WorldWideScience

Sample records for macrophage inflammatory proteins

  1. DMPD: Macrophage-stimulating protein and RON receptor tyrosine kinase: potentialregulators of macrophage inflammatory activities. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12472665 Macrophage-stimulating protein and RON receptor tyrosine kinase: potential...:545-53. (.png) (.svg) (.html) (.csml) Show Macrophage-stimulating protein and RON receptor tyrosine kinase:... potentialregulators of macrophage inflammatory activities. PubmedID 12472665 Title Macrophage-stimulatin

  2. Functional characterization of rat chemokine macrophage inflammatory protein-2.

    Science.gov (United States)

    Frevert, C W; Farone, A; Danaee, H; Paulauskis, J D; Kobzik, L

    1995-02-01

    Expression of mRNA for the C-X-C chemokine, macrophage inflammatory protein-2 (MIP-2), is induced during acute inflammation in rat models of disease. We have characterized the phlogistic potential of rat recombinant MIP-2 (rMIP-2) protein in vitro and in vivo. Recombinant MIP-2 caused marked PMN chemotaxis in vitro, with peak chemotactic activity at 10 nM. Incubation of whole blood with rMIP-2 caused a significant loss of L-selectin and a significant increase in Mac-1 expression on the PMN surface. Under similar conditions rMIP-2 also caused a modest respiratory burst in PMNs. The intratracheal instillation of 10 and 50 micrograms of rMIP-2 caused a significant influx of PMNs into the airspace of the lungs. Rat MIP-2 is a potent neutrophil chemotactic factor capable of causing neutrophil activation and is likely to function in PMN recruitment during acute inflammation in rat disease models.

  3. Macrophage inflammatory protein-1 alpha expression in interstitial lung disease.

    Science.gov (United States)

    Standiford, T J; Rolfe, M W; Kunkel, S L; Lynch, J P; Burdick, M D; Gilbert, A R; Orringer, M B; Whyte, R I; Strieter, R M

    1993-09-01

    Mononuclear phagocyte (M phi) recruitment and activation is a hallmark of a number of chronic inflammatory diseases of the lung, including sarcoidosis and idiopathic pulmonary fibrosis (IPF). We hypothesized that macrophage inflammatory protein-1 (MIP-1 alpha), a peptide with leukocyte activating and chemotactic properties, may play an important role in mediating many of the cellular changes that occur in sarcoidosis and IPF. In initial experiments, we demonstrated that human rMIP-1 alpha exerted chemotactic activities toward both polymorphonuclear leukocytes and monocytes, and these activities were inhibited by treatment with rabbit anti-human MIP-1 alpha antiserum. In support of the potential role of MIP-1 alpha in interstitial lung disease, we detected MIP-1 alpha in the bronchoalveolar lavage fluid of 22/23 patients with sarcoidosis (mean 443 +/- 76 pg/ml) and 9/9 patients with IPF (mean 427 +/- 81 pg/ml), whereas detectable MIP-1 alpha was found in only 1/7 healthy subjects (mean 64 +/- 64 pg/ml). In addition, we found a 2.5- and 1.8-fold increase in monocyte chemotactic activity in BALF obtained from patients with sarcoidosis and IPF respectively, as compared to healthy subjects, and this monocyte chemotactic activity, but not neutrophil chemotactic activity, was reduced by approximately 22% when bronchoalveolar lavage fluid from sarcoidosis and IPF patients were preincubated with rabbit antihuman MIP-1 alpha antibodies. To determine the cellular source(s) of MIP-1 alpha within the lung, we performed immunohistochemical analysis of bronchoalveolar lavage cell pellets, transbronchial biopsies, and open lung biopsies obtained from patients with IPF and sarcoidosis. Substantial expression of cell-associated MIP-1 alpha was detected in M phi, including both alveolar AM phi and interstitial M phi. In addition, interstitial fibroblasts within biopsies obtained from sarcoid and IPF patients also expressed immunoreactive MIP-1 alpha. Minimal to no detectable MIP-1

  4. Role of macrophage inflammatory protein-1alpha in T-cell-mediated immunity to viral infection

    DEFF Research Database (Denmark)

    Madsen, Andreas N; Nansen, Anneline; Christensen, Jan P

    2003-01-01

    The immune response to lymphocytic choriomeningitis virus in mice lacking macrophage inflammatory protein-1alpha (MIP-1alpha) was evaluated. Generation of virus-specific effector T cells is unimpaired in MIP-1alpha-deficient mice. Furthermore, MIP-1alpha is not required for T-cell-mediated virus...

  5. Functional Roles of p38 Mitogen-Activated Protein Kinase in Macrophage-Mediated Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Yanyan Yang

    2014-01-01

    Full Text Available Inflammation is a natural host defensive process that is largely regulated by macrophages during the innate immune response. Mitogen-activated protein kinases (MAPKs are proline-directed serine and threonine protein kinases that regulate many physiological and pathophysiological cell responses. p38 MAPKs are key MAPKs involved in the production of inflammatory mediators, including tumor necrosis factor-α (TNF-α and cyclooxygenase-2 (COX-2. p38 MAPK signaling plays an essential role in regulating cellular processes, especially inflammation. In this paper, we summarize the characteristics of p38 signaling in macrophage-mediated inflammation. In addition, we discuss the potential of using inhibitors targeting p38 expression in macrophages to treat inflammatory diseases.

  6. Role of CC chemokines (macrophage inflammatory protein-1 beta, monocyte chemoattractant protein-1, RANTES) in acute lung injury in rats

    DEFF Research Database (Denmark)

    Bless, N M; Huber-Lang, M; Guo, R F

    2000-01-01

    were cloned, the proteins were expressed, and neutralizing Abs were developed. mRNA and protein expression for MIP-1 beta and MCP-1 were up-regulated during the inflammatory response, while mRNA and protein expression for RANTES were constitutive and unchanged during the inflammatory response...... that in chemokine-dependent inflammatory responses in lung CC chemokines do not necessarily demonstrate redundant function.......The role of the CC chemokines, macrophage inflammatory protein-1 beta (MIP-1 beta), monocyte chemotactic peptide-1 (MCP-1), and RANTES, in acute lung inflammatory injury induced by intrapulmonary deposition of IgG immune complexes injury in rats was determined. Rat MIP-1 beta, MCP-1, and RANTES...

  7. Role of macrophage inflammatory protein-1 alpha (MIP-1 alpha) in acute lung injury in rats

    DEFF Research Database (Denmark)

    Shanley, T P; Schmal, H; Friedl, H P

    1995-01-01

    The role of macrophage inflammatory protein-1 alpha (MIP-1 alpha) in the pathogenesis of acute lung injury in rats after intrapulmonary deposition of IgG immune complexes or intratracheal administration of LPS has been assessed. Critical to these studies was the cloning and functional expression...... of rat MIP-1 alpha. The resulting product shared 92% and 90% homology with the known murine sequence at the cDNA level and protein level, respectively. Recombinant rat MIP-1 alpha exhibited dose-dependent chemotactic activity for both rat and human monocytes and neutrophils, which could be blocked...... by anti-murine MIP-1 alpha Ab. Rat MIP-1 alpha mRNA and protein expression were determined as a function of time in both injury models. A time-dependent increase in MIP-1 alpha mRNA in lung extracts was observed in both models. In the LPS model, MIP-1 alpha protein could also be detected...

  8. Anti-inflammatory effect of garlic 14-kDa protein on LPS-stimulated-J774A.1 macrophages.

    Science.gov (United States)

    Rabe, Shahrzad Zamani Taghizadeh; Ghazanfari, Tooba; Siadat, Zahra; Rastin, Maryam; Rabe, Shahin Zamani Taghizadeh; Mahmoudi, Mahmoud

    2015-04-01

    Garlic 14-kDa protein is purified from garlic (Allium sativum L.) which is used in traditional medicine and exerts various immunomodulatory activities. The present study investigated the suppressive effect of garlic 14-kDa protein on LPS-induced expression of pro-inflammatory mediators and underlying mechanism in inflammatory macrophages. J774A.1 macrophages were treated with 14-kDa protein (5-30 μg/ml) with/without LPS (1 μg/ml) and the production of inflammatory mediators such as prostaglandin E2 (PGE2), TNF-α, and IL-1β released were measured using ELISA. Nitric oxide (NO) production was determined using the Griess method. The anti-inflammatory activity of 14-kDa protein was examined by measuring inducible nitric oxide synthase and cyclooxygenase-2 proteins using western blot. The expression of nuclear NF-κB p65 subunit was assessed by western blot. Garlic 14-kDa protein significantly inhibited the excessive production of NO, PGE, TNF-α, and IL-1β in lipopolysaccharide (LPS)-activated J774A.1 macrophages in a concentration-related manner without cytotoxic effect. Western blot analysis demonstrated that garlic 14-kDa protein suppressed corresponding inducible NO synthase expression and activated cyclooxygenase-2 protein expression. The inhibitory effect was mediated partly by a reduction in the activity and expression of transcription factor NF-κB protein. Our results suggested, for the first time, garlic 14-kDa protein exhibits anti-inflammatory properties in macrophages possibly by suppressing the inflammatory mediators via the inhibition of transcription factor NF-κB signaling pathway. The traditional use of garlic as anti-inflammatory remedy could be ascribed partly to 14-kDa protein content. This protein might be a useful candidate for controlling inflammatory diseases and further investigations in vivo.

  9. Identification of cell surface receptors for murine macrophage inflammatory protein-1 alpha.

    Science.gov (United States)

    Oh, K O; Zhou, Z; Kim, K K; Samanta, H; Fraser, M; Kim, Y J; Broxmeyer, H E; Kwon, B S

    1991-11-01

    We have produced recombinant proteins for a cytokine, L2G25BP (macrophage inflammatory protein-1 alpha) (MIP-1 alpha). By using the recombinant protein (rMIP-1 alpha), receptors for MIP-1 alpha were identified on Con A-stimulated and unstimulated CTLL-R8, a T cell line, and LPS-stimulated RAW 264.7, a macrophage cell line. The 125I-rMIP-1 alpha binds to the receptor in a specific and saturable manner. Scatchard analysis indicated a single class of high affinity receptor, with a Kd of approximately 1.5 x 10(-9) M and approximately 1200 binding sites/Con A-stimulated CTLL-R8 cell and a Kd of 0.9 x 10(-9) M and approximately 380 binding sites/RAW 264.7 cell. 125I-rMIP-1 alpha binding was inhibited by unlabeled rMIP-1 alpha in a dose-dependent manner, but not by IL-1 alpha or IL-2. rMIP-1 alpha inhibited the proliferation of unstimulated CTLL-R8 cells. Rabbit anti-rMIP-1 alpha antibodies blocked the growth-inhibitory effect of the rMIP-1 alpha on CTLL-R8 cells.

  10. Role for macrophage inflammatory protein-2 in lipopolysaccharide-induced lung injury in rats

    DEFF Research Database (Denmark)

    Schmal, H; Shanley, T P; Jones, M L;

    1996-01-01

    Macrophage inflammatory protein-2 (MIP-2) is a C-X-C chemokine that possesses chemotactic activity for neutrophils. Rat MIP-2 was cloned and expressed as a 7.9-kDa peptide that exhibited dose-dependent neutrophil chemotactic activity at concentrations from 10 to 250 nM. Rabbit polyclonal Ab...... to the 7.9-kDa peptide showed reactivity by western blot analysis and suppressed its in vitro chemotactic activity. Cross-desensitization chemotaxis experiments suggested that the chemotactic responses elicited by MIP-2 and the related chemokine, cytokine-induced neutrophil chemoattractant, may be mediated...... through a common receptor. Also, chemotactic responses to human GRO-alpha were blocked by exposure of human neutrophils to either GRO-alpha or rat MIP-2, suggesting conservation of this receptor-mediated response. After LPS instillation into rat lung, mRNA for MIP-2 was up-regulated in a time...

  11. Involvement of fractalkine and macrophage inflammatory protein-1 alpha in moderate-severe depression

    Directory of Open Access Journals (Sweden)

    Rosaria Alba Merendino

    2004-01-01

    Full Text Available MODERATE-severe depression (MSD is linked to overexpression of proinflammatory cytokines and chemokines. Fractalkine (FKN and macrophage inflammatory protein-1 alpha (MIP-1α are, respectively, members of CX3C and C-C chemokines, and both are involved in recruiting and activating mononuclear phagocytes in the central nervous system. We analysed the presence of FKN and MIP-1α in sera of untreated MSD patients and healthy donors. High FKN levels were observed in all MSD patients as compared with values only detectable in 26% of healthy donors. MIP-1α was measurable in 20% of patients, while no healthy donors showed detectable chemokine levels. In conclusion, we describe a previously unknown involvement of FKN in the pathogenesis of MSD, suggesting that FKN may represent a target for a specific immune therapy of this disease.

  12. Macrophage inflammatory protein-2 is a mediator of polymorphonuclear neutrophil influx in ocular bacterial infection.

    Science.gov (United States)

    Kernacki, K A; Barrett, R P; Hobden, J A; Hazlett, L D

    2000-01-15

    Polymorphonuclear neutrophils (PMN) in Pseudomonas aeruginosa-infected cornea are required to clear bacteria from affected tissue, yet their persistence may contribute to irreversible tissue destruction. This study examined the role of C-X-C chemokines in PMN infiltration into P. aeruginosa-infected cornea and the contribution of these mediators to disease pathology. After P. aeruginosa challenge, corneal PMN number and macrophage inflammatory protein-2 (MIP-2) and KC levels were compared in mice that are susceptible (cornea perforates) or resistant (cornea heals) to P. aeruginosa infection. While corneal PMN myeloperoxidase activity (indicator of PMN number) was similar in both groups of mice at 1 and 3 days postinfection, by 5-7 days postinfection corneas of susceptible mice contained a significantly greater number of inflammatory cells. Corneal MIP-2, but not KC, levels correlated with persistence of PMN in the cornea of susceptible mice. To test the biological relevance of these data, resistant mice were treated systemically with rMIP-2. This treatment resulted in increased corneal PMN number and significantly exacerbated corneal disease. Conversely, administration of neutralizing MIP-2 pAb to susceptible mice reduced both PMN infiltration and corneal destruction. Collectively, these findings support an important role for MIP-2 in recruitment of PMN to P. aeruginosa-infected cornea. These data also strongly suggest that a timely down-regulation of the host inflammatory response is critical for resolution of infection.

  13. Dendritic cells produce macrophage inflammatory protein-1 gamma, a new member of the CC chemokine family.

    Science.gov (United States)

    Mohamadzadeh, M; Poltorak, A N; Bergstressor, P R; Beutler, B; Takashima, A

    1996-05-01

    Langerhans cells (LC) are skin-specific members of the dendritic cell (DC) family. DC are unique among APC for their capacity to activate immunologically naive T cells, but little is known about their chemotactic recruitment of T cells. We now report that LC produce macrophage inflammatory protein-1 gamma (MIP-1 gamma), a newly identified CC chemokine. MIP-1 gamma mRNA was detected in epidermal cells freshly procured from BALB/c mice, and depletion of I-A+ epidermal cells (i.e., LC) abrogated that expression. MIP-1 gamma mRNA was detected in the XS52 LC-like DC line as well as by 4F7+ splenic DC and granulocyte-macrophage CSF-propagated bone marrow DC. XS52 DC culture supernatants contained 9 and 10.5 kDa immunoreactivities with anti-MIP-1 gamma Abs. We observed in Boyden chamber assays that 1) XS52 DC supernatant (added to the lower chambers) induced significant migration by splenic T cells; 2) this migration was blocked by the addition of anti-MIP-1 gamma in the lower chambers or by rMIP-1 gamma in the upper chambers; and 3) comparable migration occurred in both CD4+ and CD8+ T cells and in both activated and nonactivated T cells. We conclude that mouse DC (including LC) have the capacity to elaborate the novel CC chemokine MIP-1 gamma, suggesting the active participation of DC in recruiting T cells before activation.

  14. Macrophage inflammatory protein-2 contributes to liver resection-induced acceleration of hepatic metastatic tumor growth

    Institute of Scientific and Technical Information of China (English)

    Otto Kollmar; Michael D Menger; Martin K Schilling

    2006-01-01

    AIM: To study the role of macrophage inflammatory protein (MIP)-2 in liver resection-induced acceleration of tumor growth in a mouse model of hepatic metastasis.METHODS: After a 50% hepatectomy, 1×105 CT26.WT cells were implanted into the left liver lobe of syngeneic balb/c mice (PHx). Additional animals were treated with a monoclonal antibody (MAB452) neutralizing MIP-2(PHx+mAB). Non-resected and non-mAB-treated mice (Con) served as controls. After 7 d, tumor angiogenesis and microcirculation as well as cell proliferation, tumor growth, and CXCR-2 expression were analyzed using intravital fluorescence microscopy, histology, immunohistochemistry, and flow cytometry.RESULTS: Partial hepatectomy increased (P<0.05) the expression of the MIP-2 receptor CXCR-2 on tumor cells when compared with non-resected controls, and markedly accelerated (P<0.05) angiogenesis and metastatic tumor growth. Neutralization of MIP-2 by MAB452 treatment significantly (P<0.05) depressed CXCR-2 expression. Further, the blockade of MIP-2 reduced the angiogenic response (P<0.05) and inhibited tumor growth (P< 0.05). Of interest, liver resection-induced hepatocyte proliferation was not effected by anti-MIP-2 treatment.CONCLUSION: MIP-2 significantly contributes to liver resection-induced acceleration of colorectal CT26.WT hepatic metastasis growth.

  15. Protein corona formation in bronchoalveolar fluid enhances diesel exhaust nanoparticle uptake and pro-inflammatory responses in macrophages.

    Science.gov (United States)

    Shaw, Catherine A; Mortimer, Gysell M; Deng, Zhou J; Carter, Edwin S; Connell, Shea P; Miller, Mark R; Duffin, Rodger; Newby, David E; Hadoke, Patrick W F; Minchin, Rodney F

    2016-09-01

    In biological fluids nanoparticles bind a range of molecules, particularly proteins, on their surface. The resulting protein corona influences biological activity and fate of nanoparticle in vivo. Corona composition is often determined by the biological milieu encountered at the entry portal into the body, and, can therefore, depend on the route of exposure to the nanoparticle. For environmental nanoparticles where exposure is by inhalation, this will be lung lining fluid. This study examined plasma and bronchoalveolar fluid (BALF) protein binding to engineered and environmental nanoparticles. We hypothesized that protein corona on nanoparticles would influence nanoparticle uptake and subsequent pro-inflammatory biological response in macrophages. All nanoparticles bound plasma and BALF proteins, but the profile of bound proteins varied between nanoparticles. Focusing on diesel exhaust nanoparticles (DENP), we identified proteins bound from plasma to include fibrinogen, and those bound from BALF to include albumin and surfactant proteins A and D. The presence on DENP of a plasma-derived corona or one of purified fibrinogen failed to evoke an inflammatory response in macrophages. However, coronae formed in BALF increased DENP uptake into macrophages two fold, and increased nanoparticulate carbon black (NanoCB) uptake fivefold. Furthermore, a BALF-derived corona increased IL-8 release from macrophages in response to DENP from 1720 ± 850 pg/mL to 5560 ± 1380 pg/mL (p = 0.014). These results demonstrate that the unique protein corona formed on nanoparticles plays an important role in determining biological reactivity and fate of nanoparticle in vivo. Importantly, these findings have implications for the mechanism of detrimental properties of environmental nanoparticles since the principle route of exposure to such particles is via the lung.

  16. Serum concentrations and peripheral secretion of the beta chemokines monocyte chemoattractant protein 1 and macrophage inflammatory protein 1α in alcoholic liver disease

    OpenAIRE

    Fisher, N; Neil, D.; Williams, A.; Adams, D.

    1999-01-01

    BACKGROUND—Alcoholic liver disease is associated with increased hepatic expression of monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein 1α (MIP-1α).
AIMS—To determine whether concentrations of chemokines in the peripheral circulation reflect disease activity, and whether chemokine secretion is restricted to the liver or is part of a systemic inflammatory response in alcoholic liver disease.
PATIENTS—Fifty one patients with alcoholic liver disease and 12 healthy co...

  17. Functional characterization of recombinant rat macrophage inflammatory protein-1 alpha and mRNA expression in pulmonary inflammation.

    Science.gov (United States)

    Shi, M M; Chong, I W; Long, N C; Love, J A; Godleski, J J; Paulauskis, J D

    1998-02-01

    Chemokines are important inflammatory mediators that function by activating and recruiting leukocytes to an inflamed tissue. We have recently cDNA cloned the rat chemokine macrophage inflammatory protein-1 alpha (MIP-1 alpha) (1). In the present study, we characterize the biological function of recombinant MIP-1 alpha protein and describe expression of its mRNA both in vitro and in a rat model of lung inflammation. In vitro rat rMIP-1 alpha protein was chemotactic for both polymorphonuclear leukocytes (PMNs) and macrophages with maximal activity at 50 nM for both cell types. In in vivo studies, we found that intratracheal instillation of 1 and 5 micrograms of rMIP-1 alpha resulted in a significant (P < 0.05) influx of cells, primarily monocytes/macrophages, into the airspace of the lungs after 6 h. Mean numbers of lavagable PMNs were not elevated significantly (P < 0.05) for either dose of MIP-1 alpha. As a model of inflammation, rats were intratracheally instilled with 0.1 mg/kg bacterial lipopolysaccharide (LPS). Bronchoalveolar lavage (BAL) was performed 3 h later. Instillation of LPS resulted in an acute neutrophilia, but no significant change in lavagable macrophages. BAL cells from control animals (saline instilled) displayed no basal mRNA expression of either MIP-1 alpha or MIP-2 (positive control). In contrast, both MIP-1 alpha and MIP-2 mRNA levels increased markedly in BAL cells from rats instilled with LPS. The rat alveolar macrophage cell line (NR8383) also showed increased MIP-1 alpha mRNA levels in response to LPS (10 micrograms/ml) with a maximal increase after 6-8 h. The induction of MIP-1 alpha mRNA expression by LPS in NR8383 cells was attenuated by cotreatment with the antioxidants N-acetylcysteine and dimethylsulfoxide, suggesting that the induction of MIP-1 alpha mRNA by LPS is mediated via the generation of reactive oxygen species. We conclude that MIP-1 alpha is a potent chemoattractant for macrophages in vivo, and its mRNA expression in

  18. Asian dust particles induce macrophage inflammatory responses via mitogen-activated protein kinase activation and reactive oxygen species production.

    Science.gov (United States)

    Higashisaka, Kazuma; Fujimura, Maho; Taira, Mayu; Yoshida, Tokuyuki; Tsunoda, Shin-ichi; Baba, Takashi; Yamaguchi, Nobuyasu; Nabeshi, Hiromi; Yoshikawa, Tomoaki; Nasu, Masao; Yoshioka, Yasuo; Tsutsumi, Yasuo

    2014-01-01

    Asian dust is a springtime meteorological phenomenon that originates in the deserts of China and Mongolia. The dust is carried by prevailing winds across East Asia where it causes serious health problems. Most of the information available on the impact of Asian dust on human health is based on epidemiological investigations, so from a biological standpoint little is known of its effects. To clarify the effects of Asian dust on human health, it is essential to assess inflammatory responses to the dust and to evaluate the involvement of these responses in the pathogenesis or aggravation of disease. Here, we investigated the induction of inflammatory responses by Asian dust particles in macrophages. Treatment with Asian dust particles induced greater production of inflammatory cytokines interleukin-6 and tumor necrosis factor- α (TNF- α ) compared with treatment with soil dust. Furthermore, a soil dust sample containing only particles ≤10  μ m in diameter provoked a greater inflammatory response than soil dust samples containing particles >10  μ m. In addition, Asian dust particles-induced TNF- α production was dependent on endocytosis, the production of reactive oxygen species, and the activation of nuclear factor- κ B and mitogen-activated protein kinases. Together, these results suggest that Asian dust particles induce inflammatory disease through the activation of macrophages.

  19. Asian Dust Particles Induce Macrophage Inflammatory Responses via Mitogen-Activated Protein Kinase Activation and Reactive Oxygen Species Production

    Directory of Open Access Journals (Sweden)

    Kazuma Higashisaka

    2014-01-01

    Full Text Available Asian dust is a springtime meteorological phenomenon that originates in the deserts of China and Mongolia. The dust is carried by prevailing winds across East Asia where it causes serious health problems. Most of the information available on the impact of Asian dust on human health is based on epidemiological investigations, so from a biological standpoint little is known of its effects. To clarify the effects of Asian dust on human health, it is essential to assess inflammatory responses to the dust and to evaluate the involvement of these responses in the pathogenesis or aggravation of disease. Here, we investigated the induction of inflammatory responses by Asian dust particles in macrophages. Treatment with Asian dust particles induced greater production of inflammatory cytokines interleukin-6 and tumor necrosis factor-α (TNF-α compared with treatment with soil dust. Furthermore, a soil dust sample containing only particles ≤10 μm in diameter provoked a greater inflammatory response than soil dust samples containing particles >10 μm. In addition, Asian dust particles-induced TNF-α production was dependent on endocytosis, the production of reactive oxygen species, and the activation of nuclear factor-κB and mitogen-activated protein kinases. Together, these results suggest that Asian dust particles induce inflammatory disease through the activation of macrophages.

  20. Purple carrot (Daucus carota L.) polyacetylenes decrease lipopolysaccharide-induced expression of inflammatory proteins in macrophage and endothelial cells.

    Science.gov (United States)

    Metzger, Brandon T; Barnes, David M; Reed, Jess D

    2008-05-28

    Carrots ( Daucus carota L.) contain phytochemicals including carotenoids, phenolics, polyacetylenes, isocoumarins, and sesquiterpenes. Purple carrots also contain anthocyanins. The anti-inflammatory activity of extracts and phytochemicals from purple carrots was investigated by determining attenuation of the response to lipopolysaccharide (LPS). A bioactive chromatographic fraction (Sephadex LH-20) reduced LPS inflammatory response. There was a dose-dependent reduction in nitric oxide production and mRNA of pro-inflammatory cytokines (IL-6, IL-1beta, TNF-alpha) and iNOS in macrophage cells. Protein secretions of IL-6 and TNF-alpha were reduced 77 and 66% in porcine aortic endothelial cells treated with 6.6 and 13.3 microg/mL of the LH-20 fraction, respectively. Preparative liquid chromatography resulted in a bioactive subfraction enriched in the polyacetylene compounds falcarindiol, falcarindiol 3-acetate, and falcarinol. The polyacetylenes were isolated and reduced nitric oxide production in macrophage cells by as much as 65% without cytotoxicity. These results suggest that polyacetylenes, not anthocyanins, in purple carrots are responsible for anti-inflammatory bioactivity.

  1. Modulation of neutrophil influx in glomerulonephritis in the rat with anti-macrophage inflammatory protein-2 (MIP-2) antibody.

    OpenAIRE

    Feng, L.; Xia, Y.; Yoshimura, T.; Wilson, C. B.

    1995-01-01

    The role of the chemokine, macrophage inflammatory protein-2 (MIP-2), during anti-glomerular basement membrane (GBM) antibody (Ab) glomerulonephritis (GN) was studied. Rat MIP-2 cDNA had been cloned previously. Recombinant rat MIP-2 (rMIP-2) from Escherichia coli exhibited neutrophil chemotactic activity and produced neutrophil influx when injected into the rat bladder wall. By using a riboprobe derived from the cDNA and an anti-rMIP-2 polyclonal Ab, MIP-2 was found to be induced in glomeruli...

  2. O-glycosylation in cell wall proteins in Scedosporium prolificans is critical for phagocytosis and inflammatory cytokines production by macrophages.

    Directory of Open Access Journals (Sweden)

    Mariana I D S Xisto

    Full Text Available In this study, we analyze the importance of O-linked oligosaccharides present in peptidorhamnomannan (PRM from the cell wall of the fungus Scedosporium prolificans for recognition and phagocytosis of conidia by macrophages. Adding PRM led to a dose-dependent inhibition of conidia phagocytosis, whereas de-O-glycosylated PRM did not show any effect. PRM induced the release of macrophage-derived antimicrobial compounds. However, O-linked oligosaccharides do not appear to be required for such induction. The effect of PRM on conidia-induced macrophage killing was examined using latex beads coated with PRM or de-O-glycosylated PRM. A decrease in macrophage viability similar to that caused by conidia was detected. However, macrophage killing was unaffected when beads coated with de-O-glycosylated PRM were used, indicating the toxic effect of O-linked oligosaccharides on macrophages. In addition, PRM triggered TNF-α release by macrophages. Chemical removal of O-linked oligosaccharides from PRM abolished cytokine induction, suggesting that the O-linked oligosaccharidic chains are important moieties involved in inflammatory responses through the induction of TNF-α secretion. In summary, we show that O-glycosylation plays a role in the recognition and uptake of S. prolificans by macrophages, killing of macrophages and production of pro- inflammatory cytokines.

  3. O-Glycosylation in Cell Wall Proteins in Scedosporium prolificans Is Critical for Phagocytosis and Inflammatory Cytokines Production by Macrophages

    Science.gov (United States)

    Xisto, Mariana I. D. S.; Bittencourt, Vera C. B.; Liporagi-Lopes, Livia Cristina; Haido, Rosa M. T.; Mendonça, Morena S. A.; Sassaki, Guilherme; Figueiredo, Rodrigo T.; Romanos, Maria Teresa V.; Barreto-Bergter, Eliana

    2015-01-01

    In this study, we analyze the importance of O-linked oligosaccharides present in peptidorhamnomannan (PRM) from the cell wall of the fungus Scedosporium prolificans for recognition and phagocytosis of conidia by macrophages. Adding PRM led to a dose-dependent inhibition of conidia phagocytosis, whereas de-O-glycosylated PRM did not show any effect. PRM induced the release of macrophage-derived antimicrobial compounds. However, O-linked oligosaccharides do not appear to be required for such induction. The effect of PRM on conidia-induced macrophage killing was examined using latex beads coated with PRM or de-O-glycosylated PRM. A decrease in macrophage viability similar to that caused by conidia was detected. However, macrophage killing was unaffected when beads coated with de-O-glycosylated PRM were used, indicating the toxic effect of O-linked oligosaccharides on macrophages. In addition, PRM triggered TNF-α release by macrophages. Chemical removal of O-linked oligosaccharides from PRM abolished cytokine induction, suggesting that the O-linked oligosaccharidic chains are important moieties involved in inflammatory responses through the induction of TNF-α secretion. In summary, we show that O-glycosylation plays a role in the recognition and uptake of S. prolificans by macrophages, killing of macrophages and production of pro- inflammatory cytokines. PMID:25875427

  4. SIRT1/Adenosine Monophosphate-Activated Protein Kinase α Signaling Enhances Macrophage Polarization to an Anti-inflammatory Phenotype in Rheumatoid Arthritis.

    Science.gov (United States)

    Park, So Youn; Lee, Sung Won; Lee, Sang Yeob; Hong, Ki Whan; Bae, Sun Sik; Kim, Koanhoi; Kim, Chi Dae

    2017-01-01

    Macrophages are crucially involved in the pathogenesis of rheumatoid arthritis (RA). Macrophages of the M1 phenotype act as pro-inflammatory mediators in synovium, whereas those of the M2 phenotype suppress inflammation and promote tissue repair. SIRT1 is a class 3 histone deacetylase with anti-inflammatory characteristics. However, the role played by SIRT1 in macrophage polarization has not been defined in RA. We investigated whether SIRT1 exerts anti-inflammatory effects by modulating M1/M2 polarization in macrophages from RA patients. In this study, SIRT1 activation promoted the phosphorylation of an adenosine monophosphate-activated protein kinase (AMPK) α/acetyl-CoA carboxylase in macrophages exposed to interleukin (IL)-4, and that this resulted in the expressions of M2 genes, including MDC, FcεRII, MrC1, and IL-10, at high levels. Furthermore, these expressions were inhibited by sirtinol (an inhibitor of SIRT1) and compound C (an inhibitor of AMPK). Moreover, SIRT1 activation downregulated LPS/interferon γ-mediated NF-κB activity by inhibiting p65 acetylation and the expression of M1 genes, such as CCL2, iNOS, IL-12 p35, and IL-12 p40. Macrophages from SIRT1 transgenic (Tg)-mice exhibited enhanced polarization of M2 phenotype macrophages and reduced polarization of M1 phenotype macrophages. In line with these observations, SIRT1-Tg mice showed less histological signs of arthritis, that is, lower TNFα and IL-1β expressions and less severe arthritis in the knee joints, compared to wild-type mice. Taken together, the study shows activation of SIRT1/AMPKα signaling exerts anti-inflammatory activities by regulating M1/M2 polarization, and thereby reduces inflammatory responses in RA. Furthermore, it suggests that SIRT1 signaling be viewed as a therapeutic target in RA.

  5. A novel pro-inflammatory protein of Streptococcus suis 2 induces the Toll-like receptor 2-dependent expression of pro-inflammatory cytokines in RAW 264.7 macrophages via activation of ERK1/2 pathway.

    Science.gov (United States)

    Zhang, Qiang; Yang, Yujie; Yan, Shuxian; Liu, Jiantao; Xu, Zhongmin; Yu, Junping; Song, Yajing; Zhang, Anding; Jin, Meilin

    2015-01-01

    Streptococcus suis 2 is an important swine pathogen and an emergent zoonotic pathogen. Excessive inflammation caused by S. suis is responsible for the high levels of early mortality observed in septic shock-like syndrome cases. However, the mechanisms through which S. suis 2 (SS2) causes excessive inflammation remain unclear. Thus, this study aimed to identify novel pro-inflammatory mediators that play important roles in the development of therapies against SS2 infection. In this study, the novel pro-inflammatory protein HP0459, which was encoded by the SSUSC84_0459 gene, was discovered. The stimulation of RAW 264.7 macrophages with recombinant HP0459 protein induced the expression of pro-inflammatory cytokines (IL-1β, MCP-1 and TNF-α). Compared with the wild-type (WT) strain, the isogenic knockout of HP0459 in SS2 led to reduced production of pro-inflammatory cytokines in RAW264.7 macrophages and in vivo. The pro-inflammatory activity of HP0459 was significantly reduced by an antibody against Toll-like receptor 2 (TLR2) in RAW264.7 macrophages and was lower in TLR2-deficient (TLR2-/-) macrophages than in WT macrophages. Furthermore, specific inhibitors of the extracellular signal-regulated kinase 1/2 (ERK1/2) pathways significantly decreased the HP0459-induced pro-inflammatory cytokine production, and a western blot assay showed that HP0459 stimulation induced the activation of the ERK1/2 pathway. Taken together, our data indicate that HP0459 is a novel pro-inflammatory mediator of SS2 and induces TLR2-dependent pro-inflammatory activity in RAW264.7 macrophages through the ERK1/2 pathway.

  6. Rat macrophage inflammatory protein-1alpha, a CC chemokine, acts as a neutrophil chemoattractant in vitro and in vivo.

    Science.gov (United States)

    Takano, K; Al-Mokdad, M; Shibata, F; Tsuchiya, H; Nakagawa, H

    1999-10-01

    Recombinant rat macrophage inflammatory protein-1alpha (rMIP-1alpha) at a concentration of 3x10(-8) M had strong neutrophil chemotactic activity, though the potency of rMIP-1alpha was less than that of cytokine-induced neutrophil chemoattractant (CINC)-1 at lower concentrations. In addition, rMIP-1alpha induced neutrophil chemotaxis in vivo when rMIP-1alpha was injected into the preformed air-pouch on the back of rats. The adhesion of rMIP-1alpha-treated neutrophils to fibrinogen significantly increased, reaching a maximum adhesion at 10(-8) M. Stimulation of neutrophils with rMIP-1alpha induced a transient increase in intracellular free [Ca2+] dose-dependently. rMIP-1alpha still induced an increase in the intracellular [Ca2+] of rat neutrophils stimulated first with CINC-1, CINC-3 or C5a, suggesting that rat neutrophils have a specific receptor for rMIP-1alpha. Supporting these findings, an additive increase in chemotactic potency was found when both rMIP-1alpha and CINC-were added to the lower wells of Boyden chamber in vitro. In addition, high levels of rMIP-1alpha were detected in the inflammatory site of air-pouch/carrageenan-induced inflammation in rats. Our results suggest that rMIP-1alpha acts as a neutrophil chemoattractant and, together with CINCs, plays an important role in infiltration of neutrophils into inflammatory sites in rats.

  7. Modulation of neutrophil influx in glomerulonephritis in the rat with anti-macrophage inflammatory protein-2 (MIP-2) antibody.

    Science.gov (United States)

    Feng, L; Xia, Y; Yoshimura, T; Wilson, C B

    1995-03-01

    The role of the chemokine, macrophage inflammatory protein-2 (MIP-2), during anti-glomerular basement membrane (GBM) antibody (Ab) glomerulonephritis (GN) was studied. Rat MIP-2 cDNA had been cloned previously. Recombinant rat MIP-2 (rMIP-2) from Escherichia coli exhibited neutrophil chemotactic activity and produced neutrophil influx when injected into the rat bladder wall. By using a riboprobe derived from the cDNA and an anti-rMIP-2 polyclonal Ab, MIP-2 was found to be induced in glomeruli with anti-GBM Ab GN as mRNA by 30 min and protein by 4 h, with both disappearing by 24 h. The expression of MIP-2 correlated with glomerular neutrophil influx. A single dose of the anti-MIP-2 Ab 30 min before anti-GBM Ab was effective in reducing neutrophil influx (40% at 4 h, P rMIP-2 Ab had no effect on anti-GBM Ab binding (paired-label isotope study). Functional improvement in the glomerular damage was evidenced by a reduction of abnormal proteinuria (P < 0.05). These results suggest that MIP-2 is a major neutrophil chemoattractant contributing to influx of neutrophils in Ab-induced glomerular inflammation in the rat.

  8. Macrophage Inflammatory Protein-1alpha mediates Matrix Metalloproteinase-9 enhancement in human adherent monocytes fed with malarial pigment

    Institute of Scientific and Technical Information of China (English)

    Giuliana Giribaldi; Elena Valente; Amina Khadjavi; Manuela Polimeni; Mauro Prato

    2011-01-01

    Objective:To investigate the role of macrophage inflammatory protein-1alpha (MIP-1alpha) in the detrimental enhancement of matrix metalloproteinase-9 (MMP-9)expression, release and activity induced by phagocytosis of malarial pigment (haemozoin,HZ) in human monocytes. Methods: Human adherent monocytes were unfed/fed with nativeHZ for 2 h. After 24 hours, MIP-1alpha production was evaluated by ELISA in cell supernatants. Alternatively,HZ-unfed/fed monocytes were treated in presence/absence of anti-humanMIP-1alpha blocking antibodies or recombinant humanMIP-1alpha for15 h (RNA studies) or 24 h (protein studies); therefore,MMP-9mRNA expression was evaluated in cell lysates by Real TimeRT-PCR, whereas proMMP-9and activeMMP-9protein release were measured in cell supernatants by Western blotting and gelatin zymography.Results: Phagocytosis ofHZ by human monocytes increased production ofMIP-1alpha, mRNA expression ofMMP-9and protein release of proMMP-9 and activeMMP-9. All theHZ-enhancing effects onMMP-9 were abrogated by anti-humanMIP-1alpha blocking antibodies and mimicked by recombinant humanMIP-1alpha.Conclusions:The present work suggests a role for MIP-1alpha in theHZ-dependent enhancement ofMMP-9 expression, release and activity observed in human monocytes, highlighting new detrimental effects ofHZ-triggered proinflammatory response by phagocytic cells in falciparum malaria.

  9. Exacerbation of Acanthamoeba keratitis in animals treated with anti-macrophage inflammatory protein 2 or antineutrophil antibodies.

    Science.gov (United States)

    Hurt, M; Apte, S; Leher, H; Howard, K; Niederkorn, J; Alizadeh, H

    2001-05-01

    Neutrophils are thought to be involved in many infectious diseases and have been found in high numbers in the corneas of patients with Acanthamoeba keratitis. Using a Chinese hamster model of keratitis, conjunctival neutrophil migration was manipulated to determine the importance of neutrophils in this disease. Inhibition of neutrophil recruitment was achieved by subconjunctival injection with an antibody against macrophage inflammatory protein 2 (MIP-2), a powerful chemotactic factor for neutrophils which is secreted by the cornea. In other experiments, neutrophils were depleted by intraperitoneal injection of anti-Chinese hamster neutrophil antibody. The inhibition of neutrophils to the cornea resulted in an earlier onset and more severe infection compared to controls. Anti-MIP-2 antibody treatment produced an almost 35% reduction of myeloperoxidase activity in the cornea 6 days postinfection, while levels of endogenous MIP-2 secretion increased significantly. Recruitment of neutrophils into the cornea via intrastromal injections of recombinant MIP-2 generated an initially intense inflammation that resulted in the rapid resolution of the corneal infection. The profound exacerbation of Acanthamoeba keratitis seen when neutrophil migration was inhibited, combined with the rapid clearing of the disease in the presence of increased neutrophils, strongly suggests that neutrophils play an important role in combating Acanthamoeba infections in the cornea.

  10. Requirement for C-X-C chemokines (macrophage inflammatory protein-2 and cytokine-induced neutrophil chemoattractant) in IgG immune complex-induced lung injury

    DEFF Research Database (Denmark)

    Shanley, T P; Schmal, H; Warner, R L

    1997-01-01

    The C-X-C chemokines of the IL-8 family possess potent chemotactic activity for neutrophils, but their in vivo role in inflammatory responses is not well understood. In the IgG immune complex-induced model of acute lung inflammatory injury in the rat we have evaluated the roles of two rat...... chemokines, macrophage inflammatory protein-2 (MIP-2) and cytokine-induced neutrophil chemoattractant (CINC). Both mRNA and protein for MIP-2 and CINC appeared in a time-dependent manner after initiation of IgG immune complex deposition in lung. There exists a 69% homology between the amino acid sequences...... by 125I-labeled albumin leakage from the pulmonary vasculature) and reduced neutrophil accumulation in the lung (as determined by myeloperoxidase (MPO content) and neutrophil counts in bronchoalveolar lavage (BAL) fluids); however, no change in TNF-alpha levels in BAL fluids was found. Chemotactic...

  11. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1{alpha}, suppress amyloid {beta}-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Raman, Dayanidhi; Milatovic, Snjezana-Zaja [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Milatovic, Dejan [Department of Pediatrics/Pediatric Toxicology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Splittgerber, Ryan [Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States); Fan, Guo-Huang [Department of Neurobiology and Neurotoxicology, Meharry Medical College, Nashville, TN 37221 (United States); Richmond, Ann, E-mail: ann.richmond@vanderbilt.edu [VA Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232 (United States)

    2011-11-15

    Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-{beta} (A{beta}). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1{alpha} (SDF-1{alpha}), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress A{beta}-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1{alpha} significantly protected neurons from A{beta}-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1{alpha}. Intra-cerebroventricular (ICV) injection of A{beta} led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24 h following the exposure. The A{beta}-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F{sub 2}-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1{alpha}. Additionally, MIP-2 or SDF-1{alpha} was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against A{beta} neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration. -- Research highlights: Black-Right-Pointing-Pointer Neuroprotective ability of the chemokines MIP2 and CXCL12 against A{beta} toxicity. Black-Right-Pointing-Pointer MIP

  12. Macrophage Inflammatory Protein 1α Inhibits Postentry Steps of Human Immunodeficiency Virus Type 1 Infection via Suppression of Intracellular Cyclic AMP

    OpenAIRE

    2005-01-01

    Primary isolates of human immunodeficiency virus type 1 (HIV-1) predominantly use chemokine receptor CCR5 to enter target cells. The natural ligands of CCR5, the β-chemokines macrophage inflammatory protein 1α (MIP-1α), MIP-1β, and RANTES, interfere with HIV-1 binding to CCR5 receptors and decrease the amount of virions entering cells. Although the inhibition of HIV-1 entry by β-chemokines is well documented, their effects on postentry steps of the viral life cycle and on host cell components...

  13. Opposite effects of two trichothecene mycotoxins, deoxynivalenol and nivalenol, on the levels of macrophage inflammatory protein (MIP)-1α and MIP-1β in HL60 cells.

    Science.gov (United States)

    Nagashima, Hitoshi; Nakagawa, Hiroyuki; Kushiro, Masayo

    2012-11-01

    To elucidate the mechanisms underlying the toxicities of the trichothecene mycotoxins deoxynivalenol and nivalenol, their effects on the secretion of anti-hematopoietic chemokines, macrophage inflammatory protein-1α (MIP-1α) and MIP-1β in human promyelocytic leukemia cell line HL60 were investigated. Exposure to deoxynivalenol for 24h significantly induced the secretion of chemokines. The induction of these chemokines may account for the leukopenia after exposure to trichothecene mycotoxins. Treatment with nivalenol decreased the secretion of these chemokines. Our finding that deoxynivalenol induces the secretion of these chemokines, whereas nivalenol has the opposite effect, clearly indicates that the toxicity mechanisms of deoxynivalenol and nivalenol differ.

  14. Enhancing and suppressing effects of recombinant murine macrophage inflammatory proteins on colony formation in vitro by bone marrow myeloid progenitor cells.

    Science.gov (United States)

    Broxmeyer, H E; Sherry, B; Lu, L; Cooper, S; Oh, K O; Tekamp-Olson, P; Kwon, B S; Cerami, A

    1990-09-15

    Purified recombinant (r) macrophage inflammatory proteins (MIPs) 1 alpha, 1 beta, and 2 were assessed for effects on murine (mu) and human (hu) marrow colony-forming unit-granulocyte-macrophage (CFU-GM) and burst-forming unit-erythroid (BFU-E) colonies. Recombinant MIP-1 alpha, -1 beta, and -2 enhanced muCFU-GM colonies above that stimulated with 10 to 100 U natural mu macrophage-colony-stimulating factor (M-CSF) or rmuGM-CSF, with enhancement seen on huCFU-GM colony formation stimulated with suboptimal rhuM-CSF or rhuGM-CSF; effects were neutralized by respective MIP-specific antibodies. Macrophage inflammatory proteins had no effects on mu or huBFU-E colonies stimulated with erythropoietin (Epo). However, natural MIP-1 and rMIP-1 alpha, but not rMIP-1 beta or -2, suppressed muCFU-GM stimulated with pokeweed mitogen spleen-conditioned medium (PWMSCM), huCFU-GM stimulated with optimal rhuGM-CSF plus rhu interleukin-3 (IL-3), muBFU-E and multipotential progenitors (CFU-GEMM) stimulated with Epo plus PWMSCM, and huBFU-E and CFU-GEMM stimulated with Epo plus rhuIL-3 or rhuGM-CSF. The suppressive effects of natural MIP-1 and rMIP-1 alpha were also apparent on a population of BFU-E, CFU-GEMM, and CFU-GM present in cell-sorted fractions of human bone marrow (CD34 HLA-DR+) highly enriched for progenitors with cloning efficiencies of 42% to 75%. These results, along with our previous studies, suggest that MIP-1 alpha, -1 beta, and -2 may have direct myelopoietic enhancing activity for mature progenitors, while MIP-1 alpha may have direct suppressing activity for more immature progenitors.

  15. The Macrophage Inflammatory Proteins MIP1α (CCL3 and MIP2α (CXCL2 in Implant-Associated Osteomyelitis: Linking Inflammation to Bone Degradation

    Directory of Open Access Journals (Sweden)

    Ulrike Dapunt

    2014-01-01

    Full Text Available Bacterial infections of bones remain a serious complication of endoprosthetic surgery. These infections are difficult to treat, because many bacterial species form biofilms on implants, which are relatively resistant towards antibiotics. Bacterial biofilms elicit a progressive local inflammatory response, resulting in tissue damage and bone degradation. In the majority of patients, replacement of the prosthesis is required. To address the question of how the local inflammatory response is linked to bone degradation, tissue samples were taken during surgery and gene expression of the macrophage inflammatory proteins MIP1α (CCL3 and MIP2α (CXCL2 was assessed by quantitative RT-PCR. MIPs were expressed predominantly at osteolytic sites, in close correlation with CD14 which was used as marker for monocytes/macrophages. Colocalisation of MIPs with monocytic cells could be confirmed by histology. In vitro experiments revealed that, aside from monocytic cells, also osteoblasts were capable of MIP production when stimulated with bacteria; moreover, CCL3 induced the differentiation of monocytes to osteoclasts. In conclusion, the multifunctional chemokines CCL3 and CXCL2 are produced locally in response to bacterial infection of bones. In addition to their well described chemokine activity, these cytokines can induce generation of bone resorbing osteoclasts, thus providing a link between bacterial infection and osteolysis.

  16. The effects of curcumin on the 19000 Mycobacterium tuberculosis protein-induced inflammatory and apoptotic reaction and the expression of p38 mitogen-activated protein kinases in WBC264-9C macrophages

    Institute of Scientific and Technical Information of China (English)

    刘莉

    2014-01-01

    Objective By using the cell wall component of Mycobacterium tuberculosis 19 000 lipoprotein(P19)and curcumin(CUR)acting on the human macrophage cell line WBC264-9C,and by the blocking of the p38 mitogen-activated protein kinases(p38 MAPK)signaling pathway,we wanted to investigate the effect of curcurmin on P19-induced inflammatory responses and apoptosis in human macrophages and the potential underlying molecular mechanisms.Methods P19 and CUR were used to

  17. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1alpha or its CCR5 receptor

    DEFF Research Database (Denmark)

    Tran, E H; Kuziel, W A; Owens, T

    2000-01-01

    Macrophage inflammatory protein (MIP)-1alpha is a chemokine that is associated with Th1 cytokine responses. Expression and antibody blocking studies have implicated MIP-1alpha in multiple sclerosis (MS) and in experimental autoimmune encephalomyelitis (EAE). We examined the role of MIP-1alpha...... and its CCR5 receptor in the induction of EAE by immunizing C57BL / 6 mice deficient in either MIP-1alpha or CCR5 with myelin oligodendrocyte glycoprotein (MOG). We found that MIP-1alpha-deficient mice were fully susceptible to MOG-induced EAE. These knockout animals were indistinguishable from wild...... chemoattractant protein-1, MIP-1beta, MIP-2, lymphotactin and T cell activation gene-3 during the course of the disease. CCR5-deficient mice were also susceptible to disease induction by MOG. The dispensability of MIP-1alpha and CCR5 for MOG-induced EAE in C57BL / 6 mice supports the idea that differential...

  18. Anti-inflammatory activity of atractylenolide III through inhibition of nuclear factor-κB and mitogen-activated protein kinase pathways in mouse macrophages.

    Science.gov (United States)

    Ji, Guang-Quan; Chen, Ren-Qiong; Wang, Ling

    2016-01-01

    To elucidate the anti-inflammatory mechanisms involved, we investigated the effects of atractylenolide III (ATL-III) on cytokine expression, extracellular signal-regulated kinases 1 and 2 (ERK1/2), p38 mitogen-activated protein kinase (p38), C-Jun-N-terminal protein kinase1/2 (JNK1/2) and nuclear factor-κB (NF-κB) pathways in lipopolysaccharide (LPS)-induced RAW264.7 mouse macrophages. Macrophages were incubated with various concentrations (0, 25, 50, 100 μM) of ATL-III and/or LPS (1 μg/mL) for 24 h. The production of nitric oxide (NO) was determined by the Greiss reagent. The production of tumor necrosis factor alpha (TNF-α), prostaglandin E2 (PGE2) and interleukin 6 (IL-6) was determined by enzyme-linked immunosorbent assay (ELISA). Furthermore, macrophages were treated with ATL-III (0, 25, 100 μM) for 1 h and then stimulated by LPS. NF-κB, p38, JNK1/2 and ERK1/2 were determined by western blotting. We found ATL-III showed no inhibitory effect on cell proliferation at concentrations ranging from 1 μM to 100 μM. In addition, ATL-III decreased the release of NO, TNF-α, PGE2 and IL-6 in a dose-dependent manner and showed statistically significant at concentrations of 50 μM and 100 μM as well as cyclooxygenase-2 (COX-2) expression. Furthermore, ATL-III suppressed the transcriptional activity of NF-κB. ATL-III also inhibited the activation of ERK1/2, p38 and JNK1/2 in LPS-treated macrophages and showed statistically significant at concentrations of 25 μM and 100 μM. These data suggest that ATL-III shows an anti-inflammatory effect by suppressing the release of NO, PGE2, TNF-α and IL-6 related to the NF-κB- and MAPK-signaling pathways.

  19. Perfluorocarbon inhibits lipopolysaccharide-induced macrophage inflammatory protein-2 expression and activation of ATF-2 and c-Jun in A549 pulmonary epithelial cells.

    Science.gov (United States)

    Hu, Y; Li, C S; Li, Y Q; Liang, Y; Cao, L; Chen, L A

    2016-04-30

    The signaling pathway that mediates the anti-inflammatory effects of perfluorocarbon (PFC) in alveolar epithelial cells treated with lipopolysaccharide (LPS) remains unclear. To evaluate the role of macrophage-inflammatory protein-2 (MIP-2), four A549 treatment groups were utilized: (1) untreated control, (2) 10 μg/mL of LPS, (3) 10 μg/mL of LPS+30% PFC and (4) 30% PFC. MIP-2 mRNA expression was determined by qPCR and ELISA. Mitogen-activated protein kinase (MAPK) activation was determined by Western blot analysis, and MIP-2 expression was determined by qPCR following treatment with MAPK inhibitors. PFC suppressed LPS-induced MIP-2 mRNA levels (P≤0.035) and MIP-2 secretion (P≤0.046). LPS induced ATF-2 and c-Jun phosphorylation, which was suppressed by PFC. Finally, inhibitors of ERK, JNK, and p38 suppressed LPS-induced MIP-2 mRNA expression. Thus, PFC inhibits LPS-induced MIP-2 expression and ATF-2 and c-Jun phosphorylation. To fully explore the therapeutic potential of PFC for acute lung injury (ALI), in vivo analyses are required to confirm these effects.

  20. Macrophage adaptation in airway inflammatory resolution

    Directory of Open Access Journals (Sweden)

    Manminder Kaur

    2015-09-01

    Full Text Available Bacterial and viral infections (exacerbations are particularly problematic in those with underlying respiratory disease, including post-viral infection, asthma, chronic obstructive pulmonary disease and pulmonary fibrosis. Patients experiencing exacerbations tend to be at the more severe end of the disease spectrum and are often difficult to treat. Most of the unmet medical need remains in this patient group. Airway macrophages are one of the first cell populations to encounter airborne pathogens and, in health, exist in a state of reduced responsiveness due to interactions with the respiratory epithelium and specific factors found in the airway lumen. Granulocyte–macrophage colony-stimulating factor, interleukin-10, transforming growth factor-β, surfactant proteins and signalling via the CD200 receptor, for example, all raise the threshold above which airway macrophages can be activated. We highlight that following severe respiratory inflammation, the airspace microenvironment does not automatically re-set to baseline and may leave airway macrophages more restrained than they were at the outset. This excessive restraint is mediated in part by the clearance of apoptotic cells and components of extracellular matrix. This implies that one strategy to combat respiratory exacerbations would be to retune airway macrophage responsiveness to allow earlier bacterial recognition.

  1. Metabolic reprogramming through fatty acid transport protein 1 (FATP1 regulates macrophage inflammatory potential and adipose inflammation

    Directory of Open Access Journals (Sweden)

    Amy R. Johnson

    2016-07-01

    Conclusion: Our findings provide evidence that FATP1 is a novel regulator of MΦ activation through control of substrate metabolism. Absence of FATP1 exacerbated pro-inflammatory activation in vitro and increased local and systemic components of the metabolic syndrome in HFD-fed Fatp1B−/− mice. In contrast, gain of FATP1 activity in MΦs suggested that Fatp1-mediated activation of fatty acids, substrate switch to glucose, oxidative stress, and lipid mediator synthesis are potential mechanisms. We demonstrate for the first time that FATP1 provides a unique mechanism by which the inflammatory tone of adipose and systemic metabolism may be regulated.

  2. Astrocyte production of the chemokine macrophage inflammatory protein-2 is inhibited by the spice principle curcumin at the level of gene transcription

    Directory of Open Access Journals (Sweden)

    Santoro Thomas J

    2005-02-01

    Full Text Available Abstract Background In neuropathological processes associated with neutrophilic infiltrates, such as experimental allergic encephalitis and traumatic injury of the brain, the CXC chemokine, macrophage inflammatory protein-2 (MIP-2 is thought to play a pivotal role in the induction and perpetuation of inflammation in the central nervous system (CNS. The origin of MIP-2 in inflammatory disorders of the brain has not been fully defined but astrocytes appear to be a dominant source of this chemokine. Curcumin is a spice principle in, and constitutes approximately 4 percent of, turmeric. Curcumin's immunomodulating and antioxidant activities suggest that it might be a useful adjunct in the treatment of neurodegenerative illnesses characterized by inflammation. Relatively unexplored, but relevant to its potential therapeutic efficacy in neuroinflammatory syndromes is the effect of curcumin on chemokine production. To examine the possibility that curcumin may influence CNS inflammation by mechanisms distinct from its known anti-oxidant activities, we studied the effect of this spice principle on the synthesis of MIP-2 by astrocytes. Methods Primary astrocytes were prepared from neonatal brains of CBA/CaJ mice. The cells were stimulated with lipopolysaccharide in the presence or absence of various amount of curcumin or epigallocatechin gallate. MIP-2 mRNA was analyzed using semi-quantitative PCR and MIP-2 protein production in the culture supernatants was quantified by ELISA. Astrocytes were transfected with a MIP-2 promoter construct, pGL3-MIP-2, and stimulated with lipopolysaccharide in the presence or absence of curcumin. Results The induction of MIP-2 gene expression and the production of MIP-2 protein were inhibited by curcumin. Curcumin also inhibited lipopolysaccharide-induced transcription of the MIP-2 promoter reporter gene construct in primary astrocytes. However MIP-2 gene induction by lipopolysaccharide was not inhibited by another anti

  3. The Expression of Interleukin-17, Interferon-gamma, and Macrophage Inflammatory Protein-3 Alpha mRNA in Patients with Psoriasis Vulgaris

    Institute of Scientific and Technical Information of China (English)

    李家文; 李东升; 谭志建

    2004-01-01

    Summary: To investigate the role of Interleukin-17 (IL-17), Interferon-gamma (IFN-γ), and macrophage inflammatory protein-3 alpha (MIP-3α) in the pathogenesis of psoriasis, reverse transcriptase-polymerase chain reaction (RT-PCR) was used to semi-quantitatively analyze the mRNA expression of IL 17, IFN-γ, and MIP-3α in 31 psoriatic lesions and 16 normal skin tissues. The results showed that the mRNA of the three cytokines was present in all specimens. And the expression level of IL-17 mRNA in skin lesions was 1. 1416±0. 0591, which was significantly higher than that in normal controls (0. 8788±0. 0344, P<0. 001). The expression levels of IFN-γ mRNA were 1.1142±0. 0561 and 0. 9050±0. 0263, respectively, with significant difference(P<0. 001). And the expression levels of MIP-3α mRNA in psoriatic lesions was 1. 1397 ± 0. 0521, which was markedly higher than that in normal controls (0. 8681±0. 0308, P<0. 001). These findings indicate that up regulated expression of IL-17, IFN-γ, and MIP-3α might be involved in the pathogenesis of psoriasis.

  4. Asian Dust Particles Induce Macrophage Inflammatory Responses via Mitogen-Activated Protein Kinase Activation and Reactive Oxygen Species Production

    OpenAIRE

    Kazuma Higashisaka; Maho Fujimura; Mayu Taira; Tokuyuki Yoshida; Shin-ichi Tsunoda; Takashi Baba; Nobuyasu Yamaguchi; Hiromi Nabeshi; Tomoaki Yoshikawa; Masao Nasu; Yasuo Yoshioka; Yasuo Tsutsumi

    2014-01-01

    Asian dust is a springtime meteorological phenomenon that originates in the deserts of China and Mongolia. The dust is carried by prevailing winds across East Asia where it causes serious health problems. Most of the information available on the impact of Asian dust on human health is based on epidemiological investigations, so from a biological standpoint little is known of its effects. To clarify the effects of Asian dust on human health, it is essential to assess inflammatory responses to ...

  5. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1alpha or its CCR5 receptor

    DEFF Research Database (Denmark)

    Tran, E H; Kuziel, W A; Owens, T

    2000-01-01

    -type mice in Th1 cytokine gene expression, the kinetics and severity of disease, and infiltration of the central nervous system by lymphocytes, macrophages and granulocytes. RNase protection assays showed comparable accumulation of mRNA for the chemokines interferon-inducible protein-10, RANTES, macrophage...... chemoattractant protein-1, MIP-1beta, MIP-2, lymphotactin and T cell activation gene-3 during the course of the disease. CCR5-deficient mice were also susceptible to disease induction by MOG. The dispensability of MIP-1alpha and CCR5 for MOG-induced EAE in C57BL / 6 mice supports the idea that differential...

  6. Macrophage inflammatory protein 1alpha inhibits postentry steps of human immunodeficiency virus type 1 infection via suppression of intracellular cyclic AMP.

    Science.gov (United States)

    Amella, Carol-Ann; Sherry, Barbara; Shepp, David H; Schmidtmayerova, Helena

    2005-05-01

    Primary isolates of human immunodeficiency virus type 1 (HIV-1) predominantly use chemokine receptor CCR5 to enter target cells. The natural ligands of CCR5, the beta-chemokines macrophage inflammatory protein 1alpha (MIP-1alpha), MIP-1beta, and RANTES, interfere with HIV-1 binding to CCR5 receptors and decrease the amount of virions entering cells. Although the inhibition of HIV-1 entry by beta-chemokines is well documented, their effects on postentry steps of the viral life cycle and on host cell components that control the outcome of infection after viral entry are not well defined. Here, we show that all three beta-chemokines, and MIP-1alpha in particular, inhibit postentry steps of the HIV-1 life cycle in primary lymphocytes, presumably via suppression of intracellular levels of cyclic AMP (cAMP). Productive HIV-1 infection of primary lymphocytes requires cellular activation. Cell activation increases intracellular cAMP, which is required for efficient synthesis of proviral DNA during early steps of viral infection. Binding of MIP-1alpha to cognate receptors decreases activation-induced intracellular cAMP levels through the activation of inhibitory G proteins. Furthermore, inhibition of one of the downstream targets of cAMP, cAMP-dependent PKA, significantly inhibits synthesis of HIV-1-specific DNA without affecting virus entry. These data reveal that beta-chemokine-mediated inhibition of virus replication in primary lymphocytes combines inhibitory effects at the entry and postentry levels and imply the involvement of beta-chemokine-induced signaling in postentry inhibition of HIV-1 infection.

  7. MicroRNA-155 in exosomes secreted from helicobacter pylori infection macrophages immunomodulates inflammatory response

    Science.gov (United States)

    Wang, Jianjun; Deng, Zhiyong; Wang, Zeyou; Wu, Jianhong; Gu, Tao; Jiang, Yibiao; Li, Guangxin

    2016-01-01

    Exosomes containing microRNA-155 act as molecule carriers during immune cell-cell communication and play an important role in the inflammatory response of H. pylori infection macrophages. Previous reports have found that miR-155 was over-expressed in H. pylori infection macrophages, but the significance of which is still unknown. In this study, we analyzed the impact of miR-155 loaded in exosomes derived from macrophages to the inflammatory response of H. pylori infection macrophages and possible mechanisms. We found that miR-155 promoted the expression of inflammatory cytokines including TNF-a, IL-6, IL-23, but also increased the expression of CD40, CD63, CD81, and MCH-I. Meanwhile, inflammatory signal pathways proteins, such as MyD88, NF-κB in H. pylori infection macrophages were down-regulated due to the over-expression of miR-155. Experiments in vitro or in vivo revealed that miR-155 promoted macrophages to inhibit or kill H. pylori by regulating the inflammatory response of cells to prevent the gastritis caused by H. pylori infection. These findings contribute to the understanding of miR-155 contained in exosomes in inflammatory responses of H. pylori infection macrophages. PMID:27725852

  8. Human recombinant macrophage inflammatory protein-1 alpha and -beta and monocyte chemotactic and activating factor utilize common and unique receptors on human monocytes.

    Science.gov (United States)

    Wang, J M; Sherry, B; Fivash, M J; Kelvin, D J; Oppenheim, J J

    1993-04-01

    The human macrophage inflammatory proteins-1 alpha and -beta (MIP-1 alpha and -beta), which are also known as LD78 and ACT2, respectively, are distinct but highly related members of the chemoattractant cytokine (chemokine) family. rMIP-1 alpha and -beta labeled with 125I specifically bind to human peripheral blood monocytes, the monocytic cell line THP-1, peripheral blood T cells, and the YT cell line. Steady state binding experiments revealed approximately 3000 high affinity binding sites/cell for MIP-1 alpha on human monocytes and on THP-1 cells, with Kd values of 383 pM and 450 pM, respectively. Human MIP-1 alpha and -beta had nearly identical affinities for the binding sites and each competed equally well for binding. Human monocyte chemotactic and activating factor (MCAF), a member of the same chemokine family, consistently displaced about 25% of human MIP-1 alpha and -beta binding on monocytes but not on YT cells, which did not bind MCAF. On the other hand, human rMIP-1 alpha and -beta partially inhibited binding of radiolabeled MCAF to monocytes. Both MIP-1 alpha and -beta were chemotactic for human monocytes. Preincubation of monocytes with human rMIP-1 alpha or -beta markedly reduced cell migration towards the other cytokine, whereas preincubation with human rMCAF only partially desensitized the monocyte chemotaxis response to human rMIP-1 alpha or -beta. These data suggest the existence of three subtypes of receptors, i.e., one unique receptor shared by MIP-1 alpha and -beta, a second unique receptor for MCAF, and a third species that recognizes both MCAF and MIP-1 peptides.

  9. Localization of Distinct Peyer's Patch Dendritic Cell Subsets and Their Recruitment by Chemokines Macrophage Inflammatory Protein (Mip)-3α, Mip-3β, and Secondary Lymphoid Organ Chemokine

    Science.gov (United States)

    Iwasaki, Akiko; Kelsall, Brian L.

    2000-01-01

    We describe the anatomical localization of three distinct dendritic cell (DC) subsets in the murine Peyer's patch (PP) and explore the role of chemokines in their recruitment. By two-color in situ immunofluorescence, CD11b+ myeloid DCs were determined to be present in the subepithelial dome (SED) region, whereas CD8α+ lymphoid DCs are present in the T cell–rich interfollicular region (IFR). DCs that lack expression of CD8α or CD11b (double negative) are present in both the SED and IFR. By in situ hybridization, macrophage inflammatory protein (MIP)-3α mRNA was dramatically expressed only by the follicle-associated epithelium overlying the SED, while its receptor, CCR6, was concentrated in the SED. In contrast, CCR7 was expressed predominantly in the IFR. Consistent with these findings, reverse transcriptase polymerase chain reaction analysis and in vitro chemotaxis assays using freshly isolated DCs revealed that CCR6 was functionally expressed only by DC subsets present in the SED, while all subsets expressed functional CCR7. Moreover, none of the splenic DC subsets migrated toward MIP-3α. These data support a distinct role for MIP-3α/CCR6 in recruitment of CD11b+ DCs toward the mucosal surfaces and for MIP-3β/CCR7 in attraction of CD8α+ DCs to the T cell regions. Finally, we demonstrated that all DC subsets expressed an immature phenotype when freshly isolated and maintained expression of subset markers upon maturation in vitro. In contrast, CCR7 expression by myeloid PP DCs was enhanced with maturation in vitro. In addition, this subset disappeared from the SED and appeared in the IFR after microbial stimulation in vivo, suggesting that immature myeloid SED DCs capture antigens and migrate to IFR to initiate T cell responses after mucosal microbial infections. PMID:10770804

  10. Polarization of macrophages and microglia in inflammatory demyelination

    Institute of Scientific and Technical Information of China (English)

    Li Cao; Cheng He

    2013-01-01

    Multiple sclerosis (MS) is an autoimmune demyelinating disease of the central nervous system,and microglia and macrophages play important roles in its pathogenesis.The activation of microglia and macrophages accompanies disease development,whereas depletion of these cells significantly decreases disease severity.Microglia and macrophages usually have diverse and plastic phenotypes.Both pro-inflammatory and antiinflammatory microglia and macrophages exist in MS and its animal model,experimental autoimmune encephalomyelitis.The polarization of microglia and macrophages may underlie the differing functional properties that have been reported.In this review,we discuss the responses and polarization of microglia and macrophages in MS,and their effects on its pathogenesis and repair.Harnessing their beneficial effects by modulating their polarization states holds great promise for the treatment of inflammatory demyelinating diseases.

  11. Macrophage activation and polarization modify P2X7 receptor secretome influencing the inflammatory process

    OpenAIRE

    Carlos de Torre-Minguela; Maria Barberà-Cremades; Gómez, Ana I.; Fátima Martín-Sánchez; Pablo Pelegrín

    2016-01-01

    The activation of P2X7 receptor (P2X7R) on M1 polarized macrophages induces the assembly of the NLRP3 inflammasome leading to the release of pro-inflammatory cytokines and the establishment of the inflammatory response. However, P2X7R signaling to the NLRP3 inflammasome is uncoupled on M2 macrophages without changes on receptor activation. In this study, we analyzed P2X7R secretome in wild-type and P2X7R-deficient macrophages polarized either to M1 or M2 and proved that proteins released afte...

  12. Consistent inhibition of cyclooxygenase drives macrophages towards the inflammatory phenotype.

    Directory of Open Access Journals (Sweden)

    Yi Rang Na

    Full Text Available Macrophages play important roles in defense against infection, as well as in homeostasis maintenance. Thus alterations of macrophage function can have unexpected pathological results. Cyclooxygenase (COX inhibitors are widely used to relieve pain, but the effects of long-term usage on macrophage function remain to be elucidated. Using bone marrow-derived macrophage culture and long-term COX inhibitor treatments in BALB/c mice and zebrafish, we showed that chronic COX inhibition drives macrophages into an inflammatory state. Macrophages differentiated in the presence of SC-560 (COX-1 inhibitor, NS-398 (COX-2 inhibitor or indomethacin (COX-1/2 inhibitor for 7 days produced more TNFα or IL-12p70 with enhanced p65/IκB phosphoylation. YmI and IRF4 expression was reduced significantly, indicative of a more inflammatory phenotype. We further observed that indomethacin or NS-398 delivery accelerated zebrafish death rates during LPS induced sepsis. When COX inhibitors were released over 30 days from an osmotic pump implant in mice, macrophages from peritoneal cavities and adipose tissue produced more TNFα in both the basal state and under LPS stimulation. Consequently, indomethacin-exposed mice showed accelerated systemic inflammation after LPS injection. Our findings suggest that macrophages exhibit a more inflammatory phenotype when COX activities are chronically inhibited.

  13. Central neuroinvasion and demyelination by inflammatory macrophages after peripheral virus infection is controlled by SHP-1.

    Science.gov (United States)

    Christophi, George P; Massa, Paul T

    2009-12-01

    SHP-1 is a protein tyrosine phosphatase that negatively regulates cytokine signaling and inflammatory gene expression. Mice genetically lacking SHP-1 (me/me) display severe inflammatory demyelinating disease following intracranial inoculation with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) compared to infected wild-type mice. Furthermore, SHP-1-deficient mice show a profound and predominant infiltration of blood-derived macrophages into the CNS following intracerebral injection of TMEV, and these macrophages are concentrated in areas of demyelination in brain and spinal cord. In the present study we investigated the role of SHP-1 in controlling CNS inflammatory demyelination following a peripheral instead of an intracerebral inoculation of TMEV. Surprisingly, we found that while wild-type mice were entirely refractory to intraperitoneal (IP) infection by TMEV, in agreement with previous studies, all SHP-1-deficient mice displayed profound macrophage neuroinvasion and macrophage-mediated inflammatory demyelination. Moreover, SHP-1 deficiency led to increased expression of inflammatory molecules in macrophages, serum, and CNS following IP infection with TMEV. Importantly, pharmacological depletion of peripheral macrophages significantly decreased both paralysis and CNS viral loads in SHP-1-deficient mice. In addition, peripheral MCP-1 neutralization attenuated disease severity, decreased macrophage infiltration into the CNS, and decreased monocyte numbers in the blood of SHP-1-deficient mice, implicating MCP-1 as an important mediator of monocyte migration between multiple tissues. These results demonstrate that peripheral TMEV infection results in a unique evolution of macrophage-mediated demyelination in SHP-1-deficient mice, implicating SHP-1 in the control of neuroinvasion of inflammatory macrophages and neurotropic viruses into the CNS.

  14. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-κB signaling pathways

    Directory of Open Access Journals (Sweden)

    Choi YH

    2014-10-01

    Full Text Available Yung Hyun Choi,1,2 Gi-Young Kim,3 Hye Hyeon Lee4 1Department of Biochemistry, Dongeui University College of Korean Medicine, Busan, 2Anti-Aging Research Center and Blue-Bio Industry RIC, Dongeui University, Busan, 3Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University, Jeju, 4Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea Abstract: Cordycepin is the main functional component of the Cordyceps species, which has been widely used in traditional Oriental medicine. This compound possesses many pharmacological properties, such as an ability to enhance immune function, as well as antioxidant, antiaging, and anticancer effects. In the present study, we investigated the anti-inflammatory effects of cordycepin using a murine macrophage RAW 264.7 cell model. Our data demonstrated that cordycepin suppressed production of proinflammatory mediators such as nitric oxide (NO and prostaglandin E2 by inhibiting inducible NO synthase and cyclooxygenase-2 gene expression. Cordycepin also inhibited the release of proinflammatory cytokines, including tumor necrosis factor-alpha and interleukin-1-beta, through downregulation of respective mRNA expression. In addition, pretreatment with cordycepin significantly inhibited lipopolysaccharide (LPS-induced phosphorylation of mitogen-activating protein kinases and attenuated nuclear translocation of NF-κB by LPS, which was associated with abrogation of inhibitor kappa B-alpha degradation. Furthermore, cordycepin potently inhibited the binding of LPS to macrophages and LPS-induced Toll-like receptor 4 and myeloid differentiation factor 88 expression. Taken together, the results suggest that the inhibitory effects of cordycepin on LPS-stimulated inflammatory responses in RAW 264.7 macrophages are associated with suppression of mitogen-activating protein kinases and activation of NF-κB by inhibition of the Toll-like receptor 4 signaling pathway. Keywords

  15. Adipose tissue macrophages: the inflammatory link between obesity and cancer?

    Science.gov (United States)

    Wagner, Marek; Samdal Steinskog, Eli Sihn; Wiig, Helge

    2015-04-01

    Obesity has increased dramatically over the last three decades. Thus, epidemiological evidence linking obesity and cancer has ignited our interest in the relationship between adipose tissue mass and cancer development. Obesity is defined as an excess of adipose tissue that is typified by a chronic, low-grade inflammatory response instigated by macrophage infiltration. Therefore, in this review, we will discuss the putative causal relationship between obesity-induced chronic inflammation and cancer with particular focus on adipose tissue macrophages. Chronic, low-grade inflammation has long been associated with cancer initiation, promotion and progression. Therefore, signals derived from adipose tissue macrophages may play a significant role in carcinogenesis. In this review we will discuss the molecular mechanisms of cancer development in obesity and highlight possible therapeutic strategies aiming at adipose tissue macrophages. The strong correlation between tumor-associated macrophage infiltration and tumor growth and progression emphasizes the value of macrophages as an effective therapeutic target. It remains to be deciphered to what extent adipose tissue macrophages contribute to these processes, especially in tumors growing within or adjacent to adipose tissue. More effort should also be placed on elucidating macrophage differences between humans and mice that may lead to the development of more effective diagnostic and therapeutic strategies.

  16. A lipidomic perspective on inflammatory macrophage eicosanoid signaling.

    Science.gov (United States)

    Norris, Paul C; Dennis, Edward A

    2014-01-01

    Macrophages are central to essential physiological processes including the regulation of innate and adaptive immunity, but they are also central to a number of inflammatory disease states. These immune cells also possess remarkable plasticity and display various shades of functionalities based on changes in the surrounding molecular environment. Macrophage biology has defined various phenotypes and roles in inflammation based primarily on cytokine and chemokine profiles of cells in different activation states. Importantly, macrophages are elite producers of eicosanoids and other related lipid mediators during inflammation, but specific roles of these molecules have not generally been incorporated into the larger context of macrophage biology. In this review, we discuss the current classification of macrophage types and their roles in inflammation and disease, along with the practical challenges of studying biologically relevant phenotypes ex vivo. Using the latest advances in eicosanoid lipidomics, we highlight several key studies from our laboratory that provide a comprehensive understanding of how eicosanoid metabolism differs between macrophage phenotypes, along with how this metabolism is altered by changes in membrane fatty acid distribution and varied durations of Toll-like receptor (TLR) priming. In conclusion, we summarize several examples of the benefit of macrophage plasticity to develop accurate cellular mechanisms of lipid metabolism, and insights from lipidomic analyses about the differences in eicosanoid pathway enzyme activity in vitro vs. in cells ex vivo. Examples of new techniques to further understand the role of macrophage eicosanoid signaling in vivo are also discussed.

  17. Mitochondrial function and regulation of macrophage sterol metabolism and inflammatory responses

    Institute of Scientific and Technical Information of China (English)

    Annette; Graham; Anne-Marie; Allen

    2015-01-01

    The aim of this review is to explore the role of mitochondria in regulating macrophage sterol homeostasis and inflammatory responses within the aetiology of atherosclerosis.Macrophage generation of oxysterol activators of liver X receptors(LXRs),via sterol 27-hydroxylase,is regulated by the rate of flux of cholesterolto the inner mitochondrial membrane,via a complex of cholesterol trafficking proteins.Oxysterols are key signalling molecules,regulating the transcriptional activity of LXRs which coordinate macrophage sterol metabolism and cytokine production,key features influencing the impact of these cells within atherosclerotic lesions.The precise identity of the complex of proteins mediating mitochondrial cholesterol trafficking in macrophages remains a matter of debate,but may include steroidogenic acute regulatory protein and translocator protein.There is clear evidence that targeting either of these proteins enhances removal of cholesterol via LXRα-dependent induction of ATP binding cassette transporters(ABCA1,ABCG1) and limits the production of inflammatory cytokines; interventions which influence mitochondrial structure and bioenergetics also impact on removal of cholesterol from macrophages.Thus,molecules which can sustain or improve mitochondrial structure,the function of the electron transport chain,or increase the activity of components of the protein complex involved in cholesterol transfer,may therefore have utility in limiting or regressing atheroma development,reducing the incidence of coronary heart disease and myocardial infarction.

  18. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages

    Science.gov (United States)

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-01-01

    Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. SUMMARY Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages. PMID:27013794

  19. Bioactive Extract from Moringa oleifera Inhibits the Pro-inflammatory Mediators in Lipopolysaccharide Stimulated Macrophages.

    Science.gov (United States)

    Fard, Masoumeh Tangestani; Arulselvan, Palanisamy; Karthivashan, Govindarajan; Adam, Siti Khadijah; Fakurazi, Sharida

    2015-10-01

    Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS) - stimulated macrophages. The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO) production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E2, tumor necrosis factor alpha, interleukin (IL)-6, and IL-1β. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders. Hydroethanolic extracts of Moringa oleifera effectively inhibit the NO production in LPS induced inflammatory model.M. oleifera crude extracts successfully modulate the production of pro-inflammatory mediators in LPS stimulated macrophages.M. oleifera extracts suppressed the expression of inflammatory mediators in LPS stimulated macrophages.

  20. Functional Roles of Syk in Macrophage-Mediated Inflammatory Responses

    Directory of Open Access Journals (Sweden)

    Young-Su Yi

    2014-01-01

    Full Text Available Inflammation is a series of complex biological responses to protect the host from pathogen invasion. Chronic inflammation is considered a major cause of diseases, such as various types of inflammatory/autoimmune diseases and cancers. Spleen tyrosine kinase (Syk was initially found to be highly expressed in hematopoietic cells and has been known to play crucial roles in adaptive immune responses. However, recent studies have reported that Syk is also involved in other biological functions, especially in innate immune responses. Although Syk has been extensively studied in adaptive immune responses, numerous studies have recently presented evidence that Syk has critical functions in macrophage-mediated inflammatory responses and is closely related to innate immune response. This review describes the characteristics of Syk-mediated signaling pathways, summarizes the recent findings supporting the crucial roles of Syk in macrophage-mediated inflammatory responses and diseases, and discusses Syk-targeted drug development for the therapy of inflammatory diseases.

  1. Cartilage inflammation and degeneration is enhanced by pro-inflammatory (M1) macrophages in vitro, but not inhibited directly by anti-inflammatory (M2) macrophages

    NARCIS (Netherlands)

    L. Utomo (Lizette); Y.M. Bastiaansen-Jenniskens (Yvonne); J.A.N. Verhaar (Jan); G.J.V.M. van Osch (Gerjo)

    2016-01-01

    textabstractObjective Macrophages play a crucial role in the progression of osteoarthritis (OA). Their phenotype may range from pro-inflammatory to anti-inflammatory. The aim of this study was to evaluate the direct effects of macrophage subtypes on cartilage by culturing macrophage conditioned

  2. DMPD: Mechanisms for the anti-inflammatory effects of adiponectin in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18336664 Mechanisms for the anti-inflammatory effects of adiponectin in macrophages...(.html) (.csml) Show Mechanisms for the anti-inflammatory effects of adiponectin in macrophages. PubmedID 18...336664 Title Mechanisms for the anti-inflammatory effects of adiponectin in macro

  3. Shp2 Deficiency Impairs the Inflammatory Response Against Haemophilus influenzae by Regulating Macrophage Polarization.

    Science.gov (United States)

    Zhao, Lifang; Xia, Jingyan; Li, Tiantian; Zhou, Hui; Ouyang, Wei; Hong, Zhuping; Ke, Yuehai; Qian, Jing; Xu, Feng

    2016-08-15

    Macrophages can polarize and differentiate to regulate initiation, development, and cessation of inflammation during pulmonary infection with nontypeable Haemophilus influenzae (NTHi). However, the underlying molecular mechanisms driving macrophage phenotypic differentiation are largely unclear. Our study investigated the role of Shp2, a Src homology 2 domain-containing phosphatase, in the regulation of pulmonary inflammation and bacterial clearance. Shp2 levels were increased upon NTHi stimulation. Selective inhibition of Shp2 in mice led to an attenuated inflammatory response by skewing macrophages toward alternatively activated macrophage (M2) polarization. Upon pulmonary NTHi infection, Shp2(-/-) mice, in which the gene encoding Shp2 in monocytes/macrophages was deleted, showed an impaired inflammatory response and decreased antibacterial ability, compared with wild-type controls. In vitro data demonstrated that Shp2 regulated activated macrophage (M1) gene expression via activation of p65-nuclear factor-κB signaling, independent of p38 and extracellular regulated kinase-mitogen-activated proteins kinase signaling pathways. Taken together, our study indicates that Shp2 is required to orchestrate macrophage function and regulate host innate immunity against pulmonary bacterial infection.

  4. Interactions between inflammatory mediators in expression of antitumor cytostatic activity of macrophages

    NARCIS (Netherlands)

    I.L. Bonta; S. Ben-Efraim

    1990-01-01

    markdownabstractAbstract Antitumor properties and participation in inflammatory events are important characteristics of activated macrophages. We show here that both antitumor cytostatic function of macrophages and participation of these cells at inflammatory sites are controlled by two main group

  5. Dihydro-CDDO-trifluoroethyl amide suppresses inflammatory responses in macrophages via activation of Nrf2

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Abdalrahman, Akram; Lai, Yimu; Janicki, Joseph S. [Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Ward, Keith W.; Meyer, Colin J. [Department of Pharmacology, Reata Pharmaceuticals, Inc., Irving, TX 75063 (United States); Wang, Xing Li [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Tang, Dongqi, E-mail: Dongqi.Tang@uscmed.sc.edu [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States); Cui, Taixing, E-mail: taixing.cui@uscmed.sc.edu [Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital of Shandong University, Jinan 250012 (China); Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208 (United States)

    2014-02-21

    Highlights: • Dh404 suppresses the expression of a selected set of pro-inflammatory cytokines in inflamed macrophages via activating Nrf2. • Dh404 activates Nrf2 while keeping Keap1 function intact in macrophages. • Dh404 minimally regulates NF-κB pathway in macrophages. - Abstract: Nuclear factor erythroid 2-related factor (Nrf2) is the major regulator of cellular defenses against various pathological stresses in a variety of organ systems, thus Nrf2 has evolved to be an attractive drug target for the treatment and/or prevention of human disease. Several synthetic oleanolic triterpenoids including dihydro-CDDO-trifluoroethyl amide (dh404) appear to be potent activators of Nrf2 and exhibit chemopreventive promises in multiple disease models. While the pharmacological efficacy of Nrf2 activators may be dependent on the nature of Nrf2 activation in specific cell types of target organs, the precise role of Nrf2 in mediating biological effects of Nrf2 activating compounds in various cell types remains to be further explored. Herein we report a unique and Nrf2-dependent anti-inflammatory profile of dh404 in inflamed macrophages. In lipopolysaccharide (LPS)-inflamed RAW264.7 macrophages, dh404 dramatically suppressed the expression of pro-inflammatory cytokines including inducible nitric oxide synthase (iNOS), monocyte chemotactic protein-1 (MCP-1), and macrophage inflammatory protein-1 beta (MIP-1β), while minimally regulating the expression of interleulin-6 (IL-6), IL-1β, and tumor necrosis factor alpha (TNFα). Dh404 potently activated Nrf2 signaling; however, it did not affect LPS-induced NF-κB activity. Dh404 did not interrupt the interaction of Nrf2 with its endogenous inhibitor Kelch-like ECH associating protein 1 (Keap1) in macrophages. Moreover, knockout of Nrf2 blocked the dh404-induced anti-inflammatory responses in LPS-inflamed macrophages. These results demonstrated that dh404 suppresses pro-inflammatory responses in macrophages via an activation

  6. Chitosan drives anti-inflammatory macrophage polarisation and pro-inflammatory dendritic cell stimulation

    Directory of Open Access Journals (Sweden)

    MI Oliveira

    2012-07-01

    Full Text Available Macrophages and dendritic cells (DC share the same precursor and play key roles in immunity. Modulation of their behaviour to achieve an optimal host response towards an implanted device is still a challenge. Here we compare the differentiation process and polarisation of these related cell populations and show that they exhibit different responses to chitosan (Ch, with human monocyte-derived macrophages polarising towards an anti-inflammatory phenotype while their DC counterparts display pro-inflammatory features. Macrophages and DC, whose interactions with biomaterials are frequently analysed using fully differentiated cells, were cultured directly on Ch films, rather than exposed to the polymer after complete differentiation. Ch was the sole stimulating factor and activated both macrophages and DC, without leading to significant T cell proliferation. After 10 d on Ch, macrophages significantly down-regulated expression of pro-inflammatory markers, CD86 and MHCII. Production of pro-inflammatory cytokines, particularly TNF-α, decreased with time for cells cultured on Ch, while anti-inflammatory IL-10 and TGF-β1, significantly increased. Altogether, these results suggest an M2c polarisation. Also, macrophage matrix metalloproteinase activity was augmented and cell motility was stimulated by Ch. Conversely, DC significantly enhanced CD86 expression, reduced IL-10 secretion and increased TNF-α and IL-1β levels. Our findings indicate that cells with a common precursor may display different responses, when challenged by the same biomaterial. Moreover, they help to further comprehend macrophage/DC interactions with Ch and the balance between pro- and anti-inflammatory signals associated with implant biomaterials. We propose that an overall pro-inflammatory reaction may hide the expression of anti-inflammatory cytokines, likely relevant for tissue repair/regeneration.

  7. Effects of parathyroid hormone-related protein and macrophage inflammatory protein-1α in Jurkat T-cells on tumor formation in vivo and expression of apoptosis regulatory genes in vitro.

    Science.gov (United States)

    Shu, Sherry T; Dirksen, Wessel P; Lanigan, Lisa G; Martin, Chelsea K; Thudi, Nanda K; Werbeck, Jillian L; Fernandez, Soledad A; Hildreth, Blake E; Rosol, Thomas J

    2012-04-01

    Parathyroid hormone-related protein (PTHrP) and macrophage inflammatory protein-1α (MIP-1α) have been implicated in the pathogenesis of adult T-cell leukemia/lymphoma, but their effects on T-cells have not been well studied. Here we analyzed the functions of PTHrP and MIP-1α on T-cell growth and death both in vitro and in vivo by overexpressing either factor in human Jurkat T-cells. PTHrP or MIP-1α did not affect Jurkat cell growth in vitro, but PTHrP increased their sensitivity to apoptosis. Importantly, PTHrP and MIP-1α decreased both tumor incidence and growth in vivo. To investigate possible mechanisms, polymerase chain reaction (PCR) arrays and real-time reverse transcription (RT)-PCR assays were performed. Both PTHrP and MIP-1α increased the expression of several factors including signal transducer and activator of transcription 4, tumor necrosis factor α, receptor activator of nuclear factor κB ligand and death-associated protein kinase 1, and decreased the expression of inhibitor of DNA binding 1, interferon γ and CD40 ligand in Jurkat cells. In addition, MIP-1α also increased the expression of transcription factor AP-2α and PTHrP increased expression of the vitamin D3 receptor. These data demonstrate that PTHrP and MIP-1α exert a profound antitumor effect presumably by increasing the sensitivity to apoptotic signals through modulation of transcription and apoptosis factors in T-cells.

  8. Pediatric patients with inflammatory bowel disease exhibit increased serum levels of proinflammatory cytokines and chemokines, but decreased circulating levels of macrophage inhibitory protein-1β, interleukin-2 and interleukin-17.

    Science.gov (United States)

    Kleiner, Giulio; Zanin, Valentina; Monasta, Lorenzo; Crovella, Sergio; Caruso, Lorenzo; Milani, Daniela; Marcuzzi, Annalisa

    2015-06-01

    Inflammatory bowel disease (IBD) is a chronic and progressive inflammatory condition of the gastrointestinal tract. Although the causative events that lead to the onset of IBD are yet to be fully elucidated, deregulation of immune and inflammatory mechanisms are hypothesized to significantly contribute to this disorder. Since the onset of IBD is often during infancy, in the present study, the serum values of a large panel of cytokines and chemokines in pediatric patients (<18 years; n=26) were compared with age-matched controls (n=37). While elevations in the serum level of several proinflammatory and immune regulating cytokines were confirmed, such as interleukin (IL)-1β, IL-5, IL-7, interferon (IFN)-γ-inducible protein-10, IL-16, cutaneous T-cell-attracting chemokine, leukemia inhibitory factor, monokine induced by γ-IFN, IFN-α2 and IFN-γ, notably decreased levels of IL-2, IL-17 and macrophage inhibitory protein-1β were also observed. Therefore, while a number of proinflammatory cytokines exhibit increased levels in IBD patients, pediatric IBD patients may also exhibit certain aspects of a reduced immunological response.

  9. Macrophage secretory products induce an inflammatory phenotype in hepatocytes

    Institute of Scientific and Technical Information of China (English)

    Michelle Melino; Gethin P Thomas; Andrew D Clouston; Julie R Jonsson; Elizabeth E Powell; Victoria L Gadd; Gene V Walker; Richard Skoien; Helen D Barrie; Dinesh Jothimani; Leigh Horsfall; Alun Jones; Matthew J Sweet

    2012-01-01

    AIM:To investigate the influence of macrophages on hepatocyte phenotype and function.METHODS:Macrophages were differentiated from THP-1 monocytes via phorbol myristate acetate stimulation and the effects of monocyte or macrophageconditioned medium on HepG2 mRNA and protein expression determined.The in vivo relevance of these findings was confirmed using liver biopsies from 147patients with hepatitis C virus (HCV) infection.RESULTS:Conditioned media from macrophages,but not monocytes,induced a transient morphological change in hepatocytes associated with upregulation of vimentin (7.8 ± 2.5-fold,P =0.045) and transforming growth factor (TGF)-β1 (2.6 ± 0.2-fold,P < 0.001) and downregulation of epithelial cadherin (1.7 ± 0.02-fold,P =0.017) mRNA expression.Microarray analysis revealed significant upregulation of lipocalin-2 (17-fold,P < 0.001) and pathways associated with inflammation,and substantial downregulation of pathways related to hepatocyte function.In patients with chronic HCV,realtime polymerase chain reaction and immunohistochemistry confirmed an increase in lipocalin-2 mRNA (F0 1.0± 0.3,F1 2.2 ± 0.2,F2 3.0 ± 9.3,F3/4 4.0 ± 0.8,P =0.003) and protein expression (F1 1.0 ± 0.5,F2 1.3 ±0.4,F3/4 3.6 ± 0.4,P =0.014) with increasing liver injury.High performance liquid chromatography-tandem mass spectrometry analysis identified elevated levels of matrix metalloproteinase (MMP)-9 in macrophageconditioned medium,and a chemical inhibitor of MMP-9attenuated the change in morphology and mRNA expression of TGF-β1 (2.9 ± 0.2 vs 1.04 ± 0.1,P < 0.001)in macrophage-conditioned media treated HepG2 cells.In patients with chronic HCV infection,hepatic mRNA expression of CD163 (F0 1.0 ± 0.2,F1/2 2.8 ± 0.3,F3/4 5.3 ± 1.0,P =0.001) and MMP-9 (F0 1.0 ± 0.4,F1/2 2.8 ± 0.3,F3/4 4.1 ± 0.8,P =0.011) was significantly associated with increasing stage of fibrosis.CONCLUSION:Secreted macrophage products alter the phenotype and function of hepatocytes

  10. Hybrid nanoparticles improve targeting to inflammatory macrophages through phagocytic signals.

    Science.gov (United States)

    Bagalkot, Vaishali; Badgeley, Marcus A; Kampfrath, Thomas; Deiuliis, Jeffrey A; Rajagopalan, Sanjay; Maiseyeu, Andrei

    2015-11-10

    Macrophages are innate immune cells with great phenotypic plasticity, which allows them to regulate an array of physiological processes such as host defense, tissue repair, and lipid/lipoprotein metabolism. In this proof-of-principle study, we report that macrophages of the M1 inflammatory phenotype can be selectively targeted by model hybrid lipid-latex (LiLa) nanoparticles bearing phagocytic signals. We demonstrate a simple and robust route to fabricate nanoparticles and then show their efficacy through imaging and drug delivery in inflammatory disease models of atherosclerosis and obesity. Self-assembled LiLa nanoparticles can be modified with a variety of hydrophobic entities such as drug cargos, signaling lipids, and imaging reporters resulting in sub-100nm nanoparticles with low polydispersities. The optimized theranostic LiLa formulation with gadolinium, fluorescein and "eat-me" phagocytic signals (Gd-FITC-LiLa) a) demonstrates high relaxivity that improves magnetic resonance imaging (MRI) sensitivity, b) encapsulates hydrophobic drugs at up to 60% by weight, and c) selectively targets inflammatory M1 macrophages concomitant with controlled release of the payload of anti-inflammatory drug. The mechanism and kinetics of the payload discharge appeared to be phospholipase A2 activity-dependent, as determined by means of intracellular Förster resonance energy transfer (FRET). In vivo, LiLa targets M1 macrophages in a mouse model of atherosclerosis, allowing noninvasive imaging of atherosclerotic plaque by MRI. In the context of obesity, LiLa particles were selectively deposited to M1 macrophages within inflamed adipose tissue, as demonstrated by single-photon intravital imaging in mice. Collectively, our results suggest that phagocytic signals can preferentially target inflammatory macrophages in experimental models of atherosclerosis and obesity, thus opening the possibility of future clinical applications that diagnose/treat these conditions. Tunable Li

  11. Human macrophage inflammatory protein-3alpha/CCL20/LARC/Exodus/SCYA20 is transcriptionally upregulated by tumor necrosis factor-alpha via a non-standard NF-kappaB site.

    Science.gov (United States)

    Harant, H; Eldershaw, S A; Lindley, I J

    2001-12-14

    The 5'-flanking sequences of the human macrophage inflammatory protein-3alpha/CCL20 gene were cloned and transfected into G-361 human melanoma cells in a luciferase reporter construct. Tumor necrosis factor-alpha (TNF-alpha) treatment stimulated luciferase expression, and promoter truncations demonstrated that TNF-alpha inducibility is conferred by a region between nt -111 and -77, which contains a non-standard nuclear factor-kappaB (NF-kappaB) binding site. The requirement for NF-kappaB was demonstrated as follows: (i) mutations in this NF-kappaB site abrogated TNF-alpha responsiveness; (ii) TNF-alpha activated a construct containing two copies of the CCL20 NF-kappaB binding site; (iii) overexpression of NF-kappaB p65 activated the CCL20 promoter; (iv) NF-kappaB from nuclear extracts of TNF-alpha-stimulated cells bound specifically to this NF-kappaB site.

  12. Bioactive extract from moringa oleifera inhibits the pro-inflammatory mediators in lipopolysaccharide stimulated macrophages

    Directory of Open Access Journals (Sweden)

    Masoumeh Tangestani Fard

    2015-01-01

    Full Text Available Introduction: Inflammation is a well-known physiological response to protect the body against infection and restore tissue injury. Nevertheless, the chronic inflammation can trigger various inflammatory associated diseases/disorder. Moringa oleifera is a widely grown plant in most tropical countries and it has been recognized traditionally for several medicinal benefits. Objectives: The objective of this study was to investigate the anti-inflammatory properties of M. oleifera extract on lipopolysaccharide (LPS - stimulated macrophages. Materials and Methods: The anti-inflammatory effect of M. oleifera hydroethanolic bioactive leaves extracts was evaluated by assessing the inhibition of nitric oxide (NO production during Griess reaction and the expression of pro-inflammatory mediators in macrophages. Results: Interestingly, we found that M. oleifera hydroethanolic bioactive leaves extract significantly inhibited the secretion of NO production and other inflammatory markers such as prostaglandin E 2 , tumor necrosis factor alpha, interleukin (IL-6, and IL-1b. Meanwhile, the bioactive extract has induced the production of IL-10 in a dose-dependent manner. In addition, M. oleifera hydroethanolic bioactive leaves extract effectively suppressed the protein expression of inflammatory markers inducible NO synthase, cyclooxygenase-2, and nuclear factor kappa-light-chain-enhancer of activated B-cells p65 in LPS-induced RAW264.7 macrophages in a dose-dependent manner. Conclusion: These findings support the traditional use of M. oleifera plant as an effective treatment for inflammation associated diseases/disorders.

  13. Regulation of YKL-40 expression by corticosteroids : effect on pro-inflammatory macrophages in vitro and its modulation in COPD in vivo

    NARCIS (Netherlands)

    Kunz, L. I. Z.; van't Wout, E. F. A.; van Schadewijk, A.; Postma, D. S.; Kerstjens, H. A. M.; Sterk, P. J.; Hiemstra, P. S.

    2015-01-01

    Background: Macrophages constitute a heterogeneous cell population with pro-(M Phi 1) and anti-inflammatory (M Phi 2) cells. The soluble chitinase-like-protein YKL-40 is expressed in macrophages and various other cell types, and has been linked to a variety of inflammatory diseases, including COPD.

  14. Regulation of YKL-40 expression by corticosteroids : effect on pro-inflammatory macrophages in vitro and its modulation in COPD in vivo

    NARCIS (Netherlands)

    Kunz, L. I. Z.; van't Wout, E. F. A.; van Schadewijk, A.; Postma, D. S.; Kerstjens, H. A. M.; Sterk, P. J.; Hiemstra, P. S.

    2015-01-01

    Background: Macrophages constitute a heterogeneous cell population with pro-(M Phi 1) and anti-inflammatory (M Phi 2) cells. The soluble chitinase-like-protein YKL-40 is expressed in macrophages and various other cell types, and has been linked to a variety of inflammatory diseases, including COPD.

  15. Homolog of allograft inflammatory factor-1 induces macrophage migration during innate immune response in leech.

    Science.gov (United States)

    Schorn, Tilo; Drago, Francesco; Tettamanti, Gianluca; Valvassori, Roberto; de Eguileor, Magda; Vizioli, Jacopo; Grimaldi, Annalisa

    2015-03-01

    Allograft inflammatory factor-1 (AIF-1) is a 17-kDa cytokine-inducible calcium-binding protein that, in vertebrates, plays an important role in the allograft immune response. Its expression is mostly limited to the monocyte/macrophage lineage. Until recently, AIF-1 was assumed to be a novel molecule involved in inflammatory responses. To clarify this aspect, we have investigated the expression of AIF-1 after bacterial challenge and its potential role in regulating the innate immune response in an invertebrate model, the medicinal leech (Hirudo medicinalis). Analysis of an expressed sequence tag library from the central nervous system of Hirudo revealed the presence of the gene Hmaif-1/alias Hmiba1, showing high homology with vertebrate aif-1. Immunohistochemistry with an anti-HmAIF-1 polyclonal antibody revealed the constitutive presence of this protein in spread CD68(+) macrophage-like cells. A few hours after pathogen (bacterial) injection into the body wall, the amount of these immunopositive cells co-expressing HmAIF-1 and the common leucocyte marker CD45 increased at the injected site. Moreover, the recombinant protein HmAIF-1 induced massive angiogenesis and was a potent chemoattractant for macrophages. Following rHmAIF-1 stimulation, macrophage-like cells co-expressed the macrophage marker CD68 and the surface glycoprotein CD45, which, in vertebrates, seems to have a role in the integrin-mediated adhesion of macrophages and in the regulation of the functional responsiveness of cells to chemoattractants. CD45 is therefore probably involved in leech macrophage-like cell activation and migration towards an inflammation site. We have also examined its potential effect on HmAIF-1-induced signalling.

  16. Dormant 5-lipoxygenase in inflammatory macrophages is triggered by exogenous arachidonic acid.

    Science.gov (United States)

    Sorgi, Carlos A; Zarini, Simona; Martin, Sarah A; Sanchez, Raphael L; Scandiuzzi, Rodrigo F; Gijón, Miguel A; Guijas, Carlos; Flamand, Nicolas; Murphy, Robert C; Faccioli, Lucia H

    2017-09-08

    The differentiation of resident tissue macrophages from embryonic precursors and that of inflammatory macrophages from bone marrow cells leads to macrophage heterogeneity. Further plasticity is displayed through their ability to be polarized as subtypes M1 and M2 in a cell culture microenvironment. However, the detailed regulation of eicosanoid production and its involvement in macrophage biology remains unclear. Using a lipidomics approach, we demonstrated that eicosanoid production profiles between bone marrow-derived (BMDM) and peritoneal macrophages differed drastically. In polarized BMDMs, M1 and M2 phenotypes were distinguished by thromboxane B2, prostaglandin (PG) E2, and PGD2 production, in addition to lysophospholipid acyltransferase activity. Although Alox5 expression and the presence of 5-lipoxygenase (5-LO) protein in BMDMs was observed, the absence of leukotrienes production reflected an impairment in 5-LO activity, which could be triggered by addition of exogenous arachidonic acid (AA). The BMDM 5-LO regulatory mechanism was not responsive to PGE2/cAMP pathway modulation; however, treatment to reduce glutathione peroxidase activity increased 5-LO metabolite production after AA stimulation. Understanding the relationship between the eicosanoids pathway and macrophage biology may offer novel strategies for macrophage-associated disease therapy.

  17. IRF5:RelA Interaction Targets Inflammatory Genes in Macrophages

    Directory of Open Access Journals (Sweden)

    David G. Saliba

    2014-09-01

    Full Text Available Interferon Regulatory Factor 5 (IRF5 plays a major role in setting up an inflammatory macrophage phenotype, but the molecular basis of its transcriptional activity is not fully understood. In this study, we conduct a comprehensive genome-wide analysis of IRF5 recruitment in macrophages stimulated with bacterial lipopolysaccharide and discover that IRF5 binds to regulatory elements of highly transcribed genes. Analysis of protein:DNA microarrays demonstrates that IRF5 recognizes the canonical IRF-binding (interferon-stimulated response element [ISRE] motif in vitro. However, IRF5 binding in vivo appears to rely on its interactions with other proteins. IRF5 binds to a noncanonical composite PU.1:ISRE motif, and its recruitment is aided by RelA. Global gene expression analysis in macrophages deficient in IRF5 and RelA highlights the direct role of the RelA:IRF5 cistrome in regulation of a subset of key inflammatory genes. We map the RelA:IRF5 interaction domain and suggest that interfering with it would offer selective targeting of macrophage inflammatory activities.

  18. Anti-inflammatory effects of galangin on lipopolysaccharide-activated macrophages via ERK and NF-κB pathway regulation.

    Science.gov (United States)

    Jung, Yun Chan; Kim, Mi Eun; Yoon, Ju Hwa; Park, Pu Reum; Youn, Hwa-Young; Lee, Hee-Woo; Lee, Jun Sik

    2014-12-01

    Inflammation is the major symptom of the innate immune response to microbial infection. Macrophages, immune response-related cells, play a role in the inflammatory response. Galangin is a member of the flavonols and is found in Alpinia officinarum, galangal root and propolis. Previous studies have demonstrated that galangin has antioxidant, anticancer, and antineoplastic activities. However, the anti-inflammatory effects of galangin are still unknown. In this study, we investigated the anti-inflammatory effects of galangin on RAW 264.7 murine macrophages. Galagin was not cytotoxic to RAW 264.7 cells, and nitric oxide (NO) production induced by lipopolysaccharide (LPS)-stimulated macrophages was significantly decreased by the addition of 50 μM galangin. Moreover, galangin treatment reduced mRNA levels of cytokines, including IL-1β and IL-6, and proinflammatory genes, such as iNOS in LPS-activated macrophages in a dose-dependent manner. Galangin treatment also decreased the protein expression levels of iNOS in activated macrophages. Galangin was found to elicit anti-inflammatory effects by inhibiting ERK and NF-κB-p65 phosphorylation. In addition, galangin-inhibited IL-1β production in LPS-activated macrophages. These results suggest that galangin elicits anti-inflammatory effects on LPS-activated macrophages via the inhibition of ERK, NF-κB-p65 and proinflammatory gene expression.

  19. Mce4A protein of Mycobacterium tuberculosis induces pro inflammatory cytokine response leading to macrophage apoptosis in a TNF-α dependent manner.

    Science.gov (United States)

    Saini, Neeraj Kumar; Sinha, Rajesh; Singh, Pooja; Sharma, Monika; Pathak, Rakesh; Rathor, Nisha; Varma-Basil, Mandira; Bose, Mridula

    2016-11-01

    Mycobacterium tuberculosis subverts the host immune response through numerous immune-evasion strategies. Apoptosis has been identified as one such mechanism and has been well studied in M. tuberculosis infection. Here, we demonstrate that the Mce4A protein of mce4 operon is involved in the induction of host cell apoptosis. Earlier we have shown that the Mce4A was required for the invasion and survival of M. tuberculosis. In this report we present evidence to establish a role for Mce4A in the modulation of THP-1 cell survival. Recombinant Mce4A was expressed and purified from Escherichia coli as inclusion bodies and then refolded. Viability of THP-1 cells decreased in a dose-dependent manner when treated with Mce4A. The secretion of pro-inflammatory cytokines like tumor necrosis factor (TNF-α) or interferon gamma (IFN-γ), and enhanced nitric oxide release was observed when the THP-1 cells, were treated with Mce4A protein. The Mce4A induced apoptosis of the THP-1 cells was TNF-α dependent since blocking with anti TNF-α antibody abrogated this phenomenon. Collectively, these data suggest that Mce4A can induce the THP-1 cells to undergo apoptosis which primarily follows a TNF- α dependent pathway.

  20. Inflammatory Macrophage Phenotype in BTBR T+tf/J Mice

    Directory of Open Access Journals (Sweden)

    Paul eAshwood

    2013-09-01

    Full Text Available Although autism is a behaviorally defined disorder, many studies report an association with increased pro-inflammatory cytokine production. Recent characterization of the BTBR T+tf/J (BTBR inbred mouse strain has revealed several behavioral characteristics including social deficits, repetitive behavior, and atypical vocalizations which may be relevant to autism. We therefore hypothesized that asocial BTBR mice, which exhibit autism-like behaviors, may have an inflammatory immune profile similar to that observed in children with autism. The objectives of this study were to characterize the myeloid immune profile of BTBR mice and to explore their associations with autism-relevant behaviors. C57BL/6J (C57 mice and BTBR mice were tested for social interest and repetitive self-grooming behavior. Cytokine production was measured in bone-marrow derived macrophages incubated for 24 hours in either growth media alone, LPS, IL-4/ LPS, or IFNγ/ LPS to ascertain any M1/M2 skewing. After LPS stimulation, BTBR macrophages produced higher levels of IL-6, MCP-1, and MIP-1α and lower IL-10 (p<0.01 that C57 mice, suggesting an exaggerated inflammatory profile. After exposure to IL-4/LPS BTBR macrophages produced less IL-10 than C57 macrophages and more IL-12p40 (p<0.01 suggesting poor M2 polarization. Levels of IL-12(p70 (p<0.05 were higher in BTBR macrophages after IFNγ/LPS stimulation, suggesting enhanced M1 polarization. We further observed a positive correlation between grooming frequency, and production of IL-12(p40, IL-12p70, IL-6, and TNFα (p<0.05 after treatment with IFNγ/LPS across both strains. Collectively, these data suggest that the asocial BTBR mouse strain exhibits a more inflammatory, or M1, macrophage profile in comparison to social C57 strain. We have further demonstrated a relationship between this relative increase in inflammation and repetitive grooming behavior, which may have relevance to repetitive and stereotyped behavior of autism.

  1. BIGH3 protein and macrophages in retinal endothelial cell apoptosis.

    Science.gov (United States)

    Mondragon, Albert A; Betts-Obregon, Brandi S; Moritz, Robert J; Parvathaneni, Kalpana; Navarro, Mary M; Kim, Hong Seok; Lee, Chi Fung; LeBaron, Richard G; Asmis, Reto; Tsin, Andrew T

    2015-01-01

    Diabetes is a pandemic disease with a higher occurrence in minority populations. The molecular mechanism to initiate diabetes-associated retinal angiogenesis remains largely unknown. We propose an inflammatory pathway of diabetic retinopathy in which macrophages in the diabetic eye provide TGFβ to retinal endothelial cells (REC) in the retinal microvasculature. In response to TGFβ, REC synthesize and secrete a pro-apoptotic BIGH3 (TGFβ-Induced Gene Human Clone 3) protein, which acts in an autocrine loop to induce REC apoptosis. Rhesus monkey retinal endothelial cells (RhREC) were treated with dMCM (cell media of macrophages treated with high glucose and LDL) and assayed for apoptosis (TUNEL), BIGH3 mRNA (qPCR), and protein (Western blots) expressions. Cells were also treated with ΤGFβ1 and 2 for BIGH3 mRNA and protein expression. Inhibition assays were carried out using antibodies for TGFβ1 and for BIGH3 to block apoptosis and mRNA expression. BIGH3 in cultured RhREC cells were identified by immunohistochemistry (IHC). Distribution of BIGH3 and macrophages in the diabetic mouse retina was examined with IHC. RhRECs treated with dMCM or TGFβ showed a significant increase in apoptosis and BIGH3 protein expression. Recombinant BIGH3 added to RhREC culture medium led to a dose-dependent increase in apoptosis. Antibodies (Ab) directed against BIGH3 and TGFβ, as well as TGFβ receptor blocker resulted in a significant reduction in apoptosis induced by either dMCM, TGFβ or BIGH3. IHC showed that cultured RhREC constitutively expressed BIGH3. Macrophage and BIGH3 protein were co-localized to the inner retina of the diabetic mouse eye. Our results support a novel inflammatory pathway for diabetic retinopathy. This pathway is initiated by TGFβ released from macrophages, which promotes synthesis and release of BIGH3 protein by REC and REC apoptosis.

  2. Acidosis differently modulates the inflammatory program in monocytes and macrophages.

    Science.gov (United States)

    Riemann, Anne; Wußling, Hanna; Loppnow, Harald; Fu, Hang; Reime, Sarah; Thews, Oliver

    2016-01-01

    Inflammation, ischemia or the microenvironment of solid tumors is often accompanied by a reduction of extracellular pH (acidosis) that stresses the cells and acts on cellular signaling and transcription. The effect of acidosis on the expression of various inflammatory markers, on functional parameters (migration, phagocytic activity) and on signaling pathways involved was studied in monocytic cells and macrophages. In monocytic cell lines acidosis led to a reduction in expression of most of the inflammatory mediators, namely IL-1ß, IL-6, TNF-α, MCP-1, COX-2 and osteopontin. In primary human monocytes MCP-1 and TNF-α were reduced but COX-2 and IL-6 were increased. In RAW264.7 macrophage cell line IL-1ß, COX-2 and iNOS expression was increased, whereas MCP-1 was reduced similar to the effect in monocytic cells. For primary human monocyte-derived macrophages the regulation of inflammatory markers by acidosis depended on activation state, except for the acidosis-induced downregulation of MCP-1 and TNF-α. Acidosis affected functional immune cell behavior when looking at phagocytic activity which was increased in a time-dependent manner, but cellular motility was not changed. Neither ERK1/2 nor CREB signaling was stimulated by the reduction of extracellular pH. However, p38 was activated by acidosis in RAW264.7 cells and this activation was critical for the induction of IL-1ß, COX-2 and iNOS expression. In conclusion, acidosis may impede the recruitment of immune cells, but fosters inflammation when macrophages are present by increasing the level of COX-2 and iNOS and by functionally forcing up the phagocytic activity.

  3. Histone Deacetylase Inhibitors Suppress Inflammatory Activation of Rheumatoid Arthritis Patient Synovial Macrophages and Tissue

    NARCIS (Netherlands)

    A.M. Grabiec; S. Krausz; W. de Jager; T. Burakowski; D. de Groot; M.E. Sanders; B.J. Prakken; W. Maslinski; E. Eldering; P.P. Tak; K.A. Reedquist

    2010-01-01

    Macrophages contribute significantly to the pathology of many chronic inflammatory diseases, including rheumatoid arthritis (RA), asthma, and chronic obstructive pulmonary disease. Macrophage activation and survival are tightly regulated by reversible acetylation and deacetylation of histones, trans

  4. 4T1 Murine Mammary Carcinoma Cells Enhance Macrophage-Mediated Innate Inflammatory Responses

    OpenAIRE

    Laurence Madera; Anna Greenshields; Power Coombs, Melanie R.; Hoskin, David W.

    2015-01-01

    Tumor progression and the immune response are intricately linked. While it is known that cancers alter macrophage inflammatory responses to promote tumor progression, little is known regarding how cancers affect macrophage-dependent innate host defense. In this study, murine bone-marrow-derived macrophages (BMDM) were exposed to murine carcinoma-conditioned media prior to assessment of the macrophage inflammatory response. BMDMs exposed to 4T1 mammary carcinoma-conditioned medium demonstrated...

  5. Implication of the Tpl2 kinase in inflammatory changes and insulin resistance induced by the interaction between adipocytes and macrophages.

    Science.gov (United States)

    Ceppo, Franck; Berthou, Flavien; Jager, Jennifer; Dumas, Karine; Cormont, Mireille; Tanti, Jean-François

    2014-03-01

    Adipose tissue inflammation is associated with the development of insulin resistance. In obese adipose tissue, lipopolysaccharides (LPSs) and saturated fatty acids trigger inflammatory factors that mediate a paracrine loop between adipocytes and macrophages. However, the inflammatory signaling proteins underlying this cross talk remain to be identified. The mitogen-activated protein kinase kinase kinase tumor progression locus 2 (Tpl2) is activated by inflammatory stimuli, including LPS, and its expression is up-regulated in obese adipose tissue, but its role in the interaction between adipocytes and macrophages remains ill-defined. To assess the implication of Tpl2 in the cross talk between these 2 cell types, we used coculture system and conditioned medium (CM) from macrophages. Pharmacological inhibition of Tpl2 in the coculture markedly reduced lipolysis and cytokine production and prevented the decrease in adipocyte insulin signaling. Tpl2 knockdown in cocultured adipocytes reduced lipolysis but had a weak effect on cytokine production and did not prevent the alteration of insulin signaling. By contrast, Tpl2 silencing in cocultured macrophages resulted in a marked inhibition of cytokine production and prevented the alteration of adipocyte insulin signaling. Further, when Tpl2 was inhibited in LPS-activated macrophages, the produced CM did not alter adipocyte insulin signaling and did not induce an inflammatory response in adipocytes. By contrast, Tpl2 silencing in adipocytes did not prevent the deleterious effects of a CM from LPS-activated macrophages. Together, these data establish that Tpl2, mainly in macrophages, is involved in the cross talk between adipocytes and macrophages that promotes inflammatory changes and alteration of insulin signaling in adipocytes.

  6. Contribution of Lung Macrophages to the Inflammatory Responses Induced by Exposure to Air Pollutants

    Directory of Open Access Journals (Sweden)

    Kunihiko Hiraiwa

    2013-01-01

    Full Text Available Large population cohort studies have indicated an association between exposure to particulate matter and cardiopulmonary morbidity and mortality. The inhalation of toxic environmental particles and gases impacts the innate and adaptive defense systems of the lung. Lung macrophages play a critically important role in the recognition and processing of any inhaled foreign material such as pathogens or particulate matter. Alveolar macrophages and lung epithelial cells are the predominant cells that process and remove inhaled particulate matter from the lung. Cooperatively, they produce proinflammatory mediators when exposed to atmospheric particles. These mediators produce integrated local (lung, controlled predominantly by epithelial cells and systemic (bone marrow and vascular system, controlled predominantly by macrophages inflammatory responses. The systemic response results in an increase in the release of leukocytes from the bone marrow and an increased production of acute phase proteins from the liver, with both factors impacting blood vessels and leading to destabilization of existing atherosclerotic plaques. This review focuses on lung macrophages and their role in orchestrating the inflammatory responses induced by exposure to air pollutants.

  7. PAFR in adipose tissue macrophages is associated with anti-inflammatory phenotype and metabolic homoeostasis.

    Science.gov (United States)

    Filgueiras, Luciano Ribeiro; Koga, Marianna Mainardi; Quaresma, Paula G; Ishizuka, Edson Kiyotaka; Montes, Marlise B A; Prada, Patricia O; Saad, Mario J; Jancar, Sonia; Rios, Francisco J

    2016-04-01

    Metabolic dysfunction is associated with adipose tissue inflammation and macrophage infiltration. PAFR (platelet-activating factor receptor) is expressed in several cell types and binds to PAF (platelet-activating factor) and oxidized phospholipids. Engagement of PAFR in macrophages drives them towards the anti-inflammatory phenotype. In the present study, we investigated whether genetic deficiency of PAFR affects the phenotype of ATMs (adipose tissue macrophages) and its effect on glucose and insulin metabolism. PARFKO (PAFR-knockout) and WT (wild-type) mice were fed on an SD (standard diet) or an HFD (high-fat diet). Glucose and insulin tolerance tests were performed by blood monitoring. ATMs were evaluated by FACS for phenotypic markers. Gene and protein expression was investigated by real-time reverse transcription-quantitative PCR and Western blotting respectively. Results showed that the epididymal adipose tissue of PAFRKO mice had increased gene expression of Ccr7, Nos2, Il6 and Il12, associated with pro-inflammatory mediators, and reduced expression of the anti-inflammatory Il10. Moreover, the adipose tissue of PAFRKO mice presented more pro-inflammatory macrophages, characterized by an increased frequency of F4/80(+)CD11c(+) cells. Blood monocytes of PAFRKO mice also exhibited a pro-inflammatory phenotype (increased frequency of Ly6C(+) cells) and PAFR ligands were detected in the serum of both PAFRKO and WT mice. Regarding metabolic parameters, compared with WT, PAFRKO mice had: (i) higher weight gain and serum glucose concentration levels; (ii) decreased insulin-stimulated glucose disappearance; (iii) insulin resistance in the liver; (iv) increased expression of Ldlr in the liver. In mice fed on an HFD, some of these changes were potentiated, particularly in the liver. Thus it seems that endogenous ligands of PAFR are responsible for maintaining the anti-inflammatory profile of blood monocytes and ATMs under physiological conditions. In the absence of

  8. Suppression of TLR4-mediated inflammatory response by macrophage class A scavenger receptor (CD204)

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Koji; Komohara, Yoshihiro; Fujiwara, Yukio; Takemura, Kenichi [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Lei, XiaoFeng [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Department of Biochemistry, Showa University School of Medicine, Tokyo (Japan); Nakagawa, Takenobu [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Sakashita, Naomi [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan); Department of Human Pathology, Institute of Health Biosciences, The University of Tokushima, Tokushima (Japan); Takeya, Motohiro, E-mail: takeya@kumamoto-u.ac.jp [Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto (Japan)

    2011-08-05

    Highlights: {yields} We focused on the interaction between SR-A and TLR4 signaling in this study. {yields} SR-A deletion promoted NF{kappa}B activation in macrophages in septic model mouse. {yields} SR-A suppresses both MyD88-dependent and -independent TLR4 signaling in vitro. {yields} SR-A clears LPS binding to TLR4 which resulting in the suppression of TLR4 signals. -- Abstract: The class A scavenger receptor (SR-A, CD204), one of the principal receptors expressed on macrophages, has been found to regulate inflammatory response and attenuate septic endotoxemia. However, the detailed mechanism of this process has not yet been well characterized. To clarify the regulative mechanisms of lipopolysaccharide (LPS)-induced macrophage activation by SR-A, we evaluated the activation of Toll-like receptor 4 (TLR4)-mediated signaling molecules in SR-A-deficient (SR-A{sup -/-}) macrophages. In a septic shock model, the blood levels of tumor necrosis factor (TNF)-{alpha}, interleukin (IL)-6 and interferon (IFN)-{beta} were significantly increased in SR-A{sup -/-} mice compared to wild-type mice, and elevated nuclear factor kappa B (NF{kappa}B) activation was detected in SR-A{sup -/-} macrophages. SR-A deletion increased the production of pro-inflammatory cytokines, and the phosphorylation of mitogen-activated protein kinase (MAPK) and NF{kappa}B in vitro. SR-A deletion also promoted the nuclear translocation of NF{kappa}B and IFN regulatory factor (IRF)-3. In addition, a competitive binding assay with acetylated low-density lipoprotein, an SR-A-specific ligand, and anti-SR-A antibody induced significant activation of TLR4-mediated signaling molecules in wild-type macrophages but not in SR-A{sup -/-} macrophages. These results suggest that SR-A suppresses the macrophage activation by inhibiting the binding of LPS to TLR4 in a competitive manner and it plays a pivotal role in the regulation of the LPS-induced inflammatory response.

  9. The helminth Trichuris suis suppresses TLR4-induced inflammatory responses in human macrophages

    DEFF Research Database (Denmark)

    Ottow, M. K.; Klaver, E. J.; van der Pouw Kraan, T. C. T. M.

    2014-01-01

    -CSF)-differentiated) macrophages. Interestingly, we here show that T. suis SPs potently skew inflammatory macrophages into a more anti-inflammatory state in a Toll-like receptor 4 (TLR4)-dependent manner, and less effects are seen when stimulating macrophages with TLR2 or -3 ligands. Gene microarray analysis of GM......Recent clinical trials in patients with inflammatory diseases like multiple sclerosis (MS) or inflammatory bowel disease (IBD) have shown the beneficial effects of probiotic helminth administration, although the underlying mechanism of action remains largely unknown. Potential cellular targets may...... include innate immune cells that propagate inflammation in these diseases, like pro-inflammatory macrophages. We here investigated the effects of the helminth Trichuris suis soluble products (SPs) on the phenotype and function of human inflammatory (granulocyte-macrophage colony-stimulating factor (GM...

  10. Macrophage-specific nanotechnology-driven CD163 overexpression in human macrophages results in an M2 phenotype under inflammatory conditions.

    Science.gov (United States)

    Alvarado-Vazquez, Perla Abigail; Bernal, Laura; Paige, Candler A; Grosick, Rachel L; Moracho Vilrriales, Carolina; Ferreira, David Wilson; Ulecia-Morón, Cristina; Romero-Sandoval, E Alfonso

    2017-08-01

    M1 macrophages release proinflammatory factors during inflammation. They transit to an M2 phenotype and release anti-inflammatory factors to resolve inflammation. An imbalance in the transition from M1 to M2 phenotype in macrophages contributes to the development of persistent inflammation. CD163, a member of the scavenger receptor cysteine-rich family, is an M2 macrophage marker. The functional role of CD163 during the resolution of inflammation is not completely known. We postulate that CD163 contributes to the transition from M1 to M2 phenotype in macrophages. We induced CD163 gene in THP-1 and primary human macrophages using polyethylenimine nanoparticles grafted with a mannose ligand (Man-PEI). This nanoparticle specifically targets cells of monocytic origin via mannose receptors. Cells were challenged with a single or a double stimulation of lipopolysaccharide (LPS). A CD163 or empty plasmid was complexed with Man-PEI nanoparticles for cell transfections. Quantitative RT-PCR, immunocytochemistry, and ELISAs were used for molecular assessments. CD163-overexpressing macrophages displayed reduced levels of tumor necrosis factor-alpha (TNF)-α and monocytes chemoattractant protein (MCP)-1 after a single stimulation with LPS. Following a double stimulation paradigm, CD163-overexpressing macrophages showed an increase of interleukin (IL)-10 and IL-1ra and a reduction of MCP-1. This anti-inflammatory phenotype was partially blocked by an anti-CD163 antibody (effects on IL-10 and IL-1ra). A decrease in the release of TNF-α, IL-1β, and IL-6 was observed in CD163-overexpressing human primary macrophages. The release of IL-6 was blocked by an anti-CD163 antibody in the CD163-overexpressing group. Our data show that the induction of the CD163 gene in human macrophages under inflammatory conditions produces changes in cytokine secretion in favor of an anti-inflammatory phenotype. Targeting macrophages to induce CD163 using cell-directed nanotechnology is an attractive

  11. Smoking status and anti-inflammatory macrophages in induced sputum and bronchoalveolar lavage in COPD

    NARCIS (Netherlands)

    Kunz, L.I.; Lapperre, T.S.; Snoeck-Stroband, J.B.; Budulac, S.E.; Timens, W.; van Wijngaarden, S.; Schrumpf, J.A.; Rabe, K.F.; Postma, D.S.; Sterk, P.J.; Hiemstra, P.S.

    2011-01-01

    ABSTRACT: BACKGROUND: Macrophages have been implicated in the pathogenesis of COPD. M1 and M2 macrophages constitute subpopulations displaying pro- and anti-inflammatory properties. We hypothesized that smoking cessation affects macrophage heterogeneity in the lung of patients with COPD. Our aim was

  12. Smoking status and anti-inflammatory macrophages in bronchoalveolar lavage and induced sputum in COPD

    NARCIS (Netherlands)

    Kunz, Lisette I Z; Lapperre, Thérèse S; Snoeck-Stroband, Jiska B; Budulac, Simona E; Timens, Wim; van Wijngaarden, Simone; Schrumpf, Jasmijn A; Rabe, Klaus F; Postma, Dirkje S; Sterk, Peter J; Hiemstra, Pieter S

    2011-01-01

    Background: Macrophages have been implicated in the pathogenesis of COPD. M1 and M2 macrophages constitute subpopulations displaying pro-and anti-inflammatory properties. We hypothesized that smoking cessation affects macrophage heterogeneity in the lung of patients with COPD. Our aim was to study m

  13. Carbon monoxide induced PPARγ SUMOylation and UCP2 block inflammatory gene expression in macrophages.

    Directory of Open Access Journals (Sweden)

    Arvand Haschemi

    Full Text Available Carbon monoxide (CO dampens pro-inflammatory responses in a peroxisome proliferator-activated receptor-γ (PPARγ and p38 mitogen-activated protein kinase (MAPK dependent manner. Previously, we demonstrated that CO inhibits lipopolysaccharide (LPS-induced expression of the proinflammatory early growth response-1 (Egr-1 transcription factor in macrophages via activation of PPARγ. Here, we further characterize the molecular mechanisms by which CO modulates the activity of PPARγ and Egr-1 repression. We demonstrate that CO enhances SUMOylation of PPARγ which we find was attributed to mitochondrial ROS generation. Ectopic expression of a SUMOylation-defective PPARγ-K365R mutant partially abolished CO-mediated suppression of LPS-induced Egr-1 promoter activity. Expression of a PPARγ-K77R mutant did not impair the effect of CO. In addition to PPARγ SUMOylation, CO-activated p38 MAPK was responsible for Egr-1 repression. Blocking both CO-induced PPARγ SUMOylation and p38 activation, completely reversed the effects of CO on inflammatory gene expression. In primary macrophages isolated form C57/BL6 male mice, we identify mitochondrial ROS formation by CO as the upstream trigger for the observed effects on Egr-1 in part through uncoupling protein 2 (UCP2. Macrophages derived from bone marrow isolated from Ucp2 gene Knock-Out C57/BL6 mice (Ucp2(-/-, produced significantly less ROS with CO exposure versus wild-type macrophages. Moreover, absence of UCP2 resulted in a complete loss of CO mediated Egr-1 repression. Collectively, these results indentify p38 activation, PPARγ-SUMOylation and ROS formation via UCP2 as a cooperative system by which CO impacts the inflammatory response.

  14. Functional role of monocytes and macrophages for the inflammatory response in acute liver injury

    Directory of Open Access Journals (Sweden)

    Henning W Zimmermann

    2012-10-01

    Full Text Available Different etiologies such as drug toxicity, acute viral hepatitis B or acetaminophen poisoning can cause acute liver injury (ALI or even acute liver failure (ALF. Excessive cell death of hepatocytes in the liver is known to result in a strong hepatic inflammation. Experimental murine models of liver injury highlighted the importance of hepatic macrophages, so-called Kupffer cells, for initiating and driving this inflammatory response by releasing proinflammatory cytokines and chemokines including tumor necrosis factor (TNF, interleukin-6 (IL-6, IL-1-beta or monocyte chemoattractant protein 1 (MCP-1, CCL2 as well as activating other non-parenchymal liver cells, e.g. endothelial or hepatic stellate cells (HSC. Many of these proinflammatory mediators can trigger hepatocytic cell death pathways, e.g. via caspase activation, but also activate protective signaling pathways, e.g. via nuclear factor kappa B (NF-kB. Recent studies in mice demonstrated that these macrophage actions largely depend on the recruitment of monocytes into the liver, namely of the inflammatory Ly6c+ (Gr1+ monocyte subset as precursors of tissue macrophages. The chemokine receptor CCR2 and its ligand MCP-1/CCL2 promote monocyte subset infiltration upon liver injury. In contrast, the chemokine receptor CX3CR1 and its ligand fractalkine (CX3CL1 are important negative regulators of monocyte infiltration by controlling their survival and differentiation into functionally diverse macrophage subsets upon injury. The recently identified cellular and molecular pathways for monocyte subset recruitment, macrophage differentiation and interactions with other hepatic cell types in the injured liver may therefore represent interesting novel targets for future therapeutic approaches in ALF.

  15. Transcriptional and Linkage Analyses Identify Loci that Mediate the Differential Macrophage Response to Inflammatory Stimuli and Infection

    NARCIS (Netherlands)

    Hassan, Musa A.; Jensen, Kirk D.; Butty, Vincent; Hu, K.; Boedec, E.; Prins, J.C.P.; Saeij, J.P.J.

    2015-01-01

    Macrophages display flexible activation states that range between pro-inflammatory (classical activation) and anti-inflammatory (alternative activation). These macrophage polarization states contribute to a variety of organismal phenotypes such as tissue remodeling and susceptibility to infectious a

  16. The chemerin/ChemR23 system does not affect the pro-inflammatory response of mouse and human macrophages ex vivo.

    Directory of Open Access Journals (Sweden)

    Benjamin Bondue

    Full Text Available Macrophages constitute a major component of innate immunity and play an essential role in defense mechanisms against external aggressions and in inflammatory responses. Chemerin, a chemoattractant protein, is generated in inflammatory conditions, and recruits cells expressing the G protein-coupled receptor ChemR23, including macrophages. Chemerin was initially expected to behave as a pro-inflammatory agent. However, recent data described more complex activities that are either pro- or anti-inflammatory, according to the disease model investigated. In the present study, peritoneal macrophages were generated from WT or ChemR23(-/- mice, stimulated with lipopolyssaccharide in combination or not with IFN-γ and the production of pro- (TNF-α, IL-1β and IL-6 and anti-inflammatory (IL-10 cytokines was evaluated using qRT-PCR and ELISA. Human macrophages generated from peripheral blood monocytes were also tested in parallel. Peritoneal macrophages from WT mice, recruited by thioglycolate or polyacrylamide beads, functionally expressed ChemR23, as assessed by flow cytometry, binding and chemotaxis assays. However, chemerin had no effect on the strong upregulation of cytokine release by these cells upon stimulation by LPS or LPS/IFN-γ, whatever the concentration tested. Similar data were obtained with human macrophages. In conclusion, our results rule out the direct anti-inflammatory effect of chemerin on macrophages ex vivo, described previously in the literature, despite the expression of a functional ChemR23 receptor in these cells.

  17. The chemerin/ChemR23 system does not affect the pro-inflammatory response of mouse and human macrophages ex vivo.

    Science.gov (United States)

    Bondue, Benjamin; De Henau, Olivier; Luangsay, Souphalone; Devosse, Thalie; de Nadaï, Patricia; Springael, Jean-Yves; Parmentier, Marc; Vosters, Olivier

    2012-01-01

    Macrophages constitute a major component of innate immunity and play an essential role in defense mechanisms against external aggressions and in inflammatory responses. Chemerin, a chemoattractant protein, is generated in inflammatory conditions, and recruits cells expressing the G protein-coupled receptor ChemR23, including macrophages. Chemerin was initially expected to behave as a pro-inflammatory agent. However, recent data described more complex activities that are either pro- or anti-inflammatory, according to the disease model investigated. In the present study, peritoneal macrophages were generated from WT or ChemR23(-/-) mice, stimulated with lipopolyssaccharide in combination or not with IFN-γ and the production of pro- (TNF-α, IL-1β and IL-6) and anti-inflammatory (IL-10) cytokines was evaluated using qRT-PCR and ELISA. Human macrophages generated from peripheral blood monocytes were also tested in parallel. Peritoneal macrophages from WT mice, recruited by thioglycolate or polyacrylamide beads, functionally expressed ChemR23, as assessed by flow cytometry, binding and chemotaxis assays. However, chemerin had no effect on the strong upregulation of cytokine release by these cells upon stimulation by LPS or LPS/IFN-γ, whatever the concentration tested. Similar data were obtained with human macrophages. In conclusion, our results rule out the direct anti-inflammatory effect of chemerin on macrophages ex vivo, described previously in the literature, despite the expression of a functional ChemR23 receptor in these cells.

  18. Pivotal role for skin transendothelial radio-resistant anti-inflammatory macrophages in tissue repair

    Science.gov (United States)

    Barreiro, Olga; Cibrian, Danay; Clemente, Cristina; Alvarez, David; Moreno, Vanessa; Valiente, Íñigo; Bernad, Antonio; Vestweber, Dietmar; Arroyo, Alicia G; Martín, Pilar; von Andrian, Ulrich H; Sánchez Madrid, Francisco

    2016-01-01

    Heterogeneity and functional specialization among skin-resident macrophages are incompletely understood. In this study, we describe a novel subset of murine dermal perivascular macrophages that extend protrusions across the endothelial junctions in steady-state and capture blood-borne macromolecules. Unlike other skin-resident macrophages that are reconstituted by bone marrow-derived progenitors after a genotoxic insult, these cells are replenished by an extramedullary radio-resistant and UV-sensitive Bmi1+ progenitor. Furthermore, they possess a distinctive anti-inflammatory transcriptional profile, which cannot be polarized under inflammatory conditions, and are involved in repair and remodeling functions for which other skin-resident macrophages appear dispensable. Based on all their properties, we define these macrophages as Skin Transendothelial Radio-resistant Anti-inflammatory Macrophages (STREAM) and postulate that their preservation is important for skin homeostasis. DOI: http://dx.doi.org/10.7554/eLife.15251.001 PMID:27304075

  19. CXCL10 controls inflammatory pain via opioid peptide-containing macrophages in electroacupuncture.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available Acupuncture is widely used for pain treatment in patients with osteoarthritis or low back pain, but molecular mechanisms remain largely enigmatic. In the early phase of inflammation neutrophilic chemokines direct opioid-containing neutrophils in the inflamed tissue and stimulate opioid peptide release and antinociception. In this study the molecular pathway and neuroimmune connections in complete Freund's adjuvant (CFA-induced hind paw inflammation and electroacupuncture for peripheral pain control were analyzed. Free moving Wistar rats with hind paw inflammation were treated twice with electroacupuncture at GB30 (Huan Tiao--gall bladder meridian (day 0 and 1 and analyzed for mechanical and thermal nociceptive thresholds. The cytokine profiles as well as the expression of opioid peptides were quantified in the inflamed paw. Electroacupuncture elicited long-term antinociception blocked by local injection of anti-opioid peptide antibodies (beta-endorphin, met-enkephalin, dynorphin A. The treatment altered the cytokine profile towards an anti-inflammatory pattern but augmented interferon (IFN-gamma and the chemokine CXCL10 (IP-10: interferon gamma-inducible protein protein and mRNA expression with concomitant increased numbers of opioid peptide-containing CXCR3+ macrophages. In rats with CFA hind paw inflammation without acupuncture repeated injection of CXCL10 triggered opioid-mediated antinociception and increase opioid-containing macrophages. Conversely, neutralization of CXCL10 time-dependently decreased electroacupuncture-induced antinociception and the number of infiltrating opioid peptide-expressing CXCR3+ macrophages. In summary, we describe a novel function of the chemokine CXCL10--as a regulator for an increase of opioid-containing macrophages and antinociceptive mediator in inflammatory pain and as a key chemokine regulated by electroacupuncture.

  20. 病毒巨噬细胞炎性蛋白与趋化因子受体结合的效应分析%Biological functions of binding of viral macrophage inflammatory protein to chemokine receptor

    Institute of Scientific and Technical Information of China (English)

    杨清玲; 丁勇兴; 张玉心; 连超群

    2006-01-01

    目的:探讨人疱疹病毒8 K6基因编码的产物病毒巨噬细胞炎性蛋白(viral macrophage inflammatory protein,vMIP)是否具有结合趋化因子受体以及趋化作用.方法:受体配体交联试验检测vMIP与受体结合能力.趋化实验及细胞内钙流检测判断vMIP的生物学活性.结果:vMIP可与外周血单个核细胞(PBMCs)膜上的趋化因子受体结合,抑制hMIP-1α对PBMC的趋化能力,EC50为3.39 ng/ml.其本身只有较弱的趋化能力.钙流实验证实vMIP轻度升高胞内钙离子浓度,但可明显抑制hMIP-1α所引起的胞内钙离子高峰.结论:重组vMIP与hMIP-1α受体(CCR5)结合后,可有效的阻断人源性趋化因子的结合与信号传导,但其本身对细胞未有明显的激活作用,因此可作为趋化因子受体的天然阻断剂,可用于免疫移植中的排斥反应或HIV-1病毒感染等.

  1. Involvement of both the V2 and V3 Regions of the CCR5-Tropic Human Immunodeficiency Virus Type 1 Envelope in Reduced Sensitivity to Macrophage Inflammatory Protein

    Science.gov (United States)

    Maeda, Yosuke; Foda, Mohamed; Matsushita, Shuzo; Harada, Shinji

    2000-01-01

    To determine whether C-C chemokines play an important role in the phenotype switch of human immunodeficiency virus (HIV) from CCR5 to CXCR4 usage during the course of an infection in vivo, macrophage inflammatory protein (MIP)-1α-resistant variants were isolated from CCR5-tropic (R5) HIV-1 in vitro. The selected variants displayed reduced sensitivities to MIP-1α (fourfold) through CCR5-expressing CD4-HeLa/long terminal repeat–β-galactosidase (MAGI/CCR5) cells. The variants were also resistant to other natural ligands for CCR5, namely, MIP-1β (>4-fold) and RANTES (regulated upon activation, normal T-cell expressed and secreted) (6-fold). The env sequence analyses revealed that the variants had amino acid substitutions in V2 (valine 166 to methionine) and V3 (serine 303 to glycine), although the same V3 substitution appeared in virus passaged without MIP-1α. A single-round replication assay using a luciferase reporter HIV-1 strain pseudotyped with mutant envelopes confirmed that mutations in both V2 and V3 were necessary to confer the reduced sensitivity to MIP-1α, MIP-1β, and RANTES. However, the double mutant did not switch its chemokine receptor usage from CCR5 to CXCR4, indicating the altered recognition of CCR5 by this mutant. These results indicated that V2 combined with the V3 region of the CCR5-tropic HIV-1 envelope modulates the sensitivity of HIV-1 to C-C chemokines without altering the ability to use chemokine receptors. PMID:10644351

  2. Mitochondrial dysfunction leads to deconjugation of quercetin glucuronides in inflammatory macrophages.

    Directory of Open Access Journals (Sweden)

    Akari Ishisaka

    Full Text Available Dietary flavonoids, such as quercetin, have long been recognized to protect blood vessels from atherogenic inflammation by yet unknown mechanisms. We have previously discovered the specific localization of quercetin-3-O-glucuronide (Q3GA, a phase II metabolite of quercetin, in macrophage cells in the human atherosclerotic lesions, but the biological significance is poorly understood. We have now demonstrated the molecular basis of the interaction between quercetin glucuronides and macrophages, leading to deconjugation of the glucuronides into the active aglycone. In vitro experiments showed that Q3GA was bound to the cell surface proteins of macrophages through anion binding and was readily deconjugated into the aglycone. It is of interest that the macrophage-mediated deconjugation of Q3GA was significantly enhanced upon inflammatory activation by lipopolysaccharide (LPS. Zymography and immunoblotting analysis revealed that β-glucuronidase is the major enzyme responsible for the deglucuronidation, whereas the secretion rate was not affected after LPS treatment. We found that extracellular acidification, which is required for the activity of β-glucuronidase, was significantly induced upon LPS treatment and was due to the increased lactate secretion associated with mitochondrial dysfunction. In addition, the β-glucuronidase secretion, which is triggered by intracellular calcium ions, was also induced by mitochondria dysfunction characterized using antimycin-A (a mitochondrial inhibitor and siRNA-knockdown of Atg7 (an essential gene for autophagy. The deconjugated aglycone, quercetin, acts as an anti-inflammatory agent in the stimulated macrophages by inhibiting the c-Jun N-terminal kinase activation, whereas Q3GA acts only in the presence of extracellular β-glucuronidase activity. Finally, we demonstrated the deconjugation of quercetin glucuronides including the sulfoglucuronides in vivo in the spleen of mice challenged with LPS. These results

  3. Enhancement of Anti-Inflammatory Activity of Curcumin Using Phosphatidylserine-Containing Nanoparticles in Cultured Macrophages

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2016-06-01

    Full Text Available Macrophages are one kind of innate immune cells, and produce a variety of inflammatory cytokines in response to various stimuli, such as oxidized low density lipoprotein found in the pathogenesis of atherosclerosis. In this study, the effect of phosphatidylserine on anti-inflammatory activity of curcumin-loaded nanostructured lipid carriers was investigated using macrophage cultures. Different amounts of phosphatidylserine were used in the preparation of curcumin nanoparticles, their physicochemical properties and biocompatibilities were then compared. Cellular uptake of the nanoparticles was investigated using a confocal laser scanning microscope and flow cytometry analysis in order to determine the optimal phosphatidylserine concentration. In vitro anti-inflammatory activities were evaluated in macrophages to test whether curcumin and phosphatidylserine have interactive effects on macrophage lipid uptake behavior and anti-inflammatory responses. Here, we showed that macrophage uptake of phosphatidylserine-containing nanostructured lipid carriers increased with increasing amount of phosphatidylserine in the range of 0%–8%, and decreased when the phosphatidylserine molar ratio reached over 12%. curcumin-loaded nanostructured lipid carriers significantly inhibited lipid accumulation and pro-inflammatory factor production in cultured macrophages, and evidently promoted release of anti-inflammatory cytokines, when compared with curcumin or phosphatidylserine alone. These results suggest that the delivery system using PS-based nanoparticles has great potential for efficient delivery of drugs such as curcumin, specifically targeting macrophages and modulation of their anti-inflammatory functions.

  4. Immunogenic Eimeria tenella glycosylphosphatidylinositol-anchored surface antigens (SAGs induce inflammatory responses in avian macrophages.

    Directory of Open Access Journals (Sweden)

    Yock-Ping Chow

    Full Text Available BACKGROUND: At least 19 glycosylphosphatidylinositol (GPI-anchored surface antigens (SAGs are expressed specifically by second-generation merozoites of Eimeria tenella, but the ability of these proteins to stimulate immune responses in the chicken is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Ten SAGs, belonging to two previously defined multigene families (A and B, were expressed as soluble recombinant (r fusion proteins in E. coli. Chicken macrophages were treated with purified rSAGs and changes in macrophage nitrite production, and in mRNA expression profiles of inducible nitric oxide synthase (iNOS and of a panel of cytokines were measured. Treatment with rSAGs 4, 5, and 12 induced high levels of macrophage nitric oxide production and IL-1β mRNA transcription that may contribute to the inflammatory response observed during E. tenella infection. Concomitantly, treatment with rSAGs 4, 5 and 12 suppressed the expression of IL-12 and IFN-γ and elevated that of IL-10, suggesting that during infection these molecules may specifically impair the development of cellular mediated immunity. CONCLUSIONS/SIGNIFICANCE: In summary, some E. tenella SAGs appear to differentially modulate chicken innate and humoral immune responses and those derived from multigene family A (especially rSAG 12 may be more strongly linked with E. tenella pathogenicity associated with the endogenous second generation stages.

  5. Sargachromenol from Sargassum micracanthum Inhibits the Lipopolysaccharide-Induced Production of Inflammatory Mediators in RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Eun-Jin Yang

    2013-01-01

    Full Text Available During our ongoing screening program designed to determine the anti-inflammatory potential of natural compounds, we isolated sargachromenol from Sargassum micracanthum. In the present study, we investigated the anti-inflammatory effects of sargachromenol on lipopolysaccharide (LPS-induced inflammation in murine RAW 264.7 macrophage cells and the underlying mechanisms. Sargachromenol significantly inhibited the LPS-induced production of nitric oxide (NO and prostaglandin E2 (PGE2 in a dose-dependent manner. It also significantly inhibited the protein expression of inducible NO synthase (iNOS and cyclooxygenase-2 (COX-2 in a dose-dependent manner in LPS-stimulated macrophage cells. Further analyses showed that sargachromenol decreased the cytoplasmic loss of inhibitor κBα (IκBα protein. These results suggest that sargachromenol may exert its anti-inflammatory effects on LPS-stimulated macrophage cells by inhibiting the activation of the NF-κB signaling pathway. In conclusion, to our knowledge, this is the first study to show that sargachromenol isolated from S. micracanthum has an effective anti-inflammatory activity. Therefore, sargachromenol might be useful for cosmetic, food, or medical applications requiring anti-inflammatory properties.

  6. Role of Macrophage Microaggregation in the Diagnosis of Inflammatory Colitis

    Directory of Open Access Journals (Sweden)

    Alpaslan Altunoglu

    2013-10-01

    Full Text Available Aim: Recent studies have advocated that the presence of macrophage microaggregations (MMA may be a criterion in the diagnosis of Crohn’s colitis (CC. In our study we aimed to investigate the role of MMA to differentiate ulcerative colitis (UC and (CC. Material and Method: We analyzed the role of MMA in 29 patients with UC, 26 patients with CC and 22 healthy subjects without diagnosis of inflammatory bowel disease. For all subjects, esophagogastroduodenoscopy was performed. Biopsies were taken from non-lesion regions of stomach and duodenum. Biopsy materials underwent immunohistochemical staining for the microscopic investigation of the presence of MMA. Also, determination of Perinuclear Anti-Neutropil Cytoplasmic Antibodies (pANCA and Anti-Saccharomyces Cerevisiae Antibodies (ASCA (Immunoglobulin G and A was done with ELISA in serum samples. In patient and control groups, presence of Helicobacter pylori (H. pylori positivity was histopathologically evaluated. Results: MMA was higher in patients with both CC and UC compared with control groups (46.2%, 41.3%, and 9.1% respectively. There was statistically significant difference between patient groups and the control group in terms of MMA but there was no difference between CC and UC groups (p=0.007. No statistically significant difference was obtained between the groups in terms of ASCA and p-ANCA. H.pylori positivity was determined in 41.3% of MMA patients with CC, in 75% of patients with UC, and in 50% of healthy subjects. There was no significant difference between the three groups (p=0.344. Discussion: MMA positivity increases in patients with both CC and UC. In patients with inflammatory colitis, H. pylori existence, pANCA and ASCA positivity was similar to healthy subjects.

  7. Resveratrol Interferes with IL1-β-Induced Pro-Inflammatory Paracrine Interaction between Primary Chondrocytes and Macrophages

    Directory of Open Access Journals (Sweden)

    Emeric Limagne

    2016-05-01

    Full Text Available State of the art. Osteoarthritis (OA is a chronic articular disease characterized by cartilage degradation and osteophyte formation. OA physiopathology is multifactorial and involves mechanical and hereditary factors. So far, there is neither preventive medicine to delay cartilage breakdown nor curative treatment. Objectives. To investigate pro-inflammatory paracrine interactions between human primary chondrocytes and macrophages following interleukin-1-β (IL-1β treatment; to evaluate the molecular mechanism responsible for the inhibitory effect of resveratrol. Results. The activation of NF-κB in chondrocytes by IL-1β induced IL-6 secretion. The latter will then activate STAT3 protein in macrophages. Moreover, STAT3 was able to positively regulate IL-6 secretion, as confirmed by the doubling level of IL-6 in the coculture compared to macrophage monoculture. These experiments confirm the usefulness of the coculture model in the inflammatory arthritis-linked process as a closer biological situation to the synovial joint than separated chondrocytes and macrophages. Il also demonstrated the presence of an inflammatory amplification loop induced by IL-1β. Resveratrol showed a strong inhibitory effect on the pro-inflammatory marker secretion. The decrease of IL-6 secretion is dependent on the NFκB inhibition in the chondrocytes. Such reduction of the IL-6 level can limit STAT3 activation in the macrophages, leading to the interruption of the inflammatory amplification loop. Conclusion. These results increase our understanding of the anti-inflammatory actions of resveratrol and open new potential approaches to prevent and treat osteoarthritis.

  8. Inflammatory Role of Macrophage Xanthine Oxidoreductase in Pulmonary Hypertension: Implications for Novel Therapeutic Approaches

    Science.gov (United States)

    2015-10-01

    inflammatory macrophages. Recently we have obtained preliminary data showing XOR as a critical regulator of mitochondrial function during hypoxia (SA1b...TERMS Xanthine Oxidoreductase, Macrophage, Pulmonary hypertension, Inflammasone, Mitochondrial Repiration 16. SECURITY CLASSIFICATION OF: 17...Shift To verify the effect of XOR ablation on mitochondrial OXPHOS, we measured levels of lactate and pyruvate in purified BMDM derived from XORfl/fl

  9. Expression of interleukin-1β and macrophage inflammatory protein-1 in rabbit with acanthamoeba keratitis%兔棘阿米巴角膜炎IL-1β和MIP-1的表达

    Institute of Scientific and Technical Information of China (English)

    林秀丽; 朱学军; 胡建章; 陈勇

    2012-01-01

    目的 建立一种模拟临床人角膜棘阿米巴感染的动物模型,探讨角膜棘阿米巴原虫感染后角膜炎症细胞因子巨噬细胞炎性蛋白-1 (macrophage inflammatory protein-1,MIP-1)、白细胞介素-1β(interleukin-1 β,IL-1 β)的表达.方法 20只新西兰白兔应用角膜表层镜片法,即刮除角膜上皮,覆盖角膜植片,右眼在层间注入棘阿米巴滋养体混悬液,左眼注入生理盐水,缝合眼睑24 h,建立棘阿米巴角膜炎模型,观察角膜溃疡形态,并行角膜HE染色或PAS染色组织病理切片检查,应用逆转录聚合酶链反应(RT-PCR)技术检测不同病程角膜组织中的IL-1β、MIP-1的表达.结果 20只兔右眼均感染棘阿米巴性角膜炎,病变角膜组织中IL-1 β含量与MIP-1含量于术后第1天、3天、5天、7天、9天均明显升高(均为P<0.01),分别于术后第5天(53.360±1.083)与术后第3天(34.445±1.072)达最高值,差异均有显著统计学意义(均为P<0.01),以后逐渐下降.结论 IL-1β是反映兔棘阿米巴感染角膜局部炎症反应程度的敏感指标;而MIP-1的表达则是兔棘阿米巴角膜炎中机体重要的防御和保护性因素.

  10. Lemon Pepper Fruit Extract (Zanthoxylum acanthopodium DC. Suppresses the Expression of Inflammatory Mediators in Lipopolysaccharide-Induced Macrophages In Vitro

    Directory of Open Access Journals (Sweden)

    Yanti

    2011-01-01

    Full Text Available Problem statement: Lemon pepper fruits (Zanthoxylum acanthopodium DC.; Rutaceae have been used as a traditional source against stomach ache by Batak people in North Sumatera province, Indonesia. However, its scientific evidence for treatment of inflammatory disorders particularly gastritis has not been reported. Approach: Here, we investigated the inhibitory effects of Lemon Pepper Fruit Extract (LPFE against inflammatory biomarkers by conducting cell culture experiments in vitro. The fruits of lemon pepper were dried and extracted twice in 70% ethanol, followed by evaporation and freeze-drying. The concentrated extract was further tested for its potential inhibition on the protein and gene expression of several inflammatory biomarkers, i.e., Tumor Necrosis Factor (TNF-α, Interleukin (IL-6, inducible Nitric Oxyde Synthase (iNOS, Cyclooxygenase (COX-2 and Matrix Metalloproteinase (MMP-9, in lipopolysaccharide (LPS-induced macrophages by performing Western blot, gelatin zymography and Reverse Transcription-Polymerase Chain Reaction (RT-PCR. Results: LPFE (1-10 μg mL-1 and LPS (2 μg mL-1 had no cytotoxicity effects on macrophages. LPFE dose dependently decreased the expression of TNF-α and COX-2 proteins and MMP-9 activity in macrophages treated with LPS. At the gene level, LPFE were effectively found to block the mRNA expression of TNF-α, IL-6, iNOS, COX-2 and MMP-9. Conclusion: Our results suggest that LPFE significantly inhibits selected inflammatory biomarkers at the protein and gene levels in LPS-induced macrophages. Further in vivo study using animal models is needed to determine the exact anti-inflammatory potential of LPFE.

  11. Atomic force microscopy based investigations of anti-inflammatory effects in lipopolysaccharide-stimulated macrophages.

    Science.gov (United States)

    Pi, Jiang; Cai, Huaihong; Yang, Fen; Jin, Hua; Liu, Jianxin; Yang, Peihui; Cai, Jiye

    2016-01-01

    A new method based on atomic force microscopy (AFM) was developed to investigate the anti-inflammatory effects of drugs on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. The LPS-stimulated RAW264.7 macrophage cell line is a widely used in vitro cell model for the screening of anti-inflammatory drugs or the study of anti-inflammatory mechanisms. In this work, the inhibitory effects of dexamethasone and quercetin on LPS-CD14 receptor binding in RAW264.7 macrophages was probed by LPS-functionalized tips for the first time. Both dexamethasone and quercetin were found to inhibit LPS-induced NO production, iNOS expression, IκBα phosphorylation, and IKKα/β phosphorylation in RAW264.7 macrophages. The morphology and ultrastructure of RAW264.7 macrophages were determined by AFM, which indicated that dexamethasone and quercetin could inhibit LPS-induced cell surface particle size and roughness increase in RAW264.7 macrophages. The binding of LPS and its receptor in RAW264.7 macrophages was determined by LPS-functionalized AFM tips, which demonstrated that the binding force and binding probability between LPS and CD14 receptor on the surface of RAW264.7 macrophages were also inhibited by dexamethasone or quercetin treatment. The obtained results imply that AFM, which is very useful for the investigation of potential targets for anti-inflammatory drugs on native macrophages and the enhancement of our understanding of the anti-inflammatory effects of drugs, is expected to be developed into a promising tool for the study of anti-inflammatory drugs.

  12. Prolonged Ischemia Triggers Necrotic Depletion of Tissue-Resident Macrophages To Facilitate Inflammatory Immune Activation in Liver Ischemia Reperfusion Injury.

    Science.gov (United States)

    Yue, Shi; Zhou, Haoming; Wang, Xuehao; Busuttil, Ronald W; Kupiec-Weglinski, Jerzy W; Zhai, Yuan

    2017-05-01

    Although mechanisms of immune activation against liver ischemia reperfusion (IR) injury (IRI) have been studied extensively, questions regarding liver-resident macrophages, that is, Kupffer cells (KCs), remain controversial. Recent progress in the biology of tissue-resident macrophages implicates homeostatic functions of KCs. This study aims to dissect responses and functions of KCs in liver IRI. In a murine liver partial warm ischemia model, we analyzed liver-resident versus infiltrating macrophages by FACS and immunofluorescence staining. Our data showed that liver immune activation by IR was associated with not only infiltrations/activations of peripheral macrophages, but also necrotic depletion of KCs. Inhibition of receptor-interacting protein 1 (RIP1) by necrostatin-1s protected KCs from ischemia-induced depletion, resulting in the reduction of macrophage infiltration, suppression of proinflammatory immune activation, and protection of livers from IRI. The depletion of KCs by clodronate liposomes abrogated the effect of necrostatin-1s. Additionally, liver reconstitutions with KCs postischemia exerted anti-inflammatory/cytoprotective effects against IRI. These results reveal a unique response of KCs against liver IR, that is, RIP1-dependent necrosis, which constitutes a novel mechanism of liver inflammatory immune activation in the pathogenesis of liver IRI. Copyright © 2017 by The American Association of Immunologists, Inc.

  13. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages

    Directory of Open Access Journals (Sweden)

    Tapas K. Nayak

    2017-01-01

    Full Text Available Chikungunya virus (CHIKV infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6 MHC-I/II and B7.2 (CD86 were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.

  14. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages

    Science.gov (United States)

    Nayak, Tapas K.; Mamidi, Prabhudutta; Kumar, Abhishek; Singh, Laishram Pradeep K.; Sahoo, Subhransu S.; Chattopadhyay, Soma; Chattopadhyay, Subhasis

    2017-01-01

    Chikungunya virus (CHIKV) infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6) MHC-I/II and B7.2 (CD86) were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology. PMID:28067803

  15. A pseudopterane diterpene isolated from the octocoral Pseudopterogorgia acerosa inhibits the inflammatory response mediated by TLR-ligands and TNF-alpha in macrophages.

    Science.gov (United States)

    González, Yisett; Doens, Deborah; Santamaría, Ricardo; Ramos, Marla; Restrepo, Carlos M; Barros de Arruda, Luciana; Lleonart, Ricardo; Gutiérrez, Marcelino; Fernández, Patricia L

    2013-01-01

    Several diterpenoids isolated from terrestrial and marine environments have been identified as important anti-inflammatory agents. Although considerable progress has been made in the area of anti-inflammatory treatment, the search for more effective and safer compounds is a very active field of research. In this study we investigated the anti-inflammatory effects of a known pseudopterane diterpene (referred here as compound 1) isolated from the octocoral Pseudopterogorgia acerosa on the tumor necrosis factor- alpha (TNF-α) and TLRs- induced response in macrophages. Compound 1 inhibited the expression and secretion of the inflammatory mediators TNF-α, interleukin (IL)-6, IL-1β, nitric oxide (NO), interferon gamma-induced protein 10 (IP-10), ciclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) and monocyte chemoattractant protein-1 (MCP-1) induced by LPS in primary murine macrophages. This effect was associated with the inhibition of IκBα degradation and subsequent activation of NFκB. Compound 1 also inhibited the expression of the co-stimulatory molecules CD80 and CD86, which is a hallmark of macrophage activation and consequent initiation of an adaptive immune response. The anti-inflammatory effect was not exclusive to LPS because compound 1 also inhibited the response of macrophages to TNF-α and TLR2 and TLR3 ligands. Taken together, these results indicate that compound 1 is an anti-inflammatory molecule, which modulates a variety of processes occurring in macrophage activation.

  16. A pseudopterane diterpene isolated from the octocoral Pseudopterogorgia acerosa inhibits the inflammatory response mediated by TLR-ligands and TNF-alpha in macrophages.

    Directory of Open Access Journals (Sweden)

    Yisett González

    Full Text Available Several diterpenoids isolated from terrestrial and marine environments have been identified as important anti-inflammatory agents. Although considerable progress has been made in the area of anti-inflammatory treatment, the search for more effective and safer compounds is a very active field of research. In this study we investigated the anti-inflammatory effects of a known pseudopterane diterpene (referred here as compound 1 isolated from the octocoral Pseudopterogorgia acerosa on the tumor necrosis factor- alpha (TNF-α and TLRs- induced response in macrophages. Compound 1 inhibited the expression and secretion of the inflammatory mediators TNF-α, interleukin (IL-6, IL-1β, nitric oxide (NO, interferon gamma-induced protein 10 (IP-10, ciclooxygenase (COX-2, inducible nitric oxide synthase (iNOS and monocyte chemoattractant protein-1 (MCP-1 induced by LPS in primary murine macrophages. This effect was associated with the inhibition of IκBα degradation and subsequent activation of NFκB. Compound 1 also inhibited the expression of the co-stimulatory molecules CD80 and CD86, which is a hallmark of macrophage activation and consequent initiation of an adaptive immune response. The anti-inflammatory effect was not exclusive to LPS because compound 1 also inhibited the response of macrophages to TNF-α and TLR2 and TLR3 ligands. Taken together, these results indicate that compound 1 is an anti-inflammatory molecule, which modulates a variety of processes occurring in macrophage activation.

  17. A Pseudopterane Diterpene Isolated From the Octocoral Pseudopterogorgia acerosa Inhibits the Inflammatory Response Mediated by TLR-Ligands and TNF-Alpha in Macrophages

    Science.gov (United States)

    González, Yisett; Doens, Deborah; Santamaría, Ricardo; Ramos, Marla; Restrepo, Carlos M.; Barros de Arruda, Luciana; Lleonart, Ricardo; Gutiérrez, Marcelino; Fernández, Patricia L.

    2013-01-01

    Several diterpenoids isolated from terrestrial and marine environments have been identified as important anti-inflammatory agents. Although considerable progress has been made in the area of anti-inflammatory treatment, the search for more effective and safer compounds is a very active field of research. In this study we investigated the anti-inflammatory effects of a known pseudopterane diterpene (referred here as compound 1) isolated from the octocoral Pseudopterogorgia acerosa on the tumor necrosis factor- alpha (TNF-α) and TLRs- induced response in macrophages. Compound 1 inhibited the expression and secretion of the inflammatory mediators TNF-α, interleukin (IL)-6, IL-1β, nitric oxide (NO), interferon gamma-induced protein 10 (IP-10), ciclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) and monocyte chemoattractant protein-1 (MCP-1) induced by LPS in primary murine macrophages. This effect was associated with the inhibition of IκBα degradation and subsequent activation of NFκB. Compound 1 also inhibited the expression of the co-stimulatory molecules CD80 and CD86, which is a hallmark of macrophage activation and consequent initiation of an adaptive immune response. The anti-inflammatory effect was not exclusive to LPS because compound 1 also inhibited the response of macrophages to TNF-α and TLR2 and TLR3 ligands. Taken together, these results indicate that compound 1 is an anti-inflammatory molecule, which modulates a variety of processes occurring in macrophage activation. PMID:24358331

  18. Macrophage CGI-58 Attenuates Inflammatory Responsiveness via Promotion of PPARγ Signaling

    Directory of Open Access Journals (Sweden)

    Dan Yang

    2016-02-01

    Full Text Available Background/Aims: Comparative gene identification-58 (CGI-58, an adipose triglyceride lipase (ATGL coactivator, strongly promotes ATGL-mediated triglyceride (TG catabolism. Beyond its function in promoting lipolysis, other features of CGI-58 have been proposed. Here, we investigated the role of CGI-58 in the regulation of inflammatory responsiveness in macrophages. Methods: Macrophage-specific GCI-58 transgenic mice (TG and wild type mice (WT were fed a high fat diet (HFD, and RAW264.7 cells were treated with lipopolysaccharide (LPS. The peroxisome proliferator-activated receptor (PPAR signaling was detected. The inflammatory responsiveness and mitochondrial function were examined. Results: TG mice showed lower serum levels of proinflammatory cytokines and better mitochondrial function in macrophages compared with WT control. Knockdown of CGI-58 in RAW264.7 cells aggravated LPS-induced inflammation and mitochondrial dysfunction. CGI-58 overexpression and silencing in macrophages induced and inhibited PPARγ expression and activity, respectively. Most importantly, the PPARγ-specific agonist rosiglitazone significantly suppressed inflammation and mitochondrial dysfunction induced by CGI-58 deficiency. Furthermore, knockdown of PPARγ in macrophages significantly dampened the role of CGI-58 in suppression of inflammation and mitochondrial dysfunction. Interestingly, CGI-58 inhibited histone deacetylation and the recruitment of histone deacetylase (HDAC to the PPARγ promoter. Finally, ATGL deficiency did not affect inflammatory responsiveness and PPARγ signaling in macrophages. Conclusion: These results demonstrate that macrophage CGI-58 enhances PPARγ signaling and thus suppresses inflammatory responsiveness and mitochondrial dysfunction.

  19. FoxO1 regulates allergic asthmatic inflammation through regulating polarization of the macrophage inflammatory phenotype.

    Science.gov (United States)

    Chung, Sangwoon; Lee, Tae Jin; Reader, Brenda F; Kim, Ji Young; Lee, Yong Gyu; Park, Gye Young; Karpurapu, Manjula; Ballinger, Megan N; Qian, Feng; Rusu, Luiza; Chung, Hae Young; Unterman, Terry G; Croce, Carlo M; Christman, John W

    2016-04-05

    Inflammatory monocyte and tissue macrophages influence the initiation, progression, and resolution of type 2 immune responses, and alveolar macrophages are the most prevalent immune-effector cells in the lung. While we were characterizing the M1- or M2-like macrophages in type 2 allergic inflammation, we discovered that FoxO1 is highly expressed in alternatively activated macrophages. Although several studies have been focused on the fundamental role of FoxOs in hematopoietic and immune cells, the exact role that FoxO1 plays in allergic asthmatic inflammation in activated macrophages has not been investigated. Growing evidences indicate that FoxO1 acts as an upstream regulator of IRF4 and could have a role in a specific inflammatory phenotype of macrophages. Therefore, we hypothesized that IRF4 expression regulated by FoxO1 in alveolar macrophages is required for established type 2 immune mediates allergic lung inflammation. Our data indicate that targeted deletion of FoxO1 using FoxO1-selective inhibitor AS1842856 and genetic ablation of FoxO1 in macrophages significantly decreases IRF4 and various M2 macrophage-associated genes, suggesting a mechanism that involves FoxO1-IRF4 signaling in alveolar macrophages that works to polarize macrophages toward established type 2 immune responses. In response to the challenge of DRA (dust mite, ragweed, and Aspergillus) allergens, macrophage specific FoxO1 overexpression is associated with an accentuation of asthmatic lung inflammation, whereas pharmacologic inhibition of FoxO1 by AS1842856 attenuates the development of asthmatic lung inflammation. Thus, our study identifies a role for FoxO1-IRF4 signaling in the development of alternatively activated alveolar macrophages that contribute to type 2 allergic airway inflammation.

  20. Inflammatory Mediators and Insulin Resistance in Obesity: Role of Nuclear Receptor Signaling in Macrophages

    Directory of Open Access Journals (Sweden)

    Lucía Fuentes

    2010-01-01

    Full Text Available Visceral obesity is coupled to a general low-grade chronic inflammatory state characterized by macrophage activation and inflammatory cytokine production, leading to insulin resistance (IR. The balance between proinflammatory M1 and antiinflammatory M2 macrophage phenotypes within visceral adipose tissue appears to be crucially involved in the development of obesity-associated IR and consequent metabolic abnormalities. The ligand-dependent transcription factors peroxisome proliferator activated receptors (PPARs have recently been implicated in the determination of the M1/M2 phenotype. Liver X receptors (LXRs, which form another subgroup of the nuclear receptor superfamily, are also important regulators of proinflammatory cytokine production in macrophages. Disregulation of macrophage-mediated inflammation by PPARs and LXRs therefore underlies the development of IR. This review summarizes the role of PPAR and LXR signaling in macrophages and current knowledge about the impact of these actions in the manifestation of IR and obesity comorbidities such as liver steatosis and diabetic osteopenia.

  1. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages

    Science.gov (United States)

    Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S.; Alencar, Severino M.; Rosalen, Pedro L.; Mayer, Marcia P. A.

    2015-01-01

    Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases. PMID:26660901

  2. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages.

    Directory of Open Access Journals (Sweden)

    Bruno Bueno-Silva

    Full Text Available Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP, the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1 and of Il1β and Il1f9 (fold-change rate > 5, which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal, also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases.

  3. Brazilian Red Propolis Attenuates Inflammatory Signaling Cascade in LPS-Activated Macrophages.

    Science.gov (United States)

    Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S; Alencar, Severino M; Rosalen, Pedro L; Mayer, Marcia P A

    2015-01-01

    Although previous studies suggested an anti-inflammatory property of Brazilian red propolis (BRP), the mechanisms involved in the anti-inflammatory effects of BRP and its activity on macrophages were still not elucidated. This study aimed to evaluate whether BRP attenuates the inflammatory effect of LPS on macrophages and to investigate its underlying mechanisms. BRP was added to RAW 264.7 murine macrophages after activation with LPS. NO production, cell viability, cytokines profile were evaluated. Activation of inflammatory signaling pathways and macrophage polarization were determined by RT-qPCR and Western blot. BRP at 50 μg/ml inhibited NO production by 78% without affecting cell viability. Cd80 and Cd86 were upregulated whereas mrc1 was down regulated by BRP indicating macrophage polarization at M1. BRP attenuated the production of pro-inflammatory mediators IL-12, GM-CSF, IFN-Ɣ, IL-1β in cell supernatants although levels of TNF- α and IL-6 were slightly increased after BRP treatment. Levels of IL-4, IL-10 and TGF-β were also reduced by BRP. BRP significantly reduced the up-regulation promoted by LPS of transcription of genes in inflammatory signaling (Pdk1, Pak1, Nfkb1, Mtcp1, Gsk3b, Fos and Elk1) and of Il1β and Il1f9 (fold-change rate > 5), which were further confirmed by the inhibition of NF-κB and MAPK signaling pathways. Furthermore, the upstream adaptor MyD88 adaptor-like (Mal), also known as TIRAP, involved in TLR2 and TLR4 signaling, was down- regulated in BRP treated LPS-activated macrophages. Given that BRP inhibited multiple signaling pathways in macrophages involved in the inflammatory process activated by LPS, our data indicated that BRP is a noteworthy food-source for the discovery of new bioactive compounds and a potential candidate to attenuate exhacerbated inflammatory diseases.

  4. Apoptosis of resident and inflammatory macrophages before and during the inflammatory response of the virgin bovine mammary gland

    Directory of Open Access Journals (Sweden)

    Sladek Zbysek

    2010-02-01

    Full Text Available Abstract Background Macrophages may play a prominent role in defense of the bovine mammary gland, and their functionality is necessary for successful eradication of bacterial pathogens. In contrast to necrosis, however, apoptosis has not yet been studied in macrophages from bovine mammary glands. Therefore, the aim of this study was to confirm the occurrence of apoptosis in macrophages from resting heifer mammary glands and during the inflammatory response. Methods Inflammatory response was induced by phosphate buffered saline (PBS and by lipopolysaccharide (LPS. Resident macrophages (RESMAC were obtained before and inflammatory macrophages (INFMAC 24, 48, 72 and 168 hours after inducing inflammatory response in mammary glands of unbred heifers. Cell samples were analyzed for differential counts, apoptosis and necrosis using flow cytometry. Results Populations of RESMAC and INFMAC contained monocyte-like cells and vacuolized cells. Apoptosis was detected differentially in both morphologically different types of RESMAC and INFMAC and also during initiation and resolution of the inflammatory response. In the RESMAC population, approximately one-tenth of monocyte-like cells and one-third of vacuolized cells were apoptotic. In the INFMAC population obtained 24 h after PBS treatment, approximately one-tenth of monocyte-like cells and almost one-quarter of vacuolized cells were apoptotic. At the same time following LPS, however, we observed a significantly lower percentage of apoptotic cells in the population of monocyte-like INFMAC and vacuolized INFMAC. Moreover, a higher percentage of apoptotic cells in INFMAC was detected during all time points after PBS in contrast to LPS. Comparing RESMAC and INFMAC, we observed that vacuolized cells from populations of RESMAC and INFMAC underwent apoptosis more intensively than did monocyte-like cells. Conclusions We conclude that apoptosis of virgin mammary gland macrophages is involved in regulating their

  5. Anti-inflammatory effects of Viola yedoensis and the application of cell extraction methods for investigating bioactive constituents in macrophages.

    Science.gov (United States)

    Jeong, Yun Hee; Oh, You-Chang; Cho, Won-Kyung; Shin, Hyeji; Lee, Ki Yong; Ma, Jin Yeul

    2016-06-14

    Viola yedoensis (VY, Violaceae) is a popular medicinal herb used in traditional eastern medicine for treating lots of diseases, including inflammation and its related symptoms. However, the anti-inflammatory properties of VY have not been demonstrated. In the present study, we investigated the anti-inflammatory effects of VY ethanol extract (VYE) on macrophages and attempted to identify the bioactive components of VYE. We assessed the effects of VYE on secretion of nitric oxide (NO) and inflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β. In addition, we explored the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and changes in heme oxygenase (HO)-1, nuclear factor (NF)-kB, and mitogen-activated protein kinase (MAPK) signaling pathways in RAW 264.7 macrophages stimulated by lipopolysaccharide (LPS). In addition, a rapid and useful approach to identify potential bioactive components in VYE with anti-inflammatory effects was developed using murine macrophage cell extraction coupled with high-performance liquid chromatography tandem mass spectrometry (LC-MS). We found that VYE exerted anti-inflammatory activity by inhibiting the production of key inflammation mediators and related products, as well as suppression of HO-1, NF-kB, and MAPK signaling pathway activation in RAW 264.7 cells. In addition, we identified two compounds in VYE via the cell extraction method. Our results revealed that VYE exerts anti-inflammatory activities and its detailed inhibitory mechanism in macrophages. Furthermore, we identified bioactive components of VYE.

  6. Anti-inflammatory role of microRNA let-7c in LPS treated alveolar macrophages by targeting STAT3

    Institute of Scientific and Technical Information of China (English)

    Ji-Hui Yu; Li Long; Zhi-Xiao Luo; Lin-Man Li; Jie-Ru You

    2016-01-01

    Objective: To explore the expression of microRNA (miRNA) let-7c and its function in chronic obstructive pulmonary disease (COPD) and alveolar macrophage cells. Methods: Real time PCR was performed to detect the expression of miRNA let-7c in the lung tissue of COPD patients and COPD model in mice. MiRNA let-7c was overexpressed in alveolar macrophages isolated from mice and its effect was measured by the production of pro-inflammation cytokines and the protein level of signal transducer and activator of transcription 3 (STAT3) as well as phosphorylation level of STAT3 after LPS stimulation. Luciferase assay was used to detect the binding of miRNA let-7c and 3'UTR of STAT3. Results: MiRNA let-7c expression was significantly lower in patients with COPD compared with control group, and the similar result was found in COPD mice and LPS stimulated alveolar macrophages. Overexpression of miRNA let-7c in alveolar macrophages inhibited LPS-induced increasing of tumor necrosis factor alpha, interleukin-6 and interleukin-1β. Luciferase assay showed STAT3 was a targeting of miRNA let-7c in alveolar macrophages. Conclusions: MiRNA let-7c low expression in COPD can regulate inflammatory responses by targeting STAT3 in alveolar macrophage, which may provide a new target for COPD treatment strategies.

  7. Changing pattern of the subcellular distribution of erythroblast macrophage protein (Emp) during macrophage differentiation.

    Science.gov (United States)

    Soni, Shivani; Bala, Shashi; Kumar, Ajay; Hanspal, Manjit

    2007-01-01

    Erythroblast macrophage protein (Emp) mediates the attachment of erythroid cells to macrophages and is required for normal differentiation of both cell lineages. In erythroid cells, Emp is believed to be involved in nuclear extrusion, however, its role in macrophage differentiation is unknown. Information on the changes in the expression level and subcellular distribution of Emp in differentiating macrophages is essential for understanding the function of Emp. Macrophages of varying maturity were examined by immunofluorescence microscopy and biochemical methods. Our data show that Emp is expressed in all stages of maturation, but its localization pattern changes dramatically during maturation: in immature macrophages, a substantial fraction of Emp is associated with the nuclear matrix, whereas in more mature cells, Emp is expressed largely at cell surface. Pulse-chase experiments show that nascent Emp migrates intracellularly from the cytoplasm to the plasma membrane more efficiently in mature macrophages than in immature cells. Incubation of erythroid cells with macrophages in culture shows that erythroid cells attach to mature macrophages but not to immature macrophage precursors. Together, our data show that the temporal and spatial expression of Emp correlates with its role in erythroblastic island formation and suggest that Emp may be involved in multiple cellular functions.

  8. Anti-inflammatory effects of miR-21 in the macrophage response to peritonitis.

    Science.gov (United States)

    Barnett, Rebecca Elise; Conklin, Daniel J; Ryan, Lindsey; Keskey, Robert C; Ramjee, Vikram; Sepulveda, Ernesto A; Srivastava, Sanjay; Bhatnagar, Aruni; Cheadle, William G

    2016-02-01

    -α secretion, whereas suppression of microRNA-21 expression increased tumor necrosis factor-α and interleukin 6, and decreased interleukin 10 levels after lipopolysaccharide. Protein targets of microRNA-21 were not different following suppression of microRNA-21. Nuclear factor κB was increased by suppression of microRNA-21. These findings demonstrate microRNA-21 is beneficial in modulating the macrophage response to lipopolysaccharide peritonitis and an improved understanding of the anti-inflammatory effects of microRNA-21 may result in novel, targeted therapy against peritonitis and sepsis. © Society for Leukocyte Biology.

  9. Activation of Alveolar Macrophages after Plutonium Oxide Inhalation in Rats: Involvement in the Early Inflammatory Response

    Energy Technology Data Exchange (ETDEWEB)

    Van der Meeren, A.; Tourdes, F.; Gremy, O.; Grillon, G.; Abram, M.C.; Poncy, J.L.; Griffiths, N. [CEA, DSV, DRR, SRCA, Centre DAM Ile de France, F-91297 Bruyeres Le Chatel, Arpajon (France)

    2008-07-01

    Alveolar macrophages play an important role in the distribution, clearance and inflammatory reactions after particle inhalation, which may influence long-term events such as fibrosis and tumorigenesis. The objectives of the present study were to investigate the early inflammatory events after plutonium oxide inhalation in rats and involvement of alveolar macrophages. Lung changes were studied from 3 days to 3 months after inhalation of PuO{sub 2} or different isotopic compositions (70% or 97% {sup 239}Pu) and initial lung deposits (range 2.1 to 43.4 kBq/rat). Analyses of bronchoalveolar lavages showed early increases in the numbers of granulocytes, lymphocytes and multi-nucleated macrophages. The activation of macrophages was evaluated ex vivo by measurement of inflammatory mediator levels in culture supernatants. TNF-alpha and chemokine MCP-1, MIP-2 and CINC-1 production was elevated from 7 days after inhalation and remained so up to 3 months. In contrast, IL-1 beta, IL-6 and IL-10 production was unchanged. At 6 weeks, pulmonary macrophage numbers and activation state were increased as observed from an immunohistochemistry study of lung sections with anti-ED1. Similarly, histological analyses of lung sections also showed evidence of inflammatory responses. In conclusion, our results indicate early inflammatory changes in the lungs of PuO{sub 2}-contaminated animals and the involvement of macrophages in this process. A dose-effect relationship was observed between the amount of radionuclide inhaled or retained at the time of analysis and inflammatory mediator production by alveolar macrophages 14 days after exposure. For similar initial lung deposits, the inflammatory manifestation appears higher for 97% {sup 239}Pu than for 70% {sup 239}Pu. (authors)

  10. Saliva initiates the formation of pro-inflammatory macrophages in vitro.

    Science.gov (United States)

    Pourgonabadi, Solmaz; Müller, Heinz-Dieter; Mendes, João Rui; Gruber, Reinhard

    2017-01-01

    Saliva can support oral wound healing, a process that requires a temporary inflammatory reaction. We have reported previously that saliva provokes a strong inflammatory response in oral fibroblasts. Bone marrow cells also give rise to macrophages, a heterogeneous subset of cell population involved in wound healing. Lipopolysaccharide (LPS) and interleukin 4 (IL-4) induce activation of pro-(M1), and anti-(M2) inflammatory macrophages, respectively. Yet, the impact of saliva on programming bone marrow cells into either M1 or M2 macrophages remains unclear . Herein, we examined whether sterile saliva affects the in vitro process of macrophage polarization based on murine bone marrow cultures and RAW264.7 mouse macrophages. We report that sterile saliva, similar to lipopolysaccharides, provoked a robust activation of the M1 phenotype which is characterized by a strong increase of the respective genes IL-12 and IL-6, based on a real-time gene expression analysis, and for IL-6 with immunoassay. Arginase-1 and Ym1, both genes characteristic for the M2 phenotype, were not considerably modulated by saliva. Inhibition of TLR4 signaling with TAK-242, blocking NFκB signaling with Bay 11-7085, but also autoclaving saliva greatly reduced the development of the M1 phenotype. These data suggest that saliva activates the TLR4 dependent polarization into pro-inflammatory M1 macrophages in vitro. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Sodium chloride promotes pro-inflammatory macrophage polarization thereby aggravating CNS autoimmunity.

    Science.gov (United States)

    Hucke, Stephanie; Eschborn, Melanie; Liebmann, Marie; Herold, Martin; Freise, Nicole; Engbers, Annika; Ehling, Petra; Meuth, Sven G; Roth, Johannes; Kuhlmann, Tanja; Wiendl, Heinz; Klotz, Luisa

    2016-02-01

    The increasing incidence in Multiple Sclerosis (MS) during the last decades in industrialized countries might be linked to a change in dietary habits. Nowadays, enhanced salt content is an important characteristic of Western diet and increased dietary salt (NaCl) intake promotes pathogenic T cell responses contributing to central nervous system (CNS) autoimmunity. Given the importance of macrophage responses for CNS disease propagation, we addressed the influence of salt consumption on macrophage responses in CNS autoimmunity. We observed that EAE-diseased mice receiving a NaCl-high diet showed strongly enhanced macrophage infiltration and activation within the CNS accompanied by disease aggravation during the effector phase of EAE. NaCl treatment of macrophages elicited a strong pro-inflammatory phenotype characterized by enhanced pro-inflammatory cytokine production, increased expression of immune-stimulatory molecules, and an antigen-independent boost of T cell proliferation. This NaCl-induced pro-inflammatory macrophage phenotype was accompanied by increased activation of NF-kB and MAPK signaling pathways. The pathogenic relevance of NaCl-conditioned macrophages is illustrated by the finding that transfer into EAE-diseased animals resulted in significant disease aggravation compared to untreated macrophages. Importantly, also in human monocytes, NaCl promoted a pro-inflammatory phenotype that enhanced human T cell proliferation. Taken together, high dietary salt intake promotes pro-inflammatory macrophages that aggravate CNS autoimmunity. Together with other studies, these results underline the need to further determine the relevance of increased dietary salt intake for MS disease severity.

  12. Involvement of proton-sensing receptor TDAG8 in the anti-inflammatory actions of dexamethasone in peritoneal macrophages

    Energy Technology Data Exchange (ETDEWEB)

    He, Xiao-dong; Tobo, Masayuki; Mogi, Chihiro; Nakakura, Takashi; Komachi, Mayumi; Murata, Naoya; Takano, Mutsumi; Tomura, Hideaki; Sato, Koichi [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan); Okajima, Fumikazu, E-mail: fokajima@showa.gunma-u.ac.jp [Laboratory of Signal Transduction, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512 (Japan)

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Glucocorticoid (GC) induced the expression of proton-sensing TDAG8 in macrophages. Black-Right-Pointing-Pointer GC enhanced acidic pH-induced cAMP accumulation and inhibition of TNF-{alpha} production. Black-Right-Pointing-Pointer The enhancement of the GC-induced actions was lost by TDAG8 deficiency. Black-Right-Pointing-Pointer GC-induced anti-inflammatory actions are partly mediated by TDAG8 expression. -- Abstract: Dexamethasone (DEX), a potent glucocorticoid, increased the expression of T-cell death associated gene 8 (TDAG8), a proton-sensing G protein-coupled receptor, which is associated with the enhancement of acidic pH-induced cAMP accumulation, in peritoneal macrophages. We explored the role of increased TDAG8 expression in the anti-inflammatory actions of DEX. The treatment of macrophages with either DEX or acidic pH induced the cell death of macrophages; however, the cell death was not affected by TDAG8 deficiency. While DEX inhibited lipopolysaccharide-induced production of tumor necrosis factor-{alpha}, an inflammatory cytokine, which was independent of TDAG8, at neutral pH, the glucocorticoid enhanced the acidic pH-induced inhibition of tumor necrosis factor-{alpha} production in a manner dependent on TDAG8. In conclusion, the DEX-induced increase in TDAG8 expression is in part involved in the glucocorticoid-induced anti-inflammatory actions through the inhibition of inflammatory cytokine production under the acidic pH environment. On the other hand, the role of TDAG8 in the DEX-induced cell death is questionable.

  13. Temperature-induced protein secretion by Leishmania mexicana modulates macrophage signalling and function.

    Science.gov (United States)

    Hassani, Kasra; Antoniak, Elisabeth; Jardim, Armando; Olivier, Martin

    2011-05-03

    Protozoan parasites of genus Leishmania are the causative agents of leishmaniasis. These digenetic microorganisms undergo a marked environmental temperature shift (TS) during transmission from the sandfly vector (ambient temperature, 25-26°C) to the mammalian host (37°C). We have observed that this TS induces a rapid and dramatic increase in protein release from Leishmania mexicana (cutaneous leishmaniasis) within 4 h. Proteomic identification of the TS-induced secreted proteins revealed 72 proteins, the majority of which lack a signal peptide and are thus thought to be secreted via nonconventional mechanisms. Interestingly, this protein release is accompanied by alterations in parasite morphology including an augmentation in the budding of exovesicles from its surface. Here we show that the exoproteome of L. mexicana upon TS induces cleavage and activation of the host protein tyrosine phosphatases, specifically SHP-1 and PTP1-B, in a murine bone-marrow-derived macrophage cell line. Furthermore, translocation of prominent inflammatory transcription factors, namely NF-κB and AP-1 is altered. The exoproteome also caused inhibition of nitric oxide production, a crucial leishmanicidal function of the macrophage. Overall, our results provide strong evidence that within early moments of interaction with the mammalian host, L. mexicana rapidly releases proteins and exovesicles that modulate signalling and function of the macrophage. These modulations can result in attenuation of the inflammatory response and deactivation of the macrophage aiding the parasite in the establishment of infection.

  14. Temperature-induced protein secretion by Leishmania mexicana modulates macrophage signalling and function.

    Directory of Open Access Journals (Sweden)

    Kasra Hassani

    Full Text Available Protozoan parasites of genus Leishmania are the causative agents of leishmaniasis. These digenetic microorganisms undergo a marked environmental temperature shift (TS during transmission from the sandfly vector (ambient temperature, 25-26°C to the mammalian host (37°C. We have observed that this TS induces a rapid and dramatic increase in protein release from Leishmania mexicana (cutaneous leishmaniasis within 4 h. Proteomic identification of the TS-induced secreted proteins revealed 72 proteins, the majority of which lack a signal peptide and are thus thought to be secreted via nonconventional mechanisms. Interestingly, this protein release is accompanied by alterations in parasite morphology including an augmentation in the budding of exovesicles from its surface. Here we show that the exoproteome of L. mexicana upon TS induces cleavage and activation of the host protein tyrosine phosphatases, specifically SHP-1 and PTP1-B, in a murine bone-marrow-derived macrophage cell line. Furthermore, translocation of prominent inflammatory transcription factors, namely NF-κB and AP-1 is altered. The exoproteome also caused inhibition of nitric oxide production, a crucial leishmanicidal function of the macrophage. Overall, our results provide strong evidence that within early moments of interaction with the mammalian host, L. mexicana rapidly releases proteins and exovesicles that modulate signalling and function of the macrophage. These modulations can result in attenuation of the inflammatory response and deactivation of the macrophage aiding the parasite in the establishment of infection.

  15. Docosahexaenoic acid decreases pro-inflammatory mediators in an in vitro murine adipocyte macrophage co-culture model.

    Directory of Open Access Journals (Sweden)

    Anna A De Boer

    Full Text Available Paracrine interactions between adipocytes and macrophages contribute to chronic inflammation in obese adipose tissue. Dietary strategies to mitigate such inflammation include long-chain polyunsaturated fatty acids, docosahexaenoic (DHA and eicosapentaenoic (EPA acids, which act through PPARγ-dependent and independent pathways. We utilized an in vitro co-culture model designed to mimic the ratio of macrophages:adipocytes in obese adipose tissue, whereby murine 3T3-L1 adipocytes were cultured with RAW 264.7 macrophages in direct contact, or separated by a trans-well membrane (contact-independent mechanism, with 125 µM of albumin-complexed DHA, EPA, palmitic acid (PA, or albumin alone (control. Thus, we studied the effect of physical cell contact versus the presence of soluble factors, with or without a PPARγ antagonist (T0070907 in order to elucidate putative mechanisms. After 12 hr, DHA was the most anti-inflammatory, decreasing MCP1 and IL-6 secretion in the contact system (-57%, -63%, respectively, p ≤ 0.05 with similar effects in the trans-well system. The trans-well system allowed for isolation of cell types for inflammatory mediator analysis. DHA decreased mRNA expression (p<0.05 of Mcp1 (-7.1 fold and increased expression of the negative regulator, Mcp1-IP (+1.5 fold. In macrophages, DHA decreased mRNA expression of pro-inflammatory M1 polarization markers (p ≤ 0.05, Nos2 (iNOS; -7 fold, Tnfα (-4.2 fold and Nfκb (-2.3 fold, while increasing anti-inflammatory Tgfβ1 (+1.7 fold. Interestingly, the PPARγ antagonist co-administered with DHA or EPA in co-culture reduced (p ≤ 0.05 adiponectin cellular protein, without modulating other cytokines (protein or mRNA. Overall, our findings suggest that DHA may lessen the degree of MCP1 and IL-6 secreted from adipocytes, and may reduce the degree of M1 polarization of macrophages recruited to adipose tissue, thereby decreasing the intensity of pro-inflammatory cross-talk between adipocytes

  16. The response of human macrophages to β-glucans depends on the inflammatory milieu.

    Directory of Open Access Journals (Sweden)

    Cristina Municio

    Full Text Available BACKGROUND: β-glucans are fungal cell wall components that bind to the C-type lectin-like receptor dectin-1. Polymorphisms of dectin-1 gene are associated with susceptibility to invasive fungal infection and medically refractory ulcerative colitis. The purpose of this study has been addressing the response of human macrophages to β-glucans under different conditions mimicking the composition of the inflammatory milieu in view of the wide plasticity and large range of phenotypical changes showed by these cells, and the relevant role of dectin-1 in several pathophysiological conditions. PRINCIPAL FINDINGS: Serum-differentiated macrophages stimulated with β-glucans showed a low production of TNFα and IL-1β, a high production of IL-6 and IL-23, and a delayed induction of cyclooxygenase-2 and PGE2 biosynthesis that resembled the responses elicited by crystals and those produced when phagosomal degradation of the phagocytic cargo increases ligand access to intracellular pattern recognition receptors. Priming with a low concentration of LPS produced a rapid induction of cyclooxygenase-2 and a synergistic release of PGE2. When the differentiation of the macrophages was carried out in the presence of M-CSF, an increased expression of dectin-1 B isoform was observed. In addition, this treatment made the cells capable to release arachidonic acid in response to β-glucan. CONCLUSIONS: These results indicate that the macrophage response to fungal β-glucans is strongly influenced by cytokines and microbial-derived factors that are usual components of the inflammatory milieu. These responses can be sorted into three main patterns i an elementary response dependent on phagosomal processing of pathogen-associated molecular patterns and/or receptor-independent, direct membrane binding linked to the immunoreceptor tyrosine-based activation motif-bearing transmembrane adaptor DNAX-activating protein 12, ii a response primed by TLR4-dependent signals, and iii

  17. The Response of Human Macrophages to β-Glucans Depends on the Inflammatory Milieu

    Science.gov (United States)

    Montero, Olimpio; Hugo, Etzel; Rodríguez, Mario; Domingo, Esther; Alonso, Sara

    2013-01-01

    Background β-glucans are fungal cell wall components that bind to the C-type lectin-like receptor dectin-1. Polymorphisms of dectin-1 gene are associated with susceptibility to invasive fungal infection and medically refractory ulcerative colitis. The purpose of this study has been addressing the response of human macrophages to β-glucans under different conditions mimicking the composition of the inflammatory milieu in view of the wide plasticity and large range of phenotypical changes showed by these cells, and the relevant role of dectin-1 in several pathophysiological conditions. Principal Findings Serum-differentiated macrophages stimulated with β-glucans showed a low production of TNFα and IL-1β, a high production of IL-6 and IL-23, and a delayed induction of cyclooxygenase-2 and PGE2 biosynthesis that resembled the responses elicited by crystals and those produced when phagosomal degradation of the phagocytic cargo increases ligand access to intracellular pattern recognition receptors. Priming with a low concentration of LPS produced a rapid induction of cyclooxygenase-2 and a synergistic release of PGE2. When the differentiation of the macrophages was carried out in the presence of M-CSF, an increased expression of dectin-1 B isoform was observed. In addition, this treatment made the cells capable to release arachidonic acid in response to β-glucan. Conclusions These results indicate that the macrophage response to fungal β-glucans is strongly influenced by cytokines and microbial-derived factors that are usual components of the inflammatory milieu. These responses can be sorted into three main patterns i) an elementary response dependent on phagosomal processing of pathogen-associated molecular patterns and/or receptor-independent, direct membrane binding linked to the immunoreceptor tyrosine-based activation motif-bearing transmembrane adaptor DNAX-activating protein 12, ii) a response primed by TLR4-dependent signals, and iii) a response dependent

  18. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Ballestas, Mary E. [Department of Pediatrics Infectious Disease, Children' s of Alabama, School of Medicine, University of Alabama at Birmingham, AL (United States); Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Robbins, David J. [Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami (United States); Matalon, Sadis [Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL (United States); Deshane, Jessy S. [Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Afaq, Farrukh [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Bickers, David R. [Department of Dermatology, Columbia University Medical Center, New York (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2013-11-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.

  19. The human CD5L/AIM-CD36 axis: A novel autophagy inducer in macrophages that modulates inflammatory responses.

    Science.gov (United States)

    Sanjurjo, Lucía; Amézaga, Núria; Aran, Gemma; Naranjo-Gómez, Mar; Arias, Lilibeth; Armengol, Carolina; Borràs, Francesc E; Sarrias, Maria-Rosa

    2015-01-01

    CD5L (CD5 molecule-like) is a secreted glycoprotein that participates in host response to bacterial infection. CD5L influences the monocyte inflammatory response to the bacterial surface molecules lipopolysaccharide (LPS) and lipoteichoic acid (LTA) by inhibiting TNF secretion. Here we studied the intracellular events that lead to macrophage TNF inhibition by human CD5L. To accomplish this goal, we performed functional analyses with human monocytic THP1 macrophages, as well as with peripheral blood monocytes. Inhibition of phosphatidylinositol 3-kinase (PtdIns3K) reversed the inhibitory effect of CD5L on TNF secretion. Among the various PtdIns3K isoforms, our results indicated that CD5L activates PtdIns3K (whose catalytic subunit is termed PIK3C3), a key modulator involved in autophagy. Further analysis revealed a concomitant enhancement of autophagy markers such as cellular LC3-II content, increased LC3 puncta, as well as LC3-LysoTracker Red colocalization. Moreover, electron microscopy showed an increased presence of cytosolic autophagosomes in THP1 macrophages overexpressing CD5L. Besides preventing TNF secretion, CD5L also inhibited IL1B and enhanced IL10 secretion. This macrophage anti-inflammatory pattern of CD5L was reverted upon silencing of autophagy protein ATG7 by siRNA transfection. Additional siRNA experiments in THP1 macrophages indicated that the induction of autophagy mechanisms by CD5L was achieved through cell-surface scavenger receptor CD36, a multiligand receptor expressed in a wide variety of cell types. Our data represent the first evidence that CD36 is involved in autophagy and point to a significant contribution of the CD5L-CD36 axis to the induction of macrophage autophagy.

  20. Granulocyte-macrophage colony stimulatory factor enhances the pro-inflammatory response of interferon-γ-treated macrophages to Pseudomonas aeruginosa infection.

    Directory of Open Access Journals (Sweden)

    Sonali Singh

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen that can cause severe infections at compromised epithelial surfaces, such those found in burns, wounds, and in lungs damaged by mechanical ventilation or recurrent infections, particularly in cystic fibrosis (CF patients. CF patients have been proposed to have a Th2 and Th17-biased immune response suggesting that the lack of Th1 and/or over exuberant Th17 responses could contribute to the establishment of chronic P. aeruginosa infection and deterioration of lung function. Accordingly, we have observed that interferon (IFN-γ production by peripheral blood mononuclear cells from CF patients positively correlated with lung function, particularly in patients chronically infected with P. aeruginosa. In contrast, IL-17A levels tended to correlate negatively with lung function with this trend becoming significant in patients chronically infected with P. aeruginosa. These results are in agreement with IFN-γ and IL-17A playing protective and detrimental roles, respectively, in CF. In order to explore the protective effect of IFN-γ in CF, the effect of IFN-γ alone or in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF, on the ability of human macrophages to control P. aeruginosa growth, resist the cytotoxicity induced by this bacterium or promote inflammation was investigated. Treatment of macrophages with IFN-γ, in the presence and absence of GM-CSF, failed to alter bacterial growth or macrophage survival upon P. aeruginosa infection, but changed the inflammatory potential of macrophages. IFN-γ caused up-regulation of monocyte chemoattractant protein-1 (MCP-1 and TNF-α and down-regulation of IL-10 expression by infected macrophages. GM-CSF in combination with IFN-γ promoted IL-6 production and further reduction of IL-10 synthesis. Comparison of TNF-α vs. IL-10 and IL-6 vs. IL-10 ratios revealed the following hierarchy in regard to the pro-inflammatory potential of human

  1. Novel interactions between erythroblast macrophage protein and cell migration.

    Science.gov (United States)

    Javan, Gulnaz T; Can, Ismail; Yeboah, Fred; Lee, Youngil; Soni, Shivani

    2016-09-01

    Erythroblast macrophage protein is a novel protein known to mediate attachment of erythroid cells to macrophages to form erythroblastic islands in bone marrow during erythropoiesis. Emp-null macrophages are small with round morphologies, and lack cytoplasmic projections which imply immature structure. The role of Emp in macrophage development and function is not fully elucidated. Macrophages perform varied functions (e.g. homeostasis, erythropoiesis), and are implicated in numerous pathophysiological conditions such as cellular malignancy. The objective of the current study is to investigate the interaction of Emp with cytoskeletal- and cell migration-associated proteins involved in macrophage functions. A short hairpin RNA lentiviral system was use to down-regulate the expression of Emp in macrophage cells. A cell migration assay revealed that the relocation of macrophages was significantly inhibited when Emp expression was decreased. To further analyze changes in gene expression related to cell motility, PCR array was performed by down-regulating Emp expression. The results indicated that expression of mitogen-activated protein kinase 1 and thymoma viral proto-oncogene 1 were significantly higher when Emp was down-regulated. The results implicate Emp in abnormal cell motility, thus, warrants to assess its role in cancer where tumor cell motility is required for invasion and metastasis.

  2. Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity

    OpenAIRE

    Smythies, Lesley E.; Sellers, Marty; Ronald H Clements; Mosteller-Barnum, Meg; Meng, Gang; Benjamin, William H.; Orenstein, Jan M.; Smith, Phillip D.

    2005-01-01

    Intestinal macrophages, which are thought to orchestrate mucosal inflammatory responses, have received little investigative attention compared with macrophages from other tissues. Here we show that human intestinal macrophages do not express innate response receptors, including the receptors for LPS (CD14), Fcα (CD89), Fcγ (CD64, CD32, CD16), CR3 (CD11b/CD18), and CR4 (CD11c/CD18); the growth factor receptors IL-2 (CD25) and IL-3 (CD123); and the integrin LFA-1 (CD11a/CD18). Moreover, residen...

  3. Vegetable oil induced inflammatory response by altering TLR-NF-κB signalling, macrophages infiltration and polarization in adipose tissue of large yellow croaker (Larimichthys crocea).

    Science.gov (United States)

    Tan, Peng; Dong, Xiaojing; Mai, Kangsen; Xu, Wei; Ai, Qinghui

    2016-12-01

    High level of vegetable oil (VO) in diets could induce strong inflammatory response, and thus decrease nonspecific immunity and disease resistance in most marine fish species. The present study was conducted to investigate whether dietary VO could exert these anti-immunological effects by altering TLR-NF-κB signalling, macrophages infiltration and polarization in adipose tissue of large yellow croaker (Larimichthys crocea). Three iso-nitrogenous and iso-lipid diets with 0% (FO, fish oil, the control), 50% (FV, fish oil and vegetable oil mixed) and 100% (VO, vegetable oil) vegetable oil were fed to fish with three replicates for ten weeks. The results showed that activities of respiratory burst (RB) and alternative complement pathway (ACP), as well as disease resistance after immune challenge were significantly decreased in large yellow croaker fed VO diets compared to FO diets. Inflammatory response of experimental fish was markedly elevated by VO reflected by increase of pro-inflammatory cytokines (IL1β and TNFα) and decrease of anti-inflammatory cytokine (arginase I and IL10) genes expression. TLR-related genes expression, nucleus p65 protein, IKKα/β and IκBα phosphorylation were all significantly increased in the AT of large yellow croaker fed VO diets. Moreover, the expression of macrophage infiltration marker proteins (cluster of differentiation 68 [CD68] and colony-stimulating factor 1 receptor [CSF1R]) was significantly increased while the expression of anti-inflammatory M2 macrophage polarization marker proteins (macrophage mannose receptor 1 [MRC1] and cluster of differentiation 209 [CD209]) was significantly decreased in the AT of large yellow croaker fed VO diets. In conclusion, VO could induce inflammatory responses by activating TLR-NF-κB signalling, increasing macrophage infiltration into adipose tissue and polarization of macrophage in large yellow croaker.

  4. Production of inflammatory mediators by human macrophages obtained from ascites

    NARCIS (Netherlands)

    W.M. Pruimboom (Wanda); A.P.J. van Dijk (Arie); C.J.A.M. Tak (Corné); I.L. Bonta; J.H.P. Wilson (Paul); F.J. Zijlstra (Freek)

    1994-01-01

    textabstractAscites is a readily available source of human macrophages (Mø), which can be used to study Mø functions in vitro. We characterized the mediators of inflammation produced by human peritoneal Mø (hp-Mø) obtained from patients with portal hypertension and ascites. The production of the cy

  5. Wear particles from studded tires and granite pavement induce pro-inflammatory alterations in human monocyte-derived macrophages: a proteomic study.

    Science.gov (United States)

    Karlsson, Helen; Lindbom, John; Ghafouri, Bijar; Lindahl, Mats; Tagesson, Christer; Gustafsson, Mats; Ljungman, Anders G

    2011-01-14

    Airborne particulate matter is considered to be one of the environmental contributors to the mortality in cancer, respiratory, and cardiovascular diseases. For future preventive actions, it is of major concern to investigate the toxicity of defined groups of airborne particles and to clarify their pathways in biological tissues. To expand the knowledge beyond general inflammatory markers, this study examined the toxicoproteomic effects on human monocyte derived macrophages after exposure to wear particles generated from the interface of studded tires and a granite-containing pavement. As comparison, the effect of endotoxin was also investigated. The macrophage proteome was separated using two-dimensional gel electrophoresis. Detected proteins were quantified, and selected proteins were identified by matrix-assisted laser desorption/ionization time of flight mass spectrometry. Among analyzed proteins, seven were significantly decreased and three were increased by exposure to wear particles as compared to unexposed control cells. Endotoxin exposure resulted in significant changes in the expression of six proteins: four decreased and two increased. For example, macrophage capping protein was significantly increased after wear particle exposure only, whereas calgizzarin and galectin-3 were increased by both wear particle and endotoxin exposure. Overall, proteins associated with inflammatory response were increased and proteins involved in cellular functions such as redox balance, anti-inflammatory response, and glycolysis were decreased. Investigating the effects of characterized wear particles on human macrophages with a toxicoproteomic approach has shown to be useful in the search for more detailed information about specific pathways and possible biological markers.

  6. Surface layer proteins isolated from Clostridium difficile induce clearance responses in macrophages.

    Science.gov (United States)

    Collins, Laura E; Lynch, Mark; Marszalowska, Izabela; Kristek, Maja; Rochfort, Keith; O'Connell, Mary; Windle, Henry; Kelleher, Dermot; Loscher, Christine E

    2014-05-01

    Clostridium difficile is the leading cause of hospital-acquired diarrhoea worldwide, and if the bacterium is not cleared effectively it can pose a risk of recurrent infections and complications such as colitis, sepsis and death. In this study we demonstrate that surface layer proteins from the one of the most frequently acquired strains of C. difficile, activate mechanisms in murine macrophage in vitro that are associated with clearance of bacterial infection. Surface layer proteins (SLPs) isolated from C. difficile induced the production of pro-inflammatory cytokines and chemokines and increased macrophage migration and phagocytotic activity in vitro. Furthermore, we also observed up-regulation of a number of cell surface markers on the macrophage, which are important in pathogen recognition and antigen presentation. The effects of SLPs on macrophages were reversed in the presence of a p38 inhibitor, indicating the potential importance of this signalling protein in how SLP activates the immune system. In conclusion this study shows that surface layer proteins from a common strain of C. difficile can activate a clearance response in macrophage and suggests that these proteins are important in clearance of C. difficile infection. Understanding how the immune system clears C. difficile infection could offer important insights for new treatment strategies.

  7. Neisseria gonorrhoeae survives within and modulates apoptosis and inflammatory cytokine production of human macrophages.

    Science.gov (United States)

    Château, Alice; Seifert, H Steven

    2016-04-01

    The human-adapted organism Neisseria gonorrhoeae is the causative agent of gonorrhoea, a sexually transmitted infection. It readily colonizes the genital, rectal and nasalpharyngeal mucosa during infection. While it is well established that N. gonorrhoeae recruits and modulates the functions of polymorphonuclear leukocytes during infection, how N. gonorrhoeae interacts with macrophages present in infected tissue is not fully defined. We studied the interactions of N. gonorrhoeae with two human monocytic cell lines, THP-1 and U937, and primary monocytes, all differentiated into macrophages. Most engulfed bacteria were killed in the phagolysosome, but a subset of bacteria was able to survive and replicate inside the macrophages suggesting that those cells may be an unexplored cellular reservoir for N. gonorrhoeae during infection. N. gonorrhoeae was able to modulate macrophage apoptosis: N. gonorrhoeae induced apoptosis in THP-1 cells whereas it inhibited induced apoptosis in U937 cells and primary human macrophages. Furthermore, N. gonorrhoeae induced expression of inflammatory cytokines in macrophages, suggesting a role for macrophages in recruiting polymorphonuclear leukocytes to the site of infection. These results indicate macrophages may serve as a significant replicative niche for N. gonorrhoeae and play an important role in gonorrheal pathogenesis.

  8. Muscle cells challenged with saturated fatty acids mount an autonomous inflammatory response that activates macrophages

    Directory of Open Access Journals (Sweden)

    Pillon Nicolas J

    2012-10-01

    Full Text Available Abstract Obesity is associated with chronic low-grade inflammation. Within adipose tissue of mice fed a high fat diet, resident and infiltrating macrophages assume a pro-inflammatory phenotype characterized by the production of cytokines which in turn impact on the surrounding tissue. However, inflammation is not restricted to adipose tissue and high fat-feeding is responsible for a significant increase in pro-inflammatory cytokine expression in muscle. Although skeletal muscle is the major disposer of dietary glucose and a major determinant of glycemia, the origin and consequence of muscle inflammation in the development of insulin resistance are poorly understood. We used a cell culture approach to investigate the vectorial crosstalk between muscle cells and macrophages upon exposure to physiological, low levels of saturated and unsaturated fatty acids. Inflammatory pathway activation and cytokine expression were analyzed in L6 muscle cells expressing myc-tagged GLUT4 (L6GLUT4myc exposed to 0.2 mM palmitate or palmitoleate. Conditioned media thereof, free of fatty acids, were then tested for their ability to activate RAW264.7 macrophages. Palmitate -but not palmitoleate- induced IL-6, TNFα and CCL2 expression in muscle cells, through activation of the NF-κB pathway. Palmitate (0.2 mM alone did not induce insulin resistance in muscle cells, yet conditioned media from palmitate-challenged muscle cells selectively activated macrophages towards a pro-inflammatory phenotype. These results demonstrate that low concentrations of palmitate activate autonomous inflammation in muscle cells to release factors that turn macrophages pro-inflammatory. We hypothesize that saturated fat-induced, low-grade muscle cell inflammation may trigger resident skeletal muscle macrophage polarization, possibly contributing to insulin resistance in vivo.

  9. Hypusine modification of the ribosome-binding protein eIF5A, a target for new anti-inflammatory drugs: understanding the action of the inhibitor GC7 on a murine macrophage cell line.

    Science.gov (United States)

    de Almeida, Oedem Paulo; Toledo, Thais Regina; Rossi, Danuza; Rossetto, Daniella de Barros; Watanabe, Tatiana Faria; Galvão, Fábio Carrilho; Medeiros, Alexandra Ivo; Zanelli, Cleslei Fernando; Valentini, Sandro Roberto

    2014-01-01

    Inflammation is part of an important mechanism triggered by the innate immune response that rapidly responds to invading microorganisms and tissue injury. One important elicitor of the inflammatory response is the Gram-negative bacteria component lipopolysaccharide (LPS), which induces the activation of innate immune response cells, the release of proinflammatory cytokines, such as interleukin 1 and tumor necrosis factor α(TNF-α), and the cellular generation of nitric oxide (NO) by the inducible nitric oxide synthase (iNOS). Although essential to the immune response, uncontrolled inflammatory responses can lead to pathological conditions, such as sepsis and rheumatoid arthritis. Therefore, identifying cellular targets for new anti-inflammatory treatments is crucial to improving therapeutic control of inflammation-related diseases. More recently, the translation factor eIF5A has been demonstrated to have a proinflammatory role in the release of cytokines and the production of NO. As eIF5A requires and essential and unique modification of a specific residue of lysine, changing it to hypusine, eIF5A is an interesting cellular target for anti-inflammatory treatment. The present study reviews the literature concerning the anti-inflammatory effects of inhibiting eIF5A function. We also present new data showing that the inhibition of eIF5A function by the small molecule GC7 significantly decreases TNF-α release without affecting TNF-α mRNA levels. We discuss the mechanisms by which eIF5A may interfere with TNF-α mRNA translation by binding to and regulating the function of ribosomes during protein synthesis.

  10. An extra-ribosomal function of ribosomal protein L13a in macrophage resolves inflammation

    Science.gov (United States)

    Poddar, Darshana; Basu, Abhijit; Baldwin, William; Kondratov, Roman V; Barik, Sailen; Mazumder, Barsanjit

    2013-01-01

    Inflammation is an obligatory attempt of the immune system to protect the host from infections. However, unregulated synthesis of pro-inflammatory products can have detrimental effects. Although mechanisms that lead to inflammation are well appreciated, those that restrain it are not adequately understood. Creating macrophage-specific L13a-knockout (KO) mice here we report that depletion of ribosomal protein L13a abrogates the endogenous translation control of several chemokines in macrophages. Upon LPS-induced endotoxemia these animals displayed symptoms of severe inflammation caused by widespread infiltration of macrophages in major organs causing tissue injury and reduced survival rates. Macrophages from these KO animals show unregulated expression of several chemokines e.g. CXCL13, CCL22, CCL8 and CCR3. These macrophages failed to show L13a-dependent RNA binding complex formation on target mRNAs. In addition, increased polyribosomal abundance of these mRNAs shows a defect in translation control in the macrophages. Thus, our studies provide the first evidence of an essential extra-ribosomal function of ribosomal protein L13a in resolving physiological inflammation in a mammalian host. PMID:23460747

  11. Macrophage Expression of Inflammatory Genes in Response to EMCV Infection

    Directory of Open Access Journals (Sweden)

    Zachary R. Shaheen

    2015-08-01

    Full Text Available The expression and production of type 1 interferon is the classic cellular response to virus infection. In addition to this antiviral response, virus infection also stimulates the production of proinflammatory mediators. In this review, the pathways controlling the induction of inflammatory genes and the roles that these inflammatory mediators contribute to host defense against viral pathogens will be discussed. Specific focus will be on the role of the chemokine receptor CCR5, as a signaling receptor controlling the activation of pathways leading to virus-induced inflammatory gene expression.

  12. Fisetin Suppresses Macrophage-Mediated Inflammatory Responses by Blockade of Src and Syk

    OpenAIRE

    Kim, Jun Ho; Kim, Mi-Yeon; Kim,Jong-Hoon; Cho, Jae Youl

    2015-01-01

    Flavonoids, such as fisetin (3,7,3?,4?-tetrahydroxyflavone), are plant secondary metabolites. It has been reported that fisetin is able to perform numerous pharmacological roles including anti-inflammatory, anti-microbial, and anti-cancer activities; however, the exact anti-inflammatory mechanism of fisetin is not understood. In this study, the pharmacological action modes of fisetin in lipopolysaccharide (LPS)-stimulated macrophage-like cells were elucidated by using immunoblotting analysis,...

  13. Fisetin Suppresses Macrophage-Mediated Inflammatory Responses by Blockade of Src and Syk

    OpenAIRE

    Kim, Jun Ho; Kim, Mi-Yeon; Kim, Jong-Hoon; Cho, Jae Youl

    2015-01-01

    Flavonoids, such as fisetin (3,7,3′,4′-tetrahydroxyflavone), are plant secondary metabolites. It has been reported that fisetin is able to perform numerous pharmacological roles including anti-inflammatory, anti-microbial, and anti-cancer activities; however, the exact anti-inflammatory mechanism of fisetin is not understood. In this study, the pharmacological action modes of fisetin in lipopolysaccharide (LPS)-stimulated macrophage-like cells were elucidated by using immunoblotting analysis,...

  14. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity.

    Science.gov (United States)

    Lumeng, Carey N; Deyoung, Stephanie M; Bodzin, Jennifer L; Saltiel, Alan R

    2007-01-01

    Although recent studies show that adipose tissue macrophages (ATMs) participate in the inflammatory changes in obesity and contribute to insulin resistance, the properties of these cells are not well understood. We hypothesized that ATMs recruited to adipose tissue during a high-fat diet have unique inflammatory properties compared with resident tissue ATMs. Using a dye (PKH26) to pulse label ATMs in vivo, we purified macrophages recruited to white adipose tissue during a high-fat diet. Comparison of gene expression in recruited and resident ATMs using real-time RT-PCR and cDNA microarrays showed that recruited ATMs overexpress genes important in macrophage migration and phagocytosis, including interleukin-6 (IL-6), inducible nitric oxide synthase (iNOS), and C-C chemokine receptor 2 (CCR2). Many of these genes were not induced in ATMs from high-fat diet-fed CCR2 knockout mice, supporting the importance of CCR2 in regulating recruitment of inflammatory ATMs during obesity. Additionally, expression of Apoe was decreased, whereas genes important in lipid metabolism, such as Pparg, Adfp, Srepf1, and Apob48r, were increased in the recruited macrophages. In agreement with this, ATMs from obese mice had increased lipid content compared with those from lean mice. These studies demonstrate that recruited ATMs in obese animals represent a subclass of macrophages with unique properties.

  15. Macrophage pro-inflammatory response to Francisella novicida infection is regulated by SHIP.

    Directory of Open Access Journals (Sweden)

    Kishore V L Parsa

    2006-07-01

    Full Text Available Francisella tularensis, a Gram-negative facultative intracellular pathogen infecting principally macrophages and monocytes, is the etiological agent of tularemia. Macrophage responses to F. tularensis infection include the production of pro-inflammatory cytokines such as interleukin (IL-12, which is critical for immunity against infection. Molecular mechanisms regulating production of these inflammatory mediators are poorly understood. Herein we report that the SH2 domain-containing inositol phosphatase (SHIP is phosphorylated upon infection of primary murine macrophages with the genetically related F. novicida, and negatively regulates F. novicida-induced cytokine production. Analyses of the molecular details revealed that in addition to activating the MAP kinases, F. novicida infection also activated the phosphatidylinositol 3-kinase (PI3K/Akt pathway in these cells. Interestingly, SHIP-deficient macrophages displayed enhanced Akt activation upon F. novicida infection, suggesting elevated PI3K-dependent activation pathways in absence of SHIP. Inhibition of PI3K/Akt resulted in suppression of F. novicida-induced cytokine production through the inhibition of NFkappaB. Consistently, macrophages lacking SHIP displayed enhanced NFkappaB-driven gene transcription, whereas overexpression of SHIP led to decreased NFkappaB activation. Thus, we propose that SHIP negatively regulates F. novicida-induced inflammatory cytokine response by antagonizing the PI3K/Akt pathway and suppressing NFkappaB-mediated gene transcription. A detailed analysis of phosphoinositide signaling may provide valuable clues for better understanding the pathogenesis of tularemia.

  16. Complement factor H interferes with Mycobacterium bovis BCG entry into macrophages and modulates the pro-inflammatory cytokine response.

    Science.gov (United States)

    Abdul-Aziz, Munirah; Tsolaki, Anthony G; Kouser, Lubna; Carroll, Maria V; Al-Ahdal, Mohammed N; Sim, Robert B; Kishore, Uday

    2016-09-01

    Mycobacterium tuberculosis is an accomplished intracellular pathogen, particularly within the macrophage and this is of the utmost importance in the host-pathogen stand-off observed in the granuloma during latent tuberculosis. Contact with innate immune molecules is one of the primary interactions that can occur with the pathogen M. tuberculosis once inhaled. Complement proteins may play a role in facilitating M. tuberculosis interactions with macrophages. Here, we demonstrate that factor H, a complement regulatory protein that down-regulates complement alternative pathway activation, binds directly to the model organism M. bovis BCG. Binding of factor H reaches saturation at 5-10μg of factor H/ml, well below the plasma level. C4 binding protein (C4BP) competed with factor H for binding to mycobacteria. Factor H was also found to inhibit uptake of M. bovis BCG by THP-1 macrophage cells in a dose-dependent manner. Real-time qPCR analysis showed stark differential responses of pro- and anti-inflammatory cytokines during the early stages of phagocytosis, as evident from elevated levels of TNF-α, IL-1β and IL-6, and a concomitant decrease in IL-10, TGF-β and IL-12 levels, when THP-1:BCG interaction took place in the presence of factor H. Our results suggest that factor H can interfere with mycobacterial entry into macrophages and modulate inflammatory cytokine responses, particularly during the initial stages of infection, thus affecting the extracellular survival of the pathogen. Our results offer novel insights into complement activation-independent functions of factor H during the host-pathogen interaction in tuberculosis.

  17. Hepatocyte growth factor modulates interleukin-6 production in bone marrow derived macrophages: implications for inflammatory mediated diseases.

    Directory of Open Access Journals (Sweden)

    Gina M Coudriet

    Full Text Available The generation of the pro-inflammatory cytokines IL-6, TNF-α, and IL-1β fuel the acute phase response (APR. To maintain body homeostasis, the increase of inflammatory proteins is resolved by acute phase proteins via presently unknown mechanisms. Hepatocyte growth factor (HGF is transcribed in response to IL-6. Since IL-6 production promotes the generation of HGF and induces the APR, we posited that accumulating HGF might be a likely candidate for quelling excess inflammation under non-pathological conditions. We sought to assess the role of HGF and how it influences the regulation of inflammation utilizing a well-defined model of inflammatory activation, lipopolysaccharide (LPS-stimulation of bone marrow derived macrophages (BMM. BMM were isolated from C57BL6 mice and were stimulated with LPS in the presence or absence of HGF. When HGF was present, there was a decrease in production of the pro-inflammatory cytokine IL-6, along with an increase in the anti-inflammatory cytokine IL-10. Altered cytokine production correlated with an increase in phosphorylated GSK3β, increased retention of the phosphorylated NFκB p65 subunit in the cytoplasm, and an enhanced interaction between CBP and phospho-CREB. These changes were a direct result of signaling through the HGF receptor, MET, as effects were reversed in the presence of a selective inhibitor of MET (SU11274 or when using BMM from macrophage-specific conditional MET knockout mice. Combined, these data provide compelling evidence that under normal circumstances, HGF acts to suppress the inflammatory response.

  18. Comparison of Anti-Inflammatory Effects of Flavonoid-Rich Common and Tartary Buckwheat Sprout Extracts in Lipopolysaccharide-Stimulated RAW 264.7 and Peritoneal Macrophages

    Directory of Open Access Journals (Sweden)

    Tae Gyu Nam

    2017-01-01

    Full Text Available Buckwheat sprouts have been widely consumed all around world due to their great abundance of bioactive compounds. In this study, the anti-inflammatory effects of flavonoid-rich common buckwheat sprout (CBS and tartary buckwheat sprout (TBS extracts were evaluated in lipopolysaccharide- (LPS- stimulated RAW 264.7 murine macrophages and primary peritoneal macrophages from male BALB/c mice. Based on the reversed-phase HPLC analysis, the major flavonoids in CBS were determined to be C-glycosylflavones (orientin, isoorientin, vitexin, and isovitexin, quercetin-3-O-robinobioside, and rutin, whereas TBS contained only high amounts of rutin. The TBS extract exhibited higher inhibitory activity as assessed by the production of proinflammatory mediators such as nitric oxide and cytokines including tumor necrosis factor-α, interleukin- (IL- 6, and IL-12 in LPS-stimulated RAW 264.7 macrophages than CBS extract. In addition, TBS extract suppressed nuclear factor-kappa B activation by preventing inhibitor kappa B-alpha degradation and mitogen-activated protein kinase phosphorylation in LPS-stimulated RAW 264.7 macrophages. Moreover, the TBS extract markedly reduced LPS-induced cytokine production in peritoneal macrophages. Taken together, these findings suggest that TBS extract can be a potential source of anti-inflammatory agents that may influence macrophage-mediated inflammatory disorders.

  19. Plasma monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha are increased in patients with polycystic ovary syndrome (PCOS) and associated with adiposity, but unaffected by pioglitazone treatment

    DEFF Research Database (Denmark)

    Glintborg, Dorte; Andersen, Marianne; Richelsen, Bjørn;

    2009-01-01

    OBJECTIVE: Hirsutism is most often caused by polycystic ovary syndrome (PCOS). PCOS patients are characterized by insulin resistance, abdominal obesity and low-grade inflammation. Insulin sensitizing treatment reduces the inflammatory state, but the effect on serum levels of migration inhibitor...... of adiposity in PCOS patients, but were unchanged during insulin sensitizing treatment with pioglitazone. Our data suggests a fat mass independent association between testosterone and MIF levels in PCOS and the effect of anti-androgen treatment on chemokine levels needs to be examined....

  20. Data on sulforaphane treatment mediated suppression of autoreactive, inflammatory M1 macrophages

    Directory of Open Access Journals (Sweden)

    Sanjima Pal

    2016-06-01

    Full Text Available Any chronic, inflammatory, autoimmune disease (e.g. arthritis associated pathogenesis directs uncontrolled accumulation of both soluble forms of collagens in the synovial fluids and M1 macrophages around inflamed tissues. Despite of few studies demonstrating efficiency of Sulforaphane (SFN in suppressing arthritis associated collagen restricted T cells or fibroblasts, its effects on macrophage polarity and plasticity are less understood. Recently, we reported regulation of phenotypic and functional switching by SFN in induced and spontaneously differentiating human monocytes [1]. Here, flow cytometry, western blot and ELISA derived data demonstrated that SFN inhibited in vitro inflammatory responses developed by soluble human collagens (I–IV induced auto-reactive M1 type monocyte/macrophage model.

  1. Phototherapy-treated apoptotic tumor cells induce pro-inflammatory cytokines production in macrophage

    Science.gov (United States)

    Lu, Cuixia; Wei, Yanchun; Xing, Da

    2014-09-01

    Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high fluence low-power laser irradiation (HF-LPLI) induces mitochondrial superoxide anion burst, resulting in oxidative damage to tumor cells. In this study, we further explored the immunological effects of HF-LPLI-induced apoptotic tumor cells. When macrophages were co-incubated with apoptotic cells induced by HF-LPLI, we observed the increased levels of TNF-α secretion and NO production in macrophages. Further experiments showed that NF-κB was activated in macrophages after co-incubation with HF-LPLI-induced apoptotic cells, and inhibition of NF-κB activity by pyrrolidinedithiocarbamic acid (PDTC) reduced the elevated levels of TNF-α secretion and NO production. These data indicate that HF-LPLI-induced apoptotic tumor cells induce the secretion of pro-inflammatory cytokines in macrophages, which may be helpful for better understanding the biological effects of cancer phototherapy.

  2. Lipid homeostasis and inflammatory activation are disturbed in classically activated macrophages with peroxisomal β-oxidation deficiency.

    Science.gov (United States)

    Geric, Ivana; Tyurina, Yulia Y; Krysko, Olga; Krysko, Dmitri V; De Schryver, Evelyn; Kagan, Valerian E; Van Veldhoven, Paul P; Baes, Myriam; Verheijden, Simon

    2017-09-22

    Macrophage activation is characterized by pronounced metabolic adaptation. Classically activated macrophages show decreased rates of mitochondrial fatty acid oxidation and oxidative phosphorylation and acquire a glycolytic state together with their pro-inflammatory phenotype. In contrast, alternatively activated macrophages require oxidative phosphorylation and mitochondrial fatty acid oxidation for their anti-inflammatory function. Although it is evident that mitochondrial metabolism is regulated during macrophage polarization and essential for macrophage function, little is known on the regulation and role of peroxisomal β-oxidation during macrophage activation. In this study, we show that peroxisomal β-oxidation is strongly decreased in classically activated bone marrow derived macrophages (BMDM) and mildly induced in alternatively activated BMDM. To examine the role of peroxisomal β-oxidation in macrophages, we used Mfp2(-/-) BMDM lacking the key enzyme of this pathway. Impairment of peroxisomal β-oxidation in Mfp2(-/-) BMDM did not cause lipid accumulation but rather an altered distribution of lipid species with very long chain fatty acids accumulating in the triglyceride and phospholipid fraction. These lipid alterations in Mfp2(-/-) macrophages led to decreased inflammatory activation of Mfp2(-/-) BMDM and peritoneal macrophages evidenced by impaired production of several inflammatory cytokines and chemokines, but did not affect anti-inflammatory polarization. The disturbed inflammatory responses of Mfp2(-/-) macrophages did not affect immune cell infiltration, as mice with selective elimination of MFP2 from myeloid cells showed normal monocyte and neutrophil influx upon challenge with zymosan. Together, these data demonstrate that peroxisomal β-oxidation is involved in fine-tuning the phenotype of macrophages, likely by influencing the dynamic lipid profile during macrophage polarization. This article is protected by copyright. All rights reserved

  3. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages.

    Directory of Open Access Journals (Sweden)

    Maria Ruweka Fernando

    Full Text Available Macrophages are important innate immune cells that are associated with two distinct phenotypes: a pro-inflammatory (or classically activated subset with prototypic macrophage functions such as inflammatory cytokine production and bactericidal activity, and an anti-inflammatory (or alternatively activated (AAM subset linked with wound healing and tissue repair processes. In this study, we examined the effect of interlukein-6 on human and murine macrophage polarization. The results indicate that despite being commonly associated with pro-inflammatory functions and being implicated in the pathogenesis/pathophysiology of numerous inflammatory diseases, interleukin-6 can enhance the polarization of AAMs, based on increased expression of hallmark markers: arginase-1, Ym1 and CD206; this effect required the AAM differentiating cytokines, IL-4 and IL-13. Co-treatment of AAMs with IL-6 resulted in spontaneous release of IL-10, suppressed LPS-induced nitric oxide production and inhibited cytokine production by activated CD4+ T cells - immunoregulatory features not observed in the 'parent' IL-4+IL-13-induced AAM. The effect of IL-6 required signal transducer and activator of transcription (STAT-3, was partially dependent on up-regulation of the IL4Rα chain, and was independent of autocrine IL-10. In the presence of IFNγ, IL-6 promoted the production of IL-1β and TNFα suggesting that this cytokine can enhance the phenotype to which a macrophage has committed. This finding may explain the pleiotrophic nature of IL-6, where it is associated with the perpetuation and enhancement of disease in inflammatory situations, but is also necessary for resolution of inflammation and adequate wound healing to occur in others. Thus, the potential benefit of IL-6 in promoting an AAM, with its' anti-inflammatory and wound healing ability, may need to be considered in immunotherapies aimed at in vivo modulation or inhibition of IL-6.

  4. The pro-inflammatory cytokine, interleukin-6, enhances the polarization of alternatively activated macrophages.

    Science.gov (United States)

    Fernando, Maria Ruweka; Reyes, Jose Luis; Iannuzzi, Jordan; Leung, Gabriella; McKay, Derek Mark

    2014-01-01

    Macrophages are important innate immune cells that are associated with two distinct phenotypes: a pro-inflammatory (or classically activated) subset with prototypic macrophage functions such as inflammatory cytokine production and bactericidal activity, and an anti-inflammatory (or alternatively activated (AAM)) subset linked with wound healing and tissue repair processes. In this study, we examined the effect of interlukein-6 on human and murine macrophage polarization. The results indicate that despite being commonly associated with pro-inflammatory functions and being implicated in the pathogenesis/pathophysiology of numerous inflammatory diseases, interleukin-6 can enhance the polarization of AAMs, based on increased expression of hallmark markers: arginase-1, Ym1 and CD206; this effect required the AAM differentiating cytokines, IL-4 and IL-13. Co-treatment of AAMs with IL-6 resulted in spontaneous release of IL-10, suppressed LPS-induced nitric oxide production and inhibited cytokine production by activated CD4+ T cells - immunoregulatory features not observed in the 'parent' IL-4+IL-13-induced AAM. The effect of IL-6 required signal transducer and activator of transcription (STAT)-3, was partially dependent on up-regulation of the IL4Rα chain, and was independent of autocrine IL-10. In the presence of IFNγ, IL-6 promoted the production of IL-1β and TNFα suggesting that this cytokine can enhance the phenotype to which a macrophage has committed. This finding may explain the pleiotrophic nature of IL-6, where it is associated with the perpetuation and enhancement of disease in inflammatory situations, but is also necessary for resolution of inflammation and adequate wound healing to occur in others. Thus, the potential benefit of IL-6 in promoting an AAM, with its' anti-inflammatory and wound healing ability, may need to be considered in immunotherapies aimed at in vivo modulation or inhibition of IL-6.

  5. Effect of pulsed electromagnetic field on inflammatory pathway markers in RAW 264.7 murine macrophages

    Directory of Open Access Journals (Sweden)

    Ross CL

    2013-03-01

    Full Text Available Christina L Ross,1,2 Benjamin S Harrison2 1Akamai University, Department of Energy Medicine, Hilo, HI, USA; 2Wake Forest Institute for Regenerative Medicine, Wake Forest Baptist Health, Winston-Salem, NC, USA Abstract: In the treatment of bacterial infections, antibiotics have proven to be very effective, but the way in which antibiotics are dosed can create a lag time between the administration of the drug and its absorption at the site of insult. The time it takes an antibiotic to reach therapeutic levels can often be significantly increased if the vascular system is compromized. Bacteria can multiply pending the delivery of the drug, therefore, developing treatments that can inhibit the inflammatory response while waiting for antibiotics to take effect could help prevent medical conditions such as septic shock. The aim of this study was to examine the effect of a pulsed electromagnetic field on the production of inflammatory markers tumor necrosis factor (TNF, transcription factor nuclear factor kappa B (NFkB, and the expression of the A20 (tumor necrosis factor-alpha-induced protein 3, in an inflamed-cell model. Lipopolysaccharide-challenged cells were exposed to a pulsed electromagnetic field at various frequencies in order to determine which, if any, frequency would affect the TNF-NFkB-A20 inflammatory response pathway. Our study revealed that cells continuously exposed to a pulsed electromagnetic field at 5 Hz demonstrated significant changes in the downregulation of TNF-α and NFkB and also showed a trend in the down regulation of A20, as compared with controls. This treatment could be beneficial in modulating the immune response, in the presence of infection. Keyword: TNFAIP3, pulsed electromagnetic field, macrophages, TNF, NFkB

  6. Trichothecene mycotoxins activate inflammatory response in human macrophages.

    Science.gov (United States)

    Kankkunen, Päivi; Rintahaka, Johanna; Aalto, Annika; Leino, Marina; Majuri, Marja-Leena; Alenius, Harri; Wolff, Henrik; Matikainen, Sampsa

    2009-05-15

    Damp building-related illnesses have caused concern for years in many countries. Although the problem is extensive, the knowledge of the immunological reactions behind damp building-related illnesses is still quite limited. Trichothecene mycotoxins form one major group of toxins, which possibly contribute to the illnesses. Stachybotrys chartarum is a well-known, but also controversial damp building mold and many strains of this mold are capable of producing trichothecenes. In this report, we have examined the effect of S. chartarum and trichothecene mycotoxins on the proinflammatory cytokine response in human macrophages. As a result, satratoxin-positive S. chartarum activated inflammasome-associated caspase-1, which is needed for proteolytic processing of IL-1beta and IL-18. Furthermore, purified trichothecene mycotoxins, roridin A, verrucarin A, and T-2 toxin activated caspase-1, and these mycotoxins also strongly enhanced LPS-dependent secretion of IL-1beta and IL-18. The satratoxin-positive strain of S. chartarum and the trichothecenes also triggered the activation of caspase-3, which is an effector caspase of apoptosis. Satratoxin-negative S. chartarum was not able to activate either caspase-1 or caspase-3. In conclusion, our results indicate that human macrophages sense trichothecene mycotoxins as a danger signal, which activates caspase-1, and further enables the secretion of IL-1beta and IL-18 from the LPS-primed cells.

  7. Bone marrow-derived and peritoneal macrophages have different inflammatory response to oxLDL and M1/M2 marker expression - implications for atherosclerosis research

    DEFF Research Database (Denmark)

    Bisgaard, Line S; Mogensen, Christina K; Rosendahl, Alexander;

    2016-01-01

    Macrophages are heterogeneous and can polarize into specific subsets, e.g. pro-inflammatory M1-like and re-modelling M2-like macrophages. To determine if peritoneal macrophages (PEMs) or bone marrow derived macrophages (BMDMs) resembled aortic macrophages from ApoE-/- mice, their M1/M2 phenotype,...

  8. Salvianic acid A inhibits induction of inflammatory mediators by blocking Nuclear Factor-kB activation in macrophages

    Institute of Scientific and Technical Information of China (English)

    YUAN Jun; YAO Ji-hong; ZHOU Qin

    2008-01-01

    Objective To investigate the anti-inflammation effect and possible mechanism of Salvianic acid A (SAA) in mouse peritoneal macrophages. Methods Peritoneal macrophages were obtained from BALB/c mice. LPS induced nitric oxide (NO), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in supernatant, protein expression of inducible nitric oxide synthase (iNOS), matrix metalloproteinase-9 (MMP-9) and activation of nuclear factor-kappa B (NF-kB) in the extract were measured. Results SAA strongly inhibited the excessive production of NO, TNF-α and IL-6 in LPS-induced peritoneal macrophages in a concentration-dependent manner and blocked the expression of iNOS and MMP-9. Treatment with LPS alone increased the translocation of NF-kB (1065) from cytosol to the nucleus, but the SAA inhibited the translocation of NF-kB (p65). Conclusions The results showed that SAA had strong anti-inflammatory effects in LPS-stimulated peritoneal macrophages. The important mechanism is due to its inhibition of NF-kB activation.

  9. Morin, a Bioflavonoid Suppresses Monosodium Urate Crystal-Induced Inflammatory Immune Response in RAW 264.7 Macrophages through the Inhibition of Inflammatory Mediators, Intracellular ROS Levels and NF-κB Activation.

    Directory of Open Access Journals (Sweden)

    Chitra Dhanasekar

    Full Text Available Our previous studies had reported that morin, a bioflavanoid exhibited potent anti-inflammatory effect against adjuvant-induced arthritic rats. In this current study, we investigated the anti-inflammatory mechanism of morin against monosodium urate crystal (MSU-induced inflammation in RAW 264.7 macrophage cells, an in vitro model for acute gouty arthritis. For comparison purpose, colchicine was used as a reference drug. We have observed that morin (100-300 μM treatment significantly suppressed the levels of inflammatory cytokines (TNF-α, IL-1β, IL-6, MCP-1 and VEGF, inflammatory mediators (NO and PEG2, and lysosomal enzymes (acid phosphatase, β-galactosidase, N-acetyl glucosamindase and cathepsin D in MSU-crystals stimulated macrophage cells. The mRNA expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, and MCP-1, inflammatory enzymes (iNOS and COX-2, and NF-κBp65 was found downregulated in MSU crystal stimulated macrophage cells by morin treatment, however, the mRNA expression of hypoxanthine phospho ribosyl transferse (HPRT was found to be increased. The flow cytometry analysis revealed that morin treatment decreased intracellular reactive oxygen species levels in MSU crystal stimulated macrophage cells. The western blot analysis clearly showed that morin mainly exerts its anti-inflammatory effects by inhibiting the MSU crystal-induced COX-2 and TNF-α protein expression through the inactivation of NF-κB signaling pathway in RAW 264.7 macrophage cells similar to that of BAY 11-7082 (IκB kinase inhibitor. Our results collectively suggest that morin can be a potential therapeutic agent for inflammatory disorders like acute gouty arthritis.

  10. Flagella from five Cronobacter species induce pro-inflammatory cytokines in macrophage derivatives from human monocytes.

    Directory of Open Access Journals (Sweden)

    Ariadnna Cruz-Córdova

    Full Text Available Cronobacter spp. are opportunistic pathogens linked to lie-threatening infections in neonates and contaminated powdered infant formula that has been epidemiologically associated with these cases. Clinical symptoms of Cronobacter include necrotizing enterocolitis, bacteremia, and meningitis. Flagella from C. sakazakii are involved in biofilm formation and its adhesion to epithelial cells. We investigated the role of flagella from C. sakazakii ST1 and ST4, C. malonaticus, C. muytjensii, C. turicensis and C. dublinensis during the activation of cytokines (IL-8, TNF-α, and IL-10 in macrophage derivatives from human monocytes, which has not been extensively studied. The production and identity of flagella from the five Cronobacter species were visualized and recognized with anti-flagella antibodies by immunogold labeling through transmission electron microscopy. Purified flagella were dissociated into monomers in 12% SDS-PAGE Coomassie blue-stained gels showing a band of ∼28 kDa and, in addition, mass spectrometry revealed the presence of several peptides that correspond to flagellin. Flagella (100 ng induced the release of IL-8 (3314-6025 pg/ml, TNF-α (39-359 pg/ml, and IL-10 (2-96 pg/ml, in macrophage isolates from human monocytes and similar results were obtained when flagella were dissociated into monomers. Inhibition assays using three dilutions of anti-flagella antibodies (1∶10, 1∶100, and 1∶200 suppressed the secretion of IL-8, TNF-α, and IL-10 between 95-100% using 100 ng of protein. A transfection assay using 293-hTLR5 cells showed IL-8 release of 197 pg/ml and suppression in the secretion of IL-8 when anti-hTLR5-IgA antibodies were used at different concentrations. These observations suggest that flagella and flagellin are involved in an inflammatory response dependent on TLR5 recognition, which could contribute to the pathogenesis of the bacteria.

  11. Flagella from Five Cronobacter Species Induce Pro-Inflammatory Cytokines in Macrophage Derivatives from Human Monocytes

    Science.gov (United States)

    Cruz-Córdova, Ariadnna; Rocha-Ramírez, Luz M.; Ochoa, Sara A.; Gónzalez-Pedrajo, Bertha; Espinosa, Norma; Eslava, Carlos; Hernández-Chiñas, Ulises; Mendoza-Hernández, Guillermo; Rodríguez-Leviz, Alejandra; Valencia-Mayoral, Pedro; Sadowinski-Pine, Stanislaw; Hernández-Castro, Rigoberto; Estrada-García, Iris; Muñoz-Hernández, Onofre; Rosas, Irma; Xicohtencatl-Cortes, Juan

    2012-01-01

    Cronobacter spp. are opportunistic pathogens linked to lie-threatening infections in neonates and contaminated powdered infant formula that has been epidemiologically associated with these cases. Clinical symptoms of Cronobacter include necrotizing enterocolitis, bacteremia, and meningitis. Flagella from C. sakazakii are involved in biofilm formation and its adhesion to epithelial cells. We investigated the role of flagella from C. sakazakii ST1 and ST4, C. malonaticus, C. muytjensii, C. turicensis and C. dublinensis during the activation of cytokines (IL-8, TNF-α, and IL-10) in macrophage derivatives from human monocytes, which has not been extensively studied. The production and identity of flagella from the five Cronobacter species were visualized and recognized with anti-flagella antibodies by immunogold labeling through transmission electron microscopy. Purified flagella were dissociated into monomers in 12% SDS-PAGE Coomassie blue-stained gels showing a band of ∼28 kDa and, in addition, mass spectrometry revealed the presence of several peptides that correspond to flagellin. Flagella (100 ng) induced the release of IL-8 (3314–6025 pg/ml), TNF-α (39–359 pg/ml), and IL-10 (2–96 pg/ml), in macrophage isolates from human monocytes and similar results were obtained when flagella were dissociated into monomers. Inhibition assays using three dilutions of anti-flagella antibodies (1∶10, 1∶100, and 1∶200) suppressed the secretion of IL-8, TNF-α, and IL-10 between 95–100% using 100 ng of protein. A transfection assay using 293-hTLR5 cells showed IL-8 release of 197 pg/ml and suppression in the secretion of IL-8 when anti-hTLR5-IgA antibodies were used at different concentrations. These observations suggest that flagella and flagellin are involved in an inflammatory response dependent on TLR5 recognition, which could contribute to the pathogenesis of the bacteria. PMID:23284883

  12. Fibrinogen enhances the inflammatory response of alveolar macrophages to TiO2, SiO2 and carbon nanomaterials.

    Science.gov (United States)

    Marucco, Arianna; Gazzano, Elena; Ghigo, Dario; Enrico, Emanuele; Fenoglio, Ivana

    2016-01-01

    Many studies have shown that the composition of the protein corona dramatically affects the response of cells to nanomaterials (NMs). However, the role of each single protein is still largely unknown. Fibrinogen (FG), one of the most abundant plasma proteins, is believed to mediate foreign-body reactions. Since this protein is absent in cell media used in in vitro toxicological tests the possible FG-mediated effects have not yet been assessed. Here, the effect of FG on the toxicity of three different kinds of inorganic NMs (carbon, SiO2 and TiO2) on alveolar macrophages has been investigated. A set of integrated techniques (UV-vis spectroscopy, dynamic light scattering and sodium dodecyl sulphate-polyacrylamide gel electrophoresis) have been used to study the strength and the kinetics of interaction of FG with the NMs. The inflammatory response of alveolar macrophages (MH-S) exposed to the three NMs associated with FG has also been investigated. We found that FG significantly enhances the cytotoxicity (lactate dehydrogenase leakage) and the inflammatory response (increase in nitric oxide (NO) concentration and NO synthase activation) induced by SiO2, carbon and TiO2 NMs on alveolar macrophages. This effect appears related to the amount of FG interacting with the NMs. In the case of carbon NMs, the activation of fibrinolysis, likely related to the exposure of cryptic sites of FG, was also observed after 24 h. These findings underline the critical role played by FG in the toxic response to NMs.

  13. Candida albicans induces pro-inflammatory and anti-apoptotic signals in macrophages as revealed by quantitative proteomics and phosphoproteomics

    DEFF Research Database (Denmark)

    Reales-Calderón, Jose Antonio; Sylvester, Marc; Strijbis, Karin

    2013-01-01

    Macrophages play a pivotal role in the prevention of Candida albicans infections. Yeast recognition and phagocytosis by macrophages is mediated by Pattern Recognition Receptors (PRRs) that initiate downstream signal transduction cascades by protein phosphorylation and dephosphorylation. We exposed...

  14. The Potential Role of an Endotoxin Tolerance-Like Mechanism for the Anti-inflammatory Effect of Spirulina platensis Organic Extract in Macrophages.

    Science.gov (United States)

    Pham, Tho X; Park, Young-Ki; Bae, Minkyung; Lee, Ji-Young

    2017-01-25

    Endotoxin tolerance is a phenomenon where exposure of innate immune cells to lipopolysaccharide (LPS) induces a refractory state to subsequent endotoxin exposures. The goal of this study was to investigate if Spirulina platensis organic extract (SPE) induces an endotoxin tolerance-like state. We used splenocytes and peritoneal macrophages from C57BL/6J mice fed a high-fat/high-sucrose (HF/HS) control or a HF/HS diet containing 0.25% (w/w) SPE for 16 weeks for ex vivo LPS stimulation and endotoxin-tolerant (ET) macrophages to evaluate the effects of SPE on endotoxin tolerance. Cells from SPE-fed mice displayed significantly less expression of proinflammatory genes than those from control mice. ET macrophages were produced in vitro by incubating RAW 264.7 macrophages with low-dose LPS to determine the energy phenotype of naive, SPE-treated, and ET macrophages. Compared to naive macrophages exposed to a high-dose LPS (100 ng/mL) for the first time, ET macrophages showed significantly less proinflammatory gene expression after LPS stimulation, which was also observed with SPE treatment. Consistently, nuclear translocation of p65 was markedly reduced in both ET- and SPE-treated macrophages on LPS stimulation with increase in nuclear protein levels of p50 and B cell lymphoma 3-encoded protein. In conclusion, the anti-inflammatory effect of SPE is at least partly attributable to the induction of an endotoxin tolerance-like state in macrophages, which shares common characteristics of macrophage endotoxin tolerance.

  15. Down-regulation of IKKβ expression in glioma-infiltrating microglia/macrophages is associated with defective inflammatory/immune gene responses in glioblastoma.

    Science.gov (United States)

    Mieczkowski, Jakub; Kocyk, Marta; Nauman, Pawel; Gabrusiewicz, Konrad; Sielska, Małgorzata; Przanowski, Piotr; Maleszewska, Marta; Rajan, Wenson D; Pszczolkowska, Dominika; Tykocki, Tomasz; Grajkowska, Wieslawa; Kotulska, Katarzyna; Roszkowski, Marcin; Kostkiewicz, Boguslaw; Kaminska, Bozena

    2015-10-20

    Glioblastoma (GBM) is an aggressive malignancy associated with profound host immunosuppression. Microglia and macrophages infiltrating GBM acquire the pro-tumorigenic, M2 phenotype and support tumor invasion, proliferation, survival, angiogenesis and block immune responses both locally and systematically. Mechanisms responsible for immunological deficits in GBM patients are poorly understood. We analyzed immune/inflammatory gene expression in five datasets of low and high grade gliomas, and performed Gene Ontology and signaling pathway analyses to identify defective transcriptional responses. The expression of many immune/inflammatory response and TLR signaling pathway genes was reduced in high grade gliomas compared to low grade gliomas. In particular, we found the reduced expression of the IKBKB, a gene coding for IKKβ, which phosphorylates IκB proteins and represents a convergence point for most signal transduction pathways leading to NFκB activation. The reduced IKBKB expression and IKKβ levels in GBM tissues were demonstrated by qPCR, Western blotting and immunohistochemistry. The IKKβ expression was down-regulated in microglia/macrophages infiltrating glioblastoma. NFκB activation, prominent in microglia/macrophages infiltrating low grade gliomas, was reduced in microglia/macrophages in glioblastoma tissues. Down-regulation of IKBKB expression and NFκB signaling in microglia/macrophages infiltrating glioblastoma correlates with defective expression of immune/inflammatory genes and M2 polarization that may result in the global impairment of anti-tumor immune responses in glioblastoma.

  16. Deficiency of macrophage stimulating protein results in spontaneous inflammation and increased susceptibility towards epithelial damage in zebrafish

    NARCIS (Netherlands)

    Witte, M.; Huitema, L.F.; Nieuwenhuis, E.E.S.; Brugman, S.

    2014-01-01

    Several genome-wide association studies have identified the genes encoding for macrophage-stimulating protein (MSP) and its receptor RON (Recepteur d'Origine Nantais) as possible susceptibility factors in inflammatory bowel disease. While it has been shown that the MSP–RON signaling pathway is invol

  17. Myeloid-specific Rictor deletion induces M1 macrophage polarization and potentiates in vivo pro-inflammatory response to lipopolysaccharide.

    Directory of Open Access Journals (Sweden)

    William T Festuccia

    Full Text Available The phosphoinositide-3-kinase (PI3K/protein kinase B (Akt axis plays a central role in attenuating inflammation upon macrophage stimulation with toll-like receptor (TLR ligands. The mechanistic target of rapamycin complex 2 (mTORC2 relays signal from PI3K to Akt but its role in modulating inflammation in vivo has never been investigated. To evaluate the role of mTORC2 in the regulation of inflammation in vivo, we have generated a mouse model lacking Rictor, an essential mTORC2 component, in myeloid cells. Primary macrophages isolated from myeloid-specific Rictor null mice exhibited an exaggerated response to TLRs ligands, and expressed high levels of M1 genes and lower levels of M2 markers. To determine whether the loss of Rictor similarly affected inflammation in vivo, mice were either fed a high fat diet, a situation promoting chronic but low-grade inflammation, or were injected with lipopolysaccharide (LPS, which mimics an acute, severe septic inflammatory condition. Although high fat feeding contributed to promote obesity, inflammation, macrophage infiltration in adipose tissue and systemic insulin resistance, we did not observe a significant impact of Rictor loss on these parameters. However, mice lacking Rictor exhibited a higher sensitivity to septic shock when injected with LPS. Altogether, these results indicate that mTORC2 is a key negative regulator of macrophages TLR signalling and that its role in modulating inflammation is particularly important in the context of severe inflammatory challenges. These observations suggest that approaches aimed at modulating mTORC2 activity may represent a possible therapeutic approach for diseases linked to excessive inflammation.

  18. Targeting the Hemoglobin Scavenger receptor CD163 in Macrophages Highly Increases the Anti-inflammatory Potency of Dexamethasone

    DEFF Research Database (Denmark)

    Graversen, Jonas H; Svendsen, Pia; Dagnæs-Hansen, Frederik

    2012-01-01

    on the suppressed release of tumor-necrosis factor-α and other cytokines by macrophages at the sites of inflammation. We have now developed a new biodegradable anti-CD163 antibody-drug conjugate that specifically targets the glucocorticoid, dexamethasone to the hemoglobin scavenger receptor CD163 in macrophages....... The conjugate, that in average contains four dexamethasone molecules per antibody, exhibits retained high functional affinity for CD163. In vitro studies in rat macrophages and in vivo studies of Lewis rats showed a strong anti-inflammatory effect of the conjugate measured as reduced lipopolysaccharide...... apoptosis, body weight loss, and suppression of endogenous cortisol levels. In conclusion, the study shows antibody-drug conjugates as a future approach in anti-inflammatory macrophage-directed therapy. Furthermore, the data demonstrate CD163 as an excellent macrophage target for anti-inflammatory drug...

  19. High resolution preparation of monocyte-derived macrophages (MDM protein fractions for clinical proteomics

    Directory of Open Access Journals (Sweden)

    Olivieri Oliviero

    2009-02-01

    Full Text Available Abstract Background Macrophages are involved in a number of key physiological processes and complex responses such as inflammatory, immunological, infectious diseases and iron homeostasis. These cells are specialised for iron storage and recycling from senescent erythrocytes so they play a central role in the fine tuning of iron balancing and distribution. The comprehension of the many physiological responses of macrophages implies the study of the related molecular events. To this regard, proteomic analysis, is one of the most powerful tools for the elucidation of the molecular mechanisms, in terms of changes in protein expression levels. Results Our aim was to optimize a protocol for protein fractionation and high resolution mapping using human macrophages for clinical studies. We exploited a fractionation protocol based on the neutral detergent Triton X-114. The 2D maps of the fractions obtained showed high resolution and a good level of purity. Western immunoblotting and mass spectrometry (MS/MS analysis indicated no fraction cross contamination. On 2D-PAGE mini gels (7 × 8 cm we could count more than five hundred protein spots, substantially increasing the resolution and the number of detectable proteins for the macrophage proteome. The fractions were also evaluated, with preliminary experiments, using Surface Enhanced Laser Desorption Ionization Time of Flight Mass Spectrometry (SELDI-TOF-MS. Conclusion This relatively simple method allows deep investigation into macrophages proteomics producing discrete and accurate protein fractions, especially membrane-associated and integral proteins. The adapted protocol seems highly suitable for further studies of clinical proteomics, especially for the elucidation of the molecular mechanisms controlling iron homeostasis in normal and disease conditions.

  20. Subtoxic Doses of Cadmium Modulate Inflammatory Properties of Murine RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Sina Riemschneider

    2015-01-01

    Full Text Available Cadmium (Cd is a toxic heavy metal that exhibits various adverse effects in the human and animal organism. Its resemblance to essential metals such as calcium, iron, and zinc leads to an unintended uptake in cells after intake through inhalation and ingestion. In this study we investigated the toxicity and the immunomodulatory potential of Cd in nonactivated and activated murine macrophages (i.e., cell line RAW 264.7. Cadmium alone caused a dose-dependent decreased viability of exposed cells. Subtoxic Cd concentrations delayed cell death in macrophages, resulting from cytotoxic storm, producing reactive oxygen species (ROS and nitric oxide (NO, in response to their stimulation by bacterial antigens via pattern-recognition receptors (PRRs. In addition, production of selected pro- and anti-inflammatory cytokines, the chemokine CXCL1 (KC, and NO was determined. We observed that proinflammatory IL-1β and also CXCL1 were highly upregulated whereas anti-inflammatory or regulatory cytokines IL-6 and IL-10 were suppressed by 10 µM Cd. Also production of antibacterial NO was significantly reduced through exposure to 10 µM Cd, maybe explaining better survival of macrophages. Additionally, we could show by analysis via ICP-MS that different effects of Cd in nonactivated and activated macrophages definitely did not result from different Cd uptake rates.

  1. Macrophages polarization is mediated by the combination of PRR ligands and distinct inflammatory cytokines.

    Science.gov (United States)

    Zhou, Lili; Cao, Xixi; Fang, Jie; Li, Yuhong; Fan, Mingwen

    2015-01-01

    Macrophages recognize microbes through Pattern Recognition Receptors (PRRs), and then release pro-inflammatory and anti-inflammatory cytokines. Recent studies have highlighted that collaboration between different PRRs. However, these studies have neglected the crosstalk between various PRRs on macrophages. In the present study, we investigated the interplay of nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) (NOD1, NOD2) and TLRs (TLR1, 2, 3, 4, 5, 6, 7, 8) in terms of macrophage activation, the expression and production of cytokines. The macrophages were stimulated with a single PRR ligand or a combination of TLR and NOD ligands. After 8 h of incubation, the mRNA expression of interleukin-1β (IL-1β), IL-4, IL-6, IL-10, IL-12p35, IL-12p40, IL-13, and interferon-γ (IFN-γ) was evaluated. The production of these cytokines was also measured. NOD2 synergized with TLR3 agonists on enhancement of IL-10 release. However, the combination of NOD1 with TLR3 ligands showed little effect on IL-10 production. Moreover, NOD2 inhibited the percentages of CD11b + F4/80 + cells activated by TLR3 agonist.

  2. Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues

    Science.gov (United States)

    Zanganeh, Saeid; Hutter, Gregor; Spitler, Ryan; Lenkov, Olga; Mahmoudi, Morteza; Shaw, Aubie; Pajarinen, Jukka Sakari; Nejadnik, Hossein; Goodman, Stuart; Moseley, Michael; Coussens, Lisa Marie; Daldrup-Link, Heike Elisabeth

    2016-11-01

    Until now, the Food and Drug Administration (FDA)-approved iron supplement ferumoxytol and other iron oxide nanoparticles have been used for treating iron deficiency, as contrast agents for magnetic resonance imaging and as drug carriers. Here, we show an intrinsic therapeutic effect of ferumoxytol on the growth of early mammary cancers, and lung cancer metastases in liver and lungs. In vitro, adenocarcinoma cells co-incubated with ferumoxytol and macrophages showed increased caspase-3 activity. Macrophages exposed to ferumoxytol displayed increased mRNA associated with pro-inflammatory Th1-type responses. In vivo, ferumoxytol significantly inhibited growth of subcutaneous adenocarcinomas in mice. In addition, intravenous ferumoxytol treatment before intravenous tumour cell challenge prevented development of liver metastasis. Fluorescence-activated cell sorting (FACS) and histopathology studies showed that the observed tumour growth inhibition was accompanied by increased presence of pro-inflammatory M1 macrophages in the tumour tissues. Our results suggest that ferumoxytol could be applied 'off label' to protect the liver from metastatic seeds and potentiate macrophage-modulating cancer immunotherapies.

  3. Sirtuin inhibition attenuates the production of inflammatory cytokines in lipopolysaccharide-stimulated macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Claudia A. [Universite catholique de Louvain, Louvain Drug Research Institute (LDRI), Pharmaceutics and Drug Delivery Research Group, Brussels B-1200 (Belgium); Fievez, Laurence [University of Liege, GIGA-Research, Laboratory of Cellular and Molecular Immunology, Liege B-4000 (Belgium); Neyrinck, Audrey M.; Delzenne, Nathalie M. [Universite catholique de Louvain, LDRI, Metabolism and Nutrition Research Group, Brussels B-1200 (Belgium); Bureau, Fabrice [University of Liege, GIGA-Research, Laboratory of Cellular and Molecular Immunology, Liege B-4000 (Belgium); Vanbever, Rita, E-mail: rita.vanbever@uclouvain.be [Universite catholique de Louvain, Louvain Drug Research Institute (LDRI), Pharmaceutics and Drug Delivery Research Group, Brussels B-1200 (Belgium)

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer Lipopolysaccharide-stimulated macrophages were treated with cambinol and sirtinol. Black-Right-Pointing-Pointer Cambinol and sirtinol decreased lipopolysaccharide-induced cytokines. Black-Right-Pointing-Pointer Cambinol decreased NF-{kappa}B activity but had no impact on p38 MAPK activation. Black-Right-Pointing-Pointer Sirtuins are an interesting target for the treatment of inflammatory diseases. -- Abstract: In several inflammatory conditions such as rheumatoid arthritis or sepsis, the regulatory mechanisms of inflammation are inefficient and the excessive inflammatory response leads to damage to the host. Sirtuins are class III histone deacetylases that modulate the activity of several transcription factors that are implicated in immune responses. In this study, we evaluated the impact of sirtuin inhibition on the activation of lipopolysaccharide (LPS)-stimulated J774 macrophages by assessing the production of inflammatory cytokines. The pharmacologic inhibition of sirtuins decreased the production of tumour necrosis factor-alpha (TNF-{alpha}) interleukin 6 (IL-6) and Rantes. The reduction of cytokine production was associated with decreased nuclear factor kappa B (NF-{kappa}B) activity and inhibitor kappa B alpha (I{kappa}B{alpha}) phosphorylation while no impact was observed on the phosphorylation status of p38 mitogen-activated kinase (p38 MAPK). This work shows that sirtuin pharmacologic inhibitors are a promising tool for the treatment of inflammatory conditions.

  4. Aspirin Modulates Innate Inflammatory Response and Inhibits the Entry of Trypanosoma cruzi in Mouse Peritoneal Macrophages

    Directory of Open Access Journals (Sweden)

    Aparecida Donizette Malvezi

    2014-01-01

    Full Text Available The intracellular protozoan parasite Trypanosoma cruzi causes Chagas disease, a serious disorder that affects millions of people in Latin America. Cell invasion by T. cruzi and its intracellular replication are essential to the parasite’s life cycle and for the development of Chagas disease. Here, we present evidence suggesting the involvement of the host’s cyclooxygenase (COX enzyme during T. cruzi invasion. Pharmacological antagonist for COX-1, aspirin (ASA, caused marked inhibition of T. cruzi infection when peritoneal macrophages were pretreated with ASA for 30 min at 37°C before inoculation. This inhibition was associated with increased production of IL-1β and nitric oxide (NO∙ by macrophages. The treatment of macrophages with either NOS inhibitors or prostaglandin E2 (PGE2 restored the invasive action of T. cruzi in macrophages previously treated with ASA. Lipoxin ALX-receptor antagonist Boc2 reversed the inhibitory effect of ASA on trypomastigote invasion. Our results indicate that PGE2, NO∙, and lipoxins are involved in the regulation of anti-T. cruzi activity by macrophages, providing a better understanding of the role of prostaglandins in innate inflammatory response to T. cruzi infection as well as adding a new perspective to specific immune interventions.

  5. Stimulation of cyclic AMP production in human alveolar macrophages induced by inflammatory mediators and β-sympathicomimetics

    NARCIS (Netherlands)

    F.D. Beusenberg; J.G.C. van Amsterdam (Jan); H.C. Hoogsteden (Henk); P.R.M. Hekking (P. R M); J.W. Brouwers; H.P. Schermers (H.); I.L. Bonta

    1992-01-01

    markdownabstractAbstract We have investigated the effects of inflammatory mediators and β-adrenoceptor agonists on the adenylyl cyclase responsiveness in alveolar macrophages from control subjects, patients suffering from chronic obstructive pulmonary disease (COPD) and asthmatics. Basal cyclic

  6. Anti-inflammatory action of γ-irradiated genistein in murine peritoneal macrophage

    Science.gov (United States)

    Sung, Nak-Yun; Byun, Eui-Baek; Song, Du-Sup; Jin, Yeung-Bae; Park, Jae-Nam; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon; Kim, Jae-Hun

    2014-12-01

    This present study was to examine the cytotoxicity and anti-inflammatory activity of gamma (γ)-irradiated genistein in murine peritoneal macrophage. Inflammation to macrophage was induced by adding the lipopolysaccharide (LPS). γ-Irradiated genistein significantly decreased the cytotoxicity to murine peritoneal macrophage in dose ranges from 5 to 10 μM than that of non-irradiated genistein. Anti-inflammatory activity within the doses less than 2 μM showed that γ-irradiated genistein treatment remarkably reduced the lipopolysaccharide-induced inflammation by decreasing the nitric oxide (NO) and cytokines (TNF-α, IL-6) production. In a structural analysis through the high pressure liquid chromatography (HPLC), γ-irradiated genistein showed a new peak production distinguished from main peak of genistein (non-irradiated). Therefore, increase of anti-inflammatory activity may closely mediate with structural changes induced by γ irradiation exposure. Based on the above result, γ-irradiation could be an effective tool for reduction of toxicity and increase of physiological activity of biomolecules.

  7. Bone Marrow Mesenchymal Stem Cells Inhibit Lipopolysaccharide-Induced Inflammatory Reactions in Macrophages and Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Dequan Li

    2016-01-01

    Full Text Available Background. Systemic inflammatory response syndrome (SIRS accompanied by trauma can lead to multiple organ dysfunction syndrome (MODS and even death. Early inhibition of the inflammation is necessary for damage control. Bone marrow mesenchymal stem cells (BMSCs, as a novel therapy modality, have been shown to reduce inflammatory responses in human and animal models. Methods. In this study, we used Western blot, quantitative PCR, and enzyme-linked immunosorbent assay (ELISA to assess the activity of BMSCs to suppress the inflammation induced by lipopolysaccharide (LPS in human umbilical cord endothelial cells (HUVECs and alveolar macrophages. Results. Our results demonstrated that LPS caused an inflammatory response in alveolar macrophages and HUVECs, increased permeability of HUVEC, upregulated expression of toll-like receptor (TLR 2, TLR4, phosphorylated p65, downregulated release of IL10, and promoted release of TNF-α in both cells. Coculture with BMSCs attenuated all of these activities induced by LPS in the two tested cell types. Conclusions. Together, our results demonstrate that BMSCs dosage dependently attenuates the inflammation damage of alveolar macrophages and HUVECs induced by LPS.

  8. Metformin Suppresses Lipopolysaccharide (LPS)-induced Inflammatory Response in Murine Macrophages via Activating Transcription Factor-3 (ATF-3) Induction*

    Science.gov (United States)

    Kim, Juyoung; Kwak, Hyun Jeong; Cha, Ji-Young; Jeong, Yun-Seung; Rhee, Sang Dahl; Kim, Kwang Rok; Cheon, Hyae Gyeong

    2014-01-01

    Metformin, a well known antidiabetic agent that improves peripheral insulin sensitivity, also elicits anti-inflammatory actions, but its mechanism is unclear. Here, we investigated the mechanism responsible for the anti-inflammatory effect of metformin action in lipopolysaccharide (LPS)-stimulated murine macrophages. Metformin inhibited LPS-induced production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in a concentration-dependent manner and in parallel induction of activating transcription factor-3 (ATF-3), a transcription factor and member of the cAMP-responsive element-binding protein family. ATF-3 knockdown abolished the inhibitory effects of metformin on LPS-induced proinflammatory cytokine production accompanied with reversal of metformin-induced suppression of mitogen-activated protein kinase (MAPK) phosphorylation. Conversely, AMP-activated protein kinase (AMPK) phosphorylation and NF-κB suppression by metformin were unaffected by ATF-3 knockdown. ChIP-PCR analysis revealed that LPS-induced NF-κB enrichments on the promoters of IL-6 and TNF-α were replaced by ATF-3 upon metformin treatment. AMPK knockdown blunted all the effects of metformin (ATF-3 induction, proinflammatory cytokine inhibition, and MAPK inactivation), suggesting that AMPK activation by metformin is required for and precedes ATF-3 induction. Oral administration of metformin to either mice with LPS-induced endotoxemia or ob/ob mice lowered the plasma and tissue levels of TNF-α and IL-6 and increased ATF-3 expression in spleen and lungs. These results suggest that metformin exhibits anti-inflammatory action in macrophages at least in part via pathways involving AMPK activation and ATF-3 induction. PMID:24973221

  9. Metformin suppresses lipopolysaccharide (LPS)-induced inflammatory response in murine macrophages via activating transcription factor-3 (ATF-3) induction.

    Science.gov (United States)

    Kim, Juyoung; Kwak, Hyun Jeong; Cha, Ji-Young; Jeong, Yun-Seung; Rhee, Sang Dahl; Kim, Kwang Rok; Cheon, Hyae Gyeong

    2014-08-15

    Metformin, a well known antidiabetic agent that improves peripheral insulin sensitivity, also elicits anti-inflammatory actions, but its mechanism is unclear. Here, we investigated the mechanism responsible for the anti-inflammatory effect of metformin action in lipopolysaccharide (LPS)-stimulated murine macrophages. Metformin inhibited LPS-induced production of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in a concentration-dependent manner and in parallel induction of activating transcription factor-3 (ATF-3), a transcription factor and member of the cAMP-responsive element-binding protein family. ATF-3 knockdown abolished the inhibitory effects of metformin on LPS-induced proinflammatory cytokine production accompanied with reversal of metformin-induced suppression of mitogen-activated protein kinase (MAPK) phosphorylation. Conversely, AMP-activated protein kinase (AMPK) phosphorylation and NF-κB suppression by metformin were unaffected by ATF-3 knockdown. ChIP-PCR analysis revealed that LPS-induced NF-κB enrichments on the promoters of IL-6 and TNF-α were replaced by ATF-3 upon metformin treatment. AMPK knockdown blunted all the effects of metformin (ATF-3 induction, proinflammatory cytokine inhibition, and MAPK inactivation), suggesting that AMPK activation by metformin is required for and precedes ATF-3 induction. Oral administration of metformin to either mice with LPS-induced endotoxemia or ob/ob mice lowered the plasma and tissue levels of TNF-α and IL-6 and increased ATF-3 expression in spleen and lungs. These results suggest that metformin exhibits anti-inflammatory action in macrophages at least in part via pathways involving AMPK activation and ATF-3 induction. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice.

    Science.gov (United States)

    Watari, Kosuke; Shibata, Tomohiro; Nabeshima, Hiroshi; Shinoda, Ai; Fukunaga, Yuichi; Kawahara, Akihiko; Karasuyama, Kazuyuki; Fukushi, Jun-Ichi; Iwamoto, Yukihide; Kuwano, Michihiko; Ono, Mayumi

    2016-01-18

    N-myc downstream regulated gene 1 (NDRG1) is a responsible gene for a hereditary motor and sensory neuropathy-Lom (Charcot-Marie-Tooth disease type 4D). This is the first study aiming to assess the contribution of NDRG1 to differentiation of macrophage lineage cells, which has important implications for bone remodeling and inflammatory angiogenesis. Ndrg1 knockout (KO) mice exhibited abnormal curvature of the spine, high trabecular bone mass, and reduced number of osteoclasts. We observed that serum levels of macrophage colony-stimulating factor (M-CSF) and macrophage-related cytokines were markedly decreased in KO mice. Differentiation of bone marrow (BM) cells into osteoclasts, M1/M2-type macrophages and dendritic cells was all impaired. Furthermore, KO mice also showed reduced tumor growth and angiogenesis by cancer cells, accompanied by decreased infiltration of tumor-associated macrophages. The transfer of BM-derived macrophages from KO mice into BM-eradicated wild type (WT) mice induced much less tumor angiogenesis than observed in WT mice. Angiogenesis in corneas in response to inflammatory stimuli was also suppressed with decreased infiltration of macrophages. Taken together, these results indicate that NDRG1 deficiency attenuates the differentiation of macrophage lineage cells, suppressing bone remodeling and inflammatory angiogenesis. This study strongly suggests the crucial role of NDRG1 in differentiation process for macrophages.

  11. Modulation of Macrophage Inflammatory Nuclear Factor κB (NF-κB) Signaling by Intracellular Cryptococcus neoformans.

    Science.gov (United States)

    Hayes, James B; Sircy, Linda M; Heusinkveld, Lauren E; Ding, Wandi; Leander, Rachel N; McClelland, Erin E; Nelson, David E

    2016-07-22

    Cryptococcus neoformans (Cn) is a common facultative intracellular pathogen that can cause life-threatening fungal meningitis in immunocompromised individuals. Shortly after infection, Cn is detectable as both extra- and intracellular yeast particles, with Cn being capable of establishing long-lasting latent infections within host macrophages. Although recent studies have shown that shed capsular polysaccharides and intact extracellular Cn can compromise macrophage function through modulation of NF-κB signaling, it is currently unclear whether intracellular Cn also affects NF-κB signaling. Utilizing live cell imaging and computational modeling, we find that extra- and intracellular Cn support distinct modes of NF-κB signaling in cultured murine macrophages. Specifically, in RAW 264.7 murine macrophages treated with extracellular glucuronoxylomannan (GXM), the major Cn capsular polysaccharide, LPS-induced nuclear translocation of p65 is inhibited, whereas in cells with intracellular Cn, LPS-induced nuclear translocation of p65 is both amplified and sustained. Mathematical simulations and quantification of nascent protein expression indicate that this is a possible consequence of Cn-induced "translational interference," impeding IκBα resynthesis. We also show that long term Cn infection induces stable nuclear localization of p65 and IκBα proteins in the absence of additional pro-inflammatory stimuli. In this case, nuclear localization of p65 is not accompanied by TNFα or inducible NOS (iNOS) expression. These results demonstrate that capsular polysaccharides and intact intracellular yeast manipulate NF-κB via multiple distinct mechanisms and provide new insights into how Cn might modulate cellular signaling at different stages of an infection.

  12. Diagnostic and prognostic potential of the macrophage specific receptor CD163 in inflammatory diseases.

    Science.gov (United States)

    Buechler, Christa; Eisinger, Kristina; Krautbauer, Sabrina

    2013-12-01

    CD163 is a scavenger receptor for the endocytosis of hemoglobin and hemoglobin/haptoglobin complexes and is nearly exclusively expressed on monocytes and macrophages. CD163 is induced by IL-10 and glucocorticoids while proinflammatory cytokines like TNF reduce its expression. The cytokine IL-6 which exerts pro- and anti-inflammatory effects depending on the signaling pathway activated strongly upregulates CD163. Anti-inflammatory cells involved in the down-modulation of inflammation express high CD163 which controls immune response. Ligands of the toll-like receptors 2, 4 and 5 stimulate ectodomain shedding of CD163 thereby releasing soluble CD163 (sCD163) which mediates cellular uptake of free hemoglobin. Soluble CD163 circulates in blood and is increased in serum of critically ill patients, in chronic inflammatory and infectious diseases. Serum concentrations of sCD163 are related to disease severity and are suitable biomarkers for diagnosis, prognosis and therapeutic drug monitoring in several inflammatory disorders. Raised sCD163 even predicts comorbidity and mortality in some diseases. Relationship of CD163/sCD163 and disease severity demonstrates a fundamental role of monocytes/macrophages in various diseases. CD163 is a target to specifically deliver drugs to macrophages intending advanced therapeutic efficiency and minimization of adverse reactions. In this review article factors regulating CD163 expression and shedding, current knowledge on the function of CD163 and sCD163, and inflammatory diseases where CD163 and/or sCD163 are mostly increased are summarized.

  13. Antioxidant and anti-inflammatory effects in RAW264.7 macrophages of malvidin, a major red wine polyphenol.

    Directory of Open Access Journals (Sweden)

    Eszter Bognar

    Full Text Available BACKGROUND: Red wine polyphenols can prevent cardiovascular and inflammatory diseases. Resveratrol, the most extensively studied constituent, is unlikely to solely account for these beneficial effects because of its rather low abundance and bioavailability. Malvidin is far the most abundant polyphenol in red wine; however, very limited data are available about its effect on inflammatory processes and kinase signaling pathways. METHODS FINDINGS: The present study was carried out by using RAW 264.7 macrophages stimulated by bacterial lipopolysaccharide in the presence and absence of malvidin. From the cells, activation of nuclear factor-kappaB, mitogen-activated protein kinase, protein kinase B/Akt and poly ADP-ribose polymerase, reactive oxygen species production, mitogen-activated protein kinase phosphatase-1 expression and mitochondrial depolarization were determined. We found that malvidin attenuated lipopolysaccharide-induced nuclear factor-kappaB, poly ADP-ribose polymerase and mitogen-activated protein kinase activation, reactive oxygen species production and mitochondrial depolarization, while upregulated the compensatory processes; mitogen-activated protein kinase phosphatase-1 expression and Akt activation. CONCLUSIONS: These effects of malvidin may explain the previous findings and at least partially account for the positive effects of moderate red wine consumption on inflammation-mediated chronic maladies such as obesity, diabetes, hypertension and cardiovascular disease.

  14. Leptomeningeal Cells Transduce Peripheral Macrophages Inflammatory Signal to Microglia in Reponse to Porphyromonas gingivalis LPS

    Directory of Open Access Journals (Sweden)

    Yicong Liu

    2013-01-01

    Full Text Available We report here that the leptomeningeal cells transduce inflammatory signals from peripheral macrophages to brain-resident microglia in response to Porphyromonas gingivalis (P.g. LPS. The expression of Toll-like receptor 2 (TLR2, TLR4, TNF-α, and inducible NO synthase was mainly detected in the gingival macrophages of chronic periodontitis patients. In in vitro studies, P.g. LPS induced the secretion of TNF-α and IL-1β from THP-1 human monocyte-like cell line and RAW264.7 mouse macrophages. Surprisingly, the mean mRNA levels of TNF-α and IL-1β in leptomeningeal cells after treatment with the conditioned medium from P.g. LPS-stimulated RAW264.7 macrophages were significantly higher than those after treatment with P.g. LPS alone. Furthermore, the mean mRNA levels of TNF-α and IL-1β in microglia after treatment with the conditioned medium from P.g. LPS-stimulated leptomeningeal cells were significantly higher than those after P.g. LPS alone. These observations suggest that leptomeninges serve as an important route for transducing inflammatory signals from macrophages to microglia by secretion of proinflammatory mediators during chronic periodontitis. Moreover, propolis significantly reduced the P.g. LPS-induced TNF-α and IL-1 β production by leptomeningeal cells through inhibiting the nuclear factor-κB signaling pathway. Together with the inhibitory effect on microglial activation, propolis may be beneficial in preventing neuroinflammation during chronic periodontitis.

  15. Cynanchum wilfordii Polysaccharides Suppress Dextran Sulfate Sodium-Induced Acute Colitis in Mice and the Production of Inflammatory Mediators from Macrophages

    Directory of Open Access Journals (Sweden)

    Chang-Won Cho

    2017-01-01

    Full Text Available We recently reported the immune-enhancing effects of a high-molecular-weight fraction (HMF of CW in macrophages and immunosuppressed mice, and this effect was attributed to a crude polysaccharide. As polysaccharides may also have anti-inflammatory functions, we investigated the anti-inflammatory effects and related molecular mechanisms of a crude polysaccharide (HMFO obtained from HMF of CW in mice with dextran sulfate sodium- (DSS- induced colitis and in lipopolysaccharide-induced RAW 264.7 macrophages. HMFO ameliorated the pathological characteristics of colitis and significantly reduced production of proinflammatory cytokines in the serum. Histological analysis indicated that HMFO improved the signs of histological damage such as abnormal crypts, crypt loss, and inflammatory cell infiltration induced by DSS. In addition, HMFO inhibited iNOS and COX-2 protein expression, as well as phosphorylated NF-κB p65 levels in the colon tissue of mice with DSS-induced colitis. In macrophages, HMFO inhibited several cytokines and enzymes involved in inflammation such as prostaglandin E2, nitric oxide, tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2 by attenuating nuclear factor-κB (NF-κB and mitogen-activated protein kinases. HMFO attenuated inflammation both in vitro and in vivo, primarily by inhibiting NF-κB activation. Our findings indicate that HMFO is a promising remedy for treating inflammatory bowel diseases, such as colitis.

  16. Angiopoietin Like Protein 2 (ANGPTL2) Promotes Adipose Tissue Macrophage and T lymphocyte Accumulation and Leads to Insulin Resistance

    Science.gov (United States)

    Sasaki, Yusuke; Ohta, Masayuki; Desai, Dhruv; Figueiredo, Jose-Luiz; Whelan, Mary C.; Sugano, Tomohiro; Yamabi, Masaki; Yano, Wataru; Faits, Tyler; Yabusaki, Katsumi; Zhang, Hengmin; Mlynarchik, Andrew K.; Inoue, Keisuke; Mizuno, Ken; Aikawa, Masanori

    2015-01-01

    Objectives Angiopoietin-like protein 2 (ANGPTL2), a recently identified pro-inflammatory cytokine, is mainly secreted from the adipose tissue. This study aimed to explore the role of ANGPTL2 in adipose tissue inflammation and macrophage activation in a mouse model of diabetes. Methodology/Principal Findings Adenovirus mediated lacZ (Ad-LacZ) or human ANGPTL2 (Ad-ANGPTL2) was delivered via tail vein in diabetic db/db mice. Ad-ANGPTL2 treatment for 2 weeks impaired both glucose tolerance and insulin sensitivity as compared to Ad-LacZ treatment. Ad-ANGPTL2 treatment significantly induced pro-inflammatory gene expression in white adipose tissue. We also isolated stromal vascular fraction from epididymal fat pad and analyzed adipose tissue macrophage and T lymphocyte populations by flow cytometry. Ad-ANGPTL2 treated mice had more adipose tissue macrophages (F4/80+CD11b+) and a larger M1 macrophage subpopulation (F4/80+CD11b+CD11c+). Moreover, Ad-ANGPTL2 treatment increased a CD8-positive T cell population in adipose tissue, which preceded increased macrophage accumulation. Consistent with our in vivo results, recombinant human ANGPTL2 protein treatment increased mRNA levels of pro-inflammatory gene products and production of TNF-α protein in the human macrophage-like cell line THP-1. Furthermore, Ad-ANGPTL2 treatment induced lipid accumulation and increased fatty acid synthesis, lipid metabolism related gene expression in mouse liver. Conclusion ANGPTL2 treatment promotes macrophage accumulation and activation. These results suggest potential mechanisms for insulin resistance. PMID:26132105

  17. Induction of Monocyte Chemoattractant Proteins in Macrophages via the Production of Granulocyte-macrophage Colony Stimulating Factor by Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Teizo eYoshimura

    2016-01-01

    Full Text Available Monocyte chemoattractant protein-1 (MCP-1/CCL2 plays an important role in the initiation and progression of cancer. We previously reported that in 4T1 murine breast cancer, non-tumor stromal cells, including macrophages, were the major source of MCP-1. In the present study, we analyzed the potential mechanisms by which MCP-1 is upregulated in macrophages infiltrating 4T1 tumors. We found that cell-free culture supernatants of 4T1 cells (4T1-sup markedly upregulated MCP-1 production by peritoneal inflammatory macrophages. 4T1-sup also upregulated other MCPs, such as MCP-3/CCL7 and MCP-5/CCL12, but modestly neutrophil chemotactic chemokines, such as KC/CXCL1 or MIP-2/CXCL2. Physicochemical analysis indicated that an approximately 2 to 3 kDa 4T1 cell product was responsible for the capacity of 4T1-sup to upregulate MCP-1 expression by macrophages. A neutralizing antibody against granulocyte-macrophage-colony stimulating factor (GM-CSF, but not macrophage-colony stimulating factor, almost completely abrogated MCP-1-inducing activity of 4T1-sup, and recombinant GM-CSF potently up-regulated MCP-1 production by macrophages. The expression levels of GM-CSF in 4T1 tumors in vivo were higher than other tumors, such as Lewis lung carcinoma. Treatment of mice with anti-GM-CSF antibody significantly reduced the growth of 4T1 tumors at the injection sites but did not reduce MCP-1 production or lung metastasis in tumor-bearing mice. These results indicate that 4T1 cells have the capacity to directly up-regulate MCP-1 production by macrophages by releasing GM-CSF; however, other mechanisms are also involved in increased MCP-1 levels in the 4T1 tumor microenvironment.

  18. MicroRNA-155 facilitates skeletal muscle regeneration by balancing pro- and anti-inflammatory macrophages.

    Science.gov (United States)

    Nie, M; Liu, J; Yang, Q; Seok, H Y; Hu, X; Deng, Z-L; Wang, D-Z

    2016-06-09

    Skeletal muscle has remarkable regeneration capacity and regenerates in response to injury. Muscle regeneration largely relies on muscle stem cells called satellite cells. Satellite cells normally remain quiescent, but in response to injury or exercise they become activated and proliferate, migrate, differentiate, and fuse to form multinucleate myofibers. Interestingly, the inflammatory process following injury and the activation of the myogenic program are highly coordinated, with myeloid cells having a central role in modulating satellite cell activation and regeneration. Here, we show that genetic deletion of microRNA-155 (miR-155) in mice substantially delays muscle regeneration. Surprisingly, miR-155 does not appear to directly regulate the proliferation or differentiation of satellite cells. Instead, miR-155 is highly expressed in myeloid cells, is essential for appropriate activation of myeloid cells, and regulates the balance between pro-inflammatory M1 macrophages and anti-inflammatory M2 macrophages during skeletal muscle regeneration. Mechanistically, we found that miR-155 suppresses SOCS1, a negative regulator of the JAK-STAT signaling pathway, during the initial inflammatory response upon muscle injury. Our findings thus reveal a novel role of miR-155 in regulating initial immune responses during muscle regeneration and provide a novel miRNA target for improving muscle regeneration in degenerative muscle diseases.

  19. Anti-inflammatory activity of an ethanolic Caesalpinia sappan extract in human chondrocytes and macrophages

    Science.gov (United States)

    Wu, Shengqian Q; Otero, Miguel; Unger, Frank M; Goldring, Mary B; Phrutivorapongkul, Ampai; Chiari, Catharina; Kolb, Alexander; Viernstein, Helmut; Toegel, Stefan

    2012-01-01

    Aim of the study Caesalpinia sappan is a common remedy in Traditional Chinese Medicine and possesses diverse biological activities including anti-inflammatory properties. Osteoarthritis (OA) is a degenerative joint disease with an inflammatory component that drives the degradation of cartilage extracellular matrix. In order to provide a scientific basis for the applicability of Caesalpinia sappan in arthritic diseases, the present study aimed to assess the effects of an ethanolic Caesalpinia sappan extract (CSE) on human chondrocytes and macrophages. Materials and Methods Primary human chondrocytes were isolated from cartilage specimens of OA patients. Primary cells, SW1353 chondrocytes and THP-1 macrophages were serum-starved and pretreated with different concentrations of CSE prior to stimulation with 10 ng/ml of interleukin-1beta (IL-1ß) or lipopolysaccharide (LPS). Following viability tests, nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α) were evaluated by Griess assay and ELISA, respectively. Using validated real-time PCR assays, mRNA levels of IL-1ß, TNF-α, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were quantified. SW1353 cells were cotransfected with a COX-2 luciferase reporter plasmid and nuclear factor-kappa-B (NF-κB) p50 and p65 expression vectors in the presence or absence of CSE. Results CSE dose-dependently inhibited the expression of pro-inflammatory cytokines IL-1ß and TNF-α in IL-1ß-stimulated chondrocytes and LPS-stimulated THP-1 macrophages. CSE further suppressed the synthesis of NO in primary OA chondrocytes by blocking iNOS mRNA expression. The inhibition of COX-2 transcription was found to be related with the CSE inhibition of the p65/p50-driven transactivation of the COX-2 promoter. Conclusions The present report is first to demonstrate the anti-inflammatory activity of CSE in an in vitro cell model of joint inflammation. CSE can effectively abrogate the IL-1ß-induced over-expression of

  20. Paraoxonase 2 Induces a Phenotypic Switch in Macrophage Polarization Favoring an M2 Anti-Inflammatory State

    Science.gov (United States)

    Koren-Gluzer, Marie; Rosenblat, Mira; Hayek, Tony

    2015-01-01

    Inflammatory processes are involved in atherosclerosis development. Macrophages play a major role in the early atherogenesis, and they are present in the atherosclerotic lesion in two phenotypes: proinflammatory (M1) or anti-inflammatory (M2). Paraoxonase 2 (PON2) is expressed in macrophages, and it was shown to protect against atherosclerosis. Thus, the aim of our study was to analyze the direct effect of PON2 on macrophage inflammatory phenotypes. Ex vivo studies were performed with murine peritoneal macrophages (MPM) harvested from control C57BL/6 and PON2-deficient (PON2KO) mice. PON2KO MPM showed an enhanced proinflammatory phenotype compared to the control, both in the basal state and following M1 activation by IFNγ and lipopolysaccharide (LPS). In parallel, PON2KO MPM also showed reduced anti-inflammatory responses in the basal state and also following M2 activation by IL-4. Moreover, the PON2-null MPM demonstrated enhanced phagocytosis and reactive oxygen species (ROS) production in the basal state and following M1 activation. The direct effect of PON2 was shown by transfecting human PON2 (hPON2) into PON2KO MPM. PON2 transfection attenuated the macrophages' response to M1 activation and enhanced M2 response. These PON2 effects were associated with attenuation of macrophages' abilities to phagocyte and to generate ROS. We conclude that PON2 promotes an M1 to M2 switch in macrophage phenotypes. PMID:26779262

  1. Biaryl amide compounds reduce the inflammatory response in macrophages by regulating Dectin-1.

    Science.gov (United States)

    Hyung, Kyeong Eun; Lee, Mi Ji; Lee, Yun-Jung; Lee, Do Ik; Min, Hye Young; Park, So-Young; Min, Kyung Hoon; Hwang, Kwang Woo

    2016-03-01

    Macrophages are archetypal innate immune cells that play crucial roles in the recognition and phagocytosis of invading pathogens, which they identify using pattern recognition receptors (PRRs). Dectin-1 is essential for antifungal immune responses, recognizing the fungal cellular component β-glucan, and its role as a PRR has been of increasing interest. Previously, we discovered and characterized a novel biaryl amide compound, MPS 03, capable of inhibiting macrophage phagocytosis of zymosan. Therefore, in this study we aimed to identify other biaryl amide compounds with greater effectiveness than MPS 03, and elucidate their cellular mechanisms. Several MPS 03 derivatives were screened, four of which reduced zymosan phagocytosis in a similar manner to MPS 03. To establish whether such phagocytosis inhibition influenced the production of inflammatory mediators, pro-inflammatory cytokine and nitric oxide (NO) levels were measured. The production of TNF-α, IL-6, IL-12, and NO was significantly reduced in a dose-dependent manner. Moreover, the inflammation-associated MAPK signaling pathway was also affected by biaryl amide compounds. To investigate the underlying cellular mechanism, PRR expression was measured. MPS 03 and its derivatives were found to inhibit zymosan phagocytosis by decreasing Dectin-1 expression. Furthermore, when macrophages were stimulated by zymosan after pretreatment with biaryl amide compounds, downstream transcription factors such as NFAT, AP-1, and NF-κB were downregulated. In conclusion, biaryl amide compounds reduce zymosan-induced inflammatory responses by downregulating Dectin-1 expression. Therefore, such compounds could be used to inhibit Dectin-1 in immunological experiments and possibly regulate excessive inflammatory responses.

  2. Pro-inflammatory chemokine CCL2 (MCP-1 promotes healing in diabetic wounds by restoring the macrophage response.

    Directory of Open Access Journals (Sweden)

    Stephen Wood

    Full Text Available Prior studies suggest that the impaired healing seen in diabetic wounds derives from a state of persistent hyper-inflammation characterized by harmful increases in inflammatory leukocytes including macrophages. However, such studies have focused on wounds at later time points (day 10 or older, and very little attention has been given to the dynamics of macrophage responses in diabetic wounds early after injury. Given the importance of macrophages for the process of healing, we studied the dynamics of macrophage response during early and late phases of healing in diabetic wounds. Here, we report that early after injury, the diabetic wound exhibits a significant delay in macrophage infiltration. The delay in the macrophage response in diabetic wounds results from reduced Chemokine (C-C motif ligand 2 (CCL2 expression. Importantly, one-time treatment with chemoattractant CCL2 significantly stimulated healing in diabetic wounds by restoring the macrophage response. Our data demonstrate that, rather than a hyper-inflammatory state; the early diabetic wound exhibits a paradoxical and damaging decrease in essential macrophage response. Our studies suggest that the restoration of the proper kinetics of macrophage response may be able to jumpstart subsequent healing stages. CCL2 chemokine-based therapy may be an attractive strategy to promote healing in diabetic wounds.

  3. Effects of ozone on macrophage adhesion in vitro and epithelial and inflammatory responses in vivo: The role of cytokines

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, A.C.; Bhalla, D.K. [Univ. of California, Irvine, CA (United States)]|[Wayne State Univ., Detroit, MI (United States)

    1997-02-01

    Inhalation exposure to ozone (O{sub 3}) is known to induce epithelial and inflammatory changes in the lungs, characterized by neutrophilia and changes in epithelial permeability. Several cell types and their soluble mediators, including interleukin-1 (IL-1) and tumor necrosis factor-{alpha} (TNF-{alpha}), are involved in the evolution of these responses. In this study, we have compared the effects of the combination of anti-IL-1{alpha} on in vitro and in vivo responses to inhaled O{sub 3}. Male, Sprague-Dawley rats were exposed, nose-only, to 0.8 ppm O{sub 3} for 3 h and the in vitro and in vivo parameters were measured 8-12 h following exposure. In vitro studies revealed the adherence of inflammatory cells, primarily macrophages, harvested from the lungs of O{sub 3}-exposed rats to cultured lung epithelial cells (ARL-14) was significantly greater than adherence of macrophages from air-exposed controls. Furthermore, this adherence was significantly reduced in antibody-treated cells as compared to cells treated with preimmune rabbit serum. In vivo, elevations were found in the percentage of neutrophils in bronchoalveolar lavage fluid (BALF), transport of {sup 99m}Tc-diethylenetriaminepentaacetate (DTPA) across the tracheal epithelium, and concentrations of total protein and albumin in BALF following O{sub 3} exposure. However, these effects were not significantly altered by treatment. Therefore, it was concluded that O{sub 3} affects the early stages of the inflammatory response, particularly with respect to macrophage activation and adherence to epithelial cells, and that this early response may be mediated by IL-1{alpha} and/or TNF-{alpha}. The results also suggest that the in vivo effects of O{sub 3} are controlled by complex mechanisms involving factors other than IL-1{alpha} and TNF-{alpha}, even though these cytokines are capable of modifying macrophage function as revealed by the in vitro adherence studies. 33 refs., 5 figs.

  4. Surface iron inhibits quartz-induced cytotoxic and inflammatory responses in alveolar macrophages.

    Science.gov (United States)

    Ghiazza, Mara; Scherbart, Agnes M; Fenoglio, Ivana; Grendene, Francesca; Turci, Francesco; Martra, Gianmario; Albrecht, Catrin; Schins, Roel P F; Fubini, Bice

    2011-01-14

    The mechanism of enhancement/inhibition of quartz toxicity induced by iron is still unclear. Here the amount of iron on a fibrogenic quartz (Qz) was increased by wet impregnation (Fe(NO(3))(3) 0.67 and 6.7 wt %). X-ray diffraction (XRD), XRF diffuse reflectance, UV-vis, and infrared (IR) spectroscopies revealed dispersed ferric ions, and hematite aggregates at the higher loading. Surface features relevant to pathogenicity and cell responses were compared not only to the original quartz but also to reference quartz DQ12. Surface charge (ζ-potential) was more negative on the original and low-loaded specimen than on the high-loaded one. DQ12 had a less negative ζ-potential than Qz, ascribed to the absence of aluminium present in Qz (1.7 wt %). All quartz specimens were able to generate HO(•) radicals, iron-loaded samples being more reactive than original quartz. Iron deposition inhibited the rupture of a C-H bond. All quartzes were phagocytized by alveolar macrophages (AMΦ cell line NR8383) to the same extent, irrespective of their surface state. Conversely, iron loading increased AMΦ viability (evaluated by cytotoxicity and induction of apoptosis). Qz was found to be much less cytotoxic than DQ12. The induction of oxidative stress and inflammatory responses (evaluated by HO-1 mRNA expression and TNF-α mRNA and protein expression) revealed a reduction in inflammogenicity upon iron loading and a more inflammogenic potency of DQ12 ascribed to undissociated SiOH interacting via H-bonding with cell membrane components. The results suggest that besides aluminium also iron at the quartz surface may have an inhibitory effect on adverse health responses.

  5. LAPTM5 protein is a positive regulator of proinflammatory signaling pathways in macrophages.

    Science.gov (United States)

    Glowacka, Wioletta K; Alberts, Philipp; Ouchida, Rika; Wang, Ji-Yang; Rotin, Daniela

    2012-08-10

    LAPTM5 (lysosomal-associated protein transmembrane 5) is a protein that is preferentially expressed in immune cells, and it interacts with the Nedd4 family of ubiquitin ligases. Recent studies in T and B cells identified LAPTM5 as a negative regulator of T and B cell receptor levels at the plasma membrane. Here we investigated the function of LAPTM5 in macrophages. We demonstrate that expression of LAPTM5 is required for the secretion of proinflammatory cytokines in response to Toll-like receptor ligands. We also show that RAW264.7 cells knocked down for LAPTM5 or macrophages from LAPTM5(-/-) mice exhibit reduced activation of NF-κB and MAPK signaling pathways mediated by the TNF receptor, as well as multiple pattern recognition receptors in various cellular compartments. TNF stimulation of LAPTM5-deficient macrophages leads to reduced ubiquitination of RIP1 (receptor-interacting protein 1), suggesting a role for LAPTM5 at the receptor-proximate level. Interestingly, we find that macrophages from LAPTM5(-/-) mice display up-regulated levels of A20, a ubiquitin-editing enzyme responsible for deubiquitination of RIP1 and subsequent termination of NF-κB activation. Our studies thus indicate that, in contrast to its negative role in T and B cell activation, LAPTM5 acts as a positive modulator of inflammatory signaling pathways and hence cytokine secretion in macrophages. They also highlight a role for the endosomal/lysosomal system in regulating signaling via cytokine and pattern recognition receptors.

  6. Pomegranate juice polyphenols induce a phenotypic switch in macrophage polarization favoring a M2 anti-inflammatory state.

    Science.gov (United States)

    Aharoni, Saar; Lati, Yoni; Aviram, Michael; Fuhrman, Bianca

    2015-01-01

    It was documented that pomegranate has anti-inflammatory effects. In this study, we investigated a direct effect of pomegranate juice (PJ) and its polyphenols on macrophage inflammatory phenotype. In vitro, PJ and its major polyphenols dose-dependently attenuated macrophage response to M1 proinflammatory activation in J774.A1 macrophage-like cell line. This was evidenced by a significant decrease in TNFα and IL-6 secretion in response to stimulation by IFNγ and Lipopolysaccharide. In addition, PJ and punicalagin dose-dependently promoted the macrophages toward a M2 anti-inflammatory phenotype, as determined by a significant increase in the spontaneous secretion of IL-10. In mice, supplementation with dietary PJ substantially inhibited the M2 to M1 macrophage phenotypic shift associated with age, toward a favorable anti-inflammatory M2 phenotype. This effect was also reflected in the mice atherosclerotic plaques, as evaluated by the distinct expression of arginase isoforms. PJ consumption inhibited the increment of arginase II (Arg II, M1) mRNA expression during aging, and maintained the levels of Arg I (M2) expression similar to those in young mice aorta. This study demonstrates, for the first time, that pomegranate polyphenols directly suppress macrophage inflammatory responses and promote M1 to M2 switch in macrophage phenotype. Furthermore, this study indicates that PJ consumption may inhibit the progressive proinflammatory state in the aorta along atherosclerosis development with aging, due to a switch in macrophage phenotype from proinflammatory M1 to anti-inflammatory M2.

  7. The Dietary Isoflavone Daidzein Reduces Expression of Pro-Inflammatory Genes through PPARα/γ and JNK Pathways in Adipocyte and Macrophage Co-Cultures.

    Directory of Open Access Journals (Sweden)

    Yuri Sakamoto

    Full Text Available Obesity-induced inflammation caused by adipocyte-macrophage interactions plays a critical role in developing insulin resistance, and peroxisome proliferator-activated receptors (PPARs regulate inflammatory gene expression in these cells. Recently, the soy isoflavone daidzein was reported to act as a PPAR activator. We examined whether daidzein affected adipocyte-macrophage crosstalk via the regulation of PPARs. Co-cultures of 3T3-L1 adipocytes and RAW264 macrophages, or palmitate-stimulated RAW264 macrophages were treated with daidzein in the presence or absence of specific inhibitors for PPARs: GW6471 (a PPARα antagonist, and GW9662 (a PPARγ antagonist. Inflammatory gene expression was then determined. Daidzein significantly decreased chemokine (C-C motif ligand 2 (Ccl2, known in humans as monocyte chemo-attractant protein 1 (MCP1 and interleukin 6 (Il6 mRNA levels induced by co-culture. In 3T3-L1 adipocytes, daidzein inversed the attenuation of adiponectin gene expression by co-culture, and these effects were inhibited by the PPAR-γ specific inhibitor. Daidzein also decreased Ccl2 and Il6 mRNA levels in RAW264 macrophages stimulated with palmitate or conditioned medium (CM from hypertrophied 3T3-L1 adipocytes. This inhibitory effect on Il6 expression was abrogated by a PPAR-α inhibitor. Additionally, we examined the activation of nuclear factor-kappa B (NF-κB and c-Jun N-terminal kinase (JNK pathways and found that daidzein significantly inhibited palmitate-induced phosphorylation of JNK. Our data suggest that daidzein regulates pro-inflammatory gene expression by activating PPAR-α and -γ and inhibiting the JNK pathway in adipocyte and macrophage co-cultures. These effects might be favorable in improving adipose inflammation, thus, treatment of daidzein may be a therapeutic strategy for chronic inflammation in obese adipose tissue.

  8. Bone marrow-derived and peritoneal macrophages have different inflammatory response to oxLDL and M1/M2 marker expression – implications for atherosclerosis research

    Science.gov (United States)

    Bisgaard, Line S.; Mogensen, Christina K.; Rosendahl, Alexander; Cucak, Helena; Nielsen, Lars Bo; Rasmussen, Salka E.; Pedersen, Tanja X.

    2016-01-01

    Macrophages are heterogeneous and can polarize into specific subsets, e.g. pro-inflammatory M1-like and re-modelling M2-like macrophages. To determine if peritoneal macrophages (PEMs) or bone marrow derived macrophages (BMDMs) resembled aortic macrophages from ApoE−/− mice, their M1/M2 phenotype, inflammatory status, and lipid metabolism signatures were compared. oxLDL accumulation was similar in PEMs and BMDMs. On protein expression level, BMDMs showed an M2-like CD206highCD11clow profile, while cholesterol loading led to enhanced CD11c expression and reduced MCP-1 secretion. In contrast, PEMs expressed low levels of CD206 and CD11c, and responded to cholesterol loading by increasing CD11c expression and MCP-1 secretion. mRNA expression of M1/M2 markers was higher in PEMS than BMDMs, while lipid metabolism genes were similarly expressed. Whole aorta flow cytometry showed an accumulation of M2-like CD206highCD11clow macrophages in advanced versus early atherosclerotic disease in ApoE−/− mice. In isolated lesions, mRNA levels of the M2 markers Socs2, CD206, Retnla, and IL4 were downregulated with increasing disease severity. Likewise, mRNA expression of lipid metabolism genes (SREBP2, ACSL1, SRB1, DGAT1, and cpt1a) was decreased in advanced versus early lesions. In conclusion, PEMs and BMDMs are phenotypically distinct and differ from macrophages in lesions with respect to expression of M1/M2 markers and lipid metabolism genes. PMID:27734926

  9. DUAL AND DISTINCT ROLES FOR SPHINGOSINE KINASE 1 AND SPHINGOSINE 1 PHOSPHATE IN THE RESPONSE TO INFLAMMATORY STIMULI IN RAW MACROPHAGES

    OpenAIRE

    Hammad, Samar M.; Crellin, Heather G.; Wu, Bill; Melton, Jessica; Anelli, Viviana; Obeid, Lina M.

    2007-01-01

    Sphingosine kinase 1 (SK1) and its product sphingosine-1-phosphate (S1P) have been implicated in the regulation of many cellular processes including growth regulation, protection from apoptosis, stimulation of angiogenesis, and most recently as mediators of the TNF alpha inflammatory response. In this study we set out to examine the role of SK1/S1P in the RAW macrophage response to the potent inflammatory stimulus LPS. We show that LPS increases cellular levels of SK1 message and protein. Thi...

  10. Macrophage-associated mesenchymal stem cells assume an activated, migratory, pro-inflammatory phenotype with increased IL-6 and CXCL10 secretion.

    Directory of Open Access Journals (Sweden)

    Kevin Anton

    Full Text Available Mesenchymal stem cells (MSCs exhibit tropism for sites of tissue injury and tumors. However, the influence of the microenvironment on MSC phenotype and localization remains incompletely characterized. In this study, we begin to define a macrophage-induced MSC phenotype. These MSCs secrete interleukin-6 (IL-6, CCL5, and interferon gamma-induced protein-10 (CXCL10 and exhibit increased mobility in response to multiple soluble factors produced by macrophages including IL-8, CCL2, and CCL5. The pro-migratory phenotype is dependent on activation of a c-Jun N-terminal kinase (JNK pathway. This work begins to identify the influence of macrophages on MSC biology. These interactions are likely to play an important role in the tissue inflammatory response and may provide insight into the migratory potential of MSCs in inflammation and tissue injury.

  11. HMGB1 Promotes Systemic Lupus Erythematosus by Enhancing Macrophage Inflammatory Response

    Directory of Open Access Journals (Sweden)

    Mudan Lu

    2015-01-01

    Full Text Available Background/Purpose. HMGB1, which may act as a proinflammatory mediator, has been proposed to contribute to the pathogenesis of multiple chronic inflammatory and autoimmune diseases including systemic lupus erythematosus (SLE; however, the precise mechanism of HMGB1 in the pathogenic process of SLE remains obscure. Method. The expression of HMGB1 was measured by ELISA and western blot. The ELISA was also applied to detect proinflammatory cytokines levels. Furthermore, nephritic pathology was evaluated by H&E staining of renal tissues. Results. In this study, we found that HMGB1 levels were significantly increased and correlated with SLE disease activity in both clinical patients and murine model. Furthermore, gain- and loss-of-function analysis showed that HMGB1 exacerbated the severity of SLE. Of note, the HMGB1 levels were found to be associated with the levels of proinflammatory cytokines such as TNF-α and IL-6 in SLE patients. Further study demonstrated that increased HMGB1 expression deteriorated the severity of SLE via enhancing macrophage inflammatory response. Moreover, we found that receptor of advanced glycation end products played a critical role in HMGB1-mediated macrophage inflammatory response. Conclusion. These findings suggested that HMGB1 might be a risk factor for SLE, and manipulation of HMGB1 signaling might provide a therapeutic strategy for SLE.

  12. Hoxb8 conditionally immortalised macrophage lines model inflammatory monocytic cells with important similarity to dendritic cells.

    Science.gov (United States)

    Rosas, Marcela; Osorio, Fabiola; Robinson, Matthew J; Davies, Luke C; Dierkes, Nicola; Jones, Simon A; Reis e Sousa, Caetano; Taylor, Philip R

    2011-02-01

    We have examined the potential to generate bona fide macrophages (MØ) from conditionally immortalised murine bone marrow precursors. MØ can be derived from Hoxb8 conditionally immortalised macrophage precursor cell lines (MØP) using either M-CSF or GM-CSF. When differentiated in GM-CSF (GM-MØP) the resultant cells resemble GM-CSF bone marrow-derived dendritic cells (BMDC) in morphological phenotype, antigen phenotype and functional responses to microbial stimuli. In spite of this high similarity between the two cell types and the ability of GM-MØP to effectively present antigen to a T-cell hybridoma, these cells are comparatively poor at priming the expansion of IFN-γ responses from naïve CD4(+) T cells. The generation of MØP from transgenic or genetically aberrant mice provides an excellent opportunity to study the inflammatory role of GM-MØP, and reduces the need for mouse colonies in many studies. Hence differentiation of conditionally immortalised MØPs in GM-CSF represents a unique in vitro model of inflammatory monocyte-like cells, with important differences from bone marrow-derived dendritic cells, which will facilitate functional studies relating to the many 'sub-phenotypes' of inflammatory monocytes.

  13. Oleacein enhances anti-inflammatory activity of human macrophages by increasing CD163 receptor expression.

    Science.gov (United States)

    Filipek, Agnieszka; Czerwińska, Monika E; Kiss, Anna K; Wrzosek, Małgorzata; Naruszewicz, Marek

    2015-12-15

    Oleacein (dialdehydic form of decarboxymethyl elenolic acid linked to hydroxytyrosol; 3,4-DHPEA-EDA) have been proven to possess antioxidant and anti-inflammatory activity. In this study, we examined whether oleacein could increase CD163 and IL-10 receptor expression as well as HO-1 intracellular secretion in human macrophages. Effect of oleacein (10 and 20 μmol/l) or oleacein together with complexes of haemoglobin (Hb) and haptoglobin 1-1 (Hp11) or haptoglobin 2-2 (Hp22) on expression of IL-10 and CD163 receptor was determined by Flow Cytometry. Expression of CD163mRNA was measured by real-time quantitative RT-PCR. Heme oxygenase 1 (HO-1) intracellular secretion in macrophages was investigated by enzyme-linked immunosorbent assay (ELISA). Oleacein (OC) together with complexes HbHp11 or HbHp22 stimulated the expression of CD163 (30-100-fold), IL-10 (170-300-fold) and HO-1 secretion (60-130-fold) after 5 days of coincubation. The 2-fold (24 h), 4-fold (48 h) increase of CD163 mRNA level and its final (72 h) decrease was also observed. Our results suggested that oleacein enhances anti-inflammatory activity of complexes haemoglobin with haptoglobin 1-1 and 2-2 and could play a potential role in the prevention of inflammatory disease related to atherosclerosis. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria.

    Directory of Open Access Journals (Sweden)

    Marian Kacerovsky

    Full Text Available OBJECTIVE: This study aimed to evaluate the amniotic fluid protein profiles and the intensity of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria, using the multiplex xMAP technology. METHODS: A retrospective cohort study was undertaken in the Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Czech Republic. A total of 145 pregnant women with preterm prelabor rupture of membranes between gestational age 24+0 and 36+6 weeks were included in the study. Amniocenteses were performed. The presence of Ureaplasma spp. and other bacteria was evaluated using 16S rRNA gene sequencing. The levels of specific proteins were determined using multiplex xMAP technology. RESULTS: The presence of Ureaplasma spp. and other bacteria in the amniotic fluid was associated with increased levels of interleukin (IL-6, IL-8, IL-10, brain-derived neurotropic factor, granulocyte macrophage colony stimulating factor, monocyte chemotactic protein-1, macrophage inflammatory protein-1, and matrix metalloproteinasis-9. Ureaplasma spp. were also associated with increased levels of neurotropin-3 and triggering receptor expressed on myeloid cells-1. CONCLUSIONS: The presence of Ureaplasma spp. in the amniotic fluid is associated with a slightly different protein profile of inflammatory response, but the intensity of inflammatory response to Ureaplasma spp. is comparable with the inflammatory response to other bacteria.

  15. Inhibition of SIK2 and SIK3 during differentiation enhances the anti-inflammatory phenotype of macrophages

    Science.gov (United States)

    Darling, Nicola J.; Toth, Rachel; Arthur, J. Simon C.

    2017-01-01

    The salt-inducible kinases (SIKs) control a novel molecular switch regulating macrophage polarization. Pharmacological inhibition of the SIKs induces a macrophage phenotype characterized by the secretion of high levels of anti-inflammatory cytokines, including interleukin (IL)-10, and the secretion of very low levels of pro-inflammatory cytokines, such as tumour necrosis factor α. The SIKs, therefore, represent attractive new drug targets for the treatment of macrophage-driven diseases, but which of the three isoforms, SIK1, SIK2 or SIK3, would be appropriate to target remains unknown. To address this question, we developed knock-in (KI) mice for SIK1, SIK2 and SIK3, in which we introduced a mutation that renders the enzymes catalytically inactive. Characterization of primary macrophages from the single and double KI mice established that all three SIK isoforms, and in particular SIK2 and SIK3, contribute to macrophage polarization. Moreover, we discovered that inhibition of SIK2 and SIK3 during macrophage differentiation greatly enhanced the production of IL-10 compared with their inhibition in mature macrophages. Interestingly, macrophages differentiated in the presence of SIK inhibitors, MRT199665 and HG-9-91-01, still produced very large amounts of IL-10, but very low levels of pro-inflammatory cytokines, even after the SIKs had been reactivated by removal of the drugs. Our data highlight an integral role for SIK2 and SIK3 in innate immunity by preventing the differentiation of macrophages into a potent and stable anti-inflammatory phenotype. PMID:27920213

  16. Adipocyte Fatty Acid Binding Protein Potentiates Toxic Lipids-Induced Endoplasmic Reticulum Stress in Macrophages via Inhibition of Janus Kinase 2-dependent Autophagy

    Science.gov (United States)

    Hoo, Ruby L. C.; Shu, Lingling; Cheng, Kenneth K. Y.; Wu, Xiaoping; Liao, Boya; Wu, Donghai; Zhou, Zhiguang; Xu, Aimin

    2017-01-01

    Lipotoxicity is implicated in the pathogenesis of obesity-related inflammatory complications by promoting macrophage infiltration and activation. Endoplasmic reticulum (ER) stress and adipocyte fatty acid binding protein (A-FABP) play key roles in obesity and mediate inflammatory activity through similar signaling pathways. However, little is known about their interplay in lipid-induced inflammatory responses. Here, we showed that prolonged treatment of palmitic acid (PA) increased ER stress and expression of A-FABP, which was accompanied by reduced autophagic flux in macrophages. Over-expression of A-FABP impaired PA-induced autophagy associating with enhanced ER stress and pro-inflammatory cytokine production, while genetic ablation or pharmacological inhibition of A-FABP reversed the conditions. PA-induced expression of autophagy-related protein (Atg)7 was attenuated in A-FABP over-expressed macrophages, but was elevated in A-FABP-deficient macrophages. Mechanistically, A-FABP potentiated the effects of PA by inhibition of Janus Kinase (JAK)2 activity, thus diminished PA-induced Atg7 expression contributing to impaired autophagy and further augmentation of ER stress. These findings suggest that A-FABP acts as autophagy inhibitor to instigate toxic lipids-induced ER stress through inhibition of JAK2-dependent autophagy, which in turn triggers inflammatory responses in macrophages. A-FABP-JAK2 axis may represent an important pathological pathway contributing to obesity-related inflammatory diseases. PMID:28094778

  17. Kinetics of chemotaxis, cytokine, and chemokine release of NR8383 macrophages after exposure to inflammatory and inert granular insoluble particles.

    Science.gov (United States)

    Schremmer, I; Brik, A; Weber, D G; Rosenkranz, N; Rostek, A; Loza, K; Brüning, T; Johnen, G; Epple, M; Bünger, J; Westphal, G A

    2016-11-30

    Accumulation of macrophages and neutrophil granulocytes in the lung are key events in the inflammatory response to inhaled particles. The present study aims at the time course of chemotaxis in vitro in response to the challenge of various biopersistent particles and its functional relation to the transcription of inflammatory mediators. NR8383 rat alveolar macrophages were challenged with particles of coarse quartz, barium sulfate, and nanosized silica for one, four, and 16h and with coarse and nanosized titanium dioxide particles (rutile and anatase) for 16h only. The cell supernatants were used to investigate the chemotaxis of unexposed NR8383 macrophages. The transcription of inflammatory mediators in cells exposed to quartz, silica, and barium sulfate was analyzed by quantitative real-time PCR. Challenge with quartz, silica, and rutile particles induced significant chemotaxis of unexposed NR8383 macrophages. Chemotaxis caused by quartz and silica was accompanied by an elevated transcription of CCL3, CCL4, CXCL1, CXCL3, and TNFα. Quartz exposure showed an earlier onset of both effects compared to the nanosized silica. The strength of this response roughly paralleled the cytotoxic effects. Barium sulfate and anatase did not induce chemotaxis and barium sulfate as well caused no elevated transcription. In conclusion, NR8383 macrophages respond to the challenge with inflammatory particles with the release of chemotactic compounds that act on unexposed macrophages. The kinetics of the response differs between the various particles. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Relationship between peritoneal macrophages and inflammatory reaction in a rat model of severe acute pancreatitis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Objective To investigate the relationship between peritoneal macrophages(PMAs)and inflammatory reaction in a rat model of severe acute pancreatitis(SAP).Methods Sprague-Dawley rats were randomly divided into control group and SAP group.To induce SAP in rats,40 g/L sodium taurocholate(0.1 mL/100 g)was injected into the pancreatic duct through retrograde exposure of pancreatic bile duct in hepatic porta.One-third of rats were sacrificed at 3,6 or 12 h after modeling.PMAs were extracted,and incubated for 24 h ...

  19. Inhibitory effects of 4-hydroxyderricin and xanthoangelol on lipopolysaccharide-induced inflammatory responses in RAW264 macrophages.

    Science.gov (United States)

    Yasuda, Michiko; Kawabata, Kyuichi; Miyashita, Miki; Okumura, Mayu; Yamamoto, Norio; Takahashi, Masakazu; Ashida, Hitoshi; Ohigashi, Hajime

    2014-01-15

    The Japanese herb, Ashitaba (Angelica keiskei Koidzumi), contains two prenylated chalcones, 4-hydroxyderricin and xanthoangelol, which are considered to be the major active compounds of Ashitaba. However, their effects on inflammatory responses are poorly understood. In the present study, we investigated the effects and underlying molecular mechanisms of 4-hydroxyderricin and xanthoangelol on lipopolysaccharide (LPS)-induced inflammatory responses in RAW264 mouse macrophages. LPS-mediated production of nitric oxide (NO) was markedly reduced by 4-hydroxyderricin (10 μM) and xanthoangelol (5 μM) compared with their parent compound, chalcone (25 μM). They also inhibited LPS-induced secretion of tumor necrosis factor-alpha (TNF-α) and expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Although chalcone decreased the DNA-binding activity of both activator protein-1 (AP-1) and nuclear factor-kappa B (NF-κB), 4-hydroxyderricin and xanthoangelol suppressed only AP-1 and had no effect on NF-κB. On the other hand, all of the tested chalcones reduced the phosphorylation (at serine 536) level of the p65 subunit of NF-κB. 4-Hydroxyderricin and xanthoangelol may be promising for the prevention of inflammatory diseases.

  20. Anti-inflammatory effect of fucoxanthin derivatives isolated from Sargassum siliquastrum in lipopolysaccharide-stimulated RAW 264.7 macrophage.

    Science.gov (United States)

    Heo, Soo-Jin; Yoon, Weon-Jong; Kim, Kil-Nam; Oh, Chulhong; Choi, Young-Ung; Yoon, Kon-Tak; Kang, Do-Hyung; Qian, Zhong-Ji; Choi, Il-Whan; Jung, Won-Kyo

    2012-09-01

    In this study, the anti-inflammatory effect of fucoxanthin (FX) derivatives, which was isolated from Sargassum siliquastrum were evaluated by examining their inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated murine macrophage RAW 264.7 cells. The FX derivatives were isolated from activity-guided chloroform fraction using inhibition of nitric oxide (NO) production and identified as 9'-cis-(6'R) fucoxnathin (FXA), and 13-cis and 13'-cis-(6'R) fucoxanthin complex (FXB) on the basis of a comparison of NMR spectroscopic data. Both FXA and FXB significantly inhibited the NO production and showed slightly reduce the PGE2 production. However, FXB exhibited cytotoxicity at the whole tested concentration, therefore, the results of FXA was only illustrate for further experiments. FXA induced dose-dependent reduction in the inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) proteins as well as mRNA expression. In addition, FXA reduced the LPS-stimulated production and mRNA expressions of TNF-α and IL-6 in a dose-dependent manner whereas IL-1β production do not inhibit by addition of FXA. Taken together, these findings indicate that the anti-inflammatory properties of FXA may be due to the inhibition of iNOS/NO pathway which associated with the attenuation of TNF-α and IL-6 formation. Thus FXA may provide a potential therapeutic approach for inflammation related diseases.

  1. Selective Targeting of a Disease-Related Conformational Isoform of Macrophage Migration Inhibitory Factor Ameliorates Inflammatory Conditions.

    Science.gov (United States)

    Thiele, Michael; Kerschbaumer, Randolf J; Tam, Frederick W K; Völkel, Dirk; Douillard, Patrice; Schinagl, Alexander; Kühnel, Harald; Smith, Jennifer; McDaid, John P; Bhangal, Gurjeet; Yu, Mei-Ching; Pusey, Charles D; Cook, H Terence; Kovarik, Josef; Magelky, Erica; Bhan, Atul; Rieger, Manfred; Mudde, Geert C; Ehrlich, Hartmut; Jilma, Bernd; Tilg, Herbert; Moschen, Alexander; Terhorst, Cox; Scheiflinger, Friedrich

    2015-09-01

    Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine and counterregulator of glucocorticoids, is a potential therapeutic target. MIF is markedly different from other cytokines because it is constitutively expressed, stored in the cytoplasm, and present in the circulation of healthy subjects. Thus, the concept of targeting MIF for therapeutic intervention is challenging because of the need to neutralize a ubiquitous protein. In this article, we report that MIF occurs in two redox-dependent conformational isoforms. We show that one of the two isoforms of MIF, that is, oxidized MIF (oxMIF), is specifically recognized by three mAbs directed against MIF. Surprisingly, oxMIF is selectively expressed in the plasma and on the cell surface of immune cells of patients with different inflammatory diseases. In patients with acute infections or chronic inflammation, oxMIF expression correlated with inflammatory flare-ups. In addition, anti-oxMIF mAbs alleviated disease severity in mouse models of acute and chronic enterocolitis and improved, in synergy with glucocorticoids, renal function in a rat model of crescentic glomerulonephritis. We conclude that oxMIF represents the disease-related isoform of MIF; oxMIF is therefore a new diagnostic marker for inflammation and a relevant target for anti-inflammatory therapy.

  2. Targeting the Hemoglobin Scavenger receptor CD163 in Macrophages Highly Increases the Anti-inflammatory Potency of Dexamethasone

    Science.gov (United States)

    Graversen, Jonas H; Svendsen, Pia; Dagnæs-Hansen, Frederik; Dal, Jakob; Anton, Gabriele; Etzerodt, Anders; Petersen, Mikkel D; Christensen, Peter A; Møller, Holger J; Moestrup, Søren K

    2012-01-01

    Synthetic glucocorticoids are potent anti-inflammatory drugs but serious side effects such as bone mobilization, muscle mass loss, immunosuppression, and metabolic alterations make glucocorticoid therapy a difficult balance. The therapeutic anti-inflammatory effect of glucocorticoids relies largely on the suppressed release of tumor-necrosis factor-α and other cytokines by macrophages at the sites of inflammation. We have now developed a new biodegradable anti-CD163 antibody-drug conjugate that specifically targets the glucocorticoid, dexamethasone to the hemoglobin scavenger receptor CD163 in macrophages. The conjugate, that in average contains four dexamethasone molecules per antibody, exhibits retained high functional affinity for CD163. In vitro studies in rat macrophages and in vivo studies of Lewis rats showed a strong anti-inflammatory effect of the conjugate measured as reduced lipopolysaccharide-induced secretion of tumor-necrosis factor-α. The in vivo potency of conjugated dexamethasone was about 50-fold that of nonconjugated dexamethasone. In contrast to a strong systemic effect of nonconjugated dexamethasone, the equipotent dose of the conjugate had no such effect, measured as thymus lymphocytes apoptosis, body weight loss, and suppression of endogenous cortisol levels. In conclusion, the study shows antibody-drug conjugates as a future approach in anti-inflammatory macrophage-directed therapy. Furthermore, the data demonstrate CD163 as an excellent macrophage target for anti-inflammatory drug delivery. PMID:22643864

  3. Human Macrophage Response to L. (Viannia) panamensis: Microarray Evidence for an Early Inflammatory Response

    Science.gov (United States)

    Rojas, Ricardo; Ettinger, Nicholas A.; Tikhonova, Irina; Alexander, Neal D.; Valderrama, Liliana; Hager, Janet; Wilson, Mary E.; Lin, Aiping; Zhao, Hongyu; Saravia, Nancy G.; McMahon-Pratt, Diane

    2012-01-01

    Background Previous findings indicate that susceptibility to Leishmania (Viannia) panamensis infection of monocyte-derived macrophages from patients and asymptomatically infected individuals were associated with the adaptive immune response and clinical outcome. Methodology/Principal Findings To understand the basis for this difference we examined differential gene expression of human monocyte-derived macrophages following exposure to L. (V.) panamensis. Gene activation profiles were determined using macrophages from healthy volunteers cultured with or without stationary phase promastigotes of L. (V.) panamensis. Significant changes in expression (>1.5-fold change; p<0.05; up- or down-regulated) were identified at 0.5, 4 and 24 hours. mRNA abundance profiles varied over time, with the highest level of activation occurring at earlier time points (0.5 and 4 hrs). In contrast to observations for other Leishmania species, most significantly changed mRNAs were up- rather than down-regulated, especially at early time points. Up-regulated transcripts over the first 24 hours belonged to pathways involving eicosanoid metabolism, oxidative stress, activation of PKC through G protein coupled receptors, or mechanism of gene regulation by peroxisome proliferators via PPARα. Additionally, a marked activation of Toll-receptor mediated pathways was observed. Comparison with published microarray data from macrophages infected with L. (Leishmania) chagasi indicate differences in the regulation of genes involved in signaling, motility and the immune response. Conclusions Results show that the early (0.5 to 24 hours) human monocyte-derived macrophage response to L. (Viannia) panamensis is not quiescent, in contrast to published reports examining later response times (48–96 hours). Early macrophage responses are important for the developing cellular response at the site of infection. The kinetics and the mRNA abundance profiles induced by L. (Viannia) panamensis illustrate the

  4. Pharmacological inhibition of dynamin II reduces constitutive protein secretion from primary human macrophages.

    Directory of Open Access Journals (Sweden)

    Maaike Kockx

    Full Text Available Dynamins are fission proteins that mediate endocytic and exocytic membrane events and are pharmacological therapeutic targets. These studies investigate whether dynamin II regulates constitutive protein secretion and show for the first time that pharmacological inhibition of dynamin decreases secretion of apolipoprotein E (apoE and several other proteins constitutively secreted from primary human macrophages. Inhibitors that target recruitment of dynamin to membranes (MiTMABs or directly target the GTPase domain (Dyngo or Dynole series, dose- and time- dependently reduced the secretion of apoE. SiRNA oligo's targeting all isoforms of dynamin II confirmed the involvement of dynamin II in apoE secretion. Inhibition of secretion was not mediated via effects on mRNA or protein synthesis. 2D-gel electrophoresis showed that inhibition occurred after apoE was processed and glycosylated in the Golgi and live cell imaging showed that inhibited secretion was associated with reduced post-Golgi movement of apoE-GFP-containing vesicles. The effect was not restricted to macrophages, and was not mediated by the effects of the inhibitors on microtubules. Inhibition of dynamin also altered the constitutive secretion of other proteins, decreasing the secretion of fibronectin, matrix metalloproteinase 9, Chitinase-3-like protein 1 and lysozyme but unexpectedly increasing the secretion of the inflammatory mediator cyclophilin A. We conclude that pharmacological inhibitors of dynamin II modulate the constitutive secretion of macrophage apoE as a class effect, and that their capacity to modulate protein secretion may affect a range of biological processes.

  5. Phagocytosis stimulates alternative glycosylation of macrosialin (mouse CD68), a macrophage-specific endosomal protein.

    Science.gov (United States)

    da Silva, R P; Gordon, S

    1999-03-15

    Macrosialin (mouse CD68), a macrophage-specific member of the lysosomal-associated membrane protein family, displays N-linked glycosylation and a heavily sialylated, mucin-like domain. We show that phagocytosis of zymosan by inflammatory peritoneal macrophages potently alters glycan processing of macrosialin in vitro. The phagocytic glycoform is not induced by other forms of endocytosis and depends on particle internalization. Zymosan uptake does not influence macrosialin protein synthesis, but increases the specific incorporation of D-[2-3H]mannose, D-[6-3H]galactose, N-acetyl-D-[1-3H]glucosamine and L-[5,6-3H]fucose by 2-15-fold. The phagocytic glycoform displays increased binding of agglutinins from peanut, Amaranthus caudatus and Galanthus nivalis, whereas binding of the sialic-acid-specific Maakia amurensis agglutinin is slightly reduced. Digestion by N-Glycanase abolishes the incorporation of [3H]mannose label and Galanthus nivalis agglutinin binding activity, but preserves the incorporation of galactose and N-acetylglucosamine and specific lectin binding. We also show that phagocytosis increases the complexity and length of O-linked chains. The data presented highlight the importance of differential glycosylation in the biology of macrosialin, phagosomes and macrophages in general.

  6. Suppression of Inflammatory Mediators by Cruciferous Vegetable-Derived Indole-3-Carbinol and Phenylethyl Isothiocyanate in Lipopolysaccharide-Activated Macrophages

    Directory of Open Access Journals (Sweden)

    Jo-Ting Tsai

    2010-01-01

    Full Text Available This study was aimed to examine the effects of indole-3-carbinol (I3C and β-phenylethyl isothiocyanate (PEITC, bioactive components present in cruciferous vegetable, on the production of inflammatory mediators, including nitric oxide (NO, tumor necrosis factor-α (TNF-α and interleukin-10 (IL-10, in lipopolysaccharide- (LPS- stimulated RAW 264.7 macrophages. Possible mechanisms of the NO-inhibitory effects were also explored. The results indicated that I3C and PEITC inhibited NO production, and this suppression was associated with decreased production of TNF-α and IL-10 by activated macrophages. In addition, I3C suppressed NO production even after the inducible nitric oxide synthase (iNOS protein had been produced, but such an inhibitory effect was not observed in cells treated with PEITC. Furthermore, both compounds reduced the NO contents generated from an NO donor in a cell-free condition, suggesting that the increased NO clearance may have contributed to the NO-inhibitory effects. In summary, both I3C and PEITC possessed antiinflammatory effects by inhibiting the productions of NO, TNF-α, and IL-10, although the NO-inhibitory effects may have involved in different mechanisms.

  7. Differential Regulation of Proinflammatory Cytokine Expression by Mitogen-Activated Protein Kinases in Macrophages in Response to Intestinal Parasite Infection

    Science.gov (United States)

    Lim, Mei Xing; Png, Chin Wen; Tay, Crispina Yan Bing; Teo, Joshua Ding Wei; Jiao, Huipeng; Lehming, Norbert

    2014-01-01

    Blastocystis is a common enteric protistan parasite that can cause acute, as well as chronic, infection and is associated with irritable bowel syndrome (IBS). However, the pathogenic status of Blastocystis infection remains unclear. In this study, we found that Blastocystis antigens induced abundant expression of proinflammatory cytokines, including interleukin 1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α), in mouse intestinal explants, in mouse colitis colon, and in macrophages. Further investigation utilizing RAW264.7 murine macrophages showed that Blastocystis treatment in RAW264.7 macrophages induced the activation of ERK, JNK, and p38, the three major groups of mammalian mitogen-activated protein (MAP) kinases that play essential roles in the expression of proinflammatory cytokines. ERK inhibition in macrophages significantly suppressed both mRNA and protein expression of IL-6 and TNF-α and mRNA expression of IL-1β. On the other hand, JNK inhibition resulted in reductions in both c-Jun and ERK activation and significant suppression of all three proinflammatory cytokines at both the mRNA and protein levels. Inhibition of p38 suppressed only IL-6 protein expression with no effect on the expression of IL-1β and TNF-α. Furthermore, we found that serine proteases produced by Blastocystis play an important role in the induction of ERK activation and proinflammatory cytokine expression by macrophages. Our study thus demonstrated for the first time that Blastocystis could induce the expression of various proinflammatory cytokines via the activation of MAP kinases and that infection with Blastocystis may contribute to the pathogenesis of inflammatory intestinal diseases through the activation of inflammatory pathways in host immune cells, such as macrophages. PMID:25156742

  8. Obesity-associated metabolic syndrome spontaneously induces infiltration of pro-inflammatory macrophage in synovium and promotes osteoarthritis.

    Science.gov (United States)

    Sun, Antonia RuJia; Panchal, Sunil K; Friis, Thor; Sekar, Sunderajhan; Crawford, Ross; Brown, Lindsay; Xiao, Yin; Prasadam, Indira

    2017-01-01

    Epidemiological and experimental studies have established obesity to be an important risk factor for osteoarthritis (OA), however, the mechanisms underlying this link remains largely unknown. Here, we studied local inflammatory responses in metabolic-OA. Wistar rats were fed with control diet (CD) and high-carbohydrate, high-fat diet (HCHF) for period of 8 and 16 weeks. After euthanasia, the knees were examined to assess the articular cartilage changes and inflammation in synovial membrane. Further IHC was conducted to determine the macrophage-polarization status of the synovium. In addition, CD and HCHF synovial fluid was co-cultured with bone marrow-derived macrophages to assess the effect of synovial fluid inflammation on macrophage polarisation. Our study showed that, obesity induced by a high-carbohydrate, high-fat (HCHF) diet is associated with spontaneous and local inflammation of the synovial membranes in rats even before the cartilage degradation. This was followed by increased synovitis and increased macrophage infiltration into the synovium and a predominant elevation of pro-inflammatory M1 macrophages. In addition, bone marrow derived macrophages, cultured with synovial fluid collected from the knees of obese rats exhibited a pro-inflammatory M1 macrophage phenotype. Our study demonstrate a strong association between obesity and a dynamic immune response locally within synovial tissues. Furthermore, we have also identified synovial resident macrophages to play a vital role in the inflammation caused by the HCHF diet. Therefore, future therapeutic strategies targeted at the synovial macrophage phenotype may be the key to break the link between obesity and OA.

  9. Palmitoleate Reverses High Fat-induced Proinflammatory Macrophage Polarization via AMP-activated Protein Kinase (AMPK).

    Science.gov (United States)

    Chan, Kenny L; Pillon, Nicolas J; Sivaloganathan, Darshan M; Costford, Sheila R; Liu, Zhi; Théret, Marine; Chazaud, Benedicte; Klip, Amira

    2015-07-03

    A rise in tissue-embedded macrophages displaying "M1-like" proinflammatory polarization is a hallmark of metabolic inflammation during a high fat diet or obesity. Here we show that bone marrow-derived macrophages (BMDM) from high fat-fed mice retain a memory of their dietary environment in vivo (displaying the elevated proinflammatory genes Cxcl1, Il6, Tnf, Nos2) despite 7-day differentiation and proliferation ex vivo. Notably, 6-h incubation with palmitoleate (PO) reversed the proinflammatory gene expression and cytokine secretion seen in BMDM from high fat-fed mice. BMDM from low fat-fed mice exposed to palmitate (PA) for 18 h ex vivo also showed elevated expression of proinflammatory genes (Cxcl1, Il6, Tnf, Nos2, and Il12b) associated with M1 polarization. Conversely, PO treatment increased anti-inflammatory genes (Mrc1, Tgfb1, Il10, Mgl2) and oxidative metabolism, characteristic of M2 macrophages. Therefore, saturated and unsaturated fatty acids bring about opposite macrophage polarization states. Coincubation of BMDM with both fatty acids counteracted the PA-induced Nos2 expression in a PO dose-dependent fashion. PO also prevented PA-induced IκBα degradation, RelA nuclear translocation, NO production, and cytokine secretion. Mechanistically, PO exerted its anti-inflammatory function through AMP-activated protein kinase as AMP kinase knockout or inhibition by Compound C offset the PO-dependent prevention of PA-induced inflammation. These results demonstrate a nutritional memory of BMDM ex vivo, highlight the plasticity of BMDM polarization in response to saturated and unsaturated fatty acids, and identify the potential to reverse diet- and saturated fat-induced M1-like polarization by administering palmitoleate. These findings could have applicability to reverse obesity-linked inflammation in metabolically relevant tissues.

  10. Mycobacterium avium subspecies induce differential expression of pro-inflammatory mediators in a murine macrophage model: evidence for enhanced pathogenicity of Mycobacterium avium subspecies paratuberculosis.

    Science.gov (United States)

    Basler, Tina; Geffers, Robert; Weiss, Siegfried; Valentin-Weigand, Peter; Goethe, Ralph

    2008-01-01

    Mycobacterium avium subspecies (ssp.) paratuberculosis (MAP) is the etiological agent of paratuberculosis, a chronic, non-treatable granulomatous enteritis of ruminants. MAP is the only mycobacterium affecting the intestinal tract, which is of interest since it is presently the most favoured pathogen linked to Crohn's disease (CD) in humans due to its frequent detection in CD tissues. MAP is genetically closely related to other M. avium ssp. such as M. avium ssp. avium (MAA) and M. avium ssp. hominissuis (MAH) which can cause mycobacteriosis in animals and immunocompromised humans. We have recently shown that murine macrophage cell lines represent suitable systems to analyse M. avium ssp. patho-mechanisms and could show that MAP, but not MAA, specifically inhibited the antigen-specific stimulatory capacity for CD4(+) T-cells. In the present study, we compared gene expression profiles of murine RAW264.7 macrophages in response to infections with MAP or MAA using murine high-density oligonucleotide Affymetrix microarrays. A comparison of MAP and MAA infection revealed 17 differentially expressed genes. They were expressed at a much lower level in MAP-infected macrophages than in MAA-infected macrophages. Among these were the genes for IL-1beta, IL-1alpha, CXCL2, PTGS2 (COX2), lipocalin (LCN2) and TNF, which are important pro-inflammatory factors. The microarray data were confirmed for selected genes by quantitative real-time reverse transcription PCR and, by protein array analyses and ELISA. Similar to MAA, infection with MAH also showed robust induction of IL-1beta, CXCL2, COX2, LCN2 and TNF. Taken together, our results from M. avium ssp.-infected murine macrophages provide evidence that MAP in contrast to MAA and MAH specifically suppresses the pro-inflammatory defence mechanisms of infected macrophages.

  11. Anti-inflammatory effects of silver-polyvinyl pyrrolidone (Ag-PVP nanoparticles in mouse macrophages infected with live Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    Yilma AN

    2013-07-01

    Full Text Available Abebayehu N Yilma, Shree R Singh, Saurabh Dixit, Vida A DennisCenter for Nanobiotechnology and Life Sciences Research, Alabama State University, Montgomery, AL, USAAbstract: Chlamydia trachomatis is a very common sexually transmissible infection in both developing and developed countries. A hallmark of C. trachomatis infection is the induction of severe inflammatory responses which play critical roles in its pathogenesis. Antibiotics are the only treatment option currently available for controlling C. trachomatis infection; however, they are efficacious only when administered early after an infection. The objectives of this study are to explore alternative strategies in the control and regulation of inflammatory responses triggered by a C. trachomatis infection. We employed silver-polyvinyl pyrrolidone (Ag-PVP nanoparticles, which have been shown to possess anti-inflammatory properties, as our target and the in vitro mouse J774 macrophage model of C. trachomatis infection. Our hypothesis is that small sizes of Ag-PVP nanoparticles will control inflammatory mediators triggered by a C. trachomatis infection. Cytotoxicity studies using Ag-PVP nanoparticles of 10, 20, and 80 nm sizes revealed >80% macrophage viability up to a concentration of 6.25 µg/mL, with the 10 nm size being the least toxic. All sizes of Ag-PVP nanoparticles, especially the 10 nm size, reduced the levels of the prototypic cytokines, tumor necrosis factor (TNF and interleukin (IL-6, as elicited from C. trachomatis infected macrophages. Additionally, Ag-PVP nanoparticles (10 nm selectively inhibited a broad spectrum of other cytokines and chemokines produced by infected macrophages. Of significance, Ag-PVP nanoparticles (10 nm caused perturbations in a variety of upstream (toll like receptor 2 [TLR2], nucleotide-binding oligomerization-protein 2 [NOD2], cluster of differentiation [CD]40, CD80, and CD86 and downstream (IL-1 receptor-associated kinase 3 [IRAK3] and matrix

  12. Anti-inflammatory effects of silver-polyvinyl pyrrolidone (Ag-PVP) nanoparticles in mouse macrophages infected with live Chlamydia trachomatis.

    Science.gov (United States)

    Yilma, Abebayehu N; Singh, Shree R; Dixit, Saurabh; Dennis, Vida A

    2013-01-01

    Chlamydia trachomatis is a very common sexually transmissible infection in both developing and developed countries. A hallmark of C. trachomatis infection is the induction of severe inflammatory responses which play critical roles in its pathogenesis. Antibiotics are the only treatment option currently available for controlling C. trachomatis infection; however, they are efficacious only when administered early after an infection. The objectives of this study are to explore alternative strategies in the control and regulation of inflammatory responses triggered by a C. trachomatis infection. We employed silver-polyvinyl pyrrolidone (Ag-PVP) nanoparticles, which have been shown to possess anti-inflammatory properties, as our target and the in vitro mouse J774 macrophage model of C. trachomatis infection. Our hypothesis is that small sizes of Ag-PVP nanoparticles will control inflammatory mediators triggered by a C. trachomatis infection. Cytotoxicity studies using Ag-PVP nanoparticles of 10, 20, and 80 nm sizes revealed >80% macrophage viability up to a concentration of 6.25 μg/mL, with the 10 nm size being the least toxic. All sizes of Ag-PVP nanoparticles, especially the 10 nm size, reduced the levels of the prototypic cytokines, tumor necrosis factor (TNF) and interleukin (IL)-6, as elicited from C. trachomatis infected macrophages. Additionally, Ag-PVP nanoparticles (10 nm) selectively inhibited a broad spectrum of other cytokines and chemokines produced by infected macrophages. Of significance, Ag-PVP nanoparticles (10 nm) caused perturbations in a variety of upstream (toll like receptor 2 [TLR2], nucleotide-binding oligomerization-protein 2 [NOD2], cluster of differentiation [CD]40, CD80, and CD86) and downstream (IL-1 receptor-associated kinase 3 [IRAK3] and matrix metallopeptidase 9 [MMP9]) inflammatory signaling pathways by downregulating their messenger ribonucleic acid (mRNA) gene transcript expressions as induced by C. trachomatis in macrophages

  13. Macrophages driven to a novel state of activation have anti-inflammatory properties in mice.

    Science.gov (United States)

    Brem-Exner, Beate G; Sattler, Christine; Hutchinson, James A; Koehl, Gudrun E; Kronenberg, Katharina; Farkas, Stefan; Inoue, Seiichiro; Blank, Christian; Knechtle, Stuart J; Schlitt, Hans J; Fändrich, Fred; Geissler, Edward K

    2008-01-01

    Recurrent episodes of inflammation underlie numerous pathologies, notably those of inflammatory bowel diseases. In this study, we describe a population of macrophages in a novel state of activation that mitigates colitis in mice. The cells responsible for this effect, called IFN-gamma-stimulated monocyte-derived cells (IFNgamma-MdC), derive from mouse spleen, blood, and bone marrow monocytes and are distinguished from known macrophage populations by mode of generation, cell surface phenotype, and function. IFNgamma-MdC only arise when macrophages are cultivated in the presence of CD40L-expressing CD4+ T cells, M-CSF, and IFN-gamma. IFNgamma-MdC express markers including F4/80, CD11b/c, CD86, and CD274; they are negative for CD4, CD8, Gr1, CD19, CD80, and CD207. Functionally, IFNgamma-MdC are defined by their capacity to enrich cocultured T cell populations for CD4+CD25+Foxp3+ regulatory cells; this enrichment, constituting up to 60% or more of residual lymphocytes, is attributed to an expansion, but also to a cell contact and caspase-dependent depletion of activated T cells. In mice, IFNgamma-MdC delivered i.v. traffic to gut-associated peripheral lymphoid tissues, including the mesenteric lymph nodes, Peyer's patches, and colonic mucosa, and promote the clinical and histological resolution of chronic colitis. We conclude that IFNgamma-MdC represent macrophages in a novel state of activation, possessing multiple T cell-suppressive effects with therapeutic potential for the treatment of autoimmune inflammation.

  14. SiO2 and TiO2 nanoparticles synergistically trigger macrophage inflammatory responses.

    Science.gov (United States)

    Tsugita, Misato; Morimoto, Nobuyuki; Nakayama, Masafumi

    2017-04-11

    Silicon dioxide (SiO2) nanoparticles (NPs) and titanium dioxide (TiO2) NPs are the most widely used inorganic nanomaterials. Although the individual toxicities of SiO2 and TiO2 NPs have been extensively studied, the combined toxicity of these NPs is much less understood. In this study, we observed unexpected and drastic activation of the caspase-1 inflammasome and production of IL-1β in mouse bone marrow-derived macrophages stimulated simultaneously with SiO2 and TiO2 NPs at concentrations at which these NPs individually do not cause macrophage activation. Consistent with this, marked lung inflammation was observed in mice treated intratracheally with both SiO2 and TiO2 NPs. In macrophages, SiO2 NPs localized in lysosomes and TiO2 NPs did not; while only TiO2 NPs produced ROS, suggesting that these NPs induce distinct cellular damage leading to caspase-1 inflammasome activation. Intriguingly, dynamic light scattering measurements revealed that, although individual SiO2 and TiO2 NPs immediately aggregated to be micrometer size, the mixture of these NPs formed a stable and relatively monodisperse complex with a size of ~250 nm in the presence of divalent cations. Taken together, these results suggest that SiO2 and TiO2 NPs synergistically induce macrophage inflammatory responses and subsequent lung inflammation. Thus, we propose that it is important to assess the synergistic toxicity of various combinations of nanomaterials.

  15. Contribution of inflammatory cytokine release to activation of resident peritoneal macrophages after in vivo low-dose {gamma}-irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ibuki, Yuko; Goto, Rensuke [Shizuoka Univ. (Japan). Graduate School of Nutritional and Environmental Sciences

    1999-09-01

    The activation mechanism of resident peritoneal macrophages by in vivo {gamma}-irradiation was investigated. The function of macrophages as accessory cells in concanavalin A-induced proliferation of spleno-lymphocytes (accessory function) was enhanced 4 h after a low-dose irradiation (4 cGy) in vivo, but not in vitro, indicating that low-dose irradiation acts indirectly on the activation of macrophages. Because we expected that macrophages were activated by the recognition of substances damaged by in vivo irradiation, we co-cultured macrophages with oxidized erythrocyte-ghosts. No change was found in their accessory function. The production of inflammatory cytokines, interleukin-1{beta} (IL-1{beta}) and interferon-{gamma} (IFN-{gamma}), in the supernatant of co-cultures of spleno-lymphocytes and macrophages was determined by an ELISA. Production of both increased in the presence of in vivo irradiated macrophages. Furthermore, IL-1{beta} production from in vivo-irradiated macrophages treated with recombinant IFN-{gamma} also was enhanced. The mRNA expression of the cytokines released from macrophages and lymphocytes was determined by RT-PCR. Increased IL-1{beta}mRNA expression were found in both in vivo- and in vitro-irradiated macrophages. In vivo irradiation also enhanced the expression of IFN-{gamma}mRNA in lymphocytes, whereas there was no change after in vitro irradiation. On the basis of these observations, we propose that the activation of macrophages is caused by interaction with neighboring cells, such as lymphocytes, and by paracrine induction of certain cytokines which is initiated by the small amount of IL-1{beta} released by irradiated macrophages. (author)

  16. Paraoxonase 2 Induces a Phenotypic Switch in Macrophage Polarization Favoring an M2 Anti-Inflammatory State

    Directory of Open Access Journals (Sweden)

    Marie Koren-Gluzer

    2015-01-01

    Full Text Available Inflammatory processes are involved in atherosclerosis development. Macrophages play a major role in the early atherogenesis, and they are present in the atherosclerotic lesion in two phenotypes: proinflammatory (M1 or anti-inflammatory (M2. Paraoxonase 2 (PON2 is expressed in macrophages, and it was shown to protect against atherosclerosis. Thus, the aim of our study was to analyze the direct effect of PON2 on macrophage inflammatory phenotypes. Ex vivo studies were performed with murine peritoneal macrophages (MPM harvested from control C57BL/6 and PON2-deficient (PON2KO mice. PON2KO MPM showed an enhanced proinflammatory phenotype compared to the control, both in the basal state and following M1 activation by IFNγ and lipopolysaccharide (LPS. In parallel, PON2KO MPM also showed reduced anti-inflammatory responses in the basal state and also following M2 activation by IL-4. Moreover, the PON2-null MPM demonstrated enhanced phagocytosis and reactive oxygen species (ROS production in the basal state and following M1 activation. The direct effect of PON2 was shown by transfecting human PON2 (hPON2 into PON2KO MPM. PON2 transfection attenuated the macrophages’ response to M1 activation and enhanced M2 response. These PON2 effects were associated with attenuation of macrophages’ abilities to phagocyte and to generate ROS. We conclude that PON2 promotes an M1 to M2 switch in macrophage phenotypes.

  17. Tat-CBR1 inhibits inflammatory responses through the suppressions of NF-κB and MAPK activation in macrophages and TPA-induced ear edema in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Nam [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Kim, Dae Won [Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Kangneung 210-702 (Korea, Republic of); Jo, Hyo Sang; Shin, Min Jea; Ahn, Eun Hee; Ryu, Eun Ji; Yong, Ji In; Cha, Hyun Ju; Kim, Sang Jin; Yeo, Hyeon Ji; Youn, Jong Kyu; Hwang, Jae Hyeok [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Jeong, Ji-Heon; Kim, Duk-Soo [Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan-Si 330-090 (Korea, Republic of); Cho, Sung-Woo [Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Park, Jinseu [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Eum, Won Sik, E-mail: wseum@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of); Choi, Soo Young, E-mail: sychoi@hallym.ac.kr [Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chunchon 200-702 (Korea, Republic of)

    2015-07-15

    Human carbonyl reductase 1 (CBR1) plays a crucial role in cell survival and protects against oxidative stress response. However, its anti-inflammatory effects are not yet clearly understood. In this study, we examined whether CBR1 protects against inflammatory responses in macrophages and mice using a Tat-CBR1 protein which is able to penetrate into cells. The results revealed that purified Tat-CBR1 protein efficiently transduced into Raw 264.7 cells and inhibited lipopolysaccharide (LPS)-induced cyclooxygenase-2 (COX-2), nitric oxide (NO) and prostaglandin E{sub 2} (PGE{sub 2}) expression levels. In addition, Tat-CBR1 protein leads to decreased pro-inflammatory cytokine expression through suppression of nuclear transcription factor-kappaB (NF-κB) and mitogen activated protein kinase (MAPK) activation. Furthermore, Tat-CBR1 protein inhibited inflammatory responses in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced skin inflammation when applied topically. These findings indicate that Tat-CBR1 protein has anti-inflammatory properties in vitro and in vivo through inhibition of NF-κB and MAPK activation, suggesting that Tat-CBR1 protein may have potential as a therapeutic agent against inflammatory diseases. - Highlights: • Transduced Tat-CBR1 reduces LPS-induced inflammatory mediators and cytokines. • Tat-CBR1 inhibits MAPK and NF-κB activation. • Tat-CBR1 ameliorates inflammation response in vitro and in vivo. • Tat-CBR1 may be useful as potential therapeutic agent for inflammation.

  18. Anti-inflammatory Effects of Nortrachelogenin in Murine J774 Macrophages and in Carrageenan-Induced Paw Edema Model in the Mouse.

    Science.gov (United States)

    Laavola, Mirka; Leppänen, Tiina; Eräsalo, Heikki; Hämäläinen, Mari; Nieminen, Riina; Moilanen, Eeva

    2017-04-01

    Nortrachelogenin is a pharmacologically active lignan found in knot extracts of Pinus sylvestris. In previous studies, some lignans have been shown to have anti-inflammatory properties, which made nortrachelogenin an interesting candidate for our study. In inflammation, bacterial products and cytokines induce the expression of inducible nitric oxide synthase, cyclooxygenase-2, and microsomal prostaglandin E synthase-1. These enzymes synthesize factors, which, together with proinflammatory cytokines, are important mediators and drug targets in inflammatory diseases.The effects of nortrachelogenin on the expression of inducible nitric oxide synthase, cyclooxygenase-2, and microsomal prostaglandin E synthase-1 as well as on the production of nitric oxide, prostaglandin E2, and cytokines interleukin-6 and monocyte chemotactic protein-1 were investigated in the murine J774 macrophage cell line. In addition, we examined the effect of nortrachelogenin on carrageenan-induced paw inflammation in mice.Interestingly, nortrachelogenin reduced carrageenan-induced paw inflammation in mice and inhibited the production of inflammatory factors nitric oxide, prostaglandin E2, interleukin-6, and monocyte chemotactic protein-1 in J774 macrophages in vitro. Nortrachelogenin inhibited microsomal prostaglandin E synthase-1 protein expression but had no effect on cyclooxygenase-2 protein levels. Nortrachelogenin also had a clear inhibitory effect on inducible nitric oxide synthase protein expression but none on its mRNA levels, and the proteasome inhibitor lactacystin reversed the effect of nortrachelogenin on inducible nitric oxide synthase expression, suggesting a post-transcriptional mechanism of action.The results revealed hitherto unknown anti-inflammatory properties of nortrachelogenin, which could be utilized in the development of anti-inflammatory treatments. Georg Thieme Verlag KG Stuttgart · New York.

  19. Citral and eugenol modulate DNA damage and pro-inflammatory mediator genes in murine peritoneal macrophages.

    Science.gov (United States)

    Porto, Marilia de Paula; da Silva, Glenda Nicioli; Luperini, Bruno Cesar Ottoboni; Bachiega, Tatiana Fernanda; de Castro Marcondes, João Paulo; Sforcin, José Maurício; Salvadori, Daisy Maria Fávero

    2014-11-01

    Citral and eugenol have been broadly studied because of their anti-inflammatory, antioxidant and antiparasitic potentials. In this study, the effects of citral (25, 50 and 100 µg/mL) and eugenol (0.31, 0.62, 1.24 and 2.48 µg/mL) on the expression (RT-PCR) of the pro-inflammatory mediator genes NF-κB1, COX-2 and TNF-α were evaluated in mouse peritoneal macrophages with or without activation by a bacterial lipopolysaccharide (LPS). Additionally, the genotoxic potentials of two compounds and their capacities to modulate the DNA damage induced by doxorubicin (DXR) were investigated using the comet assay. The data revealed that neither citral nor eugenol changed COX-2, NF-κB1 or TNF-α expression in resting macrophages. However, in LPS-activated cells, citral induced the hypoexpression of COX-2 (100 µg/mL) and TNF-α (50 and 100 µg/mL). Hypoexpression of TNF-α was also detected after cellular exposure to eugenol at the highest concentration (2.48 µg/mL). Both compounds exhibited genotoxic potential (citral at 50 and 100 µg/mL and eugenol at all concentrations) but also showed chemopreventive effects, in various treatment protocols. Both citral and eugenol might modulate inflammatory processes and DXR-induced DNA damage, but the use of these compounds must be viewed with caution because they are also able to induce primary DNA lesions.

  20. DMPD: G-protein-coupled receptor expression, function, and signaling in macrophages. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17456803 G-protein-coupled receptor expression, function, and signaling in macropha...2007 Apr 24. (.png) (.svg) (.html) (.csml) Show G-protein-coupled receptor expression, function, and signali...ng in macrophages. PubmedID 17456803 Title G-protein-coupled receptor expression,

  1. Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate.

    Science.gov (United States)

    Boscá, Lisardo; Zeini, Miriam; Través, Paqui G; Hortelano, Sonsoles

    2005-03-15

    Macrophages participate actively in the inflammatory response by releasing cytokines, chemokines and factors that recruit additional cells to sites of infection or tissue injury or alteration. In addition to this, activated macrophages rapidly activate the expression of genes responsible for the high-output synthesis of reactive oxygen and nitrogen species (NO, O2-, H2O2 and peroxynitrite, among others) and bioactive lipids derived from arachidonic acid. All of these agents contribute to the regulation of the inflammatory response. Most of these molecules, when synthesized at these high concentrations, exert pro-apoptotic effects in many cell types. Macrophages themselves are a notable and important exception, being resistant to apoptotic death upon activation. This resistance is necessary to enable these cells to perform their functional role during the early phases of an inflammatory response. However, after cumulative damage, or when the synthesis of inflammatory mediators decreases, macrophages undergo the characteristic mitochondrial-dependent cell death program, contributing in this way to the resolution of the inflammatory reaction. In the case of infectious diseases, this also helps to prevent the development of parasitic strategies by phagocytosed pathogens.

  2. IL-35 Decelerates the Inflammatory Process by Regulating Inflammatory Cytokine Secretion and M1/M2 Macrophage Ratio in Psoriasis.

    Science.gov (United States)

    Zhang, Junfeng; Lin, Yi; Li, Chunlei; Zhang, Xiaomei; Cheng, Lin; Dai, Lei; Wang, Youcui; Wang, Fangfang; Shi, Gang; Li, Yiming; Yang, Qianmei; Cui, Xueliang; Liu, Yi; Wang, Huiling; Zhang, Shuang; Yang, Yang; Xiang, Rong; Li, Jiong; Yu, Dechao; Wei, Yuquan; Deng, Hongxin

    2016-09-15

    IL-35 downregulates Th17 cell development and suppresses certain types of autoimmune inflammation such as collagen-induced arthritis and experimental autoimmune uveitis. Psoriasis is thought to be initiated by abnormal interactions between cutaneous keratinocytes and systemic immune cells. However, the role of IL-35 in psoriasis remains unclear. In this study, we assessed IL-35 in three well-known psoriasis models: a human keratinocyte cell line (HaCaT), a keratin 14 (K14)-vascular endothelial growth factor A (VEGF-A)-transgenic (Tg) mouse model, and an imiquimod-induced psoriasis mouse model. First, we found that IL-35 suppressed the expression of IL-6, CXCL8, and S100A7, which are highly upregulated by a mixture of five proinflammatory cytokines in HaCaT. Second, a plasmid coding for the human IL-35 sequence coated with cationic liposomes showed potent immunosuppressive effects on K14-VEGF-A-Tg and imiquimod-induced psoriasis mouse models. In the K14-VEGF-A-Tg model, our results showed that several types of proinflammatory cytokines were significantly reduced, whereas IL-10 was remarkably induced by IL-35. Compared with pcDNA3.1, there was a small number of CD4(+)IL-17(+) T cells and a large number of CD4(+)IL-10(+) and CD4(+)CD25(+)Foxp3(+) T cells in the IL-35 group. Most importantly, we found that IL-35 decreased the total number of macrophages and ratio of M1/M2 macrophages, which has not been reported previously. In addition, compared with dexamethasone, IL-35 showed long-term therapeutic efficacy. In summary, our results strongly indicate that IL-35 plays a potent immunosuppressive role in psoriasis. Thus, IL-35 has potential for development as a new therapeutic strategy for patients with chronic psoriasis and other cutaneous inflammatory diseases.

  3. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    Science.gov (United States)

    Pomari, Elena; Stefanon, Bruno; Colitti, Monica

    2014-01-01

    Background Arctium lappa (AL), Camellia sinensis (CS), Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG), and Vaccinium myrtillus (VM) are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (m)RNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results A noncytotoxic dose (200 μM) of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001) regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in vitro and in vivo investigation into molecular mechanisms modulated by herbal extracts should be undertaken to shed light on the development of novel

  4. Effect of plant extracts on H2O2-induced inflammatory gene expression in macrophages

    Directory of Open Access Journals (Sweden)

    Pomari E

    2014-06-01

    Full Text Available Elena Pomari, Bruno Stefanon, Monica Colitti Department of Agricultural and Environmental Sciences, University of Udine, Udine, Italy Background: Arctium lappa (AL, Camellia sinensis (CS, Echinacea angustifolia, Eleutherococcus senticosus, Panax ginseng (PG, and Vaccinium myrtillus (VM are plants traditionally used in many herbal formulations for the treatment of various conditions. Although they are well known and already studied for their anti-inflammatory properties, their effects on H2O2-stimulated macrophages are a novel area of study. Materials and methods: Cell viability was tested after treatment with increasing doses of H2O2 and/or plant extracts at different times of incubation to identify the optimal experimental conditions. The messenger (mRNA expression of TNFα, COX2, IL1β, NFκB1, NFκB2, NOS2, NFE2L2, and PPARγ was analyzed in macrophages under H2O2 stimulation. The same genes were also quantified after plant extract treatment on cells pre-stimulated with H2O2. Results: A noncytotoxic dose (200 µM of H2O2 induced active mRNA expression of COX2, IL1β, NFE2L2, NFκB1, NFκB2, NOS2, and TNFα, while PPARγ was depressed. The expression of all genes tested was significantly (P<0.001 regulated by plant extracts after pre-stimulation with H2O2. COX2 was downregulated by AL, PG, and VM. All extracts depressed IL1β expression, but upregulated NFE2L2. NFκB1, NFκB2, and TNFα were downregulated by AL, CS, PG, and VM. NOS2 was inhibited by CS, PG, and VM. PPARγ was decreased only after treatment with E. angustifolia and E. senticosus. Conclusion: The results of the present study indicate that the stimulation of H2O2 on RAW267.4 cells induced the transcription of proinflammatory mediators, showing that this could be an applicable system by which to activate macrophages. Plant extracts from AL, CS, PG, and VM possess in vitro anti-inflammatory activity on H2O2-stimulated macrophages by modulating key inflammation mediators. Further in

  5. The anti-inflammatory effects of PGE2 on human lung macrophages are mediated by the EP4 receptor.

    Science.gov (United States)

    Gill, Sharonjit K; Yao, Yiwen; Kay, Linda J; Bewley, Martin A; Marriott, Helen M; Peachell, Peter T

    2016-11-01

    PGE2 inhibits cytokine generation from human lung macrophages. However, the EP receptor that mediates this beneficial anti-inflammatory effect of PGE2 has not been defined. The aim of this study was to identify the EP receptor by which PGE2 inhibits cytokine generation from human lung macrophages. This was determined by using recently developed EP receptor ligands. The effects of PGE2 and EP-selective agonists on LPS-induced generation of TNF-α and IL-6 from macrophages were evaluated. The effects of EP2 -selective (PF-04852946, PF-04418948) and EP4 -selective (L-161,982, CJ-042794) receptor antagonists on PGE2 responses were studied. The expression of EP receptor subtypes by human lung macrophages was determined by RT-PCR. PGE2 inhibited LPS-induced and Streptococcus pneumoniae-induced cytokine generation from human lung macrophages. Analysis of mRNA levels indicated that macrophages expressed EP2 and EP4 receptors. L-902,688 (EP4 receptor-selective agonist) was considerably more potent than butaprost (EP2 receptor-selective agonist) as an inhibitor of TNF-α generation from macrophages. EP2 receptor-selective antagonists had marginal effects on the PGE2 inhibition of TNF-α generation, whereas EP4 receptor-selective antagonists caused rightward shifts in the PGE2 concentration-response curves. These studies demonstrate that the EP4 receptor is the principal receptor that mediates the anti-inflammatory effects of PGE2 on human lung macrophages. This suggests that EP4 receptor agonists could be effective anti-inflammatory agents in human lung disease. © 2016 The British Pharmacological Society.

  6. Anti-inflammatory potential of peat moss extracts in lipopolysaccharide-stimulated RAW 264.7 macrophages.

    Science.gov (United States)

    Choi, Woo-Suk; Jeong, Jin-Woo; Kim, Sung Ok; Kim, Gi-Young; Kim, Byung-Woo; Kim, Cheol Min; Seo, Yong-Bae; Kim, Woe-Yeon; Lee, Sang-Yeol; Jo, Kwon-Ho; Choi, Young Ju; Choi, Yung Hyun; Kim, Gun-Do

    2014-10-01

    The aim of the present study was to identify the anti-inflammatory and anti-oxidative effects of peat moss aqueous extract (PME) on lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. To demonstrate the anti-inflammatory and antioxidant effects of PME, the levels of nitric oxide (NO) and cytokines were measured using Griess reagent and cytokine ELISA kits, respectively. Reverse transcriptase-polymerase chain reaction (RT-PCR) and western blot analysis were conducted to evaluate the expression of genes and proteins. Immunofluorescence was used to measure the expression and translocation of transcription factors. Pre-treatment with PME inhibited the production of prostaglandin E(2) and NO by suppressing the gene expression of cyclooxygenase-2 and inducible NO synthase, respectively. The LPS-stimulated gene expression and the production of tumor necrosis factor-α and interleukin-1β were significantly reduced by PME. In the LPS-stimulated RAW 264.7 cells, nuclear factor‑κB (NF-κB) translocated from the cytosol to the nucleus, while pre-treatment with PME induced the sequestration of NF-κB in the cytosol through the inhibition of IκBα degradation. In the same manner, PME contributed to the inhibition of the activation of mitogen-activated protein kinases. In addition, the PME-treated RAW 264.7 cells facilitated the activation of nuclear factor-like 2 (Nrf2) , and in turn, enhanced heme oxygenase-1 (HO-1) expression. These results indicate that PME exerts anti-inflammatory and antioxidant effects, and suggest that PME may neutralize inflammation and prevent cellular damage by oxidative stress.

  7. Anti-inflammatory effect of Ruta graveolens L. in murine macrophage cells.

    Science.gov (United States)

    Raghav, S K; Gupta, B; Agrawal, C; Goswami, K; Das, H R

    2006-03-01

    Ruta graveolens L. (Rutaceae) is used for several therapeutic purposes worldwide. The present study is designed to investigate the effect of plant extract of Ruta graveolens on murine macrophage cells (J-774) challenged with lipopolysaccharide (LPS). LPS induces inflammatory response by stimulating the production of nitric oxide and other mediators. Significant inhibition (p=0.01 to p<0.002) of the LPS-induced nitric oxide production was observed in cells treated with plant extract in a concentration dependent manner. The inhibition observed for the extract was significantly higher than that observed for rutin, a flavonoid constituent of the plant. At 40 microM rutin, a comparable concentration of this flavonoid in the highest concentration (500 microg/ml) of plant extract was used in this study; a 20% inhibition (p=0.058) was observed. Inhibition in inducible nitric oxide synthase (inos) gene expression in the cells treated with the plant extract suggests an inhibition at the transcription level. Interestingly, a concomitant decrease in transcription of cyclooxygenase-2 (COX-2) gene has also been observed in cells treated with the plant extract and this inhibition is significantly higher than that observed with the highest concentration of rutin (80 microM) used in the study. As an inflammatory response, upregulation of nitric oxide synthase (iNOS) and COX-2 enzymes leads to production of pro-inflammatory mediators, namely nitric oxide and prostaglandins, respectively. Hence, the significant inhibitory effects on both of these inflammatory mediators unravel a novel anti-inflammatory action of this plant.

  8. Fisetin Suppresses Macrophage-Mediated Inflammatory Responses by Blockade of Src and Syk.

    Science.gov (United States)

    Kim, Jun Ho; Kim, Mi-Yeon; Kim, Jong-Hoon; Cho, Jae Youl

    2015-09-01

    Flavonoids, such as fisetin (3,7,3',4'-tetrahydroxyflavone), are plant secondary metabolites. It has been reported that fisetin is able to perform numerous pharmacological roles including anti-inflammatory, anti-microbial, and anti-cancer activities; however, the exact anti-inflammatory mechanism of fisetin is not understood. In this study, the pharmacological action modes of fisetin in lipopolysaccharide (LPS)-stimulated macrophage-like cells were elucidated by using immunoblotting analysis, kinase assays, and an overexpression strategy. Fisetin diminished the release of nitric oxide (NO) and reduced the mRNA levels of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-α, and cyclooxygenase (COX)-2 in LPS-stimulated RAW264.7 cells without displaying cytotoxicity. This compound also blocked the nuclear translocation of p65/nuclear factor (NF)-κB. In agreement, the upstream phosphorylation events for NF-κB activation, composed of Src, Syk, and IκBα, were also reduced by fisetin. The phospho-Src level, triggered by overexpression of wild-type Src, was also inhibited by fisetin. Therefore, these results strongly suggest that fisetin can be considered a bioactive immunomodulatory compound with anti-inflammatory properties through suppression of Src and Syk activities.

  9. Using recombinant CD74 protein to inhibit the activity of macrophage migration inhibitory factor (MIF) in vitro

    Institute of Scientific and Technical Information of China (English)

    Zhi-xinSHAN; Xi-yongYU; Qiu-xiongLIN; Yong-hengFU

    2005-01-01

    AIM Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine involved in the pathogenesis of a variety of autoimmune and inflammatory diseases, including arthritis, glomerulonephritis, Gram-positive and Gram-negative sepsis, and atherogenesis. Recent studies showed that CD74(antigen-associated invariant chain Ⅱ) is a high-affinity membrane-binding protein for MIF. The purpose of the present study was to express the recombinant human CD74 in E. coli and inhibit the activity of MIF by using recombinant CD74 in vitro.

  10. The pattern of immune cell infiltration in chromoblastomycosis: involvement of macrophage inflammatory protein-1 alpha/CCL3 and fungi persistence Padrão de infiltração de células do sistema imune na cromomicose: envolvimento de MIP-1 alfa da persistência fúngica

    Directory of Open Access Journals (Sweden)

    Vanuza Cristina Sá

    2007-02-01

    Full Text Available Chromoblastomycosis (CR is a subcutaneous chronic mycosis characterized by a granulomatous inflammatory response. However, little is known regarding the pattern of leukocyte subsets in CR and the pathways involved in their recruitment. The objective of this study was to assess the cellular subsets, chemokine, chemokine receptors and enzymes in CR. The inflammatory infiltrate was characterized by immunohistochemistry using antibodies against macrophages (CD68, Langerhans'cells (S100, lymphocytes (CD3, CD4, CD8, CD45RO, CD20 and CD56 and neutrophils (CD15. The expression of MIP-1alpha (Macrophage inflammatory protein-1alpha, chemokine receptors (CXCR3 and CCR1 and enzymes (superoxide dismutase-SOD and nitric oxide synthase-iNOS was also evaluated by the same method. We observed an increase in all populations evaluated when compared with the controls. Numbers of CD15+ and CD56+ were significantly lower than CD3+, CD4+, CD20+ and CD68+ cells. Statistical analysis revealed an association of fungi numbers with CD3, CD45RO and iNOS-positive cells. Furthermore, MIP-1alpha expression was associated with CD45RO, CD68, iNOS and CXCR3. Our results suggest a possible role of MIP-1alpha and fungi persistence in the cell infiltration in CR sites.A cromomicose é micose subcutânea crônica sistêmica caracterizada por resposta inflamatória crônica granulomatosa. No entanto, existem poucos dados a respeito do padrão de subtipos de leucócitos na cromomicose e sobre as vias envolvidas no recrutamento destas células. O objetivo deste trabalho foi avaliar os tipos celulares, bem como a expressão de quimiocinas, receptores de quimiocinas e enzimas em lesões de cromomicose. O infiltrado inflamatório foi caracterizado por meio de técnica imuno-histoquímica utilizando os seguintes marcadores CD68 (macrófagos, S100 (células de Langerhans, CD3, CD4, CD8, CD45RO, CD20 e CD56 (linfócitos e CD15 (neutrófilos. A expressão de MIP-1alfa (Proteína Inflamat

  11. Downregulation of pro-inflammatory mediators by a water extract of Schisandra chinensis (Turcz.) Baill fruit in lipopolysaccharide-stimulated RAW 264.7 macrophage cells.

    Science.gov (United States)

    Dilshara, Matharage Gayani; Jayasooriya, Rajapaksha Gedara Prasad Tharanga; Kang, Chang-Hee; Lee, Seungheon; Park, Sang Rul; Jeong, Jin-Woo; Choi, Yung Hyun; Seo, Yong Taek; Jang, Young Pyo; Kim, Gi-Young

    2013-09-01

    Schisandra chinensis has a long-standing history of medicinal use as a tonic, a sedative, an anti-tussive, and an anti-aging drug. Nevertheless, the antagonistic effects of S. chinensis against lipopolysaccharide (LPS)-stimulated responses have not yet been studied. In this study, we investigated whether water extract of S. chinensis fruit (WESC) has the ability to attenuate the expression of pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), and tumor necrosis factor-α (TNF-α) in LPS-stimulated RAW 264.7 macrophage cells. WESC inhibited the expression of LPS-induced pro-inflammatory mediators, namely, NO, PGE2, and TNF-α. Furthermore, gene expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), and TNF-α was inhibited both at mRNA and protein synthesis levels, without any cytotoxic effect. Moreover, WESC significantly suppressed LPS-induced DNA-binding activity of NF-κB by inhibiting degradation of IκBα. It was found that pyrrolidine dithiocarbamate (PDTC), a specific NF-κB inhibitor, downregulates the expression of these pro-inflammatory genes to be closely regulated by NF-κB activity. Furthermore, we found that WESC retains dephosphorylation of Akt in response to LPS, and consequently suppressed the DNA-binding activity of NF-κB in RAW 264.7 macrophage cells. LY294002, a specific Akt inhibitor, attenuated LPS-induced pro-inflammatory gene expression via suppression of NF-κB activity. Taken together, our results indicate that WESC downregulates the expression of pro-inflammatory genes involved in the synthesis of NO, PGE2, and TNF-α in LPS-stimulated RAW 264.7 macrophage cells by suppressing Akt-dependent NF-κB activity.

  12. Metabolite profiles of Stachybotrys isolates from water-damaged buildings and their induction of inflammatory mediators and cytotoxicity in macrophages

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Huttunen, K.; Hyvarinen, A.

    2002-01-01

    The metabolite profiles of 20 Stachybotrys spp. isolates from Finnish water-damaged buildings were compared with their biological activities. Effects of purified compounds on cytotoxicity and production of inflammatory mediators such as nitric oxide, IL-6 and TNFalpha in murine RAW264.7 macrophage......, cytotoxicity of Stachybotrys sp. isolates appear to be related to satratoxin production whereas the specific component inducing inflammatory responses in atranone-producing isolates remains obscure....

  13. PICK1 confers anti-inflammatory effects in acute liver injury via suppressing M1 macrophage polarization.

    Science.gov (United States)

    Xie, Juan; Wu, Xiaoqin; Zhou, Qun; Yang, Yang; Tian, Yuanyao; Huang, Cheng; Meng, Xiaoming; Li, Jun

    2016-08-01

    Protein interacting with C kinase 1 (PICK1) is a scaffolding protein mainly implicated in neurological diseases, however, the function of PICK1 in acute liver injury (ALI) remains unknown. Our study found a dramatical decrease in mRNA and protein levels of PICK1 in liver tissues and isolated Kupffer cells (KCs) from the liver in mice with ALI. Furthermore, pretreatment the mice with ALI with FSC-231, a pharmacological inhibitor of PICK1, could significantly augment inflammatory response. Furthermore, in vitro studies showed that both lipopolysaccharide (LPS) and interferon gamma (IFN-γ) significantly reduced the expression of PICK1, while IL-4 elevated its expression in RAW 264.7 cells. Additionally, over-expression of PICK1 inhibited the expression of M1 biomarkers by suppressing NF-κB activity, and enhanced the expression of M2 biomarkers by promoting STAT6 activity. In contrast, knockdown of PICK1 or FSC-231 pretreatment promoted M1 polarization and suppressed M2 polarization. Besides, caveolin-1 was identified as a potential target gene controlled by PICK1 in RAW 264.7 cells. Mechanistic investigation revealed a dual role of PICK1 in regulating macrophage polarization and implied PICK1 as a potential therapeutic target in ALI.

  14. Intracellular NAD+ levels are associated with LPS-induced TNF-α release in pro-inflammatory macrophages.

    Science.gov (United States)

    Al-Shabany, Abbas Jawad; Moody, Alan John; Foey, Andrew David; Billington, Richard Andrew

    2016-01-13

    Metabolism and immune responses have been shown to be closely linked and as our understanding increases, so do the intricacies of the level of linkage. NAD(+) has previously been shown to regulate tumour necrosis factor-α (TNF-α) synthesis and TNF-α has been shown to regulate NAD(+) homoeostasis providing a link between a pro-inflammatory response and redox status. In the present study, we have used THP-1 differentiation into pro- (M1-like) and anti- (M2-like) inflammatory macrophage subset models to investigate this link further. Pro- and anti-inflammatory macrophages showed different resting NAD(+) levels and expression levels of NAD(+) homoeostasis enzymes. Challenge with bacterial lipopolysaccharide, a pro-inflammatory stimulus for macrophages, caused a large, biphasic and transient increase in NAD(+) levels in pro- but not anti-inflammatory macrophages that were correlated with TNF-α release and inhibition of certain NAD(+) synthesis pathways blocked TNF-α release. Lipopolysaccharide stimulation also caused changes in mRNA levels of some NAD(+) homoeostasis enzymes in M1-like cells. Surprisingly, despite M2-like cells not releasing TNF-α or changing NAD(+) levels in response to lipopolysaccharide, they showed similar mRNA changes compared with M1-like cells. These data further strengthen the link between pro-inflammatory responses in macrophages and NAD(+). The agonist-induced rise in NAD(+) shows striking parallels to well-known second messengers and raises the possibility that NAD(+) is acting in a similar manner in this model.

  15. Cherubism mice also deficient in c-Fos exhibit inflammatory bone destruction executed by macrophages that express MMP14 despite the absence of TRAP+ osteoclasts.

    Science.gov (United States)

    Kittaka, Mizuho; Mayahara, Kotoe; Mukai, Tomoyuki; Yoshimoto, Tetsuya; Yoshitaka, Teruhito; Gorski, Jeffrey P; Ueki, Yasuyoshi

    2017-09-15

    Currently, it is believed that osteoclasts positive for tartrate-resistant acid phosphatase (TRAP +) are the exclusive bone-resorbing cells responsible for focal bone destruction in inflammatory arthritis. Recently, a mouse model of cherubism (Sh3bp2(KI/KI) ) with a homozygous gain-of-function mutation in the SH3-domain binding protein 2 (SH3BP2) was shown to develop auto-inflammatory joint destruction. Here, we demonstrate that Sh3bp2(KI/KI) mice also deficient in the FBJ osteosarcoma oncogene (c-Fos) still exhibit noticeable bone erosion at the distal tibia even in the absence of osteoclasts at 12 weeks old. Levels of serum ICTP, a marker of bone resorption generated by matrix metalloproteinases (MMPs), were elevated, while levels of serum CTX, another resorption marker produced by cathepsin K, were not increased. Collagenolytic MMP levels were increased in the inflamed joints of the Sh3bp2(KI/KI) mice deficient in c-Fos. Resorption pits contained a large number of F4/80+ macrophages and genetic depletion of macrophages rescued these erosive changes. Importantly, administration of NSC405020, an MMP14 inhibitor targeted to the hemopexin (PEX) domain, suppressed bone erosion in c-Fos-deficient Sh3bp2(KI/KI) mice. After activation of the NF-κB pathway, M-CSF-dependent macrophages from c-Fos-deficient Sh3bp2(KI/KI) mice expressed increased amounts of MMP14 compared to wild-type macrophages. Interestingly, RANKL-deficient Sh3bp2(KI/KI) mice failed to show notable bone erosion, while c-Fos deletion did restore bone erosion to the RANKL-deficient Sh3bp2(KI/KI) mice, suggesting that osteolytic transformation of macrophages requires both loss-of-function of c-Fos and gain-of-function of SH3BP2 in this model. These data provide the first genetic evidence that cells other than osteoclasts can cause focal bone destruction in inflammatory bone disease and suggest that MMP14 is a key mediator conferring pathological bone-resorbing capacity on c-Fos-deficient Sh3bp2(KI

  16. Friedelane-type triterpenoids as selective anti-inflammatory agents by regulation of differential signaling pathways in LPS-stimulated macrophages.

    Science.gov (United States)

    Villar-Lorenzo, Andrea; Ardiles, Alejandro E; Arroba, Ana I; Hernández-Jiménez, Enrique; Pardo, Virginia; López-Collazo, Eduardo; Jiménez, Ignacio A; Bazzocchi, Isabel L; González-Rodríguez, Águeda; Valverde, Ángela M

    2016-12-15

    A series of 31 pentacyclic triterpenoids isolated from the root barks of Celastrus vulcanicola and Maytenus jelskii were tested for cytotoxicity and inhibitory activity against lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW 264.7 macrophages. Compounds 18 (C18) and 25 (C25) exhibited significant inhibition of LPS-induced NO release at 50 and 25μM concentrations, respectively, and decreased mRNAs of pro-inflammatory cytokines. At the molecular level, C18 neither inhibited LPS-mediated phosphorylation of mitogen activated protein kinases (MAPKs) nor nuclear translocation of nuclear factor kappa beta (NFκB). Instead, C18 enhanced and prolonged nuclear translocation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and increased the expression of its target genes including hemeoxigenase 1 (HO1). C25 efficiently inhibited LPS-mediated phosphorylation of JNK, p38 and ERK, without affecting NFκB or Nrf2 signaling pathways. Both compounds reduced LPS-mediated processing of caspase-1 and the cleavage of interleukin 1β (IL1β) proform, reflecting their ability to target the inflammasome. C25 also counteracted LPS effects on iNOS expression and pro-inflammatory cytokines mRNA levels in Bv-2 microglial cells. The anti-inflammatory effect of both compounds was also assessed in human macrophages. Our results suggest that triterpenoids C18 and C25 possess anti-inflammatory effects, which may be therapeutically relevant for diseases linked to inflammation.

  17. Traditional Herbal Formula Banhasasim-tang Exerts Anti-Inflammatory Effects in RAW 264.7 Macrophages and HaCaT Keratinocytes

    Directory of Open Access Journals (Sweden)

    Seong Eun Jin

    2015-01-01

    Full Text Available Banhasasim-tang (BHSST is a Korean traditional herbal formula comprising eight medicinal herbs. The aim of the present study was to investigate the anti-inflammatory effect of BHSST using macrophage and keratinocyte cell lines. First, we evaluated the effects of BHSST on inflammatory mediator and cytokine production in lipopolysaccharide- (LPS- stimulated RAW 264.7 macrophages. BHSST markedly inhibited the production of nitric oxide (NO, prostaglandin E2 (PGE2, and interleukin- (IL- 6. BHSST significantly suppressed the protein expression of toll-like receptor 4 (TLR4 and phosphorylated nuclear factor-kappa B (NF-κB p65 in RAW 264.7 cells. Second, we examined whether BHSST influences the production of chemokines and STAT1 phosphorylation in tumor necrosis factor-α/interferon-γ TI-stimulated HaCaT keratinocytes. BHSST significantly suppressed the production of RANTES/CCL5, TARC/CCL17, MDC/CCL22, and IL-8 in TI-stimulated HaCaT cells. BHSST also suppressed TI-induced phosphorylation of STAT1 in HaCaT cells. These results suggest that BHSST may be useful as an anti-inflammatory agent, especially for inflammatory skin diseases.

  18. Monocyte / macrophage inflammatory response pathways to combat Francisella infection: possible therapeutic targets?

    Directory of Open Access Journals (Sweden)

    Devyn D Gillette

    2014-02-01

    Full Text Available Francisella tularensis can bypass and suppress host immune responses, even to the point of manipulating immune cell phenotypes and intercellular inflammatory networks. Strengthening these responses such that immune cells more readily identify and destroy the bacteria is likely to become a viable (and perhaps necessary strategy for combating infections with Francisella, especially given the likelihood of antibiotic resistance in the foreseeable future. Monocytes and macrophages offer a niche wherein Francisella can invade and replicate, resulting in substantially higher bacterial load that can overcome the host. As such, understanding their responses to Francisella may uncover potential avenues of therapy that could promote a lowering of bacterial burden and clearance of infection. These response pathways include Toll-like Receptor 2 (TLR2, the caspase-1 inflammasome, Interferons, NADPH oxidase, Phosphatidylinositide 3-kinase (PI3K and the Ras pathway. In this review we summarize the literature pertaining to the roles of these pathways during Francisella infection, with an emphasis on monocyte / macrophage responses. The therapeutic targeting of one or more such pathways may ultimately become a valuable tool for the treatment of tularemia, and several possibilities are discussed.

  19. 17-AAG Kills Intracellular Leishmania amazonensis while Reducing Inflammatory Responses in Infected Macrophages

    Science.gov (United States)

    Petersen, Antonio Luis de Oliveira Almeida; Guedes, Carlos Eduardo Sampaio; Versoza, Carolina Leite; Lima, José Geraldo Bomfim; de Freitas, Luiz Antônio Rodrigues; Borges, Valéria Matos; Veras, Patrícia Sampaio Tavares

    2012-01-01

    Background Leishmaniasis is a neglected endemic disease with a broad spectrum of clinical manifestations. Pentavalent antimonials have been the treatment of choice for the past 70 years and, due to the emergence of resistant cases, the efficacy of these drugs has come under scrutiny. Second-line drugs are less efficacious, cause a range of side effects and can be costly. The formulation of new generations of drugs, especially in developing countries, has become mandatory. Methodology/Principal Findings We investigated the anti-leishmanial effect of 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), an HSP90 inhibitor, in vitro. This inhibitor is currently in clinical trials for cancer treatment; however, its effects against intracellular Leishmania remain untested. Macrophages infected with L. amazonensis were treated with 17-AAG (25–500 nM) and parasite load was quantified using optical microscopy. Parasite load declined in 17-AAG-treated macrophages in a dose- and time-dependent manner. Intracellular parasite death became irreversible after 4 h of treatment with 17-AAG, and occurred independent of nitric oxide (NO) and superoxide (O2−) production. Additionally, intracellular parasite viability was severely reduced after 48 h of treatment. Interestingly, treatment with 17-AAG reduced pro-inflammatory mediator production, including TNF-α, IL-6 and MCP-1, yet IL-12 remained unaffected. Electron microscopy revealed morphological alterations, such as double-membrane vacuoles and myelin figures at 24 and 48 h after 17-AAG treatment. Conclusions/Significance The HSP90 inhibitor, 17-AAG, possesses high potency under low dosage and reduces both pro-inflammatory and oxidative molecule production. Therefore, further studies are warranted to investigate this inhibitor’s potential in the development of new generations of anti-leishmanials. PMID:23152914

  20. An inflammatory gene signature distinguishes neurofibroma Schwann cells and macrophages from cells in the normal peripheral nervous system

    Science.gov (United States)

    Choi, Kwangmin; Komurov, Kakajan; Fletcher, Jonathan S.; Jousma, Edwin; Cancelas, Jose A.; Wu, Jianqiang; Ratner, Nancy

    2017-01-01

    Neurofibromas are benign peripheral nerve tumors driven by NF1 loss in Schwann cells (SCs). Macrophages are abundant in neurofibromas, and macrophage targeted interventions may have therapeutic potential in these tumors. We generated gene expression data from fluorescence-activated cell sorted (FACS) SCs and macrophages from wild-type and mutant nerve and neurofibroma to identify candidate pathways involved in SC-macrophage cross-talk. While in 1-month-old Nf1 mutant nerve neither SCs nor macrophages significantly differed from their normal counterparts, both macrophages and SCs showed significantly altered cytokine gene expression in neurofibromas. Computationally reconstructed SC-macrophage molecular networks were enriched for inflammation-associated pathways. We verified that neurofibroma SC conditioned medium contains macrophage chemo-attractants including colony stimulation factor 1 (CSF1). Network analysis confirmed previously implicated pathways and predict novel paracrine and autocrine loops involving cytokines, chemokines, and growth factors. Network analysis also predicted a central role for decreased type-I interferon signaling. We validated type-I interferon expression in neurofibroma by protein profiling, and show that treatment of neurofibroma-bearing mice with polyethylene glycolyated (PEGylated) type-I interferon-α2b reduces the expression of many cytokines overexpressed in neurofibroma. These studies reveal numerous potential targetable interactions between Nf1 mutant SCs and macrophages for further analyses. PMID:28256556

  1. CCR1 and CCR5 mediated the effects of macrophage inflammatory protein-1α on the proliferation and migration of multiple myeloma cells%趋化因子受体介导巨噬细胞炎症蛋白-1α对多发性骨髓瘤细胞增殖与迁移的影响

    Institute of Scientific and Technical Information of China (English)

    王晓桃; 莫东华; 陈蓓莉; 刘冯

    2008-01-01

    目的:探讨两种趋化因子受体(cell chemokine receptor,CCR)在人多发性骨髓瘤(multiple myeloma, MM)细胞株KM3、SKO007、XG-6中的表达及介导巨噬细胞炎症蛋白-1α(macrophage inflammatory protein-1α,MIP-1α)对瘤细胞增殖与迁移的影响.方法:半定量RT-PCR检测KM 3、SKO007、XG-6细胞中的CCR 1、CCR 5 mRNA水平;MTT法进行细胞增殖实验;体外微孔隔离室迁移板进行细胞迁移实验.结果:MM细胞株KM 3、XG-6同时表达CCR 1和CCR 5, SKO007细胞仅表达CCR 5;在介导MIP-1α对KM 3和XG-6细胞的增殖与迁移时,实验组较对照组差异有统计学意义(P<0.05),但实验组间差异无统计学意义(P>0.05).结论:KM3、XG-6细胞株均表达CCR 1、CCR 5两种受体,SKO 007细胞株仅表达CCR 5受体;MIP-1α可能是通过CCR 1、CCR 5两种受体来介导瘤细胞的增殖与迁移.

  2. BZ-26, a novel GW9662 derivate, attenuated inflammation by inhibiting the differentiation and activation of inflammatory macrophages.

    Science.gov (United States)

    Bei, Yuncheng; Chen, Jiajia; Zhou, Feifei; Huang, Yahong; Jiang, Nan; Tan, Renxiang; Shen, Pingping

    2016-12-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) is considered to be an important transcriptional factor in regulation of macrophages differentiation and activation. We have synthesized a series of novel structural molecules based on GW9662's structure (named BZ-24, BZ-25 and BZ-26), and interaction activity was calculated by computational docking. BZ-26 had shown stronger interaction with PPARγ and had higher transcriptional inhibitory activity of PPARγ with lower dosage compared with GW9662. BZ-26 was proved to inhibit inflammatory macrophage differentiation. LPS-induced acute inflammation mouse model was applied to demonstrate its anti-inflammatory activity. And the results showed that BZ-26 administration attenuated plasma tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) secretion, which are vital cytokines in acute inflammation. The anti-inflammatory activity was examined in THP-1 cell line, and TNF-α, IL-6 and MCP-1, were significantly inhibited. The results of Western blot and luciferase reporter assay indicated that BZ-26 not only inhibited NF-κB transcriptional activity, but also abolished LPS-induce nuclear translocation of P65. We also test BZ-26 action in tumor-bearing chronic inflammation mouse model, and BZ-26 was able to alter macrophages phenotype, resulting in antitumor effect. All our data revealed that BZ-26 modulated LPS-induced acute inflammation via inhibiting inflammatory macrophages differentiation and activation, potentially via inhibition of NF-κB signal pathway.

  3. Blockage of receptor-interacting protein 2 expression by small interfering RNA in murine macrophages

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This study aims to demonstrate that blocking the receptor-interacting protein2(Rip2)expression can decrease inflammatory cytokine production by macrophage and protect mice from endotoxin lethality.Murine Rip2 small interfering RNA(siRNA)plasmids were constructed and transfected into macrophage and Rip2 expression was detected with reverse transcription-polymerase chain reaction(RT-PCR)and western blot.Cell proliferation was assayed with MTT.TNF-α concentration was assayed with ELISA and high-mobility group box 1 protein(HMGB1)level with semi-quantitative western blot after lipopolysaccharide(LPS)stimulation.LPS challenge was given after the plasmids were injected into mice and the survival rate was calculated.Rip2 siRNA plasmid could block the mRNA and protein expression of Rip2 and promote cell proliferation.Blocking Rip2 could attenuate LPS-induced TNF-~ and HMGB1 production.The HMGB1 expression in the liver decreased to(40.21±11.03)pg/g,and serum TNF-α level decreased to(300.43±59.26)ng/L(P<0.05).The survival rate of mice from endotoxemia was also improved(P<0.05).The results demonstrate that Rip2 siRNA plasmid can block the expression of Rip2,decrease the production of TNF-α and HMGB1 and protect mice from fatal endotoxemia.

  4. Anti-oxidative and anti-inflammatory effects of Tagetes minuta essential oil in activated macrophages

    Institute of Scientific and Technical Information of China (English)

    Parastoo Karimian; Gholamreza Kavoosi; Zahra Amirghofran

    2014-01-01

    Objective:To investigate antioxidant and anti-inflammatory effects of Tagetes minuta (T. minuta) essential oil. Methods:In the present study T. minuta essential oil was obtained from leaves of T. minuta via hydro-distillation and then was analyzed by gas chromatography-mass spectrometry. The anti-oxidant capacity of T. minuta essential oil was examined by measuring reactive oxygen, reactive nitrogen species and hydrogen peroxide scavenging. The anti-inflammatory activity of T. minuta essential oil was determined through measuring NADH oxidase, inducible nitric oxide synthase and TNF-αmRNA expression in lipopolysacharide-stimulated murine macrophages using real-time PCR. Results:Gas chromatography-mass spectrometry analysis indicated that the main components in the T. minuta essential oil were dihydrotagetone (33.86%), E-ocimene (19.92%), tagetone (16.15%), cis-β-ocimene (7.94%), Z-ocimene (5.27%), limonene (3.1%) and epoxyocimene (2.03%). The T. minuta essential oil had the ability to scavenge all reactive oxygen/reactive nitrogen species radicals with IC50 12-15 μg/mL, which indicated a potent radical scavenging activity. In addition, T. minuta essential oil significantly reduced NADH oxidase, inducible nitric oxide synthaseand TNF-αmRNA expression in the cells at concentrations of 50 μg/mL, indicating a capacity of this product to potentially modulate/diminish immune responses. Conclusions:T. minuta essential oil has radical scavenging and anti-inflammatory activities and could potentially be used as a safe effective source of natural anti-oxidants in therapy against oxidative damage and stress associated with some inflammatory conditions.

  5. Orally Administered Enoxaparin Ameliorates Acute Colitis by Reducing Macrophage-Associated Inflammatory Responses

    Science.gov (United States)

    Lean, Qi Ying; Eri, Rajaraman D.; Randall-Demllo, Sarron; Sohal, Sukhwinder Singh; Stewart, Niall; Peterson, Gregory M.; Gueven, Nuri; Patel, Rahul P.

    2015-01-01

    Inflammatory bowel diseases, such as ulcerative colitis, cause significant morbidity and decreased quality of life. The currently available treatments are not effective in all patients, can be expensive and have potential to cause severe side effects. This prompts the need for new treatment modalities. Enoxaparin, a widely used antithrombotic agent, is reported to possess anti-inflammatory properties and therefore we evaluated its therapeutic potential in a mouse model of colitis. Acute colitis was induced in male C57BL/6 mice by administration of dextran sulfate sodium (DSS). Mice were treated once daily with enoxaparin via oral or intraperitoneal administration and monitored for colitis activities. On termination (day 8), colons were collected for macroscopic evaluation and cytokine measurement, and processed for histology and immunohistochemistry. Oral but not intraperitoneal administration of enoxaparin significantly ameliorated DSS-induced colitis. Oral enoxaparin-treated mice retained their body weight and displayed less diarrhea and fecal blood loss compared to the untreated colitis group. Colon weight in enoxaparin-treated mice was significantly lower, indicating reduced inflammation and edema. Histological examination of untreated colitis mice showed a massive loss of crypt architecture and goblet cells, infiltration of immune cells and the presence of edema, while all aspects of this pathology were alleviated by oral enoxaparin. Reduced number of macrophages in the colon of oral enoxaparin-treated mice was accompanied by decreased levels of pro-inflammatory cytokines. Oral enoxaparin significantly reduces the inflammatory pathology associated with DSS-induced colitis in mice and could therefore represent a novel therapeutic option for the management of ulcerative colitis. PMID:26218284

  6. Haemophilus ducreyi LspA proteins are tyrosine phosphorylated by macrophage-encoded protein tyrosine kinases.

    Science.gov (United States)

    Deng, Kaiping; Mock, Jason R; Greenberg, Steven; van Oers, Nicolai S C; Hansen, Eric J

    2008-10-01

    The LspA proteins (LspA1 and LspA2) of Haemophilus ducreyi are necessary for this pathogen to inhibit the phagocytic activity of macrophage cell lines, an event that can be correlated with a reduction in the level of active Src family protein tyrosine kinases (PTKs) in these eukaryotic cells. During studies investigating this inhibitory mechanism, it was discovered that the LspA proteins themselves were tyrosine phosphorylated after wild-type H. ducreyi cells were incubated with macrophages. LspA proteins in cell-free concentrated H. ducreyi culture supernatant fluid could also be tyrosine phosphorylated by macrophages. This ability to tyrosine phosphorylate the LspA proteins was not limited to immune cell lineages but could be accomplished by both HeLa and COS-7 cells. Kinase inhibitor studies with macrophages demonstrated that the Src family PTKs were required for this tyrosine phosphorylation activity. In silico methods and site-directed mutagenesis were used to identify EPIYG and EPVYA motifs in LspA1 that contained tyrosines that were targets for phosphorylation. A total of four tyrosines could be phosphorylated in LspA1, with LspA2 containing eight predicted tyrosine phosphorylation motifs. Purified LspA1 fusion proteins containing either the EPIYG or EPVYA motifs were shown to be phosphorylated by purified Src PTK in vitro. Macrophage lysates could also tyrosine phosphorylate the LspA proteins and an LspA1 fusion protein via a mechanism that was dependent on the presence of both divalent cations and ATP. Several motifs known to interact with or otherwise affect eukaryotic kinases were identified in the LspA proteins.

  7. Heparan sulfate proteoglycan isoforms of the CD44 hyaluronan receptor induced in human inflammatory macrophages can function as paracrine regulators of fibroblast growth factor action.

    Science.gov (United States)

    Jones, M; Tussey, L; Athanasou, N; Jackson, D G

    2000-03-17

    The CD44 glycoprotein is expressed in multiple isoforms on a variety of cell types where it functions as a receptor for hyaluronan-mediated motility. Recently, interest has centered on CD44 heparan sulfate proteoglycan (HSPG) isoforms because of their potential to sequester heparin-binding growth factors and chemokines. Expression of these isoforms on ectodermal cells has recently been shown to regulate limb morphogenesis via presentation of fibroblast growth factor (FGF) 4/FGF 8 while expression on tumor cells was shown to sequester hepatocyte growth factor and promote tumor dissemination. To date, however, CD44 HSPG expression in tissue macrophages and lymphocytes has not been adequately investigated, despite the fact these cells actively synthesize growth factors and chemokines and indirect evidence that monocyte CD44 sequesters macrophage inflammatory protein-1beta. Here we show primary human monocytes rather than lymphocytes express CD44 HSPGs, but only following in vitro differentiation to macrophages or activation with the proinflammatory cytokine interleukin-1alpha or bacterial lipopolysaccharide. Furthermore, we show these isoforms are preferentially modified with heparan rather than chondroitin sulfate, bind the macrophage-derived growth factors FGF-2, vascular endothelial growth factor, and heparin-binding epidermal growth factor with varying affinities (K(d) 25-330 nM) and in the case of FGF-2, can stimulate productive binding to the high affinity tyrosine kinase FGF receptor 1 (FGFR1). In contrast, we find no evidence for significant binding to C-C chemokines. Last, we confirm by immunofluorescent antibody staining that inflamed synovial membrane macrophages express CD44 HSPGs and that expression is greatest in cells containing high FGF-2 levels. These results suggest a paracrine role for macrophage CD44 HSPG isoforms in the regulation of growth factor action during inflammation.

  8. Anti-Inflammatory Effect of Spirulina platensis in Macrophages Is Beneficial for Adipocyte Differentiation and Maturation by Inhibiting Nuclear Factor-κB Pathway in 3T3-L1 Adipocytes.

    Science.gov (United States)

    Pham, Tho X; Lee, Ji-Young

    2016-06-01

    We previously showed that the organic extract of a blue-green alga, Spirulina platensis (SPE), had potent anti-inflammatory effects in macrophages. As the interplay between macrophages and adipocytes is critical for adipocyte functions, we investigated the contribution of the anti-inflammatory effects of SPE in macrophages to adipogenesis/lipogenesis in 3T3-L1 adipocytes. 3T3-L1 preadipocytes were treated with 10% conditioned medium from lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages (CMC) or LPS-stimulated, but SPE-pretreated, macrophages (CMS) at different stages of adipocyte differentiation. The expression of adipocyte differentiation markers, such as CCAAT/enhancer-binding protein α, peroxisome proliferator-activated receptor γ, and perilipin, was significantly repressed by CMC when added on day 3, while the repression was attenuated by CMS. Oil Red O staining confirmed that adipocyte maturation in CMS-treated cells, but not in CMC-treated cells, was equivalent to that of control cells. Nuclear translocation of nuclear factor κB (NF-κB) p65 was decreased by CMS compared to CMC. In lipid-laden adipocytes, CMC promoted the loss of lipid droplets, while CMS had minimal effects. Histone deacetylase 9 mRNA and protein levels were increased during adipocyte maturation, which were decreased by CMC. In conclusion, by cross-talking with adipocytes, the anti-inflammatory effects of SPE in macrophages promoted adipocyte differentiation/maturation, at least in part, by repressing the activation of NF-κB inflammatory pathways, which otherwise can be compromised in inflammatory conditions.

  9. Biocompatibility and Inflammatory Potential of Titanium Alloys Cultivated with Human Osteoblasts, Fibroblasts and Macrophages

    Directory of Open Access Journals (Sweden)

    Jana Markhoff

    2017-01-01

    Full Text Available The biomaterials used to maintain or replace functions in the human body consist mainly of metals, ceramics or polymers. In orthopedic surgery, metallic materials, especially titanium and its alloys, are the most common, due to their excellent mechanical properties, corrosion resistance, and biocompatibility. Aside from the established Ti6Al4V alloy, shape memory materials such as nickel-titanium (NiTi have risen in importance, but are also discussed because of the adverse effects of nickel ions. These might be reduced by specific surface modifications. In the present in vitro study, the osteoblastic cell line MG-63 as well as primary human osteoblasts, fibroblasts, and macrophages were cultured on titanium alloys (forged Ti6Al4V, additive manufactured Ti6Al4V, NiTi, and Diamond-Like-Carbon (DLC-coated NiTi to verify their specific biocompatibility and inflammatory potential. Additive manufactured Ti6Al4V and NiTi revealed the highest levels of metabolic cell activity. DLC-coated NiTi appeared as a suitable surface for cell growth, showing the highest collagen production. None of the implant materials caused a strong inflammatory response. In general, no distinct cell-specific response could be observed for the materials and surface coating used. In summary, all tested titanium alloys seem to be biologically appropriate for application in orthopedic surgery.

  10. Cerebral regulatory T cells restrain microglia/macrophage-mediated inflammatory responses via IL-10

    Science.gov (United States)

    Xie, Luokun; Choudhury, Gourav Roy; Winters, Ali; Yang, Shao-Hua; Jin, Kunlin

    2014-01-01

    Forkhead box P3 (Foxp3)+ regulatory T (Treg) cells maintain the immune tolerance and prevent inflammatory responses in the periphery. However, the presence of Treg cells in the central nervous system under steady state has not been studied. Here, for the first time, we show a substantial TCRαβ+CD4+Foxp3+ T-cell population (cerebral Treg cells) in the normal rat cerebrum, constituting more than 15% of the cerebral CD4+ T-cell compartment. Cerebral Treg cells showed an activated/memory phenotype and expressed many Treg-cell signature genes at higher levels than peripheral Treg cells. Consistent with their activated/memory phenotype, cerebral Treg cells robustly restrained the LPS-induced inflammatory responses of brain microglia/macrophages, suggesting a role in maintaining the cerebral homeostasis by inhibiting the neuroinflammation. In addition, brain astrocytes were the helper cells that sustained Foxp3 expression in Treg cells through IL-2/STAT5 signaling, showing that the interaction between astrocytes and Treg cells contributes to the maintenance of Treg-cell identity in the brain. Taken together, our work represents the first study to characterize the phenotypic and functional features of Treg cells in the normal rat cerebrum. Our data have provided a novel insight for the contribution of Treg cells to the immunosurveillance and immunomodulation in the cerebrum under steady state. PMID:25329858

  11. PM2.5 collected in China causes inflammatory and oxidative stress responses in macrophages through the multiple pathways.

    Science.gov (United States)

    Bekki, Kanae; Ito, Tomohiro; Yoshida, Yasuhiro; He, Cuiying; Arashidani, Keiichi; He, Miao; Sun, Guifan; Zeng, Yang; Sone, Hideko; Kunugita, Naoki; Ichinose, Takamichi

    2016-07-01

    Air pollution continues to increase in East Asia, particularly in China, and is considered to cause serious health problems. In this study, we investigated the toxicological properties of particulate matter ≤2.5mm (PM2.5) collected in an urban area in China (Shenyang), focusing on inflammation and oxidative stress tightly linked to respiratory diseases. Exposure to PM2.5 significantly increased the expression levels of inflammatory (interleukin-1β and cyclooxygenase-2) and oxidative stress (heme oxygenase1) genes in the mouse macrophages. PM2.5-caused inflammatory response was strongly suppressed by endotoxin neutralizer (polymyxin B) and knock-out of toll-like receptor 4, while oxidative stress was not. On the other hand, an antioxidant (N-acetylcystein) suppressed oxidative stress, but not inflammatory response. These results suggest that PM2.5 in the atmospheric environment of China causes inflammation and oxidative stress in macrophages via separate pathways.

  12. Botulinum neurotoxin type A induces TLR2-mediated inflammatory responses in macrophages.

    Directory of Open Access Journals (Sweden)

    Yun Jeong Kim

    Full Text Available Botulinum neurotoxin type A (BoNT/A is the most potent protein toxin and causes fatal flaccid muscle paralysis by blocking neurotransmission. Application of BoNT/A has been extended to the fields of therapeutics and biodefense. Nevertheless, the global response of host immune cells to authentic BoNT/A has not been reported. Employing microarray analysis, we performed global transcriptional profiling of RAW264.7 cells, a murine alveolar macrophage cell line. We identified 70 genes that were modulated following 1 nM BoNT/A treatment. The altered genes were mainly involved in signal transduction, immunity and defense, protein metabolism and modification, neuronal activities, intracellular protein trafficking, and muscle contraction. Microarray data were validated with real-time RT-PCR for seven selected genes including tlr2, tnf, inos, ccl4, slpi, stx11, and irg1. Proinflammatory mediators such as nitric oxide (NO and tumor necrosis factor alpha (TNFα were induced in a dose-dependent manner in BoNT/A-stimulated RAW264.7 cells. Increased expression of these factors was inhibited by monoclonal anti-Toll-like receptor 2 (TLR2 and inhibitors specific to intracellular proteins such as c-Jun N-terminal kinase (JNK, extracellular signal-regulated kinase (ERK, and p38 mitogen-activated protein kinase (MAPK. BoNT/A also suppressed lipopolysaccharide-induced NO and TNFα production from RAW264.7 macrophages at the transcription level by blocking activation of JNK, ERK, and p38 MAPK. As confirmed by TLR2-/- knock out experiments, these results suggest that BoNT/A induces global gene expression changes in host immune cells and that host responses to BoNT/A proceed through a TLR2-dependent pathway, which is modulated by JNK, ERK, and p38 MAPK.

  13. Fatty acids induce leukotriene C4 synthesis in macrophages in a fatty acid binding protein-dependent manner.

    Science.gov (United States)

    Long, Eric K a; Hellberg, Kristina; Foncea, Rocio; Hertzel, Ann V; Suttles, Jill; Bernlohr, David A

    2013-07-01

    Obesity results in increased macrophage recruitment to adipose tissue that promotes a chronic low-grade inflammatory state linked to increased fatty acid efflux from adipocytes. Activated macrophages produce a variety of pro-inflammatory lipids such as leukotriene C4 (LTC4) and 5-, 12-, and 15-hydroxyeicosatetraenoic acid (HETE) suggesting the hypothesis that fatty acids may stimulate eicosanoid synthesis. To assess if eicosanoid production increases with obesity, adipose tissue of leptin deficient ob/ob mice was analyzed. In ob/ob mice, LTC4 and 12-HETE levels increased in the visceral (but not subcutaneous) adipose depot while the 5-HETE levels decreased and 15-HETE abundance was unchanged. Since macrophages produce the majority of inflammatory molecules in adipose tissue, treatment of RAW264.7 or primary peritoneal macrophages with free fatty acids led to increased secretion of LTC4 and 5-HETE, but not 12- or 15-HETE. Fatty acid binding proteins (FABPs) facilitate the intracellular trafficking of fatty acids and other hydrophobic ligands and in vitro stabilize the LTC4 precursor leukotriene A4 (LTA4) from non-enzymatic hydrolysis. Consistent with a role for FABPs in LTC4 synthesis, treatment of macrophages with HTS01037, a specific FABP inhibitor, resulted in a marked decrease in both basal and fatty acid-stimulated LTC4 secretion but no change in 5-HETE production or 5-lipoxygenase expression. These results indicate that the products of adipocyte lipolysis may stimulate the 5-lipoxygenase pathway leading to FABP-dependent production of LTC4 and contribute to the insulin resistant state.

  14. Heterogeneities in inflammatory and cytotoxic responses of RAW 264.7 macrophage cell line to urban air coarse, fine, and ultrafine particles from six European sampling campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Jalava, P.I.; Salonen, R.O.; Pennanen, A.S.; Sillanpaa, M.; Halinen, A.I.; Happo, M.S.; Hillamo, R.; Brunekreef, B.; Katsouyanni, K.; Sunyer, J.; Hirvonen, M.R. [National Public Health Institute, Kuopio (Finland). Dept. for Environmental Health

    2007-03-15

    We investigated the cytotoxic and inflammatory activities of size-segregated particulate samples (particulate matter, PM) from contrasting air pollution situations in Europe. Coarse (PM10-2.5), fine (PM2.5-0.2), and ultrafine (PM0.2) particulate samples were collected with a modified Harvard high-volume cascade impactor (HVCI). Mouse RAW 264.7 macrophages were exposed to the samples for 24 h. Selected inflammatory mediators, nitric oxide (NO) and cytokines (tumor necrosis factor alpha (TNF alpha), interleukin 6 (IL-6), macrophage inflammatory protein-2 (MIP-2)), were measured together with cytotoxicity (MTT test), and analysis of apoptosis and cell cycle (propidium iodide staining). The PM10-2.5 samples had a much higher inflammatory activity than the PM2.5-0.2 and PM0.2 samples, but the PM2.5-0.2 samples showed the largest differences in inflammatory activity, and the PM0.2 samples in cytotoxicity, between the sampling campaigns. The PM2.5-0.2 samples from traffic environments in springtime Barcelona and summertime Athens had the highest inflammatory activities, which may be related to the high photochemical activity in the atmosphere during the sampling campaigns. The PM0.2 sample from wintertime Prague with proven impacts from local coal and biomass combustion had very high cytotoxic and apoptotic activities and caused a distinct cell cycle arrest. Thus, particulate size, sources, and atmospheric transformation processes affect the toxicity profile of urban air particulate matter. These factors may explain some of the heterogeneity observed in particulate exposure-response relationships of human health effects in epidemiological studies.

  15. The Response of Macrophages and Neutrophils to Hypoxia in the Context of Cancer and Other Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Antje Egners

    2016-01-01

    Full Text Available Lack of oxygen (hypoxia is a hallmark of a multitude of acute and chronic diseases and can be either beneficial or detrimental for organ restitution and recovery. In the context of inflammation, hypoxia is particularly important and can significantly influence the course of inflammatory diseases. Macrophages and neutrophils, the chief cellular components of innate immunity, display distinct properties when exposed to hypoxic conditions. Virtually every aspect of macrophage and neutrophil function is affected by hypoxia, amongst others, morphology, migration, chemotaxis, adherence to endothelial cells, bacterial killing, differentiation/polarization, and protumorigenic activity. Prominent arenas of macrophage and neutrophil function, for example, acute/chronic inflammation and the microenvironment of solid tumors, are characterized by low oxygen levels, demonstrating the paramount importance of the hypoxic response for proper function of these cells. Members of the hypoxia-inducible transcription factor (HIF family emerged as pivotal molecular regulators of macrophages and neutrophils. In this review, we will summarize the molecular responses of macrophages and neutrophils to hypoxia in the context of cancer and other chronic inflammatory diseases and discuss the potential avenues for therapeutic intervention that arise from this knowledge.

  16. Anti-Inflammatory Effect of Quercetin on RAW 264.7 Mouse Macrophages Induced with Polyinosinic-Polycytidylic Acid.

    Science.gov (United States)

    Kim, Young-Jin; Park, Wansu

    2016-04-04

    Quercetin (3,3',4',5,6-pentahydroxyflavone) is a well-known antioxidant and a flavonol found in many fruits, leaves, and vegetables. Quercetin also has known anti-inflammatory effects on lipopolysaccharide-induced macrophages. However, the effects of quercetin on virus-induced macrophages have not been fully reported. In this study, the anti-inflammatory effect of quercetin on double-stranded RNA (dsRNA)-induced macrophages was examined. Quercetin at concentrations up to 50 μM significantly inhibited the production of NO, IL-6, MCP-1, IP-10, RANTES, GM-CSF, G-CSF, TNF-α, LIF, LIX, and VEGF as well as calcium release in dsRNA (50 μg/mL of polyinosinic-polycytidylic acid)-induced RAW 264.7 mouse macrophages (p Quercetin at concentrations up to 50 μM also significantly inhibited mRNA expression of signal transducer and activated transcription 1 (STAT1) and STAT3 in dsRNA-induced RAW 264.7 cells (p quercetin had alleviating effects on viral inflammation based on inhibition of NO, cytokines, chemokines, and growth factors in dsRNA-induced macrophages via the calcium-STAT pathway.

  17. Wear particles generated from studded tires and pavement induces inflammatory reactions in mouse macrophage cells.

    Science.gov (United States)

    Lindbom, John; Gustafsson, Mats; Blomqvist, Göran; Dahl, Andreas; Gudmundsson, Anders; Swietlicki, Erik; Ljungman, Anders G

    2007-06-01

    Health risks associated with exposure to airborne particulate matter (PM) have been shown epidemiologically as well as experimentally, pointing to both respiratory and cardiovascular effects. These health risks are of increasing concern in society, and to protect public health, a clarification of the toxic properties of particles from different sources is of importance. Lately, wear particles generated from traffic have been recognized as a major contributing source to the overall particle load, especially in the Nordic countries where studded tires are used. The aim of this study was to further investigate and compare the ability to induce inflammatory mediators of different traffic-related wear particles collected from an urban street, a subway station, and studded tire-pavement wear. Inflammatory effects were measured as induction of nitric oxide (NO), IL-6, TNF-alpha, arachidonic acid (AA), and lipid peroxidation after exposure of the murine macrophage like cell line RAW 264.7. In addition, the redox potential of the particles was measured in a cell-free system. The results show that all particles tested induce IL-6, TNF-alpha, and NO, and those from the urban street were the most potent ones. In contrast, particles collected from a subway station were most potent to induce lipid peroxidation, AA release, and formation of ROS. Particles from studded tire-pavement wear, generated using a road simulator, were able to induce inflammatory cytokines, NO, lipid peroxidation, and ROS formation. Interestingly, particles generated from pavement containing granite as the main stone material were more potent than those generated from pavement containing quartzite as the main stone material.

  18. Cross-talk between bone morphogenetic proteins and inflammatory pathways.

    Science.gov (United States)

    van der Kraan, Peter M; Davidson, Esmeralda N Blaney

    2015-11-23

    Pro-inflammatory cytokines and bone morphogenetic proteins are generally studied separately and considered to be elements of different worlds, immunology and developmental biology. Varas and colleagues report that these factors show cross-talk in rheumatoid arthritis synoviocytes. They show that pro-inflammatory cytokines not only stimulate the production of bone morphogenetic proteins but that these endogenously produced bone morphogenetic proteins interfere with the effects of pro-inflammatory cytokines on synoviocytes.

  19. Brazilian red propolis effects on peritoneal macrophage activity: Nitric oxide, cell viability, pro-inflammatory cytokines and gene expression.

    Science.gov (United States)

    Bueno-Silva, Bruno; Kawamoto, Dione; Ando-Suguimoto, Ellen S; Casarin, Renato C V; Alencar, Severino M; Rosalen, Pedro L; Mayer, Marcia P A

    2017-07-31

    Propolis has been used in folk medicine since ancient times and it presented inhibitory effect on neutrophil recruitment previously. However, its effect on macrophage obtained from mice remains unclear. To demonstrate BRP effects on LPS activated peritoneal macrophage. Peritoneal macrophages, obtained from C57BL6 mice and activated with LPS, were treated with 50-80µg/mL of crude extract of Brazilian red propolis (BRP) during 48h. Cell viability, levels of NO, 20 cytokines and expression of 360 genes were evaluated. BRP 60µg/mL reduced NO production by 65% without affecting the cell viability and decreased production IL1α, IL1β, IL4, IL6, IL12p40, Il12p70, IL13, MCP1 and GM-CSF. Molecular mechanism beyond the anti-inflammatory activity may be due to BRP-effects on decreasing expression of Mmp7, Egfr, Adm, Gata3, Wnt2b, Txn1, Herpud1, Axin2, Car9, Id1, Vegfa, Hes1, Hes5, Icam1, Wnt3a, Pcna, Wnt5a, Tnfsf10, Ccl5, Il1b, Akt1, Mapk1, Noxa1 and Cdkn1b and increasing expression of Cav1, Wnt6, Calm1, Tnf, Rb1, Socs3 and Dab2. Therefore, BRP has anti-inflammatory effects on macrophage activity by reducing NO levels and diminished release and expression of pro-inflammatory cytokine and genes, respectively. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  20. Burkholderia mallei and Burkholderia pseudomallei stimulate differential inflammatory responses from human alveolar type II cells (ATII and macrophages.

    Directory of Open Access Journals (Sweden)

    Richard eLu

    2012-12-01

    Full Text Available Alveolar type II pneumocytes (ATII and alveolar macrophages (AM play a crucial role in the lung’s innate immune response. Burkholderia pseudomallei (BP and Burkholderia mallei (BM are facultative Gram-negative bacilli that cause melioidosis and glanders, respectively. The inhalation of these pathogens can cause lethal disease and death in humans. We sought to compare the pathogenesis of and host responses to BP and BM through contact with human primary ATII cells and monocytes-derived macrophages (MDM. We hypothesized that because BP and BM induce different disease outcomes, each pathogen would induce distinct, unique host immune responses from resident pulmonary cells. Our findings showed that BP adhered readily to ATII cells compared to BM. BP, but not BM, was rapidly internalized by macrophages where it replicated to high numbers. Further, BP induced significantly higher levels of pro-inflammatory cytokine secretion from ATII cells (IL-6, IL-8 and macrophages (IL-6, TNFα at 6h post-infection compared to BM (p<0.05. Interestingly, BM induced the anti-inflammatory cytokine, IL-10, in ATII cells and macrophages at 6h post-infection, with delayed induction of inflammatory cytokines at 24h post-infection. Because BP is flagellated and produces LPS, we confirmed that it stimulated both Toll-like receptor (TLR 4 and TLR5 via NF-κb activation while the non-flagellated BM stimulated only TLR4. These data show the differences in BP and BM pathogenicity in the lung when infecting human ATII cells and macrophages and demonstrate the ability of these pathogens to elicit distinct immune responses from resident lung cells which may open new targets for therapeutic intervention to fight against these pathogens.

  1. Macrophages: Regulators of the Inflammatory Microenvironment during Mammary Gland Development and Breast Cancer.

    Science.gov (United States)

    Brady, Nicholas J; Chuntova, Pavlina; Schwertfeger, Kathryn L

    2016-01-01

    Macrophages are critical mediators of inflammation and important regulators of developmental processes. As a key phagocytic cell type, macrophages evolved as part of the innate immune system to engulf and process cell debris and pathogens. Macrophages produce factors that act directly on their microenvironment and also bridge innate immune responses to the adaptive immune system. Resident macrophages are important for acting as sensors for tissue damage and maintaining tissue homeostasis. It is now well-established that macrophages are an integral component of the breast tumor microenvironment, where they contribute to tumor growth and progression, likely through many of the mechanisms that are utilized during normal wound healing responses. Because macrophages contribute to normal mammary gland development and breast cancer growth and progression, this review will discuss both resident mammary gland macrophages and tumor-associated macrophages with an emphasis on describing how macrophages interact with their surrounding environment during normal development and in the context of cancer.

  2. Requirement for erythroblast-macrophage protein (Emp) in definitive erythropoiesis.

    Science.gov (United States)

    Soni, Shivani; Bala, Shashi; Hanspal, Manjit

    2008-01-01

    Emp, erythroblast-macrophage protein was initially identified as a mediator of erythroblast-macrophage interactions during erythroid differentiation. More recent studies have shown that targeted disruption of Emp leads to abnormal erythropoiesis in the fetal liver, and fetal demise. To further address the activity of Emp in the hematopoietic lineage in adult bone marrow, we conducted fetal liver HSC reconstitution assay. Emp null fetal liver cells were transplanted into lethally irradiated wild-type sibling mice, and assessed the erythropoietic activity. We found that Emp null cells rescued lethally irradiated mice with efficiency comparable to that of wild-type cells. However, the recipients of Emp null cells showed abnormal erythropoiesis as indicated by the presence of persistent anemia, extensive extramedullary erythropoiesis, and increased apoptosis of erythroid precursors. Extramedullary erythropoiesis suggests perturbed interactions between the Emp-deficient hematopoietic cells and the wild-type niche. Furthermore, in spleen colony-forming unit assays, proliferation rates of the Emp null cells were greater than those of the wild-type cells. Similarly, in vitro burst-forming unit-erythroid and colony-forming unit-erythroid assays showed increased erythroid colony numbers from Emp null livers. Morphologic examination showed that Emp null CFU-E-derived erythroblasts were immature compared to those derived from wild-type CFU-Es, suggesting that loss of Emp function in erythroid cells results in impaired proliferation and terminal differentiation. These results demonstrate that Emp plays a cell intrinsic role in the erythroid lineage.

  3. Cytoprotective and anti-inflammatory effects of kernel extract from Adenanthera pavonina on lipopolysaccharide-stimulated rat peritoneal macrophages

    Institute of Scientific and Technical Information of China (English)

    Arunagirinathan Koodalingam; Ramar Manikandan; Munisamy Indhumathi; Ethala Subramani Kaviya

    2015-01-01

    Objective:To investigate mechanism of anti-inflammatory activity ofAdenanthera pavonina (A. pavonina) extracts.Methods:Rat peritoneal macrophages were treated with different concentrations of lipopolysaccharide andH2O2 in the presence and absence of kernel extract from A. pavonina.Nitric oxide, superoxide anion generation, cell viability and nuclear fragmentation were investigated.Results:The pre-treatment of kernel extract fromA. pavonina suppressed nitric oxide, superoxide anion, cell death, nuclear fragmentation in lipopolysaccharide andH2O2 stimulated or induced macrophages, respectively.Conclusions:These results suggest thatA. pavonina extract suppresses the intra cellular peroxide production.

  4. Role of macrophage chemoattractant protein-1 in acute inflammation after lung contusion.

    Science.gov (United States)

    Suresh, Madathilparambil V; Yu, Bi; Machado-Aranda, David; Bender, Matthew D; Ochoa-Frongia, Laura; Helinski, Jadwiga D; Davidson, Bruce A; Knight, Paul R; Hogaboam, Cory M; Moore, Bethany B; Raghavendran, Krishnan

    2012-06-01

    Lung contusion (LC), commonly observed in patients with thoracic trauma is a leading risk factor for development of acute lung injury/acute respiratory distress syndrome. Previously, we have shown that CC chemokine ligand (CCL)-2, a monotactic chemokine abundant in the lungs, is significantly elevated in LC. This study investigated the nature of protection afforded by CCL-2 in acute lung injury/acute respiratory distress syndrome during LC, using rats and CC chemokine receptor (CCR) 2 knockout (CCR2(-/-)) mice. Rats injected with a polyclonal antibody to CCL-2 showed higher levels of albumin and IL-6 in the bronchoalveolar lavage and myeloperoxidase in the lung tissue after LC. Closed-chest bilateral LC demonstrated CCL-2 localization in alveolar macrophages (AMs) and epithelial cells. Subsequent experiments performed using a murine model of LC showed that the extent of injury, assessed by pulmonary compliance and albumin levels in the bronchoalveolar lavage, was higher in the CCR2(-/-) mice when compared with the wild-type (WT) mice. We also found increased release of IL-1β, IL-6, macrophage inflammatory protein-1, and keratinocyte chemoattractant, lower recruitment of AMs, and higher neutrophil infiltration and phagocytic activity in CCR2(-/-) mice at 24 hours. However, impaired phagocytic activity was observed at 48 hours compared with the WT. Production of CCL-2 and macrophage chemoattractant protein-5 was increased in the absence of CCR2, thus suggesting a negative feedback mechanism of regulation. Isolated AMs in the CCR2(-/-) mice showed a predominant M1 phenotype compared with the predominant M2 phenotype in WT mice. Taken together, the above results show that CCL-2 is functionally important in the down-modulation of injury and inflammation in LC.

  5. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses.

    Science.gov (United States)

    Twu, Olivia; Dessí, Daniele; Vu, Anh; Mercer, Frances; Stevens, Grant C; de Miguel, Natalia; Rappelli, Paola; Cocco, Anna Rita; Clubb, Robert T; Fiori, Pier Luigi; Johnson, Patricia J

    2014-06-03

    The human-infective parasite Trichomonas vaginalis causes the most prevalent nonviral sexually transmitted infection worldwide. Infections in men may result in colonization of the prostate and are correlated with increased risk of aggressive prostate cancer. We have found that T. vaginalis secretes a protein, T. vaginalis macrophage migration inhibitory factor (TvMIF), that is 47% similar to human macrophage migration inhibitory factor (HuMIF), a proinflammatory cytokine. Because HuMIF is reported to be elevated in prostate cancer and inflammation plays an important role in the initiation and progression of cancers, we have explored a role for TvMIF in prostate cancer. Here, we show that TvMIF has tautomerase activity, inhibits macrophage migration, and is proinflammatory. We also demonstrate that TvMIF binds the human CD74 MIF receptor with high affinity, comparable to that of HuMIF, which triggers activation of ERK, Akt, and Bcl-2-associated death promoter phosphorylation at a physiologically relevant concentration (1 ng/mL, 80 pM). TvMIF increases the in vitro growth and invasion through Matrigel of benign and prostate cancer cells. Sera from patients infected with T. vaginalis are reactive to TvMIF, especially in males. The presence of anti-TvMIF antibodies indicates that TvMIF is released by the parasite and elicits host immune responses during infection. Together, these data indicate that chronic T. vaginalis infections may result in TvMIF-driven inflammation and cell proliferation, thus triggering pathways that contribute to the promotion and progression of prostate cancer.

  6. Critical roles of the WASP N-terminal domain and Btk in LPS-induced inflammatory response in macrophages.

    Directory of Open Access Journals (Sweden)

    Chisato Sakuma

    Full Text Available While Wiskott-Aldrich syndrome protein (WASP plays critical roles in TCR signaling as an adaptor molecule, how it transduces innate immune signals remains to be elucidated. To investigate the roles of WASP in innate immune cells, we established bone marrow-derived macrophage (BMDM cell lines from WASP15 transgenic (Tg mice overexpressing the WASP N-terminal region (exons 1-5. Upon LPS stimulation, WASP15 Tg BMDM cell lines produce lower levels of inflammatory cytokines, such as TNF-α, IL-6, and IL-12p40 than the wild-type BMDM cell line. In addition, the production of nitric oxide by WASP15 Tg BMDM cells in response to LPS and IFN-γ was significantly impaired. Furthermore, we uncovered that the WASP N-terminal domain associates with the Src homology (SH 3 domain of Bruton's tyrosine kinase (Btk. Overexpression of the WASP N-terminal domain diminishes the extent of tyrosine phosphorylation of endogenous WASP in WASP15 Tg BMDM cells, possibly by interfering with the specific binding between endogenous WASP and Btk during LPS signaling. These observations strongly suggest that the interaction between WASP N-terminal domain and Btk plays important roles in the LPS signaling cascade in innate immunity.

  7. Evaluation of inhibitory activities of plant extracts on production of LPS-stimulated pro-inflammatory mediators in J774 murine macrophages.

    Science.gov (United States)

    Verma, Nandini; Tripathi, Subhash K; Sahu, Debasis; Das, Hasi R; Das, Rakha H

    2010-03-01

    Whole plant methanolic extracts of 14 traditionally used medicinal herbs were evaluated for their anti-inflammatory activity. Extracts of Grindelia robusta, Salix nigra, Arnica montana, and Quassia amara showed up to 4.5-fold inhibition of nitric oxide (NO) production in the J774 murine macrophage cells challenged with LPS without cytotoxicity. These four selected extracts significantly reduced the protein levels of inducible NO synthase (iNOS) and the cyclooxygenase-2 (COX-2) as observed by Western blot analysis. Culture supernatants from cells treated with these extracts indicated 3-5-fold reduction of tumor necrosis factor-alpha (TNF-alpha). However, only G. robusta and Q. amara extracts significantly inhibited (by 50%) IL-1beta and IL-12 secretions. Furthermore, all these plant extracts were shown to prevent the LPS-mediated nuclear translocation of nuclear factor-kappaB (NF-kappaB). All the above observations indicate the anti-inflammatory potential of these plant extracts.

  8. Suppression of inflammatory reactions by terpinen-4-ol, a main constituent of tea tree oil, in a murine model of oral candidiasis and its suppressive activity to cytokine production of macrophages in vitro.

    Science.gov (United States)

    Ninomiya, Kentaro; Hayama, Kazumi; Ishijima, Sanae A; Maruyama, Naho; Irie, Hiroshi; Kurihara, Junichi; Abe, Shigeru

    2013-01-01

    The onset of oral candidiasis is accompanied by inflammatory symptoms such as pain in the tongue, edema or tissue damage and lowers the quality of life (QOL) of the patient. In a murine oral candidiasis model, the effects were studied of terpinen-4-ol (T-4-ol), one of the main constituents of tea tree oil, Melaleuca alternifolia, on inflammatory reactions. When immunosuppressed mice were orally infected with Candida albicans, their tongues showed inflammatory symptoms within 24 h after the infection, which was monitored by an increase of myeloperoxidase activity and macrophage inflammatory protein-2 in their tongue homogenates. Oral treatment with 50 µL of 40 mg/mL terpinen-4-ol 3h after the Candida infection clearly suppressed the increase of these inflammatory parameters. In vitro analysis of the effects of terpinen-4-ol on cytokine secretion of macrophages indicated that 800 µg/mL of this substance significantly inhibited the cytokine production of the macrophages cultured in the presence of heat-killed C. albicans cells. Based on these findings, the role of the anti-inflammatory action of T-4-ol in its therapeutic activity against oral candidiasis was discussed.

  9. Desoxyrhapontigenin up-regulates Nrf2-mediated heme oxygenase-1 expression in macrophages and inflammatory lung injury

    Directory of Open Access Journals (Sweden)

    Ran Joo Choi

    2014-01-01

    Full Text Available Heme oxygenase-1 (HO-1 is an important anti-inflammatory, antioxidative and cytoprotective enzyme that is regulated by the activation of the major transcription factor, nuclear factor (erythroid-derived 2-like 2 (Nrf2. In the present study, six stilbene derivatives isolated from Rheum undulatum L. were assessed for their antioxidative potential. In the tert-butylhydroperoxide (t-BHP-induced RAW 264.7 macrophage cell line, desoxyrhapontigenin was the most potent component that reduced intracellular reactive oxygen species (ROS and peroxynitrite. In response to desoxyrhapontigenin, the mRNA expression levels of antioxidant enzymes were up-regulated. An electrophoretic mobility shift assay (EMSA confirmed that desoxyrhapontigenin promoted the DNA binding of Nrf2 and increased the expression of antioxidant proteins and enzymes regulated by Nrf2. Further investigation utilizing specific inhibitors of Akt, p38, JNK and ERK demonstrated that the phosphatidylinositol 3-kinase (PI3K/Akt pathway mediates HO-1 expression. Moreover, the increase in Nrf2 expression mediated by treatment with desoxyrhapontigenin was reversed by Nrf2 or Akt gene knock-down. In the LPS-induced in vivo lung inflammation model, pretreatment with desoxyrhapontigenin markedly ameliorated LPS-induced lung inflammation and histological changes. Immunohistochemical analysis of Nrf2, HO-1 and p65 was conducted and confirmed that treatment with desoxyrhapontigenin induced Nrf2 and HO-1 expression but reduced p65 expression. These findings suggest that desoxyrhapontigenin may be a potential therapeutic candidate as an antioxidant or an anti-inflammatory agent.

  10. Salidroside Regulates Inflammatory Response in Raw 264.7 Macrophages via TLR4/TAK1 and Ameliorates Inflammation in Alcohol Binge Drinking-Induced Liver Injury

    Directory of Open Access Journals (Sweden)

    Peng Sun

    2016-11-01

    Full Text Available The current study was designed to investigate the anti-inflammatory effect of salidroside (SDS and the underlying mechanism by using lipopolysaccharide (LPS-stimulated RAW 264.7 macrophages in vitro and a mouse model of binge drinking-induced liver injury in vivo. SDS downregulated protein expression of toll-like receptor 4 (TLR4 and CD14. SDS inhibited LPS-triggered phosphorylation of LPS-activated kinase 1 (TAK1, p38, c-Jun terminal kinase (JNK, and extracellular signal-regulated kinase (ERK. Degradation of IκB-α and nuclear translocation of nuclear factor (NF-κB were effectively blocked by SDS. SDS concentration-dependently suppressed LPS mediated inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 protein levels, as well as their downstream products, NO. SDS significantly inhibited protein secretion and mRNA expression of of interleukin (IL-1β and tumor necrosis factor (TNF-α. Additionally C57BL/6 mice were orally administrated SDS for continuous 5 days, followed by three gavages of ethanol every 30 min. Alcohol binge drinking caused the increasing of hepatic lipid accumulation and serum transaminases levels. SDS pretreatment significantly alleviated liver inflammatory changes and serum transaminases levels. Further investigation indicated that SDS markedly decreased protein level of IL-1β in serum. Taken together, these data implied that SDS inhibits liver inflammation both in vitro and in vivo, and may be a promising candidate for the treatment of inflammatory liver injury.

  11. Mycobacterium avium Subspecies paratuberculosis Recombinant Proteins Modulate Antimycobacterial Functions of Bovine Macrophages.

    Science.gov (United States)

    Bannantine, John P; Stabel, Judith R; Laws, Elizabeth; D Cardieri, Maria Clara; Souza, Cleverson D

    2015-01-01

    It has been shown that Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis) activates the Mitogen Activated Protein Kinase (MAPK) p38 pathway, yet it is unclear which components of M. paratuberculosis are involved in the process. Therefore, a set of 42 M. paratuberculosis recombinant proteins expressed from coding sequences annotated as lipoproteins were screened for their ability to induce IL-10 expression, an indicator of MAPKp38 activation, in bovine monocyte-derived macrophages. A recombinant lipoprotein, designated as MAP3837c, was among a group of 6 proteins that strongly induced IL-10 gene transcription in bovine macrophages, averaging a 3.1-fold increase compared to non-stimulated macrophages. However, a parallel increase in expression of IL-12 and TNF-α was only observed in macrophages exposed to a subset of these 6 proteins. Selected recombinant proteins were further analyzed for their ability to enhance survival of M. avium within bovine macrophages as measured by recovered viable bacteria and nitrite production. All 6 IL-10 inducing MAP recombinant proteins along with M. paratuberculosis cells significantly enhanced phosphorylation of MAPK-p38 in bovine macrophages. Although these proteins are likely not post translationally lipidated in E. coli and thus is a limitation in this study, these results form the foundation of how the protein component of the lipoprotein interacts with the immune system. Collectively, these data reveal M. paratuberculosis proteins that might play a role in MAPK-p38 pathway activation and hence in survival of this organism within bovine macrophages.

  12. Apoptosis induction and attenuation of inflammatory gene expression in murine macrophages via multitherapeutic nanomembranes

    Energy Technology Data Exchange (ETDEWEB)

    Pierstorff, Erik; Krucoff, Max; Ho, Dean [Department of Biomedical Engineering, Robert R McCormick School of Engineering and Applied Science, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States)], E-mail: e-pierstorff@northwestern.edu, E-mail: d-ho@northwestern.edu

    2008-07-02

    The realization of optimized therapeutic delivery is impaired by the challenge of localized drug activity and by the dangers of systemic cytotoxicity which often contribute to patient treatment complications. Here we demonstrate the block copolymer-mediated deposition and release of multiple therapeutics which include an LXR{alpha}/{beta} agonist 3-((4-methoxyphenyl)amino)-4-phenyl-1-(phenylmethyl)-1H-pyrrole-2,5-dione (LXRa) and doxorubicin hydrochloride (Dox) at the air-water interface via Langmuir-Blodgett deposition, as well as copolymer-mediated potent drug elution toward the Raw 264.7 murine macrophage cell line. The resultant copolymer-therapeutic hybrid serves as a localized platform that can be functionalized with virtually any drug due to the integrated hydrophilic and hydrophobic components of the polymer structure. In addition, the sequestering function of the copolymer to anchor the drugs to implant surfaces can enhance delivery specificity when compared to systemic drug administration. Confirmation of drug functionality was confirmed via suppression of the interleukin 6 (Il-6) and tumor necrosis factor alpha (TNF{alpha}) inflammatory cytokines (LXRa), as well as DNA fragmentation analysis (Dox). Furthermore, the fragmentation assays and gene expression analysis demonstrated the innate biocompatibility of the copolymeric material at the gene expression level via the confirmed absence of material-induced apoptosis and a lack of inflammatory gene expression. This modality enables layer-by-layer control of agonist and chemotherapeutic functionalization at the nanoscale for the localization of drug dosage, while simultaneously utilizing the copolymer platform as an anchoring mechanism for drug sequestering, all with an innate material thickness of 4 nm per layer, which is orders of magnitude thinner than existing commercial technologies. Furthermore, these studies comprehensively confirmed the potential translational applicability of copolymeric

  13. Anti-Inflammatory Effects and Mechanisms of Action of Coussaric and Betulinic Acids Isolated from Diospyros kaki in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages.

    Science.gov (United States)

    Kim, Kyoung-Su; Lee, Dong-Sung; Kim, Dong-Cheol; Yoon, Chi-Su; Ko, Wonmin; Oh, Hyuncheol; Kim, Youn-Chul

    2016-09-09

    Diospyros kaki Thunb. is widely distributed in East Asian countries, its leaves being mainly used for making tea. In this study, coussaric acid (CA) and betulinic acid (BA), both triterpenoid compounds, were obtained from D. kaki leaf extracts through bioassay-guided isolation. CA and BA showed anti-inflammatory effects via inhibition of the nuclear factor-κB (NF-κB) pathway, providing important information on their anti-inflammatory mechanism. Furthermore, they markedly inhibited nitric oxide (NO) and prostaglandin E₂ (PGE₂) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages, and suppressed tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) levels. Furthermore, they decreased protein expression of inducible nitric oxide synthase and cyclooxygenase-2. Pre-treatment with CA and BA inhibited LPS-induced NF-κB. We further examined the effects of CA and BA on heme oxygenase (HO)-1 expression in RAW 264.7 macrophages: BA induced HO-1 protein expression in a dose-dependent manner, while CA had no effect. We also investigated whether BA treatment induced nuclear translocation of Nrf2. BA inhibited LPS-induced NF-κB-binding activity, as well as pro-inflammatory mediator and cytokine production (e.g., NO, PGE₂, TNF-α, IL-1β, IL-6), by partial reversal of this effect by SnPP, an inhibitor of HO-1. These findings further elucidate the anti-inflammatory mechanism of CA and BA isolated from D. kaki.

  14. Anti-Inflammatory Effects and Mechanisms of Action of Coussaric and Betulinic Acids Isolated from Diospyros kaki in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Kyoung-Su Kim

    2016-09-01

    Full Text Available Diospyros kaki Thunb. is widely distributed in East Asian countries, its leaves being mainly used for making tea. In this study, coussaric acid (CA and betulinic acid (BA, both triterpenoid compounds, were obtained from D. kaki leaf extracts through bioassay-guided isolation. CA and BA showed anti-inflammatory effects via inhibition of the nuclear factor-κB (NF-κB pathway, providing important information on their anti-inflammatory mechanism. Furthermore, they markedly inhibited nitric oxide (NO and prostaglandin E2 (PGE2 production in lipopolysaccharide (LPS-activated RAW 264.7 macrophages, and suppressed tumor necrosis factor-α (TNF-α, interleukin-6 (IL-6, and interleukin-1β (IL-1β levels. Furthermore, they decreased protein expression of inducible nitric oxide synthase and cyclooxygenase-2. Pre-treatment with CA and BA inhibited LPS-induced NF-κB. We further examined the effects of CA and BA on heme oxygenase (HO-1 expression in RAW 264.7 macrophages: BA induced HO-1 protein expression in a dose-dependent manner, while CA had no effect. We also investigated whether BA treatment induced nuclear translocation of Nrf2. BA inhibited LPS-induced NF-κB-binding activity, as well as pro-inflammatory mediator and cytokine production (e.g., NO, PGE2, TNF-α, IL-1β, IL-6, by partial reversal of this effect by SnPP, an inhibitor of HO-1. These findings further elucidate the anti-inflammatory mechanism of CA and BA isolated from D. kaki.

  15. Phellinus linteus inhibits inflammatory mediators by suppressing redox-based NF-kappaB and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophage.

    Science.gov (United States)

    Kim, Ho Gyoung; Yoon, Deok Hyo; Lee, Won Ho; Han, Sang Kuk; Shrestha, Bhushan; Kim, Chun Hoi; Lim, Mi Hee; Chang, Woochul; Lim, Soyeon; Choi, Sunga; Song, Won O; Sung, Jae Mo; Hwang, Ki Chul; Kim, Tae Woong

    2007-12-03

    The mushroom Phellinus linteus has been known to exhibit potent biological activity. In contrast to the immuno-potentiating properties of Phellinus linteus, the anti-inflammatory properties of Phellinus linteus have rarely been investigated. Recently, ethanol extract and n-BuOH fractions from Phellinus linteus were deemed most effective in anti-inflammatory activity in RAW 264.7 macrophages. The regulatory mechanisms of Phellinus linteus butanol fractions (PLBF) on the pharmacological and biochemical actions of macrophages involved in inflammation have not been clearly defined yet. In the present study, we tested the role of PLBF on anti-inflammation patterns in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. To investigate the mechanism by which PLBF inhibits NO and PGE2 production as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression, we examined the activation of IkappaB and MAPKs in LPS-activated macrophages. PLBF clearly inhibited nuclear translocation of NF-kappaB p65 subunits, which correlated with PLBF's inhibitory effects on IkappaBalpha phosphorylation and degradation. PLBF also suppressed the activation of mitogen-activated protein (MAP) kinases including p38 and stress-activated protein kinase/c-Jun NH2-terminal kinase (SAPK/JNK). Furthermore, macrophages stimulated with LPS generated ROS via activation of membrane-bound NADPH oxidase, and ROS played an important role in the activation of nuclear factor-kappaB (NF-kappaB) and MAPKs. We demonstrated that PLBF directly blocked intracellular accumulation of reactive oxygen species in RAW 264.7 cells stimulated with LPS much as the NADPH oxidase inhibitors, diphenylene iodonium, and antioxidant pyrrolidine dithiocarbamate did. The suppression of NADPH oxidase also inhibited NO production and iNOS protein expression. Cumulatively, these results suggest that PLBF inhibits the production of NO and PGE2 through the down-regulation of iNOS and COX-2 gene

  16. Macrophage-specific TLR2 signaling mediates pathogen-induced TNF-dependent inflammatory oral bone loss.

    Science.gov (United States)

    Papadopoulos, George; Weinberg, Ellen O; Massari, Paola; Gibson, Frank C; Wetzler, Lee M; Morgan, Elise F; Genco, Caroline A

    2013-02-01

    Porphyromonas gingivalis is a primary etiological agent of chronic periodontal disease, an infection-driven chronic inflammatory disease that leads to the resorption of tooth-supporting alveolar bone. We previously reported that TLR2 is required for P. gingivalis-induced alveolar bone loss in vivo, and our in vitro work implicated TNF as a key downstream mediator. In this study, we show that TNF-deficient (Tnf(-/-)) mice are resistant to alveolar bone loss following oral infection with P. gingivalis, and thus establish a central role for TNF in experimental periodontal disease. Using bone marrow-derived macrophages (BMDM) from wild-type and gene-specific knockout mice, we demonstrate that the initial inflammatory response to P. gingivalis in naive macrophages is MyD88 dependent and requires cooperative signaling of TLR2 and TLR4. The ability of P. gingivalis to activate cells via TLR2 or TLR4 was confirmed in TLR2- or TLR4-transformed human embryonic kidney cells. Additional studies using bacterial mutants demonstrated a role for fimbriae in the modulation of TLR-mediated activation of NF-κB. Whereas both TLR2 and TLR4 contributed to TNF production in naive macrophages, P. gingivalis preferentially exploited TLR2 in endotoxin-tolerant BMDM to trigger excessive TNF production. We found that TNF induced surface TLR2 expression and augmented TLR-induced cytokine production in P. gingivalis-stimulated BMDM, establishing a previously unidentified TNF-dependent feedback loop. Adoptive transfer of TLR2-expressing macrophages to TLR2-deficient mice restored the ability of P. gingivalis to induce alveolar bone loss in vivo. Collectively, our results identify a TLR2- and TNF-dependent macrophage-specific mechanism underlying pathogen-induced inflammatory bone loss in vivo.

  17. 病毒巨噬细胞炎症蛋白vMIP-Ⅰ和vMIP-Ⅱ在Kaposi's肉瘤患者中的表达及意义%The expression and clinical significance of viral macrophage inflammatory protein vMIP-Ⅰ and vMIP-Ⅱ in Kapsi's sarcoma patients

    Institute of Scientific and Technical Information of China (English)

    王晓东; 姜涵; 侯平; 多兰·达力汗; 罗浩杰; 马萍; 帕丽达·阿布利孜

    2015-01-01

    目的 初步探明KSHV编码的病毒巨噬细胞炎症蛋白vMIP-Ⅰ和vMIP-Ⅱ在新疆经典型Kaposi's sarcoma(KS)患者的肉瘤组织、血液、唾液和尿液中的表达情况.方法 对8例新疆经典KS患者的新鲜冰冻肉瘤组织、血液、唾液和尿液标本进行基因组DNA提取,应用PCR扩增各标本中的vMIP-Ⅰ和vMIP-Ⅱ基因.结果 8例新疆经典型KS患者的肉瘤组织、血液、唾液和尿液中均获得较好的基因组DNA;同时8例组织标本全部扩增出vMIP-Ⅰ、vMIP-Ⅱ基因,但是8例患者的血液、唾液和尿液标本都未出现vMIP-Ⅰ和vMIP-Ⅱ基因表达.结论 新疆经典型KS患者肉瘤组织中均检测到vMIP-Ⅰ和vMIP-Ⅱ基因片段的表达,为深入研究卡波氏肉瘤的血管形成机制提供初步的依据.%Objective To observe the expression in sarcoma tissue,blood,salivaand urine of KSHV-encoded virus macrophage inflammatory protein vMIP-Ⅰ,vMIP-Ⅱ.Methods Genomic DNA was extracted from samples in 8 classic Kapsi' s sarcoma patients of Xinjiang,vMIP-Ⅰ and vMIP-Ⅱ gene were amplified by PCR.Results Genomic DNA were detected from sarcoma tissue,blood,saliva and urine of 8 classic Kapsi' s sarcoma patients,while vMIP-Ⅰ and vMIP-Ⅱ were amplified from all tissue samples,but the expression of vMIP-Ⅰ and vMIP-Ⅱ in blood,saliva and urine was negtive.Conclusions There is special expression of vMIP-Ⅰ and vMIP-Ⅱ in Kapsi' s sarcoma tissue.It provides a preliminary basis for further study of the mechanism of angiogenesis Kaposi's sarcoma.

  18. 特应性皮炎患者RANTES、MIP-1α及趋化因子受体CCR5测定及其意义%Detection of regulated on activation normal T cell expressed and secreted,macrophage inflammatory protein-1 alpha and chemokine receptor CCR5 in patients with atopic dermatitis

    Institute of Scientific and Technical Information of China (English)

    胡建中; 胡南; 赵武能; 蔡锐; 伍参荣; 卢芳国

    2007-01-01

    目的 探讨调节正常T细胞表达和分泌活性因子(Regulated on activation normal T cell expressed and secreted,RANTES) ,巨噬细胞炎性蛋白(Macrophage inflammatory protein-1,MIP-1α)及趋化因子受体CCR5在特应性皮炎(AD)发病中的作用.方法 采集30例AD患者及10例健康对照者血液,分离血清和外周血单个核细胞(PBMC),双抗体夹心ELISA法检测PBMC产生的RANTES、MIP-1α含量,荧光定量PCR检测外周血PBMC表达的CCR5 mRNA水平.结果 特应性皮炎患者与健康对照者血清RANTES含量分别为(55.7±3.4)μg/L和(35.6±1.8)μg/L,差异有显著性(t=3.036,P<0.01),且RANTES水平与SCORAD呈正相关(r=0.889,P<0.05);MIP-1α含量分别为(51.8±3.6) μg/L和(44.7±4.3) μg/L,差异有显著性(t=2.465,P<0.05).CCR5 AD患者为1.284±0.088,健康对照为1.133±0.075,差异有显著性(t=2.752,P<0.05).结论 RANTES和MIP-1α及特异性受体CCR5在特应性皮炎患者中均显著增高,差异有显著性,在AD的发病中可能起重要作用.

  19. Effective targeting of Aβ to macrophages by sonochemically prepared surface-modified protein microspheres.

    Science.gov (United States)

    Richman, Michal; Perelman, Alex; Gertler, Asaf; Rahimipour, Shai

    2013-01-14

    Imbalanced homeostasis and oligomerization of the amyloid-β (Aβ) peptide in the brain are hallmarks of Alzheimer's disease (AD). Microglia and macrophages play a critical role in the etiology of AD either by clearing Aβ from the brain or inducing inflammation. Recent evidence suggests that clearance of Aβ by microglia/macrophages via the phagocytic pathway is defective in AD, which can contribute to the accumulation of Aβ in the brain. We have recently demonstrated that protein microspheres modified at their surface with multiple copies of an Aβ-recognition motif can strongly bind Aβ, inhibit its aggregation, and directly reduce its toxicity by sequestering it from the medium. Here, we describe how microsphere-bound Aβ can stimulate microglial cells and be phagocytosed through a mechanism that is distinct from that of Aβ removal and, thus, contribute to the clearance of Aβ, even by defective microglial cells. The phagocytosis was most effective, with microspheres having a diameter of microspheres changed the kinetics of the phagocytosis. Moreover, while aggregated Aβ induced a significant inflammatory response that was manifested by the release of TNF-α, the microsphere-bound Aβ dramatically reduced the amount of cytokine released from microglial cells.

  20. Escherichia coli-host macrophage interactions in the pathogenesis of inflammatory bowel disease.

    Science.gov (United States)

    Tawfik, Ahmed; Flanagan, Paul K; Campbell, Barry J

    2014-07-21

    Multiple studies have demonstrated alterations in the intestinal microbial community (termed the microbiome) in Crohn's disease (CD) and several lines of evidence suggest these changes may have a significant role in disease pathogenesis. In active and quiescent disease, both the faecal and mucosa-associated microbiome are discordant with matched controls with reduced biodiversity, changes in dominant organisms and increased temporal variation described. Mucosa-associated adherent, invasive Escherichia coli (E. coli) (AIEC), pro-inflammatory and resistant to killing by mucosal macrophages, appear to be particularly important. AIEC possess several virulence factors which may confer pathogenic potential in CD. Type-1 pili (FimH) allow adherence to intestinal cells via cell-surface carcinoembryonic antigen-related cell adhesion molecules and possession of long polar fimbrae promotes translocation across the intestinal mucosa via microfold (M)-cells of the follicle-associated epithelium. Resistance to stress genes (htrA, dsbA and hfq) and tolerance of an acidic pH may contribute to survival within the phagolysosomal environment. Here we review the current understanding of the role of mucosa-associated E. coli in Crohn's pathogenesis, the role of the innate immune system, factors which may contribute to prolonged bacterial survival and therapeutic strategies to target intracellular E. coli.

  1. Arcobacter butzleri induces a pro-inflammatory response in THP-1 derived macrophages and has limited ability for intracellular survival.

    Science.gov (United States)

    zur Bruegge, Jennifer; Hanisch, Carlos; Einspanier, Ralf; Alter, Thomas; Gölz, Greta; Sharbati, Soroush

    2014-11-01

    Recent case reports have identified Arcobacter (A.) butzleri to be another emerging pathogen of the family Campylobacteraceae causing foodborne diseases. However, little is known about its interaction with the human immune system. As macrophages act as first defense against bacterial infections, we studied for the first time the impact of A. butzleri on human macrophages using THP-1 derived macrophages as an in vitro infection model. Our investigations considered the inflammatory response, intracellular survival and activation of caspases as potential virulence mechanisms employed by A. butzleri. Induction of IL-1α, IL-1ß, IL-6, IL-8, IL-12ß and TNFα demonstrated a pro-inflammatory response of infected macrophages towards A. butzleri. gentamycin protection assays revealed the ability of A. butzleri strains to survive and resist the hostile environment of phagocytic immune cells for up to 22 h. Moreover, initial activation of intitiator- (CASP8) as well as effector caspases (CASP3/7) was observed without the onset of DNA damage, suggesting a potential counter regulation. Intriguingly, we recognized distinct strain specific differences in invasion and survival capabilities. This suggests the existence of isolate dependent phenotype variations and different virulence potentials as known for other intestinal pathogens such as Salmonella enterica ssp.

  2. Anti-inflammatory effects of tetradecylthioacetic acid (TTA in macrophage-like cells from Atlantic salmon (Salmo salar L.

    Directory of Open Access Journals (Sweden)

    Grammes Fabian

    2011-07-01

    Full Text Available Abstract Background Commercial Atlantic salmon is fed diets with high fat levels to promote fast and cost-effective growth. To avoid negative impact of obesity, food additives that stimulate fat metabolism and immune function are of high interest. TTA, tetradecylthioacetic acid, is a synthetic fatty acid that stimulates mitochondrial β-oxidation most likely by activation of peroxysome proliferator-activated receptors (PPARs. PPARs are important transcription factors regulating multiple functions including fat metabolism and immune responses. Atlantic salmon experiments have shown that TTA supplemented diets significantly reduce mortality during natural outbreaks of viral diseases, suggesting a modulatory role of the immune system. Results To gain new insights into TTA effects on the Atlantic salmon immune system, a factorial, high-throughput microarray experiment was conducted using a 44K oligo nucleotide salmon microarray SIQ2.0 and the Atlantic salmon macrophage-like cell line ASK. The experiment was used to determine the transcriptional effects of TTA, the effects of TTA in poly(I:C elicited cells and the effects of pretreating the cells with TTA. The expression patterns revealed that a large proportion of genes regulated by TTA were related to lipid metabolism and increased mitochondrial β-oxidation. In addition we found that for a subset of genes TTA antagonized the transcriptional effects of poly(I:C. This, together with the results from qRT-PCR showing an increased transcription of anti-inflammatory IL10 by TTA, indicates anti-inflammatory effects. Conclusions We demonstrate that TTA has significant effects on macrophage-like salmon cells that are challenged by the artificial dsRNA poly(I:C. The immune stimulatory effect of TTA in macrophages involves increased lipid metabolism and suppressed inflammatory status. Thus, suggesting that TTA directs the macrophage-like cells towards alternative, anti-inflammatory, activation. This has

  3. Novel anti-inflammatory chalcone derivatives inhibit the induction of nitric oxide synthase and cyclooxygenase-2 in mouse peritoneal macrophages.

    Science.gov (United States)

    Herencia, F; Ferrándiz, M L; Ubeda, A; Guillén, I; Dominguez, J N; Charris, J E; Lobo, G M; Alcaraz, M J

    1999-06-18

    In a previous work, we tested a series of chalcone derivatives as possible anti-inflammatory compounds. We now investigate the effects of three of those compounds, CHI, CH8 and CH12, on nitric oxide and prostanoid generation in mouse peritoneal macrophages stimulated with lipopolysaccharide and in the mouse air pouch injected with zymosan, where they showed a dose-dependent inhibition with inhibitory concentration 50% values in the microM range. This effect was not the consequence of a direct inhibitory action on enzyme activities. Our results demonstrated that chalcone derivatives inhibited de novo inducible nitric oxide synthase and cyclooxygenase-2 synthesis, being a novel therapeutic approach for inflammatory diseases.

  4. Impaired Functions of Macrophage from Cystic Fibrosis Patients: CD11b, TLR-5 Decrease and sCD14, Inflammatory Cytokines Increase

    Science.gov (United States)

    Simonin-Le Jeune, Karin; Le Jeune, André; Jouneau, Stéphane; Belleguic, Chantal; Roux, Pierre-François; Jaguin, Marie; Dimanche-Boitre, Marie-Thérèse; Lecureur, Valérie; Leclercq, Caroline; Desrues, Benoît; Brinchault, Graziella; Gangneux, Jean-Pierre; Martin-Chouly, Corinne

    2013-01-01

    Background Early in life, cystic fibrosis (CF) patients are infected with microorganisms. The role of macrophages has largely been underestimated in literature, whereas the focus being mostly on neutrophils and epithelial cells. Macrophages may however play a significant role in the initiating stages of this disease, via an inability to act as a suppressor cell. Yet macrophage dysfunction may be the first step in cascade of events leading to chronic inflammation/infection in CF. Moreover, reports have suggested that CFTR contribute to altered inflammatory response in CF by modification of normal macrophage functions. Objectives In order to highlight possible intrinsic macrophage defects due to impaired CFTR, we have studied inflammatory cytokines secretions, recognition of pathogens and phagocytosis in peripheral blood monocyte-derived macrophages from stable adult CF patients and healthy subjects (non-CF). Results In CF macrophage supernatants, concentrations of sCD14, IL-1β, IL-6, TNF-α and IL-10 were strongly raised. Furthermore expression of CD11b and TLR-5 were sorely decreased on CF macrophages. Beside, no difference was observed for mCD14, CD16, CD64, TLR-4 and TLR1/TLR-2 expressions. Moreover, a strong inhibition of phagocytosis was observed for CF macrophages. Elsewhere CFTR inhibition in non-CF macrophages also led to alterations of phagocytosis function as well as CD11b expression. Conclusions Altogether, these findings demonstrate excessive inflammation in CF macrophages, characterized by overproduction of sCD14 and inflammatory cytokines, with decreased expression of CD11b and TLR-5, and impaired phagocytosis. This leads to altered clearance of pathogens and non-resolution of infection by CF macrophages, thereby inducing an exaggerated pro-inflammatory response. PMID:24098711

  5. Berteroin Present in Cruciferous Vegetables Exerts Potent Anti-Inflammatory Properties in Murine Macrophages and Mouse Skin

    Directory of Open Access Journals (Sweden)

    Yoo Jin Jung

    2014-11-01

    Full Text Available Berteroin (5-methylthiopentyl isothiocyanate is a sulforaphane analog present in cruciferous vegetables, including Chinese cabbage, rucola salad leaves, and mustard oil. We examined whether berteroin exerts anti-inflammatory activities using lipopolysaccharide (LPS-stimulated Raw 264.7 macrophages and 12-O-tetradecanoylphorbol-13-acetate (TPA-induced mouse skin inflammation models. Berteroin decreased LPS-induced release of inflammatory mediators and pro-inflammatory cytokines in Raw 264.7 macrophages. Berteroin inhibited LPS-induced degradation of inhibitor of κBα (IκBα and nuclear factor-κB p65 translocation to the nucleus and DNA binding activity. Furthermore, berteroin suppressed degradation of IL-1 receptor-associated kinase and phosphorylation of transforming growth factor β activated kinase-1. Berteroin also inhibited LPS-induced phosphorylation of p38 MAPK, ERK1/2, and AKT. In the mouse ear, berteroin effectively suppressed TPA-induced edema formation and down-regulated iNOS and COX-2 expression as well as phosphorylation of AKT and ERK1/2. These results demonstrate that berteroin exhibits potent anti-inflammatory properties and suggest that berteroin can be developed as a skin anti-inflammatory agent.

  6. The Anti-Inflammatory Effect of Algae-Derived Lipid Extracts on Lipopolysaccharide (LPS-Stimulated Human THP-1 Macrophages

    Directory of Open Access Journals (Sweden)

    Ruairi C. Robertson

    2015-08-01

    Full Text Available Algae contain a number of anti-inflammatory bioactive compounds such as omega-3 polyunsaturated fatty acids (n-3 PUFA and chlorophyll a, hence as dietary ingredients, their extracts may be effective in chronic inflammation-linked metabolic diseases such as cardiovascular disease. In this study, anti-inflammatory potential of lipid extracts from three red seaweeds (Porphyra dioica, Palmaria palmata and Chondrus crispus and one microalga (Pavlova lutheri were assessed in lipopolysaccharide (LPS-stimulated human THP-1 macrophages. Extracts contained 34%–42% total fatty acids as n-3 PUFA and 5%–7% crude extract as pigments, including chlorophyll a, β-carotene and fucoxanthin. Pretreatment of the THP-1 cells with lipid extract from P. palmata inhibited production of the pro-inflammatory cytokines interleukin (IL-6 (p < 0.05 and IL-8 (p < 0.05 while that of P. lutheri inhibited IL-6 (p < 0.01 production. Quantitative gene expression analysis of a panel of 92 genes linked to inflammatory signaling pathway revealed down-regulation of the expression of 14 pro-inflammatory genes (TLR1, TLR2, TLR4, TLR8, TRAF5, TRAF6, TNFSF18, IL6R, IL23, CCR1, CCR4, CCL17, STAT3, MAP3K1 by the lipid extracts. The lipid extracts effectively inhibited the LPS-induced pro-inflammatory signaling pathways mediated via toll-like receptors, chemokines and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB signaling molecules. These results suggest that lipid extracts from P. lutheri, P. palmata, P. dioica and C. crispus can inhibit LPS-induced inflammatory pathways in human macrophages. Therefore, algal lipid extracts should be further explored as anti-inflammatory ingredients for chronic inflammation-linked metabolic diseases.

  7. Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12.

    Science.gov (United States)

    Rhee, Inmoo; Davidson, Dominique; Souza, Cleiton Martins; Vacher, Jean; Veillette, André

    2013-06-01

    Macrophages can undergo cell-cell fusion, leading to the formation of multinucleated giant cells and osteoclasts. This process is believed to promote the proteolytic activity of macrophages toward pathogens, foreign bodies, and extracellular matrices. Here, we examined the role of PTP-PEST (PTPN12), a cytoplasmic protein tyrosine phosphatase, in macrophage fusion. Using a macrophage-targeted PTP-PEST-deficient mouse, we determined that PTP-PEST was not needed for macrophage differentiation or cytokine production. However, it was necessary for interleukin-4-induced macrophage fusion into multinucleated giant cells in vitro. It was also needed for macrophage fusion following implantation of a foreign body in vivo. Moreover, in the RAW264.7 macrophage cell line, PTP-PEST was required for receptor activator of nuclear factor kappa-B ligand (RANKL)-triggered macrophage fusion into osteoclasts. PTP-PEST had no impact on expression of fusion mediators such as β-integrins, E-cadherin, and CD47, which enable macrophages to become fusion competent. However, it was needed for polarization of macrophages, migration induced by the chemokine CC chemokine ligand 2 (CCL2), and integrin-induced spreading, three key events in the fusion process. PTP-PEST deficiency resulted in specific hyperphosphorylation of the protein tyrosine kinase Pyk2 and the adaptor paxillin. Moreover, a fusion defect was induced upon treatment of normal macrophages with a Pyk2 inhibitor. Together, these data argue that macrophage fusion is critically dependent on PTP-PEST. This function is seemingly due to the ability of PTP-PEST to control phosphorylation of Pyk2 and paxillin, thereby regulating cell polarization, migration, and spreading.

  8. Propolis and its constituent caffeic acid suppress LPS-stimulated pro-inflammatory response by blocking NF-κB and MAPK activation in macrophages.

    Science.gov (United States)

    Búfalo, Michelle Cristiane; Ferreira, Isabel; Costa, Gustavo; Francisco, Vera; Liberal, Joana; Cruz, Maria Teresa; Lopes, Maria Celeste; Batista, Maria Teresa; Sforcin, José Maurício

    2013-08-26

    Propolis is a bee product with numerous biological and pharmacological properties, such as immunomodulatory and anti-inflammatory activities. It has been used in folk medicine as a healthy drink and in food to improve health and prevent inflammatory diseases. However, little is known about its mechanism of action. Thus, the goal of this study was to verify the antioxidant activity and to explore the anti-inflammatory properties of propolis by addressing its intracellular mechanism of action. Caffeic acid was investigated as a possible compound responsible for propolis action. The antioxidant properties of propolis and caffeic acid were evaluated by using the 2,2-Diphenyl-1-picrylhydrazyl free radical (DPPH) scavenging method. To analyze the anti-inflammatory activity, Raw 264.7 macrophages were treated with different concentrations of propolis or caffeic acid, and nitric oxide (NO) production, a strong pro-inflammatory mediator, was evaluated by the Griess reaction. The concentrations of propolis and caffeic acid that inhibited NO production were evaluated on intracellular signaling pathways triggered during inflammation, namely p38 mitogen-activated protein kinase (MAPK), c-jun NH2-terminal kinase (JNK1/2), the transcription nuclear factor (NF)-κB and extracellular signal-regulated kinase (ERK1/2), through Western blot using specific antibodies. A possible effect of propolis on the cytotoxicity of hepatocytes was also evaluated, since this product can be used in human diets. Caffeic acid showed a higher antioxidant activity than propolis extract. Propolis and caffeic acid inhibited NO production in macrophages, at concentrations without cytotoxicity. Furthermore, both propolis and caffeic acid suppressed LPS-induced signaling pathways, namely p38 MAPK, JNK1/2 and NF-κB. ERK1/2 was not affected by propolis extract and caffeic acid. In addition, propolis and caffeic acid did not induce hepatotoxicity at concentrations with strong anti-inflammatory potential

  9. Cholecystokinin plays a novel protective role in diabetic kidney through anti-inflammatory actions on macrophage: anti-inflammatory effect of cholecystokinin.

    Science.gov (United States)

    Miyamoto, Satoshi; Shikata, Kenichi; Miyasaka, Kyoko; Okada, Shinichi; Sasaki, Motofumi; Kodera, Ryo; Hirota, Daisho; Kajitani, Nobuo; Takatsuka, Tetsuharu; Kataoka, Hitomi Usui; Nishishita, Shingo; Sato, Chikage; Funakoshi, Akihiro; Nishimori, Hisakazu; Uchida, Haruhito Adam; Ogawa, Daisuke; Makino, Hirofumi

    2012-04-01

    Inflammatory process is involved in the pathogenesis of diabetic nephropathy. In this article, we show that cholecystokinin (CCK) is expressed in the kidney and exerts renoprotective effects through its anti-inflammatory actions. DNA microarray showed that CCK was upregulated in the kidney of diabetic wild-type (WT) mice but not in diabetic intracellular adhesion molecule-1 knockout mice. We induced diabetes in CCK-1 receptor (CCK-1R) and CCK-2R double-knockout (CCK-1R(-/-),-2R(-/-)) mice, and furthermore, we performed a bone marrow transplantation study using CCK-1R(-/-) mice to determine the role of CCK-1R on macrophages in the diabetic kidney. Diabetic CCK-1R(-/-),-2R(-/-) mice revealed enhanced albuminuria and inflammation in the kidney compared with diabetic WT mice. In addition, diabetic WT mice with CCK-1R(-/-) bone marrow-derived cells developed more albuminuria than diabetic CCK-1R(-/-) mice with WT bone marrow-derived cells. Administration of sulfated cholecystokinin octapeptide (CCK-8S) ameliorated albuminuria, podocyte loss, expression of proinflammatory genes, and infiltration of macrophages in the kidneys of diabetic rats. Furthermore, CCK-8S inhibited both expression of tumor necrosis factor-α and chemotaxis in cultured THP-1 cells. These results suggest that CCK suppresses the activation of macrophage and expression of proinflammatory genes in diabetic kidney. Our findings may provide a novel strategy of therapy for the early stage of diabetic nephropathy.

  10. Anti-inflammatory effect of pomegranate flower in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages.

    Science.gov (United States)

    Xu, Jianjun; Zhao, Yongxin; Aisa, Haji Akber

    2017-12-01

    Punica granatum L (Punicaceae) flower is an important diabetes treatment in oriental herbal medicine. This study investigates the inflammation effects of pomegranate flower (PFE) ethanol extract in LPS-induced RAW264.7 cells. PFE (10, 25, 50, 100 μg/mL) was applied to 1 μg/mL LPS-induced RAW 264.7 macrophages in vitro. Levels of nitric oxide (NO), prostaglandin E2 (PGE2) and pro-inflammatory cytokines interleukin (IL)-1β (IL-1β), interleukin (IL)-6 (IL-6) and tumor necrosis factor (TNF-α) in the supernatant fraction were determined using enzyme-linked immunosorbent assay (ELISA). Expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), phosphorylation of mitogen-activated protein kinase (MAPK) subgroups extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and P38, as well as nuclear factor-κB (NF-κB) activation in extracts were detected via Western blot. 10-100 μg/mL PFE decreased the production of NO (IC50 value = 31.8 μg/mL), PGE2 (IC50 value = 54.5 μg/mL), IL-6 (IC50 value = 48.7 μg/mL), IL-1β (IC50 value = 71.3 μg/mL) and TNF-α (IC50 value = 62.5 μg/mL) in LPS-stimulated RAW 264.7 cells significantly. A mechanism-based study showed that phosphorylation of ERK1/2, p38, JNK and translocation of the NF-B p65 subunit into nuclei were inhibited by the PFE treatment. These results show that PFE produced potential anti-inflammatory effect through modulating the synthesis of several mediators and cytokines involved in the inflammatory process.

  11. Roxatidine suppresses inflammatory responses via inhibition of NF-κB and p38 MAPK activation in LPS-induced RAW 264.7 macrophages.

    Science.gov (United States)

    Cho, Eu-Jin; An, Hyo-Jin; Shin, Ji-Sun; Choi, Hye-Eun; Ko, Jane; Cho, Young-Wuk; Kim, Hyung-Min; Choi, Jung-Hye; Lee, Kyung-Tae

    2011-12-01

    Roxatidine is a novel, specific, competitive H(2) -receptor antagonist that is used to treat gastric and duodenal ulcers, and which is known to suppress the growth of several tumors by reducing vascular endothelial growth factor (VEGF) expression. Nevertheless, it remains unclear whether roxatidine has anti-inflammatory effects. In this study, we the authors investigated the anti-inflammatory effect of roxatidine in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. It was found that roxatidine dose-dependently inhibited the productions of prostaglandin E(2) (PGE(2)), nitric oxide (NO), and histamine, and the protein and mRNA expressions of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and histidine decarboxylase (HDC). In addition, roxatidine reduced the productions and expressions of VEGF-1 and pro-inflammatory cytokines, including those of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). Electrophoretic mobility shift assays (EMSA) and reporter gene assays revealed that treatment with roxatidine attenuated the LPS-induced DNA-binding and transcriptional activity of nuclear factor kappa B (NF-κB). In addition, it was found that pretreatment with roxatidine significantly inhibited the nuclear translocations of the p65 and p50 subunits of NF-κB, and these inhibitions were not found to be associated with decreases in the phosphorylation or degradation of inhibitory kappa B-α (IκBα). Furthermore, roxatidine suppressed the phosphorylation of p38 MAP kinase, but not of IκB kinase-α/β (IKKα/β), c-Jun NH(2) -terminal kinase (JNK), or extracellular signal-regulated kinase (ERK). Taken together, these results indicate that the anti-inflammatory properties of roxatidine in LPS-treated RAW 264.7 macrophages are mediated by the inhibition of NF-κB transcriptional activity and the p38 MAP kinase pathway.

  12. Acanthopanax koreanum roots inhibit the expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and cyclooxygenase-2 in RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Eun-Jin Yang

    2016-03-01

    Full Text Available Acanthopanax koreanum is a popular plant found on Jeju Island, Korea and is commonly used to prevent the side effects of consumption of alcoholic beverages. However, this plant has not been properly utilized as a medicinal material. In this study, we investigated the anti-inflammatory effects of the 70% ethanol extract of A. koreanum roots (AKR-E. The results indicated that the AKR-E (200 μg/mL inhibited the lipopolysaccharide (LPS-induced production of nitric oxide (NO and prostaglandin E2 (PGE2 in RAW 264.7 macrophages by 41.2% and 78.9%, respectively. These effects were accompanied by concentration-dependent decreases in the expression levels of inducible NO synthase (iNOS and cyclooxygenase-2 (COX-2 proteins. Additionally, the AKR-E inhibited the expression of pro-inflammatory cytokines, including interleukin (IL-6 (22.7% and IL-1β (74%. These data showed that the AKR-E had protective effects against the induction of LPS-induced inflammation in RAW 264.7 macrophages.

  13. The Local Inflammatory Responses to Infection of the Peritoneal Cavity in Humans: Their Regulation by Cytokines, Macrophages, and Other Leukocytes

    Directory of Open Access Journals (Sweden)

    Marien Willem Johan Adriaan Fieren

    2012-01-01

    Full Text Available Studies on infection-induced inflammatory reactions in humans rely largely on findings in the blood compartment. Peritoneal leukocytes from patients treated with peritoneal dialysis offer a unique opportunity to study in humans the inflammatory responses taking place at the site of infection. Compared with peritoneal macrophages (pM from uninfected patients, pM from infected patients display ex vivo an upregulation and downregulation of proinflammatory and anti-inflammatory mediators, respectively. Pro-IL-1 processing and secretion rather than synthesis proves to be increased in pM from infectious peritonitis suggesting up-regulation of caspase-1 in vivo. A crosstalk between pM, γ T cells, and neutrophils has been found to be involved in augmented TNF expression and production during infection. The recent finding in experimental studies that alternatively activated macrophages (M2 increase by proliferation rather than recruitment may have significant implications for the understanding and treatment of chronic inflammatory conditions such as encapsulating peritoneal sclerosis (EPS.

  14. Involvement of Nrf2-mediated heme oxygenase-1 expression in anti-inflammatory action of chitosan oligosaccharides through MAPK activation in murine macrophages.

    Science.gov (United States)

    Hyung, Jun-Ho; Ahn, Chang-Bum; Il Kim, Boo; Kim, Kyunghoi; Je, Jae-Young

    2016-12-15

    Chitosan and its derivatives have been reported to have anti-inflammatory effects in vitro and in vivo. It is also suggested that chitosan and its derivatives could be up-regulating heme oxygenase-1 (HO-1) in different models. However, the up-regulation of HO-1 by chitosan oligosaccharides (COS) remains unexplored in regard to anti-inflammatory action in lipopolysaccharide (LPS)-stimulated murine macrophages (RAW264.7 cells). Treatment with COS induced HO-1 expression in LPS-stimulated RAW264.7 cells, whereas the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) was decreased. Pretreatment with ZnPP, a HO-1 inhibitor, reduced the COS-mediated anti-inflammatory action. HO-1 induction is mediated by activating the nuclear translocation of NF-E2-related factor 2 (Nrf2) using COS. Moreover, COS increased the phosphorylation of extracellular signal regulated kinase (ERK1/2), c-Jun N-terminal kinase/stress-activated protein kinase (JNK), and p38 MAPK. However, specific inhibitors of ERK, JNK, and p38 reduced COS-mediated nuclear translocation of Nrf2. Therefore, HO-1 induction also decreased in RAW264.7 cells. Collectively, COS exert an anti-inflammatory effect through Nrf2/MAPK-mediated HO-1 induction.

  15. 2-Phenylnaphthalene Derivatives Inhibit Lipopolysaccharide-Induced Pro-Inflammatory Mediators by Downregulating of MAPK/NF-κB Pathways in RAW 264.7 Macrophage Cells

    Science.gov (United States)

    Chang, Chi-Fen; Liao, Kang-Chun; Chen, Chung-Hwan

    2017-01-01

    The anti-inflammatory pharmacological effect of eight 2-phenylnaphthalenes (PNAP-1−PNAP-8) on lipopolysaccharide (LPS)-induced RAW 264.7 (a mouse cell line) was investigated. Among them, 6,7-dihydroxy-2-(4′-hydroxyphenyl)naphthalene (PNAP-6) and 2-(4′-aminophenyl)-6,7-dimethoxynaphthalene (PNAP-8) exhibited the best anti-inflammatory activity in this study. PNAP-6 and PNAP-8 not only significantly decreased the expression of inducible nitric oxide synthase and cyclooxygenase-II, but also inhibited the production of nitric oxide, interleukin-6, and tumor necrosis factor-α in LPS stimulated cells. Moreover, PNAP-6 and PNAP-8 inhibited nuclear factor (NF)-κB activation by decreasing the degradation of IκB and nuclear translocation of NF-κB subunit (p65). In addition, PNAP-6 and PNAP-8 also attenuated the phosphorylation of ERK, p38, and JNK. These results suggest that PNAP-6 and PNAP-8 exert anti-inflammatory activities by down regulating NF-κB activation and the mitogen-activated protein kinase signaling pathway in LPS-stimulated Raw 264.7 cells. This is the first study demonstrating that PNAPs can inhibit LPS-induced pro-inflammatory mediators in macrophages cells. PMID:28060845

  16. Mesenchymal Stromal Cell-Derived Microvesicles Regulate an Internal Pro-Inflammatory Program in Activated Macrophages

    Directory of Open Access Journals (Sweden)

    Juan S. Henao Agudelo

    2017-07-01

    Full Text Available Mesenchymal stromal cells (MSCs are multipotent cells with abilities to exert immunosuppressive response promoting tissue repair. Studies have shown that MSCs can secrete extracellular vesicles (MVs-MSCs with similar regulatory functions to the parental cells. Furthermore, strong evidence suggesting that MVs-MSCs can modulate several immune cells (i.e., Th1, Th17, and Foxp3+ T cells. However, their precise effect on macrophages (Mϕs remains unexplored. We investigated the immunoregulatory effect of MVs-MSCs on activated M1-Mϕs in vitro and in vivo using differentiated bone marrow Mϕs and an acute experimental model of thioglycollate-induced peritonitis, respectively. We observed that MVs-MSCs shared surface molecules with MSCs (CD44, CD105, CD90, CD73 and expressed classical microvesicle markers (Annexin V and CD9. The in vitro treatment with MVs-MSCs exerted a regulatory-like phenotype in M1-Mϕs, which showed higher CD206 level and reduced CCR7 expression. This was associated with decreased levels of inflammatory molecules (IL-1β, IL-6, nitric oxide and increased immunoregulatory markers (IL-10 and Arginase in M1-Mϕs. In addition, we detected that MVs-MSCs promoted the downregulation of inflammatory miRNAs (miR-155 and miR-21, as well as, upregulated its predicted target gene SOCS3 in activated M1-Mϕs. In vivo MVs-MSCs treatment reduced the Mϕs infiltrate in the peritoneal cavity inducing a M2-like regulatory phenotype in peritoneal Mϕs (higher arginase activity and reduced expression of CD86, iNOS, IFN-γ, IL-1β, TNF-α, IL-1α, and IL-6 molecules. This in vivo immunomodulatory effect of MVs-MSCs on M1-Mϕs was partially associated with the upregulation of CX3CR1 in F4/80+/Ly6C+/CCR2+ Mϕs subsets. In summary, our findings indicate that MVs-MSCs can modulate an internal program in activated Mϕs establishing an alternative regulatory-like phenotype.

  17. The synthetic melanocortin (CKPV2 exerts anti-fungal and anti-inflammatory effects against Candida albicans vaginitis via inducing macrophage M2 polarization.

    Directory of Open Access Journals (Sweden)

    Hai-xia Ji

    Full Text Available In this study, we examined anti-fungal and anti-inflammatory effects of the synthetic melanocortin peptide (Ac-Cys-Lys-Pro-Val-NH22 or (CKPV2 against Candida albicans vaginitis. Our in vitro results showed that (CKPV2 dose-dependently inhibited Candida albicans colonies formation. In a rat Candida albicans vaginitis model, (CKPV2 significantly inhibited vaginal Candida albicans survival and macrophages sub-epithelial mucosa infiltration. For mechanisms study, we observed that (CKPV2 inhibited macrophages phagocytosis of Candida albicans. Meanwhile, (CKPV2 administration inhibited macrophage pro-inflammatory cytokines (TNF-α, IL-1β and IL-6 release, while increasing the arginase activity and anti-inflammatory cytokine IL-10 production, suggesting macrophages M1 to M2 polarization. Cyclic AMP (cAMP production was also induced by (CKPV2 administration in macrophages. These above effects on macrophages by (CKPV2 were almost reversed by melanocortin receptor-1(MC1R siRNA knockdown, indicating the requirement of MC1R in the process. Altogether, our results suggest that (CKPV2 exerted anti-fungal and anti-inflammatory activities against Candida albicans vaginitis probably through inducing macrophages M1 to M2 polarization and MC1R activation.

  18. The Synthetic Melanocortin (CKPV)2 Exerts Anti-Fungal and Anti-Inflammatory Effects against Candida albicans Vaginitis via Inducing Macrophage M2 Polarization

    Science.gov (United States)

    Jia, Zhi-rong; Li, Xian-jing; Wang, Zhuo; Li, Li; Li, Yong-wen; Liu, Gen-yan; Tong, Ming-Qing; Li, Xiao-yi; Zhang, Guo-hui; Dai, Xiang-rong; He, Ling; Li, Zhi-yu; Cao, Cong; Yang, Yong

    2013-01-01

    In this study, we examined anti-fungal and anti-inflammatory effects of the synthetic melanocortin peptide (Ac-Cys-Lys-Pro-Val-NH2)2 or (CKPV)2 against Candida albicans vaginitis. Our in vitro results showed that (CKPV)2 dose-dependently inhibited Candida albicans colonies formation. In a rat Candida albicans vaginitis model, (CKPV)2 significantly inhibited vaginal Candida albicans survival and macrophages sub-epithelial mucosa infiltration. For mechanisms study, we observed that (CKPV)2 inhibited macrophages phagocytosis of Candida albicans. Meanwhile, (CKPV)2 administration inhibited macrophage pro-inflammatory cytokines (TNF-α, IL-1β and IL-6) release, while increasing the arginase activity and anti-inflammatory cytokine IL-10 production, suggesting macrophages M1 to M2 polarization. Cyclic AMP (cAMP) production was also induced by (CKPV)2 administration in macrophages. These above effects on macrophages by (CKPV)2 were almost reversed by melanocortin receptor-1(MC1R) siRNA knockdown, indicating the requirement of MC1R in the process. Altogether, our results suggest that (CKPV)2 exerted anti-fungal and anti-inflammatory activities against Candida albicans vaginitis probably through inducing macrophages M1 to M2 polarization and MC1R activation. PMID:23457491

  19. Anti-inflammatory effects of ethanolic extract from Sargassum horneri (Turner) C. Agardh on lipopolysaccharide-stimulated macrophage activation via NF-κB pathway regulation.

    Science.gov (United States)

    Kim, Mi Eun; Jung, Yun Chan; Jung, Inae; Lee, Hee-Woo; Youn, Hwa-Young; Lee, Jun Sik

    2015-01-01

    Inflammation is major symptom of the innate immune response by infection of microbes. Macrophages, one of immune response related cells, play a role in inflammatory response. Recent studies reported that various natural products can regulate the activation of immune cells such as macrophage. Sargassum horneri (Turner) C. Agardh is one of brown algae. Recently, various seaweeds including brown algae have antioxidant and anti-inflammatory effects. However, anti-inflammatory effects of Sargassum horneri (Turner) C. Agardh are still unknown. In this study, we investigated anti-inflammatory effects of ethanolic extract of Sargassum horneri (Turner) C. Agardh (ESH) on RAW 264.7 murine macrophage cell line. The ESH was extracted from dried Sargassum horneri (Turner) C. Agardh with 70% ethanol and then lyophilized at -40 °C. ESH was not cytotoxic to RAW 264.7, and nitric oxide (NO) production induced by LPS-stimulated macrophage activation was significantly decreased by the addition of 200 μg/mL of ESH. Moreover, ESH treatment reduced mRNA level of cytokines, including IL-1β, and pro-inflammatory genes such as iNOS and COX-2 in LPS-stimulated macrophage activation in a dose-dependent manner. ESH was found to elicit anti-inflammatory effects by inhibiting ERK, p-p38 and NF-κB phosphorylation. In addition, ESH inhibited the release of IL-1β in LPS-stimulated macrophages. These results suggest that ESH elicits anti-inflammatory effects on LPS-stimulated macrophage activation via the inhibition of ERK, p-p38, NF-κB, and pro-inflammatory gene expression.

  20. Divergent responses to peptidoglycans derived from different E. coli serotypes influence inflammatory outcome in trout, Oncorhynchus mykiss, macrophages

    Directory of Open Access Journals (Sweden)

    Goetz Frederick

    2011-01-01

    Full Text Available Abstract Background Pathogen-associated molecular patterns (PAMPs are structural components of pathogens such as lipopolysaccharide (LPS and peptidoglycan (PGN from bacterial cell walls. PAMP-recognition by the host results in an induction of defence-related genes and often the generation of an inflammatory response. We evaluated both the transcriptomic and inflammatory response in trout (O. mykiss macrophages in primary cell culture stimulated with DAP-PGN (DAP; meso-diaminopimelic acid, PGN; peptidoglycan from two strains of Escherichia coli (PGN-K12 and PGN-O111:B4 over time. Results Transcript profiling was assessed using function-targeted cDNA microarray hybridisation (n = 36 and results show differential responses to both PGNs that are both time and treatment dependent. Wild type E. coli (K12 generated an increase in transcript number/diversity over time whereas PGN-O111:B4 stimulation resulted in a more specific and intense response. In line with this, Gene Ontology analysis (GO highlights a specific transcriptomic remodelling for PGN-O111:B4 whereas results obtained for PGN-K12 show a high similarity to a generalised inflammatory priming response where multiple functional classes are related to ribosome biogenesis or cellular metabolism. Prostaglandin release was induced by both PGNs and macrophages were significantly more sensitive to PGN-O111:B4 as suggested from microarray data. Conclusion Responses at the level of the transcriptome and the inflammatory outcome (prostaglandin synthesis highlight the different sensitivity of the macrophage to slight differences (serotype in peptidoglycan structure. Such divergent responses are likely to involve differential receptor sensitivity to ligands or indeed different receptor types. Such changes in biological response will likely reflect upon pathogenicity of certain serotypes and the development of disease.

  1. MicroRNAs Control Macrophage Formation and Activation: The Inflammatory Link between Obesity and Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Richard Cheng-An Chang

    2014-07-01

    Full Text Available Activation and recruitment of resident macrophages in tissues in response to physiological stress are crucial regulatory processes in promoting the development of obesity-associated metabolic disorders and cardiovascular diseases. Recent studies have provided compelling evidence that microRNAs play important roles in modulating monocyte formation, macrophage maturation, infiltration into tissues and activation. Macrophage-dependent systemic physiological and tissue-specific responses also involve cell-cell interactions between macrophages and host tissue niche cell components, including other tissue-resident immune cell lineages, adipocytes, vascular smooth muscle and others. In this review, we highlight the roles of microRNAs in regulating the development and function of macrophages in the context of obesity, which could provide insights into the pathogenesis of obesity-related metabolic syndrome and cardiovascular diseases.

  2. Aorta macrophage inflammatory and epigenetic changes in a murine model of obstructive sleep apnea: Potential role of CD36

    Science.gov (United States)

    Cortese, Rene; Gileles-Hillel, Alex; Khalyfa, Abdelnaby; Almendros, Isaac; Akbarpour, Mahzad; Khalyfa, Ahamed A.; Qiao, Zhuanghong; Garcia, Tzintzuni; Andrade, Jorge; Gozal, David

    2017-01-01

    Obstructive sleep apnea (OSA) affects 8–10% of the population, is characterized by chronic intermittent hypoxia (CIH), and causally associates with cardiovascular morbidities. In CIH-exposed mice, closely mimicking the chronicity of human OSA, increased accumulation and proliferation of pro-inflammatory metabolic M1-like macrophages highly expressing CD36, emerged in aorta. Transcriptomic and MeDIP-seq approaches identified activation of pro-atherogenic pathways involving a complex interplay of histone modifications in functionally-relevant biological pathways, such as inflammation and oxidative stress in aorta macrophages. Discontinuation of CIH did not elicit significant improvements in aorta wall macrophage phenotype. However, CIH-induced aorta changes were absent in CD36 knockout mice, Our results provide mechanistic insights showing that CIH exposures during sleep in absence of concurrent pro-atherogenic settings (i.e., genetic propensity or dietary manipulation) lead to the recruitment of CD36(+)high macrophages to the aortic wall and trigger atherogenesis. Furthermore, long-term CIH-induced changes may not be reversible with usual OSA treatment. PMID:28240319

  3. Azurophil granule proteins constitute the major mycobactericidal proteins in human neutrophils and enhance the killing of mycobacteria in macrophages.

    Directory of Open Access Journals (Sweden)

    Prajna Jena

    Full Text Available Pathogenic mycobacteria reside in, and are in turn controlled by, macrophages. However, emerging data suggest that neutrophils also play a critical role in innate immunity to tuberculosis, presumably by their different antibacterial granule proteins. In this study, we purified neutrophil azurophil and specific granules and systematically analyzed the antimycobacterial activity of some purified azurophil and specific granule proteins against M. smegmatis, M. bovis-BCG and M. tuberculosis H37Rv. Using gel overlay and colony forming unit assays we showed that the defensin-depleted azurophil granule proteins (AZP were more active against mycobacteria compared to other granule proteins and cytosolic proteins. The proteins showing antimycobacterial activity were identified by MALDI-TOF mass spectrometry. Electron microscopic studies demonstrate that the AZP disintegrate bacterial cell membrane resulting in killing of mycobacteria. Exogenous addition of AZP to murine macrophage RAW 264.7, THP-1 and peripheral blood monocyte-derived macrophages significantly reduced the intracellular survival of mycobacteria without exhibiting cytotoxic activity on macrophages. Immunofluorescence studies showed that macrophages actively endocytose neutrophil granular proteins. Treatment with AZP resulted in increase in co-localization of BCG containing phagosomes with lysosomes but not in increase of autophagy. These data demonstrate that neutrophil azurophil proteins may play an important role in controlling intracellular survival of mycobacteria in macrophages.

  4. Azurophil granule proteins constitute the major mycobactericidal proteins in human neutrophils and enhance the killing of mycobacteria in macrophages.

    Science.gov (United States)

    Jena, Prajna; Mohanty, Soumitra; Mohanty, Tirthankar; Kallert, Stephanie; Morgelin, Matthias; Lindstrøm, Thomas; Borregaard, Niels; Stenger, Steffen; Sonawane, Avinash; Sørensen, Ole E

    2012-01-01

    Pathogenic mycobacteria reside in, and are in turn controlled by, macrophages. However, emerging data suggest that neutrophils also play a critical role in innate immunity to tuberculosis, presumably by their different antibacterial granule proteins. In this study, we purified neutrophil azurophil and specific granules and systematically analyzed the antimycobacterial activity of some purified azurophil and specific granule proteins against M. smegmatis, M. bovis-BCG and M. tuberculosis H37Rv. Using gel overlay and colony forming unit assays we showed that the defensin-depleted azurophil granule proteins (AZP) were more active against mycobacteria compared to other granule proteins and cytosolic proteins. The proteins showing antimycobacterial activity were identified by MALDI-TOF mass spectrometry. Electron microscopic studies demonstrate that the AZP disintegrate bacterial cell membrane resulting in killing of mycobacteria. Exogenous addition of AZP to murine macrophage RAW 264.7, THP-1 and peripheral blood monocyte-derived macrophages significantly reduced the intracellular survival of mycobacteria without exhibiting cytotoxic activity on macrophages. Immunofluorescence studies showed that macrophages actively endocytose neutrophil granular proteins. Treatment with AZP resulted in increase in co-localization of BCG containing phagosomes with lysosomes but not in increase of autophagy. These data demonstrate that neutrophil azurophil proteins may play an important role in controlling intracellular survival of mycobacteria in macrophages.

  5. Moracin C, A Phenolic Compound Isolated from Artocarpus heterophyllus, Suppresses Lipopolysaccharide-Activated Inflammatory Responses in Murine Raw264.7 Macrophages

    Science.gov (United States)

    Yao, Xue; Wu, Dang; Dong, Ningning; Ouyang, Ping; Pu, Jiaqian; Hu, Qian; Wang, Jingyuan; Lu, Weiqiang; Huang, Jin

    2016-01-01

    Artocarpus heterophyllus, a popular tropical fruit commonly known as the jackfruit tree, is normally planted in subtropical or tropical areas. Since a variety of phytochemicals isolated from A. heterophyllus have been found to possess potently anti-inflammatory, antiviral and antimalarial activities, researchers have devoted much interest to its potential pharmaceutical value. However, the exact mechanism underlying its anti-inflammatory activity is not well characterized. In this study, seven natural products isolated from A. heterophyllus, including 25-Hydroxycycloart-23-en-3-one (HY), Artocarpin (AR), Dadahol A (DA), Morachalcone A (MA), Artoheterophyllin B (AB), Cycloheterophyllin (CY) and Moracin C (MC) were collected. Lipopolysaccharide (LPS)-stimulated inflammatory response in RAW264.7 macrophages were used in this study. Among these compounds, MC significantly inhibited LPS-activated reactive oxygen species (ROS) and nitric oxide (NO) release without marked cytotoxicity. Furthermore, MC effectively reduced LPS stimulated up-regulation of mRNA and protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and serval pro-inflammatory cytokines (interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor α (TNF-α)). Mechanistic studies revealed that the anti-inflammatory effect of MC was associated with the activation of the mitogen activated protein kinases (MAPKs) (including p38, ERK and JNK) and nuclear factor-κB (NF-κB) pathways, especially reducing the nuclear translocation of NF-κB p65 subunit as revealed by nuclear separation experiment and confocal microscopy. PMID:27463712

  6. Moracin C, A Phenolic Compound Isolated from Artocarpus heterophyllus, Suppresses Lipopolysaccharide-Activated Inflammatory Responses in Murine Raw264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Xue Yao

    2016-07-01

    Full Text Available Artocarpus heterophyllus, a popular tropical fruit commonly known as the jackfruit tree, is normally planted in subtropical or tropical areas. Since a variety of phytochemicals isolated from A. heterophyllus have been found to possess potently anti-inflammatory, antiviral and antimalarial activities, researchers have devoted much interest to its potential pharmaceutical value. However, the exact mechanism underlying its anti-inflammatory activity is not well characterized. In this study, seven natural products isolated from A. heterophyllus, including 25-Hydroxycycloart-23-en-3-one (HY, Artocarpin (AR, Dadahol A (DA, Morachalcone A (MA, Artoheterophyllin B (AB, Cycloheterophyllin (CY and Moracin C (MC were collected. Lipopolysaccharide (LPS-stimulated inflammatory response in RAW264.7 macrophages were used in this study. Among these compounds, MC significantly inhibited LPS-activated reactive oxygen species (ROS and nitric oxide (NO release without marked cytotoxicity. Furthermore, MC effectively reduced LPS stimulated up-regulation of mRNA and protein expression of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (COX-2, and serval pro-inflammatory cytokines (interleukin-1β (IL-1β, interleukin-6 (IL-6 and tumor necrosis factor α (TNF-α. Mechanistic studies revealed that the anti-inflammatory effect of MC was associated with the activation of the mitogen activated protein kinases (MAPKs (including p38, ERK and JNK and nuclear factor-κB (NF-κB pathways, especially reducing the nuclear translocation of NF-κB p65 subunit as revealed by nuclear separation experiment and confocal microscopy.

  7. Different patterns of expression and of IL-10 modulation of inflammatory mediators from macrophages of Lyme disease-resistant and -susceptible mice.

    Directory of Open Access Journals (Sweden)

    Aarti Gautam

    Full Text Available C57BL/6J (C57 mice develop mild arthritis (Lyme disease-resistant whereas C3H/HeN (C3H mice develop severe arthritis (Lyme disease-susceptible after infection with the spirochete Borrelia burgdorferi. We hypothesized that susceptibility and resistance to Lyme disease, as modeled in mice, is associated with early induction and regulation of inflammatory mediators by innate immune cells after their exposure to live B. burgdorferi spirochetes. Here, we employed multiplex ELISA and qRT-PCR to investigate quantitative differences in the levels of cytokines and chemokines produced by bone marrow-derived macrophages from C57 and C3H mice after these cells were exposed ex vivo to live spirochetes or spirochetal lipoprotein. Upon stimulation, the production of both cytokines and chemokines was up-regulated in macrophages from both mouse strains. Interestingly, however, our results uncovered two distinct patterns of spirochete- and lipoprotein-inducible inflammatory mediators displayed by mouse macrophages, such that the magnitude of the chemokine up-regulation was larger in C57 cells than it was in C3H cells, for most chemokines. Conversely, cytokine up-regulation was more intense in C3H cells. Gene transcript analyses showed that the displayed patterns of inflammatory mediators were associated with a TLR2/TLR1 transcript imbalance: C3H macrophages expressed higher TLR2 transcript levels as compared to those expressed by C57 macrophages. Exogenous IL-10 dampened production of inflammatory mediators, especially those elicited by lipoprotein stimulation. Neutralization of endogenously produced IL-10 increased production of inflammatory mediators, notably by macrophages of C57 mice, which also displayed more IL-10 than C3H macrophages. The distinct patterns of pro-inflammatory mediator production, along with TLR2/TLR1 expression, and regulation in macrophages from Lyme disease-resistant and -susceptible mice suggests itself as a blueprint to further

  8. Determination of macrophage inflammatory protein-1α expression in sera from patients with classic Kaposi's sarcoma in Xinjiang Uygur Autonomous Region%新疆经典型Kaposi肉瘤患者血清中MIP-1α表达水平的比较

    Institute of Scientific and Technical Information of China (English)

    王华; 王晓东; 惠艳

    2013-01-01

    Objective To disclose the relationship between the expression of macrophage inflammatory protein-1α (MIP-1α) and the initiation of classic Kaposi's sarcoma.Methods Serum samples were collected from 16 patients with Kaposi's sarcoma,20 patients with herpes zoster,and 20 healthy controls.Enzyme-linked immunosorbent assay was conducted to determine the level of MIP-1α in these samples.Statistitical analysis was done by using the SPSS version 17.0 software.Analysis of variance and rank sum test were carred out to compare the serum level of MIP-1α among these subjects.Results The serum level of MIP-1α was (23.20 ± 0.95) pg/ml in the patients with Kaposi's sarcoma,significantly lower than that in the patients with herpes zoster and healthy controls ((47.21 ± 2.83) pg/ml and (49.14 ± 12.37) pg/ml,respectively,both P < 0.05).No statistical difference was observed between the patients with herpes zoster and healthy controls (P > 0.05).Conclusion The attenuated expression of MIP-1α may be associated with the initiation of Kaposi's sarcoma.%目的 探讨新疆经典型Kaposi肉瘤的发病与MIP-1α表达水平的关系.方法 收集Kaposi 肉瘤患者血清16份,带状疱疹患者血清20份,健康对照组血清20份.结果 血清中MIP-1α表达水平在Kaposi肉瘤组为(23.20±0.95) pg/ml,带状疱疹组为(47.21±2.83)pg/ml,健康对照组为(49.14±12.37)pg/ml,MIP-1α在Kaposi肉瘤患者血清中的表达明显低于带状疱疹和健康对照组,Kaposi肉瘤患者血清中MIP-1α的表达水平与带状疱疹及健康对照组比较,差异有统计学意义(P<0.05),而带状疱疹组与健康对照组比较差异无统计学意义(P>0.05).结论 MIP-1α表达水平的减少可能与Kaposi肉瘤的发病相关.

  9. Riboflavin Reduces Pro-Inflammatory Activation of Adipocyte-Macrophage Co-culture. Potential Application of Vitamin B2 Enrichment for Attenuation of Insulin Resistance and Metabolic Syndrome Development

    Directory of Open Access Journals (Sweden)

    Agnieszka Irena Mazur-Bialy

    2016-12-01

    Full Text Available Due to the progressive increase in the incidence of obese and overweight individuals, cardiometabolic syndrome has become a worldwide pandemic in recent years. Given the immunomodulatory properties of riboflavin, the current study was performed to investigate the potency of riboflavin in reducing obesity-related inflammation, which is the main cause of insulin resistance, diabetes mellitus 2 or arteriosclerosis. We determined whether pretreatment with a low dose of riboflavin (10.4–1000 nM affected the pro-inflammatory activity of adipocyte-macrophage co-culture (3T3 L1-RAW 264.7 following lipopolysaccharide stimulation (LPS; 100 ng/mL which mimics obesity-related inflammation. The apoptosis of adipocytes and macrophages as well as tumor necrosis factor-alpha (TNF-α, interleukin 6 (IL-6, interleukin 1beta (IL-1β, monocyte chemotactic protein 1 (MCP-1, high-mobility group box 1 (HMGB1, transforming growth factor–beta 1 (TGFβ, interleukin 10 (IL-10, inducible nitric oxide synthase (iNOS, nitric oxide (NO, matrix metalloproteinase 9 (MMP-9, tissue inhibitor of metalloproteinases-1 (TIMP-1 expression and release, macrophage migration and adipokines (adiponectin and leptin were determined. Our results indicated an efficient reduction in pro-inflammatory factors (TNFα, IL-6, MCP-1, HMGB1 upon culture with riboflavin supplementation (500–1000 nM, accompanied by elevation in anti-inflammatory adiponectin and IL-10. Moreover, macrophage migration was reduced by the attenuation of chemotactic MCP-1 release and degradation of the extracellular matrix by MMP-9. In conclusion, riboflavin effectively inhibits the pro-inflammatory activity of adipocyte and macrophage co-cultures, and therefore we can assume that its supplementation may reduce the likelihood of conditions associated with the mild inflammation linked to obesity.

  10. A new IRAK-M-mediated mechanism implicated in the anti-inflammatory effect of nicotine via α7 nicotinic receptors in human macrophages.

    Science.gov (United States)

    Maldifassi, Maria C; Atienza, Gema; Arnalich, Francisco; López-Collazo, Eduardo; Cedillo, Jose L; Martín-Sánchez, Carolina; Bordas, Anna; Renart, Jaime; Montiel, Carmen

    2014-01-01

    Nicotine stimulation of α7 nicotinic acetylcholine receptor (α7 nAChR) powerfully inhibits pro-inflammatory cytokine production in lipopolysaccharide (LPS)-stimulated macrophages and in experimental models of endotoxemia. A signaling pathway downstream from the α7 nAChRs, which involves the collaboration of JAK2/STAT3 and NF-κB to interfere with signaling by Toll-like receptors (TLRs), has been implicated in this anti-inflammatory effect of nicotine. Here, we identifiy an alternative mechanism involving interleukin-1 receptor-associated kinase M (IRAK-M), a negative regulator of innate TLR-mediated immune responses. Our data show that nicotine up-regulates IRAK-M expression at the mRNA and protein level in human macrophages, and that this effect is secondary to α7 nAChR activation. By using selective inhibitors of different signaling molecules downstream from the receptor, we provide evidence that activation of STAT3, via either JAK2 and/or PI3K, through a single (JAK2/PI3K/STAT3) or two convergent cascades (JAK2/STAT3 and PI3K/STAT3), is necessary for nicotine-induced IRAK-M expression. Moreover, down-regulation of this expression by small interfering RNAs specific to the IRAK-M gene significantly reverses the anti-inflammatory effect of nicotine on LPS-induced TNF-α production. Interestingly, macrophages pre-exposed to nicotine exhibit higher IRAK-M levels and reduced TNF-α response to an additional LPS challenge, a behavior reminiscent of the 'endotoxin tolerant' phenotype identified in monocytes either pre-exposed to LPS or from immunocompromised septic patients. Since nicotine is a major component of tobacco smoke and increased IRAK-M expression has been considered one of the molecular determinants for the induction of the tolerant phenotype, our findings showing IRAK-M overexpression could partially explain the known influence of smoking on the onset and progression of inflammatory and infectious diseases.

  11. A new IRAK-M-mediated mechanism implicated in the anti-inflammatory effect of nicotine via α7 nicotinic receptors in human macrophages.

    Directory of Open Access Journals (Sweden)

    Maria C Maldifassi

    Full Text Available Nicotine stimulation of α7 nicotinic acetylcholine receptor (α7 nAChR powerfully inhibits pro-inflammatory cytokine production in lipopolysaccharide (LPS-stimulated macrophages and in experimental models of endotoxemia. A signaling pathway downstream from the α7 nAChRs, which involves the collaboration of JAK2/STAT3 and NF-κB to interfere with signaling by Toll-like receptors (TLRs, has been implicated in this anti-inflammatory effect of nicotine. Here, we identifiy an alternative mechanism involving interleukin-1 receptor-associated kinase M (IRAK-M, a negative regulator of innate TLR-mediated immune responses. Our data show that nicotine up-regulates IRAK-M expression at the mRNA and protein level in human macrophages, and that this effect is secondary to α7 nAChR activation. By using selective inhibitors of different signaling molecules downstream from the receptor, we provide evidence that activation of STAT3, via either JAK2 and/or PI3K, through a single (JAK2/PI3K/STAT3 or two convergent cascades (JAK2/STAT3 and PI3K/STAT3, is necessary for nicotine-induced IRAK-M expression. Moreover, down-regulation of this expression by small interfering RNAs specific to the IRAK-M gene significantly reverses the anti-inflammatory effect of nicotine on LPS-induced TNF-α production. Interestingly, macrophages pre-exposed to nicotine exhibit higher IRAK-M levels and reduced TNF-α response to an additional LPS challenge, a behavior reminiscent of the 'endotoxin tolerant' phenotype identified in monocytes either pre-exposed to LPS or from immunocompromised septic patients. Since nicotine is a major component of tobacco smoke and increased IRAK-M expression has been considered one of the molecular determinants for the induction of the tolerant phenotype, our findings showing IRAK-M overexpression could partially explain the known influence of smoking on the onset and progression of inflammatory and infectious diseases.

  12. Maackiapterocarpan B from Sophora tonkinensis Suppresses Inflammatory Mediators via Nuclear Factor-κB and Mitogen-Activated Protein Kinase Pathways.

    Science.gov (United States)

    Chae, Hee-Sung; Yoo, Hunseung; Choi, Young Hee; Choi, Won Jun; Chin, Young-Won

    2016-01-01

    Maackiapterocarpan B, one of the pterocarpan analogs found in Sophora tonkinensis, is known to display pharmacological activities. However, the anti-inflammatory effects of maackiapterocarpan B and its molecular mechanism have yet to be clearly elucidated. In the present study, the effects of maackiapterocarpan B on macrophage-mediated inflammation in vitro were assessed. Maackiapterocarpan B inhibited the production of nitric oxide, the expression of tumor necrosis factor α, colony stimulating factor 2, interleukin-1β and interleukin-6, and the activation of nuclear factor-κB and mitogen-activated protein kinases in lipopolysaccharide-stimulated macrophages. These observations suggest the potential of maackiapterocarpan B in the treatment of inflammatory diseases.

  13. Proinflammatory Cytokine Gene Expression by Murine Macrophages in Response to Brugia malayi Wolbachia Surface Protein

    Directory of Open Access Journals (Sweden)

    Chantima Porksakorn

    2007-01-01

    Full Text Available Wolbachia, an endosymbiotic bacterium found in most species of filarial parasites, is thought to play a significant role in inducing innate inflammatory responses in lymphatic filariasis patients. However, the Wolbachia-derived molecules that are recognized by the innate immune system have not yet been identified. In this study, we exposed the murine macrophage cell line RAW 264.7 to a recombinant form of the major Wolbachia surface protein (rWSP to determine if WSP is capable of innately inducing cytokine transcription. Interleukin (IL-1β, IL-6, and tumor necrosis factor (TNF mRNAs were all upregulated by the rWSP stimulation in a dose-dependant manner. TNF transcription peaked at 3 hours, whereas IL-1β and IL-6 transcription peaked at 6 hours post-rWSP exposure. The levels of innate cytokine expression induced by a high-dose (9.0 μg/mL rWSP in the RAW 264.7 cells were comparable to the levels induced by 0.1 μg/mL E. coli-derived lipopolysaccharides. Pretreatment of the rWSP with proteinase-K drastically reduced IL-1β, IL-6, and TNF transcription. However, the proinflammatory response was not inhibited by polymyxin B treatment. These results strongly suggest that the major Wolbachia surface protein molecule WSP is an important inducer of innate immune responses during filarial infections.

  14. Enriched environment decreases microglia and brain macrophages inflammatory phenotypes through adiponectin-dependent mechanisms: Relevance to depressive-like behavior.

    Science.gov (United States)

    Chabry, Joëlle; Nicolas, Sarah; Cazareth, Julie; Murris, Emilie; Guyon, Alice; Glaichenhaus, Nicolas; Heurteaux, Catherine; Petit-Paitel, Agnès

    2015-11-01

    Regulation of neuroinflammation by glial cells plays a major role in the pathophysiology of major depression. While astrocyte involvement has been well described, the role of microglia is still elusive. Recently, we have shown that Adiponectin (ApN) plays a crucial role in the anxiolytic/antidepressant neurogenesis-independent effects of enriched environment (EE) in mice; however its mechanisms of action within the brain remain unknown. Here, we show that in a murine model of depression induced by chronic corticosterone administration, the hippocampus and the hypothalamus display increased levels of inflammatory cytokines mRNA, which is reversed by EE housing. By combining flow cytometry, cell sorting and q-PCR, we show that microglia from depressive-like mice adopt a pro-inflammatory phenotype characterized by higher expression levels of IL-1β, IL-6, TNF-α and IκB-α mRNAs. EE housing blocks pro-inflammatory cytokine gene induction and promotes arginase 1 mRNA expression in brain-sorted microglia, indicating that EE favors an anti-inflammatory activation state. We show that microglia and brain-macrophages from corticosterone-treated mice adopt differential expression profiles for CCR2, MHC class II and IL-4recα surface markers depending on whether the mice are kept in standard environment or EE. Interestingly, the effects of EE were abolished when cells are isolated from ApN knock-out mouse brains. When injected intra-cerebroventricularly, ApN, whose level is specifically increased in cerebrospinal fluid of depressive mice raised in EE, rescues microglia phenotype, reduces pro-inflammatory cytokine production by microglia and blocks depressive-like behavior in corticosterone-treated mice. Our data suggest that EE-induced ApN increase within the brain regulates microglia and brain macrophages phenotype and activation state, thus reducing neuroinflammation and depressive-like behaviors in mice.

  15. Resveratrol and its metabolites inhibit pro-inflammatory effects of lipopolysaccharides in U-937 macrophages in plasma-representative concentrations.

    Science.gov (United States)

    Walker, Jessica; Schueller, Katharina; Schaefer, Lisa-Marie; Pignitter, Marc; Esefelder, Laura; Somoza, Veronika

    2014-01-01

    Resveratrol has been shown to exploit various biological activities, including an anti-inflammatory activity. However, resveratrol is metabolized by phase II enzymes post-absorption to predominantly form glucuronides and sulfates. To investigate the anti-inflammatory effects of resveratrol and its dominating sulfated and glucuronated metabolites formed in vivo, U-937 macrophages were chosen as an immune-competent model system, known to release cytokines upon lipopolysaccharide stimulation. U-937 cells were stimulated with lipopolysaccharides from Escherichia coli (E. coli-LPS) to evoke an inflammatory reaction, and pre- or co-incubated with 1 or 10 μM of resveratrol (RES), resveratrol-3-sulfate (R3S), resveratrol-disulfates (RDS), resveratrol-3-glucuronide or resveratrol-4'-glucuronide. Time dependent gene expression of IL-6, IL-1α/β and IL-1R by qPCR was studied at 1 h, 3 h, 6 h, 9 h, and 24 h of incubation, and the release of IL-6 and TNF-α, after 6 h was analysed by means of non-magnetic or magnetic bead analysis. As a result, 10 μM resveratrol completely inhibited the E. coli-LPS-induced release of IL-6, while resveratrol-3-sulfate and resveratrol-disulfates decreased it by respective 84.2 ± 29.4% and 52.3 ± 39.5%. Whereas TNF-α release was reduced by 48.1 ± 15.4%, 33.0 ± 10.0% and 46.7 ± 8.7% by RES, R3S and RDS, respectively. These results show that not only resveratrol but also resveratrol-3-sulfate and resveratrol-disulfates exhibit an anti-inflammatory potential by counteracting an inflammatory challenge in U-937 macrophages at plasma representative concentrations.

  16. Enniatin B-induced cell death and inflammatory responses in RAW 267.4 murine macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Gammelsrud, A. [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway); Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway); Solhaug, A. [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway); Dendelé, B. [EA 4427 SeRAIC, IRSET, Université de Rennes 1, IFR 140, Rennes (France); Sandberg, W.J. [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway); Ivanova, L. [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway); Kocbach Bølling, A. [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway); Lagadic-Gossmann, D. [EA 4427 SeRAIC, IRSET, Université de Rennes 1, IFR 140, Rennes (France); Refsnes, M.; Becher, R. [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway); Eriksen, G. [Norwegian Veterinary Institute, P.O. Box 750, Centrum, N-0106 Oslo (Norway); Holme, J.A., E-mail: jorn.holme@fhi.no [Department of Air Pollution and Noise, Division of Environmental Medicine, Norwegian Institute of Public Health, N-0403 Oslo (Norway)

    2012-05-15

    The mycotoxin enniatin B (EnnB) is predominantly produced by species of the Fusarium genera, and often found in grain. The cytotoxic effect of EnnB has been suggested to be related to its ability to form ionophores in cell membranes. The present study examines the effects of EnnB on cell death, differentiation, proliferation and pro-inflammatory responses in the murine monocyte–macrophage cell line RAW 264.7. Exposure to EnnB for 24 h caused an accumulation of cells in the G0/G1-phase with a corresponding decrease in cyclin D1. This cell cycle-arrest was possibly also linked to the reduced cellular ability to capture and internalize receptors as illustrated by the lipid marker ganglioside GM1. EnnB also increased the number of apoptotic, early apoptotic and necrotic cells, as well as cells with elongated spindle-like morphology. The Neutral Red assay indicated that EnnB induced lysosomal damage; supported by transmission electron microscopy (TEM) showing accumulation of lipids inside the lysosomes forming lamellar structures/myelin bodies. Enhanced levels of activated caspase-1 were observed after EnnB exposure and the caspase-1 specific inhibitor ZYVAD-FMK reduced EnnB-induced apoptosis. Moreover, EnnB increased the release of interleukin-1beta (IL-1β) in cells primed with lipopolysaccharide (LPS), and this response was reduced by both ZYVAD-FMK and the cathepsin B inhibitor CA-074Me. In conclusion, EnnB was found to induce cell cycle arrest, cell death and inflammation. Caspase-1 appeared to be involved in the apoptosis and release of IL-1β and possibly activation of the inflammasome through lysosomal damage and leakage of cathepsin B. -- Highlights: ► The mycotoxin EnnB induced cell cycle arrest, cell death and inflammation. ► The G0/G1-arrest was linked to a reduced ability to internalize receptors. ► EnnB caused lysosomal damage, leakage of cathepsin B and caspase-1 cleavage. ► Caspase-1 was partly involved in both apoptosis and release of IL-1

  17. Mycobacterium avium Subspecies paratuberculosis Recombinant Proteins Modulate Antimycobacterial Functions of Bovine Macrophages.

    Directory of Open Access Journals (Sweden)

    John P Bannantine

    Full Text Available It has been shown that Mycobacterium avium subspecies paratuberculosis (M. paratuberculosis activates the Mitogen Activated Protein Kinase (MAPK p38 pathway, yet it is unclear which components of M. paratuberculosis are involved in the process. Therefore, a set of 42 M. paratuberculosis recombinant proteins expressed from coding sequences annotated as lipoproteins were screened for their ability to induce IL-10 expression, an indicator of MAPKp38 activation, in bovine monocyte-derived macrophages. A recombinant lipoprotein, designated as MAP3837c, was among a group of 6 proteins that strongly induced IL-10 gene transcription in bovine macrophages, averaging a 3.1-fold increase compared to non-stimulated macrophages. However, a parallel increase in expression of IL-12 and TNF-α was only observed in macrophages exposed to a subset of these 6 proteins. Selected recombinant proteins were further analyzed for their ability to enhance survival of M. avium within bovine macrophages as measured by recovered viable bacteria and nitrite production. All 6 IL-10 inducing MAP recombinant proteins along with M. paratuberculosis cells significantly enhanced phosphorylation of MAPK-p38 in bovine macrophages. Although these proteins are likely not post translationally lipidated in E. coli and thus is a limitation in this study, these results form the foundation of how the protein component of the lipoprotein interacts with the immune system. Collectively, these data reveal M. paratuberculosis proteins that might play a role in MAPK-p38 pathway activation and hence in survival of this organism within bovine macrophages.

  18. Inclusion bodies enriched for p62 and polyubiquitinated proteins in macrophages protect against atherosclerosis.

    Science.gov (United States)

    Sergin, Ismail; Bhattacharya, Somashubhra; Emanuel, Roy; Esen, Emel; Stokes, Carl J; Evans, Trent D; Arif, Batool; Curci, John A; Razani, Babak

    2016-01-05

    Autophagy is a catabolic cellular mechanism that degrades dysfunctional proteins and organelles. Atherosclerotic plaque formation is enhanced in mice with macrophages deficient for the critical autophagy protein ATG5. We showed that exposure of macrophages to lipids that promote atherosclerosis increased the abundance of the autophagy chaperone p62 and that p62 colocalized with polyubiquitinated proteins in cytoplasmic inclusions, which are characterized by insoluble protein aggregates. ATG5-null macrophages developed further p62 accumulation at the sites of large cytoplasmic ubiquitin-positive inclusion bodies. Aortas from atherosclerotic mice and plaques from human endarterectomy samples showed increased abundance of p62 and polyubiquitinated proteins that colocalized with plaque macrophages, suggesting that p62-enriched protein aggregates were characteristic of atherosclerosis. The formation of the cytoplasmic inclusions depended on p62 because lipid-loaded p62-null macrophages accumulated polyubiquitinated proteins in a diffuse cytoplasmic pattern. Lipid-loaded p62-null macrophages also exhibited increased secretion of interleukin-1β (IL-1β) and had an increased tendency to undergo apoptosis, which depended on the p62 ubiquitin-binding domain and at least partly involved p62-mediated clearance of NLRP3 inflammasomes. Consistent with our in vitro observations, p62-deficient mice formed greater numbers of more complex atherosclerotic plaques, and p62 deficiency further increased atherosclerotic plaque burden in mice with a macrophage-specific ablation of ATG5. Together, these data suggested that sequestration of cytotoxic ubiquitinated proteins by p62 protects against atherogenesis, a condition in which the clearance of protein aggregates is disrupted.

  19. Rab6a/a’ Are Important Golgi Regulators of Pro-Inflammatory TNF Secretion in Macrophages

    Science.gov (United States)

    Micaroni, Massimo; Stanley, Amanda C.; Khromykh, Tatiana; Venturato, Juliana; Wong, Colin X. F.; Lim, Jet P.; Marsh, Brad J.; Storrie, Brian; Gleeson, Paul A.; Stow, Jennifer L.

    2013-01-01

    Lipopolysaccharide (LPS)-activated macrophages secrete pro-inflammatory cytokines, including tumor necrosis factor (TNF) to elicit innate immune responses. Secretion of these cytokines is also a major contributing factor in chronic inflammatory disease. In previous studies we have begun to elucidate the pathways and molecules that mediate the intracellular trafficking and secretion of TNF. Rab6a and Rab6a' (collectively Rab6) are trans-Golgi-localized GTPases known for roles in maintaining Golgi structure and Golgi-associated trafficking. We found that induction of TNF secretion by LPS promoted the selective increase of Rab6 expression. Depletion of Rab6 (via siRNA and shRNA) resulted in reorganization of the Golgi ribbon into more compact structures that at the resolution of electron microcopy consisted of elongated Golgi stacks that likely arose from fusion of smaller Golgi elements. Concomitantly, the delivery of TNF to the cell surface and subsequent release into the media was reduced. Dominant negative mutants of Rab6 had similar effects in disrupting TNF secretion. In live cells, Rab6–GFP were localized on trans-Golgi network (TGN)-derived tubular carriers demarked by the golgin p230. Rab6 depletion and inactive mutants altered carrier egress and partially reduced p230 membrane association. Our results show that Rab6 acts on TNF trafficking at the level of TGN exit in tubular carriers and our findings suggest Rab6 may stabilize p230 on the tubules to facilitate TNF transport. Both Rab6 isoforms are needed in macrophages for Golgi stack organization and for the efficient post-Golgi transport of TNF. This work provides new insights into Rab6 function and into the role of the Golgi complex in cytokine secretion in inflammatory macrophages. PMID:23437303

  20. Rab6a/a' are important Golgi regulators of pro-inflammatory TNF secretion in macrophages.

    Science.gov (United States)

    Micaroni, Massimo; Stanley, Amanda C; Khromykh, Tatiana; Venturato, Juliana; Wong, Colin X F; Lim, Jet P; Marsh, Brad J; Storrie, Brian; Gleeson, Paul A; Stow, Jennifer L

    2013-01-01

    Lipopolysaccharide (LPS)-activated macrophages secrete pro-inflammatory cytokines, including tumor necrosis factor (TNF) to elicit innate immune responses. Secretion of these cytokines is also a major contributing factor in chronic inflammatory disease. In previous studies we have begun to elucidate the pathways and molecules that mediate the intracellular trafficking and secretion of TNF. Rab6a and Rab6a' (collectively Rab6) are trans-Golgi-localized GTPases known for roles in maintaining Golgi structure and Golgi-associated trafficking. We found that induction of TNF secretion by LPS promoted the selective increase of Rab6 expression. Depletion of Rab6 (via siRNA and shRNA) resulted in reorganization of the Golgi ribbon into more compact structures that at the resolution of electron microcopy consisted of elongated Golgi stacks that likely arose from fusion of smaller Golgi elements. Concomitantly, the delivery of TNF to the cell surface and subsequent release into the media was reduced. Dominant negative mutants of Rab6 had similar effects in disrupting TNF secretion. In live cells, Rab6-GFP were localized on trans-Golgi network (TGN)-derived tubular carriers demarked by the golgin p230. Rab6 depletion and inactive mutants altered carrier egress and partially reduced p230 membrane association. Our results show that Rab6 acts on TNF trafficking at the level of TGN exit in tubular carriers and our findings suggest Rab6 may stabilize p230 on the tubules to facilitate TNF transport. Both Rab6 isoforms are needed in macrophages for Golgi stack organization and for the efficient post-Golgi transport of TNF. This work provides new insights into Rab6 function and into the role of the Golgi complex in cytokine secretion in inflammatory macrophages.

  1. The impact of anti-inflammatory cytokines provoked by CD163 positive macrophages on ventricular functional recovery after myocardial infarction.

    Science.gov (United States)

    Sato, Takao; Kameyama, Tomoki; Noto, Takahisa; Nakadate, Teruo; Ueno, Hiroshi; Yamada, Kunihiro; Inoue, Hiroshi

    2014-01-01

    Present study aimed to investigate the impact of anti-inflammatory cytokines provoked by the hemoglobin scavenger receptor, CD163, on left ventricular (LV) functional recovery after successful reperfusion in patients with acute myocardial infarction (AMI). Intraplaque hemorrhage accelerates plaque destabilization. Extracellular hemoglobin is cleared by CD163, a macrophage scavenger receptor. This process provokes secretion of anti-inflammatory atheroprotective cytokine, interleukin (IL)-10. In 40 patients with the first AMI, coronary atherothrombotic debris was retrieved during percutaneous coronary intervention (PCI), stained with antibodies to CD163 and IL-10. LV function was determined by echocardiography before PCI and 6 months after PCI. %CD163 was defined as ratio of CD163 (+)-cells to whole cells. %IL-10 was expressed as the ratio of positively stained areas per total tissue. Patients were divided into two groups depending on the amount of CD163 (+)-cells: CD163 > 10 % (CD163high, n = 20) and CD163 ≤ 10 % (CD163low, n = 20). CD163high group had significantly higher %IL-10. Final thrombolysis in myocardial infarction (TIMI) flow grade was significantly lower in CD163high group. In subgroups with the final TIMI-3 flow (CD163high-Reflow, n = 15 and CD163low-Reflow, n = 20), the time to reperfusion, infarct size, LV dimensions and fractional shortening (%FS) before PCI were similar. Significant correlation was observed between %IL10 and changes in LV dimensions (diastole, r = -0.49, P = 0.01; systole, r = -0.65, P CD163(+)-macrophages could impair distal flow after primary PCI. However, CD163(+)-macrophages enhance the anti-inflammatory cytokine expression that aids in ventricular functional recovery if distal flow can be achieved by successful reperfusion.

  2. TNFα levels and macrophages expression reflect an inflammatory potential of trigeminal ganglia in a mouse model of familial hemiplegic migraine.

    Directory of Open Access Journals (Sweden)

    Alessia Franceschini

    Full Text Available Latent changes in trigeminal ganglion structure and function resembling inflammatory conditions may predispose to acute attacks of migraine pain. Here, we investigated whether, in trigeminal sensory ganglia, cytokines such as TNFα might contribute to a local inflammatory phenotype of a transgenic knock-in (KI mouse model of familial hemiplegic migraine type-1 (FHM-1. To this end, macrophage occurrence and cytokine expression in trigeminal ganglia were compared between wild type (WT and R192Q mutant Ca(V2.1 Ca(2+ channel (R192Q KI mice, a genetic model of FHM-1. Cellular and molecular characterization was performed using a combination of confocal immunohistochemistry and cytokine assays. With respect to WT, R192Q KI trigeminal ganglia were enriched in activated macrophages as suggested by their morphology and immunoreactivity to the markers Iba1, CD11b, and ED1. R192Q KI trigeminal ganglia constitutively expressed higher mRNA levels of IL1β, IL6, IL10 and TNFα cytokines and the MCP-1 chemokine. Consistent with the report that TNFα is a major factor to sensitize trigeminal ganglia, we observed that, following an inflammatory reaction evoked by LPS injection, TNFα expression and macrophage occurrence were significantly higher in R192Q KI ganglia with respect to WT ganglia. Our data suggest that, in KI trigeminal ganglia, the complex cellular and molecular environment could support a new tissue phenotype compatible with a neuroinflammatory profile. We propose that, in FHM patients, this condition might contribute to trigeminal pain pathophysiology through release of soluble mediators, including TNFα, that may modulate the crosstalk between sensory neurons and resident glia, underlying the process of neuronal sensitisation.

  3. Peroxiredoxin-1, a possible target in modulating inflammatory cytokine production in macrophage like cell line RAW264.7.

    Science.gov (United States)

    Tae Lim, Young; Sup Song, Dong; Joon Won, Tae; Lee, Yun-Jung; Yoo, Jong-Sun; Eun Hyung, Kyeong; Won Yoon, Joo; Park, So-Young; Woo Hwang, Kwang

    2012-06-01

    Peroxiredoxin (PRX), a scavenger of H(2) O(2) and alkyl hydroperoxides in living organisms, protects cells from oxidative stress. Contrary to its known anti-oxidant roles, the involvement of PRX-1 in the regulation of lipopolysaccharide (LPS) signaling is poorly understood, possible immunological functions of PRX-1 having been uncovered only recently. In the present study, it was discovered that the PRX-1 deficient macrophage like cell line (RAW264.7) has anti-inflammatory activity when stimulated by LPS. Treatment with LPS for 3 hrs resulted in increased gene expression of an anti-inflammatory cytokine, interleukin-10 (IL-10), in PRX-1 knock down RAW264.7 cells. Gene expression of pro-inflammatory cytokines IL-1β and tumor necrosis factor- α (TNF-α) did not show notable changes under the same conditions. However, production of these cytokines significantly decreased in PRX-1 knock down RAW264.7 cells with 12 hrs of stimulation. Production of IL-10 was also increased in PRX-1 knock down RAW264.7 cells with 12 hrs of stimulation. We predicted that higher concentrations of IL-10 would result in decreased expression of IL-1β and TNF-α in PRX-1 knock-down cells. This was confirmed by blocking IL-10, which reestablished IL-1β and TNF-α secretion. We also observed that increased concentrations of IL-10 do not affect the NF-κB pathway. Interestingly, STAT3 phosphorylation by LPS stimulation was significantly increased in PRX-1 knockdown RAW264.7 cells. Up-regulation of IL-10 in PRX-1 knockdown cells and the resulting downregulation of proinflammatory cytokine production seem to involve the STAT3 pathway in macrophages. Thus, down-regulation of PRX-1 may contribute to the suppression of adverse effects caused by excessive activation of macrophages through affecting the STAT3 signaling pathway.

  4. Monocyte chemoattractant protein-1 (MCP-1 regulates macrophage cytotoxicity in abdominal aortic aneurysm.

    Directory of Open Access Journals (Sweden)

    Qiwei Wang

    Full Text Available AIMS: In abdominal aortic aneurysm (AAA, macrophages are detected in the proximity of aortic smooth muscle cells (SMCs. We have previously demonstrated in a murine model of AAA that apoptotic SMCs attract monocytes and other leukocytes by producing MCP-1. Here we tested whether infiltrating macrophages also directly contribute to SMC apoptosis. METHODS AND RESULTS: Using a SMC/RAW264.7 macrophage co-culture system, we demonstrated that MCP-1-primed RAWs caused a significantly higher level of apoptosis in SMCs as compared to control macrophages. Next, we detected an enhanced Fas ligand (FasL mRNA level and membrane FasL protein expression in MCP-1-primed RAWs. Neutralizing FasL blocked SMC apoptosis in the co-culture. In situ proximity ligation assay showed that SMCs exposed to primed macrophages contained higher levels of receptor interacting protein-1 (RIP1/Caspase 8 containing cell death complexes. Silencing RIP1 conferred apoptosis resistance to SMCs. In the mouse elastase injury model of aneurysm, aneurysm induction increased the level of RIP1/Caspase 8 containing complexes in medial SMCs. Moreover, TUNEL-positive SMCs in aneurysmal tissues were frequently surrounded by CD68(+/FasL(+ macrophages. Conversely, elastase-treated arteries from MCP-1 knockout mice display a reduction of both macrophage infiltration and FasL expression, which was accompanied by diminished apoptosis of SMCs. CONCLUSION: Our data suggest that MCP-1-primed macrophages are more cytotoxic. MCP-1 appears to modulate macrophage cytotoxicity by increasing the level of membrane bound FasL. Thus, we showed that MCP-1-primed macrophages kill SMCs through a FasL/Fas-Caspase8-RIP1 mediated mechanism.

  5. Coculture with intraocular lens material-activated macrophages induces an inflammatory phenotype in lens epithelial cells.

    Science.gov (United States)

    Pintwala, Robert; Postnikoff, Cameron; Molladavoodi, Sara; Gorbet, Maud

    2015-03-01

    Cataracts are the leading cause of blindness worldwide, requiring surgical implantation of an intraocular lens. Despite evidence of leukocyte ingress into the postoperative lens, few studies have investigated the leukocyte response to intraocular lens materials. A novel coculture model was developed to examine macrophage activation by hydrophilic acrylic (poly(2-hydroxyethyl methacrylate)) and hydrophobic acrylic (polymethylmethacrylate) commercial intraocular lens. The human monocytic cell line THP-1 was differentiated into macrophages and cocultured with human lens epithelial cell line (HLE-B3) with or without an intraocular lens for one, two, four, or six days. Using flow cytometry and confocal microscopy, expression of the macrophage activation marker CD54 (intercellular adhesion molecule-1) and production of reactive oxygen species via the fluorogenic probe 2',7'-dichlorodihydrofluorescein diacetate were examined in macrophages. α-Smooth muscle actin, a transdifferentiation marker, was characterized in lens epithelial cells. The poly(2-hydroxyethyl methacrylate) intraocular lens prevented adhesion but induced significant macrophage activation (p intraocular lens), while the polymethylmethacrylate intraocular lens enabled adhesion and multinucleated fusion, but induced no significant activation. Coculture with either intraocular lens increased reactive oxygen species production in macrophages after one day (p intraocular lens, with hydrophilic surfaces inducing higher activation than hydrophobic surfaces. These findings provide a new method of inquiry into uveal biocompatibility, specifically through the quantification of cell-surface markers of leukocyte activation.

  6. Anti-Inflammatory Effect of 1,3,5,7-Tetrahydroxy-8-isoprenylxanthone Isolated from Twigs of Garcinia esculenta on Stimulated Macrophage

    OpenAIRE

    Dan-Dan Zhang; Hong Zhang; Yuan-zhi Lao; Rong Wu; Jin-wen Xu; Ferid Murad; Ka Bian; Hong-Xi Xu

    2015-01-01

    Garcinia Linn. plants having rich natural xanthones and benzophenones with anti-inflammatory activity attracted a great deal of attention to discover and develop them as potential drug candidates. Through screening targeting nitric oxide accumulation in stimulated macrophage, we found that 1,3,5,7-tetrahydroxy-8-isoprenylxanthone (TIE) had potential anti-inflammatory effect. To understand how TIE elicits its anti-inflammatory activity, we uncovered that it significantly inhibits the productio...

  7. Involvement of p38 MAPK and ATF-2 signaling pathway in anti-inflammatory effect of a novel compound bis[(5-methyl)2-furyl](4-nitrophenyl)methane on lipopolysaccharide-stimulated macrophages.

    Science.gov (United States)

    Udompong, Sarinporn; Mankhong, Sakulrat; Jaratjaroonphong, Jaray; Srisook, Klaokwan

    2017-09-01

    Activated macrophages produce various pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS)-derived nitric oxide (NO) and cyclooxygenase (COX)-2-derived prostaglandin E2 (PGE2) during inflammatory response. However, overproduction of NO and PGE2 appears to be involved in pathogenesis of various inflammatory diseases. Therefore, inhibition of NO and PGE2 production might be useful for the treatment of inflammatory-related diseases. In this study, the bis[(5-methyl)2-furyl](4-nitrophenyl)methane or BFNM was evaluated for the anti-inflammatory activity and mechanism of action in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage. BFNM inhibited NO and PGE2 production in a concentration-dependent manner and down-regulated the expression of iNOS and COX-2 at mRNA and protein levels. BFNM suppressed nuclear translocation of NF-κB p65 subunit only very slightly, and failed to decrease NF-κB DNA binding activity. In contrast, the compound significantly reduced phosphorylation of p38 MAPK and ATF-2, a component of AP-1 known to be involved in the transcriptional regulation of iNOS and COX-2, in a dose-dependent manner in LPS-induced cells. Collectively, these results suggest that BFNM has an anti-inflammatory effect in RAW 264.7 macrophages, at least in part, by suppression of NO and PGE2 production. The inhibitory effect of BFNM is mediated mainly via the p38 MAPK/ATF-2 signaling pathway. Thus, BFNM would be a lead compound for the development of novel anti-inflammatory agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Inhibition of LPS-induced TNF-α and NO production in mouse macrophage and inflammatory response in rat animal models by a novel Ayurvedic formulation, BV-9238.

    Science.gov (United States)

    Dey, Debendranath; Chaskar, Sunetra; Athavale, Nitin; Chitre, Deepa

    2014-10-01

    Rheumatoid arthritis is a chronic crippling disease, where protein-based tumor necrosis factor-alpha (TNF-α) inhibitors show significant relief, but with potentially fatal side effects. A need for a safe, oral, cost-effective small molecule or phyto-pharmaceutical is warranted. BV-9238 is an Ayurvedic poly-herbal formulation containing specialized standardized extracts of Withania somnifera, Boswellia serrata, Zingiber officinale and Curcuma longa. The anti-inflammatory and anti-arthritic effects of BV-9238 were evaluated for inhibition of TNF-α and nitric oxide (NO) production, in lipopolysaccharide-stimulated, RAW 264.7, mouse macrophage cell line. BV-9238 reduced TNF-α and NO production, without any cytotoxic effects. Subsequently, the formulation was tested in adjuvant-induced arthritis (AIA) and carrageenan-induced paw edema (CPE) rat animal models. AIA was induced in rats by injecting Freund's complete adjuvant intra-dermally in the paw, and BV-9238 and controls were administered orally for 21 days. Arthritic scores in AIA study and inflamed paw volume in CPE study were significantly reduced upon treatment with BV-9238. These results suggest that the anti-inflammatory and anti-arthritic effects of BV-9238 are due to its inhibition of TNF-α, and NO, and this formulation shows promise as an alternate therapy for inflammatory disorders where TNF-α and NO play important roles.

  9. Erucin Exerts Anti-Inflammatory Properties in Murine Macrophages and Mouse Skin: Possible Mediation through the Inhibition of NFκB Signaling

    Directory of Open Access Journals (Sweden)

    Ki Won Lee

    2013-10-01

    Full Text Available Erucin, an isothiocyanate, is a hydrolysis product of glucoerucin found in arugula and has recently been reported to have anti-cancer properties in various cancer cells. In this study, we assessed the anti-inflammatory effects of erucin and the underlying mechanisms, using lipopolysaccharide (LPS-stimulated RAW 264.7 murine macrophages and 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin. In RAW 264.7 cells, erucin (2.5, 5 μmol/L inhibited LPS-induced production of nitric oxide and prostaglandin E2. Erucin inhibited LPS-induced degradation of the inhibitor of κBα and translocation of p65 to the nucleus and, subsequently, reduced LPS-induced nuclear factor κB (NFκB DNA binding activities, as well as the transcriptional activity of NFκB, leading to the decreased expression of NFκB-target genes, including tumor necrosis factor-α, interleukin (IL-6, IL-1β, inducible nitric oxide synthase (iNOS and cyclooxygenase (COX-2, as well as transcriptional activity of iNOS and COX-2. In mice, erucin (100, 300 nmoles treatment significantly inhibited phorbol ester-induced formation of ear edema and expression of iNOS and COX-2 proteins. These results indicate that erucin exerts a potent anti-inflammatory activity by inhibiting the pro-inflammatory enzymes and cytokines, which may be mediated, at least in part, via the inhibition of NFκB signaling.

  10. Erucin exerts anti-inflammatory properties in murine macrophages and mouse skin: possible mediation through the inhibition of NFκB signaling.

    Science.gov (United States)

    Cho, Han Jin; Lee, Ki Won; Park, Jung Han Yoon

    2013-10-15

    Erucin, an isothiocyanate, is a hydrolysis product of glucoerucin found in arugula and has recently been reported to have anti-cancer properties in various cancer cells. In this study, we assessed the anti-inflammatory effects of erucin and the underlying mechanisms, using lipopolysaccharide (LPS)-stimulated RAW 264.7 murine macrophages and 12-O-tetradecanoylphorbol-13-acetate-treated mouse skin. In RAW 264.7 cells, erucin (2.5, 5 μmol/L) inhibited LPS-induced production of nitric oxide and prostaglandin E2. Erucin inhibited LPS-induced degradation of the inhibitor of κBα and translocation of p65 to the nucleus and, subsequently, reduced LPS-induced nuclear factor κB (NFκB) DNA binding activities, as well as the transcriptional activity of NFκB, leading to the decreased expression of NFκB-target genes, including tumor necrosis factor-α, interleukin (IL)-6, IL-1β, inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, as well as transcriptional activity of iNOS and COX-2. In mice, erucin (100, 300 nmoles) treatment significantly inhibited phorbol ester-induced formation of ear edema and expression of iNOS and COX-2 proteins. These results indicate that erucin exerts a potent anti-inflammatory activity by inhibiting the pro-inflammatory enzymes and cytokines, which may be mediated, at least in part, via the inhibition of NFκB signaling.

  11. Regulation of Macrophage Recognition through the Interplay of Nanoparticle Surface Functionality and Protein Corona.

    Science.gov (United States)

    Saha, Krishnendu; Rahimi, Mehran; Yazdani, Mahdieh; Kim, Sung Tae; Moyano, Daniel F; Hou, Singyuk; Das, Ridhha; Mout, Rubul; Rezaee, Farhad; Mahmoudi, Morteza; Rotello, Vincent M

    2016-04-26

    Using a family of cationic gold nanoparticles (NPs) with similar size and charge, we demonstrate that proper surface engineering can control the nature and identity of protein corona in physiological serum conditions. The protein coronas were highly dependent on the hydrophobicity and arrangement of chemical motifs on NP surface. The NPs were uptaken in macrophages in a corona-dependent manner, predominantly through recognition of specific complement proteins in the NP corona. Taken together, this study shows that surface functionality can be used to tune the protein corona formed on NP surface, dictating the interaction of NPs with macrophages.

  12. DMPD: Cytokine signaling modules in inflammatory responses. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18400190 Cytokine signaling modules in inflammatory responses. O'Shea JJ, Murray PJ...tory responses. PubmedID 18400190 Title Cytokine signaling modules in inflammatory responses. Authors O'Shea JJ, Murray

  13. DMPD: Pathophysiological roles of interleukin-18 in inflammatory liver diseases. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 10807517 Pathophysiological roles of interleukin-18 in inflammatory liver diseases....l) Show Pathophysiological roles of interleukin-18 in inflammatory liver diseases. PubmedID 10807517 Title Pathophysiological role

  14. DMPD: Signals and receptors involved in recruitment of inflammatory cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 7744810 Signals and receptors involved in recruitment of inflammatory cells. Ben-Ba...ow Signals and receptors involved in recruitment of inflammatory cells. PubmedID 7744810 Title Signals and receptors involved in recr

  15. Effects of mechanical ventilation on oulmonary macrophage inflammatory protein-1α and nuclear factor-κB expression in rats%机械通气大鼠肺组织巨噬细胞炎症蛋白-1α及核因子-κB的表达

    Institute of Scientific and Technical Information of China (English)

    王磊; 张新日; 郝海龙

    2013-01-01

    目的 通过观察巨噬细胞炎症蛋白-1α(MIP-1α)和核因子-κB (NF-κB)在机械通气大鼠肺组织中的表达,探讨MIP-1α及NF-κB在呼吸机所致肺损伤(VILI)发生中的作用.方法 32只雄性健康Wistar大鼠随机分为对照组、小潮气量组、常规潮气量组和大潮气量组.分别采用原位分子杂交技术和免疫组织化学染色方法检测各组大鼠肺组织MIP-1α mRNA及NF-κB p65蛋白表达水平,测定其支气管肺泡灌洗液(BALF)中白细胞及中性粒细胞计数.结果 大潮气量组和常规潮气量组大鼠BALF中白细胞和中性粒细胞计数,以及细支气管上皮MIP-1α mRNA和NF-κB p65蛋白阳性表达细胞百分比均明显高于小潮气量组和对照组(P<0.01).对照组与小潮气量组比较差异无统计学意义(P>0.05).相关分析结果表明,各组大鼠细支气管上皮MIP-1αmRNA阳性表达细胞百分比与BALF中性粒细胞计数和NF-κB p65蛋白阳性表达细胞百分比之间均呈正相关(r=0.546,r=0.482,均P<0.05).结论 在VILI发生过程中,MIP-1α是导致中性粒细胞在肺内募集、活化的重要细胞因子;肺组织细胞表达MIP-1α在一定程度上可能受NF-κB的调控;机械刺激→NF-κB→MIP-1α信号通路可能是VILI发生过程中细胞内信号传导途径之一.%Objective To determine the pulmonary macrophage inflammatory protein-1α (MIP-1α) and nuclear factor-κB (NF-κB) expression and their roles in ventilator-induced lung injury (VILI) in rats treated with mechanical ventilation.Methods Thirty-two health male Wistar rats were randomly assigned to control,low tidal volume,conventional tidal volume and high tidal volume group,respectively.The expression of MIP-1α mRNA and NF-κB p65 protein in lung tissues was detected by in situ hybridization and immunohistochemistry for measurement of white blood cell (WBC) and neutrophil count.Results Compared with low tidal volume and control group,significantly higher WBC and

  16. DMPD: Peptidoglycan signaling in innate immunity and inflammatory disease. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 15802263 Peptidoglycan signaling in innate immunity and inflammatory disease. McDon...) (.csml) Show Peptidoglycan signaling in innate immunity and inflammatory disease. PubmedID 15802263 Title ...Peptidoglycan signaling in innate immunity and inflammatory disease. Authors McDo

  17. Inhibition of nitric oxide and inflammatory cytokines in LPS-stimulated murine macrophages by resveratrol, a potent proteasome inhibitor

    Directory of Open Access Journals (Sweden)

    Qureshi Asaf A

    2012-07-01

    Full Text Available Abstract Background Altered immune function during ageing results in increased production of nitric oxide (NO and other inflammatory mediators. Recently, we have reported that NO production was inhibited by naturally-occurring proteasome inhibitors (quercetin, δ-tocotrienol, and riboflavin in lipopolysaccharide (LPS-stimulated RAW264.7 cells, and thioglycolate-elicited peritoneal macrophages from C57BL/6 mice. In a continuous effort to find more potent, non-toxic, commercially available, naturally-occurring proteasome inhibitors that suppress inflammation, the present study was carried out to describe the inhibition of NF-κB activation and NO, TNF-α, IL-6, IL-1β, and iNOS expression by trans-resveratrol, trans-pterostilbene, morin hydrate, and nicotinic acid in LPS-induced RAW 264.7 cells and thioglycolate-elicited peritoneal macrophages from C57BL/6 and BALB/c mice. Results The present results indicate that resveratrol, pterostilbene, and morin hydrate caused significant inhibition (>70% to 90%; P 40%; P 60%; P 40%; P P  Conclusions The present results clearly demonstrate that resveratrol and pterostilbene are particularly potent proteasome inhibitors that suppress expression of genes, and production of inflammatory products in LPS-stimulated RAW 264.7 cells, and macrophages from C57BL/6 and BALB/c mice. Resveratrol and pterostilbene which are present in grapes, blueberries, and red wine, have been implicated as contributing factors to the lower incidence of cardiovascular disease in the French population, despite their relatively high dietary fat intake. Consequently, it appears likely that the beneficial nutritional effects of resveratrol and pterostilbene are due at least in part, to their ability to inhibit NF-κB activation by the proteasome, thereby suppressing activation of pro-inflammatory cytokines and iNOS genes, resulting in decreased secretion of TNF-α, IL-1β, IL-6, and NO levels, in response to inflammatory stimuli

  18. The role of titanium surface topography on J774A.1 macrophage inflammatory cytokines and nitric oxide production.

    Science.gov (United States)

    Tan, Kai Soo; Qian, Li; Rosado, Roy; Flood, Patrick M; Cooper, Lyndon F

    2006-10-01

    A role for monocyte/macrophage modulation of wound healing at endosseous implants is proposed. The modification of the endosseous implant surface topography can alter cell adhesion and resultant cell behavior. The aim of this study was to define the effect of increased cpTitanium surface topography on adherent J744A.1 macrophage phenotype in culture. The J744A.1 cells were cultured on 20mm diameter cpTitanium disks prepared with smooth and grit-blasted/acid rough surface topographies for 24-72 h. Following culture in growth media with or without lipopolysaccharide (LPS), total RNA was isolated and real-time polymerase chain reaction (PCR) was used to measure the steady-state levels of the pro-inflammatory cytokines interleukin 1-beta (IL-1beta) and interleukin 6 (IL-6) and the anti-inflammatory cytokine interleukin-10 (IL-10). Additional evidence of pro-inflammatory signaling was sought by measurement of cellular nitric oxide (NO) production. In the absence of LPS, IL-1beta levels were increased on grit-blasted/acid rough surfaces during the first 48 h. In contrast, IL-6 levels were reduced on the grit-blasted/acid rough surfaces. When cultures were treated with LPS, high levels of IL-1beta and IL-6 expression were measured, irrespective of surface topography. The responses of J744A.1 cells to surface and superimposed LPS stimulation suggest only modest effects of the modeled endosseous implant surface on adherent cell pro-inflammatory cytokine expression and NO signaling.

  19. Iron oxide nanoparticles surface coating and cell uptake affect biocompatibility and inflammatory responses of endothelial cells and macrophages

    Science.gov (United States)

    Orlando, Antonina; Colombo, Miriam; Prosperi, Davide; Gregori, Maria; Panariti, Alice; Rivolta, Ilaria; Masserini, Massimo; Cazzaniga, Emanuela

    2015-09-01

    Engineered iron oxide nanoparticles (IONP) offer the possibility of a wide range of medical uses, from clinical imaging to magnetically based hyperthermia for tumor treatment. These applications require their systemic administration in vivo. An important property of nanoparticles is their stability in biological media. For this purpose, a multicomponent nanoconstruct combining high colloidal stability and improved physical properties was synthesized and characterized. IONP were coated with an amphiphilic polymer (PMA), which confers colloidal stability, and were pegylated in order to obtain the nanoconstruct PEG-IONP-PMA. The aim of this study was to utilize cultured human endothelial cells (HUVEC) and murine macrophages, taken as model of cells exposed to NP after systemic administration, to assess the biocompatibility of PEG-IONP-PMA (23.1 ± 1.4 nm) or IONP-PMA (15.6 ± 3.4 nm). PEG-IONP-PMA, tested at different concentrations as high as 20 μg mL-1, exhibited no cytotoxicity or inflammatory responses. By contrast, IONP-PMA showed a concentration-dependent increase of cytotoxicity and of TNF-α production by macrophages and NO production by HUVECs. Cell uptake analysis suggested that after PEGylation, IONP were less internalized either by macrophages or by HUVEC. These results suggest that the choice of the polymer and the chemistry of surface functionalization are a crucial feature to confer to IONP biocompatibility.

  20. Nanosized silver (II) pyridoxine complex to cause greater inflammatory response and less cytotoxicity to RAW264.7 macrophage cells

    Science.gov (United States)

    Paul, Avijit; Ju, Hee; Rangasamy, Sabarinathan; Shim, Yumi; Song, Joon Myong

    2015-03-01

    With advancements in nanotechnology, silver has been engineered into a nanometre size and has attracted great research interest for use in the treatment of wounds. Silver nanoparticles (AgNPs) have emerged as a potential alternative to conventional antibiotics because of their potential antimicrobial property. However, AgNPs also induce cytotoxicity, generate reactive oxygen species (ROS), and cause mitochondrial damage to human cells. Pyridoxine possesses antioxidant and cell proliferation activity. Therefore, in the present investigation, a nanosilver-pyridoxine complex (AgPyNP) was synthesized, and its cytotoxicity and immune response was compared with AgNPs in macrophage RAW264.7 cells. Results revealed that AgPyNPs showed less cytotoxicity compared with AgNPs by producing a smaller amount of ROS in RAW264.7 cells. Surprisingly, however, AgPyNPs caused macrophage RAW264.7 cells to secrete a larger amount of interleukin-8 (IL-8) and generate a more active inflammatory response compared to AgNPs. It activated TNF-α, NF-κB p65, and NF-κB p50 to generate a more vigorous immune protection that produces a greater amount of IL-8 compared to AgNPs. Overall findings indicate that AgPyNPs exhibited less cytotoxicity and evoked a greater immune response in macrophage RAW264.7 cells. Thus, it can be used as a better wound-healing agent than AgNPs.

  1. Iron oxide nanoparticles surface coating and cell uptake affect biocompatibility and inflammatory responses of endothelial cells and macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, Antonina [University of Milano-Bicocca, Department of Health Sciences (Italy); Colombo, Miriam; Prosperi, Davide [University of Milano-Bicocca, Department of Biotechnology and Biosciences (Italy); Gregori, Maria; Panariti, Alice; Rivolta, Ilaria; Masserini, Massimo; Cazzaniga, Emanuela, E-mail: emanuela.cazzaniga@unimib.it [University of Milano-Bicocca, Department of Health Sciences (Italy)

    2015-09-15

    Engineered iron oxide nanoparticles (IONP) offer the possibility of a wide range of medical uses, from clinical imaging to magnetically based hyperthermia for tumor treatment. These applications require their systemic administration in vivo. An important property of nanoparticles is their stability in biological media. For this purpose, a multicomponent nanoconstruct combining high colloidal stability and improved physical properties was synthesized and characterized. IONP were coated with an amphiphilic polymer (PMA), which confers colloidal stability, and were pegylated in order to obtain the nanoconstruct PEG-IONP-PMA. The aim of this study was to utilize cultured human endothelial cells (HUVEC) and murine macrophages, taken as model of cells exposed to NP after systemic administration, to assess the biocompatibility of PEG-IONP-PMA (23.1 ± 1.4 nm) or IONP-PMA (15.6 ± 3.4 nm). PEG-IONP-PMA, tested at different concentrations as high as 20 μg mL{sup −1}, exhibited no cytotoxicity or inflammatory responses. By contrast, IONP-PMA showed a concentration-dependent increase of cytotoxicity and of TNF-α production by macrophages and NO production by HUVECs. Cell uptake analysis suggested that after PEGylation, IONP were less internalized either by macrophages or by HUVEC. These results suggest that the choice of the polymer and the chemistry of surface functionalization are a crucial feature to confer to IONP biocompatibility.

  2. Anti-inflammatory Actions of Endogenous and Exogenous Interleukin-10 versus Glucocorticoids on Macrophage Functions of the Newly Born

    Science.gov (United States)

    Kasat, Kavita; Patel, Hardik; Predtechenska, Olena; Vancurova, Ivana; Davidson, Dennis

    2014-01-01

    OBJECTIVE To determine whether specific macrophage immune functions of the newly born are insensitive to the actions of therapeutic levels of dexamethasone (DEX), previously measured in infants with bronchopulmonary dysplasia (BPD), compared to betamethasone (BETA) and exogenous or endogenous interleukin-10 (IL-10). STUDY DESIGN Macrophages were differentiated from cord blood monocytes (N=18). A serial dose response (around 10−8M), in vitro study was used to examine the effect of DEX, BETA and IL-10, on pro-inflammatory (PI) cytokine release, phagocytosis and respiratory burst. RESULTS Exogenous IL-10 (10−8M) significantly (p<0.05) inhibited the endotoxin-stimulated release of IL-6, IL-8 and tumor necrosis factor by 63% to 82% with no significant effect by DEX and BETA. There was no inhibition by these 3 agents at 10−8M on phagocytosis and respiratory burst. Inhibition of endogenous IL-10 with a monoclonal antibody significantly raised endotoxin-stimulated cytokine release by at least 4 fold. CONCLUSION Macrophages were relatively insensitive to therapeutic levels of DEX and BETA with regard to PI cytokine release. This study provides rationale for translational, preclinical research using airway instillation of IL-10 for the treatment of BPD. PMID:24526008

  3. Depletion of alveolar macrophages in CD11c diphtheria toxin receptor mice produces an inflammatory response

    Science.gov (United States)

    Roberts, Lydia M; Ledvina, Hannah E; Tuladhar, Shraddha; Rana, Deepa; Steele, Shaun P; Sempowski, Gregory D; Frelinger, Jeffrey A

    2015-01-01

    Alveolar macrophages play a critical role in initiating the immune response to inhaled pathogens and have been shown to be the first cell type infected following intranasal inoculation with several pathogens, including Francisella tularensis. In an attempt to further dissect the role of alveolar macrophages in the immune response to Francisella, we selectively depleted alveolar macrophages using CD11c.DOG mice. CD11c.DOG mice express the diphtheria toxin receptor (DTR) under control of the full CD11c promoter. Because mice do not express DTR, tissue restricted expression of the primate DTR followed by treatment with diphtheria toxin (DT) has been widely used as a tool in immunology to examine the effect of acute depletion of a specific immune subset following normal development. We successfully depleted alveolar macrophages via intranasal administration of DT. However, alveolar macrophage depletion was accompanied by many other changes to the cellular composition and cytokine/chemokine milieu in the lung that potentially impact innate and adaptive immune responses. Importantly, we observed a transient influx of neutrophils in the lung and spleen. Our experience serves as a cautionary note to other researchers using DTR mice given the complex changes that occur following DT treatment that must be taken into account when analyzing data. PMID:26029367

  4. Fatty acids from fat cell lipolysis do not activate an inflammatory response but are stored as triacylglycerols in adipose tissue macrophages.

    Science.gov (United States)

    Caspar-Bauguil, Sylvie; Kolditz, Catherine-Ines; Lefort, Corinne; Vila, Isabelle; Mouisel, Etienne; Beuzelin, Diane; Tavernier, Geneviève; Marques, Marie-Adeline; Zakaroff-Girard, Alexia; Pecher, Christiane; Houssier, Marianne; Mir, Lucile; Nicolas, Sarah; Moro, Cédric; Langin, Dominique

    2015-11-01

    Activation of macrophages by fatty acids (FAs) is a potential mechanism linking obesity to adipose tissue (AT) inflammation and insulin resistance. Here, we investigated the effects of FAs released during adipocyte lipolysis on AT macrophages (ATMs). Human THP-1 macrophages were treated with media from human multipotent adipose-derived stem (hMADS) adipocytes stimulated with lipolytic drugs. Macrophages were also treated with mixtures of FAs and an inhibitor of Toll-like receptor 4, since this receptor is activated by saturated FAs. Levels of mRNA and the secretion of inflammation-related molecules were measured in macrophages. FA composition was determined in adipocytes, conditioned media and macrophages. The effect of chronic inhibition or acute activation of fat cell lipolysis on ATM response was investigated in vivo in mice. Whereas palmitic acid alone activates THP-1, conditioned media from hMADS adipocyte lipolysis had no effect on IL, chemokine and cytokine gene expression, and secretion by macrophages. Mixtures of FAs representing de novo lipogenesis or habitual dietary conditions also had no effect. FAs derived from adipocyte lipolysis were taken up by macrophages and stored as triacylglycerol droplets. In vivo, chronic treatment with an antilipolytic drug did not modify gene expression and number of ATMs in mice with intact or defective Tlr4. Stimulation of adipocyte lipolysis increased storage of neutral lipids by macrophages without change in number and phenotype. Our data suggest that adipocyte lipolysis does not activate inflammatory pathways in ATMs, which instead may act as scavengers of FAs.

  5. Momordica charantia (Bitter Melon) Reduces Obesity-Associated Macrophage and Mast Cell Infiltration as well as Inflammatory Cytokine Expression in Adipose Tissues

    Science.gov (United States)

    Zhang, Lei; Na Xu, Yan Lin; Wang, Xin; Liu, Jian; Qu, Wei

    2013-01-01

    Obesity is a world-wide epidemic disease that correlates closely with type 2 diabetes and cardiovascular diseases. Obesity-induced chronic adipose tissue inflammation is now considered as a critical contributor to the above complications. Momordica charantia (bitter melon, BM) is a traditional Chinese food and well known for its function of reducing body weight gain and insulin resistance. However, it is unclear whether BM could alleviate adipose tissue inflammation caused by obesity. In this study, C57BL/6 mice were fed high fat diet (HFD) with or without BM for 12 weeks. BM-contained diets ameliorated HFD-induced obesity and insulin resistance. Histological and real-time PCR analysis demonstrated BM not only reduced macrophage infiltration into epididymal adipose tissues (EAT) and brown adipose tissues (BAT). Flow cytometry show that BM could modify the M1/M2 phenotype ratio of macrophages in EAT. Further study showed that BM lowered mast cell recruitments in EAT, and depressed pro-inflammatory cytokine monocyte chemotactic protein-1 (MCP-1) expression in EAT and BAT as well as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression in EAT. Finally, ELISA analysis showed BM-contained diets also normalized serum levels of the cytokines. In summary, in concert with ameliorated insulin resistance and fat deposition, BM reduced adipose tissue inflammation in diet-induced obese (DIO) mice. PMID:24358329

  6. Anti‑inflammatory and antioxidant activity of the traditional herbal formula Gwakhyangjeonggi‑san via enhancement of heme oxygenase‑1 expression in RAW264.7 macrophages.

    Science.gov (United States)

    Jeong, Soo-Jin; Kim, Ohn-Soon; Yoo, Sae-Rom; Seo, Chang-Seob; Kim, Yeji; Shin, Hyeun-Kyoo

    2016-05-01

    Gwakhyangjeonggi‑san (GHJGS) is a mixture of herbal plants, including Agastache rugosa, Perilla frutescens, Angelica dahurica, Areca catechu, Poria cocos, Magnolia officinalis, Atractylodes macrocephala, Citrus reticulata, Pinellia ternata, Platycodon grandiflorum, Glycyrrhiza uralensis, Ziziphus jujuba and Zingiber officinale. GHJGS has been used for treating diarrhea‑predominant irritable bowel syndrome in traditional Korean medicine. In the present study, the anti‑inflammatory and antioxidant effects of GHJGS were investigated using the RAW 264.7 murine macrophage cell line. GHJGS significantly reduced production of the proinflammatory cytokines, tumor necrosis factor‑α, interleukin‑6 and prostaglandin E2 in lipopolysaccharide (LPS)‑stimulated macrophages. GHJGS markedly suppressed LPS‑induced phosphorylation of mitogen‑activated protein kinases, whereas it had no effect on nuclear factor‑κB activation. Furthermore, GHJGS enhanced expression of heme oxygenase‑1 and prevented the generation of reactive oxygen species in RAW 264.7 cells. These results indicate that GHJGS is a viable therapeutic agent against inflammation and oxidative stress‑associated disorders.

  7. Absence of erythroblast macrophage protein (Emp) leads to failure of erythroblast nuclear extrusion.

    Science.gov (United States)

    Soni, Shivani; Bala, Shashi; Gwynn, Babette; Sahr, Kenneth E; Peters, Luanne L; Hanspal, Manjit

    2006-07-21

    In mammals, the functional unit for definitive erythropoiesis is the erythroblastic island, a multicellular structure composed of a central macrophage surrounded by developing erythroblasts. Erythroblast-macrophage interactions play a central role in the terminal maturation of erythroblasts, including enucleation. One possible mediator of this cell-cell interaction is the protein Emp (erythroblast macrophage protein). We used targeted gene inactivation to define the function of Emp during hematopoiesis. Emp null embryos die perinatally and show profound alterations in the hematopoietic system. A dramatic increase in the number of nucleated, immature erythrocytes is seen in the peripheral blood of Emp null fetuses. In the fetal liver virtually no erythroblastic islands are observed, and the number of F4/80-positive macrophages is substantially reduced. Those present lack cytoplasmic projections and are unable to interact with erythroblasts. Interestingly, wild type macrophages can bind Emp-deficient erythroblasts, but these erythroblasts do not extrude their nuclei, suggesting that Emp impacts enucleation in a cell autonomous fashion. Previous studies have implicated the actin cytoskeleton and its reorganization in both erythroblast enucleation as well as in macrophage development. We demonstrate that Emp associates with F-actin and that this interaction is important in the normal distribution of F-actin in both erythroblasts and macrophages. Thus, Emp appears to be required for erythroblast enucleation and in the development of the mature macrophages. The availability of an Emp null model provides a unique experimental system to study the enucleation process and to evaluate the function of macrophages in definitive erythropoiesis.

  8. Inflammatory mediator release byBrugia malayi from macrophages of susceptible hostMastomys coucha andTHP-1 andRAW 264.7 cell lines

    Institute of Scientific and Technical Information of China (English)

    Shiv Kumar Verma; Vikas Kushwaha; Vijaya Dubey; Kirti Saxena; Aakanksha Sharma; Puvvada Kalpana Murthy

    2011-01-01

    Objective:To investigate which life stage of the parasite has the ability to stimulate release of pro- or anti-inflammatory mediators from macrophages.Methods: The human macrophage/monocyte cell lineTHP-1, the mouse macrophage cell lineRAW 264.7 and naive peritoneal macrophages(PM)from the rodent hostMastomys coucha (M. coucha)were incubated at37 ℃in 5% CO2atmosphere with extracts of microfilariae(Mf), third stage infective larvae(L3) and adult worms (Ad)ofBrugia malayi. After48 hr post exposure,IL-1β, IL-6, TNF-α, IL-10 and nitric oxide (NO) in cell-free supernatants were estimated.Results: Extracts of all the life stages of the parasite were capable of stimulating pro-(IL-1β, IL-6 andTNF-α) and anti-inflammatory (IL-10)cytokines in both the cell lines and peritoneal macrophages ofM. coucha. Mf was the strongest stimulator of pro-inflammatory cytokines followed by L3 and Ad; however, Ad was a strong stimulator ofIL-10 release. Mf was found to have potential to modulateLPS-inducedNO release inRAW cells. Ad-inducedNO release was concentration dependent with maximum at 20 μg/mL in bothRAW andPMs.Conclusions:The results show that parasites at all life stages were capable of stimulating pro- (IL-1β, IL-6 and TNF-α) and anti-inflammatory(IL-10) cytokines andNO release from macrophages of susceptible hostM. coucha, human and mouse macrophage cell lines.Mf can suppress theLPS-inducedNO release inRAW cells. The findings also show that the two cell lines may provide a convenientin vitro system for assaying parasite-induced inflammatory mediator release.

  9. Anti-inflammatory and antioxidant effects of a combination of cannabidiol and moringin in LPS-stimulated macrophages.

    Science.gov (United States)

    Rajan, Thangavelu Soundara; Giacoppo, Sabrina; Iori, Renato; De Nicola, Gina Rosalinda; Grassi, Gianpaolo; Pollastro, Federica; Bramanti, Placido; Mazzon, Emanuela

    2016-07-01

    Inflammatory response plays an important role in the activation and progress of many debilitating diseases. Natural products, like cannabidiol, a constituent of Cannabis sativa, and moringin, an isothiocyanate obtained from myrosinase-mediated hydrolysis of the glucosinolate precursor glucomoringin present in Moringa oleifera seeds, are well known antioxidants also endowed with anti-inflammatory activity. This is due to a covalent-based mechanism for ITC, while non-covalent interactions underlie the activity of CBD. Since these two mechanisms are distinct, and the molecular endpoints are potentially complementary, we investigated in a comparative way the protective effect of these compounds alone or in combination on lipopolysaccharide-stimulated murine macrophages. Our results show that the cannabidiol (5μM) and moringin (5μM) combination outperformed the single constituents that, at this dosage had only a moderate efficacy on inflammatory (Tumor necrosis factor-α, Interleukin-10) and oxidative markers (inducible nitric oxide synthase, nuclear factor erythroid 2-related factor 2, nitrotyrosine). Significant upregulation of Bcl-2 and downregulation of Bax and cleaved caspase-3 was observed in cells treated with cannabidiol-moringin combination. Treatment with the transient receptor potential vanilloid receptor 1 antagonist was detrimental for the efficacy of cannabidiol, while no effect was elicited by cannabinoid receptor 1 and cannabinoid receptor 2 antagonists. None of these receptors was involved in the activity of moringin. Taken together, our in vitro results testify the anti-inflammatory, antioxidative, and anti-apoptotic effects of the combination of cannabidiol and moringin.

  10. Deficiency in macrophage-stimulating protein results in spontaneous intestinal inflammation and increased susceptibility toward epithelial damage in zebrafish.

    Science.gov (United States)

    Witte, Merlijn; Huitema, Leonie F A; Nieuwenhuis, Edward E S; Brugman, Sylvia

    2014-12-01

    Several genome-wide association studies have identified the genes encoding for macrophage-stimulating protein (MSP) and its receptor RON (Recepteur d'Origine Nantais) as possible susceptibility factors in inflammatory bowel disease. While it has been shown that the MSP-RON signaling pathway is involved in tissue injury responses, current mouse models for MSP and RON deficiency have not clearly demonstrated a role of MSP-RON signaling in the context of intestinal inflammation. In this study, we report that the recently identified zebrafish Msp mutant (msp(t34230)) develops spontaneous intestinal inflammation over time. From 14 to 28 weeks postfertilization Msp-deficient zebrafish show intestinal eosinophilia, increased intestinal expression of inflammatory marker mmp9, and activation of intestinal goblet cells. Moreover, these Msp mutant zebrafish are more susceptible toward ethanol-induced epithelial damage, which resulted in increased infiltration and proliferation of immune cells within the lamina propria and prolonged intestinal proinflammatory cytokine responses in some mutant fish. In light of the recent development of many tools to visualize, monitor, and genetically modify zebrafish, these Msp-deficient zebrafish will enable in-depth in vivo analysis of epithelial and macrophage-specific MSP-RON signaling in the context of intestinal inflammation.

  11. Macrophage stimulating protein variation enhances the risk of sporadic extrahepatic cholangiocarcinoma.

    Science.gov (United States)

    Krawczyk, Marcin; Höblinger, Aksana; Mihalache, Florentina; Grünhage, Frank; Acalovschi, Monica; Lammert, Frank; Zimmer, Vincent

    2013-07-01

    Primary sclerosing cholangitis confers risk of cholangiocarcinoma. Here, we assessed the primary sclerosing cholangitis-associated variant rs3197999 in the MST1 gene, coding for RON receptor tyrosine kinase ligand macrophage stimulating protein, in a large European cholangiocarcinoma cohort. 223 cholangiocarcinoma patients including three primary sclerosing cholangitis individuals and 355 cancer- and primary sclerosing cholangitis-free controls were genotyped for MST1 rs3197999. The cancer group departed from Hardy-Weinberg equilibrium (p = 0.022) and exhibited a trend for rs3197999 [A] overrepresentation (31% vs. 26%: p = 0.10). Homozygous rs3197999 [AA] carrier status significantly increased overall (OR = 1.97; p = 0.023) and primary sclerosing cholangitis-unrelated biliary tract cancer risk (OR = 1.84; p = 0.044), relative to homozygous common allele carriers. The association was most pronounced in patients with extrahepatic tumours. This finding was robust to multivariate analysis (p < 0.05), validating the [AA] genotype as an independent cholangiocarcinoma risk factor. These results suggest that the [AA] genotype of the common MST1 variant rs3197999 enhances genetic risk of sporadic extrahepatic cholangiocarcinoma irrespective of primary sclerosing cholangitis status, presumably by modulating inflammatory responses and/or altered MSP/RON signalling. Copyright © 2013 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  12. The choice of phorbol 12-myristate 13-acetate differentiation protocol influences the response of THP-1 macrophages to a pro-inflammatory stimulus.

    Science.gov (United States)

    Lund, Maria E; To, Joyce; O'Brien, Bronwyn A; Donnelly, Sheila

    2016-03-01

    The human monocytic cell line, THP-1, is the most widely used model for primary human monocytes/macrophages. This is because, following differentiation using phorbol 12-myristate 13-acetate (PMA), THP-1 cells acquire a macrophage-like phenotype, which mimics, in many respects, primary human macrophages. Despite the widespread use of THP-1 cells in studies elucidating macrophage responses to inflammatory stimuli, as well as the development and screening of potential therapeutics, there is currently no standardised protocol for the reliable differentiation of THP-1 monocytes to a macrophage phenotype using PMA. Consequently, reports using THP-1 cells have demonstrated significant phenotypic and functional differences between resultant THP-1 macrophage populations, which are largely attributable to the varying PMA differentiation methods used. Thus, to guarantee consistency and reproducibility between studies, and to ensure the relevance of THP-1 cells as an appropriate model for primary human macrophages, it is crucial to develop a standardised protocol for the differentiation of THP-1 macrophages. Accordingly, we compared the function and phenotype of THP-1 macrophages generated using the range of published PMA differentiation protocols, specifically in response to the pro-inflammatory stimulus, lipopolysaccharide (LPS). Our results demonstrated that the function of the resultant THP-1 macrophage populations, as determined by tumour necrosis factor (TNF) secretion in response to LPS stimulation, varied significantly, and was dependent upon the concentration of PMA used to stimulate the differentiation of monocytes, and the period of rest following PMA exposure. These data indicate that exposure of monocytic THP-1 cells to 25 nM PMA over 48 h, followed by a recovery period of 24h in culture in the absence of PMA, was the optimal protocol for the differentiation of THP-1 cells.

  13. Protein kinases are potential targets to treat inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Lei; Yang; Yutao; Yan

    2014-01-01

    Protein kinases play a crucial role in the pathogenesis of inflammatory bowel disease(IBD), the two main forms of which are ulcerative colitis and Crohn’s dis-ease. In this article, we will review the mechanisms of involvement of protein kinases in the pathogenesis of and intervention against IBD, in terms of their effects on genetics, microbiota, mucous layer and tight junc-tion, and the potential of protein kinases as therapeutic targets against IBD.

  14. A fibroblast/macrophage co-culture model to evaluate the biocompatibility of an electrospun Dextran/PLGA scaffold and its potential to induce inflammatory responses

    Energy Technology Data Exchange (ETDEWEB)

    Pan Hui; Kantharia, Sarah [Department of Biomedical Engineering, State University of New York-Stony Brook, Stony Brook, NY 11794-2580 (United States); Jiang Hongliang [Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Chen Weiliam, E-mail: weiliam.chen@nyumc.org [Division of Wound Healing and Regenerative Medicine, Department of Surgery, New York University School of Medicine, New York, NY 10016 (United States)

    2011-12-15

    Fibroblasts and macrophages are the two major types of cells responding to implanted biomaterials. They play crucial roles in inflammatory responses, host-material interactions and tissue remodeling. However, the synergistic interactions of these two cell types with biomaterials are not fully understood. In this investigation, an in vitro fibroblast/macrophage co-culture system was utilized to examine the biocompatibility and the potential to induce inflammatory responses of an electrospun Dextran/PLGA scaffold. The scaffold did not affect the morphologies, attachments, proliferations and viabilities of both the fibroblasts and macrophages, cultured separately or together. Moreover, it only activated a small subset of the macrophages implicating a low potential to induce either severe acute or chronic inflammatory response. Additionally, fibroblasts played a role in prolonging macrophage activation in the presence of the scaffolds. Using antibody arrays, IL-10, SDF-1, MIP-1 gamma and RANTES were found to be up-regulated when the cells were incubated with the scaffolds. The results of subdermal implantation of the Dextran/PLGA scaffolds confirmed its biocompatibility and low inflammatory potential.

  15. S-adenosylmethionine lowers the inflammatory response in macrophages associated with changes in DNA methylation

    Science.gov (United States)

    S-adenosylmethionine (SAM), the unique methyl donor in DNA methylation, has been shown to lower inflammation. We assessed whether epigenetic mechanisms mediate this effect. Human THP-1 cells were differentiated into macrophages and treated with 0 micromole/L, 500 micromole/L or 1000 micromole/L SAM ...

  16. Diarctigenin, a lignan constituent from Arctium lappa, down-regulated zymosan-induced transcription of inflammatory genes through suppression of DNA binding ability of nuclear factor-kappaB in macrophages.

    Science.gov (United States)

    Kim, Byung Hak; Hong, Seong Su; Kwon, Soon Woo; Lee, Hwa Young; Sung, Hyeran; Lee, In-Jeong; Hwang, Bang Yeon; Song, Sukgil; Lee, Chong-Kil; Chung, Daehyun; Ahn, Byeongwoo; Nam, Sang-Yoon; Han, Sang-Bae; Kim, Youngsoo

    2008-11-01

    Diarctigenin was previously isolated as an inhibitor of nitric oxide (NO) production in macrophages from the seeds of Arctium lappa used as an alternative medicine for the treatment of inflammatory disorders. However, little is known about the molecular basis of these effects. Here, we demonstrated that diarctigenin inhibited the production of NO, prostaglandin E(2), tumor necrosis factor-alpha, and interleukin (IL)-1beta and IL-6 with IC(50) values of 6 to 12 miciroM in zymosan- or lipopolysaccharide-(LPS) activated macrophages. Diarctigenin attenuated zymosan-induced mRNA synthesis of inducible NO synthase (iNOS) and also inhibited promoter activities of iNOS and cytokine genes in the cells. Because nuclear factor (NF)-kappaB plays a pivotal role in inflammatory gene transcription, we next investigated the effect of diarctigenin on NF-kappaB activation. Diarctigenin inhibited the transcriptional activity and DNA binding ability of NF-kappaB in zymosan-activated macrophages but did not affect the degradation and phosphorylation of inhibitory kappaB (IkappaB) proteins. Moreover, diarctigenin suppressed expression vector NF-kappaB p65-elicited NF-kappaB activation and also iNOS promoter activity, indicating that the compound could directly target an NF-kappa-activating signal cascade downstream of IkappaB degradation and inhibit NF-kappaB-regulated iNOS expression. Diarctigenin also inhibited the in vitro DNA binding ability of NF-kappaB but did not affect the nuclear import of NF-kappaB p65 in the cells. Taken together, diarctigenin down-regulated zymosan- or LPS-induced inflammatory gene transcription in macrophages, which was due to direct inhibition of the DNA binding ability of NF-kappaB. Finally, this study provides a pharmacological potential of diarctigenin in the NF-kappaB-associated inflammatory disorders.

  17. Effect of lactoferrin protein on red blood cells and macrophages: mechanism of parasite–host interaction

    Directory of Open Access Journals (Sweden)

    An

    2015-07-01

    Full Text Available Namrata Anand,1 Rupinder K Kanwar,2 Mohan Lal Dubey,1 R K Vahishta,3 Rakesh Sehgal,1,* Anita K Verma,4 Jagat R Kanwar2,*1Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India; 2Nanomedicine Laboratory of Immunology and Molecular Biomedical Research, School of Medicine, Molecular and Medical Research Strategic Research Centre, Faculty of Health, Deakin University, Geelong, VIC, Australia; 3Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 4Nanobiotech Laboratory, Department of Zoology, Kirorimal College, University of Delhi, Delhi, India*These authors contributed equally to this workBackground: Lactoferrin is a natural multifunctional protein known to have antitumor, antimicrobial, and anti-inflammatory activity. Apart from its antimicrobial effects, lactoferrin is known to boost the immune response by enhancing antioxidants. Lactoferrin exists in various forms depending on its iron saturation. The present study was done to observe the effect of lactoferrin, isolated from bovine and buffalo colostrum, on red blood cells (RBCs and macrophages (human monocytic cell line-derived macrophages THP1 cells.Methods: Lactoferrin obtained from both species and in different iron saturation forms were used in the present study, and treatment of host cells were given with different forms of lactoferrin at different concentrations. These treated host cells were used for various studies, including morphometric analysis, viability by MTT assay, survivin gene expression, production of reactive oxygen species, phagocytic properties, invasion assay, and Toll-like receptor-4, Toll-like receptor-9, and MDR1 expression, to investigate the interaction between lactoferrin and host cells and the possible mechanism of action with regard to parasitic infections.Results: The mechanism of interaction between host cells and lactoferrin have shown various aspects of gene

  18. The new 4-O-methylhonokiol analog GS12021 inhibits inflammation and macrophage chemotaxis: role of AMP-activated protein kinase α activation.

    Directory of Open Access Journals (Sweden)

    Sora Kim

    Full Text Available Preventing pathologic tissue inflammation is key to treating obesity-induced insulin resistance and type 2 diabetes. Previously, we synthesized a series of methylhonokiol analogs and reported that compounds with a carbamate structure had inhibitory function against cyclooxygenase-2 in a cell-free enzyme assay. However, whether these compounds could inhibit the expression of inflammatory genes in macrophages has not been investigated. Here, we found that a new 4-O-methylhonokiol analog, 3',5-diallyl-4'-methoxy-[1,1'-biphenyl]-2-yl morpholine-4-carboxylate (GS12021 inhibited LPS- or TNFα-stimulated inflammation in macrophages and adipocytes, respectively. LPS-induced phosphorylation of nuclear factor-kappa B (NF-κB/p65 was significantly decreased, whereas NF-κB luciferase activities were slightly inhibited, by GS12021 treatment in RAW 264.7 cells. Either mitogen-activated protein kinase phosphorylation or AP-1 luciferase activity was not altered by GS12021. GS12021 increased the phosphorylation of AMP-activated protein kinase (AMPK α and the expression of sirtuin (SIRT 1. Inhibition of mRNA expression of inflammatory genes by GS12021 was abolished in AMPKα1-knockdown cells, but not in SIRT1 knockout cells, demonstrating that GS12021 exerts anti-inflammatory effects through AMPKα activation. The transwell migration assay results showed that GS12021 treatment of macrophages prevented the cell migration promoted by incubation with conditioned medium obtained from adipocytes. GS12021 suppression of p65 phosphorylation and macrophage chemotaxis were preserved in AMPKα1-knockdown cells, indicating AMPK is not required for these functions of GS12021. Identification of this novel methylhonokiol analog could enable studies of the structure-activity relationship of this class of compounds and further evaluation of its in vivo potential for the treatment of insulin-resistant states and other chronic inflammatory diseases.

  19. Preparation, characterization, and safety evaluation of poly(lactide-co-glycolide nanoparticles for protein delivery into macrophages

    Directory of Open Access Journals (Sweden)

    Guedj AS

    2015-09-01

    Full Text Available Anne-Sophie Guedj,1 Arnold J Kell,2 Michael Barnes,2 Sandra Stals,1 David Gonçalves,3 Denis Girard,3 Carole Lavigne11National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, 2National Research Council of Canada, Ottawa, ON, 3Laboratoire de recherche en inflammation et physiologie des granulocytes, Université du Québec, INRS-Institut Armand-Frappier, Laval, QC, CanadaAbstract: Following infection, HIV establishes reservoirs within tissues that are inaccessible to optimal levels of antiviral drugs or within cells where HIV lies latent, thus escaping the action of anti-HIV drugs. Macrophages are a persistent reservoir for HIV and may contribute to the rebound viremia observed after antiretroviral treatment is stopped. In this study, we further investigate the potential of poly(lactic-co-glycolic acid (PLGA-based nanocarriers as a new strategy to enhance penetration of therapeutic molecules into macrophages. We have prepared stable PLGA nanoparticles (NPs and evaluated their capacity to transport an active molecule into the human monocyte/macrophage cell line THP-1 using bovine serum albumin (BSA as a proof-of-concept compound. Intracellular localization of fluorescent BSA molecules encapsulated into PLGA NPs was monitored in live cells using confocal microscopy, and cellular uptake was quantified by flow cytometry. In vitro and in vivo toxicological studies were performed to further determine the safety profile of PLGA NPs including inflammatory effects. The size of the PLGA NPs carrying BSA (PLGA-BSA in culture medium containing 10% serum was ~126 nm in diameter, and they were negatively charged at their surface (zeta potential =-5.6 mV. Our confocal microscopy studies and flow cytometry data showed that these PLGA-BSA NPs are rapidly and efficiently taken up by THP-1 monocyte-derived macrophages (MDMs at low doses. We found that PLGA-BSA NPs increased cellular uptake and internalization of the protein in vitro. PLGA

  20. Suppression of the acute inflammatory response of porcine alveolar- and liver macrophages

    NARCIS (Netherlands)

    Izeboud, C.A.; Monshouwer, M.; Witkamp, R.F.; Miert, A.S.J. van

    2000-01-01

    During infection and inflammation drug disposition and hepatic metabolism are markedly affected in mammals. Pro-inflammatory mediators play an important role in the suppression of (cytochrome-P450-mediated) drug metabolism. Inflammatory mediators like cytokines, nitric oxide (NO), reactive oxygen sp

  1. DMPD: Molecular mechanisms of the anti-inflammatory functions of interferons. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18086388 Molecular mechanisms of the anti-inflammatory functions of interferons. Ko...varik P, Sauer I, Schaljo B. Immunobiology. 2007;212(9-10):895-901. Epub 2007 Nov 8. (.png) (.svg) (.html) (.csml) Show Molecular... mechanisms of the anti-inflammatory functions of interferons. PubmedID 18086388 Title Molecular

  2. Visceral adipose tissue activated macrophage content and inflammatory adipokine secretion is higher in pre-eclampsia than in healthy pregnancys.

    Science.gov (United States)

    Huda, Shahzya S; Jordan, Fiona; Bray, Jack; Love, Gillian; Payne, Reba; Sattar, Naveed; Freeman, Dilys J

    2017-07-01

    Obesity increases pre-eclampsia (PE) risk. Adipose tissue inflammation may contribute to the clinical syndrome of PE. We compared adipose tissue macrophage infiltration and release of pro-inflammatory adipokines in PE and healthy pregnancy. Subcutaneous and visceral adipose tissue biopsies were collected from healthy (n=13) and PE (n=13) mothers. Basal and lipopolysaccharide (LPS) stimulated adipocyte TNFα, IL-6, CCL-2, and CRP release was measured. Adipose tissue cell densities of activated (cfms(+)) and total (CD68(+)) macrophages were determined. In PE only, visceral adipose tissue TNFα release was increased after LPS stimulation (57 [76] versus 81 [97] pg/ml/µg DNA, P=0.030). Basal TNFα release was negatively correlated insulin sensitivity of visceral adipocytes (r = -0.61, P=0.030) in PE. Visceral adipocyte IL-6 release was increased after LPS stimulation in PE only (566 [696] versus 852 [914] pg/ml/µg DNA, P=0.019). Visceral adipocyte CCL-2 basal (67 [61] versus 187 [219] pg/ml/µgDNA, P=0.049) and stimulated (46 [46] versus 224 [271] pg/ml/µg DNA, P=0.003) release was greater than in subcutaneous adipocytes in PE only. In PE, median TNF mRNA expression in visceral adipose tissue was higher than controls (1.94 [1.13-4.14] versus 0.8 [0.00-1.27] TNF/PPIA ratio, P=0.006). In visceral adipose tissue, CSF1R (a marker of activated macrophages) mRNA expression (24.8[11.0] versus 51.0[29.9] CSF1R/PPIA ratio, P=0.011) and activated (cfms+) macrophage count (6.7[2.6] versus 15.2[8.8] % cfms+/adipocyte, P=0.031) were higher in PE than in controls. In conclusion, our study demonstrates dysregulation of inflammatory pathways predominantly in visceral adipose tissue in PE. Inflammation of visceral adipose tissue may mediate many of the adverse metabolic effects associated with PE. © 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution

  3. 甲基苯丙胺对人类免疫缺陷病毒感染者巨噬细胞炎性蛋白表达的影响%The impact of methamphetamine on the expressions of macrophage inflammatory proteins in human immunodeficiency virus-infected patients

    Institute of Scientific and Technical Information of China (English)

    李彧; 苏锦明; 潘沛江; 梁浩; 石艺; 叶力; 陈晖; 蒋俊俊; 梁冰玉; 黄颉刚; 周波; 廖艳研

    2014-01-01

    Objective To investigate the impact of methamphetamine (Meth) on the expressions of macrophage inflammatory protein (MIP)-1α ,MIP-1β ,interleukin (IL)-6 among human immunodeficiency virus(HIV)-infected patients .Methods The investigation was performed among 15 Meth-abuse and HIV-infected subjects (Meth + HIV ) ,15 non-Meth-abuse and HIV-infected subjects (non-Meth + HIV ) ,15 Meth-abuse and HIV-uninfected subjects (Meth) ,and 15 healthy subjects (HC) .CD4 + T lymphocyte counts in peripheral blood were detected by flow cytometry .The HIV viral loads in HIV-infected patients were detected by standard detection method .The levels of plasma MIP-1α ,MIP-1β and IL-6 from four groups were determined by enzyme-linked immunosorbent assay (ELISA ) .Intergroup difference was compared using t-test and interactive analysis was conducted using analysis of variance .Results In HIV-infected patients ,CD4 + T lymphocyte counts in Meth + HIV group was significant lower than non-Meth +HIV group (t= 5 .431 , P 0 .05) ,neither between HIV infection and the levels of cytokines (P> 0 .05) .Conclusion Meth abuse results in elevated expressions of MIP-1αand MIP-1β ,which indicates that Meth abuse may play a regulating role on promoting HIV infection .%目的:探讨甲基苯丙胺(冰毒)对 HIV 感染者巨噬细胞炎性蛋白(MIP)-1α、MIP-1β、IL-6表达的影响。方法设吸食甲基苯丙胺的 HIV 感染组、无吸毒史的 HIV 感染组、吸食甲基苯丙胺的非HIV 感染组和健康对照组,每组15名。流式细胞仪检测 HIV 感染者 CD4+ T 淋巴细胞计数,并测定HIV 载量;ELISA 法检测血浆 MIP-1α、MIP-1β、IL-6表达水平。组间差异比较和交互作用分析采用 t检验和方差分析。结果在 HIV 感染者中,吸食甲基苯丙胺者与非吸毒者比较,CD4+ T 淋巴细胞明显下降、HIV 载量明显升高(t 值分别为5.431,4.670,均 P <0.01)。在 HIV 感染者

  4. Entamoeba histolytica: inflammatory process during amoebic liver abscess formation involves cyclooxygenase-2 expression in macrophages and trophozoites.

    Science.gov (United States)

    Gutiérrez-Alarcón, A; Moguel-Torres, M; Mata-Leyva, O; Cuellar-Nevárez, G; Siqueiros-Cendón, T; Erosa, G; Ramos-Martínez, E; Talamás-Rohana, P; Sánchez-Ramírez, B

    2006-11-01

    It has been demonstrated that expression of cyclooxygenase-2 (COX-2) isoform is induced by Entamoeba histolytica in macrophages and polymorphonuclear cells during amoebic liver abscess (ALA) formation in hamsters. Trophozoites present in the lesion were also positive for COX-2 signal. However, no cross reactivity of the anti-COX-2 antibody with protein extract of cultivated trophozoites was found. To clarify if trophozoites are involved in PGE(2) production during ALA development, COX-2 expression was detected by in situ hybridization and RT-PCR in liver tissue from intrahepatically infected hamsters. COX-2 mRNA was in polymorphonuclear cells since 4h postinfection, and subsequently, local macrophages expressed COX-2 mRNA in a similar way. Additionally, a positive signal for COX-2 mRNA expression was detected in E. histolytica trophozoites, suggesting that, in vivo, parasite COX expression may be an important mechanism to promote inflammation.

  5. Cytoprotective and enhanced anti-inflammatory activities of liposomal piroxicam formulation in lipopolysaccharide-stimulated RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Chiong HS

    2013-03-01

    Full Text Available Hoe Siong Chiong,1 Yoke Keong Yong,1 Zuraini Ahmad,1 Mohd Roslan Sulaiman,1 Zainul Amiruddin Zakaria,1 Kah Hay Yuen,2 Muhammad Nazrul Hakim1,31Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia; 2School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Malaysia; 3Sports Academy, Universiti Putra Malaysia, Serdang, MalaysiaBackground: Liposomal drug delivery systems, a promising lipid-based nanoparticle technology, have been known to play significant roles in improving the safety and efficacy of an encapsulated drug.Methods: Liposomes, prepared using an optimized proliposome method, were used in the present work to encapsulate piroxicam, a widely prescribed nonsteroidal anti-inflammatory drug. The cytotoxic effects as well as the in vitro efficacy in regulation of inflammatory responses by free-form piroxicam and liposome-encapsulated piroxicam were evaluated using a lipopolysaccharide-sensitive macrophage cell line, RAW 264.7.Results: Cells treated with liposome-encapsulated piroxicam demonstrated higher cell viabilities than those treated with free-form piroxicam. In addition, the liposomal piroxicam formulation resulted in statistically stronger inhibition of pro-inflammatory mediators (ie, nitric oxide, tumor necrosis factor-α, interleukin-1β, and prostaglandin E2 than piroxicam at an equivalent dose. The liposome-encapsulated piroxicam also caused statistically significant production of interleukin-10, an anti-inflammatory cytokine.Conclusion: This study affirms the potential of a liposomal piroxicam formulation in reducing cytotoxicity and enhancing anti-inflammatory responses in vitro.Keywords: liposomes, nitric oxide, cytokines, prostaglandin E2, interleukin-1β, piroxicam

  6. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice.

    Science.gov (United States)

    Channappanavar, Rudragouda; Fehr, Anthony R; Vijay, Rahul; Mack, Matthias; Zhao, Jincun; Meyerholz, David K; Perlman, Stanley

    2016-02-10

    Highly pathogenic human respiratory coronaviruses cause acute lethal disease characterized by exuberant inflammatory responses and lung damage. However, the factors leading to lung pathology are not well understood. Using mice infected with SARS (severe acute respiratory syndrome)-CoV, we show that robust virus replication accompanied by delayed type I interferon (IFN-I) signaling orchestrates inflammatory responses and lung immunopathology with diminished survival. IFN-I remains detectable until after virus titers peak, but early IFN-I administration ameliorates immunopathology. This delayed IFN-I signaling promotes the accumulation of pathogenic inflammatory monocyte-macrophages (IMMs), resulting in elevated lung cytokine/chemokine levels, vascular leakage, and impaired virus-specific T cell responses. Genetic ablation of the IFN-αβ receptor (IFNAR) or IMM depletion protects mice from lethal infection, without affecting viral load. These results demonstrate that IFN-I and IMM promote lethal SARS-CoV infection and identify IFN-I and IMMs as potential therapeutic targets in patients infected with pathogenic coronavirus and perhaps other respiratory viruses. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Anti-inflammatory activities of mogrosides from Momordica grosvenori in murine macrophages and a murine ear edema model.

    Science.gov (United States)

    Di, Rong; Huang, Mou-Tuan; Ho, Chi-Tang

    2011-07-13

    Momordica grosvenori (Luo Han Guo), grown primarily in Guangxi province in China, has been traditionally used for thousands of years by the Chinese to make hot drinks for the treatment of sore throat and the removal of phlegm. The natural noncaloric sweetening triterpenoid glycosides (mogrosides) contained in the M. grosvenori fruits are also antioxidative, anticarcinogenic, and helpful in preventing diabetic complications. The aim of this study was to assess the anti-inflammatory properties of mogrosides in both murine macrophage RAW 264.7 cells and a murine ear edema model. The results indicate that mogrosides can inhibit inflammation induced by lipopolysaccharides (LPS) in RAW 264.7 cells by down-regulating the expression of key inflammatory genes iNOS, COX-2, and IL-6 and up-regulating some inflammation protective genes such as PARP1, BCL2l1, TRP53, and MAPK9. Similarly, in the murine ear edema model, 12-O-tetradecanoylphorbol-13-acetate-induced inflammation was inhibited by mogrosides by down-regulating COX-2 and IL-6 and up-regulating PARP1, BCL2l1, TRP53, MAPK9, and PPARδ gene expression. This study shows that the anticancer and antidiabetic effects of M. grosvenori may result in part from its anti-inflammatory activity.

  8. A Novel Herbal Medicine KIOM-MA Exerts an Anti-Inflammatory Effect in LPS-Stimulated RAW 264.7 Macrophage Cells

    Directory of Open Access Journals (Sweden)

    You-Chang Oh

    2012-01-01

    Full Text Available KIOM-MA was recently reported as a novel herbal medicine effective for atopic dermatitis and asthma. In this study, we have demonstrated the inhibitory effect of KIOM-MA on proinflammatory mediator produced in lipopolysaccharide (LPS-stimulated RAW 264.7 cells. KIOM-MA significantly inhibited the expression of inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 as well as nitric oxide (NO and prostaglandin E2 (PGE2. Consistent with the inhibitory effect on PGE2, KIOM-MA suppresses the LPS-induced migration of macrophages and gelatinase activity and the expression of matrix metalloprotease-9 (MMP-9 in a dose-dependent manner. Additionally, KIOM-MA showed a strong suppressive effect on the inflammatory cytokines production such as tumor necrosis factor-α (TNF-α and interleukin-6 (IL-6. We also found that KIOM-MA inhibits the activation of nuclear factor-κB (NF-κB and represses the activity of extracellular signal-regulated kinase (ERK, p38, and c-Jun NH2-terminal kinase (JNK mitogen-activated protein kinases (MAPKs. Taken together, we elucidated the mechanism of anti-inflammatory effect of KIOM-MA using RAW 264.7 cells stimulated by LPS.

  9. Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators

    Science.gov (United States)

    Raza, Sobia; Barnett, Mark W.; Barnett-Itzhaki, Zohar; Amit, Ido; Hume, David A.; Freeman, Tom C.

    2014-01-01

    Macrophages respond to the TLR4 agonist LPS with a sequential transcriptional cascade controlled by a complex regulatory network of signaling pathways and transcription factors. At least two distinct pathways are currently known to be engaged by TLR4 and are distinguished by their dependence on the adaptor molecule MyD88. We have used gene expression microarrays to define the effects of each of three variables—LPS dose, LPS versus IFN-β and -γ, and genetic background—on the transcriptional response of mouse BMDMs. Analysis of correlation networks generated from the data has identified subnetworks or modules within the macrophage transcriptional network that are activated selectively by these variables. We have identified mouse strain-specific signatures, including a module enriched for SLE susceptibility candidates. In the modules of genes unique to different treatments, we found a module of genes induced by type-I IFN but not by LPS treatment, suggesting another layer of complexity in the LPS-TLR4 signaling feedback control. We also observe that the activation of the complement system, in common with the known activation of MHC class 2 genes, is reliant on IFN-γ signaling. Taken together, these data further highlight the exquisite nature of the regulatory systems that control macrophage activation, their likely relevance to disease resistance/susceptibility, and the appropriate response of these cells to proinflammatory stimuli. PMID:24721704

  10. Modified pectin from Theobroma cacao induces potent pro-inflammatory activity in murine peritoneal macrophage.

    Science.gov (United States)

    Amorim, Juliana C; Vriesmann, Lucia Cristina; Petkowicz, Carmen L O; Martinez, Glaucia Regina; Noleto, Guilhermina R

    2016-11-01

    In vitro effects of acetylated pectin (OP) isolated from cacao pod husks (Theobroma cacao L.), its partially deacetylated and de-esterified form (MOP), and a commercial homogalacturonan (PG) were investigated on murine peritoneal macrophages. MOP stood out among the studied pectins. After 48h of incubation, compared with the control group, it was able to promote significant macrophage morphological differentiation from resident to activated stage and also stimulated nitric oxide production, which reached a level of 85% of that of LPS stimulus. In the presence of the highest tested concentration of MOP (200μg·mL(-1)), the levels of the cytokines TNF-α (6h) and IL-12 and IL-10 (48h) increased substantially in relation to untreated cells. Our results show that the partial deacetylation and de-esterification of pectin extracted from cacao pod husks (T. cacao L.) produced a polymer with greater ability than its native form to activate macrophages to a cytotoxic phenotype. Like this, they provide the possibility of a therapeutic application to MOP, which could lead to a decreased susceptibility to microbial infection besides antitumor activity. Additionally, the present results also corroborate with the proposition of that the chemical modifications of the biopolymers can result in an improved molecule with new possibilities of application. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Analysis of the transcriptional networks underpinning the activation of murine macrophages by inflammatory mediators.

    Science.gov (United States)

    Raza, Sobia; Barnett, Mark W; Barnett-Itzhaki, Zohar; Amit, Ido; Hume, David A; Freeman, Tom C

    2014-08-01

    Macrophages respond to the TLR4 agonist LPS with a sequential transcriptional cascade controlled by a complex regulatory network of signaling pathways and transcription factors. At least two distinct pathways are currently known to be engaged by TLR4 and are distinguished by their dependence on the adaptor molecule MyD88. We have used gene expression microarrays to define the effects of each of three variables--LPS dose, LPS versus IFN-β and -γ, and genetic background--on the transcriptional response of mouse BMDMs. Analysis of correlation networks generated from the data has identified subnetworks or modules within the macrophage transcriptional network that are activated selectively by these variables. We have identified mouse strain-specific signatures, including a module enriched for SLE susceptibility candidates. In the modules of genes unique to different treatments, we found a module of genes induced by type-I IFN but not by LPS treatment, suggesting another layer of complexity in the LPS-TLR4 signaling feedback control. We also observe that the activation of the complement system, in common with the known activation of MHC class 2 genes, is reliant on IFN-γ signaling. Taken together, these data further highlight the exquisite nature of the regulatory systems that control macrophage activation, their likely relevance to disease resistance/susceptibility, and the appropriate response of these cells to proinflammatory stimuli.

  12. Functional Role of Milk Fat Globule-Epidermal Growth Factor VIII in Macrophage-Mediated Inflammatory Responses and Inflammatory/Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Young-Su Yi

    2016-01-01

    Full Text Available Inflammation involves a series of complex biological processes mediated by innate immunity for host defense against pathogen infection. Chronic inflammation is considered to be one of the major causes of serious diseases, including a number of autoimmune/inflammatory diseases, cancers, cardiovascular diseases, and neurological diseases. Milk fat globule-epidermal growth factor 8 (MFG-E8 is a secreted protein found in vertebrates and was initially discovered as a critical component of the milk fat globule. Previously, a number of studies have reported that MFG-E8 contributes to various biological functions including the phagocytic removal of damaged and apoptotic cells from tissues, the induction of VEGF-mediated neovascularization, the maintenance of intestinal epithelial homeostasis, and the promotion of mucosal healing. Recently, emerging studies have reported that MFG-E8 plays a role in inflammatory responses and inflammatory/autoimmune diseases. This review describes the characteristics of MFG-E8-mediated signaling pathways, summarizes recent findings supporting the roles of MFG-E8 in inflammatory responses and inflammatory/autoimmune diseases, and discusses MFG-E8 targeting as a potential therapeutic strategy for the development of anti-inflammatory/autoimmune disease drugs.

  13. Functional Role of Milk Fat Globule-Epidermal Growth Factor VIII in Macrophage-Mediated Inflammatory Responses and Inflammatory/Autoimmune Diseases.

    Science.gov (United States)

    Yi, Young-Su

    2016-01-01

    Inflammation involves a series of complex biological processes mediated by innate immunity for host defense against pathogen infection. Chronic inflammation is considered to be one of the major causes of serious diseases, including a number of autoimmune/inflammatory diseases, cancers, cardiovascular diseases, and neurological diseases. Milk fat globule-epidermal growth factor 8 (MFG-E8) is a secreted protein found in vertebrates and was initially discovered as a critical component of the milk fat globule. Previously, a number of studies have reported that MFG-E8 contributes to various biological functions including the phagocytic removal of damaged and apoptotic cells from tissues, the induction of VEGF-mediated neovascularization, the maintenance of intestinal epithelial homeostasis, and the promotion of mucosal healing. Recently, emerging studies have reported that MFG-E8 plays a role in inflammatory responses and inflammatory/autoimmune diseases. This review describes the characteristics of MFG-E8-mediated signaling pathways, summarizes recent findings supporting the roles of MFG-E8 in inflammatory responses and inflammatory/autoimmune diseases, and discusses MFG-E8 targeting as a potential therapeutic strategy for the development of anti-inflammatory/autoimmune disease drugs.

  14. α1-Antitrypsin Activates Protein Phosphatase 2A to Counter Lung Inflammatory Responses

    Science.gov (United States)

    Geraghty, Patrick; Eden, Edward; Pillai, Manju; Campos, Michael; McElvaney, Noel G.

    2014-01-01

    Rationale: α1-Antitrypsin (A1AT) was identified as a plasma protease inhibitor; however, it is now recognized as a multifunctional protein that modulates immunity, inflammation, proteostasis, apoptosis, and cellular senescence. Like A1AT, protein phosphatase 2A (PP2A), a major serine-threonine phosphatase, regulates similar biologic processes and plays a key role in chronic obstructive pulmonary disease. Objectives: Given their common effects, this study investigated whether A1AT acts via PP2A to alter tumor necrosis factor (TNF) signaling, inflammation, and proteolytic responses in this disease. Methods: PP2A activity was measured in peripheral blood neutrophils from A1AT-deficient (PiZZ) and healthy (PiMM) individuals and in alveolar macrophages from normal (60 mg/kg) and high-dose (120 mg/kg) A1AT-treated PiZZ subjects. PP2A activation was assessed in human neutrophils, airway epithelial cells, and peripheral blood monocytes treated with plasma purified A1AT protein. Similarly, lung PP2A activity was measured in mice administered intranasal A1AT. PP2A was silenced in lung epithelial cells treated with A1AT and matrix metalloproteinase and cytokine production was then measured following TNF-α stimulation. Measurements and Main Results: PP2A was significantly lower in neutrophils isolated from PiZZ compared with PiMM subjects. A1AT protein activated PP2A in human alveolar macrophages, monocytes, neutrophils, airway epithelial cells, and in mouse lungs. This activation required functionally active A1AT protein and protein tyrosine phosphatase 1B expression. A1AT treatment acted via PP2A to prevent p38 and IκBα phosphorylation and matrix metalloproteinase and cytokine induction in TNF-α–stimulated epithelial cells. Conclusions: Together, these data indicate that A1AT modulates PP2A to counter inflammatory and proteolytic responses induced by TNF signaling in the lung. PMID:25341065

  15. An extract of Phellinus linteus grown on germinated brown rice inhibits inflammation markers in RAW264.7 macrophages by suppressing inflammatory cytokines, chemokines, and mediators and up-regulating antioxidant activity.

    Science.gov (United States)

    Park, Hye-Jin; Han, Eun Su; Park, Dong Ki; Lee, Chan; Lee, Ki Won

    2010-12-01

    The immunomodulatory activity of an organic extract of Phellinus linteus grown on slightly germinated brown rice (PBR) was previously demonstrated. Here, we investigated the possible anti-inflammatory activity of the PBR extract by analyzing its effect on the expression of macrophage-derived cytokines, chemokines, and mediator genes that participate in immune and inflammatory responses and diseases. The extract profoundly inhibited the induction of cytokines and chemokines, including tumor necrosis factor-α, chemokine (C-X-C motif) ligand-10, granulocyte-macrophage colony-stimulating factor, and interleukin-6, in lipopolysaccharide (LPS)-stimulated RAW264.7 mouse macrophage cells. It also greatly inhibited LPS-stimulated production of nitric oxide (NO) and prostaglandin E(2) in RAW264.7 cells by suppressing the expression of inducible NO synthase and cyclooxygenase-2. PBR extract inhibited NO production with a twofold lower half-maximal inhibitory concentration value than P. linteus extract. To elucidate the underlying mechanism of action, we examined the effect of the PBR extract on the LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs) in RAW264.7 cells. PBR extract greatly inhibited extracellular signal-regulated kinase and c-Jun N-terminal kinase phosphorylation and slightly inhibited p38 MAPK phosphorylation. It also significantly increased intracellular glutathione peroxidase activity and heme oxygenase-1 protein expression. Thus, the PBR extract has anti-inflammatory activity in LPS-stimulated RAW264.7 cells by virtue of its ability to suppress the production of inflammatory cytokines and chemokines via inhibition of MAPK activation and up-regulation of antioxidant activities.

  16. LDL Receptor-Related Protein-1 (LRP1 Regulates Cholesterol Accumulation in Macrophages.

    Directory of Open Access Journals (Sweden)

    Anna P Lillis

    Full Text Available Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the in vivo contribution of the LDL receptor-related protein 1 (LRP1 to this process is not known [corrected]. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR-deficient background (macLRP1-/-. After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis.

  17. Anti-Inflammatory Effect of Methylpenicinoline from a Marine Isolate of Penicillium sp. (SF-5995: Inhibition of NF-κB and MAPK Pathways in Lipopolysaccharide-Induced RAW264.7 Macrophages and BV2 Microglia

    Directory of Open Access Journals (Sweden)

    Dong-Cheol Kim

    2014-11-01

    Full Text Available In the course of a search for anti-inflammatory metabolites from marine-derived fungi, methylpenicinoline (1 was isolated from a marine isolate of Penicillin sp. Compound 1 inhibited lipopolysaccharide (LPS-stimulated nitric oxide (NO production by suppressing the expression of inducible NO synthase (iNOS in RAW264.7 macrophages and BV2 microglia. It also attenuated prostaglandin E2 (PGE2 production by suppressing cyclooxygenase-2 (COX-2 expression in a concentration-dependent manner (from 10 μM to 80 μM without affecting cell viability. In addition, compound 1 reduced the production of the pro-inflammatory cytokine interleukin-1β (IL-1β. In a further study designed to elucidate the mechanism of its anti-inflammatory effects, compound 1 was shown to block nuclear factor-kappa B (NF-κB activation in LPS-induced RAW264.7 macrophages and BV2 microglia by inhibiting the phosphorylation of inhibitor kappa B-α (IκB-α, thereby suppressing the nuclear translocation of NF-κB dimers, namely p50 and p65, that are known to be crucial molecules associated with iNOS and COX-2 expression. In addition, compound 1 inhibited the activation of mitogen-activated protein kinase (MAPK pathways. Taken together, the results suggest that compound 1 might be a valuable therapeutic agent for the treatment of anti-inflammatory and anti-neuroinflammatory diseases.

  18. Macrophages as target cells for Mayaro virus infection: involvement of reactive oxygen species in the inflammatory response during virus replication.

    Science.gov (United States)

    Cavalheiro, Mariana G; Costa, Leandro Silva DA; Campos, Holmes S; Alves, Letícia S; Assunção-Miranda, Iranaia; Poian, Andrea T DA

    2016-09-01

    Alphaviruses among the viruses that cause arthritis, consisting in a public health problem worldwide by causing localized outbreaks, as well as large epidemics in humans. Interestingly, while the Old World alphaviruses are arthritogenic, the New World alphaviruses cause encephalitis. One exception is Mayaro virus (MAYV), which circulates exclusively in South America but causes arthralgia and is phylogenetically related to the Old World alphaviruses. Although MAYV-induced arthritis in humans is well documented, the molecular and cellular factors that contribute to its pathogenesis are completely unknown. In this study, we demonstrated for the first time that macrophages, key players in arthritis development, are target cells for MAYV infection, which leads to cell death through apoptosis. We showed that MAYV replication in macrophage induced the expression of TNF, a cytokine that would contribute to pathogenesis of MAYV fever, since TNF promotes an inflammatory profile characteristic of arthritis. We also found a significant increase in the production of reactive oxygen species (ROS) at early times of infection, which coincides with the peak of virus replication and precedes TNF secretion. Treatment of the cells with antioxidant agents just after infection completely abolished TNF secretion, indicating an involvement of ROS in inflammation induced during MAYV infection.

  19. Macrophages as target cells for Mayaro virus infection: involvement of reactive oxygen species in the inflammatory response during virus replication

    Directory of Open Access Journals (Sweden)

    MARIANA G. CAVALHEIRO

    Full Text Available ABSTRACT Alphaviruses among the viruses that cause arthritis, consisting in a public health problem worldwide by causing localized outbreaks, as well as large epidemics in humans. Interestingly, while the Old World alphaviruses are arthritogenic, the New World alphaviruses cause encephalitis. One exception is Mayaro virus (MAYV, which circulates exclusively in South America but causes arthralgia and is phylogenetically related to the Old World alphaviruses. Although MAYV-induced arthritis in humans is well documented, the molecular and cellular factors that contribute to its pathogenesis are completely unknown. In this study, we demonstrated for the first time that macrophages, key players in arthritis development, are target cells for MAYV infection, which leads to cell death through apoptosis. We showed that MAYV replication in macrophage induced the expression of TNF, a cytokine that would contribute to pathogenesis of MAYV fever, since TNF promotes an inflammatory profile characteristic of arthritis. We also found a significant increase in the production of reactive oxygen species (ROS at early times of infection, which coincides with the peak of virus replication and precedes TNF secretion. Treatment of the cells with antioxidant agents just after infection completely abolished TNF secretion, indicating an involvement of ROS in inflammation induced during MAYV infection.

  20. OSCAR Is a Receptor for Surfactant Protein D That Activates TNF-α Release from Human CCR2+ Inflammatory Monocytes

    DEFF Research Database (Denmark)

    Barrow, Alexander D; Palarasah, Yaseelan; Bugatti, Mattia;

    2015-01-01

    Surfactant protein D (SP-D) is critical for maintenance of lung homeostasis and provides a first line of defense to pathogens at mucosal surfaces. Polymorphisms in the SP-D-encoding gene SFTPD have been associated with chronic obstructive pulmonary disease and ulcerative colitis. Identification...... of recombinant SP-D and captured native SP-D from human bronchoalveolar lavage. OSCAR localized in an intracellular compartment of alveolar macrophages together with SP-D. Moreover, we found OSCAR on the surface of interstitial lung and blood CCR2(+) inflammatory monocytes, which secreted TNF-α when exposed...... therapeutic target in chronic inflammatory diseases of the lung as well as other diseases involving tissue accumulation of SP-D, infiltration of inflammatory monocytes, and release of TNF-α....

  1. Aloe vera downregulates LPS-induced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages.

    Science.gov (United States)

    Budai, Marietta M; Varga, Aliz; Milesz, Sándor; Tőzsér, József; Benkő, Szilvia

    2013-12-01

    Aloe vera has been used in traditional herbal medicine as an immunomodulatory agent inducing anti-inflammatory effects. However, its role on the IL-1β inflammatory cytokine production has not been studied. IL-1β production is strictly regulated both at transcriptional and posttranslational levels through the activity of Nlrp3 inflammasome. In this study we aimed to determine the effect of Aloe vera on the molecular mechanisms of Nlrp3 inflammasome-mediated IL-1β production in LPS-activated human THP-1 cells and monocyte-derived macrophages. Our results show that Aloe vera significantly reduced IL-8, TNFα, IL-6 and IL-1β cytokine production in a dose dependent manner. The inhibitory effect was substantially more pronounced in the primary cells. We found that Aloe vera inhibited the expression of pro-IL-1β, Nlrp3, caspase-1 as well as that of the P2X7 receptor in the LPS-induced primary macrophages. Furthermore, LPS-induced activation of signaling pathways like NF-κB, p38, JNK and ERK were inhibited by Aloe vera in these cells. Altogether, we show for the first time that Aloe vera-mediated strong reduction of IL-1β appears to be the consequence of the reduced expression of both pro-IL-1β as well as Nlrp3 inflammasome components via suppressing specific signal transduction pathways. Furthermore, we show that the expression of the ATP sensor P2X7 receptor is also downregulated by Aloe vera that could also contribute to the attenuated IL-1β cytokine secretion. These results may provide a new therapeutic approach to regulate inflammasome-mediated responses.

  2. Niacin attenuates the production of pro-inflammatory cytokines in LPS-induced mouse alveolar macrophages by HCA2 dependent mechanisms.

    Science.gov (United States)

    Zhou, Ershun; Li, Yimeng; Yao, Minjun; Wei, Zhengkai; Fu, Yunhe; Yang, Zhengtao

    2014-11-01

    Niacin has been reported to have potent anti-inflammatory effects in LPS-induced acute lung injury. However, the molecular mechanism of niacin has not been fully understood. The aim of the present study was to investigate the effects of niacin on the production of pro-inflammatory cytokines TNF-α, IL-6 and IL-1β in LPS-induced mouse alveolar macrophages and explore its underlying mechanism. Mouse alveolar macrophages were incubated in the presence or absence of various concentrations of niacin (1, 10, 100 μmol/l) 1h before LPS (1 μg/ml) challenge. The results showed that niacin reduced the levels of TNF-α, IL-6 and IL-1β in LPS-challenged alveolar macrophages. Furthermore, NF-κB activation was inhibited by niacin through blocking the phosphorylation of NF-κB p65 and IκBα. In addition, silencing HCA2 abrogated the effect of niacin on the production of pro-inflammatory cytokines. These findings suggested that niacin attenuated the LPS-induced pro-inflammatory cytokines possibly mediated by HCA2 in LPS-challenged alveolar macrophages.

  3. T cell activation inhibitors reduce CD8+ T cell and pro-inflammatory macrophage accumulation in adipose tissue of obese mice.

    Directory of Open Access Journals (Sweden)

    Vince N Montes

    Full Text Available Adipose tissue inflammation and specifically, pro-inflammatory macrophages are believed to contribute to insulin resistance (IR in obesity in humans and animal models. Recent studies have invoked T cells in the recruitment of pro-inflammatory macrophages and the development of IR. To test the role of the T cell response in adipose tissue of mice fed an obesogenic diet, we used two agents (CTLA-4 Ig and anti-CD40L antibody that block co-stimulation, which is essential for full T cell activation. C57BL/6 mice were fed an obesogenic diet for 16 weeks, and concomitantly either treated with CTLA-4 Ig, anti-CD40L antibody or an IgG control (300 µg/week. The treatments altered the immune cell composition of adipose tissue in obese mice. Treated mice demonstrated a marked reduction in pro-inflammatory adipose tissue macrophages and activated CD8+ T cells. Mice treated with anti-CD40L exhibited reduced weight gain, which was accompanied by a trend toward improved IR. CTLA-4 Ig treatment, however, was not associated with improved IR. These data suggest that the presence of pro-inflammatory T cells and macrophages can be altered with co-stimulatory inhibitors, but may not be a significant contributor to the whole body IR phenotype.

  4. Inhibitory Effect of Methyl 2-(4'-Methoxy-4'-oxobutanamide) Benzoate from Jerusalem Artichoke (Helianthus tuberosus) on the Inflammatory Paracrine Loop between Macrophages and Adipocytes.

    Science.gov (United States)

    Jung, Yun Joo; Kim, Byung Oh; Kwak, Jong Hwan; Pyo, Suhkneung

    2016-12-14

    The interaction between macrophages and adipocytes is known to aggravate inflammation of the adipose tissue, leading to decreased insulin sensitivity. Hence, attenuation of the inflammatory paracrine loop between macrophages and adipocytes is deemed essential to ameliorate insulin resistance and diabetes mellitus type 2. Methyl 2-(4'-methoxy-4'-oxobutanamide) benzoate (compound 1), a newly isolated compound from Jerusalem srtichoke (JA), has not been biologically characterized yet. Here, we investigated whether JA-derived compound 1 attenuates the inflammatory cycle between RAW 264.7 macrophages and 3T3-L1 adipocytes. Compound 1 suppressed the inflammatory response of RAW 264.7 cells to lipopolysaccharide through decreased secretion of IL-1β, IL-6, and TNF-α. Moreover, the mRNA expression of TNF-α, IL-6, IL-1β, MCP-1, and Rantes and MAPK pathway activation in 3T3-L1 adipocytes, incubated in macrophage-conditioned media, were inhibited. These findings suggest an anti-inflammatory effect of a newly extracted compound against adipose tissue inflammation and insulin resistance.

  5. Expression and regulation of HIF-1 alpha in macrophages under inflammatory conditions; significant reduction of VEGF by CaMKII inhibitor

    NARCIS (Netherlands)

    Westra, Johanna; Brouwer, Elisabeth; van Roosmalen, Ingrid A. M.; Doornbos-van der Meer, Berber; van Leeuwen, Miek A.; Posthumus, Marcel D.; Kallenberg, Cees G. M.; WESTRA, H

    2010-01-01

    Background: Macrophages expressing the pro-angiogenic transcription factor hypoxia-inducible factor (HIF)-1alpha have been demonstrated in rheumatoid arthritis (RA) in the synovial tissue. Aim of the present study was to investigate intracellular signal transduction regulation of pro-inflammatory HI

  6. Blueberries reduce pro-inflammatory cytokine TNF-alpha and IL-6 production in mouse macrophages by inhibiting NF Kappa B activation and the MAPK pathway

    Science.gov (United States)

    Blueberries (BB) have been reported to attenuate atherosclerosis in apoE deficient (ApoE-/-) mice. The aim of this study was to evaluate the effects of BB in reducing pro-inflammatory cytokine production in mouse macrophages. ApoE-/- mice were fed AIN-93G diet (CD) or CD formulated to contain 1% fre...

  7. Anti-WASP intrabodies inhibit inflammatory responses induced by Toll-like receptors 3, 7, and 9, in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Chisato [Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634 (Japan); Sato, Mitsuru, E-mail: mitsuru.sato@affrc.go.jp [Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634 (Japan); Oshima, Takuma [Department of Biological Science and Technology, Graduate School of Faculty of Industrial Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 (Japan); Takenouchi, Takato [Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634 (Japan); Chiba, Joe [Department of Biological Science and Technology, Graduate School of Faculty of Industrial Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 (Japan); Kitani, Hiroshi [Animal Immune and Cell Biology Research Unit, National Institute of Agrobiological Sciences, 1-2 Ohwashi, Tsukuba, Ibaraki, 305-8634 (Japan)

    2015-02-27

    Wiskott-Aldrich syndrome protein (WASP) is an adaptor molecule in immune cells. Recently, we showed that the WASP N-terminal domain interacted with the SH3 domain of Bruton's tyrosine kinase (Btk), and that the complex formed by WASP and Btk was important for TLR2 and TLR4 signaling in macrophages. Several other studies have shown that Btk played important roles in modulating innate immune responses through TLRs in immune cells. Here, we evaluated the significance of the interaction between WASP and Btk in TLR3, TLR7, and TLR9 signaling. We established bone marrow–derived macrophage cell lines from transgenic (Tg) mice that expressed intracellular antibodies (intrabodies) that specifically targeted the WASP N-terminal domain. One intrabody comprised the single-chain variable fragment and the other comprised the light-chain variable region single domain of an anti-WASP N-terminal monoclonal antibody. Both intrabodies inhibited the specific interaction between WASP and Btk, which impaired the expression of TNF-α, IL-6, and IL-1β in response to TLR3, TLR7, or TLR9 stimulation. Furthermore, the intrabodies inhibited the phosphorylation of both nuclear factor (NF)-κB and WASP in response to TLR3, TLR7, or TLR9 stimulation, in the Tg bone marrow-derived macrophages. These results suggested that WASP plays important roles in TLR3, TLR7, and TLR9 signaling by associating with Btk in macrophages. - Highlights: • The interaction between WASP and Btk is critical for TLR3, TLR7, and TLR9 signaling. • Anti-WASP intrabodies inhibited several TLR pathways that led to cytokine expression. • Phosphorylation of NF-κB via TLR signaling was inhibited by anti-WASP intrabodies. • WASP phosphorylation via several TLR ligands was inhibited by anti-WASP intrabodies.

  8. Inflammatory mechanisms in sepsis: elevated invariant natural killer T-cell numbers in mouse and their modulatory effect on macrophage function.

    Science.gov (United States)

    Heffernan, Daithi S; Monaghan, Sean F; Thakkar, Rajan K; Tran, Mai L; Chung, Chun-Shiang; Gregory, Stephen H; Cioffi, William G; Ayala, Alfred

    2013-08-01

    Invariant natural killer T cells (iNKT) cells are emerging as key mediators of innate immune cellular and inflammatory responses to sepsis and peritonitis. Invariant natural killer T cells mediate survival following murine septic shock. Macrophages are pivotal to survival following sepsis. Invariant natural killer T cells have been shown to modulate various mediators of the innate immune system, including macrophages. We demonstrate sepsis-inducing iNKT-cell exodus from the liver appearing in the peritoneal cavity, the source of the sepsis. This migration was affected by programmed death receptor 1. Programmed death receptor 1 is an inhibitory immune receptor, reported as ubiquitously expressed at low levels on iNKT cells. Programmed death receptor 1 has been associated with markers of human critical illness. Programmed death receptor 1-deficient iNKT cells failed to demonstrate similar migration. To the extent that iNKT cells affected peritoneal macrophage function, we assessed peritoneal macrophages' ability to phagocytose bacteria. Invariant natural killer T(-/-) mice displayed dysfunctional macrophage phagocytosis and altered peritoneal bacterial load. This dysfunction was reversed when peritoneal macrophages from iNKT(-/-) mice were cocultured with wild-type iNKT cells. Together, our results indicate that sepsis induces liver iNKT-cell exodus into the peritoneal cavity mediated by programmed death receptor 1, and these peritoneal iNKT cells appear critical to regulation of peritoneal macrophage phagocytic function. Invariant natural killer T cells offer therapeutic targets for modulating immune responses and detrimental effects of sepsis.

  9. Overexpression of HDAC6 induces pro-inflammatory responses by regulating ROS-MAPK-NF-κB/AP-1 signaling pathways in macrophages.

    Science.gov (United States)

    Youn, Gi Soo; Lee, Keun Wook; Choi, Soo Young; Park, Jinseu

    2016-08-01

    Although histone deacetylase 6 (HDAC6) has been implicated in inflammatory diseases, direct involvement and its action mechanism of HDAC6 in the transcriptional regulation of pro-inflammatory genes have been unclear. In this study, we investigated the possible role of HDAC6 in the expression of pro-inflammatory mediators, indicator of macrophage activation, in RAW 264.7 cells and primary mouse macrophages. HDAC6 overexpression significantly enhanced expression of pro-inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, with concomitant reduction in acetylated α-tubulin. HDAC6 overexpression significantly induced ROS generation via upregulation of NADPH oxidase expression and activity. Inhibition of ROS generation by N-acetyl cysteine, diphenyl iodonium and apocynin suppressed HDAC6-induced pro-inflammatory cytokines. An HDAC6 enzymatic inhibitor significantly inhibited ROS generation and expression of HDAC6-induced pro-inflammatory mediators, indicating the requirement of HDAC6 enzymatic activity for induction of pro-inflammatory cytokines. In addition, HDAC6 overexpression increased activation of MAPK species including ERK, JNK, and p38. Furthermore, HDAC6 overexpression resulted in activation of the NF-κB and AP-1 signaling pathways. Overall, our results provide the first evidence that HDAC6 is capable of inducing expression of pro-inflammatory genes by regulating the ROS-MAPK-NF-κB/AP-1 pathways and serves as a molecular target for inflammation.

  10. Pinellia ternata lectin exerts a pro-inflammatory effect on macrophages by inducing the release of pro-inflammatory cytokines, the activation of the nuclear factor-κB signaling pathway and the overproduction of reactive oxygen species.

    Science.gov (United States)

    Yu, Hong-Li; Zhao, Teng-Fei; Wu, Hao; Pan, Yao-Zong; Zhang, Qian; Wang, Kui-Long; Zhang, Chen-Chao; Jin, Yang-Ping

    2015-10-01

    Pinellia ternata (PT) is a widely used traditional Chinese medicine. The raw material has a throat-irritating toxicity that is associated with the PT lectin (PTL). PTL is a monocot lectin isolated from the tubers of PT, which exhibits mouse peritoneal acute inflammatory effects in vivo. The present study aimed to investigate the pro-inflammatory effect of PTL on macrophages. PTL (50 µg/ml)‑stimulated macrophages enhanced the chemotactic activity of neutrophils. PTL (50, 100, 200 and 400 µg/ml) significantly elevated the production of cytokines [tumor necrosis factor‑α (TNF-α) , interleukin (IL)‑1β and IL‑6]. PTL (25, 50 and 100 µg/ml) induced intracellular reactive oxygen species (ROS) overproduction. PTL also caused transfer of p65 from the macrophage cytoplasm to the nucleus and activated the nuclear factor‑κB (NF‑κB) signaling pathway. Scanning electron microscope images revealed severe cell swelling and membrane integrity defection of macrophages following PTL (100 µg/ml) stimulation, which was also associated with inflammation. PTL had pro‑inflammatory activity, involving induced neutrophil migration, cytokine release, ROS overproduction and the activation of the NF-κB signaling pathway, which was associated with the activation of macrophages.

  11. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization.

    Science.gov (United States)

    Liu, Kun; Zhao, Enpeng; Ilyas, Ghulam; Lalazar, Gadi; Lin, Yu; Haseeb, Muhammad; Tanaka, Kathryn E; Czaja, Mark J

    2015-01-01

    Recent evidence that excessive lipid accumulation can decrease cellular levels of autophagy and that autophagy regulates immune responsiveness suggested that impaired macrophage autophagy may promote the increased innate immune activation that underlies obesity. Primary bone marrow-derived macrophages (BMDM) and peritoneal macrophages from high-fat diet (HFD)-fed mice had decreased levels of autophagic flux indicating a generalized impairment of macrophage autophagy in obese mice. To assess the effects of decreased macrophage autophagy on inflammation, mice with a Lyz2-Cre-mediated knockout of Atg5 in macrophages were fed a HFD and treated with low-dose lipopolysaccharide (LPS). Knockout mice developed systemic and hepatic inflammation with HFD feeding and LPS. This effect was liver specific as knockout mice did not have increased adipose tissue inflammation. The mechanism by which the loss of autophagy promoted inflammation was through the regulation of macrophage polarization. BMDM and Kupffer cells from knockout mice exhibited abnormalities in polarization with both increased proinflammatory M1 and decreased anti-inflammatory M2 polarization as determined by measures of genes and proteins. The heightened hepatic inflammatory response in HFD-fed, LPS-treated knockout mice led to liver injury without affecting steatosis. These findings demonstrate that autophagy has a critical regulatory function in macrophage polarization that downregulates inflammation. Defects in macrophage autophagy may underlie inflammatory disease states such as the decrease in macrophage autophagy with obesity that leads to hepatic inflammation and the progression to liver injury.

  12. Macrophage alteration induced by inflammatory toxins isolated from Tityus discrepans scorpion venom. The role of Na(+)/Ca(2+) exchangers.

    Science.gov (United States)

    Ramírez-Bello, Vanesa; Sevcik, Carlos; Peigneur, Steve; Tytgat, Jan; D'Suze, Gina

    2014-05-01

    We study the effect of all Tityus discrepans venom components on macrophage alterations. Only seven toxins called "Inflammatory Toxin" (InfTx1-7) induced cell changes. Incubation with InfTx1 through InfTx5 rose macrophage NO level at 2 h toxin exposure. Cells rose NO release by 4 h exposure with InfTx2 and InfTx5, the NO levels reached concentrations similar or higher than the induced by lipopolysaccharides (LPS) incubation. InfTx2, -6 and -7 increased cell TNF-α release. InfTx2 as LPS roses cell TNF-α secretion gradually in time. Macrophages were loaded with fluorescent dyes, exposed to all toxins and observed with a 3D wide field deconvolution setup. Cells exposed to whole venom or InfTx4 through InfTx7 developed pseudopodia, cytoplasm prolongations, blebs, and loss their rounded form. The molecular masses and N-terminal sequences of InfTx4 through InfTx7 were analyzed by MALDI-TOF mass spectrometry and Edman degradation. InfTx4-7 induced a remarkable increase of intracellular Ca(2+) levels ([Ca(2+)]i), measured as a rise of normalized cell green fluorescence intensity (FI) ×2.7, ×2.6, ×95 and ×2.9 the controls, respectively. InfTx6-7 action mechanisms were studied under different conditions. Results suggested that InfTx6 interact with a membrane sodium channel inducing cell depolarization with a consequent increase on intracellular [Na(+)], this would activate Na(+)/Ca(2+) exchanger 3 (NCX) in the reverse mode and the phospholipase C inositol 1,4,5-trisphosphate (PLC-IP3) signaling pathway inducing [Ca(2+)]i overload. Inftx7 should activate the NCX in reverse mode and/or should activate the Na(+)/H(+) exchanger, increasing intracellular [Na(+)] which indirectly induce the activation of NCX3rv and the PLC-IP3 signaling pathway. All these mechanisms would cooperate with the [Ca(2+)]i overload. A rise of [Ca(2+)]i activates the synthesis and secretion of inflammatory molecules like TNF-α, which in turn, increases the gene transcription for inducible nitric

  13. Fenretinide inhibits macrophage inflammatory mediators and controls hypertension in spontaneously hypertensive rats via the peroxisome proliferator-activated receptor gamma pathway

    Directory of Open Access Journals (Sweden)

    Lin CH

    2016-11-01

    Full Text Available Ching-Han Lin,1,* Shang-Yu Lee,2,* Chun-Cheng Zhang,3 Ye-Fong Du,1 Hao-Chang Hung,1 Hung-Tsung Wu,4 Horng-Yih Ou1 1Department of Internal Medicine, Division of Endocrinology and Metabolism, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 2Department of Internal Medicine, Division of Endocrinology and Metabolism, Chi-Mei Medical Center, 3Department of Internal Medicine, Division of Holistic Care, Chi-Mei Medical Center, 4Research Center of Clinical Medicine, National Cheng Kung University Hospital, Tainan, Taiwan *These authors contributed equally to this work Abstract: Fenretinide is a novel anticancer agent reported to exhibit anti-invasive and antimetastatic activities. It has also been shown to improve obesity and diabetes, although the effects of fenretinide on hypertension are still unknown, and the detailed mechanisms remain unclear. In this study, we have shown that treatment with lipopolysaccharide (LPS decreased the expression of peroxisome proliferator-activated receptor γ (PPARγ in RAW264.7 macrophages, and pretreatment with fenretinide reversed the effect of LPS on PPARγ expression. In addition, LPS-induced pro-inflammatory cytokine production, including tumor necrosis factor-α, interleukin 6, and monocyte chemoattractant protein 1 were dose-dependently reversed by fenretinide, and the effects of fenretinide on LPS-induced pro-inflammatory cytokine production were blocked by treatment with PPARγ antagonist. Moreover, fenretinide decreased LPS-induced inducible nitric oxide synthase expression and nitrogen oxide production. These effects were blocked by the pretreatment with PPARγ antagonist in a dose-dependent manner, indicating fenretinide activated PPARγ to exert anti-inflammation activity. In view of the role of inflammation in hypertension and the anti-inflammatory action of fenretinide, we found that administration of fenretinide in spontaneously hypertensive rats

  14. Inhibition of COX-2-mediated eicosanoid production plays a major role in the anti-inflammatory effects of the endocannabinoid N-docosahexaenoylethanolamine (DHEA) in macrophages

    Science.gov (United States)

    Meijerink, Jocelijn; Poland, Mieke; Balvers, Michiel G J; Plastina, Pierluigi; Lute, Carolien; Dwarkasing, Jvalini; van Norren, Klaske; Witkamp, Renger F

    2015-01-01

    BACKGROUND AND PURPOSE N-docosahexaenoylethanolamine (DHEA) is the ethanolamine conjugate of the long-chain polyunsaturated n-3 fatty acid docosahexaenoic (DHA; 22: 6n-3). Its concentration in animal tissues and human plasma increases when diets rich in fish or krill oil are consumed. DHEA displays anti-inflammatory properties in vitro and was found to be released during an inflammatory response in mice. Here, we further examine possible targets involved in the immune-modulating effects of DHEA. EXPERIMENTAL APPROACH Antagonists for cannabinoid (CB)1 and CB2 receptors and PPARγ were used to explore effects of DHEA on NO release by LPS-stimulated RAW264.7 cells. The possible involvement of CB2 receptors was studied by comparing effects in LPS-stimulated peritoneal macrophages obtained from CB2−/− and CB2+/+ mice. Effects on NF-κB activation were determined using a reporter cell line. To study DHEA effects on COX-2 and lipoxygenase activity, 21 different eicosanoids produced by LPS-stimulated RAW264.7 cells were quantified by LC-MS/MS. Finally, effects on mRNA expression profiles were analysed using gene arrays followed by Ingenuity® Pathways Analysis. KEY RESULTS CB1 and CB2 receptors or PPARs were not involved in the effects of DHEA on NO release. NF-κB and IFN-β, key elements of the myeloid differentiation primary response protein D88 (MyD88)-dependent and MyD88-independent pathways were not decreased. By contrast, DHEA significantly reduced levels of several COX-2-derived eicosanoids. Gene expression analysis provided support for an effect on COX–2-mediated pathways. CONCLUSIONS AND IMPLICATIONS Our findings suggest that the anti-inflammatory effects of DHEA in macrophages predominantly take place via inhibition of eicosanoids produced through COX-2. LINKED ARTICLES This article is part of a themed section on Cannabinoids 2013 published in volume 171 issue 6. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10

  15. Probiotic Lactobacillus Strains Stimulate the Inflammatory Response and Activate Human Macrophages

    Directory of Open Access Journals (Sweden)

    L. M. Rocha-Ramírez

    2017-01-01

    Full Text Available Lactobacilli have been shown to promote health functions. In this study, we analyzed the mechanism by which four different strains of probiotics affected innate immunity, such as regulation of ROS, cytokines, phagocytosis, bactericidal activity, signaling by NF-κB pp65, and TLR2 activation. The production of ROS was dependent on the concentration and species of Lactobacillus. The results obtained from the tested strains (Lactobacillus rhamnosus GG, L. rhamnosus KLSD, L. helveticus IMAU70129, and L. casei IMAU60214 showed that strains induced early proinflammatory cytokines such as IL-8,TNF-α, IL-12p70, and IL-6. However, IL-1β expression was induced only by L. helveticus and L. casei strains (after 24 h stimulation. Phagocytosis and bactericidal activity of macrophages against various pathogens, such as S. aureus, S. typhimurium, and E. coli, were increased by pretreatment with Lactobacillus. The nuclear translocation NF-κB pp65 and TLR2-dependent signaling were also increased by treatment with the probiotics. Taken together, the experiments demonstrate that probiotic strains of Lactobacillus exert early immunostimulatory effects that may be directly linked to the initial inflammation of the response of human macrophages.

  16. Anti-Inflammatory Effects of Lactobacillus Rahmnosus and Bifidobacterium Breve on Cigarette Smoke Activated Human Macrophages

    NARCIS (Netherlands)

    Mortaz, Esmaeil|info:eu-repo/dai/nl/29141320X; Adcock, Ian M; Ricciardolo, Fabio L M; Varahram, Mohammad; Jamaati, Hamidreza; Velayati, Ali Akbar; Folkerts, Gert|info:eu-repo/dai/nl/087131811; Garssen, Johan|info:eu-repo/dai/nl/086369962

    2015-01-01

    BACKGROUND: Chronic obstructive pulmonary disease (COPD) is a major global health problem with cigarette smoke (CS) as the main risk factor for its development. Airway inflammation in COPD involves the increased expression of inflammatory mediators such as CXCL-8 and IL-1β which are important

  17. Methyl 9-Oxo-(10E,12E)-octadecadienoate Isolated from Fomes fomentarius Attenuates Lipopolysaccharide-Induced Inflammatory Response by Blocking Phosphorylation of STAT3 in Murine Macrophages.

    Science.gov (United States)

    Choe, Ji-Hyun; Yi, Young-Joo; Lee, Myeong-Seok; Seo, Dong-Won; Yun, Bong-Sik; Lee, Sang-Myeong

    2015-09-01

    Fomes fomentarius is a fungus of the Polyporaceae family and is used in traditional oriental therapies. Although the anti-inflammatory activities of this species have been previously reported, the identity of the bioactive compounds responsible for this activity remains unknown. Here, we investigated whether methyl 9-oxo-(10E,12E)-octadecadienoate (FF-8) purified from F. fomentarius exerts anti-inflammatory activity in murine macrophages stimulated with lipopolysaccharide (LPS). FF-8 suppressed secretion of nitric oxide (NO) and prostaglandin E2 through downregulation of inducible NO synthase and cyclooxygenase-2 expression induced by LPS. In addition, pretreatment of cells with FF-8 led to a reduction in levels of secreted inflammatory cytokines such as tumor necrosis factor-α and interleukin-6 in macrophages stimulated with LPS. Conversely, FF-8 did not affect nuclear factor κB, p38, c-Jun NH2-terminal kinase, and extracellular signal-regulated kinase pathways. Instead, FF-8 specifically interfered with signal transducer and activator of transcription 3 (STAT3) phosphorylation induced by LPS. Collectively, this study demonstrated that FF-8 purified from F. fomentarius suppresses inflammatory responses in macrophages stimulated with LPS by inhibiting STAT3 activation. Further studies will be required to elucidate the anti-inflammatory effect of FF-8 in vivo.

  18. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages.

    Science.gov (United States)

    Shin, Jung-Hye; Ryu, Ji Hyeon; Kang, Min Jung; Hwang, Cho Rong; Han, Jaehee; Kang, Dawon

    2013-08-01

    Garlic has a variety of biologic activities, including anti-inflammatory properties. Although garlic has several biologic activities, some people dislike eating fresh raw garlic because of its strong taste and smell. Therefore, garlic formulations involving heating procedures have been developed. In this study, we investigated whether short-term heating affects the anti-inflammatory properties of garlic. Fresh and heated raw garlic extracts (FRGE and HRGE) were prepared with incubation at 25 °C and 95 °C, respectively, for 2 h. Treatment with FRGE and HRGE significantly reduced the LPS-induced increase in the pro-inflammatory cytokine concentration (TNF-α, IL-1β, and IL-6) and NO through HO-1 upregulation in RAW 264.7 macrophages. The anti-inflammatory effect was greater in FRGE than in HRGE. The allicin concentration was higher in FRGE than in HRGE. Allicin treatment showed reduced production of pro-inflammatory cytokines and NO and increased HO-1 activity. The results show that the decrease in LPS-induced NO and pro-inflammatory cytokines in RAW 264.7 macrophages through HO-1 induction was greater for FRGE compared with HRGE. Additionally, the results indicate that allicin is responsible for the anti-inflammatory effect of FRGE. Our results suggest a potential therapeutic use of allicin in the treatment of chronic inflammatory disease.

  19. Thalidomide treatment modulates macrophage pro-inflammatory function and cytokine levels in Klebsiella pneumoniae B5055 induced pneumonia in BALB/c mice.

    Science.gov (United States)

    Kumar, Vijay; Harjai, Kusum; Chhibber, Sanjay

    2010-07-01

    Lung innate immune response plays an important role in the clearance of pathogens from lungs, however, profound activation of innate immune cells (alveolar macrophages or neutrophils) can lead to development of acute lung inflammation or injury by producing various pro-inflammatory molecules (IL-1, TNF-alpha and H2O2 etc.). Present study is designed to investigate the immunomodulatory action of thalidomide in Klebsiella pneumoniae B5055 induced acute lung infection in BALB/c mice. Acute lung inflammation was induced by intranasal instillation of K. pneumoniae B5055 into mice without any anaesthesia and treated with thalidomide (30 mg/kg/day/po) or normal saline orally using a treatment schedule shown to modulate pro-inflammatory innate immune response. Thalidomide treatment modulated pro-inflammatory function of alveolar macrophages by significantly (ppneumonia caused by gram negative bacterial infection.

  20. Quantitative GPCR and ion channel transcriptomics in primary alveolar macrophages and macrophage surrogates

    Directory of Open Access Journals (Sweden)

    Groot-Kormelink Paul J

    2012-10-01

    Full Text Available Abstract Background Alveolar macrophages are one of the first lines of defence against invading pathogens and play a central role in modulating both the innate and acquired immune systems. By responding to endogenous stimuli within the lung, alveolar macrophages contribute towards the regulation of the local inflammatory microenvironment, the initiation of wound healing and the pathogenesis of viral and bacterial infections. Despite the availability of protocols for isolating primary alveolar macrophages from the