; Romão, Everton de Lima; Fujiwara, Ricardo Toshio; da Paixão, Tatiane Alves; Santos, Renato Lima

    2015-01-15

    In this study we assessed the basal transcription of genes associated with innate immunity (i.e. Nramp1, NOD1, NOD2, TLR1, TLR2, TLR3, TLR4, TLR5, TLR6, TLR7, and TLR9) in canine monocyte-derived macrophages from Leishmania-free dogs. Additionally, secretion of cytokines (IL-10, IL-12, TNF-α and IFN-γ) and nitric oxide in culture supernatants of macrophages with higher or lower resistance to intracellular survival of Leishmania infantum was also measured. Constitutive transcription of TLR9 and NOD2 were negligible; NOD1, TLR1, and TLR7 had low levels of transcription, whereas Nramp1 and TLR2, 3, 4, 5, and 6 had higher levels of constitutive transcription in canine monocyte-derived macrophages. There were no significant differences in transcription between macrophages with higher or lower resistance to intracellular survival of L. infantum. Secretion of TNF-α was higher in more resistant macrophages (designated as resistant) at 24h after infection when compared to less resistant macrophages (designated as susceptible), as well as the secretion of IFN-γ at 72 h post infection. Secretion of IL-10 was lower in resistant macrophages at 24h after infection. No detectable production of nitric oxide was observed. Interestingly, there was a negative correlation between NOD2 transcript levels and intracellular survival of L. infantum in resistant macrophages. This study demonstrated that decreased intracellular survival of L. infantum in canine macrophages was associated with increased production of TNF-α and IFN-γ and decreased production of IL-10; and that constitutive transcription of Nramp1, TLR and NLR does not interfere in intracellular survival of L. infantum.

  5. Role of cytokines and nitric oxide in the induction of tuberculostatic macrophage functions

    Directory of Open Access Journals (Sweden)

    Vera L. Petricevich

    2000-01-01

    Full Text Available The aim of this study was to determine phenotypic differences when BCG invades macrophages. Bacilli prepared from the same BCG primary seed, but produced in different culture media, were analysed with respect to the ability to stimulate macrophages and the susceptibility to treatment with cytokines and nitric oxide (NO. Tumour necrosis factor (TNF activity was assayed by measuring its cytotoxic activity on L-929 cells, interleukin-6 (IL-6 and interferon γ (IFN-γ were assayed by enzyme-linked immunosorbent assay (ELISA, whereas NO levels were detected by Griess colorimetric reactions in the culture supernatant of macrophages incubated with IFN-γ , TNF or NO and subsequently exposed to either BCG-I or BCG-S. We found that BCG-I and BCGS bacilli showed different ability to simulate peritoneal macrophages. Similar levels of IL-6 were detected in stimulated macrophages with lysate from two BCG samples. The highest levels of TNF and IFN-γ were observed in macrophages treated with BCG-S and BCG-I, respectively. The highest levels of NO were observed in cultures stimulated for 48h with BCG-S. We also found a different susceptibility of the bacilli to ex ogenous treatm ent w ith IFN-γ and TNF which were capable of killing 60 and 70% of both bacilli, whereas NO was capable of killing about 98 and 47% of BCG-I and BCG-S, respectively. The amount of bacilli proportionally decreased with IFN-γ and TNF, suggesting a cytokine-related cytotox ic effect. Moreover, NO also decreased the viable number of bacilli. Interestingly, NO levels of peritoneal macrophages were significantly increased after cytokine treatment. This indicates that the treatment of macrophages with cytokines markedly reduced bacilli number and presented effects on NO production. The results obtained here emphasize the importance of adequate stimulation for guaranteeing efficient killing of bacilli. In this particular case, the IFN-γ and TNF were involved in the activation of macrophage

  6. Migration inhibitory factor (MIF) released by macrophages upon recognition of immune complexes is critical to inflammation in Arthus reaction.

    Science.gov (United States)

    Paiva, Claudia N; Arras, Rosa H; Magalhães, Elisabeth S; Alves, Letícia S; Lessa, Luiz Paulo; Silva, Maria Helena; Ejzemberg, Regina; Canetti, Cláudio; Bozza, Marcelo T

    2009-05-01

    Deposition of immune complexes (IC) triggers Fc gamma R-dependent inflammation, leading to tissue damage in rheumatoid arthritis, systemic lupus erythematous, immune glomerulonephritis, and several immune vasculitides. Evidences support a role for macrophage migration inhibitory factor (MIF) in a number of inflammatory diseases, but the triggering of its secretion and its physiopathological role upon IC deposition remain elusive. Herein, we show that human macrophages secreted MIF after IC recognition, which in turn controlled the secretion of TNF. Macrophages from Mif-/- mice produced smaller amounts of TNF when stimulated with IgG-opsonized erythrocytes than wild-type (WT) cells. Using passive reverse Arthus reaction in the peritoneum and lungs as a model for IC-induced inflammation, we demonstrated that Mif-/- mice had a milder response, observed by reduced neutrophil recruitment, vascular leakage, and secretion of TNF, MIP-2, and keratinocyte-derived chemokine compared with WT controls. Adoptive transfer of alveolar macrophages from WT to Mif-/- mice rescued pulmonary neutrophil recruitment and TNF production upon passive reverse Arthus reaction. Our study indicates that Arthus inflammatory reaction is largely dependent on MIF and poses macrophages as a source of the MIF released upon IC recognition. These results give experimental support to the proposition that blockade of MIF might constitute an adjunctive, therapeutic approach to IC disease.

  7. Effect of Bothrops alternatus snake venom on macrophage phagocytosis and superoxide production: participation of protein kinase C

    Directory of Open Access Journals (Sweden)

    SS Setubal

    2011-01-01

    Full Text Available Envenomations caused by different species of Bothrops snakes result in severe local tissue damage, hemorrhage, pain, myonecrosis, and inflammation with a significant leukocyte accumulation at the bite site. However, the activation state of leukocytes is still unclear. According to clinical cases and experimental work, the local effects observed in envenenomation by Bothrops alternatus are mainly the appearance of edema, hemorrhage, and necrosis. In this study we investigated the ability of Bothrops alternatus crude venom to induce macrophage activation. At 6 to 100 ¼g/mL, BaV is not toxic to thioglycollate-elicited macrophages; at 3 and 6 ¼g/mL, it did not interfere in macrophage adhesion or detachment. Moreover, at concentrations of 1.5, 3, and 6 ¼g/mL the venom induced an increase in phagocytosis via complement receptor one hour after incubation. Pharmacological treatment of thioglycollate-elicited macrophages with staurosporine, a protein kinase (PKC inhibitor, abolished phagocytosis, suggesting that PKC may be involved in the increase of serum-opsonized zymosan phagocytosis induced by BaV. Moreover, BaV also induced the production of anion superoxide (O2_ by thioglycollate-elicited macrophages. This BaV stimulated superoxide production was abolished after treating the cells with staurosporine, indicating that PKC is an important signaling pathway for the production of this radical. Based on these results, we suggest that phagocytosis and reactive oxygen species are involved in the pathogenesis of local tissue damage characteristic of Bothrops spp. envenomations.

  8. Chamomile Flower, Myrrh, and Coffee Charcoal, Components of a Traditional Herbal Medicinal Product, Diminish Proinflammatory Activation in Human Macrophages.

    Science.gov (United States)

    Vissiennon, Cica; Hammoud, Dima; Rodewald, Steffen; Fester, Karin; Goos, Karl-Heinz; Nieber, Karen; Arnhold, Jürgen

    2017-07-01

    A traditional herbal medicinal product, containing myrrh, chamomile flower, and coffee charcoal, has been used in Germany for the relief of gastrointestinal complaints for decades. Clinical studies suggest its use in the maintenance therapy of inflammatory bowel disease. However, the pharmacological mechanisms underlying the clinical effects are not yet fully understood.The present study aims to elucidate immunopharmacological activities of myrrh, chamomile flower, and coffee charcoal by studying the influence of each plant extract on gene expression and protein release of activated human macrophages.The plant extracts effect on gene and protein expression of activated human monocyte-derived macrophages was investigated by microarray gene expression analysis and assessment of the release of pro- and anti-inflammatory mediators (TNFα, chemokine CXCL13, and interleukin-10) using an ELISA test system.The extracts of myrrh, chamomile flower, and coffee charcoal influenced gene expression of activated human macrophages within the cytokine/chemokine signaling pathway. Particularly, chemokine gene expression was suppressed. Subsequently, the production of CXCL13 and, to a minor extent, cytokine TNFα was inhibited by all herbal extracts. Chamomile flower and coffee charcoal extracts enhanced interleukin-10 release from activated macrophages. The observed effects on protein release were comparable to the effect of budesonide, which decreased TNFα and CXCL13 and enhanced interleukin-10 release.The components of the herbal medicinal product influence the activity of activated human macrophages on both gene and protein level. The induced alterations within chemokine/cytokine signaling could contribute to a positive effect on the immunological homeostasis, which is disturbed in patients with chronic intestinal inflammation. Georg Thieme Verlag KG Stuttgart · New York.

  9. Macrophage preconditioning with synthetic malaria pigment reduces cytokine production via heme iron-dependent oxidative stress.

    Science.gov (United States)

    Taramelli, D; Recalcati, S; Basilico, N; Olliaro, P; Cairo, G

    2000-12-01

    Hemozoin (malaria pigment), a polymer of hematin (ferri-protoporphyrin IX) derived from hemoglobin ingested by intraerythrocytic plasmodia, modulates cytokine production by phagocytes. Mouse peritoneal macrophages (PM) fed with synthetic beta-hematin (BH), structurally identical to native hemozoin, no longer produce tumor necrosis factor alpha (TNFalpha) and nitric oxide (NO) in response to lipopolysaccharide (LPS). Impairment of NO synthesis is due to inhibition of inducible nitric oxide synthase (iNOS) production. BH-mediated inhibition of PM functions cannot be ascribed to iron release from BH because neither prevention by iron chelators nor down-regulation of iron-regulatory protein activity was detected. Inhibition appears to be related to pigment-induced oxidative stress because (a) thiol compounds partially restored PM functions, (b) heme oxygenase (HO-1) and catalase mRNA levels were up-regulated, and (c) free radicals production increased in BH-treated cells. The antioxidant defenses of the cells determine the response to BH: microglia cells, which show a lower extent of induction of HO-1 and catalase mRNAs and lower accumulation of oxygen radicals, are less sensitive to the inhibitory effect of BH on cytokine production. Results indicate that BH is resistant to degradation by HO-1 and that heme-iron mediated oxidative stress may contribute to malaria-induced immunosuppression. This study may help correlate the different clinical manifestations of malaria, ranging from uncomplicated to severe disease, with dysregulation of phagocyte functions and promote better therapeutic strategies to counteract the effects of hemozoin accumulation.

  10. Biotransformation of anabolic compound methasterone with Macrophomina phaseolina, Cunninghamella blakesleeana, and Fusarium lini, and TNF-α inhibitory effect of transformed products.

    Science.gov (United States)

    Ahmad, Malik Shoaib; SammerYousuf; Atia-Tul-Wahab; Jabeen, Almas; Atta-Ur-Rahman; Choudhary, M Iqbal

    2017-04-09

    Microbial transformation of methasterone (1) was investigated with Macrophomina phaseolina, Cunninghamella blakesleeana, and Fusarium lini. Biotransformation of 1 with M. phaseolina yielded metabolite 2, while metabolites 3-7 were obtained from the incubation of 1 with C. blakesleeana. Metabolites 8-13 were obtained through biotransformation with F. lini. All metabolites, except 13, were found to be new. Methasterone (1) and its metabolites 2-6, 9, 10, and 13 were then evaluated for their immunomodulatory effects against TNF-α, NO , and ROS production. Among all tested compounds, metabolite 6 showed a potent inhibition of proinflammatory cytokine TNF-α (IC50 = 8.1 ± 0.9 µg/mL), as compared to pentoxifylline used as a standard (IC50 = 94.8± 2.1 µg/mL). All metabolites were also evaluated for the inhibition of NO production at concentration of 25 µg/mL. Metabolites 6 (86.7 ± 2.3%) and 13 (62.5 ± 1.5%) were found to be the most potent inhibitors of NO as compared to the standard N(G)-monomethyl-L-arginine acetate (65.6 ± 1.1%). All metabolites were found to be non-toxic against PC3, HeLa, and 3T3 cell lines. Observed inhibitory potential of metabolites 6 and 13 against pro-inflammatory cytokine TNF-α, as well as NO production makes them interesting leads for further studies. Copyright © 2017. Published by Elsevier Inc.

  11. Immunostimulatory properties and enhanced TNF- α mediated cellular immunity for tumor therapy by C60(OH)20 nanoparticles

    Science.gov (United States)

    Liu, Ying; Jiao, Fang; Qiu, Yang; Li, Wei; Qu, Ying; Tian, Chixia; Li, Yufeng; Bai, Ru; Lao, Fang; Zhao, Yuliang; Chai, Zhifang; Chen, Chunying

    2009-10-01

    Publications concerning the mechanism of biological activity, especially the immunological mechanism of C60(OH)20 nanoparticles, are relatively limited. However, the structure and characteristics of this carbon allotrope have been widely investigated. In this paper, we have demonstrated that water-soluble C60(OH)20 nanoparticles have an efficient anti-tumor activity in vivo, and show specific immunomodulatory effects to the immune cells, such as T cells and macrophages, both in vivo and in vitro. For example, C60(OH)20 nanoparticles can increase the production of T-helper cell type 1 (Th1) cytokines (IL-2, IFN- γ and TNF-α), and decrease the production of Th2 cytokines (IL-4, IL-5 and IL-6) in serum samples. On the other hand, C60(OH)20 nanoparticles show almost no adverse effect to the viability of immune cells in vitro but stimulate the immune cells to release more cytokines, in particular TNF- α, which plays a key role in the cellular immune process to help eliminate abnormal cells. TNF- α production increased almost three-fold in treated T lymphocytes and macrophages. Accordingly, we conclude that C60(OH)20 nanoparticles have an efficient anti-tumor activity and this effect is associated with an increased CD4+/CD8+ lymphocyte ratio and the enhancement of TNF- α production. The data suggest that C60(OH)20 nanoparticles can improve the immune response to help to scavenge and kill tumor cells.

  12. Induction of Heme Oxygenase-1 with Hemin Reduces Obesity-Induced Adipose Tissue Inflammation via Adipose Macrophage Phenotype Switching

    Directory of Open Access Journals (Sweden)

    Thai Hien Tu

    2014-01-01

    Full Text Available Adipose macrophages with the anti-inflammatory M2 phenotype protect against obesity-induced inflammation and insulin resistance. Heme oxygenase-1 (HO-1, which elicits antioxidant and anti-inflammatory activity, modulates macrophage phenotypes and thus is implicated in various inflammatory diseases. Here, we demonstrate that the HO-1 inducer, hemin, protects against obesity-induced adipose inflammation by inducing macrophages to switch to the M2 phenotype. HO-1 induction by hemin reduced the production of proinflammatory cytokines (TNF-α and IL-6 from cocultured adipocytes and macrophages by inhibiting the activation of inflammatory signaling molecules (JNK and NF-κB in both cell types. Hemin enhanced transcript levels of M2 macrophage marker genes (IL-4, Mrc1, and Clec10a in the cocultures, while reducing transcripts of M1 macrophage markers (CD274 and TNF-α. The protective effects of hemin on adipose inflammation and macrophage phenotype switching were confirmed in mice fed a high-fat diet, and these were associated with PPARγ upregulation and STAT6 activation. These findings suggest that induction of HO-1 with hemin protects against obesity-induced adipose inflammation through M2 macrophage phenotype switching, which is induced by the PPARγ and STAT6 pathway. HO-1 inducers such as hemin may be useful for preventing obesity-induced adipose inflammation.

  13. Induction of heme oxygenase-1 with hemin reduces obesity-induced adipose tissue inflammation via adipose macrophage phenotype switching.

    Science.gov (United States)

    Tu, Thai Hien; Joe, Yeonsoo; Choi, Hye-Seon; Chung, Hun Taeg; Yu, Rina

    2014-01-01

    Adipose macrophages with the anti-inflammatory M2 phenotype protect against obesity-induced inflammation and insulin resistance. Heme oxygenase-1 (HO-1), which elicits antioxidant and anti-inflammatory activity, modulates macrophage phenotypes and thus is implicated in various inflammatory diseases. Here, we demonstrate that the HO-1 inducer, hemin, protects against obesity-induced adipose inflammation by inducing macrophages to switch to the M2 phenotype. HO-1 induction by hemin reduced the production of proinflammatory cytokines (TNF-α and IL-6) from cocultured adipocytes and macrophages by inhibiting the activation of inflammatory signaling molecules (JNK and NF-κB) in both cell types. Hemin enhanced transcript levels of M2 macrophage marker genes (IL-4, Mrc1, and Clec10a) in the cocultures, while reducing transcripts of M1 macrophage markers (CD274 and TNF-α). The protective effects of hemin on adipose inflammation and macrophage phenotype switching were confirmed in mice fed a high-fat diet, and these were associated with PPARγ upregulation and STAT6 activation. These findings suggest that induction of HO-1 with hemin protects against obesity-induced adipose inflammation through M2 macrophage phenotype switching, which is induced by the PPARγ and STAT6 pathway. HO-1 inducers such as hemin may be useful for preventing obesity-induced adipose inflammation.

  14. Pharmacological Inactivation of Src Family Kinases Inhibits LPS-Induced TNFProduction in PBMC of Patients with Behçet's Disease

    Science.gov (United States)

    Pektanc, Gulsum; Akkurt, Zeynep M.; Bozkurt, Mehtap; Turkcu, Fatih M.; Kalkanli-Tas, Sevgi

    2016-01-01

    Behçet's disease (BD) is a multisystemic chronic inflammatory disease characterized by relapsing oral and genital ulcers, uveitis, and skin lesions. The pathogenesis of BD is still unknown. Aberrant production of some cytokines/chemokines plays an important role in the pathogenesis of various inflammatory diseases. Revealing a key signaling regulatory mechanism involved in proinflammatory cytokines/chemokines production is critical for understanding of the pathogenesis of BD. The aim of this study was to determine the role of Src family kinases (SFKs) in production of some LPS-induced proinflammatory cytokines/chemokines in peripheral blood mononuclear cells (PBMC) of active BD patients. Chemical inhibition of SFKs activity impaired LPS-induced TNFproduction in PBMC of active BD patients, suggesting that modulating SFKs activity may be a potential target for BD treatment. PMID:27445436

  15. Pharmacological Inactivation of Src Family Kinases Inhibits LPS-Induced TNFProduction in PBMC of Patients with Behçet’s Disease

    Directory of Open Access Journals (Sweden)

    Sevgi Irtegun

    2016-01-01

    Full Text Available Behçet’s disease (BD is a multisystemic chronic inflammatory disease characterized by relapsing oral and genital ulcers, uveitis, and skin lesions. The pathogenesis of BD is still unknown. Aberrant production of some cytokines/chemokines plays an important role in the pathogenesis of various inflammatory diseases. Revealing a key signaling regulatory mechanism involved in proinflammatory cytokines/chemokines production is critical for understanding of the pathogenesis of BD. The aim of this study was to determine the role of Src family kinases (SFKs in production of some LPS-induced proinflammatory cytokines/chemokines in peripheral blood mononuclear cells (PBMC of active BD patients. Chemical inhibition of SFKs activity impaired LPS-induced TNFproduction in PBMC of active BD patients, suggesting that modulating SFKs activity may be a potential target for BD treatment.

  16. Characterization of the MMP/TIMP Imbalance and Collagen Production Induced by IL-1β or TNF-α Release from Human Hepatic Stellate Cells.

    Science.gov (United States)

    Robert, Sacha; Gicquel, Thomas; Bodin, Aude; Lagente, Vincent; Boichot, Elisabeth

    2016-01-01

    Inflammation has an important role in the development of liver fibrosis in general and the activation of hepatic stellate cells (HSCs) in particular. It is known that HSCs are themselves able to produce cytokines and chemokines, and that this production may be a key event in the initiation of fibrogenesis. However, the direct involvement of cytokines and chemokines in HSC (self-)activation remains uncertain. In this study, the effects of pro-inflammatory cytokines IL-1α and β, TNF-α, and IL-8 on the activation state of HSCs were examined, in comparison to the pro-fibrogenic mediator TGF-β1. LX-2 cells were stimulated for 24 or 48 hours with recombinant human form of the pro-inflammatory cytokines IL-1α and β, TNF-α, and IL-8, and also the pro-fibrogenic mediator TGF-β1. Two drugs were also evaluated, the anti-TNF-α monoclonal antibody infliximab and the IL-1 receptor antagonist anakinra, regarding their inhibitory effects. In LX-2 human HSC, treatment with TGF-β1 are associated with downregulation of the metalloproteinase (MMP)-1 and MMP-3, with upregulation of tissue inhibitor of metalloproteinase (TIMP)-1, collagen type I α1, collagen type IV α1, α-SMA, endothelin-1 and PDGF-BB. Cytokines and chemokines expression were found to be downregulated, excepting IL-6. In contrast, we observed that LX-2 exposure to IL-1, TNF-α and IL-8 can reverse the phenotype of pro-fibrogenic activated cells. Indeed, MMP-1, MMP-3 and MMP-9 were found elevated, associated with downregulation of α-SMA and/or PDGF-BB, and a greater expression of IL-1β, IL-6, IL-8, CXCL1 and CCL2. Lastly, we found that infliximab and anakinra successfully inhibits effects of TNF-α and IL-1 respectively in LX-2 cells. Infliximab and anakinra may be of value in preclinical trials in chronic liver disease. Overall, our results suggest that (i) pro-inflammatory mediators exert complex effects in HSCs via an MMP/TIMP imbalance, and (ii) targeting IL-1 signaling may be a potentially valuable

  17. Streptococcus gordonii induces nitric oxide production through its lipoproteins stimulating Toll-like receptor 2 in murine macrophages.

    Science.gov (United States)

    Kim, Hyun Young; Baik, Jung Eun; Ahn, Ki Bum; Seo, Ho Seong; Yun, Cheol-Heui; Han, Seung Hyun

    2017-02-01

    Streptococcus gordonii, a Gram-positive commensal in the oral cavity, is an opportunistic pathogen that can cause endodontic and systemic infections resulting in infective endocarditis. Lipoteichoic acid (LTA) and lipoprotein are major virulence factors of Gram-positive bacteria that are preferentially recognized by Toll-like receptor 2 (TLR2) on immune cells. In the present study, we investigated the effect of S. gordonii LTA and lipoprotein on the production of the representative inflammatory mediator nitric oxide (NO) by the mouse macrophages. Heat-killed S. gordonii wild-type and an LTA-deficient mutant (ΔltaS) but not a lipoprotein-deficient mutant (Δlgt) induced NO production in mouse primary macrophages and the cell line, RAW 264.7. S. gordonii wild-type and ΔltaS also induced the expression of inducible NO synthase (iNOS) at the mRNA and protein levels. In contrast, the Δlgt mutant showed little effect under the same condition. Furthermore, S. gordonii wild-type and ΔltaS induced NF-κB activation, STAT1 phosphorylation, and IFN-β expression, which are important for the induction of iNOS gene expression, with little activation by Δlgt. S. gordonii wild-type and ΔltaS showed an increased adherence and internalization to RAW 264.7 cells compared to Δlgt. In addition, S. gordonii wild-type and ΔltaS, but not Δlgt, substantially increased TLR2 activation while none of these induced NO production in TLR2-deficient macrophages. Triton X-114-extracted lipoproteins from S. gordonii were sufficient to induce NO production. Collectively, we suggest that lipoprotein is an essential cell wall component of S. gordonii to induce NO production in macrophages through TLR2 triggering NF-κB and STAT1 activation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Rotator cuff tear reduces muscle fiber specific force production and induces macrophage accumulation and autophagy.

    Science.gov (United States)

    Gumucio, Jonathan P; Davis, Max E; Bradley, Joshua R; Stafford, Patrick L; Schiffman, Corey J; Lynch, Evan B; Claflin, Dennis R; Bedi, Asheesh; Mendias, Christopher L

    2012-12-01

    Full-thickness tears to the rotator cuff can cause severe pain and disability. Untreated tears progress in size and are associated with muscle atrophy and an infiltration of fat to the area, a condition known as "fatty degeneration." To improve the treatment of rotator cuff tears, a greater understanding of the changes in the contractile properties of muscle fibers and the molecular regulation of fatty degeneration is essential. Using a rat model of rotator cuff injury, we measured the force generating capacity of individual muscle fibers and determined changes in muscle fiber type distribution that develop after a full thickness rotator cuff tear. We also measured the expression of mRNA and miRNA transcripts involved in muscle atrophy, lipid accumulation, and matrix synthesis. We hypothesized that a decrease in specific force of rotator cuff muscle fibers, an accumulation of type IIb fibers, and an upregulation in fibrogenic, adipogenic, and inflammatory gene expression occur in torn rotator cuff muscles. Thirty days following rotator cuff tear, we observed a reduction in muscle fiber force production, an induction of fibrogenic, adipogenic, and autophagocytic mRNA and miRNA molecules, and a dramatic accumulation of macrophages in areas of fat accumulation. Copyright © 2012 Orthopaedic Research Society.

  19. Soluble CD163, a product of monocyte/macrophage activation, is inversely associated with haemoglobin levels in placental malaria.

    Directory of Open Access Journals (Sweden)

    Caroline Lin Lin Chua

    Full Text Available In Plasmodium falciparum malaria, activation of monocytes and macrophages (monocytes/macrophages can result in the production of various inflammatory mediators that contribute to immunopathology. Soluble CD163 (sCD163 is a specific marker of monocyte/macrophage activation typically found at increased levels during various inflammatory conditions and can be associated with poor clinical outcomes. To better understand the relationships between levels of sCD163 and clinical parameters in women with placental malaria, we measured plasma sCD163 levels in maternal peripheral and placental blood compartments at delivery and determined their correlations with birth weight and maternal haemoglobin concentrations. sCD163 levels were negatively correlated with birth weight only in the placental compartment (r = -0.145, p = 0.03 and were inversely correlated with maternal haemoglobin concentrations, both in peripheral blood (r = -0.238, p = 0.0004 and in placental blood (r = -0.259, p = 0.0001. These inverse relationships suggest a potential role for monocyte/macrophage activation in the pathogenesis of malaria in pregnancy, particularly in relation to malaria-associated anaemia.

  20. Diversities of interaction of murine macrophages with three strains of Candida albicans represented by MyD88, CARD9 gene expressions and ROS, IL-10 and TNF-α secretion

    OpenAIRE

    Zhang, Xiaohuan; Ge, Yanping; Li, Wenqing; Hu, Yan

    2014-01-01

    Aim: To explore the mechanisms underlying the different responses of macrophages to distinct Candida albicans strains. Methods: Bone marrow was collected from mice. Macrophages were independently incubated with 3 Candida albicans strains. Results: MyD88 expression in Candida albicans 3683 group was significantly higher than that in Candida albicans 3630 group and Candida albicans SC5314 group, and marked difference was also observed between later two groups (P

  1. Losartan and enalapril decrease viral absorption and interleukin 1 beta production by macrophages in an experimental dengue virus infection.

    Science.gov (United States)

    Hernández-Fonseca, Juan Pablo; Durán, Anyelo; Valero, Nereida; Mosquera, Jesús

    2015-11-01

    The role of angiotensin II (Ang II) in dengue virus infection remains unknown. The aim of this study was to determine the effect of losartan, an antagonist of the angiotensin II type 1 receptor (AT1 receptor), and enalapril, an inhibitor of angiotensin I-converting enzyme (ACE), on viral antigen expression and IL-1β production in peritoneal macrophages infected with dengue virus type 2. Mice treated with losartan or enalapril and untreated controls were infected intraperitoneally with the virus, and macrophages were analyzed. Infection resulted in increased IL-1β production and a high percentage of cells expressing viral antigen, and this was decreased by treatment with anti-Ang II drugs, suggesting a role for Ang II in dengue virus infection.

  2. Glycogen synthase kinase-3 (GSK3) regulates TNF production and haemocyte phagocytosis in the immune response of Chinese mitten crab Eriocheir sinensis.

    Science.gov (United States)

    Li, Xiaowei; Jia, Zhihao; Wang, Weilin; Wang, Lingling; Liu, Zhaoqun; Yang, Bin; Jia, Yunke; Song, Xiaorui; Yi, Qilin; Qiu, Limei; Song, Linsheng

    2017-03-29

    Glycogen synthase kinase-3 (GSK3) is a serine/threonine protein kinase firstly identified as a regulator of glycogen synthesis. Recently, it has been proved to be a key regulator of the immune reaction. In the present study, a GSK3 homolog gene (designated as EsGSK3) was cloned from Chinese mitten crab, Eriocheir sinensis. The open reading frame (ORF) was 1824 bp, which encoded a predicted polypeptide of 607 amino acids. There was a conserved Serine/Threonine Kinase domain and a DNA binding domain found in EsGSK3. Phylogenetic analysis showed that EsGSK3 was firstly clustered with GSK3-β from oriental river prawn Macrobrachium nipponense in the invertebrate branch, while GSK3s from vertebrates formed the other distinct branch. EsGSK3 mRNA transcripts could be detected in all tested tissues of the crab including haepatopancreas, eyestalk, muscle, gonad, haemocytes and haematopoietic tissue with the highest expression level in haepatopancreas. And EsGSK3 protein was mostly detected in the cytoplasm of haemocyte by immunofluorescence analysis. The expression levels of EsGSK3 mRNA increased significantly at 6 h after Aeromonas hydrophila challenge (p  0.05). The mRNA expression of lipopolysaccharide-induced tumor necrosis factor (TNF)-α factor (EsLITAF) was also induced by A. hydrophila challenge. However, the mRNA expression of EsLITAF and TNFproduction was significantly suppressed after EsGSK3 was blocked in vivo with specific inhibitor lithium, while the phagocytosis of crab haemocytes was significantly promoted. These results collectively demonstrated that EsGSK3 could regulate the innate immune responses of E. sinensis by promoting TNFproduction and inhibiting haemocyte phagocytosis.

  3. Interactions between Leishmania braziliensis and Macrophages Are Dependent on the Cytoskeleton and Myosin Va

    Directory of Open Access Journals (Sweden)

    Elisama Azevedo

    2012-01-01

    Full Text Available Leishmaniasis is a neglected tropical disease with no effective vaccines. Actin, microtubules and the actin-based molecular motor myosin Va were investigated for their involvement in Leishmania braziliensis macrophage interactions. Results showed a decrease in the association index when macrophages were without F-actin or microtubules regardless of the activation state of the macrophage. In the absence of F-actin, the production of NO in non-activated cells increased, while in activated cells, the production of NO was reduced independent of parasites. The opposite effect of an increased NO production was observed in the absence of microtubules. In activated cells, the loss of cytoskeletal components inhibited the release of IL-10 during parasite interactions. The production of IL-10 also decreased in the absence of actin or microtubules in non-activated macrophages. Only the disruption of actin altered the production of TNF-α in activated macrophages. The expression of myosin Va tail resulted in an acute decrease in the association index between transfected macrophages and L. braziliensis promastigotes. These data reveal the importance of F-actin, microtubules, and myosin-Va suggesting that modulation of the cytoskeleton may be a mechanism used by L. braziliensis to overcome the natural responses of macrophages to establish infections.

  4. Differential response of macrophages to core-shell Fe3O4@Au nanoparticles and nanostars

    Science.gov (United States)

    Xia, Wei; Song, Hyon-Min; Wei, Qingshan; Wei, Alexander

    2012-10-01

    Murine RAW 264.7 cells were exposed to spheroidal core-shell Fe3O4@Au nanoparticles (SCS-NPs, ca. 34 nm) or nanostars (NSTs, ca. 100 nm) in the presence of bovine serum albumin, with variable effects observed after macrophagocytosis. Uptake of SCS-NPs caused macrophages to adopt a rounded, amoeboid form, accompanied by an increase in surface detachment. In contrast, the uptake of multibranched NSTs did not induce gross changes in macrophage shape or adhesion, but correlated instead with cell enlargement and signatures of macrophage activation such as TNF-α and ROS. MTT assays indicate a low cytotoxic response to either SCS-NPs or NSTs despite differences in macrophage behavior. These observations show that differences in NP size and shape are sufficient to produce diverse responses in macrophages following uptake.Murine RAW 264.7 cells were exposed to spheroidal core-shell Fe3O4@Au nanoparticles (SCS-NPs, ca. 34 nm) or nanostars (NSTs, ca. 100 nm) in the presence of bovine serum albumin, with variable effects observed after macrophagocytosis. Uptake of SCS-NPs caused macrophages to adopt a rounded, amoeboid form, accompanied by an increase in surface detachment. In contrast, the uptake of multibranched NSTs did not induce gross changes in macrophage shape or adhesion, but correlated instead with cell enlargement and signatures of macrophage activation such as TNF-α and ROS. MTT assays indicate a low cytotoxic response to either SCS-NPs or NSTs despite differences in macrophage behavior. These observations show that differences in NP size and shape are sufficient to produce diverse responses in macrophages following uptake. Electronic supplementary information (ESI) available: Synthetic details, additional TEM images, absorbance spectra, and DLS analysis of SCS-NPs and NSTs, negative and positive control images of ROS imaging, and the effect of magnetic field gradient on ROS production. See DOI: 10.1039/c2nr32070c

  5. Critical role of methylglyoxal and AGE in mycobacteria-induced macrophage apoptosis and activation.

    Directory of Open Access Journals (Sweden)

    Helmy Rachman

    Full Text Available Apoptosis and activation of macrophages play an important role in the host response to mycobacterial infection involving TNF-alpha as a critical autocrine mediator. The underlying mechanisms are still ill-defined. Here, we demonstrate elevated levels of methylglyoxal (MG, a small and reactive molecule that is usually a physiological product of various metabolic pathways, and advanced glycation end products (AGE during mycobacterial infection of macrophages, leading to apoptosis and activation of macrophages. Moreover, we demonstrate abundant AGE in pulmonary lesions of tuberculosis (TB patients. Global gene expression profiling of MG-treated macrophages revealed a diverse spectrum of functions induced by MG, including apoptosis and immune response. Our results not only provide first evidence for the involvement of MG and AGE in TB, but also form a basis for novel intervention strategies against infectious diseases in which MG and AGE play critical roles.

  6. Extract of the seed coat of Tamarindus indica inhibits nitric oxide production by murine macrophages in vitro and in vivo.

    Science.gov (United States)

    Komutarin, T; Azadi, S; Butterworth, L; Keil, D; Chitsomboon, B; Suttajit, M; Meade, B J

    2004-04-01

    The seed coat extract of Tamarindus indica, a polyphenolic flavonoid, has been shown to have antioxidant properties. The present studies investigated the inhibitory effect of the seed coat extract of T. indica on nitric oxide production in vitro using a murine macrophage-like cell line, RAW 264.7, and in vitro and in vivo using freshly isolated B6C3F1 mouse peritoneal macrophages. In vitro exposure of RAW 264.7 cells or peritoneal macrophages to 0.2-200 microg/mL of T. indica extract significantly attenuated (as much as 68%) nitric oxide production induced by lipopolysaccharide (LPS) and interferon gamma (IFN-gamma) in a concentration-dependent manner. In vivo administration of T. indica extract (100-500 mg/kg) to B6C3F1 mice dose-dependently suppressed TPA, LPS and/or IFN-gamma induced production of nitric oxide in isolated mouse peritoneal macrophages in the absence of any effect on body weight. Exposure to T. indica extract had no effect on cell viability as assessed by the MTT assay. In B6C3F1 mice, preliminary safety studies demonstrated a decrease in body weight at only the highest dose tested (1000 mg/kg) without alterations in hematology, serum chemistry or selected organ weights or effects on NK cell activity. A significant decrease in body weight was observed in BALB/c mice exposed to concentrations of extract of 250 mg/kg or higher. Oral exposure of BALB/c mice to T. indica extract did not modulate the development of T cell-mediated sensitization to DNFB or HCA as measured by the local lymph node assay, or dermal irritation to nonanoic acid or DNFB. These studies suggest that in mice, T. indica extract at concentrations up to 500 mg/kg may modulate nitric oxide production in the absence of overt acute toxicity.

  7. Nitric Oxide Interaction with Lactoferrin and Its Production by Macrophage Cells Studied by EPR and Spin Trapping

    Science.gov (United States)

    1993-01-01

    Hibbq, Jr., R.R. Taintor and Z. Vavrin (1987) Macrophage cytotoxicity: role for I.- arginine deiminase and imino nitrogen oxidation to nitrite. Science...of NO originates from the N-terminal guanidino group of L- arginine . 3 Although the exact role of NO in cells remains uncertain, several properties of...purchased from Matheson Gas Products, Inc. (Fairfield, NJ). Lipopolysaccharide (LPS), Cu,Zn-superoxide dismutase (SOD), bovine lactoferrin, L- arginine

  8. A Human Anti-Toll Like Receptor 4 Fab Fragment Inhibits Lipopolysaccharide-Induced Pro-Inflammatory Cytokines Production in Macrophages.

    Science.gov (United States)

    Wang, Maorong; Zheng, Wenkai; Zhu, Xuhui; Xu, Jing; Cai, Binggang; Zhang, Yiqing; Zheng, Feng; Zhou, Linfu; Yang, Zhiguo; Zhang, Xin; Wang, Changjun; Nie, Shinan; Zhu, Jin

    2016-01-01

    The results of clinical and experimental studies suggest that endotoxin/toll-like receptor 4 (TLR4)-mediated proinflammatory and profibrotic signaling activation is critical in the development of hepatic fibrosis. However, studies examining the role of specific TLR4 inhibitor are still lacking. The present study was aimed to prepare a human anti-TLR4 Fab fragment, named hTLR4-Fab01, and to explore its immune activity. We screened the positive clone of anti-human TLR4 phagemid from a human phage-display antibody library using recombinant TLR4 protein, which was used as template cDNA for the amplification of variable regions of the heavy (VH) chain and light chain (VL), then coupled with highly conserved regions of the heavy chain domain 1 (CH1) and the light chain (CL), respectively. Thus, the prokaryotic expression vector pETDuet-1 of hTLR4-Fab01 was constructed and transformed into Escherichia coli (E. coli) BL21. The characteristic of hTLR4-Fab01 was examined by SDS-PAGE, Western blotting, ELISA, affinity and kinetics assay. Further, our data demonstrate that hTLR4-Fab01 could specifically bind to TLR4, and its treatment obviously attenuated the proinflammatory effect, characterized by less LPS-induced TNF-α, IL-1, IL-6 and IL-8 production in human macrophages. In conclusion, we have successfully prepared the hTLR4-Fab01 with efficient activity for blocking LPS-induced proinflammatory cytokines production, suggesting that the hTLR4-Fab01 may be a potential candidate for the treatment of hepatic fibrosis.

  9. Impaired phospholipases A₂production by stimulated macrophages from patients with acute respiratory distress syndrome.

    Science.gov (United States)

    Hatzidaki, Eleana; Nakos, George; Galiatsou, Eftychia; Lekka, Marilena E

    2010-11-01

    The aim of this study was to investigate whether early phase of acute respiratory distress syndrome (ARDS) is associated with changes in immune response, either systemic or localized to the lung. ARDS and control mechanically ventilated patients, as well as healthy volunteers were studied. Alveolar macrophages (AMΦ) and blood monocytes (BM) were treated ex vivo with lipopolysaccharide (LPS), interferon-γ (IFNγ), and surfactant. Phospholipase A₂ (PLA₂) activity and TLR4 expression were evaluated as markers of cell response. AMΦ from ARDS patients did not respond upon treatment with either LPS or IFN-γ by inducing PLA₂ production. On the contrary, upon stimulation, in control patients the intracellular PLA₂, (mainly cPLA₂) levels were increased, but secretion of PLA₂ (mainly sPLA₂-IIA) was observed only after treatment with LPS. Surfactant suppressed PLA₂ production in cells from both groups of patients. Increased relative changes of total PLA₂ activity and an upregulation of TLR4 expression upon stimulation was observed in BM from primary ARDS, control patients and healthy volunteers. In BM from secondary ARDS patients, however, no PLA₂ induction was observed, with a concomitant down-regulation of TLR4 expression. Cytosolic PLA₂, its activated form, p-cPLA₂, and sPLA₂-IIA were the predominant PLA₂ types within the cells, while extracellularly only sPLA₂-IIA was identified. These results support the concept of down-regulated innate immunity in early ARDS that is compartmentalized in primary and systemic in secondary ARDS. PLA₂ isoforms could serve as markers of the immunity status in ARDS. Finally, our data highlight the role of surfactant in controlling inflammation.

  10. Two types of TNF-α exist in teleost fish: phylogeny, expression, and bioactivity analysis of type-II TNF-α3 in rainbow trout Oncorhynchus mykiss.

    Science.gov (United States)

    Hong, Suhee; Li, Ronggai; Xu, Qiaoqing; Secombes, Chris J; Wang, Tiehui

    2013-12-15

    TNF-α is a cytokine involved in systemic inflammation and regulation of immune cells. It is produced chiefly by activated macrophages as a membrane or secreted form. In rainbow trout, two TNF-α molecules were described previously. In this article, we report a third TNF-α (TNF-α3) that has only low identities to known trout molecules. Phylogenetic tree and synteny analyses of trout and other fish species suggest that two types (named I and II) of TNF-α exist in teleost fish. The fish type-II TNF-α has a short stalk that may impact on its enzymatic release or restrict it to a membrane-bound form. The constitutive expression of trout TNF-α3 was generally lower than the other two genes in tissues and cell lines, with the exception of the macrophage RTS-11 cell line, in which expression was higher. Expression of all three TNF-α isoforms could be modulated by crude LPS, peptidoglycan, polyinosinic:polycytidylic acid, and rIFN-γ in cell lines and primary macrophages, as well as by bacterial and viral infections. TNF-α3 is the most responsive gene at early time points post-LPS stimulation and can be highly induced by the T cell-stimulant PHA, suggesting it is a particularly important TNF-α isoform. rTNF-α3 produced in CHO cells was bioactive in different cell lines and primary macrophages. In the latter, it induced the expression of proinflammatory cytokines (IL-1β, IL-6, IL-8, IL-17C, and TNF-αs), negative regulators (SOCS1-3, TGF-β1b), antimicrobial peptides (cathelicidin-1 and hepcidin), and the macrophage growth factor IL-34, verifying its key role in the inflammatory cytokine network and macrophage biology of fish.

  11. Aging negatively skews macrophage TLR2- and TLR4-mediated pro-inflammatory responses without affecting the IL-2-stimulated pathway.

    Science.gov (United States)

    Boehmer, Eric D; Meehan, Michael J; Cutro, Brent T; Kovacs, Elizabeth J

    2005-12-01

    We recently reported that macrophages from aged mice produced less tumor necrosis factor (TNF)-alpha following lipopolysaccharide (LPS) stimulation than macrophages from young animals. This correlated with decreased levels of phosphorylated and total p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinases (MAPKs). Here, we went on to determine if age affects other Toll-like (TLR) and non-TLR signaling pathways. We found that LPS- and zymosan-stimulated TNF-alpha and IL-6 production is attenuated in splenic macrophages from aged mice compared to young. Conversely, LPS-stimulated, but not zymosan-stimulated, IL-10 production from the aged group was elevated over that of the young group. In contrast, IL-2-stimulated TNF-alpha and IL-6 production was not affected by age. The age-associated changes did not correlate with alterations in the cell-surface expression of TLR2, TLR4, or IL-2Rbeta. Macrophages from aged mice demonstrated lower p38 MAPK and MAPK-activated protein kinase (APK)-2 activation. Protein expression of p38, but not MAPK-APK-2, was reduced with age. Additionally, nuclear factor (NF)-kappaB activation was significantly decreased in macrophages from aged mice after exposure to LPS, but not IL-2. These data indicate that age-associated macrophage signaling alterations are pathway-specific and suggest that TLR-mediated pathways are impaired with age at the level of MAPK expression.

  12. Modulation of cytokine expression in human macrophages by endocrine-disrupting chemical Bisphenol-A

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yanzhen; Mei, Chenfang [State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070 (China); Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070 (China); Liu, Hao [Affiliated Cancer Hospital and Cancer Research Institute, Guangzhou Medical University, Guangzhou 510095 (China); Wang, Hongsheng [Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006 (China); Zeng, Guoqu; Lin, Jianhui [State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070 (China); Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070 (China); Xu, Meiying, E-mail: xumy@gdim.cn [State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070 (China); Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070 (China)

    2014-09-05

    Highlights: • Effects of BPA on the cytokines expression of human macrophages were investigated. • BPA increased pro-inflammation cytokines TNF-α and IL-6 production. • BPA decreased anti-inflammation IL-10 and TGF-β production. • ERα/β/ERK/NF-κB signaling involved in BPA-mediated cytokines expression. - Abstract: Exposure to environmental endocrine-disrupting chemical Bisphenol-A (BPA) is often associated with dysregulated immune homeostasis, but the mechanisms remain unclear. In the present study, the effects of BPA on the cytokines responses of human macrophages were investigated. Treatment with BPA increased pro-inflammation cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production, but decreased anti-inflammation cytokines interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) production in THP1 macrophages, as well as in primary human macrophages. BPA effected cytokines expression through estrogen receptor α/β (ERα/β)-dependent mechanism with the evidence of ERα/β antagonist reversed the expression of cytokines. We also identified that activation of extracellular regulated protein kinases (ERK)/nuclear factor κB (NF-κB) signal cascade marked the effects of BPA on cytokines expression. Our results indicated that BPA effected inflammatory responses of macrophages via modulating of cytokines expression, and provided a new insight into the link between exposure to BPA and human health.

  13. The rLrp of Mycobacterium tuberculosis inhibits proinflammatory cytokine production and downregulates APC function in mouse macrophages via a TLR2-mediated PI3K/Akt pathway activation-dependent mechanism.

    Science.gov (United States)

    Liu, Yuan; Li, Jia-Yun; Chen, Su-Ting; Huang, Hai-Rong; Cai, Hong

    2016-11-01

    We demonstrate that Mycobacterium tuberculosis recombinant leucine-responsive regulatory protein (rLrp) inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α), interleukin-6, and interleukin-12 production and blocks the nuclear translocation of subunits of the nuclear-receptor transcription factor NF-κB (Nuclear factor-kappa B). Moreover, rLrp attenuated LPS-induced DNA binding and NF-κB transcriptional activity, which was accompanied by the degradation of inhibitory IκBα and a consequent decrease in the nuclear translocation of the NF-κB p65 subunit. RLrp interfered with the LPS-induced clustering of TNF receptor-associated factor 6 and with interleukin-1 receptor-associated kinase 1 binding to TAK1. Furthermore, rLrp did not attenuate proinflammatory cytokines or the expression of CD86 and major histocompatibility complex class-II induced by interferon-gamma in the macrophages of Toll-like receptor 2 deletion (TLR2(-/-)) mice and in protein kinase b (Akt)-depleted mouse cells, indicating that the inhibitory effects of rLrp were dependent on TLR2-mediated activation of the phosphatidylinositol 3-OH kinase (PI3K)/Akt pathway. RLrp could also activate the PI3K/Akt pathway by stimulating the rapid phosphorylation of PI3K, Akt, and glycogen synthase kinase 3 beta in macrophages. In addition, 19 amino acid residues in the N-terminus of rLrp were determined to be important and required for the inhibitory effects mediated by TLR2. The inhibitory function of these 19 amino acids of rLrp raises the possibility that mimetic inhibitory peptides could be used to restrict innate immune responses in situations in which prolonged TLR signaling has deleterious effects. Our study offers new insight into the inhibitory mechanisms by which the TLR2-mediated PI3K/Akt pathway ensures the transient expression of potent inflammatory mediators.

  14. Localized External Beam Radiation Therapy (EBRT) to the Pelvis Induces Systemic IL-1Beta and TNF-Alpha Production: Role of the TNF-Alpha Signaling in EBRT-Induced Fatigue.

    Science.gov (United States)

    McDonald, Tasha L; Hung, Arthur Y; Thomas, Charles R; Wood, Lisa J

    2016-01-01

    Prostate cancer patients undergoing localized external beam radiation therapy (EBRT) can experience a progressive increase in fatigue, which can affect physical functioning and quality of life. The purpose of this study was to develop a mouse EBRT prostate cancer treatment model with which to determine the role of pro-inflammatory cytokines in the genesis of EBRT-related fatigue. We assessed voluntary wheel-running activity (VWRA) as a proxy for fatigue, food intake and body weight in male C57BL/6 mice undergoing EBRT to the pelvis. In the first experiment, anesthetized male C57BL/6 mice underwent fractionated EBRT to the pelvis for a total dose of 68.2 Gy, thereby mimicking a clinically relevant therapeutic dose and frequency. The day after the last treatment, levels of IL-1β and TNF-α in plasma along with mRNA levels in liver, colon and whole brain were measured. EBRT-induced fatigue resulted in reduced body weight, diminished food intake, and increased plasma and tissue levels of IL-1β and TNF-α. In a follow-up experiment, we used TNF-α-deficient mice to further delineate the role of TNF-α signaling in EBRT-induced sickness behavior. EBRT-induced changes in fatigue, food intake and body weight were no different between TNF-α deficient mice and their wild-type counterparts. Taken together our data demonstrate that a clinically relevant localized irradiation of the pelvis induces a systemic IL-1β and TNF-α response and sickness behavior in mice, but the TNF-α signaling pathway alone does not independently mediate these effects.

  15. Leptomeningeal Cells Transduce Peripheral Macrophages Inflammatory Signal to Microglia in Reponse to Porphyromonas gingivalis LPS

    Directory of Open Access Journals (Sweden)

    Yicong Liu

    2013-01-01

    Full Text Available We report here that the leptomeningeal cells transduce inflammatory signals from peripheral macrophages to brain-resident microglia in response to Porphyromonas gingivalis (P.g. LPS. The expression of Toll-like receptor 2 (TLR2, TLR4, TNF-α, and inducible NO synthase was mainly detected in the gingival macrophages of chronic periodontitis patients. In in vitro studies, P.g. LPS induced the secretion of TNF-α and IL-1β from THP-1 human monocyte-like cell line and RAW264.7 mouse macrophages. Surprisingly, the mean mRNA levels of TNF-α and IL-1β in leptomeningeal cells after treatment with the conditioned medium from P.g. LPS-stimulated RAW264.7 macrophages were significantly higher than those after treatment with P.g. LPS alone. Furthermore, the mean mRNA levels of TNF-α and IL-1β in microglia after treatment with the conditioned medium from P.g. LPS-stimulated leptomeningeal cells were significantly higher than those after P.g. LPS alone. These observations suggest that leptomeninges serve as an important route for transducing inflammatory signals from macrophages to microglia by secretion of proinflammatory mediators during chronic periodontitis. Moreover, propolis significantly reduced the P.g. LPS-induced TNF-α and IL-1 β production by leptomeningeal cells through inhibiting the nuclear factor-κB signaling pathway. Together with the inhibitory effect on microglial activation, propolis may be beneficial in preventing neuroinflammation during chronic periodontitis.

  16. Long-term effects of neonatal malnutrition on microbicide response, production of cytokines, and survival of macrophages infected by Staphylococcus aureus sensitive/resistant to methicillin

    Directory of Open Access Journals (Sweden)

    Natália Gomes de Morais

    2014-10-01

    Full Text Available OBJECTIVE: To assess microbicide function and macrophage viability after in vitro cellular infection by methicillin-sensitive/resistant Staphylococcus aureus in nourished rats and rats subjected to neonatal malnutrition. METHODS: Male Wistar rats (n=40 were divided in two groups: Nourished (rats suckled by dams consuming a 17% casein diet and Malnourished (rats suckled by dams consuming an 8% casein diet. Macrophages were recovered after tracheotomy, by bronchoalveolar lavage. After mononuclear cell isolation, four systems were established: negative control composed exclusively of phagocytes; positive control composed of macrophages plus lipopolysaccharide; and two testing systems, macrophages plus methicillin-sensitive Staphylococcus aureus and macrophages plus methicillin-resistant Staphylococcus aureus. The plates were incubated in a humid atmosphere at 37 degrees Celsius containing 5% CO2 for 24 hours. After this period tests the microbicidal response, cytokine production, and cell viability were analyzed. The statistical analysis consisted of analysis of variance (p<0.05. RESULTS: Malnutrition reduced weight gain, rate of phagocytosis, production of superoxide anion and nitric oxide, and macrophage viability. Production of nitrite and interleukin 18, and viability of macrophages infected with methicillin-resistant Staphylococcus aureus were lower. CONCLUSION: The neonatal malnutrition model compromised phagocyte function and reduced microbicidal response and cell viability. Interaction between malnutrition and the methicillin-resistant strain decreased the production of inflammatory mediators by effector cells of the immune response, which may compromise the immune system's defense ability.

  17. A crucial role for TNF-α in mediating neutrophil influx induced by endogenously generated or exogenous chemokines, KC/CXCL1 and LIX/CXCL5

    Science.gov (United States)

    Vieira, SM; Lemos, HP; Grespan, R; Napimoga, MH; Dal-Secco, D; Freitas, A; Cunha, TM; Verri Jr, WA; Souza-Junior, DA; Jamur, MC; Fernandes, KS; Oliver, C; Silva, JS; Teixeira, MM; Cunha, FQ

    2009-01-01

    Background and purpose: Chemokines orchestrate neutrophil recruitment to inflammatory foci. In the present study, we evaluated the participation of three chemokines, KC/CXCL1, MIP-2/CXCL2 and LIX/CXCL5, which are ligands for chemokine receptor 2 (CXCR2), in mediating neutrophil recruitment in immune inflammation induced by antigen in immunized mice. Experimental approach: Neutrophil recruitment was assessed in immunized mice challenged with methylated bovine serum albumin, KC/CXCL1, LIX/CXCL5 or tumour necrosis factor (TNF)-α. Cytokine and chemokine levels were determined in peritoneal exudates and in supernatants of macrophages and mast cells by elisa. CXCR2 and intercellular adhesion molecule 1 (ICAM-1) expression was determined using immunohistochemistry and confocal microscopy. Key results: Antigen challenge induced dose- and time-dependent neutrophil recruitment and production of KC/CXCL1, LIX/CXCL5 and TNF-α, but not MIP-2/CXCL2, in peritoneal exudates. Neutrophil recruitment was inhibited by treatment with reparixin (CXCR1/2 antagonist), anti-KC/CXCL1, anti-LIX/CXCL5 or anti-TNF-α antibodies and in tumour necrosis factor receptor 1-deficient mice. Intraperitoneal injection of KC/CXCL1 and LIX/CXCL5 induced dose- and time-dependent neutrophil recruitment and TNFproduction, which were inhibited by reparixin or anti-TNF-α treatment. Macrophages and mast cells expressed CXCR2 receptors. Increased macrophage numbers enhanced, while cromolyn sodium (mast cell stabilizer) diminished, LIX/CXCL5-induced neutrophil recruitment. Macrophages and mast cells from immunized mice produced TNF-α upon LIX/CXCL5 stimulation. Methylated bovine serum albumin induced expression of ICAM-1 on mesenteric vascular endothelium, which was inhibited by anti-TNF-α or anti-LIX/CXCL5. Conclusion and implications: Following antigen challenge, CXCR2 ligands are produced and act on macrophages and mast cells triggering the production of TNF-α, which synergistically contribute to

  18. Production of IL-6 and TNF-α in PDLC stimulated by lipopolysaccharides%牙周优势菌内毒素对人牙周膜细胞分泌IL-6、TNF-α的影响

    Institute of Scientific and Technical Information of China (English)

    张凤秋; 吴织芬; 万玲; 袁乃梅

    2002-01-01

    目的:研究牙周优势菌--中间普氏菌和具核梭杆菌内毒素对人牙周膜细胞(PDL细胞) 分泌IL-6、TNF-α的影响.方法:采用细胞培养技术和ELISA方法,检测培养上清中IL-6、TNF-α水平.结果:在孵育6 h后,即可在培养上清中检测到IL-6和TNF-α;IL-6在6~12 h内呈上升趋势(Fn除外),24~48 h呈下降趋势.TNF-α在6~24 h随时间延长呈上升趋势,48 h时开始下降.结论:牙周膜细胞在内毒素作用下局部分泌IL-6、TNF-α参与了牙周炎的发生、发展过程.

  19. Involvement of Gr-1 dull+ cells in the production of TNF-α and IL-17 and exacerbated systemic inflammatory response caused by lipopolysaccharide.

    Science.gov (United States)

    Tanno, Daiki; Akahori, Yukiko; Toyama, Masahiko; Sato, Ko; Kudo, Daisuke; Abe, Yuzuru; Miyasaka, Tomomitsu; Yamamoto, Hideki; Ishii, Keiko; Kanno, Emi; Maruyama, Ryoko; Kushimoto, Shigeki; Iwakura, Yoichiro; Kawakami, Kazuyoshi

    2014-02-01

    Systemic inflammatory response syndrome (SIRS) is a life-threatening disease. Recent reports have demonstrated that the immunoregulatory cells that express Gr-1, a granulocyte surface antigen, play a critical role in various pathological conditions. In the present study, we have established a mouse model of SIRS and addressed the possible contribution of Gr-1+ cells in this model. C57BL/6 mice were injected intraperitoneally with anti-Gr-1 mAb or control IgG 1 day before administration of lipopolysaccharide (LPS). All of the mice that received anti-Gr-1 mAb and LPS died early as a result of hypothermia and severe emaciation, whereas mice treated with control IgG and LPS survived the observation period. In mice treated with anti-Gr-1 mAb and LPS, acute inflammatory changes with alveolar hemorrhage were observed in the lung and proximal convoluted tubule necrosis was observed in the kidney. Serum TNF-α and IL-17A levels were markedly increased in anti-Gr-1 mAb-pretreated mice compared with those in control IgG-treated mice at 1 and 3 h after LPS administration, respectively. Flow cytometric analysis revealed an increase in TNF-α and IL-17A expression in Gr-1 dull+ cells in the peripheral blood mononuclear cells. Neutralization of TNF-α by a specific mAb almost completely reversed the clinical course and inhibited the increased production of IL-17A. In addition, IL-17A KO mice were less susceptible to the lethality in this model. Thus, we established a mouse model of severe SIRS and suggested that Gr-1 dull+ cells may play a critical role in the development of this pathological condition.

  20. n Vitro Immunomodulatory Effect of R10 Fraction of Garlic on Viability and Production of TNF-? in CD8+ T Cells

    Directory of Open Access Journals (Sweden)

    T. Ghazanfari

    2014-01-01

    Full Text Available Introduction & Objective: -cells, especially CD8+ T lymphocytes are the most important cells in anti-tumor response. Previously R10 fraction of garlic extract was reported as an immuno-modulator which induced an effective cellular immunity and Th1 responses. In this study the in vitro immunomodulatory effect of R10 on CD8+ T cells viability and production of TNF-? were evaluated. Materials & Methods: In this experimental study, using monoclonal antibodies attached to magnetic beads with isolating columns by magnetic bead method, CD8+ T cells from spleen cells of Balb/C mice were isolated. R10 fraction based on molecular weight was prepared using Ultra filtration. MTT assay was used to evaluate cell viability. TNF-? level was meas-ured in the supernatant of culture of CD8+ T cells by ELISA. Obtained data was compared and analyzed using Nonparametric Test and Keraskel & Wanny's Test tests.. Results: The findings indicate that all dilutions of R10 fraction increased cell viability of CD8+ T cells in comparison with the negative control group and in the presence of ConA with dilution of 1:50 of R10 fraction significantly increased cell viability of CD8+ T Cells com-pared to ConA alone. Secretion of TNF-? significantly increased by all dilutions of R10 frac-tion. Conclusion: These findings suggest that R10 fraction of garlic can be used as an Immuno-modulator drug candidate for induction of cellular Immunity in tumor therapy. Sci J Hamadan Univ Med Sci 2014; 20 (4:273-279

  1. Mediators Go Together: High Production of CXCL9, CXCL10, IFN-γ, and TNF-α in HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis.

    Science.gov (United States)

    Neco, Heytor Victor Pereira da Costa; Teixeira, Vanessa Gabryelle da Silva; da Trindade, Ana Carolina Lemos; Magalhães, Paula Machado Ribeiro; de Lorena, Virgínia Maria Barros; Castellano, Lúcio Roberto Cançado; de Souza, Joelma Rodrigues; Vasconcelos, Luydson Richardson; de Moura, Patrícia Muniz Mendes Freire; de Morais, Clarice Neuenschwander Lins

    2017-07-25

    HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic demyelinating and disabling syndrome caused by human T lymphotropic virus 1 (HTLV-1). Although the pathogenic mechanisms that lead to HAM/TSP outcome have not been elucidated, genetic and immunological factors may be involved in the myelopathy occurrence. This study aimed to compare cytokines, chemokines, and nitric oxide (NO) levels in asymptomatic and HAM/TSP HTLV-1-infected patients. The study group consisted of 21 HAM/TSP and 48 asymptomatic HTLV-1 patients. Chemokines (CCL5, CCL2, CXCL8, CXCL9, and CXCL10) and cytokines [IL-2, interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), IL-4, IL-6, and IL-10] were measured using cytometric bead array, whereas NO production was measured after reaction of supernatants with nitrate reduction solution. CXCL9 and CXCL10 chemokines levels were found to be higher in the HAM/TSP group. CXCL9 was also strongly correlated with CXCL10 and both CXCL9 and CXCL10 were moderately correlated with CCL2 and CCL5 levels, in both HAM/TSP and asymptomatic groups. There was no significant difference related to NO, IL-4, IL-6, and IL-10 levels between the clinical groups but TNF-α and IFN-γ levels were increased in HAM/TSP patients. Thus, factors such as CXCL9, CXCL10, TNF-α, and IFN-γ could be good prognostic biomarker candidates, and further studies may help to clarify their association with HAM/TSP immunopathogenesis.

  2. HIV-1 activates macrophages independent of Toll-like receptors.

    Directory of Open Access Journals (Sweden)

    Joseph N Brown

    Full Text Available BACKGROUND: Macrophages provide an interface between innate and adaptive immunity and are important long-lived reservoirs for Human Immunodeficiency Virus Type-1 (HIV-1. Multiple genetic networks involved in regulating signal transduction cascades and immune responses in macrophages are coordinately modulated by HIV-1 infection. METHODOLOGY/PRINCIPAL FINDINGS: To evaluate complex interrelated processes and to assemble an integrated view of activated signaling networks, a systems biology strategy was applied to genomic and proteomic responses by primary human macrophages over the course of HIV-1 infection. Macrophage responses, including cell cycle, calcium, apoptosis, mitogen-activated protein kinases (MAPK, and cytokines/chemokines, to HIV-1 were temporally regulated, in the absence of cell proliferation. In contrast, Toll-like receptor (TLR pathways remained unaltered by HIV-1, although TLRs 3, 4, 7, and 8 were expressed and responded to ligand stimulation in macrophages. HIV-1 failed to activate phosphorylation of IRAK-1 or IRF-3, modulate intracellular protein levels of Mx1, an interferon-stimulated gene, or stimulate secretion of TNF, IL-1beta, or IL-6. Activation of pathways other than TLR was inadequate to stimulate, via cross-talk mechanisms through molecular hubs, the production of proinflammatory cytokines typical of a TLR response. HIV-1 sensitized macrophage responses to TLR ligands, and the magnitude of viral priming was related to virus replication. CONCLUSIONS/SIGNIFICANCE: HIV-1 induced a primed, proinflammatory state, M1(HIV, which increased the responsiveness of macrophages to TLR ligands. HIV-1 might passively evade pattern recognition, actively inhibit or suppress recognition and signaling, or require dynamic interactions between macrophages and other cells, such as lymphocytes or endothelial cells. HIV-1 evasion of TLR recognition and simultaneous priming of macrophages may represent a strategy for viral survival, contribute

  3. Low molecular weight hyaluronan activates cytosolic phospholipase A2α and eicosanoid production in monocytes and macrophages.

    Science.gov (United States)

    Sokolowska, Milena; Chen, Li-Yuan; Eberlein, Michael; Martinez-Anton, Asuncion; Liu, Yueqin; Alsaaty, Sara; Qi, Hai-Yan; Logun, Carolea; Horton, Maureen; Shelhamer, James H

    2014-02-14

    Hyaluronan (HA) is the major glycosaminoglycan in the extracellular matrix. During inflammation, there is an increased breakdown of HA, resulting in the accumulation of low molecular weight (LMW) HA and activation of monocytes and macrophages. Eicosanoids, derived from the cytosolic phospholipase A2 group IVA (cPLA2α) activation, are potent lipid mediators also attributed to acute and chronic inflammation. The aim of this study was to determine the effect of LMW HA on cPLA2α activation, arachidonic acid (AA) release, and subsequent eicosanoid production and to examine the receptors and downstream mechanisms involved in these processes in monocytes and differently polarized macrophages. LMW HA was a potent stimulant of AA release in a time- and dose-dependent manner, induced cPLA2α, ERK1/2, p38, and JNK phosphorylation, as well as activated COX2 expression and prostaglandin (PG) E2 production in primary human monocytes, murine RAW 264.7, and wild-type bone marrow-derived macrophages. Specific cPLA2α inhibitor blocked HA-induced AA release and PGE2 production in all of these cells. Using CD44, TLR4, TLR2, MYD88, RHAMM or STAB2 siRNA-transfected macrophages and monocytes, we found that AA release, cPLA2α, ERK1/2, p38, and JNK phosphorylation, COX2 expression, and PGE2 production were activated by LMW HA through a TLR4/MYD88 pathway. Likewise, PGE2 production and COX2 expression were blocked in Tlr4(-/-) and Myd88(-/-) mice, but not in Cd44(-/-) mice, after LMW HA stimulation. Moreover, we demonstrated that LMW HA activated the M1 macrophage phenotype with the unique cPLA2α/COX2(high) and COX1/ALOX15/ALOX5/LTA4H(low) gene and PGE2/PGD2/15-HETE(high) and LXA4(low) eicosanoid profile. These findings reveal a novel link between HA-mediated inflammation and lipid metabolism.

  4. Immunological impact of magnetic nanoparticles (Ferucarbotran) on murine peritoneal macrophages

    Science.gov (United States)

    Yeh, Chen-Hao; Hsiao, Jong-Kai; Wang, Jaw-Lin; Sheu, Fuu

    2010-01-01

    Ferucarbotran, a clinically used superparamagnetic iron oxide, is widely developed as a magnetic resonance imaging (MRI) contrast agent and has the potential to improve the monitoring of macrophage recirculation in vivo. However, the biological effect of Ferucarbotran or magnetic nanoparticles (MNPs) on macrophage is not clearly understood yet. This study is aimed to examine the immunological impact of Ferucarbotran toward murine peritoneal macrophages. Cells treated with Ferucarbotran demonstrated a dose-responsive increase of granularity in the cytoplasm. After 24 h of incubation, viability and cytotoxicity in macrophages treated with 200 μg Fe/mL of Ferucarbotran were not affected. Macrophages loaded with Ferucarbotran above 100 μg Fe/mL showed a significant ( p TNF-α, IL-1β, IL-6) secretion and mRNA expression, followed by nitric oxide (NO) secretion and iNOS mRNA expression. Chemotactic responses of Ferucarbotran-preloaded macrophages toward CX3CL1 were significantly ( p inflammatory cytokine secretion and NO production.

  5. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages.

    Science.gov (United States)

    Shin, Jung-Hye; Ryu, Ji Hyeon; Kang, Min Jung; Hwang, Cho Rong; Han, Jaehee; Kang, Dawon

    2013-08-01

    Garlic has a variety of biologic activities, including anti-inflammatory properties. Although garlic has several biologic activities, some people dislike eating fresh raw garlic because of its strong taste and smell. Therefore, garlic formulations involving heating procedures have been developed. In this study, we investigated whether short-term heating affects the anti-inflammatory properties of garlic. Fresh and heated raw garlic extracts (FRGE and HRGE) were prepared with incubation at 25 °C and 95 °C, respectively, for 2 h. Treatment with FRGE and HRGE significantly reduced the LPS-induced increase in the pro-inflammatory cytokine concentration (TNF-α, IL-1β, and IL-6) and NO through HO-1 upregulation in RAW 264.7 macrophages. The anti-inflammatory effect was greater in FRGE than in HRGE. The allicin concentration was higher in FRGE than in HRGE. Allicin treatment showed reduced production of pro-inflammatory cytokines and NO and increased HO-1 activity. The results show that the decrease in LPS-induced NO and pro-inflammatory cytokines in RAW 264.7 macrophages through HO-1 induction was greater for FRGE compared with HRGE. Additionally, the results indicate that allicin is responsible for the anti-inflammatory effect of FRGE. Our results suggest a potential therapeutic use of allicin in the treatment of chronic inflammatory disease.

  6. Interleukin-10 attenuation of collagen-induced arthritis is associated with suppression of interleukin-17 and retinoid-related orphan receptor γt production in macrophages and repression of classically activated macrophages

    Science.gov (United States)

    2014-01-01

    Introduction Our objective in the present study was to determine the signaling pathway of interleukin 10 (IL-10) for modulating IL-17 expression in macrophages and the importance of this mediation in collagen-induced arthritis (CIA). Methods IL-10-knockout (IL-10−/−) mice and wild-type (WT) mice were immunized with chicken type II collagen (CII) to induce arthritis. The expression levels of IL-17 and retinoid-related orphan receptor γt (RORγt) in macrophages and joint tissues of IL-10−/− and WT mice were analyzed by enzyme-linked immunosorbent assay, quantitative RT-PCR (qRT-PCR) and Western blotting. The F4/80 macrophages and positive IL-17-producing macrophages in synovial tissues of the mice were determined by immunohistochemistry. The populations of classically activated macrophage (M1) and alternatively activated macrophage (M2) phenotypes were analyzed by flow cytometry. The expression of genes associated with M1 and M2 markers was analyzed by qRT-PCR. Results Compared to WT mice, IL-10−/− mice had exacerbated CIA development, which was associated with increased production of T helper 17 cell (Th17)/Th1 proinflammatory cytokines and CII-specific immunoglobulin G2a antibody after CII immunization. Macrophages in IL-10−/− mice had increased amounts of IL-17 and RORγt compared with the amounts in WT mice with CIA. Immunofluorescence microscopy showed that the number of IL-17-producing macrophages in synovial tissues was significantly higher in IL-10−/− mice than in WT mice. IL-10 deficiency might promote macrophage polarization toward the proinflammatory M1 phenotype, which contributes to the rheumatoid arthritis inflammation response. Conclusion IL-10 inhibits IL-17 and RORγt expression in macrophages and suppresses macrophages toward the proinflammatory M1 phenotype, which is important for the role of IL-10 in mediating the pathogenesis of CIA. PMID:24742125

  7. Short-Term Regulation of FcγR-Mediated Phagocytosis by TLRs in Macrophages: Participation of 5-Lipoxygenase Products.

    Science.gov (United States)

    Pinheiro, Carla da S; Monteiro, Ana Paula T; Dutra, Fabiano F; Bozza, Marcelo T; Peters-Golden, Marc; Benjamim, Claudia F; Canetti, Claudio

    2017-01-01

    TLRs recognize a broad spectrum of microorganism molecules, triggering a variety of cellular responses. Among them, phagocytosis is a critical process for host defense. Leukotrienes (LTs), lipid mediators produced from 5-lipoxygenase (5-LO) enzyme, increase FcγR-mediated phagocytosis. Here, we evaluated the participation of TLR2, TLR3, TLR4, and TLR9 in FcγR-mediated phagocytosis and whether this process is modulated by LTs. Rat alveolar macrophages (AMs), murine bone marrow-derived macrophages (BMDMs), and peritoneal macrophages (PMs) treated with TLR2, TLR3, and TLR4 agonists, but not TLR9, enhanced IgG-opsonized sheep red blood cell (IgG-sRBC) phagocytosis. Pretreatment of AMs or BMDMs with drugs that block LT synthesis impaired the phagocytosis promoted by TLR ligands, and TLR potentiation was also abrogated in PMs and BMDMs from 5-LO(-/-) mice. LTB4 production induced by IgG engagement was amplified by TLR ligands, while cys-LTs were amplified by activation of TLR2 and TLR4, but not by TLR3. We also noted higher ERK1/2 phosphorylation in IgG-RBC-challenged cells when preincubated with TLR agonists. Furthermore, ERK1/2 inhibition by PD98059 reduced the phagocytic activity evoked by TLR agonists. Together, these data indicate that TLR2, TLR3, and TLR4 ligands, but not TLR9, amplify IgG-mediated phagocytosis by a mechanism which requires LT production and ERK-1/2 pathway activation.

  8. Effect of Clarithromycin on TNF - α, IL - 1 and IL - 10 production in children with acute exacerbation of recurrent wheezing%克拉霉素对反复喘息急性加重期患儿TNF -α、IL-1β和IL -10产生的影响

    Institute of Scientific and Technical Information of China (English)

    潘德锋; 佘菊香; 胡春艳

    2012-01-01

    Objective: To evaluate the effect of Clarithromycin on nasopharyngeal TNF - α, IL -1 and IL -10 production in children with an acute exacerbation of recurrent wheezing. Methods: Children with a history of recurrent wheezing or asthma and presented with an acute exacerbation of wheezing were enrolled, and clarithromycin or placebo was administrated. Concentrations of TNF - α, IL -1β and IL -10 were measured during and after therapy. Results: Nasopharyngeal concentrations of TNF - α and IL -1β were significantly reduced after treated with Clarithromycin for 3 to 5 days compared with placebo (P <0. 05), and nasopharyngeal concentrations of TNF - α, IL - 1β and IL -10 were persistently reduced for 3 to 8 weeks . For Mycoplasma pneumonia and Chlamydophila pneumonia, however, the level of IL - 10 was no significant difference. Conclusion: Clarithromycin therapy can reduce the concentrations of TNF -o, IL-1β, and IL-10 in children with an acute exacerbation of recurrent wheezing.%目的:评价克拉霉素对反复喘息急性加重期患儿鼻咽灌洗液中TNF -α、IL- 1β和IL - 10的影响.方法:将54例反复喘息急性加重期患儿为研究对象,分别给予克拉霉素与安慰剂治疗,并于治疗过程中检测患儿鼻咽灌抽吸物中TNF-α、IL- 1β和IL-10含量的变化情况.结果:与安慰剂相比,克拉霉素治疗3~5天后鼻咽抽吸物中TNF -α和IL- 1β显著降低(P<0.05);治疗3~8周后TNF -α、IL- 1β和IL- 10水平均有不同程度降低,但肺炎嗜衣原体和肺炎支原体感染患儿IL - 10水平无明显影响.结论:克拉霉素能降低喘息急性加重期患儿粘膜中TNF -α、IL-1β和IL - 10的浓度.

  9. aged black garlic exerts anti-inflammatory effects by decreasing no and proinflammatory cytokine production with less cytoxicity in LPS-stimulated raw 264.7 macrophages and LPS-induced septicemia mice.

    Science.gov (United States)

    Kim, Min Jee; Yoo, Yung Choon; Kim, Hyun Jung; Shin, Suk Kyung; Sohn, Eun Jeong; Min, A Young; Sung, Nak Yun; Kim, Mee Ree

    2014-10-01

    In this study, the anti-inflammatory and antisepticemic activities of a water extract of aged black garlic (AGE), which is not pungent, were compared with those of raw garlic extract (RGE). The methyl thiazolyl tetrazolium (MTT) assay showed that AGE was not toxic up to 1000 μg/mL and was at least four times less cytotoxic than RGE. AGE significantly suppressed the production of nitric oxide (NO), tumor-necrosis factor-α (TNF-α), and prostaglandin (PG)-E2 in a dose-dependent manner in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Furthermore, the inhibitory effect of AGE on LPS-induced inflammation was confirmed by downregulation of inducible NO synthase and TNF-α mRNA expression, as well as cyclooxygenase-2 protein expression. The anti-inflammatory activities of AGE were similar to those of RGE at nontoxic concentrations up to 250 μg/mL. Signal transduction pathway studies further indicated that both garlic extracts inhibited activation of mitogen-activated protein kinase and nuclear factor-κB induced by LPS stimulation. Treatment with both AGE and RGE in an in vivo experiment of LPS-induced endotoxemia significantly reduced the level of TNF-α and interleukin-6 in serum and completely protected against LPS-induced lethal shock in C57BL/6 mice. The results suggest that AGE is a more promising nutraceutical or medicinal agent to prevent or cure inflammation-related diseases for safety aspects compared with RGE.

  10. Medroxyprogesterone acetate drives M2 macrophage differentiation toward a phenotype of decidual macrophage.

    Science.gov (United States)

    Tsai, Yung-Chieh; Tseng, Joseph T; Wang, Chia-Yih; Su, Mei-Tsz; Huang, Jyun-Yuan; Kuo, Pao-Lin

    2017-09-05

    M1 macrophage differentiation plays a crucial role in enhanced inflammation during pregnancy, which may lead to pregnancy complications. Therefore, modulation of macrophage differentiation toward the M2 phenotype is desirable to ensure a successful pregnancy. Medroxyprogesterone acetate (MPA) is a potent progestin with an anti-inflammatory property, but its effect on macrophage differentiation is unknown. This study aimed to examine whether MPA can induce an M2 macrophage differentiation by using the human monocytes cell line THP-1 or primary monocytes. THP-1 cells were primed with phorbol-12-myristate-13 acetate (PMA) to initiate macrophage differentiation. By incubating with MPA, the cells (denoted as MPA-pTHP-1) underwent M2 macrophage differentiation with downregulations of CD11c, IL-1β and TNF-α, and upregulations of CD163 and IL-10; while cells incubated with progesterone (P4) did not show the M2 phenotype. Primary monocytes treated with MPA also had the same M2 phenotype. Moreover, M1 macrophages derived from IFN-γ/LPS-treated THP-1 cells, which had high levels of IL-1b and iNOS, and low levels of IL-10 and IDO, were reversed to the M2 phenotype by the MPA treatment. We also found that the MPA-pTHP-1 promoted the decidualization of endometrial stromal cells and the invasion of trophoblast cells. To mimic conditions of exposure to various pathogens, MPA-pTHP-1 cells were stimulated by different types of TLR ligands. We found they produced lower levels of IL-1β and TNF-α, as well as a higher level of IL-10, compared to untreated cells. Finally, we found the level of phosphorylated ERK in the MPA-pTHP-1 cells was increased, but its IL-10 production was suppressed by either the progesterone/glucocorticoid antagonist (Mifepristone) or MEK inhibitor (U0126). Taken together, MPA could drive monocyte differentiation toward an M2 phenotype that mimics decidual macrophages. This finding holds great potential to combat chronic endometrial inflammation

  11. Sphingosine-1-phosphate signalling induces the production of Lcn-2 by macrophages to promote kidney regeneration

    DEFF Research Database (Denmark)

    Sola, Anna; Weigert, Andreas; Jung, Michaela;

    2011-01-01

    the kidney. The present study describes a mechanism for renal tissue regeneration after ischaemia/reperfusion injury. Following injury, apoptotic cell-derived sphingosine-1-phosphate (S1P) or exogenously administered sphingosine analogue FTY720 activates macrophages to support the proliferation and healing......Inflammatory reactions are initiated to eliminate pathogens, but also to promote repair of damaged tissue after acute inflammation is terminated. In this regard, macrophages play a prominent role during induction as well as resolution of inflammation and injury in various organs including...... of renal epithelium, once inflammatory conditions are terminated. Both suppression of inflammation and renal regeneration might require S1P receptor 3 (S1P3) signalling and downstream release of neutrophil gelatinase-associated lipocalin (NGAL/Lcn-2) from macrophages. Overall, our data point...

  12. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Hideki, E-mail: hkimura@u-fukui.ac.jp [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui (Japan); Mikami, Daisuke; Kamiyama, Kazuko [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Sugimoto, Hidehiro [Department of Clinical Laboratories and Nephrology, University of Fukui Hospital, Fukui (Japan); Kasuno, Kenji; Takahashi, Naoki [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Yoshida, Haruyoshi [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan); Division of Nephrology, Obama Municipal Hospital, Obama, Fukui (Japan); Iwano, Masayuki [Division of Nephrology, Department of General Medicine, School of Medicine, Faculty of Medical Sciences, University of Fukui, Fukui (Japan)

    2014-11-14

    Highlights: • TNF-α increased VEGF-C expression by enhancing phosphorylation of p38MAPK and HSP27. • Telmisartan decreased TNF-α-stimulated expression of VEGF-C. • Telmisartan suppressed TNF-α-induced phosphorylation of p38MAPK and HSP27. • Telmisartan activated endogenous PPAR-δ protein. • Telmisartan suppressed p38MAPK phosphorylation in a PPAR-δ-dependent manner. - Abstract: Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area by producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis.

  13. SH3BP2 cherubism mutation potentiates TNF-α-induced osteoclastogenesis via NFATc1 and TNF-α-mediated inflammatory bone loss.

    Science.gov (United States)

    Mukai, Tomoyuki; Ishida, Shu; Ishikawa, Remi; Yoshitaka, Teruhito; Kittaka, Mizuho; Gallant, Richard; Lin, Yi-Ling; Rottapel, Robert; Brotto, Marco; Reichenberger, Ernst J; Ueki, Yasuyoshi

    2014-12-01

    Cherubism (OMIM# 118400) is a genetic disorder with excessive jawbone resorption caused by mutations in SH3 domain binding protein 2 (SH3BP2), a signaling adaptor protein. Studies on the mouse model for cherubism carrying a P416R knock-in (KI) mutation have revealed that mutant SH3BP2 enhances tumor necrosis factor (TNF)-α production and receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation in myeloid cells. TNF-α is expressed in human cherubism lesions, which contain a large number of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells, and TNF-α plays a critical role in inflammatory bone destruction in homozygous cherubism mice (Sh3bp2(KI/KI) ). The data suggest a pathophysiological relationship between mutant SH3BP2 and TNF-α-mediated bone loss by osteoclasts. Therefore, we investigated whether P416R mutant SH3BP2 is involved in TNF-α-mediated osteoclast formation and bone loss. Here, we show that bone marrow-derived M-CSF-dependent macrophages (BMMs) from the heterozygous cherubism mutant (Sh3bp2(KI/+) ) mice are highly responsive to TNF-α and can differentiate into osteoclasts independently of RANKL in vitro by a mechanism that involves spleen tyrosine kinase (SYK) and phospholipase Cγ2 (PLCγ2) phosphorylation, leading to increased nuclear translocation of NFATc1. The heterozygous cherubism mutation exacerbates bone loss with increased osteoclast formation in a mouse calvarial TNF-α injection model as well as in a human TNF-α transgenic mouse model (hTNFtg). SH3BP2 knockdown in RAW264.7 cells results in decreased TRAP-positive multinucleated cell formation. These findings suggest that the SH3BP2 cherubism mutation can cause jawbone destruction by promoting osteoclast formation in response to TNF-α expressed in cherubism lesions and that SH3BP2 is a key regulator for TNF-α-induced osteoclastogenesis. Inhibition of SH3BP2 expression in osteoclast progenitors could be a potential strategy for

  14. Pyrrolizidine alkaloids from Liparis nervosa with inhibitory activities against LPS-induced NO production in RAW264.7 macrophages.

    Science.gov (United States)

    Huang, Shuai; Zhou, Xian-li; Wang, Cui-juan; Wang, You-song; Xiao, Feng; Shan, Lian-hai; Guo, Zhi-yun; Weng, Jie

    2013-09-01

    Six pyrrolizidine alkaloids were isolated from the whole herb of Liparis nervosa together with two previously known ones. Their structures were elucidated by extensive spectroscopic analyses and chemical reactions. The cytotoxicity of the isolates was evaluated against A549, HepG2, and MCF-7 human cancer cell lines; however, no significant growth inhibition was observed. All compounds were evaluated for the inhibition of LPS-induced nitric oxide (NO) production in RAW264.7 macrophages, and most significantly inhibited NO production with IC50 values in the range of 2.16-38.25 μM.

  15. Production of Fibronectin by the Human Alveolar Macrophage: Mechanism for the Recruitment of Fibroblasts to Sites of Tissue Injury in Interstitial Lung Diseases

    Science.gov (United States)

    Rennard, Stephen I.; Hunninghake, Gary W.; Bitterman, Peter B.; Crystal, Ronald G.

    1981-11-01

    Because cells of the mononuclear phagocyte system are known to produce fibronectin and because alveolar macrophages are activated in many interstitial lung diseases, the present study was designed to evaluate a role for the alveolar macrophage as a source of the increased levels of fibronectin found in the lower respiratory tract in interstitial lung diseases and to determine if such fibronectin might contribute to the development of the fibrosis found in these disorders by being a chemoattractant for human lung fibroblasts. Production of fibronectin by human alveolar macrophages obtained by bronchoalveolar lavage and maintained in short-term culture in serum-free conditions was demonstrated; de novo synthesis was confirmed by the incorporation of [14C]proline. This fibronectin had a monomer molecular weight of 220,000 and was antigenically similar to plasma fibronectin. Macrophages from patients with idiopathic pulmonary fibrosis produced fibronectin at a rate 20 times higher than did normal macrophages; macrophages from patients with pulmonary sarcoidosis produced fibronectin at 10 times the normal rate. Macrophages from 6 of 10 patients with various other interstitial disorders produced fibronectin at rates greater than the rate of highest normal control. Human alveolar macrophage fibronectin was chemotactic for human lung fibroblasts, suggesting a functional role for this fibronectin in the derangement of the alveolar structures that is characteristic of these disorders.

  16. Low pH Environmental Stress Inhibits LPS and LTA-Stimulated Proinflammatory Cytokine Production in Rat Alveolar Macrophages

    Directory of Open Access Journals (Sweden)

    Stanley F. Fernandez

    2013-01-01

    Full Text Available Gastric aspiration increases the risks for developing secondary bacterial pneumonia. Cytokine elaboration through pathogen recognition receptors (PRRs is an important mechanism in initiating innate immune host response. Effects of low pH stress, a critical component of aspiration pathogenesis, on the PRR pathways were examined, specifically toll-like receptor-2 (TLR2 and TLR4, using isolated rat alveolar macrophages (aMØs. We assessed the ability of aMØs after brief exposure to acidified saline to elaborate proinflammatory cytokines in response to lipopolysaccharide (LPS and lipoteichoic acid (LTA stimulation, known ligands of TLR4 and TLR2, respectively. Low pH stress reduced LPS- and LTA-mediated cytokine release (CINC-1, MIP-2, TNF-, MCP-1, and IFN-. LPS and LTA increased intracellular Ca2+ concentrations while Ca2+ chelation by BAPTA decreased LPS- and LTA-mediated cytokine responses. BAPTA blocked the effects of low pH stress on most of LPS-stimulated cytokines but not of LTA-stimulated responses. In vivo mouse model demonstrates suppressed E. coli and S. pneumoniae clearance following acid aspiration. In conclusion, low pH stress inhibits antibacterial cytokine response of aMØs due to impaired TLR2 (MyD88 pathway and TLR4 signaling (MyD88 and TRIF pathways. The role of Ca2+ in low pH stress-induced signaling is complex but appears to be distinct between LPS- and LTA-mediated responses.

  17. 几种激素和IL-1β对人脑星形胶质细胞IL-6 、TNF-α分泌的影响%Effect of Some Hormones and IL-1β on the Production of IL-6 and TNF-α in Astrocytes from Human Fetal Brain in Vitro

    Institute of Scientific and Technical Information of China (English)

    李兰英; 孙云; 庞智玲

    2001-01-01

    目的 观察T3等因素对体外培养人胎大脑星形胶质细胞分泌IL-6、TNF-α的调节作用。方法 纯化培养人胎大脑星形胶质细胞,应用酶联免疫分析(ELISA)方法检测培养上清液中IL-6、TNF-α的水平。结果 (1)星形胶质细胞(AC)在体外培养条件下可自发分泌IL-6,而TNF-α则几乎检测不到。(2)LPS(0.1μg/mL)即可诱导AC产生IL-6和TNF-α。(3)IL-1β是IL-6分泌的主要诱导剂,但不诱导TNF-α分泌。(4)氢化可的松可明显抑制AC分泌IL-6、TNF-α。(5)T3在72h可刺激IL-6的分泌。(6)胰岛素对IL-6的分泌没有明显的调节作用。结论 AC可通过分泌细胞因子参与炎症反应等病理过程并维持中枢神经系统的正常发育、内环境的稳定,且受多种因素的调节。在中枢神经系统中T3、胰岛素主要参与调节发育和代谢,可能不直接参与炎症和免疫机制调节。%Objective Studing the effect of some hormons and IL-6 on theproduction of IL-6 and TNF-α in astrocytes from human fetal brain. Methods The purified cultures of astrocytes were prepared from second-trimester human fetal brain. The levels of IL-6 and TNF-α were detected by ELISA before and after stimulation with IL- 1β,LPS , insulin, triiodothyronine(T3)and hydrocortisone. Results (1)Before stimulated the level of IL-6 in medium was (73.60±9.14)pg/mL at 24 h and(68.46±22.60)pg/mL at 72 h respectively and few TNF-α were detected. (2)LPS(0.1 μg/mL) could induce the production of IL- 6 and TNF-α in astrocytes (P <0.001).(3)IL-1β was a strong stimulus for production of IL-6 in a dose-dependent fashion and the level of IL-6 induced by IL-1β(100 U/mL) is 30 fold more than the base level . IL-1β could not stimulate TNF-α secretion . (4) T3 (10-8 mol/L)could increase the level of IL-6 at 72 h(P<0.05) . (5) Hydrocortisone suppress the production of IL-6 and TNF-α before and after stimulation with IL-1β and LPS . (6)Insulin failed to

  18. Cell-type-restricted anti-cytokine therapy: TNF inhibition from one pathogenic source.

    Science.gov (United States)

    Efimov, Grigory A; Kruglov, Andrei A; Khlopchatnikova, Zoya V; Rozov, Fedor N; Mokhonov, Vladislav V; Rose-John, Stefan; Scheller, Jürgen; Gordon, Siamon; Stacey, Martin; Drutskaya, Marina S; Tillib, Sergei V; Nedospasov, Sergei A

    2016-03-15

    Overexpression of TNF contributes to pathogenesis of multiple autoimmune diseases, accounting for a remarkable success of anti-TNF therapy. TNF is produced by a variety of cell types, and it can play either a beneficial or a deleterious role. In particular, in autoimmunity pathogenic TNF may be derived from restricted cellular sources. In this study we evaluated the feasibility of cell-type-restricted TNF inhibition in vivo. To this end, we engineered MYSTI (Myeloid-Specific TNF Inhibitor)--a recombinant bispecific antibody that binds to the F4/80 surface molecule on myeloid cells and to human TNF (hTNF). In macrophage cultures derived from TNF humanized mice MYSTI could capture the secreted hTNF, limiting its bioavailability. Additionally, as evaluated in TNF humanized mice, MYSTI was superior to an otherwise analogous systemic TNF inhibitor in protecting mice from lethal LPS/D-Galactosamine-induced hepatotoxicity. Our results suggest a novel and more specific approach to inhibiting TNF in pathologies primarily driven by macrophage-derived TNF.

  19. 充血性心力衰竭患者外周单核细胞分泌TNF-α水平变化及胺碘酮对其影响的研究%Change of TNF-α secretion from peripheral blood mononuclear cells in patients with congestive heart filure and effect of amiodarone on the production of TNF

    Institute of Scientific and Technical Information of China (English)

    姚恒臣; 冯桂芹; 孔祥泉; 张颖新; 王英丽; 高航; 侯岩芳; 侯新华

    2002-01-01

    目的:探讨充血性心力衰竭(CHF)患者血清TNF-α水平变化,以及胺碘酮对培养的正常人及CHF患者外周血单个核细胞(PBMC)分泌TNF-α的影响.方法: 取20例正常人和20例Ⅱ°-Ⅲ° CHF患者静脉血:(1)测其血清TNF-α含量;(2)离心取单个核细胞(PBMC),分别加入胺碘酮和LPS等,使胺碘酮的终浓度为0 mmol/L、0.1 mmol/L、1 mmol/L和 10 mmol/L进行培养,经24 h孵化后,取培养上清液,用ELISA法测血清和培养上清TNF-α含量.结果:CHF患者血清TNF-α含量明显高于对照组(P<0.01),并随心衰程度的加重而增加(P<0.01),胺碘酮对两组PBMC分泌TNF-α均有抑制作用,并呈剂量依赖性. 结论: (1)TNF-α可能参与CHF过程;(2)胺碘酮可能抑制TNF-α的产生.

  20. TGF-β1 inhibits the production of IFN in response to CpG DNA via ubiquitination of TNF receptor-associated factor (TRAF) 6.

    Science.gov (United States)

    Naiki, Yoshikazu; Komatsu, Takayuki; Koide, Naoki; Dagvadorj, Jargalsaikhan; Yoshida, Tomoaki; Arditi, Moshe; Yokochi, Takashi

    2015-10-01

    The effect of TGF-β1 on CpG DNA-induced type I IFN production was examined by reconstituting a series of signaling molecules in TLR 3 signaling. TGF-β1 inhibited CpG DNA-induced IFN-α4 productivity in HeLa cells. Transfection of IFN regulatory factor (IRF)7 but not TNF receptor-associated factor (TRAF)6 and TRAF3 into cells triggered IFN-α4 productivity, and TGF-β1 inhibited IRF7-mediated type I IFN production in the presence of TRAF6. TGF-β1 induced ubiquitination of TRAF6, although CpG DNA did not induce it. Moreover, TGF-β1 accelerated the ubiquitination of TRAF6 in the presence of CpG DNA. TGF-β1 ubiquitinated TRAF6 at K63 but not K48. TGF-β1 also induced ubiquitination of IRF7. Further, TGF-β1 did not impair the interaction of IRF7 and TRAF6. CpG DNA induced the phosphorylation of IRF7 in the presence of TRAF6, whereas TGF-β1 inhibited the IRF7 phosphorylation. Blocking of TRAF6 ubiquitination abolished the inhibition of CpG DNA-induced type I IFN production by TGF-β. Taken together, TGF-β was suggested to inhibit CpG DNA-induced type I IFN production transcriptionally via ubiquitination of TRAF6.

  1. Down-modulation of nitric oxide production in murine macrophages treated with crude plant extracts from the Brazilian Cerrado.

    Science.gov (United States)

    Napolitano, D R; Mineo, J R; de Souza, M A; de Paula, J E; Espindola, L S; Espindola, F S

    2005-05-13

    Several plant species from the Cerrado biome in Brazil are popularly used as herbal medicines for its reputed analgesic, anti-acid, anti-microbial, anti-inflammatory and anti-tumoral properties, among others. It has been reported that some plant extracts interfere in the production of nitric oxide (NO), an important inflammatory mediator. In the present study, we investigated the effect of hexanic and ethanolic extracts from three plant species on NO production by LPS/IFN-gamma-activated J774 macrophages based on traditional use. The cytotoxic effect of the crude extracts was determined by the thiazolyl blue test (MTT) to measure cell viability. Serjania lethalis stem extracts and Cupania vernalis leaf extracts significantly inhibited NO production, while extracts from Casearia sylvestris var. lingua were inactive or showed low activity on NO production, or were very cytotoxic. The ethanolic stem bark and leaf extracts of Serjania lethalis and Cupania vernalis, respectively, almost completely inhibited the production of NO by J774 macrophages. It can be concluded that the selected extracts are potential sources of active compounds that might be used as anti-inflammatory agents.

  2. Inhibitory effects of salidroside on nitric oxide and prostaglandin E₂ production in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Song, Bocui; Huang, Guoren; Xiong, Ying; Liu, Jingbo; Xu, Linli; Wang, Zhenning; Li, Gen; Lu, Jing; Guan, Shuang

    2013-11-01

    The aim of this study was to evaluate the effect of salidroside on lipopolysaccharide (LPS)-induced nitric oxide (NO) and prostaglandin E₂ (PGE₂) production in RAW 264.7 macrophages and related anti-inflammatory mechanism. PGE₂ production was measured by enzyme-linked immunosorbent assay (ELISA); NO production was tested by Griess reagent. Inducible nitric oxidesynthase (iNOS) and COX-2 were determined by RT-PCR and Western blot analysis; IκB and P-IκB protein express were detected by Western blot analysis; cytosolic free Ca²⁺ ([Ca²⁺](i)) was measured by a fluorescent microscope. The data showed salidroside inhibited LPS-induced NO and PGE₂ production and reduced iNOS and COX-2 protein expression in RAW 264.7 macrophages. Consistent with these observations, salidroside inhibited LPS-induced cytosolic free Ca²⁺ concentration ([Ca²⁺](i)) elevation. In addition, we further investigated signal transduction mechanisms and found that the activation of NF-κB was suppressed by salidroside in a dose-dependent manner. These results suggest that salidroside suppresses NO and PGE₂ production by inhibiting iNOS and COX-2 protein expression, level of [Ca²⁺](i), and activation of NF-κB signal transduction pathway.

  3. Staphylococcal superantigen-like protein 3 binds to the Toll-like receptor 2 extracellular domain and inhibits cytokine production induced by Staphylococcus aureus, cell wall component, or lipopeptides in murine macrophages.

    Science.gov (United States)

    Yokoyama, Ryosuke; Itoh, Saotomo; Kamoshida, Go; Takii, Takemasa; Fujii, Satoshi; Tsuji, Tsutomu; Onozaki, Kikuo

    2012-08-01

    Staphylococcal superantigen-like proteins (SSLs) are a family of exoproteins sharing structural similarity with superantigens, but no superantigenic activity. Corresponding host target proteins or receptors against a portion of SSLs in the family have been identified. In this study, we show that SSL3 specifically binds to Toll-like receptor 2 (TLR2) and inhibits the stimulation of macrophages by TLR2 ligands. An approximately 100-kDa protein was recovered by using recombinant His-tagged SSL3-conjugated Sepharose from the lysate of porcine spleen, and the protein was identified as porcine TLR2 by peptide mass fingerprinting analysis. The SSL3-conjugated Sepharose recovered human and mouse TLR2 but not TLR4 from human neutrophils and mouse macrophage RAW 264.7 cells, as well as a recombinant TLR2 extracellular domain chimera protein. The production levels of interleukin 12 (IL-12) from mouse macrophages treated with heat-killed Staphylococcus aureus and of tumor necrosis factor alpha (TNF-α) from RAW 264.7 cells induced by peptidoglycan or lipopeptide TLR2 ligands were strongly suppressed in the presence of SSL3. The mutation of consensus sialic acid-containing glycan-binding residues in SSL3 did not abrogate the binding ability to TLR2 or inhibitory activity on TLR2, indicating that the interaction of SSL3 with TLR2 was independent of the sialic acid-containing glycan-binding residues. These findings demonstrate that SSL3 is able to bind the extracellular domain of TLR2 and interfere with TLR2 function. The present study provides a novel mechanism of SSL3 in immune evasion of S. aureus via interfering with its recognition by innate immune cells.

  4. Sphingosine-1-phosphate signalling induces the production of Lcn-2 by macrophages to promote kidney regeneration

    DEFF Research Database (Denmark)

    Sola, Anna; Weigert, Andreas; Jung, Michaela

    2011-01-01

    Inflammatory reactions are initiated to eliminate pathogens, but also to promote repair of damaged tissue after acute inflammation is terminated. In this regard, macrophages play a prominent role during induction as well as resolution of inflammation and injury in various organs including the kid...

  5. Sargachromenol from Sargassum micracanthum Inhibits the Lipopolysaccharide-Induced Production of Inflammatory Mediators in RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Eun-Jin Yang

    2013-01-01

    Full Text Available During our ongoing screening program designed to determine the anti-inflammatory potential of natural compounds, we isolated sargachromenol from Sargassum micracanthum. In the present study, we investigated the anti-inflammatory effects of sargachromenol on lipopolysaccharide (LPS-induced inflammation in murine RAW 264.7 macrophage cells and the underlying mechanisms. Sargachromenol significantly inhibited the LPS-induced production of nitric oxide (NO and prostaglandin E2 (PGE2 in a dose-dependent manner. It also significantly inhibited the protein expression of inducible NO synthase (iNOS and cyclooxygenase-2 (COX-2 in a dose-dependent manner in LPS-stimulated macrophage cells. Further analyses showed that sargachromenol decreased the cytoplasmic loss of inhibitor κBα (IκBα protein. These results suggest that sargachromenol may exert its anti-inflammatory effects on LPS-stimulated macrophage cells by inhibiting the activation of the NF-κB signaling pathway. In conclusion, to our knowledge, this is the first study to show that sargachromenol isolated from S. micracanthum has an effective anti-inflammatory activity. Therefore, sargachromenol might be useful for cosmetic, food, or medical applications requiring anti-inflammatory properties.

  6. Reprogramming of murine macrophages through TLR2 confers viral resistance via TRAF3-mediated, enhanced interferon production.

    Directory of Open Access Journals (Sweden)

    Darren J Perkins

    Full Text Available The cell surface/endosomal Toll-like Receptors (TLRs are instrumental in initiating immune responses to both bacteria and viruses. With the exception of TLR2, all TLRs and cytosolic RIG-I-like receptors (RLRs with known virus-derived ligands induce type I interferons (IFNs in macrophages or dendritic cells. Herein, we report that prior ligation of TLR2, an event previously shown to induce "homo" or "hetero" tolerance, strongly "primes" macrophages for increased Type I IFN production in response to subsequent TLR/RLR signaling. This occurs by increasing activation of the transcription factor, IFN Regulatory Factor-3 (IRF-3 that, in turn, leads to enhanced induction of IFN-β, while expression of other pro-inflammatory genes are suppressed (tolerized. In vitro or in vivo "priming" of murine macrophages with TLR2 ligands increase virus-mediated IFN induction and resistance to infection. This priming effect of TLR2 is mediated by the selective upregulation of the K63 ubiquitin ligase, TRAF3. Thus, we provide a mechanistic explanation for the observed antiviral actions of MyD88-dependent TLR2 and further define the role of TRAF3 in viral innate immunity.

  7. Macrophage responses to 316L stainless steel and cobalt chromium alloys with different surface topographies.

    Science.gov (United States)

    Anderson, Jordan A; Lamichhane, Sujan; Mani, Gopinath

    2016-11-01

    The surface topography of a biomaterial plays a vital role in determining macrophage interactions and influencing immune response. In this study, we investigated the effect of smooth and microrough topographies of commonly used metallic biomaterials such as 316 L stainless steel (SS) and cobalt-chromium (CoCr) alloys on macrophage interactions. The macrophage adhesion was greater on CoCr compared to SS, irrespective of their topographies. The macrophage activation and the secretion of most pro-inflammatory cytokines (TNF-α, IL-6, and IP-10) were greater on microrough surfaces than on smooth surfaces by day-1. However, by day-2, the macrophage activation on smooth surfaces was also significantly increased up to the same level as observed on the microrough surfaces, with more amount of cytokines secreted. The secretion of anti-inflammatory cytokine (IL-10) was significantly increased from day-1 to day-2 on all the alloy surfaces with the effect most prominently observed on microrough surfaces. The production of nitric oxide by the macrophages did not show any major substrate-dependent effect. The foreign body giant cells formed by macrophages were least observed on the microrough surfaces of CoCr. Thus, this study demonstrated that the nature of material (SS or CoCr) and their surface topographies (smooth or microrough) strongly influence the macrophage responses. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2658-2672, 2016.

  8. TNF-Mediated Restriction of Arginase 1 Expression in Myeloid Cells Triggers Type 2 NO Synthase Activity at the Site of Infection.

    Science.gov (United States)

    Schleicher, Ulrike; Paduch, Katrin; Debus, Andrea; Obermeyer, Stephanie; König, Till; Kling, Jessica C; Ribechini, Eliana; Dudziak, Diana; Mougiakakos, Dimitrios; Murray, Peter J; Ostuni, Renato; Körner, Heinrich; Bogdan, Christian

    2016-05-01

    Neutralization or deletion of tumor necrosis factor (TNF) causes loss of control of intracellular pathogens in mice and humans, but the underlying mechanisms are incompletely understood. Here, we found that TNF antagonized alternative activation of macrophages and dendritic cells by IL-4. TNF inhibited IL-4-induced arginase 1 (Arg1) expression by decreasing histone acetylation, without affecting STAT6 phosphorylation and nuclear translocation. In Leishmania major-infected C57BL/6 wild-type mice, type 2 nitric oxide (NO) synthase (NOS2) was detected in inflammatory dendritic cells or macrophages, some of which co-expressed Arg1. In TNF-deficient mice, Arg1 was hyperexpressed, causing an impaired production of NO in situ. A similar phenotype was seen in L. major-infected BALB/c mice. Arg1 deletion in hematopoietic cells protected these mice from an otherwise lethal disease, although their disease-mediating T cell response (Th2, Treg) was maintained. Thus, deletion or TNF-mediated restriction of Arg1 unleashes the production of NO by NOS2, which is critical for pathogen control.

  9. TNF-Mediated Restriction of Arginase 1 Expression in Myeloid Cells Triggers Type 2 NO Synthase Activity at the Site of Infection

    Directory of Open Access Journals (Sweden)

    Ulrike Schleicher

    2016-05-01

    Full Text Available Neutralization or deletion of tumor necrosis factor (TNF causes loss of control of intracellular pathogens in mice and humans, but the underlying mechanisms are incompletely understood. Here, we found that TNF antagonized alternative activation of macrophages and dendritic cells by IL-4. TNF inhibited IL-4-induced arginase 1 (Arg1 expression by decreasing histone acetylation, without affecting STAT6 phosphorylation and nuclear translocation. In Leishmania major-infected C57BL/6 wild-type mice, type 2 nitric oxide (NO synthase (NOS2 was detected in inflammatory dendritic cells or macrophages, some of which co-expressed Arg1. In TNF-deficient mice, Arg1 was hyperexpressed, causing an impaired production of NO in situ. A similar phenotype was seen in L. major-infected BALB/c mice. Arg1 deletion in hematopoietic cells protected these mice from an otherwise lethal disease, although their disease-mediating T cell response (Th2, Treg was maintained. Thus, deletion or TNF-mediated restriction of Arg1 unleashes the production of NO by NOS2, which is critical for pathogen control.

  10. A BioDesign Approach to Obtain High Yields of Biosimilars by Anti-apoptotic Cell Engineering: a Case Study to Increase the Production Yield of Anti-TNF Alpha Producing Recombinant CHO Cells.

    Science.gov (United States)

    Gulce Iz, Sultan; Inevi, Muge Anil; Metiner, Pelin Saglam; Tamis, Duygu Ayyildiz; Kisbet, Nazli

    2017-07-06

    Recent developments in medical biotechnology have facilitated to enhance the production of monoclonal antibodies (mAbs) and recombinant proteins in mammalian cells. Human mAbs for clinical applications have focused on three areas, particularly cancer, immunological disorders, and infectious diseases. Tumor necrosis factor alpha (TNF-α), which has both proinflammatory and immunoregulatory functions, is an important target in biopharmaceutical industry. In this study, a humanized anti-TNF-α mAb producing stable CHO cell line which produces a biosimilar of Humira (adalimumab) was used. Adalimumab is a fully human anti-TNF mAb among the top-selling mAb products in recent years as a biosimilar. Products from mammalian cell bioprocesses are a derivative of cell viability and metabolism, which is mainly disrupted by cell death in bioreactors. Thus, different strategies are used to increase the product yield. Suppression of apoptosis, also called anti-apoptotic cell engineering, is the most remarkable strategy to enhance lifetime of cells for a longer production period. In fact, using anti-apoptotic cell engineering as a BioDesign approach was inspired by nature; nature gives prolonged life span to some cells like stem cells, tumor cells, and memory B and T cells, and researchers have been using this strategy for different purposes. In this study, as a biomimicry approach, anti-apoptotic cell engineering was used to increase the anti-TNF-α mAb production from the humanized anti-TNF-α mAb producing stable CHO cell line by Bcl-xL anti-apoptotic protein. It was shown that transient transfection of CHO cells by the Bcl-xL anti-apoptotic protein expressing plasmid prolonged the cell survival rate and protected cells from apoptosis. The transient expression of Bcl-xL using CHO cells enhanced the anti-TNFproduction. The production of anti-TNF-α in CHO cells was increased up to 215 mg/L with an increase of 160% after cells were transfected with Bcl-xL expressing plasmid

  11. Association of TNF-α upregulation of MMP-9 activation in monocyte-derived macrophages with progression of joint damage in patients with rheumatoid arthritis%TNF-α上调单核巨噬细胞MMP-9的活性与类风湿关节炎关节破坏的关系

    Institute of Scientific and Technical Information of China (English)

    谢建民; 王好问; 陆才生

    2009-01-01

    目的:探讨TNF-α对单核巨噬细胞基质金属蛋白酶9(MMP-9)的表达与酶活性的影响以及与类风湿关节炎患者关节破坏的关系.方法:用双抗体夹心ELISA法检测类风湿关节炎患者组(RA)和对照组血清和关节滑液中TNF-α、MMP-9的含量,观察MMP-9与X线表现积分(Larsen)的关系.体外将佛波酯(TPA)和不同浓度(0、1、10、20 μg/L)TNF-α共同孵育THP-1细胞24 h后,运用Western blotting方法检测MMP-9蛋白的表达,明胶酶谱法检测MMP-9活性,侵蚀小室法观察分化前后THP-1细胞的侵蚀力.结果:RA患者组血清和关节滑液中TNF-α、MMP-9的水平明显高于对照组(P<0 05),且血清和滑液MMP-9与Larsen积分显著相关(r=0 37和r=0 32,P<0 01);体外细胞实验中,TNF-α上调分化的THP-1中MMP-9的表达和酶活性,并且增强分化的THP-1细胞的侵蚀性,并与TNF-α呈浓度依赖性.结论:TNF-α上调单核巨噬细胞MMP-9表达及活化,增强了炎症细胞的侵蚀力,可能在RA关节破坏机制中起着重要的作用.

  12. Design and synthesis of a vialinin A analog with a potent inhibitory activity of TNFproduction and its transformation into a couple of bioprobes.

    Science.gov (United States)

    Ye, Yue Qi; Onose, Jun-ichi; Abe, Naoki; Koshino, Hiroyuki; Takahashi, Shunya

    2012-04-01

    Vialinin A (1) is an extremely potent inhibitor against tumor necrosis factor (TNF)-α production in rat basophilic leukemia (RBL-2H3) cells. This Letter describes the design and synthesis of its advanced analog, 5',6'-dimethyl-1,1':4'1″-terphenyl-2',3',4,4″-tetraol (2) with a comparable inhibitory activity (IC(50)=0.02 nM) to that of 1. The synthesis involved double Suzuki-Miyaura coupling as a key step, and required only five steps from commercially available 3,4-dimethylphenol. For identification of the target molecule, fluorescent and biotinylated derivatives of 2 were prepared through a 'click' coupling process.

  13. Red Pepper (Capsicum baccatum) Extracts Present Anti-Inflammatory Effects In Vivo and Inhibit the Production of TNF-α and NO In Vitro.

    Science.gov (United States)

    Allemand, Alexandra; Leonardi, Bianca Franco; Zimmer, Aline Rigon; Moreno, Susana; Romão, Pedro Roosevelt Torres; Gosmann, Grace

    2016-08-01

    Capsicum baccatum is the most consumed red pepper species in Brazil. Our previous studies demonstrated the anti-inflammatory properties of its crude extract, whose activity is yet to be fully characterized. Herein, we examined the anti-inflammatory in vivo effects of enriched extracts obtained through bioguided fractionation as dichloromethane (DCM), butanol (BUT), and residual aqueous (RAq) extracts and its influence on inflammatory mediators produced by macrophages in vitro. We demonstrated that all C. baccatum extracts presented anti-inflammatory activity in vivo. In addition, we showed that BUT and RAq were more effective in inhibiting the neutrophil migration induced by carrageenan (Cg) to peritoneal cavity and both extracts inhibited paw edema induced by Cg, prostaglandin E2, and histamine in mice. Furthermore, the pretreatment with C. baccatum extracts significantly reduced the levels of myeloperoxidase (MPO) in the paw tissues of mice compared with the carrageenan group. Once again, RAq and BUT caused the greatest reduction in MPO levels. Moreover, it was demonstrated for the first time that C. baccatum inhibited the nitric oxide and tumor necrosis factor-alpha production by lipopolysaccharide/interferon gamma (IFN-γ)-stimulated macrophages. These anti-inflammatory effects seem to be at least, in part, independent of capsaicin. Hence, red pepper has bioactive compounds and might be used to develop food-derived extracts to treat related inflammatory diseases.

  14. Echinacea purpurea Extract Polarizes M1 Macrophages in Murine Bone Marrow-Derived Macrophages Through the Activation of JNK.

    Science.gov (United States)

    Fu, Aikun; Wang, Yang; Wu, Yanping; Chen, Hongliang; Zheng, Shasha; Li, Yali; Xu, Xin; Li, Weifen

    2017-09-01

    Echinacea purpurea is an indigenous North American purple cone flower used by North Americans for treatment of various infectious diseases and wounds. This study investigated the effect of polysaccharide enriched extract of Echinacea purpurea (EE) on the polarization of macrophages. The results showed that 100 µg/mL of EE could markedly activate the macrophage by increasing the expression of CD80, CD86, and MHCII molecules. Meanwhile, EE upregulated the markers of classically activated macrophages (M1) such as CCR7 and the production of IL-1β, IL-6, IL-12p70, TNF-αand NO. The functional tests showed that EE enhanced the phagocytic and intracellular bactericidal activity of macrophage against ST. Furthermore, we demonstrated that JNK are required for EE-induced NO and M1-related cytokines production. Together, these results demonstrated that EE can polarize macrophages towards M1 phenotype, which is dependent on the JNK signaling pathways. J. Cell. Biochem. 118: 2664-2671, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  15. Tacaribe virus but not junin virus infection induces cytokine release from primary human monocytes and macrophages.

    Directory of Open Access Journals (Sweden)

    Allison Groseth

    Full Text Available The mechanisms underlying the development of disease during arenavirus infection are poorly understood. However, common to all hemorrhagic fever diseases is the involvement of macrophages as primary target cells, suggesting that the immune response in these cells may be of paramount importance during infection. Thus, in order to identify features of the immune response that contribute to arenavirus pathogenesis, we have examined the growth kinetics and cytokine profiles of two closely related New World arenaviruses, the apathogenic Tacaribe virus (TCRV and the hemorrhagic fever-causing Junin virus (JUNV, in primary human monocytes and macrophages. Both viruses grew robustly in VeroE6 cells; however, TCRV titres were decreased by approximately 10 fold compared to JUNV in both monocytes and macrophages. Infection of both monocytes and macrophages with TCRV also resulted in the release of high levels of IL-6, IL-10 and TNF-α, while levels of IFN-α, IFN-β and IL-12 were not affected. However, we could show that the presence of these cytokines had no direct effect on growth of either TCRV of JUNV in macrophages. Further analysis also showed that while the production of IL-6 and IL-10 are dependent on viral replication, production of TNF-α also occurs after exposure to UV-inactivated TCRV particles and is thus independent of productive virus infection. Surprisingly, JUNV infection did not have an effect on any of the cytokines examined indicating that, in contrast to other viral hemorrhagic fever viruses, macrophage-derived cytokine production is unlikely to play an active role in contributing to the cytokine dysregulation observed in JUNV infected patients. Rather, these results suggest that an early, controlled immune response by infected macrophages may be critical for the successful control of infection of apathogenic viruses and prevention of subsequent disease, including systemic cytokine dysregulation.

  16. Glycine tomentella Hayata inhibits IL-1β and IL-6 production, inhibits MMP-9 activity, and enhances RAW264.7 macrophage clearance of apoptotic cells

    Directory of Open Access Journals (Sweden)

    Sun Yu-Shu

    2010-11-01

    Full Text Available Abstract Background To assess the effects of Glycine tomentella Hayata (GTH, a traditional herbal medicine for treatment of rheumatic diseases on the expression of the proinflammatory cytokines and on the clearance of apoptotic cells by macrophages. Methods RAW264.7 cells were cultured with lipopolysaccharide (LPS in the presence or absence of ethanol extract of GTH. The expression of proinflammatory cytokines IL-1β, IL-6, and TNF-α, and inducible nitric oxide synthase (iNOS and transglutaminase 2 (TG2 were assayed by reverse transcriptase-polymerase chain reaction (RT-PCR and enzyme-linked immunosorbent assay (ELISA. Matrix metalloproteinase (MMP-2 and MMP-9 were assayed by gelatin zymography. For detecting uptake of apoptotic cells, RAW264.7 cells were cultured with carboxyfluorescein diacetate (CFDA-stained apoptotic cells and assayed by flow cytometry. Results The major components of GTH analyzed by high-performance liquid chromatography (HPLC chromatogram were daidzein (42.5%, epicatechin (28.8%, and naringin (9.4%. GTH treatment inhibited the expression of proinflammatory cytokines IL-1β, IL-6 and MMP-9 but did not affect the expression of TNF-α and iNOS. GTH significantly enhanced the expression of TG2 and the clearance of apoptotic cells by RAW264.7 macrophages. Conclusions GTH inhibits proinflammatory cytokine secretion and MMP-9 activity, enhances apoptotic cell uptake and up-regulates TG2 expression. Our data show that GTH might have beneficial effects on rheumatic diseases.

  17. Cell-Extrinsic TNF Collaborates with TRIF Signaling To Promote Yersinia-Induced Apoptosis.

    Science.gov (United States)

    Peterson, Lance W; Philip, Naomi H; Dillon, Christopher P; Bertin, John; Gough, Peter J; Green, Douglas R; Brodsky, Igor E

    2016-11-15

    Innate immune responses that are crucial for control of infection are often targeted by microbial pathogens. Blockade of NF-κB and MAPK signaling by the Yersinia virulence factor YopJ inhibits cytokine production by innate immune cells but also triggers cell death. This cell death requires RIPK1 kinase activity and caspase-8, which are engaged by TLR4 and the adaptor protein TRIF. Nevertheless, TLR4- and TRIF-deficient cells undergo significant apoptosis, implicating TLR4/TRIF-independent pathways in the death of Yersinia-infected cells. In this article, we report a key role for TNF/TNFR1 in Yersinia-induced cell death of murine macrophages, which occurs despite the blockade of NF-κB and MAPK signaling imposed by Yersinia on infected cells. Intriguingly, direct analysis of YopJ injection revealed a heterogeneous population of injection-high and injection-low cells, and demonstrated that TNF expression came from the injection-low population. Moreover, TNF production by this subpopulation was necessary for maximal apoptosis in the population of highly injected cells, and TNFR-deficient mice displayed enhanced susceptibility to Yersinia infection. These data demonstrate an important role for collaboration between TNF and pattern recognition receptor signals in promoting maximal apoptosis during bacterial infection, and demonstrate that heterogeneity in virulence factor injection and cellular responses play an important role in promoting anti-Yersinia immune defense. Copyright © 2016 by The American Association of Immunologists, Inc.

  18. Depressant effects of ambroxol and erdosteine on cytokine synthesis, granule enzyme release, and free radical production in rat alveolar macrophages activated by lipopolysaccharide.

    Science.gov (United States)

    Jang, Yoon Young; Song, Jin Ho; Shin, Yong Kyoo; Han, Eun Sook; Lee, Chung Soo

    2003-04-01

    The present study examined the effects of ambroxol and erdosteine, bronchial expectorants, on the cytokine synthesis, granule enzyme release, and free radical production in rat alveolar macrophages activated by lipopolysaccharide. Ambroxol and erdosteine significantly decreased the production of tumour necrosis factors-alpha, interleukin-1beta, and interleukin-6 in alveolar macrophages activated by lipopolysaccharide. These drugs significantly reduced the production of superoxide anion, hydrogen peroxide, and nitric oxide and the release of acid phosphatase and lysozyme in lipopolysaccharide-activated macrophages. Ambroxol and erdosteine showed no scavenging effect on superoxide anion and hydrogen peroxide, whereas both drugs effectively decomposed nitric oxide. The results show that ambroxol and erdosteine may inhibit the responses, including cytokine synthesis and free radical production, in rat alveolar macrophages activated by lipopolysaccharide. Unlike the production of reactive oxygen species, the inhibitory effect of ambroxol and erdosteine on the production of nitric oxide in lipopolysaccharide-activated alveolar macrophages may be accomplished by a scavenging action on the species and inhibition of the respiratory burst.

  19. Macrophage Differentiation from Monocytes Is Influenced by the Lipid Oxidation Degree of Low Density Lipoprotein

    Directory of Open Access Journals (Sweden)

    Jin-Won Seo

    2015-01-01

    Full Text Available LDL plays an important role in atherosclerotic plaque formation and macrophage differentiation. However, there is no report regarding the oxidation degree of LDL and macrophage differentiation. Our study has shown that the differentiation into M1 or M2 macrophages is related to the lipid oxidation level of LDL. Based on the level of lipid peroxidation, LDL is classified into high-oxidized LDL (hi-oxLDL and low-oxidized LDL (low-oxLDL. The differentiation profiles of macrophages were determined by surface receptor expression and cytokine secretion profiles. Low-oxLDL induced CD86 expression and production of TNF-α and IL-12p40 in THP-1 cells, indicating an M1 macrophage phenotype. Hi-oxLDL induced mannose receptor expression and production of IL-6 and monocyte chemoattractant protein-1, which mostly match the phenotype of M2 macrophages. Further supporting evidence for an M2 polarization by hi-oxLDL was the induction of LOX-1 in THP-1 cells treated with hi-oxLDL but not with low-oxLDL. Similar results were obtained in primary human monocytes. Therefore, our results strongly suggest that the oxidation degree of LDL influences the differentiation of monocytes into M1 or M2 macrophages and determines the inflammatory fate in early stages of atherosclerosis.

  20. Increased TNF-alpha/IFN-gamma/IL-2 and decreased TNF-alpha/IFN-gamma production by central memory T cells are associated with protective responses against bovine tuberculosis following BCG vaccination

    Directory of Open Access Journals (Sweden)

    Mayara Fernanda Maggioli

    2016-10-01

    Full Text Available Central memory T cells (Tcm and polyfunctional CD4 T cell responses contribute to vaccine-elicited protection with both human and bovine tuberculosis (TB; however, their combined role in protective immunity to TB is unclear. To address this question, we evaluated polyfunctional cytokine responses by CD4 T cell effector / memory populations from bacille Calmette Guerin (BCG vaccinated and non-vaccinated calves prior to and after aerosol challenge with virulent Mycobacterium bovis. Polyfunctional cytokine expression patterns in the response by Tcm, effector memory, and effector T cell subsets were similar between BCG-vaccinated and M. bovis-infected calves; only differing in magnitude (i.e., infected > vaccinated. BCG vaccination, however, did alter the kinetics of the ensuing response to virulent M. bovis infection. Early after challenge (three weeks post-infection, non-vaccinates had greater antigen-specific IFN-γ/TNF-α and lesser IFN-γ/TNF-α/IL-2 responses by Tcm cells than did vaccinated animals. Importantly, these differences were also associated with mycobacterial burden upon necropsy. Polyfunctional responses to ESAT-6:CFP10 (antigens not synthesized by BCG strains were detected in memory subsets, as well as in effector cells, as early as three weeks after challenge. These findings suggest that cell fate divergence may occur early after antigen priming in the response to bovine TB and that memory and effector T cells may expand concurrently during the initial phase of the immune response. In summary, robust IFN-γ/TNF-α response by Tcm cells is associated with greater mycobacterial burden while IFN-γ/TNF-α/IL-2 response by Tcm cells are indicative of a protective response to bovine TB.

  1. Mycobacterium avium complex augments macrophage HIV-1 production and increases CCR5 expression

    OpenAIRE

    1998-01-01

    Infection with HIV-1 results in pronounced immune suppression and susceptibility to opportunistic infections (OI). Reciprocally, OI augment HIV-1 replication. As we have shown for Mycobacterium avium complex (MAC) and Pneumocystis carinii, macrophages infected with opportunistic pathogens and within lymphoid tissues containing OI, exhibit striking levels of viral replication. To explore potential underlying mechanisms for increased HIV-1 replication associated with coinfection, blood monocyte...

  2. Nfkb1 inhibits LPS-induced IFN-β and IL-12 p40 production in macrophages by distinct mechanisms.

    Directory of Open Access Journals (Sweden)

    Xixing Zhao

    Full Text Available BACKGROUND: Nfkb1-deficient murine macrophages express higher levels of IFN-β and IL-12 p40 following LPS stimulation than control macrophages, but the molecular basis for this phenomenon has not been completely defined. Nfkb1 encodes several gene products including the NF-κB subunit p50 and its precursor p105. p50 is derived from the N-terminal of 105, and p50 homodimers can exhibit suppressive activity when overexpressed. The C-terminal region of p105 is necessary for LPS-induced ERK activation and it has been suggested that ERK activity inhibits both IFN-β and IL-12 p40 following LPS stimulation. However, the contributions of p50 and the C-terminal domain of p105 in regulating endogenous IFN-β(Ifnb and IL-12 p40 (Il12b gene expression in macrophages following LPS stimulation have not been directly compared. METHODOLOGY/PRINCIPAL FINDINGS: We have used recombinant retroviruses to express p105, p50, and the C-terminal domain of p105 (p105ΔN in Nfkb1-deficient murine bone marrow-derived macrophages at near endogenous levels. We found that both p50 and p105ΔN inhibited expression of Ifnb, and that inhibition of Ifnb by p105ΔN depended on ERK activation, because a mutant of p105ΔN (p105ΔNS930A that lacks a key serine necessary to support ERK activation failed to inhibit. In contrast, only p105ΔN but not p50 inhibited Il12b expression. Surprisingly, p105ΔNS930A retained inhibitory activity for Il12b, indicating that ERK activation was not necessary for inhibition. The differential effects of p105ΔNS930A on Ifnb and Il12b expression inversely correlated with the function of one of its binding partners, c-Rel. This raised the possibility that p105ΔNS930A influences gene expression by interfering with the function of c-Rel. CONCLUSIONS: These results demonstrate that Nfkb1 exhibits multiple gene-specific inhibitory functions following TLR stimulation of murine macrophages.

  3. Insulin-induced cytokine production in macrophages causes insulin resistance in hepatocytes.

    Science.gov (United States)

    Manowsky, Julia; Camargo, Rodolfo Gonzalez; Kipp, Anna P; Henkel, Janin; Püschel, Gerhard P

    2016-06-01

    Overweight and obesity are associated with hyperinsulinemia, insulin resistance, and a low-grade inflammation. Although hyperinsulinemia is generally thought to result from an attempt of the β-cell to compensate for insulin resistance, there is evidence that hyperinsulinaemia itself may contribute to the development of insulin resistance and possibly the low-grade inflammation. To test this hypothesis, U937 macrophages were exposed to insulin. In these cells, insulin induced expression of the proinflammatory cytokines IL-1β, IL-8, CCL2, and OSM. The insulin-elicited induction of IL-1β was independent of the presence of endotoxin and most likely mediated by an insulin-dependent activation of NF-κB. Supernatants of the insulin-treated U937 macrophages rendered primary cultures of rat hepatocytes insulin resistant; they attenuated the insulin-dependent induction of glucokinase by 50%. The cytokines contained in the supernatants of insulin-treated U937 macrophages activated ERK1/2 and IKKβ, resulting in an inhibitory serine phosphorylation of the insulin receptor substrate. In addition, STAT3 was activated and SOCS3 induced, further contributing to the interruption of the insulin receptor signal chain in hepatocytes. These results indicate that hyperinsulinemia per se might contribute to the low-grade inflammation prevailing in overweight and obese patients and thereby promote the development of insulin resistance particularly in the liver, because the insulin concentration in the portal circulation is much higher than in all other tissues. Copyright © 2016 the American Physiological Society.

  4. Short-Term Regulation of FcγR-Mediated Phagocytosis by TLRs in Macrophages: Participation of 5-Lipoxygenase Products

    Directory of Open Access Journals (Sweden)

    Carla da S. Pinheiro

    2017-01-01

    Full Text Available TLRs recognize a broad spectrum of microorganism molecules, triggering a variety of cellular responses. Among them, phagocytosis is a critical process for host defense. Leukotrienes (LTs, lipid mediators produced from 5-lipoxygenase (5-LO enzyme, increase FcγR-mediated phagocytosis. Here, we evaluated the participation of TLR2, TLR3, TLR4, and TLR9 in FcγR-mediated phagocytosis and whether this process is modulated by LTs. Rat alveolar macrophages (AMs, murine bone marrow-derived macrophages (BMDMs, and peritoneal macrophages (PMs treated with TLR2, TLR3, and TLR4 agonists, but not TLR9, enhanced IgG-opsonized sheep red blood cell (IgG-sRBC phagocytosis. Pretreatment of AMs or BMDMs with drugs that block LT synthesis impaired the phagocytosis promoted by TLR ligands, and TLR potentiation was also abrogated in PMs and BMDMs from 5-LO−/− mice. LTB4 production induced by IgG engagement was amplified by TLR ligands, while cys-LTs were amplified by activation of TLR2 and TLR4, but not by TLR3. We also noted higher ERK1/2 phosphorylation in IgG-RBC-challenged cells when preincubated with TLR agonists. Furthermore, ERK1/2 inhibition by PD98059 reduced the phagocytic activity evoked by TLR agonists. Together, these data indicate that TLR2, TLR3, and TLR4 ligands, but not TLR9, amplify IgG-mediated phagocytosis by a mechanism which requires LT production and ERK-1/2 pathway activation.

  5. Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages

    Directory of Open Access Journals (Sweden)

    Persidsky Yuri

    2011-02-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS, the major component of the outer membrane of gram-negative bacteria, can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS contributes to neuronal injury. Bowman-Birk inhibitor (BBI, a soybean-derived protease inhibitor, has anti-inflammatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in primary cortical neural cultures. Methods Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS production in macrophages was measured via 2', 7'-dichlorofluorescin diacetate (DCFH2DA oxidation. Cytokine expression was determined by quantitative real-time PCR. Results LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1β, IL-6 and TNF-α and of ROS. In contrast, BBI pretreatment (1-100 μg/ml of macrophages significantly inhibited LPS-mediated induction of these cytokines and ROS. Further, supernatant from BBI-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 μg/ml, had no protective effect on neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 μg/ml had no effect on N-methyl-D-aspartic acid (NMDA-mediated neurotoxicity. Conclusions These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from neurotoxicity mediated by activated macrophages.

  6. Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions.

    Directory of Open Access Journals (Sweden)

    Bonnie van Wilgenburg

    Full Text Available Human macrophages are specialised hosts for HIV-1, dengue virus, Leishmania and Mycobacterium tuberculosis. Yet macrophage research is hampered by lack of appropriate cell models for modelling infection by these human pathogens, because available myeloid cell lines are, by definition, not terminally differentiated like tissue macrophages. We describe here a method for deriving monocytes and macrophages from human Pluripotent Stem Cells which improves on previously published protocols in that it uses entirely defined, feeder- and serum-free culture conditions and produces very consistent, pure, high yields across both human Embryonic Stem Cell (hESC and multiple human induced Pluripotent Stem Cell (hiPSC lines over time periods of up to one year. Cumulatively, up to ∼3×10(7 monocytes can be harvested per 6-well plate. The monocytes produced are most closely similar to the major blood monocyte (CD14(+, CD16(low, CD163(+. Differentiation with M-CSF produces macrophages that are highly phagocytic, HIV-1-infectable, and upon activation produce a pro-inflammatory cytokine profile similar to blood monocyte-derived macrophages. Macrophages are notoriously hard to genetically manipulate, as they recognise foreign nucleic acids; the lentivector system described here overcomes this, as pluripotent stem cells can be relatively simply genetically manipulated for efficient transgene expression in the differentiated cells, surmounting issues of transgene silencing. Overall, the method we describe here is an efficient, effective, scalable system for the reproducible production and genetic modification of human macrophages, facilitating the interrogation of human macrophage biology.

  7. MicroRNA-24 Modulates Staphylococcus aureus-Induced Macrophage Polarization by Suppressing CHI3L1.

    Science.gov (United States)

    Jingjing, Zhang; Nan, Zhang; Wei, Wu; Qinghe, Guo; Weijuan, Wang; Peng, Wang; Xiangpeng, Wang

    2017-03-16

    Macrophages play a crucial role in host innate anti-Staphylococcus aureus defense, which is tightly regulated by multiple factors, including microRNAs. A recent study showed that miR-24 plays an important role in macrophage polarization. Here, we investigated the biological function of miR-24 in S. aureus-stimulated macrophages. The results revealed that miR-24 expression was significantly decreased in both human and mouse macrophage cell lines with S. aureus stimulation in a time-dependent manner. Moreover, miR-24 overexpression significantly decreased the production of M1 phenotype markers, such as IL-6, iNOS, TNF-α, CD86, and CD80, whereas it increased the production of M2 markers, such as Arg1, CCL17, CCL22, CD163, and CD206, in S. aureus-stimulated macrophages. Conversely, knockdown of miR-24 promoted M1 macrophage polarization but diminished M2 macrophage polarization in S. aureus-stimulated macrophages. Furthermore, CHI3L1 was predicted as a target gene of miR-24 using bioinformatics software and identified by luciferase reporter assay. Additionally, miR-24 overexpression inhibited CHI3L1 expression and downregulated the downstream MAPK pathway in S. aureus-stimulated macrophages. Finally, CHI3L1 overexpression rescued macrophage polarization and MAPK pathway inhibition induced by miR-24 mimic transfection in S. aureus-stimulated macrophages. In conclusion, the data suggest that miR-24 serves as a molecular regulator in S. aureus-induced macrophage polarization through targeting of CHI3L1 and regulation of the MAPK pathway, which may provide a promising therapeutic target for S. aureus-related infections and inflammatory diseases.

  8. Early Secreted Antigenic Target of 6-kDa of Mycobacterium tuberculosis Stimulates IL-6 Production by Macrophages through Activation of STAT3

    Science.gov (United States)

    Jung, Bock-Gie; Wang, Xisheng; Yi, Na; Ma, Justin; Turner, Joanne; Samten, Buka

    2017-01-01

    As early secreted antigenic target of 6 kDa (ESAT-6) of Mycobacterium tuberculosis (Mtb) is an essential virulence factor and macrophages are critical for tuberculosis infection and immunity, we studied ESAT-6 stimulated IL-6 production by macrophages. ESAT-6 stimulated significantly higher IL-6 secretion by murine bone marrow derived macrophages (BMDM) compared to culture filtrate protein 10 kDa (CFP10) and antigen 85A. Polymyxin B, an LPS blocker, did not affect ESAT-6 stimulated macrophage IL-6 production. ESAT-6 but not Pam3CSK4 induced IL-6 by TLR2 knockout BMDM. ESAT-6 induced phosphorylation and DNA binding of STAT3 and this was blocked by STAT3 inhibitors but not by rapamycin. STAT3 inhibitors suppressed ESAT-6-induced IL-6 transcription and secretion without affecting cell viability. This was confirmed by silencing STAT3 in macrophages. Blocking neither IL-6Rα/IL-6 nor IL-10 affected ESAT-6-induced STAT3 activation and IL-6 production. Infection of BMDM and human macrophages with Mtb with esat-6 deletion induced diminished STAT3 activation and reduced IL-6 production compared to wild type and esat-6 complemented Mtb strains. Administration of ESAT-6 but not CFP10 induced STAT3 phosphorylation and IL-6 expression in the mouse lungs, consistent with expression of ESAT-6, IL-6 and phosphorylated-STAT3 in Mtb-infected mouse lungs. We conclude that ESAT-6 stimulates macrophage IL-6 production through STAT3 activation. PMID:28106119

  9. Telmisartan, a possible PPAR-δ agonist, reduces TNF-α-stimulated VEGF-C production by inhibiting the p38MAPK/HSP27 pathway in human proximal renal tubular cells.

    Science.gov (United States)

    Kimura, Hideki; Mikami, Daisuke; Kamiyama, Kazuko; Sugimoto, Hidehiro; Kasuno, Kenji; Takahashi, Naoki; Yoshida, Haruyoshi; Iwano, Masayuki

    2014-11-14

    Vascular endothelial growth factor-C (VEGF-C) is a main inducer of inflammation-associated lymphangiogenesis in various inflammatory disorders including chronic progressive kidney diseases, for which angiotensin II receptor type 1 blockers (ARBs) are widely used as the main treatment. Although proximal renal tubular cells may affect the formation of lymphatic vessels in the interstitial area by producing VEGF-C, the molecular mechanisms of VEGF-C production and its manipulation by ARB have not yet been examined in human proximal renal tubular epithelial cells (HPTECs). In the present study, TNF-α dose-dependently induced the production of VEGF-C in HPTECs. The TNF-α-induced production of VEGF-C was mediated by the phosphorylation of p38MAPK and HSP27, but not by that of ERK or NFkB. Telmisartan, an ARB that can activate the peroxisome proliferator-activated receptor (PPAR), served as a PPAR-δ activator and reduced the TNF-α-stimulated production of VEGF-C. This reduction was partially attributed to a PPAR-δ-dependent decrease in p38MAPK phosphorylation. Our results indicate that TNF-α induced the production of VEGF-C in HPTECs by activating p38MAPK/HSP27, and this was partially inhibited by telmisartan in a PPAR-δ dependent manner. These results provide a novel insight into inflammation-associated lymphangiogenesis.

  10. Thymoquinone inhibits TNF-α-induced inflammation and cell adhesion in rheumatoid arthritis synovial fibroblasts by ASK1 regulation.

    Science.gov (United States)

    Umar, Sadiq; Hedaya, Omar; Singh, Anil K; Ahmed, Salahuddin

    2015-09-15

    Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine produced by monocytes/macrophage that plays a pathological role in rheumatoid arthritis (RA). In this study, we investigate the effect of thymoquinone (TQ), a phytochemical found in Nigella sativa, in regulating TNF-α-induced RA synovial fibroblast (RA-FLS) activation. Treatment with TQ (1-5μM) had no marked effect on the viability of human RA-FLS. Pre-treatment of TQ inhibited TNF-α-induced interleukin-6 (IL-6) and IL-8 production and ICAM-1, VCAM-1, and cadherin-11 (Cad-11) expression in RA-FLS (pinhibited TNF-α-induced phospho-p38 and phospho-JNK expression, but had no inhibitory effect on NF-κB pathway, in RA-FLS (pTNF-α-induced phospho-p38 and phospho-JNK activation by TQ is elicited through inhibition of apoptosis-regulated signaling kinase 1 (ASK1). Furthermore, TNF-α selectively induced phosphorylation of ASK1 at Thr845 residue in RA-FLS, which was inhibited by TQ pretreatment in a dose dependent manner (pTNF-α induced expression of ICAM-1, VCAM-1, and Cad-11. Our results suggest that TNF-α-induced ASK1-p38/JNK pathway is an important mediator of cytokine synthesis and enhanced expression of adhesion molecule in RA-FLS and TQ, by selectively inhibiting this pathway, may have a potential therapeutic value in regulating tissue destruction observed in RA.

  11. Thymoquinone inhibits TNF-α-induced inflammation and cell adhesion in rheumatoid arthritis synovial fibroblasts by ASK1 regulation

    Science.gov (United States)

    Umar, Sadiq; Hedaya, Omar; Singh, Anil K.; Ahmed, Salahuddin

    2015-01-01

    Tumor necrosis factor-α (TNF-α) is a pro-inflammatory cytokine produced by monocytes/macrophage that plays a pathological role in rheumatoid arthritis (RA). In this study, we investigate the effect of thymoquinone (TQ), a phytochemical found in Nigella sativa, in regulating TNF-α-induced RA synovial fibroblast (RA-FLS) activation. Treatment with TQ (1–5 μM) had no marked effect on the viability of human RA-FLS. Pre-treatment of TQ inhibited TNF-α-induced interleukin-6 (IL-6) and IL-8 production and ICAM-1, VCAM-1, and cadherin-11 (Cad-11) expression in RA-FLS (p<0.01). Evaluation of the signaling events showed that TQ inhibited TNF-α-induced phospho-p38 and phospho-JNK expression, but had no inhibitory effect on NF-κB pathway, in RA-FLS (p<0.05; n=4). Interestingly, we observed that selective down-regulation of TNF-α-induced phospho-p38 and phospho-JNK activation by TQ is elicited through inhibition of apoptosis-regulated signaling kinase 1 (ASK1). Furthermore, TNF-α selectively induced phosphorylation of ASK1 at Thr845 residue in RA-FLS, which was inhibited by TQ pretreatment in a dose dependent manner (p<0.01). Pre-treatment of RA-FLS with ASK1 inhibitor (TC ASK10), blocked TNF-α induced expression of ICAM-1, VCAM-1, and Cad-11. Our results suggest that TNF-α-induced ASK1-p38/JNK pathway is an important mediator of cytokine synthesis and enhanced expression of adhesion molecule in RA-FLS and TQ, by selectively inhibiting this pathway, may have a potential therapeutic value in regulating tissue destruction observed in RA. PMID:26134265

  12. Blockage of receptor-interacting protein 2 expression by small interfering RNA in murine macrophages

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This study aims to demonstrate that blocking the receptor-interacting protein2(Rip2)expression can decrease inflammatory cytokine production by macrophage and protect mice from endotoxin lethality.Murine Rip2 small interfering RNA(siRNA)plasmids were constructed and transfected into macrophage and Rip2 expression was detected with reverse transcription-polymerase chain reaction(RT-PCR)and western blot.Cell proliferation was assayed with MTT.TNF-α concentration was assayed with ELISA and high-mobility group box 1 protein(HMGB1)level with semi-quantitative western blot after lipopolysaccharide(LPS)stimulation.LPS challenge was given after the plasmids were injected into mice and the survival rate was calculated.Rip2 siRNA plasmid could block the mRNA and protein expression of Rip2 and promote cell proliferation.Blocking Rip2 could attenuate LPS-induced TNF-~ and HMGB1 production.The HMGB1 expression in the liver decreased to(40.21±11.03)pg/g,and serum TNF-α level decreased to(300.43±59.26)ng/L(P<0.05).The survival rate of mice from endotoxemia was also improved(P<0.05).The results demonstrate that Rip2 siRNA plasmid can block the expression of Rip2,decrease the production of TNF-α and HMGB1 and protect mice from fatal endotoxemia.

  13. Plutonium behavior after pulmonary administration according to solubility properties, and consequences on alveolar macrophage activation.

    Science.gov (United States)

    Van der Meeren, Anne; Gremy, Olivier; Renault, Daniel; Miroux, Amandine; Bruel, Sylvie; Griffiths, Nina; Tourdes, Françoise

    2012-01-01

    The physico-chemical form in which plutonium enters the body influences the lung distribution and the transfer rate from lungs to blood. In the present study, we evaluated the early lung damage and macrophage activation after pulmonary contamination of plutonium of various preparation modes which produce different solubility and distribution patterns. Whatever the solubility properties of the contaminant, macrophages represent a major retention compartment in lungs, with 42 to 67% of the activity from broncho-alveolar lavages being associated with macrophages 14 days post-contamination. Lung changes were observed 2 and 6 weeks post-contamination, showing inflammatory lesions and accumulation of activated macrophages (CD68 positive) in plutonium-contaminated rats, although no increased proliferation of pneumocytes II (TTF-1 positive cells) was found. In addition, acid phosphatase activity in macrophages from contaminated rats was enhanced 2 weeks post-contamination as compared to sham groups, as well as inflammatory mediator levels (TNF-α, MCP-1, MIP-2 and CINC-1) in macrophage culture supernatants. Correlating with the decrease in activity remaining in macrophages after plutonium contamination, inflammatory mediator production returned to basal levels 6 weeks post-exposure. The production of chemokines by macrophages was evaluated after contamination with Pu of increasing solubility. No correlation was found between the solubility properties of Pu and the activation level of macrophages. In summary, our data indicate that, despite the higher solubility of plutonium citrate or nitrate as compared to preformed colloids or oxides, macrophages remain the main lung target after plutonium contamination and may participate in the early pulmonary damage.

  14. Mycobacterium avium MAV2052 protein induces apoptosis in murine macrophage cells through Toll-like receptor 4.

    Science.gov (United States)

    Lee, Kang-In; Choi, Han-Gyu; Son, Yeo-Jin; Whang, Jake; Kim, Kwangwook; Jeon, Heat Sal; Park, Hye-Soo; Back, Yong Woo; Choi, Seunga; Kim, Seong-Woo; Choi, Chul Hee; Kim, Hwa-Jung

    2016-04-01

    Mycobacterium avium and its sonic extracts induce apoptosis in macrophages. However, little is known about the M. avium components regulating macrophage apoptosis. In this study, using multidimensional fractionation, we identified MAV2052 protein, which induced macrophage apoptosis in M. avium culture filtrates. The recombinant MAV2052 in