WorldWideScience

Sample records for macrophage marker cd163

  1. Macrophage serum markers in pneumococcal bacteremia: Prediction of survival by soluble CD163

    DEFF Research Database (Denmark)

    Møller, Holger Jon; K. Moestrup, Søren; Weis, Nina Margrethe

    2006-01-01

    OBJECTIVE: Soluble CD163 (sCD163) is a new macrophage-specific serum marker. This study investigated sCD163 and other markers of macrophage activation (neopterin, ferritin, transcobalamin, and soluble urokinase plasminogen activator receptor [suPAR]) as prognostic factors in patients...... analyses at the time of first positive blood culture. MEASUREMENTS AND MAIN RESULTS: sCD163 was highly correlated with other macrophage markers and was significantly elevated (median [25-75 percentiles], 4.6 mg/L [2.8-8.9]) compared with healthy controls (2.7 mg/L [2.1-3.3], p ..., all macrophage markers were increased in patients who died from their infection compared with survivors, whereas no change was observed in any of the markers in the very old age. At cutoff levels of 9.5 mg/L (sCD163) and 1650 nmol/L (C-reactive protein), the relative risk for fatal outcome in patients...

  2. Macrophage activation marker soluble CD163 may predict disease progression in hepatocellular carcinoma

    DEFF Research Database (Denmark)

    Kazankov, Konstantin; Rode, Anthony; Simonsen, Kira Schreiner

    2016-01-01

    BACKGROUND: Tumor associated macrophages are present in hepatocellular carcinoma (HCC) and associated with a poor prognosis. The aim of the present study was to investigate the levels and dynamics of soluble (s)CD163, a specific macrophage activation marker, in patients with HCC. METHODS: In a co...

  3. Macrophage activation marker soluble CD163 and non-alcoholic fatty liver disease in morbidly obese patients undergoing bariatric surgery

    DEFF Research Database (Denmark)

    Kazankov, Konstantin; Tordjman, Joan; Møller, Holger Jon

    2015-01-01

    BACKGROUND AND AIMS: Macrophages play an important role in non-alcoholic fatty liver disease (NAFLD). Soluble CD163 (sCD163) is a specific marker of macrophage activation. We aimed to measure sCD163 in morbidly obese patients with varying degrees of NAFLD before and after bariatric surgery (BS...... (NAS), Kleiner fibrosis score, and the fatty liver inhibition of progression (FLIP) algorithm. In a subset, CD163 immunohistochemistry and real-time quantitative polymerase chain reaction for CD163 mRNA were performed. RESULTS: sCD163 was higher in patients with NAS ≥ 5 compared with those with NAS ...). METHODS: Demographic, clinical, and biochemical data, and plasma sCD163 measured by enzyme-linked immunosorbent assay, of 196 patients were collected preoperatively and 3, 6, and 12 months after BS leading to significant weight loss. Peroperative liver biopsies were assessed for the NAFLD Activity Score...

  4. Serum neopterin and soluble CD163 as markers of macrophage activation in paracetamol (acetaminophen)-induced human acute liver injury.

    Science.gov (United States)

    Craig, D G; Lee, P; Pryde, E A; Hayes, P C; Simpson, K J

    2013-12-01

    Macrophage activation is implicated in the pathogenesis of the systemic inflammatory response syndrome (SIRS) following paracetamol (acetaminophen) overdose (POD). Neopterin is synthesised from macrophages and reflects the intensity of monocyte/macrophage activation. Soluble CD163 (sCD163) is a marker of alternatively activated M2 macrophages. To examine neopterin and sCD163 levels in a cohort of acute liver injury patients. Consecutive patients (n = 41, (18 (43.9%) male) with acute liver injury were enrolled. Neopterin and sCD163 levels were measured by ELISA. A total of 24/33 (72.7%) POD patients developed hepatic encephalopathy (HE), and therefore acute liver failure. Both neopterin and sCD163 levels were significantly higher in PODs compared with chronic liver disease (neopterin P paracetamol overdose, and reflect the degree of macrophage activation in this condition. Serum neopterin in particular may have value as an early proxy marker of macrophage activation following paracetamol overdose. © 2013 John Wiley & Sons Ltd.

  5. The macrophage low-grade inflammation marker sCD163 is modulated by exogenous sex steroids

    DEFF Research Database (Denmark)

    Thomsen, Henrik Holm; Møller, Holger Jon; Trolle, Christian

    2013-01-01

    Soluble CD163 (sCD163) is a novel marker linked to states of low grade inflammation such as diabetes, obesity, liver disease and atherosclerosis, all prevalent in subjects with Turner and Klinefelter Syndromes. We aimed to assess the levels of sCD163 and the regulation of sCD163 in regards...

  6. The macrophage scavenger receptor CD163

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Madsen, Mette; Møller, Holger J

    2006-01-01

    CD163 is the monocyte/macrophage-specific receptor for haptoglobin-hemoglobin (Hp-Hb) complexes. The cytoplasmic tail of human CD163 exists as a short tail variant and two long tail variants. Reverse transcriptase-polymerase chain reaction analysis indicated that all three CD163 variants are subs......CD163 is the monocyte/macrophage-specific receptor for haptoglobin-hemoglobin (Hp-Hb) complexes. The cytoplasmic tail of human CD163 exists as a short tail variant and two long tail variants. Reverse transcriptase-polymerase chain reaction analysis indicated that all three CD163 variants...

  7. Circulating macrophage activation markers, CD163 and CD206, are associated with disease severity and treatment response in patients with autoimmune hepatitis

    DEFF Research Database (Denmark)

    Grønbæk, Henning; Kazankov, Konstantin; Jessen, Niels

    Circulating macrophage activation markers, CD163 and CD206, are associated with disease severity and treatment response in patients with autoimmune hepatitis......Circulating macrophage activation markers, CD163 and CD206, are associated with disease severity and treatment response in patients with autoimmune hepatitis...

  8. Macrophage activation marker sCD163 correlates with accelerated lipolysis following LPS exposure: a human-randomised clinical trial

    Directory of Open Access Journals (Sweden)

    Nikolaj Rittig

    2018-01-01

    Full Text Available Background: Macrophage activation determined by levels of soluble sCD163 is associated with obesity, insulin resistance, diabetes mellitus type 2 (DM2 and non-alcoholic fatty liver disease (NAFLD. This suggests that macrophage activation is involved in the pathogenesis of conditions is characterised by adaptions in the lipid metabolism. Since sCD163 is shed to serum by inflammatory signals including lipopolysaccharides (LPS, endotoxin, we investigated sCD163 and correlations with lipid metabolism following LPS exposure. Methods: Eight healthy male subjects were investigated on two separate occasions: (i following an LPS exposure and (ii following saline exposure. Each study day consisted of a four-hour non-insulin-stimulated period followed by a two-hour hyperinsulinemic euglycemic clamp period. A 3H-palmitate tracer was used to calculate the rate of appearance (Rapalmitate. Blood samples were consecutively obtained throughout each study day. Abdominal subcutaneous adipose tissue was obtained for western blotting. Results: We observed a significant two-fold increase in plasma sCD163 levels following LPS exposure (P < 0.001, and sCD163 concentrations correlated positively with the plasma concentration of free fatty acids, Rapalmitate, lipid oxidation rates and phosphorylation of the hormone-sensitive lipase at serine 660 in adipose tissue (P < 0.05, all. Furthermore, sCD163 concentrations correlated positively with plasma concentrations of cortisol, glucagon, tumour necrosis factor (TNF-α, interleukin (IL-6 and IL-10 (P < 0.05, all. Conclusion: We observed a strong correlation between sCD163 and stimulation of lipolysis and fat oxidation following LPS exposure. These findings support preexisting theory that inflammation and macrophage activation play a significant role in lipid metabolic adaptions under conditions such as obesity, DM2 and NAFLD.

  9. Serum markers of macrophage activation in pre-eclampsia: no predictive value of soluble CD163 and neopterin

    DEFF Research Database (Denmark)

    Kronborg, Camilla S; Knudsen, Ulla Breth; Moestrup, Søren K

    2007-01-01

    BACKGROUND: Alternatively activated macrophages expressing the CD163 and CD206 surface receptors are the dominant immune-cell type found in the placenta. The placental number and distribution of macrophages is altered in pre-eclampsia, and the generalised inflammatory reaction associated with pre-eclampsia...... might lead to shedding of soluble CD163 into the circulation. METHODS: Serum samples from 18 women with pre-eclampsia and 90 normal pregnancies were obtained from a longitudinal study of 955 pregnant women at Randers County Hospital, Denmark. sCD163 and Neopterin were measured by ELISA on samples....... Neopterin increased throughout pregnancy in both healthy (from median 5.4 to 6.7 nmol/l, ppre-eclampsia...

  10. Monocyte/macrophage-derived soluble CD163: A novel biomarker in multiple myeloma

    DEFF Research Database (Denmark)

    Andersen, Morten Nørgaard; Abildgaard, Niels; Maniecki, Maciej B

    2014-01-01

    fluids (soluble CD163, sCD163). In this study, we examined serum sCD163 as a biomarker in patients with newly diagnosed multiple myeloma. METHODS: Peripheral blood (n = 104) and bone marrow (n = 17) levels of sCD163 were measured using an enzyme-linked immunosorbent assay. RESULTS: At diagnosis, high s......CD163 was associated with higher stage according to the International Staging System (ISS) and with other known prognostic factors in multiple myeloma (creatinine, C-reactive protein, and beta-2 microglobulin). Soluble CD163 decreased upon high-dose treatment, and in a multivariate survival analysis...... in bone marrow samples than in the matched blood samples, which indicate a localized production of sCD163 within the bone marrow microenvironment. CONCLUSIONS: Soluble CD163 was found to be a prognostic marker in patients with multiple myeloma. This may indicate that macrophages and/or monocytes have...

  11. The macrophage activation marker sCD163 combined with markers of the Enhanced Liver Fibrosis (ELF) score predicts clinically significant portal hypertension in patients with cirrhosis

    DEFF Research Database (Denmark)

    Sandahl, T D; McGrail, R; Møller, H J

    2016-01-01

    BACKGROUND: Noninvasive identification of significant portal hypertension in patients with cirrhosis is needed in hepatology practice. AIM: To investigate whether the combination of sCD163 as a hepatic inflammation marker and the fibrosis markers of the Enhanced Liver Fibrosis score (ELF) can...... predict portal hypertension in patients with cirrhosis. METHODS: We measured sCD163 and the ELF components (hyaluronic acid, tissue inhibitor of metalloproteinase-1 and procollagen-III aminopeptide) in two separate cohorts of cirrhosis patients that underwent hepatic vein catheterisation. To test...... the predictive accuracy we developed a CD163-fibrosis portal hypertension score in an estimation cohort (n = 80) and validated the score in an independent cohort (n = 80). A HVPG ≥10 mmHg was considered clinically significant. RESULTS: Both sCD163 and the ELF components increased in a stepwise manner...

  12. The monocytic lineage specific soluble CD163 is a plasma marker of coronary atherosclerosis

    DEFF Research Database (Denmark)

    Aristoteli, Lina Panayiota; Møller, Holger Jon; Bailey, Brian

    2006-01-01

    BACKGROUND: CD163 is a monocyte-macrophage lineage specific scavenger receptor that mediates the uptake and clearance of haptoglobin-haemoglobin complexes, and soluble CD163 (sCD163) is also present in plasma. As atherosclerosis involves infiltration by monocyte-derived macrophages, we investigated...... whether sCD163 may act as a marker of coronary atherosclerosis (CAD). METHODS AND RESULTS: Clinical features were identified and plasma was collected from 147 consecutive patients presenting for coronary angiography. Patients were classified as having CAD+, or being free of CAD- haemodynamically...

  13. Drug Trafficking into Macrophages via the Endocytotic Receptor CD163

    DEFF Research Database (Denmark)

    Graversen, Jonas Heilskov; Moestrup, Søren Kragh

    2015-01-01

    for cytotoxic or phenotype-modulating drugs in the treatment of inflammatory and cancerous diseases. Such targeting of macrophages has been tried using the natural propensity of macrophages to non-specifically phagocytose circulating foreign particulate material. In addition, the specific targeting...... of macrophage-expressed receptors has been used in order to obtain a selective uptake in macrophages and reduce adverse effects of off-target delivery of drugs. CD163 is a highly expressed macrophage-specific endocytic receptor that has been studied for intracellular delivery of small molecule drugs...... to macrophages using targeted liposomes or antibody drug conjugates. This review will focus on the biology of CD163 and its potential role as a target for selective macrophage targeting compared with other macrophage targeting approaches....

  14. The macrophage scavenger receptor CD163

    NARCIS (Netherlands)

    Fabriek, Babs O.; Dijkstra, Christine D.; van den Berg, Timo K.

    2005-01-01

    Mature tissue macrophages form a first line of defense to recognize and eliminate potential pathogens; these specialized cells are capable of phagocytosis, degradation of self and foreign materials, establishment of cell-cell interactions, and the production of inflammatory mediators. Mature tissue

  15. Macrophage-related serum biomarkers soluble CD163 (sCD163) and soluble mannose receptor (sMR) to differentiate mild liver fibrosis from cirrhosis in patients with chronic hepatitis C

    DEFF Research Database (Denmark)

    Andersen, E S; Rødgaard-Hansen, S; Moessner, B

    2014-01-01

    Macrophages regulate the fibrotic process in chronic liver disease. The aim of the present pilot study was to evaluate two new macrophage-specific serum biomarkers [soluble CD163 (sCD163) and soluble mannose receptor (sMR, sCD206)] as potential fibrosis markers in patients chronically infected wi...

  16. Proteolytic shedding of the macrophage scavenger receptor CD163 in multiple sclerosis

    DEFF Research Database (Denmark)

    Fabriek, Babs O; Møller, Holger J; Vloet, Rianka P M

    2007-01-01

    The scavenger receptor CD163 is selectively expressed on tissue macrophages and human monocytes. CD163 has been implicated to play a role in the clearance of hemoglobin and in the regulation of cytokine production by macrophages. Membrane CD163 can be cleaved by matrix metalloproteinases (MMP...

  17. Hemoglobin induces monocyte recruitment and CD163-macrophage polarization in abdominal aortic aneurysm

    DEFF Research Database (Denmark)

    Rubio-Navarro, Alfonso; Amaro Villalobos, Juan Manuel; Lindholt, Jes S

    2015-01-01

    BACKGROUND: Increased hemoglobin (Hb) accumulation was reported in abdominal aortic aneurysms (AAAs). CD163 is a macrophage receptor involved in tissue Hb clearance, however its role in AAA has not been reported. We investigated the role of Hb on monocyte recruitment and differentiation towards CD......163 expressing macrophages ex vivo, in vitro and in human AAA. METHODS AND RESULTS: CD163 mRNA and protein expression was significantly higher in human AAA (n=7) vs. healthy wall (n=6). CD163 was predominantly found in adventitia of AAA, coinciding with areas rich in hemosiderin and adjacent...

  18. Macrophage-specific nanotechnology-driven CD163 overexpression in human macrophages results in an M2 phenotype under inflammatory conditions.

    Science.gov (United States)

    Alvarado-Vazquez, Perla Abigail; Bernal, Laura; Paige, Candler A; Grosick, Rachel L; Moracho Vilrriales, Carolina; Ferreira, David Wilson; Ulecia-Morón, Cristina; Romero-Sandoval, E Alfonso

    2017-08-01

    M1 macrophages release proinflammatory factors during inflammation. They transit to an M2 phenotype and release anti-inflammatory factors to resolve inflammation. An imbalance in the transition from M1 to M2 phenotype in macrophages contributes to the development of persistent inflammation. CD163, a member of the scavenger receptor cysteine-rich family, is an M2 macrophage marker. The functional role of CD163 during the resolution of inflammation is not completely known. We postulate that CD163 contributes to the transition from M1 to M2 phenotype in macrophages. We induced CD163 gene in THP-1 and primary human macrophages using polyethylenimine nanoparticles grafted with a mannose ligand (Man-PEI). This nanoparticle specifically targets cells of monocytic origin via mannose receptors. Cells were challenged with a single or a double stimulation of lipopolysaccharide (LPS). A CD163 or empty plasmid was complexed with Man-PEI nanoparticles for cell transfections. Quantitative RT-PCR, immunocytochemistry, and ELISAs were used for molecular assessments. CD163-overexpressing macrophages displayed reduced levels of tumor necrosis factor-alpha (TNF)-α and monocytes chemoattractant protein (MCP)-1 after a single stimulation with LPS. Following a double stimulation paradigm, CD163-overexpressing macrophages showed an increase of interleukin (IL)-10 and IL-1ra and a reduction of MCP-1. This anti-inflammatory phenotype was partially blocked by an anti-CD163 antibody (effects on IL-10 and IL-1ra). A decrease in the release of TNF-α, IL-1β, and IL-6 was observed in CD163-overexpressing human primary macrophages. The release of IL-6 was blocked by an anti-CD163 antibody in the CD163-overexpressing group. Our data show that the induction of the CD163 gene in human macrophages under inflammatory conditions produces changes in cytokine secretion in favor of an anti-inflammatory phenotype. Targeting macrophages to induce CD163 using cell-directed nanotechnology is an attractive

  19. Macrophage activity assessed by soluble CD163 in early rheumatoid arthritis

    DEFF Research Database (Denmark)

    Greisen, Stinne Ravn; Møller, Holger Jon; Stengaard-Pedersen, Kristian

    2015-01-01

    OBJECTIVES: Rheumatoid arthritis (RA) is a chronic autoimmune disease where TNF-α is a central mediator of inflammation, and is cleaved from the cell surface by TACE/ADAM17. This metalloproteinase is also responsible for the release of soluble (s) CD163. Soluble CD163 reflects macrophage activati...

  20. Macrophage activity assessed by soluble CD163 in early rheumatoid arthritis

    DEFF Research Database (Denmark)

    Greisen, Stinne Ravn; Møller, Holger Jon; Stengaard-Pedersen, Kristian

    2015-01-01

    OBJECTIVES: Rheumatoid arthritis (RA) is a chronic autoimmune disease where TNF-α is a central mediator of inflammation, and is cleaved from the cell surface by TACE/ADAM17. This metalloproteinase is also responsible for the release of soluble (s) CD163. Soluble CD163 reflects macrophage activation...

  1. Soluble CD163, a product of monocyte/macrophage activation, is inversely associated with haemoglobin levels in placental malaria.

    Directory of Open Access Journals (Sweden)

    Caroline Lin Lin Chua

    Full Text Available In Plasmodium falciparum malaria, activation of monocytes and macrophages (monocytes/macrophages can result in the production of various inflammatory mediators that contribute to immunopathology. Soluble CD163 (sCD163 is a specific marker of monocyte/macrophage activation typically found at increased levels during various inflammatory conditions and can be associated with poor clinical outcomes. To better understand the relationships between levels of sCD163 and clinical parameters in women with placental malaria, we measured plasma sCD163 levels in maternal peripheral and placental blood compartments at delivery and determined their correlations with birth weight and maternal haemoglobin concentrations. sCD163 levels were negatively correlated with birth weight only in the placental compartment (r = -0.145, p = 0.03 and were inversely correlated with maternal haemoglobin concentrations, both in peripheral blood (r = -0.238, p = 0.0004 and in placental blood (r = -0.259, p = 0.0001. These inverse relationships suggest a potential role for monocyte/macrophage activation in the pathogenesis of malaria in pregnancy, particularly in relation to malaria-associated anaemia.

  2. Changes in fat mass correlate with changes in soluble sCD163, a marker of mature macrophages, in patients with CKD

    DEFF Research Database (Denmark)

    Axelsson, Jonas; Møller, Holger Jon; Witasp, Anna

    2006-01-01

    healthy controls (mean GFR, 89 +/- 3 mL/min [1.48 +/- 0.05 mL/s]; mean age, 63 +/-2 years; 69% men) were characterized post hoc with a follow-up of up to 5 years (mean, 47 +/- 1 months). sCD163 levels, body composition (dual-energy x-ray absorptiometry), clinical parameters, and levels of circulating...... of inflammation and endothelial adhesion molecules. After 1 year, patients who increased body fat mass (average, 11% +/- 5% versus -5% +/- 5%; P

  3. Macrophage activity assessed by soluble CD163 in early rheumatoid arthritis

    DEFF Research Database (Denmark)

    Greisen, Stinne Ravn; Møller, Holger Jon; Stengaard-Pedersen, Kristian

    2015-01-01

    OBJECTIVES: Rheumatoid arthritis (RA) is a chronic autoimmune disease where TNF-α is a central mediator of inflammation, and is cleaved from the cell surface by TACE/ADAM17. This metalloproteinase is also responsible for the release of soluble (s) CD163. Soluble CD163 reflects macrophage activation...... in macrophage activity as evidenced by increasing levels following anti-TNF withdrawal, despite maintenance of a stable clinical condition achieved by conventional remedies. It remains to be determined whether sCD163 is an early predictor of disease flare....

  4. The macrophage CD163 surface glycoprotein is an erythroblast adhesion receptor

    DEFF Research Database (Denmark)

    Fabriek, Babs O; Polfliet, Machteld M J; Vloet, Rianka P M

    2007-01-01

    Erythropoiesis occurs in erythroblastic islands, where developing erythroblasts closely interact with macrophages. The adhesion molecules that govern macrophage-erythroblast contact have only been partially defined. Our previous work has implicated the rat ED2 antigen, which is highly expressed...... on the surface of macrophages in erythroblastic islands, in erythroblast binding. In particular, the monoclonal antibody ED2 was found to inhibit erythroblast binding to bone marrow macrophages. Here, we identify the ED2 antigen as the rat CD163 surface glycoprotein, a member of the group B scavenger receptor...... that it enhanced erythroid proliferation and/or survival, but did not affect differentiation. These findings identify CD163 on macrophages as an adhesion receptor for erythroblasts in erythroblastic islands, and suggest a regulatory role for CD163 during erythropoiesis....

  5. CD163+ Tumor-Associated Macrophages Correlated with Poor Prognosis and Cancer Stem Cells in Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Ke-Fei He

    2014-01-01

    Full Text Available Tumor-associated macrophages (TAMs play an important role in the progression and prognostication of numerous cancers. However, the role and clinical significance of TAM markers in oral squamous cell carcinoma (OSCC has not been elucidated. The present study was designed to investigate the correlation between the expression of TAM markers and pathological features in OSCC by tissue microarray. Tissue microarrays containing 16 normal oral mucosa, 6 oral epithelial dysplasia, and 43 OSCC specimens were studied by immunohistochemistry. We observed that the protein expression of the TAM markers CD68 and CD163 as well as the cancer stem cell (CSC markers ALDH1, CD44, and SOX2 increased successively from the normal oral mucosa to OSCC. The expressions of CD68 and CD163 were significantly associated with lymph node status, and SOX2 was significantly correlated with pathological grade and lymph node status, whereas ALDH1 was correlated with tumor stage. Furthermore, CD68 was significantly correlated with CD163, SOX2, and ALDH1 (P<0.05. Kaplan-Meier analysis revealed that OSCC patients overexpressing CD163 had significantly worse overall survival (P<0.05. TAM markers are associated with cancer stem cell marker and OSCC overall survival, suggesting their potential prognostic value in OSCC.

  6. Plasma level of the macrophage-derived soluble CD163 is increased and positively correlates with severity in Gaucher's disease

    DEFF Research Database (Denmark)

    Møller, Holger Jon; de Fost, Maaike; Aerts, Hans

    2004-01-01

    Recently, soluble CD163 (sCD163) has been identified as a macrophage/monocyte-specific plasma protein and increased concentrations have been measured in patients with infection and myeloid leukaemia. In the present study we investigated the levels of sCD163 in patients with Gaucher's disease...

  7. The macrophage scavenger receptor (CD163): a double-edged sword in treatment of malignant disease

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan

    2009-01-01

    of inflammatory processes. The receptor is expressed by circulatory monocytes and it is highly expressed on tissue-resident macrophages. CD163 is also expressed on leukemic blast cells of AML type M4/M5 and tumor cells in malignant melanoma and breast cancer. Although circumstantial evidence of the potential...... was investigated in biopsies from bladder cancer patients. We demonstrated that CD163 mRNA expression was significantly elevated in muscle invasive tumors (T2-T4) compared with superficial tumors (Ta), and that a high level of CD163 mRNA expression in tumor biopsies was significantly associated with poor 13-year......The hemoglobin scavenger receptor CD163 is a transmembrane glycoprotein belonging to the scavenger receptor cysteine-rich (SRCR) domain family. It mediates the clearance of hemoglobin released to the circulation during intravascular hemolysis, and it is also involved in the regulation...

  8. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria

    NARCIS (Netherlands)

    Fabriek, Babs O.; van Bruggen, Robin; Deng, Dong Mei; Ligtenberg, Antoon J. M.; Nazmi, Kamran; Schornagel, Karin; Vloet, Rianka P. M.; Dijkstra, Christine D.; van den Berg, Timo K.

    2009-01-01

    The plasma membrane glycoprotein receptor CD163 is a member of the scavenger receptor cystein-rich (SRCR) superfamily class B that is highly expressed on resident tissue macrophages in vivo. Previously, the molecule has been shown to act as a receptor for hemoglobin-haptoglobin complexes and to

  9. The macrophage scavenger receptor CD163 functions as an innate immune sensor for bacteria

    NARCIS (Netherlands)

    Fabriek, B.O.; van Bruggen, R.; Deng, D.M.; Ligtenberg, A.J.M.; Nazmi, K.; Schornagel, K.; Vloet, R.P.M.; Dijkstra, C.D.; van den Berg, T.K.

    2009-01-01

    The plasma membrane glycoprotein re- ceptor CD163 is a member of the scaven- ger receptor cystein-rich (SRCR) super- family class B that is highly expressed on resident tissue macrophages in vivo. Pre- viously, the molecule has been shown to act as a receptor for hemoglobin- haptoglobin complexes

  10. Soluble CD163

    DEFF Research Database (Denmark)

    Møller, Holger J

    2012-01-01

    CD163 is an endocytic receptor for haptoglobin-hemoglobin complexes and is expressed solely on macrophages and monocytes. As a result of ectodomain shedding, the extracellular portion of CD163 circulates in blood as a soluble protein (sCD163) at 0.7-3.9 mg/l in healthy individuals. The function o...

  11. Soluble CD163, a marker of Kupffer cell activation, is related to portal hypertension in patients with liver cirrhosis

    DEFF Research Database (Denmark)

    Grønbaek, H; Sandahl, T D; Mortensen, C

    2012-01-01

    BACKGROUND: Activation of Kupffer cells may be involved in the pathogenesis of portal hypertension by release of vasoconstrictive substances and fibrosis due to co-activation of hepatic stellate cells. AIM: To study soluble plasma (s) CD163, a specific marker of activated macrophages......, as a biomarker for portal hypertension in patients with liver cirrhosis. METHODS: We measured sCD163 concentration and the hepatic venous pressure gradient (HVPG) by liver vein catheterisation in 81 cirrhosis patients (Child-Pugh CP-A: n = 26, CP-B: n = 29, CP-C: n = 26) and 22 healthy subjects. We also measured...... for HVPG. These findings support a primary role of macrophage activation in portal hypertension, and may indicate a target for biological intervention....

  12. Soluble CD163 from activated macrophages predicts mortality in acute liver failure

    DEFF Research Database (Denmark)

    Møller, Holger Jon; Grønbaek, Henning; Schiødt, Frank V

    2007-01-01

    .2-54.0) vs. 14.6mg/l (3.5-67.2), respectively (p=0.0025). Patients that were transplanted had intermediate levels. Sensitivity and specificity at a cut-off level of 26mg/l was 62% and 81%, respectively. CONCLUSIONS: Activated macrophages are involved in ALF resulting in a 10-fold increase in sCD163. A high...

  13. CD163-L1 is an endocytic macrophage protein strongly regulated by mediators in the inflammatory response

    DEFF Research Database (Denmark)

    Moeller, Jesper B; Nielsen, Marianne J; Reichhardt, Martin P

    2012-01-01

    CD163-L1 belongs to the group B scavenger receptor cysteine-rich family of proteins, where the CD163-L1 gene arose by duplication of the gene encoding the hemoglobin scavenger receptor CD163 in late evolution. The current data demonstrate that CD163-L1 is highly expressed and colocalizes with CD163...... on large subsets of macrophages, but in contrast to CD163 the expression is low or absent in monocytes and in alveolar macrophages, glia, and Kupffer cells. The expression of CD163-L1 increases when cultured monocytes are M-CSF stimulated to macrophages, and the expression is further increased by the acute......-phase mediator IL-6 and the anti-inflammatory mediator IL-10 but is suppressed by the proinflammatory mediators IL-4, IL-13, TNF-α, and LPS/IFN-γ. Furthermore, we show that CD163-L1 is an endocytic receptor, which internalizes independently of cross-linking through a clathrin-mediated pathway. Two cytoplasmic...

  14. CD163 and its role in inflammation

    Directory of Open Access Journals (Sweden)

    Lech Chyczewski

    2011-10-01

    Full Text Available Mononuclear phagocytes represent a heterogeneous population of cells with individual subpopulations exerting different pro- or anti-inflammatory functions. CD163 is a monocyte/macrophage specific marker expressed predominantly on cells which possess strong anti-inflammatory potential. The expression of CD163 is strongly induced by anti-inflammatory mediators such as glucocorticoids and interleukin-10, while being inhibited by pro-inflammatory mediators such as interferon-gamma. CD163-expressing mononuclear phagocytes, as well as soluble CD163, may both take part in downregulating an inflammatory response. It seems, therefore, that CD163 may be an interesting target for therapeutic modulation of the inflammatory response. (Folia Histochemica et Cytobiologica 2011, Vol. 49, No. 3, 365–374

  15. CD163-Macrophages Are Involved in Rhabdomyolysis-Induced Kidney Injury and May Be Detected by MRI with Targeted Gold-Coated Iron Oxide Nanoparticles.

    Science.gov (United States)

    Rubio-Navarro, Alfonso; Carril, Mónica; Padro, Daniel; Guerrero-Hue, Melanie; Tarín, Carlos; Samaniego, Rafael; Cannata, Pablo; Cano, Ainhoa; Villalobos, Juan Manuel Amaro; Sevillano, Ángel Manuel; Yuste, Claudia; Gutiérrez, Eduardo; Praga, Manuel; Egido, Jesús; Moreno, Juan Antonio

    2016-01-01

    Macrophages play an important role in rhabdomyolysis-acute kidney injury (AKI), although the molecular mechanisms involved in macrophage differentiation are poorly understood. We analyzed the expression and regulation of CD163, a membrane receptor mainly expressed by anti-inflammatory M2 macrophages, in rhabdomyolysis-AKI and developed targeted probes for its specific detection in vivo by MRI. Intramuscular injection of glycerol in mice promoted an early inflammatory response, with elevated proportion of M1 macrophages, and partial differentiation towards a M2 phenotype in later stages, where increased CD163 expression was observed. Immunohistological studies confirmed the presence of CD163-macrophages in human rhabdomyolysis-AKI. In cultured macrophages, myoglobin upregulated CD163 expression via HO-1/IL-10 axis. Moreover, we developed gold-coated iron oxide nanoparticles vectorized with an anti-CD163 antibody that specifically targeted CD163 in kidneys from glycerol-injected mice, as determined by MRI studies, and confirmed by electron microscopy and immunological analysis. Our findings are the first to demonstrate that CD163 is present in both human and experimental rhabdomyolysis-induced AKI, suggesting an important role of this molecule in this pathological condition. Therefore, the use of probes targeting CD163-macrophages by MRI may provide important information about the cellular composition of renal lesion in rhabdomyolysis.

  16. Tumor-associated macrophages in oral premalignant lesions coexpress CD163 and STAT1 in a Th1-dominated microenvironment

    International Nuclear Information System (INIS)

    Mori, Kazumasa; Haraguchi, Shigeki; Hiori, Miki; Shimada, Jun; Ohmori, Yoshihiro

    2015-01-01

    Tumor-associated macrophages (TAMs) are implicated in the growth, invasion and metastasis of various solid tumors. However, the phenotype of TAMs in premalignant lesions of solid tumors has not been clarified. In the present study, we identify the phenotype of TAMs in leukoplakia, an oral premalignant lesion, by immunohistochemical analysis and investigate the involvement of infiltrated T cells that participate in the polarization of TAMs. The subjects included 30 patients with oral leukoplakia and 10 individuals with normal mucosa. Hematoxylin and eosin slides were examined for the histological grades, and immunohistochemical analysis was carried out using antibodies against CD68 (pan-MΦ), CD80 (M1 MΦ), CD163 (M2 MΦ), CD4 (helper T cells: Th), CD8 (cytotoxic T cells), CXCR3, CCR5 (Th1), CCR4 (Th2), signal transducer and activator of transcription (STAT1), phosphorylated STAT1 (pSTAT1) and chemokine CXCL9. The differences in the numbers of positively stained cells among the different histological grades were tested for statistical significance using the Kruskal-Wallis test. Correlations between different types of immune cells were determined using Spearman’s rank analysis. An increase in the rate of CD163 + TAM infiltration was observed in mild and moderate epithelial dysplasia, which positively correlated with the rate of intraepithelial CD4 + Th cell infiltration. Although CCR4 + cells rarely infiltrated, CXCR3 + and CCR5 + cells were observed in these lesions. Cells positive for STAT1 and chemokine CXCL9, interferon- (IFN)-induced gene products, and pSTAT1 were also observed in the same lesions. Double immunofluorescence staining demonstrated that the cells that were positive for CD163 were also positive for STAT1. CD163 + TAMs in oral premalignant lesions coexpress CD163 and STAT1, suggesting that the TAMs in oral premalignant lesions possess an M1 phenotype in a Th1-dominated micromilieu

  17. Soluble hemoglobin-haptoglobin scavenger receptor CD163 as a lineage-specific marker in the reactive hemophagocytic syndrome

    DEFF Research Database (Denmark)

    Schaer, Dominik J; Schleiffenbaum, Boris; Kurrer, Michael

    2005-01-01

    .1 mg/L), acute mononucleosis (median 8.2 mg/L), Leishmania infection (median 6.7 mg/L) and healthy controls (median 1.8 mg/L). Follow-up of patients with a relapsing course of the disease revealed close correlations of sCD163 with clinical disease activity, serum ferritin and other markers...

  18. Precision engineering for PRRSV resistance in pigs: Macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function.

    Directory of Open Access Journals (Sweden)

    Christine Burkard

    2017-02-01

    Full Text Available Porcine Reproductive and Respiratory Syndrome (PRRS is a panzootic infectious disease of pigs, causing major economic losses to the world-wide pig industry. PRRS manifests differently in pigs of all ages but primarily causes late-term abortions and stillbirths in sows and respiratory disease in piglets. The causative agent of the disease is the positive-strand RNA PRRS virus (PRRSV. PRRSV has a narrow host cell tropism, limited to cells of the monocyte/macrophage lineage. CD163 has been described as a fusion receptor for PRRSV, whereby the scavenger receptor cysteine-rich domain 5 (SRCR5 region was shown to be an interaction site for the virus in vitro. CD163 is expressed at high levels on the surface of macrophages, particularly in the respiratory system. Here we describe the application of CRISPR/Cas9 to pig zygotes, resulting in the generation of pigs with a deletion of Exon 7 of the CD163 gene, encoding SRCR5. Deletion of SRCR5 showed no adverse effects in pigs maintained under standard husbandry conditions with normal growth rates and complete blood counts observed. Pulmonary alveolar macrophages (PAMs and peripheral blood monocytes (PBMCs were isolated from the animals and assessed in vitro. Both PAMs and macrophages obtained from PBMCs by CSF1 stimulation (PMMs show the characteristic differentiation and cell surface marker expression of macrophages of the respective origin. Expression and correct folding of the SRCR5 deletion CD163 on the surface of macrophages and biological activity of the protein as hemoglobin-haptoglobin scavenger was confirmed. Challenge of both PAMs and PMMs with PRRSV genotype 1, subtypes 1, 2, and 3 and PMMs with PRRSV genotype 2 showed complete resistance to viral infections assessed by replication. Confocal microscopy revealed the absence of replication structures in the SRCR5 CD163 deletion macrophages, indicating an inhibition of infection prior to gene expression, i.e. at entry/fusion or unpacking stages.

  19. Soluble ectodomain CD163 and extracellular vesicle-associated CD163 are two differently regulated forms of 'soluble CD163' in plasma

    DEFF Research Database (Denmark)

    Etzerodt, Anders; Berg, Ronan M.G.; Plovsing, Ronni R.

    2017-01-01

    CD163 is the macrophage receptor for uptake of hemoglobin-haptoglobin complexes. The human receptor can be shed from the macrophage surface owing to a cleavage site for the inflammation-inducible TACE/ADAM17 enzyme. Accordingly, plasma â €soluble CD163' (sCD163) has become a biomarker for macroph......CD163 is the macrophage receptor for uptake of hemoglobin-haptoglobin complexes. The human receptor can be shed from the macrophage surface owing to a cleavage site for the inflammation-inducible TACE/ADAM17 enzyme. Accordingly, plasma â €soluble CD163' (sCD163) has become a biomarker...

  20. Lesional accumulation of CD163-expressing cells in the gut of patients with inflammatory bowel disease.

    Directory of Open Access Journals (Sweden)

    Eleonora Franzè

    Full Text Available Monocytes/macrophages displaying different markers of activation/differentiation infiltrate the inflamed gut of patients with inflammatory bowel diseases (IBD, but the role that each monocyte/macrophage subpopulation plays in the pathogenesis of IBD is not fully understood. The hemoglobin scavenger receptor CD163, a specific marker of monocytes/macrophages, has been associated with either anti-inflammatory or inflammatory functions of macrophages in several pathologies. In this study we examined the tissue distribution and function of CD163-expressing monocytes/macrophages in IBD. CD163 RNA and protein expression was more pronounced in IBD in comparison to normal controls, with no significant difference between Crohn's disease and Ulcerative colitis. In IBD, over-expression of CD163 was restricted to areas with active inflammation and not influenced by current therapy. Immunohistochemical analysis confirmed the accumulation of CD163-expressing cells in IBD, mostly around and inside blood vessels, thus suggesting that these cells are partly recruited from the systemic circulation. Indeed, FACS analysis of circulating mononuclear cells showed that the fractions of CD163-positive monocytes were increased in IBD patients as compared to controls. Functionally, interleukin-6 up-regulated CD163 expression in lamina propria mononuclear cells and mucosal explants of normal subjects. In IBD blood and mucosal cell cultures, cross-linking of CD163 with a specific monoclonal anti-CD163 antibody enhanced tumor necrosis factor-α synthesis. These findings indicate that IBD mucosa is abundantly infiltrated with CD163-positive cells, which could contribute to amplify the inflammatory cytokine response.

  1. A possible mechanism in the recruitment of eosinophils and Th2 cells through CD163(+) M2 macrophages in the lesional skin of eosinophilic cellulitis.

    Science.gov (United States)

    Fujimura, Taku; Kambayashi, Yumi; Furudate, Sadanori; Kakizaki, Aya; Aiba, Setsuya

    2014-01-01

    M2 macrophages play a critical role in the recruitment of T helper 2 (Th2) regulatory T cells (Treg). To study the role of M2 macrophages and Treg cells in eosinophilic celulitis. We employed immunohistochemical staining for CD163( )and CD206 (macrophages) as well as FoxP3 (Treg), in lesional skin of four cases of eosinophilic cellulitis. CD163(+) CD206(+) M2 macrophages, which were previously reported to produce CCL17 to induce Th2 cells and Treg cells, were predominantly infiltrating the subcutaneous tissues and interstitial area of the dermis. M2 macrophages derived from PBMC showed significantly increased expression of CCL11, CCL17, CCL24 and CCL26 mRNA and production of CCL17 and CCL24, when stimulated by IL-4 or IL- 13. In addition, CCL17-producing cells and CCL24-producing cells were prominent in the lesional skin of EC. Our study sheds light on one of the possible immunological mechanisms of eosinophilic cellulitis.

  2. Soluble CD163 is increased in patients with acute pancreatitis independent of disease severity.

    Science.gov (United States)

    Karrasch, Thomas; Brünnler, Tanja; Hamer, Okka W; Schmid, Karin; Voelk, Markus; Herfarth, Hans; Buechler, Christa

    2015-10-01

    Macrophages are crucially involved in the pathophysiology of acute pancreatitis. Soluble CD163 (sCD163) is specifically released from macrophages and systemic levels are increased in inflammatory diseases. Here, sCD163 was measured in serum of 50 patients with acute pancreatitis to find out possible associations with disease activity. Admission levels of systemic sCD163 were nearly three-fold higher in patients with acute pancreatitis compared to controls. In patients sCD163 did not correlate with C-reactive protein and leukocyte count as established markers of inflammation. Levels were not associated with disease severity assessed by the Schroeder score, Balthazar score, Acute Physiology, Age, and Chronic Health Evaluation (Apache) II score and peripancreatic necrosis score. Soluble CD163 was not related to complications of acute pancreatitis. These data show that serum sCD163 is increased in acute pancreatitis indicating activation of macrophages but is not associated with disease severity and outcome. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Haptoglobin and CD163

    DEFF Research Database (Denmark)

    Madsen, M; Graversen, Jonas Heilskov; Moestrup, S K

    2001-01-01

    The plasma protein haptoglobin and the endocytic hemoglobin receptor HbSR/CD163 are key molecules in the process of removing hemoglobin released from ruptured erythrocytes. Hemoglobin in plasma is instantly bound with high affinity to haptoglobin--an interaction leading to the recognition of the ...

  4. Monocyte expression and soluble levels of the haemoglobin receptor (CD163/sCD163 and the mannose receptor (MR/sMR in septic and critically ill non-septic ICU patients.

    Directory of Open Access Journals (Sweden)

    Anders G Kjærgaard

    Full Text Available BACKGROUND: The diagnosis of sepsis is challenging and there is an unmet need for sensitive and specific diagnostic and prognostic biomarkers. Following activation of macrophages and monocytes, the haptoglobin-haemoglobin receptor (CD163 and the mannose receptor (MR are shed into the circulation (sCD163 and sMR. OBJECTIVE: We investigated monocyte expression of CD163 and MR, and levels of sCD163 and sMR in septic and non-septic patients, and in healthy controls. We hypothesised that these receptors are elevated during sepsis and can be used diagnostic and prognostic. METHODS: Twenty-one patients with severe sepsis or septic shock and 15 critically ill non-septic patients were included in this prospective observational study at three ICUs at Aarhus University Hospital and Randers Regional Hospital, Denmark. Fifteen age- and gender-matched healthy volunteers served as controls. Levels of sCD163 and sMR were measured using a sandwich ELISA and monocyte expression of CD163 and MR was evaluated by flow cytometry during the first four days of ICU stay. The diagnostic and prognostic values of the receptors were assessed using AUROC curves. RESULTS: At ICU admission and during the observation period, monocyte expression of CD163 and levels of sCD163 and sMR were significantly higher in septic patients compared with non-septic patients and healthy controls (p<0.01 for all comparisons. Monocytes did not express MR. The diagnostic values estimated by AUROC were 1.00 for sMR, 0.95 for sCD163, 0.87 for CRP, and 0.75 for monocyte-bound CD163. Among the septic patients, monocyte expression of CD163 was higher in non-survivors compared with survivors at ICU admission (p = 0.02 and during the observation period (p = 0.006. The prognostic value of monocyte-bound CD163 estimated by AUROC at ICU admission was 0.82. CONCLUSION: The macrophage-specific markers CD163, sCD163, and sMR are increased in septic patients. Particularly sMR is a promising new

  5. The identification of CD163 expressing phagocytic chondrocytes in joint cartilage and its novel scavenger role in cartilage degradation.

    Directory of Open Access Journals (Sweden)

    Kai Jiao

    Full Text Available BACKGROUND: Cartilage degradation is a typical characteristic of arthritis. This study examined whether there was a subset of phagocytic chondrocytes that expressed the specific macrophage marker, CD163, and investigated their role in cartilage degradation. METHODS: Cartilage from the knee and temporomandibular joints of Sprague-Dawley rats was harvested. Cartilage degradation was experimentally-induced in rat temporomandibular joints, using published biomechanical dental methods. The expression levels of CD163 and inflammatory factors within cartilage, and the ability of CD163(+ chondrocytes to conduct phagocytosis were investigated. Cartilage from the knees of patients with osteoarthritis and normal cartilage from knee amputations was also investigated. RESULTS: In the experimentally-induced degrading cartilage from temporomandibular joints, phagocytes were capable of engulfing neighboring apoptotic and necrotic cells, and the levels of CD163, TNF-α and MMPs were all increased (P0.05. CD163(+ chondrocytes were found in the cartilage mid-zone of temporomandibular joints and knee from healthy, three-week old rats. Furthermore, an increased number of CD163(+ chondrocytes with enhanced phagocytic activity were present in Col-II(+ chondrocytes isolated from the degraded cartilage of temporomandibular joints in the eight-week experimental group compared with their age-matched controls. Increased number with enhanced phagocytic activity of CD163(+ chondrocytes were also found in isolated Col-II(+ chondrocytes stimulated with TNF-α (P<0.05. Mid-zone distribution of CD163(+ cells accompanied with increased expression of CD163 and TNF-α were further confirmed in the isolated Col-II(+ chondrocytes from the knee cartilage of human patients with osteoarthritis, in contrast to the controls (both P<0.05. CONCLUSIONS: An increased number of CD163(+ chondrocytes with enhanced phagocytic activity were discovered within degraded joint cartilage, indicating a

  6. Urinary Soluble CD163 in Active Renal Vasculitis.

    Science.gov (United States)

    O'Reilly, Vincent P; Wong, Limy; Kennedy, Claire; Elliot, Louise A; O'Meachair, Shane; Coughlan, Alice Marie; O'Brien, Eoin C; Ryan, Michelle M; Sandoval, Diego; Connolly, Emma; Dekkema, Gerjan J; Lau, Jiaying; Abdulahad, Wayel H; Sanders, Jan-Stephan F; Heeringa, Peter; Buckley, Colm; O'Brien, Cathal; Finn, Stephen; Cohen, Clemens D; Lindemeyer, Maja T; Hickey, Fionnuala B; O'Hara, Paul V; Feighery, Conleth; Moran, Sarah M; Mellotte, George; Clarkson, Michael R; Dorman, Anthony J; Murray, Patrick T; Little, Mark A

    2016-09-01

    A specific biomarker that can separate active renal vasculitis from other causes of renal dysfunction is lacking, with a kidney biopsy often being required. Soluble CD163 (sCD163), shed by monocytes and macrophages, has been reported as a potential biomarker in diseases associated with excessive macrophage activation. Thus, we hypothesized that urinary sCD163 shed by crescent macrophages correlates with active glomerular inflammation. We detected sCD163 in rat urine early in the disease course of experimental vasculitis. Moreover, microdissected glomeruli from patients with small vessel vasculitis (SVV) had markedly higher levels of CD163 mRNA than did those from patients with lupus nephritis, diabetic nephropathy, or nephrotic syndrome. Both glomeruli and interstitium of patients with SVV strongly expressed CD163 protein. In 479 individuals, including patients with SVV, disease controls, and healthy controls, serum levels of sCD163 did not differ between the groups. However, in an inception cohort, including 177 patients with SVV, patients with active renal vasculitis had markedly higher urinary sCD163 levels than did patients in remission, disease controls, or healthy controls. Analyses in both internal and external validation cohorts confirmed these results. Setting a derived optimum cutoff for urinary sCD163 of 0.3 ng/mmol creatinine for detection of active renal vasculitis resulted in a sensitivity of 83%, specificity of 96%, and a positive likelihood ratio of 20.8. These data indicate that urinary sCD163 level associates very tightly with active renal vasculitis, and assessing this level may be a noninvasive method for diagnosing renal flare in the setting of a known diagnosis of SVV. Copyright © 2016 by the American Society of Nephrology.

  7. CD163 positive subsets of blood dendritic cells

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Møller, Holger Jon; Moestrup, Søren Kragh

    2006-01-01

    CD163 and CD91 are scavenging receptors with highly increased expression during the differentiation of monocytes into the anti-inflammatory macrophage phenotype. In addition, CD91 is expressed in monocyte-derived dendritic cells (MoDCs), where the receptor is suggested to be important...... for internalization of CD91-targeted antigens to be presented on the dendritic cell surface for T-cell stimulation. Despite their overlap in functionality, the expression of CD91 and CD163 has never been compared and the expression of CD163 in the monocyte-dendritic cell lineage is not yet characterized. CD163...... expression in dendritic cells (DCs) was investigated using multicolor flow cytometry in peripheral blood from 31 healthy donors and 15 HIV-1 patients in addition to umbilical cord blood from 5 newborn infants. Total RNA was isolated from MACS purified DCs and CD163 mRNA was determined with real-time reverse...

  8. The presence of tumor associated macrophages in tumor stroma as a prognostic marker for breast cancer patients

    International Nuclear Information System (INIS)

    Medrek, Catharina; Pontén, Fredrik; Jirström, Karin; Leandersson, Karin

    2012-01-01

    Tumor associated macrophages (TAMs) are alternatively activated macrophages that enhance tumor progression by promoting tumor cell invasion, migration and angiogenesis. TAMs have an anti-inflammatory function resembling M2 macrophages. CD163 is regarded as a highly specific monocyte/macrophage marker for M2 macrophages. In this study we evaluated the specificity of using the M2 macrophage marker CD163 as a TAM marker and compared its prognostic value with the more frequently used pan-macrophage marker CD68. We also analyzed the prognostic value of the localization of CD163 + and CD68 + myeloid cells in human breast cancer. The extent of infiltrating CD163 + or CD68 + myeloid cells in tumor nest versus tumor stroma was evaluated by immunohistochemistry in tissue microarrays with tumors from 144 breast cancer cases. Spearman’s Rho and χ 2 tests were used to examine the correlations between CD163 + or CD68 + myeloid cells and clinicopathological parameters. Kaplan Meier analysis and Cox proportional hazards modeling were used to assess the impact of CD163 + and CD68 + myeloid cells in tumor stroma and tumor nest, respectively, on recurrence free survival, breast cancer specific and overall survival. We found that infiltration of CD163 + and CD68 + macrophages into tumor stroma, but not into tumor nest, were of clinical relevance. CD163 + macrophages in tumor stroma positively correlated with higher grade, larger tumor size, Ki67 positivity, estrogen receptor negativity, progesterone receptor negativity, triple-negative/basal-like breast cancer and inversely correlated with luminal A breast cancer. Some CD163 + areas lacked CD68 expression, suggesting that CD163 could be used as a general anti-inflammatory myeloid marker with prognostic impact. CD68 + macrophages in tumor stroma positively correlated to tumor size and inversely correlated to luminal A breast cancer. More importantly, CD68 in tumor stroma was an independent prognostic factor for reduced breast cancer

  9. Serum soluble CD163 predicts risk of type 2 diabetes in the general population

    DEFF Research Database (Denmark)

    Møller, Holger Jon; Frikke-Schmidt, Ruth; Moestrup, Søren

    2011-01-01

    Activation of adipose tissue macrophages with concomitant low-grade inflammation is believed to play a central role in the development of type 2 diabetes. We tested whether a new macrophage-derived biomarker, soluble CD163 (sCD163), identifies at-risk individuals before overt disease has developed....

  10. Scavenger Receptor CD163 and Its Biological Functions

    Directory of Open Access Journals (Sweden)

    Gabriela Onofre

    2009-01-01

    Full Text Available CD163 is a member of scavenger receptor super family class B of the first subgroup. It is mapped to the region p13 on chromosome 12. Five different isoforms of CD163 have been described, which differ in the structure of their cytoplasmic domains and putative phosporylation sites. This scavenger receptor is selectively expressed on cells of monocytes and macrophages lineage exclusively. CD163 immunological function is essentially homeostatic. It also has other functions because participates in adhesion to endothelial cells, in tolerance induction and tissues regeneration. Other very important function of CD163 is the clearance of hemoglobin in its cell-free form and participation in anti-inflammation in its soluble form, exhibiting cytokine-like functions. We review the biological functions of CD163 which have been discovered until now. It seems apparent from this review that CD163 scavenger receptor can be used as biomarker in different diseases and as a valuable diagnostic parameter for prognosis of many diseases especially inflammatory disorders and sepsis.

  11. Reduced sTWEAK and increased sCD163 levels in HIV-infected patients: modulation by antiretroviral treatment, HIV replication and HCV co-infection.

    Directory of Open Access Journals (Sweden)

    Luis M Beltrán

    Full Text Available Patients infected with the human immunodeficiency virus (HIV have an increased risk of cardiovascular disease due to increased inflammation and persistent immune activation. CD163 is a macrophage scavenger receptor that is involved in monocyte-macrophage activation in HIV-infected patients. CD163 interacts with TWEAK, a member of the TNF superfamily. Circulating levels of sTWEAK and sCD163 have been previously associated with cardiovascular disease, but no previous studies have fully analyzed their association with HIV.The aim of this study was to analyze circulating levels of sTWEAK and sCD163 as well as other known markers of inflammation (hsCRP, IL-6 and sTNFRII and endothelial dysfunction (sVCAM-1 and ADMA in 26 patients with HIV before and after 48 weeks of antiretroviral treatment (ART and 23 healthy subjects.Patients with HIV had reduced sTWEAK levels and increased sCD163, sVCAM-1, ADMA, hsCRP, IL-6 and sTNFRII plasma concentrations, as well as increased sCD163/sTWEAK ratio, compared with healthy subjects. Antiretroviral treatment significantly reduced the concentrations of sCD163, sVCAM-1, hsCRP and sTNFRII, although they remained elevated when compared with healthy subjects. Antiretroviral treatment had no effect on the concentrations of ADMA and sTWEAK, biomarkers associated with endothelial function. The use of protease inhibitors as part of antiretroviral therapy and the presence of HCV-HIV co-infection and/or active HIV replication attenuated the ART-mediated decrease in sCD163 plasma concentrations.HIV-infected patients showed a proatherogenic profile characterized by increased inflammatory, immune-activation and endothelial-dysfunction biomarkers that partially improved after ART. HCV-HIV co-infection and/or active HIV replication enhanced immune activation despite ART.

  12. A macrophage activation switch (MAcS)-index for assessment of monocyte/macrophage activation

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Lauridsen, Mette; Knudsen, Troels Bygum

    2008-01-01

    , simplified by the M1-M2 dichotomy of classically activated (M1), pro-inflammatory cells and alternatively activated (M2), anti-inflammatory cells. Macrophages, however, display a large degree of flexibility and are able to switch between activation states (1). The hemoglobin scavenger receptor CD163...... is expressed exclusively on monocytes and macrophages, and its expression is strongly induced by anti-inflammatory stimuli like IL10 and glucocorticoid, making CD163 an ideal M2 macrophage marker (2). Furthermore a soluble variant of CD163 (sCD163) is shed from the cell surface to plasma by protease mediated.......058-5139) (panti-inflammatory state.   CONCLUSION: We present a CD163-derived macrophage activation switch (MAcS)-index, which seems able to differentiate between (predominantly) pro-inflammatory and anti-inflammatory macrophage activation. The index needs...

  13. CD163 promotes hematoma absorption and improves neurological functions in patients with intracerebral hemorrhage

    Directory of Open Access Journals (Sweden)

    Wen-jing Xie

    2016-01-01

    Full Text Available Clinical outcomes are positively associated with hematoma absorption. The monocyte-macrophage scavenger receptor, CD163, plays an important role in the metabolism of hemoglobin, and a soluble form of CD163 is present in plasma and other tissue fluids; therefore, we speculated that serum CD163 affects hematoma absorption after intracerebral hemorrhage. Patients with intracerebral hemorrhage were divided into high- and low-level groups according to the average CD163 level (1,977.79 ± 832.91 ng/mL. Compared with the high-level group, the low-level group had a significantly slower hematoma absorption rate, and significantly increased National Institutes of Health Stroke Scale scores and modified Rankin Scale scores. These results suggest that CD163 promotes hematoma absorption and the recovery of neurological function in patients with intracerebral hemorrhage.

  14. Serum soluble CD163 predicts risk of type 2 diabetes in the general population

    DEFF Research Database (Denmark)

    Møller, Holger J; Frikke-Schmidt, Ruth; Moestrup, Søren K

    2011-01-01

    has developed. METHODS: A prospective cohort study of 8849 study participants from the general population, the Copenhagen City Heart Study, was followed for 18 years for incidence of type 2 diabetes. Risk of disease was calculated according to age- and sex-adjusted percentile categories of serum s......BACKGROUND: Activation of adipose tissue macrophages with concomitant low-grade inflammation is believed to play a central role in the development of type 2 diabetes. We tested whether a new macrophage-derived biomarker, soluble CD163 (sCD163), identifies at-risk individuals before overt disease......CD163 concentrations: 0%-33%, 34%-66%, 67%-90%, 91%-95%, and 96%-100%. RESULTS: A total of 568 participants developed type 2 diabetes. The cumulative incidence increased with increasing baseline sCD163 (trend P

  15. Impaired CD163-mediated hemoglobin-scavenging and severe toxic symptoms in patients treated with gemtuzumab ozogamicin

    DEFF Research Database (Denmark)

    Maniecki, M.B.; Hasle, H.; Friis-Hansen, L.

    2008-01-01

    , and low bilirubin after septicemia-induced intravascular hemolysis indicated abrogated clearance of haptoglobin-hemoglobin complexes. This was further supported by low levels of plasma soluble CD163 and a concordant low number of CD163-expressing monocytes. We show that CD163 positive monocytes...... and macrophages from liver, spleen, and bone marrow coexpress CD33, thus suggesting that the GO-induced cellular cytotoxicity of CD33 positive cells eradicates a significant part of the CD163 positive monocytes and macrophages. The risk of severe toxic symptoms from plasma hemoglobin should be considered after CD......33-targeted chemotherapy when the disease is complicated by a pathologic intravascular hemolysis. Furthermore, the cases provide further circumstantial evidence of a key role of (CD163-expressing) monocytes/macrophages in plasma hemoglobin clearance in vivo Udgivelsesdato: 2008/8/15...

  16. Elevated soluble CD163 plasma levels are associated with disease severity in patients with hemorrhagic fever with renal syndrome.

    Directory of Open Access Journals (Sweden)

    Junning Wang

    Full Text Available Hantaan virus is a major zoonotic pathogen that causesing hemorrhagic fever with renal syndrome (HFRS. Although HFRS pathogenesis has not been entirely elucidated, the importance of host-related immune responses in HFRS pathogenesis has been widely recognized. CD163, a monocyte and macrophage-specific scavenger receptor that plays a vital function in the hosts can reduce inflammation, is shed during activation as soluble CD163 (sCD163. The aim of this study was to investigate the pathological significance of sCD163 in patients with HFRS.Blood samples were collected from 81 hospitalized patients in Tangdu Hospital from October 2011 to January 2014 and from 15 healthy controls. The sCD163 plasma levels were measured using a sandwich ELISA, and the relationship between sCD163 and disease severity was analyzed. Furthermore, CD163 expression in 3 monocytes subset was analyzed by flow cytometry.The results demonstrated that sCD163 plasma levels during the HFRS acute phase were significantly higher in patients than during the convalescent stage and the levels in the healthy controls (P<0.0001. The sCD163 plasma levels in the severe/critical group were higher than those in the mild/moderate group during the acute (P<0.0001. A Spearman correlation analysis indicated that the sCD163 levels were positively correlated with white blood cell, serum creatine, blood urea nitrogen levels, while they were negatively correlated with blood platelet levels in the HFRS patients. The monocyte subsets were significantly altered during the acute stage. Though the CD163 expression levels within the monocyte subsets were increased during the acute stage, the highest CD163 expression level was observed in the CD14++CD16+ monocytes when compared with the other monocyte subsets.sCD163 may be correlated with disease severity and the disease progression in HFRS patients; however, the underlying mechanisms should be explored further.

  17. Increased endothelial and macrophage markers are associated with disease severity and mortality in scrub typhus.

    Science.gov (United States)

    Otterdal, Kari; Janardhanan, Jeshina; Astrup, Elisabeth; Ueland, Thor; Prakash, John A J; Lekva, Tove; Abraham, O C; Thomas, Kurien; Damås, Jan Kristian; Mathews, Prasad; Mathai, Dilip; Aukrust, Pål; Varghese, George M

    2014-11-01

    Scrub typhus is endemic in the Asia-Pacific region. Mortality is high even with treatment, and further knowledge of the immune response during this infection is needed. This study was aimed at comparing plasma levels of monocyte/macrophage and endothelial related inflammatory markers in patients and controls in South India and to explore a possible correlation to disease severity and clinical outcome. Plasma levels of ALCAM, VCAM-1, sCD163, sCD14, YKL-40 and MIF were measured in scrub typhus patients (n = 129), healthy controls (n = 31) and in infectious disease controls (n = 31), both in the acute phase and after recovery, by enzyme immunoassays. Patients had markedly elevated levels of all mediators in the acute phase, differing from both healthy and infectious disease controls. During follow-up levels of ALCAM, VCAM-1, sCD14 and YKL-40 remained elevated compared to levels in healthy controls. High plasma ALCAM, VCAM-1, sCD163, sCD14, and MIF, and in particular YKL-40 were all associated with disease severity and ALCAM, sCD163, MIF and especially YKL-40, were associated with mortality. Our findings show that scrub typhus is characterized by elevated levels of monocyte/macrophage and endothelial related markers. These inflammatory markers, and in particular YKL-40, may contribute to disease severity and clinical outcome. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  18. Macrophage activation markers predict mortality in patients with liver cirrhosis without or with acute-on-chronic liver failure (ACLF)

    DEFF Research Database (Denmark)

    Grønbæk, Henning; Rødgaard-Hansen, Sidsel; Aagaard, Niels Kristian

    2016-01-01

    BACKGROUND & AIMS: Activation of liver macrophages plays a key role in liver and systemic inflammation and may be involved in development and prognosis of acute-on-chronic liver failure (ACLF). We therefore measured the circulating macrophage activation markers soluble sCD163 and mannose receptor......-C ACLF and CLIF-C AD scores. Addition of the macrophage markers to the clinical scores improved the prognostic efficacy: In ACLF patients sCD163 improved prediction of short-term mortality (C-index: 0.74 (0.67-0.80)) and in patients without ACLF sMR improved prediction of long-term mortality (C-index: 0.......80 (0.76-0.85)). CONCLUSIONS: The severity related increase in sCD163 and sMR and close association with mortality suggest a primary importance of inflammatory activation of liver macrophages in the emergence and course of ACLF. Accordingly, supplementation of the macrophage biomarkers to the platform...

  19. Fasting serum soluble CD 163 predicts risk of type 2 diabetes in ...

    African Journals Online (AJOL)

    grade inflammation is believed to play a central role in the evolution of type 2 diabetes. Aim: To assess whether a new macrophage-derived biomarker, soluble CD163, identifies at-risk individuals with metabolic syndrome before overt disease ...

  20. The novel biomarker of alternative macrophage activation, soluble mannose receptor (sMR/sCD206): Implications in multiple myeloma

    DEFF Research Database (Denmark)

    Andersen, Morten N; Andersen, Niels F; Rødgaard-Hansen, Sidsel

    2015-01-01

    Tumor-associated macrophages (TAMs) play an important role in the pathophysiology of human malignancies. They support growth of cancer cells by promoting angiogenesis, and by inhibiting tumour cell apoptosis and anti-tumor immune reactions. Several membrane proteins are well-described markers...... of human TAMs, including the haemoglobin scavenger receptor CD163 and the macrophage mannose receptor (MR/CD206). Interestingly, both CD163 and MR exist as soluble serum proteins (sCD163 and sMR) that may reflect the activation state of tissue macrophages, including TAMs. Here, we report the first data...... showed significant association with sCD163, which may indicate common origin from CD163+MR+TAMs....

  1. Soluble CD163 predicts incident chronic lung, kidney and liver disease in HIV infection

    DEFF Research Database (Denmark)

    Kirkegaard-Klitbo, Ditte M; Mejer, Niels; Knudsen, Troels B

    2017-01-01

    OBJECTIVE: To examine if monocyte and macrophage activity may be on the mechanistic pathway to non-AIDS comorbidity by investigating the associations between plasma-soluble CD163 (sCD163) and incident non-AIDS comorbidities in well treated HIV-infected individuals. DESIGN: Prospective single...... was examined using multivariable Cox proportional hazards models adjusted for pertinent covariates. RESULTS: In HIV-1-infected individuals (n = 799), the highest quartile of plasma sCD163 was associated with incident chronic lung disease [adjusted hazard ratio (aHR), 3.2; 95% confidence interval (CI): 1.34; 7.......46] and incident chronic kidney disease (aHR, 10.94; 95% CI: 2.32; 51.35), when compared with lowest quartiles. Further, (every 1 mg) increase in plasma sCD163 was positively correlated with incident liver disease (aHR, 1.12; 95% CI: 1.05; 1.19). The sCD163 level was not associated with incident cancer...

  2. Soluble CD163 levels in children with sickle cell disease

    DEFF Research Database (Denmark)

    Møller, Holger Jon; Nielsen, Marianne Jensby; Bartram, Jack

    2011-01-01

    Sickle cell disease (SCD) is characterized by vasculopathy, which has been causally linked to intravascular haemolysis and high levels of free plasma haemoglobin. Soluble CD163 (sCD163) is implicated in the clearance of free plasma haemoglobin and high plasma concentrations have been linked to ar...

  3. The Haptoglobin-CD163-Heme Oxygenase-1 Pathway for Hemoglobin Scavenging

    Directory of Open Access Journals (Sweden)

    Jens Haugbølle Thomsen

    2013-01-01

    Full Text Available The haptoglobin- (Hp- CD163-heme oxygenase-1 (HO-1 pathway is an efficient captor-receptor-enzyme system to circumvent the hemoglobin (Hb/heme-induced toxicity during physiological and pathological hemolyses. In this pathway, Hb tightly binds to Hp leading to CD163-mediated uptake of the complex in macrophages followed by lysosomal Hp-Hb breakdown and HO-1-catalyzed conversion of heme into the metabolites carbon monoxide (CO, biliverdin, and iron. The plasma concentration of Hp is a limiting factor as evident during accelerated hemolysis, where the Hp depletion may cause serious Hb-induced toxicity and put pressure on backup protecting systems such as the hemopexin-CD91-HO pathway. The Hp-CD163-HO-1 pathway proteins are regulated by the acute phase mediator interleukin-6 (IL-6, but other regulatory factors indicate that this upregulation is a counteracting anti-inflammatory response during inflammation. The heme metabolites including bilirubin converted from biliverdin have overall an anti-inflammatory effect and thus reinforce the anti-inflammatory efficacy of the Hp-CD163-HO-1 pathway. Future studies of animal models of inflammation should further define the importance of the pathway in the anti-inflammatory response.

  4. Molecular characterization of the haptoglobin.hemoglobin receptor CD163. Ligand binding properties of the scavenger receptor cysteine-rich domain region

    DEFF Research Database (Denmark)

    Madsen, Mette; Møller, Holger J; Nielsen, Marianne Jensby

    2004-01-01

    CD163 is the macrophage receptor for endocytosis of haptoglobin.hemoglobin complexes. The extracellular region consisting of nine scavenger receptor cysteine rich (SRCR) domains also circulates in plasma as a soluble protein. By ligand binding analysis of a broad spectrum of soluble CD163...... truncation variants, the amino-terminal third of the SRCR region was shown to be crucial for the binding of haptoglobin.hemoglobin complexes. By Western blotting of the CD163 variants, a panel of ten monoclonal antibodies was mapped to SRCR domains 1, 3, 4, 6, 7, and 9, respectively. Only the two antibodies...... to CD163 demonstrated that optimal ligand binding requires physiological plasma calcium concentrations, and an immediate ligand release occurs at the low calcium concentrations measured in acidifying endosomes. In conclusion, SRCR domain 3 of CD163 is an exposed domain and a critical determinant...

  5. Human Adipose Tissue Macrophages Are Enhanced but Changed to an Anti-Inflammatory Profile in Obesity

    Directory of Open Access Journals (Sweden)

    Karen Fjeldborg

    2014-01-01

    Full Text Available Objective. Adipose tissue (AT macrophages are increased in obesity and associated with low grade inflammation. We aimed to characterize the phenotype of AT macrophages in humans in relation to obesity and insulin resistance. Design. Gene-expression levels of general macrophage markers (CD68 and CD14, proinflammatory markers/M1 (TNF-α, MCP-1, and IL-6, and anti-inflammatory markers/M2 (CD163, CD206, and IL-10 were determined by RT-PCR in subcutaneous AT samples from lean and obese subjects. Insulin resistance was determined by HOMA-IR. Results. All the macrophage markers were elevated in the AT from obese compared to lean subjects (P<0.001. To determine the phenotype of the macrophages the level of CD14 was used to adjust the total number of macrophages. The relative expression of CD163 and IL-10 was elevated, and TNF-α and IL-6 were reduced in AT from obese subjects (all P<0.05. In a multivariate regression analysis CD163 was the only macrophage marker significantly associated with HOMA-IR (β: 0.57; P<0.05. Conclusion. Obesity is associated with elevated numbers of macrophages in the AT. Unexpectedly, the macrophages change phenotype by obesity, with a preponderance of M2 and a decrement of M1 markers in AT from obese subjects. Moreover, CD163 was the only macrophage marker associated with HOMA-IR after multiple adjustments.

  6. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages.

    Directory of Open Access Journals (Sweden)

    Mário Henrique M Barros

    Full Text Available Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn's disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a

  7. Macrophage polarisation: an immunohistochemical approach for identifying M1 and M2 macrophages.

    Science.gov (United States)

    Barros, Mário Henrique M; Hauck, Franziska; Dreyer, Johannes H; Kempkes, Bettina; Niedobitek, Gerald

    2013-01-01

    Macrophage polarization is increasingly recognised as an important pathogenetic factor in inflammatory and neoplastic diseases. Proinflammatory M1 macrophages promote T helper (Th) 1 responses and show tumoricidal activity. M2 macrophages contribute to tissue repair and promote Th2 responses. CD68 and CD163 are used to identify macrophages in tissue sections. However, characterisation of polarised macrophages in situ has remained difficult. Macrophage polarisation is regulated by transcription factors, pSTAT1 and RBP-J for M1, and CMAF for M2. We reasoned that double-labelling immunohistochemistry for the detection of macrophage markers together with transcription factors may be suitable to characterise macrophage polarisation in situ. To test this hypothesis, we have studied conditions associated with Th1- and Th2-predominant immune responses: infectious mononucleosis and Crohn's disease for Th1 and allergic nasal polyps, oxyuriasis, wound healing and foreign body granulomas for predominant Th2 response. In all situations, CD163+ cells usually outnumbered CD68+ cells. Moreover, CD163+ cells, usually considered as M2 macrophages, co-expressing pSTAT1 and RBP-J were found in all conditions examined. The numbers of putative M1 macrophages were higher in Th1- than in Th2-associated diseases, while more M2 macrophages were seen in Th2- than in Th1 related disorders. In most Th1-related diseases, the balance of M1 over M2 cells was shifted towards M1 cells, while the reverse was observed for Th2-related conditions. Hierarchical cluster analysis revealed two distinct clusters: cluster I included Th1 diseases together with cases with high numbers of CD163+pSTAT1+, CD68+pSTAT1+, CD163+RBP-J+ and CD68+RBP-J+ macrophages; cluster II comprised Th2 conditions together with cases displaying high numbers of CD163+CMAF+ and CD68+CMAF+ macrophages. These results suggest that the detection of pSTAT1, RBP-J, and CMAF in the context of CD68 or CD163 expression is a suitable tool for

  8. Macrophage markers in serum and tumor have prognostic impact in American Joint Committee on Cancer stage I/II melanoma

    DEFF Research Database (Denmark)

    Jensen, Trine O.; Schmidt, Henrik; Møller, Holger John

    2009-01-01

    PURPOSE: To evaluate the prognostic role of soluble CD163 (sCD163) in serum and macrophage infiltration in primary melanomas from patients with American Joint Committee on Cancer (AJCC) stage I/II melanoma. The scavenger receptor CD163 is associated with anti-inflammatory macrophages...... melanomas from 190 patients were available for immunohistochemical analyzes of CD163(+) and CD68(+) macrophage infiltration. They were estimated semiquantitatively in three different tumor compartments: tumor nests, tumor stroma, and at the invasive front of the tumor. RESULTS: Serum sCD163 treated......, HR = 1.4; 95% CI, 1.1 to 1.8; P = .003). Melanomas with dense CD163(+) macrophage infiltration in tumor stroma and CD68(+) macrophage infiltration at the invasive front were associated with poor overall survival (CD163, HR = 2.7; 95% CI, 0.8 to 9.3; P = .11; and CD68, HR = 2.8; 95% CI, 1.2 to 6.8; P...

  9. The tissue microlocalisation and cellular expression of CD163, VEGF, HLA-DR, iNOS, and MRP 8/14 is correlated to clinical outcome in NSCLC.

    Science.gov (United States)

    Ohri, Chandra M; Shikotra, Aarti; Green, Ruth H; Waller, David A; Bradding, Peter

    2011-01-01

    We have previously investigated the microlocalisation of M1 and M2 macrophages in NSCLC. This study investigated the non-macrophage (NM) expression of proteins associated with M1 and M2 macrophages in NSCLC. Using immunohistochemistry, CD68(+) macrophages and proteins associated with either a cytotoxic M1 phenotype (HLA-DR, iNOS, and MRP 8/14), or a non-cytotoxic M2 phenotype (CD163 and VEGF) were identified. NM expression of the markers was analysed in the islets and stroma of surgically resected tumours from 20 patients with extended survival (ES) (median 92.7 months) and 20 patients with poor survival (PS) (median 7.7 months). The NM expression of NM-HLA-DR (pMRP 8/14 (p = 0.02) was increased in ES compared to PS patients in the tumour islets. The tumour islet expression of NM-VEGF, was decreased in ES compared to PS patients (pMRP 8/14 (p = 0.01) expression in the stroma of ES patients compared with PS patients. The 5-year survival for patients with above and below median NM expression of the markers in the islets was 74.9% versus 4.7% (NM-HLA-DR pMRP 8/14 p = 0.04), as opposed to 34.1% versus 44.4% (NM-CD163 p = 0.41) and 19.4% versus 59.0% (NM-VEGF p = 0.001). Cell proteins associated with M1 and M2 macrophages are also expressed by other cell types in the tumour islets and stroma of patients with NSCLC. Their tissue and cellular microlocalisation is associated with important differences in clinical outcome.

  10. Generation of a haptoglobin-hemoglobin complex-specific Fab antibody blocking the binding of the complex to CD163

    DEFF Research Database (Denmark)

    Horn, Ivo R; Nielsen, Marianne Jensby; Madsen, Mette

    2003-01-01

    During intravascular hemolysis hemoglobin (Hb) binds to haptoglobin (Hp) leading to endocytosis of the complex by the macrophage receptor, CD163. In the present study, we used a phage-display Fab antibody strategy to explore if the complex formation between Hp and Hb leads to exposure of antigenic...... epitopes specific for the complex. By Hp-Hb-affinity screening of a phage-Fab library, we isolated a phage clone against the ligand complex. Surface plasmon resonance analyses of the Fab part expressed as a recombinant protein revealed a high affinity binding (KD = 3.9 nm) to Hp-Hb, whereas no binding...... was measured for non-complexed Hp or Hb. The Fab antibody completely inhibited the binding of 125I-labeled Hp-Hb complexes to CD163 and blocked their uptake in CD163-transfected cells. In conclusion, we have raised a receptor-blocking antibody specifically recognizing the Hp-Hb complex. In addition to provide...

  11. The tissue microlocalisation and cellular expression of CD163, VEGF, HLA-DR, iNOS, and MRP 8/14 is correlated to clinical outcome in NSCLC.

    Directory of Open Access Journals (Sweden)

    Chandra M Ohri

    Full Text Available BACKGROUND: We have previously investigated the microlocalisation of M1 and M2 macrophages in NSCLC. This study investigated the non-macrophage (NM expression of proteins associated with M1 and M2 macrophages in NSCLC. METHODS: Using immunohistochemistry, CD68(+ macrophages and proteins associated with either a cytotoxic M1 phenotype (HLA-DR, iNOS, and MRP 8/14, or a non-cytotoxic M2 phenotype (CD163 and VEGF were identified. NM expression of the markers was analysed in the islets and stroma of surgically resected tumours from 20 patients with extended survival (ES (median 92.7 months and 20 patients with poor survival (PS (median 7.7 months. RESULTS: The NM expression of NM-HLA-DR (p<0.001, NM-iNOS (p = 0.02 and NM-MRP 8/14 (p = 0.02 was increased in ES compared to PS patients in the tumour islets. The tumour islet expression of NM-VEGF, was decreased in ES compared to PS patients (p<0.001. There was more NM-CD163 expression (p = 0.04 but less NM-iNOS (p = 0.002 and MRP 8/14 (p = 0.01 expression in the stroma of ES patients compared with PS patients. The 5-year survival for patients with above and below median NM expression of the markers in the islets was 74.9% versus 4.7% (NM-HLA-DR p<0.001, 65.0% versus 14.6% (NM-iNOS p = 0.003, and 54.3% versus 22.2% (NM-MRP 8/14 p = 0.04, as opposed to 34.1% versus 44.4% (NM-CD163 p = 0.41 and 19.4% versus 59.0% (NM-VEGF p = 0.001. CONCLUSIONS: Cell proteins associated with M1 and M2 macrophages are also expressed by other cell types in the tumour islets and stroma of patients with NSCLC. Their tissue and cellular microlocalisation is associated with important differences in clinical outcome.

  12. Tumor cell expression of CD163 is associated to postoperative radiotherapy and poor prognosis in patients with breast cancer treated with breast-conserving surgery.

    Science.gov (United States)

    Garvin, Stina; Oda, Husam; Arnesson, Lars-Gunnar; Lindström, Annelie; Shabo, Ivan

    2018-05-03

    Cancer cell fusion with macrophages results in highly tumorigenic hybrids that acquire genetic and phenotypic characteristics from both maternal cells. Macrophage traits, exemplified by CD163 expression, in tumor cells are associated with advanced stages and poor prognosis in breast cancer (BC). In vitro data suggest that cancer cells expressing CD163 acquire radioresistance. Tissue microarray was constructed from primary BC obtained from 83 patients treated with breast-conserving surgery, 50% having received postoperative radiotherapy (RT) and none of the patients had lymph node or distant metastasis. Immunostaining of CD163 in cancer cells and macrophage infiltration (MI) in tumor stroma were evaluated. Macrophage:MCF-7 hybrids were generated by spontaneous in vitro cell fusion. After irradiation (0, 2.5 and 5 Gy γ-radiation), both hybrids and their maternal MCF-7 cells were examined by clonogenic survival. CD163-expression by cancer cells was significantly associated with MI and clinicopathological data. Patients with CD163-positive tumors had significantly shorter disease-free survival (DFS) after RT. In vitro generated macrophage:MCF-7 hybrids developed radioresistance and exhibited better survival and colony forming ability after radiation compared to maternal MCF-7 cancer cells. Our results suggest that macrophage phenotype in tumor cells results in radioresistance in breast cancer and shorter DFS after radiotherapy.

  13. Neutrophil and Monocyte CD64 and CD163 Expression in Critically Ill Neonates and Children with Sepsis: Comparison of Fluorescence Intensities and Calculated Indexes

    Directory of Open Access Journals (Sweden)

    Mojca Groselj-Grenc

    2008-01-01

    Full Text Available Objective. To evaluate the expression of CD64 and CD163 on neutrophils and monocytes in SIRS with/without sepsis and to compare the diagnostic accuracy of CD64 and CD163 molecules expression determined as (1 mean fluorescence intensities (MFI of CD64 and CD163; and (2 the ratio (index of linearized MFI to the fluorescence signal of standardized beads. Patients and methods. Fifty-six critically ill neonates and children with systemic inflammatory response syndrome (SIRS and suspected sepsis, classified into two groups: SIRS with sepsis (n=29 and SIRS without sepsis (n=27. Results. CD64 and CD163 MFI measured on neutrophils and monocytes were elevated in patients with SIRS with sepsis. Diagnostic accuracy of indexes was equal to diagnostic accuracy of MFI for CD64 on neutrophils (0.833 versus 0.854 for day 0 and 0.975 versus 0.983 for day 1 and monocytes (0.811 versus 0.865 for day 0 and 0.825 versus 0.858 for day 1, and CD163 on neutrophils (0.595 versus 0.655 for day 0 and 0.677 versus 0.750 for day 1, but not for CD163 on monocytes. Conclusion. CD64 MFI, CD163 MFI, CD64 indexes for neutrophils and monocytes, and CD163 index for neutrophils can all be used for discrimination of SIRS and sepsis in critically ill neonates and children. CD64 index for neutrophils, however, is superior to all other markers.

  14. Infiltration of M2 Tumor-Associated Macrophages in Oral Squamous Cell Carcinoma Correlates with Tumor Malignancy

    International Nuclear Information System (INIS)

    Mori, Kazumasa; Hiroi, Miki; Shimada, Jun; Ohmori, Yoshihiro

    2011-01-01

    Tumor-associated macrophages (TAMs) are a major cellular component in the tumor microenvironment of many solid tumors. The functional competence of TAMs varies depending on the type of tumors and their respective microenvironments. The classically activated M1 macrophages exhibit antitumor functions, whereas the alternatively activated M2 macrophages exhibit protumor functions that contribute to tumor development and progression. Although TAMs have been detected in oral squamous cell carcinoma (OSCC), little is known about their phenotype. In the present study, we performed an immunohistochemical analysis to identify TAMs in surgically resected specimens from 50 patients with OSCC and evaluated the relationship between infiltrated TAMs and the pathological grade of OSCC. Positive staining for CD163, which has been used as a marker for M2 macrophages, was observed in OSCC specimens, and the percentages of CD163 + cells were significantly increased based on the pathological grade. CD163 + cells were detected in the tumor stroma in grade I tumors, whereas an increase in the CD163 + cells in the tumor nest was observed in higher grades of tumors. Although infiltrated CD4 + and CD8 + T cells were detected in all pathological grades of OSCC, no correlation between the infiltrated T cells and the CD163 + TAMs was observed. These results indicate that the infiltrated TAMs in OSCC have an M2 phenotype and that the M2 macrophages may participate in the development of OSCC

  15. Infiltration of M2 Tumor-Associated Macrophages in Oral Squamous Cell Carcinoma Correlates with Tumor Malignancy

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kazumasa [Division of Oral and Maxillofacial Surgery, Department of Diagnosis and Therapeutics, Meikai University of School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Hiroi, Miki [Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Shimada, Jun [Division of Oral and Maxillofacial Surgery, Department of Diagnosis and Therapeutics, Meikai University of School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan); Ohmori, Yoshihiro, E-mail: ohmori@dent.meikai.ac.jp [Division of Microbiology and Immunology, Department of Oral Biology and Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283 (Japan)

    2011-09-28

    Tumor-associated macrophages (TAMs) are a major cellular component in the tumor microenvironment of many solid tumors. The functional competence of TAMs varies depending on the type of tumors and their respective microenvironments. The classically activated M1 macrophages exhibit antitumor functions, whereas the alternatively activated M2 macrophages exhibit protumor functions that contribute to tumor development and progression. Although TAMs have been detected in oral squamous cell carcinoma (OSCC), little is known about their phenotype. In the present study, we performed an immunohistochemical analysis to identify TAMs in surgically resected specimens from 50 patients with OSCC and evaluated the relationship between infiltrated TAMs and the pathological grade of OSCC. Positive staining for CD163, which has been used as a marker for M2 macrophages, was observed in OSCC specimens, and the percentages of CD163{sup +} cells were significantly increased based on the pathological grade. CD163{sup +} cells were detected in the tumor stroma in grade I tumors, whereas an increase in the CD163{sup +} cells in the tumor nest was observed in higher grades of tumors. Although infiltrated CD4{sup +} and CD8{sup +} T cells were detected in all pathological grades of OSCC, no correlation between the infiltrated T cells and the CD163{sup +} TAMs was observed. These results indicate that the infiltrated TAMs in OSCC have an M2 phenotype and that the M2 macrophages may participate in the development of OSCC.

  16. Prognostic significance of interleukin-8 and CD163-positive cell-infiltration in tumor tissues in patients with oral squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Yohei Fujita

    Full Text Available PURPOSE: We investigated whether serum interleukin (IL-8 reflects the tumor microenvironment and has prognostic value in patients with oral squamous cell carcinoma (OSCC. EXPERIMENTAL DESIGN: Fifty OSCC patients who received radical resection of their tumor(s were enrolled. Preoperative sera were measured for IL-8 by ELISA. Expression of IL-8 and the infiltration of immune cells in tumor tissues were analyzed by an immunohistochemical staining of surgical specimens. RESULTS: We found that disease-free survival (DFS was significantly longer in the Stage I/II OSCC patients with low serum IL-8 levels compared to those with high levels (p = 0.001. The tumor expression of IL-8, i.e., IL-8(T and the density of CD163-positive cells in the tumor invasive front, i.e., CD163(IF were correlated with the serum IL-8 level (p = 0.033 and p = 0.038, respectively, and they were associated with poor clinical outcome (p = 0.007 and p = 0.002, respectively, in DFS in all patients. A multivariate analysis revealed that N status, IL-8(T and CD163(IF significantly affected the DFS of the patients. Further analysis suggested that combination of N status with serum IL-8, IL-8(T or CD163(IF may be a new criterion for discriminating between OSCC patients at high and low risk for tumor relapse. Interestingly, the in vitro experiments demonstrated that IL-8 enhanced generation of CD163-positive M2 macrophages from peripheral blood monocytes, and that the cells produced IL-10. CONCLUSIONS: These findings indicate that IL-8 may be involved in poor clinical outcomes via generation of CD163-positive M2 macrophages, and that these factors in addition to N status may have prognostic value in patients with resectable OSCSS.

  17. Diagnostic value of soluble CD163 serum levels in patients suspected of meningitis: comparison with CRP and procalcitonin

    DEFF Research Database (Denmark)

    Knudsen, Troels Bygum; Larsen, Klaus; Kristiansen, Thomas Birk

    2007-01-01

    The aim of the study was to evaluate and compare the diagnostic value of sCD163 serum levels with CRP and PCT in meningitis and bacterial infection. An observational cohort study was conducted between February 2001 and February 2005. The study population comprised 55 patients suspected of meningi......The aim of the study was to evaluate and compare the diagnostic value of sCD163 serum levels with CRP and PCT in meningitis and bacterial infection. An observational cohort study was conducted between February 2001 and February 2005. The study population comprised 55 patients suspected...... marker for distinguishing bacterial infection from non-bacterial disease (specificity 0.91; sensitivity 0.47). However, the overall diagnostic accuracy of CRP (AUC =0.91) and PCT (AUC =0.87) were superior (p... infection, the AUC of sCD163 (0.83) did not differ significantly from those of CRP or PCT. All markers had AUCs CRP and PCT had high diagnostic value and were superior as markers of bacterial infection compared to s...

  18. The haptoglobin-CD163-heme oxygenase-1 pathway for hemoglobin scavenging

    DEFF Research Database (Denmark)

    Thomsen, Jens Haugbølle; Etzerodt, Anders; Svendsen, Pia

    2013-01-01

    The haptoglobin- (Hp-) CD163-heme oxygenase-1 (HO-1) pathway is an efficient captor-receptor-enzyme system to circumvent the hemoglobin (Hb)/heme-induced toxicity during physiological and pathological hemolyses. In this pathway, Hb tightly binds to Hp leading to CD163-mediated uptake of the complex...

  19. The absence of the CD163 receptor has distinct temporal influences on intracerebral hemorrhage outcomes

    DEFF Research Database (Denmark)

    Leclerc, Jenna L; Lampert, Andrew S; Loyola Amador, Claudia

    2018-01-01

    was induced in wildtype and CD163(-/-) mice and various anatomical and functional outcomes were assessed. At 3 d, CD163(-/-) mice have 43.4 ± 5.0% (p = 0.0002) and 34.8 ± 3.4% (p = 0.0003) less hematoma volume and tissue injury, respectively. Whereas, at 10 d, CD163(-/-) mice have 49.2 ± 15.0% larger lesions...

  20. Critical illness induces alternative activation of M2 macrophages in adipose tissue.

    Science.gov (United States)

    Langouche, Lies; Marques, Mirna B; Ingels, Catherine; Gunst, Jan; Derde, Sarah; Vander Perre, Sarah; D'Hoore, André; Van den Berghe, Greet

    2011-01-01

    We recently reported macrophage accumulation in adipose tissue of critically ill patients. Classically activated macrophage accumulation in adipose tissue is a known feature of obesity, where it is linked with increasing insulin resistance. However, the characteristics of adipose tissue macrophage accumulation in critical illness remain unknown. We studied macrophage markers with immunostaining and gene expression in visceral and subcutaneous adipose tissue from healthy control subjects (n = 20) and non-surviving prolonged critically ill patients (n = 61). For comparison, also subcutaneous in vivo adipose tissue biopsies were studied from 15 prolonged critically ill patients. Subcutaneous and visceral adipose tissue biopsies from non-surviving prolonged critically ill patients displayed a large increase in macrophage staining. This staining corresponded with elevated gene expression of "alternatively activated" M2 macrophage markers arginase-1, IL-10 and CD163 and low levels of the "classically activated" M1 macrophage markers tumor necrosis factor (TNF)-α and inducible nitric-oxide synthase (iNOS). Immunostaining for CD163 confirmed positive M2 macrophage staining in both visceral and subcutaneous adipose tissue biopsies from critically ill patients. Surprisingly, circulating levels and tissue gene expression of the alternative M2 activators IL-4 and IL-13 were low and not different from controls. In contrast, adipose tissue protein levels of peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor required for M2 differentiation and acting downstream of IL-4, was markedly elevated in illness. In subcutaneous abdominal adipose tissue biopsies from surviving critically ill patients, we could confirm positive macrophage staining with CD68 and CD163. We also could confirm elevated arginase-1 gene expression and elevated PPARγ protein levels. Unlike obesity, critical illness evokes adipose tissue accumulation of alternatively activated M2

  1. The distribution of macrophages with a M1 or M2 phenotype in relation to prognosis and the molecular characteristics of colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Sofia Edin

    Full Text Available High macrophage infiltration has been correlated to improved survival in colorectal cancer (CRC. Tumor associated macrophages (TAMs play complex roles in tumorigenesis since they are believed to hold both tumor preventing (M1 macrophages and tumor promoting (M2 macrophages activities. Here we have applied an immunohistochemical approach to determine the degree of infiltrating macrophages with a M1 or M2 phenotype in clinical specimens of CRC in relation to prognosis, both in CRC in general but also in subgroups of CRC defined by microsatellite instability (MSI screening status and the CpG island methylator phenotype (CIMP. A total of 485 consecutive CRC specimens were stained for nitric oxide synthase 2 (NOS2 (also denoted iNOS as a marker for the M1 macrophage phenotype and the scavenger receptor CD163 as a marker for the M2 macrophage phenotype. The average infiltration of NOS2 and CD163 expressing macrophages along the invasive tumor front was semi-quantitatively evaluated using a four-graded scale. Two subtypes of macrophages, displaying M1 (NOS2(+ or M2 (CD163(+ phenotypes, were recognized. We observed a significant correlation between the amount of NOS2(+ and CD163(+ cells (P<0.0001. A strong inverse correlation to tumor stage was found for both NOS2 (P<0.0001 and CD163 (P<0.0001 infiltration. Furthermore, patients harbouring tumors highly infiltrated by NOS2(+ cells had a significantly better prognosis than those infiltrated by few NOS2(+ cells, and this was found to be independent of MSI screening status and CIMP status. No significant difference was found on cancer-specific survival in groups of CRC with different NOS2/CD163 ratios. In conclusion, an increased infiltration of macrophages with a M1 phenotype at the tumor front is accompanied by a concomitant increase in macrophages with a M2 phenotype, and in a stage dependent manner correlated to a better prognosis in patients with CRC.

  2. Macrophage Area Content and Phenotype in Hepatic and Adipose Tissue in Patients with Obesity Undergoing Roux-en-Y Gastric Bypass

    DEFF Research Database (Denmark)

    Kristensen, Marianne D; Lund, Michael Taulo; Hansen, Merethe

    2017-01-01

    OBJECTIVE: To investigate hepatic and adipose tissue macrophage content in subjects with obesity and the role of adipose tissue macrophages in weight loss-induced improved insulin sensitivity (IS). METHODS: A cross-sectional and a longitudinal study were combined to investigate the role...... of macrophages in subcutaneous (SAT) and visceral (VAT) adipose tissue and the liver in obesity-induced impaired IS and improvements with weight loss. Macrophage markers (CD68, CD163, and CD206) in SAT, VAT, and the liver from patients with obesity were investigated. The same macrophage markers were investigated...... in SAT from 18 patients with obesity before and ∼18 months after a diet- and Roux-en-Y gastric bypass-induced weight loss. RESULTS: SAT macrophage markers did not decrease with weight loss, but macrophage concentration may have increased, concomitant with improved IS. Hepatic macrophage markers did...

  3. Anti-CD163-dexamethasone conjugate inhibits the acute phase response to lipopolysaccharide in rats

    DEFF Research Database (Denmark)

    Thomsen, Karen Louise; Møller, Holger Jon; Graversen, Jonas Heilskov

    2016-01-01

    ± 4036 pg/mL, P = 0.03) compared to the low dose dexamethasone. The high dose dexamethasone dose decreased the spleen weight (421 ± 11 mg vs 465 ± 12 mg, P any other group. CONCLUSION: Low-dose anti-CD163-dexamethasone conjugate effectively decreased...

  4. Preterm delivery predicted by soluble CD163 and CRP in women with symptoms of preterm delivery

    DEFF Research Database (Denmark)

    Vogel, Ida; Grove, Jakob; Thorsen, Poul

    2005-01-01

    : High levels of sCD163 or CRP are associated with an increased risk of preterm delivery in women with symptoms of delivery. Good prediction of preterm delivery before 34 weeks of gestation was obtained by a combination of preterm prelabour rupture of membranes (PPROM), overweight, relaxin, CRP and s...

  5. Progress on macrophage's proinflammatory products as markers of acute endometriosis

    Directory of Open Access Journals (Sweden)

    Alicja Ziętek

    2015-08-01

    Full Text Available To provide the review of the macrophage activity products as pathophysiological markers of endometriosis by literature survey (PubMed, Cochrane. Immunoreactive cells and several of their synthesis products concentrations are elevated in the serum and peritoneal fluid in patients with endometriosis. The enhanced reactive proteins contributed to local inflammation and aggregation of endometriotic lesions. Immune response and immune surveillance of tissue play an important role in pathogenesis of endometriosis. Activated macrophages in peritoneal environment secrete immunoreactive cytokines which are responsible for inflammatory cascade of reactions. The immunoreactive cytokines should be a target not only as a disease marker but also as a part of therapeutic protocol.

  6. Serum levels of TWEAK and scavenger receptor CD163 in type 1 diabetes mellitus: relationship with cardiovascular risk factors. a case-control study.

    Directory of Open Access Journals (Sweden)

    Gemma Llauradó

    Full Text Available OBJECTIVE: To test the usefulness of serum concentrations of tumor necrosis factor-like weak inducer of apoptosis (sTWEAK and soluble scavenger receptor CD163 (sCD163 as markers of subtle inflammation in patients with type 1 diabetes mellitus (T1DM without clinical cardiovascular (CV disease and to evaluate their relationship with arterial stiffness (AS. METHODS: Sixty-eight patients with T1DM and 68 age and sex-matched, healthy subjects were evaluated. Anthropometrical variables and CV risk factors were recorded. Serum concentrations of sTWEAK and sCD163 were measured. AS was assessed by aortic pulse wave velocity (aPWV. All statistical analyses were stratified by gender. RESULTS: T1DM patients showed lower serum concentrations of sTWEAK (Men: 1636.5 (1146.3-3754.8 pg/mL vs. 765.9 (650.4-1097.1 pg/mL; p<0.001. Women: 1401.0 (788.0-2422.2 pg/mL vs. 830.1 (562.6-1175.9 pg/mL; p = 0.011 compared with their respective controls. Additionally, T1DM men had higher serum concentrations of sCD163 (285.0 (247.7-357.1 ng/mL vs. 224.8 (193.3-296.5 ng/mL; p = 0.012 compared with their respective controls. sTWEAK correlated negatively with aPWV in men (r = -0.443; p<0.001. However, this association disappeared after adjusting for potential confounders. In men, the best multiple linear regression model showed that the independent predictors of sTWEAK were T1DM and WHR (R(2 = 0.640; p<0.001. In women, T1DM and SBP were the independent predictors for sTWEAK (R(2 = 0.231; p = 0.001. CONCLUSION: sTWEAK is decreased in T1DM patients compared with age and sex-matched healthy subjects after adjusting for classic CV risk factors, although sTWEAK levels may be partially influenced by some of them. Additionally, T1DM men have higher serum concentrations of sCD163. These results point out an association between the inflammatory system and CV risk in T1DM.

  7. Alternatively Activated (M2) Macrophage Phenotype Is Inducible by Endothelin-1 in Cultured Human Macrophages.

    Science.gov (United States)

    Soldano, Stefano; Pizzorni, Carmen; Paolino, Sabrina; Trombetta, Amelia Chiara; Montagna, Paola; Brizzolara, Renata; Ruaro, Barbara; Sulli, Alberto; Cutolo, Maurizio

    2016-01-01

    Alternatively activated (M2) macrophages are phenotypically characterized by the expression of specific markers, mainly macrophage scavenger receptors (CD204 and CD163) and mannose receptor-1 (CD206), and participate in the fibrotic process by over-producing pro-fibrotic molecules, such as transforming growth factor-beta1 (TGFbeta1) and metalloproteinase (MMP)-9. Endothelin-1 (ET-1) is implicated in the fibrotic process, exerting its pro-fibrotic effects through the interaction with its receptors (ETA and ETB). The study investigated the possible role of ET-1 in inducing the transition from cultured human macrophages into M2 cells. Cultured human monocytes (THP-1 cell line) were activated into macrophages (M0 macrophages) with phorbol myristate acetate and subsequently maintained in growth medium (M0-controls) or treated with either ET-1 (100nM) or interleukin-4 (IL-4, 10ng/mL, M2 inducer) for 72 hours. Similarly, primary cultures of human peripheral blood monocyte (PBM)-derived macrophages obtained from healthy subjects, were maintained in growth medium (untreated cells) or treated with ET-1 or IL-4 for 6 days. Both M0 and PBM-derived macrophages were pre-treated with ET receptor antagonist (ETA/BRA, bosentan 10-5M) for 1 hour before ET-1 stimulation. Protein and gene expression of CD204, CD206, CD163, TGFbeta1 were analysed by immunocytochemistry, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Gene expression of interleukin(IL)-10 and macrophage derived chemokine (CCL-22) was evaluated by qRT-PCR. MMP-9 production was investigated by gel zymography. ET-1 significantly increased the expression of M2 phenotype markers CD204, CD206, CD163, IL-10 and CCL-22, and the production of MMP-9 in both cultures of M0 and PBM-derived macrophages compared to M0-controls and untreated cells. In cultured PBM-derived macrophages, ET-1 increased TGFbeta1 protein and gene expression compared to untreated cells. The ET-1-mediated effects were

  8. Diagnostic value of soluble CD163 serum levels in patients suspected of meningitis: comparison with CRP and procalcitonin

    DEFF Research Database (Denmark)

    Knudsen, Troels Bygum; Larsen, Klaus; Kristiansen, Thomas Birk

    2007-01-01

    CD163. However, sCD163 may be helpful in rapid identification of patients with systemic bacterial infection. If used as an adjunct to lumbar puncture, PCT and CRP had very high diagnostic accuracy for distinguishing between bacterial and viral infection in patients with spinal fluid pleocytosis. However......-operating characteristic AUCs (areas under curves). Patients were classified by 2 sets of diagnostic criteria into: A) purulent meningitis, serous meningitis or non-meningitis, and B) systemic bacterial infection, local bacterial infection or non-bacterial disease. An elevated serum level of sCD163 was the most specific......The aim of the study was to evaluate and compare the diagnostic value of sCD163 serum levels with CRP and PCT in meningitis and bacterial infection. An observational cohort study was conducted between February 2001 and February 2005. The study population comprised 55 patients suspected...

  9. Visceral obesity is associated with increased soluble CD163 concentration in men with type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Sørensen, Lars Peter; Parkner, Tina; Søndergaard, Esben

    2015-01-01

    individuals. The objective was to examine the effect of male overweight/obesity and type 2 diabetes mellitus (T2DM) on associations between adiposity parameters and sCD163. A total of 23 overweight/obese non-diabetic men, 16 overweight/obese men with T2DM, and a control group of 20 normal-weight healthy men...... multiple linear regression analysis. In the normal-weight healthy men, there was no significant association between adiposity parameters and sCD163, whereas in the overweight/obese non-diabetic men, measures of general and regional adiposity were positively associated with sCD163. In the overweight/obese......-body fat, adjusted for BMI and age, VAT remained a significant predictor of sCD163 in the overweight/obese T2DM men, but not in the overweight/obese non-diabetic men. Our results indicate that VAT inflammation is exaggerated in men with T2DM, and that propensity to store excess body fat viscerally...

  10. Distribution of CD163-positive cell and MHC class II-positive cell in the normal equine uveal tract.

    Science.gov (United States)

    Sano, Yuto; Matsuda, Kazuya; Okamoto, Minoru; Takehana, Kazushige; Hirayama, Kazuko; Taniyama, Hiroyuki

    2016-02-01

    Antigen-presenting cells (APCs) in the uveal tract participate in ocular immunity including immune homeostasis and the pathogenesis of uveitis. In horses, although uveitis is the most common ocular disorder, little is known about ocular immunity, such as the distribution of APCs. In this study, we investigated the distribution of CD163-positive and MHC II-positive cells in the normal equine uveal tract using an immunofluorescence technique. Eleven eyes from 10 Thoroughbred horses aged 1 to 24 years old were used. Indirect immunofluorescence was performed using the primary antibodies CD163, MHC class II (MHC II) and CD20. To demonstrate the site of their greatest distribution, positive cells were manually counted in 3 different parts of the uveal tract (ciliary body, iris and choroid), and their average number was assessed by statistical analysis. The distribution of pleomorphic CD163- and MHC II-expressed cells was detected throughout the equine uveal tract, but no CD20-expressed cells were detected. The statistical analysis demonstrated the distribution of CD163- and MHC II-positive cells focusing on the ciliary body. These results demonstrated that the ciliary body is the largest site of their distribution in the normal equine uveal tract, and the ciliary body is considered to play important roles in uveal and/or ocular immune homeostasis. The data provided in this study will help further understanding of equine ocular immunity in the normal state and might be beneficial for understanding of mechanisms of ocular disorders, such as equine uveitis.

  11. Macrophage Populations in Visceral Adipose Tissue from Pregnant Women: Potential Role of Obesity in Maternal Inflammation

    Directory of Open Access Journals (Sweden)

    Eyerahi Bravo-Flores

    2018-04-01

    Full Text Available Obesity is associated with inflammatory changes and accumulation and phenotype polarization of adipose tissue macrophages (ATMs. Obese pregnant women have alterations in adipose tissue composition, but a detailed description of macrophage population is not available. In this study, we characterized macrophage populations in visceral adipose tissue (VAT from pregnant women with normal, overweight, and obese pregestational weight. Immunophenotyping of macrophages from VAT biopsies was performed by flow cytometry using CD45 and CD14 as markers of hematopoietic and monocyte linage, respectively, while HLA-DR, CD11c, CD163, and CD206 were used as pro- and anti-inflammatory markers. Adipocyte number and size were evaluated by light microscopy. The results show that pregnant women that were overweight and obese during the pregestational period had adipocyte hypertrophy. Two different macrophage populations in VAT were identified: recruited macrophages (CD45+CD14+, and a novel population lacking CD45, which was considered to be a resident macrophages subset (CD45−CD14+. The number of resident HLA−DRlow/− macrophages showed a negative correlation with body mass index (BMI. Both resident and recruited macrophages from obese women expressed higher CD206 levels. CD11c expression was higher in resident HLA-DR+ macrophages from obese women. A strong correlation between CD206 and CD11c markers and BMI was observed. Our findings show that being overweight and obese in the pregestational period is associated with adipocyte hypertrophy and specific ATMs populations in VAT.

  12. M2-like macrophage polarization in high lactic acid-producing head and neck cancer.

    Science.gov (United States)

    Ohashi, Toshimitsu; Aoki, Mitsuhiro; Tomita, Hiroyuki; Akazawa, Takashi; Sato, Katsuya; Kuze, Bunya; Mizuta, Keisuke; Hara, Akira; Nagaoka, Hitoshi; Inoue, Norimitsu; Ito, Yatsuji

    2017-06-01

    Reprogramming of glucose metabolism in tumor cells is referred to as the Warburg effect and results in increased lactic acid secretion into the tumor microenvironment. We have previously shown that lactic acid has important roles as a pro-inflammatory and immunosuppressive mediator and promotes tumor progression. In this study, we examined the relationship between the lactic acid concentration and expression of LDHA and GLUT1, which are related to the Warburg effect, in human head and neck squamous cell carcinoma (HNSCC). Tumors expressing lower levels of LDHA and GLUT1 had a higher concentration of lactic acid than those with higher LDHA and GLUT1 expression. Lactic acid also suppressed the expression of LDHA and GLUT1 in vitro. We previously reported that lactic acid enhances expression of an M2 macrophage marker, ARG1, in murine macrophages. Therefore, we investigated the relationship between the lactic acid concentration and polarization of M2 macrophages in HNSCC by measuring the expression of M2 macrophage markers, CSF1R and CD163, normalized using a pan-macrophage marker, CD68. Tumors with lower levels of CD68 showed a higher concentration of lactic acid, whereas those with higher levels of CSF1R showed a significantly higher concentration of lactic acid. A similar tendency was observed for CD163. These results suggest that tumor-secreted lactic acid is linked to the reduction of macrophages in tumors and promotes induction of M2-like macrophage polarization in human HNSCC. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  13. Predictive value of soluble haemoglobin scavenger receptor CD163 serum levels for survival in verified tuberculosis patients

    DEFF Research Database (Denmark)

    Knudsen, T.B.; Gustafson, P.; Kronborg, G.

    2005-01-01

    Pre-treatment serum levels of sCD163 were measured in a cohort of 236 suspected tuberculosis (TB) cases from Guinea-Bissau, with a median follow-up period of 3.3 years (range 0-6.4 years). In 113 cases, the diagnosis of TB was verified by positive sputum microscopy and/or culture. Among the verif......Pre-treatment serum levels of sCD163 were measured in a cohort of 236 suspected tuberculosis (TB) cases from Guinea-Bissau, with a median follow-up period of 3.3 years (range 0-6.4 years). In 113 cases, the diagnosis of TB was verified by positive sputum microscopy and/or culture. Among...

  14. Molecular characterization of the haptoglobin.hemoglobin receptor CD163. Ligand binding properties of the scavenger receptor cysteine-rich domain region

    DEFF Research Database (Denmark)

    Madsen, Mette; Møller, Holger J; Nielsen, Marianne Jensby

    2004-01-01

    binding to SRCR domain 3 exhibited effective inhibition of ligand binding. Furthermore, analysis of purified native CD163 revealed that proteolytic cleavage in SRCR domain 3 inactivates ligand binding. Calcium protects against cleavage in this domain. Analysis of the calcium sensitivity of ligand binding...... to CD163 demonstrated that optimal ligand binding requires physiological plasma calcium concentrations, and an immediate ligand release occurs at the low calcium concentrations measured in acidifying endosomes. In conclusion, SRCR domain 3 of CD163 is an exposed domain and a critical determinant...... for the calcium-sensitive coupling of haptoglobin.hemoglobin complexes....

  15. Understanding the Mysterious M2 Macrophage through Activation Markers and Effector Mechanisms

    Science.gov (United States)

    Rőszer, Tamás

    2015-01-01

    The alternatively activated or M2 macrophages are immune cells with high phenotypic heterogeneity and are governing functions at the interface of immunity, tissue homeostasis, metabolism, and endocrine signaling. Today the M2 macrophages are identified based on the expression pattern of a set of M2 markers. These markers are transmembrane glycoproteins, scavenger receptors, enzymes, growth factors, hormones, cytokines, and cytokine receptors with diverse and often yet unexplored functions. This review discusses whether these M2 markers can be reliably used to identify M2 macrophages and define their functional subdivisions. Also, it provides an update on the novel signals of the tissue environment and the neuroendocrine system which shape the M2 activation. The possible evolutionary roots of the M2 macrophage functions are also discussed. PMID:26089604

  16. F4/80 as a Major Macrophage Marker: The Case of the Peritoneum and Spleen.

    Science.gov (United States)

    Dos Anjos Cassado, Alexandra

    2017-01-01

    Tissue macrophages are a heterogeneous cell population residing in all body tissues that contribute to the maintenance of homeostasis and trigger immune activation in response to injurious stimuli. This heterogeneity may be associated with tissue-specific functions; however, the presence of distinct macrophage populations within the same microenvironment indicates that macrophage heterogeneity may also be influenced outside of tissue specialization. The F4/80 molecule was established as a unique marker of murine macrophages when a monoclonal antibody was found to recognize an antigen exclusively expressed by these cells. However, recent research has shown that F4/80 is expressed by other immune cells and is not equivalently expressed across tissue-specific macrophage lineages, including those residing in the same microenvironment, such as the peritoneum and spleen. In this context, two murine macrophage subtypes with distinct F4/80 expression patterns were recently found to coexist in the peritoneum, termed large peritoneal macrophages (LPMs) and small peritoneal macrophages (SPMs). However, the presence of phenotypic and functional heterogeneous macrophage subpopulations in the spleen was already known. Thus, although F4/80 surface expression continues to be the best method to identify tissue macrophages, additional molecules must also be examined to distinguish these cells from other immune cells.

  17. Targeting Dexamethasone to Macrophages in a Porcine Endotoxemic Model

    DEFF Research Database (Denmark)

    Granfeldt, Asger; Hvas, Christine Lodberg; Graversen, Jonas Heilskov

    2013-01-01

    -8 minutes. CONCLUSION: Targeted delivery of dexamethasone to macrophages using a humanized CD163 antibody as carrier exhibits anti-inflammatory effects comparable with 50 times higher concentrations of free dexamethasone and does not inhibit endogenous cortisol production. This antibody-drug complex showing......OBJECTIVES: Macrophages are important cells in immunity and the main producers of pro-inflammatory cytokines. The main objective was to evaluate if specific delivery of glucocorticoid to the macrophage receptor CD163 is superior to systemic glucocorticoid therapy in dampening the cytokine response...

  18. Soluble macrophage-derived CD163: a homogenous ectodomain protein with a dissociable haptoglobin-hemoglobin binding

    DEFF Research Database (Denmark)

    Møller, Holger Jon; Nielsen, Marianne Jensby; Maniecki, Maciej Bogdan

    2010-01-01

    species in serum (from 50 healthy subjects and 29 patients) were measured with domain-specific ELISAs, purified from serum (from 6 individuals) by affinity chromatography and identified by western blotting and MALDI-TOF/TOF mass spectrometry. Binding to Hp-Hb complexes was investigated by gel...

  19. Antibody-Directed Glucocorticoid Targeting to CD163 in M2-type Macrophages Attenuates Fructose-Induced Liver Inflammatory Changes

    DEFF Research Database (Denmark)

    Svendsen, Pia; Graversen, Jonas Heilskov; Etzerodt, Anders

    2017-01-01

    Increased consumption of high-caloric carbohydrates contributes substantially to endemic non-alcoholic fatty liver disease in humans, covering a histological spectrum from fatty liver to steatohepatitis. Hypercaloric intake and lipogenetic effects of fructose and endotoxin-driven activation...... changes in rats on a high-fructose diet. The diet induced severe non-alcoholic steatohepatitis (NASH)-like changes within a few weeks but the antibody-drug conjugate strongly reduced inflammation, hepatocyte ballooning, fibrosis, and glycogen deposition. Non-conjugated dexamethasone or dexamethasone...... seems to be a promising approach for safe treatment of fructose-induced liver inflammation....

  20. Macrophage reaction against biomaterials in the mouse model - Phenotypes, functions and markers.

    Science.gov (United States)

    Klopfleisch, R

    2016-10-01

    The foreign body reaction (FBR) is a response of the host tissue against more or less degradation-resistant foreign macromolecular material. The reaction is divided into five different phases which involve most aspects of the innate and the adaptive immune system: protein adsorption, acute and chronic inflammation, foreign body giant cell formation and fibrosis. It is long known, that macrophages play a central role in all of these phases except for protein adsorption. Initially it was believed that the macrophage driven FBR has a complete negative effect on biocompatibility. Recent progress in biomaterial and macrophage research however describe macrophages as more than pure antigen phagocytosing and presenting cells and thus pro-inflammatory cells involved in biomaterial encapsulation and failure. Quite contrary, both, pro-inflammatory M1 macrophages, the diverse regulatory M2 macrophage subtypes and even foreign body giant cells (FBGC) are after necessary for integration of non-degradable biomaterials and degradation and replacement of degradable biomaterials. This review gives a comprehensive overview on the taxonomy of the currently known macrophage subtypes. Their diverging functions, metabolism and markers are summarized and the relevance of this more diverse macrophage picture for the design of biomaterials is shortly discussed. The view on role of macrophages in the foreign body reaction against biomaterials is rapidly changing. Despite the initial idea that macrophage are mainly involved in undesired degradation and biomaterial rejection it becomes now clear that they are nevertheless necessary for proper integration of non-degradable biomaterials and degradation of placeholder, degradable biomaterials. As a pathologist I experienced a lack on a good summary on the current taxonomy, functions and phenotypes of macrophages in my recent projects on the biocompatibility of biomaterials in the mouse model. The submitted review therefore intends to gives a

  1. Soluble CD163 levels are elevated in cerebrospinal fluid and serum in people with Type 2 diabetes mellitus and are associated with impaired peripheral nerve function

    DEFF Research Database (Denmark)

    Kallestrup, M; Møller, Holger Jon; Tankisi, H

    2015-01-01

    and serum in participants with neuropathy than in those without neuropathy [cerebrospinal fluid: median (range) 131 (86-173) vs 101 (70-190) μg/l, P = 0.08 and serum: 3725 (920-7060) vs 2220 (1130-4780), P = 0.06). CONCLUSIONS: Cerebrospinal fluid soluble CD163 level is associated with impaired peripheral......AIMS: To measure soluble CD163 levels in the cerebrospinal fluid and serum of people with Type 2 diabetes, with and without polyneuropathy, and to relate the findings to peripheral nerve function. METHODS: A total of 22 people with Type 2 diabetes and 12 control subjects without diabetes were...... included in this case-control study. Participants with diabetes were divided into those with neuropathy (n = 8) and those without neuropathy (n = 14) based on clinical examination, vibratory perception thresholds and nerve conduction studies. Serum and cerebrospinal fluid soluble CD163 levels were analysed...

  2. Anti-Inflammatory Modulation of Microglia via CD163-Targeted Glucocorticoids Protects Dopaminergic Neurons in the 6-OHDA Parkinson's Disease Model

    DEFF Research Database (Denmark)

    Tentillier, Noemie; Etzerodt, Anders; Olesen, Mads N

    2016-01-01

    intravenous CD163-targeted liposomes with Dexa for 3 weeks exhibited better motor performance than the control groups and had minimal glucocorticoid-driven side effects. Furthermore, these animals showed better survival of dopaminergic neurons in substantia nigra and an increased number of microglia...

  3. Plasma CXCL10, sCD163 and sCD14 Levels Have Distinct Associations with Antiretroviral Treatment and Cardiovascular Disease Risk Factors.

    Directory of Open Access Journals (Sweden)

    Alison Castley

    Full Text Available We investigate the associations of three established plasma biomarkers in the context of HIV and treatment-related variables including a comprehensive cardiovascular disease risk assessment, within a large ambulatory HIV cohort. Patients were recruited in 2010 to form the Royal Perth Hospital HIV/CVD risk cohort. Plasma sCD14, sCD163 and CXCL10 levels were measured in 475 consecutive patients with documented CVD risk (age, ethnicity, gender, smoking, blood pressure, BMI, fasting metabolic profile and HIV treatment history including immunological/virological outcomes. The biomarkers assessed showed distinct associations with virological response: CXCL10 strongly correlated with HIV-1 RNA (p0.2. Associations between higher sCD163 and protease inhibitor therapy (p = 0.05 and lower sCD14 with integrase inhibitor therapy (p = 0.02 were observed. Levels of sCD163 were also associated with CVD risk factors (age, ethnicity, HDL, BMI, with a favourable influence of Framingham score <10% (p = 0.04. Soluble CD14 levels were higher among smokers (p = 0.002, with no effect of other CVD risk factors, except age (p = 0.045. Our findings confirm CXCL10, sCD163 and sCD14 have distinct associations with different aspects of HIV infection and treatment. Levels of CXCL10 correlated with routinely monitored variables, sCD163 levels reflect a deeper level of virological suppression and influence of CVD risk factors, while sCD14 levels were not associated with routinely monitored variables, with evidence of specific effects of smoking and integrase inhibitor therapy warranting further investigation.

  4. Plasma CXCL10, sCD163 and sCD14 Levels Have Distinct Associations with Antiretroviral Treatment and Cardiovascular Disease Risk Factors

    Science.gov (United States)

    Castley, Alison; Williams, Leah; James, Ian; Guelfi, George; Berry, Cassandra; Nolan, David

    2016-01-01

    We investigate the associations of three established plasma biomarkers in the context of HIV and treatment-related variables including a comprehensive cardiovascular disease risk assessment, within a large ambulatory HIV cohort. Patients were recruited in 2010 to form the Royal Perth Hospital HIV/CVD risk cohort. Plasma sCD14, sCD163 and CXCL10 levels were measured in 475 consecutive patients with documented CVD risk (age, ethnicity, gender, smoking, blood pressure, BMI, fasting metabolic profile) and HIV treatment history including immunological/virological outcomes. The biomarkers assessed showed distinct associations with virological response: CXCL10 strongly correlated with HIV-1 RNA (p0.2). Associations between higher sCD163 and protease inhibitor therapy (p = 0.05) and lower sCD14 with integrase inhibitor therapy (p = 0.02) were observed. Levels of sCD163 were also associated with CVD risk factors (age, ethnicity, HDL, BMI), with a favourable influence of Framingham score <10% (p = 0.04). Soluble CD14 levels were higher among smokers (p = 0.002), with no effect of other CVD risk factors, except age (p = 0.045). Our findings confirm CXCL10, sCD163 and sCD14 have distinct associations with different aspects of HIV infection and treatment. Levels of CXCL10 correlated with routinely monitored variables, sCD163 levels reflect a deeper level of virological suppression and influence of CVD risk factors, while sCD14 levels were not associated with routinely monitored variables, with evidence of specific effects of smoking and integrase inhibitor therapy warranting further investigation. PMID:27355513

  5. A methanolic extract of Trigonella foenum-graecum (fenugreek seeds regulates markers of macrophage polarization.

    Directory of Open Access Journals (Sweden)

    Nurudeen Hassan

    2015-12-01

    Full Text Available Background: Macrophages are key cellular mediators in diabetes-related inflammation. Molecular cues such as cytokines found in the tissue microenvironment regulates the polarization of macrophages into an M1 (pro-inflammatory or M2 (immunoregulatory phenotype. Recent evidence suggests that M1 macrophages in diabetic patients may contribute to the complications associated with the disease such as atherosclerosis. Trigonella foenum- graecum (Tfg: fenugreek seeds have been used in traditional medicine in Asia, Africa and the Middle-East for their alleged anti-diabetic properties. Objective: To identify the molecular mechanism(s through which Tfg seeds exert their effects, we investigated the role of a crude methanolic extract of Tfg (FME seeds on macrophage polarization in vitro. Method: THP-1 macrophages (Mϕ were treated with gBSA in the presence/absence of FME and the release and expression of M1 and M2 markers/cytokines were analysed. The role of FME on NF-κB activity was also explored using transfected HEK-293T cells. Results: This study found that the FME significantly (P<0.05 decreased gBSA-induced secretion of M1 cytokines (TNF-α, IL-1β, IL-6 and IL-8 in THP-1 Mϕ cells. In the presence of gBSA, FME also significantly increased the gene expression of the M2 marker Dectin-1, but had no effect on IL-10, IL-1Ra. FME also significantly decreased TNF-α induced NF-kB reporter activity. Conclusion: These results suggest that FME can regulate the expression of M1 and M2 markers in THP-1 Mϕ cells. This may be potentially through the modulation of NF-kB activity. Further work should be carried out to identify precise mechanism(s involved in the effects of FME and Tfg seeds.

  6. Carbon Particles in Airway Macrophage as a Surrogate Marker in the Early Detection of Lung Diseases

    Directory of Open Access Journals (Sweden)

    NK Kalappanavar

    2012-03-01

    Full Text Available Background: It has been shown that inhalation of carbonaceous particulate matter may impair lung function in children. Objective: Using the carbon content of airway macrophages as a marker of individual exposure to particulate matter derived from fossil fuel, we sought direct evidence for this association. Methods: 300 children from puffed rice industrial areas and 300 children from population living in green zone were selected randomly. Airway macrophages were obtained from healthy children through sputum induction, and the grading of ultrafine carbon particles in airway macrophages was measured. Pulmonary function was also measured by spirometry. Results: Pulmonary function tests showed that in industrial area 42.6% and 20.3% of children had moderate obstructive airway disease and restrictive airway disease, respectively. In the green zone area, 7% of children had obstructive airway disease and 6% had restrictive airway disease. Evaluation of airway macrophages for ultrafine carbon particles revealed that in industrial area there were ultrafine carbon particles of grade 2 in 23% of subjects and grade 3 in 8.33% of individuals with obstructive airway disease. In the green zone area, the rates were 1.67% and 0.7%, respectively. Conclusion: The study provides a first evidence of the strong association between air pollution and development of airway diseases. Carbon particles in the sputum can be used as a marker for air pollution.

  7. MicroRNA-24 Modulates Staphylococcus aureus-Induced Macrophage Polarization by Suppressing CHI3L1.

    Science.gov (United States)

    Jingjing, Zhang; Nan, Zhang; Wei, Wu; Qinghe, Guo; Weijuan, Wang; Peng, Wang; Xiangpeng, Wang

    2017-06-01

    Macrophages play a crucial role in host innate anti-Staphylococcus aureus defense, which is tightly regulated by multiple factors, including microRNAs. A recent study showed that miR-24 plays an important role in macrophage polarization. Here, we investigated the biological function of miR-24 in S. aureus-stimulated macrophages. The results revealed that miR-24 expression was significantly decreased in both human and mouse macrophage cell lines with S. aureus stimulation in a time-dependent manner. Moreover, miR-24 overexpression significantly decreased the production of M1 phenotype markers, such as IL-6, iNOS, TNF-α, CD86, and CD80, whereas it increased the production of M2 markers, such as Arg1, CCL17, CCL22, CD163, and CD206, in S. aureus-stimulated macrophages. Conversely, knockdown of miR-24 promoted M1 macrophage polarization but diminished M2 macrophage polarization in S. aureus-stimulated macrophages. Furthermore, CHI3L1 was predicted as a target gene of miR-24 using bioinformatics software and identified by luciferase reporter assay. Additionally, miR-24 overexpression inhibited CHI3L1 expression and downregulated the downstream MAPK pathway in S. aureus-stimulated macrophages. Finally, CHI3L1 overexpression rescued macrophage polarization and MAPK pathway inhibition induced by miR-24 mimic transfection in S. aureus-stimulated macrophages. In conclusion, the data suggest that miR-24 serves as a molecular regulator in S. aureus-induced macrophage polarization through targeting of CHI3L1 and regulation of the MAPK pathway, which may provide a promising therapeutic target for S. aureus-related infections and inflammatory diseases.

  8. Biodistribution and PET Imaging of a Novel [(68)Ga]-Anti-CD163-Antibody Conjugate in Rats with Collagen-Induced Arthritis and in Controls

    DEFF Research Database (Denmark)

    Eichendorff, Sascha; Svendsen, Pia; Bender, Dirk

    2015-01-01

    -68 and evaluated stability and binding specificity of the conjugate ([(68)Ga]ED2) in vitro. Furthermore, tracer biodistribution was assessed in vivo in healthy rats and rats with acute collagen-induced arthritis (CIA) by MicroPET and tissue analysis. RESULTS: Radiosynthesis of [(68)Ga]ED2 antibody...... was also changed in the sense that a significantly higher liver uptake and lower spleen uptake of [(68)Ga]ED2 was measured in CIA rats that accordingly showed a corresponding change in level of CD163 expression. CONCLUSIONS: [(68)Ga]ED2 specifically binds CD163 in vitro and in vivo. Biodistribution studies...... in CIA rats suggest that this novel tool may have applications in studies of inflammatory diseases....

  9. Macrophage polarization differs between apical granulomas, radicular cysts, and dentigerous cysts.

    Science.gov (United States)

    Weber, Manuel; Schlittenbauer, Tilo; Moebius, Patrick; Büttner-Herold, Maike; Ries, Jutta; Preidl, Raimund; Geppert, Carol-Immanuel; Neukam, Friedrich W; Wehrhan, Falk

    2018-01-01

    Apical periodontitis can appear clinically as apical granulomas or radicular cysts. There is evidence that immunologic factors are involved in the pathogenesis of both pathologies. In contrast to radicular cysts, the dentigerous cysts have a developmental origin. Macrophage polarization (M1 vs M2) is a main regulator of tissue homeostasis and differentiation. There are no studies comparing macrophage polarization in apical granulomas, radicular cysts, and dentigerous cysts. Forty-one apical granulomas, 23 radicular cysts, and 23 dentigerous cysts were analyzed in this study. A tissue microarray (TMA) of the 87 consecutive specimens was created, and CD68-, CD11c-, CD163-, and MRC1-positive macrophages were detected by immunohistochemical methods. TMAs were digitized, and the expression of macrophage markers was quantitatively assessed. Radicular cysts are characterized by M1 polarization of macrophages while apical granulomas show a significantly higher degree of M2 polarization. Dentigerous cysts have a significantly lower M1 polarization than both analyzed periapical lesions (apical granulomas and radicular cysts) and accordingly, a significantly higher M2 polarization than radicular cysts. Macrophage cell density in dentigerous cysts is significantly lower than in the periapical lesions. The development of apical periodontitis towards apical granulomas or radicular cysts might be directed by macrophage polarization. Radicular cyst formation is associated with an increased M1 polarization of infiltrating macrophages. In contrast to radicular cysts, dentigerous cysts are characterized by a low macrophage infiltration and a high degree of M2 polarization, possibly reflecting their developmental rather than inflammatory origin. As M1 polarization of macrophages is triggered by bacterial antigens, these results underline the need for sufficient bacterial clearance during endodontic treatment to prevent a possible M1 macrophage-derived stimulus for radicular cyst

  10. Soluble CD163, adiponectin, C-reactive protein and progression of dysglycaemia in individuals at high risk of type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Deichgræber, Pia; Witte, Daniel R; Møller, Holger J

    2016-01-01

    -up examination (ADDITION-Progression [ADDITION-PRO]) in 2009–2011. Baseline serum samples were analysed for sCD163, adiponectin and CRP. The associations between sCD163, adiponectin and CRP per doubling of concentration, and changes per year in HbA1c, fasting plasma glucose, 2 h glucose, fasting insulin, HOMA-IR....... A doubling of adiponectin was inversely associated with changes in 2 h glucose (β =−0.063 per year, 95% CI −0.111, −0.014), HOMA-IR (β =−0.038 per year, 95% CI −0.060, −0.015) and HOMA-β (β =−1.028 per year, 95% CI −1.635, −0.421) after adjustment for age and sex. The associations were robust to adjustment...... and HOMA-β were assessed using a mixed-effects model. Results: A doubling of sCD163 concentration was positively associated with changes in HOMA-β (β = 1.160 per year, 95% CI 0.345, 1.975) as well as a doubling of CRP concentration (β = 0.410 per year, 95% CI 0.051, 0.769) after adjustment for age and sex...

  11. Effects of glutamine, taurine and their association on inflammatory pathway markers in macrophages.

    Science.gov (United States)

    Sartori, Talita; Galvão Dos Santos, Guilherme; Nogueira-Pedro, Amanda; Makiyama, Edson; Rogero, Marcelo Macedo; Borelli, Primavera; Fock, Ricardo Ambrósio

    2018-06-01

    The immune system is essential for the control and elimination of infections, and macrophages are cells that act as important players in orchestrating the various parts of the inflammatory/immune response. Amino acids play important role in mediating functionality of the inflammatory response, especially mediating macrophages functions and cytokines production. We investigated the influence of glutamine, taurine and their association on the modulation of inflammatory pathway markers in macrophages. The RAW 264.7 macrophage cell line was cultivated in the presence of glutamine and taurine and proliferation rates, cell viability, cell cycle phases, IL-1α, IL-6, IL-10 and TNF-α as well as H 2 O 2 production and the expression of the transcription factor, NFκB, and its inhibitor, IκBα, were evaluated. Our results showed an increase in viable cells and increased proliferation rates of cells treated with glutamine concentrations over 2 mM, as well as cells treated with both glutamine and taurine. The cell cycle showed a higher percentage of cells in the phases S, G2 and M when they were treated with 2 or 10 mM glutamine, or with glutamine and taurine in cells stimulated with lipopolysaccharide. The pNFκB/NFκB showed reduced ratio expression when cells were treated with 10 mM of glutamine or with glutamine in association with taurine. These conditions also resulted in reduced TNF-α, IL-1α and H 2 O 2 production, and higher production of IL-10. These findings demonstrate that glutamine and taurine are able to modulate macrophages inflammatory pathways, and that taurine can potentiate the effects of glutamine, illustrating their immunomodulatory properties.

  12. Construction of genetic markers for the study of Salmonella typhimurium infection of murine macrophages

    DEFF Research Database (Denmark)

    Jelsbak, Lotte; Olsen, John Elmerdahl

    in combination with available host markers it will be possible to estimate the time-point at which a specific gene is required for progression of SCV maturation. These developmentally regulated reporter fusions constitute a set of novel developmental markers for the study of Salmonella Typhimurium infection...... with the host cell, (2) Formation of early SCV, (3) Maturation into late SCV, (4) Initiation of bacterial replication, (5) Formation of Sifs. In this project, we have constructed a set of reporter fusions which are temporally and spatially regulated during the progression of SCV maturation. The reporter fusions...... were constructed using Red-mediated recombination (1) and the promoters were selected from the recently published expressional data of Salmonella infection of murine macrophages (2). As reporter proteins we both use a stable GFPmut3 variant as well as an unstable GFP variant (3). Using these fusions...

  13. CEA in activated macrophages. New diagnostic possibilities for tumor markers in early colorectal cancer.

    Science.gov (United States)

    Japink, Dennis; Leers, Mathie P G; Sosef, Meindert N; Nap, Marius

    2009-08-01

    Serum tumor markers show low sensitivity, making them unsuitable for early detection of cancer. Activated macrophages (AM) from peripheral blood can accumulate tumor marker substances and facilitate early detection in prostate cancer. Here it was investigated whether carcinoembryonic antigen (CEA)-containing macrophages (CEACM) can be used to detect colorectal cancer (CRC) at earlier stages than can serum CEA. Peripheral blood was collected from patients with CRC (n=48), inflammatory colorectal disease (n=5) and from healthy controls (n=18). After separating and labeling AM with CD14-APC/CD16-FITC, AM were intracellularly labeled with anti-CEA antibody and flow cytometrically analyzed. Serum CEA and C-reactive protein (CRP) were measured. The fraction-size of CEACM discriminated between controls and CRC patients, irrespective of AJCC stage (AJCC stage I-IV, pCEA values were significantly elevated in AJCC stage II, III and IV (p=0.02, 0.006 and <0.0001, respectively). Combining CEACM with CRP levels separated CRC from inflammatory colorectal disease. CEACM combined with CRP appears to have diagnostic potential in early CRC.

  14. Infiltration of the synovial membrane with macrophage subsets and polymorphonuclear cells reflects global disease activity in spondyloarthropathy.

    Science.gov (United States)

    Baeten, Dominique; Kruithof, Elli; De Rycke, Leen; Boots, Anemieke M; Mielants, Herman; Veys, Eric M; De Keyser, Filip

    2005-01-01

    Considering the relation between synovial inflammation and global disease activity in rheumatoid arthritis (RA) and the distinct but heterogeneous histology of spondyloarthropathy (SpA) synovitis, the present study analyzed whether histopathological features of synovium reflect specific phenotypes and/or global disease activity in SpA. Synovial biopsies obtained from 99 SpA and 86 RA patients with active knee synovitis were analyzed for 15 histological and immunohistochemical markers. Correlations with swollen joint count, serum C-reactive protein concentrations, and erythrocyte sedimentation rate were analyzed using classical and multiparameter statistics. SpA synovitis was characterized by higher vascularity and infiltration with CD163+ macrophages and polymorphonuclear leukocytes (PMNs) and by lower values for lining-layer hyperplasia, lymphoid aggregates, CD1a+ cells, intracellular citrullinated proteins, and MHC-HC gp39 complexes than RA synovitis. Unsupervised clustering of the SpA samples based on synovial features identified two separate clusters that both contained different SpA subtypes but were significantly differentiated by concentration of C-reactive protein and erythrocyte sedimentation rate. Global disease activity in SpA correlated significantly with lining-layer hyperplasia as well as with inflammatory infiltration with macrophages, especially the CD163+ subset, and with PMNs. Accordingly, supervised clustering using these synovial parameters identified a cluster of 20 SpA patients with significantly higher disease activity, and this finding was confirmed in an independent SpA cohort. However, multiparameter models based on synovial histopathology were relatively poor predictors of disease activity in individual patients. In conclusion, these data indicate that inflammatory infiltration of the synovium with CD163+ macrophages and PMNs as well as lining-layer hyperplasia reflect global disease activity in SpA, independently of the SpA subtype

  15. Bone marrow-derived and peritoneal macrophages have different inflammatory response to oxLDL and M1/M2 marker expression

    DEFF Research Database (Denmark)

    Bisgaard, Line S; Mogensen, Christina K; Rosendahl, Alexander

    2016-01-01

    Macrophages are heterogeneous and can polarize into specific subsets, e.g. pro-inflammatory M1-like and re-modelling M2-like macrophages. To determine if peritoneal macrophages (PEMs) or bone marrow derived macrophages (BMDMs) resembled aortic macrophages from ApoE-/- mice, their M1/M2 phenotype,......, ACSL1, SRB1, DGAT1, and cpt1a) was decreased in advanced versus early lesions. In conclusion, PEMs and BMDMs are phenotypically distinct and differ from macrophages in lesions with respect to expression of M1/M2 markers and lipid metabolism genes....

  16. The influence of aging and estradiol to progesterone ratio on rat macrophage phenotypic profile and NO and TNF-α production.

    Science.gov (United States)

    Dimitrijević, Mirjana; Stanojević, Stanislava; Kuštrimović, Nataša; Mitić, Katarina; Vujić, Vesna; Aleksić, Iva; Radojević, Katarina; Leposavić, Gordana

    2013-11-01

    The phenotype and function of tissue macrophages substantially depend on the cellular milieu and biological effector molecules, such as steroid hormones, to which they are exposed. Furthermore, in female rats, aging is associated with the altered macrophage functioning and the increased estrogen level is followed by a decrease in that of progesterone. Therefore, the present study aimed to investigate the influence of estradiol/progesterone balance on rat macrophage function and phenotype throughout whole adult lifespan. We ovariectomized rats at the late prepubertal age or at the very end of reproductive lifespan, and examined the expression of ED2 (CD163, a marker of mature resident macrophages related to secretion of inflammatory mediators) on peritoneal macrophages and their ability to produce TNF-α and NO upon LPS-stimulation at different age points. In addition, to delineate direct and indirect effects of estrogen, we assessed the in vitro influence of different concentrations of 17β-estradiol on LPS-induced macrophage TNF-α and NO production. Results showed that: (a) the low frequency of ED2(high) cells amongst peritoneal macrophages of aged rats was accompanied with the reduced TNF-α, but not NO production; (b) estradiol level gradually increased following ovariectomy; (c) macrophage ED2 expression and TNF-α production were dependent on estradiol/progesterone balance and they changed in the same direction; (d) changes in estradiol/progesterone balance differentially affected macrophages TNF-α and NO production; and (e) estradiol exerted pro-inflammatory and anti-inflammatory effects on macrophages in vivo and in vitro, respectively. Overall, our study discloses that estradiol/progesterone balance contributes to the fine-tuning of rat macrophage secretory capacity, and adds to a better understanding of the ovarian steroid hormone role in the regulation of macrophage function, and its significance for the age-associated changes in innate immunity.

  17. Soluble human leukocyte antigen G5 polarizes differentiation of macrophages toward a decidual macrophage-like phenotype.

    Science.gov (United States)

    Lee, Cheuk-Lun; Guo, YiFan; So, Kam-Hei; Vijayan, Madhavi; Guo, Yue; Wong, Vera H H; Yao, YuanQing; Lee, Kai-Fai; Chiu, Philip C N; Yeung, William S B

    2015-10-01

    What are the actions of soluble human leukocyte antigen G5 (sHLAG5) on macrophage differentiation? sHLAG5 polarizes the differentiation of macrophages toward a decidual macrophage-like phenotype, which could regulate fetomaternal tolerance and placental development. sHLAG5 is a full-length soluble isoform of human leukocyte antigen implicated in immune tolerance during pregnancy. Low or undetectable circulating level of sHLAG5 in first trimester of pregnancy is associated with pregnancy complications such as pre-eclampsia and spontaneous abortion. Decidual macrophages are located in close proximity to invasive trophoblasts, and are involved in regulating fetomaternal tolerance and placental development. Human peripheral blood monocytes were differentiated into macrophages by treatment with granulocyte macrophage colony-stimulating factor in the presence or absence of recombinant sHLAG5 during the differentiation process. The phenotypes and the biological activities of the resulting macrophages were compared. Recombinant sHLAG5 was produced in Escherichia coli BL21 and the protein identity was verified by tandem mass spectrometry. The expression of macrophage markers were analyzed by flow cytometry and quantitative PCR. Phagocytosis was determined by flow cytometry. Indoleamine 2,3-dioxygenase 1 expression and activity were measured by western blot analysis and kynurenine assay, respectively. Cell proliferation and cell cycling were determined by fluorometric cell proliferation assay and flow cytometry, respectively. Cytokine secretion was determined by cytokine array and ELISA kits. Intracellular cytokine expression was measured by flow cytometry. Cell invasion and migration were determined by trans-well invasion and migration assay, respectively. sHLAG5 drove the differentiation of macrophages with 'immuno-modulatory' characteristics, including reduced expression of M1 macrophage marker CD86 and increased expression of M2 macrophage marker CD163. sHLAG5-polarized

  18. Elevated Plasma Soluble CD14 and Skewed CD16+ Monocyte Distribution Persist despite Normalisation of Soluble CD163 and CXCL10 by Effective HIV Therapy: A Changing Paradigm for Routine HIV Laboratory Monitoring?

    Science.gov (United States)

    Castley, Alison; Berry, Cassandra; French, Martyn; Fernandez, Sonia; Krueger, Romano; Nolan, David

    2014-01-01

    Objective We investigated plasma and flow cytometric biomarkers of monocyte status that have been associated with prognostic utility in HIV infection and other chronic inflammatory diseases, comparing 81 HIV+ individuals with a range of treatment outcomes to a group of 21 healthy control blood donors. Our aim is to develop and optimise monocyte assays that combine biological relevance, clinical utility, and ease of adoption into routine HIV laboratory practice. Design Cross-sectional evaluation of concurrent plasma and whole blood samples. Methods A flow cytometry protocol was developed comprising single-tube CD45, CD14, CD16, CD64, CD163, CD143 analysis with appropriately matched isotype controls. Plasma levels of soluble CD14 (sCD14), soluble CD163 (sCD163) and CXCL10 were measured by ELISA. Results HIV status was associated with significantly increased expression of CD64, CD143 and CD163 on CD16+ monocytes, irrespective of the virological response to HIV therapy. Plasma levels of sCD14, sCD163 and CXCL10 were also significantly elevated in association with viremic HIV infection. Plasma sCD163 and CXCL10 levels were restored to healthy control levels by effective antiretroviral therapy while sCD14 levels remained elevated despite virological suppression (p<0.001). Conclusions Flow cytometric and plasma biomarkers of monocyte activation indicate an ongoing systemic inflammatory response to HIV infection, characterised by persistent alterations of CD16+ monocyte expression profiles and elevated sCD14 levels, that are not corrected by antiretroviral therapy and likely to be prognostically significant. In contrast, sCD163 and CXCL10 levels declined on antiretroviral therapy, suggesting multiple activation pathways revealed by these biomarkers. Incorporation of these assays into routine clinical care is feasible and warrants further consideration, particularly in light of emerging therapeutic strategies that specifically target innate immune activation in HIV

  19. Elevated plasma soluble CD14 and skewed CD16+ monocyte distribution persist despite normalisation of soluble CD163 and CXCL10 by effective HIV therapy: a changing paradigm for routine HIV laboratory monitoring?

    Directory of Open Access Journals (Sweden)

    Alison Castley

    Full Text Available OBJECTIVE: We investigated plasma and flow cytometric biomarkers of monocyte status that have been associated with prognostic utility in HIV infection and other chronic inflammatory diseases, comparing 81 HIV+ individuals with a range of treatment outcomes to a group of 21 healthy control blood donors. Our aim is to develop and optimise monocyte assays that combine biological relevance, clinical utility, and ease of adoption into routine HIV laboratory practice. DESIGN: Cross-sectional evaluation of concurrent plasma and whole blood samples. METHODS: A flow cytometry protocol was developed comprising single-tube CD45, CD14, CD16, CD64, CD163, CD143 analysis with appropriately matched isotype controls. Plasma levels of soluble CD14 (sCD14, soluble CD163 (sCD163 and CXCL10 were measured by ELISA. RESULTS: HIV status was associated with significantly increased expression of CD64, CD143 and CD163 on CD16+ monocytes, irrespective of the virological response to HIV therapy. Plasma levels of sCD14, sCD163 and CXCL10 were also significantly elevated in association with viremic HIV infection. Plasma sCD163 and CXCL10 levels were restored to healthy control levels by effective antiretroviral therapy while sCD14 levels remained elevated despite virological suppression (p<0.001. CONCLUSIONS: Flow cytometric and plasma biomarkers of monocyte activation indicate an ongoing systemic inflammatory response to HIV infection, characterised by persistent alterations of CD16+ monocyte expression profiles and elevated sCD14 levels, that are not corrected by antiretroviral therapy and likely to be prognostically significant. In contrast, sCD163 and CXCL10 levels declined on antiretroviral therapy, suggesting multiple activation pathways revealed by these biomarkers. Incorporation of these assays into routine clinical care is feasible and warrants further consideration, particularly in light of emerging therapeutic strategies that specifically target innate immune

  20. Mammary stem cell and macrophage markers are enriched in normal tissue adjacent to inflammatory breast cancer.

    Science.gov (United States)

    Reddy, Jay P; Atkinson, Rachel L; Larson, Richard; Burks, Jared K; Smith, Daniel; Debeb, Bisrat G; Ruffell, Brian; Creighton, Chad J; Bambhroliya, Arvind; Reuben, James M; Van Laere, Steven J; Krishnamurthy, Savitri; Symmans, William F; Brewster, Abenaa M; Woodward, Wendy A

    2018-06-01

    We hypothesized that breast tissue not involved by tumor in inflammatory breast cancer (IBC) patients contains intrinsic differences, including increased mammary stem cells and macrophage infiltration, which may promote the IBC phenotype. Normal breast parenchyma ≥ 5 cm away from primary tumors was obtained from mastectomy specimens. This included an initial cohort of 8 IBC patients and 60 non-IBC patients followed by a validation cohort of 19 IBC patients and 25 non-IBC patients. Samples were immunostained for either CD44 + CD49f + CD133/2 + mammary stem cell markers or the CD68 macrophage marker and correlated with IBC status. Quantitation of positive cells was determined using inForm software from PerkinElmer. We also examined the association between IBC status and previously published tumorigenic stem cell and IBC tumor signatures in the validation cohort samples. 8 of 8 IBC samples expressed isolated CD44 + CD49f + CD133/2 + stem cell marked cells in the initial cohort as opposed to 0/60 non-IBC samples (p = 0.001). Similarly, the median number of CD44 + CD49f + CD133/2 + cells was significantly higher in the IBC validation cohort as opposed to the non-IBC validation cohort (25.7 vs. 14.2, p = 0.007). 7 of 8 IBC samples expressed CD68 + histologically confirmed macrophages in initial cohort as opposed to 12/48 non-IBC samples (p = 0.001). In the validation cohort, the median number of CD68 + cells in IBC was 3.7 versus 1.0 in the non-IBC cohort (p = 0.06). IBC normal tissue was positively associated with a tumorigenic stem cell signature (p = 0.02) and with a 79-gene IBC signature (p stem cell signature and IBC-specific tumor signature. Collectively, these data suggest that IBC normal tissue differs from non-IBC tissue. Whether these changes occur before the tumor develops or is induced by tumor warrants further investigation.

  1. Response of macrophages in rat skeletal muscle after eccentric exercise.

    Science.gov (United States)

    Zuo, Qun; Wang, Shu-Chen; Yu, Xin-Kai; Chao, Wei-Wei

    2018-04-01

    Macrophages are known to be important for healing numerous injured tissues depending on their functional phenotypes in response to different stimuli. The objective of this study was to reveal macrophage phenotypic changes involved in exercise-induced skeletal muscle injury and regeneration. Adult male Sprague-Dawley rats experienced one session of downhill running (16° decline, 16 m/min) for 90 min. After exercise the blood and soleus muscles were collected at 0 h, 6 h, 12 h, 1 d, 2 d, 3 d, 1 w and 2 w after exercise, separately. It was showed that CD68 + M1 macrophages mainly infiltrated into muscle necrotic sites at 1-3 d, while CD163 + M2 macrophages were present in muscles from 0 h to 2 weeks after exercise. Using transmission electron microscopy, we observed activated satellite cells 1 d after exercise. Th1-associated transcripts of iNOS and Ccl2 were inhibited post exercise, while COX-2 mRNA was dramatically increased 12 h after running (p < 0.01). M2 phenotype marker Arg-1 increased 12 h and 3 d (p < 0.05, p < 0.01) after exercise, and Clec10a and Mrc2 were up-regulated in muscles 12 h following exercise (p < 0.05, p < 0.05). The data demonstrate the dynamic patterns of macrophage phenotype in skeletal muscle upon eccentric exercise stimuli, and M1 and M2 phenotypes perform different functions during exercise-induced skeletal muscle injury and recovery. Copyright © 2018 Daping Hospital and the Research Institute of Surgery of the Third Military Medical University. Production and hosting by Elsevier B.V. All rights reserved.

  2. Alternatively activated macrophages (M2 macrophages) in the skin of patient with localized scleroderma.

    Science.gov (United States)

    Higashi-Kuwata, Nobuyo; Makino, Takamitsu; Inoue, Yuji; Takeya, Motohiro; Ihn, Hironobu

    2009-08-01

    Localized scleroderma is a connective tissue disorder that is limited to the skin and subcutaneous tissue. Macrophages have been reported to be particularly activated in patients with skin disease including systemic sclerosis and are potentially important sources for fibrosis-inducing cytokines, such as transforming growth factor beta. To clarify the features of immunohistochemical characterization of the immune cell infiltrates in localized scleroderma focusing on macrophages, skin biopsy specimens were analysed by immunohistochemistry. The number of cells stained with monoclonal antibodies, CD68, CD163 and CD204, was calculated. An evident macrophage infiltrate and increased number of alternatively activated macrophages (M2 macrophages) in their fibrotic areas were observed along with their severity of inflammation. This study revealed that alternatively activated macrophages (M2 macrophages) may be a potential source of fibrosis-inducing cytokines in localized scleroderma, and may play a crucial role in the pathogenesis of localized scleroderma.

  3. Investigation of human cationic antimicrobial protein-18 (hCAP-18), lactoferrin and CD163 as potential biomarkers for ovarian cancer

    DEFF Research Database (Denmark)

    Lim, Ratana; Lappas, Martha; Riley, Clyde

    2013-01-01

    controls, including 28 women with benign pelvic masses; 91 cancer, including 21 women with borderline tumours). Localisation of each antigen within the ovary was assessed by immunohistochemistry and serum concentrations determined by ELISA assays. RESULTS: Immunoreactive (ir) hCAP-18 and lactoferrin were......BACKGROUND: Epithelial ovarian cancer is one of the leading causes of gynaecological cancer morbidity and mortality in women. Early stage ovarian cancer is usually asymptomatic, therefore, is often first diagnosed when it is widely disseminated. Currently available diagnostics lack the requisite...... and plasma concentrations of three putative ovarian cancer biomarkers: human cationic antimicrobial protein-18 (hCAP-18); lactoferrin; and CD163 in normal healthy women and women with ovarian cancer. METHODS: In this case-control cohort study, ovarian tissue and blood samples were obtained from 164 women (73...

  4. Alternatively Activated Macrophages Play an Important Role in Vascular Remodeling and Hemorrhaging in Patients with Brain Arteriovenous Malformation.

    Science.gov (United States)

    Nakamura, Yukihiko; Sugita, Yasuo; Nakashima, Shinji; Okada, Yousuke; Yoshitomi, Munetake; Kimura, Yoshizou; Miyoshi, Hiroaki; Morioka, Motohiro; Ohshima, Koichi

    2016-03-01

    Angiogenic and immunoactive lesions in brain arteriovenous malformation (BAVM) contribute to hemorrhagic events and the growth of BAVMs. However, the detailed mechanism is unclear. Our objective is to clarify the relationship between hemorrhagic events of BAVM and alternatively activated macrophages in the perinidal dilated capillary network (PDCN). We examined microsurgical specimens of BVMs (n = 29) and focused on the PDCN area. Ten autopsied brains without intracranial disease were the controls. We performed immunostaining of the inflammatory and endothelial cell markers, macrophage markers (CD163 and CD68), and vascular endothelial growth factor A (VEGF-A). We evaluated each cell's density and the vessel density in the PDCN and analyzed the relationship to hemorrhagic events of BAVM. The PDCN was involved in all the resected arteriovenous malformations, and these vessels showed a high rate of CD105 expression (72.0 ± 10.64%), indicating newly proliferating vessels. Alternatively activated macrophages were found, with a high rate (85.6%) for all macrophages (controls, 56.6%). In the hemorrhagic cases, the cell density was significantly higher than that in the nonhemorrhagic cases and controls (hemorrhagic group, 290 ± 44 cells/mm(2); nonhemorrhagic group, 180 ± 59 cells/mm(2); and control, 19 ± 8 cells/mm(2)). The cell density of alternatively activated macrophages showed a positive correlation with the vessel density of the PDCN. Double immunostaining showed that VEGF-A was secreted by alternatively activated macrophages. Our data suggest that alternatively activated macrophages may have some relationships with angiogenesis of PDCN and hemorrhagic event of BAVM. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  5. Simian hemorrhagic fever virus cell entry is dependent on CD163 and uses a clathrin-mediated endocytosis-like pathway.

    Science.gov (United States)

    Caì, Yíngyún; Postnikova, Elena N; Bernbaum, John G; Yú, Shu Qìng; Mazur, Steven; Deiuliis, Nicole M; Radoshitzky, Sheli R; Lackemeyer, Matthew G; McCluskey, Adam; Robinson, Phillip J; Haucke, Volker; Wahl-Jensen, Victoria; Bailey, Adam L; Lauck, Michael; Friedrich, Thomas C; O'Connor, David H; Goldberg, Tony L; Jahrling, Peter B; Kuhn, Jens H

    2015-01-01

    Simian hemorrhagic fever virus (SHFV) causes a severe and almost uniformly fatal viral hemorrhagic fever in Asian macaques but is thought to be nonpathogenic for humans. To date, the SHFV life cycle is almost completely uncharacterized on the molecular level. Here, we describe the first steps of the SHFV life cycle. Our experiments indicate that SHFV enters target cells by low-pH-dependent endocytosis. Dynamin inhibitors, chlorpromazine, methyl-β-cyclodextrin, chloroquine, and concanamycin A dramatically reduced SHFV entry efficiency, whereas the macropinocytosis inhibitors EIPA, blebbistatin, and wortmannin and the caveolin-mediated endocytosis inhibitors nystatin and filipin III had no effect. Furthermore, overexpression and knockout study and electron microscopy results indicate that SHFV entry occurs by a dynamin-dependent clathrin-mediated endocytosis-like pathway. Experiments utilizing latrunculin B, cytochalasin B, and cytochalasin D indicate that SHFV does not hijack the actin polymerization pathway. Treatment of target cells with proteases (proteinase K, papain, α-chymotrypsin, and trypsin) abrogated entry, indicating that the SHFV cell surface receptor is a protein. Phospholipases A2 and D had no effect on SHFV entry. Finally, treatment of cells with antibodies targeting CD163, a cell surface molecule identified as an entry factor for the SHFV-related porcine reproductive and respiratory syndrome virus, diminished SHFV replication, identifying CD163 as an important SHFV entry component. Simian hemorrhagic fever virus (SHFV) causes highly lethal disease in Asian macaques resembling human illness caused by Ebola or Lassa virus. However, little is known about SHFV's ecology and molecular biology and the mechanism by which it causes disease. The results of this study shed light on how SHFV enters its target cells. Using electron microscopy and inhibitors for various cellular pathways, we demonstrate that SHFV invades cells by low-pH-dependent, actin

  6. High intratumoral macrophage content is an adverse prognostic feature in anaplastic large cell lymphoma

    DEFF Research Database (Denmark)

    Pedersen, Martin Bjerregård; Hamilton-Dutoit, Stephen Jacques; Bendix, Knud

    2014-01-01

    AIMS: Macrophage infiltration has been associated with prognosis in several cancers, including lymphoma, but has not been assessed systematically in anaplastic large cell lymphoma (ALCL). The aim of the study was to correlate expression of the macrophage-associated antigens CD68 and CD163 with pre......-therapeutic parameters and outcome in a cohort of treatment-naive ALCL patients. METHODS AND RESULTS: Pre-therapeutic tumour specimens from 52 patients with ALCL were included in a tissue microarray. The intratumoral macrophage content was assessed by immunohistochemical staining for CD68 and CD163, and quantified using......-free survival in ALK-negative patients (P macrophages correlates with an adverse outcome in ALK-negative ALCL....

  7. The M1 form of tumor-associated macrophages in non-small cell lung cancer is positively associated with survival time

    International Nuclear Information System (INIS)

    Ma, Junliang; Liu, Lunxu; Che, Guowei; Yu, Nanbin; Dai, Fuqiang; You, Zongbing

    2010-01-01

    Tumor-associated macrophages (TAMs) play an important role in growth, progression and metastasis of tumors. In non-small cell lung cancer (NSCLC), TAMs' anti-tumor or pro-tumor role is not determined. Macrophages are polarized into M1 (with anti-tumor function) and M2 (with pro-tumor function) forms. This study was conducted to determine whether the M1 and M2 macrophage densities in NSCLC are associated with patient's survival time. Fifty patients with an average of 1-year survival (short survival group) and 50 patients with an average of 5-year survival (long survival group) were included in this retrospective study. Paraffin-embedded NSCLC specimens and their clinicopathological data including up to 8-year follow-up information were used. Immunohistochemical double-staining of CD68/HLA-DR (markers for M1 macrophages) and CD68/CD163 (markers for M2 macrophages) was performed and evaluated in a blinded fashion. The M1 and M2 macrophage densities in the tumor islets, stroma, or islets and stroma were determined using computer-aided microscopy. Correlation of the macrophage densities and patient's survival time was analyzed using the Statistical Package for the Social Sciences. Approximately 70% of TAMs were M2 macrophages and the remaining 30% were M1 macrophages in NSCLC. The M2 macrophage densities (approximately 78 to 113 per mm 2 ) in the tumor islets, stroma, or islets and stroma were not significantly different between the long survival and short survival groups. The M1 macrophage densities in the tumor islets (approximately 70/mm 2 ) and stroma (approximately 34/mm 2 ) of the long survival group were significantly higher than the M1 macrophage densities in the tumor islets (approximately 7/mm 2 ) and stroma (13/mm 2 ) of the short survival group (P < 0.001 and P < 0.05, respectively). The M2 macrophage densities were not associated with patient's survival time. The M1 macrophage densities in the tumor islets, stroma, or islets and stroma

  8. [Macrophage colony stimulating factor enhances non-small cell lung cancer invasion and metastasis by promoting macrophage M2 polarization].

    Science.gov (United States)

    Li, Y J; Yang, L; Wang, L P; Zhang, Y

    2017-06-23

    Objective: To investigate the key cytokine which polarizes M2 macrophages and promotes invasion and metastasis in non-small cell lung cancer (NSCLC). Methods: After co-culture with A549 cells in vitro, the proportion of CD14(+) CD163(+) M2 macrophages in monocytes and macrophage colony stimulating factor (M-CSF) levels in culture supernatant were detected by flow cytometry, ELISA assay and real-time qPCR, respectively. The effects of CD14(+) CD163(+) M2 macrophages on invasion of A549 cells and angiogenesis of HUVEC cells were measured by transwell assay and tubule formation assay, respectively. The clinical and prognostic significance of M-CSF expression in NSCLC was further analyzed. Results: The percentage of CD14(+) CD163(+) M2 macrophages in monocytes and the concentration of M-CSF in the supernatant followed by co-culture was (12.03±0.46)% and (299.80±73.76)pg/ml, respectively, which were significantly higher than those in control group [(2.80±1.04)% and (43.07±11.22)pg/ml, respectively, P macrophages in vitro . M2 macrophages enhanced the invasion of A549 cells (66 cells/field vs. 26 cells/field) and the angiogenesis of HUVEC cells (22 tubes/field vs. 8 tubes/field). The mRNA expression of M-CSF in stage Ⅰ-Ⅱ patients (16.23±4.83) was significantly lower than that in stage Ⅲ-Ⅳ (53.84±16.08; P macrophages, which can further promote the metastasis and angiogenesis of NSCLC. M-CSF could be used as a potential therapeutic target of NSCLC.

  9. Translocator protein as an imaging marker of macrophage and stromal activation in RA pannus.

    Science.gov (United States)

    Narayan, Nehal; Owen, David; Mandhair, Harpreet; Smyth, Erica; Carlucci, Francesco; Saleem, Azeem; Gunn, Roger; Rabiner, Eugenii Ilan A; Wells, Lisa; Dakin, Stephanie; Sabokbar, Afsie; Taylor, Peter

    2018-01-04

    Positron Emission Tomography (PET) radioligands targeted to Translocator protein (TSPO), offer a highly sensitive and specific means of imaging joint inflammation in rheumatoid arthritis (RA). Through high expression of TSPO on activated macrophages, TSPO PET has been widely reported in several studies of RA as a means of imaging synovial macrophages in vivo. However, this premise does not take into account the ubiquitous expression of TSPO. This study aimed to investigate TSPO expression in major cellular constituents of RA pannus; monocytes, macrophages, fibroblast-like synoviocytes (FLS) and CD4+ T lymphocytes, to more accurately interpret TSPO PET signal from RA synovium. Methods: 3 RA patients and 3 healthy volunteers underwent PET both knees using the TSPO radioligand 11 C-PBR28. Through synovial tissue 3H-PBR28 autoradiography and immunostaining of 6 RA patients and 6 healthy volunteers, cellular expression of TSPO in synovial tissue was evaluated. TSPO mRNA expression and 3H-PBR28 radioligand binding was assessed using in vitro monocytes, macrophages, FLS and CD4+ T-lymphocytes. Results: 11 C-PBR28 PET signal was significantly higher in RA compared to healthy joints (average SUV 0.82± 0.12 compared to 0.03± 0.004 respectively, p<0.01). Further, 3H-PBR28 specific binding in synovial tissue was approximately 10-fold higher in RA compared to healthy controls. Immunofluorescence revealed TSPO expression on macrophages, FLS and CD4+ T cells. In vitro study demonstrated highest TSPO mRNA expression and 3H-PBR28 specific binding, in activated FLS, non-activated and activated 'M2' reparative macrophages, with least TSPO expression in activated and non-activated CD4+ T lymphocytes. Conclusion: This study is the first evaluation of cellular TSPO expression in synovium, finding highest TSPO expression and PBR28 binding on activated synovial FLS and M2 phenotype macrophages. TSPO targeted PET may therefore have unique sensitivity to detect FLS and macrophage

  10. Alternate radiolabeled markers for detecting metabolic activity of Mycobacterium leprae residing in murine macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, H.K.; Hastings, R.C.

    1985-05-01

    This study demonstrated the utility of using 4% NaOH as a murine macrophage cell-solubilizing agent to discriminate between host macrophage metabolism and that of intracellular Mycobacterium leprae. A 4% concentration of NaOH had no deleterious effect on labeled mycobacteria. Thereby, alternate radiolabeled indicators of the metabolic activity of intracellular M. leprae could be experimented with. Significant incorporation of /sup 14/C-amino acid mixture, (/sup 14/C)leucine, (/sup 14/C)uridine, and carrier-free /sup 32/P was observed in cultures containing freshly extracted (''live'') strains of M. leprae as compared with control cultures containing autoclaved bacilli.

  11. Alternate radiolabeled markers for detecting metabolic activity of Mycobacterium leprae residing in murine macrophages

    International Nuclear Information System (INIS)

    Prasad, H.K.; Hastings, R.C.

    1985-01-01

    This study demonstrated the utility of using 4% NaOH as a murine macrophage cell-solubilizing agent to discriminate between host macrophage metabolism and that of intracellular Mycobacterium leprae. A 4% concentration of NaOH had no deleterious effect on labeled mycobacteria. Thereby, alternate radiolabeled indicators of the metabolic activity of intracellular M. leprae could be experimented with. Significant incorporation of 14 C-amino acid mixture, [ 14 C]leucine, [ 14 C]uridine, and carrier-free 32 P was observed in cultures containing freshly extracted (''live'') strains of M. leprae as compared with control cultures containing autoclaved bacilli

  12. Human umbilical cord blood-derived f-macrophages retain pluripotentiality after thrombopoietin expansion

    International Nuclear Information System (INIS)

    Zhao Yong; Mazzone, Theodore

    2005-01-01

    We have previously characterized a new type of stem cell from human peripheral blood, termed fibroblast-like macrophage (f-MΦ). Here, using umbilical cord blood as a source, we identified cells with similar characteristics including expression of surface markers (CD14, CD34, CD45, CD117, and CD163), phagocytosis, and proliferative capacity. Further, thrombopoietin (TPO) significantly stimulated the proliferation of cord blood-derived f-MΦ (CB f-MΦ) at low dosage without inducing a megakaryocytic phenotype. Additional experiments demonstrated that TPO-expanded cord blood-derived f-MΦ (TCB f-MΦ) retained their surface markers and differentiation ability. Treatment with vascular endothelial cell growth factor (VEGF) gave rise to endothelial-like cells, expressing Flt-1, Flk-1, von Willebrand Factor (vWF), CD31, acetylated low density lipoprotein internalization, and the ability to form endothelial-like cell chains. In the presence of lipopolyssacharide (LPS) and 25 mM glucose, the TCB f-MΦ differentiated to express insulin mRNA, C-peptide, and insulin. In vitro functional analysis demonstrated that these insulin-positive cells could release insulin in response to glucose and other secretagogues. These findings demonstrate a potential use of CB f-MΦ and may lead to develop new therapeutic strategy for treating dominant disease

  13. CD5L Promotes M2 Macrophage Polarization through Autophagy-Mediated Upregulation of ID3

    Directory of Open Access Journals (Sweden)

    Lucía Sanjurjo

    2018-03-01

    Full Text Available CD5L (CD5 molecule-like is a secreted glycoprotein that controls key mechanisms in inflammatory responses, with involvement in processes such as infection, atherosclerosis, and cancer. In macrophages, CD5L promotes an anti-inflammatory cytokine profile in response to TLR activation. In the present study, we questioned whether CD5L is able to influence human macrophage plasticity, and drive its polarization toward any specific phenotype. We compared CD5L-induced phenotypic and functional changes to those caused by IFN/LPS, IL4, and IL10 in human monocytes. Phenotypic markers were quantified by RT-qPCR and flow cytometry, and a mathematical algorithm was built for their analysis. Moreover, we compared ROS production, phagocytic capacity, and inflammatory responses to LPS. CD5L drove cells toward a polarization similar to that induced by IL10. Furthermore, IL10- and CD5L-treated macrophages showed increased LC3-II content and colocalization with acidic compartments, thereby pointing to the enhancement of autophagy-dependent processes. Accordingly, siRNA targeting ATG7 in THP1 cells blocked CD5L-induced CD163 and Mer tyrosine kinase mRNA and efferocytosis. In these cells, gene expression profiling and validation indicated the upregulation of the transcription factor ID3 by CD5L through ATG7. In agreement, ID3 silencing reversed polarization by CD5L. Our data point to a significant contribution of CD5L-mediated autophagy to the induction of ID3 and provide the first evidence that CD5L drives macrophage polarization.

  14. Small cell lung cancer: Recruitment of macrophages by circulating tumor cells.

    Science.gov (United States)

    Hamilton, Gerhard; Rath, Barbara; Klameth, Lukas; Hochmair, Maximilan J

    2016-03-01

    Tumor-associated macrophages (TAMs) play an important role in tumor progression, suppression of antitumor immunity and dissemination. Blood monocytes infiltrate the tumor region and are primed by local microenvironmental conditions to promote tumor growth and invasion. Although many of the interacting cytokines and factors are known for the tumor-macrophage interactions, the putative contribution of circulating tumor cells (CTCs) is not known so far. These specialized cells are characterized by increased mobility, ability to degrade the extracellular matrix (ECM) and to enter the blood stream and generate secondary lesions which is a leading cause of death for the majority of tumor patients. The first establishment of two permanent CTC lines, namely BHGc7 and 10, from blood samples of advanced stage small cell lung cancer (SCLC) patients allowed us to investigate the CTC-immune cell interaction. Cocultures of peripheral blood mononuclear cells (PBMNCs) with CTCs or addition of CTC-conditioned medium (CTC-CM) in vitro resulted in monocyte-macrophage differentiation and appearance of CD14 + , CD163 weak and CD68 + macrophages expressing markers of TAMs. Furthermore, we screened the supernatants of CTC-primed macrophages for presence of approximately 100 cytokines and compared the expression with those induced by the local metastatic SCLC26A cell line. Macrophages recruited by SCLC26A-CM showed expression of osteopontin (OPN), monocyte chemoattractant protein-1 (MCP-1), IL-8, chitinase3-like 1 (CHI3L1), platelet factor (Pf4), IL-1ra and matrix metalloproteinase-9 (MMP-9) among other minor cytokines/chemokines. In contrast, BHGc7-CM induced marked overexpression of complement factor D (CFD)/adipsin and vitamin D-BP (VDBP), as well as increased secretion of OPN, lipocalin-2 (LCN2), CHI3L1, uPAR, MIP-1 and GDF-15/MIC-1. BHGc10, derived independently from relapsed SCLC, revealed an almost identical pattern with added expression of ENA-78/CXCL5. CMs of the non-tumor HEK293

  15. Distinct Properties of Human M-CSF and GM-CSF Monocyte-Derived Macrophages to Simulate Pathological Lung Conditions In Vitro: Application to Systemic and Inflammatory Disorders with Pulmonary Involvement.

    Science.gov (United States)

    Lescoat, Alain; Ballerie, Alice; Augagneur, Yu; Morzadec, Claudie; Vernhet, Laurent; Fardel, Olivier; Jégo, Patrick; Jouneau, Stéphane; Lecureur, Valérie

    2018-03-17

    Macrophages play a central role in the pathogenesis of inflammatory and fibrotic lung diseases. However, alveolar macrophages (AM) are poorly available in humans to perform in vitro studies due to a limited access to broncho-alveolar lavage (BAL). In this study, to identify the best alternative in vitro model for human AM, we compared the phenotype of AM obtained from BAL of patients suffering from three lung diseases (lung cancers, sarcoidosis and Systemic Sclerosis (SSc)-associated interstitial lung disease) to human blood monocyte-derived macrophages (MDMs) differentiated with M-CSF or GM-CSF. The expression of eight membrane markers was evaluated by flow cytometry. Globally, AM phenotype was closer to GM-CSF MDMs. However, the expression levels of CD163, CD169, CD204, CD64 and CD36 were significantly higher in SSc-ILD than in lung cancers. Considering the expression of CD204 and CD36, the phenotype of SSc-AM was closer to MDMs, from healthy donors or SSc patients, differentiated by M-CSF rather than GM-CSF. The comparative secretion of IL-6 by SSc-MDMs and SSc-AM is concordant with these phenotypic considerations. Altogether, these results support the M-CSF MDM model as a relevant in vitro alternative to simulate AM in fibrotic disorders such as SSc.

  16. Incorporation of cerium oxide into hydroxyapatite coating regulates osteogenic activity of mesenchymal stem cell and macrophage polarization.

    Science.gov (United States)

    Li, Kai; Shen, Qingyi; Xie, Youtao; You, Mingyu; Huang, Liping; Zheng, Xuebin

    2017-02-01

    Biomedical coatings for orthopedic implants should facilitate osseointegration and mitigate implant-induced inflammatory reactions. Cerium oxide (CeO 2 ) ceramics possess anti-oxidative properties and can be used to decrease mediators of inflammation, which makes them attractive for biomedical applications. In our work, two kinds of CeO 2 incorporated hydroxyapatite coatings (HA-10Ce and HA-30Ce) were prepared via plasma spraying technique and the effects of CeO 2 addition on the responses of bone mesenchymal stem cells (BMSCs) and RAW264.7 macrophages were investigated. An increase in CeO 2 content in the HA coatings resulted in better osteogenic behaviors of BMSCs in terms of cell proliferation, alkaline phosphatase (ALP) activity and mineralized nodule formation. RT-PCR and western blot analysis suggested that the incorporation of CeO 2 may promote the osteogenic differentiation of BMSCs through the Smad-dependent BMP signaling pathway, which activated Runx2 expression and subsequently enhanced the expression of ALP and OCN. The expression profiles of macrophages cultured on the CeO 2 modified coating revealed a tendency toward a M2 phenotype, because of an upregulation of M2 surface markers (CD163 and CD206), anti-inflammatory cytokines (TNF-α and IL-6) and osteoblastogenesis-related genes (BMP2 and TGF-β1) as well as a downregulation of M1 surface markers (CCR7 and CD11c), proinflammatory cytokines (IL-10 and IL-1ra) and reactive oxygen species production. The results suggested the regulation of BMSCs behaviors and macrophage-mediated responses at the coating's surface were associated with CeO 2 incorporation. The incorporation of CeO 2 in HA coatings can be a valuable strategy to promote osteogenic responses and reduce inflammatory reactions.

  17. Extracellular hemoglobin polarizes the macrophage proteome toward Hb-clearance, enhanced antioxidant capacity and suppressed HLA class 2 expression.

    OpenAIRE

    Kaempfer Theresa; Duerst Elena; Gehrig Peter; Roschitzki Bernd; Rutishauser Dorothea; Grossmann Jonas; Schoedon Gabriele; Vallelian Florence; Schaer Dominik J

    2011-01-01

    Peripheral blood monocytes and macrophages are the only cell population with a proven hemoglobin (Hb) clearance capacity through the CD163 scavenger receptor pathway. Hb detoxification and related adaptive cellular responses are assumed to be essential processes to maintaining tissue homeostasis and promoting wound healing in injured tissues. Using a dual platform mass spectrometry analysis with MALDI TOF/TOF and LTQ Orbitrap instruments combined with isobaric tag for relative and absolute qu...

  18. Marker of Self” CD47 on lentiviral vectors decreases macrophage-mediated clearance and increases delivery to SIRPA-expressing lung carcinoma tumors

    Directory of Open Access Journals (Sweden)

    Nisha G Sosale

    2016-01-01

    Full Text Available Lentiviruses infect many cell types and are now widely used for gene delivery in vitro, but in vivo uptake of these foreign vectors by macrophages is a limitation. Lentivectors are produced here from packaging cells that overexpress “Marker of Self” CD47, which inhibits macrophage uptake of cells when prophagocytic factors are also displayed. Single particle analyses show “hCD47-Lenti” display properly oriented human-CD47 for interactions with the macrophage's inhibitory receptor SIRPA. Macrophages derived from human and NOD/SCID/Il2rg−/− (NSG mice show a SIRPA-dependent decrease in transduction, i.e., transgene expression, by hCD47-Lenti compared to control Lenti. Consistent with known “Self” signaling pathways, macrophage transduction by control Lenti is decreased by drug inhibition of Myosin-II to the same levels as hCD47-Lenti. In contrast, human lung carcinoma cells express SIRPA and use it to enhance transduction by hCD47-Lenti- as illustrated by more efficient gene deletion using CRISPR/Cas9. Intravenous injection of hCD47-Lenti into NSG mice shows hCD47 prolongs circulation, unless a blocking anti-SIRPA is preinjected. In vivo transduction of spleen and liver macrophages also decreases for hCD47-Lenti while transduction of lung carcinoma xenografts increases. hCD47 could be useful when macrophage uptake is limiting on other viral vectors that are emerging in cancer treatments (e.g., Measles glycoprotein-pseudotyped lentivectors and also in targeting various SIRPA-expressing tumors such as glioblastomas.

  19. Tumor associated CD70 expression is involved in promoting tumor migration and macrophage infiltration in GBM.

    Science.gov (United States)

    Ge, Haitao; Mu, Luyan; Jin, Linchun; Yang, Changlin; Chang, Yifan Emily; Long, Yu; DeLeon, Gabriel; Deleyrolle, Loic; Mitchell, Duane A; Kubilis, Paul S; Lu, Dunyue; Qi, Jiping; Gu, Yunhe; Lin, Zhiguo; Huang, Jianping

    2017-10-01

    Tumor migration/metastasis and immunosuppression are major obstacles in effective cancer therapy. Incidentally, these 2 hurdles usually coexist inside tumors, therefore making therapy significantly more complicated, as both oncogenic mechanisms must be addressed for successful therapeutic intervention. Our recent report highlights that the tumor expression of a TNF family member, CD70, is correlated with poor survival for primary gliomas. In this study, we investigated how CD70 expression by GBM affects the characteristics of tumor cells and the tumor microenvironment. We found that the ablation of CD70 in primary GBM decreased CD44 and SOX2 gene expression, and inhibited tumor migration, growth and the ability to attract monocyte-derived M2 macrophages in vitro. In the tumor microenvironment, CD70 was associated with immune cell infiltrates, such as T cells; myeloid-derived suppressor cells; and monocytes/macrophages based on the RNA-sequencing profile. The CD163+ macrophages were far more abundant than T cells were. This overwhelming level of macrophages was identified only in GBM and not in low-grade gliomas and normal brain specimens, implying their tumor association. CD70 was detected only on tumor cells, not on macrophages, and was highly correlated with CD163 gene expression in primary GBM. Additionally, the co-expression of the CD70 and CD163 genes was found to correlate with decreased survival for patients with primary GBM. Together, these data suggest that CD70 expression is involved in promoting tumor aggressiveness and immunosuppression via tumor-associated macrophage recruitment/activation. Our current efforts to target this molecule using chimeric antigen receptor T cells hold great potential for treating patients with GBM. © 2017 UICC.

  20. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yijun [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan (China); Pattnaik, Asit K. [School of Veterinary Medicine and Biomedical Sciences and the Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583-0900 (United States); Song, Cheng [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Yoo, Dongwan, E-mail: dyoo@illinois.edu [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Li, Gang, E-mail: dyoo@illinois.edu [Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 South Lincoln Ave, Urbana, IL 61802 (United States); Institute of Animal Science and Veterinary Medicine, Chinese Academy of Agricultural Sciences, Beijing (China)

    2012-03-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 4 (GP4) resembles a typical type I membrane protein in its structure but lacks a hydrophilic tail at the C-terminus, suggesting that GP4 may be a lipid-anchored membrane protein. Using the human decay-accelerating factor (DAF; CD55), a known glycosyl-phosphatidylinositol (GPI) lipid-anchored protein, chimeric constructs were made to substitute the GPI-anchor domain of DAF with the putative lipid-anchor domain of GP4, and their membrane association and lipase cleavage were determined in cells. The DAF-GP4 fusion protein was transported to the plasma membrane and was cleaved by phosphatidylinositol-specific phospholipase C (PI-PLC), indicating that the C-terminal domain of GP4 functions as a GPI anchor. Mutational studies for residues adjacent to the GPI modification site and characterization of respective mutant viruses generated from infectious cDNA clones show that the ability of GP4 for membrane association corresponded to virus viability and growth characteristics. The residues T158 ({omega} - 2, where {omega} is the GPI moiety at E160), P159 ({omega} - 1), and M162 ({omega} + 2) of GP4 were determined to be important for virus replication, with M162 being of particular importance for virus infectivity. The complete removal of the peptide-anchor domain in GP4 resulted in a complete loss of virus infectivity. The depletion of cholesterol from the plasma membrane of cells reduced the virus production, suggesting a role of lipid rafts in PRRSV infection. Remarkably, GP4 was found to co-localize with CD163 in the lipid rafts on the plasma membrane. Since CD163 has been reported as a cellular receptor for PRRSV and GP4 has been shown to interact with this receptor, our data implicates an important role of lipid rafts during entry of the virus.

  1. Glycosyl-phosphatidylinositol (GPI)-anchored membrane association of the porcine reproductive and respiratory syndrome virus GP4 glycoprotein and its co-localization with CD163 in lipid rafts

    International Nuclear Information System (INIS)

    Du, Yijun; Pattnaik, Asit K.; Song, Cheng; Yoo, Dongwan; Li, Gang

    2012-01-01

    The porcine reproductive and respiratory syndrome virus (PRRSV) glycoprotein 4 (GP4) resembles a typical type I membrane protein in its structure but lacks a hydrophilic tail at the C-terminus, suggesting that GP4 may be a lipid-anchored membrane protein. Using the human decay-accelerating factor (DAF; CD55), a known glycosyl-phosphatidylinositol (GPI) lipid-anchored protein, chimeric constructs were made to substitute the GPI-anchor domain of DAF with the putative lipid-anchor domain of GP4, and their membrane association and lipase cleavage were determined in cells. The DAF-GP4 fusion protein was transported to the plasma membrane and was cleaved by phosphatidylinositol-specific phospholipase C (PI-PLC), indicating that the C-terminal domain of GP4 functions as a GPI anchor. Mutational studies for residues adjacent to the GPI modification site and characterization of respective mutant viruses generated from infectious cDNA clones show that the ability of GP4 for membrane association corresponded to virus viability and growth characteristics. The residues T158 (ω − 2, where ω is the GPI moiety at E160), P159 (ω − 1), and M162 (ω + 2) of GP4 were determined to be important for virus replication, with M162 being of particular importance for virus infectivity. The complete removal of the peptide–anchor domain in GP4 resulted in a complete loss of virus infectivity. The depletion of cholesterol from the plasma membrane of cells reduced the virus production, suggesting a role of lipid rafts in PRRSV infection. Remarkably, GP4 was found to co-localize with CD163 in the lipid rafts on the plasma membrane. Since CD163 has been reported as a cellular receptor for PRRSV and GP4 has been shown to interact with this receptor, our data implicates an important role of lipid rafts during entry of the virus.

  2. A new and efficient culture method for porcine bone marrow-derived M1- and M2-polarized macrophages.

    Science.gov (United States)

    Gao, Jiye; Scheenstra, Maaike R; van Dijk, Albert; Veldhuizen, Edwin J A; Haagsman, Henk P

    2018-06-01

    Macrophages play an important role in the innate immune system as part of the mononuclear phagocyte system (MPS). They have a pro-inflammatory signature (M1-polarized macrophages) or anti-inflammatory signature (M2-polarized macrophages) based on expression of surface receptors and secretion of cytokines. However, very little is known about the culture of macrophages from pigs and more specific about the M1 and M2 polarization in vitro. Porcine monocytes or mononuclear bone marrow cells were used to culture M1- and M2-polarized macrophages in the presence of GM-CSF and M-CSF, respectively. Surface receptor expression was measured with flow cytometry and ELISA was used to quantify cytokine secretion in response to LPS and PAM 3 CSK 4 stimulation. Human monocyte-derived macrophages were used as control. Porcine M1- and M2-polarized macrophages were cultured best using porcine GM-CSF and murine M-CSF, respectively. Cultures from bone marrow cells resulted in a higher yield M1- and M2-polarized macrophages which were better comparable to human monocyte-derived macrophages than cultures from porcine monocytes. Porcine M1-polarized macrophages displayed the characteristic fried egg shape morphology, lower CD163 expression and low IL-10 production. Porcine M2-polarized macrophages contained the spindle-like morphology, higher CD163 expression and high IL-10 production. Porcine M1- and M2-polarized macrophages can be most efficiently cultured from mononuclear bone marrow cells using porcine GM-CSF and murine M-CSF. The new culture method facilitates more refined studies of porcine macrophages in vitro, important for both porcine and human health since pigs are increasingly used as model for translational research. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. The Roles of Adipokines, Proinflammatory Cytokines, and Adipose Tissue Macrophages in Obesity-Associated Insulin Resistance in Modest Obesity and Early Metabolic Dysfunction.

    Directory of Open Access Journals (Sweden)

    Yea Eun Kang

    Full Text Available The roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in obesity-associated insulin resistance have been explored in both animal and human studies. However, our current understanding of obesity-associated insulin resistance relies on studies of artificial metabolic extremes. The purpose of this study was to explore the roles of adipokines, proinflammatory cytokines, and adipose tissue macrophages in human patients with modest obesity and early metabolic dysfunction. We obtained omental adipose tissue and fasting blood samples from 51 females undergoing gynecologic surgery. We investigated serum concentrations of proinflammatory cytokines and adipokines as well as the mRNA expression of proinflammatory and macrophage phenotype markers in visceral adipose tissue using ELISA and quantitative RT-PCR. We measured adipose tissue inflammation and macrophage infiltration using immunohistochemical analysis. Serum levels of adiponectin and leptin were significantly correlated with HOMA-IR and body mass index. The levels of expression of MCP-1 and TNF-α in visceral adipose tissue were also higher in the obese group (body mass index ≥ 25. The expression of mRNA MCP-1 in visceral adipose tissue was positively correlated with body mass index (r = 0.428, p = 0.037 but not with HOMA-IR, whereas TNF-α in visceral adipose tissue was correlated with HOMA-IR (r = 0.462, p = 0.035 but not with body mass index. There was no obvious change in macrophage phenotype or macrophage infiltration in patients with modest obesity or early metabolic dysfunction. Expression of mRNA CD163/CD68 was significantly related to mitochondrial-associated genes and serum inflammatory cytokine levels of resistin and leptin. These results suggest that changes in the production of inflammatory biomolecules precede increased immune cell infiltration and induction of a macrophage phenotype switch in visceral adipose tissue. Furthermore, serum resistin and

  4. LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature.

    Science.gov (United States)

    van der Does, Anne M; Beekhuizen, Henry; Ravensbergen, Bep; Vos, Tim; Ottenhoff, Tom H M; van Dissel, Jaap T; Drijfhout, Jan W; Hiemstra, Pieter S; Nibbering, Peter H

    2010-08-01

    The human cathelicidin LL-37 has broad-spectrum antimicrobial activity. It also participates at the interface of innate and adaptive immunity by chemoattracting immune effector cells, modulating the production of a variety of inflammatory mediators by different cell types, and regulating the differentiation of monocytes into dendritic cells. In this study, we investigated the effects of LL-37 on the differentiation of human monocytes into anti-inflammatory macrophages (MPhi-2; driven by M-CSF) versus proinflammatory macrophages (MPhi-1; driven by GM-CSF) as well as on fully differentiated MPhi-1 and MPhi-2. Results revealed that monocytes cultured with M-CSF in the presence of LL-37 resulted in macrophages displaying a proinflammatory signature, namely, low expression of CD163 and little IL-10 and profound IL-12p40 production on LPS stimulation. The effects of LL-37 on M-CSF-driven macrophage differentiation were dose- and time-dependent with maximal effects observed at 10 microg/ml when the peptide was present from the start of the cultures. The peptide enhanced the GM-CSF-driven macrophage differentiation. Exposure of fully differentiated MPhi-2 to LL-37 for 6 d resulted in macrophages that produced less IL-10 and more IL-12p40 on LPS stimulation than control MPhi-2. In contrast, LL-37 had no effect on fully differentiated MPhi-1. Peptide mapping using a set of 16 overlapping 22-mer peptides covering the complete LL-37 sequence revealed that the C-terminal portion of LL-37 is responsible for directing macrophage differentiation. Our results furthermore indicate that the effects of LL-37 on macrophage differentiation required internalization of the peptide. Together, we conclude that LL-37 directs macrophage differentiation toward macrophages with a proinflammatory signature.

  5. Convenience versus Biological Significance: Are PMA-Differentiated THP-1 Cells a Reliable Substitute for Blood-Derived Macrophages When Studying in Vitro Polarization?

    Science.gov (United States)

    Tedesco, Serena; De Majo, Federica; Kim, Jieun; Trenti, Annalisa; Trevisi, Lucia; Fadini, Gian Paolo; Bolego, Chiara; Zandstra, Peter W; Cignarella, Andrea; Vitiello, Libero

    2018-01-01

    Human peripheral-blood monocytes are used as an established in vitro system for generating macrophages. For several reasons, monocytic cell lines such as THP-1 have been considered as a possible alternative. In view of their distinct developmental origins and phenotypic attributes, we set out to assess the extent to which human monocyte-derived macrophages (MDMs) and phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells were overlapping across a variety of responses to activating stimuli. Resting (M0) macrophages were polarized toward M1 or M2 phenotypes by 48-h incubation with LPS (1 μg/ml) and IFN-γ (10 ng/ml) or with IL-4 (20 ng/ml) and IL-13 (5 ng/ml), respectively. At the end of stimulation, MDMs displayed more pronounced changes in marker gene expression than THP-1. Upon assaying an array of 41 cytokines, chemokines and growth factors in conditioned media (CM) using the Luminex technology, secretion of 29 out of the 41 proteins was affected by polarized activation. While in 12 of them THP-1 and MDM showed comparable trends, for the remaining 17 proteins their responses to activating stimuli did markedly differ. Quantitative comparison for selected analytes confirmed this pattern. In terms of phenotypic activation markers, measured by flow cytometry, M1 response was similar but the established MDM M2 marker CD163 was undetectable in THP-1 cells. In a beads-based assay, MDM activation did not induce significant changes, whereas M2 activation of THP-1 decreased phagocytic activity compared to M0 and M1. In further biological activity tests, both MDM and THP-1 CM failed to affect proliferation of mouse myogenic progenitors, whereas they both reduced adipogenic differentiation of mouse fibro-adipogenic progenitor cells (M2 to a lesser extent than M1 and M0). Finally, migration of human umbilical vein endothelial cells was enhanced by CM irrespective of cell type and activation state except for M0 CM from MDMs. In summary, PMA-differentiated THP-1

  6. Triamcinolone acetonide activates an anti-inflammatory and folate receptor-positive macrophage that prevents osteophytosis in vivo.

    Science.gov (United States)

    Siebelt, Michiel; Korthagen, Nicoline; Wei, Wu; Groen, Harald; Bastiaansen-Jenniskens, Yvonne; Müller, Christina; Waarsing, Jan Hendrik; de Jong, Marion; Weinans, Harrie

    2015-12-05

    Triamcinolone acetonide (TA) is used for osteoarthritis management to reduce pain, and pre-clinical studies have shown that TA limits osteophyte formation. Osteophyte formation is known to be facilitated by synovial macrophage activation. TA injections might influence macrophage activation and subsequently reduce osteophytosis. Although widely applied in clinical care, the mechanism through which TA exerts this effect remains unknown. In this animal study, we investigated the in vivo effects of TA injections on macrophage activation, osteophyte development and joint degeneration. Furthermore, in vitro macrophage differentiation experiments were conducted to further explain working mechanisms of TA effects found in vivo. Osteoarthritis was induced in rat knees using papain injections and a running protocol. Untreated and TA-treated animals were longitudinally monitored for 12 weeks with in vivo micro-computed tomography (μCT) to measure subchondral bone changes. Synovial macrophage activation was measured in vivo using folate receptor β (FRβ)-targeted single-photon emission computed tomography/computed tomography. Articular cartilage was analyzed at 6 and 12 weeks with ex vivo contrast-enhanced μCT and histology. To further explain the outcomes of our in vivo study, TA on macrophages was also studied in vitro. These cultured macrophages were either M1- or M2-activated, and they were analyzed using fluorescence-activated cell sorting for CD163 and FRβ expression as well as for messenger RNA (mRNA) expression of interleukin (IL)-10. Our in vivo study showed that intra-articular injections with TA strongly enhanced FRβ(+) macrophage activation. Despite stimulated macrophage activation, osteophyte formation was fully prevented. There was no beneficial effect of TA against cartilage degradation or subchondral bone sclerosis. In vitro macrophage cultures showed that TA strongly induced monocyte differentiation towards CD163(+) and FRβ(+) macrophages. Furthermore

  7. CD14-dependent monocyte isolation enhances phagocytosis of listeria monocytogenes by proinflammatory, GM-CSF-derived macrophages.

    Directory of Open Access Journals (Sweden)

    Caroline Neu

    Full Text Available Macrophages are an important line of defence against invading pathogens. Human macrophages derived by different methods were tested for their suitability as models to investigate Listeria monocytogenes (Lm infection and compared to macrophage-like THP-1 cells. Human primary monocytes were isolated by either positive or negative immunomagnetic selection and differentiated in the presence of granulocyte macrophage colony-stimulating factor (GM-CSF or macrophage colony-stimulating factor (M-CSF into pro- or anti-inflammatory macrophages, respectively. Regardless of the isolation method, GM-CSF-derived macrophages (GM-Mφ stained positive for CD206 and M-CSF-derived macrophages (M-Mφ for CD163. THP-1 cells did not express CD206 or CD163 following incubation with PMA, M- or GM-CSF alone or in combination. Upon infection with Lm, all primary macrophages showed good survival at high multiplicities of infection whereas viability of THP-1 was severely reduced even at lower bacterial numbers. M-Mφ generally showed high phagocytosis of Lm. Strikingly, phagocytosis of Lm by GM-Mφ was markedly influenced by the method used for isolation of monocytes. GM-Mφ derived from negatively isolated monocytes showed low phagocytosis of Lm whereas GM-Mφ generated from positively selected monocytes displayed high phagocytosis of Lm. Moreover, incubation with CD14 antibody was sufficient to enhance phagocytosis of Lm by GM-Mφ generated from negatively isolated monocytes. By contrast, non-specific phagocytosis of latex beads by GM-Mφ was not influenced by treatment with CD14 antibody. Furthermore, phagocytosis of Lactococcus lactis, Escherichia coli, human cytomegalovirus and the protozoan parasite Leishmania major by GM-Mφ was not enhanced upon treatment with CD14 antibody indicating that this effect is specific for Lm. Based on these observations, we propose macrophages derived by ex vivo differentiation of negatively selected human primary monocytes as the most

  8. Moderate Increase of Indoxyl Sulfate Promotes Monocyte Transition into Profibrotic Macrophages.

    Directory of Open Access Journals (Sweden)

    Chiara Barisione

    Full Text Available The uremic toxin Indoxyl-3-sulphate (IS, a ligand of Aryl hydrocarbon Receptor (AhR, raises in blood during early renal dysfunction as a consequence of tubular damage, which may be present even when eGFR is normal or only moderately reduced, and promotes cardiovascular damage and monocyte-macrophage activation. We previously found that patients with abdominal aortic aneurysms (AAAs have higher CD14+CD16+ monocyte frequency and prevalence of moderate chronic kidney disease (CKD than age-matched control subjects. Here we aimed to evaluate the IS levels in plasma from AAA patients and to investigate in vitro the effects of IS concentrations corresponding to mild-to-moderate CKD on monocyte polarization and macrophage differentiation.Free IS plasma levels, monocyte subsets and laboratory parameters were evaluated on blood from AAA patients and eGFR-matched controls. THP-1 monocytes, treated with IS 1, 10, 20 μM were evaluated for CD163 expression, AhR signaling and then induced to differentiate into macrophages by PMA. Their phenotype was evaluated both at the stage of semi-differentiated and fully differentiated macrophages. AAA and control sera were similarly used to treat THP-1 monocytes and the resulting macrophage phenotype was analyzed.IS plasma concentration correlated positively with CD14+CD16+ monocytes and was increased in AAA patients. In THP-1 cells, IS promoted CD163 expression and transition to macrophages with hallmarks of classical (IL-6, CCL2, COX2 and alternative phenotype (IL-10, PPARγ, TGF-β, TIMP-1, via AhR/Nrf2 activation. Analogously, AAA sera induced differentiation of macrophages with enhanced IL-6, MCP1, TGF-β, PPARγ and TIMP-1 expression.IS skews monocyte differentiation toward low-inflammatory, profibrotic macrophages and may contribute to sustain chronic inflammation and maladaptive vascular remodeling.

  9. THE DIFFERENCE OF MAP1LC3 LEVEL AS MACROPHAGE AUTOPHAGY MARKER BETWEEN RESISTANT AND SENSITIVE TUBERCULOSIS PATIENTS ON RIFAMPICIN

    Directory of Open Access Journals (Sweden)

    Dian novita W

    2018-04-01

    Full Text Available Mycobacterium tuberculosis (MTB is an intracelular bacteria that live in the host macrophage cells. Several organs can be affected by tuberculosis but most major illnesses are lung diseases. Immediately after infection, MTB will be phagocytosed by the alveolar macrophage cells and can survive in the phagosome. The macrophage plays a role in innate immunity towards an infection using autophagy by removing the microbe directly via phagocytosis. When bacteria phagocytosized, vacuole membrane formed double membranes called autophagosome, and followed by degradation by lysosome, which known as autolysosome. Induction of autophagy can be observed on the formation of microtubule-associated proteins 1B lightchain 3B (MAP1LC3B/LC3. MAP1LC3B is protein that have role at autophagic way for selection autophagy substrate and biogenesis. In this study we are used serum from patients TB with rifampicin resistant and rifampicin sensitive as control. Samples were divided using gene expert to differentiate between resistant and sensitive rifampicin.This research aims to compare MAP1LC3B levels in resistant and sensitive rifampicin to study macrophages respond in autophagic way in tuberculosis patients, and give information for define therapy plan to improve therapy for MDR-TB patients. Type of this research is a case control study design with cross sectional research with each groups sample is 19 from age 18-65 years old. Result, MAP1LC3B serum levels on the rifampicin resistant group are lower compared to rifampicin sensitive group. This occur because MTB is able to hide and evade innate immune defense mechanisms. MTB can maintain intracellular growth inside the phagosome by inhibiting phagolysosome formation in autophagy process especially inhibit MAP1LC3B formation by PDIM.

  10. Markers

    Science.gov (United States)

    Healthy Schools Network, Inc., 2011

    2011-01-01

    Dry erase whiteboards come with toxic dry erase markers and toxic cleaning products. Dry erase markers labeled "nontoxic" are not free of toxic chemicals and can cause health problems. Children are especially vulnerable to environmental health hazards; moreover, schools commonly have problems with indoor air pollution, as they are more densely…

  11. Direct Targeting of Macrophages With Methylglyoxal-Bis-Guanylhydrazone Decreases SIV-Associated Cardiovascular Inflammation and Pathology.

    Science.gov (United States)

    Walker, Joshua A; Miller, Andrew D; Burdo, Tricia H; McGrath, Michael S; Williams, Kenneth C

    2017-04-15

    Despite effective combination antiretroviral therapy, HIV-infected individuals develop comorbidities, including cardiovascular disease, where activated macrophages play a key role. To date, few therapies target activated monocytes and macrophages. We evaluated a novel oral form of the polyamine biosynthesis inhibitor methylglyoxal-bis-guanylhydrazone (MGBG) on cardiovascular inflammation, carotid artery intima-media thickness (cIMT), and fibrosis in a simian immunodeficiency virus infection model of AIDS. Eleven simian immunodeficiency virus-infected animals received MGBG (30 mg/kg) once daily and 8 received a placebo control both beginning at 21 days postinfection (dpi). Animals were time sacrificed at 49 days post infection (dpi), when their matched placebo controls developed AIDS (63, 70, 77, 80), or at the study end-point (84 dpi). Aorta, carotid artery, and cardiac tissues were analyzed. Quantitative analyses of macrophage populations and T lymphocytes were done and correlated with cIMT and fibrosis. MGBG treatment resulted in 2.19-fold (CD163), 1.86-fold (CD68), 2.31-fold (CD206), and 2.12-fold (MAC387) decreases in macrophages in carotid arteries and significant 2.07-fold (CD163), 1.61-fold (CD68), 1.95-fold (MAC387), and 1.62-fold (CD206) decreases in macrophages in cardiac tissues. cIMT (1.49-fold) and fibrosis (2.05-fold) also were significantly decreased with MGBG treatment. Numbers of macrophage and the degree of fibrosis in treated animals were similar to uninfected animals. A positive correlation between decreased macrophage in the carotid artery and cIMT, and cardiac macrophages and fibrosis was found. These data demonstrate that directly targeting macrophages with MGBG can reduce cardiovascular inflammation, cIMT, and fibrosis. They suggest that therapies targeting macrophages with HIV could be used in conjunction with combination antiretroviral therapy.

  12. Ameloginins promote an alternatively activated macrophage phenotype in vitro

    DEFF Research Database (Denmark)

    Almqvist, S; Werthen, M; Lyngstadas, SP

    2011-01-01

    aggregates were visualised by transmission electron microscopy. The amelogenin treatment of macrophages increased several pro- and anti-inflammatory cytokines, including alternative macrophage activation marker AMAC-1 (p

  13. The neuropathological basis to the functional role of microglia/macrophages in gliomas.

    Science.gov (United States)

    Schiffer, Davide; Mellai, Marta; Bovio, Enrica; Annovazzi, Laura

    2017-09-01

    The paper wants to be a tracking shot of the main recent acquisitions on the function and significance of microglia/macrophages in gliomas. The observations have been principally carried out on in vitro cultures and on tumor transplants in animals. Contrary to what is deduced from microglia in non-neoplastic pathologic conditions of central nervous system (CNS), most conclusions indicate that microglia acts favoring tumor proliferation through an immunosuppression induced by glioma cells. By immunohistochemistry, different microglia phenotypes are recognized in gliomas, from ramified microglia to frank macrophagic aspect. One wonders whether the functional conclusions drawn from many microglia studies, but not in conditions of human pathology, apply to all the phenotypes recognizable in them. It is difficult to verify in human pathology a prognostic significance of microglia. Only CD163-positive microglia/macrophages inversely correlate with glioma patients' survival, whereas the total number of microglia does not change with the malignancy grade.

  14. Cyclooxygenase-2 inhibition blocks M2 macrophage differentiation and suppresses metastasis in murine breast cancer model.

    Directory of Open Access Journals (Sweden)

    Yi-Rang Na

    Full Text Available Tumor cells are often associated with abundant macrophages that resemble the alternatively activated M2 subset. Tumor-associated macrophages (TAMs inhibit anti-tumor immune responses and promote metastasis. Cyclooxygenase-2 (COX-2 inhibition is known to prevent breast cancer metastasis. This study hypothesized that COX-2 inhibition affects TAM characteristics potentially relevant to tumor cell metastasis. We found that the specific COX-2 inhibitor, etodolac, inhibited human M2 macrophage differentiation, as determined by decreased CD14 and CD163 expressions and increased TNFα production. Several key metastasis-related mediators, such as vascular endothelial growth factor-A, vascular endothelial growth factor-C, and matrix metalloproteinase-9, were inhibited in the presence of etodolac as compared to untreated M2 macrophages. Murine bone marrow derived M2 macrophages also showed enhanced surface MHCII IA/IE and CD80, CD86 expressions together with enhanced TNFα expressions with etodolac treatment during differentiation. Using a BALB/c breast cancer model, we found that etodolac significantly reduced lung metastasis, possibly due to macrophages expressing increased IA/IE and TNFα, but decreased M2 macrophage-related genes expressions (Ym1, TGFβ. In conclusion, COX-2 inhibition caused loss of the M2 macrophage characteristics of TAMs and may assist prevention of breast cancer metastasis.

  15. Fish oil-derived long-chain n-3 polyunsaturated fatty acids reduce expression of M1-associated macrophage markers in an ex vivo adipose tissue culture model, in part through adiponectin

    Directory of Open Access Journals (Sweden)

    Anna A. De Boer

    2015-10-01

    Full Text Available Adipose tissue (AT macrophages (ATM play a key role in obesity-associated pathologies, and their phenotype can be influenced by the local tissue microenvironment. Interestingly, long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA and the LC n-3 PUFA-upregulated adipokine, adiponectin (Ad, may mitigate excessive ATM inflammatory M1-polarization responses. However, to what extent LC n-3 PUFA and Ad work in concert to affect macrophage phenotype has not been examined. Thus, we used an established ex vivo AT organ culture model using visceral AT from mice fed a control (CON; 10% w/w safflower oil n-6 PUFA-rich diet or an isocaloric fish-oil (FO; 3% w/w menhaden oil + 7% w/w safflower oil-derived LC n-3 PUFA-rich diet to generate AT conditioned media (ACM. We then evaluated if CON or FO ACM affected macrophage polarization markers in a model designed to mimic acute (18 h ACM plus LPS for the last 6 h or chronic (macrophages treated with LPS-challenged CON or FO ACM for 24 h inflammation ± Ad-neutralizing antibody and the LPS-neutralizing agent, polymyxin B. In the acute inflammation model, macrophages treated with FO ACM had decreased lipid uptake and mRNA expression of M1 markers (Nos2, Nfκb, Il6, Il18, Ccl2 and Ccl5 compared with CON ACM (p≤0.05; however, these effects were largely attenuated when Ad was neutralized (p>0.05. Further, in the chronic inflammation model, macrophages treated with FO ACM had decreased mRNA expression of M1 markers (Nos2, Tnfα, Ccl2 and Il1β and IL-6 and CCL2 secretion (p≤0.05; however, some of these effects were lost when Ad was neutralized, and were further exacerbated when both Ad and LPS were neutralized. Taken together, this work shows that LC n-3 PUFA and Ad work in concert to suppress certain M1 macrophage responses. Thus, future strategies to modulate the ATM phenotype should consider the role of both LC n-3 PUFA and Ad in mitigating obese AT inflammation.

  16. Fish Oil-Derived Long-Chain n-3 Polyunsaturated Fatty Acids Reduce Expression of M1-Associated Macrophage Markers in an ex vivo Adipose Tissue Culture Model, in Part through Adiponectin.

    Science.gov (United States)

    De Boer, Anna A; Monk, Jennifer M; Liddle, Danyelle M; Power, Krista A; Ma, David W L; Robinson, Lindsay E

    2015-01-01

    Adipose tissue (AT) macrophages (ATM) play a key role in obesity-associated pathologies, and their phenotype can be influenced by the local tissue microenvironment. Interestingly, long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) and the LC n-3 PUFA-upregulated adipokine, adiponectin (Ad), may mitigate excessive ATM inflammatory M1-polarization responses. However, to what extent LC n-3 PUFA and Ad work in concert to affect macrophage phenotype has not been examined. Thus, we used an established ex vivo AT organ culture model using visceral AT from mice fed a control (CON; 10% w/w safflower oil) n-6 PUFA-rich diet or an isocaloric fish oil (FO; 3% w/w menhaden oil + 7% w/w safflower oil)-derived LC n-3 PUFA-rich diet to generate AT conditioned media (ACM). We then evaluated if CON or FO ACM affected macrophage polarization markers in a model designed to mimic acute [18 h ACM plus lipopolysaccharide (LPS) for the last 6 h] or chronic (macrophages treated with LPS-challenged CON or FO ACM for 24 h) inflammation ± Ad-neutralizing antibody and the LPS-neutralizing agent, polymyxin B. In the acute inflammation model, macrophages treated with FO ACM had decreased lipid uptake and mRNA expression of M1 markers (Nos2, Nfκb, Il6, Il18, Ccl2, and Ccl5) compared with CON ACM (p ≤ 0.05); however, these effects were largely attenuated when Ad was neutralized (p > 0.05). Furthermore, in the chronic inflammation model, macrophages treated with FO ACM had decreased mRNA expression of M1 markers (Nos2, Tnfα, Ccl2, and Il1β) and IL-6 and CCL2 secretion (p ≤ 0.05); however, some of these effects were lost when Ad was neutralized, and were further exacerbated when both Ad and LPS were neutralized. Taken together, this work shows that LC n-3 PUFA and Ad work in concert to suppress certain M1 macrophage responses. Thus, future strategies to modulate the ATM phenotype should consider the role of both LC n-3 PUFA and Ad in mitigating obese AT

  17. Bioelectric modulation of macrophage polarization

    Science.gov (United States)

    Li, Chunmei; Levin, Michael; Kaplan, David L.

    2016-02-01

    Macrophages play a critical role in regulating wound healing and tissue regeneration by changing their polarization state in response to local microenvironmental stimuli. The native roles of polarized macrophages encompass biomaterials and tissue remodeling needs, yet harnessing or directing the polarization response has been largely absent as a potential strategy to exploit in regenerative medicine to date. Recent data have revealed that specific alteration of cells’ resting potential (Vmem) is a powerful tool to direct proliferation and differentiation in a number of complex tissues, such as limb regeneration, craniofacial patterning and tumorigenesis. In this study, we explored the bioelectric modulation of macrophage polarization by targeting ATP sensitive potassium channels (KATP). Glibenclamide (KATP blocker) and pinacidil (KATP opener) treatment not only affect macrophage polarization, but also influence the phenotype of prepolarized macrophages. Furthermore, modulation of cell membrane electrical properties can fine-tune macrophage plasticity. Glibenclamide decreased the secretion and gene expression of selected M1 markers, while pinacidil augmented M1 markers. More interestingly, glibencalmide promoted macrophage alternative activation by enhancing certain M2 markers during M2 polarization. These findings suggest that control of bioelectric properties of macrophages could offer a promising approach to regulate macrophage phenotype as a useful tool in regenerative medicine.

  18. Age-associated changes in monocyte and innate immune activation markers occur more rapidly in HIV infected women.

    Directory of Open Access Journals (Sweden)

    Genevieve E Martin

    Full Text Available Aging is associated with immune dysfunction and the related development of conditions with an inflammatory pathogenesis. Some of these immune changes are also observed in HIV infection, but the interaction between immune changes with aging and HIV infection are unknown. Whilst sex differences in innate immunity are recognized, little research into innate immune aging has been performed on women.This cross-sectional study of HIV positive and negative women used whole blood flow cytometric analysis to characterize monocyte and CD8(+ T cell subsets. Plasma markers of innate immune activation were measured using standard ELISA-based assays.HIV positive women exhibited elevated plasma levels of the innate immune activation markers CXCL10 (p<0.001, soluble CD163 (sCD163, p = 0.001, sCD14 (p = 0.022, neopterin (p = 0.029 and an increased proportion of CD16(+ monocytes (p = 0.009 compared to uninfected controls. Levels of the innate immune aging biomarkers sCD163 and the proportion of CD16(+ monocytes were equivalent to those observed in HIV negative women aged 14.5 and 10.6 years older, respectively. CXCL10 increased with age at an accelerated rate in HIV positive women (p = 0.002 suggesting a synergistic effect between HIV and aging on innate immune activation. Multivariable modeling indicated that age-related increases in innate immune biomarkers CXCL10 and sCD163 are independent of senescent changes in CD8(+ T lymphocytes.Quantifying the impact of HIV on immune aging reveals that HIV infection in women confers the equivalent of a 10-14 year increase in the levels of innate immune aging markers. These changes may contribute to the increased risk of inflammatory age-related diseases in HIV positive women.

  19. Age-associated changes in monocyte and innate immune activation markers occur more rapidly in HIV infected women.

    Science.gov (United States)

    Martin, Genevieve E; Gouillou, Maelenn; Hearps, Anna C; Angelovich, Thomas A; Cheng, Allen C; Lynch, Fiona; Cheng, Wan-Jung; Paukovics, Geza; Palmer, Clovis S; Novak, Richard M; Jaworowski, Anthony; Landay, Alan L; Crowe, Suzanne M

    2013-01-01

    Aging is associated with immune dysfunction and the related development of conditions with an inflammatory pathogenesis. Some of these immune changes are also observed in HIV infection, but the interaction between immune changes with aging and HIV infection are unknown. Whilst sex differences in innate immunity are recognized, little research into innate immune aging has been performed on women. This cross-sectional study of HIV positive and negative women used whole blood flow cytometric analysis to characterize monocyte and CD8(+) T cell subsets. Plasma markers of innate immune activation were measured using standard ELISA-based assays. HIV positive women exhibited elevated plasma levels of the innate immune activation markers CXCL10 (p<0.001), soluble CD163 (sCD163, p = 0.001), sCD14 (p = 0.022), neopterin (p = 0.029) and an increased proportion of CD16(+) monocytes (p = 0.009) compared to uninfected controls. Levels of the innate immune aging biomarkers sCD163 and the proportion of CD16(+) monocytes were equivalent to those observed in HIV negative women aged 14.5 and 10.6 years older, respectively. CXCL10 increased with age at an accelerated rate in HIV positive women (p = 0.002) suggesting a synergistic effect between HIV and aging on innate immune activation. Multivariable modeling indicated that age-related increases in innate immune biomarkers CXCL10 and sCD163 are independent of senescent changes in CD8(+) T lymphocytes. Quantifying the impact of HIV on immune aging reveals that HIV infection in women confers the equivalent of a 10-14 year increase in the levels of innate immune aging markers. These changes may contribute to the increased risk of inflammatory age-related diseases in HIV positive women.

  20. Differentiation of the endometrial macrophage during pregnancy in the cow.

    Directory of Open Access Journals (Sweden)

    Lilian J Oliveira

    Full Text Available BACKGROUND: The presence of conceptus alloantigens necessitates changes in maternal immune function. One player in this process may be the macrophage. In the cow, there is large-scale recruitment of macrophages expressing CD68 and CD14 to the uterine endometrium during pregnancy. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, the function of endometrial macrophages during pregnancy was inferred by comparison of the transcriptome of endometrial CD14(+ cells isolated from pregnant cows as compared to that of blood CD14(+ cells. The pattern of gene expression was largely similar for CD14(+ cells from both sources, suggesting that cells from both tissues are from the monocyte/macrophage lineage. A total of 1,364 unique genes were differentially expressed, with 680 genes upregulated in endometrial CD14(+ cells as compared to blood CD14(+ cells and with 674 genes downregulated in endometrial CD14(+ cells as compared to blood CD14(+ cells. Twelve genes characteristic of M2 activated macrophages (SLCO2B1, GATM, MRC1, ALDH1A1, PTGS1, RNASE6, CLEC7A, DPEP2, CD163, CCL22, CCL24, and CDH1 were upregulated in endometrial CD14(+ cells. M2 macrophages play roles in immune regulation, tissue remodeling, angiogenesis and apoptosis. Consistent with a role in tissue remodeling, there was over-representation of differentially expressed genes in endometrium for three ontologies related to proteolysis. A role in apoptosis is suggested by the observation that the most overrepresented gene in endometrial CD14(+ cells was GZMA. CONCLUSIONS: Results indicate that at least a subpopulation of endometrial macrophages cells differentiates along an M2 activation pathway during pregnancy and that the cells are likely to play roles in immune regulation, tissue remodeling, angiogenesis, and apoptosis.

  1. Oligosaccharide modification by N-acetylglucosaminyltransferase-V in macrophages are involved in pathogenesis of bleomycin-induced scleroderma.

    Science.gov (United States)

    Kato, Arisa; Yutani, Mizuki; Terao, Mika; Kimura, Akihiro; Itoi, Saori; Murota, Hiroyuki; Miyoshi, Eiji; Katayama, Ichiro

    2015-08-01

    Oligosaccharide modification by N-acetylglucosaminyltransferase-V (GnT-V), which catalyses the formation of β1,6 GlcNAc (N-acetylglucosamine) branches on N-glycans, is associated with various pathologies, such as cancer metastasis, multiple sclerosis and liver fibrosis. In this study, we demonstrated the involvement of GnT-V in the pathophysiology of scleroderma. High expression of GnT-V was observed in infiltrating cells in skin section samples from systemic and localized patients with scleroderma. Most of the infiltrating cells were T cells and macrophages, most of which were CD163(+) M2 macrophages. To determine the role of GnT-V in scleroderma, we next investigated skin sclerosis in GnT-V knockout (MGAT5(-/-) ) mice. Expression of GnT-V was also elevated in bleomycin (BLM)-injected sclerotic skin, and MGAT5(-/-) mice were resistant to BLM-induced skin sclerosis with reduced collagen type 1 α1 content, suggesting the biological significance of GnT-V in skin sclerosis. Furthermore, the number of CD163(+) M2 macrophages and CD3-positive T cells in BLM-induced skin sclerosis was significantly fewer in MGAT5(-/-) mice. In bone marrow-derived macrophages (BMDMs), IL-4-induced expressions of Fizz1 and Ym1 were significantly reduced in MGAT5(-/-) mice-derived BMDMs. Taken together, these results suggest the induction of GnT-V in skin sclerosis progression is possibly dependent on increased numbers of M2 macrophages in the skin, which are important for tissue fibrosis and remodelling. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Cervical Cancer Cell Supernatants Induce a Phenotypic Switch from U937-Derived Macrophage-Activated M1 State into M2-Like Suppressor Phenotype with Change in Toll-Like Receptor Profile

    Directory of Open Access Journals (Sweden)

    Karina Sánchez-Reyes

    2014-01-01

    Full Text Available Cervical cancer (CC is the second most common cancer among women worldwide. Infection with human papillomavirus (HPV is the main risk factor for developing CC. Macrophages are important immune effector cells; they can be differentiated into two phenotypes, identified as M1 (classically activated and M2 (alternatively activated. Macrophage polarization exerts profound effects on the Toll-like receptor (TLR profile. In this study, we evaluated whether the supernatant of human CC cells HeLa, SiHa, and C-33A induces a shift of M1 macrophage toward M2 macrophage in U937-derived macrophages. Results. The results showed that soluble factors secreted by CC cells induce a change in the immunophenotype of macrophages from macrophage M1 into macrophage M2. U937-derived macrophages M1 released proinflammatory cytokines and nitric oxide; however, when these cells were treated with the supernatant of CC cell lines, we observed a turnover of M1 toward M2. These cells increased CD163 and IL-10 expression. The expression of TLR-3, -7, and -9 is increased when the macrophages were treated with the supernatant of CC cells. Conclusions. Our result strongly suggests that CC cells may, through the secretion of soluble factors, induce a change of immunophenotype M1 into M2 macrophages.

  3. Human Cord Blood and Bone Marrow CD34+ Cells Generate Macrophages That Support Erythroid Islands.

    Directory of Open Access Journals (Sweden)

    Eyayu Belay

    Full Text Available Recently, we developed a small molecule responsive hyperactive Mpl-based Cell Growth Switch (CGS that drives erythropoiesis associated with macrophages in the absence of exogenous cytokines. Here, we compare the physical, cellular and molecular interaction between the macrophages and erythroid cells in CGS expanded CD34+ cells harvested from cord blood, marrow or G-CSF-mobilized peripheral blood. Results indicated that macrophage based erythroid islands could be generated from cord blood and marrow CD34+ cells but not from G-CSF-mobilized CD34+ cells. Additional studies suggest that the deficiency resides with the G-CSF-mobilized CD34+ derived monocytes. Gene expression and proteomics studies of the in vitro generated erythroid islands detected the expression of erythroblast macrophage protein (EMP, intercellular adhesion molecule 4 (ICAM-4, CD163 and DNASE2. 78% of the erythroblasts in contact with macrophages reached the pre reticulocyte orthochromatic stage of differentiation within 14 days of culture. The addition of conditioned medium from cultures of CD146+ marrow fibroblasts resulted in a 700-fold increase in total cell number and a 90-fold increase in erythroid cell number. This novel CD34+ cell derived erythroid island may serve as a platform to explore the molecular basis of red cell maturation and production under normal, stress and pathological conditions.

  4. Cholangiocarcinoma stem-like subset shapes tumor-initiating niche by educating associated macrophages

    DEFF Research Database (Denmark)

    Raggi, Chiara; Correnti, Margherita; Sica, Antonio

    2017-01-01

    BACKGROUND AND AIMS: Therapeutically challenging subset, termed cancer stem cells (CSCs) are responsible for cholangiocarcinoma (CCA) clinical severity. Presence of tumor-associated macrophages (TAMs) has prognostic significance in CCA and other malignancies. Thus, we hypothesized that CSCs may......-activator. Gene expression profile of CCA-SPH activated MØ (SPH MØ) revealed unique molecular TAM-like features confirmed by high invasion capacity. Also, freshly isolated MØs from CCA-resections recapitulated similar molecular phenotype of in vitro educated-MØs. Consistently with invasive features, largest CD163...... providing a rationale for a synergistic therapeutic strategy for CCA-disease. LAY SUMMARY: Immune plasticity represents an important hallmark of tumor outcome. Since cancer stem cells are able to manipulate stromal cells to their needs, a better definition of key deregulated immune subtype responsible...

  5. Signal regulatory protein α associated with the progression of oral leukoplakia and oral squamous cell carcinoma regulates phenotype switch of macrophages.

    Science.gov (United States)

    Ye, Xiaojing; Zhang, Jing; Lu, Rui; Zhou, Gang

    2016-12-06

    Signal regulatory protein α (SIRPα) is a cell-surface protein expressed on macrophages that are regarded as an important component of the tumor microenvironment. The expression of SIRPα in oral leukoplakia (OLK) and oral squamous cell carcinoma (OSCC), and further explored the role of SIRPα on the phenotype, phagocytosis ability, migration, and invasion of macrophages in OSCC were investigated. The expression of SIRPα in OLK was higher than in OSCC, correlating with the expression of CD68 and CD163 on macrophages. After cultured with the conditioned media of oral cancer cells, the expression of SIRPα on THP-1 cells was decreased gradually. In co-culture system, macrophages were induced into M2 phenotype by oral cancer cells. Blockade of SIRPα inhibited phagocytosis ability and IL-6, TNF-α productions of macrophages. In addition, the proliferation, migration, and IL-10, TGF-β productions of macrophages were upregulated after blockade of SIRPα. Macrophages upregulated the expression of SIRPα and phagocytosis ability, and inhibited the migration and invasion when the activation of NF-κB was inhibited by pyrrolidine dithiocarbamate ammonium (PDTC). Hence, SIRPα might play an important role in the progression of OLK and oral cancer, and could be a pivotal therapeutic target in OSCC by regulating the phenotype of macrophages via targeting NF-κB.

  6. Chloroquine Interference with Hemoglobin Endocytic Trafficking Suppresses Adaptive Heme and Iron Homeostasis in Macrophages: The Paradox of an Antimalarial Agent

    Directory of Open Access Journals (Sweden)

    Christian A. Schaer

    2013-01-01

    Full Text Available The CD163 scavenger receptor pathway for Hb:Hp complexes is an essential mechanism of protection against the toxicity of extracellular hemoglobin (Hb, which can accumulate in the vasculature and within tissues during hemolysis. Chloroquine is a lysosomotropic agent, which has been extensively used as an antimalarial drug in the past, before parasite resistance started to limit its efficacy in most parts of the world. More recent use of chloroquine is related to its immunomodulatory activity in patients with autoimmune diseases, which may also involve hemolytic disease components. In this study we examined the effects of chloroquine on the human Hb clearance pathway. For this purpose we developed a new mass-spectrometry-based method to specifically quantify intracellular Hb peptides within the endosomal-lysosomal compartment by single reaction monitoring (SRM. We found that chloroquine exposure impairs trafficking of Hb:Hp complexes through the endosomal-lysosomal compartment after internalization by CD163. Relative quantification of intracellular Hb peptides by SRM confirmed that chloroquine blocked cellular Hb:Hp catabolism. This effect suppressed the cellular heme-oxygenase-1 (HO-1 response and shifted macrophage iron homeostasis towards inappropriately high expression of the transferrin receptor with concurrent inhibition of ferroportin expression. A functional deficiency of Hb detoxification and heme-iron recycling may therefore be an adverse consequence of chloroquine treatment during hemolysis.

  7. Mycobacterium leprae-Infected Macrophages Preferentially Primed Regulatory T Cell Responses and Was Associated with Lepromatous Leprosy.

    Directory of Open Access Journals (Sweden)

    Degang Yang

    2016-01-01

    Full Text Available The persistence of Mycobacterium leprae (M. leprae infection is largely dependent on the types of host immune responses being induced. Macrophage, a crucial modulator of innate and adaptive immune responses, could be directly infected by M. leprae. We therefore postulated that M. leprae-infected macrophages might have altered immune functions.Here, we treated monocyte-derived macrophages with live or killed M. leprae, and examined their activation status and antigen presentation. We found that macrophages treated with live M. leprae showed committed M2-like function, with decreased interleukin 1 beta (IL-1beta, IL-6, tumor necrosis factor alpha (TNF-alpha and MHC class II molecule expression and elevated IL-10 and CD163 expression. When incubating with naive T cells, macrophages treated with live M. leprae preferentially primed regulatory T (Treg cell responses with elevated FoxP3 and IL-10 expression, while interferon gamma (IFN-gamma expression and CD8+ T cell cytotoxicity were reduced. Chromium release assay also found that live M. leprae-treated macrophages were more resistant to CD8+ T cell-mediated cytotoxicity than sonicated M. leprae-treated monocytes. Ex vivo studies showed that the phenotype and function of monocytes and macrophages had clear differences between L-lep and T-lep patients, consistent with the in vitro findings.Together, our data demonstrate that M. leprae could utilize infected macrophages by two mechanisms: firstly, M. leprae-infected macrophages preferentially primed Treg but not Th1 or cytotoxic T cell responses; secondly, M. leprae-infected macrophages were more effective at evading CD8+ T cell-mediated cytotoxicity.

  8. Mycobacterium leprae-Infected Macrophages Preferentially Primed Regulatory T Cell Responses and Was Associated with Lepromatous Leprosy.

    Science.gov (United States)

    Yang, Degang; Shui, Tiejun; Miranda, Jake W; Gilson, Danny J; Song, Zhengyu; Chen, Jia; Shi, Chao; Zhu, Jianyu; Yang, Jun; Jing, Zhichun

    2016-01-01

    The persistence of Mycobacterium leprae (M. leprae) infection is largely dependent on the types of host immune responses being induced. Macrophage, a crucial modulator of innate and adaptive immune responses, could be directly infected by M. leprae. We therefore postulated that M. leprae-infected macrophages might have altered immune functions. Here, we treated monocyte-derived macrophages with live or killed M. leprae, and examined their activation status and antigen presentation. We found that macrophages treated with live M. leprae showed committed M2-like function, with decreased interleukin 1 beta (IL-1beta), IL-6, tumor necrosis factor alpha (TNF-alpha) and MHC class II molecule expression and elevated IL-10 and CD163 expression. When incubating with naive T cells, macrophages treated with live M. leprae preferentially primed regulatory T (Treg) cell responses with elevated FoxP3 and IL-10 expression, while interferon gamma (IFN-gamma) expression and CD8+ T cell cytotoxicity were reduced. Chromium release assay also found that live M. leprae-treated macrophages were more resistant to CD8+ T cell-mediated cytotoxicity than sonicated M. leprae-treated monocytes. Ex vivo studies showed that the phenotype and function of monocytes and macrophages had clear differences between L-lep and T-lep patients, consistent with the in vitro findings. Together, our data demonstrate that M. leprae could utilize infected macrophages by two mechanisms: firstly, M. leprae-infected macrophages preferentially primed Treg but not Th1 or cytotoxic T cell responses; secondly, M. leprae-infected macrophages were more effective at evading CD8+ T cell-mediated cytotoxicity.

  9. OVX1, macrophage-colony stimulating factor, and CA-125-II as tumor markers for epithelial ovarian carcinoma - A critical appraisal

    NARCIS (Netherlands)

    van Haaften-Day, C; Shen, Y; Xu, FJ; Yu, YH; Berchuck, A; Havrilesky, LJ; de Bruijn, HWA; van der Zee, AGJ; Bast, RC; Hacker, NF

    2001-01-01

    BACKGROUND. Ovarian carcinoma remains the leading cause of death from gynecologic malignancy in Australia, the Netherlands, and the United States. CA-125-II, the most widely used serum marker, has limited sensitivity and specificity for detecting small-volume, early-stage disease. Therefore, a panel

  10. Maggot secretions skew monocyte-macrophage differentiation away from a pro-inflammatory to a pro-angiogenic type

    DEFF Research Database (Denmark)

    van der Plas, Mariena J A; van Dissel, Jaap T; Nibbering, Peter H

    2009-01-01

    BACKGROUND: Maggots of the blowfly Lucilia sericata are used for the treatment of chronic wounds. Earlier we reported maggot secretions to inhibit pro-inflammatory responses of human monocytes. The aim of this study was to investigate the effect of maggot secretions on the differentiation...... for 18 h. The expression of cell surface molecules and the levels of cytokines, chemokines and growth factors in supernatants were measured. Our results showed secretions to affect monocyte-macrophage differentiation leading to MØ-1 with a partial MØ-2-like morphology but lacking CD163, which...... is characteristic for MØ-2. In response to LPS or LTA, secretions-differentiated MØ-1 produced less pro-inflammatory cytokines (TNF-alpha, IL-12p40 and MIF) than control cells. Similar results were observed for MØ-2 when stimulated with low concentrations of LPS. Furthermore, secretions dose-dependently led to MØ-1...

  11. M2 macrophages coexist with a Th1-driven profile in periapical cysts.

    Science.gov (United States)

    Ribeiro, C M; de Carli, M L; Nonogaki, S; Nogueira, D A; Pereira, A A C; Sperandio, F F; Hanemann, J A C

    2018-02-01

    To evaluate the participation of both Th1 and Th2 responses in periapical cysts by assessing the presence of M2 macrophages, as well as acute IL-1 β, TNF-α and IL-6 cytokines. Twenty-four cases of periapical cysts were selected. Immuno-expressions of IL-1 β, IL-6, TNF-α and CD163 were analysed in the cystic capsules in both superficial and deeper regions. Data were analysed with paired Wilcoxon test and Spearman correlation coefficient (P ≤ 0.05). There was a higher expression of IL-1β, IL-6, TNF-α and M2 macrophages in the superficial region (P periapical cysts and correlated with the expression of certain acute Th1-related cytokines. This illustrates the coexistence of an acute and chronic Th2-driven immune response in these lesions. Although M2 macrophages favour the healing process, their presence is not sufficient for periapical cyst regression, once an acute active response has occurred due to an infectious stimuli. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  12. Susceptibility of bone marrow-derived macrophages to influenza virus infection is dependent on macrophage phenotype.

    Science.gov (United States)

    Campbell, Gillian M; Nicol, Marlynne Q; Dransfield, Ian; Shaw, Darren J; Nash, Anthony A; Dutia, Bernadette M

    2015-10-01

    The role of the macrophage in influenza virus infection is complex. Macrophages are critical for resolution of influenza virus infections but implicated in morbidity and mortality in severe infections. They can be infected with influenza virus and consequently macrophage infection is likely to have an impact on the host immune response. Macrophages display a range of functional phenotypes, from the prototypical pro-inflammatory classically activated cell to alternatively activated anti-inflammatory macrophages involved in immune regulation and wound healing. We were interested in how macrophages of different phenotype respond to influenza virus infection and therefore studied the infection of bone marrow-derived macrophages (BMDMs) of classical and alternative phenotype in vitro. Our results show that alternatively activated macrophages are more readily infected and killed by the virus than classically activated. Classically activated BMDMs express the pro-inflammatory markers inducible nitric oxide synthase (iNOS) and TNF-α, and TNF-α expression was further upregulated following infection. Alternatively activated macrophages express Arginase-1 and CD206; however, following infection, expression of these markers was downregulated whilst expression of iNOS and TNF-α was upregulated. Thus, infection can override the anti-inflammatory state of alternatively activated macrophages. Importantly, however, this results in lower levels of pro-inflammatory markers than those produced by classically activated cells. Our results showed that macrophage phenotype affects the inflammatory macrophage response following infection, and indicated that modulating the macrophage phenotype may provide a route to develop novel strategies to prevent and treat influenza virus infection.

  13. Purinergic signaling during macrophage differentiation results in M2 alternative activated macrophages.

    Science.gov (United States)

    Barberà-Cremades, Maria; Baroja-Mazo, Alberto; Pelegrín, Pablo

    2016-02-01

    Macrophages represent a highly heterogenic cell population of the innate immune system, with important roles in the initiation and resolution of the inflammatory response. Purinergic signaling regulates both M1 and M2 macrophage function at different levels by controlling the secretion of cytokines, phagocytosis, and the production of reactive oxygen species. We found that extracellular nucleotides arrest macrophage differentiation from bone marrow precursors via adenosine and P2 receptors. This results in a mature macrophage with increased expression of M2, but not M1, genes. Similar to adenosine and ATP, macrophage growth arrested with LPS treatment resulted in an increase of the M2-related marker Ym1. Recombinant Ym1 was able to affect macrophage proliferation and could, potentially, be involved in the arrest of macrophage growth during hematopoiesis. © Society for Leukocyte Biology.

  14. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption.

    Science.gov (United States)

    He, D; Kou, X; Luo, Q; Yang, R; Liu, D; Wang, X; Song, Y; Cao, H; Zeng, M; Gan, Y; Zhou, Y

    2015-01-01

    Mechanical force-induced orthodontic root resorption is a major clinical challenge in orthodontic treatment. Macrophages play an important role in orthodontic root resorption, but the underlying mechanism remains unclear. In this study, we examined the mechanism by which the ratio of M1 to M2 macrophage polarization affects root resorption during orthodontic tooth movement. Root resorption occurred when nickel-titanium coil springs were applied on the upper first molars of rats for 3 to 14 d. Positively stained odontoclasts or osteoclasts with tartrate-resistant acid phosphatase were found in resorption areas. Meanwhile, M1-like macrophages positive for CD68 and inducible nitric oxide synthase (iNOS) persistently accumulated on the compression side of periodontal tissues. In addition, the expressions of the M1 activator interferon-γ and the M1-associated pro-inflammatory cytokine tumor necrosis factor (TNF)-α were upregulated on the compression side of periodontal tissues. When the coil springs were removed at the 14th day after orthodontic force application, root resorption was partially rescued. The number of CD68(+)CD163(+) M2-like macrophages gradually increased on the compression side of periodontal tissues. The levels of M2 activator interleukin (IL)-4 and the M2-associated anti-inflammatory cytokine IL-10 also increased. Systemic injection of the TNF-α inhibitor etanercept or IL-4 attenuated the severity of root resorption and decreased the ratio of M1 to M2 macrophages. These data imply that the balance between M1 and M2 macrophages affects orthodontic root resorption. Root resorption was aggravated by an enhanced M1/M2 ratio but was partially rescued by a reduced M1/M2 ratio. © International & American Associations for Dental Research 2014.

  15. Expression profile of Rab5, Rab7, tryptophan aspartate-containing coat protein, leprae lipoarabinomannan, and phenolic glycolipid-1 on the failure of the phagolysosome process in macrophages of leprosy patients as a viability marker of Mycobacterium leprae.

    Science.gov (United States)

    Prakoeswa, Cita Rosita Sigit; Wahyuni, Ratna; Iswahyudi; Adriaty, Dinar; Yusuf, Irawan; Sutjipto; Agusni, Indropo; Izumi, Shinzo

    2016-06-01

    Phagolysosome process in macrophage of leprosy patients' is important in the early phase of eliminating Mycobacterium leprae invasion. This study was to clarify the involvement of Rab5, Rab7, and trytophan aspartate-containing coat protein (TACO) from host macrophage and leprae lipoarabinomannan (Lep-LAM) and phenolic glycolipid-1 (PGL-1) from M. leprae cell wall as the reflection of phagolysosome process in relation to 16 subunit ribosomal RNA (16S rRNA) M. leprae as a marker of viability of M. leprae. Using a cross sectional design study, skin biopsies were obtained from 47 newly diagnosed, untreated leprosy at Dr Soetomo Hospital, Surabaya, Indonesia. RNA isolation and complementary DNA synthesis were performed. Samples were divided into two groups: 16S rRNA M. leprae-positive and 16S rRNA M. leprae-negative. The expressions of Rab5, Rab7, TACO, Lep-LAM, and PGL-1 were assessed with an immunohistochemistry technique. Using Mann-Whitney U analysis, a significant difference in the expression profile of Rab5, Rab7, Lep-LAM, and PGL-1 was found (p.05). Spearman analysis revealed that there was a significant correlation between the score of Rab5, Rab7, Lep-LAM, and PGL-1 and the score of 16S rRNA M. leprae (pleprae infection, Rab5, Rab7, and Lep-LAM play important roles in the failure of phagolysosome process via a membrane trafficking pathway, while PGL-1 plays a role via blocking lysosomal activities. These inventions might be used for the development of an early diagnostic device in the future. Copyright © 2016 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  16. Efficient, long term production of monocyte-derived macrophages from human pluripotent stem cells under partly-defined and fully-defined conditions.

    Directory of Open Access Journals (Sweden)

    Bonnie van Wilgenburg

    Full Text Available Human macrophages are specialised hosts for HIV-1, dengue virus, Leishmania and Mycobacterium tuberculosis. Yet macrophage research is hampered by lack of appropriate cell models for modelling infection by these human pathogens, because available myeloid cell lines are, by definition, not terminally differentiated like tissue macrophages. We describe here a method for deriving monocytes and macrophages from human Pluripotent Stem Cells which improves on previously published protocols in that it uses entirely defined, feeder- and serum-free culture conditions and produces very consistent, pure, high yields across both human Embryonic Stem Cell (hESC and multiple human induced Pluripotent Stem Cell (hiPSC lines over time periods of up to one year. Cumulatively, up to ∼3×10(7 monocytes can be harvested per 6-well plate. The monocytes produced are most closely similar to the major blood monocyte (CD14(+, CD16(low, CD163(+. Differentiation with M-CSF produces macrophages that are highly phagocytic, HIV-1-infectable, and upon activation produce a pro-inflammatory cytokine profile similar to blood monocyte-derived macrophages. Macrophages are notoriously hard to genetically manipulate, as they recognise foreign nucleic acids; the lentivector system described here overcomes this, as pluripotent stem cells can be relatively simply genetically manipulated for efficient transgene expression in the differentiated cells, surmounting issues of transgene silencing. Overall, the method we describe here is an efficient, effective, scalable system for the reproducible production and genetic modification of human macrophages, facilitating the interrogation of human macrophage biology.

  17. In vitro studies of interaction of rickettsia and macrophages: effect of ultraviolet light on Coxiella burnetti inactivation and macrophage enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Little, J.S.; Kishimoto, R.A.; Canonico, P.G.

    1980-03-01

    The inactivation of Coxiella burnetii in suspension or in cultures of guinea pig peritoneal macrophages by ultraviolet (uv) light was studied. The effect of uv treatment on the activity of macrophage organelle marker enzymes and their subsequent equilibration in linear sucrose gradients was also determined. It was shown that uv treatment for 15 s at a distance of 10 cm inactivated C. burnetti, either in suspension or within guinea pig peritoneal macrophages. Similar uv treatment had little effect on the activity or equilibration of macrophage organelle marker enzymes in linear sucrose gradients.

  18. In vitro studies of interaction of rickettsia and macrophages: effect of ultraviolet light on Coxiella burnetti inactivation and macrophage enzymes

    International Nuclear Information System (INIS)

    Little, J.S.; Kishimoto, R.A.; Canonico, P.G.

    1980-01-01

    The inactivation of Coxiella burnetii in suspension or in cultures of guinea pig peritoneal macrophages by ultraviolet (uv) light was studied. The effect of uv treatment on the activity of macrophage organelle marker enzymes and their subsequent equilibration in linear sucrose gradients was also determined. It was shown that uv treatment for 15 s at a distance of 10 cm inactivated C. burnetti, either in suspension or within guinea pig peritoneal macrophages. Similar uv treatment had little effect on the activity or equilibration of macrophage organelle marker enzymes in linear sucrose gradients

  19. Inflammatory Macrophages Promotes Development of Diabetic Encephalopathy.

    Science.gov (United States)

    Wang, Beiyun; Miao, Ya; Zhao, Zhe; Zhong, Yuan

    2015-01-01

    Diabetes and Alzheimer's disease are often associated with each other, whereas the relationship between two diseases is ill-defined. Although hyperglycemia during diabetes is a major cause of encephalopathy, diabetes may also cause chronic inflammatory complications including peripheral neuropathy. Hence the role and the characteristics of inflammatory macrophages in the development of diabetic encephalopathy need to be clarified. Diabetes were induced in mice by i.p. injection of streptozotocin (STZ). Two weeks after STZ injection and confirmation of development of diabetes, inflammatory macrophages were eliminated by i.p. injection of 20µg saporin-conjugated antibody against a macrophage surface marker CD11b (saporin-CD11b) twice per week, while a STZ-treated group received injection of rat IgG of same frequency as a control. The effects of macrophage depletion on brain degradation markers, brain malondialdehyde (MDA), catalase, superoxidase anion-positive cells and nitric oxide (NO) were measured. Saporin-CD11b significantly reduced inflammatory macrophages in brain, without affecting mouse blood glucose, serum insulin, glucose responses and beta cell mass. However, reduced brain macrophages significantly inhibited the STZ-induced decreases in brain MDA, catalase and superoxidase anion-positive cells, and the STZ-induced decreases in brain NO. Inflammatory macrophages may promote development of diabetic encephalopathy. © 2015 S. Karger AG, Basel.

  20. Molecular Mechanisms Modulating the Phenotype of Macrophages and Microglia

    Directory of Open Access Journals (Sweden)

    Stephanie A. Amici

    2017-11-01

    Full Text Available Macrophages and microglia play crucial roles during central nervous system development, homeostasis and acute events such as infection or injury. The diverse functions of tissue macrophages and microglia are mirrored by equally diverse phenotypes. A model of inflammatory/M1 versus a resolution phase/M2 macrophages has been widely used. However, the complexity of macrophage function can only be achieved by the existence of varied, plastic and tridimensional macrophage phenotypes. Understanding how tissue macrophages integrate environmental signals via molecular programs to define pathogen/injury inflammatory responses provides an opportunity to better understand the multilayered nature of macrophages, as well as target and modulate cellular programs to control excessive inflammation. This is particularly important in MS and other neuroinflammatory diseases, where chronic inflammatory macrophage and microglial responses may contribute to pathology. Here, we perform a comprehensive review of our current understanding of how molecular pathways modulate tissue macrophage phenotype, covering both classic pathways and the emerging role of microRNAs, receptor-tyrosine kinases and metabolism in macrophage phenotype. In addition, we discuss pathway parallels in microglia, novel markers helpful in the identification of peripheral macrophages versus microglia and markers linked to their phenotype.

  1. Unraveling Macrophage Heterogeneity in Erythroblastic Islands

    Directory of Open Access Journals (Sweden)

    Katie Giger Seu

    2017-09-01

    Full Text Available Mammalian erythropoiesis occurs within erythroblastic islands (EBIs, niches where maturing erythroblasts interact closely with a central macrophage. While it is generally accepted that EBI macrophages play an important role in erythropoiesis, thorough investigation of the mechanisms by which they support erythropoiesis is limited largely by inability to identify and isolate the specific macrophage sub-population that constitute the EBI. Early studies utilized immunohistochemistry or immunofluorescence to study EBI morphology and structure, while more recent efforts have used flow cytometry for high-throughput quantitative characterization of EBIs and their central macrophages. However, these approaches based on the expectation that EBI macrophages are a homogeneous population (F4/80+/CD169+/VCAM-1+ for example provide an incomplete picture and potentially overlook critical information about the nature and biology of the islands and their central macrophages. Here, we present a novel method for analysis of EBI macrophages from hematopoietic tissues of mice and rats using multispectral imaging flow cytometry (IFC, which combines the high-throughput advantage of flow cytometry with the morphological and fluorescence features derived from microscopy. This method provides both quantitative analysis of EBIs, as well as structural and morphological details of the central macrophages and associated cells. Importantly, the images, combined with quantitative software features, can be used to evaluate co-expression of phenotypic markers which is crucial since some antigens used to identify macrophages (e.g., F4/80 and CD11b can be expressed on non-erythroid cells associated with the islands instead of, or in addition to the central macrophage itself. We have used this method to analyze native EBIs from different hematopoietic tissues and evaluated the expression of several markers that have been previously reported to be expressed on EBI macrophages. We

  2. MiR-146a modulates macrophage polarization by inhibiting Notch1 pathway in RAW264.7 macrophages.

    Science.gov (United States)

    Huang, Cheng; Liu, Xue-Jiao; QunZhou; Xie, Juan; Ma, Tao-Tao; Meng, Xiao-Ming; Li, Jun

    2016-03-01

    Macrophages are heterogeneous and plastic cells which are able to undergo dynamic transition between M1 and M2 polarized phenotypes in response to the microenvironment signals. However, the underlying molecular mechanisms of macrophage polarization are still obscure. In the current study, it was revealed that miR-146a might play a pivotal role in macrophage polarization. As our results indicated, miR-146a was highly expressed in M2 macrophages rather than M1 macrophages. Over-expression of miR-146a resulted in significantly decreased production of pro-inflammatory cytokines including iNOS and TNF-α in M1 macrophages, while increased production of M2 marker genes such as Arg1 and CD206 in M2 macrophages. In contrast, knockdown of miR-146a promoted M1 macrophage polarization but diminished M2 macrophage polarization. Mechanistically, it was revealed that miR-146a modulated macrophage polarization by targeting Notch1. Of note, PPARγ was responsible as another target for miR-146a-mediated macrophage polarization. Taken together, it was suggested that miR-146a might serve as a molecular regulator in macrophage polarization and is a potential therapeutic target for inflammatory diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Immunohistochemical characterization of gastrointestinal macrophages/phagocytes in dogs with inflammatory bowel disease (IBD) and non-IBD dogs.

    Science.gov (United States)

    Wagner, Anna; Junginger, Johannes; Lemensieck, Frederik; Hewicker-Trautwein, Marion

    2018-03-01

    Intestinal Mϕ play a pivotal role in the maintenance of gut homeostasis, but can also contribute to inflammation such as inflammatory bowel disease (IBD). In contrast to human tissues, little is known about phenotypes of Mϕ in the canine gastrointestinal tract. Therefore, an immunohistochemical study was performed using Abs against Mϕ-associated molecules (Cluster of differentiation (CD)64, CD163, CD204, ionized calcium-binding adaptor molecule 1, L1 Ag, and MHC II) on stomach, duodenum, jejunum, ileum and colon from non-IBD dogs. In addition, marker-expression in the stomach, duodenum and colon of the non-IBD dogs was compared to that in dogs with IBD. Results revealed predominance of resident Mϕ displaying an anti-inflammatory phenotype represented by expression of CD163 as well as CD204 in the gut of non-IBD dogs with high Mϕ numbers especially present in the small intestinal villus area. Compared to non-IBD tissue counterparts, stomach, duodenum, and colon from dogs with IBD showed reduced Mϕ numbers with the exception of slightly increased numbers of CD64+ Mϕ. Correlation analyses between marker-expression of Mϕ and the Canine Inflammatory Bowel Disease Activity Index as well as histological scores failed to reveal relevant relationships. The present study provides evidence of the canine steady state gastrointestinal tract being dominated by Mϕ with anti-inflammatory properties maintaining gut homeostasis. A significant reduction in these resident Mϕ may reflect disturbances in homeostatic capacity that could contribute to the development of canine IBD. In contrast to human IBD and murine disease models, infiltration of pro-inflammatory Mϕ does not significantly contribute to the inflammatory process of canine IBD, which may illustrate possible species-specific differences in IBD pathogenesis. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Salivary Gland Extract Modulates the Infection of Two Leishmania enriettii Strains by Interfering With Macrophage Differentiation in the Model of Cavia porcellus

    Directory of Open Access Journals (Sweden)

    Lucélia J. Pinheiro

    2018-05-01

    Full Text Available The subgenus Mundinia includes several Leishmania species that have human and veterinary importance. One of those members, Leishmania Mundinia enriettii was isolated from the guinea pig Cavia porcellus in the 1940s. Several histopathological studies have already been performed in this species in the absence of salivary gland extract (SGE, which are determinant and the early and future events of the infection. Our main hypothesis is that SGE could differentially modulate the course of the lesion and macrophage differentiation caused by avirulent and virulent L. enriettii strains. Here, the C. porcellus nasal region was infected using needles with two strains of L. enriettii (L88 and Cobaia in the presence/absence of SGE and followed for 12 weeks. Those strains vary in terms of virulence, and their histopathological development was characterized. Some L88-infected animals could develop ulcerated/nodular lesions, whereas Cobaia strain developed non-ulcerated nodular lesions. Animals experimentally inoculated developed a protuberance and/or lesion after the 4th and 5th weeks of infection. Macroscopically, the size of lesion in L88-infected animals was smaller in the presence of SGE. Remarkable differences were detected microscopically in the presence of SGE for both strains. After the 6th and 7th weeks, L88-infected animals were heavily parasitized with an intense inflammatory profile bearing amastigotes and pro-inflammatory cells compared to those infected by Cobaia strain. Morphometry analysis revealed that L1+ macrophages were abundant in the L88 infection, but not in the Cobaia infection. In the presence of SGE, an increased CD163+ macrophage infiltrate by both strains was detected. Interestingly, this effect was more pronounced in Cobaia-infected animals. This study showed the role of SGE during the course of L. enriettii (strains L88 and Cobaia infection and its role in modulating macrophage attraction to the lesion site. SGE decreased L1

  5. The Role of Inflammasome in Inflammatory Macrophage in Mycobacterium Avium Complex-lung Disease and Mycobacterium Abscessus-lung Disease

    Science.gov (United States)

    2014-06-27

    To Investigate the Inflammasome Response of Inflammatory and Resting Macrophage; To Compare the Difference of Inflammasome Response of Inflammatory Macrophage; To Study the Diagnostic Aid From Immunological Markers in Inflammasome Response

  6. CD16+ Monocytes and Skewed Macrophage Polarization toward M2 Type Hallmark Heart Transplant Acute Cellular Rejection.

    Science.gov (United States)

    van den Bosch, Thierry P P; Caliskan, Kadir; Kraaij, Marina D; Constantinescu, Alina A; Manintveld, Olivier C; Leenen, Pieter J M; von der Thüsen, Jan H; Clahsen-van Groningen, Marian C; Baan, Carla C; Rowshani, Ajda T

    2017-01-01

    During acute heart transplant rejection, infiltration of lymphocytes and monocytes is followed by endothelial injury and eventually myocardial fibrosis. To date, no information is available on monocyte-macrophage-related cellular shifts and their polarization status during rejection. Here, we aimed to define and correlate monocyte-macrophage endomyocardial tissue profiles obtained at rejection and time points prior to rejection, with corresponding serial blood samples in 25 heart transplant recipients experiencing acute cellular rejection. Additionally, 33 healthy individuals served as control. Using histology, immunohistochemistry, confocal laser scan microscopy, and digital imaging expression of CD14, CD16, CD56, CD68, CD80, and CD163 were explored to define monocyte and macrophage tissue profiles during rejection. Fibrosis was investigated using Sirius Red stainings of rejection, non-rejection, and 1-year biopsies. Expression of co-stimulatory and migration-related molecules on circulating monocytes, and production potential for pro- and anti-inflammatory cytokines were studied using flow cytometry. At tissue level, striking CD16+ monocyte infiltration was observed during rejection ( p  rejection compared to barely present CD68+CD80+ M1 macrophages. Rejection was associated with severe fibrosis in 1-year biopsies ( p  rejection status, decreased frequencies of circulating CD16+ monocytes were found in patients compared to healthy individuals. Rejection was reflected by significantly increased CD54 and HLA-DR expression on CD16+ monocytes with retained cytokine production potential. CD16+ monocytes and M2 macrophages hallmark the correlates of heart transplant acute cellular rejection on tissue level and seem to be associated with fibrosis in the long term.

  7. Human Subcutaneous Tissue Response to Glucose Sensors: Macrophages Accumulation Impact on Sensor Accuracy.

    Science.gov (United States)

    Rigla, Mercedes; Pons, Belén; Rebasa, Pere; Luna, Alexis; Pozo, Francisco Javier; Caixàs, Assumpta; Villaplana, Maria; Subías, David; Bella, Maria Rosa; Combalia, Neus

    2018-04-01

    Subcutaneous (s.c.) glucose sensors have become a key component in type 1 diabetes management. However, their usability is limited by the impact of foreign body response (FBR) on their duration, reliability, and accuracy. Our study gives the first description of human acute and subacute s.c. response to glucose sensors, showing the changes observed in the sensor surface, the inflammatory cells involved in the FBR and their relationship with sensor performance. Twelve obese patients (seven type 2 diabetes) underwent two abdominal biopsies comprising the surrounding area where they had worn two glucose sensors: the first one inserted 7 days before and the second one 24 h before biopsy procedure. Samples were processed and studied to describe tissue changes by two independent pathologists (blind regarding sensor duration). Macrophages quantification was studied by immunohistochemistry methods in the area surrounding the sensor (CD68, CD163). Sensor surface changes were studied by scanning electron microscopy. Seven-day continuous glucose monitoring records were considered inaccurate when mean absolute relative difference was higher than 10%. Pathologists were able to correctly classify all the biopsies regarding sensor duration. Acute response (24 h) was characterized by the presence of neutrophils while macrophages were the main cell involved in subacute inflammation. The number of macrophages around the insertion hole was higher for less accurate sensors compared with those performing more accurately (32.6 ± 14 vs. 10.6 ± 1 cells/0.01 mm 2 ; P sensor-tissue interface is related with decrease in accuracy of the glucose measure.

  8. Effect of Apoptotic Cell Recognition on Macrophage Polarization and Mycobacterial Persistence

    Science.gov (United States)

    de Oliveira Fulco, Tatiana; Andrade, Priscila Ribeiro; de Mattos Barbosa, Mayara Garcia; Pinto, Thiago Gomes Toledo; Ferreira, Paula Fernandez; Ferreira, Helen; da Costa Nery, José Augusto; Real, Suzana Côrte; Borges, Valéria Matos; Moraes, Milton Ozório; Sarno, Euzenir Nunes; Sampaio, Elizabeth Pereira

    2014-01-01

    Intracellular Mycobacterium leprae infection modifies host macrophage programming, creating a protective niche for bacterial survival. The milieu regulating cellular apoptosis in the tissue plays an important role in defining susceptible and/or resistant phenotypes. A higher density of apoptotic cells has been demonstrated in paucibacillary leprosy lesions than in multibacillary ones. However, the effect of apoptotic cell removal on M. leprae-stimulated cells has yet to be fully elucidated. In this study, we investigated whether apoptotic cell removal (efferocytosis) induces different phenotypes in proinflammatory (Mϕ1) and anti-inflammatory (Mϕ2) macrophages in the presence of M. leprae. We stimulated Mϕ1 and Mϕ2 cells with M. leprae in the presence or absence of apoptotic cells and subsequently evaluated the M. leprae uptake, cell phenotype, and cytokine pattern in the supernatants. In the presence of M. leprae and apoptotic cells, Mϕ1 macrophages changed their phenotype to resemble the Mϕ2 phenotype, displaying increased CD163 and SRA-I expression as well as higher phagocytic capacity. Efferocytosis increased M. leprae survival in Mϕ1 cells, accompanied by reduced interleukin-15 (IL-15) and IL-6 levels and increased transforming growth factor beta (TGF-β) and IL-10 secretion. Mϕ1 cells primed with M. leprae in the presence of apoptotic cells induced the secretion of Th2 cytokines IL-4 and IL-13 in autologous T cells compared with cultures stimulated with M. leprae or apoptotic cells alone. Efferocytosis did not alter the Mϕ2 cell phenotype or cytokine secretion profile, except for TGF-β. Based on these data, we suggest that, in paucibacillary leprosy patients, efferocytosis contributes to mycobacterial persistence by increasing the Mϕ2 population and sustaining the infection. PMID:25024361

  9. Kupffer cells are activated in cirrhotic portal hypertension and not normalised by TIPS

    DEFF Research Database (Denmark)

    Holland-Fischer, Peter; Grønbæk, Henning; Sandahl, Thomas Damgaard

    2011-01-01

    INTRODUCTION: Hepatic macrophages (Kupffer cells) undergo inflammatory activation during the development of portal hypertension in experimental cirrhosis; this activation may play a pathogenic role or be an epiphenomenon. Our objective was to study serum soluble CD163 (sCD163), a sensitive marker...... in the patients (52.2 vs 30.4 μg/l, pportal hypertension. The activation was not alleviated by the mechanical...... reduction of portal hypertension and the decreasing signs of endotoxinaemia. The findings suggest that Kupffer cell activation is a constitutive event that may play a pathogenic role for portal hypertension....

  10. Therapeutic effects of anti-CD115 monoclonal antibody in mouse cancer models through dual inhibition of tumor-associated macrophages and osteoclasts.

    Directory of Open Access Journals (Sweden)

    Laetitia Fend

    Full Text Available Tumor progression is promoted by Tumor-Associated Macrophages (TAMs and metastasis-induced bone destruction by osteoclasts. Both myeloid cell types depend on the CD115-CSF-1 pathway for their differentiation and function. We used 3 different mouse cancer models to study the effects of targeting cancer host myeloid cells with a monoclonal antibody (mAb capable of blocking CSF-1 binding to murine CD115. In mice bearing sub-cutaneous EL4 tumors, which are CD115-negative, the anti-CD115 mAb depleted F4/80(+ CD163(+ M2-type TAMs and reduced tumor growth, resulting in prolonged survival. In the MMTV-PyMT mouse model, the spontaneous appearance of palpable mammary tumors was delayed when the anti-CD115 mAb was administered before malignant transition and tumors became palpable only after termination of the immunotherapy. When administered to mice already bearing established PyMT tumors, anti-CD115 treatment prolonged their survival and potentiated the effect of chemotherapy with Paclitaxel. As shown by immunohistochemistry, this therapeutic effect correlated with the depletion of F4/80(+CD163(+ M2-polarized TAMs. In a breast cancer model of bone metastasis, the anti-CD115 mAb potently blocked the differentiation of osteoclasts and their bone destruction activity. This resulted in the inhibition of cancer-induced weight loss. CD115 thus represents a promising target for cancer immunotherapy, since a specific blocking antibody may not only inhibit the growth of a primary tumor through TAM depletion, but also metastasis-induced bone destruction through osteoclast inhibition.

  11. Fish oil-derived long-chain n-3 polyunsaturated fatty acids reduce expression of M1-associated macrophage markers in an ex vivo adipose tissue culture model, in part through adiponectin

    OpenAIRE

    Anna A. De Boer; Jennifer M. Monk; Jennifer M. Monk; Danyelle M. Liddle; Krista A. Power; David W.L. Ma; Lindsay E. Robinson

    2015-01-01

    Adipose tissue (AT) macrophages (ATM) play a key role in obesity-associated pathologies, and their phenotype can be influenced by the local tissue microenvironment. Interestingly, long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) and the LC n-3 PUFA-upregulated adipokine, adiponectin (Ad), may mitigate excessive ATM inflammatory M1-polarization responses. However, to what extent LC n-3 PUFA and Ad work in concert to affect macrophage phenotype has not been examined. Thus, we used an es...

  12. FcγRI (CD64): an identity card for intestinal macrophages.

    Science.gov (United States)

    De Calisto, Jaime; Villablanca, Eduardo J; Mora, J Rodrigo

    2012-12-01

    Macrophages are becoming increasingly recognized as key cellular players in intestinal immune homeostasis. However, differentiating between macrophages and dendritic cells (DCs) is often difficult, and finding a specific phenotypic signature for intestinal macrophage identification has remained elusive. In this issue of the European Journal of Immunology, Tamoutounour et al. [Eur. J. Immunol. 2012. 42: 3150-3166] identify CD64 as a specific macrophage marker that can be used to discriminate DCs from macrophages in the murine small and large intestine, under both steady-state and inflammatory conditions. The authors also propose a sequential 'monocyte-waterfall' model for intestinal macrophage differentiation, with implications for immune tolerance and inflammation at the gut mucosal interface. This Commentary will discuss the advantages and potential limitations of CD64 as a marker for intestinal macrophages. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Macrophages and mast cells in dystrophic masseter muscle: a light and electron microscopic study

    DEFF Research Database (Denmark)

    Kirkeby, S; Mikkelsen, H

    1988-01-01

    Macrophages and mast cells in masseter muscle from normal and dystrophic mice were studied by light and electron microscopy. Acid phosphatase activity and FITC-dextran were used to identify and describe macrophages. Toluidine blue was used as a marker for mast cells. In dystrophic muscle, the num......Macrophages and mast cells in masseter muscle from normal and dystrophic mice were studied by light and electron microscopy. Acid phosphatase activity and FITC-dextran were used to identify and describe macrophages. Toluidine blue was used as a marker for mast cells. In dystrophic muscle...

  14. Macrophages in synovial inflammation

    Directory of Open Access Journals (Sweden)

    Aisling eKennedy

    2011-10-01

    Full Text Available AbstractSynovial macrophages are one of the resident cell types in synovial tissue and while they remain relatively quiescent in the healthy joint, they become activated in the inflamed joint and, along with infiltrating monocytes/macrophages, regulate secretion of pro-inflammatory cytokines and enzymes involved in driving the inflammatory response and joint destruction. Synovial macrophages are positioned throughout the sub-lining layer and lining layer at the cartilage-pannus junction and mediate articular destruction. Sub-lining macrophages are now also considered as the most reliable biomarker for disease severity and response to therapy in rheumatoid arthritis (RA. There is a growing understanding of the molecular drivers of inflammation and an appreciation that the resolution of inflammation is an active process rather than a passive return to homeostasis, and this has implications for our understanding of the role of macrophages in inflammation. Macrophage phenotype determines the cytokine secretion profile and tissue destruction capabilities of these cells. Whereas inflammatory synovial macrophages have not yet been classified into one phenotype or another it is widely known that TNFα and IL-l, characteristically released by M1 macrophages, are abundant in RA while IL-10 activity, characteristic of M2 macrophages, is somewhat diminished.Here we will briefly review our current understanding of macrophages and macrophage polarisation in RA as well as the elements implicated in controlling polarisation, such as cytokines and transcription factors like NFκB, IRFs and NR4A, and pro-resolving factors, such as LXA4 and other lipid mediators which may promote a non-inflammatory, pro-resolving phenotype and may represent a novel therapeutic paradigm.

  15. Characterization of dendritic cells subpopulations in skin and afferent lymph in the swine model.

    Directory of Open Access Journals (Sweden)

    Florian Marquet

    Full Text Available Transcutaneous delivery of vaccines to specific skin dendritic cells (DC subsets is foreseen as a promising strategy to induce strong and specific types of immune responses such as tolerance, cytotoxicity or humoral immunity. Because of striking histological similarities between human and pig skin, pig is recognized as the most suitable model to study the cutaneous delivery of medicine. Therefore improving the knowledge on swine skin DC subsets would be highly valuable to the skin vaccine field. In this study, we showed that pig skin DC comprise the classical epidermal langerhans cells (LC and dermal DC (DDC that could be divided in 3 subsets according to their phenotypes: (1 the CD163(neg/CD172a(neg, (2 the CD163(highCD172a(pos and (3 the CD163(lowCD172a(pos DDC. These subtypes have the capacity to migrate from skin to lymph node since we detected them in pseudo-afferent lymph. Extensive phenotyping with a set of markers suggested that the CD163(high DDC resemble the antibody response-inducing human skin DC/macrophages whereas the CD163(negCD172(low DDC share properties with the CD8(+ T cell response-inducing murine skin CD103(pos DC. This work, by showing similarities between human, mouse and swine skin DC, establishes pig as a model of choice for the development of transcutaneous immunisation strategies targeting DC.

  16. Dual prognostic significance of tumour-associated macrophages in human pancreatic adenocarcinoma treated or untreated with chemotherapy.

    Science.gov (United States)

    Di Caro, Giuseppe; Cortese, Nina; Castino, Giovanni Francesco; Grizzi, Fabio; Gavazzi, Francesca; Ridolfi, Cristina; Capretti, Giovanni; Mineri, Rossana; Todoric, Jelena; Zerbi, Alessandro; Allavena, Paola; Mantovani, Alberto; Marchesi, Federica

    2016-10-01

    Tumour-associated macrophages (TAMs) play key roles in tumour progression. Recent evidence suggests that TAMs critically modulate the efficacy of anticancer therapies, raising the prospect of their targeting in human cancer. In a large retrospective cohort study involving 110 patients with pancreatic ductal adenocarcinoma (PDAC), we assessed the density of CD68-TAM immune reactive area (%IRA) at the tumour-stroma interface and addressed their prognostic relevance in relation to postsurgical adjuvant chemotherapy (CTX). In vitro, we dissected the synergism of CTX and TAMs. In human PDAC, TAMs predominantly exhibited an immunoregulatory profile, characterised by expression of scavenger receptors (CD206, CD163) and production of interleukin 10 (IL-10). Surprisingly, while the density of TAMs associated to worse prognosis and distant metastasis, CTX restrained their protumour prognostic significance. High density of TAMs at the tumour-stroma interface positively dictated prognostic responsiveness to CTX independently of T-cell density. Accordingly, in vitro, gemcitabine-treated macrophages became tumoricidal, activating a cytotoxic gene expression programme, inhibiting their protumoural effect and switching to an antitumour phenotype. In patients with human PDAC, neoadjuvant CTX was associated to a decreased density of CD206(+) and IL-10(+) TAMs at the tumour-stroma interface. Overall, our data highlight TAMs as critical determinants of prognostic responsiveness to CTX and provide clinical and in vitro evidence that CTX overall directly re-educates TAMs to restrain tumour progression. These results suggest that the quantification of TAMs could be exploited to select patients more likely to respond to CTX and provide the basis for novel strategies aimed at re-educating macrophages in the context of CTX. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Cre/lox Studies Identify Resident Macrophages as the Major Source of Circulating Coagulation Factor XIII-A.

    Science.gov (United States)

    Beckers, Cora M L; Simpson, Kingsley R; Griffin, Kathryn J; Brown, Jane M; Cheah, Lih T; Smith, Kerrie A; Vacher, Jean; Cordell, Paul A; Kearney, Mark T; Grant, Peter J; Pease, Richard J

    2017-08-01

    To establish the cellular source of plasma factor (F)XIII-A. A novel mouse floxed for the F13a1 gene, FXIII-A flox/flox (Flox), was crossed with myeloid- and platelet-cre-expressing mice, and cellular FXIII-A mRNA expression and plasma and platelet FXIII-A levels were measured. The platelet factor 4-cre.Flox cross abolished platelet FXIII-A and reduced plasma FXIII-A to 23±3% ( P cre on plasma FXIII-A was exerted outside of the megakaryocyte lineage because plasma FXIII-A was not reduced in the Mpl -/- mouse, despite marked thrombocytopenia. In support of this, platelet factor 4-cre depleted FXIII-A mRNA in brain, aorta, and heart of floxed mice, where FXIII-A pos cells were identified as macrophages as they costained with CD163. In the integrin αM-cre.Flox and the double copy lysozyme 2-cre.cre.Flox crosses, plasma FXIII-A was reduced to, respectively, 75±5% ( P =0.003) and 30±7% ( P <0.001), with no change in FXIII-A content per platelet, further consistent with a macrophage origin of plasma FXIII-A. The change in plasma FXIII-A levels across the various mouse genotypes mirrored the change in FXIII-A mRNA expression in aorta. Bone marrow transplantation of FXIII-A +/+ bone marrow into FXIII-A -/- mice both restored plasma FXIII-A to normal levels and replaced aortic and cardiac FXIII-A mRNA, while its transplantation into FXIII-A +/+ mice did not increase plasma FXIII-A levels, suggesting that a limited population of niches exists that support FXIII-A-releasing cells. This work suggests that resident macrophages maintain plasma FXIII-A and exclude the platelet lineage as a major contributor. © 2017 The Authors.

  18. Establishing porcine monocyte-derived macrophage and dendritic cell systems for studying the interaction with PRRSV-1

    Directory of Open Access Journals (Sweden)

    Helen eSingleton

    2016-06-01

    Full Text Available Monocyte-derived macrophages (MoMØ and monocyte-derived dendritic cells (MoDC are two model systems well established in human and rodent systems that can be used to study the interaction of pathogens with host cells. Porcine reproductive and respiratory syndrome virus (PRRSV is known to infect myeloid cells, such as macrophages (MØ and dendritic cells (DC. Therefore, this study aimed to establish systems for the differentiation and characterization of MoMØ and MoDC for subsequent infection with PRRSV-1. M-CSF differentiated monocyte-derived macrophages (MoMØ were stimulated with activators for classical (M1 or alternative (M2 activation. GM-CSF and IL-4 generated monocyte-derived dendritic cells (MoDC were activated with the well established maturation cocktail containing PAMPs and cytokines. In addition, MoMØ and MoDC were treated with dexamethasone and IL-10, which are known immuno-suppressive reagents. Cells were characterized by morphology, phenotype and function and porcine MØ subsets highlighted some divergence from described human counterparts, while MoDC, appeared more similar to mouse and human DCs. The infection with PRRSV-1 strain Lena demonstrated different replication kinetics between MoMØ and MoDC and within subsets of each cell type. While MoMØ susceptibility was significantly increased by dexamethasone and IL-10 with an accompanying increase in CD163/CD169 expression, MoDC supported only a minimal replication of PRRSV These findings underline the high variability in the susceptibility of porcine myeloid cells towards PRRSV-1 infection.

  19. Macrophage Functions in Early Dissemination and Dormancy of Breast Cancer

    Science.gov (United States)

    2016-09-01

    mammary gland development 17,18, 69   arguing that normal mammary epithelial cells cooperate with these innate immune cells 70   for invasive... cells lacking 218     11   lymphoid and granulocytic markers (Supplementary Fig.3B). viSNE plots 30 of myelo-219   monocytic cells (Fig.5A...macrophages are actively recruited by pre-malignant ErbB2 overexpressing cancer cells and that these intra-epithelial macrophages then produce factors

  20. Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-κB-mediated inflammation in macrophages.

    Science.gov (United States)

    Wang, Ying; Wang, Gary Z; Rabinovitch, Peter S; Tabas, Ira

    2014-01-31

    Mitochondrial oxidative stress (mitoOS) has been shown to correlate with the progression of human atherosclerosis. However, definitive cell type-specific causation studies in vivo are lacking, and the molecular mechanisms of potential proatherogenic effects remain to be determined. Our aims were to assess the importance of macrophage mitoOS in atherogenesis and to explore the underlying molecular mechanisms. We first validated Western diet-fed Ldlr(-/-) mice as a model of human mitoOS-atherosclerosis association by showing that non-nuclear oxidative DNA damage, a marker of mitoOS in lesional macrophages, correlates with aortic root lesion development. To investigate the importance of macrophage mitoOS, we used a genetic engineering strategy in which the OS suppressor catalase was ectopically expressed in mitochondria (mCAT) in macrophages. MitoOS in lesional macrophages was successfully suppressed in these mice, and this led to a significant reduction in aortic root lesional area. The mCAT lesions had less monocyte-derived cells, less Ly6c(hi) monocyte infiltration into lesions, and lower levels of monocyte chemotactic protein-1. The decrease in lesional monocyte chemotactic protein-1 was associated with the suppression of other markers of inflammation and with decreased phosphorylation of RelA (NF-κB p65), indicating decreased activation of the proinflammatory NF-κB pathway. Using models of mitoOS in cultured macrophages, we showed that mCAT suppressed monocyte chemotactic protein-1 expression by decreasing the activation of the IκB-kinase β-RelA NF-κB pathway. MitoOS in lesional macrophages amplifies atherosclerotic lesion development by promoting NF-κB-mediated entry of monocytes and other inflammatory processes. In view of the mitoOS-atherosclerosis link in human atheromata, these findings reveal a potentially new therapeutic target to prevent the progression of atherosclerosis.

  1. [Macrophages in human semen].

    Science.gov (United States)

    Bouvet, Beatriz Reina; Brufman, Adriana Silvia; Paparella, Cecilia Vicenta; Feldman, Rodolfo Nestor; Gatti, Vanda Nora; Solis, Edita Amalia

    2003-11-01

    To investigate the presence of macrophages in human semen samples and the function they carry out in the seminal fluid. Their presence was studied in relation to spermatic morphology, percentage of spermatozoids with native DNA, and presence of antispermatic antibodies. The work was performed with semen samples from 31 unfertile males from 63 couples in which the "female factor" was ruled out as the cause of infertility. Sperm study according to WHO (1992) was carried out in all samples, in addition to: DNA study with acridine orange as fluorocrom, macrophage concentration by neutral red in a Neubauer camera, and detection of antispermatic antibodies with a mixed agglutination test (TAC II) (validated with Mar Screen-Fertility technologies). Sperm morphology was evaluated by Papanicolaou test. 19/31 selected sperm samples (61.3%) showed increased concentration of macrophages, 13 of them (41.9%) with denaturalized DNA, and 8 (25.8%) abnormal morphology. Six samples showed increased macrophage concentration and predominance of native DNA, whereas 11 samples showed increased macrophages and abnormal morphology. Among 18 (58.1%) samples showing antispermatic antibodies 14 (77.7%) had an increased concentration of macrophages. Statistical analysis resulted in a high correlation between macrophage concentration and increased percentage of spermatozoids with denaturalized DNA (p < 0.05). An increased concentration of macrophages is associated with the presence of antispermatic antibodies (p < 0.05). There was not evidence of significant association between concentration of macrophages and percentage of morphologically normal spermatozoids (p < 0.05). We can conclude that macrophages are present in human semen and participate in immunovigilance contributing to improve the seminal quality.

  2. Kupffer cells are activated in cirrhotic portal hypertension and not normalised by TIPS.

    Science.gov (United States)

    Holland-Fischer, Peter; Grønbæk, Henning; Sandahl, Thomas Damgaard; Moestrup, Søren K; Riggio, Oliviero; Ridola, Lorenzo; Aagaard, Niels Kristian; Møller, Holger Jon; Vilstrup, Hendrik

    2011-10-01

    Hepatic macrophages (Kupffer cells) undergo inflammatory activation during the development of portal hypertension in experimental cirrhosis; this activation may play a pathogenic role or be an epiphenomenon. Our objective was to study serum soluble CD163 (sCD163), a sensitive marker of macrophage activation, before and after reduction of portal venous pressure gradient by insertion of a transjugular intrahepatic portosystemic shunt (TIPS) in patients with cirrhosis. sCD163 was measured in 11 controls and 36 patients before and 1, 4 and 26 weeks after TIPS. We used lipopolysaccharide binding protein (LBP) levels as a marker of endotoxinaemia. Liver function and clinical status of the patients were assessed by galactose elimination capacity and Model for End Stage Liver Disease score. The sCD163 concentration was more than threefold higher in the patients than in the controls (median 5.22 mg/l vs 1.45 mg/l, pportal venous pressure gradient (r(2)=0.24, pportal vein (pportal hypertension. The activation was not alleviated by the mechanical reduction of portal hypertension and the decreasing signs of endotoxinaemia. The findings suggest that Kupffer cell activation is a constitutive event that may play a pathogenic role for portal hypertension.

  3. IL-15 up-regulates the MMP-9 expression levels and induces inflammatory infiltration of macrophages in polymyositis through regulating the NF-kB pathway.

    Science.gov (United States)

    Yan, Wang; Fan, Weinv; Chen, Caijing; Wu, Yunqin; Fan, Zhenyi; Chen, Jiaqi; Chen, Zhaoying; Chen, Huimin

    2016-10-10

    This study was aimed to research the effects of IL-15 on inducing inflammatory infiltration of macrophages in polymyositis (PM) through the NF-kB pathway, and whether IL-15 was able to further regulate MMP-9 expression levels. Prepared PM cells, collected from the patients suffering from PM, were administered to SD rats. Also, a group of healthy SD rats was undergoing the same treatment as the control group. The test animals were treated with either anti-IL-15, IL-15, MMP-9 siRNA or ERK1/2 inhibitor. The blood toxicological parameters creatine kinase (CK) and CD163 were tested by using ELISA and immunohistochemistry assay. In addition, NF-kB expression in macrophages was measured by immunocytochemical assay. To measure the degree of cell infiltration the Transwell assay was performed. Lastly, western blot and zymography were carried out to compare MMP-9 and ERK expression levels between the two groups, both in vivo and in vitro. The results showed that S-CK, IL-15 and IL-15Rα levels increased rapidly after the conventional treatment was introduced to the PM infected SD rats. The PM model establishment and IL-15 treatment significantly increased the expressions of IL-15Rα, MMP-9, p-ERK and p-IKBα. However, the same effect can be suppressed by using anti-IL-15, MMP-9 siRNA or ERK1/2 inhibitor (P kB in the macrophages. IL-15 is able to significantly regulate the inflammatory infiltration of macrophages in PM patients through affecting the NF-kB pathway and MMP-9 expression levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Rhinovirus infection induces distinct transcriptome profiles in polarized human macrophages.

    Science.gov (United States)

    Rajput, Charu; Walsh, Megan P; Eder, Breanna N; Metitiri, Ediri E; Popova, Antonia P; Hershenson, Marc B

    2018-05-01

    Infections with rhinovirus (RV) cause asthma exacerbations. Recent studies suggest that macrophages play a role in asthmatic airway inflammation and the innate immune response to RV infection. Macrophages exhibit phenotypes based on surface markers and gene expression. We hypothesized that macrophage polarization state alters gene expression in response to RV infection. Cells were derived from human peripheral blood derived monocytes. M1 and M2 polarization was carried out by using IFN-γ and IL-4, respectively, and RNA was extracted for Affymetrix Human Gene ST2.1 exon arrays. Selected genes were validated by quantitative (q)PCR. Treatment of nonactivated (M0) macrophages with IFN-γ and IL-4 induced the expression of 252 and 153 distinct genes, respectively, including previously-identified M1 and M2 markers. RV infection of M0 macrophages induced upregulation of 232 genes; pathway analysis showed significant overrepresentation of genes involved in IFN-α/β signaling and cytokine signaling in the immune system. RV infection induced differential expression of 195 distinct genes in M1-like macrophages but only seven distinct genes in M2-like-polarized cells. In a secondary analysis, comparison between M0-, RV-infected, and M1-like-polarized, RV-infected macrophages revealed differential expression of 227 genes including those associated with asthma and its exacerbation. qPCR demonstrated increased expression of CCL8, CXCL10, TNFSF10, TNFSF18, IL6, NOD2, and GSDMD and reduced expression of VNN1, AGO1, and AGO2. Together, these data show that, in contrast to M2-like-polarized macrophages, gene expression of M1-like macrophages is highly regulated by RV.

  5. Label-free identification of macrophage phenotype by fluorescence lifetime imaging microscopy

    Science.gov (United States)

    Alfonso-García, Alba; Smith, Tim D.; Datta, Rupsa; Luu, Thuy U.; Gratton, Enrico; Potma, Eric O.; Liu, Wendy F.

    2016-04-01

    Macrophages adopt a variety of phenotypes that are a reflection of the many functions they perform as part of the immune system. In particular, metabolism is a phenotypic trait that differs between classically activated, proinflammatory macrophages, and alternatively activated, prohealing macrophages. Inflammatory macrophages have a metabolism based on glycolysis while alternatively activated macrophages generally rely on oxidative phosphorylation to generate chemical energy. We employ this shift in metabolism as an endogenous marker to identify the phenotype of individual macrophages via live-cell fluorescence lifetime imaging microscopy (FLIM). We demonstrate that polarized macrophages can be readily discriminated with the aid of a phasor approach to FLIM, which provides a fast and model-free method for analyzing fluorescence lifetime images.

  6. The elusive antifibrotic macrophage

    Directory of Open Access Journals (Sweden)

    Adhyatmika eAdhyatmika

    2015-11-01

    Full Text Available Fibrotic diseases, especially of the liver, the cardiovascular system, the kidneys, and the lungs account for approximately 45% of deaths in Western societies. Fibrosis is a serious complication associated with aging and/or chronic inflammation or injury and cannot be treated effectively yet. It is characterized by excessive deposition of extracellular matrix (ECM proteins by myofibroblasts and impaired degradation by macrophages. This ultimately destroys the normal structure of an organ, which leads to loss of function. Most efforts to develop drugs have focused on inhibiting ECM production by myofibroblasts and have not yielded many effective drugs yet. Another option is to stimulate the cells that are responsible for degradation and uptake of excess ECM, i.e. antifibrotic macrophages. However, macrophages are plastic cells that have many faces in fibrosis, including profibrotic behaviour stimulating ECM production. This can be dependent on their origin, as the different organs have tissue-resident macrophages with different origins and a various influx of incoming monocytes in steady-state conditions and during fibrosis. To be able to pharmacologically stimulate the right kind of behaviour in fibrosis, a thorough characterization of antifibrotic macrophages is necessary, as well as an understanding of the signals they need to degrade ECM. In this review we will summarize the current state of the art regarding the antifibrotic macrophage phenotype and the signals that stimulate its behaviour.

  7. Phenotypic, functional, and quantitative characterization of canine peripheral blood monocyte-derived macrophages

    Directory of Open Access Journals (Sweden)

    R Bueno

    2005-08-01

    Full Text Available The yield as well as phenotypic and functional parameters of canine peripheral blood monocyte-derived macrophages were analyzed. The cells that remained adherent to Teflon after 10 days of culture had high phagocytic activity when inoculated with Leishmania chagasi. Flow cytometric analysis demonstrated that more than 80% of cultured cells were positive for the monocyte/macrophage marker CD14.

  8. Macrophage Gene Expression Associated with Remodeling of the Prepartum Rat Cervix: Microarray and Pathway Analyses

    Science.gov (United States)

    Dobyns, Abigail E.; Goyal, Ravi; Carpenter, Lauren Grisham; Freeman, Tom C.; Longo, Lawrence D.; Yellon, Steven M.

    2015-01-01

    As the critical gatekeeper for birth, prepartum remodeling of the cervix is associated with increased resident macrophages (Mφ), proinflammatory processes, and extracellular matrix degradation. This study tested the hypothesis that expression of genes unique to Mφs characterizes the prepartum from unremodeled nonpregnant cervix. Perfused cervix from prepartum day 21 postbreeding (D21) or nonpregnant (NP) rats, with or without Mφs, had RNA extracted and whole genome microarray analysis performed. By subtractive analyses, expression of 194 and 120 genes related to Mφs in the cervix from D21 rats were increased and decreased, respectively. In both D21 and NP groups, 158 and 57 Mφ genes were also more or less up- or down-regulated, respectively. Mφ gene expression patterns were most strongly correlated within groups and in 5 major clustering patterns. In the cervix from D21 rats, functional categories and canonical pathways of increased expression by Mφ gene related to extracellular matrix, cell proliferation, differentiation, as well as cell signaling. Pathways were characteristic of inflammation and wound healing, e.g., CD163, CD206, and CCR2. Signatures of only inflammation pathways, e.g., CSF1R, EMR1, and MMP12 were common to both D21 and NP groups. Thus, a novel and complex balance of Mφ genes and clusters differentiated the degraded extracellular matrix and cellular genomic activities in the cervix before birth from the unremodeled state. Predicted Mφ activities, pathways, and networks raise the possibility that expression patterns of specific genes characterize and promote prepartum remodeling of the cervix for parturition at term and with preterm labor. PMID:25811906

  9. Fermented non-digestible fraction from combined nixtamalized corn (Zea mays L.)/cooked common bean (Phaseolus vulgaris L.) chips modulate anti-inflammatory markers on RAW 264.7 macrophages.

    Science.gov (United States)

    Luzardo-Ocampo, I; Campos-Vega, R; Cuellar-Nuñez, M L; Vázquez-Landaverde, P A; Mojica, L; Acosta-Gallegos, J A; Loarca-Piña, G

    2018-09-01

    Chronic non-communicable diseases (NCDs) are low-level inflammation processes affected by several factors including diet. It has been reported that mixed whole grain and legume consumption, e.g. corn and common bean, might be a beneficial combination due to its content of bioactive compounds. A considerable amount would be retained in the non-digestible fraction (NDF), reaching the colon, where microbiota produce short-chain fatty acids (SCFAs) and phenolic compounds (PC) with known anti-inflammatory effect. The aim of this study was to estimate the anti-inflammatory potential of fermented-NDF of corn-bean chips (FNDFC) in RAW 264.7 macrophages. After 24 h, FNDFC produced SCFAs (0.156-0.222 mmol/l), inhibited nitric oxide production > 80% and H 2 O 2  > 30%, up-regulated anti-inflammatory cytokines (I-TAC, TIMP-1) > 2-fold, and produced angiostatic and protective factors against vascular/tissue damage, and amelioration of tumor necrosis factor signalling and inflammatory bowel disease. These results confirm the anti-inflammatory potential derived from healthy corn-bean chips. Copyright © 2018. Published by Elsevier Ltd.

  10. Specific macrophage subtypes influence the progression of rhabdomyolysis-induced kidney injury.

    Science.gov (United States)

    Belliere, Julie; Casemayou, Audrey; Ducasse, Laure; Zakaroff-Girard, Alexia; Martins, Frédéric; Iacovoni, Jason S; Guilbeau-Frugier, Céline; Buffin-Meyer, Bénédicte; Pipy, Bernard; Chauveau, Dominique; Schanstra, Joost P; Bascands, Jean-Loup

    2015-06-01

    Rhabdomyolysis can be life threatening if complicated by AKI. Macrophage infiltration has been observed in rat kidneys after glycerol-induced rhabdomyolysis, but the role of macrophages in rhabdomyolysis-induced AKI remains unknown. Here, in a patient diagnosed with rhabdomyolysis, we detected substantial macrophage infiltration in the kidney. In a mouse model of rhabdomyolysis-induced AKI, diverse renal macrophage phenotypes were observed depending on the stage of the disease. Two days after rhabdomyolysis, F4/80(low)CD11b(high)Ly6b(high)CD206(low) kidney macrophages were dominant, whereas by day 8, F4/80(high)CD11b(+)Ly6b(low)CD206(high) cells became the most abundant. Single-cell gene expression analyses of FACS-sorted macrophages revealed that these subpopulations were heterogeneous and that individual cells simultaneously expressed both M1 and M2 markers. Liposomal clodronate-mediated macrophage depletion significantly reduced the early infiltration of F4/80(low)CD11b(high)Ly6b(high)CD206(low) macrophages. Furthermore, transcriptionally regulated targets potentially involved in disease progression, including fibronectin, collagen III, and chemoattractants that were identified via single-cell analysis, were verified as macrophage-dependent in situ. In vitro, myoglobin treatment induced proximal tubular cells to secrete chemoattractants and macrophages to express proinflammatory markers. At day 30, liposomal clodronate-mediated macrophage depletion reduced fibrosis and improved both kidney repair and mouse survival. Seven months after rhabdomyolysis, histologic lesions were still present but were substantially reduced with prior depletion of macrophages. These results suggest an important role for macrophages in rhabdomyolysis-induced AKI progression and advocate the utility of long-term follow-up for patients with this disease. Copyright © 2015 by the American Society of Nephrology.

  11. Cell Elasticity Determines Macrophage Function

    Science.gov (United States)

    Patel, Naimish R.; Bole, Medhavi; Chen, Cheng; Hardin, Charles C.; Kho, Alvin T.; Mih, Justin; Deng, Linhong; Butler, James; Tschumperlin, Daniel; Fredberg, Jeffrey J.; Krishnan, Ramaswamy; Koziel, Henry

    2012-01-01

    Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function. PMID:23028423

  12. Cell elasticity determines macrophage function.

    Directory of Open Access Journals (Sweden)

    Naimish R Patel

    Full Text Available Macrophages serve to maintain organ homeostasis in response to challenges from injury, inflammation, malignancy, particulate exposure, or infection. Until now, receptor ligation has been understood as being the central mechanism that regulates macrophage function. Using macrophages of different origins and species, we report that macrophage elasticity is a major determinant of innate macrophage function. Macrophage elasticity is modulated not only by classical biologic activators such as LPS and IFN-γ, but to an equal extent by substrate rigidity and substrate stretch. Macrophage elasticity is dependent upon actin polymerization and small rhoGTPase activation, but functional effects of elasticity are not predicted by examination of gene expression profiles alone. Taken together, these data demonstrate an unanticipated role for cell elasticity as a common pathway by which mechanical and biologic factors determine macrophage function.

  13. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    International Nuclear Information System (INIS)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Kim, Won

    2014-01-01

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  14. SIRT2 ameliorates lipopolysaccharide-induced inflammation in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ae Sin; Jung, Yu Jin; Kim, Dal; Nguyen-Thanh, Tung [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Lee, Sik [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Research Institute of Clinical Medicine of Chonbuk National University, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2014-08-08

    Highlights: • Knockout of SIRT2 attenuates lipopolysaccharide-induced iNOS expression. • Lipopolysaccharide-induced NO production is decreased in SIRT2 KO macrophage. • SIRT2 deficiency suppresses lipopolysaccharide-induced ROS production in macrophage. • M1-macrophage related factors are decreased in SIRT2 deficient cells. • SIRT2 deficiency decreases lipopolysaccharide-induced activation of NFκB. - Abstract: Introduction: SIRT2 is a NAD(+)-dependent deacetylases and associated with numerous processes such as infection, carcinogenesis, DNA damage and cell cycle regulation. However, the role of SIRT2 in inflammatory process in macrophage remains unclear. Materials and methods: In the present study, we have evaluated the regulatory effects of SIRT2 in lipopolysaccharide (LPS)-stimulated macrophages isolated from SIRT2 knockout (KO) and wild type (WT) mice or Raw264.7 macrophage cells. As inflammatory parameters, expression of inducible nitric oxide synthase (iNOS), the productions of nitric oxide, reactive oxygen species (ROS) and M1-macrophage-related factors were evaluated. We also examined the effects of SIRT2 on activation of nuclear factor-kappaB (NFκB) signaling. Results: SIRT2 deficiency inhibits LPS-induced iNOS mRNA and protein expression in bone marrow derived macrophages. SIRT2-siRNA transfection also suppressed LPS-induced iNOS expression in Raw264.7 macrophage cells. Bone marrow derived macrophages isolated from SIRT2 KO mice produced lower nitric oxide and expressed lower levels of M1-macrophage related markers including iNOS and CD86 in response to LPS than WT mice. Decrease of SIRT2 reduced the LPS-induced reactive oxygen species production. Deficiency of SIRT2 resulted in inhibition of NFκB activation through reducing the phosphorylation and degradation of IκBα. The phosphorylation and nuclear translocation of p65 was significantly decreased in SIRT2-deficient macrophages after LPS stimulation. Discussion: Our data suggested that

  15. Tumor-Associated Macrophages Provide Significant Prognostic Information in Urothelial Bladder Cancer.

    Directory of Open Access Journals (Sweden)

    Minna M Boström

    Full Text Available Inflammation is an important feature of carcinogenesis. Tumor-associated macrophages (TAMs can be associated with either poor or improved prognosis, depending on their properties and polarization. Current knowledge of the prognostic significance of TAMs in bladder cancer is limited and was investigated in this study. We analyzed 184 urothelial bladder cancer patients undergoing transurethral resection of a bladder tumor or radical cystectomy. CD68 (pan-macrophage marker, MAC387 (polarized towards type 1 macrophages, and CLEVER-1/Stabilin-1 (type 2 macrophages and lymphatic/blood vessels were detected immunohistochemically. The median follow-up time was 6.0 years. High macrophage counts associated with a higher pT category and grade. Among patients undergoing transurethral resection, all studied markers apart from CLEVER-1/Stabilin-1 were associated with increased risk of progression and poorer disease-specific and overall survival in univariate analyses. High levels of two macrophage markers (CD68/MAC387+/+ or CD68/CLEVER-1+/+ groups had an independent prognostic role after transurethral resection in multivariate analyses. In the cystectomy cohort, MAC387, alone and in combination with CD68, was associated with poorer survival in univariate analyses, but none of the markers were independent predictors of outcome in multivariate analyses. In conclusion, this study demonstrates that macrophage phenotypes provide significant independent prognostic information, particularly in bladder cancers undergoing transurethral resection.

  16. Proliferating macrophages prevail in atherosclerosis.

    Science.gov (United States)

    Randolph, Gwendalyn J

    2013-09-01

    Macrophages accumulate in atherosclerotic lesions during the inflammation that is part of atherosclerosis development and progression. A new study in mice indicates that the accumulation of macrophages in atherosclerotic plaques depends on local macrophage proliferation rather than the recruitment of circulating monocytes.

  17. Targeting androgen receptor to suppress macrophage-induced EMT and benign prostatic hyperplasia (BPH) development.

    Science.gov (United States)

    Lu, Tianjing; Lin, Wen-Jye; Izumi, Kouji; Wang, Xiaohai; Xu, Defeng; Fang, Lei-Ya; Li, Lei; Jiang, Qi; Jin, Jie; Chang, Chawnshang

    2012-10-01

    Early studies suggested macrophages might play roles in inflammation-associated benign prostatic hyperplasia (BPH) development, yet the underlying mechanisms remain unclear. Here we first showed that CD68(+) macrophages were identified in both epithelium and the stromal area of human BPH tissues. We then established an in vitro co-culture model with prostate epithelial and macrophage cell lines to study the potential impacts of infiltrating macrophages in the BPH development and found that co-culturing prostate epithelial cells with macrophages promoted migration of macrophages. In a three-dimensional culture system, the sphere diameter of BPH-1 prostate cells was significantly increased during coculture with THP-1 macrophage cells. Mechanism dissection suggested that expression levels of epithelial-mesenchymal transition (EMT) markers, such as N-cadherin, Snail, and TGF-β2, were increased, and administration of anti-TGF-β2 neutralizing antibody during co-culture suppressed the EMT and THP-1-mediated growth of BPH-1 cells, suggesting THP-1 might go through EMT to influence the BPH development and progression. Importantly, we found that modulation of androgen receptor (AR) in BPH-1 and mPrE cells significantly increased THP-1 and RAW264.7 cell migration, respectively, and enhanced expression levels of EMT markers, suggesting that AR in prostate epithelial cells might play a role in promoting macrophage-mediated EMT in prostate epithelial cells. Silencing AR function via an AR degradation enhancer, ASC-J9, decreased the macrophage migration to BPH-1 cells and suppressed EMT marker expression. Together, these results provide the first evidence to demonstrate that prostate epithelial AR function is important for macrophage-mediated EMT and proliferation of prostate epithelial cells, which represents a previously unrecognized role of AR in the cross-talk between macrophages and prostate epithelial cells. These results may provide new insights for a new therapeutic

  18. Endometriosis and possible inflammation markers

    OpenAIRE

    Meng-Hsing Wu; Kuei-Yang Hsiao; Shaw-Jenq Tsai

    2015-01-01

    Inflammation plays an important role in the pathogenesis of endometriosis. Infiltration of peritoneal macrophages and local proinflammatory mediators in the peritoneal microenvironment affect ovarian function and pelvic anatomy leading to the symptoms and signs of endometriosis. The identification of a noninvasive marker for endometriosis will facilitate early diagnosis and treatment of this disease. This review provides an overview of local microenvironmental inflammation and systemic inflam...

  19. Endometriosis and possible inflammation markers

    Directory of Open Access Journals (Sweden)

    Meng-Hsing Wu

    2015-08-01

    Full Text Available Inflammation plays an important role in the pathogenesis of endometriosis. Infiltration of peritoneal macrophages and local proinflammatory mediators in the peritoneal microenvironment affect ovarian function and pelvic anatomy leading to the symptoms and signs of endometriosis. The identification of a noninvasive marker for endometriosis will facilitate early diagnosis and treatment of this disease. This review provides an overview of local microenvironmental inflammation and systemic inflammation biomarkers in endometriosis.

  20. Elevated S100A9 expression in tumor stroma functions as an early recurrence marker for early-stage oral cancer patients through increased tumor cell invasion, angiogenesis, macrophage recruitment and interleukin-6 production.

    Science.gov (United States)

    Fang, Wei-Yu; Chen, Yi-Wen; Hsiao, Jenn-Ren; Liu, Chiang-Shin; Kuo, Yi-Zih; Wang, Yi-Ching; Chang, Kung-Chao; Tsai, Sen-Tien; Chang, Mei-Zhu; Lin, Siao-Han; Wu, Li-Wha

    2015-09-29

    S100A9 is a calcium-binding protein with two EF-hands and frequently deregulated in several cancer types, however, with no clear role in oral cancer. In this report, the expression of S100A9 in cancer and adjacent tissues from 79 early-stage oral cancer patients was detected by immunohistochemical staining. Although S100A9 protein was present in both tumor and stromal cells, only the early-stage oral cancer patients with high stromal expression had reduced recurrence-free survival. High stromal S100A9 expression was also significantly associated with non-well differentiation and recurrence. In addition to increasing cell migration and invasion, ectopic S100A9 expression in tumor cells promoted xenograft tumorigenesis as well as the dominant expression of myeloid cell markers and pro-inflammatory IL-6. The expression of S100A9 in one stromal component, monocytes, stimulated the aggressiveness of co-cultured oral cancer cells. We also detected the elevation of serum S100A9 levels in early-stage oral cancer patients of a separate cohort of 73 oral cancer patients. The release of S100A9 protein into extracellular milieu enhanced tumor cell invasion, transendothelial monocyte migration and angiogenic activity. S100A9-mediated release of IL-6 requires the crosstalk of tumor cells with monocytes through the activation of NF-κB and STAT-3. Early-stage oral cancer patients with both high S100A9 expression and high CD68+ immune infiltrates in stroma had shortest recurrence-free survival, suggesting the use of both S100A9 and CD68 as poor prognostic markers for oral cancer. Together, both intracellular and extracellular S100A9 exerts a tumor-promoting action through the activation of oral cancer cells and their associated stroma in oral carcinogenesis.

  1. Progastrin represses the alternative activation of human macrophages and modulates their influence on colon cancer epithelial cells.

    Directory of Open Access Journals (Sweden)

    Carlos Hernández

    Full Text Available Macrophage infiltration is a negative prognostic factor for most cancers but gastrointestinal tumors seem to be an exception. The effect of macrophages on cancer progression depends on their phenotype, which may vary between M1 (pro-inflammatory, defensive to M2 (tolerogenic, pro-tumoral. Gastrointestinal cancers often become an ectopic source of gastrins and macrophages present receptors for these peptides. The aim of the present study is to analyze whether gastrins can affect the pattern of macrophage infiltration in colorectal tumors. We have evaluated the relationship between gastrin expression and the pattern of macrophage infiltration in samples from colorectal cancer and the influence of these peptides on the phenotype of macrophages differentiated from human peripheral monocytes in vitro. The total number of macrophages (CD68+ cells was similar in tumoral and normal surrounding tissue, but the number of M2 macrophages (CD206+ cells was significantly higher in the tumor. However, the number of these tumor-associated M2 macrophages correlated negatively with the immunoreactivity for gastrin peptides in tumor epithelial cells. Macrophages differentiated from human peripheral monocytes in the presence of progastrin showed lower levels of M2-markers (CD206, IL10 with normal amounts of M1-markers (CD86, IL12. Progastrin induced similar effects in mature macrophages treated with IL4 to obtain a M2-phenotype or with LPS plus IFNγ to generate M1-macrophages. Macrophages differentiated in the presence of progastrin presented a reduced expression of Wnt ligands and decreased the number and increased cell death of co-cultured colorectal cancer epithelial cells. Our results suggest that progastrin inhibits the acquisition of a M2-phenotype in human macrophages. This effect exerted on tumor associated macrophages may modulate cancer progression and should be taken into account when analyzing the therapeutic value of gastrin immunoneutralization.

  2. Augmented macrophage differentiation and polarization of tumor-associated macrophages towards M1 subtype in listeria-administered tumor-bearing host.

    Science.gov (United States)

    Rai, Rakesh K; Vishvakarma, Naveen K; Mohapatra, Tribhuban M; Singh, Sukh Mahendra

    2012-09-01

    This study investigates the effect of Listeria administration on differentiation of macrophages from precursor bone marrow cells and functional status of tumor-associated macrophages (TAM). Listeria administration not only resulted in an augmented infiltration of tumor by F4/80 macrophages but also repolarized the functional status of TAM displaying features of some M1 macrophage subtype with upregulated phagocytosis and tumoricidal activity accompanied by altered expression of monocarboxylate transporter-1, toll-like receptor-2, surface markers: CD11c, interleukin-2 receptor, CD62L, and secreted molecules: nitric oxide, interleukin (IL)-1, IL-6, tumor necrosis factor-α, and vascular endothelial growth factor. Declined tumor cell survival and modulated repertoire of cytokines: interferon-γ, IL-6, IL-10, and transforming growth factor-β in tumor microenvironment indicated their role in polarization of TAM towards proinflammatory state. Bone marrow cell of Listeria-administered tumor-bearing mice showed augmented survival, declined expression of p53 upregulated modulator of apoptosis with an upregulated differentiation into activation responsive bone marrow-derived macrophages along with altered expression of macrophage-colony stimulating factor, macrophage-colony stimulating factor receptor, and granulocyte macrophage-colony stimulating factor receptor. These findings indicate that Listeria infection is associated with an augmented differentiation of macrophages accompanied by tumoricidal activation of TAM.

  3. Dysregulated Functions of Lung Macrophage Populations in COPD.

    Science.gov (United States)

    Kapellos, Theodore S; Bassler, Kevin; Aschenbrenner, Anna C; Fujii, Wataru; Schultze, Joachim L

    2018-01-01

    Chronic obstructive pulmonary disease (COPD) is a diverse respiratory disease characterised by bronchiolitis, small airway obstruction, and emphysema. Innate immune cells play a pivotal role in the disease's progression, and in particular, lung macrophages exploit their prevalence and strategic localisation to orchestrate immune responses. To date, alveolar and interstitial resident macrophages as well as blood monocytes have been described in the lungs of patients with COPD contributing to disease pathology by changes in their functional repertoire. In this review, we summarise recent evidence from human studies and work with animal models of COPD with regard to altered functions of each of these myeloid cell populations. We primarily focus on the dysregulated capacity of alveolar macrophages to secrete proinflammatory mediators and proteases, induce oxidative stress, engulf microbes and apoptotic cells, and express surface and intracellular markers in patients with COPD. In addition, we discuss the differences in the responses between alveolar macrophages and interstitial macrophages/monocytes in the disease and propose how the field should advance to better understand the implications of lung macrophage functions in COPD.

  4. Dysregulated Functions of Lung Macrophage Populations in COPD

    Science.gov (United States)

    Bassler, Kevin; Aschenbrenner, Anna C.

    2018-01-01

    Chronic obstructive pulmonary disease (COPD) is a diverse respiratory disease characterised by bronchiolitis, small airway obstruction, and emphysema. Innate immune cells play a pivotal role in the disease's progression, and in particular, lung macrophages exploit their prevalence and strategic localisation to orchestrate immune responses. To date, alveolar and interstitial resident macrophages as well as blood monocytes have been described in the lungs of patients with COPD contributing to disease pathology by changes in their functional repertoire. In this review, we summarise recent evidence from human studies and work with animal models of COPD with regard to altered functions of each of these myeloid cell populations. We primarily focus on the dysregulated capacity of alveolar macrophages to secrete proinflammatory mediators and proteases, induce oxidative stress, engulf microbes and apoptotic cells, and express surface and intracellular markers in patients with COPD. In addition, we discuss the differences in the responses between alveolar macrophages and interstitial macrophages/monocytes in the disease and propose how the field should advance to better understand the implications of lung macrophage functions in COPD. PMID:29670919

  5. Macrophage Depletion Ameliorates Peripheral Neuropathy in Aging Mice.

    Science.gov (United States)

    Yuan, Xidi; Klein, Dennis; Kerscher, Susanne; West, Brian L; Weis, Joachim; Katona, Istvan; Martini, Rudolf

    2018-05-09

    Aging is known as a major risk factor for the structure and function of the nervous system. There is urgent need to overcome such deleterious effects of age-related neurodegeneration. Here we show that peripheral nerves of 24-month-old aging C57BL/6 mice of either sex show similar pathological alterations as nerves from aging human individuals, whereas 12-month-old adult mice lack such alterations. Specifically, nerve fibers showed demyelination, remyelination and axonal lesion. Moreover, in the aging mice, neuromuscular junctions showed features typical for dying-back neuropathies, as revealed by a decline of presynaptic markers, associated with α-bungarotoxin-positive postsynapses. In line with these observations were reduced muscle strengths. These alterations were accompanied by elevated numbers of endoneurial macrophages, partially comprising the features of phagocytosing macrophages. Comparable profiles of macrophages could be identified in peripheral nerve biopsies of aging persons. To determine the pathological impact of macrophages in aging mice, we selectively targeted the cells by applying an orally administered CSF-1R specific kinase (c-FMS) inhibitor. The 6-month-lasting treatment started before development of degenerative changes at 18 months and reduced macrophage numbers in mice by ∼70%, without side effects. Strikingly, nerve structure was ameliorated and muscle strength preserved. We show, for the first time, that age-related degenerative changes in peripheral nerves are driven by macrophages. These findings may pave the way for treating degeneration in the aging peripheral nervous system by targeting macrophages, leading to reduced weakness, improved mobility, and eventually increased quality of life in the elderly. SIGNIFICANCE STATEMENT Aging is a major risk factor for the structure and function of the nervous system. Here we show that peripheral nerves of 24-month-old aging mice show similar degenerative alterations as nerves from aging

  6. Differential activation of Fyn kinase distinguishes saturated and unsaturated fats in mouse macrophages.

    Science.gov (United States)

    Tarabra, Elena; An Lee, Ting-Wen; Zammit, Victor A; Vatish, Manu; Yamada, Eijiro; Pessin, Jeffrey E; Bastie, Claire C

    2017-10-17

    Diet-induced obesity is associated with increased adipose tissue activated macrophages. Yet, how macrophages integrate fatty acid (FA) signals remains unclear. We previously demonstrated that Fyn deficiency ( fynKO ) protects against high fat diet-induced adipose tissue macrophage accumulation. Herein, we show that inflammatory markers and reactive oxygen species are not induced in fynKO bone marrow-derived macrophages exposed to the saturated FA palmitate, suggesting that Fyn regulates macrophage function in response to FA signals. Palmitate activates Fyn and re-localizes Fyn into the nucleus of RAW264.7, J774 and wild-type bone marrow-derived macrophages. Similarly, Fyn activity is increased in cells of adipose tissue stromal vascular fraction of high fat-fed control mice, with Fyn protein being located in the nucleus of these cells. We demonstrate that Fyn modulates palmitate-dependent oxidative stress in macrophages. Moreover, Fyn catalytic activity is necessary for its nuclear re-localization and downstream effects, as Fyn pharmacological inhibition abolishes palmitate-induced Fyn nuclear redistribution and palmitate-dependent increase of oxidative stress markers. Importantly, mono-or polyunsaturated FAs do not activate Fyn, and fail to re-localize Fyn to the nucleus. Together these data demonstrate that macrophages integrate nutritional FA signals via a differential activation of Fyn that distinguishes, at least partly, the effects of saturated versus unsaturated fats.

  7. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages : similarities and differences

    NARCIS (Netherlands)

    Martinez, Fernando O.; Helming, Laura; Milde, Ronny; Varin, Audrey; Melgert, Barbro N.; Draijer, Christina; Thomas, Benjamin; Fabbri, Marco; Crawshaw, Anjali; Ho, Ling Pei; Ten Hacken, Nick H.; Jimenez, Viviana Cobos; Kootstra, Neeltje A.; Hamann, Jorg; Greaves, David R.; Locati, Massimo; Mantovani, Alberto; Gordon, Siamon

    2013-01-01

    The molecular repertoire of macrophages in health and disease can provide novel biomarkers for diagnosis, prognosis, and treatment. Th2-IL-4-activated macrophages (M2) have been associated with important diseases in mice, yet no specific markers are available for their detection in human tissues.

  8. Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: similarities and differences

    NARCIS (Netherlands)

    Martinez, Fernando O.; Helming, Laura; Milde, Ronny; Varin, Audrey; Melgert, Barbro N.; Draijer, Christina; Thomas, Benjamin; Fabbri, Marco; Crawshaw, Anjali; Ho, Ling Pei; ten Hacken, Nick H.; Cobos Jiménez, Viviana; Kootstra, Neeltje A.; Hamann, Jörg; Greaves, David R.; Locati, Massimo; Mantovani, Alberto; Gordon, Siamon

    2013-01-01

    The molecular repertoire of macrophages in health and disease can provide novel biomarkers for diagnosis, prognosis, and treatment. Th2-IL-4-activated macrophages (M2) have been associated with important diseases in mice, yet no specific markers are available for their detection in human tissues.

  9. Identification of M2 macrophages in anterior pituitary glands of normal rats and rats with estrogen-induced prolactinoma.

    Science.gov (United States)

    Fujiwara, Ken; Yatabe, Megumi; Tofrizal, Alimuddin; Jindatip, Depicha; Yashiro, Takashi; Nagai, Ryozo

    2017-05-01

    Macrophages are present throughout the anterior pituitary gland. However, the features and function of macrophages in the gland are poorly understood. Recent studies have indicated that there are two main macrophage classes: M1 (classically activated) and M2 (alternatively activated). In this study, we examine whether both M1 and M2 macrophages are present in the anterior pituitary gland of rats. Our findings indicate that macrophages that are positive for CD68 (a pan-macrophage marker) were localized near capillaries in rat anterior pituitary gland. These macrophages were positive for iNOS or mannose receptor (MR), which are markers of M1 and M2 macrophages, respectively. To determine the morphological characteristics of M2 macrophages under pathological conditions, diethylstilbestrol (DES)-treated rats were used as an animal model of prolactinoma. After 2 weeks of DES treatment, a number of MR-immunopositive cells were present in the gland. Immunoelectron microscopy revealed that MR-immunopositive M2 macrophages had many small vesicles and moderately large vacuoles in cytoplasm. Phagosomes were sometimes present in cytoplasm. Interestingly, M2 macrophages in prolactinoma tissues did not usually exhibit distinct changes or differences during the normal, hyperplasia and adenoma stages. This study is the first to confirm that both M1 and M2 macrophages are present in the anterior pituitary gland of rats. Moreover, the number of M2 macrophages was greatly increased in rats with DES-induced prolactinoma. Future studies should attempt to characterize the functional role of M2 macrophages in the gland.

  10. Macrophage immunoregulatory pathways in tuberculosis.

    Science.gov (United States)

    Rajaram, Murugesan V S; Ni, Bin; Dodd, Claire E; Schlesinger, Larry S

    2014-12-01

    Macrophages, the major host cells harboring Mycobacterium tuberculosis (M.tb), are a heterogeneous cell type depending on their tissue of origin and host they are derived from. Significant discord in macrophage responses to M.tb exists due to differences in M.tb strains and the various types of macrophages used to study tuberculosis (TB). This review will summarize current concepts regarding macrophage responses to M.tb infection, while pointing out relevant differences in experimental outcomes due to the use of divergent model systems. A brief description of the lung environment is included since there is increasing evidence that the alveolar macrophage (AM) has immunoregulatory properties that can delay optimal protective host immune responses. In this context, this review focuses on selected macrophage immunoregulatory pattern recognition receptors (PRRs), cytokines, negative regulators of inflammation, lipid mediators and microRNAs (miRNAs). Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Biology of Bony Fish Macrophages

    OpenAIRE

    Hodgkinson, Jordan W.; Grayfer, Leon; Belosevic, Miodrag

    2015-01-01

    Macrophages are found across all vertebrate species, reside in virtually all animal tissues, and play critical roles in host protection and homeostasis. Various mechanisms determine and regulate the highly plastic functional phenotypes of macrophages, including antimicrobial host defenses (pro-inflammatory, M1-type), and resolution and repair functions (anti-inflammatory/regulatory, M2-type). The study of inflammatory macrophages in immune defense of teleosts has garnered much attention, and ...

  12. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide

    International Nuclear Information System (INIS)

    Genin, Marie; Clement, Francois; Fattaccioli, Antoine; Raes, Martine; Michiels, Carine

    2015-01-01

    Tumor associated macrophages (TAMs) are present in high density in solid tumors. TAMs share many characteristics with alternatively activated macrophages, also called M2. They have been shown to favor tumor development and a role in chemoresistance has also been suggested. Here, we investigated the effects of M2 in comparison to M1 macrophages on cancer cell sensitivity to etoposide. We set up a model of macrophage polarization, starting from THP-1 monocytes differentiated into macrophages using PMA (Phorbol 12-myristate 13-acetate). Once differentiated (M0 macrophages), they were incubated with IL-4 and IL-13 in order to obtain M2 polarized macrophages or with IFN-gamma and LPS for classical macrophage activation (M1). To mimic the communication between cancer cells and TAMs, M0, M1 or M2 macrophages and HepG2 or A549 cancer cells were co-cultured during respectively 16 (HepG2) or 24 (A549) hours, before etoposide exposure for 24 (HepG2) or 16 (A549) hours. After the incubation, the impact of etoposide on macrophage polarization was studied and cancer cell apoptosis was assessed by western-blot for cleaved caspase-3 and cleaved PARP-1 protein, caspase activity assay and FACS analysis of Annexin V and PI staining. mRNA and protein expression of M1 and M2 markers confirmed the polarization of THP-1-derived macrophages, which provide a new, easy and well-characterized model of polarized human macrophages. Etoposide-induced cancer cell apoptosis was markedly reduced in the presence of THP-1 M2 macrophages, while apoptosis was increased in cells co-cultured with M1 macrophages. On the other hand, etoposide did not influence M1 or M2 polarization. These results evidence for the first time a clear protective effect of M2 on the contrary to M1 macrophages on etoposide-induced cancer cell apoptosis

  13. Intracellular glutathione status regulates mouse bone marrow monocyte-derived macrophage differentiation and phagocytic activity

    International Nuclear Information System (INIS)

    Kim, Jin-Man; Kim, Hyunsoo; Kwon, Soon Bok; Lee, Soo Young; Chung, Sung-Chang; Jeong, Dae-Won; Min, Byung-Moo

    2004-01-01

    Although a redox shift can regulate the development of cells, including proliferation, differentiation, and survival, the role of the glutathione (GSH) redox status in macrophage differentiation remains unclear. In order to elucidate the role of a redox shift, macrophage-like cells were differentiated from the bone marrow-derived monocytes that were treated with a macrophage colony stimulating factor (M-CSF or CSF-1) for 3 days. The macrophagic cells were characterized by a time-dependent increase in three major symptoms: the number of phagocytic cells, the number of adherent cells, and the mRNA expression of c-fms, a M-CSF receptor that is one of the macrophage-specific markers and mediates development signals. Upon M-CSF-driven macrophage differentiation, the GSH/GSSG ratio was significantly lower on day 1 than that observed on day 0 but was constant on days 1-3. To assess the effect of the GSH-depleted and -repleted status on the differentiation and phagocytosis of the macrophages, GSH depletion by BSO, a specific inhibitor of the de novo GSH synthesis, inhibited the formation of the adherent macrophagic cells by the down-regulation of c-fms, but did not affect the phagocytic activity of the macrophages. To the contrary, GSH repletion by the addition of NAC, which is a GSH precursor, or reduced GSH in media had no effect on macrophage differentiation, and led to a decrease in the phagocytic activity. Furthermore, we observed that there is checkpoint that is capable of releasing from the inhibition of the formation of the adherent macrophagic cells according to GSH depletion by BSO. Summarizing, these results indicate that the intracellular GSH status plays an important role in the differentiation and phagocytosis of macrophages

  14. Agmatine Modulates the Phenotype of Macrophage Acute Phase after Spinal Cord Injury in Rats.

    Science.gov (United States)

    Kim, Jae Hwan; Kim, Jae Young; Mun, Chin Hee; Suh, Minah; Lee, Jong Eun

    2017-10-01

    Agmatine is a decarboxylated arginine by arginine decarboxylase. Agmatine is known to be a neuroprotective agent. It has been reported that agmatine works as a NMDA receptor blocker or a competitive nitric oxide synthase inhibitor in CNS injuries. In spinal cord injury, agmatine showed reduction of neuropathic pain, improvement of locomotor function, and neuroprotection. Macrophage is a key cellular component in neuroinflammation, a major cause of impairment after spinal cord injury. Macrophage has subtypes, M1 and M2 macrophages. M1 macrophage induces a pro-inflammatory response, but M2 inspires an anti-inflammatory response. In this study, it was clarified whether the neuroprotective effect of agmatine is related with the modulation of macrophage subdivision after spinal cord injury. Spinal cord injury was induced in rats with contusion using MASCIS. Animals received agmatine (100 mg/kg, IP) daily for 6 days beginning the day after spinal cord injury. The proportion of M1 and M2 macrophages are confirmed with immunohistochemistry and FACS. CD206 + & ED1 + cells were counted as M2 macrophages. The systemic treatment of agmatine increased M2 macrophages caudal side to epicenter 1 week after spinal cord injury in immunohistochemistry. M2 macrophage related markers, Arginase-1 and CD206 mRNA, were increased in the agmatine treatment group and M2 macrophage expressing and stimulated cytokine, IL-10 mRNA, also was significantly overexpressed by agmatine injection. Among BMPs, BMP2/4/7, agmatine significantly increased only the expression of BMP2 known to reduce M1 macrophage under inflammatory status. These results suggest that agmatine reduces impairment after spinal cord injury through modulating the macrophage phenotype.

  15. Cathepsin E deficiency impairs autophagic proteolysis in macrophages.

    Directory of Open Access Journals (Sweden)

    Takayuki Tsukuba

    Full Text Available Cathepsin E is an endosomal aspartic proteinase that is predominantly expressed in immune-related cells. Recently, we showed that macrophages derived from cathepsin E-deficient (CatE(-/- mice display accumulation of lysosomal membrane proteins and abnormal membrane trafficking. In this study, we demonstrated that CatE(-/- macrophages exhibit abnormalities in autophagy, a bulk degradation system for aggregated proteins and damaged organelles. CatE(-/- macrophages showed increased accumulation of autophagy marker proteins such as LC3 and p62, and polyubiquitinated proteins. Cathepsin E deficiency also altered autophagy-related signaling pathways such as those mediated by the mammalian target of rapamycin (mTOR, Akt, and extracellular signal-related kinase (ERK. Furthermore, immunofluorescence microscopy analyses showed that LC3-positive vesicles were merged with acidic compartments in wild-type macrophages, but not in CatE(-/- macrophages, indicating inhibition of fusion of autophagosome with lysosomes in CatE(-/- cells. Delayed degradation of LC3 protein was also observed under starvation-induced conditions. Since the autophagy system is involved in the degradation of damaged mitochondria, we examined the accumulation of damaged mitochondria in CatE(-/- macrophages. Several mitochondrial abnormalities such as decreased intracellular ATP levels, depolarized mitochondrial membrane potential, and decreased mitochondrial oxygen consumption were observed. Such mitochondrial dysfunction likely led to the accompanying oxidative stress. In fact, CatE(-/- macrophages showed increased reactive oxygen species (ROS production and up-regulation of oxidized peroxiredoxin-6, but decreased antioxidant glutathione. These results indicate that cathepsin E deficiency causes autophagy impairment concomitantly with increased aberrant mitochondria as well as increased oxidative stress.

  16. Epigenetic regulation of macrophage function

    NARCIS (Netherlands)

    Hoeksema, M.A.

    2016-01-01

    Atherosclerosis is a lipid-driven chronic inflammatory disorder with a key role for macrophages in all disease stages. Macrophages are involved as scavengers of lipids, regulate inflammation, attract other immune cells and contribute to the resolution of inflammation, fibrosis and plaque stability.

  17. Biology of Bony Fish Macrophages

    Directory of Open Access Journals (Sweden)

    Jordan W. Hodgkinson

    2015-11-01

    Full Text Available Macrophages are found across all vertebrate species, reside in virtually all animal tissues, and play critical roles in host protection and homeostasis. Various mechanisms determine and regulate the highly plastic functional phenotypes of macrophages, including antimicrobial host defenses (pro-inflammatory, M1-type, and resolution and repair functions (anti-inflammatory/regulatory, M2-type. The study of inflammatory macrophages in immune defense of teleosts has garnered much attention, and antimicrobial mechanisms of these cells have been extensively studied in various fish models. Intriguingly, both similarities and differences have been documented for the regulation of lower vertebrate macrophage antimicrobial defenses, as compared to what has been described in mammals. Advances in our understanding of the teleost macrophage M2 phenotypes likewise suggest functional conservation through similar and distinct regulatory strategies, compared to their mammalian counterparts. In this review, we discuss the current understanding of the molecular mechanisms governing teleost macrophage functional heterogeneity, including monopoetic development, classical macrophage inflammatory and antimicrobial responses as well as alternative macrophage polarization towards tissues repair and resolution of inflammation.

  18. Biology of Bony Fish Macrophages.

    Science.gov (United States)

    Hodgkinson, Jordan W; Grayfer, Leon; Belosevic, Miodrag

    2015-11-30

    Macrophages are found across all vertebrate species, reside in virtually all animal tissues, and play critical roles in host protection and homeostasis. Various mechanisms determine and regulate the highly plastic functional phenotypes of macrophages, including antimicrobial host defenses (pro-inflammatory, M1-type), and resolution and repair functions (anti-inflammatory/regulatory, M2-type). The study of inflammatory macrophages in immune defense of teleosts has garnered much attention, and antimicrobial mechanisms of these cells have been extensively studied in various fish models. Intriguingly, both similarities and differences have been documented for the regulation of lower vertebrate macrophage antimicrobial defenses, as compared to what has been described in mammals. Advances in our understanding of the teleost macrophage M2 phenotypes likewise suggest functional conservation through similar and distinct regulatory strategies, compared to their mammalian counterparts. In this review, we discuss the current understanding of the molecular mechanisms governing teleost macrophage functional heterogeneity, including monopoetic development, classical macrophage inflammatory and antimicrobial responses as well as alternative macrophage polarization towards tissues repair and resolution of inflammation.

  19. Pseudomonas aeruginosa infection alters the macrophage phenotype switching process during wound healing in diabetic mice.

    Science.gov (United States)

    Chen, Sinuo; Li, Renren; Cheng, Chun; Xu, Jing-Ying; Jin, Caixia; Gao, Furong; Wang, Juan; Zhang, Jieping; Zhang, Jingfa; Wang, Hong; Lu, Lixia; Xu, Guo-Tong; Tian, Haibin

    2018-03-07

    Macrophages play critical roles in wound healing process. They switch from "classically activated" (M1) phenotype in the early inflammatory phase to "alternatively activated" (M2) phenotype in the later healing phase. However, the dynamic process of macrophage phenotype switching in diabetic wounds burdened with bacteria is unclear. In this report, Pseudomonas aeruginosa, frequently detected in diabetic foot ulcers, was inoculated into cutaneous wounds of db/db diabetic mice to mimic bacterium-infected diabetic wound healing. We observed that P. aeruginosa infection impaired diabetic wound healing and quickly promoted the expression of pro-inflammatory genes (M1 macrophage markers) tumor necrosis factor-α (tnf-α), interleukin-1β (il-1β) and il-6 in wounds. The expression of markers of M2 macrophages, including il-10, arginase-1, and ym1 were also upregulated. In addition, similar gene expression patterns were observed in macrophages isolated directly from wounds. Immunostaining showed that P. aeruginosa infection increased both the ratios of M1 and M2 macrophages in wounds compared with that in control groups, which was further confirmed by in vitro culturing macrophages with P. aeruginosa and skin fibroblast conditioned medium. However, the ratios of the expression levels of pro-inflammatory genes to anti-inflammatory gene il-10 was increased markedly in P. aeruginosa infected wounds and macrophages compared with that in control groups, and P. aeruginosa prolonged the presence of M1 macrophages in the wounds. These data demonstrated that P. aeruginosa in diabetic wounds activates a mixed M1/M2 macrophage phenotype with an excessive activation of M1 phenotype or relatively inadequate activation of M2 phenotype. © 2018 International Federation for Cell Biology.

  20. Macrophage JAK2 deficiency protects against high-fat diet-induced inflammation.

    Science.gov (United States)

    Desai, Harsh R; Sivasubramaniyam, Tharini; Revelo, Xavier S; Schroer, Stephanie A; Luk, Cynthia T; Rikkala, Prashanth R; Metherel, Adam H; Dodington, David W; Park, Yoo Jin; Kim, Min Jeong; Rapps, Joshua A; Besla, Rickvinder; Robbins, Clinton S; Wagner, Kay-Uwe; Bazinet, Richard P; Winer, Daniel A; Woo, Minna

    2017-08-09

    During obesity, macrophages can infiltrate metabolic tissues, and contribute to chronic low-grade inflammation, and mediate insulin resistance and diabetes. Recent studies have elucidated the metabolic role of JAK2, a key mediator downstream of various cytokines and growth factors. Our study addresses the essential role of macrophage JAK2 in the pathogenesis to obesity-associated inflammation and insulin resistance. During high-fat diet (HFD) feeding, macrophage-specific JAK2 knockout (M-JAK2 -/- ) mice gained less body weight compared to wildtype littermate control (M-JAK2 +/+ ) mice and were protected from HFD-induced systemic insulin resistance. Histological analysis revealed smaller adipocytes and qPCR analysis showed upregulated expression of some adipogenesis markers in visceral adipose tissue (VAT) of HFD-fed M-JAK2 -/- mice. There were decreased crown-like structures in VAT along with reduced mRNA expression of some macrophage markers and chemokines in liver and VAT of HFD-fed M-JAK2 -/- mice. Peritoneal macrophages from M-JAK2 -/- mice and Jak2 knockdown in macrophage cell line RAW 264.7 also showed lower levels of chemokine expression and reduced phosphorylated STAT3. However, leptin-dependent effects on augmenting chemokine expression in RAW 264.7 cells did not require JAK2. Collectively, our findings show that macrophage JAK2 deficiency improves systemic insulin sensitivity and reduces inflammation in VAT and liver in response to metabolic stress.

  1. Identification of the hemoglobin scavenger receptor/CD163 as a natural soluble protein in plasma

    DEFF Research Database (Denmark)

    Møller, Holger Jon; Peterslund, Niels Anker; Graversen, Jonas Heilskov

    2002-01-01

    enabled identification of a soluble plasma form of HbSR (sHbSR) having an electrophoretic mobility equal to that of recombinant HbSR consisting of the extracellular domain (scavenger receptor cysteine-rich 1-9). A sandwich enzyme-linked immunosorbent assay was established and used to measure the s...... a level of sHbSR above the range of healthy persons. Patients with myelomonocytic leukemias and pneumonia/sepsis exhibited the highest levels (up to 67.3 mg/L). In conclusion, sHbSR is an abundant plasma protein potentially valuable in monitoring patients with infections and myelomonocytic leukemia....

  2. CD163: a signal receptor scavenging haptoglobin-hemoglobin complexes from plasma

    DEFF Research Database (Denmark)

    Graversen, Jonas Heilskov; Madsen, Mette; Moestrup, Søren K

    2002-01-01

    as the endocytic receptor binding hemoglobin (Hb) in complex with the plasma protein haptoglobin (Hp). This specific receptor-ligand interaction leading to removal from plasma of the Hp-Hb complex-but not free Hp or Hb-now explains the depletion of circulating Hp in individuals with increased intravascular...

  3. Macrophages under pressure: the role of macrophage polarization in hypertension.

    Science.gov (United States)

    Harwani, Sailesh C

    2018-01-01

    Hypertension is a multifactorial disease involving the nervous, renal, and cardiovascular systems. Macrophages are the most abundant and ubiquitous immune cells, placing them in a unique position to serve as key mediators between these components. The polarization of macrophages confers vast phenotypic and functional plasticity, allowing them to act as proinflammatory, homeostatic, and anti-inflammatory agents. Key differences between the M1 and M2 phenotypes, the 2 subsets at the extremes of this polarization spectrum, place macrophages at a juncture to mediate many mechanisms involved in the pathogenesis of hypertension. Neuronal and non-neuronal regulation of the immune system, that is, the "neuroimmuno" axis, plays an integral role in the polarization of macrophages. In hypertension, the neuroimmuno axis results in synchronization of macrophage mobilization from immune cell reservoirs and their chemotaxis, via increased expression of chemoattractants, to end organs critical in the development of hypertension. This complicated system is largely coordinated by the dichotomous actions of the autonomic neuronal and non-neuronal activation of cholinergic, adrenergic, and neurohormonal receptors on macrophages, leading to their ability to "switch" between phenotypes at sites of active inflammation. Data from experimental models and human studies are in concordance with each other and support a central role for macrophage polarization in the pathogenesis of hypertension. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Glycyrrhizic Acid Promotes M1 Macrophage Polarization in Murine Bone Marrow-Derived Macrophages Associated with the Activation of JNK and NF-κB.

    Science.gov (United States)

    Mao, Yulong; Wang, Baikui; Xu, Xin; Du, Wei; Li, Weifen; Wang, Youming

    2015-01-01

    The roots and rhizomes of Glycyrrhiza species (licorice) have been widely used as natural sweeteners and herbal medicines. The aim of this study is to investigate the effect of glycyrrhizic acid (GA) from licorice on macrophage polarization. Both phenotypic and functional activities of murine bone marrow-derived macrophages (BMDMs) treated by GA were assessed. Our results showed that GA obviously increased the cell surface expression of CD80, CD86, and MHCII molecules. Meanwhile, GA upregulated the expression of CCR7 and the production of TNF-α, IL-12, IL-6, and NO (the markers of classically activated (M1) macrophages), whereas it downregulated the expression of MR, Ym1, and Arg1 (the markers of alternatively activated (M2) macrophage). The functional tests showed that GA dramatically enhanced the uptake of FITC-dextran and E. coli K88 by BMDMs and decreased the intracellular survival of E. coli K88 and S. typhimurium. Moreover, we demonstrated that JNK and NF-κB activation are required for GA-induced NO and M1-related cytokines production, while ERK1/2 pathway exhibits a regulatory effect via induction of IL-10. Together, these findings indicated that GA promoted polarization of M1 macrophages and enhanced its phagocytosis and bactericidal capacity. The results expanded our knowledge about the role of GA in macrophage polarization.

  5. Ethanol Extract of Mylabris phalerata Inhibits M2 Polarization Induced by Recombinant IL-4 and IL-13 in Murine Macrophages

    Directory of Open Access Journals (Sweden)

    Hwan-Suck Chung

    2017-01-01

    Full Text Available Mylabris phalerata (MP is an insect used in oriental herbal treatments for tumor, tinea infections, and stroke. Recent studies have shown that tumor-associated macrophages (TAM have detrimental roles such as tumor progression, angiogenesis, and metastasis. Although TAM has phenotypes and characteristics in common with M2-polarized macrophages, M1 macrophages have tumor suppression and immune stimulation effects. Medicines polarizing macrophages to M1 have been suggested to have anticancer effects via the modulation of the tumor microenvironment. In this line, we screened oriental medicines to find M1 polarizing medicines in M2-polarized macrophages. Among approximately 400 types of oriental medicine, the ethanol extract of M. phalerata (EMP was the most proficient in increasing TNF-α secretion in M2-polarized macrophages and TAM. Although EMP enhanced the levels of an M1 cytokine (TNF-α and a marker (CD86, it significantly reduced the levels of an M2 marker (arginase-1 in M2-polarized macrophages. In addition, EMP-treated macrophages increased the levels of M1 markers (Inos and Tnf-α and reduced those of the enhanced M2 markers (Fizz-1, Ym-1, and arginase-1. EMP-treated macrophages significantly reduced Lewis lung carcinoma cell migration in a transwell migration assay and inhibited EL4-luc2 lymphoma proliferation. In our mechanism study, EMP was found to inhibit STAT3 phosphorylation in M2-polarized macrophages. These results suggest that EMP is effective in treating TAM-mediated tumor progression and metastasis.

  6. Induction of ER stress in macrophages of tuberculosis granulomas.

    Directory of Open Access Journals (Sweden)

    Tracie A Seimon

    2010-09-01

    Full Text Available The endoplasmic reticulum (ER stress pathway known as the Unfolded Protein Response (UPR is an adaptive survival pathway that protects cells from the buildup of misfolded proteins, but under certain circumstances it can lead to apoptosis. ER stress has been causally associated with macrophage apoptosis in advanced atherosclerosis of mice and humans. Because atherosclerosis shares certain features with tuberculosis (TB with regard to lesional macrophage accumulation, foam cell formation, and apoptosis, we investigated if the ER stress pathway is activated during TB infection.Here we show that ER stress markers such as C/EBP homologous protein (CHOP; also known as GADD153, phosphorylated inositol-requiring enzyme 1 alpha (Ire1α and eukaryotic initiation factor 2 alpha (eIF2α, and activating transcription factor 3 (ATF3 are expressed in macrophage-rich areas of granulomas in lungs of mice infected with virulent Mycobacterium tuberculosis (Mtb. These areas were also positive for numerous apoptotic cells as assayed by TUNEL. Microarray analysis of human caseous TB granulomas isolated by laser capture microdissection reveal that 73% of genes involved in the UPR are upregulated at the mRNA transcript level. The expression of two ER stress markers, ATF3 and CHOP, were also increased in macrophages of human TB granulomas when assayed by immunohistochemistry. CHOP has been causally associated with ER stress-induced macrophage apoptosis. We found that apoptosis was more abundant in granulomas as compared to non-granulomatous tissue isolated from patients with pulmonary TB, and apoptosis correlated with CHOP expression in areas surrounding the centralized areas of caseation.In summary, ER stress is induced in macrophages of TB granulomas in areas where apoptotic cells accumulate in mice and humans. Although macrophage apoptosis is generally thought to be beneficial in initially protecting the host from Mtb infection, death of infected macrophages in

  7. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase:...le Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflam

  8. Soybean-derived Bowman-Birk inhibitor inhibits neurotoxicity of LPS-activated macrophages

    Directory of Open Access Journals (Sweden)

    Persidsky Yuri

    2011-02-01

    Full Text Available Abstract Background Lipopolysaccharide (LPS, the major component of the outer membrane of gram-negative bacteria, can activate immune cells including macrophages. Activation of macrophages in the central nervous system (CNS contributes to neuronal injury. Bowman-Birk inhibitor (BBI, a soybean-derived protease inhibitor, has anti-inflammatory properties. In this study, we examined whether BBI has the ability to inhibit LPS-mediated macrophage activation, reducing the release of pro-inflammatory cytokines and subsequent neurotoxicity in primary cortical neural cultures. Methods Mixed cortical neural cultures from rat were used as target cells for testing neurotoxicity induced by LPS-treated macrophage supernatant. Neuronal survival was measured using a cell-based ELISA method for expression of the neuronal marker MAP-2. Intracellular reactive oxygen species (ROS production in macrophages was measured via 2', 7'-dichlorofluorescin diacetate (DCFH2DA oxidation. Cytokine expression was determined by quantitative real-time PCR. Results LPS treatment of macrophages induced expression of proinflammatory cytokines (IL-1β, IL-6 and TNF-α and of ROS. In contrast, BBI pretreatment (1-100 μg/ml of macrophages significantly inhibited LPS-mediated induction of these cytokines and ROS. Further, supernatant from BBI-pretreated and LPS-activated macrophage cultures was found to be less cytotoxic to neurons than that from non-BBI-pretreated and LPS-activated macrophage cultures. BBI, when directly added to the neuronal cultures (1-100 μg/ml, had no protective effect on neurons with or without LPS-activated macrophage supernatant treatment. In addition, BBI (100 μg/ml had no effect on N-methyl-D-aspartic acid (NMDA-mediated neurotoxicity. Conclusions These findings demonstrate that BBI, through its anti-inflammatory properties, protects neurons from neurotoxicity mediated by activated macrophages.

  9. The ischemic environment drives microglia and macrophage function

    Directory of Open Access Journals (Sweden)

    Stefano eFumagalli

    2015-04-01

    Full Text Available Cells of myeloid origin such as microglia and macrophages act at the crossroads of several inflammatory mechanisms during pathophysiology. Besides pro-inflammatory activity (M1 polarization, myeloid cells acquire protective functions (M2 and participate in the neuroprotective innate mechanisms after brain injury. Experimental research is making considerable efforts to understand the rules that regulate the balance between toxic and protective brain innate immunity. Environmental changes affects microglia/macrophage functions. Hypoxia can affect myeloid cell distribution, activity and phenotype. With their intrinsic differences, microglia and macrophages respond differently to hypoxia, the former depending on ATP to activate, the latter switching to anaerobic metabolism and adapting to hypoxia. Myeloid cell functions include homeostasis control, damage-sensing activity, chemotaxis and phagocytosis, all distinctive features of these cells. Specific markers and morphologies enable to recognize each functional state. To ensure homeostasis and activate when needed, microglia/macrophage physiology is finely tuned. Microglia are controlled by several neuron-derived components, including contact-dependent inhibitory signals and soluble molecules. Changes in this control can cause chronic activation or priming with specific functional consequences. Strategies such as stem cell treatment may enhance microglia protective polarization. This review presents data from the literature that has greatly advanced our understanding of myeloid cell action in brain injury. We discuss the selective responses of microglia and macrophages to hypoxia after stroke and review relevant markers with the aim of defining the different subpopulations of myeloid cells that are recruited to the injured site. We also cover the functional consequences of chronically active microglia and review pivotal works on microglia regulation that offer new therapeutic possibilities for acute

  10. Tumors markers

    International Nuclear Information System (INIS)

    Yamaguchi-Mizumoto, N.H.

    1989-01-01

    In order to study blood and cell components alterations (named tumor markers) that may indicate the presence of a tumor, several methods are presented. Aspects as diagnostic, prognostic, therapeutic value and clinical evaluation are discussed. (M.A.C.)

  11. Reduced number and morphofunctional change of alveolar macrophages in MafB gene-targeted mice.

    Directory of Open Access Journals (Sweden)

    Michiko Sato-Nishiwaki

    Full Text Available Alveolar macrophages (AMs play an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD. We previously demonstrated that the transcription factor, MafB, increased in the AMs of mice exposed to cigarette smoke, and in those of human patients with COPD. The aim of this study was to evaluate the role of MafB in AMs using newly established transgenic (TG mice that specifically express dominant negative (DN MafB in macrophages under the control of macrophage scavenger receptor (MSR enhancer-promoter. We performed cell differential analyses in bronchoalveolar lavage cells, morphological analyses with electron microscopy, and flow cytometry-based analyses of surface markers and a phagocytic capacity assay in macrophages. AM number in the TG mice was significantly decreased compared with wild-type (WT mice. Morphologically, the high electron density area in the nucleus increased, the shape of pseudopods on the AMs was altered, and actin filament was less localized in the pseudopods of AMs of TG mice, compared with WT mice. The expression of surface markers, F4/80 and CD11b, on peritoneal macrophages in TG mice was reduced compared with WT mice, while those on AMs remained unchanged. Phagocytic capacity was decreased in AMs from TG mice, compared with WT mice. In conclusion, MafB regulates the phenotype of macrophages with respect to the number of alveolar macrophages, the nuclear compartment, cellular shape, surface marker expression, and phagocytic function. MSR-DN MafB TG mice may present a useful model to clarify the precise role of MafB in macrophages.

  12. The macrophage-histiocytic system

    Energy Technology Data Exchange (ETDEWEB)

    Cross, A

    1971-04-01

    The macrophage-histiocytic system is primarily concerned with the phagocytosis and degradation either of foreign material that enters the organism or of senile and damaged cells belonging to the organism itself. The system includes various kinds of cells with the common ability to process and eventually degrade and digest the ingested material. Two morphological characteristics of these cells are linked to their phagocytic functions: intra-cytoplasmic vacuoles and lysosomes. Although endothelial and fibroblastic cells can ingest particles, it seems that most cells of the macrophage-histiocytic system belong to the monocyte series. The stem cell of the system is still a matter for discussion and the mature cells have attracted a large and confusing array of names. Most of the experimental work with irradiation has involved macrophages of the peritoneal cavity and lymph nodes. It is likely that the other cells of the macrophage-histiocytic system are affected in the same way by irradiation, but this is not certain.

  13. Characterization of polarized THP-1 macrophages and polarizing ability of LPS and food compounds.

    Science.gov (United States)

    Chanput, Wasaporn; Mes, Jurriaan J; Savelkoul, Huub F J; Wichers, Harry J

    2013-02-01

    Little is known about the polarizing potential of currently used human macrophage cell lines, while a better understanding phenomena can support the prediction of effects in vivo based on in vitro analysis. To test the polarization capability of PMA differentiated-THP-1 macrophages (M0), cells were stimulated with 20 ng ml(-1) IFNγ + 1 μg ml(-1) LPS and 20 ng ml(-1) IL-4, which are known to influence macrophage polarization in vivo and ex vivo into the M1 and M2 state, respectively. Apart from several well-known M1 and M2 markers, also new possible markers for M1 and M2 polarization were analysed in this study. The expression of M1 marker genes was up-regulated in IFNγ + LPS stimulated-M0 THP-1 macrophages. The IL-4 stimulated-M0 THP-1 macrophages expressed M2 cell membrane receptor genes. However, M2 chemokine and their receptor genes were only slightly up-regulated which might be due to the complexity of the secondary cell-cell interaction of the chemokine system. Lipopolysaccharides from E. coli (LPS) and food compounds [lentinan, vitamin D3 (vD3) and the combination of lentinan + vitamin D3 (Len + vD3)] were investigated for their polarizing ability on M0 THP-1 macrophages towards either the M1 or M2 state. LPS (700 ng ml(-1)) was able to skew M0 THP-1 macrophages towards the M1 direction since all analysed M1 marker genes were strongly expressed. Lentinan, vD3 and Len + vD3 did not induce expression of either M1 or M2 markers, indicating no polarizing ability of these compounds. Based on the expression of M1 and M2 marker genes we concluded that THP-1 macrophages could be successfully polarized into either the M1 or M2 state. Therefore, they can be used as a new macrophage polarizing model to estimate the polarizing/switching ability of test food compounds.

  14. DMPD: The actions of bacterial DNA on murine macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10534106 The actions of bacterial DNA on murine macrophages. Sester DP, Stacey KJ, ... Show The actions of bacterial DNA on murine macrophages. PubmedID 10534106 Title The actions of bacterial DNA on murine macrophage

  15. Single-Cell RNA-Seq Reveals the Transcriptional Landscape and Heterogeneity of Aortic Macrophages in Murine Atherosclerosis.

    Science.gov (United States)

    Cochain, Clément; Vafadarnejad, Ehsan; Arampatzi, Panagiota; Jaroslav, Pelisek; Winkels, Holger; Ley, Klaus; Wolf, Dennis; Saliba, Antoine-Emmanuel; Zernecke, Alma

    2018-03-15

    Rationale: It is assumed that atherosclerotic arteries contain several macrophage subsets endowed with specific functions. The precise identity of these subsets is poorly characterized as they ha ve been defined by the expression of a restricted number of markers. Objective: We have applied single-cell RNA-seq as an unbiased profiling strategy to interrogate and classify aortic macrophage heterogeneity at the single-cell level in atherosclerosis. Methods and Results: We performed single-cell RNA sequencing of total aortic CD45 + cells extracted from the non-diseased (chow fed) and atherosclerotic (11 weeks of high fat diet) aorta of Ldlr -/- mice. Unsupervised clustering singled out 13 distinct aortic cell clusters. Among the myeloid cell populations, Resident-like macrophages with a gene expression profile similar to aortic resident macrophages were found in healthy and diseased aortae, whereas monocytes, monocyte-derived dendritic cells (MoDC), and two populations of macrophages were almost exclusively detectable in atherosclerotic aortae, comprising Inflammatory macrophages showing enrichment in I l1b , and previously undescribed TREM2 hi macrophages. Differential gene expression and gene ontology enrichment analyses revealed specific gene expression patterns distinguishing these three macrophage subsets and MoDC, and uncovered putative functions of each cell type. Notably, TREM2 hi macrophages appeared to be endowed with specialized functions in lipid metabolism and catabolism, and presented a gene expression signature reminiscent of osteoclasts, suggesting a role in lesion calcification. TREM2 expression was moreover detected in human lesional macrophages. Importantly, these macrophage populations were present also in advanced atherosclerosis and in Apoe -/- aortae, indicating relevance of our findings in different stages of atherosclerosis and mouse models. Conclusions: These data unprecedentedly uncovered the transcriptional landscape and phenotypic

  16. Assessment of carbon nanoparticle exposure on murine macrophage function

    Science.gov (United States)

    Suro-Maldonado, Raquel M.

    There is growing concern about the potential cytotoxicity of nanoparticles. Exposure to respirable ultrafine particles (2.5uM) can adversely affect human health and have been implicated with episodes of increased respiratory diseases such as asthma and allergies. Nanoparticles are of particular interest because of their ability to penetrate into the lung and potentially elicit health effects triggering immune responses. Nanoparticles are structures and devises with length scales in the 1 to 100-nanometer range. Black carbon (BC) nanoparticles have been observed to be products of combustion, especially flame combustion and multi-walled carbon nanotubes (MWCNT) have been shown to be found in both indoor and outdoor air. Furthermore, asbestos, which have been known to cause mesothelioma as well as lung cancer, have been shown to be structurally identical to MWCNTs. The aims of these studies were to examine the effects of carbon nanoparticles on murine macrophage function and clearance mechanisms. Macrophages are immune cells that function as the first line of defense against invading pathogens and are likely to be amongst the first cells affected by nanoparticles. Our research focused on two manufactured nanoparticles, MWCNT and BC. The two were tested against murine-derived macrophages in a chronic contact model. We hypothesized that long-term chronic exposure to carbon nanoparticles would decrease macrophages ability to effectively respond to immunological challenge. Production of nitric oxide (NO), tumor necrosis factor alpha (TNF-alpha), cell surface macrophage; activation markers, reactive oxygen species formation (ROS), and antigen processing and presentation were examined in response to lipopolysaccharide (LPS) following a 144hr exposure to the particulates. Data demonstrated an increase in TNF-alpha, and NO production; a decrease in phagocytosis and antigen processing and presentation; and a decrease in the expression levels of cell surface macrophage

  17. Role of Alveolar Macrophages in Chronic Obstructive Pulmonary Disease

    Science.gov (United States)

    Vlahos, Ross; Bozinovski, Steven

    2014-01-01

    Alveolar macrophages (AMs) represent a unique leukocyte population that responds to airborne irritants and microbes. This distinct microenvironment coordinates the maturation of long-lived AMs, which originate from fetal blood monocytes and self-renew through mechanisms dependent on GM-CSF and CSF-1 signaling. Peripheral blood monocytes can also replenish lung macrophages; however, this appears to occur in a stimuli specific manner. In addition to mounting an appropriate immune response during infection and injury, AMs actively coordinate the resolution of inflammation through efferocytosis of apoptotic cells. Any perturbation of this process can lead to deleterious responses. In chronic obstructive pulmonary disease (COPD), there is an accumulation of airway macrophages that do not conform to the classic M1/M2 dichotomy. There is also a skewed transcriptome profile that favors expression of wound-healing M2 markers, which is reflective of a deficiency to resolve inflammation. Endogenous mediators that can promote an imbalance in inhibitory M1 vs. healing M2 macrophages are discussed, as they are the plausible mechanisms underlying why AMs fail to effectively resolve inflammation and restore normal lung homeostasis in COPD. PMID:25309536

  18. Intratumoral macrophages contribute to epithelial-mesenchymal transition in solid tumors

    International Nuclear Information System (INIS)

    Bonde, Anne-Katrine; Tischler, Verena; Kumar, Sushil; Soltermann, Alex; Schwendener, Reto A

    2012-01-01

    Several stromal cell subtypes including macrophages contribute to tumor progression by inducing epithelial-mesenchymal transition (EMT) at the invasive front, a mechanism also linked to metastasis. Tumor associated macrophages (TAM) reside mainly at the invasive front but they also infiltrate tumors and in this process they mainly assume a tumor promoting phenotype. In this study, we asked if TAMs also regulate EMT intratumorally. We found that TAMs through TGF-β signaling and activation of the β-catenin pathway can induce EMT in intratumoral cancer cells. We depleted macrophages in F9-teratocarcinoma bearing mice using clodronate-liposomes and analyzed the tumors for correlations between gene and protein expression of EMT-associated and macrophage markers. The functional relationship between TAMs and EMT was characterized in vitro in the murine F9 and mammary gland NMuMG cells, using a conditioned medium culture approach. The clinical relevance of our findings was evaluated on a tissue microarray cohort representing 491 patients with non-small cell lung cancer (NSCLC). Gene expression analysis of F9-teratocarcinomas revealed a positive correlation between TAM-densities and mesenchymal marker expression. Moreover, immunohistochemistry showed that TAMs cluster with EMT phenotype cells in the tumors. In vitro, long term exposure of F9-and NMuMG-cells to macrophage-conditioned medium led to decreased expression of the epithelial adhesion protein E-cadherin, activation of the EMT-mediating β-catenin pathway, increased expression of mesenchymal markers and an invasive phenotype. In a candidate based screen, macrophage-derived TGF-β was identified as the main inducer of this EMT-associated phenotype. Lastly, immunohistochemical analysis of NSCLC patient samples identified a positive correlation between intratumoral macrophage densities, EMT markers, intraepithelial TGF-β levels and tumor grade. Data presented here identify a novel role for macrophages in EMT

  19. Visualisation of chicken macrophages using transgenic reporter genes: insights into the development of the avian macrophage lineage.

    Science.gov (United States)

    Balic, Adam; Garcia-Morales, Carla; Vervelde, Lonneke; Gilhooley, Hazel; Sherman, Adrian; Garceau, Valerie; Gutowska, Maria W; Burt, David W; Kaiser, Pete; Hume, David A; Sang, Helen M

    2014-08-01

    We have generated the first transgenic chickens in which reporter genes are expressed in a specific immune cell lineage, based upon control elements of the colony stimulating factor 1 receptor (CSF1R) locus. The Fms intronic regulatory element (FIRE) within CSF1R is shown to be highly conserved in amniotes and absolutely required for myeloid-restricted expression of fluorescent reporter genes. As in mammals, CSF1R-reporter genes were specifically expressed at high levels in cells of the macrophage lineage and at a much lower level in granulocytes. The cell lineage specificity of reporter gene expression was confirmed by demonstration of coincident expression with the endogenous CSF1R protein. In transgenic birds, expression of the reporter gene provided a defined marker for macrophage-lineage cells, identifying the earliest stages in the yolk sac, throughout embryonic development and in all adult tissues. The reporter genes permit detailed and dynamic visualisation of embryonic chicken macrophages. Chicken embryonic macrophages are not recruited to incisional wounds, but are able to recognise and phagocytose microbial antigens. © 2014. Published by The Company of Biologists Ltd.

  20. Erythropoietin protects against rhabdomyolysis-induced acute kidney injury by modulating macrophage polarization

    Science.gov (United States)

    Wang, Shuo; Zhang, Chao; Li, Jiawei; Niyazi, Sidikejiang; Zheng, Long; Xu, Ming; Rong, Ruiming; Yang, Cheng; Zhu, Tongyu

    2017-01-01

    Erythropoietin (EPO) is a well-known hormone that is clinically used for the treatment of anemia. Very recently, an increasing body of evidence showed that EPO could still regulate bioactivities of macrophages. However, the details about the immunomodulatory effect of EPO on macrophages are not fully delineated, particularly in the setting of renal damages. Therefore, in the present study, we determined whether EPO could exert an impact on the dynamics of macrophages in a well-established model of rhabdomyolysis-induced acute kidney injury and explored the potential mechanisms. EPO was found to ameliorate kidney injuries by reducing macrophages recruitment and promoting phenotype switch toward M2 macrophages in vivo. It was also confirmed that EPO could directly suppress pro-inflammatory responses of M1 macrophages and promote M2 marker expression in vitro. Data indicated the possible involvement of Jak2/STAT3/STAT6 pathway in the augmentation of EPO on M2 polarization. These results improved the understanding of the immunoregulatory capacity of EPO on macrophages, which might optimize the therapeutic modalities of EPO. PMID:28383559

  1. Inflammation and ER Stress Downregulate BDH2 Expression and Dysregulate Intracellular Iron in Macrophages

    Directory of Open Access Journals (Sweden)

    Susu M. Zughaier

    2014-01-01

    Full Text Available Macrophages play a very important role in host defense and in iron homeostasis by engulfing senescent red blood cells and recycling iron. Hepcidin is the master iron regulating hormone that limits dietary iron absorption from the gut and limits iron egress from macrophages. Upon infection macrophages retain iron to limit its bioavailability which limits bacterial growth. Recently, a short chain butyrate dehydrogenase type 2 (BDH2 protein was reported to contain an iron responsive element and to mediate cellular iron trafficking by catalyzing the synthesis of the mammalian siderophore that binds labile iron; therefore, BDH2 plays a crucial role in intracellular iron homeostasis. However, BDH2 expression and regulation in macrophages have not yet been described. Here we show that LPS-induced inflammation combined with ER stress led to massive BDH2 downregulation, increased the expression of ER stress markers, upregulated hepcidin expression, downregulated ferroportin expression, caused iron retention in macrophages, and dysregulated cytokine release from macrophages. We also show that ER stress combined with inflammation synergistically upregulated the expression of the iron carrier protein NGAL and the stress-inducible heme degrading enzyme heme oxygenase-1 (HO-1 leading to iron liberation. This is the first report to show that inflammation and ER stress downregulate the expression of BDH2 in human THP-1 macrophages.

  2. Exposure of Monocytes to Lipoarabinomannan Promotes Their Differentiation into Functionally and Phenotypically Immature Macrophages

    Directory of Open Access Journals (Sweden)

    Leslie Chávez-Galán

    2015-01-01

    Full Text Available Lipoarabinomannan (LAM is a lipid virulence factor secreted by Mycobacterium tuberculosis (Mtb, the etiologic agent of tuberculosis. LAM can be measured in the urine or serum of tuberculosis patients (TB-patients. Circulating monocytes are the precursor cells of alveolar macrophages and might be exposed to LAM in patients with active TB. We speculated that exposing monocytes to LAM could produce phenotypically and functionally immature macrophages. To test our hypothesis, human monocytes were stimulated with LAM (24–120 hours and various readouts were measured. The study showed that when monocytes were exposed to LAM, the frequency of CD68+, CD33+, and CD86+ macrophages decreased, suggesting that monocyte differentiation into mature macrophages was affected. Regarding functionality markers, TLR2+ and TLR4+ macrophages also decreased, but the percentage of MMR+ expression did not change. LAM-exposed monocytes generated macrophages that were less efficient in producing proinflammatory cytokines such as TNF-α and IFN-γ; however, their phagocytic capacity was not modified. Taken together, these data indicate that LAM exposure influenced monocyte differentiation and produced poorly functional macrophages with a different phenotype. These results may help us understand how mycobacteria can limit the quality of the innate and adaptive immune responses.

  3. Imaging of macrophage-related lung diseases

    International Nuclear Information System (INIS)

    Marten, Katharina; Hansell, David M.

    2005-01-01

    Macrophage-related pulmonary diseases are a heterogeneous group of disorders characterized by macrophage accumulation, activation or dysfunction. These conditions include smoking-related interstitial lung diseases, metabolic disorders such as Niemann-Pick or Gaucher disease, and rare primary lung tumors. High-resolution computed tomography abnormalities include pulmonary ground-glass opacification secondary to infiltration by macrophages, centrilobular nodules or interlobular septal thickening reflecting peribronchiolar or septal macrophage accumulation, respectively, emphysema caused by macrophage dysfunction, and honeycombing following macrophage-related lung matrix remodeling. (orig.)

  4. (SSR) markers

    African Journals Online (AJOL)

    acer

    2013-06-26

    Jun 26, 2013 ... analysis was in general agreement with PCoA in discrimi- nating the cultivars. Conclusions. Estimation of morphological diversity may provide addi- tional information on the present finding. Nonetheless, the 29 SSR markers provided considerable genetic reso- lution and this genetic diversity analysis ...

  5. (SSR) markers

    African Journals Online (AJOL)

    SAM

    2014-07-30

    Jul 30, 2014 ... India and the country is currently the leading producer, consumer and exporter of ... registration with the competent authority for plant variety protection. Conventionally ... detection of duplicates, parental verification in crosses, gene tagging in .... allelic patterns as revealed by the current set of SSR markers.

  6. Anti-inflammatory effects of octadecylamine-functionalized nanodiamond on primary human macrophages.

    Science.gov (United States)

    Pentecost, A E; Witherel, C E; Gogotsi, Y; Spiller, K L

    2017-09-26

    Chronic inflammatory disorders such as rheumatoid arthritis are characterized by excessive pro-inflammatory or "M1" activation of macrophages, the primary cells of the innate immune system. Current treatments include delivery of glucocorticoids (e.g. dexamethasone - Dex), which reduce pro-inflammatory M1 behaviour in macrophages. However, these treatments have many off-target effects on cells other than macrophages, resulting in broad immunosuppression. To limit such side effects, drug-incorporated nano- and microparticles may be used to selectively target macrophages via phagocytosis, because of their roles as highly effective phagocytes in the body. In this study, surface-modified nanodiamond (ND) was explored as a platform for the delivery of dexamethasone to macrophages because of ND's rich surface chemistry, which contributes to ND's high potential as a versatile drug delivery platform. After finding that octadecylamine-functionalized nanodiamond (ND-ODA) enhanced adsorption of Dex compared to carboxylated ND, the effects of Dex, ND-ODA, and Dex-adsorbed ND-ODA on primary human macrophage gene expression were characterized. Surprisingly, even in the absence of Dex, ND-ODA had strong anti-inflammatory effects, as determined by multiplex gene expression via NanoString and by protein secretion analysis via ELISA. ND-ODA also inhibited expression of M2a markers yet increased the expression of M2c markers and phagocytic receptors. Interestingly, the adsorption of Dex to ND-ODA further increased some anti-inflammatory effects, but abrogated the effect on phagocytic receptors, compared to its individual components. Overall, the ability of ND-ODA to promote anti-inflammatory and pro-phagocytic behaviour in macrophages, even in the absence of loaded drugs, suggests its potential for use as an anti-inflammatory therapeutic to directly target macrophages through phagocytosis.

  7. Investigation of Macrophage Differentiation and Cytokine Production in an Undergraduate Immunology Laboratory

    Science.gov (United States)

    Berkes, Charlotte; Chan, Leo Li-Ying

    2015-01-01

    We have developed a semester-long laboratory project for an undergraduate immunology course in which students study multiple aspects of macrophage biology including differentiation from progenitors in the bone marrow, activation upon stimulation with microbial ligands, expression of cell surface markers, and modulation of cytokine production. In…

  8. Biomimetic collagenous scaffold to tune inflammation by targeting macrophages

    Directory of Open Access Journals (Sweden)

    Francesca Taraballi

    2016-02-01

    Full Text Available The inflammatory response following implantation of a biomaterial is one of the major regulatory aspects of the overall regenerative process. The progress of inflammation determines whether functional tissue is restored or if nonfunctional fibrotic tissue is formed. This delicate balance is directed by the activity of different cells. Among these, macrophages and their different phenotypes, the inflammatory M1 to anti-inflammatory M2, are considered key players in the process. Recent approaches exploit macrophage’s regenerative potential in tissue engineering. Here, we propose a collagen scaffold functionalized with chondroitin sulfate (CSCL, a glycosaminoglycan known to be able to tune inflammation. We studied CSCL effects on bone-marrow-derived macrophages in physiological, and lipopolysaccharides-inflamed, conditions in vitro. Our data demonstrate that CSCL is able to modulate macrophage phenotype by inhibiting the LPS/CD44/NF-kB cascade. As a consequence, an upregulation of anti-inflammatory markers (TGF-β, Arg, MRC1, and IL-10 was found concomitantly with a decrease in the expression of pro-inflammatory markers (iNOS, TNF-α, IL-1β, IL-12β. We then implanted CSCL subcutaneously in a rat model to test whether the same molecular mechanism could be maintained in an in vivo environment. In vivo data confirmed the in vitro studies. A significant reduction in the number of infiltrating cells around and within the implants was observed at 72 h, with a significant downregulation of pro-inflammatory genes expression. The present work provides indications regarding the immunomodulatory potential of molecules used for the development of biomimetic materials and suggests their use to direct macrophage immune modulation for tissue repair.

  9. 'In vitro' studies on the interaction of rickettsia and macrophages. I. Effect of ultraviolet light on 'Coxiella burnetii' inactivation and macrophage enzymes: uv-inactivated 'C. burnetii'/macrophage enzymes. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Little, J.S.; Kishimoto, R.A.; Canonico, P.G.

    1979-09-04

    The inactivation of Coxiella burnetii in suspension or in cultures of guinea pig peritoneal macrophages by ultraviolet (UV) light was studied. The effect of UV treatment on the activity of macrophage organelle marker enzymes and their subsequent equilibration in linear sucrose gradients was also determined. It was shown that UV treatment of 600 microwatts/sq cm for 15 sec at a distance of 10 cm inactivated C. burnetii, either in suspension (10 to the 8th power organisms/ML) or within guinea pig peritoneal macrophages. Similar UV treatment had little effect on the activity or equilibration of macrophage organelle marker enzymes in linear sucrose gradients. However, longer exposure caused considerable inactivatioin of these enzymes.

  10. IAP survivin regulates atherosclerotic macrophage survival

    NARCIS (Netherlands)

    Blanc-Brude, Olivier P.; Teissier, Elisabeth; Castier, Yves; Lesèche, Guy; Bijnens, Ann-Pascal; Daemen, Mat; Staels, Bart; Mallat, Ziad; Tedgui, Alain

    2007-01-01

    Inflammatory macrophage apoptosis is critical to atherosclerotic plaque formation, but its mechanisms remain enigmatic. We hypothesized that inhibitor of apoptosis protein (IAP) survivin regulates macrophage death in atherosclerosis. Western blot analysis revealed discrete survivin expression in

  11. Marker lamps

    International Nuclear Information System (INIS)

    Watkins, D.V.

    1980-01-01

    A marker lamp is described which consists of a block of transparent plastics material encapsulated in which is a radioactive light source. These lights comprise a small sealed glass capsule, the hollow inside surface of which is coated with phosphor and which contains tritium or similar radioactive gas. The use of such lamps for identification marking of routes, for example roads, and for identification of underwater oil pipelines is envisaged. (U.K.)

  12. Role of Osteal Macrophages in Bone Metabolism

    Directory of Open Access Journals (Sweden)

    Sun Wook Cho

    2015-03-01

    Full Text Available Macrophages have been shown to have pleiotropic functions in various pathophysiologies, especially in terms of anti-inflammatory and regenerative activity. Recently, the novel functions of bone marrow resident macrophages (called osteal macrophages were intensively studied in bone development, remodeling and tissue repair processes. This review discusses the current evidence for a role of osteal macrophages in bone modeling, remodeling, and fracture healing processes.

  13. Characteristics and potential role of M2 macrophages in COPD

    Directory of Open Access Journals (Sweden)

    He S

    2017-10-01

    Full Text Available Shengyang He, Lihua Xie, Junjuan Lu, Shenghua SunDepartment of Respiratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China Background: COPD is a multi-pathogenesis disease mainly caused by smoking. A further understanding of the mechanism of smoking-related COPD might contribute to preventions and treatments of this disease in the early stages. This study was designed to identify the characteristics of M2 macrophages in COPD for a better understanding about their potential role.Materials and methods: COPD models were built in the C57BL/6 mouse by cigarette smoke (CS exposure combined with intraperitoneal injection of cigarette smoke extract (CSE. The modeling efficiency was evaluated by lung function and hematoxylin and eosin (H&E staining. The number of different macrophage phenotypes was detected by immunohistochemical staining (IHS of CD206, CD86 and CD68 on the lung tissue paraffin section. The RAW264.7 cells were polarized toward the M2 phenotype by interleukin IL-4 and confirmed by a flow cytometer. The gene expression levels of TGF-βRII, Smad2, Smad3 and Smad7 in CSE-treated M2 macrophages were detected by real-time reverse transcription polymerase chain reaction (RT-PCR. The expression levels of TGF-β/Smad pathway-related makers (TGF-βRII, p-Smad2, p-Smad3, Smad7 and TGF-β in alveolar M2 macrophages were detected by two consecutive paraffin section IHS.Results: The COPD model is well established, which is confirmed by the lung function test and lung H&E staining. The whole number of macrophages and the ratio of M2/M1 phenotype are both increased (p<0.05. The level of CD206+ cells in IL-4-stimulated RAW264.7 cells is up to 93.4%, which is confirmed by a flow cytometer. The gene expression of TGF-βRII, Smad2, Smad3 and Smad7 are all enhanced (p<0.05 in CES-treated M2 macrophages, which is detected by RT-PCR. The protein levels of TGF-β/Smad pathway-related markers are

  14. Cardiosphere-Derived Cells Facilitate Heart Repair by Modulating M1/M2 Macrophage Polarization and Neutrophil Recruitment.

    Directory of Open Access Journals (Sweden)

    Al Shaimaa Hasan

    Full Text Available Cardiosphere-derived cells (CDCs, one of the promising stem cell sources for myocardial repair, have been tested in clinical trials and resulted in beneficial effects; however, the relevant mechanisms are not fully understood. In this study, we examined the hypothesis that CDCs favor heart repair by switching the macrophages from a pro-inflammatory phenotype (M1 into a regulatory anti-inflammatory phenotype (M2. Macrophages from mice were cultured with CDCs-conditioned medium or with fibroblasts-conditioned medium as a control. Immunostaining showed that CDCs-conditioned medium significantly enhanced the expression of CD206 (a marker for M2 macrophages, but decreased the expression of CD86 (a marker for M1 macrophages 3 days after culture. For animal studies, we used an acute myocardial infarction model of mice. We injected CDCs, fibroblasts, or saline only into the border zone of infarction. Then we collected the heart tissues for histological analysis 5 and 14 days after treatment. Compared with control animals, CDCs treatment significantly decreased M1 macrophages and neutrophils but increased M2 macrophages in the infarcted heart. Furthermore, CDCs-treated mice had reduced infarct size and fewer apoptotic cells compared to the controls. Our data suggest that CDCs facilitate heart repair by modulating M1/M2 macrophage polarization and neutrophil recruitment, which may provide a new insight into the mechanisms of stem cell-based myocardial repair.

  15. Cardiosphere-Derived Cells Facilitate Heart Repair by Modulating M1/M2 Macrophage Polarization and Neutrophil Recruitment

    Science.gov (United States)

    Hasan, Al Shaimaa; Luo, Lan; Yan, Chen; Zhang, Tian-Xia; Urata, Yoshishige; Goto, Shinji; Mangoura, Safwat A.; Abdel-Raheem, Mahmoud H.; Zhang, Shouhua; Li, Tao-Sheng

    2016-01-01

    Cardiosphere-derived cells (CDCs), one of the promising stem cell sources for myocardial repair, have been tested in clinical trials and resulted in beneficial effects; however, the relevant mechanisms are not fully understood. In this study, we examined the hypothesis that CDCs favor heart repair by switching the macrophages from a pro-inflammatory phenotype (M1) into a regulatory anti-inflammatory phenotype (M2). Macrophages from mice were cultured with CDCs-conditioned medium or with fibroblasts-conditioned medium as a control. Immunostaining showed that CDCs-conditioned medium significantly enhanced the expression of CD206 (a marker for M2 macrophages), but decreased the expression of CD86 (a marker for M1 macrophages) 3 days after culture. For animal studies, we used an acute myocardial infarction model of mice. We injected CDCs, fibroblasts, or saline only into the border zone of infarction. Then we collected the heart tissues for histological analysis 5 and 14 days after treatment. Compared with control animals, CDCs treatment significantly decreased M1 macrophages and neutrophils but increased M2 macrophages in the infarcted heart. Furthermore, CDCs-treated mice had reduced infarct size and fewer apoptotic cells compared to the controls. Our data suggest that CDCs facilitate heart repair by modulating M1/M2 macrophage polarization and neutrophil recruitment, which may provide a new insight into the mechanisms of stem cell-based myocardial repair. PMID:27764217

  16. Síndrome de ativação macrofágica em paciente com lúpus eritematoso sistêmico juvenil Macrophage activation syndrome in a patient with juvenile systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Simone Manso de Carvalho

    2008-08-01

    Full Text Available A hemofagocitose reativa ou síndrome de ativação macrofágica (SAM é uma complicação das doenças inflamatórias sistêmicas, causada por expansão de células T e macrófagos, com produção maciça de citocinas pró-inflamatórias, ocorrendo mais freqüentemente na artrite idiopática juvenil sistêmica e raramente no lúpus eritematoso sistêmico juvenil (LESJ. OBJETIVO: Relatar um caso de LESJ que evoluiu com SAM precipitada por infecção e infarto esplênico, com desfecho fatal. RELATO DE CASO: Uma menina de 7 anos, com diagnóstico de LESJ desde os 5 anos, evoluiu com artrite em atividade, alopecia intensa, citopenias, cefaléia, infecções respiratórias recorrentes e elevação intermitente de transaminases. Os anticorpos anti-DNA e anticardiolipina IgG e IgM foram identificados e a biópsia renal evidenciou glomerulonefrite lúpica de classe III. A paciente foi tratada com pulso de metilprednisolona, prednisona, azatioprina e hidroxicloroquina. Após dois anos, na vigência de pneumonia apresentou abdome agudo e convulsões, evoluindo para o choque hemorrágico fatal após esplenectomia, que evidenciou infarto esplênico e infiltração maciça por macrófagos hemofagocíticos CD163+. CONCLUSÃO: A revisão do desfecho sugere a SAM precipitada por infecção e sobreposta a atividade inflamatória do lúpus com febre persistente, citopenias, disfunção hepática, hepatomegalia e esplenomegalia, como efeitos do excesso de produção de citocinas. Os anticorpos anticardiolipina podem ter tido papel precipitante na coagulopatia, que resultou infarto esplênico e choque hemorrágico.Reactive haemophagocytosis or macrophage activation syndrome (MAS is a complication of systemic inflammatory disorders, caused by expansion of T cells and haemophagocytic macrophages, with cytokine overproduction. It has been described most often in systemic juvenile idiopathic arthritis and rarely in juvenile systemic lupus erythematosus (JSLE

  17. Adoptive transfer of M2 macrophages reduces neuropathic pain via opioid peptides.

    Science.gov (United States)

    Pannell, Maria; Labuz, Dominika; Celik, Melih Ö; Keye, Jacqueline; Batra, Arvind; Siegmund, Britta; Machelska, Halina

    2016-10-07

    During the inflammation which occurs following nerve damage, macrophages are recruited to the site of injury. Phenotypic diversity is a hallmark of the macrophage lineage and includes pro-inflammatory M1 and anti-inflammatory M2 populations. Our aim in this study was to investigate the ability of polarized M0, M1, and M2 macrophages to secrete opioid peptides and to examine their relative contribution to the modulation of neuropathic pain. Mouse bone marrow-derived cells were cultured as unstimulated M0 macrophages or were stimulated into an M1 phenotype using lipopolysaccharide and interferon-γ or into an M2 phenotype using interleukin-4. The macrophage phenotypes were verified using flow cytometry for surface marker analysis and cytokine bead array for cytokine profile assessment. Opioid peptide levels were measured by radioimmunoassay and enzyme immunoassay. As a model of neuropathic pain, a chronic constriction injury (CCI) of the sciatic nerve was employed. Polarized M0, M1, and M2 macrophages (5 × 10 5 cells) were injected perineurally twice, on days 14 and 15 following CCI or sham surgery. Mechanical and heat sensitivity were measured using the von Frey and Hargreaves tests, respectively. To track the injected macrophages, we also transferred fluorescently stained polarized cells and analyzed the surface marker profile of endogenous and injected cells in the nerves ex vivo. Compared to M0 and M1 cells, M2 macrophages contained and released higher amounts of opioid peptides, including Met-enkephalin, dynorphin A (1-17), and β-endorphin. M2 cells transferred perineurally at the nerve injury site reduced mechanical, but not heat hypersensitivity following the second injection. The analgesic effect was reversed by the perineurally applied opioid receptor antagonist naloxone methiodide. M2 cells did not affect sensitivity following sham surgery. Neither M0 nor M1 cells altered mechanical and heat sensitivity in CCI or sham-operated animals. Tracing the

  18. HIV-1 and the macrophage

    NARCIS (Netherlands)

    Bol, Sebastiaan M.; Cobos-Jimenez, Viviana; Kootstra, Neeltje A.; van 't Wout, Angelique B.

    2011-01-01

    Macrophages and CD4(+) T cells are natural target cells for HIV-1, and both cell types contribute to the establishment of the viral reservoir that is responsible for continuous residual virus replication during antiretroviral therapy and viral load rebound upon treatment interruption. Scientific

  19. Changes in lymphocyte and macrophage subsets due to morphine and ethanol treatment during a retrovirus infection causing murine AIDS

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R.R.; Prabhala, R.H.; Darban, H.R.; Yahya, M.D.; Smith, T.L.

    1988-01-01

    The number of lymphocytes of various subsets were not significantly changed by the ethanol exposure except those showing activation markers which were reduced. The percentage of peripheral blood cells showing markers for macrophage functions and their activation were significantly reduced after binge use of ethanol. Ethanol retarded suppression of cells by retroviral infection. However by 25 weeks of infection there was a 8.6% survival in the ethanol fed mice infected with retrovirus which was much less than virally infected controls. Morphine treatment also increased the percentage of cells with markers for macrophages and activated macrophages in virally infected mice, while suppressing them in uninfected mice. The second and third morphine injection series suppressed lymphocyte T-helper and T-suppressor cells, but not total T cells. However, suppression by morphine was significantly less during retroviral disease than suppression caused by the virus only. At 25 weeks of infection 44.8% of morphine treated, infected mice survived.

  20. Monosodium Urate Crystals Induce Upregulation of NK1.1-Dependent Killing by Macrophages and Support Tumor-Resident NK1.1+ Monocyte/Macrophage Populations in Antitumor Therapy.

    Science.gov (United States)

    Steiger, Stefanie; Kuhn, Sabine; Ronchese, Franca; Harper, Jacquie L

    2015-12-01

    Macrophages display phenotypic and functional heterogeneity dependent on the changing inflammatory microenvironment. Under some conditions, macrophages can acquire effector functions commonly associated with NK cells. In the current study, we investigated how the endogenous danger signal monosodium urate (MSU) crystals can alter macrophage functions. We report that naive, primary peritoneal macrophages rapidly upregulate the expression of the NK cell-surface marker NK1.1 in response to MSU crystals but not in response to LPS or other urate crystals. NK1.1 upregulation by macrophages was associated with mechanisms including phagocytosis of crystals, NLRP3 inflammasome activation, and autocrine proinflammatory cytokine signaling. Further analysis demonstrated that MSU crystal-activated macrophages exhibited NK cell-like cytotoxic activity against target cells in a perforin/granzyme B-dependent manner. Furthermore, analysis of tumor hemopoietic cell populations showed that effective, MSU-mediated antitumor activity required coadministration with Mycobacterium smegmatis to induce IL-1β production and significant accumulation of monocytes and macrophages (but not granulocytes or dendritic cells) expressing elevated levels of NK1.1. Our findings provide evidence that MSU crystal-activated macrophages have the potential to develop tumoricidal NK cell-like functions that may be exploited to boost antitumor activity in vivo. Copyright © 2015 by The American Association of Immunologists, Inc.

  1. The role of PTEN in regulation of hepatic macrophages activation and function in progression and reversal of liver fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Yahui; Tian, Yuanyao; Xia, Jialu; Wu, Xiaoqin; Yang, Yang; Li, Xiaofeng; Huang, Cheng; Meng, Xiaoming; Ma, Taotao; Li, Jun, E-mail: lj@ahmu.edu.cn

    2017-02-15

    Activation of Kupffer cells (KCs) plays a pivotal role in the pathogenesis of liver fibrosis. The progression and reversal of CCl{sub 4}-induced mouse liver fibrosis showed a mixed induction of hepatic classical (M1) and alternative (M2) macrophage markers. Although the role of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in modulating myeloid cell activation has recently been identified, its function in macrophage activation during hepatic fibrosis remains to be fully appreciated. In our study, PTEN expression of KCs was remarkably decreased in CCl{sub 4}-induced mice but increased to a near-normal level in reversed mice. Moreover, PTEN was significantly decreased in IL4-induced RAW 264.7 cells in vitro and lower expression of PTEN was observed in M2 macrophages in vivo. In addition, loss- and gain-of-function studies suggested that PTEN regulates M2 macrophages polarization via activation of PI3K/Akt/STAT6 signaling, but had a limited effect on M1 macrophages polarization in vitro. Additionally, Ly294002, a chemical inhibitor of PI3K/Akt, could dramatically down-regulate the hallmarks of M2 macrophages. In conclusion, PTEN mediates macrophages activation by PI3K/Akt/STAT6 signaling pathway, which provides novel compelling evidences on the potential of PTEN in liver injury and opens new cellular target for the pharmacological therapy of liver fibrosis. - Highlights: • CCl{sub 4} treatment triggered a mixed M1/M2 macrophage phenotype in fibrosis. • Lower expression of PTEN in murine M2 macrophages in vivo and vitro. • PTEN modulates M2 macrophages activation via PI3K/Akt/STAT6 signaling. • Provide a new cellular target modulate macrophage mediated hepatic fibrosis.

  2. Extratumoral Heme Oxygenase-1 (HO-1 Expressing Macrophages Likely Promote Primary and Metastatic Prostate Tumor Growth.

    Directory of Open Access Journals (Sweden)

    Sofia Halin Bergström

    Full Text Available Aggressive tumors induce tumor-supporting changes in the benign parts of the prostate. One factor that has increased expression outside prostate tumors is hemoxygenase-1 (HO-1. To investigate HO-1 expression in more detail, we analyzed samples of tumor tissue and peritumoral normal prostate tissue from rats carrying cancers with different metastatic capacity, and human prostate cancer tissue samples from primary tumors and bone metastases. In rat prostate tumor samples, immunohistochemistry and quantitative RT-PCR showed that the main site of HO-1 synthesis was HO-1+ macrophages that accumulated in the tumor-bearing organ, and at the tumor-invasive front. Small metastatic tumors were considerably more effective in attracting HO-1+ macrophages than larger non-metastatic ones. In clinical samples, accumulation of HO-1+ macrophages was seen at the tumor invasive front, almost exclusively in high-grade tumors, and it correlated with the presence of bone metastases. HO-1+ macrophages, located at the tumor invasive front, were more abundant in bone metastases than in primary tumors. HO-1 expression in bone metastases was variable, and positively correlated with the expression of macrophage markers but negatively correlated with androgen receptor expression, suggesting that elevated HO-1 could be a marker for a subgroup of bone metastases. Together with another recent observation showing that selective knockout of HO-1 in macrophages reduced prostate tumor growth and metastatic capacity in animals, the results of this study suggest that extratumoral HO-1+ macrophages may have an important role in prostate cancer.

  3. Homocysteine elicits an M1 phenotype in murine macrophages through an EMMPRIN-mediated pathway.

    Science.gov (United States)

    Winchester, Lee J; Veeranki, Sudhakar; Givvimani, Srikanth; Tyagi, Suresh C

    2015-07-01

    Hyperhomocysteinemia (HHcy) is associated with inflammatory diseases and is known to increase the production of reactive oxygen species (ROS), matrix metalloproteinase (MMP)-9, and inducible nitric oxide synthase, and to decrease endothelial nitric oxide production. However, the impact of HHcy on macrophage phenotype differentiation is not well-established. It has been documented that macrophages have 2 distinct phenotypes: the "classically activated/destructive" (M1), and the "alternatively activated/constructive" (M2) subtypes. We hypothesize that HHcy increases M1 macrophage differentiation through extracellular matrix metalloproteinase inducer (EMMPRIN), a known inducer of matrix metalloproteinases. murine J774A.1 and Raw 264.7 macrophages were treated with 100 and 500 μmol/L Hcy, respectively, for 24 h. Samples were analyzed using Western blotting and immunocytochemistry. Homocysteine treatment increased cluster of differentiation 40 (CD40; M1 marker) in J774A.1 and Raw 264.7 macrophages. MMP-9 was induced in both cell lines. EMMPRIN protein expression was also increased in both cell lines. Blocking EMMPRIN function by pre-treating cells with anti-EMMPRIN antibody, with or without Hcy, resulted in significantly lower expression of CD40 in both cell lines by comparison with the controls. A DCFDA assay demonstrated increased ROS production in both cell lines with Hcy treatment when compared with the controls. Our results suggest that HHcy results in an increase of the M1 macrophage phenotype. This effect seems to be at least partially mediated by EMMPRIN induction.

  4. Macrophage Metalloelastase (MMP-12) Deficiency Mitigates Retinal Inflammation and Pathological Angiogenesis in Ischemic Retinopathy

    Science.gov (United States)

    Li, Jingming; Wang, Joshua J.; Peng, Qisheng; Chen, Chen; Humphrey, Mary Beth; Heinecke, Jay; Zhang, Sarah X.

    2012-01-01

    Pathological angiogenesis is a major cause of vision loss in ischemic and inflammatory retinal diseases. Recent evidence implicates macrophage metalloelastase (MMP-12), a macrophage-derived elastinolytic protease in inflammation, tissue remodeling and angiogenesis. However, little is known about the role of MMP-12 in retinal pathophysiology. The present study aims to explore the enzyme’s contributions to retinal angiogenesis in oxygen-induced retinopathy (OIR) using MMP-12 knockout (KO) mice. We find that MMP-12 expression was upregulated in OIR, accompanied by elevated macrophage infiltration and increased inflammatory markers. Compared to wildtype mice, MMP-12 KO mice had decreased levels of adhesion molecule and inflammatory cytokines and reduced vascular leakage in OIR. Concomitantly, these mice had markedly reduced macrophage content in the retina with impaired macrophage migratory capacity. Significantly, loss of MMP-12 attenuated retinal capillary dropout in early OIR and mitigated pathological retinal neovascularization (NV). Similar results were observed in the study using MMP408, a pharmacological inhibitor of MMP-12. Intriguingly, in contrast to reducing pathological angiogenesis, lack of MMP-12 accelerated revascularization of avascular retina in OIR. Taken together, we conclude that MMP-12 is a key regulator of macrophage infiltration and inflammation, contributing to retinal vascular dysfunction and pathological angiogenesis. PMID:23285156

  5. Characteristic features of intracellular pathogenic Leptospira in infected murine macrophages.

    Science.gov (United States)

    Toma, Claudia; Okura, Nobuhiko; Takayama, Chitoshi; Suzuki, Toshihiko

    2011-11-01

    Leptospira interrogans is a spirochaete responsible for a zoonotic disease known as leptospirosis. Leptospires are able to penetrate the abraded skin and mucous membranes and rapidly disseminate to target organs such as the liver, lungs and kidneys. How this pathogen escape from innate immune cells and spread to target organs remains poorly understood. In this paper, the intracellular trafficking undertaken by non-pathogenic Leptospira biflexa and pathogenic L. interrogans in mouse bone marrow-derived macrophages was compared. The delayed in the clearance of L. interrogans was observed. Furthermore, the acquisition of lysosomal markers by L. interrogans-containing phagosomes lagged behind that of L. biflexa-containing phagosomes, and although bone marrow-derived macrophages could degrade L. biflexa as well as L. interrogans, a population of L. interrogans was able to survive and replicate. Intact leptospires were found within vacuoles at 24 h post infection, suggesting that bacterial replication occurs within a membrane-bound compartment. In contrast, L. biflexa were completely degraded at 24 h post infection. Furthermore, L. interrogans but not L. biflexa, were released to the extracellular milieu. These results suggest that pathogenic leptospires are able to survive, replicate and exit from mouse macrophages, enabling their eventual spread to target organs. © 2011 Blackwell Publishing Ltd.

  6. Classical and alternative macrophage activation in the lung following ozone-induced oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Sunil, Vasanthi R., E-mail: sunilva@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Patel-Vayas, Kinal; Shen, Jianliang [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-09-01

    Ozone is a pulmonary irritant known to cause oxidative stress, inflammation and tissue injury. Evidence suggests that macrophages play a role in the pathogenic response; however, their contribution depends on the mediators they encounter in the lung which dictate their function. In these studies we analyzed the effects of ozone-induced oxidative stress on the phenotype of alveolar macrophages (AM). Exposure of rats to ozone (2 ppm, 3 h) resulted in increased expression of 8-hydroxy-2′-deoxyguanosine (8-OHdG), as well as heme oxygenase-1 (HO-1) in AM. Whereas 8-OHdG was maximum at 24 h, expression of HO-1 was biphasic increasing after 3 h and 48–72 h. Cleaved caspase-9 and beclin-1, markers of apoptosis and autophagy, were also induced in AM 24 h post-ozone. This was associated with increased bronchoalveolar lavage protein and cells, as well as matrix metalloproteinase (MMP)-2 and MMP-9, demonstrating alveolar epithelial injury. Ozone intoxication resulted in biphasic activation of the transcription factor, NFκB. This correlated with expression of monocyte chemotactic protein‐1, inducible nitric oxide synthase and cyclooxygenase‐2, markers of proinflammatory macrophages. Increases in arginase-1, Ym1 and galectin-3 positive anti-inflammatory/wound repair macrophages were also observed in the lung after ozone inhalation, beginning at 24 h (arginase-1, Ym1), and persisting for 72 h (galectin-3). This was associated with increased expression of pro-surfactant protein-C, a marker of Type II cell proliferation and activation, important steps in wound repair. These data suggest that both proinflammatory/cytotoxic and anti-inflammatory/wound repair macrophages are activated early in the response to ozone-induced oxidative stress and tissue injury. -- Highlights: ► Lung macrophages are highly sensitive to ozone induced oxidative stress. ► Ozone induces autophagy and apoptosis in lung macrophages. ► Proinflammatory and wound repair macrophages are activated

  7. [Macrophage activation in atherosclerosis. Message 1: Activation of macrophages normally and in atherosclerotic lesions].

    Science.gov (United States)

    Nikiforov, N G; Kornienko, V Y; Karagodin, V P; Orekhov, A N

    2015-01-01

    Macrophages play important role in initiation and progression of inflammation in atherosclerosis. Plaque macrophages were shown to exhibit a phenotypic range that is intermediate between two extremes, M1 (proinflammatory) and M2 (anti-inflammatory). Indeed, in atherosclerosis, macrophages demonstrate phenotypic plasticity to rapidly adjust to changing microenvironmental conditions. In plaque macrophages demonstrate different phenotypes, and besides macrophage phenotypes could be changed. Phenotypes M1, M2, M4, Mhem, HA-mac, M(Hb) u Mox are described in the article. Ability of macrophages change their phenotype also considered.

  8. Unexpected macrophage-independent dyserythropoiesis in Gaucher disease.

    Science.gov (United States)

    Reihani, Nelly; Arlet, Jean-Benoit; Dussiot, Michael; de Villemeur, Thierry Billette; Belmatoug, Nadia; Rose, Christian; Colin-Aronovicz, Yves; Hermine, Olivier; Le Van Kim, Caroline; Franco, Melanie

    2016-12-01

    Gaucher disease is a rare inherited disease caused by a deficiency in glucocerebrosidase leading to lipid accumulation in cells of mononuclear-macrophage lineage known as Gaucher cells. Visceral enlargement, bone involvement, mild anemia and thrombocytopenia are the major manifestations of Gaucher disease. We have previously demonstrated that the red blood cells from patients exhibit abnormal properties, which indicates a new role in Gaucher disease pathophysiology. To investigate whether erythroid progenitors are affected, we examined the in vitro erythropoiesis from the peripheral CD34 + cells of patients and controls. CD34- cells were differentiated into macrophages and co-cultivated with erythroblasts. We showed an accelerated differentiation of erythroid progenitors without maturation arrest from patients compared to controls. This abnormal differentiation persisted in the patients when the same experiments were performed without macrophages, which strongly suggested that dyserythropoiesis in Gaucher disease is secondary to an inherent defect in the erythroid progenitors. The accelerated differentiation was associated with reduced cell proliferation. As a result, less mature erythroid cells were generated in vitro in the Gaucher disease cultures compared to the control. We then compared the biological characteristics of untreated patients according to their anemic status. Compared to the non-anemic group, the anemic patients exhibit higher plasma levels of growth differentiation factor-15, a marker of ineffective erythropoiesis, but they had no indicators of hemolysis and similar reticulocyte counts. Taken together, these results demonstrated an unsuspected dyserythropoiesis that was independent of the macrophages and could participate, at least in part, to the basis of anemia in Gaucher disease. Copyright© Ferrata Storti Foundation.

  9. Metformin affects macrophages' phenotype and improves the activity of glutathione peroxidase, superoxide dismutase, catalase and decreases malondialdehyde concentration in a partially AMPK-independent manner in LPS-stimulated human monocytes/macrophages.

    Science.gov (United States)

    Bułdak, Łukasz; Łabuzek, Krzysztof; Bułdak, Rafał Jakub; Kozłowski, Michał; Machnik, Grzegorz; Liber, Sebastian; Suchy, Dariusz; Duława-Bułdak, Anna; Okopień, Bogusław

    2014-06-01

    Diabetic patients experience accelerated atherosclerosis. Metformin is a cornerstone of the current therapy of type 2 diabetes. Macrophages are the key cells associated with the development of atherosclerotic plaques. Therefore, our aim was to assess the in vitro effects of metformin on macrophages and its influence on the mechanisms involved in the development of atherosclerosis. Peripheral blood mononuclear cells were obtained from the group including 16 age-matched healthy non-smoking volunteers aged 18-40 years. Monocytes were further incubated with metformin, LPS and compound C--a pharmacological inhibitor of AMPK. The impact of metformin on oxidative stress markers, antioxidative properties, inflammatory cytokines and phenotypical markers of macrophages was studied. We showed that macrophages treated with metformin expressed less reactive oxygen species (ROS), which resulted from increased antioxidative potential. Furthermore, a reduction in inflammatory cytokines was observed. We also observed a phenotypic shift toward the alternative activation of macrophages that was induced by metformin. All the aforementioned results resulted from AMPK activation, but a residual activity of metformin after AMPK blockade was still noticeable even after inhibition of AMPK by compound C. Authors believe that metformin-based therapy, a cornerstone in diabetes therapy, not only improves the prognosis of diabetics by reducing blood glucose but also by reducing oxidative stress, inflammatory cytokine production and the shift toward alternative activation of macrophages. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  10. The activation pattern of macrophages in giant cell (temporal) arteritis and primary angiitis of the central nervous system.

    Science.gov (United States)

    Mihm, Bernhard; Bergmann, Markus; Brück, Wolfgang; Probst-Cousin, Stefan

    2014-06-01

    To determine if the pattern of macrophage activation reflects differences in the pathogenesis and clinical presentation of giant cell arteritis and primary angiitis of the central nervous system, specimens of 10 patients with giant cell arteritis and five with primary angiitis of the central nervous system were immunohistochemically studied and the expression of the macrophage activation markers 27E10, MRP14, MRP8 and 25F9 was determined in the vasculitic infiltrates. Thus, a partly different expression pattern of macrophage activation markers in giant cell arteritis and primary angiitis of the central nervous system was observed. The group comparison revealed that giant cell arteritis cases had significantly higher numbers of acute activated MRP14-positive macrophages, whereas primary angiitis of the central nervous system is characterized by a tendency toward more MRP8-positive intermediate/late activated macrophages. Furthermore, in giant cell arteritis comparably fewer CD8-positive lymphocytes were observed. These observations suggest, that despite their histopathological similarities, giant cell arteritis and primary angiitis of the central nervous system appear to represent either distinct entities within the spectrum of granulomatous vasculitides or different stages of similar disease processes. Their discrete clinical presentation is reflected by different activation patterns of macrophages, which may characterize giant cell arteritis as a more acute process and primary angiitis of the central nervous system as a more advanced inflammatory process. © 2013 Japanese Society of Neuropathology.

  11. T3 Regulates a Human Macrophage-Derived TSH-β Splice Variant: Implications for Human Bone Biology.

    Science.gov (United States)

    Baliram, R; Latif, R; Morshed, S A; Zaidi, M; Davies, T F

    2016-09-01

    TSH and thyroid hormones (T3 and T4) are intimately involved in bone biology. We have previously reported the presence of a murine TSH-β splice variant (TSH-βv) expressed specifically in bone marrow-derived macrophages and that exerted an osteoprotective effect by inducing osteoblastogenesis. To extend this observation and its relevance to human bone biology, we set out to identify and characterize a TSH-β variant in human macrophages. Real-time PCR analyses using human TSH-β-specific primers identified a 364-bp product in macrophages, bone marrow, and peripheral blood mononuclear cells that was sequence verified and was homologous to a human TSH-βv previously reported. We then examined TSH-βv regulation using the THP-1 human monocyte cell line matured into macrophages. After 4 days, 46.1% of the THP-1 cells expressed the macrophage markers CD-14 and macrophage colony-stimulating factor and exhibited typical morphological characteristics of macrophages. Real-time PCR analyses of these cells treated in a dose-dependent manner with T3 showed a 14-fold induction of human TSH-βv mRNA and variant protein. Furthermore, these human TSH-βv-positive cells, induced by T3 exposure, had categorized into both M1 and M2 macrophage phenotypes as evidenced by the expression of macrophage colony-stimulating factor for M1 and CCL-22 for M2. These data indicate that in hyperthyroidism, bone marrow resident macrophages have the potential to exert enhanced osteoprotective effects by oversecreting human TSH-βv, which may exert its local osteoprotective role via osteoblast and osteoclast TSH receptors.

  12. Increased metabolite levels of glycolysis and pentose phosphate pathway in rabbit atherosclerotic arteries and hypoxic macrophage.

    Directory of Open Access Journals (Sweden)

    Atsushi Yamashita

    Full Text Available AIMS: Inflammation and possibly hypoxia largely affect glucose utilization in atherosclerotic arteries, which could alter many metabolic systems. However, metabolic changes in atherosclerotic plaques remain unknown. The present study aims to identify changes in metabolic systems relative to glucose uptake and hypoxia in rabbit atherosclerotic arteries and cultured macrophages. METHODS: Macrophage-rich or smooth muscle cell (SMC-rich neointima was created by balloon injury in the iliac-femoral arteries of rabbits fed with a 0.5% cholesterol diet or a conventional diet. THP-1 macrophages stimulated with lipopolysaccharides (LPS and interferon-γ (INFγ were cultured under normoxic and hypoxic conditions. We evaluated comprehensive arterial and macrophage metabolism by performing metabolomic analyses using capillary electrophoresis-time of flight mass spectrometry. We evaluated glucose uptake and its relationship to vascular hypoxia using (18F-fluorodeoxyglucose ((18F-FDG and pimonidazole, a marker of hypoxia. RESULTS: The levels of many metabolites increased in the iliac-femoral arteries with macrophage-rich neointima, compared with those that were not injured and those with SMC-rich neointima (glycolysis, 4 of 9; pentose phosphate pathway, 4 of 6; tricarboxylic acid cycle, 4 of 6; nucleotides, 10 of 20. The uptake of (18F-FDG in arterial walls measured by autoradiography positively correlated with macrophage- and pimonidazole-immunopositive areas (r = 0.76, and r = 0.59 respectively; n = 69 for both; p<0.0001. Pimonidazole immunoreactivity was closely localized with the nuclear translocation of hypoxia inducible factor-1α and hexokinase II expression in macrophage-rich neointima. The levels of glycolytic (8 of 8 and pentose phosphate pathway (4 of 6 metabolites increased in LPS and INFγ stimulated macrophages under hypoxic but not normoxic condition. Plasminogen activator inhibitor-1 protein levels in the supernatant were closely

  13. Dexamethasone palmitate ameliorates macrophages-rich graft-versus-host disease by inhibiting macrophage functions.

    Science.gov (United States)

    Nishiwaki, Satoshi; Nakayama, Takayuki; Murata, Makoto; Nishida, Tetsuya; Terakura, Seitaro; Saito, Shigeki; Kato, Tomonori; Mizuno, Hiroki; Imahashi, Nobuhiko; Seto, Aika; Ozawa, Yukiyasu; Miyamura, Koichi; Ito, Masafumi; Takeshita, Kyosuke; Kato, Hidefumi; Toyokuni, Shinya; Nagao, Keisuke; Ueda, Ryuzo; Naoe, Tomoki

    2014-01-01

    Macrophage infiltration of skin GVHD lesions correlates directly with disease severity, but the mechanisms underlying this relationship remain unclear and GVHD with many macrophages is a therapeutic challenge. Here, we characterize the macrophages involved in GVHD and report that dexamethasone palmitate (DP), a liposteroid, can ameliorate such GVHD by inhibiting macrophage functions. We found that host-derived macrophages could exacerbate GVHD in a mouse model through expression of higher levels of pro-inflammatory TNF-α and IFN-γ, and lower levels of anti-inflammatory IL-10 than resident macrophages in mice without GVHD. DP significantly decreased the viability and migration capacity of primary mouse macrophages compared to conventional dexamethasone in vitro. DP treatment on day 7 and day 14 decreased macrophage number, and attenuated GVHD score and subsequent mortality in a murine model. This is the first study to provide evidence that therapy for GVHD should be changed on the basis of infiltrating cell type.

  14. DMPD: Macrophage differentiation and function in health and disease. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available in health and disease. PubmedID 18251777 Title Macrophage differentiation and function in health and disease...thol Int. 2008 Mar;58(3):143-55. (.png) (.svg) (.html) (.csml) Show Macrophage differentiation and function

  15. Mesenchymal stem cell-educated macrophages

    OpenAIRE

    Eggenhofer Elke; Hoogduijn Martin J

    2012-01-01

    Abstract Mesenchymal stem cells (MSC) mediate their immunosuppressive effects via a variety of mechanisms. One of these mechanisms involves the induction of macrophages with immunomodulatory capacities. This effect of MSC may be exploited when MSC are used as a cell therapeutic product. Furthermore, MSC are resident in tissues where they may locally target infiltrating macrophages to adapt more regulatory properties. The present review discusses the interaction between MSC and macrophages, th...

  16. Quantitative GPCR and ion channel transcriptomics in primary alveolar macrophages and macrophage surrogates

    Directory of Open Access Journals (Sweden)

    Groot-Kormelink Paul J

    2012-10-01

    Full Text Available Abstract Background Alveolar macrophages are one of the first lines of defence against invading pathogens and play a central role in modulating both the innate and acquired immune systems. By responding to endogenous stimuli within the lung, alveolar macrophages contribute towards the regulation of the local inflammatory microenvironment, the initiation of wound healing and the pathogenesis of viral and bacterial infections. Despite the availability of protocols for isolating primary alveolar macrophages from the lung these cells remain recalcitrant to expansion in-vitro and therefore surrogate cell types, such as monocyte derived macrophages and phorbol ester-differentiated cell lines (e.g. U937, THP-1, HL60 are frequently used to model macrophage function. Methods The availability of high throughput gene expression technologies for accurate quantification of transcript levels enables the re-evaluation of these surrogate cell types for use as cellular models of the alveolar macrophage. Utilising high-throughput TaqMan arrays and focussing on dynamically regulated families of integral membrane proteins, we explore the similarities and differences in G-protein coupled receptor (GPCR and ion channel expression in alveolar macrophages and their widely used surrogates. Results The complete non-sensory GPCR and ion channel transcriptome is described for primary alveolar macrophages and macrophage surrogates. The expression of numerous GPCRs and ion channels whose expression were hitherto not described in human alveolar macrophages are compared across primary macrophages and commonly used macrophage cell models. Several membrane proteins known to have critical roles in regulating macrophage function, including CXCR6, CCR8 and TRPV4, were found to be highly expressed in macrophages but not expressed in PMA-differentiated surrogates. Conclusions The data described in this report provides insight into the appropriate choice of cell models for

  17. The Flavonoid Quercetin Ameliorates Liver Inflammation and Fibrosis by Regulating Hepatic Macrophages Activation and Polarization in Mice

    Directory of Open Access Journals (Sweden)

    Xi Li

    2018-02-01

    Full Text Available At present, there are no effective antifibrotic drugs for patients with chronic liver disease; hence, the development of antifibrotic therapies is urgently needed. Here, we performed an experimental and translational study to investigate the potential and underlying mechanism of quercetin treatment in liver fibrosis, mainly focusing on the impact of quercetin on macrophages activation and polarization. BALB/c mice were induced liver fibrosis by carbon tetrachloride (CCl4 for 8 weeks and concomitantly treated with quercetin (50 mg/kg or vehicle by daily gavage. Liver inflammation, fibrosis, and hepatic stellate cells (HSCs activation were examined. Moreover, massive macrophages accumulation, M1 macrophages and their related markers, such as tumor necrosis factor (TNF-α, interleukin (IL-1β, IL-6, and monocyte chemotactic protein-1 (MCP-1 in livers were analyzed. In vitro, we used Raw 264.7 cells to examine the effect of quercetin on M1-polarized macrophages activation. Our results showed that quercetin dramatically ameliorated liver inflammation, fibrosis, and inhibited HSCs activation. These results were attributed to the reductive recruitment of macrophages (F4/80+ and CD68+ into the liver in quercetin-treated fibrotic mice confirmed by immunostaining and expression levels of marker molecules. Importantly, quercetin strongly inhibited M1 polarization and M1-related inflammatory cytokines in fibrotic livers when compared with vehicle-treated mice. In vitro, studies further revealed that quercetin efficiently inhibited macrophages activation and M1 polarization, as well as decreased the mRNA expression of M1 macrophage markers such as TNF-α, IL-1β, IL-6, and nitric oxide synthase 2. Mechanistically, the inhibition of M1 macrophages by quercetin was associated with the decreased levels of Notch1 expression on macrophages both in vivo and in vitro. Taken together, our data indicated that quercetin attenuated CCl4-induced liver inflammation and

  18. Macrophage antioxidant protection within atherosclerotic plaques.

    Science.gov (United States)

    Gieseg, Steven P; Leake, David S; Flavall, Elizabeth M; Amit, Zunika; Reid, Linzi; Yang, Ya-Ting

    2009-01-01

    Macrophage cells within inflammatory lesions are exposed to a wide range of degrading and cytotoxic molecules including reactive oxygen species. Unlike neutrophils, macrophages do not normally die in this environment but continue to generate oxidants, phagocytose cellular remains, and release a range of cyto-active agents which modulate the immune response. It is this potential of the macrophage cell to survive in an oxidative environment that allows the growth and complexity of advanced atherosclerotic plaques. This review will examine the oxidants encountered by macrophages within an atherosclerotic plaque and describe some of the potential antioxidant mechanisms which enable macrophages to function within inflammatory lesions. Ascorbate, a-tocopherol, and glutathione appear to be central to the protection of macrophages yet additional antioxidant mechanisms appear to be involved. Gamma-Interferon causes macrophages to generate 7,8-dihydroneopterin, neopterin and 3-hydroxyanthranilic acid both of which have antioxidant properties. Manganese superoxide dismutase is also upregulated in macrophages. The evidence that these antioxidants provide further protection, so allowing the macrophage cells to survive within sites of chronic inflammation such as atherosclerotic plaques, will be described.

  19. MONOCYTES AND MACROPHAGES IN PREGNANCY AND PREECLAMPSIA

    Directory of Open Access Journals (Sweden)

    Marijke M Faas

    2014-06-01

    Full Text Available Preeclampsia is an important complication in pregnancy, characterized byhypertension and proteinuria in the second half of pregnancy. Generalizedactivation of the inflammatory response is thought to play a role in thepathogenesis of preeclampsia. Monocytes may play a central role in thisinflammatory response. Monocytes are short lived cells, that mature in thecirculation and invade into tissues upon an inflammatory stimulus anddevelop into macrophages. Macrophages are abundantly present in theendometrium and play a role in implantation and placentation in normalpregnancy. In preeclampsia, these macrophages appear to be present in largernumbers and are also activated. In the present review we focused on the roleof monocytes and macrophages in the pathophysiology of preeclampsia.

  20. Macrophage Plasticity in Skeletal Muscle Repair

    Directory of Open Access Journals (Sweden)

    Elena Rigamonti

    2014-01-01

    Full Text Available Macrophages are one of the first barriers of host defence against pathogens. Beyond their role in innate immunity, macrophages play increasingly defined roles in orchestrating the healing of various injured tissues. Perturbations of macrophage function and/or activation may result in impaired regeneration and fibrosis deposition as described in several chronic pathological diseases. Heterogeneity and plasticity have been demonstrated to be hallmarks of macrophages. In response to environmental cues they display a proinflammatory (M1 or an alternative anti-inflammatory (M2 phenotype. A lot of evidence demonstrated that after acute injury M1 macrophages infiltrate early to promote the clearance of necrotic debris, whereas M2 macrophages appear later to sustain tissue healing. Whether the sequential presence of two different macrophage populations results from a dynamic shift in macrophage polarization or from the recruitment of new circulating monocytes is a subject of ongoing debate. In this paper, we discuss the current available information about the role that different phenotypes of macrophages plays after injury and during the remodelling phase in different tissue types, with particular attention to the skeletal muscle.

  1. DMPD: Shaping of monocyte and macrophage function by adenosine receptors. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17056121 Shaping of monocyte and macrophage function by adenosine receptors. Hasko ...tml) (.csml) Show Shaping of monocyte and macrophage function by adenosine receptors. PubmedID 17056121 Titl...e Shaping of monocyte and macrophage function by adenosine receptors. Authors Has

  2. DMPD: Macrophage activation by endogenous danger signals. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18161744 Macrophage activation by endogenous danger signals. Zhang X, Mosser DM. J ...Pathol. 2008 Jan;214(2):161-78. (.png) (.svg) (.html) (.csml) Show Macrophage activation by endogenous dange...r signals. PubmedID 18161744 Title Macrophage activation by endogenous danger signals. Authors Zhang X, Moss

  3. DMPD: Regulation of endogenous apolipoprotein E secretion by macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18388328 Regulation of endogenous apolipoprotein E secretion by macrophages. Kockx ...svg) (.html) (.csml) Show Regulation of endogenous apolipoprotein E secretion by macrophages. PubmedID 18388...328 Title Regulation of endogenous apolipoprotein E secretion by macrophages. Aut

  4. DMPD: Macrophage migration inhibitory factor and host innate immune responses tomicrobes. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14620137 Macrophage migration inhibitory factor and host innate immune responses to...microbes. Calandra T. Scand J Infect Dis. 2003;35(9):573-6. (.png) (.svg) (.html) (.csml) Show Macrophage migration... inhibitory factor and host innate immune responses tomicrobes. PubmedID 14620137 Title Macrophage migration

  5. DMPD: Cellular signaling in macrophage migration and chemotaxis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11073096 Cellular signaling in macrophage migration and chemotaxis. Jones GE. J Leu...koc Biol. 2000 Nov;68(5):593-602. (.png) (.svg) (.html) (.csml) Show Cellular signaling in macrophage migration... and chemotaxis. PubmedID 11073096 Title Cellular signaling in macrophage migration and chemotaxis. Autho

  6. DMPD: Monocyte/macrophage traffic in HIV and SIV encephalitis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12960230 Monocyte/macrophage traffic in HIV and SIV encephalitis. Kim WK, Corey S, ...Alvarez X, Williams K. J Leukoc Biol. 2003 Nov;74(5):650-6. Epub 2003 Aug 11. (.png) (.svg) (.html) (.csml) Show Monocyte/macrophage... traffic in HIV and SIV encephalitis. PubmedID 12960230 Title Monocyte/macrophage tr

  7. DMPD: CSF-1 and cell cycle control in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 8981359 CSF-1 and cell cycle control in macrophages. Hamilton JA. Mol Reprod Dev. 1...997 Jan;46(1):19-23. (.png) (.svg) (.html) (.csml) Show CSF-1 and cell cycle control in macrophages. PubmedI...D 8981359 Title CSF-1 and cell cycle control in macrophages. Authors Hamilton JA. Publication Mol Reprod Dev

  8. DMPD: Silica binding and toxicity in alveolar macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18226603 Silica binding and toxicity in alveolar macrophages. Hamilton RF Jr, Thaku...l) Show Silica binding and toxicity in alveolar macrophages. PubmedID 18226603 Title Silica binding and toxicity in alveolar macropha...ges. Authors Hamilton RF Jr, Thakur SA, Holian A. Public

  9. DMPD: Iron regulation of hepatic macrophage TNFalpha expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11841920 Iron regulation of hepatic macrophage TNFalpha expression. Tsukamoto H. Fr...ee Radic Biol Med. 2002 Feb 15;32(4):309-13. (.png) (.svg) (.html) (.csml) Show Iron regulation of hepatic macrophage... TNFalpha expression. PubmedID 11841920 Title Iron regulation of hepatic macrophage TNFalpha expres

  10. Unlike PPARγ, PPARα or PPARβ/δ activation does not promote human monocyte differentiation toward alternative macrophages

    International Nuclear Information System (INIS)

    Bouhlel, Mohamed Amine; Brozek, John; Derudas, Bruno; Zawadzki, Christophe; Jude, Brigitte; Staels, Bart; Chinetti-Gbaguidi, Giulia

    2009-01-01

    Macrophages adapt their response to micro-environmental signals. While Th1 cytokines promote pro-inflammatory M1 macrophages, Th2 cytokines promote an 'alternative' anti-inflammatory M2 macrophage phenotype. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors expressed in macrophages where they control the inflammatory response. It has been shown that PPARγ promotes the differentiation of monocytes into anti-inflammatory M2 macrophages in humans and mice, while a role for PPARβ/δ in this process has been reported only in mice and no data are available for PPARα. Here, we show that in contrast to PPARγ, expression of PPARα and PPARβ/δ overall does not correlate with the expression of M2 markers in human atherosclerotic lesions, whereas a positive correlation with genes of lipid metabolism exists. Moreover, unlike PPARγ, PPARα or PPARβ/δ activation does not influence human monocyte differentiation into M2 macrophages in vitro. Thus, PPARα and PPARβ/δ do not appear to modulate the alternative differentiation of human macrophages.

  11. Excess 25-hydroxyvitamin D3 exacerbates tubulointerstitial injury in mice by modulating macrophage phenotype.

    Science.gov (United States)

    Kusunoki, Yasuo; Matsui, Isao; Hamano, Takayuki; Shimomura, Akihiro; Mori, Daisuke; Yonemoto, Sayoko; Takabatake, Yoshitsugu; Tsubakihara, Yoshiharu; St-Arnaud, René; Isaka, Yoshitaka; Rakugi, Hiromi

    2015-11-01

    Vitamin D hydroxylated at carbon 25 (25(OH)D) is generally recognized as a precursor of active vitamin D. Despite its low affinity for the vitamin D receptor (VDR), both deficient and excessive 25(OH)D levels are associated with poor clinical outcomes. Here we studied direct effects of 25(OH)D3 on the kidney using 25(OH)D-1α-hydroxylase (CYP27B1) knockout mice. The effects of 25(OH)D3 on unilateral ureteral obstruction were analyzed as proximal tubular cells and macrophages are two major cell types that take up 25(OH)D and contribute to the pathogenesis of kidney injury. Excess 25(OH)D3 in obstructed mice worsened oxidative stress and tubulointerstitial fibrosis, whereas moderate levels of 25(OH)D3 had no effects. The exacerbating effects of excess 25(OH)D3 were abolished in CYP27B1/VDR double-knockout mice and in macrophage-depleted CYP27B1 knockout mice. Excess 25(OH)D3 upregulated both M1 marker (TNF-α) and M2 marker (TGF-β1) levels of kidney-infiltrating macrophages. In vitro analyses verified that excess 25(OH)D3 directly upregulated TNF-α and TGF-β1 in cultured macrophages but not in tubular cells. TNF-α and 25(OH)D3 cooperatively induced oxidative stress by upregulating iNOS in tubular cells. Aggravated tubulointerstitial fibrosis in mice with excess 25(OH)D3 indicated that macrophage-derived TGF-β1 also had a key role in the pathogenesis of surplus 25(OH)D3. Thus, excess 25(OH)D3 worsens tubulointerstitial injury by modulating macrophage phenotype.

  12. Nicotine Impairs Macrophage Control of Mycobacterium tuberculosis.

    Science.gov (United States)

    Bai, Xiyuan; Stitzel, Jerry A; Bai, An; Zambrano, Cristian A; Phillips, Matthew; Marrack, Philippa; Chan, Edward D

    2017-09-01

    Pure nicotine impairs macrophage killing of Mycobacterium tuberculosis (MTB), but it is not known whether the nicotine component in cigarette smoke (CS) plays a role. Moreover, the mechanisms by which nicotine impairs macrophage immunity against MTB have not been explored. To neutralize the effects of nicotine in CS extract, we used a competitive inhibitor to the nicotinic acetylcholine receptor (nAChR)-mecamylamine-as well as macrophages derived from mice with genetic disruption of specific subunits of nAChR. We also determined whether nicotine impaired macrophage autophagy and whether nicotine-exposed T regulatory cells (Tregs) could subvert macrophage anti-MTB immunity. Mecamylamine reduced the CS extract increase in MTB burden by 43%. CS extract increase in MTB was also significantly attenuated in macrophages from mice with genetic disruption of either the α7, β2, or β4 subunit of nAChR. Nicotine inhibited autophagosome formation in MTB-infected THP-1 cells and primary murine alveolar macrophages, as well as increased the intracellular MTB burden. Nicotine increased migration of THP-1 cells, consistent with the increased number of macrophages found in the lungs of smokers. Nicotine induced Tregs to produce transforming growth factor-β. Naive mouse macrophages co-cultured with nicotine-exposed Tregs had significantly greater numbers of viable MTB recovered with increased IL-10 production and urea production, but no difference in secreted nitric oxide as compared with macrophages cocultured with unexposed Tregs. We conclude that nicotine in CS plays an important role in subverting macrophage control of MTB infection.

  13. Nocardia brasiliensis induces formation of foamy macrophages and dendritic cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Irene Meester

    Full Text Available Foamy cells have been described in various infectious diseases, for example in actinomycetoma induced by Nocardia brasiliensis. These cells are generally considered to be macrophages, although they present dendritic cell (DC-specific surface markers. In this study, we determined and confirmed the lineage of possible precursors of foamy cells in vitro and in vivo using an experimental actinomycetoma model in BALB/c mice. Bone marrow-derived macrophages (BMDM or DC (BMDC were infected in vitro with N. brasiliensis or labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE. Both, macrophages and DC, differentiated into foamy cells after in vitro infection. CFSE-labeled BMDM or BMDC were tested for phagocytosis and CD11c/CD11b receptors markers expression before being transferred into the actinomycetoma lesion site of infected mice. In vivo studies showed that BMDM and BMDC were traced at the site where foamy cells are present in the experimental actinomycetoma. Interestingly, many of the transferred BMDM and BMDC were stained with the lipid-droplet fluorophore Nile Red. In conclusion, macrophages and DC cells can be differentiated into foamy cells in vitro and in vivo during N. brasiliensis infection.

  14. Nocardia brasiliensis induces formation of foamy macrophages and dendritic cells in vitro and in vivo.

    Science.gov (United States)

    Meester, Irene; Rosas-Taraco, Adrian Geovanni; Salinas-Carmona, Mario Cesar

    2014-01-01

    Foamy cells have been described in various infectious diseases, for example in actinomycetoma induced by Nocardia brasiliensis. These cells are generally considered to be macrophages, although they present dendritic cell (DC)-specific surface markers. In this study, we determined and confirmed the lineage of possible precursors of foamy cells in vitro and in vivo using an experimental actinomycetoma model in BALB/c mice. Bone marrow-derived macrophages (BMDM) or DC (BMDC) were infected in vitro with N. brasiliensis or labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE). Both, macrophages and DC, differentiated into foamy cells after in vitro infection. CFSE-labeled BMDM or BMDC were tested for phagocytosis and CD11c/CD11b receptors markers expression before being transferred into the actinomycetoma lesion site of infected mice. In vivo studies showed that BMDM and BMDC were traced at the site where foamy cells are present in the experimental actinomycetoma. Interestingly, many of the transferred BMDM and BMDC were stained with the lipid-droplet fluorophore Nile Red. In conclusion, macrophages and DC cells can be differentiated into foamy cells in vitro and in vivo during N. brasiliensis infection.

  15. Proprotein convertase 1/3 inhibited macrophages: A novel therapeutic based on drone macrophages.

    Science.gov (United States)

    Duhamel, Marie; Rodet, Franck; Murgoci, Adriana; Wisztorski, Maxence; Day, Robert; Fournier, Isabelle; Salzet, Michel

    2016-06-01

    We demonstrated here thanks to proteomic, that proprotein convertase 1/3 knockdown macrophages present all the characteristic of activated pro-inflammatory macrophages. TLR4 and TLR9 signaling pathways can be enhanced leading to the secretion of pro-inflammatory factors and antitumor factors. We can control their activation by controlling one enzyme, PC1/3. In a tumor context, PC1/3 inhibition in macrophages may reactivate them and lead to a cytokine storm after stimulation "at distance" with a TLR ligand. Therefore, we name these proprotein convertase inhibited macrophages the "drone macrophages". They constitute an innovative cell therapy to treat efficiently tumors.

  16. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation

    Energy Technology Data Exchange (ETDEWEB)

    Aldossari, Abdullah A.; Shannahan, Jonathan H. [The University of Colorado Anschutz Medical Campus, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (United States); Podila, Ramakrishna [Clemson University, Department of Physics and Astronomy (United States); Brown, Jared M., E-mail: jared.brown@ucdenver.edu [The University of Colorado Anschutz Medical Campus, Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences (United States)

    2015-07-15

    Due to increased use of silver nanoparticles (AgNPs) for their antimicrobial activity, concerns have risen regarding potential adverse human health effects. Scavenger receptor B1 (SR-B1), a major receptor for high-density lipoprotein (HDL), is expressed by macrophages and has also been reported to play a role in recognition of negatively charged particles. We, therefore, hypothesized that SR-B1 mediates macrophage uptake of AgNPs and inflammatory activation. To test this hypothesis, we exposed a mouse macrophage cell line RAW264.7 (RAW) and bone marrow-derived macrophages (BMDM) to 20 nm citrate-suspended AgNPs. To verify the role of the SR-B1 receptor, we utilized a SR-B1 inhibitor (Blt2). In vitro studies demonstrated uptake of AgNPs and HDL-coated AgNPs by macrophages which were significantly reduced following pretreatment with Blt2. Inflammatory cytokine arrays revealed that macrophages exposed to AgNPs up-regulated expression of Tnf-α, Oncostatin m (OSM), Ccl4, Il17f, Ccl7, and Ccl2, whereas Il16 was found to be down-regulated. Macrophage activation was observed following AgNP and HDL-coated AgNP exposure as measured by OSM protein production and increased surface expression of CD86. These markers of activation were reduced with Blt2 pretreatment. The in vitro findings were confirmed in vivo through pulmonary instillation of AgNPs in mice. Pulmonary instillation of AgNPs resulted in a recruitment of inflammatory cells that were reduced in SR-B1-deficient mice or following Blt2 pretreatment. This study suggests that SR-B1 plays a major role in cellular recognition of AgNPs and the induction of cell responses that could contribute to inflammation caused by AgNP exposure.

  17. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation

    Directory of Open Access Journals (Sweden)

    MI Oliveira

    2012-07-01

    Full Text Available Macrophages and dendritic cells (DC share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch, with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display pro-inflammatory features. Macrophages and DC, whose interactions with biomaterials are frequently analysed using fully differentiated cells, were cultured directly on Ch films, rather than exposed to the polymer after complete differentiation. Ch was the sole stimulating factor and activated both macrophages and DC, without leading to significant T cell proliferation. After 10 d on Ch, macrophages significantly down-regulated expression of pro-inflammatory markers, CD86 and MHCII. Production of pro-inflammatory cytokines, particularly TNF-α, decreased with time for cells cultured on Ch, while anti-inflammatory IL-10 and TGF-β1, significantly increased. Altogether, these results suggest an M2c polarisation. Also, macrophage matrix metalloproteinase activity was augmented and cell motility was stimulated by Ch. Conversely, DC significantly enhanced CD86 expression, reduced IL-10 secretion and increased TNF-α and IL-1β levels. Our findings indicate that cells with a common precursor may display different responses, when challenged by the same biomaterial. Moreover, they help to further comprehend macrophage/DC interactions with Ch and the balance between pro- and anti-inflammatory signals associated with implant biomaterials. We propose that an overall pro-inflammatory reaction may hide the expression of anti-inflammatory cytokines, likely relevant for tissue repair/regeneration.

  18. Scavenger receptor B1 facilitates macrophage uptake of silver nanoparticles and cellular activation

    Science.gov (United States)

    Aldossari, Abdullah A.; Shannahan, Jonathan H.; Podila, Ramakrishna; Brown, Jared M.

    2015-07-01

    Due to increased use of silver nanoparticles (AgNPs) for their antimicrobial activity, concerns have risen regarding potential adverse human health effects. Scavenger receptor B1 (SR-B1), a major receptor for high-density lipoprotein (HDL), is expressed by macrophages and has also been reported to play a role in recognition of negatively charged particles. We, therefore, hypothesized that SR-B1 mediates macrophage uptake of AgNPs and inflammatory activation. To test this hypothesis, we exposed a mouse macrophage cell line RAW264.7 (RAW) and bone marrow-derived macrophages (BMDM) to 20 nm citrate-suspended AgNPs. To verify the role of the SR-B1 receptor, we utilized a SR-B1 inhibitor (Blt2). In vitro studies demonstrated uptake of AgNPs and HDL-coated AgNPs by macrophages which were significantly reduced following pretreatment with Blt2. Inflammatory cytokine arrays revealed that macrophages exposed to AgNPs up-regulated expression of Tnf- α, Oncostatin m (OSM), Ccl4, Il17f, Ccl7, and Ccl2, whereas Il16 was found to be down-regulated. Macrophage activation was observed following AgNP and HDL-coated AgNP exposure as measured by OSM protein production and increased surface expression of CD86. These markers of activation were reduced with Blt2 pretreatment. The in vitro findings were confirmed in vivo through pulmonary instillation of AgNPs in mice. Pulmonary instillation of AgNPs resulted in a recruitment of inflammatory cells that were reduced in SR-B1-deficient mice or following Blt2 pretreatment. This study suggests that SR-B1 plays a major role in cellular recognition of AgNPs and the induction of cell responses that could contribute to inflammation caused by AgNP exposure.

  19. Muscle wound healing in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Schmidt, J G; Andersen, E W; Ersbøll, B K; Nielsen, M E

    2016-01-01

    We followed the progression of healing of deep excisional biopsy punch wounds over the course of 365 days in rainbow trout (Oncorhynchus mykiss) by monitoring visual wound healing and gene expression in the healing muscle at regular intervals (1, 3, 7, 14, 38 and 100 days post-wounding). In addition, we performed muscle texture analysis one year after wound infliction. The selected genes have all previously been investigated in relation to vertebrate wound healing, but only few specifically in fish. The selected genes were interleukin (IL)-1β, IL-6, transforming growth factor (TGF)-β1 and -β3, matrix metalloproteinase (MMP) -9 and -13, inducible nitric oxide synthase (iNOS), fibronectin (FN), tenascin-C (TN-C), prolyl 4-hydroxylase α1-chain (P4Hα1), lysyl oxidase (LOX), collagen type I α1-chain (ColIα1), CD41 and CD163. Wound healing progressed slowly in the presented study, which is at least partially due to the low temperature of about 8.5 °C during the first 100 days. The inflammation phase lasted more than 14 days, and the genes relating to production and remodeling of new extracellular matrix (ECM) exhibited a delayed but prolonged upregulation starting 1-2 weeks post-wounding and lasting until at least 100 days post-wounding. The gene expression patterns and histology reveal limited capacity for muscle regeneration in rainbow trout, and muscle texture analyses one year after wound infliction confirm that wounds heal with fibrosis. At 100 dpw epidermis had fully regenerated, and dermis partially regenerated. Scales had not regenerated even after one year. CD163 is a marker of "wound healing"-type M2c macrophages in mammals. M2 macrophage markers are as yet poorly described in fish. The pattern of CD163 expression in the present study is consistent with the expected timing of presence of M2c macrophages in the wound. CD163 may thus potentially prove a valuable marker of M2 macrophages - or a subset hereof - in fish. We subjected a group of fish to

  20. Endoplasmic Reticulum Stress Cooperates in Zearalenone-Induced Cell Death of RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Fenglei Chen

    2015-08-01

    Full Text Available Zearalenone (ZEA is a fungal mycotoxin that causes cell apoptosis and necrosis. However, little is known about the molecular mechanisms of ZEA toxicity. The objective of this study was to explore the effects of ZEA on the proliferation and apoptosis of RAW 264.7 macrophages and to uncover the signaling pathway underlying the cytotoxicity of ZEA in RAW 264.7 macrophages. This study demonstrates that the endoplasmic reticulum (ER stress pathway cooperated in ZEA-induced cell death of the RAW 264.7 macrophages. Our results show that ZEA treatment reduced the viability of RAW 264.7 macrophages in a dose- and time-dependent manner as shown by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay (MTT and flow cytometry assay. Western blots analysis revealed that ZEA increased the expression of glucose-regulated protein 78 (GRP78 and CCAAT/enhancer binding protein homologous protein (CHOP, two ER stress-related marker genes. Furthermore, treating the cells with the ER stress inhibitors 4-phenylbutyrate (4-PBA or knocking down CHOP, using lentivirus encoded short hairpin interfering RNAs (shRNAs, significantly diminished the ZEA-induced increases in GRP78 and CHOP, and cell death. In summary, our results suggest that ZEA induces the apoptosis and necrosis of RAW 264.7 macrophages in a dose- and time-dependent manner via the ER stress pathway in which the activation of CHOP plays a critical role.

  1. Real-time visualization of HIV-1 GAG trafficking in infected macrophages.

    Directory of Open Access Journals (Sweden)

    Karine Gousset

    2008-03-01

    Full Text Available HIV-1 particle production is driven by the Gag precursor protein Pr55(Gag. Despite significant progress in defining both the viral and cellular determinants of HIV-1 assembly and release, the trafficking pathway used by Gag to reach its site of assembly in the infected cell remains to be elucidated. The Gag trafficking itinerary in primary monocyte-derived macrophages is especially poorly understood. To define the site of assembly and characterize the Gag trafficking pathway in this physiologically relevant cell type, we have made use of the biarsenical-tetracysteine system. A small tetracysteine tag was introduced near the C-terminus of the matrix domain of Gag. The insertion of the tag at this position did not interfere with Gag trafficking, virus assembly or release, particle infectivity, or the kinetics of virus replication. By using this in vivo detection system to visualize Gag trafficking in living macrophages, Gag was observed to accumulate both at the plasma membrane and in an apparently internal compartment that bears markers characteristic of late endosomes or multivesicular bodies. Significantly, the internal Gag rapidly translocated to the junction between the infected macrophages and uninfected T cells following macrophage/T-cell synapse formation. These data indicate that a population of Gag in infected macrophages remains sequestered internally and is presented to uninfected target cells at a virological synapse.

  2. Yersinia pestis Requires Host Rab1b for Survival in Macrophages.

    Directory of Open Access Journals (Sweden)

    Michael G Connor

    2015-10-01

    Full Text Available Yersinia pestis is a facultative intracellular pathogen that causes the disease known as plague. During infection of macrophages Y. pestis actively evades the normal phagosomal maturation pathway to establish a replicative niche within the cell. However, the mechanisms used by Y. pestis to subvert killing by the macrophage are unknown. Host Rab GTPases are central mediators of vesicular trafficking and are commonly targeted by bacterial pathogens to alter phagosome maturation and killing by macrophages. Here we demonstrate for the first time that host Rab1b is required for Y. pestis to effectively evade killing by macrophages. We also show that Rab1b is specifically recruited to the Yersinia containing vacuole (YCV and that Y. pestis is unable to subvert YCV acidification when Rab1b expression is knocked down in macrophages. Furthermore, Rab1b knockdown also altered the frequency of association between the YCV with the lysosomal marker Lamp1, suggesting that Rab1b recruitment to the YCV directly inhibits phagosome maturation. Finally, we show that Rab1b knockdown also impacts the pH of the Legionella pneumophila containing vacuole, another pathogen that recruits Rab1b to its vacuole. Together these data identify a novel role for Rab1b in the subversion of phagosome maturation by intracellular pathogens and suggest that recruitment of Rab1b to the pathogen containing vacuole may be a conserved mechanism to control vacuole pH.

  3. Macrophage diversity in renal injury and repair

    NARCIS (Netherlands)

    Ricardo, Sharon D.; van Goor, Harry; Eddy, Allison A.

    Monocyte-derived macrophages can determine the outcome of the immune response and whether this response contributes to tissue repair or mediates tissue destruction. In addition to their important role in immune-mediated renal disease and host defense, macrophages play a fundamental role in tissue

  4. Macrophage polarization: the epigenetic point of view

    NARCIS (Netherlands)

    van den Bossche, Jan; Neele, Annette E.; Hoeksema, Marten A.; de Winther, Menno P. J.

    2014-01-01

    The first functions of macrophages to be identified by Metchnikoff were phagocytosis and microbial killing. Although these are important features, macrophages are functionally very complex and involved in virtually all aspects of life, from immunity and host defense, to homeostasis, tissue repair

  5. Macrophages Promote Axon Regeneration with Concurrent Neurotoxicity

    NARCIS (Netherlands)

    Gensel, J.C.; Nakamura, S.; Guan, Z.; Rooijen, van N.; Ankeny, D.P.; Popovich, P.G.

    2009-01-01

    Activated macrophages can promote regeneration of CNS axons. However, macrophages also release factors that kill neurons. These opposing functions are likely induced simultaneously but are rarely considered together in the same experimental preparation. A goal of this study was to unequivocally

  6. Genesis and kinetics of peritoneal macrophages

    International Nuclear Information System (INIS)

    Wacker, H.H.

    1982-01-01

    The author intended to develop an experimental model for investigations of the proliferation kinetics of tissue macrophages, using the example of peritoneal macrophages. To get a suitable cell population, a blood cell population was labelled with 3 H-thymidine and transferred in a parabiotic test. (orig./MG) [de

  7. M2 macrophages activate WNT signaling pathway in epithelial cells: relevance in ulcerative colitis.

    Directory of Open Access Journals (Sweden)

    Jesús Cosín-Roger

    Full Text Available Macrophages, which exhibit great plasticity, are important components of the inflamed tissue and constitute an essential element of regenerative responses. Epithelial Wnt signalling is involved in mechanisms of proliferation and differentiation and expression of Wnt ligands by macrophages has been reported. We aim to determine whether the macrophage phenotype determines the expression of Wnt ligands, the influence of the macrophage phenotype in epithelial activation of Wnt signalling and the relevance of this pathway in ulcerative colitis. Human monocyte-derived macrophages and U937-derived macrophages were polarized towards M1 or M2 phenotypes and the expression of Wnt1 and Wnt3a was analyzed by qPCR. The effects of macrophages and the role of Wnt1 were analyzed on the expression of β-catenin, Tcf-4, c-Myc and markers of cell differentiation in a co-culture system with Caco-2 cells. Immunohistochemical staining of CD68, CD206, CD86, Wnt1, β-catenin and c-Myc were evaluated in the damaged and non-damaged mucosa of patients with UC. We also determined the mRNA expression of Lgr5 and c-Myc by qPCR and protein levels of β-catenin by western blot. Results show that M2, and no M1, activated the Wnt signaling pathway in co-culture epithelial cells through Wnt1 which impaired enterocyte differentiation. A significant increase in the number of CD206+ macrophages was observed in the damaged mucosa of chronic vs newly diagnosed patients. CD206 immunostaining co-localized with Wnt1 in the mucosa and these cells were associated with activation of canonical Wnt signalling pathway in epithelial cells and diminution of alkaline phosphatase activity. Our results show that M2 macrophages, and not M1, activate Wnt signalling pathways and decrease enterocyte differentiation in co-cultured epithelial cells. In the mucosa of UC patients, M2 macrophages increase with chronicity and are associated with activation of epithelial Wnt signalling and diminution in

  8. Macrophage Activation Mechanisms in Human Monocytic Cell Line-derived Macrophages.

    Science.gov (United States)

    Sumiya, Yu; Ishikawa, Mami; Inoue, Takahiro; Inui, Toshio; Kuchiike, Daisuke; Kubo, Kentaro; Uto, Yoshihiro; Nishikata, Takahito

    2015-08-01

    Although the mechanisms of macrophage activation are important for cancer immunotherapy, they are poorly understood. Recently, easy and robust assay systems for assessing the macrophage-activating factor (MAF) using monocytic cell line-derived macrophages were established. Gene-expression profiles of U937- and THP-1-derived macrophages were compared using gene expression microarray analysis and their responses against several MAFs were examined by in vitro experiments. Activated states of these macrophages could not be assigned to a specific sub-type but showed, however, different unique characteristics. The unique of monocytic cell line-derived macrophages could provide clues to understand the activation mechanism of macrophages and, therefore, help to develop effective cancer immunotherapy with MAFs. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Mycobacteria, Metals, and the Macrophage

    Science.gov (United States)

    Niederweis, Michael; Wolschendorf, Frank; Mitra, Avishek; Neyrolles, Olivier

    2015-01-01

    Summary Mycobacterium tuberculosis is a facultative intracellular pathogen that thrives inside host macrophages. A key trait of M. tuberculosis is to exploit and manipulate metal cation trafficking inside infected macrophages to ensure survival and replication inside the phagosome. Here we describe the recent fascinating discoveries that the mammalian immune system responds to infections with M. tuberculosis by overloading the phagosome with copper and zinc, two metals which are essential nutrients in small quantities but are toxic in excess. M. tuberculosis has developed multi-faceted resistance mechanisms to protect itself from metal toxicity including control of uptake, sequestration inside the cell, oxidation, and efflux. The host response to infections combines this metal poisoning strategy with nutritional immunity mechanisms that deprive M. tuberculosis from metals such as iron and manganese to prevent bacterial replication. Both immune mechanisms rely on the translocation of metal transporter proteins to the phagosomal membrane during the maturation process of the phagosome. This review summarizes these recent findings and discusses how metal-targeted approaches might complement existing TB chemotherapeutic regimens with novel anti-infective therapies. PMID:25703564

  10. Leucine supplementation attenuates macrophage foam-cell formation: Studies in humans, mice, and cultured macrophages.

    Science.gov (United States)

    Grajeda-Iglesias, Claudia; Rom, Oren; Hamoud, Shadi; Volkova, Nina; Hayek, Tony; Abu-Saleh, Niroz; Aviram, Michael

    2018-02-05

    Whereas atherogenicity of dietary lipids has been largely studied, relatively little is known about the possible contribution of dietary amino acids to macrophage foam-cell formation, a hallmark of early atherogenesis. Recently, we showed that leucine has antiatherogenic properties in the macrophage model system. In this study, an in-depth investigation of the role of leucine in macrophage lipid metabolism was conducted by supplementing humans, mice, or cultured macrophages with leucine. Macrophage incubation with serum obtained from healthy adults supplemented with leucine (5 g/d, 3 weeks) significantly decreased cellular cholesterol mass by inhibiting the rate of cholesterol biosynthesis and increasing cholesterol efflux from macrophages. Similarly, leucine supplementation to C57BL/6 mice (8 weeks) resulted in decreased cholesterol content in their harvested peritoneal macrophages (MPM) in relation with reduced cholesterol biosynthesis rate. Studies in J774A.1 murine macrophages revealed that leucine dose-dependently decreased cellular cholesterol and triglyceride mass. Macrophages treated with leucine (0.2 mM) showed attenuated uptake of very low-density lipoproteins and triglyceride biosynthesis rate, with a concurrent down-regulation of diacylglycerol acyltransferase-1, a key enzyme catalyzing triglyceride biosynthesis in macrophages. Similar effects were observed when macrophages were treated with α-ketoisocaproate, a key leucine metabolite. Finally, both in vivo and in vitro leucine supplementation significantly improved macrophage mitochondrial respiration and ATP production. The above studies, conducted in human, mice, and cultured macrophages, highlight a protective role for leucine attenuating macrophage foam-cell formation by mechanisms related to the metabolism of cholesterol, triglycerides, and energy production. © 2018 BioFactors, 2018. © 2018 International Union of Biochemistry and Molecular Biology.

  11. [DNA hydroxymethylase 10-11 translocation 2 (TET2) inhibits mouse macrophage activation and polarization].

    Science.gov (United States)

    Li, Bingyi; Huo, Yi; Lin, Zhifeng; Wang, Tao

    2017-09-01

    Objective To study the role of DNA hydroxymethylase 10-11 translocation 2 (TET2) in macrophage activation and polarization. Methods RAW264.7 macrophages were cultured in vitro and stimulated with 100 ng/mL LPS for 0, 1, 2, 4, 6 hours. Real-time quantitative PCR was used to detect TET2 mRNA expression. TET2 expression was knocked down with siRNA and the knock-down efficiency was evaluated by real-time quantitative PCR and Western blotting. Following siRNA transfection for 48 hours, RAW264.7 cells were stimulated by LPS for 4 hours, and then real-time quantitative PCR and ELISA were performed to detect the expressions of interleukin 6 (IL-6), tumor necrosis factor α (TNF-α) and IL-12. The M1 polarizing markers TNF-α, inducible nitric oxide synthase (iNOS) and IL-12, and M2 polarizing markers mannose receptor (MR), arginase 1 (Arg-1) and chitinase 3-like molecule 1 (Ym1) were tested after M1 or M2 induction by LPS/IFN-γ or IL-4. Results TET2 expression increased after LPS treatment in RAW264.7 cells and reached the peak at 2 hours later. The siRNA effectively reduced the expression of TET2. The expressions of IL-6, TNF-α and IL-12 mRNAs increased after TET2 knock-down and LPS stimulation. The expressions of M1 polarization markers and M2 markers were up-regulated by the corresponding stimulations after TET2 knock-down. Conclusion TET2 has the effect of inhibiting LPS-induced macrophage activation and plays an inhibitory role in macrophage M1 and M2 polarization.

  12. Modulation of macrophage activation state protects tissue from necrosis during critical limb ischemia in thrombospondin-1-deficient mice.

    Directory of Open Access Journals (Sweden)

    Nicolas Bréchot

    Full Text Available BACKGROUND: Macrophages, key regulators of healing/regeneration processes, strongly infiltrate ischemic tissues from patients suffering from critical limb ischemia (CLI. However pro-inflammatory markers correlate with disease progression and risk of amputation, suggesting that modulating macrophage activation state might be beneficial. We previously reported that thrombospondin-1 (TSP-1 is highly expressed in ischemic tissues during CLI in humans. TSP-1 is a matricellular protein that displays well-known angiostatic properties in cancer, and regulates inflammation in vivo and macrophages properties in vitro. We therefore sought to investigate its function in a mouse model of CLI. METHODS AND FINDINGS: Using a genetic model of tsp-1(-/- mice subjected to femoral artery excision, we report that tsp-1(-/- mice were clinically and histologically protected from necrosis compared to controls. Tissue protection was associated with increased postischemic angiogenesis and muscle regeneration. We next showed that macrophages present in ischemic tissues exhibited distinct phenotypes in tsp-1(-/- and wt mice. A strong reduction of necrotic myofibers phagocytosis was observed in tsp-1(-/- mice. We next demonstrated that phagocytosis of muscle cell debris is a potent pro-inflammatory signal for macrophages in vitro. Consistently with these findings, macrophages that infiltrated ischemic tissues exhibited a reduced postischemic pro-inflammatory activation state in tsp-1(-/- mice, characterized by a reduced Ly-6C expression and a less pro-inflammatory cytokine expression profile. Finally, we showed that monocyte depletion reversed clinical and histological protection from necrosis observed in tsp-1(-/- mice, thereby demonstrating that macrophages mediated tissue protection in these mice. CONCLUSION: This study defines targeting postischemic macrophage activation state as a new potential therapeutic approach to protect tissues from necrosis and promote tissue

  13. Suppressive effects of ketamine on macrophage functions

    International Nuclear Information System (INIS)

    Chang Yi; Chen, T.-L.; Sheu, J.-R.; Chen, R.-M.

    2005-01-01

    Ketamine is an intravenous anesthetic agent. Clinically, induction of anesthesia with ketamine can cause immunosuppression. Macrophages play important roles in host defense. In this study, we attempted to evaluate the effects of ketamine on macrophage functions and its possible mechanism using mouse macrophage-like Raw 264.7 cells as the experimental model. Exposure of macrophages to 10 and 100 μM ketamine, which correspond to 0.1 and 1 times the clinically relevant concentration, for 1, 6, and 24 h had no effect on cell viability or lactate dehydrogenase release. When the administered concentration reached 1000 μM, ketamine caused a release of lactate dehydrogenase and cell death. Ketamine, at 10 and 100 μM, did not affect the chemotactic activity of macrophages. Administration of 1000 μM ketamine in macrophages resulted in a decrease in cell migration. Treatment of macrophages with ketamine reduced phagocytic activities. The oxidative ability of macrophages was suppressed by ketamine. Treatment with lipopolysaccharide induced TNF-α, IL-1β, and IL-6 mRNA in macrophages. Administration of ketamine alone did not influence TNF-α, IL-1β, or IL-6 mRNA production. Meanwhile, cotreatment with ketamine and lipopolysaccharide significantly inhibited lipopolysaccharide-induced TNF-α, IL-1β, and IL-6 mRNA levels. Exposure to ketamine led to a decrease in the mitochondrial membrane potential. However, the activity of mitochondrial complex I NADH dehydrogenase was not affected by ketamine. This study shows that a clinically relevant concentration of ketamine (100 μM) can suppress macrophage function of phagocytosis, its oxidative ability, and inflammatory cytokine production possibly via reduction of the mitochondrial membrane potential instead of direct cellular toxicity

  14. The FGL2/fibroleukin prothrombinase is involved in alveolar macrophage activation in COPD through the MAPK pathway

    International Nuclear Information System (INIS)

    Liu, Yanling; Xu, Sanpeng; Xiao, Fei; Xiong, Yan; Wang, Xiaojin; Gao, Sui; Yan, Weiming; Ning, Qin

    2010-01-01

    Fibrinogen-like protein 2 (FGL2)/fibroleukin has been reported to play a vital role in the pathogenesis of some critical inflammatory diseases by possessing immunomodulatory activity through the mediation of 'immune coagulation' and the regulation of maturation and proliferation of immune cells. We observed upregulated FGL2 expression in alveolar macrophages from peripheral lungs of chronic obstructive pulmonary disease (COPD) patients and found a correlation between FGL2 expression and increased macrophage activation markers (CD11b and CD14). The role of FGL2 in the activation of macrophages was confirmed by the detection of significantly decreased macrophage activation marker (CD11b, CD11c, and CD71) expression as well as the inhibition of cell migration and inflammatory cytokine (IL-8 and MMP-9) production in an LPS-induced FGL2 knockdown human monocytic leukemia cell line (THP-1). Increased FGL2 expression co-localized with upregulated phosphorylated p38 mitogen-activated protein kinase (p38-MAPK) in the lung tissues from COPD patients. Moreover, FGL2 knockdown in THP-1 cells significantly downregulated LPS-induced phosphorylation of p38-MAPK while upregulating phosphorylation of c-Jun N-terminal kinase (JNK). Thus, we demonstrate that FGL2 plays an important role in macrophage activation in the lungs of COPD patients through MAPK pathway modulation.

  15. HIV-1 Latency in Monocytes/Macrophages

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    2014-04-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 targets CD4+ T cells and cells of the monocyte/macrophage lineage. HIV pathogenesis is characterized by the depletion of T lymphocytes and by the presence of a population of cells in which latency has been established called the HIV-1 reservoir. Highly active antiretroviral therapy (HAART has significantly improved the life of HIV-1 infected patients. However, complete eradication of HIV-1 from infected individuals is not possible without targeting latent sources of infection. HIV-1 establishes latent infection in resting CD4+ T cells and findings indicate that latency can also be established in the cells of monocyte/macrophage lineage. Monocyte/macrophage lineage includes among others, monocytes, macrophages and brain resident macrophages. These cells are relatively more resistant to apoptosis induced by HIV-1, thus are important stable hideouts of the virus. Much effort has been made in the direction of eliminating HIV-1 resting CD4+ T-cell reservoirs. However, it is impossible to achieve a cure for HIV-1 without considering these neglected latent reservoirs, the cells of monocyte/macrophage lineage. In this review we will describe our current understanding of the mechanism of latency in monocyte/macrophage lineage and how such cells can be specifically eliminated from the infected host.

  16. Macrophages and Uveitis in Experimental Animal Models

    Directory of Open Access Journals (Sweden)

    Salvador Mérida

    2015-01-01

    Full Text Available Resident and infiltrated macrophages play relevant roles in uveitis as effectors of innate immunity and inductors of acquired immunity. They are major effectors of tissue damage in uveitis and are also considered to be potent antigen-presenting cells. In the last few years, experimental animal models of uveitis have enabled us to enhance our understanding of the leading role of macrophages in eye inflammation processes, including macrophage polarization in experimental autoimmune uveoretinitis and the major role of Toll-like receptor 4 in endotoxin-induced uveitis. This improved knowledge should guide advantageous iterative research to establish mechanisms and possible therapeutic targets for human uveitis resolution.

  17. Truncated thioredoxin (Trx-80) promotes pro-inflammatory macrophages of the M1 phenotype and enhances atherosclerosis.

    Science.gov (United States)

    Mahmood, Dler Faieeq Darweesh; Abderrazak, Amna; Couchie, Dominique; Lunov, Oleg; Diderot, Vimala; Syrovets, Tatiana; Slimane, Mohamed-Naceur; Gosselet, Fabien; Simmet, Thomas; Rouis, Mustapha; El Hadri, Khadija

    2013-07-01

    Vascular cells are particularly susceptible to oxidative stress that is believed to play a key role in the pathogenesis of cardiovascular disorders. Thioredoxin-1 (Trx-1) is an oxidative stress-limiting protein with anti-inflammatory and anti-apoptotic properties. In contrast, its truncated form (Trx-80) exerts pro-inflammatory effects. Here we analyzed whether Trx-80 might exert atherogenic effects by promoting macrophage differentiation into the M1 pro-inflammatory phenotype. Trx-80 at 1 µg/ml significantly attenuated the polarization of anti-inflammatory M2 macrophages induced by exposure to either IL-4 at 15 ng/ml or IL-4/IL-13 (10 ng/ml each) in vitro, as evidenced by the expression of the characteristic markers, CD206 and IL-10. By contrast, in LPS-challenged macrophages, Trx-80 significantly potentiated the differentiation into inflammatory M1 macrophages as indicated by the expression of the M1 cytokines, TNF-α and MCP-1. When Trx-80 was administered to hyperlipoproteinemic ApoE2.Ki mice at 30 µg/g body weight (b.w.) challenged either with LPS at 30 µg/30 g (b.w.) or IL-4 at 500 ng/30 g (b.w.), it significantly induced the M1 phenotype but inhibited differentiation of M2 macrophages in thymus and liver. When ApoE2.Ki mice were challenged once weekly with LPS for 5 weeks, they showed severe atherosclerotic lesions enriched with macrophages expressing predominantly M1 over M2 markers. Such effect was potentiated when mice received daily, in addition to LPS, the Trx-80. Moreover, the Trx-80 treatment led to a significantly increased aortic lesion area. The ability of Trx-80 to promote differentiation of macrophages into the classical proinflammatory phenotype may explain its atherogenic effects in cardiovascular diseases. Copyright © 2013 Wiley Periodicals, Inc.

  18. Anti-CD163-dexamethasone protects against apoptosis after ischemia/reperfusion injuries in the rat liver

    DEFF Research Database (Denmark)

    Møller, Lin Nanna Okholm; Knudsen, Anders Riegels; Andersen, Kasper Jarlhelt

    2015-01-01

    , high dose dexamethasone, low dose dexamethasone or placebo intravenously 18 h before laparotomy with subsequent 60 min of liver ischemia. After reperfusion for 24 h the animals had their liver removed. Bloods were drawn 30 min and 24 h post ischemia induction. Liver cell apoptosis and necrosis were...

  19. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages

    Science.gov (United States)

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-01-01

    Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794

  20. Elastin-derived peptides promote abdominal aortic aneurysm formation by modulating M1/M2 macrophage polarization1

    Science.gov (United States)

    Dale, Matthew A; Xiong, Wanfen; Carson, Jeffrey S; Suh, Melissa K; Karpisek, Andrew D.; Meisinger, Trevor M.; Casale, George P.; Baxter, B. Timothy

    2016-01-01

    Abdominal aortic aneurysm (AAA) is a dynamic vascular disease characterized by inflammatory cell invasion and extracellular matrix (ECM) degradation. Damage to elastin in the ECM results in release of elastin-derived peptides (EDPs), which are chemotactic for inflammatory cells such as monocytes. Their effect on macrophage polarization is less well known. Pro-inflammatory M1 macrophages initially are recruited to sites of injury but, if their effects are prolonged, they can lead to chronic inflammation that prevents normal tissue repair. Conversely, anti-inflammatory M2 macrophages reduce inflammation and aid in wound healing. Thus, a proper M1/M2 ratio is vital for tissue homeostasis. AAA tissue reveals a high M1/M2 ratio where pro-inflammatory cells and their associated markers dominate. In the present study, in vitro treatment of bone marrow-derived macrophages with EDPs induced M1 macrophage polarization. By using C57Bl/6 mice, antibody-mediated neutralization of EDPs reduced aortic dilation, matrix metalloproteinase activity, and pro-inflammatory cytokine expression at early and late time points after aneurysm induction. Furthermore, direct manipulation of the M1/M2 balance altered aortic dilation. Injection of M2 polarized macrophages reduced aortic dilation after aneurysm induction. EDPs promoted a pro-inflammatory environment in aortic tissue by inducing M1 polarization and neutralization of EDPs attenuated aortic dilation. The M1/M2 imbalance is vital to aneurysm formation. PMID:27183603

  1. Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion

    DEFF Research Database (Denmark)

    Falchi, Mario; Varricchio, Lilian; Martelli, Fabrizio

    2015-01-01

    Cultures of human CD34(pos) cells stimulated with erythroid growth factors plus dexamethasone, a model for stress erythropoiesis, generate numerous erythroid cells plus a few macrophages (approx. 3%; 3:1 positive and negative for CD169). Interactions occurring between erythroblasts and macrophages...... in these cultures and the biological effects associated with these interactions were documented by live phase-contrast videomicroscopy. Macrophages expressed high motility interacting with hundreds/thousands of erythroblasts per hour. CD169(pos) macrophages established multiple rapid 'loose' interactions...... with proerythroblasts leading to formation of transient erythroblastic island-like structures. By contrast, CD169(neg) macrophages established 'tight' interactions with mature erythroblasts and phagocytosed these cells. 'Loose' interactions of CD169(pos) macrophages were associated with proerythroblast cytokinesis (the...

  2. Effect of bleaching agent extracts on murine macrophages.

    Science.gov (United States)

    Fernandes, Aletéia M M; Vilela, Polyana G F; Valera, Marcia C; Bolay, Carola; Hiller, Karl Anton; Schweikl, Helmut; Schmalz, Gottfried

    2018-05-01

    The aim of this study was to evaluate the cytotoxicity and the influence of bleaching agents on immunologically cell surface antigens of murine macrophages in vitro. RAW 264.7 cells were exposed to bleaching gel extracts (40% hydrogen peroxide or 20% carbamide peroxide) and different H 2 O 2 concentrations after 1 and 24-h exposure periods and 1-h exposure and 23-h recovery. Tests were performed with and without N-acetyl cysteine (NAC) and buthionine sulfoximine (BSO). Cell viability was determined by MTT assay. The expression of surface markers CD14, CD40, and CD54 with and without LPS stimulation was detected by flow cytometry, while the production of TNF-α was measured by ELISA. Statistical analysis was performed using the Mann-Whitney U test (α = 0.05). Extracts of bleaching agents were cytotoxic for cells after a 1-h exposure; cells could not recover after 24 h. This effect can be mitigated by the antioxidant NAC and increased by BSO, an inhibitor of glutathione (GSH) synthesis. LPS stimulated expression of all surface markers and TNF-α production. Exposure to bleaching agent extracts and H 2 O 2 leads to a reduction of TNF-α, CD14, and CD40 expression, while the expression of CD54 was upregulated at non-cytotoxic concentrations. Whereas NAC reduced this effect, it was increased in the presence of BSO. Extracts of bleaching agents were irreversibly cytotoxic to macrophages after a 1-h exposure. Only the expression of CD54 was upregulated. The reactions are mediated by the non-enzymatic antioxidant GSH. The addition of an antioxidant can downregulate unfavorable effects of dental bleaching.

  3. Anti-inflammatory activity of standardized dichloromethane extract of Salvia connivens on macrophages stimulated by LPS.

    Science.gov (United States)

    González-Chávez, Marco Martín; Ramos-Velázquez, Cinthia Saraí; Serrano-Vega, Roberto; Pérez-González, Cuauhtemoc; Sánchez-Mendoza, Ernesto; Pérez-Gutiérrez, Salud

    2017-12-01

    A previous study demonstrated that the chloroform extract of Salvia connivens Epling (Lamiaceae) has anti-inflammatory activity. Identification of the active components in the dicholorometane extract (DESC), and, standardization of the extract based in ursolic acid. DESC was prepared by percolation with dichlromethane and after washed with hot hexane, its composition was determined by CG-MS and NMR, and standardized by HPLC. The anti-inflammatory activity was tested on acute TPA-induced mouse ear oedema at doses of 2.0 mg/ear. The cell viability of macrophages was evaluated by MTT method, and pro- and anti-inflammatory interleukin levels were measured using an ELISA kit. Ursolic acid, oleanolic acid, dihydroursolic acid and eupatorin were identified in DESC, which was standardized based on the ursolic acid concentration (126 mg/g). The anti-inflammatory activities of DESC, the acid mixture, and eupatorin (2 mg/ear) were 60.55, 57.20 and 56.40% inhibition, respectively, on TPA-induced ear oedema. The IC 50 of DESC on macrophages was 149.4 μg/mL. DESC (25 μg/mL) significantly reduced TNF-α (2.0-fold), IL-1β (2.2-fold) and IL-6 (2.0-fold) in macrophages stimulated with LPS and increased the production of IL-10 (1.9-fold). Inflammation is a basic response to injuries, and macrophages are involved in triggering inflammation. Macrophage cells exhibit a response to LPS, inducing inflammatory mediators, and DESC inhibits the biosynthesis of the pro-inflammatory and promote anti-inflammatory cytokines. DESC has an anti-inflammatory effect; reduced the levels of IL-1β, Il-6 and TNF-α; and increases IL-10 in macrophages stimulated with LPS. Ursolic acid is a good phytochemical marker.

  4. Possible roles of long-chain sphingomyelines and sphingomyelin synthase 2 in mouse macrophage inflammatory response

    International Nuclear Information System (INIS)

    Sakamoto, Hideaki; Yoshida, Tetsuya; Sanaki, Takao; Shigaki, Shuhei; Morita, Hirotoshi; Oyama, Miki; Mitsui, Masaru; Tanaka, Yoshikazu; Nakano, Toru; Mitsutake, Susumu; Igarashi, Yasuyuki; Takemoto, Hiroshi

    2017-01-01

    To evaluate the precise role of sphingomyelin synthase 2 (SMS2) in sphingomyelin (SM) metabolism and their anti-inflammatory properties, we analyzed species of major SM and ceramide (Cer) (18:1, 18:0 sphingoid backbone, C14 - C26 N-acyl part) in SMS2 knockout and wild-type mouse plasma and liver using HPLC-MS. SMS2 deficiency significantly decreased very long chain SM (SM (d18:1/22:0) and SM (d18:1/24:0 or d18:0/24:1)) and increased very long chain Cer (Cer (d18:1/24:0 or d18:0/24:1) and Cer (d18:1/24:1)), but not long chain SM (SM (d18:1/16:0), SM (d18:1/18:0 or d18:0/18:1) and SM (d18:1/18:1)) in plasma. To examine the effects of SM on inflammation, we studied the role of very long chain SM in macrophage activation. Addition of SM (d18:1/24:0) strongly upregulated several macrophage activation markers, SM (d18:1/6:0) and Cer (d18:1/24:0) however, did not. It was suggested that very long chain SM but not long chain SM were decreased in SMS2-deficient mice liver and plasma. And the exogenously added very long chain SM (d18:1/24:0) could activate macrophages directly, suggesting a novel role of plasma very long chain SM in modulating macrophage activation and resulting inflammation. - Highlights: • Very long-chain SM species were decreased in SMS2 knockout mouse plasma and liver. • Very long-chain ceramide species were increased in SMS2 knockout mouse plasma. • SMS2 deficiency diminished the inflammatory response of macrophages. • Very long-chain SM enhanced ICAM1 and iNOS expression in peritoneal macrophages.

  5. The response of macrophages to titanium particles is determined by macrophage polarization.

    Science.gov (United States)

    Pajarinen, Jukka; Kouri, Vesa-Petteri; Jämsen, Eemeli; Li, Tian-Fang; Mandelin, Jami; Konttinen, Yrjö T

    2013-11-01

    Aseptic loosening of total joint replacements is driven by the reaction of macrophages to foreign body particles released from the implant. It was hypothesized that the macrophages' response to these particles is dependent, in addition to particle characteristics and contaminating biomolecules, on the state of macrophage polarization as determined by the local cytokine microenvironment. To test this hypothesis we differentiated M1 and M2 macrophages from human peripheral blood monocytes and compared their responses to titanium particles using genome-wide microarray analysis and a multiplex cytokine assay. In comparison to non-activated M0 macrophages, the overall chemotactic and inflammatory responses to titanium particles were greatly enhanced in M1 macrophages and effectively suppressed in M2 macrophages. In addition, the genome-wide approach revealed several novel, potentially osteolytic, particle-induced mediators, and signaling pathway analysis suggested the involvement of toll-like and nod-like receptor signaling in particle recognition. It is concluded that the magnitude of foreign body reaction caused by titanium particles is dependent on the state of macrophage polarization. Thus, by limiting the action of M1 polarizing factors, e.g. bacterial biofilm formation, in peri-implant tissues and promoting M2 macrophage polarization by biomaterial solutions or pharmacologically, it might be possible to restrict wear-particle-induced inflammation and osteolysis. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Acute injury in the peripheral nervous system triggers an alternative macrophage response

    Directory of Open Access Journals (Sweden)

    Ydens Elke

    2012-07-01

    Full Text Available Abstract Background The activation of the immune system in neurodegeneration has detrimental as well as beneficial effects. Which aspects of this immune response aggravate the neurodegenerative breakdown and which stimulate regeneration remains an open question. To unravel the neuroprotective aspects of the immune system we focused on a model of acute peripheral nerve injury, in which the immune system was shown to be protective. Methods To determine the type of immune response triggered after axotomy of the sciatic nerve, a model for Wallerian degeneration in the peripheral nervous system, we evaluated markers representing the two extremes of a type I and type II immune response (classical vs. alternative using real-time quantitative polymerase chain reaction (RT-qPCR, western blot, and immunohistochemistry. Results Our results showed that acute peripheral nerve injury triggers an anti-inflammatory and immunosuppressive response, rather than a pro-inflammatory response. This was reflected by the complete absence of classical macrophage markers (iNOS, IFNγ, and IL12p40, and the strong up-regulation of tissue repair markers (arginase-1, Ym1, and Trem2. The signal favoring the alternative macrophage environment was induced immediately after nerve damage and appeared to be established within the nerve, well before the infiltration of macrophages. In addition, negative regulators of the innate immune response, as well as the anti-inflammatory cytokine IL-10 were induced. The strict regulation of the immune system dampens the potential tissue damaging effects of an over-activated response. Conclusions We here demonstrate that acute peripheral nerve injury triggers an inherent protective environment by inducing the M2 phenotype of macrophages and the expression of arginase-1. We believe that the M2 phenotype, associated with a sterile inflammatory response and tissue repair, might explain their neuroprotective capacity. As such, shifting the

  7. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential.

    Science.gov (United States)

    Schepetkin, Igor A; Quinn, Mark T

    2006-03-01

    Botanical polysaccharides exhibit a number of beneficial therapeutic properties, and it is thought that the mechanisms involved in these effects are due to the modulation of innate immunity and, more specifically, macrophage function. In this review, we summarize our current state of understanding of the macrophage modulatory effects of botanical polysaccharides isolated from a wide array of different species of flora, including higher plants, mushrooms, lichens and algae. Overall, the primary effect of botanical polysaccharides is to enhance and/or activate macrophage immune responses, leading to immunomodulation, anti-tumor activity, wound-healing and other therapeutic effects. Furthermore, botanical and microbial polysaccharides bind to common surface receptors and induce similar immunomodulatory responses in macrophages, suggesting that evolutionarily conserved polysaccharide structural features are shared between these organisms. Thus, the evaluation of botanical polysaccharides provides a unique opportunity for the discovery of novel therapeutic agents and adjuvants that exhibit beneficial immunomodulatory properties.

  8. Epigenetic Regulation of Monocyte and Macrophage Function

    NARCIS (Netherlands)

    Hoeksema, Marten A.; de Winther, Menno P. J.

    2016-01-01

    Monocytes and macrophages are key players in tissue homeostasis and immune responses. Epigenetic processes tightly regulate cellular functioning in health and disease. Recent Advances: Recent technical developments have allowed detailed characterizations of the transcriptional circuitry underlying

  9. Soluble immune complexes shift the TLR-induced cytokine production of distinct polarized human macrophage subsets towards IL-10.

    Directory of Open Access Journals (Sweden)

    Carmen A Ambarus

    Full Text Available BACKGROUND: Costimulation of murine macrophages with immune complexes (ICs and TLR ligands leads to alternative activation. Studies on human myeloid cells, however, indicate that ICs induce an increased pro-inflammatory cytokine production. This study aimed to clarify the effect of ICs on the pro- versus anti-inflammatory profile of human polarized macrophages. MATERIALS AND METHODS: Monocytes isolated from peripheral blood of healthy donors were polarized for four days with IFN-γ, IL-4, IL-10, GM-CSF, M-CSF, or LPS, in the presence or absence of heat aggregated gamma-globulins (HAGGs. Phenotypic polarization markers were measured by flow cytometry. Polarized macrophages were stimulated with HAGGs or immobilized IgG alone or in combination with TLR ligands. TNF, IL-6, IL-10, IL-12, and IL-23 were measured by Luminex and/or RT-qPCR. RESULTS: HAGGs did not modulate the phenotypic polarization and the cytokine production of macrophages. However, HAGGs significantly altered the TLR-induced cytokine production of all polarized macrophage subsets, with the exception of MΦ(IL-4. In particular, HAGGs consistently enhanced the TLR-induced IL-10 production in both classically and alternatively polarized macrophages (M1 and M2. The effect of HAGGs on TNF and IL-6 production was less pronounced and depended on the polarization status, while IL-23p19 and IL-12p35 expression was not affected. In contrast with HAGGs, immobilized IgG induced a strong upregulation of not only IL-10, but also TNF and IL-6. CONCLUSION: HAGGs alone do not alter the phenotype and cytokine production of in vitro polarized human macrophages. In combination with TLR-ligands, however, HAGGs but not immobilized IgG shift the cytokine production of distinct macrophage subsets toward IL-10.

  10. Lack of RNase L attenuates macrophage functions.

    Directory of Open Access Journals (Sweden)

    Xin Yi

    Full Text Available Macrophages are one of the major cell types in innate immunity against microbial infection. It is believed that the expression of proinflammatory genes such as tumor necrosis factor-α (TNF-α, interleukin (IL-1β, IL-6, and cyclooxygenase-2 (Cox-2 by macrophages is also crucial for activation of both innate and adaptive immunities. RNase L is an interferon (IFN inducible enzyme which is highly expressed in macrophages. It has been demonstrated that RNase L regulates the expression of certain inflammatory genes. However, its role in macrophage function is largely unknown.Bone marrow-derived macrophages (BMMs were generated from RNase L(+/+and (-/- mice. The migration of BMMs was analyzed by using Transwell migration assays. Endocytosis and phagocytosis of macrophages were assessed by using fluorescein isothiocyanate (FITC-Dextran 40,000 and FITC-E. coli bacteria, respectively. The expression of inflammatory genes was determined by Western Blot and ELISA. The promoter activity of Cox-2 was measured by luciferase reporter assays.Lack of RNase L significantly decreased the migration of BMMs induced by M-CSF, but at a less extent by GM-CSF and chemokine C-C motif ligand-2 (CCL2. Interestingly, RNase L deficient BMMs showed a significant reduction of endocytic activity to FITC-Dextran 40,000, but no any obvious effect on their phagocytic activity to FITC-bacteria under the same condition. RNase L impacts the expression of certain genes related to cell migration and inflammation such as transforming growth factor (TGF-β, IL-1β, IL-10, CCL2 and Cox-2. Furthermore, the functional analysis of the Cox-2 promoter revealed that RNase L regulated the expression of Cox-2 in macrophages at its transcriptional level. Taken together, our findings provide direct evidence showing that RNase L contributes to innate immunity through regulating macrophage functions.

  11. Macrophages in intestinal homeostasis and inflammation

    Science.gov (United States)

    Bain, Calum C; Mowat, Allan McI

    2014-01-01

    The intestine contains the largest pool of macrophages in the body which are essential for maintaining mucosal homeostasis in the face of the microbiota and the constant need for epithelial renewal but are also important components of protective immunity and are involved in the pathology of inflammatory bowel disease (IBD). However, defining the biological roles of intestinal macrophages has been impeded by problems in defining the phenotype and origins of different populations of myeloid cells in the mucosa. Here, we discuss how multiple parameters can be used in combination to discriminate between functionally distinct myeloid cells and discuss the roles of macrophages during homeostasis and how these may change when inflammation ensues. We also discuss the evidence that intestinal macrophages do not fit the current paradigm that tissue-resident macrophages are derived from embryonic precursors that self-renew in situ, but require constant replenishment by blood monocytes. We describe our recent work demonstrating that classical monocytes constantly enter the intestinal mucosa and how the environment dictates their subsequent fate. We believe that understanding the factors that drive intestinal macrophage development in the steady state and how these may change in response to pathogens or inflammation could provide important insights into the treatment of IBD. PMID:24942685

  12. Endometriosis, a disease of the macrophage

    Directory of Open Access Journals (Sweden)

    Annalisa eCapobianco

    2013-01-01

    Full Text Available Endometriosis, a common cause of pelvic pain and female infertility, depends on the growth of vascularised endometrial tissue at ectopic sites. Endometrial fragments reach the peritoneal cavity during the fertile years: local cues decide whether they yield endometriotic lesions. Macrophages are recruited at sites of hypoxia and tissue stress, where they clear cell debris and heme-iron and generate pro-life and pro-angiogenesis signals. Macrophages are abundant in endometriotic lesions, where are recruited and undergo alternative activation. In rodents macrophages are required for lesions to establish and to grow; bone-marrow derived Tie-2 expressing macrophages specifically contribute to lesions neovasculature, possibly because they concur to the recruitment of circulating endothelial progenitors, and sustain their survival and the integrity of the vessel wall. Macrophages sense cues (hypoxia, cell death, iron overload in the lesions and react delivering signals to restore the local homeostasis: their action represents a necessary, non-redundant step in the natural history of the disease. Endometriosis may be due to a misperception of macrophages about ectopic endometrial tissue. They perceive it as a wound, they activate programs leading to ectopic cell survival and tissue vascularization. Clearing this misperception is a critical area for the development of novel medical treatments of endometriosis, an urgent and unmet medical need.

  13. Macrophages and nerve fibres in peritoneal endometriosis.

    Science.gov (United States)

    Tran, Lu Vinh Phuc; Tokushige, Natsuko; Berbic, Marina; Markham, Robert; Fraser, Ian S

    2009-04-01

    Endometriosis is considered to be an inflammatory disease, and macrophages are the most numerous immune cells in endometriotic lesions. However, the mechanisms underlying the elevation of macrophages and their role in the pathogenesis and manifestations of endometriosis still remain unclear. The number of macrophages stained for CD68 in endometriotic lesions (n = 24) and in peritoneum distant from the lesions (n = 14) from women with endometriosis was compared with the number of macrophages in normal peritoneum from women without endometriosis (n = 18). Peritoneal lesions were also double-stained for CD68 and protein gene product 9.5 to study the relationship between macrophages and nerve fibres. The densities of macrophages in peritoneal endometriotic lesions and unaffected peritoneum from women with endometriosis were both significantly higher than that in normal peritoneum from women without endometriosis (P peritoneal lesions from women with endometriosis compared with normal peritoneum from women without endometriosis. These cells may well play roles in the growth and development of endometriotic lesions and in the generation of pain through interaction with nerve fibres.

  14. Immunometabolic and Lipidomic Markers Associated With the Frailty Index and Quality of Life in Aging HIV+ Men on Antiretroviral Therapy

    Directory of Open Access Journals (Sweden)

    Hui-Ling Yeoh

    2017-08-01

    Full Text Available Chronic immune activation persists despite antiretroviral therapy (ART in HIV+ individuals and underpins an increased risk of age-related co-morbidities. We assessed the Frailty Index in older HIV+ Australian men on ART. Immunometabolic markers on monocytes and T cells were analyzed using flow cytometry, plasma innate immune activation markers by ELISA, and lipidomic profiling by mass spectrometry. The study population consisted of 80 HIV+ men with a median age of 59 (IQR, 56–65, and most had an undetectable viral load (92%. 24% were frail, and 76% were non-frail. Frailty was associated with elevated Glucose transporter-1 (Glut1 expression on the total monocytes (p = 0.04, increased plasma levels of innate immune activation marker sCD163 (OR, 4.8; CI 1.4–15.9, p = 0.01, phosphatidylethanolamine PE(36:3 (OR, 5.1; CI 1.7–15.5, p = 0.004 and triacylglycerol TG(16:1_18:1_18:1 (OR, 3.4; CI 1.3–9.2, p = 0.02, but decreased expression of GM3 ganglioside, GM3(d18:1/18:0 (OR, 0.1; CI 0.0–0.6, p = 0.01 and monohexosylceramide HexCerd(d18:1/22:0 (OR, 0.1; CI 0.0–0.5, p = 0.004. There is a strong inverse correlation between quality of life and the concentration of PE(36:3 (ρ = −0.33, p = 0.004 and PE(36:4 (ρ = −0.37, p = 0.001. These data suggest that frailty is associated with increased innate immune activation and abnormal lipidomic profile. These markers should be investigated in larger, longitudinal studies to determine their potential as biomarkers for frailty.

  15. DMPD: Nuclear receptors in macrophages: a link between metabolism and inflammation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18022390 Nuclear receptors in macrophages: a link between metabolism and inflammati...on. Szanto A, Roszer T. FEBS Lett. 2008 Jan 9;582(1):106-16. Epub 2007 Nov 20. (.png) (.svg) (.html) (.csml) Show Nuclear... receptors in macrophages: a link between metabolism and inflammation. PubmedID 18022390 Title Nuclear

  16. DMPD: Receptor tyrosine kinases and the regulation of macrophage activation. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14726496 Receptor tyrosine kinases and the regulation of macrophage activation. Cor...osine kinases and the regulation of macrophage activation. PubmedID 14726496 Title Receptor tyrosine...rell PH, Morrison AC, Lutz MA. J Leukoc Biol. 2004 May;75(5):731-7. Epub 2004 Jan 14. (.png) (.svg) (.html) (.csml) Show Receptor tyr

  17. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) stimulates murine macrophages infected with Citrobacter rodentium.

    Science.gov (United States)

    Hugo, Ayelén A; Rolny, Ivanna S; Romanin, David; Pérez, Pablo F

    2017-03-01

    Citrobacter rodentium is a specific murine enteropathogen which causes diarrheal disease characterized by colonic hyperplasia and intestinal inflammation. Recruitment of neutrophils and macrophages constitute a key step to control the infection. Since modulation of the activity of professional phagocytic cells could contribute to improve host´s defences against C. rodentium, we investigated the effect of Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) on the interaction between murine macrophages (RAW 264.7) and C. rodentium. Phagocytosis, surface molecules and inducible nitric oxide synthase (iNOs) expression were determined by flow cytometry. Reactive oxygen species (ROS) were assessed by fluorescence microscopy. The presence of lactobacilli increased phagocytosis of C. rodentium whereas C. rodentium had no effect on lactobacilli internalization. Survival of internalized C. rodentium diminished when strain CIDCA 133 was present. CD-86, MHCII, iNOs expression and nitrite production were increased when C. rodentium and lactobacilli were present even though strain CIDCA 133 alone had no effect. Strain CIDCA 133 led to a strong induction of ROS activity which was not modified by C. rodentium. Lactobacillus delbrueckii subsp. lactis (strain CIDCA 133) is able to increase the activation of murine macrophages infected with C. rodentium. The sole presence of lactobacilli is enough to modify some stimulation markers (e.g. ROS induction) whereas other markers require the presence of both bacteria; thus, indicating a synergistic effect.

  18. Colonic macrophage polarization in homeostasis, inflammation, and cancer

    Science.gov (United States)

    Appleyard, Caroline B.

    2016-01-01

    Our review focuses on the colonic macrophage, a monocyte-derived, tissue-resident macrophage, and the role it plays in health and disease, specifically in inflammatory conditions such as inflammatory bowel disease and cancer of the colon and rectum. We give special emphasis to macrophage polarization, or phenotype, in these different states. We focus on macrophages because they are one of the most numerous leukocytes in the colon, and because they normally contribute to homeostasis through an anti-inflammatory phenotype. However, in conditions such as inflammatory bowel disease, proinflammatory macrophages are increased in the colon and have been linked to disease severity and progression. In colorectal cancer, tumor cells may employ anti-inflammatory macrophages to promote tumor growth and dissemination, whereas proinflammatory macrophages may antagonize tumor growth. Given the key roles that this cell type plays in homeostasis, inflammation, and cancer, the colonic macrophage is an intriguing therapeutic target. As such, potential macrophage-targeting strategies are discussed. PMID:27229123

  19. Neurocognitive and neuroinflammatory correlates of PDYN and OPRK1 mRNA expression in the anterior cingulate in postmortem brain of HIV-infected subjects.

    Science.gov (United States)

    Yuferov, Vadim; Butelman, Eduardo R; Ho, Ann; Morgello, Susan; Kreek, Mary Jeanne

    2014-01-09

    Chronic inflammation may contribute to neuropsychological impairments in individuals with HIV, and modulation of this inflammatory response by opiate receptor ligands is important in light of the prevalence of drug use in HIV populations. Exogenous MOR and KOR agonists have differential effects on central nervous system (CNS) immunity and, while some data suggest KOR agonists are immunosuppressive, the KOR agonist dynorphin has been shown to stimulate human monocyte chemotaxis. In this study, we examined mRNA levels of endogenous opioid receptors OPRK1 and OPRM1, prodynorphin (PDYN), macrophage scavenger receptor CD163, and microglia/macrophage marker CD68 in the caudate and anterior cingulate of postmortem brains from HIV-positive and HIV-negative subjects. Brain tissues of HIV-infected (n = 24) and control subjects (n = 15) were obtained from the Manhattan HIV Brain Bank. Quantification of the gene mRNA was performed using SYBR Green RT-PCR. CD68 and CD163 were increased in HIV-positive (HIV+) compared to HIV-negative (HIV-) individuals in both brain regions. There were higher OPRK1 (P <0.005), and lower PDYN mRNA (P <0.005) levels in the anterior cingulate of HIV+ compared to HIV- subjects. This difference between the clinical groups was not found in the caudate. There was no difference in the levels of OPRM1 mRNA between HIV+ and HIV- subjects. Using linear regression analysis, we examined the relationship of OPRK1 and PDYN mRNA levels in the HIV+ subjects with seven cognitive domain T scores of a neuropsychological test battery. Within the HIV+ subjects, there was a positive correlation between anterior cingulate PDYN mRNA levels and better T-scores in the motor domain. Within the HIV+ subjects there were also positive correlations of both OPRK1 and PDYN mRNA levels with the anti-inflammatory marker CD163, but not with proinflammatory CD68 levels. In this setting, decreased PDYN mRNA may reflect a homeostatic mechanism to reduce monocyte

  20. Role of macrophages in age-related oxidative stress and lipofuscin accumulation in mice.

    Science.gov (United States)

    Vida, Carmen; de Toda, Irene Martínez; Cruces, Julia; Garrido, Antonio; Gonzalez-Sanchez, Mónica; De la Fuente, Mónica

    2017-08-01

    immune function parameters, together with the lipofuscin quantification, in macrophages, can be used as useful markers of the rate of aging and longevity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Plasma chitotriosidase and CCL18: Early biochemical surrogate markers in type B Niemann-Pick disease

    NARCIS (Netherlands)

    Brinkman, J.; Wijburg, F. A.; Hollak, C. E.; Groener, J. E.; Verhoek, M.; Scheij, S.; Aten, J.; Boot, R. G.; Aerts, J. M.

    2005-01-01

    Type B Niemann-Pick disease (NPD) is a nonneuronopathic lysosomal storage disorder which is characterized by accumulation of sphingomyelin-laden macrophages. The availability of plasma markers for storage cells may be of great value in facilitating therapeutic decisions. Given the similarity of the

  2. BMP pathway regulation of and by macrophages.

    Directory of Open Access Journals (Sweden)

    Megha Talati

    Full Text Available Pulmonary arterial hypertension (PAH is a disease of progressively increasing pulmonary vascular resistance, associated with mutations of the type 2 receptor for the BMP pathway, BMPR2. The canonical signaling pathway for BMPR2 is through the SMAD family of transcription factors. BMPR2 is expressed in every cell type, but the impact of BMPR2 mutations affecting SMAD signaling, such as Bmpr2delx4+, had only previously been investigated in smooth muscle and endothelium. In the present study, we created a mouse with universal doxycycline-inducible expression of Bmpr2delx4+ in order to determine if broader expression had an impact relevant to the development of PAH. We found that the most obvious phenotype was a dramatic, but patchy, increase in pulmonary inflammation. We crossed these double transgenic mice onto an NF-κB reporter strain, and by luciferase assays on live mice, individual organs and isolated macrophages, we narrowed down the origin of the inflammatory phenotype to constitutive activation of tissue macrophages. Study of bone marrow-derived macrophages from mutant and wild-type mice suggested a baseline difference in differentiation state in Bmpr2 mutants. When activated with LPS, both mutant and wild-type macrophages secrete BMP pathway inhibitors sufficient to suppress BMP pathway activity in smooth muscle cells (SMC treated with conditioned media. Functionally, co-culture with macrophages results in a BMP signaling-dependent increase in scratch closure in cultured SMC. We conclude that SMAD signaling through BMP is responsible, in part, for preventing macrophage activation in both live animals and in cells in culture, and that activated macrophages secrete BMP inhibitors in sufficient quantity to cause paracrine effect on vascular smooth muscle.

  3. Enhanced Replication of Virulent Newcastle Disease Virus in Chicken Macrophages Is due to Polarized Activation of Cells by Inhibition of TLR7.

    Science.gov (United States)

    Zhang, Pingze; Ding, Zhuang; Liu, Xinxin; Chen, Yanyu; Li, Junjiao; Tao, Zhi; Fei, Yidong; Xue, Cong; Qian, Jing; Wang, Xueli; Li, Qingmei; Stoeger, Tobias; Chen, Jianjun; Bi, Yuhai; Yin, Renfu

    2018-01-01

    Newcastle disease (ND), caused by infections with virulent strains of Newcastle disease virus (NDV), is one of the most important infectious disease affecting wild, peridomestic, and domestic birds worldwide. Vaccines constructed from live, low-virulence (lentogenic) viruses are the most accepted prevention and control strategies for combating ND in poultry across the globe. Avian macrophages are one of the first cell lines of defense against microbial infection, responding to signals in the microenvironment. Although macrophages are considered to be one of the main target cells for NDV infection in vivo , very little is known about the ability of NDV to infect chicken macrophages, and virulence mechanisms of NDV as well as the polarized activation patterns of macrophages and correlation with viral infection and replication. In the present study, a cell culture model (chicken bone marrow macrophage cell line HD11) and three different virulence and genotypes of NDV (including class II virulent NA-1, class II lentogenic LaSota, and class I lentogenic F55) were used to solve the above underlying questions. Our data indicated that all three NDV strains had similar replication rates during the early stages of infection. Virulent NDV titers were shown to increase compared to the other lentogenic strains, and this growth was associated with a strong upregulation of both pro-inflammatory M1-like markers/cytokines and anti-inflammatory M2-like markers/cytokines in chicken macrophages. Virulent NDV was found to block toll-like receptor (TLR) 7 expression, inducing higher expression of type I interferons in chicken macrophages at the late stage of viral infection. Only virulent NDV replication can be inhibited by pretreatment with TLR7 ligand. Overall, this study demonstrated that virulent NDV activates a M1-/M2-like mixed polarized activation of chicken macrophages by inhibition of TLR7, resulting in enhanced replication compared to lentogenic viruses.

  4. Adipocyte-Macrophage Cross-Talk in Obesity.

    Science.gov (United States)

    Engin, Ayse Basak

    2017-01-01

    Obesity is characterized by the chronic low-grade activation of the innate immune system. In this respect, macrophage-elicited metabolic inflammation and adipocyte-macrophage interaction has a primary importance in obesity. Large amounts of macrophages are accumulated by different mechanisms in obese adipose tissue. Hypertrophic adipocyte-derived chemotactic monocyte chemoattractant protein-1 (MCP-1)/C-C chemokine receptor 2 (CCR2) pathway also promotes more macrophage accumulation into the obese adipose tissue. However, increased local extracellular lipid concentrations is a final mechanism for adipose tissue macrophage accumulation. A paracrine loop involving free fatty acids and tumor necrosis factor-alpha (TNF-alpha) between adipocytes and macrophages establishes a vicious cycle that aggravates inflammatory changes in the adipose tissue. Adipocyte-specific caspase-1 and production of interleukin-1beta (IL-1beta) by macrophages; both adipocyte and macrophage induction by toll like receptor-4 (TLR4) through nuclear factor-kappaB (NF-kappaB) activation; free fatty acid-induced and TLR-mediated activation of c-Jun N-terminal kinase (JNK)-related pro-inflammatory pathways in CD11c+ immune cells; are effective in macrophage accumulation and in the development of adipose tissue inflammation. Old adipocytes are removed by macrophages through trogocytosis or sending an "eat me" signal. The obesity-induced changes in adipose tissue macrophage numbers are mainly due to increases in the triple-positive CD11b+ F4/80+ CD11c+ adipose tissue macrophage subpopulation. The ratio of M1-to-M2 macrophages is increased in obesity. Furthermore, hypoxia along with higher concentrations of free fatty acids exacerbates macrophage-mediated inflammation in obesity. The metabolic status of adipocytes is a major determinant of macrophage inflammatory output. Macrophage/adipocyte fatty-acid-binding proteins act at the interface of metabolic and inflammatory pathways. Both macrophages and

  5. Two cases of breast carcinoma with osteoclastic giant cells: Are the osteoclastic giant cells pro-tumoural differentiation of macrophages?

    Directory of Open Access Journals (Sweden)

    Shishido-Hara Yukiko

    2010-08-01

    Full Text Available Abstract Breast carcinoma with osteoclastic giant cells (OGCs is characterized by multinucleated OGCs, and usually displays inflammatory hypervascular stroma. OGCs may derive from tumor-associated macrophages, but their nature remains controversial. We report two cases, in which OGCs appear in common microenvironment despite different tumoural histology. A 44-year-old woman (Case 1 had OGCs accompanying invasive ductal carcinoma, and an 83-year-old woman (Case 2 with carcinosarcoma. Immunohistochemically, in both cases, tumoural and non-tumoural cells strongly expressed VEGF and MMP12, which promote macrophage migration and angiogenesis. The Chalkley count on CD-31-stained sections revealed elevated angiogenesis in both cases. The OGCs expressed bone-osteoclast markers (MMP9, TRAP, cathepsin K and a histiocyte marker (CD68, but not an MHC class II antigen, HLA-DR. The results indicate a pathogenesis: regardless of tumoural histology, OGCs derive from macrophages, likely in response to hypervascular microenvironments with secretion of common cytokines. The OGCs have acquired bone-osteoclast-like characteristics, but lost antigen presentation abilities as an anti-cancer defense. Appearance of OGCs may not be anti-tumoural immunological reactions, but rather pro-tumoural differentiation of macrophage responding to hypervascular microenvironments induced by breast cancer.

  6. Efferocytosis is impaired in Gaucher macrophages.

    Science.gov (United States)

    Aflaki, Elma; Borger, Daniel K; Grey, Richard J; Kirby, Martha; Anderson, Stacie; Lopez, Grisel; Sidransky, Ellen

    2017-04-01

    Gaucher disease, the inherited deficiency of lysosomal glucocerebrosidase, is characterized by the presence of glucosylceramide-laden macrophages resulting from impaired digestion of aged erythrocytes or apoptotic leukocytes. Studies of macrophages from patients with type 1 Gaucher disease with genotypes N370S/N370S, N370S/L444P or N370S/c.84dupG revealed that Gaucher macrophages have impaired efferocytosis resulting from reduced levels of p67 phox and Rab7. The decreased Rab7 expression leads to impaired fusion of phagosomes with lysosomes. Moreover, there is defective translocation of p67 phox to phagosomes, resulting in reduced intracellular production of reactive oxygen species. These factors contribute to defective deposition and clearance of apoptotic cells in phagolysosomes, which may have an impact on the inflammatory response and contribute to the organomegaly and inflammation seen in patients with Gaucher disease. Copyright© Ferrata Storti Foundation.

  7. Lysine Deacetylases and Regulated Glycolysis in Macrophages.

    Science.gov (United States)

    Shakespear, Melanie R; Iyer, Abishek; Cheng, Catherine Youting; Das Gupta, Kaustav; Singhal, Amit; Fairlie, David P; Sweet, Matthew J

    2018-06-01

    Regulated cellular metabolism has emerged as a fundamental process controlling macrophage functions, but there is still much to uncover about the precise signaling mechanisms involved. Lysine acetylation regulates the activity, stability, and/or localization of metabolic enzymes, as well as inflammatory responses, in macrophages. Two protein families, the classical zinc-dependent histone deacetylases (HDACs) and the NAD-dependent HDACs (sirtuins, SIRTs), mediate lysine deacetylation. We describe here mechanisms by which classical HDACs and SIRTs directly regulate specific glycolytic enzymes, as well as evidence that links these protein deacetylases to the regulation of glycolysis-related genes. In these contexts, we discuss HDACs and SIRTs as key control points for regulating immunometabolism and inflammatory outputs from macrophages. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Adipocyte fetuin-A contributes to macrophage migration into adipose tissue and polarization of macrophages.

    Science.gov (United States)

    Chatterjee, Priyajit; Seal, Soma; Mukherjee, Sandip; Kundu, Rakesh; Mukherjee, Sutapa; Ray, Sukanta; Mukhopadhyay, Satinath; Majumdar, Subeer S; Bhattacharya, Samir

    2013-09-27

    Macrophage infiltration into adipose tissue during obesity and their phenotypic conversion from anti-inflammatory M2 to proinflammatory M1 subtype significantly contributes to develop a link between inflammation and insulin resistance; signaling molecule(s) for these events, however, remains poorly understood. We demonstrate here that excess lipid in the adipose tissue environment may trigger one such signal. Adipose tissue from obese diabetic db/db mice, high fat diet-fed mice, and obese diabetic patients showed significantly elevated fetuin-A (FetA) levels in respect to their controls; partially hepatectomized high fat diet mice did not show noticeable alteration, indicating adipose tissue to be the source of this alteration. In adipocytes, fatty acid induces FetA gene and protein expressions, resulting in its copious release. We found that FetA could act as a chemoattractant for macrophages. To simulate lipid-induced inflammatory conditions when proinflammatory adipose tissue and macrophages create a niche of an altered microenvironment, we set up a transculture system of macrophages and adipocytes; the addition of fatty acid to adipocytes released FetA into the medium, which polarized M2 macrophages to M1. This was further confirmed by direct FetA addition to macrophages. Taken together, lipid-induced FetA from adipocytes is an efficient chemokine for macrophage migration and polarization. These findings open a new dimension for understanding obesity-induced inflammation.

  9. Role of 14-3-3η protein on cardiac fatty acid metabolism and macrophage polarization after high fat diet induced type 2 diabetes mellitus.

    Science.gov (United States)

    Sreedhar, Remya; Arumugam, Somasundaram; Thandavarayan, Rajarajan A; Karuppagounder, Vengadeshprabhu; Koga, Yusuke; Nakamura, Takashi; Harima, Meilei; Watanabe, Kenichi

    2017-07-01

    Diabetic cardiomyopathy (DCM), a metabolic disorder, is one of the leading causes of mortality around the world and its pathogenesis involves cardiac inflammation and altered metabolic profile. Altered fatty acid metabolism during DCM can cause macrophage polarization in which inflammatory M1 phenotype dominates over the anti-inflammatory M2 phenotype. Hence, it is essential to identify a specific target, which could revert the metabolic profile and thereby reducing the M1 macrophage polarization. 14-3-3η protein has several cellular protective functions especially in the heart as plenty of reports available in various animal models of heart failure including diabetes mellitus. However, its role in the cardiac fatty acid metabolism and macrophage polarization remains unidentified. The present study has been designed to delineate the effect of cardiospecific dominant negative mutation of 14-3-3η protein (DN14-3-3) on various lipid metabolism related marker proteins expressions and cardiac macrophage phenotype in high fat diet (HFD) fed mice. Feeding HFD for 12 weeks has produced significant increase in body weight in the DN14-3-3 (TG) mice than C57BL6/J (WT) mice. Western blotting and immunohistochemical staining analysis of the heart tissue has revealed an increase in the expression of markers of cardiac fatty acid synthesis related proteins in addition to the reduced expression of fatty acid oxidation related proteins in TG mice fed HFD than WT mice fed HFD. Furthermore, the M1 macrophage marker proteins were increasingly expressed while M2 markers expressions were reduced in the hearts of TG mice fed HFD. In conclusion, our current study has identified that there is a definite role for the 14-3-3η protein against the pathogenesis of heart failure via regulation of cardiac fatty acid metabolism and macrophage polarization. Copyright © 2017. Published by Elsevier Ltd.

  10. Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage.

    Science.gov (United States)

    Frid, Maria G; Brunetti, Jacqueline A; Burke, Danielle L; Carpenter, Todd C; Davie, Neil J; Reeves, John T; Roedersheimer, Mark T; van Rooijen, Nico; Stenmark, Kurt R

    2006-02-01

    Vascular remodeling in chronic hypoxic pulmonary hypertension includes marked fibroproliferative changes in the pulmonary artery (PA) adventitia. Although resident PA fibroblasts have long been considered the primary contributors to these processes, we tested the hypothesis that hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of a monocyte/macrophage lineage, termed fibrocytes. Using two neonatal animal models (rats and calves) of chronic hypoxic pulmonary hypertension, we demonstrated a dramatic perivascular accumulation of mononuclear cells of a monocyte/macrophage lineage (expressing CD45, CD11b, CD14, CD68, ED1, ED2). Many of these cells produced type I collagen, expressed alpha-smooth muscle actin, and proliferated, thus exhibiting mesenchymal cell characteristics attributed to fibrocytes. The blood-borne origin of these cells was confirmed in experiments wherein circulating monocytes/macrophages of chronically hypoxic rats were in vivo-labeled with DiI fluorochrome via liposome delivery and subsequently identified in the remodeled pulmonary, but not systemic, arterial adventitia. The DiI-labeled cells that appeared in the vessel wall expressed monocyte/macrophage markers and procollagen. Selective depletion of this monocytic cell population, using either clodronate-liposomes or gadolinium chloride, prevented pulmonary adventitial remodeling (ie, production of collagen, fibronectin, and tenascin-C and accumulation of myofibroblasts). We conclude that circulating mesenchymal precursors of a monocyte/macrophage lineage, including fibrocytes, are essential contributors to hypoxia-induced pulmonary vascular remodeling.

  11. Expression of Lymphatic Markers in the Adult Rat Spinal Cord.

    Science.gov (United States)

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  12. Differences in intracellular fate of two spotted fever group Rickettsia in macrophage-like cells

    Directory of Open Access Journals (Sweden)

    Pedro Curto

    2016-07-01

    Full Text Available Spotted fever group (SFG rickettsiae are recognized as important agents of human tick-borne diseases worldwide, such as Mediterranean spotted fever (R. conorii and Rocky Mountain spotted fever (R. rickettsii. Recent studies in several animal models have provided evidence of non-endothelial parasitism by pathogenic SFG Rickettsia species, suggesting that the interaction of rickettsiae with cells other than the endothelium may play an important role in pathogenesis of rickettsial diseases. These studies raise the hypothesis that the role of macrophages in rickettsial pathogenesis may have been underappreciated. Herein, we evaluated the ability of two SFG rickettsial species, R. conorii (a recognized human pathogen and R. montanensis (a non-virulent member of SFG to proliferate in THP-1 macrophage-like cells, or within non-phagocytic cell lines. Our results demonstrate that R. conorii was able to survive and proliferate in both phagocytic and epithelial cells in vitro. In contrast, R. montanensis was able to grow in non-phagocytic cells, but was drastically compromised in the ability to proliferate within both undifferentiated and PMA-differentiated THP-1 cells. Interestingly, association assays revealed that R. montanensis was defective in binding to THP-1-derived macrophages; however, the invasion of the bacteria that are able to adhere did not appear to be affected. We have also demonstrated that R. montanensis which entered into THP-1-derived macrophages were rapidly destroyed and partially co-localized with LAMP-2 and cathepsin D, two markers of lysosomal compartments. In contrast, R. conorii was present as intact bacteria and free in the cytoplasm in both cell types. These findings suggest that a phenotypic difference between a non-pathogenic and a pathogenic SFG member lies in their respective ability to proliferate in macrophage-like cells, and may provide an explanation as to why certain SFG rickettsial species are not associated with

  13. Differences in Intracellular Fate of Two Spotted Fever Group Rickettsia in Macrophage-Like Cells.

    Science.gov (United States)

    Curto, Pedro; Simões, Isaura; Riley, Sean P; Martinez, Juan J

    2016-01-01

    Spotted fever group (SFG) rickettsiae are recognized as important agents of human tick-borne diseases worldwide, such as Mediterranean spotted fever (Rickettsia conorii) and Rocky Mountain spotted fever (Rickettsia rickettsii). Recent studies in several animal models have provided evidence of non-endothelial parasitism by pathogenic SFG Rickettsia species, suggesting that the interaction of rickettsiae with cells other than the endothelium may play an important role in pathogenesis of rickettsial diseases. These studies raise the hypothesis that the role of macrophages in rickettsial pathogenesis may have been underappreciated. Herein, we evaluated the ability of two SFG rickettsial species, R. conorii (a recognized human pathogen) and Rickettsia montanensis (a non-virulent member of SFG) to proliferate in THP-1 macrophage-like cells, or within non-phagocytic cell lines. Our results demonstrate that R. conorii was able to survive and proliferate in both phagocytic and epithelial cells in vitro. In contrast, R. montanensis was able to grow in non-phagocytic cells, but was drastically compromised in the ability to proliferate within both undifferentiated and PMA-differentiated THP-1 cells. Interestingly, association assays revealed that R. montanensis was defective in binding to THP-1-derived macrophages; however, the invasion of the bacteria that are able to adhere did not appear to be affected. We have also demonstrated that R. montanensis which entered into THP-1-derived macrophages were rapidly destroyed and partially co-localized with LAMP-2 and cathepsin D, two markers of lysosomal compartments. In contrast, R. conorii was present as intact bacteria and free in the cytoplasm in both cell types. These findings suggest that a phenotypic difference between a non-pathogenic and a pathogenic SFG member lies in their respective ability to proliferate in macrophage-like cells, and may provide an explanation as to why certain SFG rickettsial species are not associated

  14. DPSCs from Inflamed Pulp Modulate Macrophage Function via the TNF-α/IDO Axis.

    Science.gov (United States)

    Lee, S; Zhang, Q Z; Karabucak, B; Le, A D

    2016-10-01

    Human dental pulp stem cells (DPSCs) can be isolated from inflamed pulp derived from carious teeth with symptomatic irreversible pulpitis (I-DPSCs), which possess stemness and multidifferentiation potentials similar to DPSCs from healthy pulp. Since macrophages-essential cell players of the pulpal innate immunity-can regulate pulpal inflammation and repair, the authors investigated the immunomodulatory effects of DPSCs/I-DPSCs on macrophage functions and their underlying mechanisms. Similar to DPSCs, I-DPSCs were capable of colony-forming efficiency and adipogenic and osteo/dentinogenic differentiation under in vitro induction conditions. I-DPSCs also expressed a similar phenotypic profile of mesenchymal stem cell markers, except a relatively higher level of CD146 as compared with DPSCs. Coculture of DPSCs or I-DPSCs with differentiated THP-1 cells, the human monocyte cell line, markedly suppressed tumor necrosis factor α (TNF-α) secretion in response to stimulation with lipopolysaccharides (LPS) and/or nigericin. However, unlike TNF-α, the secreted level of interleukin 1β was not affected by coculture with DPSCs or I-DPSCs. Furthermore, DPSC/I-DPSC-mediated inhibition of TNF-α secretion by macrophages was abolished by pretreatment with 1-methyl-D-tryptophan, a specific inhibitor of indoleamine-pyrrole 2,3-dioxygenase (IDO), but not by NSC-398, a specific inhibitor of COX-2, suggesting IDO as a mediator. Interestingly, IDO expression was significantly augmented in macrophages and mesenchymal stromal cells in inflamed human pulp tissues. Collectively, these findings show that I-DPSCs, similar to DPSCs, possess stem cell properties and suppress macrophage functions via the TNF-α/IDO axis, thereby providing a physiologically relevant context for their innate immunomodulatory activity in the dental pulp and their capability for pulp repair. © International & American Associations for Dental Research 2016.

  15. Wip1-dependent modulation of macrophage migration and phagocytosis

    DEFF Research Database (Denmark)

    Tang, Yiting; Pan, Bing; Zhou, Xin

    2017-01-01

    Macrophage accumulation within the vascular wall is a hallmark of atherosclerosis. Controlling macrophage conversion into foam cells remains a major challenge for treatment of atherosclerotic diseases. Here, we show that Wip1, a member of the PP2C family of Ser/Thr protein phosphatases, modulates...... macrophage migration and phagocytosis associated with atherosclerotic plaque formation. Wip1 deficiency increases migratory and phagocytic activities of the macrophage under stress conditions. Enhanced migration of Wip1-/- macrophages is mediated by Rac1-GTPase and PI3K/AKT signalling pathways. Elevated...... phagocytic ability of Wip1-/- macrophages is linked to CD36 plasma membrane recruitment that is regulated by AMPK activity. Our study identifies Wip1 as an intrinsic negative regulator of macrophage chemotaxis. We propose that Wip1-dependent control of macrophage function may provide avenues for preventing...

  16. Macrophages and Their Role in Atherosclerosis: Pathophysiology and Transcriptome Analysis

    Directory of Open Access Journals (Sweden)

    Yuri V. Bobryshev

    2016-01-01

    Full Text Available Atherosclerosis can be regarded as a chronic inflammatory state, in which macrophages play different and important roles. Phagocytic proinflammatory cells populate growing atherosclerotic lesions, where they actively participate in cholesterol accumulation. Moreover, macrophages promote formation of complicated and unstable plaques by maintaining proinflammatory microenvironment. At the same time, anti-inflammatory macrophages contribute to tissue repair and remodelling and plaque stabilization. Macrophages therefore represent attractive targets for development of antiatherosclerotic therapy, which can aim to reduce monocyte recruitment to the lesion site, inhibit proinflammatory macrophages, or stimulate anti-inflammatory responses and cholesterol efflux. More studies are needed, however, to create a comprehensive classification of different macrophage phenotypes and to define their roles in the pathogenesis of atherosclerosis. In this review, we provide an overview of the current knowledge on macrophage diversity, activation, and plasticity in atherosclerosis and describe macrophage-based cellular tests for evaluation of potential antiatherosclerotic substances.

  17. Tantalum markers in radiography

    International Nuclear Information System (INIS)

    Aronson, A.S.; Jonsson, N.; Alberius, P.

    1985-01-01

    The biocompatibility of two types of radiopaque tantalum markers was evaluated histologically. Reactions to pin markers (99.9% purity) and spherical markers (95.2% purity) were investigated after 3-6 weeks in rabbits and 5-48 weeks in children with abnormal growth. Both marker types were firmly attached to bone trabeculae; this was most pronounced in rabbit bone, and no adverse macroscopic reactions were observed. Microscopically, no reactions or only slight fibrosis of bone tissue were detected, while soft tissues only demonstrated a minor inflammatory reaction. Nevertheless, the need for careful preparation and execution of marker implantations is stressed, and particularly avoidance iof the use of emery in sharpening of cannulae. The bioinertness of tantalum was reconfirmed as was its suitability for use as skeletal and soft tissue radiographic markers. (orig.)

  18. Tumor-associated macrophages: Oblivious confederates in invasive mammary carcinoma

    Directory of Open Access Journals (Sweden)

    Imtiaz Ahmed

    2017-01-01

    Full Text Available Background: The infiltrating margins of carcinomas are associated with presence of inflammatory cell infiltrate which are an integral part of the tumor microenvironment. Amongst the inflammatory cells, Tumor Associated Macrophages (TAMs play a key role in the tumorigenesis. This study elucidates the density of TAMs in invasive mammary carcinomas and attempts to establish aa association with the following pathological variables: tumor size, histological grade, nodal status, hormonal expression status and Her2Neu overexpression. Materials and Methods: 90 diagnosed archival cases of invasive mammary carcinomas at a tertiary care centre were included. Density of TAMs was assessed by using CD68 which is a pan-macrophage marker by immunohistochemistry on the archival tissue blocks. The density TAMs (CD68 positive cells was dichotomised into high (>50 CD68 positive cells/ HPF and low (<5050 CD68 positive cells/ HPF and compared with the above mentioned pathological variables using appropriate statistical tests. Results: The density of TAMs was significantly higher around the infiltrating edge of the carcinoma in comparison to the adjoining normal terminal duct lobular units. The density of TAMs was more in the infiltrating edge of the tumor than within the tumor nodule/nests. A higher TAM density showed a significant association in tumors having large tumor size, higher histological grade, nodal metastasis, absence of ER and PR expression and Her2Neu overexpression (p value <0.05. Conclusion: TAMs play an important role in tumor progression in invasive mammary carcinomas. This is as a result of the multiple roles enacted by TAMs in the various stages of tumor development starting from tumor growth, invasion, angiogenesis and metastases. Targeted therapy against TAMs has great potential in the being important components of future treatment strategies against breast carcinomas.

  19. ACVP-12: Quantitative Assessment of HIV/SIV Viral DNA in Laser Capture Microdissected (LCM) CD4+ T cell and/or Macrophage Populations from Formalin-Fixed Tissue Specimens | Frederick National Laboratory for Cancer Research

    Science.gov (United States)

    The Tissue Analysis Core (TAC) within the AIDS and Cancer Virus Program will process, embed, and perform microtomy on fixed tissue samples presented in ethanol. CD4 (DAB) and CD68/CD163 (FastRed) double immunohistochemistry will be performed, allowin

  20. Identification and validation of multiple cell surface markers of clinical-grade adipose-derived mesenchymal stromal cells as novel release criteria for good manufacturing practice-compliant production.

    Science.gov (United States)

    Camilleri, Emily T; Gustafson, Michael P; Dudakovic, Amel; Riester, Scott M; Garces, Catalina Galeano; Paradise, Christopher R; Takai, Hideki; Karperien, Marcel; Cool, Simon; Sampen, Hee-Jeong Im; Larson, A Noelle; Qu, Wenchun; Smith, Jay; Dietz, Allan B; van Wijnen, Andre J

    2016-08-11

    Clinical translation of mesenchymal stromal cells (MSCs) necessitates basic characterization of the cell product since variability in biological source and processing of MSCs may impact therapeutic outcomes. Although expression of classical cell surface markers (e.g., CD90, CD73, CD105, and CD44) is used to define MSCs, identification of functionally relevant cell surface markers would provide more robust release criteria and options for quality control. In addition, cell surface expression may distinguish between MSCs from different sources, including bone marrow-derived MSCs and clinical-grade adipose-derived MSCs (AMSCs) grown in human platelet lysate (hPL). In this work we utilized quantitative PCR, flow cytometry, and RNA-sequencing to characterize AMSCs grown in hPL and validated non-classical markers in 15 clinical-grade donors. We characterized the surface marker transcriptome of AMSCs, validated the expression of classical markers, and identified nine non-classical markers (i.e., CD36, CD163, CD271, CD200, CD273, CD274, CD146, CD248, and CD140B) that may potentially discriminate AMSCs from other cell types. More importantly, these markers exhibit variability in cell surface expression among different cell isolates from a diverse cohort of donors, including freshly prepared, previously frozen, or proliferative state AMSCs and may be informative when manufacturing cells. Our study establishes that clinical-grade AMSCs expanded in hPL represent a homogeneous cell culture population according to classical markers,. Additionally, we validated new biomarkers for further AMSC characterization that may provide novel information guiding the development of new release criteria. Use of Autologous Bone Marrow Aspirate Concentrate in Painful Knee Osteoarthritis (BMAC): Clinicaltrials.gov NCT01931007 . Registered August 26, 2013. MSC for Occlusive Disease of the Kidney: Clinicaltrials.gov NCT01840540 . Registered April 23, 2013. Mesenchymal Stem Cell Therapy in Multiple

  1. High-dose dexamethasone or all-trans-retinoic acid restores the balance of macrophages towards M2 in immune thrombocytopenia.

    Science.gov (United States)

    Feng, Q; Xu, M; Yu, Y Y; Hou, Y; Mi, X; Sun, Y X; Ma, S; Zuo, X Y; Shao, L L; Hou, M; Zhang, X H; Peng, J

    2017-09-01

    Essentials M1/M2 imbalance is involved in many autoimmune diseases, and could be restored. The expressions and functions of M1 and M2 were investigated in an in vitro culture system. A preferred M1 polarization is involved in the pathogenesis of immune thrombocytopenia (ITP). High-dose dexamethasone or all-trans-retinoic acid restores M1/M2 balance in ITP patients. Background Immune thrombocytopenia (ITP) is an autoimmune disorder. Deficiency of immune tolerance in antigen-presenting cells and cross-communication between antigen-presenting cells and T cells are involved in the pathogenesis of ITP. Macrophages can polarize into proinflammatory M1 or anti-inflammatory M2 phenotypes in response to different environmental stimuli, and have diverse immunologic functions. Objectives To investigate the M1/M2 imbalance in ITP and whether high-dose dexamethasone (HD-DXM) or all-trans-retinoic acid (ATRA) could restore this imbalance. Methods The numbers of M1 and M2 macrophages in the spleens of ITP patients and patients with traumatic spleen rupture were analyzed by immunofluorescence. Monocyte-derived macrophages were cultured and induced with cytokines and drugs. The expression of M1 and M2 markers and functions of M1 and M2 macrophages before and after modulation by HD-DXM or ATRA were evaluated with flow cytometry and ELISA. Results There was preferred M1 polarization in ITP spleens as compared with healthy controls. Monocyte-derived macrophages from ITP patients had increased expression of M1 markers and impaired immunosuppressive functions. Either HD-DXM or ATRA corrected this imbalance by decreasing the expression of M1 markers and increasing the expression of M2 markers. Moreover, HD-DXM-modulated or ATRA-modulated macrophages suppressed both CD4 + and CD8 + T-cell proliferation and expanded CD4 + CD49 + LAG3 + type 1 T-regulatory cells. HD-DXM or ATRA modulated macrophages to shift the T-cell cytokine profile towards Th2. Treating patients with HD-DXM or ATRA

  2. Elevated serum inflammatory markers and preeclampsia: Results from a large national cohort study

    DEFF Research Database (Denmark)

    Taylor, Brandie D; Tang, Gong; Ness, Roberta B

    2015-01-01

    OBJECTIVES: As inflammation has been associated with preeclampsia in cross-sectional analyses, we examined the relationship between inflammatory markers and preeclampsia in early pregnancy. METHODS: We conducted a nested case-control study of 409 preeclamptic women and 297 normotensive controls...... with primiparous singleton pregnancies enrolled in the Danish National Birth Cohort at a median gestation of 16 weeks. Preeclampsia was defined by blood pressure ⩾140/90mmHg and proteinuria ⩾3g/24h. Inflammatory markers included interleukin (IL)-6, IL-6 receptor, IL-4, IL-4 receptor, IL-5, IL-12, IL-2, TNF......-alpha, TNF-beta, TNF-receptor, IL-1beta IL-1alpha IL-8, IL-10, IFN-gamma, IL-18, macrophage migration inhibitory factor (MIF), macrophage inflammatory protein (MIP), transforming growth factor-beta (TGF), and RANTES. We examined associations between inflammatory markers dichotomized by the limit of detection...

  3. Melanoma Cells Can Adopt the Phenotype of Stromal Fibroblasts and Macrophages by Spontaneous Cell Fusion in Vitro.

    Science.gov (United States)

    Kemény, Lajos V; Kurgyis, Zsuzsanna; Buknicz, Tünde; Groma, Gergely; Jakab, Ádám; Zänker, Kurt; Dittmar, Thomas; Kemény, Lajos; Németh, István B

    2016-06-02

    After the removal of primary cutaneous melanoma some patients develop local recurrences, even after having histologically tumor-free re-excision. A potential explanation behind this phenomenon is that tumor cells switch their phenotype, making their recognition via standard histopathological assessments extremely difficult. Tumor-stromal cell fusion has been proposed as a potential mechanism for tumor cells to acquire mesenchymal traits; therefore, we hypothesized that melanoma cells could acquire fibroblast- and macrophage-like phenotypes via cell fusion. We show that melanoma cells spontaneously fuse with human dermal fibroblasts and human peripheral blood monocytes in vitro. The hybrid cells' nuclei contain chromosomes from both parental cells and are indistinguishable from the parental fibroblasts or macrophages based on their morphology and immunophenotype, as they could lose the melanoma specific MART1 marker, but express the fibroblast marker smooth muscle actin or the macrophage marker CD68. Our results suggest that, by spontaneous cell fusion in vitro, tumor cells can adopt the morphology and immunophenotype of stromal cells while still carrying oncogenic, tumor-derived genetic information. Therefore, melanoma-stromal cell fusion might play a role in missing tumor cells by routine histopathological assessments.

  4. Proprotein convertase 1/3 inhibited macrophages: A novel therapeutic based on drone macrophages

    Directory of Open Access Journals (Sweden)

    Marie Duhamel

    2016-06-01

    Full Text Available We demonstrated here thanks to proteomic, that proprotein convertase 1/3 knockdown macrophages present all the characteristic of activated pro-inflammatory macrophages. TLR4 and TLR9 signaling pathways can be enhanced leading to the secretion of pro-inflammatory factors and antitumor factors. We can control their activation by controlling one enzyme, PC1/3. In a tumor context, PC1/3 inhibition in macrophages may reactivate them and lead to a cytokine storm after stimulation “at distance” with a TLR ligand. Therefore, we name these proprotein convertase inhibited macrophages the “drone macrophages”. They constitute an innovative cell therapy to treat efficiently tumors.

  5. Misbehaving macrophages in the pathogenesis of psoriasis.

    Science.gov (United States)

    Clark, Rachael A; Kupper, Thomas S

    2006-08-01

    Psoriasis is a chronic inflammatory skin disease unique to humans. In this issue of the JCI, 2 studies of very different mouse models of psoriasis both report that macrophages play a key role in inducing psoriasis-like skin disease. Psoriasis is clearly a polygenic, inherited disease of uncontrolled cutaneous inflammation. The debate that currently rages in the field is whether psoriasis is a disease of autoreactive T cells or whether it reflects an intrinsic defect within the skin--or both. However, these questions have proven difficult to dissect using molecular genetic tools. In the current studies, the authors have used 2 different animal models to address the role of macrophages in disease pathogenesis: Wang et al. use a mouse model in which inflammation is T cell dependent, whereas the model used by Stratis et al. is T cell independent (see the related articles beginning on pages 2105 and 2094, respectively). Strikingly, both groups report an important contribution by macrophages, implying that macrophages can contribute to both epithelial-based and T cell-mediated pathways of inflammation.

  6. Metabolic-epigenetic crosstalk in macrophage activation

    NARCIS (Netherlands)

    Baardman, Jeroen; Licht, Iris; de Winther, Menno P. J.; van den Bossche, Jan

    2015-01-01

    Epigenetic enzymes are emerging as crucial controllers of macrophages, innate immune cells that determine the outcome of many inflammatory diseases. Recent studies demonstrate that the activity of particular chromatin-modifying enzymes is regulated by the availability of specific metabolites like

  7. Mouse adenovirus type 1 infection of macrophages

    NARCIS (Netherlands)

    Ashley, S.L.; Welton, A.R.; Harwood, K.M.; Rooijen, van N.; Spindler, K.R.

    2009-01-01

    Mouse adenovirus type 1 (MAV-1) causes acute and persistent infections in mice, with high levels of virus found in the brain, spinal cord and spleen in acute infections. MAV-1 infects endothelial cells throughout the mouse, and monocytes/macrophages have also been implicated as targets of the virus.

  8. NFAT5-Regulated Macrophage Polarization Supports the Proinflammatory Function of Macrophages and T Lymphocytes.

    Science.gov (United States)

    Tellechea, Mónica; Buxadé, Maria; Tejedor, Sonia; Aramburu, Jose; López-Rodríguez, Cristina

    2018-01-01

    Macrophages are exquisite sensors of tissue homeostasis that can rapidly switch between pro- and anti-inflammatory or regulatory modes to respond to perturbations in their microenvironment. This functional plasticity involves a precise orchestration of gene expression patterns whose transcriptional regulators have not been fully characterized. We had previously identified the transcription factor NFAT5 as an activator of TLR-induced responses, and in this study we explore its contribution to macrophage functions in different polarization settings. We found that both in classically and alternatively polarized macrophages, NFAT5 enhanced functions associated with a proinflammatory profile such as bactericidal capacity and the ability to promote Th1 polarization over Th2 responses. In this regard, NFAT5 upregulated the Th1-stimulatory cytokine IL-12 in classically activated macrophages, whereas in alternatively polarized ones it enhanced the expression of the pro-Th1 mediators Fizz-1 and arginase 1, indicating that it could promote proinflammatory readiness by regulating independent genes in differently polarized macrophages. Finally, adoptive transfer assays in vivo revealed a reduced antitumor capacity in NFAT5-deficient macrophages against syngeneic Lewis lung carcinoma and ID8 ovarian carcinoma cells, a defect that in the ID8 model was associated with a reduced accumulation of effector CD8 T cells at the tumor site. Altogether, detailed analysis of the effect of NFAT5 in pro- and anti-inflammatory macrophages uncovered its ability to regulate distinct genes under both polarization modes and revealed its predominant role in promoting proinflammatory macrophage functions. Copyright © 2017 by The American Association of Immunologists, Inc.

  9. DMPD: The oxidation of lipoproteins by monocytes-macrophages. Biochemical andbiological mechanisms. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10473535 The oxidation of lipoproteins by monocytes-macrophages. Biochemical andbio.... (.png) (.svg) (.html) (.csml) Show The oxidation of lipoproteins by monocytes-macrophages. Biochemical and...onocytes-macrophages. Biochemical andbiological mechanisms. Authors Chisolm GM 3rd, Hazen SL, Fox PL, Cathca

  10. DMPD: Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategies. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 11207583 Pathogen-induced apoptosis of macrophages: a common end for different path...ml) Show Pathogen-induced apoptosis of macrophages: a common end for different pathogenicstrategies. PubmedI...D 11207583 Title Pathogen-induced apoptosis of macrophages: a common end for diff

  11. DMPD: Mechanism of age-associated up-regulation in macrophage PGE2 synthesis. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15331118 Mechanism of age-associated up-regulation in macrophage PGE2 synthesis. Wu...e-associated up-regulation in macrophage PGE2 synthesis. PubmedID 15331118 Title Mechanism of age-associated... up-regulation in macrophage PGE2 synthesis. Authors Wu D, Meydani SN. Publicatio

  12. DMPD: Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: roles of the receptor complex. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14609719 Molecular mechanisms of macrophage activation and deactivation bylipopolys...acol Ther. 2003 Nov;100(2):171-94. (.png) (.svg) (.html) (.csml) Show Molecular mechanisms of macrophage act...medID 14609719 Title Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: ro

  13. DMPD: Genetic regulation of macrophage priming/activation: the Lsh gene story. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 1757110 Genetic regulation of macrophage priming/activation: the Lsh gene story. Bl... (.svg) (.html) (.csml) Show Genetic regulation of macrophage priming/activation: the Lsh gene story. Pubmed...ID 1757110 Title Genetic regulation of macrophage priming/activation: the Lsh gen

  14. Radiopaque anastomosis marker

    International Nuclear Information System (INIS)

    Elliott, D.P.; Halseth, W.L.

    1977-01-01

    This invention relates to split ring markers fabricated in whole or in part from a radiopaque material, usually metal, having the terminal ends thereof and a medial portion formed to define eyelets by means of which said marker can be sutured to the tissue at the site of an anastomosis to provide a visual indication of its location when examined fluoroscopically

  15. Yersinia pestis and host macrophages: immunodeficiency of mouse macrophages induced by YscW.

    Science.gov (United States)

    Bi, Yujing; Du, Zongmin; Han, Yanping; Guo, Zhaobiao; Tan, Yafang; Zhu, Ziwen; Yang, Ruifu

    2009-09-01

    The virulence of the pathogenic Yersinia species depends on a plasmid-encoded type III secretion system (T3SS) that transfers six Yersinia outer protein (Yop) effector proteins into the cytoplasm of eukaryotic cells, leading to disruption of host defence mechanisms. It is shown in this study that Yersinia pestis YscW, a protein of the T3SS injectisome, contributes to the induction of a deficiency in phagocytosis in host macrophages and a reduction in their antigen-presenting capacity. A Y. pestis strain lacking yscW had no effect on uptake by host macrophages. In mice infected with wild-type Y. pestis, the yscW mutant or a complement strain, immunodeficiency was observed in host macrophages compared with those from uninfected mice. However, the phagocytosis and antigen presenting capacities of macrophages infected by yscW mutant strain both in vivo and in vitro were significantly higher than those by wild type strain. Consistent with this finding, when YscW was expressed in the RAW264.7 macrophage cell line, phagocytosis and antigen-presenting capacities were significantly lower than those of the control groups. These results indicate that Y. pestis YscW may directly induce immunodeficiency in murine macrophages by crippling their phagocytosis and antigen-presenting capacities. These data provide evidences to Y. pestis pathogenesis that some proteins in T3SS injectisome, such as YscW protein, might play independent roles in disrupting host defense apart from their known functions.

  16. Macrophage-Mediated Lymphangiogenesis: The Emerging Role of Macrophages as Lymphatic Endothelial Progenitors

    International Nuclear Information System (INIS)

    Ran, Sophia; Montgomery, Kyle E.

    2012-01-01

    It is widely accepted that macrophages and other inflammatory cells support tumor progression and metastasis. During early stages of neoplastic development, tumor-infiltrating macrophages (TAMs) mount an immune response against transformed cells. Frequently, however, cancer cells escape the immune surveillance, an event that is accompanied by macrophage transition from an anti-tumor to a pro-tumorigenic type. The latter is characterized by high expression of factors that activate endothelial cells, suppress immune response, degrade extracellular matrix, and promote tumor growth. Cumulatively, these products of TAMs promote tumor expansion and growth of both blood and lymphatic vessels that facilitate metastatic spread. Breast cancers and other epithelial malignancies induce the formation of new lymphatic vessels (i.e., lymphangiogenesis) that leads to lymphatic and subsequently, to distant metastasis. Both experimental and clinical studies have shown that TAMs significantly promote tumor lymphangiogenesis through paracrine and cell autonomous modes. The paracrine effect consists of the expression of a variety of pro-lymphangiogenic factors that activate the preexisting lymphatic vessels. The evidence for cell-autonomous contribution is based on the observed tumor mobilization of macrophage-derived lymphatic endothelial cell progenitors (M-LECP) that integrate into lymphatic vessels prior to sprouting. This review will summarize the current knowledge of macrophage-dependent growth of new lymphatic vessels with specific emphasis on an emerging role of macrophages as lymphatic endothelial cell progenitors (M-LECP)

  17. Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders?

    Science.gov (United States)

    Baci, Denisa; Tremolati, Marco; Fanuli, Matteo; Farronato, Giampietro; Mortara, Lorenzo

    2018-01-01

    Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1) or alternatively activated (M2). However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in “distant” pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like) and/or builders (M2-like). We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy. PMID:29507865

  18. Macrophage Polarization in Chronic Inflammatory Diseases: Killers or Builders?

    Directory of Open Access Journals (Sweden)

    Luca Parisi

    2018-01-01

    Full Text Available Macrophages are key cellular components of the innate immunity, acting as the main player in the first-line defence against the pathogens and modulating homeostatic and inflammatory responses. Plasticity is a major feature of macrophages resulting in extreme heterogeneity both in normal and in pathological conditions. Macrophages are not homogenous, and they are generally categorized into two broad but distinct subsets as either classically activated (M1 or alternatively activated (M2. However, macrophages represent a continuum of highly plastic effector cells, resembling a spectrum of diverse phenotype states. Induction of specific macrophage functions is closely related to the surrounding environment that acts as a relevant orchestrator of macrophage functions. This phenomenon, termed polarization, results from cell/cell, cell/molecule interaction, governing macrophage functionality within the hosting tissues. Here, we summarized relevant cellular and molecular mechanisms driving macrophage polarization in “distant” pathological conditions, such as cancer, type 2 diabetes, atherosclerosis, and periodontitis that share macrophage-driven inflammation as a key feature, playing their dual role as killers (M1-like and/or builders (M2-like. We also dissect the physio/pathological consequences related to macrophage polarization within selected chronic inflammatory diseases, placing polarized macrophages as a relevant hallmark, putative biomarkers, and possible target for prevention/therapy.

  19. HIV Infection of Macrophages: Implications for Pathogenesis and Cure

    Directory of Open Access Journals (Sweden)

    Kiera Leigh Clayton

    2017-05-01

    Full Text Available Although CD4+ T cells represent the major reservoir of persistent HIV and SIV infection, accumulating evidence suggests that macrophages also contribute. However, investigations of the role of macrophages are often underrepresented at HIV pathogenesis and cure meetings. This was the impetus for a scientific workshop dedicated to this area of study, held in Cambridge, MA in January 2017. The workshop brought together experts in the fields of HIV/SIV immunology/virology, macrophage biology and immunology, and animal models of HIV/SIV infection to facilitate discussions regarding the role of macrophages as a physiologically relevant viral reservoir, and the implications of macrophage infection for HIV pathogenesis and cure strategies. An emerging consensus that infected macrophages likely persist in the setting of combination antiretroviral therapy, driving persistent inflammation and contributing to the viral reservoir, indicate the importance of addressing macrophages as well as CD4+ T cells with future therapeutic strategies.

  20. Lysosomal Disorders Drive Susceptibility to Tuberculosis by Compromising Macrophage Migration

    Science.gov (United States)

    Berg, Russell D.; Levitte, Steven; O’Sullivan, Mary P.; O’Leary, Seónadh M.; Cambier, C.J.; Cameron, James; Takaki, Kevin K.; Moens, Cecilia B.; Tobin, David M.; Keane, Joseph; Ramakrishnan, Lalita

    2016-01-01

    Summary A zebrafish genetic screen for determinants of susceptibility to Mycobacterium marinum identified a hypersusceptible mutant deficient in lysosomal cysteine cathepsins that manifests hallmarks of human lysosomal storage diseases. Under homeostatic conditions, mutant macrophages accumulate undigested lysosomal material, which disrupts endocytic recycling and impairs their migration to, and thus engulfment of, dying cells. This causes a buildup of unengulfed cell debris. During mycobacterial infection, macrophages with lysosomal storage cannot migrate toward infected macrophages undergoing apoptosis in the tuberculous granuloma. The unengulfed apoptotic macrophages undergo secondary necrosis, causing granuloma breakdown and increased mycobacterial growth. Macrophage lysosomal storage similarly impairs migration to newly infecting mycobacteria. This phenotype is recapitulated in human smokers, who are at increased risk for tuberculosis. A majority of their alveolar macrophages exhibit lysosomal accumulations of tobacco smoke particulates and do not migrate to Mycobacterium tuberculosis. The incapacitation of highly microbicidal first-responding macrophages may contribute to smokers’ susceptibility to tuberculosis. PMID:27015311

  1. Brain Macrophages in Simian Immunodeficiency Virus-Infected, Antiretroviral-Suppressed Macaques: a Functional Latent Reservoir.

    Science.gov (United States)

    Avalos, Claudia R; Abreu, Celina M; Queen, Suzanne E; Li, Ming; Price, Sarah; Shirk, Erin N; Engle, Elizabeth L; Forsyth, Ellen; Bullock, Brandon T; Mac Gabhann, Feilim; Wietgrefe, Stephen W; Haase, Ashley T; Zink, M Christine; Mankowski, Joseph L; Clements, Janice E; Gama, Lucio

    2017-08-15

    /SIV-infected macrophages persist despite ART. Markers of macrophage activation and neuronal damage are observed in the CSF of HIV-infected individuals and of SIV-infected macaques on suppressive ART regimens, suggesting that the CNS has continued virus infection and latent infection. A controversy exists as to whether brain macrophages represent a latent source of replication-competent virus capable of reestablishing infection upon treatment interruption. In this study, we demonstrated the presence of the latent macrophage reservoir in brains of SIV-infected ART-treated macaques and analyzed the reservoir using our established outgrowth assay to quantitate macrophages harboring replication-competent SIV genomes. Our results support the idea of the existence of other latent reservoirs in addition to resting CD4 + T cells and underscore the importance of macrophages in developing strategies to eradicate HIV. Copyright © 2017 Avalos et al.

  2. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, Carol R., E-mail: cgardner@pharmacy.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Hankey, Pamela [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Mishin, Vladimir; Francis, Mary [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States); Yu, Shan [Department of Veterinary and Biomedical Science, Pennsylvania State University, University Park, PA 16802 (United States); Laskin, Jeffrey D. [Department of Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854 (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854 (United States)

    2012-07-15

    Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK{sup −/−} mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6 h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK{sup −/−} mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK{sup −/−} mice. Whereas F4/80{sup +} macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK{sup −/−} mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK{sup −/−} mice

  3. Semen CD4+ T Cells and Macrophages Are Productively Infected at All Stages of SIV infection in Macaques

    Science.gov (United States)

    Bernard-Stoecklin, Sibylle; Gommet, Céline; Corneau, Aurélien B.; Guenounou, Sabrina; Torres, Claire; Dejucq-Rainsford, Nathalie; Cosma, Antonio; Dereuddre-Bosquet, Nathalie; Le Grand, Roger

    2013-01-01

    The mucosal events of HIV transmission have been extensively studied, but the role of infected cells present in the genital and rectal secretions, and in the semen, in particular, remains a matter of debate. As a prerequisite to a thorough in vivo investigation of the early transmission events through infected cells, we characterized in detail by multi-parameter flow cytometry the changes in macaque seminal leukocytes during SIVmac251 infection, focusing on T cells, macrophages and dendritic cells. Using immunocytofluorescence targeting SIV proteins and real-time quantitative PCR targeting SIV DNA, we investigated the nature of the infected cells on sorted semen leukocytes from macaques at different stages of infection. Finally, we cocultured semen CD4+ T cells and macrophages with a cell line permissive to SIV infection to assess their infectivity in vitro. We found that primary infection induced strong local inflammation, which was associated with an increase in the number of leukocytes in semen, both factors having the potential to favor cell-associated virus transmission. Semen CD4+ T cells and macrophages were productively infected at all stages of infection and were infectious in vitro. Lymphocytes had a mucosal phenotype and expressed activation (CD69 & HLA-DR) and migration (CCR5, CXCR4, LFA-1) markers. CD69 expression was increased in semen T cells by SIV infection, at all stages of infection. Macrophages predominated at all stages and expressed CD4, CCR5, MAC-1 and LFA-1. Altogether, we demonstrated that semen contains the two major SIV-target cells (CD4+ T cells and macrophages). Both cell types can be productively infected at all stages of SIV infection and are endowed with markers that may facilitate transmission of infection during sexual exposure. PMID:24348253

  4. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    International Nuclear Information System (INIS)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan; Zhang, Jing; Chai, Hongyan; Tang, Tian; Chen, Honglei; Yue, Jiang; Li, Ying; Yang, Jing

    2015-01-01

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  5. Macrophage specific MRI imaging for antigen induced arthritides. A potential new strategy for the diagnosis of rheumatoid arthritis

    International Nuclear Information System (INIS)

    Simon, G.H.; Rummeny, E.J.; Daldrup-Link, H.E.

    2007-01-01

    The present work describes the potential of iron oxides for the detection of macrophages in synovitis in experimental, antigen-induced arthritis. The pivotal role of macrophages in rheumatoid arthritis (RA) in humans and in antigen-induced arthritis (AIA) in animal models is discussed. The latter appear to be very similar in many aspects to the human RA. We show the potential for iron oxide-enhanced magnetic resonance imaging (MRI) to determine the macrophage content in the arthritic synovial membranes. The results of our own research, as well as those of other research groups, are presented and discussed. MRI after the intravenous (i.v.) administration of iron oxides enables the depiction of macrophage content in arthritic synovial membranes in AIA through the effects of the intracellular compartmentalisation of iron oxide particles. These effects can be demonstrated in 24-h delayed images after i.v. contrast application, on T2-weighted spin-echo or turbo-spin-echo sequences, and especially on T2 * -weighted gradient-echo sequences. The signal effects are not only apparent in high field strength (4.7 Tesla) but also on 1.5 Tesla clinical scanners. The use of iron oxides enables the determination of the macrophage content in synovitis in animals with AIA. This parameter represents a potential marker to determine disease activity, and possibly represents a marker to evaluate the effectiveness of specific therapies in human RA. Current knowledge of iron oxide-enhanced MRI is limited to animal models. The clinical evaluation of this new method in patients with RA has not yet been performed. However, based on the considerations presented here, significant progress in the diagnostic work-up of RA can be expected

  6. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei; Duan, Chenfan; Zhang, Xiaoyan [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Zhang, Jing [Animal Experimental Center of Wuhan University, Wuhan 430071 (China); Chai, Hongyan [Center for Gene Diagnosis, Zhongnan Hospital, Wuhan University, Wuhan 430071 (China); Tang, Tian [Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060 (China); Chen, Honglei [Department of Pathology and Pathophysiology, School of Medicine, Wuhan University, Wuhan 430071 (China); Yue, Jiang [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Li, Ying, E-mail: lyying0@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China); Yang, Jing, E-mail: yangjingliu2013@163.com [Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071 (China)

    2015-07-15

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing the coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in tumor

  7. IL-17A and serum amyloid A are elevated in a cigarette smoke cessation model associated with the persistence of pigmented macrophages, neutrophils and activated NK cells.

    Directory of Open Access Journals (Sweden)

    Michelle J Hansen

    Full Text Available While global success in cessation advocacy has seen smoking rates fall in many developed countries, persistent lung inflammation in ex-smokers is an increasingly important clinical problem whose mechanistic basis remains poorly understood. In this study, candidate effector mechanisms were assessed in mice exposed to cigarette smoke (CS for 4 months following cessation from long term CS exposure. BALF neutrophils, CD4+ and CD8+ T cells and lung innate NK cells remained significantly elevated following smoking cessation. Analysis of neutrophil mobilization markers showed a transition from acute mediators (MIP-2α, KC and G-CSF to sustained drivers of neutrophil and macrophage recruitment and activation (IL-17A and Serum Amyoid A (SAA. Follicle-like lymphoid aggregates formed with CS exposure and persisted with cessation, where they were in close anatomical proximity to pigmented macrophages, whose number actually increased 3-fold following CS cessation. This was associated with the elastolytic protease, MMP-12 (macrophage metallo-elastase which remained significantly elevated post-cessation. Both GM-CSF and CSF-1 were significantly increased in the CS cessation group relative to the control group. In conclusion, we show that smoking cessation mediates a transition to accumulation of pigmented macrophages, which may contribute to the expanded macrophage population observed in COPD. These macrophages together with IL-17A, SAA and innate NK cells are identified here as candidate persistence determinants and, we suggest, may represent specific targets for therapies directed towards the amelioration of chronic airway inflammation.

  8. Immunity to Schistosoma mansoni in guinea-pigs vaccinated with radiation-attenuated cercariae. T-cell activation of macrophages for larval killing

    International Nuclear Information System (INIS)

    Gordon, J.R.; McLaren, D.J.

    1988-01-01

    This study addresses macrophage activation in guinea-pigs vaccinated with radiation-attenuated cercariae of Schistosom mansoni. Peritoneal exudate macrophages elicited in vaccinated animals by mineral oil injection were activated to kill larval schistosomes in vitro. Killing efficiency is dependent upon the cell:target ratio employed and is enhanced by, but is not strictly dependent on, the presence of specific antibodies. Macrophages co-cultured with parasites release superoxide radicals and hydrogen peroxide, but the use of inhibitors has shown that neither of these reactive oxygen intermediates are the causal agents of cellular cytotoxicity in this system. Oil-elicited macrophages from naive guinea-pigs do not show comparable activation; they can, however, be activated in vitro by incubation with culture supernatant fluids from schistosome antigen-stimulated spleen, or lymph node cells harvested from vaccinated guinea-pigs. Naive macrophages activated in this way kill schistosomula in vitro and release the activation markers IL-l and superoxide anion. The macrophage-activating factor (MAF) present in spleen cell culture supernatant fluids has a MW of 35,000-55,000, but does not have the chemical characteristics of gamma-interferon. (author)

  9. Monocytes/macrophages support mammary tumor invasivity by co-secreting lineage-specific EGFR ligands and a STAT3 activator

    International Nuclear Information System (INIS)

    Vlaicu, Philip; Mertins, Philipp; Mayr, Thomas; Widschwendter, Peter; Ataseven, Beyhan; Högel, Bernhard; Eiermann, Wolfgang; Knyazev, Pjotr; Ullrich, Axel

    2013-01-01

    Tumor-associated macrophages (TAM) promote malignant progression, yet the repertoire of oncogenic factors secreted by TAM has not been clearly defined. We sought to analyze which EGFR- and STAT3-activating factors are secreted by monocytes/macrophages exposed to tumor cell-secreted factors. Following exposure of primary human monocytes and macrophages to supernatants of a variety of tumor cell lines, we have analyzed transcript and secreted protein levels of EGFR family ligands and of STAT3 activators. To validate our findings, we have analyzed TAM infiltration levels, systemic and local protein levels as well as clinical data of primary breast cancer patients. Primary human monocytes and macrophages respond to tumor cell-derived factors by secreting EGFR- and STAT3-activating ligands, thus inducing two important oncogenic pathways in carcinoma cells. Tumor cell-secreted factors trigger two stereotype secretory profiles in peripheral blood monocytes and differentiated macrophages: monocytes secrete epiregulin (EREG) and oncostatin-M (OSM), while macrophages secrete heparin-binding EGF-like growth factor (HB-EGF) and OSM. HB-EGF and OSM cooperatively induce tumor cell chemotaxis. HB-EGF and OSM are co-expressed by TAM in breast carcinoma patients, and plasma levels of both ligands correlate strongly. Elevated HB-EGF levels accompany TAM infiltration, tumor growth and dissemination in patients with invasive disease. Our work identifies systemic markers for TAM involvement in cancer progression, with the potential to be developed into molecular targets in cancer therapy

  10. CD68/macrosialin: not just a histochemical marker.

    Science.gov (United States)

    Chistiakov, Dimitry A; Killingsworth, Murry C; Myasoedova, Veronika A; Orekhov, Alexander N; Bobryshev, Yuri V

    2017-01-01

    CD68 is a heavily glycosylated glycoprotein that is highly expressed in macrophages and other mononuclear phagocytes. Traditionally, CD68 is exploited as a valuable cytochemical marker to immunostain monocyte/macrophages in the histochemical analysis of inflamed tissues, tumor tissues, and other immunohistopathological applications. CD68 alone or in combination with other cell markers of tumor-associated macrophages showed a good predictive value as a prognostic marker of survival in cancer patients. Lowression of CD68 was found in the lymphoid cells, non-hematopoietic cells (fibroblasts, endothelial cells, etc), and tumor cells. Cell-specific CD68 expression and differentiated expression levels are determined by the complex interplay between transcription factors, regulatory transcriptional elements, and epigenetic factors. Human CD68 and its mouse ortholog macrosialin belong to the family of LAMP proteins located in the lysosomal membrane and share many structural similarities such as the presence of the LAMP-like domain. Except for a second LAMP-like domain present in LAMPs, CD68/microsialin has a highly glycosylated mucin-like domain involved in ligand binding. CD68 has been shown to bind oxLDL, phosphatidylserine, apoptotic cells and serve as a receptor for malaria sporozoite in liver infection. CD68 is mainly located in the endosomal/lysosomal compartment but can rapidly shuttle to the cell surface. However, the role of CD68 as a scavenger receptor remains to be confirmed. It seems that CD68 is not involved in binding bacterial/viral pathogens, innate, inflammatory or humoral immune responses, although it may potentially be involved in antigen processing/presentation. CD68 could be functionally important in osteoclasts since its deletion leads to reduced bone resorption capacity. The role of CD68 in atherosclerosis is contradictory.

  11. Human mesenchymal stromal cell-secreted lactate induces M2-macrophage differentiation by metabolic reprogramming

    Science.gov (United States)

    Civini, Sara; Pacelli, Consiglia; Dieng, Mame Massar; Lemieux, William; Jin, Ping; Bazin, Renée; Patey, Natacha; Marincola, Francesco M.; Moldovan, Florina; Zaouter, Charlotte; Trudeau, Louis-Eric; Benabdhalla, Basma; Louis, Isabelle; Beauséjour, Christian; Stroncek, David; Le Deist, Françoise; Haddad, Elie

    2016-01-01

    Human mesenchymal stromal cells (MSC) have been shown to dampen immune response and promote tissue repair, but the underlying mechanisms are still under investigation. Herein, we demonstrate that umbilical cord-derived MSC (UC-MSC) alter the phenotype and function of monocyte-derived dendritic cells (DC) through lactate-mediated metabolic reprogramming. UC-MSC can secrete large quantities of lactate and, when present during monocyte-to-DC differentiation, induce instead the acquisition of M2-macrophage features in terms of morphology, surface markers, migratory properties and antigen presentation capacity. Microarray expression profiling indicates that UC-MSC modify the expression of metabolic-related genes and induce a M2-macrophage expression signature. Importantly, monocyte-derived DC obtained in presence of UC-MSC, polarize naïve allogeneic CD4+ T-cells into Th2 cells. Treatment of UC-MSC with an inhibitor of lactate dehydrogenase strongly decreases lactate concentration in culture supernatant and abrogates the effect on monocyte-to-DC differentiation. Metabolic analysis further revealed that UC-MSC decrease oxidative phosphorylation in differentiating monocytes while strongly increasing the spare respiratory capacity proportional to the amount of secreted lactate. Because both MSC and monocytes are recruited in vivo at the site of tissue damage and inflammation, we propose the local increase of lactate concentration induced by UC-MSC and the consequent enrichment in M2-macrophage generation as a mechanism to achieve immunomodulation. PMID:27070086

  12. Different endocytotic uptake mechanisms for nanoparticles in epithelial cells and macrophages

    Directory of Open Access Journals (Sweden)

    Dagmar A. Kuhn

    2014-09-01

    Full Text Available Precise knowledge regarding cellular uptake of nanoparticles is of great importance for future biomedical applications. Four different endocytotic uptake mechanisms, that is, phagocytosis, macropinocytosis, clathrin- and caveolin-mediated endocytosis, were investigated using a mouse macrophage (J774A.1 and a human alveolar epithelial type II cell line (A549. In order to deduce the involved pathway in nanoparticle uptake, selected inhibitors specific for one of the endocytotic pathways were optimized regarding concentration and incubation time in combination with fluorescently tagged marker proteins. Qualitative immunolocalization showed that J774A.1 cells highly expressed the lipid raft-related protein flotillin-1 and clathrin heavy chain, however, no caveolin-1. A549 cells expressed clathrin heavy chain and caveolin-1, but no flotillin-1 uptake-related proteins. Our data revealed an impeded uptake of 40 nm polystyrene nanoparticles by J774A.1 macrophages when actin polymerization and clathrin-coated pit formation was blocked. From this result, it is suggested that macropinocytosis and phagocytosis, as well as clathrin-mediated endocytosis, play a crucial role. The uptake of 40 nm nanoparticles in alveolar epithelial A549 cells was inhibited after depletion of cholesterol in the plasma membrane (preventing caveolin-mediated endocytosis and inhibition of clathrin-coated vesicles (preventing clathrin-mediated endocytosis. Our data showed that a combination of several distinguishable endocytotic uptake mechanisms are involved in the uptake of 40 nm polystyrene nanoparticles in both the macrophage and epithelial cell line.

  13. Redefining the transcriptional regulatory dynamics of classically and alternatively activated macrophages by deepCAGE transcriptomics

    KAUST Repository

    Roy, S.

    2015-06-27

    Classically or alternatively activated macrophages (M1 and M2, respectively) play distinct and important roles for microbiocidal activity, regulation of inflammation and tissue homeostasis. Despite this, their transcriptional regulatory dynamics are poorly understood. Using promoter-level expression profiling by non-biased deepCAGE we have studied the transcriptional dynamics of classically and alternatively activated macrophages. Transcription factor (TF) binding motif activity analysis revealed four motifs, NFKB1_REL_RELA, IRF1,2, IRF7 and TBP that are commonly activated but have distinct activity dynamics in M1 and M2 activation. We observe matching changes in the expression profiles of the corresponding TFs and show that only a restricted set of TFs change expression. There is an overall drastic and transient up-regulation in M1 and a weaker and more sustainable up-regulation in M2. Novel TFs, such as Thap6, Maff, (M1) and Hivep1, Nfil3, Prdm1, (M2) among others, were suggested to be involved in the activation processes. Additionally, 52 (M1) and 67 (M2) novel differentially expressed genes and, for the first time, several differentially expressed long non-coding RNA (lncRNA) transcriptome markers were identified. In conclusion, the finding of novel motifs, TFs and protein-coding and lncRNA genes is an important step forward to fully understand the transcriptional machinery of macrophage activation.

  14. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy

    Directory of Open Access Journals (Sweden)

    Suzuki Kenji

    2011-06-01

    Full Text Available Abstract Background Chronic inflammation plays an important role in the progression of diabetic nephropathy (DN and that the infiltration of macrophages in glomerulus has been implicated in the development of glomerular injury. We hypothesized that the plant polyphenolic compound curcumin, which is known to exert potent anti-inflammatory effect, would ameliorate macrophage infiltration in streptozotocin (STZ-induced diabetic rats. Methods Diabetes was induced with STZ (55 mg/kg by intraperitoneal injection in rats. Three weeks after STZ injection, rats were divided into three groups, namely, control, diabetic, and diabetic treated with curcumin at 100 mg/kg/day, p.o., for 8 weeks. The rats were sacrificed 11 weeks after induction of diabetes. The excised kidney was used to assess macrophage infiltration and expression of various inflammatory markers. Results At 11 weeks after STZ injection, diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine clearance, increased blood glucose, blood urea nitrogen and proteinuria, along with marked reduction in the body weight. All of these abnormalities were significantly reversed by curcumin. Hyperglycemia induced the degradation of IκBα and NF-κB activation and as a result increased infiltration of macrophages (52% as well as increased proinflammatory cytokines: TNF-α and IL-1β. Curcumin treatment significantly reduced macrophage infiltration in the kidneys of diabetic rats, suppressed the expression of above proinflammatory cytokines and degradation of IκBα. In addition, curcumin treatment also markedly decreased ICAM-1, MCP-1 and TGF-β1 protein expression. Moreover, at nuclear level curcumin inhibited the NF-κB activity. Conclusion Our results suggested that curcumin treatment protect against the development of DN in rats by reducing macrophage infiltration through the inhibition of NF-κB activation in STZ-induced diabetic rats.

  15. Prognostic significance of macrophage invasion in hilar cholangiocarcinoma

    International Nuclear Information System (INIS)

    Atanasov, Georgi; Hau, Hans-Michael; Dietel, Corinna; Benzing, Christian; Krenzien, Felix; Brandl, Andreas; Wiltberger, Georg; Matia, Ivan; Prager, Isabel; Schierle, Katrin; Robson, Simon C.; Reutzel-Selke, Anja; Pratschke, Johann; Schmelzle, Moritz; Jonas, Sven

    2015-01-01

    Tumor-associated macrophages (TAMs) promote tumor progression and have an effect on survival in human cancer. However, little is known regarding their influence on tumor progression and prognosis in human hilar cholangiocarcinoma. We analyzed surgically resected tumor specimens of hilar cholangiocarcinoma (n = 47) for distribution and localization of TAMs, as defined by expression of CD68. Abundance of TAMs was correlated with clinicopathologic characteristics, tumor recurrence and patients’ survival. Statistical analysis was performed using SPSS software. Patients with high density of TAMs in tumor invasive front (TIF) showed significantly higher local and overall tumor recurrence (both ρ < 0.05). Furthermore, high density of TAMs was associated with decreased overall (one-year 83.6 % vs. 75.1 %; three-year 61.3 % vs. 42.4 %; both ρ < 0.05) and recurrence-free survival (one-year 93.9 % vs. 57.4 %; three-year 59.8 % vs. 26.2 %; both ρ < 0.05). TAMs in TIF and tumor recurrence, were confirmed as the only independent prognostic variables in the multivariate survival analysis (all ρ < 0.05). Overall survival and recurrence free survival of patients with hilar cholangiocarcinoma significantly improved in patients with low levels of TAMs in the area of TIF, when compared to those with a high density of TAMs. These observations suggest their utilization as valuable prognostic markers in routine histopathologic evaluation, and might indicate future therapeutic approaches by targeting TAMs

  16. Multiple marker abundance profiling

    DEFF Research Database (Denmark)

    Hooper, Cornelia M.; Stevens, Tim J.; Saukkonen, Anna

    2017-01-01

    proteins and the scoring accuracy of lower-abundance proteins in Arabidopsis. NPAS was combined with subcellular protein localization data, facilitating quantitative estimations of organelle abundance during routine experimental procedures. A suite of targeted proteomics markers for subcellular compartment...

  17. (DArT) markers

    Indian Academy of Sciences (India)

    2EH Graham Centre for Agricultural Innovation (NSW Department of Industry and Investment and Charles Sturt. University), P. O. Box 588 Wagga Wagga, NSW 2650, Australia. 3Guangxi .... and obtain marker statistics. The exact order of the ...

  18. VT Roadside Historic Markers

    Data.gov (United States)

    Vermont Center for Geographic Information — Roadside Historic Site Marker program has proven an effective way to commemorate Vermont’s many people, events, and places of regional, statewide, or national...

  19. BTB and CNC homolog 1 (Bach1) deficiency ameliorates TNBS colitis in mice: role of M2 macrophages and heme oxygenase-1.

    Science.gov (United States)

    Harusato, Akihito; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Hirai, Yasuko; Higashimura, Yasuki; Katada, Kazuhiro; Handa, Osamu; Ishikawa, Takeshi; Yagi, Nobuaki; Kokura, Satoshi; Ichikawa, Hiroshi; Muto, Akihiko; Igarashi, Kazuhiko; Yoshikawa, Toshikazu

    2013-01-01

    BTB and CNC homolog 1 (Bach1) is a transcriptional repressor of heme oxygenase-1 (HO-1), which plays an important role in the protection of cells and tissues against acute and chronic inflammation. However, the role of Bach1 in the gastrointestinal mucosal defense system remains little understood. HO-1 supports the suppression of experimental colitis and localizes mainly in macrophages in colonic mucosa. This study was undertaken to elucidate the Bach1/HO-1 system's effects on the pathogenesis of experimental colitis. This study used C57BL/6 (wild-type) and homozygous Bach1-deficient C57BL/6 mice in which colonic damage was induced by the administration of an enema of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Subsequently, they were evaluated macroscopically, histologically, and biochemically. Peritoneal macrophages from the respective mice were isolated and analyzed. Then, wild-type mice were injected with peritoneal macrophages from the respective mice. Acute colitis was induced similarly. TNBS-induced colitis was inhibited in Bach1-deficient mice. TNBS administration increased the expression of HO-1 messenger RNA and protein in colonic mucosa in Bach1-deficient mice. The expression of HO-1 mainly localized in F4/80-immunopositive and CD11b-immunopositive macrophages. Isolated peritoneal macrophages from Bach1-deficient mice highly expressed HO-1 and also manifested M2 macrophage markers, such as Arginase-1, Fizz-1, Ym1, and MRC1. Furthermore, TNBS-induced colitis was inhibited by the transfer of Bach1-deficient macrophages into wild-type mice. Deficiency of Bach1 ameliorated TNBS-induced colitis. Bach1-deficient macrophages played a key role in protection against colitis. Targeting of this mechanism is applicable to cell therapy for human inflammatory bowel disease.

  20. Increase in a distinct pulmonary macrophage subset possessing an antigen-presenting cell phenotype and in vitro APC activity following silica exposure

    International Nuclear Information System (INIS)

    Migliaccio, Christopher T.; Hamilton, Raymond F.; Holian, Andrij

    2005-01-01

    Silica inhalation results in chronic lung inflammation and fibrosis. While the role of the alveolar macrophage (AM) is considered key to the effects of silica on lung pathology, the etiology is not completely understood. Evidence suggests an increase in antigen presenting cell (APC) activity as a contributing factor to this process, as well as potential roles for both AM and interstitial macrophages (IM) in silicosis. In order to study the effects of crystalline silica on the APC activity of pulmonary macrophages, mice were exposed intranasally and changes in pulmonary macrophage populations were assessed using flow cytometry. Following intranasal instillation of silica, a significant increase in the APC activity of AM was observed, as well as a significant increase in a subset of IM expressing classic APC markers (MHC class II, CD11c). In addition, an in vitro system using bone marrow-derived macrophages (BMDM) was generated to assess the effects of silica on the APC activity of macrophages in vitro. Data using BMDM in the in vitro APC assay demonstrated a significant increase in APC activity following silica exposure, but not following exposure to saline or a control particle (TiO 2 ). Using a combination of in vivo and in vitro experiments, the current study describes a significant increase in an interstitial macrophage subset with an APC phenotype, as well as an increase in the APC activity of both AM and BMDM, as a direct result of exposure to crystalline silica. These studies suggest a specific mechanism, macrophage subset activation, by which crystalline silica exposure results in chronic pulmonary inflammation and, eventually, fibrosis

  1. Leishmania hijacking of the macrophage intracellular compartments.

    Science.gov (United States)

    Liévin-Le Moal, Vanessa; Loiseau, Philippe M

    2016-02-01

    Leishmania spp., transmitted to humans by the bite of the sandfly vector, are responsible for the three major forms of leishmaniasis, cutaneous, diffuse mucocutaneous and visceral. Leishmania spp. interact with membrane receptors of neutrophils and macrophages. In macrophages, the parasite is internalized within a parasitophorous vacuole and engages in a particular intracellular lifestyle in which the flagellated, motile Leishmania promastigote metacyclic form differentiates into non-motile, metacyclic amastigote form. This phenomenon is induced by Leishmania-triggered events leading to the fusion of the parasitophorous vacuole with vesicular members of the host cell endocytic pathway including recycling endosomes, late endosomes and the endoplasmic reticulum. Maturation of the parasitophorous vacuole leads to the intracellular proliferation of the Leishmania amastigote forms by acquisition of host cell nutrients while escaping host defense responses. © 2015 FEBS.

  2. Molecular Characterization of Macrophage-Biomaterial Interactions.

    Science.gov (United States)

    Moore, Laura Beth; Kyriakides, Themis R

    2015-01-01

    Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulation. In this review, we discuss the molecular events that contribute to macrophage activation and fusion with a focus on the role of the inflammasome, signaling pathways such as JAK/STAT and NF-κB, and the putative involvement of micro RNAs in the regulation of these processes.

  3. Immunoregulation of bovine macrophages by factors in the salivary glands of Rhipicephalus microplus

    Directory of Open Access Journals (Sweden)

    Brake Danett K

    2012-02-01

    differential up-regulation of CD86 in bovine macrophages activated by the TLR4-ligand, LPS. Up regulation of proinflammatory cytokines and IL-12, a Th1 promoting cytokine, were inhibited in a dose-dependent manner. The co-stimulatory molecules CD80, as well as the cell activation marker, CD69, were also suppressed in macrophages exposed to SGE. Continued investigation of the immunomodulatory factors will provide the knowledge base to research and develop therapeutic or prophylactic interventions targeting R. microplus-cattle interactions at the blood-feeding interface.

  4. Cardiac macrophages adopt profibrotic/M2 phenotype in infarcted hearts: Role of urokinase plasminogen activator.

    Science.gov (United States)

    Carlson, Signe; Helterline, Deri; Asbe, Laura; Dupras, Sarah; Minami, Elina; Farris, Stephen; Stempien-Otero, April

    2017-07-01

    Macrophages (mac) that over-express urokinase plasminogen activator (uPA) adopt a profibrotic M2 phenotype in the heart in association with cardiac fibrosis. We tested the hypothesis that cardiac macs are M2 polarized in infarcted mouse and human hearts and that polarization is dependent on mac-derived uPA. Studies were performed using uninjured (UI) or infarcted (MI) hearts of uPA overexpressing (SR-uPA), uPA null, or nontransgenic littermate (Ntg) mice. At 7days post-infarction, cardiac mac were isolated, RNA extracted and M2 markers Arg1, YM1, and Fizz1 measured with qrtPCR. Histologic analysis for cardiac fibrosis, mac and myofibroblasts was performed at the same time-point. Cardiac macs were also isolated from Ntg hearts and RNA collected after primary isolation or culture with vehicle, IL-4 or plasmin and M2 marker expression measured. Cardiac tissue and blood was collected from humans with ischemic heart disease. Expression of M2 marker CD206 and M1 marker TNFalpha was measured. Macs from WT mice had increased expression of Arg1 and Ym1 following MI (41.3±6.5 and 70.3±36, fold change vs UI, n=8, Padopt a M2 phenotype in association with fibrosis. Plasmin can induce an M2 phenotype in cardiac macs. However, M2 activation can occur in the heart in vivo in the absence of uPA indicating that alternative pathways to activate plasmin are present in the heart. Excess uPA promotes increased fibroblast density potentially via potentiating fibroblast migration or proliferation. Altering macrophage phenotype in the heart is a potential target to modify cardiac fibrosis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Purinergic signaling to terminate TLR responses in macrophages

    Directory of Open Access Journals (Sweden)

    Kajal eHamidzadeh

    2016-03-01

    Full Text Available Macrophages undergo profound physiological alterations when they encounter pathogen associated molecular patterns (PAMPs. These alterations can result in the elaboration of cytokines and mediators that promote immune responses and contribute to the clearance of pathogens. These innate immune responses by myeloid cells are transient. The termination of these secretory responses is not due to the dilution of stimuli, but rather to the active down-regulation of innate responses induced by the very PAMPs that initiated them. Here we describe a purinergic autoregulatory program whereby TLR-stimulated macrophages control their activation state. In this program, TLR stimulated macrophages undergo metabolic alterations that result in the production of ATP and its release through membrane pannexin channels. This purine nucleotide is rapidly hydrolyzed to adenosine by ectoenzymes on the macrophage surface, CD39 and CD73. Adenosine then signals through the P1 class of seven transmembrane receptors to induce a regulatory state that is characterized by the down-regulation of inflammatory cytokines and the production of anti-inflammatory cytokines and growth factors. This purinergic autoregulatory system mitigates the collateral damage that would be caused by the prolonged activation of macrophages, and rather allows the macrophage to maintain homeostasis. The transient activation of macrophages can be prolonged by treating macrophages with IFN-γ. IFN-γ treated macrophages become less sensitive to the regulatory effects of adenosine, allowing them to sustain macrophage activation for the duration of an adaptive immune response.

  6. Macrophage Phenotype and Function in Different Stages of Atherosclerosis

    Science.gov (United States)

    Tabas, Ira; Bornfeldt, Karin E.

    2016-01-01

    The remarkable plasticity and plethora of biological functions performed by macrophages have enticed scientists to study these cells in relation to atherosclerosis for more than 50 years, and major discoveries continue to be made today. It is now understood that macrophages play important roles in all stages of atherosclerosis, from initiation of lesions and lesion expansion, to necrosis leading to rupture and the clinical manifestations of atherosclerosis, to resolution and regression of atherosclerotic lesions. Lesional macrophages are derived primarily from blood monocytes, although recent research has shown that lesional macrophage-like cells can also be derived from smooth muscle cells. Lesional macrophages take on different phenotypes depending on their environment and which intracellular signaling pathways are activated. Rather than a few distinct populations of macrophages, the phenotype of the lesional macrophage is more complex and likely changes during the different phases of atherosclerosis and with the extent of lipid and cholesterol loading, activation by a plethora of receptors, and metabolic state of the cells. These different phenotypes allow the macrophage to engulf lipids, dead cells, and other substances perceived as danger signals; efflux cholesterol to HDL; proliferate and migrate; undergo apoptosis and death; and secrete a large number of inflammatory and pro-resolving molecules. This review article, part of the Compendium on Atherosclerosis, discusses recent advances in our understanding of lesional macrophage phenotype and function in different stages of atherosclerosis. With the increasing understanding of the roles of lesional macrophages, new research areas and treatment strategies are beginning to emerge. PMID:26892964

  7. Human Induced Pluripotent Stem Cell-Derived Macrophages for Unraveling Human Macrophage Biology.

    Science.gov (United States)

    Zhang, Hanrui; Reilly, Muredach P

    2017-11-01

    Despite a substantial appreciation for the critical role of macrophages in cardiometabolic diseases, understanding of human macrophage biology has been hampered by the lack of reliable and scalable models for cellular and genetic studies. Human induced pluripotent stem cell (iPSC)-derived macrophages (IPSDM), as an unlimited source of subject genotype-specific cells, will undoubtedly play an important role in advancing our understanding of the role of macrophages in human diseases. In this review, we summarize current literature in the differentiation and characterization of IPSDM at phenotypic, functional, and transcriptomic levels. We emphasize the progress in differentiating iPSC to tissue resident macrophages, and in understanding the ontogeny of in vitro differentiated IPSDM that resembles primitive hematopoiesis, rather than adult definitive hematopoiesis. We review the application of IPSDM in modeling both Mendelian genetic disorders and host-pathogen interactions. Finally, we highlighted the potential areas of research using IPSDM in functional validation of coronary artery disease loci in genome-wide association studies, functional genomic analyses, drug testing, and cell therapeutics in cardiovascular diseases. © 2017 American Heart Association, Inc.

  8. Misbehaving macrophages in the pathogenesis of psoriasis

    OpenAIRE

    Clark, Rachael A.; Kupper, Thomas S.

    2006-01-01

    Psoriasis is a chronic inflammatory skin disease unique to humans. In this issue of the JCI, 2 studies of very different mouse models of psoriasis both report that macrophages play a key role in inducing psoriasis-like skin disease. Psoriasis is clearly a polygenic, inherited disease of uncontrolled cutaneous inflammation. The debate that currently rages in the field is whether psoriasis is a disease of autoreactive T cells or whether it reflects an intrinsic defect within the skin — or both....

  9. Molecular Characterization of Macrophage-Biomaterial Interactions

    OpenAIRE

    Moore, Laura Beth; Kyriakides, Themis R.

    2015-01-01

    Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulati...

  10. Macrophage specific drug delivery in experimental leishmaniasis.

    Science.gov (United States)

    Basu, Mukul Kumar; Lala, Sanchaita

    2004-09-01

    Macrophage-specific delivery systems are the subject of much interest nowadays, because of the fact that macrophages act as host cells for many parasites and bacteria, which give rise to outbreak of so many deadly diseases(eg. leishmaniasis, tuberculosis etc.) in humans. To combat these deadly diseases initially macrophage specific liposomal delivery system were thought of and tested in vivo against experimental leishmaniasis in hamsters using a series of indigenous or synthetic antileishmanial compounds and the results were critically discussed. In vitro testing was also done against macrophages infected with Leishmania donovani, the causative agent for visceral leishmaniasis. The common problem of liposome therapy being their larger size, stability and storage, non-ionic surfactant vesicles, niosomes were prepared, for their different drug distribution and release characteristics compared to liposomes. When tested in vivo, the retention capacity of niosomes was found to be higher than that of liposomes due to the absence of lipid molecules and their smaller size. Thus the therapeutic efficacy of certain antileishmanial compounds was found to be better than that in the liposomal form. The niosomes, being cheaper, less toxic, biodegradable and non-immunogenic, were considered for sometime as suitable alternatives to liposomes as drug carriers. Besides the advent of other classical drugs carriers(e.g. neoglycoproteins), the biggest challenge came from polymeric delivery vehicles, specially the polymeric nanoparticles which were made of cost effective biodegradable polymers and different natural polymers. Because of very small size and highly stable nature, use of nanoparticles as effective drug carriers has been explored in experimental leishmaniasis using a series of antileishmanial compounds, both of indigenous and synthetic origin. The feasibility of application in vivo, when tested for biological as well as for other physicochemical parameters, the polymeric

  11. M2 polarization enhances silica nanoparticle uptake by macrophages

    Directory of Open Access Journals (Sweden)

    Jessica eHoppstädter

    2015-03-01

    Full Text Available While silica nanoparticles have enabled numerous industrial and medical applications, their toxicological safety requires further evaluation. Macrophages are the major cell population responsible for nanoparticle clearance in vivo. The prevailing macrophage phenotype largely depends on the local immune status of the host. Whereas M1-polarized macrophages are considered as pro-inflammatory macrophages involved in host defense, M2 macrophages exhibit anti-inflammatory and wound-healing properties, but also promote tumor growth.We employed different models of M1 and M2 polarization: GM-CSF/LPS/IFN-gamma was used to generate primary human M1 cells and M-CSF/IL-10 to differentiate M2 monocyte-derived macrophages. PMA-differentiated THP-1 cells were polarized towards an M1 type by LPS/IFN-gamma and towards M2 by IL-10. Uptake of fluorescent silica nanoparticles (Ø 26 and 41 nm and microparticles (Ø 1.75 µm was quantified. At the concentration used (50 µg/ml, silica nanoparticles did not influence cell viability as assessed by MTT assay. Nanoparticle uptake was enhanced in M2-polarized primary human monocyte-derived macrophages compared with M1 cells, as shown by flow cytometric and microscopic approaches. In contrast, the uptake of microparticles did not differ between M1 and M2 phenotypes. M2 polarization was also associated with increased nanoparticle uptake in the macrophage-like THP-1 cell line. In accordance, in vivo polarized M2-like primary human tumor-associated macrophages (TAM obtained from lung tumors took up more nanoparticles than M1-like alveolar macrophages isolated from the surrounding lung tissue.In summary, our data indicate that the M2 polarization of macrophages promotes nanoparticle internalization. Therefore, the phenotypical differences between macrophage subsets should be taken into consideration in future investigations on nanosafety, but might also open up therapeutic perspectives allowing to specifically target M2

  12. DPSCs from Inflamed Pulp Modulate Macrophage Function via the TNF-α/IDO Axis

    Science.gov (United States)

    Lee, S.; Zhang, Q.Z.; Karabucak, B.; Le, A.D.

    2016-01-01

    Human dental pulp stem cells (DPSCs) can be isolated from inflamed pulp derived from carious teeth with symptomatic irreversible pulpitis (I-DPSCs), which possess stemness and multidifferentiation potentials similar to DPSCs from healthy pulp. Since macrophages—essential cell players of the pulpal innate immunity—can regulate pulpal inflammation and repair, the authors investigated the immunomodulatory effects of DPSCs/I-DPSCs on macrophage functions and their underlying mechanisms. Similar to DPSCs, I-DPSCs were capable of colony-forming efficiency and adipogenic and osteo/dentinogenic differentiation under in vitro induction conditions. I-DPSCs also expressed a similar phenotypic profile of mesenchymal stem cell markers, except a relatively higher level of CD146 as compared with DPSCs. Coculture of DPSCs or I-DPSCs with differentiated THP-1 cells, the human monocyte cell line, markedly suppressed tumor necrosis factor α (TNF-α) secretion in response to stimulation with lipopolysaccharides (LPS) and/or nigericin. However, unlike TNF-α, the secreted level of interleukin 1β was not affected by coculture with DPSCs or I-DPSCs. Furthermore, DPSC/I-DPSC-mediated inhibition of TNF-α secretion by macrophages was abolished by pretreatment with 1-methyl-D-tryptophan, a specific inhibitor of indoleamine-pyrrole 2,3-dioxygenase (IDO), but not by NSC-398, a specific inhibitor of COX-2, suggesting IDO as a mediator. Interestingly, IDO expression was significantly augmented in macrophages and mesenchymal stromal cells in inflamed human pulp tissues. Collectively, these findings show that I-DPSCs, similar to DPSCs, possess stem cell properties and suppress macrophage functions via the TNF-α/IDO axis, thereby providing a physiologically relevant context for their innate immunomodulatory activity in the dental pulp and their capability for pulp repair. PMID:27384335

  13. Distinct spatial distribution of microglia and macrophages following mesenchymal stem cell implantation in mouse brain.

    Science.gov (United States)

    Le Blon, Debbie; Hoornaert, Chloé; Daans, Jasmijn; Santermans, Eva; Hens, Niel; Goossens, Herman; Berneman, Zwi; Ponsaerts, Peter

    2014-09-01

    Although implantation of cellular material in the central nervous system (CNS) is a key direction in CNS regenerative medicine, this approach is currently limited by the occurrence of strong endogenous immune cell responses. In a model of mesenchymal stem cell (MSC) grafting in the CNS of immune-competent mice, we previously described that MSC grafts become highly surrounded and invaded by Iba1(+) myeloid cells (microglia and/or macrophages). Here, following grafting of blue fluorescent protein (BFP)-expressing MSC in the CNS of CX3CR1(+/-) and CX3CR1(-/-) mice, our results indicate: (1) that the observed inflammatory response is independent of the fractalkine signalling axis, and (2) that a significant spatial distribution of Iba1(+) inflammatory cells occurs, in which Iba1(+) CX3CR1(+) myeloid cells mainly surround the MSC graft and Iba1(+) CX3CR1(-) myeloid cells mainly invade the graft at 10 days post transplantation. Although Iba1(+) CX3CR1(+) myeloid cells are considered to be of resident microglial origin, Iba1(+) CX3CR1(-) myeloid cells are most likely of peripheral monocyte/macrophage origin. In order to confirm the latter, we performed MSC-BFP grafting experiments in the CNS of eGFP(+) bone marrow chimeric C57BL/6 mice. Analysis of MSC-BFP grafts in the CNS of these mice confirmed our observation that peripheral monocytes/macrophages invade the MSC graft and that resident microglia surround the MSC graft site. Furthermore, analysis of major histocompatibility complex class II (MHCII) expression revealed that mainly macrophages, but not microglia, express this M1 pro-inflammatory marker in the context of MSC grafting in the CNS. These results again highlight the complexity of cell implantation immunology in the CNS.

  14. Hemocyanins Stimulate Innate Immunity by Inducing Different Temporal Patterns of Proinflammatory Cytokine Expression in Macrophages.

    Science.gov (United States)

    Zhong, Ta-Ying; Arancibia, Sergio; Born, Raimundo; Tampe, Ricardo; Villar, Javiera; Del Campo, Miguel; Manubens, Augusto; Becker, María Inés

    2016-06-01

    Hemocyanins induce a potent Th1-dominant immune response with beneficial clinical outcomes when used as a carrier/adjuvant in vaccines and nonspecific immunostimulant in cancer. However, the mechanisms by which hemocyanins trigger innate immune responses, leading to beneficial adaptive immune responses, are unknown. This response is triggered by a proinflammatory signal from various components, of which macrophages are an essential part. To understand how these proteins influence macrophage response, we investigated the effects of mollusks hemocyanins with varying structural and immunological properties, including hemocyanins from Concholepas concholepas, Fissurella latimarginata, and Megathura crenulata (keyhole limpet hemocyanin), on cultures of peritoneal macrophages. Hemocyanins were phagocytosed and slowly processed. Analysis of this process showed differential gene expression along with protein levels of proinflammatory markers, including IL-1β, IL-6, IL-12p40, and TNF-α. An extended expression analysis of 84 cytokines during a 24-h period showed a robust proinflammatory response for F. latimarginata hemocyanin in comparison with keyhole limpet hemocyanin and C. concholepas hemocyanin, which was characterized by an increase in the transcript levels of M1 cytokines involved in leukocyte recruitment. These cytokine genes included chemokines (Cxcl1, Cxcl3, Cxcl5, Ccl2, and Ccl3), ILs (Il1b and Ifng), growth factors (Csf2 and Csf3), and TNF family members (Cd40lg). The protein levels of certain cytokines were increased. However, every hemocyanin maintains downregulated key M2 cytokine genes, including Il4 and Il5 Collectively, our data demonstrate that hemocyanins are able to trigger the release of proinflammatory factors with different patterns of cytokine expression, suggesting differential signaling pathways and transcriptional network mechanisms that lead to the activation of M1-polarized macrophages. Copyright © 2016 by The American Association of

  15. Complement 5a stimulates macrophage polarization and contributes to tumor metastases of colon cancer.

    Science.gov (United States)

    Piao, Chunmei; Zhang, Wen-Mei; Li, Tao-Tao; Zhang, Cong-Cong; Qiu, Shulan; Liu, Yan; Liu, Sa; Jin, Ming; Jia, Li-Xin; Song, Wen-Chao; Du, Jie

    2018-05-15

    Inflammatory cells such as macrophages can play a pro-tumorigenic role in the tumor stroma. Tumor-associated macrophages (TAMs) generally display an M2 phenotype with tumor-promoting activity; however, the mechanisms regulating the TAM phenotype remain unclear. Complement 5a (C5a) is a cytokine-like polypeptide that is generated during complement system activation and is known to promote tumor growth. Herein, we investigated the role of C5a on macrophage polarization in colon cancer metastasis in mice. We found that deficiency of the C5a receptor (C5aR) severely impairs the metastatic ability of implanted colon cancer cells. C5aR was expressed on TAMs, which exhibited an M2-like functional profile in colon cancer liver metastatic lesions. Furthermore, C5a mediated macrophage polarization and this process relied substantially on activation of the nuclear factor-kappa B (NF-κB) pathway. Finally, analysis of human colon carcinoma indicated that C5aR expression is negatively associated with tumor differentiation grade. Our results demonstrate that C5aR has a central role in regulating the M2 phenotype of TAMs, which in turn, contributes to hepatic metastasis of colon cancer through NF-κB signaling. C5a is a potential novel marker for cancer prognosis and drugs targeting complement system activation, specifically the C5aR pathway, may offer new therapeutic opportunities for colon cancer management. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Legumain is activated in macrophages during pancreatitis

    Science.gov (United States)

    Wartmann, Thomas; Fleming, Alicia K.; Gocheva, Vasilena; van der Linden, Wouter A.; Withana, Nimali P.; Verdoes, Martijn; Aurelio, Luigi; Edgington-Mitchell, Daniel; Lieu, TinaMarie; Parker, Belinda S.; Graham, Bim; Reinheckel, Thomas; Furness, John B.; Joyce, Johanna A.; Storz, Peter; Halangk, Walter; Bogyo, Matthew; Bunnett, Nigel W.

    2016-01-01

    Pancreatitis is an inflammatory disease of the pancreas characterized by dysregulated activity of digestive enzymes, necrosis, immune infiltration, and pain. Repeated incidence of pancreatitis is an important risk factor for pancreatic cancer. Legumain, a lysosomal cysteine protease, has been linked to inflammatory diseases such as atherosclerosis, stroke, and cancer. Until now, legumain activation has not been studied during pancreatitis. We used a fluorescently quenched activity-based probe to assess legumain activation during caerulein-induced pancreatitis in mice. We detected activated legumain by ex vivo imaging, confocal microscopy, and gel electrophoresis. Compared with healthy controls, legumain activity in the pancreas of caerulein-treated mice was increased in a time-dependent manner. Legumain was localized to CD68+ macrophages and was not active in pancreatic acinar cells. Using a small-molecule inhibitor of legumain, we found that this protease is not essential for the initiation of pancreatitis. However, it may serve as a biomarker of disease, since patients with chronic pancreatitis show strongly increased legumain expression in macrophages. Moreover, the occurrence of legumain-expressing macrophages in regions of acinar-to-ductal metaplasia suggests that this protease may influence reprogramming events that lead to inflammation-induced pancreatic cancer. PMID:27514475

  17. Pegylated silica nanoparticles: cytotoxicity and macrophage uptake

    Science.gov (United States)

    Glorani, Giulia; Marin, Riccardo; Canton, Patrizia; Pinto, Marcella; Conti, Giamaica; Fracasso, Giulio; Riello, Pietro

    2017-08-01

    Here, we present a thorough study of pegylated silica nanoparticle (SNP) interaction with different biological environments. The SNPs have a mean diameter of about 40 nm and are coated with polyethylene glycol (PEG) of different molecular weights. The physicochemical characterization of SNPs allowed the confirmation of the binding of PEG chains to the silica surface, the reproducibility of the synthesis and the narrow size-dispersion. In view of clarifying the SNP interaction with biological environments, we first assessed the SNP reactivity after the incubation with two cell lines (macrophages RAW 264.7 and primary human fibroblasts), observing a reduced toxicity of pegylated SNPs compared to the bare ones. Then, we investigated the effect of the protein adsorption on the SNP surface using the model serum protein, bovine serum albumin (BSA). We found that the protein adsorption takes place more heavily on poorly pegylated SNPs, promoting the uptake of the latter by macrophages and leading to an increased mortality of these cells. To better understand this mechanism by means of flow cytometry, the dye Ru(bpy)3Cl2 was incorporated in the SNPs. The overall results highlight the SNP potentialities as a drug delivery system, thanks to the low interactions with the macrophages.

  18. Burkholderia pseudomallei transcriptional adaptation in macrophages

    Directory of Open Access Journals (Sweden)

    Chieng Sylvia

    2012-07-01

    Full Text Available Abstract Background Burkholderia pseudomallei is a facultative intracellular pathogen of phagocytic and non-phagocytic cells. How the bacterium interacts with host macrophage cells is still not well understood and is critical to appreciate the strategies used by this bacterium to survive and how intracellular survival leads to disease manifestation. Results Here we report the expression profile of intracellular B. pseudomallei following infection of human macrophage-like U937 cells. During intracellular growth over the 6 h infection period, approximately 22 % of the B. pseudomallei genome showed significant transcriptional adaptation. B. pseudomallei adapted rapidly to the intracellular environment by down-regulating numerous genes involved in metabolism, cell envelope, motility, replication, amino acid and ion transport system and regulatory function pathways. Reduced expression in catabolic and housekeeping genes suggested lower energy requirement and growth arrest during macrophage infection, while expression of genes encoding anaerobic metabolism functions were up regulated. However, whilst the type VI secretion system was up regulated, expression of many known virulence factors was not significantly modulated over the 6hours of infection. Conclusions The transcriptome profile described here provides the first comprehensive view of how B. pseudomallei survives within host cells and will help identify potential virulence factors and proteins that are important for the survival and growth of B. pseudomallei within human cells.

  19. Placental Growth Factor Contributes to Liver Inflammation, Angiogenesis, Fibrosis in Mice by Promoting Hepatic Macrophage Recruitment and Activation

    Directory of Open Access Journals (Sweden)

    Xi Li

    2017-07-01

    Full Text Available Placental growth factor (PlGF, a member of the vascular endothelial growth factor (VEGF family, mediates wound healing and inflammatory responses, exerting an effect on liver fibrosis and angiogenesis; however, the precise mechanism remains unclear. The aims of this study are to identify the role of PlGF in liver inflammation and fibrosis induced by bile duct ligation (BDL in mice and to reveal the underlying molecular mechanism. PlGF small interfering RNA (siRNA or non-targeting control siRNA was injected by tail vein starting 2 days after BDL. Liver inflammation, fibrosis, angiogenesis, macrophage infiltration, and hepatic stellate cells (HSCs activation were examined. Our results showed that PlGF was highly expressed in fibrotic livers and mainly distributed in activated HSCs and macrophages. Furthermore, PlGF silencing strongly reduced the severity of liver inflammation and fibrosis, and inhibited the activation of HSCs. Remarkably, PlGF silencing also attenuated BDL-induced hepatic angiogenesis, as evidenced by attenuated liver endothelial cell markers CD31 and von Willebrand factor immunostaining and genes or protein expression. Interestingly, these pathological ameliorations by PlGF silencing were due to a marked reduction in the numbers of intrahepatic F4/80+, CD68+, and Ly6C+ cell populations, which were reflected by a lower expression of these macrophage marker molecules in fibrotic livers. In addition, knockdown of PlGF by siRNA inhibited macrophages activation and substantially suppressed the expression of pro-inflammatory cytokines and chemokines in fibrotic livers. Mechanistically, evaluation of cultured RAW 264.7 cells revealed that VEGF receptor 1 (VEGFR1 mainly involved in mediating the role of PlGF in macrophages recruitment and activation, since using VEGFR1 neutralizing antibody blocking PlGF/VEGFR1 signaling axis significantly inhibited macrophages migration and inflammatory responses. Together, these findings indicate

  20. Interleukin-4 ameliorates the functional recovery of intracerebral hemorrhage through the alternative activation of microglia/macrophage

    Directory of Open Access Journals (Sweden)

    Jianjing eYang

    2016-03-01

    Full Text Available Neuro-inflammation plays an important role in the recovery of brain injury after stroke. Microglia/macrophage is the major executor in the neuro-inflammation, which can be polarized into two distinct phenotypes: injurious/toxic classical activation (M1 phenotype and protective alternative activation (M2 phenotype. Here, we investigated whether intracerebral administration of interleukin-4 (IL-4 at an early stage could affect the activation of microglia/macrophage and the corresponding outcome after intracerebral hemorrhage (ICH. The neuro-behavior was recorded between different groups in the rat ICH model. The M1 and M2 markers were then determined by qRT-PCR, western blotting, ELISA and immunofluorescence, respectively. We observed aberrant activation of microglia/macrophage after ICH. After intracerebral injection of IL-4, M1 activation was greatly inhibited while M2 activation was enhanced, along with improving neurobehavioral recovery from deficits after ICH. Our study showed that early intracerebral injection of IL-4 potentially promotes neuro-functional recovery, probably through enhancing the alternative activation of microglia/macrophage.

  1. Dextran sulfate sodium upregulates MAPK signaling for the uptake and subsequent intracellular survival of Brucella abortus in murine macrophages.

    Science.gov (United States)

    Reyes, Alisha Wehdnesday Bernardo; Arayan, Lauren Togonon; Simborio, Hannah Leah Tadeja; Hop, Huynh Tan; Min, WonGi; Lee, Hu Jang; Kim, Dong Hee; Chang, Hong Hee; Kim, Suk

    2016-02-01

    Brucellosis is one of the major zoonoses worldwide that inflicts important health problems in animal and human. Here, we demonstrated that dextran sulfate sodium (DSS) significantly increased adhesion of Brucella (B.) abortus in murine macrophages compared to untreated cells. Even without infection, Brucella uptake into macrophages increased and F-actin reorganization was induced compared with untreated cells. Furthermore, DSS increased the phosphorylation of MAPKs (ERK1/2 and p38α) in Brucella-infected, DSS-treated cells compared with the control cells. Lastly, DSS markedly increased the intracellular survival of Brucella abortus in macrophages by up to 48 h. These results suggest that DSS enhanced the adhesion and phagocytosis of B. abortus into murine macrophages by stimulating the MAPK signaling proteins phospho-ERK1/2 and p38α and that DSS increased the intracellular survival of B. abortus by inhibiting colocalization of Brucella-containing vacuoles (BCVs) with the late endosome marker LAMP-1. This study emphasizes the enhancement of the phagocytic and intracellular modulatory effects of DSS, which may suppress the innate immune system and contribute to prolonged Brucella survival and chronic infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Butylated Hydroxyanisole Blocks the Occurrence of Tumor Associated Macrophages in Tobacco Smoke Carcinogen-Induced Lung Tumorigenesis

    International Nuclear Information System (INIS)

    Zhang, Yan; Choksi, Swati; Liu, Zheng-Gang

    2013-01-01

    Tumor-associated macrophages (TAMs) promote tumorigenesis because of their proangiogenic and immune-suppressive functions. Here, we report that butylated hydroxyanisole (BHA) blocks occurrence of tumor associated macrophages (TAMs) in tobacco smoke carcinogen-induced lung tumorigenesis. Continuous administration of butylated hydroxyanisole (BHA), a ROS inhibitor, before or after NNK treatment significantly blocked tumor development, although less effectively when BHA is administered after NNK treatment. Strikingly, BHA abolished the occurrence of F4/80 + macrophages with similar efficiency no matter whether it was administered before or after NNK treatment. Detection of cells from bronchioalveolar lavage fluid (BALF) confirmed that BHA markedly inhibited the accumulation of macrophages while slightly reducing the number of lymphocytes that were induced by NNK. Immunohistological staining showed that BHA specifically abolished the occurrence of CD206 + TAMs when it was administered before or after NNK treatment. Western blot analysis of TAMs markers, arginase I and Ym-1, showed that BHA blocked NNK-induced TAMs accumulation. Our study clearly demonstrated that inhibiting the occurrence of TAMs by BHA contributes to the inhibition of tobacco smoke carcinogen-induced tumorigenesis, suggesting ROS inhibitors may serve as a therapeutic target for treating smoke-induced lung cancer

  3. Origins and Hallmarks of Macrophages: Development, Homeostasis, and Disease

    Science.gov (United States)

    Wynn, Thomas A.; Chawla, Ajay; Pollard, Jeffrey W.

    2013-01-01

    Preface Macrophages the most plastic cells of the hematopoietic system are found in all tissues and exhibit great functional diversity. They have roles in development, homeostasis, tissue repair, and immunity. While anatomically distinct, resident tissue macrophages exhibit different transcriptional profiles, and functional capabilities, they are all required for the maintenance of homeostasis. However, these reparative and homeostatic functions can be subverted by chronic insults, resulting in a causal association of macrophages with disease states. In this review, we discuss how macrophages regulate normal physiology and development and provide several examples of their pathophysiologic roles in disease. We define the “hallmarks” of macrophages performing particular functions, taking into account novel insights into the diversity of their lineages, identity, and regulation. This diversity is essential to understand because macrophages have emerged as important therapeutic targets in many important human diseases. PMID:23619691

  4. Regulation of macrophage development and function in peripheral tissues

    Science.gov (United States)

    Lavin, Yonit; Mortha, Arthur; Rahman, Adeeb; Merad, Miriam

    2015-01-01

    Macrophages are immune cells of haematopoietic origin that provide crucial innate immune defence and have tissue-specific functions in the regulation and maintenance of organ homeostasis. Recent studies of macrophage ontogeny, as well as transcriptional and epigenetic identity, have started to reveal the decisive role of the tissue stroma in the regulation of macrophage function. These findings suggest that most macrophages seed the tissues during embryonic development and functionally specialize in response to cytokines and metabolites that are released by the stroma and drive the expression of unique transcription factors. In this Review, we discuss how recent insights into macrophage ontogeny and macrophage–stroma interactions contribute to our understanding of the crosstalk that shapes macrophage function and the maintenance of organ integrity. PMID:26603899

  5. Tumor-Associated Macrophages in Oncolytic Virotherapy: Friend or Foe?

    Directory of Open Access Journals (Sweden)

    Nicholas L. Denton

    2016-07-01

    Full Text Available Cancer therapy remains a challenge due to toxicity limitations of chemotherapy and radiation therapy. Oncolytic viruses that selectively replicate and destroy cancer cells are of increasing interest. In addition to direct cell lysis, these vectors stimulate an anti-tumor immune response. A key regulator of tumor immunity is the tumor-associated macrophage population. Macrophages can either support oncolytic virus therapy through pro-inflammatory stimulation of the anti-tumor response at the cost of hindering direct oncolysis or through immunosuppressive protection of virus replication at the cost of hindering the anti-tumor immune response. Despite similarities in macrophage interaction between adult and pediatric tumors and the abundance of research supporting macrophage modulation in adult tumors, there are few studies investigating macrophage modulation in pediatric cancers or modulation of immunotherapy. We review the current state of knowledge regarding macrophages in cancers and their influence on oncolytic virotherapy.

  6. Molecular markers in glioma.

    Science.gov (United States)

    Ludwig, Kirsten; Kornblum, Harley I

    2017-09-01

    Gliomas are the most malignant and aggressive form of brain tumors, and account for the majority of brain cancer related deaths. Malignant gliomas, including glioblastoma are treated with radiation and temozolomide, with only a minor benefit in survival time. A number of advances have been made in understanding glioma biology, including the discovery of cancer stem cells, termed glioma stem cells (GSC). Some of these advances include the delineation of molecular heterogeneity both between tumors from different patients as well as within tumors from the same patient. Such research highlights the importance of identifying and validating molecular markers in glioma. This review, intended as a practical resource for both clinical and basic investigators, summarizes some of the more well-known molecular markers (MGMT, 1p/19q, IDH, EGFR, p53, PI3K, Rb, and RAF), discusses how they are identified, and what, if any, clinical relevance they may have, in addition to discussing some of the specific biology for these markers. Additionally, we discuss identification methods for studying putative GSC's (CD133, CD15, A2B5, nestin, ALDH1, proteasome activity, ABC transporters, and label-retention). While much research has been done on these markers, there is still a significant amount that we do not yet understand, which may account for some conflicting reports in the literature. Furthermore, it is unlikely that the investigator will be able to utilize one single marker to prospectively identify and isolate GSC from all, or possibly, any gliomas.

  7. Tumour markers in urology

    International Nuclear Information System (INIS)

    Schmid, L.; Fornara, P.; Fabricius, P.G.

    1988-01-01

    The same applies essentially also for the bladder carcinomas: There is no reliable marker for these cancers which would be useful for clinical purposes. TPA has proven to be too non-specific in malignoma-detection and therefore hardly facilitates clinical decision-making in individual cases. The CEA is not sensitive enough to be recommendable for routine application. However, in advanced stages a CEA examination may be useful if applied within the scope of therapeutic efforts made to evaluate efficacy. In cases of carcinomas of the prostate the sour prostate-specific phosphatase (SPP) and, more recently, especially the prostate-specific antigen (PSA) have proven in follow-up and therapy monitoring, whereby the PSA is superior to the SPP. Nevertheless, both these markers should be employed in therapy monitoring because differences in behaviour will be observed when the desired treatment effect is only achieved in one of the two markers producing tumour cell clonuses. Both markers, but especially the PSA, are quite reliably in agreement with the result of the introduced chemo-/hormone therapy, whereby an increase may be a sure indicator of relapse several months previous to clinical symptoms, imaging procedures, so-called routine laboratory results and subjective complaints. However, none of the 2 markers is appropriate for the purposes of screening or early diagnosis of carcinomas of the prostate. (orig.) [de

  8. Role of Macrophage-Induced Inflammation in Mesothelioma

    Science.gov (United States)

    2011-07-01

    macrophages). Normal pleura becomes available intermittently , serving to slow the completion of this task. All is set in place for us to complete the...GFP) regulated by a Csf1r-promoter (Sasmono et al. 2003) show that macrophages travel up and down these fibers at a fast rate and also “jump” between...2010). Macrophages have also recently been shown to be important in adipogenesis at least during obesity , through their secretion of adipocyte growth

  9. Dengue death with evidence of hemophagocytic syndrome and dengue virus infection in the bone marrow.

    Science.gov (United States)

    Ab-Rahman, Hasliana Azrah; Wong, Pooi-Fong; Rahim, Hafiz; Abd-Jamil, Juraina; Tan, Kim-Kee; Sulaiman, Syuhaida; Lum, Chai-See; Syed-Omar, Syarifah-Faridah; AbuBakar, Sazaly

    2015-01-01

    HPS is a potentially life-threatening histiocytic disorder that has been described in various viral infections including dengue. Its involvement in severe and fatal dengue is probably more common but is presently under recognized. A 38-year-old female was admitted after 5 days of fever. She was deeply jaundiced, leukopenic and thrombocytopenic. Marked elevation of transaminases, hyperbilirubinemia and hypoalbuminemia were observed. She had deranged INR values and prolonged aPTT accompanied with hypofibrinogenemia. She also had splenomegaly. She was positive for dengue IgM. Five days later she became polyuric and CT brain image showed gross generalized cerebral edema. Her conditions deteriorated by day 9, became confused with GCS of 9/15. Her BMAT showed minimal histiocytes. Her serum ferritin level peaked at 13,670.00 µg/mL and her sCD163 and sCD25 values were markedly elevated at 4750.00 ng/mL and 4191.00 pg/mL, respectively. She succumbed to the disease on day 10 and examination of her tissues showed the presence of dengue virus genome in the bone marrow. It is described here, a case of fatal dengue with clinical features of HPS. Though BMAT results did not show the presence of macrophage hemophagocytosis, other laboratory features were consistent with HPS especially marked elevation of ferritin, sCD163 and sCD25. Detection of dengue virus in the patient's bone marrow, fifteen days after the onset of fever was also consistent with the suggestion that the HPS is associated with dengue virus infection. The findings highlight HPS as a possible complication leading to severe dengue and revealed persistent dengue virus infection of the bone marrow. Detection of HPS markers; ferritin, sCD163 and sCD25, therefore, should be considered for early recognition of HPS-associated dengue.

  10. Macrophages: contributors to allograft dysfunction, repair, or innocent bystanders?

    Science.gov (United States)

    Mannon, Roslyn B

    2012-02-01

    Macrophages are members of the innate immune response. However, their role in the adaptive immune response is not known. The purpose of this review is to highlight our current understanding of macrophage structure and function and how they may participate in allograft injury. Studies in acute kidney injury models identify macrophages as key mediators of inflammatory injury, while more recent studies indicate that they may play a reparative role, depending on phenotype - M1 or M2 type macrophages. Mregs, generated in vitro, appear to have immune suppressive abilities and a unique phenotype. In solid-organ transplant, the emphasis of studies has been on acute or chronic injury. These data are derived from animal models using depletion of macrophages or antagonizing their activation and inflammatory responses. The relative contribution of macrophage phenotype in transplantation has not been explored. These studies suggest that macrophages play an injurious role in acute cellular allograft rejection, as well as in chronic injury. Infiltration of an allograft with macrophages is also associated with worse graft function and poor prognosis. Further studies are needed to understand the mechanisms of macrophage-mediated injury, explore their potential reparative role, and determine if they or their functional products are biomarkers of poor graft outcomes.

  11. L-Plastin promotes podosome longevity and supports macrophage motility

    Science.gov (United States)

    Zhou, Julie Y.; Szasz, Taylor P.; Stewart-Hutchinson, Phillip J.; Sivapalan, Janardan; Todd, Elizabeth M.; Deady, Lauren E.; Cooper, John A.; Onken, Michael D.; Morley, S. Celeste

    2016-01-01

    Elucidating the molecular regulation of macrophage migration is essential for understanding the patho-physiology of multiple human diseases, including host responses to infection and autoimmune disorders. Macrophage migration is supported by dynamic rearrangements of the actin cytoskeleton, with formation of actin-based structures such as podosomes and lamellipodia. Here we provide novel insights into the function of the actin-bundling protein l-plastin (LPL) in primary macrophages. We found that podosome stability is disrupted in primary resident peritoneal macrophages from LPL−/− mice. Live-cell imaging of F-actin using resident peritoneal macrophages from LifeACT-RFP+ mice demonstrated that loss of LPL led to decreased longevity of podosomes, without reducing the number of podosomes initiated. Additionally, macrophages from LPL−/− mice failed to elongate in response to chemotactic stimulation. These deficiencies in podosome stabilization and in macrophage elongation correlated with impaired macrophage transmigration in culture and decreased monocyte migration into murine peritoneum. Thus, we have identified a role for LPL in stabilizing long-lived podosomes and in enabling macrophage motility. PMID:27614263

  12. Functional modifications of macrophage activity after sublethal irradiation

    International Nuclear Information System (INIS)

    Swartz, R.P.

    1982-01-01

    The modifications of macrophage activity following sublethal irradiation, both in vivo and in vitro, were studied using spreading and C3b-receptor-mediated ingestion assays. Nonelicited peritoneal washout cells were examined for changes in activity and selected population characteristics. The cells from irradiated mice were from a resident peritoneal population and not immigrating cells. The macrophage population showed enhanced activity early with a refractory period (24-48) when the macrophages were unresponsive to stimulation by irradiated lymphocytes. The enhanced activity was inversely dose dependent on macrophage. The lymphocytes showed a regulatory function(s) on the time post irradiation at which they were examined. Early lymphocytes exhibited the ability to enhance the activity of normal macrophages while lymphocytes removed 24 hours post irradiation could suppress the activity of already activated macrophages. The effect(s) of the various lymphocyte populations were reproduced with cell-free supernatants which was indicative of the production of lymphokines. Separation on nylon wool columns indicated that the activity resided primarily in the T-cell population of lymphocytes. In vitro irradiation indicated that stimulation of the lymphocytes is macrophage dependent. Additional work indicated that sublethally irradiated macrophages did not inhibit replication of the coccidian protozoon Toxoplasma gondii although they did show increased phagocytosis. Examination of the serum from whole body irradiated mice showed the presence of a postirradiation substance which enhanced the phagocytosis of normal macrophages. It was not present in the serum of normal mice and was not endotoxin

  13. Macrophage migration inhibitory factor is associated with aneurysmal expansion

    DEFF Research Database (Denmark)

    Pan, Jie-Hong; Lindholt, Jes Sanddal; Sukhova, Galina K

    2003-01-01

    Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine released mainly from macrophages and activated lymphocytes. Both atherosclerosis and abdominal aortic aneurysm (AAA) are inflammatory diseases tightly linked to the function of these cells. The correlation and contribution o...... of MIF to these human diseases remain unknown, although a recent rabbit study showed expression of this cytokine in atherosclerotic lesions.......Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine released mainly from macrophages and activated lymphocytes. Both atherosclerosis and abdominal aortic aneurysm (AAA) are inflammatory diseases tightly linked to the function of these cells. The correlation and contribution...

  14. Two small lymphocyte subpopulations in human peripheral blood. I. Purification and surface marker profiles

    DEFF Research Database (Denmark)

    Hokland, M; Hokland, P; Heron, I

    1978-01-01

    By means of simple rosette sedimentation methods two subsets from human peripheral blood lymphocytes have been isolated: (1) (E, Fc)- and (2) (E, Ig)-. The first subset was obtained by centrifuging suspensions of macrophage-depleted PBL in which E and EA rosettes had been allowed to form simultan......By means of simple rosette sedimentation methods two subsets from human peripheral blood lymphocytes have been isolated: (1) (E, Fc)- and (2) (E, Ig)-. The first subset was obtained by centrifuging suspensions of macrophage-depleted PBL in which E and EA rosettes had been allowed to form...... simultaneously. The dominant marker of these E- Fc- cells was surface Ig, and during 4 days of culture this population did not alter its surface markers. Subset 2 was obtained in two ways following rosette centrifugation with AET-treated SRBC and rabbit anti-human Ig-coated autologous RBC. This 'Null cell...

  15. Dynamic impact of brief electrical nerve stimulation on the neural immune axis-polarization of macrophages toward a pro-repair phenotype in demyelinated peripheral nerve.

    Science.gov (United States)

    McLean, Nikki A; Verge, Valerie M K

    2016-09-01

    Demyelinating peripheral nerves are infiltrated by cells of the monocyte lineage, including macrophages, which are highly plastic, existing on a continuum from pro-inflammatory M1 to pro-repair M2 phenotypic states. Whether one can therapeutically manipulate demyelinated peripheral nerves to promote a pro-repair M2 phenotype remains to be elucidated. We previously identified brief electrical nerve stimulation (ES) as therapeutically beneficial for remyelination, benefits which include accelerated clearance of macrophages, making us theorize that ES alters the local immune response. Thus, the impact of ES on the immune microenvironment in the zone of demyelination was examined. Adult male rat tibial nerves were focally demyelinated via 1% lysophosphatidyl choline (LPC) injection. Five days later, half underwent 1 hour 20 Hz sciatic nerve ES proximal to the LPC injection site. ES had a remarkable and significant impact, shifting the macrophage phenotype from predominantly pro-inflammatory/M1 toward a predominantly pro-repair/M2 one, as evidenced by an increased incidence of expression of M2-associated phenotypic markers in identified macrophages and a decrease in M1-associated marker expression. This was discernible at 3 days post-ES (8 days post-LPC) and continued at the 5 day post-ES (10 days post-LPC) time point examined. ES also affected chemokine (C-C motif) ligand 2 (CCL2; aka MCP-1) expression in a manner that correlated with increases and decreases in macrophage numbers observed in the demyelination zone. The data establish that briefly increasing neuronal activity favorably alters the immune microenvironment in demyelinated nerve, rapidly polarizing macrophages toward a pro-repair phenotype, a beneficial therapeutic concept that may extend to other pathologies. GLIA 2016;64:1546-1561. © 2016 Wiley Periodicals, Inc.

  16. Moderate restriction of macrophage-tropic human immunodeficiency virus type 1 by SAMHD1 in monocyte-derived macrophages.

    Science.gov (United States)

    Taya, Kahoru; Nakayama, Emi E; Shioda, Tatsuo

    2014-01-01

    Macrophage-tropic human immunodeficiency virus type 1 (HIV-1) strains are able to grow to high titers in human monocyte-derived macrophages. However, it was recently reported that cellular protein SAMHD1 restricts HIV-1 replication in human cells of the myeloid lineage, including monocyte-derived macrophages. Here we show that degradation of SAMHD1 in monocyte-derived macrophages was associated with moderately enhanced growth of the macrophage-tropic HIV-1 strain. SAMHD1 degradation was induced by treating target macrophages with vesicular stomatitis virus glycoprotein-pseudotyped human immunodeficiency virus type 2 (HIV-2) particles containing viral protein X. For undifferentiated monocytes, HIV-2 particle treatment allowed undifferentiated monocytes to be fully permissive for productive infection by the macrophage-tropic HIV-1 strain. In contrast, untreated monocytes were totally resistant to HIV-1 replication. These results indicated that SAMHD1 moderately restricts even a macrophage-tropic HIV-1 strain in monocyte-derived macrophages, whereas the protein potently restricts HIV-1 replication in undifferentiated monocytes.

  17. Macrophage heterogeneity and cholesterol homeostasis: classically-activated macrophages are associated with reduced cholesterol accumulation following treatment with oxidized LDL.

    Science.gov (United States)

    Chu, Eugene M; Tai, Daven C; Beer, Jennifer L; Hill, John S

    2013-02-01

    Macrophages are centrally involved during atherosclerosis development and are the predominant cell type that accumulates cholesterol in the plaque. Macrophages however, are heterogeneous in nature reflecting a variety of microenvironments and different phenotypes may be more prone to contribute towards atherosclerosis progression. Using primary human monocyte-derived macrophages, we sought to evaluate one aspect of atherogenic potential of different macrophage phenotypes by determining their propensity to associate with and accumulate oxidized low density lipoprotein (oxLDL). Classically-activated macrophages treated simultaneously with interferon γ (IFNγ) and tumor necrosis factor α (TNFα) associated with less oxLDL and accumulated less cholesterol compared to untreated controls. The combined treatment of IFNγ and TNFα reduced the mRNA expression of CD36 and the expression of both cell surface CD36 and macrophage scavenger receptor 1 (MSR1) protein. Under oxLDL loaded conditions, IFNγ and TNFα did not reduce macrophage protein expression of the transcription factor peroxisome proliferator-actived receptor γ (PPARγ) which is known to positively regulate CD36 expression. However, macrophages treated with IFNγ attenuated the ability of the PPARγ-specific agonist rosiglitazone from upregulating cell surface CD36 protein expression. Our results demonstrate that the observed reduction of cholesterol accumulation in macrophages treated with IFNγ and TNFα following oxLDL treatment was due at least in part to reduced cell surface CD36 and MSR1 protein expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Commensal bacteria drive endogenous transformation and tumour stem cell marker expression through a bystander effect.

    Science.gov (United States)

    Wang, Xingmin; Yang, Yonghong; Huycke, Mark M

    2015-03-01

    Commensal bacteria and innate immunity play a major role in the development of colorectal cancer (CRC). We propose that selected commensals polarise colon macrophages to produce endogenous mutagens that initiate chromosomal instability (CIN), lead to expression of progenitor and tumour stem cell markers, and drive CRC through a bystander effect. Primary murine colon epithelial cells were repetitively exposed to Enterococcus faecalis-infected macrophages, or purified trans-4-hydroxy-2-nonenal (4-HNE)-an endogenous mutagen and spindle poison produced by macrophages. CIN, gene expression, growth as allografts in immunodeficient mice were examined for clones and expression of markers confirmed using interleukin (IL) 10 knockout mice colonised by E. faecalis. Primary colon epithelial cells exposed to polarised macrophages or 4-hydroxy-2-nonenal developed CIN and were transformed after 10 weekly treatments. In immunodeficient mice, 8 of 25 transformed clones grew as poorly differentiated carcinomas with 3 tumours invading skin and/or muscle. All tumours stained for cytokeratins confirming their epithelial cell origin. Gene expression profiling of clones showed alterations in 3 to 7 cancer driver genes per clone. Clones also strongly expressed stem/progenitor cell markers Ly6A and Ly6E. Although not differentially expressed in clones, murine allografts positively stained for the tumour stem cell marker doublecortin-like kinase 1. Doublecortin-like kinase 1 and Ly6A/E were expressed by epi